gcc/testsuite/ChangeLog:
[official-gcc.git] / gcc / ada / sem_ch5.adb
blobf35b37d9c36bbf821361936fad8d6b5cd017daf4
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Ch6; use Exp_Ch6;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Ghost; use Ghost;
36 with Lib; use Lib;
37 with Lib.Xref; use Lib.Xref;
38 with Namet; use Namet;
39 with Nlists; use Nlists;
40 with Nmake; use Nmake;
41 with Opt; use Opt;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Case; use Sem_Case;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_Dim; use Sem_Dim;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Elab; use Sem_Elab;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Type; use Sem_Type;
56 with Sem_Util; use Sem_Util;
57 with Sem_Warn; use Sem_Warn;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Sinfo; use Sinfo;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Uintp; use Uintp;
65 package body Sem_Ch5 is
67 Current_Assignment : Node_Id := Empty;
68 -- This variable holds the node for an assignment that contains target
69 -- names. The corresponding flag has been set by the parser, and when
70 -- set the analysis of the RHS must be done with all expansion disabled,
71 -- because the assignment is reanalyzed after expansion has replaced all
72 -- occurrences of the target name appropriately.
74 Unblocked_Exit_Count : Nat := 0;
75 -- This variable is used when processing if statements, case statements,
76 -- and block statements. It counts the number of exit points that are not
77 -- blocked by unconditional transfer instructions: for IF and CASE, these
78 -- are the branches of the conditional; for a block, they are the statement
79 -- sequence of the block, and the statement sequences of any exception
80 -- handlers that are part of the block. When processing is complete, if
81 -- this count is zero, it means that control cannot fall through the IF,
82 -- CASE or block statement. This is used for the generation of warning
83 -- messages. This variable is recursively saved on entry to processing the
84 -- construct, and restored on exit.
86 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
87 -- N is the node for an arbitrary construct. This function searches the
88 -- construct N to see if any expressions within it contain function
89 -- calls that use the secondary stack, returning True if any such call
90 -- is found, and False otherwise.
92 procedure Preanalyze_Range (R_Copy : Node_Id);
93 -- Determine expected type of range or domain of iteration of Ada 2012
94 -- loop by analyzing separate copy. Do the analysis and resolution of the
95 -- copy of the bound(s) with expansion disabled, to prevent the generation
96 -- of finalization actions. This prevents memory leaks when the bounds
97 -- contain calls to functions returning controlled arrays or when the
98 -- domain of iteration is a container.
100 ------------------------
101 -- Analyze_Assignment --
102 ------------------------
104 -- WARNING: This routine manages Ghost regions. Return statements must be
105 -- replaced by gotos which jump to the end of the routine and restore the
106 -- Ghost mode.
108 procedure Analyze_Assignment (N : Node_Id) is
109 Lhs : constant Node_Id := Name (N);
110 Rhs : Node_Id := Expression (N);
112 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
113 -- N is the node for the left hand side of an assignment, and it is not
114 -- a variable. This routine issues an appropriate diagnostic.
116 function Is_Protected_Part_Of_Constituent
117 (Nod : Node_Id) return Boolean;
118 -- Determine whether arbitrary node Nod denotes a Part_Of constituent of
119 -- a single protected type.
121 procedure Kill_Lhs;
122 -- This is called to kill current value settings of a simple variable
123 -- on the left hand side. We call it if we find any error in analyzing
124 -- the assignment, and at the end of processing before setting any new
125 -- current values in place.
127 procedure Set_Assignment_Type
128 (Opnd : Node_Id;
129 Opnd_Type : in out Entity_Id);
130 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
131 -- nominal subtype. This procedure is used to deal with cases where the
132 -- nominal subtype must be replaced by the actual subtype.
134 procedure Transform_BIP_Assignment (Typ : Entity_Id);
135 function Should_Transform_BIP_Assignment
136 (Typ : Entity_Id) return Boolean;
137 -- If the right-hand side of an assignment statement is a build-in-place
138 -- call we cannot build in place, so we insert a temp initialized with
139 -- the call, and transform the assignment statement to copy the temp.
140 -- Transform_BIP_Assignment does the tranformation, and
141 -- Should_Transform_BIP_Assignment determines whether we should.
142 -- The same goes for qualified expressions and conversions whose
143 -- operand is such a call.
145 -- This is only for nonlimited types; assignment statements are illegal
146 -- for limited types, but are generated internally for aggregates and
147 -- init procs. These limited-type are not really assignment statements
148 -- -- conceptually, they are initializations, so should not be
149 -- transformed.
151 -- Similarly, for nonlimited types, aggregates and init procs generate
152 -- assignment statements that are really initializations. These are
153 -- marked No_Ctrl_Actions.
155 function Within_Function return Boolean;
156 -- Determine whether the current scope is a function or appears within
157 -- one.
159 -------------------------------
160 -- Diagnose_Non_Variable_Lhs --
161 -------------------------------
163 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
164 begin
165 -- Not worth posting another error if left hand side already flagged
166 -- as being illegal in some respect.
168 if Error_Posted (N) then
169 return;
171 -- Some special bad cases of entity names
173 elsif Is_Entity_Name (N) then
174 declare
175 Ent : constant Entity_Id := Entity (N);
177 begin
178 if Ekind (Ent) = E_Loop_Parameter
179 or else Is_Loop_Parameter (Ent)
180 then
181 Error_Msg_N ("assignment to loop parameter not allowed", N);
182 return;
184 elsif Ekind (Ent) = E_In_Parameter then
185 Error_Msg_N
186 ("assignment to IN mode parameter not allowed", N);
187 return;
189 -- Renamings of protected private components are turned into
190 -- constants when compiling a protected function. In the case
191 -- of single protected types, the private component appears
192 -- directly.
194 elsif (Is_Prival (Ent) and then Within_Function)
195 or else
196 (Ekind (Ent) = E_Component
197 and then Is_Protected_Type (Scope (Ent)))
198 then
199 Error_Msg_N
200 ("protected function cannot modify protected object", N);
201 return;
202 end if;
203 end;
205 -- For indexed components, test prefix if it is in array. We do not
206 -- want to recurse for cases where the prefix is a pointer, since we
207 -- may get a message confusing the pointer and what it references.
209 elsif Nkind (N) = N_Indexed_Component
210 and then Is_Array_Type (Etype (Prefix (N)))
211 then
212 Diagnose_Non_Variable_Lhs (Prefix (N));
213 return;
215 -- Another special case for assignment to discriminant
217 elsif Nkind (N) = N_Selected_Component then
218 if Present (Entity (Selector_Name (N)))
219 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
220 then
221 Error_Msg_N ("assignment to discriminant not allowed", N);
222 return;
224 -- For selection from record, diagnose prefix, but note that again
225 -- we only do this for a record, not e.g. for a pointer.
227 elsif Is_Record_Type (Etype (Prefix (N))) then
228 Diagnose_Non_Variable_Lhs (Prefix (N));
229 return;
230 end if;
231 end if;
233 -- If we fall through, we have no special message to issue
235 Error_Msg_N ("left hand side of assignment must be a variable", N);
236 end Diagnose_Non_Variable_Lhs;
238 --------------------------------------
239 -- Is_Protected_Part_Of_Constituent --
240 --------------------------------------
242 function Is_Protected_Part_Of_Constituent
243 (Nod : Node_Id) return Boolean
245 Encap_Id : Entity_Id;
246 Var_Id : Entity_Id;
248 begin
249 -- Abstract states and variables may act as Part_Of constituents of
250 -- single protected types, however only variables can be modified by
251 -- an assignment.
253 if Is_Entity_Name (Nod) then
254 Var_Id := Entity (Nod);
256 if Present (Var_Id) and then Ekind (Var_Id) = E_Variable then
257 Encap_Id := Encapsulating_State (Var_Id);
259 -- To qualify, the node must denote a reference to a variable
260 -- whose encapsulating state is a single protected object.
262 return
263 Present (Encap_Id)
264 and then Is_Single_Protected_Object (Encap_Id);
265 end if;
266 end if;
268 return False;
269 end Is_Protected_Part_Of_Constituent;
271 --------------
272 -- Kill_Lhs --
273 --------------
275 procedure Kill_Lhs is
276 begin
277 if Is_Entity_Name (Lhs) then
278 declare
279 Ent : constant Entity_Id := Entity (Lhs);
280 begin
281 if Present (Ent) then
282 Kill_Current_Values (Ent);
283 end if;
284 end;
285 end if;
286 end Kill_Lhs;
288 -------------------------
289 -- Set_Assignment_Type --
290 -------------------------
292 procedure Set_Assignment_Type
293 (Opnd : Node_Id;
294 Opnd_Type : in out Entity_Id)
296 Decl : Node_Id;
298 begin
299 Require_Entity (Opnd);
301 -- If the assignment operand is an in-out or out parameter, then we
302 -- get the actual subtype (needed for the unconstrained case). If the
303 -- operand is the actual in an entry declaration, then within the
304 -- accept statement it is replaced with a local renaming, which may
305 -- also have an actual subtype.
307 if Is_Entity_Name (Opnd)
308 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
309 or else Ekind_In (Entity (Opnd),
310 E_In_Out_Parameter,
311 E_Generic_In_Out_Parameter)
312 or else
313 (Ekind (Entity (Opnd)) = E_Variable
314 and then Nkind (Parent (Entity (Opnd))) =
315 N_Object_Renaming_Declaration
316 and then Nkind (Parent (Parent (Entity (Opnd)))) =
317 N_Accept_Statement))
318 then
319 Opnd_Type := Get_Actual_Subtype (Opnd);
321 -- If assignment operand is a component reference, then we get the
322 -- actual subtype of the component for the unconstrained case.
324 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
325 and then not Is_Unchecked_Union (Opnd_Type)
326 then
327 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
329 if Present (Decl) then
330 Insert_Action (N, Decl);
331 Mark_Rewrite_Insertion (Decl);
332 Analyze (Decl);
333 Opnd_Type := Defining_Identifier (Decl);
334 Set_Etype (Opnd, Opnd_Type);
335 Freeze_Itype (Opnd_Type, N);
337 elsif Is_Constrained (Etype (Opnd)) then
338 Opnd_Type := Etype (Opnd);
339 end if;
341 -- For slice, use the constrained subtype created for the slice
343 elsif Nkind (Opnd) = N_Slice then
344 Opnd_Type := Etype (Opnd);
345 end if;
346 end Set_Assignment_Type;
348 -------------------------------------
349 -- Should_Transform_BIP_Assignment --
350 -------------------------------------
352 function Should_Transform_BIP_Assignment
353 (Typ : Entity_Id) return Boolean
355 Result : Boolean;
357 begin
358 if Expander_Active
359 and then not Is_Limited_View (Typ)
360 and then Is_Build_In_Place_Result_Type (Typ)
361 and then not No_Ctrl_Actions (N)
362 then
363 -- This function is called early, before name resolution is
364 -- complete, so we have to deal with things that might turn into
365 -- function calls later. N_Function_Call and N_Op nodes are the
366 -- obvious case. An N_Identifier or N_Expanded_Name is a
367 -- parameterless function call if it denotes a function.
368 -- Finally, an attribute reference can be a function call.
370 case Nkind (Unqual_Conv (Rhs)) is
371 when N_Function_Call
372 | N_Op
374 Result := True;
376 when N_Expanded_Name
377 | N_Identifier
379 case Ekind (Entity (Unqual_Conv (Rhs))) is
380 when E_Function
381 | E_Operator
383 Result := True;
385 when others =>
386 Result := False;
387 end case;
389 when N_Attribute_Reference =>
390 Result := Attribute_Name (Unqual_Conv (Rhs)) = Name_Input;
391 -- T'Input will turn into a call whose result type is T
393 when others =>
394 Result := False;
395 end case;
396 else
397 Result := False;
398 end if;
400 return Result;
401 end Should_Transform_BIP_Assignment;
403 ------------------------------
404 -- Transform_BIP_Assignment --
405 ------------------------------
407 procedure Transform_BIP_Assignment (Typ : Entity_Id) is
409 -- Tranform "X : [constant] T := F (...);" into:
411 -- Temp : constant T := F (...);
412 -- X := Temp;
414 Loc : constant Source_Ptr := Sloc (N);
415 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'Y', Rhs);
416 Obj_Decl : constant Node_Id :=
417 Make_Object_Declaration (Loc,
418 Defining_Identifier => Def_Id,
419 Constant_Present => True,
420 Object_Definition => New_Occurrence_Of (Typ, Loc),
421 Expression => Rhs,
422 Has_Init_Expression => True);
424 begin
425 Set_Etype (Def_Id, Typ);
426 Set_Expression (N, New_Occurrence_Of (Def_Id, Loc));
428 -- At this point, Rhs is no longer equal to Expression (N), so:
430 Rhs := Expression (N);
432 Insert_Action (N, Obj_Decl);
433 end Transform_BIP_Assignment;
435 ---------------------
436 -- Within_Function --
437 ---------------------
439 function Within_Function return Boolean is
440 Scop_Id : constant Entity_Id := Current_Scope;
442 begin
443 if Ekind (Scop_Id) = E_Function then
444 return True;
446 elsif Ekind (Enclosing_Dynamic_Scope (Scop_Id)) = E_Function then
447 return True;
448 end if;
450 return False;
451 end Within_Function;
453 -- Local variables
455 T1 : Entity_Id;
456 T2 : Entity_Id;
458 Save_Full_Analysis : Boolean := False;
459 -- Force initialization to facilitate static analysis
461 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
462 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
463 -- Save the Ghost-related attributes to restore on exit
465 -- Start of processing for Analyze_Assignment
467 begin
468 Mark_Coextensions (N, Rhs);
470 -- Preserve relevant elaboration-related attributes of the context which
471 -- are no longer available or very expensive to recompute once analysis,
472 -- resolution, and expansion are over.
474 Mark_Elaboration_Attributes
475 (N_Id => N,
476 Checks => True,
477 Modes => True);
479 -- Analyze the target of the assignment first in case the expression
480 -- contains references to Ghost entities. The checks that verify the
481 -- proper use of a Ghost entity need to know the enclosing context.
483 Analyze (Lhs);
485 -- An assignment statement is Ghost when the left hand side denotes a
486 -- Ghost entity. Set the mode now to ensure that any nodes generated
487 -- during analysis and expansion are properly marked as Ghost.
489 if Has_Target_Names (N) then
490 Current_Assignment := N;
491 Expander_Mode_Save_And_Set (False);
492 Save_Full_Analysis := Full_Analysis;
493 Full_Analysis := False;
494 else
495 Current_Assignment := Empty;
496 end if;
498 Mark_And_Set_Ghost_Assignment (N);
499 Analyze (Rhs);
501 -- Ensure that we never do an assignment on a variable marked as
502 -- Is_Safe_To_Reevaluate.
504 pragma Assert
505 (not Is_Entity_Name (Lhs)
506 or else Ekind (Entity (Lhs)) /= E_Variable
507 or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
509 -- Start type analysis for assignment
511 T1 := Etype (Lhs);
513 -- In the most general case, both Lhs and Rhs can be overloaded, and we
514 -- must compute the intersection of the possible types on each side.
516 if Is_Overloaded (Lhs) then
517 declare
518 I : Interp_Index;
519 It : Interp;
521 begin
522 T1 := Any_Type;
523 Get_First_Interp (Lhs, I, It);
525 while Present (It.Typ) loop
527 -- An indexed component with generalized indexing is always
528 -- overloaded with the corresponding dereference. Discard the
529 -- interpretation that yields a reference type, which is not
530 -- assignable.
532 if Nkind (Lhs) = N_Indexed_Component
533 and then Present (Generalized_Indexing (Lhs))
534 and then Has_Implicit_Dereference (It.Typ)
535 then
536 null;
538 -- This may be a call to a parameterless function through an
539 -- implicit dereference, so discard interpretation as well.
541 elsif Is_Entity_Name (Lhs)
542 and then Has_Implicit_Dereference (It.Typ)
543 then
544 null;
546 elsif Has_Compatible_Type (Rhs, It.Typ) then
547 if T1 = Any_Type then
548 T1 := It.Typ;
549 else
550 -- An explicit dereference is overloaded if the prefix
551 -- is. Try to remove the ambiguity on the prefix, the
552 -- error will be posted there if the ambiguity is real.
554 if Nkind (Lhs) = N_Explicit_Dereference then
555 declare
556 PI : Interp_Index;
557 PI1 : Interp_Index := 0;
558 PIt : Interp;
559 Found : Boolean;
561 begin
562 Found := False;
563 Get_First_Interp (Prefix (Lhs), PI, PIt);
565 while Present (PIt.Typ) loop
566 if Is_Access_Type (PIt.Typ)
567 and then Has_Compatible_Type
568 (Rhs, Designated_Type (PIt.Typ))
569 then
570 if Found then
571 PIt :=
572 Disambiguate (Prefix (Lhs),
573 PI1, PI, Any_Type);
575 if PIt = No_Interp then
576 Error_Msg_N
577 ("ambiguous left-hand side in "
578 & "assignment", Lhs);
579 exit;
580 else
581 Resolve (Prefix (Lhs), PIt.Typ);
582 end if;
584 exit;
585 else
586 Found := True;
587 PI1 := PI;
588 end if;
589 end if;
591 Get_Next_Interp (PI, PIt);
592 end loop;
593 end;
595 else
596 Error_Msg_N
597 ("ambiguous left-hand side in assignment", Lhs);
598 exit;
599 end if;
600 end if;
601 end if;
603 Get_Next_Interp (I, It);
604 end loop;
605 end;
607 if T1 = Any_Type then
608 Error_Msg_N
609 ("no valid types for left-hand side for assignment", Lhs);
610 Kill_Lhs;
611 goto Leave;
612 end if;
613 end if;
615 -- Deal with build-in-place calls for nonlimited types. We don't do this
616 -- later, because resolving the rhs tranforms it incorrectly for build-
617 -- in-place.
619 if Should_Transform_BIP_Assignment (Typ => T1) then
621 -- In certain cases involving user-defined concatenation operators,
622 -- we need to resolve the right-hand side before transforming the
623 -- assignment.
625 case Nkind (Unqual_Conv (Rhs)) is
626 when N_Function_Call =>
627 declare
628 Actual : Node_Id :=
629 First (Parameter_Associations (Unqual_Conv (Rhs)));
630 Actual_Exp : Node_Id;
632 begin
633 while Present (Actual) loop
634 if Nkind (Actual) = N_Parameter_Association then
635 Actual_Exp := Explicit_Actual_Parameter (Actual);
636 else
637 Actual_Exp := Actual;
638 end if;
640 if Nkind (Actual_Exp) = N_Op_Concat then
641 Resolve (Rhs, T1);
642 exit;
643 end if;
645 Next (Actual);
646 end loop;
647 end;
649 when N_Attribute_Reference
650 | N_Expanded_Name
651 | N_Identifier
652 | N_Op
654 null;
656 when others =>
657 raise Program_Error;
658 end case;
660 Transform_BIP_Assignment (Typ => T1);
661 end if;
663 pragma Assert (not Should_Transform_BIP_Assignment (Typ => T1));
665 -- The resulting assignment type is T1, so now we will resolve the left
666 -- hand side of the assignment using this determined type.
668 Resolve (Lhs, T1);
670 -- Cases where Lhs is not a variable. In an instance or an inlined body
671 -- no need for further check because assignment was legal in template.
673 if In_Inlined_Body then
674 null;
676 elsif not Is_Variable (Lhs) then
678 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
679 -- protected object.
681 declare
682 Ent : Entity_Id;
683 S : Entity_Id;
685 begin
686 if Ada_Version >= Ada_2005 then
688 -- Handle chains of renamings
690 Ent := Lhs;
691 while Nkind (Ent) in N_Has_Entity
692 and then Present (Entity (Ent))
693 and then Present (Renamed_Object (Entity (Ent)))
694 loop
695 Ent := Renamed_Object (Entity (Ent));
696 end loop;
698 if (Nkind (Ent) = N_Attribute_Reference
699 and then Attribute_Name (Ent) = Name_Priority)
701 -- Renamings of the attribute Priority applied to protected
702 -- objects have been previously expanded into calls to the
703 -- Get_Ceiling run-time subprogram.
705 or else Is_Expanded_Priority_Attribute (Ent)
706 then
707 -- The enclosing subprogram cannot be a protected function
709 S := Current_Scope;
710 while not (Is_Subprogram (S)
711 and then Convention (S) = Convention_Protected)
712 and then S /= Standard_Standard
713 loop
714 S := Scope (S);
715 end loop;
717 if Ekind (S) = E_Function
718 and then Convention (S) = Convention_Protected
719 then
720 Error_Msg_N
721 ("protected function cannot modify protected object",
722 Lhs);
723 end if;
725 -- Changes of the ceiling priority of the protected object
726 -- are only effective if the Ceiling_Locking policy is in
727 -- effect (AARM D.5.2 (5/2)).
729 if Locking_Policy /= 'C' then
730 Error_Msg_N
731 ("assignment to the attribute PRIORITY has no effect??",
732 Lhs);
733 Error_Msg_N
734 ("\since no Locking_Policy has been specified??", Lhs);
735 end if;
737 goto Leave;
738 end if;
739 end if;
740 end;
742 Diagnose_Non_Variable_Lhs (Lhs);
743 goto Leave;
745 -- Error of assigning to limited type. We do however allow this in
746 -- certain cases where the front end generates the assignments.
748 elsif Is_Limited_Type (T1)
749 and then not Assignment_OK (Lhs)
750 and then not Assignment_OK (Original_Node (Lhs))
751 then
752 -- CPP constructors can only be called in declarations
754 if Is_CPP_Constructor_Call (Rhs) then
755 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
756 else
757 Error_Msg_N
758 ("left hand of assignment must not be limited type", Lhs);
759 Explain_Limited_Type (T1, Lhs);
760 end if;
762 goto Leave;
764 -- A class-wide type may be a limited view. This illegal case is not
765 -- caught by previous checks.
767 elsif Ekind (T1) = E_Class_Wide_Type and then From_Limited_With (T1) then
768 Error_Msg_NE ("invalid use of limited view of&", Lhs, T1);
769 goto Leave;
771 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
772 -- abstract. This is only checked when the assignment Comes_From_Source,
773 -- because in some cases the expander generates such assignments (such
774 -- in the _assign operation for an abstract type).
776 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
777 Error_Msg_N
778 ("target of assignment operation must not be abstract", Lhs);
779 end if;
781 -- Variables which are Part_Of constituents of single protected types
782 -- behave in similar fashion to protected components. Such variables
783 -- cannot be modified by protected functions.
785 if Is_Protected_Part_Of_Constituent (Lhs) and then Within_Function then
786 Error_Msg_N
787 ("protected function cannot modify protected object", Lhs);
788 end if;
790 -- Resolution may have updated the subtype, in case the left-hand side
791 -- is a private protected component. Use the correct subtype to avoid
792 -- scoping issues in the back-end.
794 T1 := Etype (Lhs);
796 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
797 -- type. For example:
799 -- limited with P;
800 -- package Pkg is
801 -- type Acc is access P.T;
802 -- end Pkg;
804 -- with Pkg; use Acc;
805 -- procedure Example is
806 -- A, B : Acc;
807 -- begin
808 -- A.all := B.all; -- ERROR
809 -- end Example;
811 if Nkind (Lhs) = N_Explicit_Dereference
812 and then Ekind (T1) = E_Incomplete_Type
813 then
814 Error_Msg_N ("invalid use of incomplete type", Lhs);
815 Kill_Lhs;
816 goto Leave;
817 end if;
819 -- Now we can complete the resolution of the right hand side
821 Set_Assignment_Type (Lhs, T1);
823 -- If the target of the assignment is an entity of a mutable type and
824 -- the expression is a conditional expression, its alternatives can be
825 -- of different subtypes of the nominal type of the LHS, so they must be
826 -- resolved with the base type, given that their subtype may differ from
827 -- that of the target mutable object.
829 if Is_Entity_Name (Lhs)
830 and then Ekind_In (Entity (Lhs), E_In_Out_Parameter,
831 E_Out_Parameter,
832 E_Variable)
833 and then Is_Composite_Type (T1)
834 and then not Is_Constrained (Etype (Entity (Lhs)))
835 and then Nkind_In (Rhs, N_If_Expression, N_Case_Expression)
836 then
837 Resolve (Rhs, Base_Type (T1));
839 else
840 Resolve (Rhs, T1);
841 end if;
843 -- This is the point at which we check for an unset reference
845 Check_Unset_Reference (Rhs);
846 Check_Unprotected_Access (Lhs, Rhs);
848 -- Remaining steps are skipped if Rhs was syntactically in error
850 if Rhs = Error then
851 Kill_Lhs;
852 goto Leave;
853 end if;
855 T2 := Etype (Rhs);
857 if not Covers (T1, T2) then
858 Wrong_Type (Rhs, Etype (Lhs));
859 Kill_Lhs;
860 goto Leave;
861 end if;
863 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
864 -- types, use the non-limited view if available
866 if Nkind (Rhs) = N_Explicit_Dereference
867 and then Is_Tagged_Type (T2)
868 and then Has_Non_Limited_View (T2)
869 then
870 T2 := Non_Limited_View (T2);
871 end if;
873 Set_Assignment_Type (Rhs, T2);
875 if Total_Errors_Detected /= 0 then
876 if No (T1) then
877 T1 := Any_Type;
878 end if;
880 if No (T2) then
881 T2 := Any_Type;
882 end if;
883 end if;
885 if T1 = Any_Type or else T2 = Any_Type then
886 Kill_Lhs;
887 goto Leave;
888 end if;
890 -- If the rhs is class-wide or dynamically tagged, then require the lhs
891 -- to be class-wide. The case where the rhs is a dynamically tagged call
892 -- to a dispatching operation with a controlling access result is
893 -- excluded from this check, since the target has an access type (and
894 -- no tag propagation occurs in that case).
896 if (Is_Class_Wide_Type (T2)
897 or else (Is_Dynamically_Tagged (Rhs)
898 and then not Is_Access_Type (T1)))
899 and then not Is_Class_Wide_Type (T1)
900 then
901 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
903 elsif Is_Class_Wide_Type (T1)
904 and then not Is_Class_Wide_Type (T2)
905 and then not Is_Tag_Indeterminate (Rhs)
906 and then not Is_Dynamically_Tagged (Rhs)
907 then
908 Error_Msg_N ("dynamically tagged expression required!", Rhs);
909 end if;
911 -- Propagate the tag from a class-wide target to the rhs when the rhs
912 -- is a tag-indeterminate call.
914 if Is_Tag_Indeterminate (Rhs) then
915 if Is_Class_Wide_Type (T1) then
916 Propagate_Tag (Lhs, Rhs);
918 elsif Nkind (Rhs) = N_Function_Call
919 and then Is_Entity_Name (Name (Rhs))
920 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
921 then
922 Error_Msg_N
923 ("call to abstract function must be dispatching", Name (Rhs));
925 elsif Nkind (Rhs) = N_Qualified_Expression
926 and then Nkind (Expression (Rhs)) = N_Function_Call
927 and then Is_Entity_Name (Name (Expression (Rhs)))
928 and then
929 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
930 then
931 Error_Msg_N
932 ("call to abstract function must be dispatching",
933 Name (Expression (Rhs)));
934 end if;
935 end if;
937 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
938 -- apply an implicit conversion of the rhs to that type to force
939 -- appropriate static and run-time accessibility checks. This applies
940 -- as well to anonymous access-to-subprogram types that are component
941 -- subtypes or formal parameters.
943 if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
944 if Is_Local_Anonymous_Access (T1)
945 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
947 -- Handle assignment to an Ada 2012 stand-alone object
948 -- of an anonymous access type.
950 or else (Ekind (T1) = E_Anonymous_Access_Type
951 and then Nkind (Associated_Node_For_Itype (T1)) =
952 N_Object_Declaration)
954 then
955 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
956 Analyze_And_Resolve (Rhs, T1);
957 end if;
958 end if;
960 -- Ada 2005 (AI-231): Assignment to not null variable
962 if Ada_Version >= Ada_2005
963 and then Can_Never_Be_Null (T1)
964 and then not Assignment_OK (Lhs)
965 then
966 -- Case where we know the right hand side is null
968 if Known_Null (Rhs) then
969 Apply_Compile_Time_Constraint_Error
970 (N => Rhs,
971 Msg =>
972 "(Ada 2005) null not allowed in null-excluding objects??",
973 Reason => CE_Null_Not_Allowed);
975 -- We still mark this as a possible modification, that's necessary
976 -- to reset Is_True_Constant, and desirable for xref purposes.
978 Note_Possible_Modification (Lhs, Sure => True);
979 goto Leave;
981 -- If we know the right hand side is non-null, then we convert to the
982 -- target type, since we don't need a run time check in that case.
984 elsif not Can_Never_Be_Null (T2) then
985 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
986 Analyze_And_Resolve (Rhs, T1);
987 end if;
988 end if;
990 if Is_Scalar_Type (T1) then
991 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
993 -- For array types, verify that lengths match. If the right hand side
994 -- is a function call that has been inlined, the assignment has been
995 -- rewritten as a block, and the constraint check will be applied to the
996 -- assignment within the block.
998 elsif Is_Array_Type (T1)
999 and then (Nkind (Rhs) /= N_Type_Conversion
1000 or else Is_Constrained (Etype (Rhs)))
1001 and then (Nkind (Rhs) /= N_Function_Call
1002 or else Nkind (N) /= N_Block_Statement)
1003 then
1004 -- Assignment verifies that the length of the Lsh and Rhs are equal,
1005 -- but of course the indexes do not have to match. If the right-hand
1006 -- side is a type conversion to an unconstrained type, a length check
1007 -- is performed on the expression itself during expansion. In rare
1008 -- cases, the redundant length check is computed on an index type
1009 -- with a different representation, triggering incorrect code in the
1010 -- back end.
1012 Apply_Length_Check (Rhs, Etype (Lhs));
1014 else
1015 -- Discriminant checks are applied in the course of expansion
1017 null;
1018 end if;
1020 -- Note: modifications of the Lhs may only be recorded after
1021 -- checks have been applied.
1023 Note_Possible_Modification (Lhs, Sure => True);
1025 -- ??? a real accessibility check is needed when ???
1027 -- Post warning for redundant assignment or variable to itself
1029 if Warn_On_Redundant_Constructs
1031 -- We only warn for source constructs
1033 and then Comes_From_Source (N)
1035 -- Where the object is the same on both sides
1037 and then Same_Object (Lhs, Original_Node (Rhs))
1039 -- But exclude the case where the right side was an operation that
1040 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
1041 -- don't want to warn in such a case, since it is reasonable to write
1042 -- such expressions especially when K is defined symbolically in some
1043 -- other package.
1045 and then Nkind (Original_Node (Rhs)) not in N_Op
1046 then
1047 if Nkind (Lhs) in N_Has_Entity then
1048 Error_Msg_NE -- CODEFIX
1049 ("?r?useless assignment of & to itself!", N, Entity (Lhs));
1050 else
1051 Error_Msg_N -- CODEFIX
1052 ("?r?useless assignment of object to itself!", N);
1053 end if;
1054 end if;
1056 -- Check for non-allowed composite assignment
1058 if not Support_Composite_Assign_On_Target
1059 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
1060 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
1061 then
1062 Error_Msg_CRT ("composite assignment", N);
1063 end if;
1065 -- Check elaboration warning for left side if not in elab code
1067 if Legacy_Elaboration_Checks
1068 and not In_Subprogram_Or_Concurrent_Unit
1069 then
1070 Check_Elab_Assign (Lhs);
1071 end if;
1073 -- Save the scenario for later examination by the ABE Processing phase
1075 Record_Elaboration_Scenario (N);
1077 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
1078 -- assignment is a source assignment in the extended main source unit.
1079 -- We are not interested in any reference information outside this
1080 -- context, or in compiler generated assignment statements.
1082 if Comes_From_Source (N)
1083 and then In_Extended_Main_Source_Unit (Lhs)
1084 then
1085 Set_Referenced_Modified (Lhs, Out_Param => False);
1086 end if;
1088 -- RM 7.3.2 (12/3): An assignment to a view conversion (from a type to
1089 -- one of its ancestors) requires an invariant check. Apply check only
1090 -- if expression comes from source, otherwise it will be applied when
1091 -- value is assigned to source entity. This is not done in GNATprove
1092 -- mode, as GNATprove handles invariant checks itself.
1094 if Nkind (Lhs) = N_Type_Conversion
1095 and then Has_Invariants (Etype (Expression (Lhs)))
1096 and then Comes_From_Source (Expression (Lhs))
1097 and then not GNATprove_Mode
1098 then
1099 Insert_After (N, Make_Invariant_Call (Expression (Lhs)));
1100 end if;
1102 -- Final step. If left side is an entity, then we may be able to reset
1103 -- the current tracked values to new safe values. We only have something
1104 -- to do if the left side is an entity name, and expansion has not
1105 -- modified the node into something other than an assignment, and of
1106 -- course we only capture values if it is safe to do so.
1108 if Is_Entity_Name (Lhs)
1109 and then Nkind (N) = N_Assignment_Statement
1110 then
1111 declare
1112 Ent : constant Entity_Id := Entity (Lhs);
1114 begin
1115 if Safe_To_Capture_Value (N, Ent) then
1117 -- If simple variable on left side, warn if this assignment
1118 -- blots out another one (rendering it useless). We only do
1119 -- this for source assignments, otherwise we can generate bogus
1120 -- warnings when an assignment is rewritten as another
1121 -- assignment, and gets tied up with itself.
1123 -- There may have been a previous reference to a component of
1124 -- the variable, which in general removes the Last_Assignment
1125 -- field of the variable to indicate a relevant use of the
1126 -- previous assignment. However, if the assignment is to a
1127 -- subcomponent the reference may not have registered, because
1128 -- it is not possible to determine whether the context is an
1129 -- assignment. In those cases we generate a Deferred_Reference,
1130 -- to be used at the end of compilation to generate the right
1131 -- kind of reference, and we suppress a potential warning for
1132 -- a useless assignment, which might be premature. This may
1133 -- lose a warning in rare cases, but seems preferable to a
1134 -- misleading warning.
1136 if Warn_On_Modified_Unread
1137 and then Is_Assignable (Ent)
1138 and then Comes_From_Source (N)
1139 and then In_Extended_Main_Source_Unit (Ent)
1140 and then not Has_Deferred_Reference (Ent)
1141 then
1142 Warn_On_Useless_Assignment (Ent, N);
1143 end if;
1145 -- If we are assigning an access type and the left side is an
1146 -- entity, then make sure that the Is_Known_[Non_]Null flags
1147 -- properly reflect the state of the entity after assignment.
1149 if Is_Access_Type (T1) then
1150 if Known_Non_Null (Rhs) then
1151 Set_Is_Known_Non_Null (Ent, True);
1153 elsif Known_Null (Rhs)
1154 and then not Can_Never_Be_Null (Ent)
1155 then
1156 Set_Is_Known_Null (Ent, True);
1158 else
1159 Set_Is_Known_Null (Ent, False);
1161 if not Can_Never_Be_Null (Ent) then
1162 Set_Is_Known_Non_Null (Ent, False);
1163 end if;
1164 end if;
1166 -- For discrete types, we may be able to set the current value
1167 -- if the value is known at compile time.
1169 elsif Is_Discrete_Type (T1)
1170 and then Compile_Time_Known_Value (Rhs)
1171 then
1172 Set_Current_Value (Ent, Rhs);
1173 else
1174 Set_Current_Value (Ent, Empty);
1175 end if;
1177 -- If not safe to capture values, kill them
1179 else
1180 Kill_Lhs;
1181 end if;
1182 end;
1183 end if;
1185 -- If assigning to an object in whole or in part, note location of
1186 -- assignment in case no one references value. We only do this for
1187 -- source assignments, otherwise we can generate bogus warnings when an
1188 -- assignment is rewritten as another assignment, and gets tied up with
1189 -- itself.
1191 declare
1192 Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
1193 begin
1194 if Present (Ent)
1195 and then Safe_To_Capture_Value (N, Ent)
1196 and then Nkind (N) = N_Assignment_Statement
1197 and then Warn_On_Modified_Unread
1198 and then Is_Assignable (Ent)
1199 and then Comes_From_Source (N)
1200 and then In_Extended_Main_Source_Unit (Ent)
1201 then
1202 Set_Last_Assignment (Ent, Lhs);
1203 end if;
1204 end;
1206 Analyze_Dimension (N);
1208 <<Leave>>
1209 Restore_Ghost_Region (Saved_GM, Saved_IGR);
1211 -- If the right-hand side contains target names, expansion has been
1212 -- disabled to prevent expansion that might move target names out of
1213 -- the context of the assignment statement. Restore the expander mode
1214 -- now so that assignment statement can be properly expanded.
1216 if Nkind (N) = N_Assignment_Statement then
1217 if Has_Target_Names (N) then
1218 Expander_Mode_Restore;
1219 Full_Analysis := Save_Full_Analysis;
1220 end if;
1222 pragma Assert (not Should_Transform_BIP_Assignment (Typ => T1));
1223 end if;
1224 end Analyze_Assignment;
1226 -----------------------------
1227 -- Analyze_Block_Statement --
1228 -----------------------------
1230 procedure Analyze_Block_Statement (N : Node_Id) is
1231 procedure Install_Return_Entities (Scop : Entity_Id);
1232 -- Install all entities of return statement scope Scop in the visibility
1233 -- chain except for the return object since its entity is reused in a
1234 -- renaming.
1236 -----------------------------
1237 -- Install_Return_Entities --
1238 -----------------------------
1240 procedure Install_Return_Entities (Scop : Entity_Id) is
1241 Id : Entity_Id;
1243 begin
1244 Id := First_Entity (Scop);
1245 while Present (Id) loop
1247 -- Do not install the return object
1249 if not Ekind_In (Id, E_Constant, E_Variable)
1250 or else not Is_Return_Object (Id)
1251 then
1252 Install_Entity (Id);
1253 end if;
1255 Next_Entity (Id);
1256 end loop;
1257 end Install_Return_Entities;
1259 -- Local constants and variables
1261 Decls : constant List_Id := Declarations (N);
1262 Id : constant Node_Id := Identifier (N);
1263 HSS : constant Node_Id := Handled_Statement_Sequence (N);
1265 Is_BIP_Return_Statement : Boolean;
1267 -- Start of processing for Analyze_Block_Statement
1269 begin
1270 -- In SPARK mode, we reject block statements. Note that the case of
1271 -- block statements generated by the expander is fine.
1273 if Nkind (Original_Node (N)) = N_Block_Statement then
1274 Check_SPARK_05_Restriction ("block statement is not allowed", N);
1275 end if;
1277 -- If no handled statement sequence is present, things are really messed
1278 -- up, and we just return immediately (defence against previous errors).
1280 if No (HSS) then
1281 Check_Error_Detected;
1282 return;
1283 end if;
1285 -- Detect whether the block is actually a rewritten return statement of
1286 -- a build-in-place function.
1288 Is_BIP_Return_Statement :=
1289 Present (Id)
1290 and then Present (Entity (Id))
1291 and then Ekind (Entity (Id)) = E_Return_Statement
1292 and then Is_Build_In_Place_Function
1293 (Return_Applies_To (Entity (Id)));
1295 -- Normal processing with HSS present
1297 declare
1298 EH : constant List_Id := Exception_Handlers (HSS);
1299 Ent : Entity_Id := Empty;
1300 S : Entity_Id;
1302 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1303 -- Recursively save value of this global, will be restored on exit
1305 begin
1306 -- Initialize unblocked exit count for statements of begin block
1307 -- plus one for each exception handler that is present.
1309 Unblocked_Exit_Count := 1;
1311 if Present (EH) then
1312 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
1313 end if;
1315 -- If a label is present analyze it and mark it as referenced
1317 if Present (Id) then
1318 Analyze (Id);
1319 Ent := Entity (Id);
1321 -- An error defense. If we have an identifier, but no entity, then
1322 -- something is wrong. If previous errors, then just remove the
1323 -- identifier and continue, otherwise raise an exception.
1325 if No (Ent) then
1326 Check_Error_Detected;
1327 Set_Identifier (N, Empty);
1329 else
1330 Set_Ekind (Ent, E_Block);
1331 Generate_Reference (Ent, N, ' ');
1332 Generate_Definition (Ent);
1334 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
1335 Set_Label_Construct (Parent (Ent), N);
1336 end if;
1337 end if;
1338 end if;
1340 -- If no entity set, create a label entity
1342 if No (Ent) then
1343 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
1344 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
1345 Set_Parent (Ent, N);
1346 end if;
1348 Set_Etype (Ent, Standard_Void_Type);
1349 Set_Block_Node (Ent, Identifier (N));
1350 Push_Scope (Ent);
1352 -- The block served as an extended return statement. Ensure that any
1353 -- entities created during the analysis and expansion of the return
1354 -- object declaration are once again visible.
1356 if Is_BIP_Return_Statement then
1357 Install_Return_Entities (Ent);
1358 end if;
1360 if Present (Decls) then
1361 Analyze_Declarations (Decls);
1362 Check_Completion;
1363 Inspect_Deferred_Constant_Completion (Decls);
1364 end if;
1366 Analyze (HSS);
1367 Process_End_Label (HSS, 'e', Ent);
1369 -- If exception handlers are present, then we indicate that enclosing
1370 -- scopes contain a block with handlers. We only need to mark non-
1371 -- generic scopes.
1373 if Present (EH) then
1374 S := Scope (Ent);
1375 loop
1376 Set_Has_Nested_Block_With_Handler (S);
1377 exit when Is_Overloadable (S)
1378 or else Ekind (S) = E_Package
1379 or else Is_Generic_Unit (S);
1380 S := Scope (S);
1381 end loop;
1382 end if;
1384 Check_References (Ent);
1385 Update_Use_Clause_Chain;
1386 End_Scope;
1388 if Unblocked_Exit_Count = 0 then
1389 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1390 Check_Unreachable_Code (N);
1391 else
1392 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1393 end if;
1394 end;
1395 end Analyze_Block_Statement;
1397 --------------------------------
1398 -- Analyze_Compound_Statement --
1399 --------------------------------
1401 procedure Analyze_Compound_Statement (N : Node_Id) is
1402 begin
1403 Analyze_List (Actions (N));
1404 end Analyze_Compound_Statement;
1406 ----------------------------
1407 -- Analyze_Case_Statement --
1408 ----------------------------
1410 procedure Analyze_Case_Statement (N : Node_Id) is
1411 Exp : Node_Id;
1412 Exp_Type : Entity_Id;
1413 Exp_Btype : Entity_Id;
1414 Last_Choice : Nat;
1416 Others_Present : Boolean;
1417 -- Indicates if Others was present
1419 pragma Warnings (Off, Last_Choice);
1420 -- Don't care about assigned value
1422 Statements_Analyzed : Boolean := False;
1423 -- Set True if at least some statement sequences get analyzed. If False
1424 -- on exit, means we had a serious error that prevented full analysis of
1425 -- the case statement, and as a result it is not a good idea to output
1426 -- warning messages about unreachable code.
1428 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1429 -- Recursively save value of this global, will be restored on exit
1431 procedure Non_Static_Choice_Error (Choice : Node_Id);
1432 -- Error routine invoked by the generic instantiation below when the
1433 -- case statement has a non static choice.
1435 procedure Process_Statements (Alternative : Node_Id);
1436 -- Analyzes the statements associated with a case alternative. Needed
1437 -- by instantiation below.
1439 package Analyze_Case_Choices is new
1440 Generic_Analyze_Choices
1441 (Process_Associated_Node => Process_Statements);
1442 use Analyze_Case_Choices;
1443 -- Instantiation of the generic choice analysis package
1445 package Check_Case_Choices is new
1446 Generic_Check_Choices
1447 (Process_Empty_Choice => No_OP,
1448 Process_Non_Static_Choice => Non_Static_Choice_Error,
1449 Process_Associated_Node => No_OP);
1450 use Check_Case_Choices;
1451 -- Instantiation of the generic choice processing package
1453 -----------------------------
1454 -- Non_Static_Choice_Error --
1455 -----------------------------
1457 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1458 begin
1459 Flag_Non_Static_Expr
1460 ("choice given in case statement is not static!", Choice);
1461 end Non_Static_Choice_Error;
1463 ------------------------
1464 -- Process_Statements --
1465 ------------------------
1467 procedure Process_Statements (Alternative : Node_Id) is
1468 Choices : constant List_Id := Discrete_Choices (Alternative);
1469 Ent : Entity_Id;
1471 begin
1472 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1473 Statements_Analyzed := True;
1475 -- An interesting optimization. If the case statement expression
1476 -- is a simple entity, then we can set the current value within an
1477 -- alternative if the alternative has one possible value.
1479 -- case N is
1480 -- when 1 => alpha
1481 -- when 2 | 3 => beta
1482 -- when others => gamma
1484 -- Here we know that N is initially 1 within alpha, but for beta and
1485 -- gamma, we do not know anything more about the initial value.
1487 if Is_Entity_Name (Exp) then
1488 Ent := Entity (Exp);
1490 if Ekind_In (Ent, E_Variable,
1491 E_In_Out_Parameter,
1492 E_Out_Parameter)
1493 then
1494 if List_Length (Choices) = 1
1495 and then Nkind (First (Choices)) in N_Subexpr
1496 and then Compile_Time_Known_Value (First (Choices))
1497 then
1498 Set_Current_Value (Entity (Exp), First (Choices));
1499 end if;
1501 Analyze_Statements (Statements (Alternative));
1503 -- After analyzing the case, set the current value to empty
1504 -- since we won't know what it is for the next alternative
1505 -- (unless reset by this same circuit), or after the case.
1507 Set_Current_Value (Entity (Exp), Empty);
1508 return;
1509 end if;
1510 end if;
1512 -- Case where expression is not an entity name of a variable
1514 Analyze_Statements (Statements (Alternative));
1515 end Process_Statements;
1517 -- Start of processing for Analyze_Case_Statement
1519 begin
1520 Unblocked_Exit_Count := 0;
1521 Exp := Expression (N);
1522 Analyze (Exp);
1524 -- The expression must be of any discrete type. In rare cases, the
1525 -- expander constructs a case statement whose expression has a private
1526 -- type whose full view is discrete. This can happen when generating
1527 -- a stream operation for a variant type after the type is frozen,
1528 -- when the partial of view of the type of the discriminant is private.
1529 -- In that case, use the full view to analyze case alternatives.
1531 if not Is_Overloaded (Exp)
1532 and then not Comes_From_Source (N)
1533 and then Is_Private_Type (Etype (Exp))
1534 and then Present (Full_View (Etype (Exp)))
1535 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1536 then
1537 Resolve (Exp, Etype (Exp));
1538 Exp_Type := Full_View (Etype (Exp));
1540 else
1541 Analyze_And_Resolve (Exp, Any_Discrete);
1542 Exp_Type := Etype (Exp);
1543 end if;
1545 Check_Unset_Reference (Exp);
1546 Exp_Btype := Base_Type (Exp_Type);
1548 -- The expression must be of a discrete type which must be determinable
1549 -- independently of the context in which the expression occurs, but
1550 -- using the fact that the expression must be of a discrete type.
1551 -- Moreover, the type this expression must not be a character literal
1552 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1554 -- If error already reported by Resolve, nothing more to do
1556 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1557 return;
1559 elsif Exp_Btype = Any_Character then
1560 Error_Msg_N
1561 ("character literal as case expression is ambiguous", Exp);
1562 return;
1564 elsif Ada_Version = Ada_83
1565 and then (Is_Generic_Type (Exp_Btype)
1566 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1567 then
1568 Error_Msg_N
1569 ("(Ada 83) case expression cannot be of a generic type", Exp);
1570 return;
1571 end if;
1573 -- If the case expression is a formal object of mode in out, then treat
1574 -- it as having a nonstatic subtype by forcing use of the base type
1575 -- (which has to get passed to Check_Case_Choices below). Also use base
1576 -- type when the case expression is parenthesized.
1578 if Paren_Count (Exp) > 0
1579 or else (Is_Entity_Name (Exp)
1580 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1581 then
1582 Exp_Type := Exp_Btype;
1583 end if;
1585 -- Call instantiated procedures to analyzwe and check discrete choices
1587 Analyze_Choices (Alternatives (N), Exp_Type);
1588 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1590 -- Case statement with single OTHERS alternative not allowed in SPARK
1592 if Others_Present and then List_Length (Alternatives (N)) = 1 then
1593 Check_SPARK_05_Restriction
1594 ("OTHERS as unique case alternative is not allowed", N);
1595 end if;
1597 if Exp_Type = Universal_Integer and then not Others_Present then
1598 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1599 end if;
1601 -- If all our exits were blocked by unconditional transfers of control,
1602 -- then the entire CASE statement acts as an unconditional transfer of
1603 -- control, so treat it like one, and check unreachable code. Skip this
1604 -- test if we had serious errors preventing any statement analysis.
1606 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1607 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1608 Check_Unreachable_Code (N);
1609 else
1610 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1611 end if;
1613 -- If the expander is active it will detect the case of a statically
1614 -- determined single alternative and remove warnings for the case, but
1615 -- if we are not doing expansion, that circuit won't be active. Here we
1616 -- duplicate the effect of removing warnings in the same way, so that
1617 -- we will get the same set of warnings in -gnatc mode.
1619 if not Expander_Active
1620 and then Compile_Time_Known_Value (Expression (N))
1621 and then Serious_Errors_Detected = 0
1622 then
1623 declare
1624 Chosen : constant Node_Id := Find_Static_Alternative (N);
1625 Alt : Node_Id;
1627 begin
1628 Alt := First (Alternatives (N));
1629 while Present (Alt) loop
1630 if Alt /= Chosen then
1631 Remove_Warning_Messages (Statements (Alt));
1632 end if;
1634 Next (Alt);
1635 end loop;
1636 end;
1637 end if;
1638 end Analyze_Case_Statement;
1640 ----------------------------
1641 -- Analyze_Exit_Statement --
1642 ----------------------------
1644 -- If the exit includes a name, it must be the name of a currently open
1645 -- loop. Otherwise there must be an innermost open loop on the stack, to
1646 -- which the statement implicitly refers.
1648 -- Additionally, in SPARK mode:
1650 -- The exit can only name the closest enclosing loop;
1652 -- An exit with a when clause must be directly contained in a loop;
1654 -- An exit without a when clause must be directly contained in an
1655 -- if-statement with no elsif or else, which is itself directly contained
1656 -- in a loop. The exit must be the last statement in the if-statement.
1658 procedure Analyze_Exit_Statement (N : Node_Id) is
1659 Target : constant Node_Id := Name (N);
1660 Cond : constant Node_Id := Condition (N);
1661 Scope_Id : Entity_Id := Empty; -- initialize to prevent warning
1662 U_Name : Entity_Id;
1663 Kind : Entity_Kind;
1665 begin
1666 if No (Cond) then
1667 Check_Unreachable_Code (N);
1668 end if;
1670 if Present (Target) then
1671 Analyze (Target);
1672 U_Name := Entity (Target);
1674 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1675 Error_Msg_N ("invalid loop name in exit statement", N);
1676 return;
1678 else
1679 if Has_Loop_In_Inner_Open_Scopes (U_Name) then
1680 Check_SPARK_05_Restriction
1681 ("exit label must name the closest enclosing loop", N);
1682 end if;
1684 Set_Has_Exit (U_Name);
1685 end if;
1687 else
1688 U_Name := Empty;
1689 end if;
1691 for J in reverse 0 .. Scope_Stack.Last loop
1692 Scope_Id := Scope_Stack.Table (J).Entity;
1693 Kind := Ekind (Scope_Id);
1695 if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
1696 Set_Has_Exit (Scope_Id);
1697 exit;
1699 elsif Kind = E_Block
1700 or else Kind = E_Loop
1701 or else Kind = E_Return_Statement
1702 then
1703 null;
1705 else
1706 Error_Msg_N
1707 ("cannot exit from program unit or accept statement", N);
1708 return;
1709 end if;
1710 end loop;
1712 -- Verify that if present the condition is a Boolean expression
1714 if Present (Cond) then
1715 Analyze_And_Resolve (Cond, Any_Boolean);
1716 Check_Unset_Reference (Cond);
1717 end if;
1719 -- In SPARK mode, verify that the exit statement respects the SPARK
1720 -- restrictions.
1722 if Present (Cond) then
1723 if Nkind (Parent (N)) /= N_Loop_Statement then
1724 Check_SPARK_05_Restriction
1725 ("exit with when clause must be directly in loop", N);
1726 end if;
1728 else
1729 if Nkind (Parent (N)) /= N_If_Statement then
1730 if Nkind (Parent (N)) = N_Elsif_Part then
1731 Check_SPARK_05_Restriction
1732 ("exit must be in IF without ELSIF", N);
1733 else
1734 Check_SPARK_05_Restriction ("exit must be directly in IF", N);
1735 end if;
1737 elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
1738 Check_SPARK_05_Restriction
1739 ("exit must be in IF directly in loop", N);
1741 -- First test the presence of ELSE, so that an exit in an ELSE leads
1742 -- to an error mentioning the ELSE.
1744 elsif Present (Else_Statements (Parent (N))) then
1745 Check_SPARK_05_Restriction ("exit must be in IF without ELSE", N);
1747 -- An exit in an ELSIF does not reach here, as it would have been
1748 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1750 elsif Present (Elsif_Parts (Parent (N))) then
1751 Check_SPARK_05_Restriction ("exit must be in IF without ELSIF", N);
1752 end if;
1753 end if;
1755 -- Chain exit statement to associated loop entity
1757 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1758 Set_First_Exit_Statement (Scope_Id, N);
1760 -- Since the exit may take us out of a loop, any previous assignment
1761 -- statement is not useless, so clear last assignment indications. It
1762 -- is OK to keep other current values, since if the exit statement
1763 -- does not exit, then the current values are still valid.
1765 Kill_Current_Values (Last_Assignment_Only => True);
1766 end Analyze_Exit_Statement;
1768 ----------------------------
1769 -- Analyze_Goto_Statement --
1770 ----------------------------
1772 procedure Analyze_Goto_Statement (N : Node_Id) is
1773 Label : constant Node_Id := Name (N);
1774 Scope_Id : Entity_Id;
1775 Label_Scope : Entity_Id;
1776 Label_Ent : Entity_Id;
1778 begin
1779 Check_SPARK_05_Restriction ("goto statement is not allowed", N);
1781 -- Actual semantic checks
1783 Check_Unreachable_Code (N);
1784 Kill_Current_Values (Last_Assignment_Only => True);
1786 Analyze (Label);
1787 Label_Ent := Entity (Label);
1789 -- Ignore previous error
1791 if Label_Ent = Any_Id then
1792 Check_Error_Detected;
1793 return;
1795 -- We just have a label as the target of a goto
1797 elsif Ekind (Label_Ent) /= E_Label then
1798 Error_Msg_N ("target of goto statement must be a label", Label);
1799 return;
1801 -- Check that the target of the goto is reachable according to Ada
1802 -- scoping rules. Note: the special gotos we generate for optimizing
1803 -- local handling of exceptions would violate these rules, but we mark
1804 -- such gotos as analyzed when built, so this code is never entered.
1806 elsif not Reachable (Label_Ent) then
1807 Error_Msg_N ("target of goto statement is not reachable", Label);
1808 return;
1809 end if;
1811 -- Here if goto passes initial validity checks
1813 Label_Scope := Enclosing_Scope (Label_Ent);
1815 for J in reverse 0 .. Scope_Stack.Last loop
1816 Scope_Id := Scope_Stack.Table (J).Entity;
1818 if Label_Scope = Scope_Id
1819 or else not Ekind_In (Scope_Id, E_Block, E_Loop, E_Return_Statement)
1820 then
1821 if Scope_Id /= Label_Scope then
1822 Error_Msg_N
1823 ("cannot exit from program unit or accept statement", N);
1824 end if;
1826 return;
1827 end if;
1828 end loop;
1830 raise Program_Error;
1831 end Analyze_Goto_Statement;
1833 --------------------------
1834 -- Analyze_If_Statement --
1835 --------------------------
1837 -- A special complication arises in the analysis of if statements
1839 -- The expander has circuitry to completely delete code that it can tell
1840 -- will not be executed (as a result of compile time known conditions). In
1841 -- the analyzer, we ensure that code that will be deleted in this manner
1842 -- is analyzed but not expanded. This is obviously more efficient, but
1843 -- more significantly, difficulties arise if code is expanded and then
1844 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1845 -- generated in deleted code must be frozen from start, because the nodes
1846 -- on which they depend will not be available at the freeze point.
1848 procedure Analyze_If_Statement (N : Node_Id) is
1849 E : Node_Id;
1851 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1852 -- Recursively save value of this global, will be restored on exit
1854 Save_In_Deleted_Code : Boolean;
1856 Del : Boolean := False;
1857 -- This flag gets set True if a True condition has been found, which
1858 -- means that remaining ELSE/ELSIF parts are deleted.
1860 procedure Analyze_Cond_Then (Cnode : Node_Id);
1861 -- This is applied to either the N_If_Statement node itself or to an
1862 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1863 -- statements associated with it.
1865 -----------------------
1866 -- Analyze_Cond_Then --
1867 -----------------------
1869 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1870 Cond : constant Node_Id := Condition (Cnode);
1871 Tstm : constant List_Id := Then_Statements (Cnode);
1873 begin
1874 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1875 Analyze_And_Resolve (Cond, Any_Boolean);
1876 Check_Unset_Reference (Cond);
1877 Set_Current_Value_Condition (Cnode);
1879 -- If already deleting, then just analyze then statements
1881 if Del then
1882 Analyze_Statements (Tstm);
1884 -- Compile time known value, not deleting yet
1886 elsif Compile_Time_Known_Value (Cond) then
1887 Save_In_Deleted_Code := In_Deleted_Code;
1889 -- If condition is True, then analyze the THEN statements and set
1890 -- no expansion for ELSE and ELSIF parts.
1892 if Is_True (Expr_Value (Cond)) then
1893 Analyze_Statements (Tstm);
1894 Del := True;
1895 Expander_Mode_Save_And_Set (False);
1896 In_Deleted_Code := True;
1898 -- If condition is False, analyze THEN with expansion off
1900 else -- Is_False (Expr_Value (Cond))
1901 Expander_Mode_Save_And_Set (False);
1902 In_Deleted_Code := True;
1903 Analyze_Statements (Tstm);
1904 Expander_Mode_Restore;
1905 In_Deleted_Code := Save_In_Deleted_Code;
1906 end if;
1908 -- Not known at compile time, not deleting, normal analysis
1910 else
1911 Analyze_Statements (Tstm);
1912 end if;
1913 end Analyze_Cond_Then;
1915 -- Start of processing for Analyze_If_Statement
1917 begin
1918 -- Initialize exit count for else statements. If there is no else part,
1919 -- this count will stay non-zero reflecting the fact that the uncovered
1920 -- else case is an unblocked exit.
1922 Unblocked_Exit_Count := 1;
1923 Analyze_Cond_Then (N);
1925 -- Now to analyze the elsif parts if any are present
1927 if Present (Elsif_Parts (N)) then
1928 E := First (Elsif_Parts (N));
1929 while Present (E) loop
1930 Analyze_Cond_Then (E);
1931 Next (E);
1932 end loop;
1933 end if;
1935 if Present (Else_Statements (N)) then
1936 Analyze_Statements (Else_Statements (N));
1937 end if;
1939 -- If all our exits were blocked by unconditional transfers of control,
1940 -- then the entire IF statement acts as an unconditional transfer of
1941 -- control, so treat it like one, and check unreachable code.
1943 if Unblocked_Exit_Count = 0 then
1944 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1945 Check_Unreachable_Code (N);
1946 else
1947 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1948 end if;
1950 if Del then
1951 Expander_Mode_Restore;
1952 In_Deleted_Code := Save_In_Deleted_Code;
1953 end if;
1955 if not Expander_Active
1956 and then Compile_Time_Known_Value (Condition (N))
1957 and then Serious_Errors_Detected = 0
1958 then
1959 if Is_True (Expr_Value (Condition (N))) then
1960 Remove_Warning_Messages (Else_Statements (N));
1962 if Present (Elsif_Parts (N)) then
1963 E := First (Elsif_Parts (N));
1964 while Present (E) loop
1965 Remove_Warning_Messages (Then_Statements (E));
1966 Next (E);
1967 end loop;
1968 end if;
1970 else
1971 Remove_Warning_Messages (Then_Statements (N));
1972 end if;
1973 end if;
1975 -- Warn on redundant if statement that has no effect
1977 -- Note, we could also check empty ELSIF parts ???
1979 if Warn_On_Redundant_Constructs
1981 -- If statement must be from source
1983 and then Comes_From_Source (N)
1985 -- Condition must not have obvious side effect
1987 and then Has_No_Obvious_Side_Effects (Condition (N))
1989 -- No elsif parts of else part
1991 and then No (Elsif_Parts (N))
1992 and then No (Else_Statements (N))
1994 -- Then must be a single null statement
1996 and then List_Length (Then_Statements (N)) = 1
1997 then
1998 -- Go to original node, since we may have rewritten something as
1999 -- a null statement (e.g. a case we could figure the outcome of).
2001 declare
2002 T : constant Node_Id := First (Then_Statements (N));
2003 S : constant Node_Id := Original_Node (T);
2005 begin
2006 if Comes_From_Source (S) and then Nkind (S) = N_Null_Statement then
2007 Error_Msg_N ("if statement has no effect?r?", N);
2008 end if;
2009 end;
2010 end if;
2011 end Analyze_If_Statement;
2013 ----------------------------------------
2014 -- Analyze_Implicit_Label_Declaration --
2015 ----------------------------------------
2017 -- An implicit label declaration is generated in the innermost enclosing
2018 -- declarative part. This is done for labels, and block and loop names.
2020 -- Note: any changes in this routine may need to be reflected in
2021 -- Analyze_Label_Entity.
2023 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
2024 Id : constant Node_Id := Defining_Identifier (N);
2025 begin
2026 Enter_Name (Id);
2027 Set_Ekind (Id, E_Label);
2028 Set_Etype (Id, Standard_Void_Type);
2029 Set_Enclosing_Scope (Id, Current_Scope);
2030 end Analyze_Implicit_Label_Declaration;
2032 ------------------------------
2033 -- Analyze_Iteration_Scheme --
2034 ------------------------------
2036 procedure Analyze_Iteration_Scheme (N : Node_Id) is
2037 Cond : Node_Id;
2038 Iter_Spec : Node_Id;
2039 Loop_Spec : Node_Id;
2041 begin
2042 -- For an infinite loop, there is no iteration scheme
2044 if No (N) then
2045 return;
2046 end if;
2048 Cond := Condition (N);
2049 Iter_Spec := Iterator_Specification (N);
2050 Loop_Spec := Loop_Parameter_Specification (N);
2052 if Present (Cond) then
2053 Analyze_And_Resolve (Cond, Any_Boolean);
2054 Check_Unset_Reference (Cond);
2055 Set_Current_Value_Condition (N);
2057 elsif Present (Iter_Spec) then
2058 Analyze_Iterator_Specification (Iter_Spec);
2060 else
2061 Analyze_Loop_Parameter_Specification (Loop_Spec);
2062 end if;
2063 end Analyze_Iteration_Scheme;
2065 ------------------------------------
2066 -- Analyze_Iterator_Specification --
2067 ------------------------------------
2069 procedure Analyze_Iterator_Specification (N : Node_Id) is
2070 Def_Id : constant Node_Id := Defining_Identifier (N);
2071 Iter_Name : constant Node_Id := Name (N);
2072 Loc : constant Source_Ptr := Sloc (N);
2073 Subt : constant Node_Id := Subtype_Indication (N);
2075 Bas : Entity_Id := Empty; -- initialize to prevent warning
2076 Typ : Entity_Id;
2078 procedure Check_Reverse_Iteration (Typ : Entity_Id);
2079 -- For an iteration over a container, if the loop carries the Reverse
2080 -- indicator, verify that the container type has an Iterate aspect that
2081 -- implements the reversible iterator interface.
2083 procedure Check_Subtype_Indication (Comp_Type : Entity_Id);
2084 -- If a subtype indication is present, verify that it is consistent
2085 -- with the component type of the array or container name.
2087 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
2088 -- For containers with Iterator and related aspects, the cursor is
2089 -- obtained by locating an entity with the proper name in the scope
2090 -- of the type.
2092 -----------------------------
2093 -- Check_Reverse_Iteration --
2094 -----------------------------
2096 procedure Check_Reverse_Iteration (Typ : Entity_Id) is
2097 begin
2098 if Reverse_Present (N) then
2099 if Is_Array_Type (Typ)
2100 or else Is_Reversible_Iterator (Typ)
2101 or else
2102 (Present (Find_Aspect (Typ, Aspect_Iterable))
2103 and then
2104 Present
2105 (Get_Iterable_Type_Primitive (Typ, Name_Previous)))
2106 then
2107 null;
2108 else
2109 Error_Msg_NE
2110 ("container type does not support reverse iteration", N, Typ);
2111 end if;
2112 end if;
2113 end Check_Reverse_Iteration;
2115 -------------------------------
2116 -- Check_Subtype_Indication --
2117 -------------------------------
2119 procedure Check_Subtype_Indication (Comp_Type : Entity_Id) is
2120 begin
2121 if Present (Subt)
2122 and then (not Covers (Base_Type ((Bas)), Comp_Type)
2123 or else not Subtypes_Statically_Match (Bas, Comp_Type))
2124 then
2125 if Is_Array_Type (Typ) then
2126 Error_Msg_N
2127 ("subtype indication does not match component type", Subt);
2128 else
2129 Error_Msg_N
2130 ("subtype indication does not match element type", Subt);
2131 end if;
2132 end if;
2133 end Check_Subtype_Indication;
2135 ---------------------
2136 -- Get_Cursor_Type --
2137 ---------------------
2139 function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
2140 Ent : Entity_Id;
2142 begin
2143 -- If iterator type is derived, the cursor is declared in the scope
2144 -- of the parent type.
2146 if Is_Derived_Type (Typ) then
2147 Ent := First_Entity (Scope (Etype (Typ)));
2148 else
2149 Ent := First_Entity (Scope (Typ));
2150 end if;
2152 while Present (Ent) loop
2153 exit when Chars (Ent) = Name_Cursor;
2154 Next_Entity (Ent);
2155 end loop;
2157 if No (Ent) then
2158 return Any_Type;
2159 end if;
2161 -- The cursor is the target of generated assignments in the
2162 -- loop, and cannot have a limited type.
2164 if Is_Limited_Type (Etype (Ent)) then
2165 Error_Msg_N ("cursor type cannot be limited", N);
2166 end if;
2168 return Etype (Ent);
2169 end Get_Cursor_Type;
2171 -- Start of processing for Analyze_Iterator_Specification
2173 begin
2174 Enter_Name (Def_Id);
2176 -- AI12-0151 specifies that when the subtype indication is present, it
2177 -- must statically match the type of the array or container element.
2178 -- To simplify this check, we introduce a subtype declaration with the
2179 -- given subtype indication when it carries a constraint, and rewrite
2180 -- the original as a reference to the created subtype entity.
2182 if Present (Subt) then
2183 if Nkind (Subt) = N_Subtype_Indication then
2184 declare
2185 S : constant Entity_Id := Make_Temporary (Sloc (Subt), 'S');
2186 Decl : constant Node_Id :=
2187 Make_Subtype_Declaration (Loc,
2188 Defining_Identifier => S,
2189 Subtype_Indication => New_Copy_Tree (Subt));
2190 begin
2191 Insert_Before (Parent (Parent (N)), Decl);
2192 Analyze (Decl);
2193 Rewrite (Subt, New_Occurrence_Of (S, Sloc (Subt)));
2194 end;
2195 else
2196 Analyze (Subt);
2197 end if;
2199 -- Save entity of subtype indication for subsequent check
2201 Bas := Entity (Subt);
2202 end if;
2204 Preanalyze_Range (Iter_Name);
2206 -- Set the kind of the loop variable, which is not visible within the
2207 -- iterator name.
2209 Set_Ekind (Def_Id, E_Variable);
2211 -- Provide a link between the iterator variable and the container, for
2212 -- subsequent use in cross-reference and modification information.
2214 if Of_Present (N) then
2215 Set_Related_Expression (Def_Id, Iter_Name);
2217 -- For a container, the iterator is specified through the aspect
2219 if not Is_Array_Type (Etype (Iter_Name)) then
2220 declare
2221 Iterator : constant Entity_Id :=
2222 Find_Value_Of_Aspect
2223 (Etype (Iter_Name), Aspect_Default_Iterator);
2225 I : Interp_Index;
2226 It : Interp;
2228 begin
2229 if No (Iterator) then
2230 null; -- error reported below
2232 elsif not Is_Overloaded (Iterator) then
2233 Check_Reverse_Iteration (Etype (Iterator));
2235 -- If Iterator is overloaded, use reversible iterator if one is
2236 -- available.
2238 elsif Is_Overloaded (Iterator) then
2239 Get_First_Interp (Iterator, I, It);
2240 while Present (It.Nam) loop
2241 if Ekind (It.Nam) = E_Function
2242 and then Is_Reversible_Iterator (Etype (It.Nam))
2243 then
2244 Set_Etype (Iterator, It.Typ);
2245 Set_Entity (Iterator, It.Nam);
2246 exit;
2247 end if;
2249 Get_Next_Interp (I, It);
2250 end loop;
2252 Check_Reverse_Iteration (Etype (Iterator));
2253 end if;
2254 end;
2255 end if;
2256 end if;
2258 -- If the domain of iteration is an expression, create a declaration for
2259 -- it, so that finalization actions are introduced outside of the loop.
2260 -- The declaration must be a renaming because the body of the loop may
2261 -- assign to elements.
2263 if not Is_Entity_Name (Iter_Name)
2265 -- When the context is a quantified expression, the renaming
2266 -- declaration is delayed until the expansion phase if we are
2267 -- doing expansion.
2269 and then (Nkind (Parent (N)) /= N_Quantified_Expression
2270 or else Operating_Mode = Check_Semantics)
2272 -- Do not perform this expansion for ASIS and when expansion is
2273 -- disabled, where the temporary may hide the transformation of a
2274 -- selected component into a prefixed function call, and references
2275 -- need to see the original expression.
2277 and then Expander_Active
2278 then
2279 declare
2280 Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
2281 Decl : Node_Id;
2282 Act_S : Node_Id;
2284 begin
2286 -- If the domain of iteration is an array component that depends
2287 -- on a discriminant, create actual subtype for it. preanalysis
2288 -- does not generate the actual subtype of a selected component.
2290 if Nkind (Iter_Name) = N_Selected_Component
2291 and then Is_Array_Type (Etype (Iter_Name))
2292 then
2293 Act_S :=
2294 Build_Actual_Subtype_Of_Component
2295 (Etype (Selector_Name (Iter_Name)), Iter_Name);
2296 Insert_Action (N, Act_S);
2298 if Present (Act_S) then
2299 Typ := Defining_Identifier (Act_S);
2300 else
2301 Typ := Etype (Iter_Name);
2302 end if;
2304 else
2305 Typ := Etype (Iter_Name);
2307 -- Verify that the expression produces an iterator
2309 if not Of_Present (N) and then not Is_Iterator (Typ)
2310 and then not Is_Array_Type (Typ)
2311 and then No (Find_Aspect (Typ, Aspect_Iterable))
2312 then
2313 Error_Msg_N
2314 ("expect object that implements iterator interface",
2315 Iter_Name);
2316 end if;
2317 end if;
2319 -- Protect against malformed iterator
2321 if Typ = Any_Type then
2322 Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
2323 return;
2324 end if;
2326 if not Of_Present (N) then
2327 Check_Reverse_Iteration (Typ);
2328 end if;
2330 -- The name in the renaming declaration may be a function call.
2331 -- Indicate that it does not come from source, to suppress
2332 -- spurious warnings on renamings of parameterless functions,
2333 -- a common enough idiom in user-defined iterators.
2335 Decl :=
2336 Make_Object_Renaming_Declaration (Loc,
2337 Defining_Identifier => Id,
2338 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
2339 Name =>
2340 New_Copy_Tree (Iter_Name, New_Sloc => Loc));
2342 Insert_Actions (Parent (Parent (N)), New_List (Decl));
2343 Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
2344 Set_Etype (Id, Typ);
2345 Set_Etype (Name (N), Typ);
2346 end;
2348 -- Container is an entity or an array with uncontrolled components, or
2349 -- else it is a container iterator given by a function call, typically
2350 -- called Iterate in the case of predefined containers, even though
2351 -- Iterate is not a reserved name. What matters is that the return type
2352 -- of the function is an iterator type.
2354 elsif Is_Entity_Name (Iter_Name) then
2355 Analyze (Iter_Name);
2357 if Nkind (Iter_Name) = N_Function_Call then
2358 declare
2359 C : constant Node_Id := Name (Iter_Name);
2360 I : Interp_Index;
2361 It : Interp;
2363 begin
2364 if not Is_Overloaded (Iter_Name) then
2365 Resolve (Iter_Name, Etype (C));
2367 else
2368 Get_First_Interp (C, I, It);
2369 while It.Typ /= Empty loop
2370 if Reverse_Present (N) then
2371 if Is_Reversible_Iterator (It.Typ) then
2372 Resolve (Iter_Name, It.Typ);
2373 exit;
2374 end if;
2376 elsif Is_Iterator (It.Typ) then
2377 Resolve (Iter_Name, It.Typ);
2378 exit;
2379 end if;
2381 Get_Next_Interp (I, It);
2382 end loop;
2383 end if;
2384 end;
2386 -- Domain of iteration is not overloaded
2388 else
2389 Resolve (Iter_Name, Etype (Iter_Name));
2390 end if;
2392 if not Of_Present (N) then
2393 Check_Reverse_Iteration (Etype (Iter_Name));
2394 end if;
2395 end if;
2397 -- Get base type of container, for proper retrieval of Cursor type
2398 -- and primitive operations.
2400 Typ := Base_Type (Etype (Iter_Name));
2402 if Is_Array_Type (Typ) then
2403 if Of_Present (N) then
2404 Set_Etype (Def_Id, Component_Type (Typ));
2406 -- The loop variable is aliased if the array components are
2407 -- aliased.
2409 Set_Is_Aliased (Def_Id, Has_Aliased_Components (Typ));
2411 -- AI12-0047 stipulates that the domain (array or container)
2412 -- cannot be a component that depends on a discriminant if the
2413 -- enclosing object is mutable, to prevent a modification of the
2414 -- dowmain of iteration in the course of an iteration.
2416 -- If the object is an expression it has been captured in a
2417 -- temporary, so examine original node.
2419 if Nkind (Original_Node (Iter_Name)) = N_Selected_Component
2420 and then Is_Dependent_Component_Of_Mutable_Object
2421 (Original_Node (Iter_Name))
2422 then
2423 Error_Msg_N
2424 ("iterable name cannot be a discriminant-dependent "
2425 & "component of a mutable object", N);
2426 end if;
2428 Check_Subtype_Indication (Component_Type (Typ));
2430 -- Here we have a missing Range attribute
2432 else
2433 Error_Msg_N
2434 ("missing Range attribute in iteration over an array", N);
2436 -- In Ada 2012 mode, this may be an attempt at an iterator
2438 if Ada_Version >= Ada_2012 then
2439 Error_Msg_NE
2440 ("\if& is meant to designate an element of the array, use OF",
2441 N, Def_Id);
2442 end if;
2444 -- Prevent cascaded errors
2446 Set_Ekind (Def_Id, E_Loop_Parameter);
2447 Set_Etype (Def_Id, Etype (First_Index (Typ)));
2448 end if;
2450 -- Check for type error in iterator
2452 elsif Typ = Any_Type then
2453 return;
2455 -- Iteration over a container
2457 else
2458 Set_Ekind (Def_Id, E_Loop_Parameter);
2459 Error_Msg_Ada_2012_Feature ("container iterator", Sloc (N));
2461 -- OF present
2463 if Of_Present (N) then
2464 if Has_Aspect (Typ, Aspect_Iterable) then
2465 declare
2466 Elt : constant Entity_Id :=
2467 Get_Iterable_Type_Primitive (Typ, Name_Element);
2468 begin
2469 if No (Elt) then
2470 Error_Msg_N
2471 ("missing Element primitive for iteration", N);
2472 else
2473 Set_Etype (Def_Id, Etype (Elt));
2474 Check_Reverse_Iteration (Typ);
2475 end if;
2476 end;
2478 Check_Subtype_Indication (Etype (Def_Id));
2480 -- For a predefined container, The type of the loop variable is
2481 -- the Iterator_Element aspect of the container type.
2483 else
2484 declare
2485 Element : constant Entity_Id :=
2486 Find_Value_Of_Aspect
2487 (Typ, Aspect_Iterator_Element);
2488 Iterator : constant Entity_Id :=
2489 Find_Value_Of_Aspect
2490 (Typ, Aspect_Default_Iterator);
2491 Orig_Iter_Name : constant Node_Id :=
2492 Original_Node (Iter_Name);
2493 Cursor_Type : Entity_Id;
2495 begin
2496 if No (Element) then
2497 Error_Msg_NE ("cannot iterate over&", N, Typ);
2498 return;
2500 else
2501 Set_Etype (Def_Id, Entity (Element));
2502 Cursor_Type := Get_Cursor_Type (Typ);
2503 pragma Assert (Present (Cursor_Type));
2505 Check_Subtype_Indication (Etype (Def_Id));
2507 -- If the container has a variable indexing aspect, the
2508 -- element is a variable and is modifiable in the loop.
2510 if Has_Aspect (Typ, Aspect_Variable_Indexing) then
2511 Set_Ekind (Def_Id, E_Variable);
2512 end if;
2514 -- If the container is a constant, iterating over it
2515 -- requires a Constant_Indexing operation.
2517 if not Is_Variable (Iter_Name)
2518 and then not Has_Aspect (Typ, Aspect_Constant_Indexing)
2519 then
2520 Error_Msg_N
2521 ("iteration over constant container require "
2522 & "constant_indexing aspect", N);
2524 -- The Iterate function may have an in_out parameter,
2525 -- and a constant container is thus illegal.
2527 elsif Present (Iterator)
2528 and then Ekind (Entity (Iterator)) = E_Function
2529 and then Ekind (First_Formal (Entity (Iterator))) /=
2530 E_In_Parameter
2531 and then not Is_Variable (Iter_Name)
2532 then
2533 Error_Msg_N ("variable container expected", N);
2534 end if;
2536 -- Detect a case where the iterator denotes a component
2537 -- of a mutable object which depends on a discriminant.
2538 -- Note that the iterator may denote a function call in
2539 -- qualified form, in which case this check should not
2540 -- be performed.
2542 if Nkind (Orig_Iter_Name) = N_Selected_Component
2543 and then
2544 Present (Entity (Selector_Name (Orig_Iter_Name)))
2545 and then Ekind_In
2546 (Entity (Selector_Name (Orig_Iter_Name)),
2547 E_Component,
2548 E_Discriminant)
2549 and then Is_Dependent_Component_Of_Mutable_Object
2550 (Orig_Iter_Name)
2551 then
2552 Error_Msg_N
2553 ("container cannot be a discriminant-dependent "
2554 & "component of a mutable object", N);
2555 end if;
2556 end if;
2557 end;
2558 end if;
2560 -- IN iterator, domain is a range, or a call to Iterate function
2562 else
2563 -- For an iteration of the form IN, the name must denote an
2564 -- iterator, typically the result of a call to Iterate. Give a
2565 -- useful error message when the name is a container by itself.
2567 -- The type may be a formal container type, which has to have
2568 -- an Iterable aspect detailing the required primitives.
2570 if Is_Entity_Name (Original_Node (Name (N)))
2571 and then not Is_Iterator (Typ)
2572 then
2573 if Has_Aspect (Typ, Aspect_Iterable) then
2574 null;
2576 elsif not Has_Aspect (Typ, Aspect_Iterator_Element) then
2577 Error_Msg_NE
2578 ("cannot iterate over&", Name (N), Typ);
2579 else
2580 Error_Msg_N
2581 ("name must be an iterator, not a container", Name (N));
2582 end if;
2584 if Has_Aspect (Typ, Aspect_Iterable) then
2585 null;
2586 else
2587 Error_Msg_NE
2588 ("\to iterate directly over the elements of a container, "
2589 & "write `of &`", Name (N), Original_Node (Name (N)));
2591 -- No point in continuing analysis of iterator spec
2593 return;
2594 end if;
2595 end if;
2597 -- If the name is a call (typically prefixed) to some Iterate
2598 -- function, it has been rewritten as an object declaration.
2599 -- If that object is a selected component, verify that it is not
2600 -- a component of an unconstrained mutable object.
2602 if Nkind (Iter_Name) = N_Identifier
2603 or else (not Expander_Active and Comes_From_Source (Iter_Name))
2604 then
2605 declare
2606 Orig_Node : constant Node_Id := Original_Node (Iter_Name);
2607 Iter_Kind : constant Node_Kind := Nkind (Orig_Node);
2608 Obj : Node_Id;
2610 begin
2611 if Iter_Kind = N_Selected_Component then
2612 Obj := Prefix (Orig_Node);
2614 elsif Iter_Kind = N_Function_Call then
2615 Obj := First_Actual (Orig_Node);
2617 -- If neither, the name comes from source
2619 else
2620 Obj := Iter_Name;
2621 end if;
2623 if Nkind (Obj) = N_Selected_Component
2624 and then Is_Dependent_Component_Of_Mutable_Object (Obj)
2625 then
2626 Error_Msg_N
2627 ("container cannot be a discriminant-dependent "
2628 & "component of a mutable object", N);
2629 end if;
2630 end;
2631 end if;
2633 -- The result type of Iterate function is the classwide type of
2634 -- the interface parent. We need the specific Cursor type defined
2635 -- in the container package. We obtain it by name for a predefined
2636 -- container, or through the Iterable aspect for a formal one.
2638 if Has_Aspect (Typ, Aspect_Iterable) then
2639 Set_Etype (Def_Id,
2640 Get_Cursor_Type
2641 (Parent (Find_Value_Of_Aspect (Typ, Aspect_Iterable)),
2642 Typ));
2644 else
2645 Set_Etype (Def_Id, Get_Cursor_Type (Typ));
2646 Check_Reverse_Iteration (Etype (Iter_Name));
2647 end if;
2649 end if;
2650 end if;
2651 end Analyze_Iterator_Specification;
2653 -------------------
2654 -- Analyze_Label --
2655 -------------------
2657 -- Note: the semantic work required for analyzing labels (setting them as
2658 -- reachable) was done in a prepass through the statements in the block,
2659 -- so that forward gotos would be properly handled. See Analyze_Statements
2660 -- for further details. The only processing required here is to deal with
2661 -- optimizations that depend on an assumption of sequential control flow,
2662 -- since of course the occurrence of a label breaks this assumption.
2664 procedure Analyze_Label (N : Node_Id) is
2665 pragma Warnings (Off, N);
2666 begin
2667 Kill_Current_Values;
2668 end Analyze_Label;
2670 --------------------------
2671 -- Analyze_Label_Entity --
2672 --------------------------
2674 procedure Analyze_Label_Entity (E : Entity_Id) is
2675 begin
2676 Set_Ekind (E, E_Label);
2677 Set_Etype (E, Standard_Void_Type);
2678 Set_Enclosing_Scope (E, Current_Scope);
2679 Set_Reachable (E, True);
2680 end Analyze_Label_Entity;
2682 ------------------------------------------
2683 -- Analyze_Loop_Parameter_Specification --
2684 ------------------------------------------
2686 procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
2687 Loop_Nod : constant Node_Id := Parent (Parent (N));
2689 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
2690 -- If the bounds are given by a 'Range reference on a function call
2691 -- that returns a controlled array, introduce an explicit declaration
2692 -- to capture the bounds, so that the function result can be finalized
2693 -- in timely fashion.
2695 procedure Check_Predicate_Use (T : Entity_Id);
2696 -- Diagnose Attempt to iterate through non-static predicate. Note that
2697 -- a type with inherited predicates may have both static and dynamic
2698 -- forms. In this case it is not sufficent to check the static predicate
2699 -- function only, look for a dynamic predicate aspect as well.
2701 procedure Process_Bounds (R : Node_Id);
2702 -- If the iteration is given by a range, create temporaries and
2703 -- assignment statements block to capture the bounds and perform
2704 -- required finalization actions in case a bound includes a function
2705 -- call that uses the temporary stack. We first preanalyze a copy of
2706 -- the range in order to determine the expected type, and analyze and
2707 -- resolve the original bounds.
2709 --------------------------------------
2710 -- Check_Controlled_Array_Attribute --
2711 --------------------------------------
2713 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
2714 begin
2715 if Nkind (DS) = N_Attribute_Reference
2716 and then Is_Entity_Name (Prefix (DS))
2717 and then Ekind (Entity (Prefix (DS))) = E_Function
2718 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
2719 and then
2720 Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
2721 and then Expander_Active
2722 then
2723 declare
2724 Loc : constant Source_Ptr := Sloc (N);
2725 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
2726 Indx : constant Entity_Id :=
2727 Base_Type (Etype (First_Index (Arr)));
2728 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
2729 Decl : Node_Id;
2731 begin
2732 Decl :=
2733 Make_Subtype_Declaration (Loc,
2734 Defining_Identifier => Subt,
2735 Subtype_Indication =>
2736 Make_Subtype_Indication (Loc,
2737 Subtype_Mark => New_Occurrence_Of (Indx, Loc),
2738 Constraint =>
2739 Make_Range_Constraint (Loc, Relocate_Node (DS))));
2740 Insert_Before (Loop_Nod, Decl);
2741 Analyze (Decl);
2743 Rewrite (DS,
2744 Make_Attribute_Reference (Loc,
2745 Prefix => New_Occurrence_Of (Subt, Loc),
2746 Attribute_Name => Attribute_Name (DS)));
2748 Analyze (DS);
2749 end;
2750 end if;
2751 end Check_Controlled_Array_Attribute;
2753 -------------------------
2754 -- Check_Predicate_Use --
2755 -------------------------
2757 procedure Check_Predicate_Use (T : Entity_Id) is
2758 begin
2759 -- A predicated subtype is illegal in loops and related constructs
2760 -- if the predicate is not static, or if it is a non-static subtype
2761 -- of a statically predicated subtype.
2763 if Is_Discrete_Type (T)
2764 and then Has_Predicates (T)
2765 and then (not Has_Static_Predicate (T)
2766 or else not Is_Static_Subtype (T)
2767 or else Has_Dynamic_Predicate_Aspect (T))
2768 then
2769 -- Seems a confusing message for the case of a static predicate
2770 -- with a non-static subtype???
2772 Bad_Predicated_Subtype_Use
2773 ("cannot use subtype& with non-static predicate for loop "
2774 & "iteration", Discrete_Subtype_Definition (N),
2775 T, Suggest_Static => True);
2777 elsif Inside_A_Generic
2778 and then Is_Generic_Formal (T)
2779 and then Is_Discrete_Type (T)
2780 then
2781 Set_No_Dynamic_Predicate_On_Actual (T);
2782 end if;
2783 end Check_Predicate_Use;
2785 --------------------
2786 -- Process_Bounds --
2787 --------------------
2789 procedure Process_Bounds (R : Node_Id) is
2790 Loc : constant Source_Ptr := Sloc (N);
2792 function One_Bound
2793 (Original_Bound : Node_Id;
2794 Analyzed_Bound : Node_Id;
2795 Typ : Entity_Id) return Node_Id;
2796 -- Capture value of bound and return captured value
2798 ---------------
2799 -- One_Bound --
2800 ---------------
2802 function One_Bound
2803 (Original_Bound : Node_Id;
2804 Analyzed_Bound : Node_Id;
2805 Typ : Entity_Id) return Node_Id
2807 Assign : Node_Id;
2808 Decl : Node_Id;
2809 Id : Entity_Id;
2811 begin
2812 -- If the bound is a constant or an object, no need for a separate
2813 -- declaration. If the bound is the result of previous expansion
2814 -- it is already analyzed and should not be modified. Note that
2815 -- the Bound will be resolved later, if needed, as part of the
2816 -- call to Make_Index (literal bounds may need to be resolved to
2817 -- type Integer).
2819 if Analyzed (Original_Bound) then
2820 return Original_Bound;
2822 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
2823 N_Character_Literal)
2824 or else Is_Entity_Name (Analyzed_Bound)
2825 then
2826 Analyze_And_Resolve (Original_Bound, Typ);
2827 return Original_Bound;
2828 end if;
2830 -- Normally, the best approach is simply to generate a constant
2831 -- declaration that captures the bound. However, there is a nasty
2832 -- case where this is wrong. If the bound is complex, and has a
2833 -- possible use of the secondary stack, we need to generate a
2834 -- separate assignment statement to ensure the creation of a block
2835 -- which will release the secondary stack.
2837 -- We prefer the constant declaration, since it leaves us with a
2838 -- proper trace of the value, useful in optimizations that get rid
2839 -- of junk range checks.
2841 if not Has_Call_Using_Secondary_Stack (Analyzed_Bound) then
2842 Analyze_And_Resolve (Original_Bound, Typ);
2844 -- Ensure that the bound is valid. This check should not be
2845 -- generated when the range belongs to a quantified expression
2846 -- as the construct is still not expanded into its final form.
2848 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
2849 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
2850 then
2851 Ensure_Valid (Original_Bound);
2852 end if;
2854 Force_Evaluation (Original_Bound);
2855 return Original_Bound;
2856 end if;
2858 Id := Make_Temporary (Loc, 'R', Original_Bound);
2860 -- Here we make a declaration with a separate assignment
2861 -- statement, and insert before loop header.
2863 Decl :=
2864 Make_Object_Declaration (Loc,
2865 Defining_Identifier => Id,
2866 Object_Definition => New_Occurrence_Of (Typ, Loc));
2868 Assign :=
2869 Make_Assignment_Statement (Loc,
2870 Name => New_Occurrence_Of (Id, Loc),
2871 Expression => Relocate_Node (Original_Bound));
2873 Insert_Actions (Loop_Nod, New_List (Decl, Assign));
2875 -- Now that this temporary variable is initialized we decorate it
2876 -- as safe-to-reevaluate to inform to the backend that no further
2877 -- asignment will be issued and hence it can be handled as side
2878 -- effect free. Note that this decoration must be done when the
2879 -- assignment has been analyzed because otherwise it will be
2880 -- rejected (see Analyze_Assignment).
2882 Set_Is_Safe_To_Reevaluate (Id);
2884 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
2886 if Nkind (Assign) = N_Assignment_Statement then
2887 return Expression (Assign);
2888 else
2889 return Original_Bound;
2890 end if;
2891 end One_Bound;
2893 Hi : constant Node_Id := High_Bound (R);
2894 Lo : constant Node_Id := Low_Bound (R);
2895 R_Copy : constant Node_Id := New_Copy_Tree (R);
2896 New_Hi : Node_Id;
2897 New_Lo : Node_Id;
2898 Typ : Entity_Id;
2900 -- Start of processing for Process_Bounds
2902 begin
2903 Set_Parent (R_Copy, Parent (R));
2904 Preanalyze_Range (R_Copy);
2905 Typ := Etype (R_Copy);
2907 -- If the type of the discrete range is Universal_Integer, then the
2908 -- bound's type must be resolved to Integer, and any object used to
2909 -- hold the bound must also have type Integer, unless the literal
2910 -- bounds are constant-folded expressions with a user-defined type.
2912 if Typ = Universal_Integer then
2913 if Nkind (Lo) = N_Integer_Literal
2914 and then Present (Etype (Lo))
2915 and then Scope (Etype (Lo)) /= Standard_Standard
2916 then
2917 Typ := Etype (Lo);
2919 elsif Nkind (Hi) = N_Integer_Literal
2920 and then Present (Etype (Hi))
2921 and then Scope (Etype (Hi)) /= Standard_Standard
2922 then
2923 Typ := Etype (Hi);
2925 else
2926 Typ := Standard_Integer;
2927 end if;
2928 end if;
2930 Set_Etype (R, Typ);
2932 New_Lo := One_Bound (Lo, Low_Bound (R_Copy), Typ);
2933 New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
2935 -- Propagate staticness to loop range itself, in case the
2936 -- corresponding subtype is static.
2938 if New_Lo /= Lo and then Is_OK_Static_Expression (New_Lo) then
2939 Rewrite (Low_Bound (R), New_Copy (New_Lo));
2940 end if;
2942 if New_Hi /= Hi and then Is_OK_Static_Expression (New_Hi) then
2943 Rewrite (High_Bound (R), New_Copy (New_Hi));
2944 end if;
2945 end Process_Bounds;
2947 -- Local variables
2949 DS : constant Node_Id := Discrete_Subtype_Definition (N);
2950 Id : constant Entity_Id := Defining_Identifier (N);
2952 DS_Copy : Node_Id;
2954 -- Start of processing for Analyze_Loop_Parameter_Specification
2956 begin
2957 Enter_Name (Id);
2959 -- We always consider the loop variable to be referenced, since the loop
2960 -- may be used just for counting purposes.
2962 Generate_Reference (Id, N, ' ');
2964 -- Check for the case of loop variable hiding a local variable (used
2965 -- later on to give a nice warning if the hidden variable is never
2966 -- assigned).
2968 declare
2969 H : constant Entity_Id := Homonym (Id);
2970 begin
2971 if Present (H)
2972 and then Ekind (H) = E_Variable
2973 and then Is_Discrete_Type (Etype (H))
2974 and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
2975 then
2976 Set_Hiding_Loop_Variable (H, Id);
2977 end if;
2978 end;
2980 -- Loop parameter specification must include subtype mark in SPARK
2982 if Nkind (DS) = N_Range then
2983 Check_SPARK_05_Restriction
2984 ("loop parameter specification must include subtype mark", N);
2985 end if;
2987 -- Analyze the subtype definition and create temporaries for the bounds.
2988 -- Do not evaluate the range when preanalyzing a quantified expression
2989 -- because bounds expressed as function calls with side effects will be
2990 -- incorrectly replicated.
2992 if Nkind (DS) = N_Range
2993 and then Expander_Active
2994 and then Nkind (Parent (N)) /= N_Quantified_Expression
2995 then
2996 Process_Bounds (DS);
2998 -- Either the expander not active or the range of iteration is a subtype
2999 -- indication, an entity, or a function call that yields an aggregate or
3000 -- a container.
3002 else
3003 DS_Copy := New_Copy_Tree (DS);
3004 Set_Parent (DS_Copy, Parent (DS));
3005 Preanalyze_Range (DS_Copy);
3007 -- Ada 2012: If the domain of iteration is:
3009 -- a) a function call,
3010 -- b) an identifier that is not a type,
3011 -- c) an attribute reference 'Old (within a postcondition),
3012 -- d) an unchecked conversion or a qualified expression with
3013 -- the proper iterator type.
3015 -- then it is an iteration over a container. It was classified as
3016 -- a loop specification by the parser, and must be rewritten now
3017 -- to activate container iteration. The last case will occur within
3018 -- an expanded inlined call, where the expansion wraps an actual in
3019 -- an unchecked conversion when needed. The expression of the
3020 -- conversion is always an object.
3022 if Nkind (DS_Copy) = N_Function_Call
3024 or else (Is_Entity_Name (DS_Copy)
3025 and then not Is_Type (Entity (DS_Copy)))
3027 or else (Nkind (DS_Copy) = N_Attribute_Reference
3028 and then Nam_In (Attribute_Name (DS_Copy),
3029 Name_Loop_Entry, Name_Old))
3031 or else Has_Aspect (Etype (DS_Copy), Aspect_Iterable)
3033 or else Nkind (DS_Copy) = N_Unchecked_Type_Conversion
3034 or else (Nkind (DS_Copy) = N_Qualified_Expression
3035 and then Is_Iterator (Etype (DS_Copy)))
3036 then
3037 -- This is an iterator specification. Rewrite it as such and
3038 -- analyze it to capture function calls that may require
3039 -- finalization actions.
3041 declare
3042 I_Spec : constant Node_Id :=
3043 Make_Iterator_Specification (Sloc (N),
3044 Defining_Identifier => Relocate_Node (Id),
3045 Name => DS_Copy,
3046 Subtype_Indication => Empty,
3047 Reverse_Present => Reverse_Present (N));
3048 Scheme : constant Node_Id := Parent (N);
3050 begin
3051 Set_Iterator_Specification (Scheme, I_Spec);
3052 Set_Loop_Parameter_Specification (Scheme, Empty);
3053 Analyze_Iterator_Specification (I_Spec);
3055 -- In a generic context, analyze the original domain of
3056 -- iteration, for name capture.
3058 if not Expander_Active then
3059 Analyze (DS);
3060 end if;
3062 -- Set kind of loop parameter, which may be used in the
3063 -- subsequent analysis of the condition in a quantified
3064 -- expression.
3066 Set_Ekind (Id, E_Loop_Parameter);
3067 return;
3068 end;
3070 -- Domain of iteration is not a function call, and is side-effect
3071 -- free.
3073 else
3074 -- A quantified expression that appears in a pre/post condition
3075 -- is preanalyzed several times. If the range is given by an
3076 -- attribute reference it is rewritten as a range, and this is
3077 -- done even with expansion disabled. If the type is already set
3078 -- do not reanalyze, because a range with static bounds may be
3079 -- typed Integer by default.
3081 if Nkind (Parent (N)) = N_Quantified_Expression
3082 and then Present (Etype (DS))
3083 then
3084 null;
3085 else
3086 Analyze (DS);
3087 end if;
3088 end if;
3089 end if;
3091 if DS = Error then
3092 return;
3093 end if;
3095 -- Some additional checks if we are iterating through a type
3097 if Is_Entity_Name (DS)
3098 and then Present (Entity (DS))
3099 and then Is_Type (Entity (DS))
3100 then
3101 -- The subtype indication may denote the completion of an incomplete
3102 -- type declaration.
3104 if Ekind (Entity (DS)) = E_Incomplete_Type then
3105 Set_Entity (DS, Get_Full_View (Entity (DS)));
3106 Set_Etype (DS, Entity (DS));
3107 end if;
3109 Check_Predicate_Use (Entity (DS));
3110 end if;
3112 -- Error if not discrete type
3114 if not Is_Discrete_Type (Etype (DS)) then
3115 Wrong_Type (DS, Any_Discrete);
3116 Set_Etype (DS, Any_Type);
3117 end if;
3119 Check_Controlled_Array_Attribute (DS);
3121 if Nkind (DS) = N_Subtype_Indication then
3122 Check_Predicate_Use (Entity (Subtype_Mark (DS)));
3123 end if;
3125 Make_Index (DS, N, In_Iter_Schm => True);
3126 Set_Ekind (Id, E_Loop_Parameter);
3128 -- A quantified expression which appears in a pre- or post-condition may
3129 -- be analyzed multiple times. The analysis of the range creates several
3130 -- itypes which reside in different scopes depending on whether the pre-
3131 -- or post-condition has been expanded. Update the type of the loop
3132 -- variable to reflect the proper itype at each stage of analysis.
3134 if No (Etype (Id))
3135 or else Etype (Id) = Any_Type
3136 or else
3137 (Present (Etype (Id))
3138 and then Is_Itype (Etype (Id))
3139 and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
3140 and then Nkind (Original_Node (Parent (Loop_Nod))) =
3141 N_Quantified_Expression)
3142 then
3143 Set_Etype (Id, Etype (DS));
3144 end if;
3146 -- Treat a range as an implicit reference to the type, to inhibit
3147 -- spurious warnings.
3149 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
3150 Set_Is_Known_Valid (Id, True);
3152 -- The loop is not a declarative part, so the loop variable must be
3153 -- frozen explicitly. Do not freeze while preanalyzing a quantified
3154 -- expression because the freeze node will not be inserted into the
3155 -- tree due to flag Is_Spec_Expression being set.
3157 if Nkind (Parent (N)) /= N_Quantified_Expression then
3158 declare
3159 Flist : constant List_Id := Freeze_Entity (Id, N);
3160 begin
3161 if Is_Non_Empty_List (Flist) then
3162 Insert_Actions (N, Flist);
3163 end if;
3164 end;
3165 end if;
3167 -- Case where we have a range or a subtype, get type bounds
3169 if Nkind_In (DS, N_Range, N_Subtype_Indication)
3170 and then not Error_Posted (DS)
3171 and then Etype (DS) /= Any_Type
3172 and then Is_Discrete_Type (Etype (DS))
3173 then
3174 declare
3175 L : Node_Id;
3176 H : Node_Id;
3178 begin
3179 if Nkind (DS) = N_Range then
3180 L := Low_Bound (DS);
3181 H := High_Bound (DS);
3182 else
3183 L :=
3184 Type_Low_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
3185 H :=
3186 Type_High_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
3187 end if;
3189 -- Check for null or possibly null range and issue warning. We
3190 -- suppress such messages in generic templates and instances,
3191 -- because in practice they tend to be dubious in these cases. The
3192 -- check applies as well to rewritten array element loops where a
3193 -- null range may be detected statically.
3195 if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
3197 -- Suppress the warning if inside a generic template or
3198 -- instance, since in practice they tend to be dubious in these
3199 -- cases since they can result from intended parameterization.
3201 if not Inside_A_Generic and then not In_Instance then
3203 -- Specialize msg if invalid values could make the loop
3204 -- non-null after all.
3206 if Compile_Time_Compare
3207 (L, H, Assume_Valid => False) = GT
3208 then
3209 -- Since we know the range of the loop is null, set the
3210 -- appropriate flag to remove the loop entirely during
3211 -- expansion.
3213 Set_Is_Null_Loop (Loop_Nod);
3215 if Comes_From_Source (N) then
3216 Error_Msg_N
3217 ("??loop range is null, loop will not execute", DS);
3218 end if;
3220 -- Here is where the loop could execute because of
3221 -- invalid values, so issue appropriate message and in
3222 -- this case we do not set the Is_Null_Loop flag since
3223 -- the loop may execute.
3225 elsif Comes_From_Source (N) then
3226 Error_Msg_N
3227 ("??loop range may be null, loop may not execute",
3228 DS);
3229 Error_Msg_N
3230 ("??can only execute if invalid values are present",
3231 DS);
3232 end if;
3233 end if;
3235 -- In either case, suppress warnings in the body of the loop,
3236 -- since it is likely that these warnings will be inappropriate
3237 -- if the loop never actually executes, which is likely.
3239 Set_Suppress_Loop_Warnings (Loop_Nod);
3241 -- The other case for a warning is a reverse loop where the
3242 -- upper bound is the integer literal zero or one, and the
3243 -- lower bound may exceed this value.
3245 -- For example, we have
3247 -- for J in reverse N .. 1 loop
3249 -- In practice, this is very likely to be a case of reversing
3250 -- the bounds incorrectly in the range.
3252 elsif Reverse_Present (N)
3253 and then Nkind (Original_Node (H)) = N_Integer_Literal
3254 and then
3255 (Intval (Original_Node (H)) = Uint_0
3256 or else
3257 Intval (Original_Node (H)) = Uint_1)
3258 then
3259 -- Lower bound may in fact be known and known not to exceed
3260 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
3262 if Compile_Time_Known_Value (L)
3263 and then Expr_Value (L) <= Expr_Value (H)
3264 then
3265 null;
3267 -- Otherwise warning is warranted
3269 else
3270 Error_Msg_N ("??loop range may be null", DS);
3271 Error_Msg_N ("\??bounds may be wrong way round", DS);
3272 end if;
3273 end if;
3275 -- Check if either bound is known to be outside the range of the
3276 -- loop parameter type, this is e.g. the case of a loop from
3277 -- 20..X where the type is 1..19.
3279 -- Such a loop is dubious since either it raises CE or it executes
3280 -- zero times, and that cannot be useful!
3282 if Etype (DS) /= Any_Type
3283 and then not Error_Posted (DS)
3284 and then Nkind (DS) = N_Subtype_Indication
3285 and then Nkind (Constraint (DS)) = N_Range_Constraint
3286 then
3287 declare
3288 LLo : constant Node_Id :=
3289 Low_Bound (Range_Expression (Constraint (DS)));
3290 LHi : constant Node_Id :=
3291 High_Bound (Range_Expression (Constraint (DS)));
3293 Bad_Bound : Node_Id := Empty;
3294 -- Suspicious loop bound
3296 begin
3297 -- At this stage L, H are the bounds of the type, and LLo
3298 -- Lhi are the low bound and high bound of the loop.
3300 if Compile_Time_Compare (LLo, L, Assume_Valid => True) = LT
3301 or else
3302 Compile_Time_Compare (LLo, H, Assume_Valid => True) = GT
3303 then
3304 Bad_Bound := LLo;
3305 end if;
3307 if Compile_Time_Compare (LHi, L, Assume_Valid => True) = LT
3308 or else
3309 Compile_Time_Compare (LHi, H, Assume_Valid => True) = GT
3310 then
3311 Bad_Bound := LHi;
3312 end if;
3314 if Present (Bad_Bound) then
3315 Error_Msg_N
3316 ("suspicious loop bound out of range of "
3317 & "loop subtype??", Bad_Bound);
3318 Error_Msg_N
3319 ("\loop executes zero times or raises "
3320 & "Constraint_Error??", Bad_Bound);
3321 end if;
3322 end;
3323 end if;
3325 -- This declare block is about warnings, if we get an exception while
3326 -- testing for warnings, we simply abandon the attempt silently. This
3327 -- most likely occurs as the result of a previous error, but might
3328 -- just be an obscure case we have missed. In either case, not giving
3329 -- the warning is perfectly acceptable.
3331 exception
3332 when others => null;
3333 end;
3334 end if;
3336 -- A loop parameter cannot be effectively volatile (SPARK RM 7.1.3(4)).
3337 -- This check is relevant only when SPARK_Mode is on as it is not a
3338 -- standard Ada legality check.
3340 if SPARK_Mode = On and then Is_Effectively_Volatile (Id) then
3341 Error_Msg_N ("loop parameter cannot be volatile", Id);
3342 end if;
3343 end Analyze_Loop_Parameter_Specification;
3345 ----------------------------
3346 -- Analyze_Loop_Statement --
3347 ----------------------------
3349 procedure Analyze_Loop_Statement (N : Node_Id) is
3351 function Is_Container_Iterator (Iter : Node_Id) return Boolean;
3352 -- Given a loop iteration scheme, determine whether it is an Ada 2012
3353 -- container iteration.
3355 function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
3356 -- Determine whether loop statement N has been wrapped in a block to
3357 -- capture finalization actions that may be generated for container
3358 -- iterators. Prevents infinite recursion when block is analyzed.
3359 -- Routine is a noop if loop is single statement within source block.
3361 ---------------------------
3362 -- Is_Container_Iterator --
3363 ---------------------------
3365 function Is_Container_Iterator (Iter : Node_Id) return Boolean is
3366 begin
3367 -- Infinite loop
3369 if No (Iter) then
3370 return False;
3372 -- While loop
3374 elsif Present (Condition (Iter)) then
3375 return False;
3377 -- for Def_Id in [reverse] Name loop
3378 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
3380 elsif Present (Iterator_Specification (Iter)) then
3381 declare
3382 Nam : constant Node_Id := Name (Iterator_Specification (Iter));
3383 Nam_Copy : Node_Id;
3385 begin
3386 Nam_Copy := New_Copy_Tree (Nam);
3387 Set_Parent (Nam_Copy, Parent (Nam));
3388 Preanalyze_Range (Nam_Copy);
3390 -- The only two options here are iteration over a container or
3391 -- an array.
3393 return not Is_Array_Type (Etype (Nam_Copy));
3394 end;
3396 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
3398 else
3399 declare
3400 LP : constant Node_Id := Loop_Parameter_Specification (Iter);
3401 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
3402 DS_Copy : Node_Id;
3404 begin
3405 DS_Copy := New_Copy_Tree (DS);
3406 Set_Parent (DS_Copy, Parent (DS));
3407 Preanalyze_Range (DS_Copy);
3409 -- Check for a call to Iterate () or an expression with
3410 -- an iterator type.
3412 return
3413 (Nkind (DS_Copy) = N_Function_Call
3414 and then Needs_Finalization (Etype (DS_Copy)))
3415 or else Is_Iterator (Etype (DS_Copy));
3416 end;
3417 end if;
3418 end Is_Container_Iterator;
3420 -------------------------
3421 -- Is_Wrapped_In_Block --
3422 -------------------------
3424 function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
3425 HSS : Node_Id;
3426 Stat : Node_Id;
3428 begin
3430 -- Check if current scope is a block that is not a transient block.
3432 if Ekind (Current_Scope) /= E_Block
3433 or else No (Block_Node (Current_Scope))
3434 then
3435 return False;
3437 else
3438 HSS :=
3439 Handled_Statement_Sequence (Parent (Block_Node (Current_Scope)));
3441 -- Skip leading pragmas that may be introduced for invariant and
3442 -- predicate checks.
3444 Stat := First (Statements (HSS));
3445 while Present (Stat) and then Nkind (Stat) = N_Pragma loop
3446 Stat := Next (Stat);
3447 end loop;
3449 return Stat = N and then No (Next (Stat));
3450 end if;
3451 end Is_Wrapped_In_Block;
3453 -- Local declarations
3455 Id : constant Node_Id := Identifier (N);
3456 Iter : constant Node_Id := Iteration_Scheme (N);
3457 Loc : constant Source_Ptr := Sloc (N);
3458 Ent : Entity_Id;
3459 Stmt : Node_Id;
3461 -- Start of processing for Analyze_Loop_Statement
3463 begin
3464 if Present (Id) then
3466 -- Make name visible, e.g. for use in exit statements. Loop labels
3467 -- are always considered to be referenced.
3469 Analyze (Id);
3470 Ent := Entity (Id);
3472 -- Guard against serious error (typically, a scope mismatch when
3473 -- semantic analysis is requested) by creating loop entity to
3474 -- continue analysis.
3476 if No (Ent) then
3477 if Total_Errors_Detected /= 0 then
3478 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3479 else
3480 raise Program_Error;
3481 end if;
3483 -- Verify that the loop name is hot hidden by an unrelated
3484 -- declaration in an inner scope.
3486 elsif Ekind (Ent) /= E_Label and then Ekind (Ent) /= E_Loop then
3487 Error_Msg_Sloc := Sloc (Ent);
3488 Error_Msg_N ("implicit label declaration for & is hidden#", Id);
3490 if Present (Homonym (Ent))
3491 and then Ekind (Homonym (Ent)) = E_Label
3492 then
3493 Set_Entity (Id, Ent);
3494 Set_Ekind (Ent, E_Loop);
3495 end if;
3497 else
3498 Generate_Reference (Ent, N, ' ');
3499 Generate_Definition (Ent);
3501 -- If we found a label, mark its type. If not, ignore it, since it
3502 -- means we have a conflicting declaration, which would already
3503 -- have been diagnosed at declaration time. Set Label_Construct
3504 -- of the implicit label declaration, which is not created by the
3505 -- parser for generic units.
3507 if Ekind (Ent) = E_Label then
3508 Set_Ekind (Ent, E_Loop);
3510 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
3511 Set_Label_Construct (Parent (Ent), N);
3512 end if;
3513 end if;
3514 end if;
3516 -- Case of no identifier present. Create one and attach it to the
3517 -- loop statement for use as a scope and as a reference for later
3518 -- expansions. Indicate that the label does not come from source,
3519 -- and attach it to the loop statement so it is part of the tree,
3520 -- even without a full declaration.
3522 else
3523 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3524 Set_Etype (Ent, Standard_Void_Type);
3525 Set_Identifier (N, New_Occurrence_Of (Ent, Loc));
3526 Set_Parent (Ent, N);
3527 Set_Has_Created_Identifier (N);
3528 end if;
3530 -- If the iterator specification has a syntactic error, transform
3531 -- construct into an infinite loop to prevent a crash and perform
3532 -- some analysis.
3534 if Present (Iter)
3535 and then Present (Iterator_Specification (Iter))
3536 and then Error_Posted (Iterator_Specification (Iter))
3537 then
3538 Set_Iteration_Scheme (N, Empty);
3539 Analyze (N);
3540 return;
3541 end if;
3543 -- Iteration over a container in Ada 2012 involves the creation of a
3544 -- controlled iterator object. Wrap the loop in a block to ensure the
3545 -- timely finalization of the iterator and release of container locks.
3546 -- The same applies to the use of secondary stack when obtaining an
3547 -- iterator.
3549 if Ada_Version >= Ada_2012
3550 and then Is_Container_Iterator (Iter)
3551 and then not Is_Wrapped_In_Block (N)
3552 then
3553 declare
3554 Block_Nod : Node_Id;
3555 Block_Id : Entity_Id;
3557 begin
3558 Block_Nod :=
3559 Make_Block_Statement (Loc,
3560 Declarations => New_List,
3561 Handled_Statement_Sequence =>
3562 Make_Handled_Sequence_Of_Statements (Loc,
3563 Statements => New_List (Relocate_Node (N))));
3565 Add_Block_Identifier (Block_Nod, Block_Id);
3567 -- The expansion of iterator loops generates an iterator in order
3568 -- to traverse the elements of a container:
3570 -- Iter : <iterator type> := Iterate (Container)'reference;
3572 -- The iterator is controlled and returned on the secondary stack.
3573 -- The analysis of the call to Iterate establishes a transient
3574 -- scope to deal with the secondary stack management, but never
3575 -- really creates a physical block as this would kill the iterator
3576 -- too early (see Wrap_Transient_Declaration). To address this
3577 -- case, mark the generated block as needing secondary stack
3578 -- management.
3580 Set_Uses_Sec_Stack (Block_Id);
3582 Rewrite (N, Block_Nod);
3583 Analyze (N);
3584 return;
3585 end;
3586 end if;
3588 -- Wrap the loop in a block when the evaluation of the loop iterator
3589 -- relies on the secondary stack. Required to ensure releasing the
3590 -- secondary stack as soon as the loop completes.
3592 if Present (Iter)
3593 and then Present (Loop_Parameter_Specification (Iter))
3594 and then not Is_Wrapped_In_Block (N)
3595 then
3596 declare
3597 LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
3598 DSD : constant Node_Id :=
3599 Original_Node (Discrete_Subtype_Definition (LPS));
3601 Block_Id : Entity_Id;
3602 Block_Nod : Node_Id;
3603 HB : Node_Id;
3604 LB : Node_Id;
3606 begin
3607 if Nkind (DSD) = N_Subtype_Indication
3608 and then Nkind (Range_Expression (Constraint (DSD))) = N_Range
3609 then
3610 LB :=
3611 New_Copy_Tree
3612 (Low_Bound (Range_Expression (Constraint (DSD))));
3613 HB :=
3614 New_Copy_Tree
3615 (High_Bound (Range_Expression (Constraint (DSD))));
3617 Preanalyze (LB);
3618 Preanalyze (HB);
3620 if Has_Call_Using_Secondary_Stack (LB)
3621 or else Has_Call_Using_Secondary_Stack (HB)
3622 then
3623 Block_Nod :=
3624 Make_Block_Statement (Loc,
3625 Declarations => New_List,
3626 Handled_Statement_Sequence =>
3627 Make_Handled_Sequence_Of_Statements (Loc,
3628 Statements => New_List (Relocate_Node (N))));
3630 Add_Block_Identifier (Block_Nod, Block_Id);
3631 Set_Uses_Sec_Stack (Block_Id);
3632 Rewrite (N, Block_Nod);
3633 Analyze (N);
3634 return;
3635 end if;
3636 end if;
3637 end;
3638 end if;
3640 -- Kill current values on entry to loop, since statements in the body of
3641 -- the loop may have been executed before the loop is entered. Similarly
3642 -- we kill values after the loop, since we do not know that the body of
3643 -- the loop was executed.
3645 Kill_Current_Values;
3646 Push_Scope (Ent);
3647 Analyze_Iteration_Scheme (Iter);
3649 -- Check for following case which merits a warning if the type E of is
3650 -- a multi-dimensional array (and no explicit subscript ranges present).
3652 -- for J in E'Range
3653 -- for K in E'Range
3655 if Present (Iter)
3656 and then Present (Loop_Parameter_Specification (Iter))
3657 then
3658 declare
3659 LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
3660 DSD : constant Node_Id :=
3661 Original_Node (Discrete_Subtype_Definition (LPS));
3662 begin
3663 if Nkind (DSD) = N_Attribute_Reference
3664 and then Attribute_Name (DSD) = Name_Range
3665 and then No (Expressions (DSD))
3666 then
3667 declare
3668 Typ : constant Entity_Id := Etype (Prefix (DSD));
3669 begin
3670 if Is_Array_Type (Typ)
3671 and then Number_Dimensions (Typ) > 1
3672 and then Nkind (Parent (N)) = N_Loop_Statement
3673 and then Present (Iteration_Scheme (Parent (N)))
3674 then
3675 declare
3676 OIter : constant Node_Id :=
3677 Iteration_Scheme (Parent (N));
3678 OLPS : constant Node_Id :=
3679 Loop_Parameter_Specification (OIter);
3680 ODSD : constant Node_Id :=
3681 Original_Node (Discrete_Subtype_Definition (OLPS));
3682 begin
3683 if Nkind (ODSD) = N_Attribute_Reference
3684 and then Attribute_Name (ODSD) = Name_Range
3685 and then No (Expressions (ODSD))
3686 and then Etype (Prefix (ODSD)) = Typ
3687 then
3688 Error_Msg_Sloc := Sloc (ODSD);
3689 Error_Msg_N
3690 ("inner range same as outer range#??", DSD);
3691 end if;
3692 end;
3693 end if;
3694 end;
3695 end if;
3696 end;
3697 end if;
3699 -- Analyze the statements of the body except in the case of an Ada 2012
3700 -- iterator with the expander active. In this case the expander will do
3701 -- a rewrite of the loop into a while loop. We will then analyze the
3702 -- loop body when we analyze this while loop.
3704 -- We need to do this delay because if the container is for indefinite
3705 -- types the actual subtype of the components will only be determined
3706 -- when the cursor declaration is analyzed.
3708 -- If the expander is not active then we want to analyze the loop body
3709 -- now even in the Ada 2012 iterator case, since the rewriting will not
3710 -- be done. Insert the loop variable in the current scope, if not done
3711 -- when analysing the iteration scheme. Set its kind properly to detect
3712 -- improper uses in the loop body.
3714 -- In GNATprove mode, we do one of the above depending on the kind of
3715 -- loop. If it is an iterator over an array, then we do not analyze the
3716 -- loop now. We will analyze it after it has been rewritten by the
3717 -- special SPARK expansion which is activated in GNATprove mode. We need
3718 -- to do this so that other expansions that should occur in GNATprove
3719 -- mode take into account the specificities of the rewritten loop, in
3720 -- particular the introduction of a renaming (which needs to be
3721 -- expanded).
3723 -- In other cases in GNATprove mode then we want to analyze the loop
3724 -- body now, since no rewriting will occur. Within a generic the
3725 -- GNATprove mode is irrelevant, we must analyze the generic for
3726 -- non-local name capture.
3728 if Present (Iter)
3729 and then Present (Iterator_Specification (Iter))
3730 then
3731 if GNATprove_Mode
3732 and then Is_Iterator_Over_Array (Iterator_Specification (Iter))
3733 and then not Inside_A_Generic
3734 then
3735 null;
3737 elsif not Expander_Active then
3738 declare
3739 I_Spec : constant Node_Id := Iterator_Specification (Iter);
3740 Id : constant Entity_Id := Defining_Identifier (I_Spec);
3742 begin
3743 if Scope (Id) /= Current_Scope then
3744 Enter_Name (Id);
3745 end if;
3747 -- In an element iterator, The loop parameter is a variable if
3748 -- the domain of iteration (container or array) is a variable.
3750 if not Of_Present (I_Spec)
3751 or else not Is_Variable (Name (I_Spec))
3752 then
3753 Set_Ekind (Id, E_Loop_Parameter);
3754 end if;
3755 end;
3757 Analyze_Statements (Statements (N));
3758 end if;
3760 else
3761 -- Pre-Ada2012 for-loops and while loops
3763 Analyze_Statements (Statements (N));
3764 end if;
3766 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
3767 -- the loop is transformed into a conditional block. Retrieve the loop.
3769 Stmt := N;
3771 if Subject_To_Loop_Entry_Attributes (Stmt) then
3772 Stmt := Find_Loop_In_Conditional_Block (Stmt);
3773 end if;
3775 -- Finish up processing for the loop. We kill all current values, since
3776 -- in general we don't know if the statements in the loop have been
3777 -- executed. We could do a bit better than this with a loop that we
3778 -- know will execute at least once, but it's not worth the trouble and
3779 -- the front end is not in the business of flow tracing.
3781 Process_End_Label (Stmt, 'e', Ent);
3782 End_Scope;
3783 Kill_Current_Values;
3785 -- Check for infinite loop. Skip check for generated code, since it
3786 -- justs waste time and makes debugging the routine called harder.
3788 -- Note that we have to wait till the body of the loop is fully analyzed
3789 -- before making this call, since Check_Infinite_Loop_Warning relies on
3790 -- being able to use semantic visibility information to find references.
3792 if Comes_From_Source (Stmt) then
3793 Check_Infinite_Loop_Warning (Stmt);
3794 end if;
3796 -- Code after loop is unreachable if the loop has no WHILE or FOR and
3797 -- contains no EXIT statements within the body of the loop.
3799 if No (Iter) and then not Has_Exit (Ent) then
3800 Check_Unreachable_Code (Stmt);
3801 end if;
3802 end Analyze_Loop_Statement;
3804 ----------------------------
3805 -- Analyze_Null_Statement --
3806 ----------------------------
3808 -- Note: the semantics of the null statement is implemented by a single
3809 -- null statement, too bad everything isn't as simple as this.
3811 procedure Analyze_Null_Statement (N : Node_Id) is
3812 pragma Warnings (Off, N);
3813 begin
3814 null;
3815 end Analyze_Null_Statement;
3817 -------------------------
3818 -- Analyze_Target_Name --
3819 -------------------------
3821 procedure Analyze_Target_Name (N : Node_Id) is
3822 begin
3823 -- A target name has the type of the left-hand side of the enclosing
3824 -- assignment.
3826 Set_Etype (N, Etype (Name (Current_Assignment)));
3827 end Analyze_Target_Name;
3829 ------------------------
3830 -- Analyze_Statements --
3831 ------------------------
3833 procedure Analyze_Statements (L : List_Id) is
3834 Lab : Entity_Id;
3835 S : Node_Id;
3837 begin
3838 -- The labels declared in the statement list are reachable from
3839 -- statements in the list. We do this as a prepass so that any goto
3840 -- statement will be properly flagged if its target is not reachable.
3841 -- This is not required, but is nice behavior.
3843 S := First (L);
3844 while Present (S) loop
3845 if Nkind (S) = N_Label then
3846 Analyze (Identifier (S));
3847 Lab := Entity (Identifier (S));
3849 -- If we found a label mark it as reachable
3851 if Ekind (Lab) = E_Label then
3852 Generate_Definition (Lab);
3853 Set_Reachable (Lab);
3855 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
3856 Set_Label_Construct (Parent (Lab), S);
3857 end if;
3859 -- If we failed to find a label, it means the implicit declaration
3860 -- of the label was hidden. A for-loop parameter can do this to
3861 -- a label with the same name inside the loop, since the implicit
3862 -- label declaration is in the innermost enclosing body or block
3863 -- statement.
3865 else
3866 Error_Msg_Sloc := Sloc (Lab);
3867 Error_Msg_N
3868 ("implicit label declaration for & is hidden#",
3869 Identifier (S));
3870 end if;
3871 end if;
3873 Next (S);
3874 end loop;
3876 -- Perform semantic analysis on all statements
3878 Conditional_Statements_Begin;
3880 S := First (L);
3881 while Present (S) loop
3882 Analyze (S);
3884 -- Remove dimension in all statements
3886 Remove_Dimension_In_Statement (S);
3887 Next (S);
3888 end loop;
3890 Conditional_Statements_End;
3892 -- Make labels unreachable. Visibility is not sufficient, because labels
3893 -- in one if-branch for example are not reachable from the other branch,
3894 -- even though their declarations are in the enclosing declarative part.
3896 S := First (L);
3897 while Present (S) loop
3898 if Nkind (S) = N_Label then
3899 Set_Reachable (Entity (Identifier (S)), False);
3900 end if;
3902 Next (S);
3903 end loop;
3904 end Analyze_Statements;
3906 ----------------------------
3907 -- Check_Unreachable_Code --
3908 ----------------------------
3910 procedure Check_Unreachable_Code (N : Node_Id) is
3911 Error_Node : Node_Id;
3912 P : Node_Id;
3914 begin
3915 if Is_List_Member (N) and then Comes_From_Source (N) then
3916 declare
3917 Nxt : Node_Id;
3919 begin
3920 Nxt := Original_Node (Next (N));
3922 -- Skip past pragmas
3924 while Nkind (Nxt) = N_Pragma loop
3925 Nxt := Original_Node (Next (Nxt));
3926 end loop;
3928 -- If a label follows us, then we never have dead code, since
3929 -- someone could branch to the label, so we just ignore it, unless
3930 -- we are in formal mode where goto statements are not allowed.
3932 if Nkind (Nxt) = N_Label
3933 and then not Restriction_Check_Required (SPARK_05)
3934 then
3935 return;
3937 -- Otherwise see if we have a real statement following us
3939 elsif Present (Nxt)
3940 and then Comes_From_Source (Nxt)
3941 and then Is_Statement (Nxt)
3942 then
3943 -- Special very annoying exception. If we have a return that
3944 -- follows a raise, then we allow it without a warning, since
3945 -- the Ada RM annoyingly requires a useless return here.
3947 if Nkind (Original_Node (N)) /= N_Raise_Statement
3948 or else Nkind (Nxt) /= N_Simple_Return_Statement
3949 then
3950 -- The rather strange shenanigans with the warning message
3951 -- here reflects the fact that Kill_Dead_Code is very good
3952 -- at removing warnings in deleted code, and this is one
3953 -- warning we would prefer NOT to have removed.
3955 Error_Node := Nxt;
3957 -- If we have unreachable code, analyze and remove the
3958 -- unreachable code, since it is useless and we don't
3959 -- want to generate junk warnings.
3961 -- We skip this step if we are not in code generation mode
3962 -- or CodePeer mode.
3964 -- This is the one case where we remove dead code in the
3965 -- semantics as opposed to the expander, and we do not want
3966 -- to remove code if we are not in code generation mode,
3967 -- since this messes up the ASIS trees or loses useful
3968 -- information in the CodePeer tree.
3970 -- Note that one might react by moving the whole circuit to
3971 -- exp_ch5, but then we lose the warning in -gnatc mode.
3973 if Operating_Mode = Generate_Code
3974 and then not CodePeer_Mode
3975 then
3976 loop
3977 Nxt := Next (N);
3979 -- Quit deleting when we have nothing more to delete
3980 -- or if we hit a label (since someone could transfer
3981 -- control to a label, so we should not delete it).
3983 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
3985 -- Statement/declaration is to be deleted
3987 Analyze (Nxt);
3988 Remove (Nxt);
3989 Kill_Dead_Code (Nxt);
3990 end loop;
3991 end if;
3993 -- Now issue the warning (or error in formal mode)
3995 if Restriction_Check_Required (SPARK_05) then
3996 Check_SPARK_05_Restriction
3997 ("unreachable code is not allowed", Error_Node);
3998 else
3999 Error_Msg
4000 ("??unreachable code!", Sloc (Error_Node), Error_Node);
4001 end if;
4002 end if;
4004 -- If the unconditional transfer of control instruction is the
4005 -- last statement of a sequence, then see if our parent is one of
4006 -- the constructs for which we count unblocked exits, and if so,
4007 -- adjust the count.
4009 else
4010 P := Parent (N);
4012 -- Statements in THEN part or ELSE part of IF statement
4014 if Nkind (P) = N_If_Statement then
4015 null;
4017 -- Statements in ELSIF part of an IF statement
4019 elsif Nkind (P) = N_Elsif_Part then
4020 P := Parent (P);
4021 pragma Assert (Nkind (P) = N_If_Statement);
4023 -- Statements in CASE statement alternative
4025 elsif Nkind (P) = N_Case_Statement_Alternative then
4026 P := Parent (P);
4027 pragma Assert (Nkind (P) = N_Case_Statement);
4029 -- Statements in body of block
4031 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
4032 and then Nkind (Parent (P)) = N_Block_Statement
4033 then
4034 -- The original loop is now placed inside a block statement
4035 -- due to the expansion of attribute 'Loop_Entry. Return as
4036 -- this is not a "real" block for the purposes of exit
4037 -- counting.
4039 if Nkind (N) = N_Loop_Statement
4040 and then Subject_To_Loop_Entry_Attributes (N)
4041 then
4042 return;
4043 end if;
4045 -- Statements in exception handler in a block
4047 elsif Nkind (P) = N_Exception_Handler
4048 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
4049 and then Nkind (Parent (Parent (P))) = N_Block_Statement
4050 then
4051 null;
4053 -- None of these cases, so return
4055 else
4056 return;
4057 end if;
4059 -- This was one of the cases we are looking for (i.e. the
4060 -- parent construct was IF, CASE or block) so decrement count.
4062 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
4063 end if;
4064 end;
4065 end if;
4066 end Check_Unreachable_Code;
4068 ------------------------------------
4069 -- Has_Call_Using_Secondary_Stack --
4070 ------------------------------------
4072 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is
4073 function Check_Call (N : Node_Id) return Traverse_Result;
4074 -- Check if N is a function call which uses the secondary stack
4076 ----------------
4077 -- Check_Call --
4078 ----------------
4080 function Check_Call (N : Node_Id) return Traverse_Result is
4081 Nam : Node_Id;
4082 Subp : Entity_Id;
4083 Typ : Entity_Id;
4085 begin
4086 if Nkind (N) = N_Function_Call then
4087 Nam := Name (N);
4089 -- Obtain the subprogram being invoked
4091 loop
4092 if Nkind (Nam) = N_Explicit_Dereference then
4093 Nam := Prefix (Nam);
4095 elsif Nkind (Nam) = N_Selected_Component then
4096 Nam := Selector_Name (Nam);
4098 else
4099 exit;
4100 end if;
4101 end loop;
4103 Subp := Entity (Nam);
4104 Typ := Etype (Subp);
4106 if Requires_Transient_Scope (Typ) then
4107 return Abandon;
4109 elsif Sec_Stack_Needed_For_Return (Subp) then
4110 return Abandon;
4111 end if;
4112 end if;
4114 -- Continue traversing the tree
4116 return OK;
4117 end Check_Call;
4119 function Check_Calls is new Traverse_Func (Check_Call);
4121 -- Start of processing for Has_Call_Using_Secondary_Stack
4123 begin
4124 return Check_Calls (N) = Abandon;
4125 end Has_Call_Using_Secondary_Stack;
4127 ----------------------
4128 -- Preanalyze_Range --
4129 ----------------------
4131 procedure Preanalyze_Range (R_Copy : Node_Id) is
4132 Save_Analysis : constant Boolean := Full_Analysis;
4133 Typ : Entity_Id;
4135 begin
4136 Full_Analysis := False;
4137 Expander_Mode_Save_And_Set (False);
4139 -- In addition to the above we must ecplicity suppress the
4140 -- generation of freeze nodes which might otherwise be generated
4141 -- during resolution of the range (e.g. if given by an attribute
4142 -- that will freeze its prefix).
4144 Set_Must_Not_Freeze (R_Copy);
4146 if Nkind (R_Copy) = N_Attribute_Reference then
4147 Set_Must_Not_Freeze (Prefix (R_Copy));
4148 end if;
4150 Analyze (R_Copy);
4152 if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then
4154 -- Apply preference rules for range of predefined integer types, or
4155 -- check for array or iterable construct for "of" iterator, or
4156 -- diagnose true ambiguity.
4158 declare
4159 I : Interp_Index;
4160 It : Interp;
4161 Found : Entity_Id := Empty;
4163 begin
4164 Get_First_Interp (R_Copy, I, It);
4165 while Present (It.Typ) loop
4166 if Is_Discrete_Type (It.Typ) then
4167 if No (Found) then
4168 Found := It.Typ;
4169 else
4170 if Scope (Found) = Standard_Standard then
4171 null;
4173 elsif Scope (It.Typ) = Standard_Standard then
4174 Found := It.Typ;
4176 else
4177 -- Both of them are user-defined
4179 Error_Msg_N
4180 ("ambiguous bounds in range of iteration", R_Copy);
4181 Error_Msg_N ("\possible interpretations:", R_Copy);
4182 Error_Msg_NE ("\\} ", R_Copy, Found);
4183 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
4184 exit;
4185 end if;
4186 end if;
4188 elsif Nkind (Parent (R_Copy)) = N_Iterator_Specification
4189 and then Of_Present (Parent (R_Copy))
4190 then
4191 if Is_Array_Type (It.Typ)
4192 or else Has_Aspect (It.Typ, Aspect_Iterator_Element)
4193 or else Has_Aspect (It.Typ, Aspect_Constant_Indexing)
4194 or else Has_Aspect (It.Typ, Aspect_Variable_Indexing)
4195 then
4196 if No (Found) then
4197 Found := It.Typ;
4198 Set_Etype (R_Copy, It.Typ);
4200 else
4201 Error_Msg_N ("ambiguous domain of iteration", R_Copy);
4202 end if;
4203 end if;
4204 end if;
4206 Get_Next_Interp (I, It);
4207 end loop;
4208 end;
4209 end if;
4211 -- Subtype mark in iteration scheme
4213 if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
4214 null;
4216 -- Expression in range, or Ada 2012 iterator
4218 elsif Nkind (R_Copy) in N_Subexpr then
4219 Resolve (R_Copy);
4220 Typ := Etype (R_Copy);
4222 if Is_Discrete_Type (Typ) then
4223 null;
4225 -- Check that the resulting object is an iterable container
4227 elsif Has_Aspect (Typ, Aspect_Iterator_Element)
4228 or else Has_Aspect (Typ, Aspect_Constant_Indexing)
4229 or else Has_Aspect (Typ, Aspect_Variable_Indexing)
4230 then
4231 null;
4233 -- The expression may yield an implicit reference to an iterable
4234 -- container. Insert explicit dereference so that proper type is
4235 -- visible in the loop.
4237 elsif Has_Implicit_Dereference (Etype (R_Copy)) then
4238 declare
4239 Disc : Entity_Id;
4241 begin
4242 Disc := First_Discriminant (Typ);
4243 while Present (Disc) loop
4244 if Has_Implicit_Dereference (Disc) then
4245 Build_Explicit_Dereference (R_Copy, Disc);
4246 exit;
4247 end if;
4249 Next_Discriminant (Disc);
4250 end loop;
4251 end;
4253 end if;
4254 end if;
4256 Expander_Mode_Restore;
4257 Full_Analysis := Save_Analysis;
4258 end Preanalyze_Range;
4260 end Sem_Ch5;