gcc/testsuite/ChangeLog:
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob349ece787613136aff383d39ef31920af4f4ee32
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elab; use Sem_Elab;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
83 package body Sem_Ch3 is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
94 procedure Build_Derived_Type
95 (N : Node_Id;
96 Parent_Type : Entity_Id;
97 Derived_Type : Entity_Id;
98 Is_Completion : Boolean;
99 Derive_Subps : Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
114 -- the type).
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
119 procedure Build_Derived_Access_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
127 procedure Build_Derived_Array_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
135 procedure Build_Derived_Concurrent_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
143 procedure Build_Derived_Enumeration_Type
144 (N : Node_Id;
145 Parent_Type : Entity_Id;
146 Derived_Type : Entity_Id);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
151 procedure Build_Derived_Numeric_Type
152 (N : Node_Id;
153 Parent_Type : Entity_Id;
154 Derived_Type : Entity_Id);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
158 procedure Build_Derived_Private_Type
159 (N : Node_Id;
160 Parent_Type : Entity_Id;
161 Derived_Type : Entity_Id;
162 Is_Completion : Boolean;
163 Derive_Subps : Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
168 procedure Build_Derived_Record_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Derive_Subps : Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
183 procedure Build_Discriminal (Discrim : Entity_Id);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
191 function Build_Discriminant_Constraints
192 (T : Entity_Id;
193 Def : Node_Id;
194 Derived_Def : Boolean := False) return Elist_Id;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
205 procedure Build_Discriminated_Subtype
206 (T : Entity_Id;
207 Def_Id : Entity_Id;
208 Elist : Elist_Id;
209 Related_Nod : Node_Id;
210 For_Access : Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
228 function Build_Scalar_Bound
229 (Bound : Node_Id;
230 Par_T : Entity_Id;
231 Der_T : Entity_Id) return Node_Id;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
237 procedure Build_Underlying_Full_View
238 (N : Node_Id;
239 Typ : Entity_Id;
240 Par : Entity_Id);
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
247 -- view exchanges).
249 procedure Check_Access_Discriminant_Requires_Limited
250 (D : Node_Id;
251 Loc : Node_Id);
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
256 procedure Check_Anonymous_Access_Components
257 (Typ_Decl : Node_Id;
258 Typ : Entity_Id;
259 Prev : Entity_Id;
260 Comp_List : Node_Id);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
270 procedure Check_Delta_Expression (E : Node_Id);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
274 procedure Check_Digits_Expression (E : Node_Id);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
278 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
285 procedure Check_Or_Process_Discriminants
286 (N : Node_Id;
287 T : Entity_Id;
288 Prev : Entity_Id := Empty);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
293 -- if any.
295 procedure Check_Real_Bound (Bound : Node_Id);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
299 procedure Constant_Redeclaration
300 (Id : Entity_Id;
301 N : Node_Id;
302 T : out Entity_Id);
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
307 function Contain_Interface
308 (Iface : Entity_Id;
309 Ifaces : Elist_Id) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
312 procedure Convert_Scalar_Bounds
313 (N : Node_Id;
314 Parent_Type : Entity_Id;
315 Derived_Type : Entity_Id;
316 Loc : Source_Ptr);
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
325 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
329 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
333 procedure Create_Constrained_Components
334 (Subt : Entity_Id;
335 Decl_Node : Node_Id;
336 Typ : Entity_Id;
337 Constraints : Elist_Id);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
347 function Constrain_Component_Type
348 (Comp : Entity_Id;
349 Constrained_Typ : Entity_Id;
350 Related_Node : Node_Id;
351 Typ : Entity_Id;
352 Constraints : Elist_Id) return Entity_Id;
353 -- Given a discriminated base type Typ, a list of discriminant constraints,
354 -- Constraints, for Typ and a component Comp of Typ, create and return the
355 -- type corresponding to Etype (Comp) where all discriminant references
356 -- are replaced with the corresponding constraint. If Etype (Comp) contains
357 -- no discriminant references then it is returned as-is. Constrained_Typ
358 -- is the final constrained subtype to which the constrained component
359 -- belongs. Related_Node is the node where we attach all created itypes.
361 procedure Constrain_Access
362 (Def_Id : in out Entity_Id;
363 S : Node_Id;
364 Related_Nod : Node_Id);
365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
366 -- an anonymous type created for a subtype indication. In that case it is
367 -- created in the procedure and attached to Related_Nod.
369 procedure Constrain_Array
370 (Def_Id : in out Entity_Id;
371 SI : Node_Id;
372 Related_Nod : Node_Id;
373 Related_Id : Entity_Id;
374 Suffix : Character);
375 -- Apply a list of index constraints to an unconstrained array type. The
376 -- first parameter is the entity for the resulting subtype. A value of
377 -- Empty for Def_Id indicates that an implicit type must be created, but
378 -- creation is delayed (and must be done by this procedure) because other
379 -- subsidiary implicit types must be created first (which is why Def_Id
380 -- is an in/out parameter). The second parameter is a subtype indication
381 -- node for the constrained array to be created (e.g. something of the
382 -- form string (1 .. 10)). Related_Nod gives the place where this type
383 -- has to be inserted in the tree. The Related_Id and Suffix parameters
384 -- are used to build the associated Implicit type name.
386 procedure Constrain_Concurrent
387 (Def_Id : in out Entity_Id;
388 SI : Node_Id;
389 Related_Nod : Node_Id;
390 Related_Id : Entity_Id;
391 Suffix : Character);
392 -- Apply list of discriminant constraints to an unconstrained concurrent
393 -- type.
395 -- SI is the N_Subtype_Indication node containing the constraint and
396 -- the unconstrained type to constrain.
398 -- Def_Id is the entity for the resulting constrained subtype. A value
399 -- of Empty for Def_Id indicates that an implicit type must be created,
400 -- but creation is delayed (and must be done by this procedure) because
401 -- other subsidiary implicit types must be created first (which is why
402 -- Def_Id is an in/out parameter).
404 -- Related_Nod gives the place where this type has to be inserted
405 -- in the tree.
407 -- The last two arguments are used to create its external name if needed.
409 function Constrain_Corresponding_Record
410 (Prot_Subt : Entity_Id;
411 Corr_Rec : Entity_Id;
412 Related_Nod : Node_Id) return Entity_Id;
413 -- When constraining a protected type or task type with discriminants,
414 -- constrain the corresponding record with the same discriminant values.
416 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
417 -- Constrain a decimal fixed point type with a digits constraint and/or a
418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
420 procedure Constrain_Discriminated_Type
421 (Def_Id : Entity_Id;
422 S : Node_Id;
423 Related_Nod : Node_Id;
424 For_Access : Boolean := False);
425 -- Process discriminant constraints of composite type. Verify that values
426 -- have been provided for all discriminants, that the original type is
427 -- unconstrained, and that the types of the supplied expressions match
428 -- the discriminant types. The first three parameters are like in routine
429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
430 -- of For_Access.
432 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
433 -- Constrain an enumeration type with a range constraint. This is identical
434 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
436 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
437 -- Constrain a floating point type with either a digits constraint
438 -- and/or a range constraint, building a E_Floating_Point_Subtype.
440 procedure Constrain_Index
441 (Index : Node_Id;
442 S : Node_Id;
443 Related_Nod : Node_Id;
444 Related_Id : Entity_Id;
445 Suffix : Character;
446 Suffix_Index : Nat);
447 -- Process an index constraint S in a constrained array declaration. The
448 -- constraint can be a subtype name, or a range with or without an explicit
449 -- subtype mark. The index is the corresponding index of the unconstrained
450 -- array. The Related_Id and Suffix parameters are used to build the
451 -- associated Implicit type name.
453 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
454 -- Build subtype of a signed or modular integer type
456 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
457 -- Constrain an ordinary fixed point type with a range constraint, and
458 -- build an E_Ordinary_Fixed_Point_Subtype entity.
460 procedure Copy_And_Swap (Priv, Full : Entity_Id);
461 -- Copy the Priv entity into the entity of its full declaration then swap
462 -- the two entities in such a manner that the former private type is now
463 -- seen as a full type.
465 procedure Decimal_Fixed_Point_Type_Declaration
466 (T : Entity_Id;
467 Def : Node_Id);
468 -- Create a new decimal fixed point type, and apply the constraint to
469 -- obtain a subtype of this new type.
471 procedure Complete_Private_Subtype
472 (Priv : Entity_Id;
473 Full : Entity_Id;
474 Full_Base : Entity_Id;
475 Related_Nod : Node_Id);
476 -- Complete the implicit full view of a private subtype by setting the
477 -- appropriate semantic fields. If the full view of the parent is a record
478 -- type, build constrained components of subtype.
480 procedure Derive_Progenitor_Subprograms
481 (Parent_Type : Entity_Id;
482 Tagged_Type : Entity_Id);
483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
484 -- operations of progenitors of Tagged_Type, and replace the subsidiary
485 -- subtypes with Tagged_Type, to build the specs of the inherited interface
486 -- primitives. The derived primitives are aliased to those of the
487 -- interface. This routine takes care also of transferring to the full view
488 -- subprograms associated with the partial view of Tagged_Type that cover
489 -- interface primitives.
491 procedure Derived_Standard_Character
492 (N : Node_Id;
493 Parent_Type : Entity_Id;
494 Derived_Type : Entity_Id);
495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496 -- derivations from types Standard.Character and Standard.Wide_Character.
498 procedure Derived_Type_Declaration
499 (T : Entity_Id;
500 N : Node_Id;
501 Is_Completion : Boolean);
502 -- Process a derived type declaration. Build_Derived_Type is invoked
503 -- to process the actual derived type definition. Parameters N and
504 -- Is_Completion have the same meaning as in Build_Derived_Type.
505 -- T is the N_Defining_Identifier for the entity defined in the
506 -- N_Full_Type_Declaration node N, that is T is the derived type.
508 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
509 -- Insert each literal in symbol table, as an overloadable identifier. Each
510 -- enumeration type is mapped into a sequence of integers, and each literal
511 -- is defined as a constant with integer value. If any of the literals are
512 -- character literals, the type is a character type, which means that
513 -- strings are legal aggregates for arrays of components of the type.
515 function Expand_To_Stored_Constraint
516 (Typ : Entity_Id;
517 Constraint : Elist_Id) return Elist_Id;
518 -- Given a constraint (i.e. a list of expressions) on the discriminants of
519 -- Typ, expand it into a constraint on the stored discriminants and return
520 -- the new list of expressions constraining the stored discriminants.
522 function Find_Type_Of_Object
523 (Obj_Def : Node_Id;
524 Related_Nod : Node_Id) return Entity_Id;
525 -- Get type entity for object referenced by Obj_Def, attaching the implicit
526 -- types generated to Related_Nod.
528 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
529 -- Create a new float and apply the constraint to obtain subtype of it
531 function Has_Range_Constraint (N : Node_Id) return Boolean;
532 -- Given an N_Subtype_Indication node N, return True if a range constraint
533 -- is present, either directly, or as part of a digits or delta constraint.
534 -- In addition, a digits constraint in the decimal case returns True, since
535 -- it establishes a default range if no explicit range is present.
537 function Inherit_Components
538 (N : Node_Id;
539 Parent_Base : Entity_Id;
540 Derived_Base : Entity_Id;
541 Is_Tagged : Boolean;
542 Inherit_Discr : Boolean;
543 Discs : Elist_Id) return Elist_Id;
544 -- Called from Build_Derived_Record_Type to inherit the components of
545 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
546 -- For more information on derived types and component inheritance please
547 -- consult the comment above the body of Build_Derived_Record_Type.
549 -- N is the original derived type declaration
551 -- Is_Tagged is set if we are dealing with tagged types
553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
554 -- Parent_Base, otherwise no discriminants are inherited.
556 -- Discs gives the list of constraints that apply to Parent_Base in the
557 -- derived type declaration. If Discs is set to No_Elist, then we have
558 -- the following situation:
560 -- type Parent (D1..Dn : ..) is [tagged] record ...;
561 -- type Derived is new Parent [with ...];
563 -- which gets treated as
565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
567 -- For untagged types the returned value is an association list. The list
568 -- starts from the association (Parent_Base => Derived_Base), and then it
569 -- contains a sequence of the associations of the form
571 -- (Old_Component => New_Component),
573 -- where Old_Component is the Entity_Id of a component in Parent_Base and
574 -- New_Component is the Entity_Id of the corresponding component in
575 -- Derived_Base. For untagged records, this association list is needed when
576 -- copying the record declaration for the derived base. In the tagged case
577 -- the value returned is irrelevant.
579 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
580 -- Propagate static and dynamic predicate flags from a parent to the
581 -- subtype in a subtype declaration with and without constraints.
583 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585 -- Determine whether subprogram Subp is a procedure subject to pragma
586 -- Extensions_Visible with value False and has at least one controlling
587 -- parameter of mode OUT.
589 function Is_Valid_Constraint_Kind
590 (T_Kind : Type_Kind;
591 Constraint_Kind : Node_Kind) return Boolean;
592 -- Returns True if it is legal to apply the given kind of constraint to the
593 -- given kind of type (index constraint to an array type, for example).
595 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
596 -- Create new modular type. Verify that modulus is in bounds
598 procedure New_Concatenation_Op (Typ : Entity_Id);
599 -- Create an abbreviated declaration for an operator in order to
600 -- materialize concatenation on array types.
602 procedure Ordinary_Fixed_Point_Type_Declaration
603 (T : Entity_Id;
604 Def : Node_Id);
605 -- Create a new ordinary fixed point type, and apply the constraint to
606 -- obtain subtype of it.
608 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id);
609 -- Wrapper on Preanalyze_Spec_Expression for default expressions, so that
610 -- In_Default_Expr can be properly adjusted.
612 procedure Prepare_Private_Subtype_Completion
613 (Id : Entity_Id;
614 Related_Nod : Node_Id);
615 -- Id is a subtype of some private type. Creates the full declaration
616 -- associated with Id whenever possible, i.e. when the full declaration
617 -- of the base type is already known. Records each subtype into
618 -- Private_Dependents of the base type.
620 procedure Process_Incomplete_Dependents
621 (N : Node_Id;
622 Full_T : Entity_Id;
623 Inc_T : Entity_Id);
624 -- Process all entities that depend on an incomplete type. There include
625 -- subtypes, subprogram types that mention the incomplete type in their
626 -- profiles, and subprogram with access parameters that designate the
627 -- incomplete type.
629 -- Inc_T is the defining identifier of an incomplete type declaration, its
630 -- Ekind is E_Incomplete_Type.
632 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
634 -- Full_T is N's defining identifier.
636 -- Subtypes of incomplete types with discriminants are completed when the
637 -- parent type is. This is simpler than private subtypes, because they can
638 -- only appear in the same scope, and there is no need to exchange views.
639 -- Similarly, access_to_subprogram types may have a parameter or a return
640 -- type that is an incomplete type, and that must be replaced with the
641 -- full type.
643 -- If the full type is tagged, subprogram with access parameters that
644 -- designated the incomplete may be primitive operations of the full type,
645 -- and have to be processed accordingly.
647 procedure Process_Real_Range_Specification (Def : Node_Id);
648 -- Given the type definition for a real type, this procedure processes and
649 -- checks the real range specification of this type definition if one is
650 -- present. If errors are found, error messages are posted, and the
651 -- Real_Range_Specification of Def is reset to Empty.
653 procedure Record_Type_Declaration
654 (T : Entity_Id;
655 N : Node_Id;
656 Prev : Entity_Id);
657 -- Process a record type declaration (for both untagged and tagged
658 -- records). Parameters T and N are exactly like in procedure
659 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
660 -- for this routine. If this is the completion of an incomplete type
661 -- declaration, Prev is the entity of the incomplete declaration, used for
662 -- cross-referencing. Otherwise Prev = T.
664 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
665 -- This routine is used to process the actual record type definition (both
666 -- for untagged and tagged records). Def is a record type definition node.
667 -- This procedure analyzes the components in this record type definition.
668 -- Prev_T is the entity for the enclosing record type. It is provided so
669 -- that its Has_Task flag can be set if any of the component have Has_Task
670 -- set. If the declaration is the completion of an incomplete type
671 -- declaration, Prev_T is the original incomplete type, whose full view is
672 -- the record type.
674 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
675 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
676 -- build a copy of the declaration tree of the parent, and we create
677 -- independently the list of components for the derived type. Semantic
678 -- information uses the component entities, but record representation
679 -- clauses are validated on the declaration tree. This procedure replaces
680 -- discriminants and components in the declaration with those that have
681 -- been created by Inherit_Components.
683 procedure Set_Fixed_Range
684 (E : Entity_Id;
685 Loc : Source_Ptr;
686 Lo : Ureal;
687 Hi : Ureal);
688 -- Build a range node with the given bounds and set it as the Scalar_Range
689 -- of the given fixed-point type entity. Loc is the source location used
690 -- for the constructed range. See body for further details.
692 procedure Set_Scalar_Range_For_Subtype
693 (Def_Id : Entity_Id;
694 R : Node_Id;
695 Subt : Entity_Id);
696 -- This routine is used to set the scalar range field for a subtype given
697 -- Def_Id, the entity for the subtype, and R, the range expression for the
698 -- scalar range. Subt provides the parent subtype to be used to analyze,
699 -- resolve, and check the given range.
701 procedure Set_Default_SSO (T : Entity_Id);
702 -- T is the entity for an array or record being declared. This procedure
703 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
704 -- to the setting of Opt.Default_SSO.
706 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
707 -- Create a new signed integer entity, and apply the constraint to obtain
708 -- the required first named subtype of this type.
710 procedure Set_Stored_Constraint_From_Discriminant_Constraint
711 (E : Entity_Id);
712 -- E is some record type. This routine computes E's Stored_Constraint
713 -- from its Discriminant_Constraint.
715 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
716 -- Check that an entity in a list of progenitors is an interface,
717 -- emit error otherwise.
719 -----------------------
720 -- Access_Definition --
721 -----------------------
723 function Access_Definition
724 (Related_Nod : Node_Id;
725 N : Node_Id) return Entity_Id
727 Anon_Type : Entity_Id;
728 Anon_Scope : Entity_Id;
729 Desig_Type : Entity_Id;
730 Enclosing_Prot_Type : Entity_Id := Empty;
732 begin
733 Check_SPARK_05_Restriction ("access type is not allowed", N);
735 if Is_Entry (Current_Scope)
736 and then Is_Task_Type (Etype (Scope (Current_Scope)))
737 then
738 Error_Msg_N ("task entries cannot have access parameters", N);
739 return Empty;
740 end if;
742 -- Ada 2005: For an object declaration the corresponding anonymous
743 -- type is declared in the current scope.
745 -- If the access definition is the return type of another access to
746 -- function, scope is the current one, because it is the one of the
747 -- current type declaration, except for the pathological case below.
749 if Nkind_In (Related_Nod, N_Object_Declaration,
750 N_Access_Function_Definition)
751 then
752 Anon_Scope := Current_Scope;
754 -- A pathological case: function returning access functions that
755 -- return access functions, etc. Each anonymous access type created
756 -- is in the enclosing scope of the outermost function.
758 declare
759 Par : Node_Id;
761 begin
762 Par := Related_Nod;
763 while Nkind_In (Par, N_Access_Function_Definition,
764 N_Access_Definition)
765 loop
766 Par := Parent (Par);
767 end loop;
769 if Nkind (Par) = N_Function_Specification then
770 Anon_Scope := Scope (Defining_Entity (Par));
771 end if;
772 end;
774 -- For the anonymous function result case, retrieve the scope of the
775 -- function specification's associated entity rather than using the
776 -- current scope. The current scope will be the function itself if the
777 -- formal part is currently being analyzed, but will be the parent scope
778 -- in the case of a parameterless function, and we always want to use
779 -- the function's parent scope. Finally, if the function is a child
780 -- unit, we must traverse the tree to retrieve the proper entity.
782 elsif Nkind (Related_Nod) = N_Function_Specification
783 and then Nkind (Parent (N)) /= N_Parameter_Specification
784 then
785 -- If the current scope is a protected type, the anonymous access
786 -- is associated with one of the protected operations, and must
787 -- be available in the scope that encloses the protected declaration.
788 -- Otherwise the type is in the scope enclosing the subprogram.
790 -- If the function has formals, The return type of a subprogram
791 -- declaration is analyzed in the scope of the subprogram (see
792 -- Process_Formals) and thus the protected type, if present, is
793 -- the scope of the current function scope.
795 if Ekind (Current_Scope) = E_Protected_Type then
796 Enclosing_Prot_Type := Current_Scope;
798 elsif Ekind (Current_Scope) = E_Function
799 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
800 then
801 Enclosing_Prot_Type := Scope (Current_Scope);
802 end if;
804 if Present (Enclosing_Prot_Type) then
805 Anon_Scope := Scope (Enclosing_Prot_Type);
807 else
808 Anon_Scope := Scope (Defining_Entity (Related_Nod));
809 end if;
811 -- For an access type definition, if the current scope is a child
812 -- unit it is the scope of the type.
814 elsif Is_Compilation_Unit (Current_Scope) then
815 Anon_Scope := Current_Scope;
817 -- For access formals, access components, and access discriminants, the
818 -- scope is that of the enclosing declaration,
820 else
821 Anon_Scope := Scope (Current_Scope);
822 end if;
824 Anon_Type :=
825 Create_Itype
826 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
828 if All_Present (N)
829 and then Ada_Version >= Ada_2005
830 then
831 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
832 end if;
834 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
835 -- the corresponding semantic routine
837 if Present (Access_To_Subprogram_Definition (N)) then
839 -- Compiler runtime units are compiled in Ada 2005 mode when building
840 -- the runtime library but must also be compilable in Ada 95 mode
841 -- (when bootstrapping the compiler).
843 Check_Compiler_Unit ("anonymous access to subprogram", N);
845 Access_Subprogram_Declaration
846 (T_Name => Anon_Type,
847 T_Def => Access_To_Subprogram_Definition (N));
849 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
850 Set_Ekind
851 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
852 else
853 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
854 end if;
856 Set_Can_Use_Internal_Rep
857 (Anon_Type, not Always_Compatible_Rep_On_Target);
859 -- If the anonymous access is associated with a protected operation,
860 -- create a reference to it after the enclosing protected definition
861 -- because the itype will be used in the subsequent bodies.
863 -- If the anonymous access itself is protected, a full type
864 -- declaratiton will be created for it, so that the equivalent
865 -- record type can be constructed. For further details, see
866 -- Replace_Anonymous_Access_To_Protected-Subprogram.
868 if Ekind (Current_Scope) = E_Protected_Type
869 and then not Protected_Present (Access_To_Subprogram_Definition (N))
870 then
871 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
872 end if;
874 return Anon_Type;
875 end if;
877 Find_Type (Subtype_Mark (N));
878 Desig_Type := Entity (Subtype_Mark (N));
880 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
881 Set_Etype (Anon_Type, Anon_Type);
883 -- Make sure the anonymous access type has size and alignment fields
884 -- set, as required by gigi. This is necessary in the case of the
885 -- Task_Body_Procedure.
887 if not Has_Private_Component (Desig_Type) then
888 Layout_Type (Anon_Type);
889 end if;
891 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
892 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
893 -- the null value is allowed. In Ada 95 the null value is never allowed.
895 if Ada_Version >= Ada_2005 then
896 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
897 else
898 Set_Can_Never_Be_Null (Anon_Type, True);
899 end if;
901 -- The anonymous access type is as public as the discriminated type or
902 -- subprogram that defines it. It is imported (for back-end purposes)
903 -- if the designated type is.
905 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
907 -- Ada 2005 (AI-231): Propagate the access-constant attribute
909 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
911 -- The context is either a subprogram declaration, object declaration,
912 -- or an access discriminant, in a private or a full type declaration.
913 -- In the case of a subprogram, if the designated type is incomplete,
914 -- the operation will be a primitive operation of the full type, to be
915 -- updated subsequently. If the type is imported through a limited_with
916 -- clause, the subprogram is not a primitive operation of the type
917 -- (which is declared elsewhere in some other scope).
919 if Ekind (Desig_Type) = E_Incomplete_Type
920 and then not From_Limited_With (Desig_Type)
921 and then Is_Overloadable (Current_Scope)
922 then
923 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
924 Set_Has_Delayed_Freeze (Current_Scope);
925 end if;
927 -- Ada 2005: If the designated type is an interface that may contain
928 -- tasks, create a Master entity for the declaration. This must be done
929 -- before expansion of the full declaration, because the declaration may
930 -- include an expression that is an allocator, whose expansion needs the
931 -- proper Master for the created tasks.
933 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
934 then
935 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
936 then
937 Build_Class_Wide_Master (Anon_Type);
939 -- Similarly, if the type is an anonymous access that designates
940 -- tasks, create a master entity for it in the current context.
942 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
943 then
944 Build_Master_Entity (Defining_Identifier (Related_Nod));
945 Build_Master_Renaming (Anon_Type);
946 end if;
947 end if;
949 -- For a private component of a protected type, it is imperative that
950 -- the back-end elaborate the type immediately after the protected
951 -- declaration, because this type will be used in the declarations
952 -- created for the component within each protected body, so we must
953 -- create an itype reference for it now.
955 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
956 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
958 -- Similarly, if the access definition is the return result of a
959 -- function, create an itype reference for it because it will be used
960 -- within the function body. For a regular function that is not a
961 -- compilation unit, insert reference after the declaration. For a
962 -- protected operation, insert it after the enclosing protected type
963 -- declaration. In either case, do not create a reference for a type
964 -- obtained through a limited_with clause, because this would introduce
965 -- semantic dependencies.
967 -- Similarly, do not create a reference if the designated type is a
968 -- generic formal, because no use of it will reach the backend.
970 elsif Nkind (Related_Nod) = N_Function_Specification
971 and then not From_Limited_With (Desig_Type)
972 and then not Is_Generic_Type (Desig_Type)
973 then
974 if Present (Enclosing_Prot_Type) then
975 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
977 elsif Is_List_Member (Parent (Related_Nod))
978 and then Nkind (Parent (N)) /= N_Parameter_Specification
979 then
980 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
981 end if;
983 -- Finally, create an itype reference for an object declaration of an
984 -- anonymous access type. This is strictly necessary only for deferred
985 -- constants, but in any case will avoid out-of-scope problems in the
986 -- back-end.
988 elsif Nkind (Related_Nod) = N_Object_Declaration then
989 Build_Itype_Reference (Anon_Type, Related_Nod);
990 end if;
992 return Anon_Type;
993 end Access_Definition;
995 -----------------------------------
996 -- Access_Subprogram_Declaration --
997 -----------------------------------
999 procedure Access_Subprogram_Declaration
1000 (T_Name : Entity_Id;
1001 T_Def : Node_Id)
1003 procedure Check_For_Premature_Usage (Def : Node_Id);
1004 -- Check that type T_Name is not used, directly or recursively, as a
1005 -- parameter or a return type in Def. Def is either a subtype, an
1006 -- access_definition, or an access_to_subprogram_definition.
1008 -------------------------------
1009 -- Check_For_Premature_Usage --
1010 -------------------------------
1012 procedure Check_For_Premature_Usage (Def : Node_Id) is
1013 Param : Node_Id;
1015 begin
1016 -- Check for a subtype mark
1018 if Nkind (Def) in N_Has_Etype then
1019 if Etype (Def) = T_Name then
1020 Error_Msg_N
1021 ("type& cannot be used before end of its declaration", Def);
1022 end if;
1024 -- If this is not a subtype, then this is an access_definition
1026 elsif Nkind (Def) = N_Access_Definition then
1027 if Present (Access_To_Subprogram_Definition (Def)) then
1028 Check_For_Premature_Usage
1029 (Access_To_Subprogram_Definition (Def));
1030 else
1031 Check_For_Premature_Usage (Subtype_Mark (Def));
1032 end if;
1034 -- The only cases left are N_Access_Function_Definition and
1035 -- N_Access_Procedure_Definition.
1037 else
1038 if Present (Parameter_Specifications (Def)) then
1039 Param := First (Parameter_Specifications (Def));
1040 while Present (Param) loop
1041 Check_For_Premature_Usage (Parameter_Type (Param));
1042 Param := Next (Param);
1043 end loop;
1044 end if;
1046 if Nkind (Def) = N_Access_Function_Definition then
1047 Check_For_Premature_Usage (Result_Definition (Def));
1048 end if;
1049 end if;
1050 end Check_For_Premature_Usage;
1052 -- Local variables
1054 Formals : constant List_Id := Parameter_Specifications (T_Def);
1055 Formal : Entity_Id;
1056 D_Ityp : Node_Id;
1057 Desig_Type : constant Entity_Id :=
1058 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1060 -- Start of processing for Access_Subprogram_Declaration
1062 begin
1063 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1065 -- Associate the Itype node with the inner full-type declaration or
1066 -- subprogram spec or entry body. This is required to handle nested
1067 -- anonymous declarations. For example:
1069 -- procedure P
1070 -- (X : access procedure
1071 -- (Y : access procedure
1072 -- (Z : access T)))
1074 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1075 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1076 N_Private_Type_Declaration,
1077 N_Private_Extension_Declaration,
1078 N_Procedure_Specification,
1079 N_Function_Specification,
1080 N_Entry_Body)
1082 or else
1083 Nkind_In (D_Ityp, N_Object_Declaration,
1084 N_Object_Renaming_Declaration,
1085 N_Formal_Object_Declaration,
1086 N_Formal_Type_Declaration,
1087 N_Task_Type_Declaration,
1088 N_Protected_Type_Declaration))
1089 loop
1090 D_Ityp := Parent (D_Ityp);
1091 pragma Assert (D_Ityp /= Empty);
1092 end loop;
1094 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1096 if Nkind_In (D_Ityp, N_Procedure_Specification,
1097 N_Function_Specification)
1098 then
1099 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1101 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1102 N_Object_Declaration,
1103 N_Object_Renaming_Declaration,
1104 N_Formal_Type_Declaration)
1105 then
1106 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1107 end if;
1109 if Nkind (T_Def) = N_Access_Function_Definition then
1110 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1111 declare
1112 Acc : constant Node_Id := Result_Definition (T_Def);
1114 begin
1115 if Present (Access_To_Subprogram_Definition (Acc))
1116 and then
1117 Protected_Present (Access_To_Subprogram_Definition (Acc))
1118 then
1119 Set_Etype
1120 (Desig_Type,
1121 Replace_Anonymous_Access_To_Protected_Subprogram
1122 (T_Def));
1124 else
1125 Set_Etype
1126 (Desig_Type,
1127 Access_Definition (T_Def, Result_Definition (T_Def)));
1128 end if;
1129 end;
1131 else
1132 Analyze (Result_Definition (T_Def));
1134 declare
1135 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1137 begin
1138 -- If a null exclusion is imposed on the result type, then
1139 -- create a null-excluding itype (an access subtype) and use
1140 -- it as the function's Etype.
1142 if Is_Access_Type (Typ)
1143 and then Null_Exclusion_In_Return_Present (T_Def)
1144 then
1145 Set_Etype (Desig_Type,
1146 Create_Null_Excluding_Itype
1147 (T => Typ,
1148 Related_Nod => T_Def,
1149 Scope_Id => Current_Scope));
1151 else
1152 if From_Limited_With (Typ) then
1154 -- AI05-151: Incomplete types are allowed in all basic
1155 -- declarations, including access to subprograms.
1157 if Ada_Version >= Ada_2012 then
1158 null;
1160 else
1161 Error_Msg_NE
1162 ("illegal use of incomplete type&",
1163 Result_Definition (T_Def), Typ);
1164 end if;
1166 elsif Ekind (Current_Scope) = E_Package
1167 and then In_Private_Part (Current_Scope)
1168 then
1169 if Ekind (Typ) = E_Incomplete_Type then
1170 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1172 elsif Is_Class_Wide_Type (Typ)
1173 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1174 then
1175 Append_Elmt
1176 (Desig_Type, Private_Dependents (Etype (Typ)));
1177 end if;
1178 end if;
1180 Set_Etype (Desig_Type, Typ);
1181 end if;
1182 end;
1183 end if;
1185 if not (Is_Type (Etype (Desig_Type))) then
1186 Error_Msg_N
1187 ("expect type in function specification",
1188 Result_Definition (T_Def));
1189 end if;
1191 else
1192 Set_Etype (Desig_Type, Standard_Void_Type);
1193 end if;
1195 if Present (Formals) then
1196 Push_Scope (Desig_Type);
1198 -- Some special tests here. These special tests can be removed
1199 -- if and when Itypes always have proper parent pointers to their
1200 -- declarations???
1202 -- Special test 1) Link defining_identifier of formals. Required by
1203 -- First_Formal to provide its functionality.
1205 declare
1206 F : Node_Id;
1208 begin
1209 F := First (Formals);
1211 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1212 -- when it is part of an unconstrained type and subtype expansion
1213 -- is disabled. To avoid back-end problems with shared profiles,
1214 -- use previous subprogram type as the designated type, and then
1215 -- remove scope added above.
1217 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1218 then
1219 Set_Etype (T_Name, T_Name);
1220 Init_Size_Align (T_Name);
1221 Set_Directly_Designated_Type (T_Name,
1222 Scope (Defining_Identifier (F)));
1223 End_Scope;
1224 return;
1225 end if;
1227 while Present (F) loop
1228 if No (Parent (Defining_Identifier (F))) then
1229 Set_Parent (Defining_Identifier (F), F);
1230 end if;
1232 Next (F);
1233 end loop;
1234 end;
1236 Process_Formals (Formals, Parent (T_Def));
1238 -- Special test 2) End_Scope requires that the parent pointer be set
1239 -- to something reasonable, but Itypes don't have parent pointers. So
1240 -- we set it and then unset it ???
1242 Set_Parent (Desig_Type, T_Name);
1243 End_Scope;
1244 Set_Parent (Desig_Type, Empty);
1245 end if;
1247 -- Check for premature usage of the type being defined
1249 Check_For_Premature_Usage (T_Def);
1251 -- The return type and/or any parameter type may be incomplete. Mark the
1252 -- subprogram_type as depending on the incomplete type, so that it can
1253 -- be updated when the full type declaration is seen. This only applies
1254 -- to incomplete types declared in some enclosing scope, not to limited
1255 -- views from other packages.
1257 -- Prior to Ada 2012, access to functions can only have in_parameters.
1259 if Present (Formals) then
1260 Formal := First_Formal (Desig_Type);
1261 while Present (Formal) loop
1262 if Ekind (Formal) /= E_In_Parameter
1263 and then Nkind (T_Def) = N_Access_Function_Definition
1264 and then Ada_Version < Ada_2012
1265 then
1266 Error_Msg_N ("functions can only have IN parameters", Formal);
1267 end if;
1269 if Ekind (Etype (Formal)) = E_Incomplete_Type
1270 and then In_Open_Scopes (Scope (Etype (Formal)))
1271 then
1272 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1273 Set_Has_Delayed_Freeze (Desig_Type);
1274 end if;
1276 Next_Formal (Formal);
1277 end loop;
1278 end if;
1280 -- Check whether an indirect call without actuals may be possible. This
1281 -- is used when resolving calls whose result is then indexed.
1283 May_Need_Actuals (Desig_Type);
1285 -- If the return type is incomplete, this is legal as long as the type
1286 -- is declared in the current scope and will be completed in it (rather
1287 -- than being part of limited view).
1289 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1290 and then not Has_Delayed_Freeze (Desig_Type)
1291 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1292 then
1293 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1294 Set_Has_Delayed_Freeze (Desig_Type);
1295 end if;
1297 Check_Delayed_Subprogram (Desig_Type);
1299 if Protected_Present (T_Def) then
1300 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1301 Set_Convention (Desig_Type, Convention_Protected);
1302 else
1303 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1304 end if;
1306 Set_Can_Use_Internal_Rep (T_Name,
1307 not Always_Compatible_Rep_On_Target);
1308 Set_Etype (T_Name, T_Name);
1309 Init_Size_Align (T_Name);
1310 Set_Directly_Designated_Type (T_Name, Desig_Type);
1312 -- If the access_to_subprogram is not declared at the library level,
1313 -- it can only point to subprograms that are at the same or deeper
1314 -- accessibility level. The corresponding subprogram type might
1315 -- require an activation record when compiling for C.
1317 Set_Needs_Activation_Record (Desig_Type,
1318 not Is_Library_Level_Entity (T_Name));
1320 Generate_Reference_To_Formals (T_Name);
1322 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1324 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1326 Check_Restriction (No_Access_Subprograms, T_Def);
1327 end Access_Subprogram_Declaration;
1329 ----------------------------
1330 -- Access_Type_Declaration --
1331 ----------------------------
1333 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1334 P : constant Node_Id := Parent (Def);
1335 S : constant Node_Id := Subtype_Indication (Def);
1337 Full_Desig : Entity_Id;
1339 begin
1340 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1342 -- Check for permissible use of incomplete type
1344 if Nkind (S) /= N_Subtype_Indication then
1345 Analyze (S);
1347 if Present (Entity (S))
1348 and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type
1349 then
1350 Set_Directly_Designated_Type (T, Entity (S));
1352 -- If the designated type is a limited view, we cannot tell if
1353 -- the full view contains tasks, and there is no way to handle
1354 -- that full view in a client. We create a master entity for the
1355 -- scope, which will be used when a client determines that one
1356 -- is needed.
1358 if From_Limited_With (Entity (S))
1359 and then not Is_Class_Wide_Type (Entity (S))
1360 then
1361 Set_Ekind (T, E_Access_Type);
1362 Build_Master_Entity (T);
1363 Build_Master_Renaming (T);
1364 end if;
1366 else
1367 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1368 end if;
1370 -- If the access definition is of the form: ACCESS NOT NULL ..
1371 -- the subtype indication must be of an access type. Create
1372 -- a null-excluding subtype of it.
1374 if Null_Excluding_Subtype (Def) then
1375 if not Is_Access_Type (Entity (S)) then
1376 Error_Msg_N ("null exclusion must apply to access type", Def);
1378 else
1379 declare
1380 Loc : constant Source_Ptr := Sloc (S);
1381 Decl : Node_Id;
1382 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1384 begin
1385 Decl :=
1386 Make_Subtype_Declaration (Loc,
1387 Defining_Identifier => Nam,
1388 Subtype_Indication =>
1389 New_Occurrence_Of (Entity (S), Loc));
1390 Set_Null_Exclusion_Present (Decl);
1391 Insert_Before (Parent (Def), Decl);
1392 Analyze (Decl);
1393 Set_Entity (S, Nam);
1394 end;
1395 end if;
1396 end if;
1398 else
1399 Set_Directly_Designated_Type (T,
1400 Process_Subtype (S, P, T, 'P'));
1401 end if;
1403 if All_Present (Def) or Constant_Present (Def) then
1404 Set_Ekind (T, E_General_Access_Type);
1405 else
1406 Set_Ekind (T, E_Access_Type);
1407 end if;
1409 Full_Desig := Designated_Type (T);
1411 if Base_Type (Full_Desig) = T then
1412 Error_Msg_N ("access type cannot designate itself", S);
1414 -- In Ada 2005, the type may have a limited view through some unit in
1415 -- its own context, allowing the following circularity that cannot be
1416 -- detected earlier.
1418 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1419 then
1420 Error_Msg_N
1421 ("access type cannot designate its own class-wide type", S);
1423 -- Clean up indication of tagged status to prevent cascaded errors
1425 Set_Is_Tagged_Type (T, False);
1426 end if;
1428 Set_Etype (T, T);
1430 -- If the type has appeared already in a with_type clause, it is frozen
1431 -- and the pointer size is already set. Else, initialize.
1433 if not From_Limited_With (T) then
1434 Init_Size_Align (T);
1435 end if;
1437 -- Note that Has_Task is always false, since the access type itself
1438 -- is not a task type. See Einfo for more description on this point.
1439 -- Exactly the same consideration applies to Has_Controlled_Component
1440 -- and to Has_Protected.
1442 Set_Has_Task (T, False);
1443 Set_Has_Protected (T, False);
1444 Set_Has_Timing_Event (T, False);
1445 Set_Has_Controlled_Component (T, False);
1447 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1448 -- problems where an incomplete view of this entity has been previously
1449 -- established by a limited with and an overlaid version of this field
1450 -- (Stored_Constraint) was initialized for the incomplete view.
1452 -- This reset is performed in most cases except where the access type
1453 -- has been created for the purposes of allocating or deallocating a
1454 -- build-in-place object. Such access types have explicitly set pools
1455 -- and finalization masters.
1457 if No (Associated_Storage_Pool (T)) then
1458 Set_Finalization_Master (T, Empty);
1459 end if;
1461 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1462 -- attributes
1464 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1465 Set_Is_Access_Constant (T, Constant_Present (Def));
1466 end Access_Type_Declaration;
1468 ----------------------------------
1469 -- Add_Interface_Tag_Components --
1470 ----------------------------------
1472 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1473 Loc : constant Source_Ptr := Sloc (N);
1474 L : List_Id;
1475 Last_Tag : Node_Id;
1477 procedure Add_Tag (Iface : Entity_Id);
1478 -- Add tag for one of the progenitor interfaces
1480 -------------
1481 -- Add_Tag --
1482 -------------
1484 procedure Add_Tag (Iface : Entity_Id) is
1485 Decl : Node_Id;
1486 Def : Node_Id;
1487 Tag : Entity_Id;
1488 Offset : Entity_Id;
1490 begin
1491 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1493 -- This is a reasonable place to propagate predicates
1495 if Has_Predicates (Iface) then
1496 Set_Has_Predicates (Typ);
1497 end if;
1499 Def :=
1500 Make_Component_Definition (Loc,
1501 Aliased_Present => True,
1502 Subtype_Indication =>
1503 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1505 Tag := Make_Temporary (Loc, 'V');
1507 Decl :=
1508 Make_Component_Declaration (Loc,
1509 Defining_Identifier => Tag,
1510 Component_Definition => Def);
1512 Analyze_Component_Declaration (Decl);
1514 Set_Analyzed (Decl);
1515 Set_Ekind (Tag, E_Component);
1516 Set_Is_Tag (Tag);
1517 Set_Is_Aliased (Tag);
1518 Set_Related_Type (Tag, Iface);
1519 Init_Component_Location (Tag);
1521 pragma Assert (Is_Frozen (Iface));
1523 Set_DT_Entry_Count (Tag,
1524 DT_Entry_Count (First_Entity (Iface)));
1526 if No (Last_Tag) then
1527 Prepend (Decl, L);
1528 else
1529 Insert_After (Last_Tag, Decl);
1530 end if;
1532 Last_Tag := Decl;
1534 -- If the ancestor has discriminants we need to give special support
1535 -- to store the offset_to_top value of the secondary dispatch tables.
1536 -- For this purpose we add a supplementary component just after the
1537 -- field that contains the tag associated with each secondary DT.
1539 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1540 Def :=
1541 Make_Component_Definition (Loc,
1542 Subtype_Indication =>
1543 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1545 Offset := Make_Temporary (Loc, 'V');
1547 Decl :=
1548 Make_Component_Declaration (Loc,
1549 Defining_Identifier => Offset,
1550 Component_Definition => Def);
1552 Analyze_Component_Declaration (Decl);
1554 Set_Analyzed (Decl);
1555 Set_Ekind (Offset, E_Component);
1556 Set_Is_Aliased (Offset);
1557 Set_Related_Type (Offset, Iface);
1558 Init_Component_Location (Offset);
1559 Insert_After (Last_Tag, Decl);
1560 Last_Tag := Decl;
1561 end if;
1562 end Add_Tag;
1564 -- Local variables
1566 Elmt : Elmt_Id;
1567 Ext : Node_Id;
1568 Comp : Node_Id;
1570 -- Start of processing for Add_Interface_Tag_Components
1572 begin
1573 if not RTE_Available (RE_Interface_Tag) then
1574 Error_Msg
1575 ("(Ada 2005) interface types not supported by this run-time!",
1576 Sloc (N));
1577 return;
1578 end if;
1580 if Ekind (Typ) /= E_Record_Type
1581 or else (Is_Concurrent_Record_Type (Typ)
1582 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1583 or else (not Is_Concurrent_Record_Type (Typ)
1584 and then No (Interfaces (Typ))
1585 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1586 then
1587 return;
1588 end if;
1590 -- Find the current last tag
1592 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1593 Ext := Record_Extension_Part (Type_Definition (N));
1594 else
1595 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1596 Ext := Type_Definition (N);
1597 end if;
1599 Last_Tag := Empty;
1601 if not (Present (Component_List (Ext))) then
1602 Set_Null_Present (Ext, False);
1603 L := New_List;
1604 Set_Component_List (Ext,
1605 Make_Component_List (Loc,
1606 Component_Items => L,
1607 Null_Present => False));
1608 else
1609 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1610 L := Component_Items
1611 (Component_List
1612 (Record_Extension_Part
1613 (Type_Definition (N))));
1614 else
1615 L := Component_Items
1616 (Component_List
1617 (Type_Definition (N)));
1618 end if;
1620 -- Find the last tag component
1622 Comp := First (L);
1623 while Present (Comp) loop
1624 if Nkind (Comp) = N_Component_Declaration
1625 and then Is_Tag (Defining_Identifier (Comp))
1626 then
1627 Last_Tag := Comp;
1628 end if;
1630 Next (Comp);
1631 end loop;
1632 end if;
1634 -- At this point L references the list of components and Last_Tag
1635 -- references the current last tag (if any). Now we add the tag
1636 -- corresponding with all the interfaces that are not implemented
1637 -- by the parent.
1639 if Present (Interfaces (Typ)) then
1640 Elmt := First_Elmt (Interfaces (Typ));
1641 while Present (Elmt) loop
1642 Add_Tag (Node (Elmt));
1643 Next_Elmt (Elmt);
1644 end loop;
1645 end if;
1646 end Add_Interface_Tag_Components;
1648 -------------------------------------
1649 -- Add_Internal_Interface_Entities --
1650 -------------------------------------
1652 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1653 Elmt : Elmt_Id;
1654 Iface : Entity_Id;
1655 Iface_Elmt : Elmt_Id;
1656 Iface_Prim : Entity_Id;
1657 Ifaces_List : Elist_Id;
1658 New_Subp : Entity_Id := Empty;
1659 Prim : Entity_Id;
1660 Restore_Scope : Boolean := False;
1662 begin
1663 pragma Assert (Ada_Version >= Ada_2005
1664 and then Is_Record_Type (Tagged_Type)
1665 and then Is_Tagged_Type (Tagged_Type)
1666 and then Has_Interfaces (Tagged_Type)
1667 and then not Is_Interface (Tagged_Type));
1669 -- Ensure that the internal entities are added to the scope of the type
1671 if Scope (Tagged_Type) /= Current_Scope then
1672 Push_Scope (Scope (Tagged_Type));
1673 Restore_Scope := True;
1674 end if;
1676 Collect_Interfaces (Tagged_Type, Ifaces_List);
1678 Iface_Elmt := First_Elmt (Ifaces_List);
1679 while Present (Iface_Elmt) loop
1680 Iface := Node (Iface_Elmt);
1682 -- Originally we excluded here from this processing interfaces that
1683 -- are parents of Tagged_Type because their primitives are located
1684 -- in the primary dispatch table (and hence no auxiliary internal
1685 -- entities are required to handle secondary dispatch tables in such
1686 -- case). However, these auxiliary entities are also required to
1687 -- handle derivations of interfaces in formals of generics (see
1688 -- Derive_Subprograms).
1690 Elmt := First_Elmt (Primitive_Operations (Iface));
1691 while Present (Elmt) loop
1692 Iface_Prim := Node (Elmt);
1694 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1695 Prim :=
1696 Find_Primitive_Covering_Interface
1697 (Tagged_Type => Tagged_Type,
1698 Iface_Prim => Iface_Prim);
1700 if No (Prim) and then Serious_Errors_Detected > 0 then
1701 goto Continue;
1702 end if;
1704 pragma Assert (Present (Prim));
1706 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1707 -- differs from the name of the interface primitive then it is
1708 -- a private primitive inherited from a parent type. In such
1709 -- case, given that Tagged_Type covers the interface, the
1710 -- inherited private primitive becomes visible. For such
1711 -- purpose we add a new entity that renames the inherited
1712 -- private primitive.
1714 if Chars (Prim) /= Chars (Iface_Prim) then
1715 pragma Assert (Has_Suffix (Prim, 'P'));
1716 Derive_Subprogram
1717 (New_Subp => New_Subp,
1718 Parent_Subp => Iface_Prim,
1719 Derived_Type => Tagged_Type,
1720 Parent_Type => Iface);
1721 Set_Alias (New_Subp, Prim);
1722 Set_Is_Abstract_Subprogram
1723 (New_Subp, Is_Abstract_Subprogram (Prim));
1724 end if;
1726 Derive_Subprogram
1727 (New_Subp => New_Subp,
1728 Parent_Subp => Iface_Prim,
1729 Derived_Type => Tagged_Type,
1730 Parent_Type => Iface);
1732 declare
1733 Anc : Entity_Id;
1734 begin
1735 if Is_Inherited_Operation (Prim)
1736 and then Present (Alias (Prim))
1737 then
1738 Anc := Alias (Prim);
1739 else
1740 Anc := Overridden_Operation (Prim);
1741 end if;
1743 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1744 -- nonconforming preconditions in both an ancestor and
1745 -- a progenitor operation.
1747 -- If the operation is a primitive wrapper it is an explicit
1748 -- (overriding) operqtion and all is fine.
1750 if Present (Anc)
1751 and then Has_Non_Trivial_Precondition (Anc)
1752 and then Has_Non_Trivial_Precondition (Iface_Prim)
1753 then
1754 if Is_Abstract_Subprogram (Prim)
1755 or else
1756 (Ekind (Prim) = E_Procedure
1757 and then Nkind (Parent (Prim)) =
1758 N_Procedure_Specification
1759 and then Null_Present (Parent (Prim)))
1760 or else Is_Primitive_Wrapper (Prim)
1761 then
1762 null;
1764 -- The operation is inherited and must be overridden
1766 elsif not Comes_From_Source (Prim) then
1767 Error_Msg_NE
1768 ("&inherits non-conforming preconditions and must "
1769 & "be overridden (RM 6.1.1 (10-16)",
1770 Parent (Tagged_Type), Prim);
1771 end if;
1772 end if;
1773 end;
1775 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1776 -- associated with interface types. These entities are
1777 -- only registered in the list of primitives of its
1778 -- corresponding tagged type because they are only used
1779 -- to fill the contents of the secondary dispatch tables.
1780 -- Therefore they are removed from the homonym chains.
1782 Set_Is_Hidden (New_Subp);
1783 Set_Is_Internal (New_Subp);
1784 Set_Alias (New_Subp, Prim);
1785 Set_Is_Abstract_Subprogram
1786 (New_Subp, Is_Abstract_Subprogram (Prim));
1787 Set_Interface_Alias (New_Subp, Iface_Prim);
1789 -- If the returned type is an interface then propagate it to
1790 -- the returned type. Needed by the thunk to generate the code
1791 -- which displaces "this" to reference the corresponding
1792 -- secondary dispatch table in the returned object.
1794 if Is_Interface (Etype (Iface_Prim)) then
1795 Set_Etype (New_Subp, Etype (Iface_Prim));
1796 end if;
1798 -- Internal entities associated with interface types are only
1799 -- registered in the list of primitives of the tagged type.
1800 -- They are only used to fill the contents of the secondary
1801 -- dispatch tables. Therefore they are not needed in the
1802 -- homonym chains.
1804 Remove_Homonym (New_Subp);
1806 -- Hidden entities associated with interfaces must have set
1807 -- the Has_Delay_Freeze attribute to ensure that, in case
1808 -- of locally defined tagged types (or compiling with static
1809 -- dispatch tables generation disabled) the corresponding
1810 -- entry of the secondary dispatch table is filled when such
1811 -- an entity is frozen. This is an expansion activity that must
1812 -- be suppressed for ASIS because it leads to gigi elaboration
1813 -- issues in annotate mode.
1815 if not ASIS_Mode then
1816 Set_Has_Delayed_Freeze (New_Subp);
1817 end if;
1818 end if;
1820 <<Continue>>
1821 Next_Elmt (Elmt);
1822 end loop;
1824 Next_Elmt (Iface_Elmt);
1825 end loop;
1827 if Restore_Scope then
1828 Pop_Scope;
1829 end if;
1830 end Add_Internal_Interface_Entities;
1832 -----------------------------------
1833 -- Analyze_Component_Declaration --
1834 -----------------------------------
1836 procedure Analyze_Component_Declaration (N : Node_Id) is
1837 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1838 Id : constant Entity_Id := Defining_Identifier (N);
1839 E : constant Node_Id := Expression (N);
1840 Typ : constant Node_Id :=
1841 Subtype_Indication (Component_Definition (N));
1842 T : Entity_Id;
1843 P : Entity_Id;
1845 function Contains_POC (Constr : Node_Id) return Boolean;
1846 -- Determines whether a constraint uses the discriminant of a record
1847 -- type thus becoming a per-object constraint (POC).
1849 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1850 -- Typ is the type of the current component, check whether this type is
1851 -- a limited type. Used to validate declaration against that of
1852 -- enclosing record.
1854 ------------------
1855 -- Contains_POC --
1856 ------------------
1858 function Contains_POC (Constr : Node_Id) return Boolean is
1859 begin
1860 -- Prevent cascaded errors
1862 if Error_Posted (Constr) then
1863 return False;
1864 end if;
1866 case Nkind (Constr) is
1867 when N_Attribute_Reference =>
1868 return Attribute_Name (Constr) = Name_Access
1869 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1871 when N_Discriminant_Association =>
1872 return Denotes_Discriminant (Expression (Constr));
1874 when N_Identifier =>
1875 return Denotes_Discriminant (Constr);
1877 when N_Index_Or_Discriminant_Constraint =>
1878 declare
1879 IDC : Node_Id;
1881 begin
1882 IDC := First (Constraints (Constr));
1883 while Present (IDC) loop
1885 -- One per-object constraint is sufficient
1887 if Contains_POC (IDC) then
1888 return True;
1889 end if;
1891 Next (IDC);
1892 end loop;
1894 return False;
1895 end;
1897 when N_Range =>
1898 return Denotes_Discriminant (Low_Bound (Constr))
1899 or else
1900 Denotes_Discriminant (High_Bound (Constr));
1902 when N_Range_Constraint =>
1903 return Denotes_Discriminant (Range_Expression (Constr));
1905 when others =>
1906 return False;
1907 end case;
1908 end Contains_POC;
1910 ----------------------
1911 -- Is_Known_Limited --
1912 ----------------------
1914 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1915 P : constant Entity_Id := Etype (Typ);
1916 R : constant Entity_Id := Root_Type (Typ);
1918 begin
1919 if Is_Limited_Record (Typ) then
1920 return True;
1922 -- If the root type is limited (and not a limited interface)
1923 -- so is the current type
1925 elsif Is_Limited_Record (R)
1926 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1927 then
1928 return True;
1930 -- Else the type may have a limited interface progenitor, but a
1931 -- limited record parent.
1933 elsif R /= P and then Is_Limited_Record (P) then
1934 return True;
1936 else
1937 return False;
1938 end if;
1939 end Is_Known_Limited;
1941 -- Start of processing for Analyze_Component_Declaration
1943 begin
1944 Generate_Definition (Id);
1945 Enter_Name (Id);
1947 if Present (Typ) then
1948 T := Find_Type_Of_Object
1949 (Subtype_Indication (Component_Definition (N)), N);
1951 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1952 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1953 end if;
1955 -- Ada 2005 (AI-230): Access Definition case
1957 else
1958 pragma Assert (Present
1959 (Access_Definition (Component_Definition (N))));
1961 T := Access_Definition
1962 (Related_Nod => N,
1963 N => Access_Definition (Component_Definition (N)));
1964 Set_Is_Local_Anonymous_Access (T);
1966 -- Ada 2005 (AI-254)
1968 if Present (Access_To_Subprogram_Definition
1969 (Access_Definition (Component_Definition (N))))
1970 and then Protected_Present (Access_To_Subprogram_Definition
1971 (Access_Definition
1972 (Component_Definition (N))))
1973 then
1974 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1975 end if;
1976 end if;
1978 -- If the subtype is a constrained subtype of the enclosing record,
1979 -- (which must have a partial view) the back-end does not properly
1980 -- handle the recursion. Rewrite the component declaration with an
1981 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1982 -- the tree directly because side effects have already been removed from
1983 -- discriminant constraints.
1985 if Ekind (T) = E_Access_Subtype
1986 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1987 and then Comes_From_Source (T)
1988 and then Nkind (Parent (T)) = N_Subtype_Declaration
1989 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1990 then
1991 Rewrite
1992 (Subtype_Indication (Component_Definition (N)),
1993 New_Copy_Tree (Subtype_Indication (Parent (T))));
1994 T := Find_Type_Of_Object
1995 (Subtype_Indication (Component_Definition (N)), N);
1996 end if;
1998 -- If the component declaration includes a default expression, then we
1999 -- check that the component is not of a limited type (RM 3.7(5)),
2000 -- and do the special preanalysis of the expression (see section on
2001 -- "Handling of Default and Per-Object Expressions" in the spec of
2002 -- package Sem).
2004 if Present (E) then
2005 Check_SPARK_05_Restriction ("default expression is not allowed", E);
2006 Preanalyze_Default_Expression (E, T);
2007 Check_Initialization (T, E);
2009 if Ada_Version >= Ada_2005
2010 and then Ekind (T) = E_Anonymous_Access_Type
2011 and then Etype (E) /= Any_Type
2012 then
2013 -- Check RM 3.9.2(9): "if the expected type for an expression is
2014 -- an anonymous access-to-specific tagged type, then the object
2015 -- designated by the expression shall not be dynamically tagged
2016 -- unless it is a controlling operand in a call on a dispatching
2017 -- operation"
2019 if Is_Tagged_Type (Directly_Designated_Type (T))
2020 and then
2021 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
2022 and then
2023 Ekind (Directly_Designated_Type (Etype (E))) =
2024 E_Class_Wide_Type
2025 then
2026 Error_Msg_N
2027 ("access to specific tagged type required (RM 3.9.2(9))", E);
2028 end if;
2030 -- (Ada 2005: AI-230): Accessibility check for anonymous
2031 -- components
2033 if Type_Access_Level (Etype (E)) >
2034 Deepest_Type_Access_Level (T)
2035 then
2036 Error_Msg_N
2037 ("expression has deeper access level than component " &
2038 "(RM 3.10.2 (12.2))", E);
2039 end if;
2041 -- The initialization expression is a reference to an access
2042 -- discriminant. The type of the discriminant is always deeper
2043 -- than any access type.
2045 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2046 and then Is_Entity_Name (E)
2047 and then Ekind (Entity (E)) = E_In_Parameter
2048 and then Present (Discriminal_Link (Entity (E)))
2049 then
2050 Error_Msg_N
2051 ("discriminant has deeper accessibility level than target",
2053 end if;
2054 end if;
2055 end if;
2057 -- The parent type may be a private view with unknown discriminants,
2058 -- and thus unconstrained. Regular components must be constrained.
2060 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2061 if Is_Class_Wide_Type (T) then
2062 Error_Msg_N
2063 ("class-wide subtype with unknown discriminants" &
2064 " in component declaration",
2065 Subtype_Indication (Component_Definition (N)));
2066 else
2067 Error_Msg_N
2068 ("unconstrained subtype in component declaration",
2069 Subtype_Indication (Component_Definition (N)));
2070 end if;
2072 -- Components cannot be abstract, except for the special case of
2073 -- the _Parent field (case of extending an abstract tagged type)
2075 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2076 Error_Msg_N ("type of a component cannot be abstract", N);
2077 end if;
2079 Set_Etype (Id, T);
2080 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2082 -- The component declaration may have a per-object constraint, set
2083 -- the appropriate flag in the defining identifier of the subtype.
2085 if Present (Subtype_Indication (Component_Definition (N))) then
2086 declare
2087 Sindic : constant Node_Id :=
2088 Subtype_Indication (Component_Definition (N));
2089 begin
2090 if Nkind (Sindic) = N_Subtype_Indication
2091 and then Present (Constraint (Sindic))
2092 and then Contains_POC (Constraint (Sindic))
2093 then
2094 Set_Has_Per_Object_Constraint (Id);
2095 end if;
2096 end;
2097 end if;
2099 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2100 -- out some static checks.
2102 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2103 Null_Exclusion_Static_Checks (N);
2104 end if;
2106 -- If this component is private (or depends on a private type), flag the
2107 -- record type to indicate that some operations are not available.
2109 P := Private_Component (T);
2111 if Present (P) then
2113 -- Check for circular definitions
2115 if P = Any_Type then
2116 Set_Etype (Id, Any_Type);
2118 -- There is a gap in the visibility of operations only if the
2119 -- component type is not defined in the scope of the record type.
2121 elsif Scope (P) = Scope (Current_Scope) then
2122 null;
2124 elsif Is_Limited_Type (P) then
2125 Set_Is_Limited_Composite (Current_Scope);
2127 else
2128 Set_Is_Private_Composite (Current_Scope);
2129 end if;
2130 end if;
2132 if P /= Any_Type
2133 and then Is_Limited_Type (T)
2134 and then Chars (Id) /= Name_uParent
2135 and then Is_Tagged_Type (Current_Scope)
2136 then
2137 if Is_Derived_Type (Current_Scope)
2138 and then not Is_Known_Limited (Current_Scope)
2139 then
2140 Error_Msg_N
2141 ("extension of nonlimited type cannot have limited components",
2144 if Is_Interface (Root_Type (Current_Scope)) then
2145 Error_Msg_N
2146 ("\limitedness is not inherited from limited interface", N);
2147 Error_Msg_N ("\add LIMITED to type indication", N);
2148 end if;
2150 Explain_Limited_Type (T, N);
2151 Set_Etype (Id, Any_Type);
2152 Set_Is_Limited_Composite (Current_Scope, False);
2154 elsif not Is_Derived_Type (Current_Scope)
2155 and then not Is_Limited_Record (Current_Scope)
2156 and then not Is_Concurrent_Type (Current_Scope)
2157 then
2158 Error_Msg_N
2159 ("nonlimited tagged type cannot have limited components", N);
2160 Explain_Limited_Type (T, N);
2161 Set_Etype (Id, Any_Type);
2162 Set_Is_Limited_Composite (Current_Scope, False);
2163 end if;
2164 end if;
2166 -- If the component is an unconstrained task or protected type with
2167 -- discriminants, the component and the enclosing record are limited
2168 -- and the component is constrained by its default values. Compute
2169 -- its actual subtype, else it may be allocated the maximum size by
2170 -- the backend, and possibly overflow.
2172 if Is_Concurrent_Type (T)
2173 and then not Is_Constrained (T)
2174 and then Has_Discriminants (T)
2175 and then not Has_Discriminants (Current_Scope)
2176 then
2177 declare
2178 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2180 begin
2181 Set_Etype (Id, Act_T);
2183 -- Rewrite component definition to use the constrained subtype
2185 Rewrite (Component_Definition (N),
2186 Make_Component_Definition (Loc,
2187 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2188 end;
2189 end if;
2191 Set_Original_Record_Component (Id, Id);
2193 if Has_Aspects (N) then
2194 Analyze_Aspect_Specifications (N, Id);
2195 end if;
2197 Analyze_Dimension (N);
2198 end Analyze_Component_Declaration;
2200 --------------------------
2201 -- Analyze_Declarations --
2202 --------------------------
2204 procedure Analyze_Declarations (L : List_Id) is
2205 Decl : Node_Id;
2207 procedure Adjust_Decl;
2208 -- Adjust Decl not to include implicit label declarations, since these
2209 -- have strange Sloc values that result in elaboration check problems.
2210 -- (They have the sloc of the label as found in the source, and that
2211 -- is ahead of the current declarative part).
2213 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id);
2214 -- Create the subprogram bodies which verify the run-time semantics of
2215 -- the pragmas listed below for each elibigle type found in declarative
2216 -- list Decls. The pragmas are:
2218 -- Default_Initial_Condition
2219 -- Invariant
2220 -- Type_Invariant
2222 -- Context denotes the owner of the declarative list.
2224 procedure Check_Entry_Contracts;
2225 -- Perform a preanalysis of the pre- and postconditions of an entry
2226 -- declaration. This must be done before full resolution and creation
2227 -- of the parameter block, etc. to catch illegal uses within the
2228 -- contract expression. Full analysis of the expression is done when
2229 -- the contract is processed.
2231 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean;
2232 -- Check if a nested package has entities within it that rely on library
2233 -- level private types where the full view has not been completed for
2234 -- the purposes of checking if it is acceptable to freeze an expression
2235 -- function at the point of declaration.
2237 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2238 -- Determine whether Body_Decl denotes the body of a late controlled
2239 -- primitive (either Initialize, Adjust or Finalize). If this is the
2240 -- case, add a proper spec if the body lacks one. The spec is inserted
2241 -- before Body_Decl and immediately analyzed.
2243 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id);
2244 -- Spec_Id is the entity of a package that may define abstract states,
2245 -- and in the case of a child unit, whose ancestors may define abstract
2246 -- states. If the states have partial visible refinement, remove the
2247 -- partial visibility of each constituent at the end of the package
2248 -- spec and body declarations.
2250 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2251 -- Spec_Id is the entity of a package that may define abstract states.
2252 -- If the states have visible refinement, remove the visibility of each
2253 -- constituent at the end of the package body declaration.
2255 procedure Resolve_Aspects;
2256 -- Utility to resolve the expressions of aspects at the end of a list of
2257 -- declarations, or before a declaration that freezes previous entities,
2258 -- such as in a subprogram body.
2260 -----------------
2261 -- Adjust_Decl --
2262 -----------------
2264 procedure Adjust_Decl is
2265 begin
2266 while Present (Prev (Decl))
2267 and then Nkind (Decl) = N_Implicit_Label_Declaration
2268 loop
2269 Prev (Decl);
2270 end loop;
2271 end Adjust_Decl;
2273 ----------------------------
2274 -- Build_Assertion_Bodies --
2275 ----------------------------
2277 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is
2278 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id);
2279 -- Create the subprogram bodies which verify the run-time semantics
2280 -- of the pragmas listed below for type Typ. The pragmas are:
2282 -- Default_Initial_Condition
2283 -- Invariant
2284 -- Type_Invariant
2286 -------------------------------------
2287 -- Build_Assertion_Bodies_For_Type --
2288 -------------------------------------
2290 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is
2291 begin
2292 -- Preanalyze and resolve the Default_Initial_Condition assertion
2293 -- expression at the end of the declarations to catch any errors.
2295 if Has_DIC (Typ) then
2296 Build_DIC_Procedure_Body (Typ);
2297 end if;
2299 if Nkind (Context) = N_Package_Specification then
2301 -- Preanalyze and resolve the class-wide invariants of an
2302 -- interface at the end of whichever declarative part has the
2303 -- interface type. Note that an interface may be declared in
2304 -- any non-package declarative part, but reaching the end of
2305 -- such a declarative part will always freeze the type and
2306 -- generate the invariant procedure (see Freeze_Type).
2308 if Is_Interface (Typ) then
2310 -- Interfaces are treated as the partial view of a private
2311 -- type, in order to achieve uniformity with the general
2312 -- case. As a result, an interface receives only a "partial"
2313 -- invariant procedure, which is never called.
2315 if Has_Own_Invariants (Typ) then
2316 Build_Invariant_Procedure_Body
2317 (Typ => Typ,
2318 Partial_Invariant => True);
2319 end if;
2321 -- Preanalyze and resolve the invariants of a private type
2322 -- at the end of the visible declarations to catch potential
2323 -- errors. Inherited class-wide invariants are not included
2324 -- because they have already been resolved.
2326 elsif Decls = Visible_Declarations (Context)
2327 and then Ekind_In (Typ, E_Limited_Private_Type,
2328 E_Private_Type,
2329 E_Record_Type_With_Private)
2330 and then Has_Own_Invariants (Typ)
2331 then
2332 Build_Invariant_Procedure_Body
2333 (Typ => Typ,
2334 Partial_Invariant => True);
2336 -- Preanalyze and resolve the invariants of a private type's
2337 -- full view at the end of the private declarations to catch
2338 -- potential errors.
2340 elsif Decls = Private_Declarations (Context)
2341 and then not Is_Private_Type (Typ)
2342 and then Has_Private_Declaration (Typ)
2343 and then Has_Invariants (Typ)
2344 then
2345 Build_Invariant_Procedure_Body (Typ);
2346 end if;
2347 end if;
2348 end Build_Assertion_Bodies_For_Type;
2350 -- Local variables
2352 Decl : Node_Id;
2353 Decl_Id : Entity_Id;
2355 -- Start of processing for Build_Assertion_Bodies
2357 begin
2358 Decl := First (Decls);
2359 while Present (Decl) loop
2360 if Is_Declaration (Decl) then
2361 Decl_Id := Defining_Entity (Decl);
2363 if Is_Type (Decl_Id) then
2364 Build_Assertion_Bodies_For_Type (Decl_Id);
2365 end if;
2366 end if;
2368 Next (Decl);
2369 end loop;
2370 end Build_Assertion_Bodies;
2372 ---------------------------
2373 -- Check_Entry_Contracts --
2374 ---------------------------
2376 procedure Check_Entry_Contracts is
2377 ASN : Node_Id;
2378 Ent : Entity_Id;
2379 Exp : Node_Id;
2381 begin
2382 Ent := First_Entity (Current_Scope);
2383 while Present (Ent) loop
2385 -- This only concerns entries with pre/postconditions
2387 if Ekind (Ent) = E_Entry
2388 and then Present (Contract (Ent))
2389 and then Present (Pre_Post_Conditions (Contract (Ent)))
2390 then
2391 ASN := Pre_Post_Conditions (Contract (Ent));
2392 Push_Scope (Ent);
2393 Install_Formals (Ent);
2395 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2396 -- is performed on a copy of the pragma expression, to prevent
2397 -- modifying the original expression.
2399 while Present (ASN) loop
2400 if Nkind (ASN) = N_Pragma then
2401 Exp :=
2402 New_Copy_Tree
2403 (Expression
2404 (First (Pragma_Argument_Associations (ASN))));
2405 Set_Parent (Exp, ASN);
2407 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
2408 end if;
2410 ASN := Next_Pragma (ASN);
2411 end loop;
2413 End_Scope;
2414 end if;
2416 Next_Entity (Ent);
2417 end loop;
2418 end Check_Entry_Contracts;
2420 ----------------------------------
2421 -- Contains_Lib_Incomplete_Type --
2422 ----------------------------------
2424 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean is
2425 Curr : Entity_Id;
2427 begin
2428 -- Avoid looking through scopes that do not meet the precondition of
2429 -- Pkg not being within a library unit spec.
2431 if not Is_Compilation_Unit (Pkg)
2432 and then not Is_Generic_Instance (Pkg)
2433 and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg))
2434 then
2435 -- Loop through all entities in the current scope to identify
2436 -- an entity that depends on a private type.
2438 Curr := First_Entity (Pkg);
2439 loop
2440 if Nkind (Curr) in N_Entity
2441 and then Depends_On_Private (Curr)
2442 then
2443 return True;
2444 end if;
2446 exit when Last_Entity (Current_Scope) = Curr;
2447 Curr := Next_Entity (Curr);
2448 end loop;
2449 end if;
2451 return False;
2452 end Contains_Lib_Incomplete_Type;
2454 --------------------------------------
2455 -- Handle_Late_Controlled_Primitive --
2456 --------------------------------------
2458 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2459 Body_Spec : constant Node_Id := Specification (Body_Decl);
2460 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2461 Loc : constant Source_Ptr := Sloc (Body_Id);
2462 Params : constant List_Id :=
2463 Parameter_Specifications (Body_Spec);
2464 Spec : Node_Id;
2465 Spec_Id : Entity_Id;
2466 Typ : Node_Id;
2468 begin
2469 -- Consider only procedure bodies whose name matches one of the three
2470 -- controlled primitives.
2472 if Nkind (Body_Spec) /= N_Procedure_Specification
2473 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2474 Name_Finalize,
2475 Name_Initialize)
2476 then
2477 return;
2479 -- A controlled primitive must have exactly one formal which is not
2480 -- an anonymous access type.
2482 elsif List_Length (Params) /= 1 then
2483 return;
2484 end if;
2486 Typ := Parameter_Type (First (Params));
2488 if Nkind (Typ) = N_Access_Definition then
2489 return;
2490 end if;
2492 Find_Type (Typ);
2494 -- The type of the formal must be derived from [Limited_]Controlled
2496 if not Is_Controlled (Entity (Typ)) then
2497 return;
2498 end if;
2500 -- Check whether a specification exists for this body. We do not
2501 -- analyze the spec of the body in full, because it will be analyzed
2502 -- again when the body is properly analyzed, and we cannot create
2503 -- duplicate entries in the formals chain. We look for an explicit
2504 -- specification because the body may be an overriding operation and
2505 -- an inherited spec may be present.
2507 Spec_Id := Current_Entity (Body_Id);
2509 while Present (Spec_Id) loop
2510 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2511 and then Scope (Spec_Id) = Current_Scope
2512 and then Present (First_Formal (Spec_Id))
2513 and then No (Next_Formal (First_Formal (Spec_Id)))
2514 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2515 and then Comes_From_Source (Spec_Id)
2516 then
2517 return;
2518 end if;
2520 Spec_Id := Homonym (Spec_Id);
2521 end loop;
2523 -- At this point the body is known to be a late controlled primitive.
2524 -- Generate a matching spec and insert it before the body. Note the
2525 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2526 -- tree in this case.
2528 Spec := Copy_Separate_Tree (Body_Spec);
2530 -- Ensure that the subprogram declaration does not inherit the null
2531 -- indicator from the body as we now have a proper spec/body pair.
2533 Set_Null_Present (Spec, False);
2535 -- Ensure that the freeze node is inserted after the declaration of
2536 -- the primitive since its expansion will freeze the primitive.
2538 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2540 Insert_Before_And_Analyze (Body_Decl, Decl);
2541 end Handle_Late_Controlled_Primitive;
2543 ----------------------------------------
2544 -- Remove_Partial_Visible_Refinements --
2545 ----------------------------------------
2547 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is
2548 State_Elmt : Elmt_Id;
2549 begin
2550 if Present (Abstract_States (Spec_Id)) then
2551 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2552 while Present (State_Elmt) loop
2553 Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False);
2554 Next_Elmt (State_Elmt);
2555 end loop;
2556 end if;
2558 -- For a child unit, also hide the partial state refinement from
2559 -- ancestor packages.
2561 if Is_Child_Unit (Spec_Id) then
2562 Remove_Partial_Visible_Refinements (Scope (Spec_Id));
2563 end if;
2564 end Remove_Partial_Visible_Refinements;
2566 --------------------------------
2567 -- Remove_Visible_Refinements --
2568 --------------------------------
2570 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2571 State_Elmt : Elmt_Id;
2572 begin
2573 if Present (Abstract_States (Spec_Id)) then
2574 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2575 while Present (State_Elmt) loop
2576 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2577 Next_Elmt (State_Elmt);
2578 end loop;
2579 end if;
2580 end Remove_Visible_Refinements;
2582 ---------------------
2583 -- Resolve_Aspects --
2584 ---------------------
2586 procedure Resolve_Aspects is
2587 E : Entity_Id;
2589 begin
2590 E := First_Entity (Current_Scope);
2591 while Present (E) loop
2592 Resolve_Aspect_Expressions (E);
2593 Next_Entity (E);
2594 end loop;
2595 end Resolve_Aspects;
2597 -- Local variables
2599 Context : Node_Id := Empty;
2600 Freeze_From : Entity_Id := Empty;
2601 Next_Decl : Node_Id;
2603 Body_Seen : Boolean := False;
2604 -- Flag set when the first body [stub] is encountered
2606 -- Start of processing for Analyze_Declarations
2608 begin
2609 if Restriction_Check_Required (SPARK_05) then
2610 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2611 end if;
2613 Decl := First (L);
2614 while Present (Decl) loop
2616 -- Package spec cannot contain a package declaration in SPARK
2618 if Nkind (Decl) = N_Package_Declaration
2619 and then Nkind (Parent (L)) = N_Package_Specification
2620 then
2621 Check_SPARK_05_Restriction
2622 ("package specification cannot contain a package declaration",
2623 Decl);
2624 end if;
2626 -- Complete analysis of declaration
2628 Analyze (Decl);
2629 Next_Decl := Next (Decl);
2631 if No (Freeze_From) then
2632 Freeze_From := First_Entity (Current_Scope);
2633 end if;
2635 -- At the end of a declarative part, freeze remaining entities
2636 -- declared in it. The end of the visible declarations of package
2637 -- specification is not the end of a declarative part if private
2638 -- declarations are present. The end of a package declaration is a
2639 -- freezing point only if it a library package. A task definition or
2640 -- protected type definition is not a freeze point either. Finally,
2641 -- we do not freeze entities in generic scopes, because there is no
2642 -- code generated for them and freeze nodes will be generated for
2643 -- the instance.
2645 -- The end of a package instantiation is not a freeze point, but
2646 -- for now we make it one, because the generic body is inserted
2647 -- (currently) immediately after. Generic instantiations will not
2648 -- be a freeze point once delayed freezing of bodies is implemented.
2649 -- (This is needed in any case for early instantiations ???).
2651 if No (Next_Decl) then
2652 if Nkind (Parent (L)) = N_Component_List then
2653 null;
2655 elsif Nkind_In (Parent (L), N_Protected_Definition,
2656 N_Task_Definition)
2657 then
2658 Check_Entry_Contracts;
2660 elsif Nkind (Parent (L)) /= N_Package_Specification then
2661 if Nkind (Parent (L)) = N_Package_Body then
2662 Freeze_From := First_Entity (Current_Scope);
2663 end if;
2665 -- There may have been several freezing points previously,
2666 -- for example object declarations or subprogram bodies, but
2667 -- at the end of a declarative part we check freezing from
2668 -- the beginning, even though entities may already be frozen,
2669 -- in order to perform visibility checks on delayed aspects.
2671 Adjust_Decl;
2673 -- If the current scope is a generic subprogram body. Skip the
2674 -- generic formal parameters that are not frozen here.
2676 if Is_Subprogram (Current_Scope)
2677 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
2678 N_Generic_Subprogram_Declaration
2679 and then Present (First_Entity (Current_Scope))
2680 then
2681 while Is_Generic_Formal (Freeze_From) loop
2682 Freeze_From := Next_Entity (Freeze_From);
2683 end loop;
2685 Freeze_All (Freeze_From, Decl);
2686 Freeze_From := Last_Entity (Current_Scope);
2688 else
2689 -- For declarations in a subprogram body there is no issue
2690 -- with name resolution in aspect specifications, but in
2691 -- ASIS mode we need to preanalyze aspect specifications
2692 -- that may otherwise only be analyzed during expansion
2693 -- (e.g. during generation of a related subprogram).
2695 if ASIS_Mode then
2696 Resolve_Aspects;
2697 end if;
2699 Freeze_All (First_Entity (Current_Scope), Decl);
2700 Freeze_From := Last_Entity (Current_Scope);
2701 end if;
2703 -- Current scope is a package specification
2705 elsif Scope (Current_Scope) /= Standard_Standard
2706 and then not Is_Child_Unit (Current_Scope)
2707 and then No (Generic_Parent (Parent (L)))
2708 then
2709 -- ARM rule 13.1.1(11/3): usage names in aspect definitions are
2710 -- resolved at the end of the immediately enclosing declaration
2711 -- list (AI05-0183-1).
2713 Resolve_Aspects;
2715 elsif L /= Visible_Declarations (Parent (L))
2716 or else No (Private_Declarations (Parent (L)))
2717 or else Is_Empty_List (Private_Declarations (Parent (L)))
2718 then
2719 Adjust_Decl;
2721 -- End of a package declaration
2723 -- In compilation mode the expansion of freeze node takes care
2724 -- of resolving expressions of all aspects in the list. In ASIS
2725 -- mode this must be done explicitly.
2727 if ASIS_Mode
2728 and then Scope (Current_Scope) = Standard_Standard
2729 then
2730 Resolve_Aspects;
2731 end if;
2733 -- This is a freeze point because it is the end of a
2734 -- compilation unit.
2736 Freeze_All (First_Entity (Current_Scope), Decl);
2737 Freeze_From := Last_Entity (Current_Scope);
2739 -- At the end of the visible declarations the expressions in
2740 -- aspects of all entities declared so far must be resolved.
2741 -- The entities themselves might be frozen later, and the
2742 -- generated pragmas and attribute definition clauses analyzed
2743 -- in full at that point, but name resolution must take place
2744 -- now.
2745 -- In addition to being the proper semantics, this is mandatory
2746 -- within generic units, because global name capture requires
2747 -- those expressions to be analyzed, given that the generated
2748 -- pragmas do not appear in the original generic tree.
2750 elsif Serious_Errors_Detected = 0 then
2751 Resolve_Aspects;
2752 end if;
2754 -- If next node is a body then freeze all types before the body.
2755 -- An exception occurs for some expander-generated bodies. If these
2756 -- are generated at places where in general language rules would not
2757 -- allow a freeze point, then we assume that the expander has
2758 -- explicitly checked that all required types are properly frozen,
2759 -- and we do not cause general freezing here. This special circuit
2760 -- is used when the encountered body is marked as having already
2761 -- been analyzed.
2763 -- In all other cases (bodies that come from source, and expander
2764 -- generated bodies that have not been analyzed yet), freeze all
2765 -- types now. Note that in the latter case, the expander must take
2766 -- care to attach the bodies at a proper place in the tree so as to
2767 -- not cause unwanted freezing at that point.
2769 -- It is also necessary to check for a case where both an expression
2770 -- function is used and the current scope depends on an incomplete
2771 -- private type from a library unit, otherwise premature freezing of
2772 -- the private type will occur.
2774 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl)
2775 and then ((Nkind (Next_Decl) /= N_Subprogram_Body
2776 or else not Was_Expression_Function (Next_Decl))
2777 or else (not Is_Ignored_Ghost_Entity (Current_Scope)
2778 and then not Contains_Lib_Incomplete_Type
2779 (Current_Scope)))
2780 then
2781 -- When a controlled type is frozen, the expander generates stream
2782 -- and controlled-type support routines. If the freeze is caused
2783 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2784 -- expander will end up using the wrong version of these routines,
2785 -- as the body has not been processed yet. To remedy this, detect
2786 -- a late controlled primitive and create a proper spec for it.
2787 -- This ensures that the primitive will override its inherited
2788 -- counterpart before the freeze takes place.
2790 -- If the declaration we just processed is a body, do not attempt
2791 -- to examine Next_Decl as the late primitive idiom can only apply
2792 -- to the first encountered body.
2794 -- The spec of the late primitive is not generated in ASIS mode to
2795 -- ensure a consistent list of primitives that indicates the true
2796 -- semantic structure of the program (which is not relevant when
2797 -- generating executable code).
2799 -- ??? A cleaner approach may be possible and/or this solution
2800 -- could be extended to general-purpose late primitives, TBD.
2802 if not ASIS_Mode
2803 and then not Body_Seen
2804 and then not Is_Body (Decl)
2805 then
2806 Body_Seen := True;
2808 if Nkind (Next_Decl) = N_Subprogram_Body then
2809 Handle_Late_Controlled_Primitive (Next_Decl);
2810 end if;
2812 else
2813 -- In ASIS mode, if the next declaration is a body, complete
2814 -- the analysis of declarations so far.
2816 Resolve_Aspects;
2817 end if;
2819 Adjust_Decl;
2821 -- The generated body of an expression function does not freeze,
2822 -- unless it is a completion, in which case only the expression
2823 -- itself freezes. This is handled when the body itself is
2824 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2826 Freeze_All (Freeze_From, Decl);
2827 Freeze_From := Last_Entity (Current_Scope);
2828 end if;
2830 Decl := Next_Decl;
2831 end loop;
2833 -- Post-freezing actions
2835 if Present (L) then
2836 Context := Parent (L);
2838 -- Certain contract annocations have forward visibility semantics and
2839 -- must be analyzed after all declarative items have been processed.
2840 -- This timing ensures that entities referenced by such contracts are
2841 -- visible.
2843 -- Analyze the contract of an immediately enclosing package spec or
2844 -- body first because other contracts may depend on its information.
2846 if Nkind (Context) = N_Package_Body then
2847 Analyze_Package_Body_Contract (Defining_Entity (Context));
2849 elsif Nkind (Context) = N_Package_Specification then
2850 Analyze_Package_Contract (Defining_Entity (Context));
2851 end if;
2853 -- Analyze the contracts of various constructs in the declarative
2854 -- list.
2856 Analyze_Contracts (L);
2858 if Nkind (Context) = N_Package_Body then
2860 -- Ensure that all abstract states and objects declared in the
2861 -- state space of a package body are utilized as constituents.
2863 Check_Unused_Body_States (Defining_Entity (Context));
2865 -- State refinements are visible up to the end of the package body
2866 -- declarations. Hide the state refinements from visibility to
2867 -- restore the original state conditions.
2869 Remove_Visible_Refinements (Corresponding_Spec (Context));
2870 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2872 elsif Nkind (Context) = N_Package_Specification then
2874 -- Partial state refinements are visible up to the end of the
2875 -- package spec declarations. Hide the partial state refinements
2876 -- from visibility to restore the original state conditions.
2878 Remove_Partial_Visible_Refinements (Defining_Entity (Context));
2879 end if;
2881 -- Verify that all abstract states found in any package declared in
2882 -- the input declarative list have proper refinements. The check is
2883 -- performed only when the context denotes a block, entry, package,
2884 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2886 Check_State_Refinements (Context);
2888 -- Create the subprogram bodies which verify the run-time semantics
2889 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2890 -- types within the current declarative list. This ensures that all
2891 -- assertion expressions are preanalyzed and resolved at the end of
2892 -- the declarative part. Note that the resolution happens even when
2893 -- freezing does not take place.
2895 Build_Assertion_Bodies (L, Context);
2896 end if;
2897 end Analyze_Declarations;
2899 -----------------------------------
2900 -- Analyze_Full_Type_Declaration --
2901 -----------------------------------
2903 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2904 Def : constant Node_Id := Type_Definition (N);
2905 Def_Id : constant Entity_Id := Defining_Identifier (N);
2906 T : Entity_Id;
2907 Prev : Entity_Id;
2909 Is_Remote : constant Boolean :=
2910 (Is_Remote_Types (Current_Scope)
2911 or else Is_Remote_Call_Interface (Current_Scope))
2912 and then not (In_Private_Part (Current_Scope)
2913 or else In_Package_Body (Current_Scope));
2915 procedure Check_Nonoverridable_Aspects;
2916 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2917 -- be overridden, and can only be confirmed on derivation.
2919 procedure Check_Ops_From_Incomplete_Type;
2920 -- If there is a tagged incomplete partial view of the type, traverse
2921 -- the primitives of the incomplete view and change the type of any
2922 -- controlling formals and result to indicate the full view. The
2923 -- primitives will be added to the full type's primitive operations
2924 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2925 -- is called from Process_Incomplete_Dependents).
2927 ----------------------------------
2928 -- Check_Nonoverridable_Aspects --
2929 ----------------------------------
2931 procedure Check_Nonoverridable_Aspects is
2932 function Get_Aspect_Spec
2933 (Specs : List_Id;
2934 Aspect_Name : Name_Id) return Node_Id;
2935 -- Check whether a list of aspect specifications includes an entry
2936 -- for a specific aspect. The list is either that of a partial or
2937 -- a full view.
2939 ---------------------
2940 -- Get_Aspect_Spec --
2941 ---------------------
2943 function Get_Aspect_Spec
2944 (Specs : List_Id;
2945 Aspect_Name : Name_Id) return Node_Id
2947 Spec : Node_Id;
2949 begin
2950 Spec := First (Specs);
2951 while Present (Spec) loop
2952 if Chars (Identifier (Spec)) = Aspect_Name then
2953 return Spec;
2954 end if;
2955 Next (Spec);
2956 end loop;
2958 return Empty;
2959 end Get_Aspect_Spec;
2961 -- Local variables
2963 Prev_Aspects : constant List_Id :=
2964 Aspect_Specifications (Parent (Def_Id));
2965 Par_Type : Entity_Id;
2966 Prev_Aspect : Node_Id;
2968 -- Start of processing for Check_Nonoverridable_Aspects
2970 begin
2971 -- Get parent type of derived type. Note that Prev is the entity in
2972 -- the partial declaration, but its contents are now those of full
2973 -- view, while Def_Id reflects the partial view.
2975 if Is_Private_Type (Def_Id) then
2976 Par_Type := Etype (Full_View (Def_Id));
2977 else
2978 Par_Type := Etype (Def_Id);
2979 end if;
2981 -- If there is an inherited Implicit_Dereference, verify that it is
2982 -- made explicit in the partial view.
2984 if Has_Discriminants (Base_Type (Par_Type))
2985 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2986 and then Present (Discriminant_Specifications (Parent (Prev)))
2987 and then Present (Get_Reference_Discriminant (Par_Type))
2988 then
2989 Prev_Aspect :=
2990 Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference);
2992 if No (Prev_Aspect)
2993 and then Present
2994 (Discriminant_Specifications
2995 (Original_Node (Parent (Prev))))
2996 then
2997 Error_Msg_N
2998 ("type does not inherit implicit dereference", Prev);
3000 else
3001 -- If one of the views has the aspect specified, verify that it
3002 -- is consistent with that of the parent.
3004 declare
3005 Par_Discr : constant Entity_Id :=
3006 Get_Reference_Discriminant (Par_Type);
3007 Cur_Discr : constant Entity_Id :=
3008 Get_Reference_Discriminant (Prev);
3010 begin
3011 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
3012 Error_Msg_N ("aspect incosistent with that of parent", N);
3013 end if;
3015 -- Check that specification in partial view matches the
3016 -- inherited aspect. Compare names directly because aspect
3017 -- expression may not be analyzed.
3019 if Present (Prev_Aspect)
3020 and then Nkind (Expression (Prev_Aspect)) = N_Identifier
3021 and then Chars (Expression (Prev_Aspect)) /=
3022 Chars (Cur_Discr)
3023 then
3024 Error_Msg_N
3025 ("aspect incosistent with that of parent", N);
3026 end if;
3027 end;
3028 end if;
3029 end if;
3031 -- TBD : other nonoverridable aspects.
3032 end Check_Nonoverridable_Aspects;
3034 ------------------------------------
3035 -- Check_Ops_From_Incomplete_Type --
3036 ------------------------------------
3038 procedure Check_Ops_From_Incomplete_Type is
3039 Elmt : Elmt_Id;
3040 Formal : Entity_Id;
3041 Op : Entity_Id;
3043 begin
3044 if Prev /= T
3045 and then Ekind (Prev) = E_Incomplete_Type
3046 and then Is_Tagged_Type (Prev)
3047 and then Is_Tagged_Type (T)
3048 then
3049 Elmt := First_Elmt (Primitive_Operations (Prev));
3050 while Present (Elmt) loop
3051 Op := Node (Elmt);
3053 Formal := First_Formal (Op);
3054 while Present (Formal) loop
3055 if Etype (Formal) = Prev then
3056 Set_Etype (Formal, T);
3057 end if;
3059 Next_Formal (Formal);
3060 end loop;
3062 if Etype (Op) = Prev then
3063 Set_Etype (Op, T);
3064 end if;
3066 Next_Elmt (Elmt);
3067 end loop;
3068 end if;
3069 end Check_Ops_From_Incomplete_Type;
3071 -- Start of processing for Analyze_Full_Type_Declaration
3073 begin
3074 Prev := Find_Type_Name (N);
3076 -- The full view, if present, now points to the current type. If there
3077 -- is an incomplete partial view, set a link to it, to simplify the
3078 -- retrieval of primitive operations of the type.
3080 -- Ada 2005 (AI-50217): If the type was previously decorated when
3081 -- imported through a LIMITED WITH clause, it appears as incomplete
3082 -- but has no full view.
3084 if Ekind (Prev) = E_Incomplete_Type
3085 and then Present (Full_View (Prev))
3086 then
3087 T := Full_View (Prev);
3088 Set_Incomplete_View (N, Parent (Prev));
3089 else
3090 T := Prev;
3091 end if;
3093 Set_Is_Pure (T, Is_Pure (Current_Scope));
3095 -- We set the flag Is_First_Subtype here. It is needed to set the
3096 -- corresponding flag for the Implicit class-wide-type created
3097 -- during tagged types processing.
3099 Set_Is_First_Subtype (T, True);
3101 -- Only composite types other than array types are allowed to have
3102 -- discriminants.
3104 case Nkind (Def) is
3106 -- For derived types, the rule will be checked once we've figured
3107 -- out the parent type.
3109 when N_Derived_Type_Definition =>
3110 null;
3112 -- For record types, discriminants are allowed, unless we are in
3113 -- SPARK.
3115 when N_Record_Definition =>
3116 if Present (Discriminant_Specifications (N)) then
3117 Check_SPARK_05_Restriction
3118 ("discriminant type is not allowed",
3119 Defining_Identifier
3120 (First (Discriminant_Specifications (N))));
3121 end if;
3123 when others =>
3124 if Present (Discriminant_Specifications (N)) then
3125 Error_Msg_N
3126 ("elementary or array type cannot have discriminants",
3127 Defining_Identifier
3128 (First (Discriminant_Specifications (N))));
3129 end if;
3130 end case;
3132 -- Elaborate the type definition according to kind, and generate
3133 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3134 -- already done (this happens during the reanalysis that follows a call
3135 -- to the high level optimizer).
3137 if not Analyzed (T) then
3138 Set_Analyzed (T);
3140 -- Set the SPARK mode from the current context
3142 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3143 Set_SPARK_Pragma_Inherited (T);
3145 case Nkind (Def) is
3146 when N_Access_To_Subprogram_Definition =>
3147 Access_Subprogram_Declaration (T, Def);
3149 -- If this is a remote access to subprogram, we must create the
3150 -- equivalent fat pointer type, and related subprograms.
3152 if Is_Remote then
3153 Process_Remote_AST_Declaration (N);
3154 end if;
3156 -- Validate categorization rule against access type declaration
3157 -- usually a violation in Pure unit, Shared_Passive unit.
3159 Validate_Access_Type_Declaration (T, N);
3161 when N_Access_To_Object_Definition =>
3162 Access_Type_Declaration (T, Def);
3164 -- Validate categorization rule against access type declaration
3165 -- usually a violation in Pure unit, Shared_Passive unit.
3167 Validate_Access_Type_Declaration (T, N);
3169 -- If we are in a Remote_Call_Interface package and define a
3170 -- RACW, then calling stubs and specific stream attributes
3171 -- must be added.
3173 if Is_Remote
3174 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3175 then
3176 Add_RACW_Features (Def_Id);
3177 end if;
3179 when N_Array_Type_Definition =>
3180 Array_Type_Declaration (T, Def);
3182 when N_Derived_Type_Definition =>
3183 Derived_Type_Declaration (T, N, T /= Def_Id);
3185 -- Inherit predicates from parent, and protect against illegal
3186 -- derivations.
3188 if Is_Type (T) and then Has_Predicates (T) then
3189 Set_Has_Predicates (Def_Id);
3190 end if;
3192 -- Save the scenario for examination by the ABE Processing
3193 -- phase.
3195 Record_Elaboration_Scenario (N);
3197 when N_Enumeration_Type_Definition =>
3198 Enumeration_Type_Declaration (T, Def);
3200 when N_Floating_Point_Definition =>
3201 Floating_Point_Type_Declaration (T, Def);
3203 when N_Decimal_Fixed_Point_Definition =>
3204 Decimal_Fixed_Point_Type_Declaration (T, Def);
3206 when N_Ordinary_Fixed_Point_Definition =>
3207 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3209 when N_Signed_Integer_Type_Definition =>
3210 Signed_Integer_Type_Declaration (T, Def);
3212 when N_Modular_Type_Definition =>
3213 Modular_Type_Declaration (T, Def);
3215 when N_Record_Definition =>
3216 Record_Type_Declaration (T, N, Prev);
3218 -- If declaration has a parse error, nothing to elaborate.
3220 when N_Error =>
3221 null;
3223 when others =>
3224 raise Program_Error;
3225 end case;
3226 end if;
3228 if Etype (T) = Any_Type then
3229 return;
3230 end if;
3232 -- Controlled type is not allowed in SPARK
3234 if Is_Visibly_Controlled (T) then
3235 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
3236 end if;
3238 -- Some common processing for all types
3240 Set_Depends_On_Private (T, Has_Private_Component (T));
3241 Check_Ops_From_Incomplete_Type;
3243 -- Both the declared entity, and its anonymous base type if one was
3244 -- created, need freeze nodes allocated.
3246 declare
3247 B : constant Entity_Id := Base_Type (T);
3249 begin
3250 -- In the case where the base type differs from the first subtype, we
3251 -- pre-allocate a freeze node, and set the proper link to the first
3252 -- subtype. Freeze_Entity will use this preallocated freeze node when
3253 -- it freezes the entity.
3255 -- This does not apply if the base type is a generic type, whose
3256 -- declaration is independent of the current derived definition.
3258 if B /= T and then not Is_Generic_Type (B) then
3259 Ensure_Freeze_Node (B);
3260 Set_First_Subtype_Link (Freeze_Node (B), T);
3261 end if;
3263 -- A type that is imported through a limited_with clause cannot
3264 -- generate any code, and thus need not be frozen. However, an access
3265 -- type with an imported designated type needs a finalization list,
3266 -- which may be referenced in some other package that has non-limited
3267 -- visibility on the designated type. Thus we must create the
3268 -- finalization list at the point the access type is frozen, to
3269 -- prevent unsatisfied references at link time.
3271 if not From_Limited_With (T) or else Is_Access_Type (T) then
3272 Set_Has_Delayed_Freeze (T);
3273 end if;
3274 end;
3276 -- Case where T is the full declaration of some private type which has
3277 -- been swapped in Defining_Identifier (N).
3279 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3280 Process_Full_View (N, T, Def_Id);
3282 -- Record the reference. The form of this is a little strange, since
3283 -- the full declaration has been swapped in. So the first parameter
3284 -- here represents the entity to which a reference is made which is
3285 -- the "real" entity, i.e. the one swapped in, and the second
3286 -- parameter provides the reference location.
3288 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3289 -- since we don't want a complaint about the full type being an
3290 -- unwanted reference to the private type
3292 declare
3293 B : constant Boolean := Has_Pragma_Unreferenced (T);
3294 begin
3295 Set_Has_Pragma_Unreferenced (T, False);
3296 Generate_Reference (T, T, 'c');
3297 Set_Has_Pragma_Unreferenced (T, B);
3298 end;
3300 Set_Completion_Referenced (Def_Id);
3302 -- For completion of incomplete type, process incomplete dependents
3303 -- and always mark the full type as referenced (it is the incomplete
3304 -- type that we get for any real reference).
3306 elsif Ekind (Prev) = E_Incomplete_Type then
3307 Process_Incomplete_Dependents (N, T, Prev);
3308 Generate_Reference (Prev, Def_Id, 'c');
3309 Set_Completion_Referenced (Def_Id);
3311 -- If not private type or incomplete type completion, this is a real
3312 -- definition of a new entity, so record it.
3314 else
3315 Generate_Definition (Def_Id);
3316 end if;
3318 -- Propagate any pending access types whose finalization masters need to
3319 -- be fully initialized from the partial to the full view. Guard against
3320 -- an illegal full view that remains unanalyzed.
3322 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
3323 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
3324 end if;
3326 if Chars (Scope (Def_Id)) = Name_System
3327 and then Chars (Def_Id) = Name_Address
3328 and then In_Predefined_Unit (N)
3329 then
3330 Set_Is_Descendant_Of_Address (Def_Id);
3331 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
3332 Set_Is_Descendant_Of_Address (Prev);
3333 end if;
3335 Set_Optimize_Alignment_Flags (Def_Id);
3336 Check_Eliminated (Def_Id);
3338 -- If the declaration is a completion and aspects are present, apply
3339 -- them to the entity for the type which is currently the partial
3340 -- view, but which is the one that will be frozen.
3342 if Has_Aspects (N) then
3344 -- In most cases the partial view is a private type, and both views
3345 -- appear in different declarative parts. In the unusual case where
3346 -- the partial view is incomplete, perform the analysis on the
3347 -- full view, to prevent freezing anomalies with the corresponding
3348 -- class-wide type, which otherwise might be frozen before the
3349 -- dispatch table is built.
3351 if Prev /= Def_Id
3352 and then Ekind (Prev) /= E_Incomplete_Type
3353 then
3354 Analyze_Aspect_Specifications (N, Prev);
3356 -- Normal case
3358 else
3359 Analyze_Aspect_Specifications (N, Def_Id);
3360 end if;
3361 end if;
3363 if Is_Derived_Type (Prev)
3364 and then Def_Id /= Prev
3365 then
3366 Check_Nonoverridable_Aspects;
3367 end if;
3368 end Analyze_Full_Type_Declaration;
3370 ----------------------------------
3371 -- Analyze_Incomplete_Type_Decl --
3372 ----------------------------------
3374 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3375 F : constant Boolean := Is_Pure (Current_Scope);
3376 T : Entity_Id;
3378 begin
3379 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
3381 Generate_Definition (Defining_Identifier (N));
3383 -- Process an incomplete declaration. The identifier must not have been
3384 -- declared already in the scope. However, an incomplete declaration may
3385 -- appear in the private part of a package, for a private type that has
3386 -- already been declared.
3388 -- In this case, the discriminants (if any) must match
3390 T := Find_Type_Name (N);
3392 Set_Ekind (T, E_Incomplete_Type);
3393 Set_Etype (T, T);
3394 Set_Is_First_Subtype (T);
3395 Init_Size_Align (T);
3397 -- Set the SPARK mode from the current context
3399 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3400 Set_SPARK_Pragma_Inherited (T);
3402 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3403 -- incomplete types.
3405 if Tagged_Present (N) then
3406 Set_Is_Tagged_Type (T, True);
3407 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3408 Make_Class_Wide_Type (T);
3409 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3410 end if;
3412 Set_Stored_Constraint (T, No_Elist);
3414 if Present (Discriminant_Specifications (N)) then
3415 Push_Scope (T);
3416 Process_Discriminants (N);
3417 End_Scope;
3418 end if;
3420 -- If the type has discriminants, nontrivial subtypes may be declared
3421 -- before the full view of the type. The full views of those subtypes
3422 -- will be built after the full view of the type.
3424 Set_Private_Dependents (T, New_Elmt_List);
3425 Set_Is_Pure (T, F);
3426 end Analyze_Incomplete_Type_Decl;
3428 -----------------------------------
3429 -- Analyze_Interface_Declaration --
3430 -----------------------------------
3432 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3433 CW : constant Entity_Id := Class_Wide_Type (T);
3435 begin
3436 Set_Is_Tagged_Type (T);
3437 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3439 Set_Is_Limited_Record (T, Limited_Present (Def)
3440 or else Task_Present (Def)
3441 or else Protected_Present (Def)
3442 or else Synchronized_Present (Def));
3444 -- Type is abstract if full declaration carries keyword, or if previous
3445 -- partial view did.
3447 Set_Is_Abstract_Type (T);
3448 Set_Is_Interface (T);
3450 -- Type is a limited interface if it includes the keyword limited, task,
3451 -- protected, or synchronized.
3453 Set_Is_Limited_Interface
3454 (T, Limited_Present (Def)
3455 or else Protected_Present (Def)
3456 or else Synchronized_Present (Def)
3457 or else Task_Present (Def));
3459 Set_Interfaces (T, New_Elmt_List);
3460 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3462 -- Complete the decoration of the class-wide entity if it was already
3463 -- built (i.e. during the creation of the limited view)
3465 if Present (CW) then
3466 Set_Is_Interface (CW);
3467 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3468 end if;
3470 -- Check runtime support for synchronized interfaces
3472 if (Is_Task_Interface (T)
3473 or else Is_Protected_Interface (T)
3474 or else Is_Synchronized_Interface (T))
3475 and then not RTE_Available (RE_Select_Specific_Data)
3476 then
3477 Error_Msg_CRT ("synchronized interfaces", T);
3478 end if;
3479 end Analyze_Interface_Declaration;
3481 -----------------------------
3482 -- Analyze_Itype_Reference --
3483 -----------------------------
3485 -- Nothing to do. This node is placed in the tree only for the benefit of
3486 -- back end processing, and has no effect on the semantic processing.
3488 procedure Analyze_Itype_Reference (N : Node_Id) is
3489 begin
3490 pragma Assert (Is_Itype (Itype (N)));
3491 null;
3492 end Analyze_Itype_Reference;
3494 --------------------------------
3495 -- Analyze_Number_Declaration --
3496 --------------------------------
3498 procedure Analyze_Number_Declaration (N : Node_Id) is
3499 E : constant Node_Id := Expression (N);
3500 Id : constant Entity_Id := Defining_Identifier (N);
3501 Index : Interp_Index;
3502 It : Interp;
3503 T : Entity_Id;
3505 begin
3506 Generate_Definition (Id);
3507 Enter_Name (Id);
3509 -- This is an optimization of a common case of an integer literal
3511 if Nkind (E) = N_Integer_Literal then
3512 Set_Is_Static_Expression (E, True);
3513 Set_Etype (E, Universal_Integer);
3515 Set_Etype (Id, Universal_Integer);
3516 Set_Ekind (Id, E_Named_Integer);
3517 Set_Is_Frozen (Id, True);
3518 return;
3519 end if;
3521 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3523 -- Process expression, replacing error by integer zero, to avoid
3524 -- cascaded errors or aborts further along in the processing
3526 -- Replace Error by integer zero, which seems least likely to cause
3527 -- cascaded errors.
3529 if E = Error then
3530 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3531 Set_Error_Posted (E);
3532 end if;
3534 Analyze (E);
3536 -- Verify that the expression is static and numeric. If
3537 -- the expression is overloaded, we apply the preference
3538 -- rule that favors root numeric types.
3540 if not Is_Overloaded (E) then
3541 T := Etype (E);
3542 if Has_Dynamic_Predicate_Aspect (T) then
3543 Error_Msg_N
3544 ("subtype has dynamic predicate, "
3545 & "not allowed in number declaration", N);
3546 end if;
3548 else
3549 T := Any_Type;
3551 Get_First_Interp (E, Index, It);
3552 while Present (It.Typ) loop
3553 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3554 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3555 then
3556 if T = Any_Type then
3557 T := It.Typ;
3559 elsif It.Typ = Universal_Real
3560 or else
3561 It.Typ = Universal_Integer
3562 then
3563 -- Choose universal interpretation over any other
3565 T := It.Typ;
3566 exit;
3567 end if;
3568 end if;
3570 Get_Next_Interp (Index, It);
3571 end loop;
3572 end if;
3574 if Is_Integer_Type (T) then
3575 Resolve (E, T);
3576 Set_Etype (Id, Universal_Integer);
3577 Set_Ekind (Id, E_Named_Integer);
3579 elsif Is_Real_Type (T) then
3581 -- Because the real value is converted to universal_real, this is a
3582 -- legal context for a universal fixed expression.
3584 if T = Universal_Fixed then
3585 declare
3586 Loc : constant Source_Ptr := Sloc (N);
3587 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3588 Subtype_Mark =>
3589 New_Occurrence_Of (Universal_Real, Loc),
3590 Expression => Relocate_Node (E));
3592 begin
3593 Rewrite (E, Conv);
3594 Analyze (E);
3595 end;
3597 elsif T = Any_Fixed then
3598 Error_Msg_N ("illegal context for mixed mode operation", E);
3600 -- Expression is of the form : universal_fixed * integer. Try to
3601 -- resolve as universal_real.
3603 T := Universal_Real;
3604 Set_Etype (E, T);
3605 end if;
3607 Resolve (E, T);
3608 Set_Etype (Id, Universal_Real);
3609 Set_Ekind (Id, E_Named_Real);
3611 else
3612 Wrong_Type (E, Any_Numeric);
3613 Resolve (E, T);
3615 Set_Etype (Id, T);
3616 Set_Ekind (Id, E_Constant);
3617 Set_Never_Set_In_Source (Id, True);
3618 Set_Is_True_Constant (Id, True);
3619 return;
3620 end if;
3622 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3623 Set_Etype (E, Etype (Id));
3624 end if;
3626 if not Is_OK_Static_Expression (E) then
3627 Flag_Non_Static_Expr
3628 ("non-static expression used in number declaration!", E);
3629 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3630 Set_Etype (E, Any_Type);
3631 end if;
3633 Analyze_Dimension (N);
3634 end Analyze_Number_Declaration;
3636 --------------------------------
3637 -- Analyze_Object_Declaration --
3638 --------------------------------
3640 -- WARNING: This routine manages Ghost regions. Return statements must be
3641 -- replaced by gotos which jump to the end of the routine and restore the
3642 -- Ghost mode.
3644 procedure Analyze_Object_Declaration (N : Node_Id) is
3645 Loc : constant Source_Ptr := Sloc (N);
3646 Id : constant Entity_Id := Defining_Identifier (N);
3647 Act_T : Entity_Id;
3648 T : Entity_Id;
3650 E : Node_Id := Expression (N);
3651 -- E is set to Expression (N) throughout this routine. When Expression
3652 -- (N) is modified, E is changed accordingly.
3654 Prev_Entity : Entity_Id := Empty;
3656 procedure Check_Dynamic_Object (Typ : Entity_Id);
3657 -- A library-level object with non-static discriminant constraints may
3658 -- require dynamic allocation. The declaration is illegal if the
3659 -- profile includes the restriction No_Implicit_Heap_Allocations.
3661 procedure Check_For_Null_Excluding_Components
3662 (Obj_Typ : Entity_Id;
3663 Obj_Decl : Node_Id);
3664 -- Verify that each null-excluding component of object declaration
3665 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3666 -- a compile-time warning if this is not the case.
3668 function Count_Tasks (T : Entity_Id) return Uint;
3669 -- This function is called when a non-generic library level object of a
3670 -- task type is declared. Its function is to count the static number of
3671 -- tasks declared within the type (it is only called if Has_Task is set
3672 -- for T). As a side effect, if an array of tasks with non-static bounds
3673 -- or a variant record type is encountered, Check_Restriction is called
3674 -- indicating the count is unknown.
3676 function Delayed_Aspect_Present return Boolean;
3677 -- If the declaration has an expression that is an aggregate, and it
3678 -- has aspects that require delayed analysis, the resolution of the
3679 -- aggregate must be deferred to the freeze point of the object. This
3680 -- special processing was created for address clauses, but it must
3681 -- also apply to Alignment. This must be done before the aspect
3682 -- specifications are analyzed because we must handle the aggregate
3683 -- before the analysis of the object declaration is complete.
3685 -- Any other relevant delayed aspects on object declarations ???
3687 --------------------------
3688 -- Check_Dynamic_Object --
3689 --------------------------
3691 procedure Check_Dynamic_Object (Typ : Entity_Id) is
3692 Comp : Entity_Id;
3693 Obj_Type : Entity_Id;
3695 begin
3696 Obj_Type := Typ;
3698 if Is_Private_Type (Obj_Type)
3699 and then Present (Full_View (Obj_Type))
3700 then
3701 Obj_Type := Full_View (Obj_Type);
3702 end if;
3704 if Known_Static_Esize (Obj_Type) then
3705 return;
3706 end if;
3708 if Restriction_Active (No_Implicit_Heap_Allocations)
3709 and then Expander_Active
3710 and then Has_Discriminants (Obj_Type)
3711 then
3712 Comp := First_Component (Obj_Type);
3713 while Present (Comp) loop
3714 if Known_Static_Esize (Etype (Comp))
3715 or else Size_Known_At_Compile_Time (Etype (Comp))
3716 then
3717 null;
3719 elsif not Discriminated_Size (Comp)
3720 and then Comes_From_Source (Comp)
3721 then
3722 Error_Msg_NE
3723 ("component& of non-static size will violate restriction "
3724 & "No_Implicit_Heap_Allocation?", N, Comp);
3726 elsif Is_Record_Type (Etype (Comp)) then
3727 Check_Dynamic_Object (Etype (Comp));
3728 end if;
3730 Next_Component (Comp);
3731 end loop;
3732 end if;
3733 end Check_Dynamic_Object;
3735 -----------------------------------------
3736 -- Check_For_Null_Excluding_Components --
3737 -----------------------------------------
3739 procedure Check_For_Null_Excluding_Components
3740 (Obj_Typ : Entity_Id;
3741 Obj_Decl : Node_Id)
3743 procedure Check_Component
3744 (Comp_Typ : Entity_Id;
3745 Comp_Decl : Node_Id := Empty;
3746 Array_Comp : Boolean := False);
3747 -- Apply a compile-time null-exclusion check on a component denoted
3748 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3749 -- subcomponents (if any).
3751 ---------------------
3752 -- Check_Component --
3753 ---------------------
3755 procedure Check_Component
3756 (Comp_Typ : Entity_Id;
3757 Comp_Decl : Node_Id := Empty;
3758 Array_Comp : Boolean := False)
3760 Comp : Entity_Id;
3761 T : Entity_Id;
3763 begin
3764 -- Do not consider internally-generated components or those that
3765 -- are already initialized.
3767 if Present (Comp_Decl)
3768 and then (not Comes_From_Source (Comp_Decl)
3769 or else Present (Expression (Comp_Decl)))
3770 then
3771 return;
3772 end if;
3774 if Is_Incomplete_Or_Private_Type (Comp_Typ)
3775 and then Present (Full_View (Comp_Typ))
3776 then
3777 T := Full_View (Comp_Typ);
3778 else
3779 T := Comp_Typ;
3780 end if;
3782 -- Verify a component of a null-excluding access type
3784 if Is_Access_Type (T)
3785 and then Can_Never_Be_Null (T)
3786 then
3787 if Comp_Decl = Obj_Decl then
3788 Null_Exclusion_Static_Checks
3789 (N => Obj_Decl,
3790 Comp => Empty,
3791 Array_Comp => Array_Comp);
3793 else
3794 Null_Exclusion_Static_Checks
3795 (N => Obj_Decl,
3796 Comp => Comp_Decl,
3797 Array_Comp => Array_Comp);
3798 end if;
3800 -- Check array components
3802 elsif Is_Array_Type (T) then
3804 -- There is no suitable component when the object is of an
3805 -- array type. However, a namable component may appear at some
3806 -- point during the recursive inspection, but not at the top
3807 -- level. At the top level just indicate array component case.
3809 if Comp_Decl = Obj_Decl then
3810 Check_Component (Component_Type (T), Array_Comp => True);
3811 else
3812 Check_Component (Component_Type (T), Comp_Decl);
3813 end if;
3815 -- Verify all components of type T
3817 -- Note: No checks are performed on types with discriminants due
3818 -- to complexities involving variants. ???
3820 elsif (Is_Concurrent_Type (T)
3821 or else Is_Incomplete_Or_Private_Type (T)
3822 or else Is_Record_Type (T))
3823 and then not Has_Discriminants (T)
3824 then
3825 Comp := First_Component (T);
3826 while Present (Comp) loop
3827 Check_Component (Etype (Comp), Parent (Comp));
3829 Comp := Next_Component (Comp);
3830 end loop;
3831 end if;
3832 end Check_Component;
3834 -- Start processing for Check_For_Null_Excluding_Components
3836 begin
3837 Check_Component (Obj_Typ, Obj_Decl);
3838 end Check_For_Null_Excluding_Components;
3840 -----------------
3841 -- Count_Tasks --
3842 -----------------
3844 function Count_Tasks (T : Entity_Id) return Uint is
3845 C : Entity_Id;
3846 X : Node_Id;
3847 V : Uint;
3849 begin
3850 if Is_Task_Type (T) then
3851 return Uint_1;
3853 elsif Is_Record_Type (T) then
3854 if Has_Discriminants (T) then
3855 Check_Restriction (Max_Tasks, N);
3856 return Uint_0;
3858 else
3859 V := Uint_0;
3860 C := First_Component (T);
3861 while Present (C) loop
3862 V := V + Count_Tasks (Etype (C));
3863 Next_Component (C);
3864 end loop;
3866 return V;
3867 end if;
3869 elsif Is_Array_Type (T) then
3870 X := First_Index (T);
3871 V := Count_Tasks (Component_Type (T));
3872 while Present (X) loop
3873 C := Etype (X);
3875 if not Is_OK_Static_Subtype (C) then
3876 Check_Restriction (Max_Tasks, N);
3877 return Uint_0;
3878 else
3879 V := V * (UI_Max (Uint_0,
3880 Expr_Value (Type_High_Bound (C)) -
3881 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3882 end if;
3884 Next_Index (X);
3885 end loop;
3887 return V;
3889 else
3890 return Uint_0;
3891 end if;
3892 end Count_Tasks;
3894 ----------------------------
3895 -- Delayed_Aspect_Present --
3896 ----------------------------
3898 function Delayed_Aspect_Present return Boolean is
3899 A : Node_Id;
3900 A_Id : Aspect_Id;
3902 begin
3903 if Present (Aspect_Specifications (N)) then
3904 A := First (Aspect_Specifications (N));
3905 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3906 while Present (A) loop
3907 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3908 return True;
3909 end if;
3911 Next (A);
3912 end loop;
3913 end if;
3915 return False;
3916 end Delayed_Aspect_Present;
3918 -- Local variables
3920 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3921 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3922 -- Save the Ghost-related attributes to restore on exit
3924 Related_Id : Entity_Id;
3926 -- Start of processing for Analyze_Object_Declaration
3928 begin
3929 -- There are three kinds of implicit types generated by an
3930 -- object declaration:
3932 -- 1. Those generated by the original Object Definition
3934 -- 2. Those generated by the Expression
3936 -- 3. Those used to constrain the Object Definition with the
3937 -- expression constraints when the definition is unconstrained.
3939 -- They must be generated in this order to avoid order of elaboration
3940 -- issues. Thus the first step (after entering the name) is to analyze
3941 -- the object definition.
3943 if Constant_Present (N) then
3944 Prev_Entity := Current_Entity_In_Scope (Id);
3946 if Present (Prev_Entity)
3947 and then
3948 -- If the homograph is an implicit subprogram, it is overridden
3949 -- by the current declaration.
3951 ((Is_Overloadable (Prev_Entity)
3952 and then Is_Inherited_Operation (Prev_Entity))
3954 -- The current object is a discriminal generated for an entry
3955 -- family index. Even though the index is a constant, in this
3956 -- particular context there is no true constant redeclaration.
3957 -- Enter_Name will handle the visibility.
3959 or else
3960 (Is_Discriminal (Id)
3961 and then Ekind (Discriminal_Link (Id)) =
3962 E_Entry_Index_Parameter)
3964 -- The current object is the renaming for a generic declared
3965 -- within the instance.
3967 or else
3968 (Ekind (Prev_Entity) = E_Package
3969 and then Nkind (Parent (Prev_Entity)) =
3970 N_Package_Renaming_Declaration
3971 and then not Comes_From_Source (Prev_Entity)
3972 and then
3973 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
3975 -- The entity may be a homonym of a private component of the
3976 -- enclosing protected object, for which we create a local
3977 -- renaming declaration. The declaration is legal, even if
3978 -- useless when it just captures that component.
3980 or else
3981 (Ekind (Scope (Current_Scope)) = E_Protected_Type
3982 and then Nkind (Parent (Prev_Entity)) =
3983 N_Object_Renaming_Declaration))
3984 then
3985 Prev_Entity := Empty;
3986 end if;
3987 end if;
3989 if Present (Prev_Entity) then
3991 -- The object declaration is Ghost when it completes a deferred Ghost
3992 -- constant.
3994 Mark_And_Set_Ghost_Completion (N, Prev_Entity);
3996 Constant_Redeclaration (Id, N, T);
3998 Generate_Reference (Prev_Entity, Id, 'c');
3999 Set_Completion_Referenced (Id);
4001 if Error_Posted (N) then
4003 -- Type mismatch or illegal redeclaration; do not analyze
4004 -- expression to avoid cascaded errors.
4006 T := Find_Type_Of_Object (Object_Definition (N), N);
4007 Set_Etype (Id, T);
4008 Set_Ekind (Id, E_Variable);
4009 goto Leave;
4010 end if;
4012 -- In the normal case, enter identifier at the start to catch premature
4013 -- usage in the initialization expression.
4015 else
4016 Generate_Definition (Id);
4017 Enter_Name (Id);
4019 Mark_Coextensions (N, Object_Definition (N));
4021 T := Find_Type_Of_Object (Object_Definition (N), N);
4023 if Nkind (Object_Definition (N)) = N_Access_Definition
4024 and then Present
4025 (Access_To_Subprogram_Definition (Object_Definition (N)))
4026 and then Protected_Present
4027 (Access_To_Subprogram_Definition (Object_Definition (N)))
4028 then
4029 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
4030 end if;
4032 if Error_Posted (Id) then
4033 Set_Etype (Id, T);
4034 Set_Ekind (Id, E_Variable);
4035 goto Leave;
4036 end if;
4037 end if;
4039 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
4040 -- out some static checks.
4042 if Ada_Version >= Ada_2005 then
4044 -- In case of aggregates we must also take care of the correct
4045 -- initialization of nested aggregates bug this is done at the
4046 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
4048 if Can_Never_Be_Null (T) then
4049 if Present (Expression (N))
4050 and then Nkind (Expression (N)) = N_Aggregate
4051 then
4052 null;
4054 else
4055 declare
4056 Save_Typ : constant Entity_Id := Etype (Id);
4057 begin
4058 Set_Etype (Id, T); -- Temp. decoration for static checks
4059 Null_Exclusion_Static_Checks (N);
4060 Set_Etype (Id, Save_Typ);
4061 end;
4062 end if;
4064 -- We might be dealing with an object of a composite type containing
4065 -- null-excluding components without an aggregate, so we must verify
4066 -- that such components have default initialization.
4068 else
4069 Check_For_Null_Excluding_Components (T, N);
4070 end if;
4071 end if;
4073 -- Object is marked pure if it is in a pure scope
4075 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4077 -- If deferred constant, make sure context is appropriate. We detect
4078 -- a deferred constant as a constant declaration with no expression.
4079 -- A deferred constant can appear in a package body if its completion
4080 -- is by means of an interface pragma.
4082 if Constant_Present (N) and then No (E) then
4084 -- A deferred constant may appear in the declarative part of the
4085 -- following constructs:
4087 -- blocks
4088 -- entry bodies
4089 -- extended return statements
4090 -- package specs
4091 -- package bodies
4092 -- subprogram bodies
4093 -- task bodies
4095 -- When declared inside a package spec, a deferred constant must be
4096 -- completed by a full constant declaration or pragma Import. In all
4097 -- other cases, the only proper completion is pragma Import. Extended
4098 -- return statements are flagged as invalid contexts because they do
4099 -- not have a declarative part and so cannot accommodate the pragma.
4101 if Ekind (Current_Scope) = E_Return_Statement then
4102 Error_Msg_N
4103 ("invalid context for deferred constant declaration (RM 7.4)",
4105 Error_Msg_N
4106 ("\declaration requires an initialization expression",
4108 Set_Constant_Present (N, False);
4110 -- In Ada 83, deferred constant must be of private type
4112 elsif not Is_Private_Type (T) then
4113 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4114 Error_Msg_N
4115 ("(Ada 83) deferred constant must be private type", N);
4116 end if;
4117 end if;
4119 -- If not a deferred constant, then the object declaration freezes
4120 -- its type, unless the object is of an anonymous type and has delayed
4121 -- aspects. In that case the type is frozen when the object itself is.
4123 else
4124 Check_Fully_Declared (T, N);
4126 if Has_Delayed_Aspects (Id)
4127 and then Is_Array_Type (T)
4128 and then Is_Itype (T)
4129 then
4130 Set_Has_Delayed_Freeze (T);
4131 else
4132 Freeze_Before (N, T);
4133 end if;
4134 end if;
4136 -- If the object was created by a constrained array definition, then
4137 -- set the link in both the anonymous base type and anonymous subtype
4138 -- that are built to represent the array type to point to the object.
4140 if Nkind (Object_Definition (Declaration_Node (Id))) =
4141 N_Constrained_Array_Definition
4142 then
4143 Set_Related_Array_Object (T, Id);
4144 Set_Related_Array_Object (Base_Type (T), Id);
4145 end if;
4147 -- Special checks for protected objects not at library level
4149 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
4150 Check_Restriction (No_Local_Protected_Objects, Id);
4152 -- Protected objects with interrupt handlers must be at library level
4154 -- Ada 2005: This test is not needed (and the corresponding clause
4155 -- in the RM is removed) because accessibility checks are sufficient
4156 -- to make handlers not at the library level illegal.
4158 -- AI05-0303: The AI is in fact a binding interpretation, and thus
4159 -- applies to the '95 version of the language as well.
4161 if Is_Protected_Type (T)
4162 and then Has_Interrupt_Handler (T)
4163 and then Ada_Version < Ada_95
4164 then
4165 Error_Msg_N
4166 ("interrupt object can only be declared at library level", Id);
4167 end if;
4168 end if;
4170 -- Check for violation of No_Local_Timing_Events
4172 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
4173 Check_Restriction (No_Local_Timing_Events, Id);
4174 end if;
4176 -- The actual subtype of the object is the nominal subtype, unless
4177 -- the nominal one is unconstrained and obtained from the expression.
4179 Act_T := T;
4181 -- These checks should be performed before the initialization expression
4182 -- is considered, so that the Object_Definition node is still the same
4183 -- as in source code.
4185 -- In SPARK, the nominal subtype is always given by a subtype mark
4186 -- and must not be unconstrained. (The only exception to this is the
4187 -- acceptance of declarations of constants of type String.)
4189 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
4190 then
4191 Check_SPARK_05_Restriction
4192 ("subtype mark required", Object_Definition (N));
4194 elsif Is_Array_Type (T)
4195 and then not Is_Constrained (T)
4196 and then T /= Standard_String
4197 then
4198 Check_SPARK_05_Restriction
4199 ("subtype mark of constrained type expected",
4200 Object_Definition (N));
4201 end if;
4203 if Is_Library_Level_Entity (Id) then
4204 Check_Dynamic_Object (T);
4205 end if;
4207 -- There are no aliased objects in SPARK
4209 if Aliased_Present (N) then
4210 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
4211 end if;
4213 -- Process initialization expression if present and not in error
4215 if Present (E) and then E /= Error then
4217 -- Generate an error in case of CPP class-wide object initialization.
4218 -- Required because otherwise the expansion of the class-wide
4219 -- assignment would try to use 'size to initialize the object
4220 -- (primitive that is not available in CPP tagged types).
4222 if Is_Class_Wide_Type (Act_T)
4223 and then
4224 (Is_CPP_Class (Root_Type (Etype (Act_T)))
4225 or else
4226 (Present (Full_View (Root_Type (Etype (Act_T))))
4227 and then
4228 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
4229 then
4230 Error_Msg_N
4231 ("predefined assignment not available for 'C'P'P tagged types",
4233 end if;
4235 Mark_Coextensions (N, E);
4236 Analyze (E);
4238 -- In case of errors detected in the analysis of the expression,
4239 -- decorate it with the expected type to avoid cascaded errors
4241 if No (Etype (E)) then
4242 Set_Etype (E, T);
4243 end if;
4245 -- If an initialization expression is present, then we set the
4246 -- Is_True_Constant flag. It will be reset if this is a variable
4247 -- and it is indeed modified.
4249 Set_Is_True_Constant (Id, True);
4251 -- If we are analyzing a constant declaration, set its completion
4252 -- flag after analyzing and resolving the expression.
4254 if Constant_Present (N) then
4255 Set_Has_Completion (Id);
4256 end if;
4258 -- Set type and resolve (type may be overridden later on). Note:
4259 -- Ekind (Id) must still be E_Void at this point so that incorrect
4260 -- early usage within E is properly diagnosed.
4262 Set_Etype (Id, T);
4264 -- If the expression is an aggregate we must look ahead to detect
4265 -- the possible presence of an address clause, and defer resolution
4266 -- and expansion of the aggregate to the freeze point of the entity.
4268 -- This is not always legal because the aggregate may contain other
4269 -- references that need freezing, e.g. references to other entities
4270 -- with address clauses. In any case, when compiling with -gnatI the
4271 -- presence of the address clause must be ignored.
4273 if Comes_From_Source (N)
4274 and then Expander_Active
4275 and then Nkind (E) = N_Aggregate
4276 and then
4277 ((Present (Following_Address_Clause (N))
4278 and then not Ignore_Rep_Clauses)
4279 or else Delayed_Aspect_Present)
4280 then
4281 Set_Etype (E, T);
4283 else
4285 -- If the expression is a formal that is a "subprogram pointer"
4286 -- this is illegal in accessibility terms. Add an explicit
4287 -- conversion to force the corresponding check, as is done for
4288 -- assignments.
4290 if Comes_From_Source (N)
4291 and then Is_Entity_Name (E)
4292 and then Present (Entity (E))
4293 and then Is_Formal (Entity (E))
4294 and then
4295 Ekind (Etype (Entity (E))) = E_Anonymous_Access_Subprogram_Type
4296 and then Ekind (T) /= E_Anonymous_Access_Subprogram_Type
4297 then
4298 Rewrite (E, Convert_To (T, Relocate_Node (E)));
4299 end if;
4301 Resolve (E, T);
4302 end if;
4304 -- No further action needed if E is a call to an inlined function
4305 -- which returns an unconstrained type and it has been expanded into
4306 -- a procedure call. In that case N has been replaced by an object
4307 -- declaration without initializing expression and it has been
4308 -- analyzed (see Expand_Inlined_Call).
4310 if Back_End_Inlining
4311 and then Expander_Active
4312 and then Nkind (E) = N_Function_Call
4313 and then Nkind (Name (E)) in N_Has_Entity
4314 and then Is_Inlined (Entity (Name (E)))
4315 and then not Is_Constrained (Etype (E))
4316 and then Analyzed (N)
4317 and then No (Expression (N))
4318 then
4319 goto Leave;
4320 end if;
4322 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4323 -- node (which was marked already-analyzed), we need to set the type
4324 -- to something other than Any_Access in order to keep gigi happy.
4326 if Etype (E) = Any_Access then
4327 Set_Etype (E, T);
4328 end if;
4330 -- If the object is an access to variable, the initialization
4331 -- expression cannot be an access to constant.
4333 if Is_Access_Type (T)
4334 and then not Is_Access_Constant (T)
4335 and then Is_Access_Type (Etype (E))
4336 and then Is_Access_Constant (Etype (E))
4337 then
4338 Error_Msg_N
4339 ("access to variable cannot be initialized with an "
4340 & "access-to-constant expression", E);
4341 end if;
4343 if not Assignment_OK (N) then
4344 Check_Initialization (T, E);
4345 end if;
4347 Check_Unset_Reference (E);
4349 -- If this is a variable, then set current value. If this is a
4350 -- declared constant of a scalar type with a static expression,
4351 -- indicate that it is always valid.
4353 if not Constant_Present (N) then
4354 if Compile_Time_Known_Value (E) then
4355 Set_Current_Value (Id, E);
4356 end if;
4358 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
4359 Set_Is_Known_Valid (Id);
4360 end if;
4362 -- Deal with setting of null flags
4364 if Is_Access_Type (T) then
4365 if Known_Non_Null (E) then
4366 Set_Is_Known_Non_Null (Id, True);
4367 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
4368 Set_Is_Known_Null (Id, True);
4369 end if;
4370 end if;
4372 -- Check incorrect use of dynamically tagged expressions
4374 if Is_Tagged_Type (T) then
4375 Check_Dynamically_Tagged_Expression
4376 (Expr => E,
4377 Typ => T,
4378 Related_Nod => N);
4379 end if;
4381 Apply_Scalar_Range_Check (E, T);
4382 Apply_Static_Length_Check (E, T);
4384 if Nkind (Original_Node (N)) = N_Object_Declaration
4385 and then Comes_From_Source (Original_Node (N))
4387 -- Only call test if needed
4389 and then Restriction_Check_Required (SPARK_05)
4390 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
4391 then
4392 Check_SPARK_05_Restriction
4393 ("initialization expression is not appropriate", E);
4394 end if;
4396 -- A formal parameter of a specific tagged type whose related
4397 -- subprogram is subject to pragma Extensions_Visible with value
4398 -- "False" cannot be implicitly converted to a class-wide type by
4399 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4400 -- not consider internally generated expressions.
4402 if Is_Class_Wide_Type (T)
4403 and then Comes_From_Source (E)
4404 and then Is_EVF_Expression (E)
4405 then
4406 Error_Msg_N
4407 ("formal parameter cannot be implicitly converted to "
4408 & "class-wide type when Extensions_Visible is False", E);
4409 end if;
4410 end if;
4412 -- If the No_Streams restriction is set, check that the type of the
4413 -- object is not, and does not contain, any subtype derived from
4414 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4415 -- Has_Stream just for efficiency reasons. There is no point in
4416 -- spending time on a Has_Stream check if the restriction is not set.
4418 if Restriction_Check_Required (No_Streams) then
4419 if Has_Stream (T) then
4420 Check_Restriction (No_Streams, N);
4421 end if;
4422 end if;
4424 -- Deal with predicate check before we start to do major rewriting. It
4425 -- is OK to initialize and then check the initialized value, since the
4426 -- object goes out of scope if we get a predicate failure. Note that we
4427 -- do this in the analyzer and not the expander because the analyzer
4428 -- does some substantial rewriting in some cases.
4430 -- We need a predicate check if the type has predicates that are not
4431 -- ignored, and if either there is an initializing expression, or for
4432 -- default initialization when we have at least one case of an explicit
4433 -- default initial value and then this is not an internal declaration
4434 -- whose initialization comes later (as for an aggregate expansion).
4436 if not Suppress_Assignment_Checks (N)
4437 and then Present (Predicate_Function (T))
4438 and then not Predicates_Ignored (T)
4439 and then not No_Initialization (N)
4440 and then
4441 (Present (E)
4442 or else
4443 Is_Partially_Initialized_Type (T, Include_Implicit => False))
4444 then
4445 -- If the type has a static predicate and the expression is known at
4446 -- compile time, see if the expression satisfies the predicate.
4448 if Present (E) then
4449 Check_Expression_Against_Static_Predicate (E, T);
4450 end if;
4452 -- If the type is a null record and there is no explicit initial
4453 -- expression, no predicate check applies.
4455 if No (E) and then Is_Null_Record_Type (T) then
4456 null;
4458 -- Do not generate a predicate check if the initialization expression
4459 -- is a type conversion because the conversion has been subjected to
4460 -- the same check. This is a small optimization which avoid redundant
4461 -- checks.
4463 elsif Present (E) and then Nkind (E) = N_Type_Conversion then
4464 null;
4466 else
4467 Insert_After (N,
4468 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
4469 end if;
4470 end if;
4472 -- Case of unconstrained type
4474 if not Is_Definite_Subtype (T) then
4476 -- In SPARK, a declaration of unconstrained type is allowed
4477 -- only for constants of type string.
4479 if Is_String_Type (T) and then not Constant_Present (N) then
4480 Check_SPARK_05_Restriction
4481 ("declaration of object of unconstrained type not allowed", N);
4482 end if;
4484 -- Nothing to do in deferred constant case
4486 if Constant_Present (N) and then No (E) then
4487 null;
4489 -- Case of no initialization present
4491 elsif No (E) then
4492 if No_Initialization (N) then
4493 null;
4495 elsif Is_Class_Wide_Type (T) then
4496 Error_Msg_N
4497 ("initialization required in class-wide declaration ", N);
4499 else
4500 Error_Msg_N
4501 ("unconstrained subtype not allowed (need initialization)",
4502 Object_Definition (N));
4504 if Is_Record_Type (T) and then Has_Discriminants (T) then
4505 Error_Msg_N
4506 ("\provide initial value or explicit discriminant values",
4507 Object_Definition (N));
4509 Error_Msg_NE
4510 ("\or give default discriminant values for type&",
4511 Object_Definition (N), T);
4513 elsif Is_Array_Type (T) then
4514 Error_Msg_N
4515 ("\provide initial value or explicit array bounds",
4516 Object_Definition (N));
4517 end if;
4518 end if;
4520 -- Case of initialization present but in error. Set initial
4521 -- expression as absent (but do not make above complaints)
4523 elsif E = Error then
4524 Set_Expression (N, Empty);
4525 E := Empty;
4527 -- Case of initialization present
4529 else
4530 -- Check restrictions in Ada 83
4532 if not Constant_Present (N) then
4534 -- Unconstrained variables not allowed in Ada 83 mode
4536 if Ada_Version = Ada_83
4537 and then Comes_From_Source (Object_Definition (N))
4538 then
4539 Error_Msg_N
4540 ("(Ada 83) unconstrained variable not allowed",
4541 Object_Definition (N));
4542 end if;
4543 end if;
4545 -- Now we constrain the variable from the initializing expression
4547 -- If the expression is an aggregate, it has been expanded into
4548 -- individual assignments. Retrieve the actual type from the
4549 -- expanded construct.
4551 if Is_Array_Type (T)
4552 and then No_Initialization (N)
4553 and then Nkind (Original_Node (E)) = N_Aggregate
4554 then
4555 Act_T := Etype (E);
4557 -- In case of class-wide interface object declarations we delay
4558 -- the generation of the equivalent record type declarations until
4559 -- its expansion because there are cases in they are not required.
4561 elsif Is_Interface (T) then
4562 null;
4564 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4565 -- we should prevent the generation of another Itype with the
4566 -- same name as the one already generated, or we end up with
4567 -- two identical types in GNATprove.
4569 elsif GNATprove_Mode then
4570 null;
4572 -- If the type is an unchecked union, no subtype can be built from
4573 -- the expression. Rewrite declaration as a renaming, which the
4574 -- back-end can handle properly. This is a rather unusual case,
4575 -- because most unchecked_union declarations have default values
4576 -- for discriminants and are thus not indefinite.
4578 elsif Is_Unchecked_Union (T) then
4579 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4580 Set_Ekind (Id, E_Constant);
4581 else
4582 Set_Ekind (Id, E_Variable);
4583 end if;
4585 Rewrite (N,
4586 Make_Object_Renaming_Declaration (Loc,
4587 Defining_Identifier => Id,
4588 Subtype_Mark => New_Occurrence_Of (T, Loc),
4589 Name => E));
4591 Set_Renamed_Object (Id, E);
4592 Freeze_Before (N, T);
4593 Set_Is_Frozen (Id);
4594 goto Leave;
4596 else
4597 -- Ensure that the generated subtype has a unique external name
4598 -- when the related object is public. This guarantees that the
4599 -- subtype and its bounds will not be affected by switches or
4600 -- pragmas that may offset the internal counter due to extra
4601 -- generated code.
4603 if Is_Public (Id) then
4604 Related_Id := Id;
4605 else
4606 Related_Id := Empty;
4607 end if;
4609 Expand_Subtype_From_Expr
4610 (N => N,
4611 Unc_Type => T,
4612 Subtype_Indic => Object_Definition (N),
4613 Exp => E,
4614 Related_Id => Related_Id);
4616 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4617 end if;
4619 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4621 if Aliased_Present (N) then
4622 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4623 end if;
4625 Freeze_Before (N, Act_T);
4626 Freeze_Before (N, T);
4627 end if;
4629 elsif Is_Array_Type (T)
4630 and then No_Initialization (N)
4631 and then (Nkind (Original_Node (E)) = N_Aggregate
4632 or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4633 and then Nkind (Original_Node (Expression
4634 (Original_Node (E)))) = N_Aggregate))
4635 then
4636 if not Is_Entity_Name (Object_Definition (N)) then
4637 Act_T := Etype (E);
4638 Check_Compile_Time_Size (Act_T);
4640 if Aliased_Present (N) then
4641 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4642 end if;
4643 end if;
4645 -- When the given object definition and the aggregate are specified
4646 -- independently, and their lengths might differ do a length check.
4647 -- This cannot happen if the aggregate is of the form (others =>...)
4649 if not Is_Constrained (T) then
4650 null;
4652 elsif Nkind (E) = N_Raise_Constraint_Error then
4654 -- Aggregate is statically illegal. Place back in declaration
4656 Set_Expression (N, E);
4657 Set_No_Initialization (N, False);
4659 elsif T = Etype (E) then
4660 null;
4662 elsif Nkind (E) = N_Aggregate
4663 and then Present (Component_Associations (E))
4664 and then Present (Choice_List (First (Component_Associations (E))))
4665 and then
4666 Nkind (First (Choice_List (First (Component_Associations (E))))) =
4667 N_Others_Choice
4668 then
4669 null;
4671 else
4672 Apply_Length_Check (E, T);
4673 end if;
4675 -- If the type is limited unconstrained with defaulted discriminants and
4676 -- there is no expression, then the object is constrained by the
4677 -- defaults, so it is worthwhile building the corresponding subtype.
4679 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4680 and then not Is_Constrained (T)
4681 and then Has_Discriminants (T)
4682 then
4683 if No (E) then
4684 Act_T := Build_Default_Subtype (T, N);
4685 else
4686 -- Ada 2005: A limited object may be initialized by means of an
4687 -- aggregate. If the type has default discriminants it has an
4688 -- unconstrained nominal type, Its actual subtype will be obtained
4689 -- from the aggregate, and not from the default discriminants.
4691 Act_T := Etype (E);
4692 end if;
4694 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4696 elsif Nkind (E) = N_Function_Call
4697 and then Constant_Present (N)
4698 and then Has_Unconstrained_Elements (Etype (E))
4699 then
4700 -- The back-end has problems with constants of a discriminated type
4701 -- with defaults, if the initial value is a function call. We
4702 -- generate an intermediate temporary that will receive a reference
4703 -- to the result of the call. The initialization expression then
4704 -- becomes a dereference of that temporary.
4706 Remove_Side_Effects (E);
4708 -- If this is a constant declaration of an unconstrained type and
4709 -- the initialization is an aggregate, we can use the subtype of the
4710 -- aggregate for the declared entity because it is immutable.
4712 elsif not Is_Constrained (T)
4713 and then Has_Discriminants (T)
4714 and then Constant_Present (N)
4715 and then not Has_Unchecked_Union (T)
4716 and then Nkind (E) = N_Aggregate
4717 then
4718 Act_T := Etype (E);
4719 end if;
4721 -- Check No_Wide_Characters restriction
4723 Check_Wide_Character_Restriction (T, Object_Definition (N));
4725 -- Indicate this is not set in source. Certainly true for constants, and
4726 -- true for variables so far (will be reset for a variable if and when
4727 -- we encounter a modification in the source).
4729 Set_Never_Set_In_Source (Id);
4731 -- Now establish the proper kind and type of the object
4733 if Constant_Present (N) then
4734 Set_Ekind (Id, E_Constant);
4735 Set_Is_True_Constant (Id);
4737 else
4738 Set_Ekind (Id, E_Variable);
4740 -- A variable is set as shared passive if it appears in a shared
4741 -- passive package, and is at the outer level. This is not done for
4742 -- entities generated during expansion, because those are always
4743 -- manipulated locally.
4745 if Is_Shared_Passive (Current_Scope)
4746 and then Is_Library_Level_Entity (Id)
4747 and then Comes_From_Source (Id)
4748 then
4749 Set_Is_Shared_Passive (Id);
4750 Check_Shared_Var (Id, T, N);
4751 end if;
4753 -- Set Has_Initial_Value if initializing expression present. Note
4754 -- that if there is no initializing expression, we leave the state
4755 -- of this flag unchanged (usually it will be False, but notably in
4756 -- the case of exception choice variables, it will already be true).
4758 if Present (E) then
4759 Set_Has_Initial_Value (Id);
4760 end if;
4761 end if;
4763 -- Set the SPARK mode from the current context (may be overwritten later
4764 -- with explicit pragma).
4766 Set_SPARK_Pragma (Id, SPARK_Mode_Pragma);
4767 Set_SPARK_Pragma_Inherited (Id);
4769 -- Preserve relevant elaboration-related attributes of the context which
4770 -- are no longer available or very expensive to recompute once analysis,
4771 -- resolution, and expansion are over.
4773 Mark_Elaboration_Attributes
4774 (N_Id => Id,
4775 Checks => True,
4776 Warnings => True);
4778 -- Initialize alignment and size and capture alignment setting
4780 Init_Alignment (Id);
4781 Init_Esize (Id);
4782 Set_Optimize_Alignment_Flags (Id);
4784 -- Deal with aliased case
4786 if Aliased_Present (N) then
4787 Set_Is_Aliased (Id);
4789 -- If the object is aliased and the type is unconstrained with
4790 -- defaulted discriminants and there is no expression, then the
4791 -- object is constrained by the defaults, so it is worthwhile
4792 -- building the corresponding subtype.
4794 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4795 -- unconstrained, then only establish an actual subtype if the
4796 -- nominal subtype is indefinite. In definite cases the object is
4797 -- unconstrained in Ada 2005.
4799 if No (E)
4800 and then Is_Record_Type (T)
4801 and then not Is_Constrained (T)
4802 and then Has_Discriminants (T)
4803 and then (Ada_Version < Ada_2005
4804 or else not Is_Definite_Subtype (T))
4805 then
4806 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4807 end if;
4808 end if;
4810 -- Now we can set the type of the object
4812 Set_Etype (Id, Act_T);
4814 -- Non-constant object is marked to be treated as volatile if type is
4815 -- volatile and we clear the Current_Value setting that may have been
4816 -- set above. Doing so for constants isn't required and might interfere
4817 -- with possible uses of the object as a static expression in contexts
4818 -- incompatible with volatility (e.g. as a case-statement alternative).
4820 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4821 Set_Treat_As_Volatile (Id);
4822 Set_Current_Value (Id, Empty);
4823 end if;
4825 -- Deal with controlled types
4827 if Has_Controlled_Component (Etype (Id))
4828 or else Is_Controlled (Etype (Id))
4829 then
4830 if not Is_Library_Level_Entity (Id) then
4831 Check_Restriction (No_Nested_Finalization, N);
4832 else
4833 Validate_Controlled_Object (Id);
4834 end if;
4835 end if;
4837 if Has_Task (Etype (Id)) then
4838 Check_Restriction (No_Tasking, N);
4840 -- Deal with counting max tasks
4842 -- Nothing to do if inside a generic
4844 if Inside_A_Generic then
4845 null;
4847 -- If library level entity, then count tasks
4849 elsif Is_Library_Level_Entity (Id) then
4850 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4852 -- If not library level entity, then indicate we don't know max
4853 -- tasks and also check task hierarchy restriction and blocking
4854 -- operation (since starting a task is definitely blocking).
4856 else
4857 Check_Restriction (Max_Tasks, N);
4858 Check_Restriction (No_Task_Hierarchy, N);
4859 Check_Potentially_Blocking_Operation (N);
4860 end if;
4862 -- A rather specialized test. If we see two tasks being declared
4863 -- of the same type in the same object declaration, and the task
4864 -- has an entry with an address clause, we know that program error
4865 -- will be raised at run time since we can't have two tasks with
4866 -- entries at the same address.
4868 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4869 declare
4870 E : Entity_Id;
4872 begin
4873 E := First_Entity (Etype (Id));
4874 while Present (E) loop
4875 if Ekind (E) = E_Entry
4876 and then Present (Get_Attribute_Definition_Clause
4877 (E, Attribute_Address))
4878 then
4879 Error_Msg_Warn := SPARK_Mode /= On;
4880 Error_Msg_N
4881 ("more than one task with same entry address<<", N);
4882 Error_Msg_N ("\Program_Error [<<", N);
4883 Insert_Action (N,
4884 Make_Raise_Program_Error (Loc,
4885 Reason => PE_Duplicated_Entry_Address));
4886 exit;
4887 end if;
4889 Next_Entity (E);
4890 end loop;
4891 end;
4892 end if;
4893 end if;
4895 -- Some simple constant-propagation: if the expression is a constant
4896 -- string initialized with a literal, share the literal. This avoids
4897 -- a run-time copy.
4899 if Present (E)
4900 and then Is_Entity_Name (E)
4901 and then Ekind (Entity (E)) = E_Constant
4902 and then Base_Type (Etype (E)) = Standard_String
4903 then
4904 declare
4905 Val : constant Node_Id := Constant_Value (Entity (E));
4906 begin
4907 if Present (Val) and then Nkind (Val) = N_String_Literal then
4908 Rewrite (E, New_Copy (Val));
4909 end if;
4910 end;
4911 end if;
4913 -- Another optimization: if the nominal subtype is unconstrained and
4914 -- the expression is a function call that returns an unconstrained
4915 -- type, rewrite the declaration as a renaming of the result of the
4916 -- call. The exceptions below are cases where the copy is expected,
4917 -- either by the back end (Aliased case) or by the semantics, as for
4918 -- initializing controlled types or copying tags for class-wide types.
4920 if Present (E)
4921 and then Nkind (E) = N_Explicit_Dereference
4922 and then Nkind (Original_Node (E)) = N_Function_Call
4923 and then not Is_Library_Level_Entity (Id)
4924 and then not Is_Constrained (Underlying_Type (T))
4925 and then not Is_Aliased (Id)
4926 and then not Is_Class_Wide_Type (T)
4927 and then not Is_Controlled (T)
4928 and then not Has_Controlled_Component (Base_Type (T))
4929 and then Expander_Active
4930 then
4931 Rewrite (N,
4932 Make_Object_Renaming_Declaration (Loc,
4933 Defining_Identifier => Id,
4934 Access_Definition => Empty,
4935 Subtype_Mark => New_Occurrence_Of
4936 (Base_Type (Etype (Id)), Loc),
4937 Name => E));
4939 Set_Renamed_Object (Id, E);
4941 -- Force generation of debugging information for the constant and for
4942 -- the renamed function call.
4944 Set_Debug_Info_Needed (Id);
4945 Set_Debug_Info_Needed (Entity (Prefix (E)));
4946 end if;
4948 if Present (Prev_Entity)
4949 and then Is_Frozen (Prev_Entity)
4950 and then not Error_Posted (Id)
4951 then
4952 Error_Msg_N ("full constant declaration appears too late", N);
4953 end if;
4955 Check_Eliminated (Id);
4957 -- Deal with setting In_Private_Part flag if in private part
4959 if Ekind (Scope (Id)) = E_Package
4960 and then In_Private_Part (Scope (Id))
4961 then
4962 Set_In_Private_Part (Id);
4963 end if;
4965 <<Leave>>
4966 -- Initialize the refined state of a variable here because this is a
4967 -- common destination for legal and illegal object declarations.
4969 if Ekind (Id) = E_Variable then
4970 Set_Encapsulating_State (Id, Empty);
4971 end if;
4973 if Has_Aspects (N) then
4974 Analyze_Aspect_Specifications (N, Id);
4975 end if;
4977 Analyze_Dimension (N);
4979 -- Verify whether the object declaration introduces an illegal hidden
4980 -- state within a package subject to a null abstract state.
4982 if Ekind (Id) = E_Variable then
4983 Check_No_Hidden_State (Id);
4984 end if;
4986 Restore_Ghost_Region (Saved_GM, Saved_IGR);
4987 end Analyze_Object_Declaration;
4989 ---------------------------
4990 -- Analyze_Others_Choice --
4991 ---------------------------
4993 -- Nothing to do for the others choice node itself, the semantic analysis
4994 -- of the others choice will occur as part of the processing of the parent
4996 procedure Analyze_Others_Choice (N : Node_Id) is
4997 pragma Warnings (Off, N);
4998 begin
4999 null;
5000 end Analyze_Others_Choice;
5002 -------------------------------------------
5003 -- Analyze_Private_Extension_Declaration --
5004 -------------------------------------------
5006 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
5007 Indic : constant Node_Id := Subtype_Indication (N);
5008 T : constant Entity_Id := Defining_Identifier (N);
5009 Iface : Entity_Id;
5010 Iface_Elmt : Elmt_Id;
5011 Parent_Base : Entity_Id;
5012 Parent_Type : Entity_Id;
5014 begin
5015 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
5017 if Is_Non_Empty_List (Interface_List (N)) then
5018 declare
5019 Intf : Node_Id;
5020 T : Entity_Id;
5022 begin
5023 Intf := First (Interface_List (N));
5024 while Present (Intf) loop
5025 T := Find_Type_Of_Subtype_Indic (Intf);
5027 Diagnose_Interface (Intf, T);
5028 Next (Intf);
5029 end loop;
5030 end;
5031 end if;
5033 Generate_Definition (T);
5035 -- For other than Ada 2012, just enter the name in the current scope
5037 if Ada_Version < Ada_2012 then
5038 Enter_Name (T);
5040 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
5041 -- case of private type that completes an incomplete type.
5043 else
5044 declare
5045 Prev : Entity_Id;
5047 begin
5048 Prev := Find_Type_Name (N);
5050 pragma Assert (Prev = T
5051 or else (Ekind (Prev) = E_Incomplete_Type
5052 and then Present (Full_View (Prev))
5053 and then Full_View (Prev) = T));
5054 end;
5055 end if;
5057 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
5058 Parent_Base := Base_Type (Parent_Type);
5060 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
5061 Set_Ekind (T, Ekind (Parent_Type));
5062 Set_Etype (T, Any_Type);
5063 goto Leave;
5065 elsif not Is_Tagged_Type (Parent_Type) then
5066 Error_Msg_N
5067 ("parent of type extension must be a tagged type ", Indic);
5068 goto Leave;
5070 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
5071 Error_Msg_N ("premature derivation of incomplete type", Indic);
5072 goto Leave;
5074 elsif Is_Concurrent_Type (Parent_Type) then
5075 Error_Msg_N
5076 ("parent type of a private extension cannot be a synchronized "
5077 & "tagged type (RM 3.9.1 (3/1))", N);
5079 Set_Etype (T, Any_Type);
5080 Set_Ekind (T, E_Limited_Private_Type);
5081 Set_Private_Dependents (T, New_Elmt_List);
5082 Set_Error_Posted (T);
5083 goto Leave;
5084 end if;
5086 -- Perhaps the parent type should be changed to the class-wide type's
5087 -- specific type in this case to prevent cascading errors ???
5089 if Is_Class_Wide_Type (Parent_Type) then
5090 Error_Msg_N
5091 ("parent of type extension must not be a class-wide type", Indic);
5092 goto Leave;
5093 end if;
5095 if (not Is_Package_Or_Generic_Package (Current_Scope)
5096 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
5097 or else In_Private_Part (Current_Scope)
5098 then
5099 Error_Msg_N ("invalid context for private extension", N);
5100 end if;
5102 -- Set common attributes
5104 Set_Is_Pure (T, Is_Pure (Current_Scope));
5105 Set_Scope (T, Current_Scope);
5106 Set_Ekind (T, E_Record_Type_With_Private);
5107 Init_Size_Align (T);
5108 Set_Default_SSO (T);
5109 Set_No_Reordering (T, No_Component_Reordering);
5111 Set_Etype (T, Parent_Base);
5112 Propagate_Concurrent_Flags (T, Parent_Base);
5114 Set_Convention (T, Convention (Parent_Type));
5115 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
5116 Set_Is_First_Subtype (T);
5117 Make_Class_Wide_Type (T);
5119 -- Set the SPARK mode from the current context
5121 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
5122 Set_SPARK_Pragma_Inherited (T);
5124 if Unknown_Discriminants_Present (N) then
5125 Set_Discriminant_Constraint (T, No_Elist);
5126 end if;
5128 Build_Derived_Record_Type (N, Parent_Type, T);
5130 -- A private extension inherits the Default_Initial_Condition pragma
5131 -- coming from any parent type within the derivation chain.
5133 if Has_DIC (Parent_Type) then
5134 Set_Has_Inherited_DIC (T);
5135 end if;
5137 -- A private extension inherits any class-wide invariants coming from a
5138 -- parent type or an interface. Note that the invariant procedure of the
5139 -- parent type should not be inherited because the private extension may
5140 -- define invariants of its own.
5142 if Has_Inherited_Invariants (Parent_Type)
5143 or else Has_Inheritable_Invariants (Parent_Type)
5144 then
5145 Set_Has_Inherited_Invariants (T);
5147 elsif Present (Interfaces (T)) then
5148 Iface_Elmt := First_Elmt (Interfaces (T));
5149 while Present (Iface_Elmt) loop
5150 Iface := Node (Iface_Elmt);
5152 if Has_Inheritable_Invariants (Iface) then
5153 Set_Has_Inherited_Invariants (T);
5154 exit;
5155 end if;
5157 Next_Elmt (Iface_Elmt);
5158 end loop;
5159 end if;
5161 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5162 -- synchronized formal derived type.
5164 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
5165 Set_Is_Limited_Record (T);
5167 -- Formal derived type case
5169 if Is_Generic_Type (T) then
5171 -- The parent must be a tagged limited type or a synchronized
5172 -- interface.
5174 if (not Is_Tagged_Type (Parent_Type)
5175 or else not Is_Limited_Type (Parent_Type))
5176 and then
5177 (not Is_Interface (Parent_Type)
5178 or else not Is_Synchronized_Interface (Parent_Type))
5179 then
5180 Error_Msg_NE
5181 ("parent type of & must be tagged limited or synchronized",
5182 N, T);
5183 end if;
5185 -- The progenitors (if any) must be limited or synchronized
5186 -- interfaces.
5188 if Present (Interfaces (T)) then
5189 Iface_Elmt := First_Elmt (Interfaces (T));
5190 while Present (Iface_Elmt) loop
5191 Iface := Node (Iface_Elmt);
5193 if not Is_Limited_Interface (Iface)
5194 and then not Is_Synchronized_Interface (Iface)
5195 then
5196 Error_Msg_NE
5197 ("progenitor & must be limited or synchronized",
5198 N, Iface);
5199 end if;
5201 Next_Elmt (Iface_Elmt);
5202 end loop;
5203 end if;
5205 -- Regular derived extension, the parent must be a limited or
5206 -- synchronized interface.
5208 else
5209 if not Is_Interface (Parent_Type)
5210 or else (not Is_Limited_Interface (Parent_Type)
5211 and then not Is_Synchronized_Interface (Parent_Type))
5212 then
5213 Error_Msg_NE
5214 ("parent type of & must be limited interface", N, T);
5215 end if;
5216 end if;
5218 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5219 -- extension with a synchronized parent must be explicitly declared
5220 -- synchronized, because the full view will be a synchronized type.
5221 -- This must be checked before the check for limited types below,
5222 -- to ensure that types declared limited are not allowed to extend
5223 -- synchronized interfaces.
5225 elsif Is_Interface (Parent_Type)
5226 and then Is_Synchronized_Interface (Parent_Type)
5227 and then not Synchronized_Present (N)
5228 then
5229 Error_Msg_NE
5230 ("private extension of& must be explicitly synchronized",
5231 N, Parent_Type);
5233 elsif Limited_Present (N) then
5234 Set_Is_Limited_Record (T);
5236 if not Is_Limited_Type (Parent_Type)
5237 and then
5238 (not Is_Interface (Parent_Type)
5239 or else not Is_Limited_Interface (Parent_Type))
5240 then
5241 Error_Msg_NE ("parent type& of limited extension must be limited",
5242 N, Parent_Type);
5243 end if;
5244 end if;
5246 -- Remember that its parent type has a private extension. Used to warn
5247 -- on public primitives of the parent type defined after its private
5248 -- extensions (see Check_Dispatching_Operation).
5250 Set_Has_Private_Extension (Parent_Type);
5252 <<Leave>>
5253 if Has_Aspects (N) then
5254 Analyze_Aspect_Specifications (N, T);
5255 end if;
5256 end Analyze_Private_Extension_Declaration;
5258 ---------------------------------
5259 -- Analyze_Subtype_Declaration --
5260 ---------------------------------
5262 procedure Analyze_Subtype_Declaration
5263 (N : Node_Id;
5264 Skip : Boolean := False)
5266 Id : constant Entity_Id := Defining_Identifier (N);
5267 R_Checks : Check_Result;
5268 T : Entity_Id;
5270 begin
5271 Generate_Definition (Id);
5272 Set_Is_Pure (Id, Is_Pure (Current_Scope));
5273 Init_Size_Align (Id);
5275 -- The following guard condition on Enter_Name is to handle cases where
5276 -- the defining identifier has already been entered into the scope but
5277 -- the declaration as a whole needs to be analyzed.
5279 -- This case in particular happens for derived enumeration types. The
5280 -- derived enumeration type is processed as an inserted enumeration type
5281 -- declaration followed by a rewritten subtype declaration. The defining
5282 -- identifier, however, is entered into the name scope very early in the
5283 -- processing of the original type declaration and therefore needs to be
5284 -- avoided here, when the created subtype declaration is analyzed. (See
5285 -- Build_Derived_Types)
5287 -- This also happens when the full view of a private type is derived
5288 -- type with constraints. In this case the entity has been introduced
5289 -- in the private declaration.
5291 -- Finally this happens in some complex cases when validity checks are
5292 -- enabled, where the same subtype declaration may be analyzed twice.
5293 -- This can happen if the subtype is created by the preanalysis of
5294 -- an attribute tht gives the range of a loop statement, and the loop
5295 -- itself appears within an if_statement that will be rewritten during
5296 -- expansion.
5298 if Skip
5299 or else (Present (Etype (Id))
5300 and then (Is_Private_Type (Etype (Id))
5301 or else Is_Task_Type (Etype (Id))
5302 or else Is_Rewrite_Substitution (N)))
5303 then
5304 null;
5306 elsif Current_Entity (Id) = Id then
5307 null;
5309 else
5310 Enter_Name (Id);
5311 end if;
5313 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
5315 -- Class-wide equivalent types of records with unknown discriminants
5316 -- involve the generation of an itype which serves as the private view
5317 -- of a constrained record subtype. In such cases the base type of the
5318 -- current subtype we are processing is the private itype. Use the full
5319 -- of the private itype when decorating various attributes.
5321 if Is_Itype (T)
5322 and then Is_Private_Type (T)
5323 and then Present (Full_View (T))
5324 then
5325 T := Full_View (T);
5326 end if;
5328 -- Inherit common attributes
5330 Set_Is_Volatile (Id, Is_Volatile (T));
5331 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
5332 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
5333 Set_Convention (Id, Convention (T));
5335 -- If ancestor has predicates then so does the subtype, and in addition
5336 -- we must delay the freeze to properly arrange predicate inheritance.
5338 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5339 -- in which T = ID, so the above tests and assignments do nothing???
5341 if Has_Predicates (T)
5342 or else (Present (Ancestor_Subtype (T))
5343 and then Has_Predicates (Ancestor_Subtype (T)))
5344 then
5345 Set_Has_Predicates (Id);
5346 Set_Has_Delayed_Freeze (Id);
5348 -- Generated subtypes inherit the predicate function from the parent
5349 -- (no aspects to examine on the generated declaration).
5351 if not Comes_From_Source (N) then
5352 Set_Ekind (Id, Ekind (T));
5354 if Present (Predicate_Function (Id)) then
5355 null;
5357 elsif Present (Predicate_Function (T)) then
5358 Set_Predicate_Function (Id, Predicate_Function (T));
5360 elsif Present (Ancestor_Subtype (T))
5361 and then Present (Predicate_Function (Ancestor_Subtype (T)))
5362 then
5363 Set_Predicate_Function (Id,
5364 Predicate_Function (Ancestor_Subtype (T)));
5365 end if;
5366 end if;
5367 end if;
5369 -- Subtype of Boolean cannot have a constraint in SPARK
5371 if Is_Boolean_Type (T)
5372 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
5373 then
5374 Check_SPARK_05_Restriction
5375 ("subtype of Boolean cannot have constraint", N);
5376 end if;
5378 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5379 declare
5380 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5381 One_Cstr : Node_Id;
5382 Low : Node_Id;
5383 High : Node_Id;
5385 begin
5386 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
5387 One_Cstr := First (Constraints (Cstr));
5388 while Present (One_Cstr) loop
5390 -- Index or discriminant constraint in SPARK must be a
5391 -- subtype mark.
5393 if not
5394 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
5395 then
5396 Check_SPARK_05_Restriction
5397 ("subtype mark required", One_Cstr);
5399 -- String subtype must have a lower bound of 1 in SPARK.
5400 -- Note that we do not need to test for the non-static case
5401 -- here, since that was already taken care of in
5402 -- Process_Range_Expr_In_Decl.
5404 elsif Base_Type (T) = Standard_String then
5405 Get_Index_Bounds (One_Cstr, Low, High);
5407 if Is_OK_Static_Expression (Low)
5408 and then Expr_Value (Low) /= 1
5409 then
5410 Check_SPARK_05_Restriction
5411 ("String subtype must have lower bound of 1", N);
5412 end if;
5413 end if;
5415 Next (One_Cstr);
5416 end loop;
5417 end if;
5418 end;
5419 end if;
5421 -- In the case where there is no constraint given in the subtype
5422 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5423 -- semantic attributes must be established here.
5425 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
5426 Set_Etype (Id, Base_Type (T));
5428 -- Subtype of unconstrained array without constraint is not allowed
5429 -- in SPARK.
5431 if Is_Array_Type (T) and then not Is_Constrained (T) then
5432 Check_SPARK_05_Restriction
5433 ("subtype of unconstrained array must have constraint", N);
5434 end if;
5436 case Ekind (T) is
5437 when Array_Kind =>
5438 Set_Ekind (Id, E_Array_Subtype);
5439 Copy_Array_Subtype_Attributes (Id, T);
5441 when Decimal_Fixed_Point_Kind =>
5442 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
5443 Set_Digits_Value (Id, Digits_Value (T));
5444 Set_Delta_Value (Id, Delta_Value (T));
5445 Set_Scale_Value (Id, Scale_Value (T));
5446 Set_Small_Value (Id, Small_Value (T));
5447 Set_Scalar_Range (Id, Scalar_Range (T));
5448 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
5449 Set_Is_Constrained (Id, Is_Constrained (T));
5450 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5451 Set_RM_Size (Id, RM_Size (T));
5453 when Enumeration_Kind =>
5454 Set_Ekind (Id, E_Enumeration_Subtype);
5455 Set_First_Literal (Id, First_Literal (Base_Type (T)));
5456 Set_Scalar_Range (Id, Scalar_Range (T));
5457 Set_Is_Character_Type (Id, Is_Character_Type (T));
5458 Set_Is_Constrained (Id, Is_Constrained (T));
5459 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5460 Set_RM_Size (Id, RM_Size (T));
5462 when Ordinary_Fixed_Point_Kind =>
5463 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
5464 Set_Scalar_Range (Id, Scalar_Range (T));
5465 Set_Small_Value (Id, Small_Value (T));
5466 Set_Delta_Value (Id, Delta_Value (T));
5467 Set_Is_Constrained (Id, Is_Constrained (T));
5468 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5469 Set_RM_Size (Id, RM_Size (T));
5471 when Float_Kind =>
5472 Set_Ekind (Id, E_Floating_Point_Subtype);
5473 Set_Scalar_Range (Id, Scalar_Range (T));
5474 Set_Digits_Value (Id, Digits_Value (T));
5475 Set_Is_Constrained (Id, Is_Constrained (T));
5477 -- If the floating point type has dimensions, these will be
5478 -- inherited subsequently when Analyze_Dimensions is called.
5480 when Signed_Integer_Kind =>
5481 Set_Ekind (Id, E_Signed_Integer_Subtype);
5482 Set_Scalar_Range (Id, Scalar_Range (T));
5483 Set_Is_Constrained (Id, Is_Constrained (T));
5484 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5485 Set_RM_Size (Id, RM_Size (T));
5487 when Modular_Integer_Kind =>
5488 Set_Ekind (Id, E_Modular_Integer_Subtype);
5489 Set_Scalar_Range (Id, Scalar_Range (T));
5490 Set_Is_Constrained (Id, Is_Constrained (T));
5491 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5492 Set_RM_Size (Id, RM_Size (T));
5494 when Class_Wide_Kind =>
5495 Set_Ekind (Id, E_Class_Wide_Subtype);
5496 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5497 Set_Cloned_Subtype (Id, T);
5498 Set_Is_Tagged_Type (Id, True);
5499 Set_Has_Unknown_Discriminants
5500 (Id, True);
5501 Set_No_Tagged_Streams_Pragma
5502 (Id, No_Tagged_Streams_Pragma (T));
5504 if Ekind (T) = E_Class_Wide_Subtype then
5505 Set_Equivalent_Type (Id, Equivalent_Type (T));
5506 end if;
5508 when E_Record_Subtype
5509 | E_Record_Type
5511 Set_Ekind (Id, E_Record_Subtype);
5513 if Ekind (T) = E_Record_Subtype
5514 and then Present (Cloned_Subtype (T))
5515 then
5516 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
5517 else
5518 Set_Cloned_Subtype (Id, T);
5519 end if;
5521 Set_First_Entity (Id, First_Entity (T));
5522 Set_Last_Entity (Id, Last_Entity (T));
5523 Set_Has_Discriminants (Id, Has_Discriminants (T));
5524 Set_Is_Constrained (Id, Is_Constrained (T));
5525 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5526 Set_Has_Implicit_Dereference
5527 (Id, Has_Implicit_Dereference (T));
5528 Set_Has_Unknown_Discriminants
5529 (Id, Has_Unknown_Discriminants (T));
5531 if Has_Discriminants (T) then
5532 Set_Discriminant_Constraint
5533 (Id, Discriminant_Constraint (T));
5534 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5536 elsif Has_Unknown_Discriminants (Id) then
5537 Set_Discriminant_Constraint (Id, No_Elist);
5538 end if;
5540 if Is_Tagged_Type (T) then
5541 Set_Is_Tagged_Type (Id, True);
5542 Set_No_Tagged_Streams_Pragma
5543 (Id, No_Tagged_Streams_Pragma (T));
5544 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5545 Set_Direct_Primitive_Operations
5546 (Id, Direct_Primitive_Operations (T));
5547 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5549 if Is_Interface (T) then
5550 Set_Is_Interface (Id);
5551 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5552 end if;
5553 end if;
5555 when Private_Kind =>
5556 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5557 Set_Has_Discriminants (Id, Has_Discriminants (T));
5558 Set_Is_Constrained (Id, Is_Constrained (T));
5559 Set_First_Entity (Id, First_Entity (T));
5560 Set_Last_Entity (Id, Last_Entity (T));
5561 Set_Private_Dependents (Id, New_Elmt_List);
5562 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5563 Set_Has_Implicit_Dereference
5564 (Id, Has_Implicit_Dereference (T));
5565 Set_Has_Unknown_Discriminants
5566 (Id, Has_Unknown_Discriminants (T));
5567 Set_Known_To_Have_Preelab_Init
5568 (Id, Known_To_Have_Preelab_Init (T));
5570 if Is_Tagged_Type (T) then
5571 Set_Is_Tagged_Type (Id);
5572 Set_No_Tagged_Streams_Pragma (Id,
5573 No_Tagged_Streams_Pragma (T));
5574 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5575 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5576 Set_Direct_Primitive_Operations (Id,
5577 Direct_Primitive_Operations (T));
5578 end if;
5580 -- In general the attributes of the subtype of a private type
5581 -- are the attributes of the partial view of parent. However,
5582 -- the full view may be a discriminated type, and the subtype
5583 -- must share the discriminant constraint to generate correct
5584 -- calls to initialization procedures.
5586 if Has_Discriminants (T) then
5587 Set_Discriminant_Constraint
5588 (Id, Discriminant_Constraint (T));
5589 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5591 elsif Present (Full_View (T))
5592 and then Has_Discriminants (Full_View (T))
5593 then
5594 Set_Discriminant_Constraint
5595 (Id, Discriminant_Constraint (Full_View (T)));
5596 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5598 -- This would seem semantically correct, but apparently
5599 -- generates spurious errors about missing components ???
5601 -- Set_Has_Discriminants (Id);
5602 end if;
5604 Prepare_Private_Subtype_Completion (Id, N);
5606 -- If this is the subtype of a constrained private type with
5607 -- discriminants that has got a full view and we also have
5608 -- built a completion just above, show that the completion
5609 -- is a clone of the full view to the back-end.
5611 if Has_Discriminants (T)
5612 and then not Has_Unknown_Discriminants (T)
5613 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5614 and then Present (Full_View (T))
5615 and then Present (Full_View (Id))
5616 then
5617 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5618 end if;
5620 when Access_Kind =>
5621 Set_Ekind (Id, E_Access_Subtype);
5622 Set_Is_Constrained (Id, Is_Constrained (T));
5623 Set_Is_Access_Constant
5624 (Id, Is_Access_Constant (T));
5625 Set_Directly_Designated_Type
5626 (Id, Designated_Type (T));
5627 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5629 -- A Pure library_item must not contain the declaration of a
5630 -- named access type, except within a subprogram, generic
5631 -- subprogram, task unit, or protected unit, or if it has
5632 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5634 if Comes_From_Source (Id)
5635 and then In_Pure_Unit
5636 and then not In_Subprogram_Task_Protected_Unit
5637 and then not No_Pool_Assigned (Id)
5638 then
5639 Error_Msg_N
5640 ("named access types not allowed in pure unit", N);
5641 end if;
5643 when Concurrent_Kind =>
5644 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5645 Set_Corresponding_Record_Type (Id,
5646 Corresponding_Record_Type (T));
5647 Set_First_Entity (Id, First_Entity (T));
5648 Set_First_Private_Entity (Id, First_Private_Entity (T));
5649 Set_Has_Discriminants (Id, Has_Discriminants (T));
5650 Set_Is_Constrained (Id, Is_Constrained (T));
5651 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5652 Set_Last_Entity (Id, Last_Entity (T));
5654 if Is_Tagged_Type (T) then
5655 Set_No_Tagged_Streams_Pragma
5656 (Id, No_Tagged_Streams_Pragma (T));
5657 end if;
5659 if Has_Discriminants (T) then
5660 Set_Discriminant_Constraint
5661 (Id, Discriminant_Constraint (T));
5662 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5663 end if;
5665 when Incomplete_Kind =>
5666 if Ada_Version >= Ada_2005 then
5668 -- In Ada 2005 an incomplete type can be explicitly tagged:
5669 -- propagate indication. Note that we also have to include
5670 -- subtypes for Ada 2012 extended use of incomplete types.
5672 Set_Ekind (Id, E_Incomplete_Subtype);
5673 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5674 Set_Private_Dependents (Id, New_Elmt_List);
5676 if Is_Tagged_Type (Id) then
5677 Set_No_Tagged_Streams_Pragma
5678 (Id, No_Tagged_Streams_Pragma (T));
5679 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5680 end if;
5682 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5683 -- incomplete type visible through a limited with clause.
5685 if From_Limited_With (T)
5686 and then Present (Non_Limited_View (T))
5687 then
5688 Set_From_Limited_With (Id);
5689 Set_Non_Limited_View (Id, Non_Limited_View (T));
5691 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5692 -- to the private dependents of the original incomplete
5693 -- type for future transformation.
5695 else
5696 Append_Elmt (Id, Private_Dependents (T));
5697 end if;
5699 -- If the subtype name denotes an incomplete type an error
5700 -- was already reported by Process_Subtype.
5702 else
5703 Set_Etype (Id, Any_Type);
5704 end if;
5706 when others =>
5707 raise Program_Error;
5708 end case;
5710 -- If there is no constraint in the subtype indication, the
5711 -- declared entity inherits predicates from the parent.
5713 Inherit_Predicate_Flags (Id, T);
5714 end if;
5716 if Etype (Id) = Any_Type then
5717 goto Leave;
5718 end if;
5720 -- Some common processing on all types
5722 Set_Size_Info (Id, T);
5723 Set_First_Rep_Item (Id, First_Rep_Item (T));
5725 -- If the parent type is a generic actual, so is the subtype. This may
5726 -- happen in a nested instance. Why Comes_From_Source test???
5728 if not Comes_From_Source (N) then
5729 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5730 end if;
5732 -- If this is a subtype declaration for an actual in an instance,
5733 -- inherit static and dynamic predicates if any.
5735 -- If declaration has no aspect specifications, inherit predicate
5736 -- info as well. Unclear how to handle the case of both specified
5737 -- and inherited predicates ??? Other inherited aspects, such as
5738 -- invariants, should be OK, but the combination with later pragmas
5739 -- may also require special merging.
5741 if Has_Predicates (T)
5742 and then Present (Predicate_Function (T))
5743 and then
5744 ((In_Instance and then not Comes_From_Source (N))
5745 or else No (Aspect_Specifications (N)))
5746 then
5747 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5749 if Has_Static_Predicate (T) then
5750 Set_Has_Static_Predicate (Id);
5751 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5752 end if;
5753 end if;
5755 -- Remaining processing depends on characteristics of base type
5757 T := Etype (Id);
5759 Set_Is_Immediately_Visible (Id, True);
5760 Set_Depends_On_Private (Id, Has_Private_Component (T));
5761 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5763 if Is_Interface (T) then
5764 Set_Is_Interface (Id);
5765 end if;
5767 if Present (Generic_Parent_Type (N))
5768 and then
5769 (Nkind (Parent (Generic_Parent_Type (N))) /=
5770 N_Formal_Type_Declaration
5771 or else Nkind (Formal_Type_Definition
5772 (Parent (Generic_Parent_Type (N)))) /=
5773 N_Formal_Private_Type_Definition)
5774 then
5775 if Is_Tagged_Type (Id) then
5777 -- If this is a generic actual subtype for a synchronized type,
5778 -- the primitive operations are those of the corresponding record
5779 -- for which there is a separate subtype declaration.
5781 if Is_Concurrent_Type (Id) then
5782 null;
5783 elsif Is_Class_Wide_Type (Id) then
5784 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5785 else
5786 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5787 end if;
5789 elsif Scope (Etype (Id)) /= Standard_Standard then
5790 Derive_Subprograms (Generic_Parent_Type (N), Id);
5791 end if;
5792 end if;
5794 if Is_Private_Type (T) and then Present (Full_View (T)) then
5795 Conditional_Delay (Id, Full_View (T));
5797 -- The subtypes of components or subcomponents of protected types
5798 -- do not need freeze nodes, which would otherwise appear in the
5799 -- wrong scope (before the freeze node for the protected type). The
5800 -- proper subtypes are those of the subcomponents of the corresponding
5801 -- record.
5803 elsif Ekind (Scope (Id)) /= E_Protected_Type
5804 and then Present (Scope (Scope (Id))) -- error defense
5805 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5806 then
5807 Conditional_Delay (Id, T);
5808 end if;
5810 -- If we have a subtype of an incomplete type whose full type is a
5811 -- derived numeric type, we need to have a freeze node for the subtype.
5812 -- Otherwise gigi will complain while computing the (static) bounds of
5813 -- the subtype.
5815 if Is_Itype (T)
5816 and then Is_Elementary_Type (Id)
5817 and then Etype (Id) /= Id
5818 then
5819 declare
5820 Partial : constant Entity_Id :=
5821 Incomplete_Or_Partial_View (First_Subtype (Id));
5822 begin
5823 if Present (Partial)
5824 and then Ekind (Partial) = E_Incomplete_Type
5825 then
5826 Set_Has_Delayed_Freeze (Id);
5827 end if;
5828 end;
5829 end if;
5831 -- Check that Constraint_Error is raised for a scalar subtype indication
5832 -- when the lower or upper bound of a non-null range lies outside the
5833 -- range of the type mark.
5835 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5836 if Is_Scalar_Type (Etype (Id))
5837 and then Scalar_Range (Id) /=
5838 Scalar_Range
5839 (Etype (Subtype_Mark (Subtype_Indication (N))))
5840 then
5841 Apply_Range_Check
5842 (Scalar_Range (Id),
5843 Etype (Subtype_Mark (Subtype_Indication (N))));
5845 -- In the array case, check compatibility for each index
5847 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5848 then
5849 -- This really should be a subprogram that finds the indications
5850 -- to check???
5852 declare
5853 Subt_Index : Node_Id := First_Index (Id);
5854 Target_Index : Node_Id :=
5855 First_Index (Etype
5856 (Subtype_Mark (Subtype_Indication (N))));
5857 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5859 begin
5860 while Present (Subt_Index) loop
5861 if ((Nkind (Subt_Index) = N_Identifier
5862 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5863 or else Nkind (Subt_Index) = N_Subtype_Indication)
5864 and then
5865 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5866 then
5867 declare
5868 Target_Typ : constant Entity_Id :=
5869 Etype (Target_Index);
5870 begin
5871 R_Checks :=
5872 Get_Range_Checks
5873 (Scalar_Range (Etype (Subt_Index)),
5874 Target_Typ,
5875 Etype (Subt_Index),
5876 Defining_Identifier (N));
5878 -- Reset Has_Dynamic_Range_Check on the subtype to
5879 -- prevent elision of the index check due to a dynamic
5880 -- check generated for a preceding index (needed since
5881 -- Insert_Range_Checks tries to avoid generating
5882 -- redundant checks on a given declaration).
5884 Set_Has_Dynamic_Range_Check (N, False);
5886 Insert_Range_Checks
5887 (R_Checks,
5889 Target_Typ,
5890 Sloc (Defining_Identifier (N)));
5892 -- Record whether this index involved a dynamic check
5894 Has_Dyn_Chk :=
5895 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5896 end;
5897 end if;
5899 Next_Index (Subt_Index);
5900 Next_Index (Target_Index);
5901 end loop;
5903 -- Finally, mark whether the subtype involves dynamic checks
5905 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5906 end;
5907 end if;
5908 end if;
5910 Set_Optimize_Alignment_Flags (Id);
5911 Check_Eliminated (Id);
5913 <<Leave>>
5914 if Has_Aspects (N) then
5915 Analyze_Aspect_Specifications (N, Id);
5916 end if;
5918 Analyze_Dimension (N);
5920 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5921 -- indications on composite types where the constraints are dynamic.
5922 -- Note that object declarations and aggregates generate implicit
5923 -- subtype declarations, which this covers. One special case is that the
5924 -- implicitly generated "=" for discriminated types includes an
5925 -- offending subtype declaration, which is harmless, so we ignore it
5926 -- here.
5928 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5929 declare
5930 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5931 begin
5932 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5933 and then not (Is_Internal (Id)
5934 and then Is_TSS (Scope (Id),
5935 TSS_Composite_Equality))
5936 and then not Within_Init_Proc
5937 and then not All_Composite_Constraints_Static (Cstr)
5938 then
5939 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5940 end if;
5941 end;
5942 end if;
5943 end Analyze_Subtype_Declaration;
5945 --------------------------------
5946 -- Analyze_Subtype_Indication --
5947 --------------------------------
5949 procedure Analyze_Subtype_Indication (N : Node_Id) is
5950 T : constant Entity_Id := Subtype_Mark (N);
5951 R : constant Node_Id := Range_Expression (Constraint (N));
5953 begin
5954 Analyze (T);
5956 if R /= Error then
5957 Analyze (R);
5958 Set_Etype (N, Etype (R));
5959 Resolve (R, Entity (T));
5960 else
5961 Set_Error_Posted (R);
5962 Set_Error_Posted (T);
5963 end if;
5964 end Analyze_Subtype_Indication;
5966 --------------------------
5967 -- Analyze_Variant_Part --
5968 --------------------------
5970 procedure Analyze_Variant_Part (N : Node_Id) is
5971 Discr_Name : Node_Id;
5972 Discr_Type : Entity_Id;
5974 procedure Process_Variant (A : Node_Id);
5975 -- Analyze declarations for a single variant
5977 package Analyze_Variant_Choices is
5978 new Generic_Analyze_Choices (Process_Variant);
5979 use Analyze_Variant_Choices;
5981 ---------------------
5982 -- Process_Variant --
5983 ---------------------
5985 procedure Process_Variant (A : Node_Id) is
5986 CL : constant Node_Id := Component_List (A);
5987 begin
5988 if not Null_Present (CL) then
5989 Analyze_Declarations (Component_Items (CL));
5991 if Present (Variant_Part (CL)) then
5992 Analyze (Variant_Part (CL));
5993 end if;
5994 end if;
5995 end Process_Variant;
5997 -- Start of processing for Analyze_Variant_Part
5999 begin
6000 Discr_Name := Name (N);
6001 Analyze (Discr_Name);
6003 -- If Discr_Name bad, get out (prevent cascaded errors)
6005 if Etype (Discr_Name) = Any_Type then
6006 return;
6007 end if;
6009 -- Check invalid discriminant in variant part
6011 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
6012 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
6013 end if;
6015 Discr_Type := Etype (Entity (Discr_Name));
6017 if not Is_Discrete_Type (Discr_Type) then
6018 Error_Msg_N
6019 ("discriminant in a variant part must be of a discrete type",
6020 Name (N));
6021 return;
6022 end if;
6024 -- Now analyze the choices, which also analyzes the declarations that
6025 -- are associated with each choice.
6027 Analyze_Choices (Variants (N), Discr_Type);
6029 -- Note: we used to instantiate and call Check_Choices here to check
6030 -- that the choices covered the discriminant, but it's too early to do
6031 -- that because of statically predicated subtypes, whose analysis may
6032 -- be deferred to their freeze point which may be as late as the freeze
6033 -- point of the containing record. So this call is now to be found in
6034 -- Freeze_Record_Declaration.
6036 end Analyze_Variant_Part;
6038 ----------------------------
6039 -- Array_Type_Declaration --
6040 ----------------------------
6042 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
6043 Component_Def : constant Node_Id := Component_Definition (Def);
6044 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
6045 P : constant Node_Id := Parent (Def);
6046 Element_Type : Entity_Id;
6047 Implicit_Base : Entity_Id;
6048 Index : Node_Id;
6049 Nb_Index : Nat;
6050 Priv : Entity_Id;
6051 Related_Id : Entity_Id := Empty;
6053 begin
6054 if Nkind (Def) = N_Constrained_Array_Definition then
6055 Index := First (Discrete_Subtype_Definitions (Def));
6056 else
6057 Index := First (Subtype_Marks (Def));
6058 end if;
6060 -- Find proper names for the implicit types which may be public. In case
6061 -- of anonymous arrays we use the name of the first object of that type
6062 -- as prefix.
6064 if No (T) then
6065 Related_Id := Defining_Identifier (P);
6066 else
6067 Related_Id := T;
6068 end if;
6070 Nb_Index := 1;
6071 while Present (Index) loop
6072 Analyze (Index);
6074 -- Test for odd case of trying to index a type by the type itself
6076 if Is_Entity_Name (Index) and then Entity (Index) = T then
6077 Error_Msg_N ("type& cannot be indexed by itself", Index);
6078 Set_Entity (Index, Standard_Boolean);
6079 Set_Etype (Index, Standard_Boolean);
6080 end if;
6082 -- Check SPARK restriction requiring a subtype mark
6084 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
6085 Check_SPARK_05_Restriction ("subtype mark required", Index);
6086 end if;
6088 -- Add a subtype declaration for each index of private array type
6089 -- declaration whose etype is also private. For example:
6091 -- package Pkg is
6092 -- type Index is private;
6093 -- private
6094 -- type Table is array (Index) of ...
6095 -- end;
6097 -- This is currently required by the expander for the internally
6098 -- generated equality subprogram of records with variant parts in
6099 -- which the etype of some component is such private type.
6101 if Ekind (Current_Scope) = E_Package
6102 and then In_Private_Part (Current_Scope)
6103 and then Has_Private_Declaration (Etype (Index))
6104 then
6105 declare
6106 Loc : constant Source_Ptr := Sloc (Def);
6107 Decl : Entity_Id;
6108 New_E : Entity_Id;
6110 begin
6111 New_E := Make_Temporary (Loc, 'T');
6112 Set_Is_Internal (New_E);
6114 Decl :=
6115 Make_Subtype_Declaration (Loc,
6116 Defining_Identifier => New_E,
6117 Subtype_Indication =>
6118 New_Occurrence_Of (Etype (Index), Loc));
6120 Insert_Before (Parent (Def), Decl);
6121 Analyze (Decl);
6122 Set_Etype (Index, New_E);
6124 -- If the index is a range or a subtype indication it carries
6125 -- no entity. Example:
6127 -- package Pkg is
6128 -- type T is private;
6129 -- private
6130 -- type T is new Natural;
6131 -- Table : array (T(1) .. T(10)) of Boolean;
6132 -- end Pkg;
6134 -- Otherwise the type of the reference is its entity.
6136 if Is_Entity_Name (Index) then
6137 Set_Entity (Index, New_E);
6138 end if;
6139 end;
6140 end if;
6142 Make_Index (Index, P, Related_Id, Nb_Index);
6144 -- Check error of subtype with predicate for index type
6146 Bad_Predicated_Subtype_Use
6147 ("subtype& has predicate, not allowed as index subtype",
6148 Index, Etype (Index));
6150 -- Move to next index
6152 Next_Index (Index);
6153 Nb_Index := Nb_Index + 1;
6154 end loop;
6156 -- Process subtype indication if one is present
6158 if Present (Component_Typ) then
6159 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
6161 Set_Etype (Component_Typ, Element_Type);
6163 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
6164 Check_SPARK_05_Restriction
6165 ("subtype mark required", Component_Typ);
6166 end if;
6168 -- Ada 2005 (AI-230): Access Definition case
6170 else pragma Assert (Present (Access_Definition (Component_Def)));
6172 -- Indicate that the anonymous access type is created by the
6173 -- array type declaration.
6175 Element_Type := Access_Definition
6176 (Related_Nod => P,
6177 N => Access_Definition (Component_Def));
6178 Set_Is_Local_Anonymous_Access (Element_Type);
6180 -- Propagate the parent. This field is needed if we have to generate
6181 -- the master_id associated with an anonymous access to task type
6182 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6184 Set_Parent (Element_Type, Parent (T));
6186 -- Ada 2005 (AI-230): In case of components that are anonymous access
6187 -- types the level of accessibility depends on the enclosing type
6188 -- declaration
6190 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
6192 -- Ada 2005 (AI-254)
6194 declare
6195 CD : constant Node_Id :=
6196 Access_To_Subprogram_Definition
6197 (Access_Definition (Component_Def));
6198 begin
6199 if Present (CD) and then Protected_Present (CD) then
6200 Element_Type :=
6201 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
6202 end if;
6203 end;
6204 end if;
6206 -- Constrained array case
6208 if No (T) then
6209 T := Create_Itype (E_Void, P, Related_Id, 'T');
6210 end if;
6212 if Nkind (Def) = N_Constrained_Array_Definition then
6214 -- Establish Implicit_Base as unconstrained base type
6216 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
6218 Set_Etype (Implicit_Base, Implicit_Base);
6219 Set_Scope (Implicit_Base, Current_Scope);
6220 Set_Has_Delayed_Freeze (Implicit_Base);
6221 Set_Default_SSO (Implicit_Base);
6223 -- The constrained array type is a subtype of the unconstrained one
6225 Set_Ekind (T, E_Array_Subtype);
6226 Init_Size_Align (T);
6227 Set_Etype (T, Implicit_Base);
6228 Set_Scope (T, Current_Scope);
6229 Set_Is_Constrained (T);
6230 Set_First_Index (T,
6231 First (Discrete_Subtype_Definitions (Def)));
6232 Set_Has_Delayed_Freeze (T);
6234 -- Complete setup of implicit base type
6236 Set_Component_Size (Implicit_Base, Uint_0);
6237 Set_Component_Type (Implicit_Base, Element_Type);
6238 Set_Finalize_Storage_Only
6239 (Implicit_Base,
6240 Finalize_Storage_Only (Element_Type));
6241 Set_First_Index (Implicit_Base, First_Index (T));
6242 Set_Has_Controlled_Component
6243 (Implicit_Base,
6244 Has_Controlled_Component (Element_Type)
6245 or else Is_Controlled (Element_Type));
6246 Set_Packed_Array_Impl_Type
6247 (Implicit_Base, Empty);
6249 Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
6251 -- Unconstrained array case
6253 else
6254 Set_Ekind (T, E_Array_Type);
6255 Init_Size_Align (T);
6256 Set_Etype (T, T);
6257 Set_Scope (T, Current_Scope);
6258 Set_Component_Size (T, Uint_0);
6259 Set_Is_Constrained (T, False);
6260 Set_First_Index (T, First (Subtype_Marks (Def)));
6261 Set_Has_Delayed_Freeze (T, True);
6262 Propagate_Concurrent_Flags (T, Element_Type);
6263 Set_Has_Controlled_Component (T, Has_Controlled_Component
6264 (Element_Type)
6265 or else
6266 Is_Controlled (Element_Type));
6267 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
6268 (Element_Type));
6269 Set_Default_SSO (T);
6270 end if;
6272 -- Common attributes for both cases
6274 Set_Component_Type (Base_Type (T), Element_Type);
6275 Set_Packed_Array_Impl_Type (T, Empty);
6277 if Aliased_Present (Component_Definition (Def)) then
6278 Check_SPARK_05_Restriction
6279 ("aliased is not allowed", Component_Definition (Def));
6280 Set_Has_Aliased_Components (Etype (T));
6281 end if;
6283 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6284 -- array type to ensure that objects of this type are initialized.
6286 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
6287 Set_Can_Never_Be_Null (T);
6289 if Null_Exclusion_Present (Component_Definition (Def))
6291 -- No need to check itypes because in their case this check was
6292 -- done at their point of creation
6294 and then not Is_Itype (Element_Type)
6295 then
6296 Error_Msg_N
6297 ("`NOT NULL` not allowed (null already excluded)",
6298 Subtype_Indication (Component_Definition (Def)));
6299 end if;
6300 end if;
6302 Priv := Private_Component (Element_Type);
6304 if Present (Priv) then
6306 -- Check for circular definitions
6308 if Priv = Any_Type then
6309 Set_Component_Type (Etype (T), Any_Type);
6311 -- There is a gap in the visibility of operations on the composite
6312 -- type only if the component type is defined in a different scope.
6314 elsif Scope (Priv) = Current_Scope then
6315 null;
6317 elsif Is_Limited_Type (Priv) then
6318 Set_Is_Limited_Composite (Etype (T));
6319 Set_Is_Limited_Composite (T);
6320 else
6321 Set_Is_Private_Composite (Etype (T));
6322 Set_Is_Private_Composite (T);
6323 end if;
6324 end if;
6326 -- A syntax error in the declaration itself may lead to an empty index
6327 -- list, in which case do a minimal patch.
6329 if No (First_Index (T)) then
6330 Error_Msg_N ("missing index definition in array type declaration", T);
6332 declare
6333 Indexes : constant List_Id :=
6334 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
6335 begin
6336 Set_Discrete_Subtype_Definitions (Def, Indexes);
6337 Set_First_Index (T, First (Indexes));
6338 return;
6339 end;
6340 end if;
6342 -- Create a concatenation operator for the new type. Internal array
6343 -- types created for packed entities do not need such, they are
6344 -- compatible with the user-defined type.
6346 if Number_Dimensions (T) = 1
6347 and then not Is_Packed_Array_Impl_Type (T)
6348 then
6349 New_Concatenation_Op (T);
6350 end if;
6352 -- In the case of an unconstrained array the parser has already verified
6353 -- that all the indexes are unconstrained but we still need to make sure
6354 -- that the element type is constrained.
6356 if not Is_Definite_Subtype (Element_Type) then
6357 Error_Msg_N
6358 ("unconstrained element type in array declaration",
6359 Subtype_Indication (Component_Def));
6361 elsif Is_Abstract_Type (Element_Type) then
6362 Error_Msg_N
6363 ("the type of a component cannot be abstract",
6364 Subtype_Indication (Component_Def));
6365 end if;
6367 -- There may be an invariant declared for the component type, but
6368 -- the construction of the component invariant checking procedure
6369 -- takes place during expansion.
6370 end Array_Type_Declaration;
6372 ------------------------------------------------------
6373 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6374 ------------------------------------------------------
6376 function Replace_Anonymous_Access_To_Protected_Subprogram
6377 (N : Node_Id) return Entity_Id
6379 Loc : constant Source_Ptr := Sloc (N);
6381 Curr_Scope : constant Scope_Stack_Entry :=
6382 Scope_Stack.Table (Scope_Stack.Last);
6384 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
6386 Acc : Node_Id;
6387 -- Access definition in declaration
6389 Comp : Node_Id;
6390 -- Object definition or formal definition with an access definition
6392 Decl : Node_Id;
6393 -- Declaration of anonymous access to subprogram type
6395 Spec : Node_Id;
6396 -- Original specification in access to subprogram
6398 P : Node_Id;
6400 begin
6401 Set_Is_Internal (Anon);
6403 case Nkind (N) is
6404 when N_Constrained_Array_Definition
6405 | N_Component_Declaration
6406 | N_Unconstrained_Array_Definition
6408 Comp := Component_Definition (N);
6409 Acc := Access_Definition (Comp);
6411 when N_Discriminant_Specification =>
6412 Comp := Discriminant_Type (N);
6413 Acc := Comp;
6415 when N_Parameter_Specification =>
6416 Comp := Parameter_Type (N);
6417 Acc := Comp;
6419 when N_Access_Function_Definition =>
6420 Comp := Result_Definition (N);
6421 Acc := Comp;
6423 when N_Object_Declaration =>
6424 Comp := Object_Definition (N);
6425 Acc := Comp;
6427 when N_Function_Specification =>
6428 Comp := Result_Definition (N);
6429 Acc := Comp;
6431 when others =>
6432 raise Program_Error;
6433 end case;
6435 Spec := Access_To_Subprogram_Definition (Acc);
6437 Decl :=
6438 Make_Full_Type_Declaration (Loc,
6439 Defining_Identifier => Anon,
6440 Type_Definition => Copy_Separate_Tree (Spec));
6442 Mark_Rewrite_Insertion (Decl);
6444 -- In ASIS mode, analyze the profile on the original node, because
6445 -- the separate copy does not provide enough links to recover the
6446 -- original tree. Analysis is limited to type annotations, within
6447 -- a temporary scope that serves as an anonymous subprogram to collect
6448 -- otherwise useless temporaries and itypes.
6450 if ASIS_Mode then
6451 declare
6452 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
6454 begin
6455 if Nkind (Spec) = N_Access_Function_Definition then
6456 Set_Ekind (Typ, E_Function);
6457 else
6458 Set_Ekind (Typ, E_Procedure);
6459 end if;
6461 Set_Parent (Typ, N);
6462 Set_Scope (Typ, Current_Scope);
6463 Push_Scope (Typ);
6465 -- Nothing to do if procedure is parameterless
6467 if Present (Parameter_Specifications (Spec)) then
6468 Process_Formals (Parameter_Specifications (Spec), Spec);
6469 end if;
6471 if Nkind (Spec) = N_Access_Function_Definition then
6472 declare
6473 Def : constant Node_Id := Result_Definition (Spec);
6475 begin
6476 -- The result might itself be an anonymous access type, so
6477 -- have to recurse.
6479 if Nkind (Def) = N_Access_Definition then
6480 if Present (Access_To_Subprogram_Definition (Def)) then
6481 Set_Etype
6482 (Def,
6483 Replace_Anonymous_Access_To_Protected_Subprogram
6484 (Spec));
6485 else
6486 Find_Type (Subtype_Mark (Def));
6487 end if;
6489 else
6490 Find_Type (Def);
6491 end if;
6492 end;
6493 end if;
6495 End_Scope;
6496 end;
6497 end if;
6499 -- Insert the new declaration in the nearest enclosing scope. If the
6500 -- parent is a body and N is its return type, the declaration belongs
6501 -- in the enclosing scope. Likewise if N is the type of a parameter.
6503 P := Parent (N);
6505 if Nkind (N) = N_Function_Specification
6506 and then Nkind (P) = N_Subprogram_Body
6507 then
6508 P := Parent (P);
6509 elsif Nkind (N) = N_Parameter_Specification
6510 and then Nkind (P) in N_Subprogram_Specification
6511 and then Nkind (Parent (P)) = N_Subprogram_Body
6512 then
6513 P := Parent (Parent (P));
6514 end if;
6516 while Present (P) and then not Has_Declarations (P) loop
6517 P := Parent (P);
6518 end loop;
6520 pragma Assert (Present (P));
6522 if Nkind (P) = N_Package_Specification then
6523 Prepend (Decl, Visible_Declarations (P));
6524 else
6525 Prepend (Decl, Declarations (P));
6526 end if;
6528 -- Replace the anonymous type with an occurrence of the new declaration.
6529 -- In all cases the rewritten node does not have the null-exclusion
6530 -- attribute because (if present) it was already inherited by the
6531 -- anonymous entity (Anon). Thus, in case of components we do not
6532 -- inherit this attribute.
6534 if Nkind (N) = N_Parameter_Specification then
6535 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6536 Set_Etype (Defining_Identifier (N), Anon);
6537 Set_Null_Exclusion_Present (N, False);
6539 elsif Nkind (N) = N_Object_Declaration then
6540 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6541 Set_Etype (Defining_Identifier (N), Anon);
6543 elsif Nkind (N) = N_Access_Function_Definition then
6544 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6546 elsif Nkind (N) = N_Function_Specification then
6547 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6548 Set_Etype (Defining_Unit_Name (N), Anon);
6550 else
6551 Rewrite (Comp,
6552 Make_Component_Definition (Loc,
6553 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
6554 end if;
6556 Mark_Rewrite_Insertion (Comp);
6558 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
6559 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
6560 and then not Is_Type (Current_Scope))
6561 then
6563 -- Declaration can be analyzed in the current scope.
6565 Analyze (Decl);
6567 else
6568 -- Temporarily remove the current scope (record or subprogram) from
6569 -- the stack to add the new declarations to the enclosing scope.
6570 -- The anonymous entity is an Itype with the proper attributes.
6572 Scope_Stack.Decrement_Last;
6573 Analyze (Decl);
6574 Set_Is_Itype (Anon);
6575 Set_Associated_Node_For_Itype (Anon, N);
6576 Scope_Stack.Append (Curr_Scope);
6577 end if;
6579 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6580 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6581 return Anon;
6582 end Replace_Anonymous_Access_To_Protected_Subprogram;
6584 -------------------------------
6585 -- Build_Derived_Access_Type --
6586 -------------------------------
6588 procedure Build_Derived_Access_Type
6589 (N : Node_Id;
6590 Parent_Type : Entity_Id;
6591 Derived_Type : Entity_Id)
6593 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6595 Desig_Type : Entity_Id;
6596 Discr : Entity_Id;
6597 Discr_Con_Elist : Elist_Id;
6598 Discr_Con_El : Elmt_Id;
6599 Subt : Entity_Id;
6601 begin
6602 -- Set the designated type so it is available in case this is an access
6603 -- to a self-referential type, e.g. a standard list type with a next
6604 -- pointer. Will be reset after subtype is built.
6606 Set_Directly_Designated_Type
6607 (Derived_Type, Designated_Type (Parent_Type));
6609 Subt := Process_Subtype (S, N);
6611 if Nkind (S) /= N_Subtype_Indication
6612 and then Subt /= Base_Type (Subt)
6613 then
6614 Set_Ekind (Derived_Type, E_Access_Subtype);
6615 end if;
6617 if Ekind (Derived_Type) = E_Access_Subtype then
6618 declare
6619 Pbase : constant Entity_Id := Base_Type (Parent_Type);
6620 Ibase : constant Entity_Id :=
6621 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6622 Svg_Chars : constant Name_Id := Chars (Ibase);
6623 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6624 Svg_Prev_E : constant Entity_Id := Prev_Entity (Ibase);
6626 begin
6627 Copy_Node (Pbase, Ibase);
6629 -- Restore Itype status after Copy_Node
6631 Set_Is_Itype (Ibase);
6632 Set_Associated_Node_For_Itype (Ibase, N);
6634 Set_Chars (Ibase, Svg_Chars);
6635 Set_Prev_Entity (Ibase, Svg_Prev_E);
6636 Set_Next_Entity (Ibase, Svg_Next_E);
6637 Set_Sloc (Ibase, Sloc (Derived_Type));
6638 Set_Scope (Ibase, Scope (Derived_Type));
6639 Set_Freeze_Node (Ibase, Empty);
6640 Set_Is_Frozen (Ibase, False);
6641 Set_Comes_From_Source (Ibase, False);
6642 Set_Is_First_Subtype (Ibase, False);
6644 Set_Etype (Ibase, Pbase);
6645 Set_Etype (Derived_Type, Ibase);
6646 end;
6647 end if;
6649 Set_Directly_Designated_Type
6650 (Derived_Type, Designated_Type (Subt));
6652 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
6653 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6654 Set_Size_Info (Derived_Type, Parent_Type);
6655 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6656 Set_Depends_On_Private (Derived_Type,
6657 Has_Private_Component (Derived_Type));
6658 Conditional_Delay (Derived_Type, Subt);
6660 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6661 -- that it is not redundant.
6663 if Null_Exclusion_Present (Type_Definition (N)) then
6664 Set_Can_Never_Be_Null (Derived_Type);
6666 elsif Can_Never_Be_Null (Parent_Type) then
6667 Set_Can_Never_Be_Null (Derived_Type);
6668 end if;
6670 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6671 -- the root type for this information.
6673 -- Apply range checks to discriminants for derived record case
6674 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6676 Desig_Type := Designated_Type (Derived_Type);
6678 if Is_Composite_Type (Desig_Type)
6679 and then (not Is_Array_Type (Desig_Type))
6680 and then Has_Discriminants (Desig_Type)
6681 and then Base_Type (Desig_Type) /= Desig_Type
6682 then
6683 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6684 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6686 Discr := First_Discriminant (Base_Type (Desig_Type));
6687 while Present (Discr_Con_El) loop
6688 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6689 Next_Elmt (Discr_Con_El);
6690 Next_Discriminant (Discr);
6691 end loop;
6692 end if;
6693 end Build_Derived_Access_Type;
6695 ------------------------------
6696 -- Build_Derived_Array_Type --
6697 ------------------------------
6699 procedure Build_Derived_Array_Type
6700 (N : Node_Id;
6701 Parent_Type : Entity_Id;
6702 Derived_Type : Entity_Id)
6704 Loc : constant Source_Ptr := Sloc (N);
6705 Tdef : constant Node_Id := Type_Definition (N);
6706 Indic : constant Node_Id := Subtype_Indication (Tdef);
6707 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6708 Implicit_Base : Entity_Id := Empty;
6709 New_Indic : Node_Id;
6711 procedure Make_Implicit_Base;
6712 -- If the parent subtype is constrained, the derived type is a subtype
6713 -- of an implicit base type derived from the parent base.
6715 ------------------------
6716 -- Make_Implicit_Base --
6717 ------------------------
6719 procedure Make_Implicit_Base is
6720 begin
6721 Implicit_Base :=
6722 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6724 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6725 Set_Etype (Implicit_Base, Parent_Base);
6727 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6728 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6730 Set_Has_Delayed_Freeze (Implicit_Base, True);
6731 end Make_Implicit_Base;
6733 -- Start of processing for Build_Derived_Array_Type
6735 begin
6736 if not Is_Constrained (Parent_Type) then
6737 if Nkind (Indic) /= N_Subtype_Indication then
6738 Set_Ekind (Derived_Type, E_Array_Type);
6740 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6741 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6743 Set_Has_Delayed_Freeze (Derived_Type, True);
6745 else
6746 Make_Implicit_Base;
6747 Set_Etype (Derived_Type, Implicit_Base);
6749 New_Indic :=
6750 Make_Subtype_Declaration (Loc,
6751 Defining_Identifier => Derived_Type,
6752 Subtype_Indication =>
6753 Make_Subtype_Indication (Loc,
6754 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6755 Constraint => Constraint (Indic)));
6757 Rewrite (N, New_Indic);
6758 Analyze (N);
6759 end if;
6761 else
6762 if Nkind (Indic) /= N_Subtype_Indication then
6763 Make_Implicit_Base;
6765 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6766 Set_Etype (Derived_Type, Implicit_Base);
6767 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6769 else
6770 Error_Msg_N ("illegal constraint on constrained type", Indic);
6771 end if;
6772 end if;
6774 -- If parent type is not a derived type itself, and is declared in
6775 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6776 -- the new type's concatenation operator since Derive_Subprograms
6777 -- will not inherit the parent's operator. If the parent type is
6778 -- unconstrained, the operator is of the unconstrained base type.
6780 if Number_Dimensions (Parent_Type) = 1
6781 and then not Is_Limited_Type (Parent_Type)
6782 and then not Is_Derived_Type (Parent_Type)
6783 and then not Is_Package_Or_Generic_Package
6784 (Scope (Base_Type (Parent_Type)))
6785 then
6786 if not Is_Constrained (Parent_Type)
6787 and then Is_Constrained (Derived_Type)
6788 then
6789 New_Concatenation_Op (Implicit_Base);
6790 else
6791 New_Concatenation_Op (Derived_Type);
6792 end if;
6793 end if;
6794 end Build_Derived_Array_Type;
6796 -----------------------------------
6797 -- Build_Derived_Concurrent_Type --
6798 -----------------------------------
6800 procedure Build_Derived_Concurrent_Type
6801 (N : Node_Id;
6802 Parent_Type : Entity_Id;
6803 Derived_Type : Entity_Id)
6805 Loc : constant Source_Ptr := Sloc (N);
6807 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6808 Corr_Decl : Node_Id;
6809 Corr_Decl_Needed : Boolean;
6810 -- If the derived type has fewer discriminants than its parent, the
6811 -- corresponding record is also a derived type, in order to account for
6812 -- the bound discriminants. We create a full type declaration for it in
6813 -- this case.
6815 Constraint_Present : constant Boolean :=
6816 Nkind (Subtype_Indication (Type_Definition (N))) =
6817 N_Subtype_Indication;
6819 D_Constraint : Node_Id;
6820 New_Constraint : Elist_Id := No_Elist;
6821 Old_Disc : Entity_Id;
6822 New_Disc : Entity_Id;
6823 New_N : Node_Id;
6825 begin
6826 Set_Stored_Constraint (Derived_Type, No_Elist);
6827 Corr_Decl_Needed := False;
6828 Old_Disc := Empty;
6830 if Present (Discriminant_Specifications (N))
6831 and then Constraint_Present
6832 then
6833 Old_Disc := First_Discriminant (Parent_Type);
6834 New_Disc := First (Discriminant_Specifications (N));
6835 while Present (New_Disc) and then Present (Old_Disc) loop
6836 Next_Discriminant (Old_Disc);
6837 Next (New_Disc);
6838 end loop;
6839 end if;
6841 if Present (Old_Disc) and then Expander_Active then
6843 -- The new type has fewer discriminants, so we need to create a new
6844 -- corresponding record, which is derived from the corresponding
6845 -- record of the parent, and has a stored constraint that captures
6846 -- the values of the discriminant constraints. The corresponding
6847 -- record is needed only if expander is active and code generation is
6848 -- enabled.
6850 -- The type declaration for the derived corresponding record has the
6851 -- same discriminant part and constraints as the current declaration.
6852 -- Copy the unanalyzed tree to build declaration.
6854 Corr_Decl_Needed := True;
6855 New_N := Copy_Separate_Tree (N);
6857 Corr_Decl :=
6858 Make_Full_Type_Declaration (Loc,
6859 Defining_Identifier => Corr_Record,
6860 Discriminant_Specifications =>
6861 Discriminant_Specifications (New_N),
6862 Type_Definition =>
6863 Make_Derived_Type_Definition (Loc,
6864 Subtype_Indication =>
6865 Make_Subtype_Indication (Loc,
6866 Subtype_Mark =>
6867 New_Occurrence_Of
6868 (Corresponding_Record_Type (Parent_Type), Loc),
6869 Constraint =>
6870 Constraint
6871 (Subtype_Indication (Type_Definition (New_N))))));
6872 end if;
6874 -- Copy Storage_Size and Relative_Deadline variables if task case
6876 if Is_Task_Type (Parent_Type) then
6877 Set_Storage_Size_Variable (Derived_Type,
6878 Storage_Size_Variable (Parent_Type));
6879 Set_Relative_Deadline_Variable (Derived_Type,
6880 Relative_Deadline_Variable (Parent_Type));
6881 end if;
6883 if Present (Discriminant_Specifications (N)) then
6884 Push_Scope (Derived_Type);
6885 Check_Or_Process_Discriminants (N, Derived_Type);
6887 if Constraint_Present then
6888 New_Constraint :=
6889 Expand_To_Stored_Constraint
6890 (Parent_Type,
6891 Build_Discriminant_Constraints
6892 (Parent_Type,
6893 Subtype_Indication (Type_Definition (N)), True));
6894 end if;
6896 End_Scope;
6898 elsif Constraint_Present then
6900 -- Build constrained subtype, copying the constraint, and derive
6901 -- from it to create a derived constrained type.
6903 declare
6904 Loc : constant Source_Ptr := Sloc (N);
6905 Anon : constant Entity_Id :=
6906 Make_Defining_Identifier (Loc,
6907 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6908 Decl : Node_Id;
6910 begin
6911 Decl :=
6912 Make_Subtype_Declaration (Loc,
6913 Defining_Identifier => Anon,
6914 Subtype_Indication =>
6915 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6916 Insert_Before (N, Decl);
6917 Analyze (Decl);
6919 Rewrite (Subtype_Indication (Type_Definition (N)),
6920 New_Occurrence_Of (Anon, Loc));
6921 Set_Analyzed (Derived_Type, False);
6922 Analyze (N);
6923 return;
6924 end;
6925 end if;
6927 -- By default, operations and private data are inherited from parent.
6928 -- However, in the presence of bound discriminants, a new corresponding
6929 -- record will be created, see below.
6931 Set_Has_Discriminants
6932 (Derived_Type, Has_Discriminants (Parent_Type));
6933 Set_Corresponding_Record_Type
6934 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6936 -- Is_Constrained is set according the parent subtype, but is set to
6937 -- False if the derived type is declared with new discriminants.
6939 Set_Is_Constrained
6940 (Derived_Type,
6941 (Is_Constrained (Parent_Type) or else Constraint_Present)
6942 and then not Present (Discriminant_Specifications (N)));
6944 if Constraint_Present then
6945 if not Has_Discriminants (Parent_Type) then
6946 Error_Msg_N ("untagged parent must have discriminants", N);
6948 elsif Present (Discriminant_Specifications (N)) then
6950 -- Verify that new discriminants are used to constrain old ones
6952 D_Constraint :=
6953 First
6954 (Constraints
6955 (Constraint (Subtype_Indication (Type_Definition (N)))));
6957 Old_Disc := First_Discriminant (Parent_Type);
6959 while Present (D_Constraint) loop
6960 if Nkind (D_Constraint) /= N_Discriminant_Association then
6962 -- Positional constraint. If it is a reference to a new
6963 -- discriminant, it constrains the corresponding old one.
6965 if Nkind (D_Constraint) = N_Identifier then
6966 New_Disc := First_Discriminant (Derived_Type);
6967 while Present (New_Disc) loop
6968 exit when Chars (New_Disc) = Chars (D_Constraint);
6969 Next_Discriminant (New_Disc);
6970 end loop;
6972 if Present (New_Disc) then
6973 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6974 end if;
6975 end if;
6977 Next_Discriminant (Old_Disc);
6979 -- if this is a named constraint, search by name for the old
6980 -- discriminants constrained by the new one.
6982 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6984 -- Find new discriminant with that name
6986 New_Disc := First_Discriminant (Derived_Type);
6987 while Present (New_Disc) loop
6988 exit when
6989 Chars (New_Disc) = Chars (Expression (D_Constraint));
6990 Next_Discriminant (New_Disc);
6991 end loop;
6993 if Present (New_Disc) then
6995 -- Verify that new discriminant renames some discriminant
6996 -- of the parent type, and associate the new discriminant
6997 -- with one or more old ones that it renames.
6999 declare
7000 Selector : Node_Id;
7002 begin
7003 Selector := First (Selector_Names (D_Constraint));
7004 while Present (Selector) loop
7005 Old_Disc := First_Discriminant (Parent_Type);
7006 while Present (Old_Disc) loop
7007 exit when Chars (Old_Disc) = Chars (Selector);
7008 Next_Discriminant (Old_Disc);
7009 end loop;
7011 if Present (Old_Disc) then
7012 Set_Corresponding_Discriminant
7013 (New_Disc, Old_Disc);
7014 end if;
7016 Next (Selector);
7017 end loop;
7018 end;
7019 end if;
7020 end if;
7022 Next (D_Constraint);
7023 end loop;
7025 New_Disc := First_Discriminant (Derived_Type);
7026 while Present (New_Disc) loop
7027 if No (Corresponding_Discriminant (New_Disc)) then
7028 Error_Msg_NE
7029 ("new discriminant& must constrain old one", N, New_Disc);
7031 elsif not
7032 Subtypes_Statically_Compatible
7033 (Etype (New_Disc),
7034 Etype (Corresponding_Discriminant (New_Disc)))
7035 then
7036 Error_Msg_NE
7037 ("& not statically compatible with parent discriminant",
7038 N, New_Disc);
7039 end if;
7041 Next_Discriminant (New_Disc);
7042 end loop;
7043 end if;
7045 elsif Present (Discriminant_Specifications (N)) then
7046 Error_Msg_N
7047 ("missing discriminant constraint in untagged derivation", N);
7048 end if;
7050 -- The entity chain of the derived type includes the new discriminants
7051 -- but shares operations with the parent.
7053 if Present (Discriminant_Specifications (N)) then
7054 Old_Disc := First_Discriminant (Parent_Type);
7055 while Present (Old_Disc) loop
7056 if No (Next_Entity (Old_Disc))
7057 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
7058 then
7059 Link_Entities
7060 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
7061 exit;
7062 end if;
7064 Next_Discriminant (Old_Disc);
7065 end loop;
7067 else
7068 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
7069 if Has_Discriminants (Parent_Type) then
7070 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7071 Set_Discriminant_Constraint (
7072 Derived_Type, Discriminant_Constraint (Parent_Type));
7073 end if;
7074 end if;
7076 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
7078 Set_Has_Completion (Derived_Type);
7080 if Corr_Decl_Needed then
7081 Set_Stored_Constraint (Derived_Type, New_Constraint);
7082 Insert_After (N, Corr_Decl);
7083 Analyze (Corr_Decl);
7084 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
7085 end if;
7086 end Build_Derived_Concurrent_Type;
7088 ------------------------------------
7089 -- Build_Derived_Enumeration_Type --
7090 ------------------------------------
7092 procedure Build_Derived_Enumeration_Type
7093 (N : Node_Id;
7094 Parent_Type : Entity_Id;
7095 Derived_Type : Entity_Id)
7097 Loc : constant Source_Ptr := Sloc (N);
7098 Def : constant Node_Id := Type_Definition (N);
7099 Indic : constant Node_Id := Subtype_Indication (Def);
7100 Implicit_Base : Entity_Id;
7101 Literal : Entity_Id;
7102 New_Lit : Entity_Id;
7103 Literals_List : List_Id;
7104 Type_Decl : Node_Id;
7105 Hi, Lo : Node_Id;
7106 Rang_Expr : Node_Id;
7108 begin
7109 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
7110 -- not have explicit literals lists we need to process types derived
7111 -- from them specially. This is handled by Derived_Standard_Character.
7112 -- If the parent type is a generic type, there are no literals either,
7113 -- and we construct the same skeletal representation as for the generic
7114 -- parent type.
7116 if Is_Standard_Character_Type (Parent_Type) then
7117 Derived_Standard_Character (N, Parent_Type, Derived_Type);
7119 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
7120 declare
7121 Lo : Node_Id;
7122 Hi : Node_Id;
7124 begin
7125 if Nkind (Indic) /= N_Subtype_Indication then
7126 Lo :=
7127 Make_Attribute_Reference (Loc,
7128 Attribute_Name => Name_First,
7129 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7130 Set_Etype (Lo, Derived_Type);
7132 Hi :=
7133 Make_Attribute_Reference (Loc,
7134 Attribute_Name => Name_Last,
7135 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7136 Set_Etype (Hi, Derived_Type);
7138 Set_Scalar_Range (Derived_Type,
7139 Make_Range (Loc,
7140 Low_Bound => Lo,
7141 High_Bound => Hi));
7142 else
7144 -- Analyze subtype indication and verify compatibility
7145 -- with parent type.
7147 if Base_Type (Process_Subtype (Indic, N)) /=
7148 Base_Type (Parent_Type)
7149 then
7150 Error_Msg_N
7151 ("illegal constraint for formal discrete type", N);
7152 end if;
7153 end if;
7154 end;
7156 else
7157 -- If a constraint is present, analyze the bounds to catch
7158 -- premature usage of the derived literals.
7160 if Nkind (Indic) = N_Subtype_Indication
7161 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
7162 then
7163 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
7164 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
7165 end if;
7167 -- Introduce an implicit base type for the derived type even if there
7168 -- is no constraint attached to it, since this seems closer to the
7169 -- Ada semantics. Build a full type declaration tree for the derived
7170 -- type using the implicit base type as the defining identifier. The
7171 -- build a subtype declaration tree which applies the constraint (if
7172 -- any) have it replace the derived type declaration.
7174 Literal := First_Literal (Parent_Type);
7175 Literals_List := New_List;
7176 while Present (Literal)
7177 and then Ekind (Literal) = E_Enumeration_Literal
7178 loop
7179 -- Literals of the derived type have the same representation as
7180 -- those of the parent type, but this representation can be
7181 -- overridden by an explicit representation clause. Indicate
7182 -- that there is no explicit representation given yet. These
7183 -- derived literals are implicit operations of the new type,
7184 -- and can be overridden by explicit ones.
7186 if Nkind (Literal) = N_Defining_Character_Literal then
7187 New_Lit :=
7188 Make_Defining_Character_Literal (Loc, Chars (Literal));
7189 else
7190 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
7191 end if;
7193 Set_Ekind (New_Lit, E_Enumeration_Literal);
7194 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
7195 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
7196 Set_Enumeration_Rep_Expr (New_Lit, Empty);
7197 Set_Alias (New_Lit, Literal);
7198 Set_Is_Known_Valid (New_Lit, True);
7200 Append (New_Lit, Literals_List);
7201 Next_Literal (Literal);
7202 end loop;
7204 Implicit_Base :=
7205 Make_Defining_Identifier (Sloc (Derived_Type),
7206 Chars => New_External_Name (Chars (Derived_Type), 'B'));
7208 -- Indicate the proper nature of the derived type. This must be done
7209 -- before analysis of the literals, to recognize cases when a literal
7210 -- may be hidden by a previous explicit function definition (cf.
7211 -- c83031a).
7213 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
7214 Set_Etype (Derived_Type, Implicit_Base);
7216 Type_Decl :=
7217 Make_Full_Type_Declaration (Loc,
7218 Defining_Identifier => Implicit_Base,
7219 Discriminant_Specifications => No_List,
7220 Type_Definition =>
7221 Make_Enumeration_Type_Definition (Loc, Literals_List));
7223 Mark_Rewrite_Insertion (Type_Decl);
7224 Insert_Before (N, Type_Decl);
7225 Analyze (Type_Decl);
7227 -- The anonymous base now has a full declaration, but this base
7228 -- is not a first subtype.
7230 Set_Is_First_Subtype (Implicit_Base, False);
7232 -- After the implicit base is analyzed its Etype needs to be changed
7233 -- to reflect the fact that it is derived from the parent type which
7234 -- was ignored during analysis. We also set the size at this point.
7236 Set_Etype (Implicit_Base, Parent_Type);
7238 Set_Size_Info (Implicit_Base, Parent_Type);
7239 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
7240 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
7242 -- Copy other flags from parent type
7244 Set_Has_Non_Standard_Rep
7245 (Implicit_Base, Has_Non_Standard_Rep
7246 (Parent_Type));
7247 Set_Has_Pragma_Ordered
7248 (Implicit_Base, Has_Pragma_Ordered
7249 (Parent_Type));
7250 Set_Has_Delayed_Freeze (Implicit_Base);
7252 -- Process the subtype indication including a validation check on the
7253 -- constraint, if any. If a constraint is given, its bounds must be
7254 -- implicitly converted to the new type.
7256 if Nkind (Indic) = N_Subtype_Indication then
7257 declare
7258 R : constant Node_Id :=
7259 Range_Expression (Constraint (Indic));
7261 begin
7262 if Nkind (R) = N_Range then
7263 Hi := Build_Scalar_Bound
7264 (High_Bound (R), Parent_Type, Implicit_Base);
7265 Lo := Build_Scalar_Bound
7266 (Low_Bound (R), Parent_Type, Implicit_Base);
7268 else
7269 -- Constraint is a Range attribute. Replace with explicit
7270 -- mention of the bounds of the prefix, which must be a
7271 -- subtype.
7273 Analyze (Prefix (R));
7274 Hi :=
7275 Convert_To (Implicit_Base,
7276 Make_Attribute_Reference (Loc,
7277 Attribute_Name => Name_Last,
7278 Prefix =>
7279 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7281 Lo :=
7282 Convert_To (Implicit_Base,
7283 Make_Attribute_Reference (Loc,
7284 Attribute_Name => Name_First,
7285 Prefix =>
7286 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7287 end if;
7288 end;
7290 else
7291 Hi :=
7292 Build_Scalar_Bound
7293 (Type_High_Bound (Parent_Type),
7294 Parent_Type, Implicit_Base);
7295 Lo :=
7296 Build_Scalar_Bound
7297 (Type_Low_Bound (Parent_Type),
7298 Parent_Type, Implicit_Base);
7299 end if;
7301 Rang_Expr :=
7302 Make_Range (Loc,
7303 Low_Bound => Lo,
7304 High_Bound => Hi);
7306 -- If we constructed a default range for the case where no range
7307 -- was given, then the expressions in the range must not freeze
7308 -- since they do not correspond to expressions in the source.
7309 -- However, if the type inherits predicates the expressions will
7310 -- be elaborated earlier and must freeze.
7312 if Nkind (Indic) /= N_Subtype_Indication
7313 and then not Has_Predicates (Derived_Type)
7314 then
7315 Set_Must_Not_Freeze (Lo);
7316 Set_Must_Not_Freeze (Hi);
7317 Set_Must_Not_Freeze (Rang_Expr);
7318 end if;
7320 Rewrite (N,
7321 Make_Subtype_Declaration (Loc,
7322 Defining_Identifier => Derived_Type,
7323 Subtype_Indication =>
7324 Make_Subtype_Indication (Loc,
7325 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7326 Constraint =>
7327 Make_Range_Constraint (Loc,
7328 Range_Expression => Rang_Expr))));
7330 Analyze (N);
7332 -- Propagate the aspects from the original type declaration to the
7333 -- declaration of the implicit base.
7335 Move_Aspects (From => Original_Node (N), To => Type_Decl);
7337 -- Apply a range check. Since this range expression doesn't have an
7338 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7339 -- this right???
7341 if Nkind (Indic) = N_Subtype_Indication then
7342 Apply_Range_Check
7343 (Range_Expression (Constraint (Indic)), Parent_Type,
7344 Source_Typ => Entity (Subtype_Mark (Indic)));
7345 end if;
7346 end if;
7347 end Build_Derived_Enumeration_Type;
7349 --------------------------------
7350 -- Build_Derived_Numeric_Type --
7351 --------------------------------
7353 procedure Build_Derived_Numeric_Type
7354 (N : Node_Id;
7355 Parent_Type : Entity_Id;
7356 Derived_Type : Entity_Id)
7358 Loc : constant Source_Ptr := Sloc (N);
7359 Tdef : constant Node_Id := Type_Definition (N);
7360 Indic : constant Node_Id := Subtype_Indication (Tdef);
7361 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7362 No_Constraint : constant Boolean := Nkind (Indic) /=
7363 N_Subtype_Indication;
7364 Implicit_Base : Entity_Id;
7366 Lo : Node_Id;
7367 Hi : Node_Id;
7369 begin
7370 -- Process the subtype indication including a validation check on
7371 -- the constraint if any.
7373 Discard_Node (Process_Subtype (Indic, N));
7375 -- Introduce an implicit base type for the derived type even if there
7376 -- is no constraint attached to it, since this seems closer to the Ada
7377 -- semantics.
7379 Implicit_Base :=
7380 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
7382 Set_Etype (Implicit_Base, Parent_Base);
7383 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
7384 Set_Size_Info (Implicit_Base, Parent_Base);
7385 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
7386 Set_Parent (Implicit_Base, Parent (Derived_Type));
7387 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
7389 -- Set RM Size for discrete type or decimal fixed-point type
7390 -- Ordinary fixed-point is excluded, why???
7392 if Is_Discrete_Type (Parent_Base)
7393 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
7394 then
7395 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
7396 end if;
7398 Set_Has_Delayed_Freeze (Implicit_Base);
7400 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
7401 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
7403 Set_Scalar_Range (Implicit_Base,
7404 Make_Range (Loc,
7405 Low_Bound => Lo,
7406 High_Bound => Hi));
7408 if Has_Infinities (Parent_Base) then
7409 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
7410 end if;
7412 -- The Derived_Type, which is the entity of the declaration, is a
7413 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7414 -- absence of an explicit constraint.
7416 Set_Etype (Derived_Type, Implicit_Base);
7418 -- If we did not have a constraint, then the Ekind is set from the
7419 -- parent type (otherwise Process_Subtype has set the bounds)
7421 if No_Constraint then
7422 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
7423 end if;
7425 -- If we did not have a range constraint, then set the range from the
7426 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7428 if No_Constraint or else not Has_Range_Constraint (Indic) then
7429 Set_Scalar_Range (Derived_Type,
7430 Make_Range (Loc,
7431 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
7432 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
7433 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7435 if Has_Infinities (Parent_Type) then
7436 Set_Includes_Infinities (Scalar_Range (Derived_Type));
7437 end if;
7439 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
7440 end if;
7442 Set_Is_Descendant_Of_Address (Derived_Type,
7443 Is_Descendant_Of_Address (Parent_Type));
7444 Set_Is_Descendant_Of_Address (Implicit_Base,
7445 Is_Descendant_Of_Address (Parent_Type));
7447 -- Set remaining type-specific fields, depending on numeric type
7449 if Is_Modular_Integer_Type (Parent_Type) then
7450 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
7452 Set_Non_Binary_Modulus
7453 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
7455 Set_Is_Known_Valid
7456 (Implicit_Base, Is_Known_Valid (Parent_Base));
7458 elsif Is_Floating_Point_Type (Parent_Type) then
7460 -- Digits of base type is always copied from the digits value of
7461 -- the parent base type, but the digits of the derived type will
7462 -- already have been set if there was a constraint present.
7464 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7465 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
7467 if No_Constraint then
7468 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
7469 end if;
7471 elsif Is_Fixed_Point_Type (Parent_Type) then
7473 -- Small of base type and derived type are always copied from the
7474 -- parent base type, since smalls never change. The delta of the
7475 -- base type is also copied from the parent base type. However the
7476 -- delta of the derived type will have been set already if a
7477 -- constraint was present.
7479 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
7480 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
7481 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
7483 if No_Constraint then
7484 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
7485 end if;
7487 -- The scale and machine radix in the decimal case are always
7488 -- copied from the parent base type.
7490 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
7491 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
7492 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
7494 Set_Machine_Radix_10
7495 (Derived_Type, Machine_Radix_10 (Parent_Base));
7496 Set_Machine_Radix_10
7497 (Implicit_Base, Machine_Radix_10 (Parent_Base));
7499 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7501 if No_Constraint then
7502 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
7504 else
7505 -- the analysis of the subtype_indication sets the
7506 -- digits value of the derived type.
7508 null;
7509 end if;
7510 end if;
7511 end if;
7513 if Is_Integer_Type (Parent_Type) then
7514 Set_Has_Shift_Operator
7515 (Implicit_Base, Has_Shift_Operator (Parent_Type));
7516 end if;
7518 -- The type of the bounds is that of the parent type, and they
7519 -- must be converted to the derived type.
7521 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
7523 -- The implicit_base should be frozen when the derived type is frozen,
7524 -- but note that it is used in the conversions of the bounds. For fixed
7525 -- types we delay the determination of the bounds until the proper
7526 -- freezing point. For other numeric types this is rejected by GCC, for
7527 -- reasons that are currently unclear (???), so we choose to freeze the
7528 -- implicit base now. In the case of integers and floating point types
7529 -- this is harmless because subsequent representation clauses cannot
7530 -- affect anything, but it is still baffling that we cannot use the
7531 -- same mechanism for all derived numeric types.
7533 -- There is a further complication: actually some representation
7534 -- clauses can affect the implicit base type. For example, attribute
7535 -- definition clauses for stream-oriented attributes need to set the
7536 -- corresponding TSS entries on the base type, and this normally
7537 -- cannot be done after the base type is frozen, so the circuitry in
7538 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7539 -- and not use Set_TSS in this case.
7541 -- There are also consequences for the case of delayed representation
7542 -- aspects for some cases. For example, a Size aspect is delayed and
7543 -- should not be evaluated to the freeze point. This early freezing
7544 -- means that the size attribute evaluation happens too early???
7546 if Is_Fixed_Point_Type (Parent_Type) then
7547 Conditional_Delay (Implicit_Base, Parent_Type);
7548 else
7549 Freeze_Before (N, Implicit_Base);
7550 end if;
7551 end Build_Derived_Numeric_Type;
7553 --------------------------------
7554 -- Build_Derived_Private_Type --
7555 --------------------------------
7557 procedure Build_Derived_Private_Type
7558 (N : Node_Id;
7559 Parent_Type : Entity_Id;
7560 Derived_Type : Entity_Id;
7561 Is_Completion : Boolean;
7562 Derive_Subps : Boolean := True)
7564 Loc : constant Source_Ptr := Sloc (N);
7565 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
7566 Par_Scope : constant Entity_Id := Scope (Par_Base);
7567 Full_N : constant Node_Id := New_Copy_Tree (N);
7568 Full_Der : Entity_Id := New_Copy (Derived_Type);
7569 Full_P : Entity_Id;
7571 procedure Build_Full_Derivation;
7572 -- Build full derivation, i.e. derive from the full view
7574 procedure Copy_And_Build;
7575 -- Copy derived type declaration, replace parent with its full view,
7576 -- and build derivation
7578 ---------------------------
7579 -- Build_Full_Derivation --
7580 ---------------------------
7582 procedure Build_Full_Derivation is
7583 begin
7584 -- If parent scope is not open, install the declarations
7586 if not In_Open_Scopes (Par_Scope) then
7587 Install_Private_Declarations (Par_Scope);
7588 Install_Visible_Declarations (Par_Scope);
7589 Copy_And_Build;
7590 Uninstall_Declarations (Par_Scope);
7592 -- If parent scope is open and in another unit, and parent has a
7593 -- completion, then the derivation is taking place in the visible
7594 -- part of a child unit. In that case retrieve the full view of
7595 -- the parent momentarily.
7597 elsif not In_Same_Source_Unit (N, Parent_Type) then
7598 Full_P := Full_View (Parent_Type);
7599 Exchange_Declarations (Parent_Type);
7600 Copy_And_Build;
7601 Exchange_Declarations (Full_P);
7603 -- Otherwise it is a local derivation
7605 else
7606 Copy_And_Build;
7607 end if;
7608 end Build_Full_Derivation;
7610 --------------------
7611 -- Copy_And_Build --
7612 --------------------
7614 procedure Copy_And_Build is
7615 Full_Parent : Entity_Id := Parent_Type;
7617 begin
7618 -- If the parent is itself derived from another private type,
7619 -- installing the private declarations has not affected its
7620 -- privacy status, so use its own full view explicitly.
7622 if Is_Private_Type (Full_Parent)
7623 and then Present (Full_View (Full_Parent))
7624 then
7625 Full_Parent := Full_View (Full_Parent);
7626 end if;
7628 -- And its underlying full view if necessary
7630 if Is_Private_Type (Full_Parent)
7631 and then Present (Underlying_Full_View (Full_Parent))
7632 then
7633 Full_Parent := Underlying_Full_View (Full_Parent);
7634 end if;
7636 -- For record, access and most enumeration types, derivation from
7637 -- the full view requires a fully-fledged declaration. In the other
7638 -- cases, just use an itype.
7640 if Ekind (Full_Parent) in Record_Kind
7641 or else Ekind (Full_Parent) in Access_Kind
7642 or else
7643 (Ekind (Full_Parent) in Enumeration_Kind
7644 and then not Is_Standard_Character_Type (Full_Parent)
7645 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7646 then
7647 -- Copy and adjust declaration to provide a completion for what
7648 -- is originally a private declaration. Indicate that full view
7649 -- is internally generated.
7651 Set_Comes_From_Source (Full_N, False);
7652 Set_Comes_From_Source (Full_Der, False);
7653 Set_Parent (Full_Der, Full_N);
7654 Set_Defining_Identifier (Full_N, Full_Der);
7656 -- If there are no constraints, adjust the subtype mark
7658 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7659 N_Subtype_Indication
7660 then
7661 Set_Subtype_Indication
7662 (Type_Definition (Full_N),
7663 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7664 end if;
7666 Insert_After (N, Full_N);
7668 -- Build full view of derived type from full view of parent which
7669 -- is now installed. Subprograms have been derived on the partial
7670 -- view, the completion does not derive them anew.
7672 if Ekind (Full_Parent) in Record_Kind then
7674 -- If parent type is tagged, the completion inherits the proper
7675 -- primitive operations.
7677 if Is_Tagged_Type (Parent_Type) then
7678 Build_Derived_Record_Type
7679 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7680 else
7681 Build_Derived_Record_Type
7682 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7683 end if;
7685 else
7686 Build_Derived_Type
7687 (Full_N, Full_Parent, Full_Der,
7688 Is_Completion => False, Derive_Subps => False);
7689 end if;
7691 -- The full declaration has been introduced into the tree and
7692 -- processed in the step above. It should not be analyzed again
7693 -- (when encountered later in the current list of declarations)
7694 -- to prevent spurious name conflicts. The full entity remains
7695 -- invisible.
7697 Set_Analyzed (Full_N);
7699 else
7700 Full_Der :=
7701 Make_Defining_Identifier (Sloc (Derived_Type),
7702 Chars => Chars (Derived_Type));
7703 Set_Is_Itype (Full_Der);
7704 Set_Associated_Node_For_Itype (Full_Der, N);
7705 Set_Parent (Full_Der, N);
7706 Build_Derived_Type
7707 (N, Full_Parent, Full_Der,
7708 Is_Completion => False, Derive_Subps => False);
7709 end if;
7711 Set_Has_Private_Declaration (Full_Der);
7712 Set_Has_Private_Declaration (Derived_Type);
7714 Set_Scope (Full_Der, Scope (Derived_Type));
7715 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7716 Set_Has_Size_Clause (Full_Der, False);
7717 Set_Has_Alignment_Clause (Full_Der, False);
7718 Set_Has_Delayed_Freeze (Full_Der);
7719 Set_Is_Frozen (Full_Der, False);
7720 Set_Freeze_Node (Full_Der, Empty);
7721 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7722 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7724 -- The convention on the base type may be set in the private part
7725 -- and not propagated to the subtype until later, so we obtain the
7726 -- convention from the base type of the parent.
7728 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7729 end Copy_And_Build;
7731 -- Start of processing for Build_Derived_Private_Type
7733 begin
7734 if Is_Tagged_Type (Parent_Type) then
7735 Full_P := Full_View (Parent_Type);
7737 -- A type extension of a type with unknown discriminants is an
7738 -- indefinite type that the back-end cannot handle directly.
7739 -- We treat it as a private type, and build a completion that is
7740 -- derived from the full view of the parent, and hopefully has
7741 -- known discriminants.
7743 -- If the full view of the parent type has an underlying record view,
7744 -- use it to generate the underlying record view of this derived type
7745 -- (required for chains of derivations with unknown discriminants).
7747 -- Minor optimization: we avoid the generation of useless underlying
7748 -- record view entities if the private type declaration has unknown
7749 -- discriminants but its corresponding full view has no
7750 -- discriminants.
7752 if Has_Unknown_Discriminants (Parent_Type)
7753 and then Present (Full_P)
7754 and then (Has_Discriminants (Full_P)
7755 or else Present (Underlying_Record_View (Full_P)))
7756 and then not In_Open_Scopes (Par_Scope)
7757 and then Expander_Active
7758 then
7759 declare
7760 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7761 New_Ext : constant Node_Id :=
7762 Copy_Separate_Tree
7763 (Record_Extension_Part (Type_Definition (N)));
7764 Decl : Node_Id;
7766 begin
7767 Build_Derived_Record_Type
7768 (N, Parent_Type, Derived_Type, Derive_Subps);
7770 -- Build anonymous completion, as a derivation from the full
7771 -- view of the parent. This is not a completion in the usual
7772 -- sense, because the current type is not private.
7774 Decl :=
7775 Make_Full_Type_Declaration (Loc,
7776 Defining_Identifier => Full_Der,
7777 Type_Definition =>
7778 Make_Derived_Type_Definition (Loc,
7779 Subtype_Indication =>
7780 New_Copy_Tree
7781 (Subtype_Indication (Type_Definition (N))),
7782 Record_Extension_Part => New_Ext));
7784 -- If the parent type has an underlying record view, use it
7785 -- here to build the new underlying record view.
7787 if Present (Underlying_Record_View (Full_P)) then
7788 pragma Assert
7789 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7790 = N_Identifier);
7791 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7792 Underlying_Record_View (Full_P));
7793 end if;
7795 Install_Private_Declarations (Par_Scope);
7796 Install_Visible_Declarations (Par_Scope);
7797 Insert_Before (N, Decl);
7799 -- Mark entity as an underlying record view before analysis,
7800 -- to avoid generating the list of its primitive operations
7801 -- (which is not really required for this entity) and thus
7802 -- prevent spurious errors associated with missing overriding
7803 -- of abstract primitives (overridden only for Derived_Type).
7805 Set_Ekind (Full_Der, E_Record_Type);
7806 Set_Is_Underlying_Record_View (Full_Der);
7807 Set_Default_SSO (Full_Der);
7808 Set_No_Reordering (Full_Der, No_Component_Reordering);
7810 Analyze (Decl);
7812 pragma Assert (Has_Discriminants (Full_Der)
7813 and then not Has_Unknown_Discriminants (Full_Der));
7815 Uninstall_Declarations (Par_Scope);
7817 -- Freeze the underlying record view, to prevent generation of
7818 -- useless dispatching information, which is simply shared with
7819 -- the real derived type.
7821 Set_Is_Frozen (Full_Der);
7823 -- If the derived type has access discriminants, create
7824 -- references to their anonymous types now, to prevent
7825 -- back-end problems when their first use is in generated
7826 -- bodies of primitives.
7828 declare
7829 E : Entity_Id;
7831 begin
7832 E := First_Entity (Full_Der);
7834 while Present (E) loop
7835 if Ekind (E) = E_Discriminant
7836 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7837 then
7838 Build_Itype_Reference (Etype (E), Decl);
7839 end if;
7841 Next_Entity (E);
7842 end loop;
7843 end;
7845 -- Set up links between real entity and underlying record view
7847 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7848 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7849 end;
7851 -- If discriminants are known, build derived record
7853 else
7854 Build_Derived_Record_Type
7855 (N, Parent_Type, Derived_Type, Derive_Subps);
7856 end if;
7858 return;
7860 elsif Has_Discriminants (Parent_Type) then
7862 -- Build partial view of derived type from partial view of parent.
7863 -- This must be done before building the full derivation because the
7864 -- second derivation will modify the discriminants of the first and
7865 -- the discriminants are chained with the rest of the components in
7866 -- the full derivation.
7868 Build_Derived_Record_Type
7869 (N, Parent_Type, Derived_Type, Derive_Subps);
7871 -- Build the full derivation if this is not the anonymous derived
7872 -- base type created by Build_Derived_Record_Type in the constrained
7873 -- case (see point 5. of its head comment) since we build it for the
7874 -- derived subtype. And skip it for synchronized types altogether, as
7875 -- gigi does not use these types directly.
7877 if Present (Full_View (Parent_Type))
7878 and then not Is_Itype (Derived_Type)
7879 and then not Is_Concurrent_Type (Full_View (Parent_Type))
7880 then
7881 declare
7882 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7883 Discr : Entity_Id;
7884 Last_Discr : Entity_Id;
7886 begin
7887 -- If this is not a completion, construct the implicit full
7888 -- view by deriving from the full view of the parent type.
7889 -- But if this is a completion, the derived private type
7890 -- being built is a full view and the full derivation can
7891 -- only be its underlying full view.
7893 Build_Full_Derivation;
7895 if not Is_Completion then
7896 Set_Full_View (Derived_Type, Full_Der);
7897 else
7898 Set_Underlying_Full_View (Derived_Type, Full_Der);
7899 Set_Is_Underlying_Full_View (Full_Der);
7900 end if;
7902 if not Is_Base_Type (Derived_Type) then
7903 Set_Full_View (Der_Base, Base_Type (Full_Der));
7904 end if;
7906 -- Copy the discriminant list from full view to the partial
7907 -- view (base type and its subtype). Gigi requires that the
7908 -- partial and full views have the same discriminants.
7910 -- Note that since the partial view points to discriminants
7911 -- in the full view, their scope will be that of the full
7912 -- view. This might cause some front end problems and need
7913 -- adjustment???
7915 Discr := First_Discriminant (Base_Type (Full_Der));
7916 Set_First_Entity (Der_Base, Discr);
7918 loop
7919 Last_Discr := Discr;
7920 Next_Discriminant (Discr);
7921 exit when No (Discr);
7922 end loop;
7924 Set_Last_Entity (Der_Base, Last_Discr);
7925 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7926 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7927 end;
7928 end if;
7930 elsif Present (Full_View (Parent_Type))
7931 and then Has_Discriminants (Full_View (Parent_Type))
7932 then
7933 if Has_Unknown_Discriminants (Parent_Type)
7934 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7935 N_Subtype_Indication
7936 then
7937 Error_Msg_N
7938 ("cannot constrain type with unknown discriminants",
7939 Subtype_Indication (Type_Definition (N)));
7940 return;
7941 end if;
7943 -- If this is not a completion, construct the implicit full view by
7944 -- deriving from the full view of the parent type. But if this is a
7945 -- completion, the derived private type being built is a full view
7946 -- and the full derivation can only be its underlying full view.
7948 Build_Full_Derivation;
7950 if not Is_Completion then
7951 Set_Full_View (Derived_Type, Full_Der);
7952 else
7953 Set_Underlying_Full_View (Derived_Type, Full_Der);
7954 Set_Is_Underlying_Full_View (Full_Der);
7955 end if;
7957 -- In any case, the primitive operations are inherited from the
7958 -- parent type, not from the internal full view.
7960 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7962 if Derive_Subps then
7963 Derive_Subprograms (Parent_Type, Derived_Type);
7964 end if;
7966 Set_Stored_Constraint (Derived_Type, No_Elist);
7967 Set_Is_Constrained
7968 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7970 else
7971 -- Untagged type, No discriminants on either view
7973 if Nkind (Subtype_Indication (Type_Definition (N))) =
7974 N_Subtype_Indication
7975 then
7976 Error_Msg_N
7977 ("illegal constraint on type without discriminants", N);
7978 end if;
7980 if Present (Discriminant_Specifications (N))
7981 and then Present (Full_View (Parent_Type))
7982 and then not Is_Tagged_Type (Full_View (Parent_Type))
7983 then
7984 Error_Msg_N ("cannot add discriminants to untagged type", N);
7985 end if;
7987 Set_Stored_Constraint (Derived_Type, No_Elist);
7988 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7990 Set_Is_Controlled_Active
7991 (Derived_Type, Is_Controlled_Active (Parent_Type));
7993 Set_Disable_Controlled
7994 (Derived_Type, Disable_Controlled (Parent_Type));
7996 Set_Has_Controlled_Component
7997 (Derived_Type, Has_Controlled_Component (Parent_Type));
7999 -- Direct controlled types do not inherit Finalize_Storage_Only flag
8001 if not Is_Controlled (Parent_Type) then
8002 Set_Finalize_Storage_Only
8003 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
8004 end if;
8006 -- If this is not a completion, construct the implicit full view by
8007 -- deriving from the full view of the parent type.
8009 -- ??? If the parent is untagged private and its completion is
8010 -- tagged, this mechanism will not work because we cannot derive from
8011 -- the tagged full view unless we have an extension.
8013 if Present (Full_View (Parent_Type))
8014 and then not Is_Tagged_Type (Full_View (Parent_Type))
8015 and then not Is_Completion
8016 then
8017 Build_Full_Derivation;
8018 Set_Full_View (Derived_Type, Full_Der);
8019 end if;
8020 end if;
8022 Set_Has_Unknown_Discriminants (Derived_Type,
8023 Has_Unknown_Discriminants (Parent_Type));
8025 if Is_Private_Type (Derived_Type) then
8026 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8027 end if;
8029 -- If the parent base type is in scope, add the derived type to its
8030 -- list of private dependents, because its full view may become
8031 -- visible subsequently (in a nested private part, a body, or in a
8032 -- further child unit).
8034 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
8035 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
8037 -- Check for unusual case where a type completed by a private
8038 -- derivation occurs within a package nested in a child unit, and
8039 -- the parent is declared in an ancestor.
8041 if Is_Child_Unit (Scope (Current_Scope))
8042 and then Is_Completion
8043 and then In_Private_Part (Current_Scope)
8044 and then Scope (Parent_Type) /= Current_Scope
8046 -- Note that if the parent has a completion in the private part,
8047 -- (which is itself a derivation from some other private type)
8048 -- it is that completion that is visible, there is no full view
8049 -- available, and no special processing is needed.
8051 and then Present (Full_View (Parent_Type))
8052 then
8053 -- In this case, the full view of the parent type will become
8054 -- visible in the body of the enclosing child, and only then will
8055 -- the current type be possibly non-private. Build an underlying
8056 -- full view that will be installed when the enclosing child body
8057 -- is compiled.
8059 if Present (Underlying_Full_View (Derived_Type)) then
8060 Full_Der := Underlying_Full_View (Derived_Type);
8061 else
8062 Build_Full_Derivation;
8063 Set_Underlying_Full_View (Derived_Type, Full_Der);
8064 Set_Is_Underlying_Full_View (Full_Der);
8065 end if;
8067 -- The full view will be used to swap entities on entry/exit to
8068 -- the body, and must appear in the entity list for the package.
8070 Append_Entity (Full_Der, Scope (Derived_Type));
8071 end if;
8072 end if;
8073 end Build_Derived_Private_Type;
8075 -------------------------------
8076 -- Build_Derived_Record_Type --
8077 -------------------------------
8079 -- 1. INTRODUCTION
8081 -- Ideally we would like to use the same model of type derivation for
8082 -- tagged and untagged record types. Unfortunately this is not quite
8083 -- possible because the semantics of representation clauses is different
8084 -- for tagged and untagged records under inheritance. Consider the
8085 -- following:
8087 -- type R (...) is [tagged] record ... end record;
8088 -- type T (...) is new R (...) [with ...];
8090 -- The representation clauses for T can specify a completely different
8091 -- record layout from R's. Hence the same component can be placed in two
8092 -- very different positions in objects of type T and R. If R and T are
8093 -- tagged types, representation clauses for T can only specify the layout
8094 -- of non inherited components, thus components that are common in R and T
8095 -- have the same position in objects of type R and T.
8097 -- This has two implications. The first is that the entire tree for R's
8098 -- declaration needs to be copied for T in the untagged case, so that T
8099 -- can be viewed as a record type of its own with its own representation
8100 -- clauses. The second implication is the way we handle discriminants.
8101 -- Specifically, in the untagged case we need a way to communicate to Gigi
8102 -- what are the real discriminants in the record, while for the semantics
8103 -- we need to consider those introduced by the user to rename the
8104 -- discriminants in the parent type. This is handled by introducing the
8105 -- notion of stored discriminants. See below for more.
8107 -- Fortunately the way regular components are inherited can be handled in
8108 -- the same way in tagged and untagged types.
8110 -- To complicate things a bit more the private view of a private extension
8111 -- cannot be handled in the same way as the full view (for one thing the
8112 -- semantic rules are somewhat different). We will explain what differs
8113 -- below.
8115 -- 2. DISCRIMINANTS UNDER INHERITANCE
8117 -- The semantic rules governing the discriminants of derived types are
8118 -- quite subtle.
8120 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
8121 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
8123 -- If parent type has discriminants, then the discriminants that are
8124 -- declared in the derived type are [3.4 (11)]:
8126 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
8127 -- there is one;
8129 -- o Otherwise, each discriminant of the parent type (implicitly declared
8130 -- in the same order with the same specifications). In this case, the
8131 -- discriminants are said to be "inherited", or if unknown in the parent
8132 -- are also unknown in the derived type.
8134 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8136 -- o The parent subtype must be constrained;
8138 -- o If the parent type is not a tagged type, then each discriminant of
8139 -- the derived type must be used in the constraint defining a parent
8140 -- subtype. [Implementation note: This ensures that the new discriminant
8141 -- can share storage with an existing discriminant.]
8143 -- For the derived type each discriminant of the parent type is either
8144 -- inherited, constrained to equal some new discriminant of the derived
8145 -- type, or constrained to the value of an expression.
8147 -- When inherited or constrained to equal some new discriminant, the
8148 -- parent discriminant and the discriminant of the derived type are said
8149 -- to "correspond".
8151 -- If a discriminant of the parent type is constrained to a specific value
8152 -- in the derived type definition, then the discriminant is said to be
8153 -- "specified" by that derived type definition.
8155 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8157 -- We have spoken about stored discriminants in point 1 (introduction)
8158 -- above. There are two sorts of stored discriminants: implicit and
8159 -- explicit. As long as the derived type inherits the same discriminants as
8160 -- the root record type, stored discriminants are the same as regular
8161 -- discriminants, and are said to be implicit. However, if any discriminant
8162 -- in the root type was renamed in the derived type, then the derived
8163 -- type will contain explicit stored discriminants. Explicit stored
8164 -- discriminants are discriminants in addition to the semantically visible
8165 -- discriminants defined for the derived type. Stored discriminants are
8166 -- used by Gigi to figure out what are the physical discriminants in
8167 -- objects of the derived type (see precise definition in einfo.ads).
8168 -- As an example, consider the following:
8170 -- type R (D1, D2, D3 : Int) is record ... end record;
8171 -- type T1 is new R;
8172 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8173 -- type T3 is new T2;
8174 -- type T4 (Y : Int) is new T3 (Y, 99);
8176 -- The following table summarizes the discriminants and stored
8177 -- discriminants in R and T1 through T4:
8179 -- Type Discrim Stored Discrim Comment
8180 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
8181 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
8182 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
8183 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
8184 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
8186 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8187 -- find the corresponding discriminant in the parent type, while
8188 -- Original_Record_Component (abbreviated ORC below) the actual physical
8189 -- component that is renamed. Finally the field Is_Completely_Hidden
8190 -- (abbreviated ICH below) is set for all explicit stored discriminants
8191 -- (see einfo.ads for more info). For the above example this gives:
8193 -- Discrim CD ORC ICH
8194 -- ^^^^^^^ ^^ ^^^ ^^^
8195 -- D1 in R empty itself no
8196 -- D2 in R empty itself no
8197 -- D3 in R empty itself no
8199 -- D1 in T1 D1 in R itself no
8200 -- D2 in T1 D2 in R itself no
8201 -- D3 in T1 D3 in R itself no
8203 -- X1 in T2 D3 in T1 D3 in T2 no
8204 -- X2 in T2 D1 in T1 D1 in T2 no
8205 -- D1 in T2 empty itself yes
8206 -- D2 in T2 empty itself yes
8207 -- D3 in T2 empty itself yes
8209 -- X1 in T3 X1 in T2 D3 in T3 no
8210 -- X2 in T3 X2 in T2 D1 in T3 no
8211 -- D1 in T3 empty itself yes
8212 -- D2 in T3 empty itself yes
8213 -- D3 in T3 empty itself yes
8215 -- Y in T4 X1 in T3 D3 in T4 no
8216 -- D1 in T4 empty itself yes
8217 -- D2 in T4 empty itself yes
8218 -- D3 in T4 empty itself yes
8220 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8222 -- Type derivation for tagged types is fairly straightforward. If no
8223 -- discriminants are specified by the derived type, these are inherited
8224 -- from the parent. No explicit stored discriminants are ever necessary.
8225 -- The only manipulation that is done to the tree is that of adding a
8226 -- _parent field with parent type and constrained to the same constraint
8227 -- specified for the parent in the derived type definition. For instance:
8229 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8230 -- type T1 is new R with null record;
8231 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8233 -- are changed into:
8235 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8236 -- _parent : R (D1, D2, D3);
8237 -- end record;
8239 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8240 -- _parent : T1 (X2, 88, X1);
8241 -- end record;
8243 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8244 -- ORC and ICH fields are:
8246 -- Discrim CD ORC ICH
8247 -- ^^^^^^^ ^^ ^^^ ^^^
8248 -- D1 in R empty itself no
8249 -- D2 in R empty itself no
8250 -- D3 in R empty itself no
8252 -- D1 in T1 D1 in R D1 in R no
8253 -- D2 in T1 D2 in R D2 in R no
8254 -- D3 in T1 D3 in R D3 in R no
8256 -- X1 in T2 D3 in T1 D3 in R no
8257 -- X2 in T2 D1 in T1 D1 in R no
8259 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8261 -- Regardless of whether we dealing with a tagged or untagged type
8262 -- we will transform all derived type declarations of the form
8264 -- type T is new R (...) [with ...];
8265 -- or
8266 -- subtype S is R (...);
8267 -- type T is new S [with ...];
8268 -- into
8269 -- type BT is new R [with ...];
8270 -- subtype T is BT (...);
8272 -- That is, the base derived type is constrained only if it has no
8273 -- discriminants. The reason for doing this is that GNAT's semantic model
8274 -- assumes that a base type with discriminants is unconstrained.
8276 -- Note that, strictly speaking, the above transformation is not always
8277 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8279 -- procedure B34011A is
8280 -- type REC (D : integer := 0) is record
8281 -- I : Integer;
8282 -- end record;
8284 -- package P is
8285 -- type T6 is new Rec;
8286 -- function F return T6;
8287 -- end P;
8289 -- use P;
8290 -- package Q6 is
8291 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8292 -- end Q6;
8294 -- The definition of Q6.U is illegal. However transforming Q6.U into
8296 -- type BaseU is new T6;
8297 -- subtype U is BaseU (Q6.F.I)
8299 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8300 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8301 -- the transformation described above.
8303 -- There is another instance where the above transformation is incorrect.
8304 -- Consider:
8306 -- package Pack is
8307 -- type Base (D : Integer) is tagged null record;
8308 -- procedure P (X : Base);
8310 -- type Der is new Base (2) with null record;
8311 -- procedure P (X : Der);
8312 -- end Pack;
8314 -- Then the above transformation turns this into
8316 -- type Der_Base is new Base with null record;
8317 -- -- procedure P (X : Base) is implicitly inherited here
8318 -- -- as procedure P (X : Der_Base).
8320 -- subtype Der is Der_Base (2);
8321 -- procedure P (X : Der);
8322 -- -- The overriding of P (X : Der_Base) is illegal since we
8323 -- -- have a parameter conformance problem.
8325 -- To get around this problem, after having semantically processed Der_Base
8326 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8327 -- Discriminant_Constraint from Der so that when parameter conformance is
8328 -- checked when P is overridden, no semantic errors are flagged.
8330 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8332 -- Regardless of whether we are dealing with a tagged or untagged type
8333 -- we will transform all derived type declarations of the form
8335 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8336 -- type T is new R [with ...];
8337 -- into
8338 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8340 -- The reason for such transformation is that it allows us to implement a
8341 -- very clean form of component inheritance as explained below.
8343 -- Note that this transformation is not achieved by direct tree rewriting
8344 -- and manipulation, but rather by redoing the semantic actions that the
8345 -- above transformation will entail. This is done directly in routine
8346 -- Inherit_Components.
8348 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8350 -- In both tagged and untagged derived types, regular non discriminant
8351 -- components are inherited in the derived type from the parent type. In
8352 -- the absence of discriminants component, inheritance is straightforward
8353 -- as components can simply be copied from the parent.
8355 -- If the parent has discriminants, inheriting components constrained with
8356 -- these discriminants requires caution. Consider the following example:
8358 -- type R (D1, D2 : Positive) is [tagged] record
8359 -- S : String (D1 .. D2);
8360 -- end record;
8362 -- type T1 is new R [with null record];
8363 -- type T2 (X : positive) is new R (1, X) [with null record];
8365 -- As explained in 6. above, T1 is rewritten as
8366 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8367 -- which makes the treatment for T1 and T2 identical.
8369 -- What we want when inheriting S, is that references to D1 and D2 in R are
8370 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8371 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8372 -- with either discriminant references in the derived type or expressions.
8373 -- This replacement is achieved as follows: before inheriting R's
8374 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8375 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8376 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8377 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8378 -- by String (1 .. X).
8380 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8382 -- We explain here the rules governing private type extensions relevant to
8383 -- type derivation. These rules are explained on the following example:
8385 -- type D [(...)] is new A [(...)] with private; <-- partial view
8386 -- type D [(...)] is new P [(...)] with null record; <-- full view
8388 -- Type A is called the ancestor subtype of the private extension.
8389 -- Type P is the parent type of the full view of the private extension. It
8390 -- must be A or a type derived from A.
8392 -- The rules concerning the discriminants of private type extensions are
8393 -- [7.3(10-13)]:
8395 -- o If a private extension inherits known discriminants from the ancestor
8396 -- subtype, then the full view must also inherit its discriminants from
8397 -- the ancestor subtype and the parent subtype of the full view must be
8398 -- constrained if and only if the ancestor subtype is constrained.
8400 -- o If a partial view has unknown discriminants, then the full view may
8401 -- define a definite or an indefinite subtype, with or without
8402 -- discriminants.
8404 -- o If a partial view has neither known nor unknown discriminants, then
8405 -- the full view must define a definite subtype.
8407 -- o If the ancestor subtype of a private extension has constrained
8408 -- discriminants, then the parent subtype of the full view must impose a
8409 -- statically matching constraint on those discriminants.
8411 -- This means that only the following forms of private extensions are
8412 -- allowed:
8414 -- type D is new A with private; <-- partial view
8415 -- type D is new P with null record; <-- full view
8417 -- If A has no discriminants than P has no discriminants, otherwise P must
8418 -- inherit A's discriminants.
8420 -- type D is new A (...) with private; <-- partial view
8421 -- type D is new P (:::) with null record; <-- full view
8423 -- P must inherit A's discriminants and (...) and (:::) must statically
8424 -- match.
8426 -- subtype A is R (...);
8427 -- type D is new A with private; <-- partial view
8428 -- type D is new P with null record; <-- full view
8430 -- P must have inherited R's discriminants and must be derived from A or
8431 -- any of its subtypes.
8433 -- type D (..) is new A with private; <-- partial view
8434 -- type D (..) is new P [(:::)] with null record; <-- full view
8436 -- No specific constraints on P's discriminants or constraint (:::).
8437 -- Note that A can be unconstrained, but the parent subtype P must either
8438 -- be constrained or (:::) must be present.
8440 -- type D (..) is new A [(...)] with private; <-- partial view
8441 -- type D (..) is new P [(:::)] with null record; <-- full view
8443 -- P's constraints on A's discriminants must statically match those
8444 -- imposed by (...).
8446 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8448 -- The full view of a private extension is handled exactly as described
8449 -- above. The model chose for the private view of a private extension is
8450 -- the same for what concerns discriminants (i.e. they receive the same
8451 -- treatment as in the tagged case). However, the private view of the
8452 -- private extension always inherits the components of the parent base,
8453 -- without replacing any discriminant reference. Strictly speaking this is
8454 -- incorrect. However, Gigi never uses this view to generate code so this
8455 -- is a purely semantic issue. In theory, a set of transformations similar
8456 -- to those given in 5. and 6. above could be applied to private views of
8457 -- private extensions to have the same model of component inheritance as
8458 -- for non private extensions. However, this is not done because it would
8459 -- further complicate private type processing. Semantically speaking, this
8460 -- leaves us in an uncomfortable situation. As an example consider:
8462 -- package Pack is
8463 -- type R (D : integer) is tagged record
8464 -- S : String (1 .. D);
8465 -- end record;
8466 -- procedure P (X : R);
8467 -- type T is new R (1) with private;
8468 -- private
8469 -- type T is new R (1) with null record;
8470 -- end;
8472 -- This is transformed into:
8474 -- package Pack is
8475 -- type R (D : integer) is tagged record
8476 -- S : String (1 .. D);
8477 -- end record;
8478 -- procedure P (X : R);
8479 -- type T is new R (1) with private;
8480 -- private
8481 -- type BaseT is new R with null record;
8482 -- subtype T is BaseT (1);
8483 -- end;
8485 -- (strictly speaking the above is incorrect Ada)
8487 -- From the semantic standpoint the private view of private extension T
8488 -- should be flagged as constrained since one can clearly have
8490 -- Obj : T;
8492 -- in a unit withing Pack. However, when deriving subprograms for the
8493 -- private view of private extension T, T must be seen as unconstrained
8494 -- since T has discriminants (this is a constraint of the current
8495 -- subprogram derivation model). Thus, when processing the private view of
8496 -- a private extension such as T, we first mark T as unconstrained, we
8497 -- process it, we perform program derivation and just before returning from
8498 -- Build_Derived_Record_Type we mark T as constrained.
8500 -- ??? Are there are other uncomfortable cases that we will have to
8501 -- deal with.
8503 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8505 -- Types that are derived from a visible record type and have a private
8506 -- extension present other peculiarities. They behave mostly like private
8507 -- types, but if they have primitive operations defined, these will not
8508 -- have the proper signatures for further inheritance, because other
8509 -- primitive operations will use the implicit base that we define for
8510 -- private derivations below. This affect subprogram inheritance (see
8511 -- Derive_Subprograms for details). We also derive the implicit base from
8512 -- the base type of the full view, so that the implicit base is a record
8513 -- type and not another private type, This avoids infinite loops.
8515 procedure Build_Derived_Record_Type
8516 (N : Node_Id;
8517 Parent_Type : Entity_Id;
8518 Derived_Type : Entity_Id;
8519 Derive_Subps : Boolean := True)
8521 Discriminant_Specs : constant Boolean :=
8522 Present (Discriminant_Specifications (N));
8523 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
8524 Loc : constant Source_Ptr := Sloc (N);
8525 Private_Extension : constant Boolean :=
8526 Nkind (N) = N_Private_Extension_Declaration;
8527 Assoc_List : Elist_Id;
8528 Constraint_Present : Boolean;
8529 Constrs : Elist_Id;
8530 Discrim : Entity_Id;
8531 Indic : Node_Id;
8532 Inherit_Discrims : Boolean := False;
8533 Last_Discrim : Entity_Id;
8534 New_Base : Entity_Id;
8535 New_Decl : Node_Id;
8536 New_Discrs : Elist_Id;
8537 New_Indic : Node_Id;
8538 Parent_Base : Entity_Id;
8539 Save_Etype : Entity_Id;
8540 Save_Discr_Constr : Elist_Id;
8541 Save_Next_Entity : Entity_Id;
8542 Type_Def : Node_Id;
8544 Discs : Elist_Id := New_Elmt_List;
8545 -- An empty Discs list means that there were no constraints in the
8546 -- subtype indication or that there was an error processing it.
8548 begin
8549 if Ekind (Parent_Type) = E_Record_Type_With_Private
8550 and then Present (Full_View (Parent_Type))
8551 and then Has_Discriminants (Parent_Type)
8552 then
8553 Parent_Base := Base_Type (Full_View (Parent_Type));
8554 else
8555 Parent_Base := Base_Type (Parent_Type);
8556 end if;
8558 -- AI05-0115: if this is a derivation from a private type in some
8559 -- other scope that may lead to invisible components for the derived
8560 -- type, mark it accordingly.
8562 if Is_Private_Type (Parent_Type) then
8563 if Scope (Parent_Base) = Scope (Derived_Type) then
8564 null;
8566 elsif In_Open_Scopes (Scope (Parent_Base))
8567 and then In_Private_Part (Scope (Parent_Base))
8568 then
8569 null;
8571 else
8572 Set_Has_Private_Ancestor (Derived_Type);
8573 end if;
8575 else
8576 Set_Has_Private_Ancestor
8577 (Derived_Type, Has_Private_Ancestor (Parent_Type));
8578 end if;
8580 -- Before we start the previously documented transformations, here is
8581 -- little fix for size and alignment of tagged types. Normally when we
8582 -- derive type D from type P, we copy the size and alignment of P as the
8583 -- default for D, and in the absence of explicit representation clauses
8584 -- for D, the size and alignment are indeed the same as the parent.
8586 -- But this is wrong for tagged types, since fields may be added, and
8587 -- the default size may need to be larger, and the default alignment may
8588 -- need to be larger.
8590 -- We therefore reset the size and alignment fields in the tagged case.
8591 -- Note that the size and alignment will in any case be at least as
8592 -- large as the parent type (since the derived type has a copy of the
8593 -- parent type in the _parent field)
8595 -- The type is also marked as being tagged here, which is needed when
8596 -- processing components with a self-referential anonymous access type
8597 -- in the call to Check_Anonymous_Access_Components below. Note that
8598 -- this flag is also set later on for completeness.
8600 if Is_Tagged then
8601 Set_Is_Tagged_Type (Derived_Type);
8602 Init_Size_Align (Derived_Type);
8603 end if;
8605 -- STEP 0a: figure out what kind of derived type declaration we have
8607 if Private_Extension then
8608 Type_Def := N;
8609 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
8610 Set_Default_SSO (Derived_Type);
8611 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8613 else
8614 Type_Def := Type_Definition (N);
8616 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8617 -- Parent_Base can be a private type or private extension. However,
8618 -- for tagged types with an extension the newly added fields are
8619 -- visible and hence the Derived_Type is always an E_Record_Type.
8620 -- (except that the parent may have its own private fields).
8621 -- For untagged types we preserve the Ekind of the Parent_Base.
8623 if Present (Record_Extension_Part (Type_Def)) then
8624 Set_Ekind (Derived_Type, E_Record_Type);
8625 Set_Default_SSO (Derived_Type);
8626 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8628 -- Create internal access types for components with anonymous
8629 -- access types.
8631 if Ada_Version >= Ada_2005 then
8632 Check_Anonymous_Access_Components
8633 (N, Derived_Type, Derived_Type,
8634 Component_List (Record_Extension_Part (Type_Def)));
8635 end if;
8637 else
8638 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8639 end if;
8640 end if;
8642 -- Indic can either be an N_Identifier if the subtype indication
8643 -- contains no constraint or an N_Subtype_Indication if the subtype
8644 -- indication has a constraint.
8646 Indic := Subtype_Indication (Type_Def);
8647 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
8649 -- Check that the type has visible discriminants. The type may be
8650 -- a private type with unknown discriminants whose full view has
8651 -- discriminants which are invisible.
8653 if Constraint_Present then
8654 if not Has_Discriminants (Parent_Base)
8655 or else
8656 (Has_Unknown_Discriminants (Parent_Base)
8657 and then Is_Private_Type (Parent_Base))
8658 then
8659 Error_Msg_N
8660 ("invalid constraint: type has no discriminant",
8661 Constraint (Indic));
8663 Constraint_Present := False;
8664 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8666 elsif Is_Constrained (Parent_Type) then
8667 Error_Msg_N
8668 ("invalid constraint: parent type is already constrained",
8669 Constraint (Indic));
8671 Constraint_Present := False;
8672 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8673 end if;
8674 end if;
8676 -- STEP 0b: If needed, apply transformation given in point 5. above
8678 if not Private_Extension
8679 and then Has_Discriminants (Parent_Type)
8680 and then not Discriminant_Specs
8681 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8682 then
8683 -- First, we must analyze the constraint (see comment in point 5.)
8684 -- The constraint may come from the subtype indication of the full
8685 -- declaration.
8687 if Constraint_Present then
8688 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8690 -- If there is no explicit constraint, there might be one that is
8691 -- inherited from a constrained parent type. In that case verify that
8692 -- it conforms to the constraint in the partial view. In perverse
8693 -- cases the parent subtypes of the partial and full view can have
8694 -- different constraints.
8696 elsif Present (Stored_Constraint (Parent_Type)) then
8697 New_Discrs := Stored_Constraint (Parent_Type);
8699 else
8700 New_Discrs := No_Elist;
8701 end if;
8703 if Has_Discriminants (Derived_Type)
8704 and then Has_Private_Declaration (Derived_Type)
8705 and then Present (Discriminant_Constraint (Derived_Type))
8706 and then Present (New_Discrs)
8707 then
8708 -- Verify that constraints of the full view statically match
8709 -- those given in the partial view.
8711 declare
8712 C1, C2 : Elmt_Id;
8714 begin
8715 C1 := First_Elmt (New_Discrs);
8716 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8717 while Present (C1) and then Present (C2) loop
8718 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8719 or else
8720 (Is_OK_Static_Expression (Node (C1))
8721 and then Is_OK_Static_Expression (Node (C2))
8722 and then
8723 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8724 then
8725 null;
8727 else
8728 if Constraint_Present then
8729 Error_Msg_N
8730 ("constraint not conformant to previous declaration",
8731 Node (C1));
8732 else
8733 Error_Msg_N
8734 ("constraint of full view is incompatible "
8735 & "with partial view", N);
8736 end if;
8737 end if;
8739 Next_Elmt (C1);
8740 Next_Elmt (C2);
8741 end loop;
8742 end;
8743 end if;
8745 -- Insert and analyze the declaration for the unconstrained base type
8747 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8749 New_Decl :=
8750 Make_Full_Type_Declaration (Loc,
8751 Defining_Identifier => New_Base,
8752 Type_Definition =>
8753 Make_Derived_Type_Definition (Loc,
8754 Abstract_Present => Abstract_Present (Type_Def),
8755 Limited_Present => Limited_Present (Type_Def),
8756 Subtype_Indication =>
8757 New_Occurrence_Of (Parent_Base, Loc),
8758 Record_Extension_Part =>
8759 Relocate_Node (Record_Extension_Part (Type_Def)),
8760 Interface_List => Interface_List (Type_Def)));
8762 Set_Parent (New_Decl, Parent (N));
8763 Mark_Rewrite_Insertion (New_Decl);
8764 Insert_Before (N, New_Decl);
8766 -- In the extension case, make sure ancestor is frozen appropriately
8767 -- (see also non-discriminated case below).
8769 if Present (Record_Extension_Part (Type_Def))
8770 or else Is_Interface (Parent_Base)
8771 then
8772 Freeze_Before (New_Decl, Parent_Type);
8773 end if;
8775 -- Note that this call passes False for the Derive_Subps parameter
8776 -- because subprogram derivation is deferred until after creating
8777 -- the subtype (see below).
8779 Build_Derived_Type
8780 (New_Decl, Parent_Base, New_Base,
8781 Is_Completion => False, Derive_Subps => False);
8783 -- ??? This needs re-examination to determine whether the
8784 -- above call can simply be replaced by a call to Analyze.
8786 Set_Analyzed (New_Decl);
8788 -- Insert and analyze the declaration for the constrained subtype
8790 if Constraint_Present then
8791 New_Indic :=
8792 Make_Subtype_Indication (Loc,
8793 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8794 Constraint => Relocate_Node (Constraint (Indic)));
8796 else
8797 declare
8798 Constr_List : constant List_Id := New_List;
8799 C : Elmt_Id;
8800 Expr : Node_Id;
8802 begin
8803 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8804 while Present (C) loop
8805 Expr := Node (C);
8807 -- It is safe here to call New_Copy_Tree since we called
8808 -- Force_Evaluation on each constraint previously
8809 -- in Build_Discriminant_Constraints.
8811 Append (New_Copy_Tree (Expr), To => Constr_List);
8813 Next_Elmt (C);
8814 end loop;
8816 New_Indic :=
8817 Make_Subtype_Indication (Loc,
8818 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8819 Constraint =>
8820 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8821 end;
8822 end if;
8824 Rewrite (N,
8825 Make_Subtype_Declaration (Loc,
8826 Defining_Identifier => Derived_Type,
8827 Subtype_Indication => New_Indic));
8829 Analyze (N);
8831 -- Derivation of subprograms must be delayed until the full subtype
8832 -- has been established, to ensure proper overriding of subprograms
8833 -- inherited by full types. If the derivations occurred as part of
8834 -- the call to Build_Derived_Type above, then the check for type
8835 -- conformance would fail because earlier primitive subprograms
8836 -- could still refer to the full type prior the change to the new
8837 -- subtype and hence would not match the new base type created here.
8838 -- Subprograms are not derived, however, when Derive_Subps is False
8839 -- (since otherwise there could be redundant derivations).
8841 if Derive_Subps then
8842 Derive_Subprograms (Parent_Type, Derived_Type);
8843 end if;
8845 -- For tagged types the Discriminant_Constraint of the new base itype
8846 -- is inherited from the first subtype so that no subtype conformance
8847 -- problem arise when the first subtype overrides primitive
8848 -- operations inherited by the implicit base type.
8850 if Is_Tagged then
8851 Set_Discriminant_Constraint
8852 (New_Base, Discriminant_Constraint (Derived_Type));
8853 end if;
8855 return;
8856 end if;
8858 -- If we get here Derived_Type will have no discriminants or it will be
8859 -- a discriminated unconstrained base type.
8861 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8863 if Is_Tagged then
8865 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8866 -- The declaration of a specific descendant of an interface type
8867 -- freezes the interface type (RM 13.14).
8869 if not Private_Extension or else Is_Interface (Parent_Base) then
8870 Freeze_Before (N, Parent_Type);
8871 end if;
8873 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8874 -- cannot be declared at a deeper level than its parent type is
8875 -- removed. The check on derivation within a generic body is also
8876 -- relaxed, but there's a restriction that a derived tagged type
8877 -- cannot be declared in a generic body if it's derived directly
8878 -- or indirectly from a formal type of that generic.
8880 if Ada_Version >= Ada_2005 then
8881 if Present (Enclosing_Generic_Body (Derived_Type)) then
8882 declare
8883 Ancestor_Type : Entity_Id;
8885 begin
8886 -- Check to see if any ancestor of the derived type is a
8887 -- formal type.
8889 Ancestor_Type := Parent_Type;
8890 while not Is_Generic_Type (Ancestor_Type)
8891 and then Etype (Ancestor_Type) /= Ancestor_Type
8892 loop
8893 Ancestor_Type := Etype (Ancestor_Type);
8894 end loop;
8896 -- If the derived type does have a formal type as an
8897 -- ancestor, then it's an error if the derived type is
8898 -- declared within the body of the generic unit that
8899 -- declares the formal type in its generic formal part. It's
8900 -- sufficient to check whether the ancestor type is declared
8901 -- inside the same generic body as the derived type (such as
8902 -- within a nested generic spec), in which case the
8903 -- derivation is legal. If the formal type is declared
8904 -- outside of that generic body, then it's guaranteed that
8905 -- the derived type is declared within the generic body of
8906 -- the generic unit declaring the formal type.
8908 if Is_Generic_Type (Ancestor_Type)
8909 and then Enclosing_Generic_Body (Ancestor_Type) /=
8910 Enclosing_Generic_Body (Derived_Type)
8911 then
8912 Error_Msg_NE
8913 ("parent type of& must not be descendant of formal type"
8914 & " of an enclosing generic body",
8915 Indic, Derived_Type);
8916 end if;
8917 end;
8918 end if;
8920 elsif Type_Access_Level (Derived_Type) /=
8921 Type_Access_Level (Parent_Type)
8922 and then not Is_Generic_Type (Derived_Type)
8923 then
8924 if Is_Controlled (Parent_Type) then
8925 Error_Msg_N
8926 ("controlled type must be declared at the library level",
8927 Indic);
8928 else
8929 Error_Msg_N
8930 ("type extension at deeper accessibility level than parent",
8931 Indic);
8932 end if;
8934 else
8935 declare
8936 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8937 begin
8938 if Present (GB)
8939 and then GB /= Enclosing_Generic_Body (Parent_Base)
8940 then
8941 Error_Msg_NE
8942 ("parent type of& must not be outside generic body"
8943 & " (RM 3.9.1(4))",
8944 Indic, Derived_Type);
8945 end if;
8946 end;
8947 end if;
8948 end if;
8950 -- Ada 2005 (AI-251)
8952 if Ada_Version >= Ada_2005 and then Is_Tagged then
8954 -- "The declaration of a specific descendant of an interface type
8955 -- freezes the interface type" (RM 13.14).
8957 declare
8958 Iface : Node_Id;
8959 begin
8960 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8961 Iface := First (Interface_List (Type_Def));
8962 while Present (Iface) loop
8963 Freeze_Before (N, Etype (Iface));
8964 Next (Iface);
8965 end loop;
8966 end if;
8967 end;
8968 end if;
8970 -- STEP 1b : preliminary cleanup of the full view of private types
8972 -- If the type is already marked as having discriminants, then it's the
8973 -- completion of a private type or private extension and we need to
8974 -- retain the discriminants from the partial view if the current
8975 -- declaration has Discriminant_Specifications so that we can verify
8976 -- conformance. However, we must remove any existing components that
8977 -- were inherited from the parent (and attached in Copy_And_Swap)
8978 -- because the full type inherits all appropriate components anyway, and
8979 -- we do not want the partial view's components interfering.
8981 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8982 Discrim := First_Discriminant (Derived_Type);
8983 loop
8984 Last_Discrim := Discrim;
8985 Next_Discriminant (Discrim);
8986 exit when No (Discrim);
8987 end loop;
8989 Set_Last_Entity (Derived_Type, Last_Discrim);
8991 -- In all other cases wipe out the list of inherited components (even
8992 -- inherited discriminants), it will be properly rebuilt here.
8994 else
8995 Set_First_Entity (Derived_Type, Empty);
8996 Set_Last_Entity (Derived_Type, Empty);
8997 end if;
8999 -- STEP 1c: Initialize some flags for the Derived_Type
9001 -- The following flags must be initialized here so that
9002 -- Process_Discriminants can check that discriminants of tagged types do
9003 -- not have a default initial value and that access discriminants are
9004 -- only specified for limited records. For completeness, these flags are
9005 -- also initialized along with all the other flags below.
9007 -- AI-419: Limitedness is not inherited from an interface parent, so to
9008 -- be limited in that case the type must be explicitly declared as
9009 -- limited. However, task and protected interfaces are always limited.
9011 if Limited_Present (Type_Def) then
9012 Set_Is_Limited_Record (Derived_Type);
9014 elsif Is_Limited_Record (Parent_Type)
9015 or else (Present (Full_View (Parent_Type))
9016 and then Is_Limited_Record (Full_View (Parent_Type)))
9017 then
9018 if not Is_Interface (Parent_Type)
9019 or else Is_Synchronized_Interface (Parent_Type)
9020 or else Is_Protected_Interface (Parent_Type)
9021 or else Is_Task_Interface (Parent_Type)
9022 then
9023 Set_Is_Limited_Record (Derived_Type);
9024 end if;
9025 end if;
9027 -- STEP 2a: process discriminants of derived type if any
9029 Push_Scope (Derived_Type);
9031 if Discriminant_Specs then
9032 Set_Has_Unknown_Discriminants (Derived_Type, False);
9034 -- The following call initializes fields Has_Discriminants and
9035 -- Discriminant_Constraint, unless we are processing the completion
9036 -- of a private type declaration.
9038 Check_Or_Process_Discriminants (N, Derived_Type);
9040 -- For untagged types, the constraint on the Parent_Type must be
9041 -- present and is used to rename the discriminants.
9043 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
9044 Error_Msg_N ("untagged parent must have discriminants", Indic);
9046 elsif not Is_Tagged and then not Constraint_Present then
9047 Error_Msg_N
9048 ("discriminant constraint needed for derived untagged records",
9049 Indic);
9051 -- Otherwise the parent subtype must be constrained unless we have a
9052 -- private extension.
9054 elsif not Constraint_Present
9055 and then not Private_Extension
9056 and then not Is_Constrained (Parent_Type)
9057 then
9058 Error_Msg_N
9059 ("unconstrained type not allowed in this context", Indic);
9061 elsif Constraint_Present then
9062 -- The following call sets the field Corresponding_Discriminant
9063 -- for the discriminants in the Derived_Type.
9065 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
9067 -- For untagged types all new discriminants must rename
9068 -- discriminants in the parent. For private extensions new
9069 -- discriminants cannot rename old ones (implied by [7.3(13)]).
9071 Discrim := First_Discriminant (Derived_Type);
9072 while Present (Discrim) loop
9073 if not Is_Tagged
9074 and then No (Corresponding_Discriminant (Discrim))
9075 then
9076 Error_Msg_N
9077 ("new discriminants must constrain old ones", Discrim);
9079 elsif Private_Extension
9080 and then Present (Corresponding_Discriminant (Discrim))
9081 then
9082 Error_Msg_N
9083 ("only static constraints allowed for parent"
9084 & " discriminants in the partial view", Indic);
9085 exit;
9086 end if;
9088 -- If a new discriminant is used in the constraint, then its
9089 -- subtype must be statically compatible with the parent
9090 -- discriminant's subtype (3.7(15)).
9092 -- However, if the record contains an array constrained by
9093 -- the discriminant but with some different bound, the compiler
9094 -- tries to create a smaller range for the discriminant type.
9095 -- (See exp_ch3.Adjust_Discriminants). In this case, where
9096 -- the discriminant type is a scalar type, the check must use
9097 -- the original discriminant type in the parent declaration.
9099 declare
9100 Corr_Disc : constant Entity_Id :=
9101 Corresponding_Discriminant (Discrim);
9102 Disc_Type : constant Entity_Id := Etype (Discrim);
9103 Corr_Type : Entity_Id;
9105 begin
9106 if Present (Corr_Disc) then
9107 if Is_Scalar_Type (Disc_Type) then
9108 Corr_Type :=
9109 Entity (Discriminant_Type (Parent (Corr_Disc)));
9110 else
9111 Corr_Type := Etype (Corr_Disc);
9112 end if;
9114 if not
9115 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
9116 then
9117 Error_Msg_N
9118 ("subtype must be compatible "
9119 & "with parent discriminant",
9120 Discrim);
9121 end if;
9122 end if;
9123 end;
9125 Next_Discriminant (Discrim);
9126 end loop;
9128 -- Check whether the constraints of the full view statically
9129 -- match those imposed by the parent subtype [7.3(13)].
9131 if Present (Stored_Constraint (Derived_Type)) then
9132 declare
9133 C1, C2 : Elmt_Id;
9135 begin
9136 C1 := First_Elmt (Discs);
9137 C2 := First_Elmt (Stored_Constraint (Derived_Type));
9138 while Present (C1) and then Present (C2) loop
9139 if not
9140 Fully_Conformant_Expressions (Node (C1), Node (C2))
9141 then
9142 Error_Msg_N
9143 ("not conformant with previous declaration",
9144 Node (C1));
9145 end if;
9147 Next_Elmt (C1);
9148 Next_Elmt (C2);
9149 end loop;
9150 end;
9151 end if;
9152 end if;
9154 -- STEP 2b: No new discriminants, inherit discriminants if any
9156 else
9157 if Private_Extension then
9158 Set_Has_Unknown_Discriminants
9159 (Derived_Type,
9160 Has_Unknown_Discriminants (Parent_Type)
9161 or else Unknown_Discriminants_Present (N));
9163 -- The partial view of the parent may have unknown discriminants,
9164 -- but if the full view has discriminants and the parent type is
9165 -- in scope they must be inherited.
9167 elsif Has_Unknown_Discriminants (Parent_Type)
9168 and then
9169 (not Has_Discriminants (Parent_Type)
9170 or else not In_Open_Scopes (Scope (Parent_Base)))
9171 then
9172 Set_Has_Unknown_Discriminants (Derived_Type);
9173 end if;
9175 if not Has_Unknown_Discriminants (Derived_Type)
9176 and then not Has_Unknown_Discriminants (Parent_Base)
9177 and then Has_Discriminants (Parent_Type)
9178 then
9179 Inherit_Discrims := True;
9180 Set_Has_Discriminants
9181 (Derived_Type, True);
9182 Set_Discriminant_Constraint
9183 (Derived_Type, Discriminant_Constraint (Parent_Base));
9184 end if;
9186 -- The following test is true for private types (remember
9187 -- transformation 5. is not applied to those) and in an error
9188 -- situation.
9190 if Constraint_Present then
9191 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
9192 end if;
9194 -- For now mark a new derived type as constrained only if it has no
9195 -- discriminants. At the end of Build_Derived_Record_Type we properly
9196 -- set this flag in the case of private extensions. See comments in
9197 -- point 9. just before body of Build_Derived_Record_Type.
9199 Set_Is_Constrained
9200 (Derived_Type,
9201 not (Inherit_Discrims
9202 or else Has_Unknown_Discriminants (Derived_Type)));
9203 end if;
9205 -- STEP 3: initialize fields of derived type
9207 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
9208 Set_Stored_Constraint (Derived_Type, No_Elist);
9210 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9211 -- but cannot be interfaces
9213 if not Private_Extension
9214 and then Ekind (Derived_Type) /= E_Private_Type
9215 and then Ekind (Derived_Type) /= E_Limited_Private_Type
9216 then
9217 if Interface_Present (Type_Def) then
9218 Analyze_Interface_Declaration (Derived_Type, Type_Def);
9219 end if;
9221 Set_Interfaces (Derived_Type, No_Elist);
9222 end if;
9224 -- Fields inherited from the Parent_Type
9226 Set_Has_Specified_Layout
9227 (Derived_Type, Has_Specified_Layout (Parent_Type));
9228 Set_Is_Limited_Composite
9229 (Derived_Type, Is_Limited_Composite (Parent_Type));
9230 Set_Is_Private_Composite
9231 (Derived_Type, Is_Private_Composite (Parent_Type));
9233 if Is_Tagged_Type (Parent_Type) then
9234 Set_No_Tagged_Streams_Pragma
9235 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9236 end if;
9238 -- Fields inherited from the Parent_Base
9240 Set_Has_Controlled_Component
9241 (Derived_Type, Has_Controlled_Component (Parent_Base));
9242 Set_Has_Non_Standard_Rep
9243 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9244 Set_Has_Primitive_Operations
9245 (Derived_Type, Has_Primitive_Operations (Parent_Base));
9247 -- Set fields for private derived types
9249 if Is_Private_Type (Derived_Type) then
9250 Set_Depends_On_Private (Derived_Type, True);
9251 Set_Private_Dependents (Derived_Type, New_Elmt_List);
9252 end if;
9254 -- Inherit fields for non-private types. If this is the completion of a
9255 -- derivation from a private type, the parent itself is private and the
9256 -- attributes come from its full view, which must be present.
9258 if Is_Record_Type (Derived_Type) then
9259 declare
9260 Parent_Full : Entity_Id;
9262 begin
9263 if Is_Private_Type (Parent_Base)
9264 and then not Is_Record_Type (Parent_Base)
9265 then
9266 Parent_Full := Full_View (Parent_Base);
9267 else
9268 Parent_Full := Parent_Base;
9269 end if;
9271 Set_Component_Alignment
9272 (Derived_Type, Component_Alignment (Parent_Full));
9273 Set_C_Pass_By_Copy
9274 (Derived_Type, C_Pass_By_Copy (Parent_Full));
9275 Set_Has_Complex_Representation
9276 (Derived_Type, Has_Complex_Representation (Parent_Full));
9278 -- For untagged types, inherit the layout by default to avoid
9279 -- costly changes of representation for type conversions.
9281 if not Is_Tagged then
9282 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Full));
9283 Set_No_Reordering (Derived_Type, No_Reordering (Parent_Full));
9284 end if;
9285 end;
9286 end if;
9288 -- Set fields for tagged types
9290 if Is_Tagged then
9291 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9293 -- All tagged types defined in Ada.Finalization are controlled
9295 if Chars (Scope (Derived_Type)) = Name_Finalization
9296 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
9297 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
9298 then
9299 Set_Is_Controlled_Active (Derived_Type);
9300 else
9301 Set_Is_Controlled_Active
9302 (Derived_Type, Is_Controlled_Active (Parent_Base));
9303 end if;
9305 -- Minor optimization: there is no need to generate the class-wide
9306 -- entity associated with an underlying record view.
9308 if not Is_Underlying_Record_View (Derived_Type) then
9309 Make_Class_Wide_Type (Derived_Type);
9310 end if;
9312 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
9314 if Has_Discriminants (Derived_Type)
9315 and then Constraint_Present
9316 then
9317 Set_Stored_Constraint
9318 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
9319 end if;
9321 if Ada_Version >= Ada_2005 then
9322 declare
9323 Ifaces_List : Elist_Id;
9325 begin
9326 -- Checks rules 3.9.4 (13/2 and 14/2)
9328 if Comes_From_Source (Derived_Type)
9329 and then not Is_Private_Type (Derived_Type)
9330 and then Is_Interface (Parent_Type)
9331 and then not Is_Interface (Derived_Type)
9332 then
9333 if Is_Task_Interface (Parent_Type) then
9334 Error_Msg_N
9335 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9336 Derived_Type);
9338 elsif Is_Protected_Interface (Parent_Type) then
9339 Error_Msg_N
9340 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9341 Derived_Type);
9342 end if;
9343 end if;
9345 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9347 Check_Interfaces (N, Type_Def);
9349 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9350 -- not already in the parents.
9352 Collect_Interfaces
9353 (T => Derived_Type,
9354 Ifaces_List => Ifaces_List,
9355 Exclude_Parents => True);
9357 Set_Interfaces (Derived_Type, Ifaces_List);
9359 -- If the derived type is the anonymous type created for
9360 -- a declaration whose parent has a constraint, propagate
9361 -- the interface list to the source type. This must be done
9362 -- prior to the completion of the analysis of the source type
9363 -- because the components in the extension may contain current
9364 -- instances whose legality depends on some ancestor.
9366 if Is_Itype (Derived_Type) then
9367 declare
9368 Def : constant Node_Id :=
9369 Associated_Node_For_Itype (Derived_Type);
9370 begin
9371 if Present (Def)
9372 and then Nkind (Def) = N_Full_Type_Declaration
9373 then
9374 Set_Interfaces
9375 (Defining_Identifier (Def), Ifaces_List);
9376 end if;
9377 end;
9378 end if;
9380 -- A type extension is automatically Ghost when one of its
9381 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9382 -- also inherited when the parent type is Ghost, but this is
9383 -- done in Build_Derived_Type as the mechanism also handles
9384 -- untagged derivations.
9386 if Implements_Ghost_Interface (Derived_Type) then
9387 Set_Is_Ghost_Entity (Derived_Type);
9388 end if;
9389 end;
9390 end if;
9391 end if;
9393 -- STEP 4: Inherit components from the parent base and constrain them.
9394 -- Apply the second transformation described in point 6. above.
9396 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
9397 or else not Has_Discriminants (Parent_Type)
9398 or else not Is_Constrained (Parent_Type)
9399 then
9400 Constrs := Discs;
9401 else
9402 Constrs := Discriminant_Constraint (Parent_Type);
9403 end if;
9405 Assoc_List :=
9406 Inherit_Components
9407 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
9409 -- STEP 5a: Copy the parent record declaration for untagged types
9411 Set_Has_Implicit_Dereference
9412 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
9414 if not Is_Tagged then
9416 -- Discriminant_Constraint (Derived_Type) has been properly
9417 -- constructed. Save it and temporarily set it to Empty because we
9418 -- do not want the call to New_Copy_Tree below to mess this list.
9420 if Has_Discriminants (Derived_Type) then
9421 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
9422 Set_Discriminant_Constraint (Derived_Type, No_Elist);
9423 else
9424 Save_Discr_Constr := No_Elist;
9425 end if;
9427 -- Save the Etype field of Derived_Type. It is correctly set now,
9428 -- but the call to New_Copy tree may remap it to point to itself,
9429 -- which is not what we want. Ditto for the Next_Entity field.
9431 Save_Etype := Etype (Derived_Type);
9432 Save_Next_Entity := Next_Entity (Derived_Type);
9434 -- Assoc_List maps all stored discriminants in the Parent_Base to
9435 -- stored discriminants in the Derived_Type. It is fundamental that
9436 -- no types or itypes with discriminants other than the stored
9437 -- discriminants appear in the entities declared inside
9438 -- Derived_Type, since the back end cannot deal with it.
9440 New_Decl :=
9441 New_Copy_Tree
9442 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
9443 Copy_Dimensions_Of_Components (Derived_Type);
9445 -- Restore the fields saved prior to the New_Copy_Tree call
9446 -- and compute the stored constraint.
9448 Set_Etype (Derived_Type, Save_Etype);
9449 Link_Entities (Derived_Type, Save_Next_Entity);
9451 if Has_Discriminants (Derived_Type) then
9452 Set_Discriminant_Constraint
9453 (Derived_Type, Save_Discr_Constr);
9454 Set_Stored_Constraint
9455 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
9456 Replace_Components (Derived_Type, New_Decl);
9457 end if;
9459 -- Insert the new derived type declaration
9461 Rewrite (N, New_Decl);
9463 -- STEP 5b: Complete the processing for record extensions in generics
9465 -- There is no completion for record extensions declared in the
9466 -- parameter part of a generic, so we need to complete processing for
9467 -- these generic record extensions here. The Record_Type_Definition call
9468 -- will change the Ekind of the components from E_Void to E_Component.
9470 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
9471 Record_Type_Definition (Empty, Derived_Type);
9473 -- STEP 5c: Process the record extension for non private tagged types
9475 elsif not Private_Extension then
9476 Expand_Record_Extension (Derived_Type, Type_Def);
9478 -- Note : previously in ASIS mode we set the Parent_Subtype of the
9479 -- derived type to propagate some semantic information. This led
9480 -- to other ASIS failures and has been removed.
9482 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9483 -- implemented interfaces if we are in expansion mode
9485 if Expander_Active
9486 and then Has_Interfaces (Derived_Type)
9487 then
9488 Add_Interface_Tag_Components (N, Derived_Type);
9489 end if;
9491 -- Analyze the record extension
9493 Record_Type_Definition
9494 (Record_Extension_Part (Type_Def), Derived_Type);
9495 end if;
9497 End_Scope;
9499 -- Nothing else to do if there is an error in the derivation.
9500 -- An unusual case: the full view may be derived from a type in an
9501 -- instance, when the partial view was used illegally as an actual
9502 -- in that instance, leading to a circular definition.
9504 if Etype (Derived_Type) = Any_Type
9505 or else Etype (Parent_Type) = Derived_Type
9506 then
9507 return;
9508 end if;
9510 -- Set delayed freeze and then derive subprograms, we need to do
9511 -- this in this order so that derived subprograms inherit the
9512 -- derived freeze if necessary.
9514 Set_Has_Delayed_Freeze (Derived_Type);
9516 if Derive_Subps then
9517 Derive_Subprograms (Parent_Type, Derived_Type);
9518 end if;
9520 -- If we have a private extension which defines a constrained derived
9521 -- type mark as constrained here after we have derived subprograms. See
9522 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9524 if Private_Extension and then Inherit_Discrims then
9525 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9526 Set_Is_Constrained (Derived_Type, True);
9527 Set_Discriminant_Constraint (Derived_Type, Discs);
9529 elsif Is_Constrained (Parent_Type) then
9530 Set_Is_Constrained
9531 (Derived_Type, True);
9532 Set_Discriminant_Constraint
9533 (Derived_Type, Discriminant_Constraint (Parent_Type));
9534 end if;
9535 end if;
9537 -- Update the class-wide type, which shares the now-completed entity
9538 -- list with its specific type. In case of underlying record views,
9539 -- we do not generate the corresponding class wide entity.
9541 if Is_Tagged
9542 and then not Is_Underlying_Record_View (Derived_Type)
9543 then
9544 Set_First_Entity
9545 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9546 Set_Last_Entity
9547 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9548 end if;
9550 Check_Function_Writable_Actuals (N);
9551 end Build_Derived_Record_Type;
9553 ------------------------
9554 -- Build_Derived_Type --
9555 ------------------------
9557 procedure Build_Derived_Type
9558 (N : Node_Id;
9559 Parent_Type : Entity_Id;
9560 Derived_Type : Entity_Id;
9561 Is_Completion : Boolean;
9562 Derive_Subps : Boolean := True)
9564 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9566 begin
9567 -- Set common attributes
9569 Set_Scope (Derived_Type, Current_Scope);
9570 Set_Etype (Derived_Type, Parent_Base);
9571 Set_Ekind (Derived_Type, Ekind (Parent_Base));
9572 Propagate_Concurrent_Flags (Derived_Type, Parent_Base);
9574 Set_Size_Info (Derived_Type, Parent_Type);
9575 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9577 Set_Is_Controlled_Active
9578 (Derived_Type, Is_Controlled_Active (Parent_Type));
9580 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9581 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
9582 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
9584 if Is_Tagged_Type (Derived_Type) then
9585 Set_No_Tagged_Streams_Pragma
9586 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9587 end if;
9589 -- If the parent has primitive routines, set the derived type link
9591 if Has_Primitive_Operations (Parent_Type) then
9592 Set_Derived_Type_Link (Parent_Base, Derived_Type);
9593 end if;
9595 -- If the parent type is a private subtype, the convention on the base
9596 -- type may be set in the private part, and not propagated to the
9597 -- subtype until later, so we obtain the convention from the base type.
9599 Set_Convention (Derived_Type, Convention (Parent_Base));
9601 -- Set SSO default for record or array type
9603 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9604 and then Is_Base_Type (Derived_Type)
9605 then
9606 Set_Default_SSO (Derived_Type);
9607 end if;
9609 -- A derived type inherits the Default_Initial_Condition pragma coming
9610 -- from any parent type within the derivation chain.
9612 if Has_DIC (Parent_Type) then
9613 Set_Has_Inherited_DIC (Derived_Type);
9614 end if;
9616 -- A derived type inherits any class-wide invariants coming from a
9617 -- parent type or an interface. Note that the invariant procedure of
9618 -- the parent type should not be inherited because the derived type may
9619 -- define invariants of its own.
9621 if not Is_Interface (Derived_Type) then
9622 if Has_Inherited_Invariants (Parent_Type)
9623 or else Has_Inheritable_Invariants (Parent_Type)
9624 then
9625 Set_Has_Inherited_Invariants (Derived_Type);
9627 elsif Is_Concurrent_Type (Derived_Type)
9628 or else Is_Tagged_Type (Derived_Type)
9629 then
9630 declare
9631 Iface : Entity_Id;
9632 Ifaces : Elist_Id;
9633 Iface_Elmt : Elmt_Id;
9635 begin
9636 Collect_Interfaces
9637 (T => Derived_Type,
9638 Ifaces_List => Ifaces,
9639 Exclude_Parents => True);
9641 if Present (Ifaces) then
9642 Iface_Elmt := First_Elmt (Ifaces);
9643 while Present (Iface_Elmt) loop
9644 Iface := Node (Iface_Elmt);
9646 if Has_Inheritable_Invariants (Iface) then
9647 Set_Has_Inherited_Invariants (Derived_Type);
9648 exit;
9649 end if;
9651 Next_Elmt (Iface_Elmt);
9652 end loop;
9653 end if;
9654 end;
9655 end if;
9656 end if;
9658 -- We similarly inherit predicates. Note that for scalar derived types
9659 -- the predicate is inherited from the first subtype, and not from its
9660 -- (anonymous) base type.
9662 if Has_Predicates (Parent_Type)
9663 or else Has_Predicates (First_Subtype (Parent_Type))
9664 then
9665 Set_Has_Predicates (Derived_Type);
9666 end if;
9668 -- The derived type inherits representation clauses from the parent
9669 -- type, and from any interfaces.
9671 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9673 declare
9674 Iface : Node_Id := First (Abstract_Interface_List (Derived_Type));
9675 begin
9676 while Present (Iface) loop
9677 Inherit_Rep_Item_Chain (Derived_Type, Entity (Iface));
9678 Next (Iface);
9679 end loop;
9680 end;
9682 -- If the parent type has delayed rep aspects, then mark the derived
9683 -- type as possibly inheriting a delayed rep aspect.
9685 if Has_Delayed_Rep_Aspects (Parent_Type) then
9686 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9687 end if;
9689 -- A derived type becomes Ghost when its parent type is also Ghost
9690 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9691 -- directly inherited because the Ghost policy in effect may differ.
9693 if Is_Ghost_Entity (Parent_Type) then
9694 Set_Is_Ghost_Entity (Derived_Type);
9695 end if;
9697 -- Type dependent processing
9699 case Ekind (Parent_Type) is
9700 when Numeric_Kind =>
9701 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9703 when Array_Kind =>
9704 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9706 when Class_Wide_Kind
9707 | E_Record_Subtype
9708 | E_Record_Type
9710 Build_Derived_Record_Type
9711 (N, Parent_Type, Derived_Type, Derive_Subps);
9712 return;
9714 when Enumeration_Kind =>
9715 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9717 when Access_Kind =>
9718 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9720 when Incomplete_Or_Private_Kind =>
9721 Build_Derived_Private_Type
9722 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9724 -- For discriminated types, the derivation includes deriving
9725 -- primitive operations. For others it is done below.
9727 if Is_Tagged_Type (Parent_Type)
9728 or else Has_Discriminants (Parent_Type)
9729 or else (Present (Full_View (Parent_Type))
9730 and then Has_Discriminants (Full_View (Parent_Type)))
9731 then
9732 return;
9733 end if;
9735 when Concurrent_Kind =>
9736 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9738 when others =>
9739 raise Program_Error;
9740 end case;
9742 -- Nothing more to do if some error occurred
9744 if Etype (Derived_Type) = Any_Type then
9745 return;
9746 end if;
9748 -- Set delayed freeze and then derive subprograms, we need to do this
9749 -- in this order so that derived subprograms inherit the derived freeze
9750 -- if necessary.
9752 Set_Has_Delayed_Freeze (Derived_Type);
9754 if Derive_Subps then
9755 Derive_Subprograms (Parent_Type, Derived_Type);
9756 end if;
9758 Set_Has_Primitive_Operations
9759 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9760 end Build_Derived_Type;
9762 -----------------------
9763 -- Build_Discriminal --
9764 -----------------------
9766 procedure Build_Discriminal (Discrim : Entity_Id) is
9767 D_Minal : Entity_Id;
9768 CR_Disc : Entity_Id;
9770 begin
9771 -- A discriminal has the same name as the discriminant
9773 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9775 Set_Ekind (D_Minal, E_In_Parameter);
9776 Set_Mechanism (D_Minal, Default_Mechanism);
9777 Set_Etype (D_Minal, Etype (Discrim));
9778 Set_Scope (D_Minal, Current_Scope);
9779 Set_Parent (D_Minal, Parent (Discrim));
9781 Set_Discriminal (Discrim, D_Minal);
9782 Set_Discriminal_Link (D_Minal, Discrim);
9784 -- For task types, build at once the discriminants of the corresponding
9785 -- record, which are needed if discriminants are used in entry defaults
9786 -- and in family bounds.
9788 if Is_Concurrent_Type (Current_Scope)
9789 or else
9790 Is_Limited_Type (Current_Scope)
9791 then
9792 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9794 Set_Ekind (CR_Disc, E_In_Parameter);
9795 Set_Mechanism (CR_Disc, Default_Mechanism);
9796 Set_Etype (CR_Disc, Etype (Discrim));
9797 Set_Scope (CR_Disc, Current_Scope);
9798 Set_Discriminal_Link (CR_Disc, Discrim);
9799 Set_CR_Discriminant (Discrim, CR_Disc);
9800 end if;
9801 end Build_Discriminal;
9803 ------------------------------------
9804 -- Build_Discriminant_Constraints --
9805 ------------------------------------
9807 function Build_Discriminant_Constraints
9808 (T : Entity_Id;
9809 Def : Node_Id;
9810 Derived_Def : Boolean := False) return Elist_Id
9812 C : constant Node_Id := Constraint (Def);
9813 Nb_Discr : constant Nat := Number_Discriminants (T);
9815 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9816 -- Saves the expression corresponding to a given discriminant in T
9818 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9819 -- Return the Position number within array Discr_Expr of a discriminant
9820 -- D within the discriminant list of the discriminated type T.
9822 procedure Process_Discriminant_Expression
9823 (Expr : Node_Id;
9824 D : Entity_Id);
9825 -- If this is a discriminant constraint on a partial view, do not
9826 -- generate an overflow check on the discriminant expression. The check
9827 -- will be generated when constraining the full view. Otherwise the
9828 -- backend creates duplicate symbols for the temporaries corresponding
9829 -- to the expressions to be checked, causing spurious assembler errors.
9831 ------------------
9832 -- Pos_Of_Discr --
9833 ------------------
9835 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9836 Disc : Entity_Id;
9838 begin
9839 Disc := First_Discriminant (T);
9840 for J in Discr_Expr'Range loop
9841 if Disc = D then
9842 return J;
9843 end if;
9845 Next_Discriminant (Disc);
9846 end loop;
9848 -- Note: Since this function is called on discriminants that are
9849 -- known to belong to the discriminated type, falling through the
9850 -- loop with no match signals an internal compiler error.
9852 raise Program_Error;
9853 end Pos_Of_Discr;
9855 -------------------------------------
9856 -- Process_Discriminant_Expression --
9857 -------------------------------------
9859 procedure Process_Discriminant_Expression
9860 (Expr : Node_Id;
9861 D : Entity_Id)
9863 BDT : constant Entity_Id := Base_Type (Etype (D));
9865 begin
9866 -- If this is a discriminant constraint on a partial view, do
9867 -- not generate an overflow on the discriminant expression. The
9868 -- check will be generated when constraining the full view.
9870 if Is_Private_Type (T)
9871 and then Present (Full_View (T))
9872 then
9873 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9874 else
9875 Analyze_And_Resolve (Expr, BDT);
9876 end if;
9877 end Process_Discriminant_Expression;
9879 -- Declarations local to Build_Discriminant_Constraints
9881 Discr : Entity_Id;
9882 E : Entity_Id;
9883 Elist : constant Elist_Id := New_Elmt_List;
9885 Constr : Node_Id;
9886 Expr : Node_Id;
9887 Id : Node_Id;
9888 Position : Nat;
9889 Found : Boolean;
9891 Discrim_Present : Boolean := False;
9893 -- Start of processing for Build_Discriminant_Constraints
9895 begin
9896 -- The following loop will process positional associations only.
9897 -- For a positional association, the (single) discriminant is
9898 -- implicitly specified by position, in textual order (RM 3.7.2).
9900 Discr := First_Discriminant (T);
9901 Constr := First (Constraints (C));
9902 for D in Discr_Expr'Range loop
9903 exit when Nkind (Constr) = N_Discriminant_Association;
9905 if No (Constr) then
9906 Error_Msg_N ("too few discriminants given in constraint", C);
9907 return New_Elmt_List;
9909 elsif Nkind (Constr) = N_Range
9910 or else (Nkind (Constr) = N_Attribute_Reference
9911 and then Attribute_Name (Constr) = Name_Range)
9912 then
9913 Error_Msg_N
9914 ("a range is not a valid discriminant constraint", Constr);
9915 Discr_Expr (D) := Error;
9917 elsif Nkind (Constr) = N_Subtype_Indication then
9918 Error_Msg_N
9919 ("a subtype indication is not a valid discriminant constraint",
9920 Constr);
9921 Discr_Expr (D) := Error;
9923 else
9924 Process_Discriminant_Expression (Constr, Discr);
9925 Discr_Expr (D) := Constr;
9926 end if;
9928 Next_Discriminant (Discr);
9929 Next (Constr);
9930 end loop;
9932 if No (Discr) and then Present (Constr) then
9933 Error_Msg_N ("too many discriminants given in constraint", Constr);
9934 return New_Elmt_List;
9935 end if;
9937 -- Named associations can be given in any order, but if both positional
9938 -- and named associations are used in the same discriminant constraint,
9939 -- then positional associations must occur first, at their normal
9940 -- position. Hence once a named association is used, the rest of the
9941 -- discriminant constraint must use only named associations.
9943 while Present (Constr) loop
9945 -- Positional association forbidden after a named association
9947 if Nkind (Constr) /= N_Discriminant_Association then
9948 Error_Msg_N ("positional association follows named one", Constr);
9949 return New_Elmt_List;
9951 -- Otherwise it is a named association
9953 else
9954 -- E records the type of the discriminants in the named
9955 -- association. All the discriminants specified in the same name
9956 -- association must have the same type.
9958 E := Empty;
9960 -- Search the list of discriminants in T to see if the simple name
9961 -- given in the constraint matches any of them.
9963 Id := First (Selector_Names (Constr));
9964 while Present (Id) loop
9965 Found := False;
9967 -- If Original_Discriminant is present, we are processing a
9968 -- generic instantiation and this is an instance node. We need
9969 -- to find the name of the corresponding discriminant in the
9970 -- actual record type T and not the name of the discriminant in
9971 -- the generic formal. Example:
9973 -- generic
9974 -- type G (D : int) is private;
9975 -- package P is
9976 -- subtype W is G (D => 1);
9977 -- end package;
9978 -- type Rec (X : int) is record ... end record;
9979 -- package Q is new P (G => Rec);
9981 -- At the point of the instantiation, formal type G is Rec
9982 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9983 -- which really looks like "subtype W is Rec (D => 1);" at
9984 -- the point of instantiation, we want to find the discriminant
9985 -- that corresponds to D in Rec, i.e. X.
9987 if Present (Original_Discriminant (Id))
9988 and then In_Instance
9989 then
9990 Discr := Find_Corresponding_Discriminant (Id, T);
9991 Found := True;
9993 else
9994 Discr := First_Discriminant (T);
9995 while Present (Discr) loop
9996 if Chars (Discr) = Chars (Id) then
9997 Found := True;
9998 exit;
9999 end if;
10001 Next_Discriminant (Discr);
10002 end loop;
10004 if not Found then
10005 Error_Msg_N ("& does not match any discriminant", Id);
10006 return New_Elmt_List;
10008 -- If the parent type is a generic formal, preserve the
10009 -- name of the discriminant for subsequent instances.
10010 -- see comment at the beginning of this if statement.
10012 elsif Is_Generic_Type (Root_Type (T)) then
10013 Set_Original_Discriminant (Id, Discr);
10014 end if;
10015 end if;
10017 Position := Pos_Of_Discr (T, Discr);
10019 if Present (Discr_Expr (Position)) then
10020 Error_Msg_N ("duplicate constraint for discriminant&", Id);
10022 else
10023 -- Each discriminant specified in the same named association
10024 -- must be associated with a separate copy of the
10025 -- corresponding expression.
10027 if Present (Next (Id)) then
10028 Expr := New_Copy_Tree (Expression (Constr));
10029 Set_Parent (Expr, Parent (Expression (Constr)));
10030 else
10031 Expr := Expression (Constr);
10032 end if;
10034 Discr_Expr (Position) := Expr;
10035 Process_Discriminant_Expression (Expr, Discr);
10036 end if;
10038 -- A discriminant association with more than one discriminant
10039 -- name is only allowed if the named discriminants are all of
10040 -- the same type (RM 3.7.1(8)).
10042 if E = Empty then
10043 E := Base_Type (Etype (Discr));
10045 elsif Base_Type (Etype (Discr)) /= E then
10046 Error_Msg_N
10047 ("all discriminants in an association " &
10048 "must have the same type", Id);
10049 end if;
10051 Next (Id);
10052 end loop;
10053 end if;
10055 Next (Constr);
10056 end loop;
10058 -- A discriminant constraint must provide exactly one value for each
10059 -- discriminant of the type (RM 3.7.1(8)).
10061 for J in Discr_Expr'Range loop
10062 if No (Discr_Expr (J)) then
10063 Error_Msg_N ("too few discriminants given in constraint", C);
10064 return New_Elmt_List;
10065 end if;
10066 end loop;
10068 -- Determine if there are discriminant expressions in the constraint
10070 for J in Discr_Expr'Range loop
10071 if Denotes_Discriminant
10072 (Discr_Expr (J), Check_Concurrent => True)
10073 then
10074 Discrim_Present := True;
10075 end if;
10076 end loop;
10078 -- Build an element list consisting of the expressions given in the
10079 -- discriminant constraint and apply the appropriate checks. The list
10080 -- is constructed after resolving any named discriminant associations
10081 -- and therefore the expressions appear in the textual order of the
10082 -- discriminants.
10084 Discr := First_Discriminant (T);
10085 for J in Discr_Expr'Range loop
10086 if Discr_Expr (J) /= Error then
10087 Append_Elmt (Discr_Expr (J), Elist);
10089 -- If any of the discriminant constraints is given by a
10090 -- discriminant and we are in a derived type declaration we
10091 -- have a discriminant renaming. Establish link between new
10092 -- and old discriminant. The new discriminant has an implicit
10093 -- dereference if the old one does.
10095 if Denotes_Discriminant (Discr_Expr (J)) then
10096 if Derived_Def then
10097 declare
10098 New_Discr : constant Entity_Id := Entity (Discr_Expr (J));
10100 begin
10101 Set_Corresponding_Discriminant (New_Discr, Discr);
10102 Set_Has_Implicit_Dereference (New_Discr,
10103 Has_Implicit_Dereference (Discr));
10104 end;
10105 end if;
10107 -- Force the evaluation of non-discriminant expressions.
10108 -- If we have found a discriminant in the constraint 3.4(26)
10109 -- and 3.8(18) demand that no range checks are performed are
10110 -- after evaluation. If the constraint is for a component
10111 -- definition that has a per-object constraint, expressions are
10112 -- evaluated but not checked either. In all other cases perform
10113 -- a range check.
10115 else
10116 if Discrim_Present then
10117 null;
10119 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
10120 and then Has_Per_Object_Constraint
10121 (Defining_Identifier (Parent (Parent (Def))))
10122 then
10123 null;
10125 elsif Is_Access_Type (Etype (Discr)) then
10126 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
10128 else
10129 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
10130 end if;
10132 Force_Evaluation (Discr_Expr (J));
10133 end if;
10135 -- Check that the designated type of an access discriminant's
10136 -- expression is not a class-wide type unless the discriminant's
10137 -- designated type is also class-wide.
10139 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
10140 and then not Is_Class_Wide_Type
10141 (Designated_Type (Etype (Discr)))
10142 and then Etype (Discr_Expr (J)) /= Any_Type
10143 and then Is_Class_Wide_Type
10144 (Designated_Type (Etype (Discr_Expr (J))))
10145 then
10146 Wrong_Type (Discr_Expr (J), Etype (Discr));
10148 elsif Is_Access_Type (Etype (Discr))
10149 and then not Is_Access_Constant (Etype (Discr))
10150 and then Is_Access_Type (Etype (Discr_Expr (J)))
10151 and then Is_Access_Constant (Etype (Discr_Expr (J)))
10152 then
10153 Error_Msg_NE
10154 ("constraint for discriminant& must be access to variable",
10155 Def, Discr);
10156 end if;
10157 end if;
10159 Next_Discriminant (Discr);
10160 end loop;
10162 return Elist;
10163 end Build_Discriminant_Constraints;
10165 ---------------------------------
10166 -- Build_Discriminated_Subtype --
10167 ---------------------------------
10169 procedure Build_Discriminated_Subtype
10170 (T : Entity_Id;
10171 Def_Id : Entity_Id;
10172 Elist : Elist_Id;
10173 Related_Nod : Node_Id;
10174 For_Access : Boolean := False)
10176 Has_Discrs : constant Boolean := Has_Discriminants (T);
10177 Constrained : constant Boolean :=
10178 (Has_Discrs
10179 and then not Is_Empty_Elmt_List (Elist)
10180 and then not Is_Class_Wide_Type (T))
10181 or else Is_Constrained (T);
10183 begin
10184 if Ekind (T) = E_Record_Type then
10185 if For_Access then
10186 Set_Ekind (Def_Id, E_Private_Subtype);
10187 Set_Is_For_Access_Subtype (Def_Id, True);
10188 else
10189 Set_Ekind (Def_Id, E_Record_Subtype);
10190 end if;
10192 -- Inherit preelaboration flag from base, for types for which it
10193 -- may have been set: records, private types, protected types.
10195 Set_Known_To_Have_Preelab_Init
10196 (Def_Id, Known_To_Have_Preelab_Init (T));
10198 elsif Ekind (T) = E_Task_Type then
10199 Set_Ekind (Def_Id, E_Task_Subtype);
10201 elsif Ekind (T) = E_Protected_Type then
10202 Set_Ekind (Def_Id, E_Protected_Subtype);
10203 Set_Known_To_Have_Preelab_Init
10204 (Def_Id, Known_To_Have_Preelab_Init (T));
10206 elsif Is_Private_Type (T) then
10207 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10208 Set_Known_To_Have_Preelab_Init
10209 (Def_Id, Known_To_Have_Preelab_Init (T));
10211 -- Private subtypes may have private dependents
10213 Set_Private_Dependents (Def_Id, New_Elmt_List);
10215 elsif Is_Class_Wide_Type (T) then
10216 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
10218 else
10219 -- Incomplete type. Attach subtype to list of dependents, to be
10220 -- completed with full view of parent type, unless is it the
10221 -- designated subtype of a record component within an init_proc.
10222 -- This last case arises for a component of an access type whose
10223 -- designated type is incomplete (e.g. a Taft Amendment type).
10224 -- The designated subtype is within an inner scope, and needs no
10225 -- elaboration, because only the access type is needed in the
10226 -- initialization procedure.
10228 if Ekind (T) = E_Incomplete_Type then
10229 Set_Ekind (Def_Id, E_Incomplete_Subtype);
10230 else
10231 Set_Ekind (Def_Id, Ekind (T));
10232 end if;
10234 if For_Access and then Within_Init_Proc then
10235 null;
10236 else
10237 Append_Elmt (Def_Id, Private_Dependents (T));
10238 end if;
10239 end if;
10241 Set_Etype (Def_Id, T);
10242 Init_Size_Align (Def_Id);
10243 Set_Has_Discriminants (Def_Id, Has_Discrs);
10244 Set_Is_Constrained (Def_Id, Constrained);
10246 Set_First_Entity (Def_Id, First_Entity (T));
10247 Set_Last_Entity (Def_Id, Last_Entity (T));
10248 Set_Has_Implicit_Dereference
10249 (Def_Id, Has_Implicit_Dereference (T));
10250 Set_Has_Pragma_Unreferenced_Objects
10251 (Def_Id, Has_Pragma_Unreferenced_Objects (T));
10253 -- If the subtype is the completion of a private declaration, there may
10254 -- have been representation clauses for the partial view, and they must
10255 -- be preserved. Build_Derived_Type chains the inherited clauses with
10256 -- the ones appearing on the extension. If this comes from a subtype
10257 -- declaration, all clauses are inherited.
10259 if No (First_Rep_Item (Def_Id)) then
10260 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10261 end if;
10263 if Is_Tagged_Type (T) then
10264 Set_Is_Tagged_Type (Def_Id);
10265 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
10266 Make_Class_Wide_Type (Def_Id);
10267 end if;
10269 Set_Stored_Constraint (Def_Id, No_Elist);
10271 if Has_Discrs then
10272 Set_Discriminant_Constraint (Def_Id, Elist);
10273 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
10274 end if;
10276 if Is_Tagged_Type (T) then
10278 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10279 -- concurrent record type (which has the list of primitive
10280 -- operations).
10282 if Ada_Version >= Ada_2005
10283 and then Is_Concurrent_Type (T)
10284 then
10285 Set_Corresponding_Record_Type (Def_Id,
10286 Corresponding_Record_Type (T));
10287 else
10288 Set_Direct_Primitive_Operations (Def_Id,
10289 Direct_Primitive_Operations (T));
10290 end if;
10292 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
10293 end if;
10295 -- Subtypes introduced by component declarations do not need to be
10296 -- marked as delayed, and do not get freeze nodes, because the semantics
10297 -- verifies that the parents of the subtypes are frozen before the
10298 -- enclosing record is frozen.
10300 if not Is_Type (Scope (Def_Id)) then
10301 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10303 if Is_Private_Type (T)
10304 and then Present (Full_View (T))
10305 then
10306 Conditional_Delay (Def_Id, Full_View (T));
10307 else
10308 Conditional_Delay (Def_Id, T);
10309 end if;
10310 end if;
10312 if Is_Record_Type (T) then
10313 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
10315 if Has_Discrs
10316 and then not Is_Empty_Elmt_List (Elist)
10317 and then not For_Access
10318 then
10319 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
10321 elsif not For_Access then
10322 Set_Cloned_Subtype (Def_Id, T);
10323 end if;
10324 end if;
10325 end Build_Discriminated_Subtype;
10327 ---------------------------
10328 -- Build_Itype_Reference --
10329 ---------------------------
10331 procedure Build_Itype_Reference
10332 (Ityp : Entity_Id;
10333 Nod : Node_Id)
10335 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
10336 begin
10338 -- Itype references are only created for use by the back-end
10340 if Inside_A_Generic then
10341 return;
10342 else
10343 Set_Itype (IR, Ityp);
10345 -- If Nod is a library unit entity, then Insert_After won't work,
10346 -- because Nod is not a member of any list. Therefore, we use
10347 -- Add_Global_Declaration in this case. This can happen if we have a
10348 -- build-in-place library function.
10350 if (Nkind (Nod) in N_Entity and then Is_Compilation_Unit (Nod))
10351 or else
10352 (Nkind (Nod) = N_Defining_Program_Unit_Name
10353 and then Is_Compilation_Unit (Defining_Identifier (Nod)))
10354 then
10355 Add_Global_Declaration (IR);
10356 else
10357 Insert_After (Nod, IR);
10358 end if;
10359 end if;
10360 end Build_Itype_Reference;
10362 ------------------------
10363 -- Build_Scalar_Bound --
10364 ------------------------
10366 function Build_Scalar_Bound
10367 (Bound : Node_Id;
10368 Par_T : Entity_Id;
10369 Der_T : Entity_Id) return Node_Id
10371 New_Bound : Entity_Id;
10373 begin
10374 -- Note: not clear why this is needed, how can the original bound
10375 -- be unanalyzed at this point? and if it is, what business do we
10376 -- have messing around with it? and why is the base type of the
10377 -- parent type the right type for the resolution. It probably is
10378 -- not. It is OK for the new bound we are creating, but not for
10379 -- the old one??? Still if it never happens, no problem.
10381 Analyze_And_Resolve (Bound, Base_Type (Par_T));
10383 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
10384 New_Bound := New_Copy (Bound);
10385 Set_Etype (New_Bound, Der_T);
10386 Set_Analyzed (New_Bound);
10388 elsif Is_Entity_Name (Bound) then
10389 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
10391 -- The following is almost certainly wrong. What business do we have
10392 -- relocating a node (Bound) that is presumably still attached to
10393 -- the tree elsewhere???
10395 else
10396 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
10397 end if;
10399 Set_Etype (New_Bound, Der_T);
10400 return New_Bound;
10401 end Build_Scalar_Bound;
10403 --------------------------------
10404 -- Build_Underlying_Full_View --
10405 --------------------------------
10407 procedure Build_Underlying_Full_View
10408 (N : Node_Id;
10409 Typ : Entity_Id;
10410 Par : Entity_Id)
10412 Loc : constant Source_Ptr := Sloc (N);
10413 Subt : constant Entity_Id :=
10414 Make_Defining_Identifier
10415 (Loc, New_External_Name (Chars (Typ), 'S'));
10417 Constr : Node_Id;
10418 Indic : Node_Id;
10419 C : Node_Id;
10420 Id : Node_Id;
10422 procedure Set_Discriminant_Name (Id : Node_Id);
10423 -- If the derived type has discriminants, they may rename discriminants
10424 -- of the parent. When building the full view of the parent, we need to
10425 -- recover the names of the original discriminants if the constraint is
10426 -- given by named associations.
10428 ---------------------------
10429 -- Set_Discriminant_Name --
10430 ---------------------------
10432 procedure Set_Discriminant_Name (Id : Node_Id) is
10433 Disc : Entity_Id;
10435 begin
10436 Set_Original_Discriminant (Id, Empty);
10438 if Has_Discriminants (Typ) then
10439 Disc := First_Discriminant (Typ);
10440 while Present (Disc) loop
10441 if Chars (Disc) = Chars (Id)
10442 and then Present (Corresponding_Discriminant (Disc))
10443 then
10444 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
10445 end if;
10446 Next_Discriminant (Disc);
10447 end loop;
10448 end if;
10449 end Set_Discriminant_Name;
10451 -- Start of processing for Build_Underlying_Full_View
10453 begin
10454 if Nkind (N) = N_Full_Type_Declaration then
10455 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
10457 elsif Nkind (N) = N_Subtype_Declaration then
10458 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
10460 elsif Nkind (N) = N_Component_Declaration then
10461 Constr :=
10462 New_Copy_Tree
10463 (Constraint (Subtype_Indication (Component_Definition (N))));
10465 else
10466 raise Program_Error;
10467 end if;
10469 C := First (Constraints (Constr));
10470 while Present (C) loop
10471 if Nkind (C) = N_Discriminant_Association then
10472 Id := First (Selector_Names (C));
10473 while Present (Id) loop
10474 Set_Discriminant_Name (Id);
10475 Next (Id);
10476 end loop;
10477 end if;
10479 Next (C);
10480 end loop;
10482 Indic :=
10483 Make_Subtype_Declaration (Loc,
10484 Defining_Identifier => Subt,
10485 Subtype_Indication =>
10486 Make_Subtype_Indication (Loc,
10487 Subtype_Mark => New_Occurrence_Of (Par, Loc),
10488 Constraint => New_Copy_Tree (Constr)));
10490 -- If this is a component subtype for an outer itype, it is not
10491 -- a list member, so simply set the parent link for analysis: if
10492 -- the enclosing type does not need to be in a declarative list,
10493 -- neither do the components.
10495 if Is_List_Member (N)
10496 and then Nkind (N) /= N_Component_Declaration
10497 then
10498 Insert_Before (N, Indic);
10499 else
10500 Set_Parent (Indic, Parent (N));
10501 end if;
10503 Analyze (Indic);
10504 Set_Underlying_Full_View (Typ, Full_View (Subt));
10505 Set_Is_Underlying_Full_View (Full_View (Subt));
10506 end Build_Underlying_Full_View;
10508 -------------------------------
10509 -- Check_Abstract_Overriding --
10510 -------------------------------
10512 procedure Check_Abstract_Overriding (T : Entity_Id) is
10513 Alias_Subp : Entity_Id;
10514 Elmt : Elmt_Id;
10515 Op_List : Elist_Id;
10516 Subp : Entity_Id;
10517 Type_Def : Node_Id;
10519 procedure Check_Pragma_Implemented (Subp : Entity_Id);
10520 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10521 -- which has pragma Implemented already set. Check whether Subp's entity
10522 -- kind conforms to the implementation kind of the overridden routine.
10524 procedure Check_Pragma_Implemented
10525 (Subp : Entity_Id;
10526 Iface_Subp : Entity_Id);
10527 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10528 -- Iface_Subp and both entities have pragma Implemented already set on
10529 -- them. Check whether the two implementation kinds are conforming.
10531 procedure Inherit_Pragma_Implemented
10532 (Subp : Entity_Id;
10533 Iface_Subp : Entity_Id);
10534 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10535 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10536 -- Propagate the implementation kind of Iface_Subp to Subp.
10538 ------------------------------
10539 -- Check_Pragma_Implemented --
10540 ------------------------------
10542 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
10543 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
10544 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
10545 Subp_Alias : constant Entity_Id := Alias (Subp);
10546 Contr_Typ : Entity_Id;
10547 Impl_Subp : Entity_Id;
10549 begin
10550 -- Subp must have an alias since it is a hidden entity used to link
10551 -- an interface subprogram to its overriding counterpart.
10553 pragma Assert (Present (Subp_Alias));
10555 -- Handle aliases to synchronized wrappers
10557 Impl_Subp := Subp_Alias;
10559 if Is_Primitive_Wrapper (Impl_Subp) then
10560 Impl_Subp := Wrapped_Entity (Impl_Subp);
10561 end if;
10563 -- Extract the type of the controlling formal
10565 Contr_Typ := Etype (First_Formal (Subp_Alias));
10567 if Is_Concurrent_Record_Type (Contr_Typ) then
10568 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
10569 end if;
10571 -- An interface subprogram whose implementation kind is By_Entry must
10572 -- be implemented by an entry.
10574 if Impl_Kind = Name_By_Entry
10575 and then Ekind (Impl_Subp) /= E_Entry
10576 then
10577 Error_Msg_Node_2 := Iface_Alias;
10578 Error_Msg_NE
10579 ("type & must implement abstract subprogram & with an entry",
10580 Subp_Alias, Contr_Typ);
10582 elsif Impl_Kind = Name_By_Protected_Procedure then
10584 -- An interface subprogram whose implementation kind is By_
10585 -- Protected_Procedure cannot be implemented by a primitive
10586 -- procedure of a task type.
10588 if Ekind (Contr_Typ) /= E_Protected_Type then
10589 Error_Msg_Node_2 := Contr_Typ;
10590 Error_Msg_NE
10591 ("interface subprogram & cannot be implemented by a " &
10592 "primitive procedure of task type &", Subp_Alias,
10593 Iface_Alias);
10595 -- An interface subprogram whose implementation kind is By_
10596 -- Protected_Procedure must be implemented by a procedure.
10598 elsif Ekind (Impl_Subp) /= E_Procedure then
10599 Error_Msg_Node_2 := Iface_Alias;
10600 Error_Msg_NE
10601 ("type & must implement abstract subprogram & with a " &
10602 "procedure", Subp_Alias, Contr_Typ);
10604 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10605 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10606 then
10607 Error_Msg_Name_1 := Impl_Kind;
10608 Error_Msg_N
10609 ("overriding operation& must have synchronization%",
10610 Subp_Alias);
10611 end if;
10613 -- If primitive has Optional synchronization, overriding operation
10614 -- must match if it has an explicit synchronization..
10616 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10617 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10618 then
10619 Error_Msg_Name_1 := Impl_Kind;
10620 Error_Msg_N
10621 ("overriding operation& must have syncrhonization%",
10622 Subp_Alias);
10623 end if;
10624 end Check_Pragma_Implemented;
10626 ------------------------------
10627 -- Check_Pragma_Implemented --
10628 ------------------------------
10630 procedure Check_Pragma_Implemented
10631 (Subp : Entity_Id;
10632 Iface_Subp : Entity_Id)
10634 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10635 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
10637 begin
10638 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10639 -- and overriding subprogram are different. In general this is an
10640 -- error except when the implementation kind of the overridden
10641 -- subprograms is By_Any or Optional.
10643 if Iface_Kind /= Subp_Kind
10644 and then Iface_Kind /= Name_By_Any
10645 and then Iface_Kind /= Name_Optional
10646 then
10647 if Iface_Kind = Name_By_Entry then
10648 Error_Msg_N
10649 ("incompatible implementation kind, overridden subprogram " &
10650 "is marked By_Entry", Subp);
10651 else
10652 Error_Msg_N
10653 ("incompatible implementation kind, overridden subprogram " &
10654 "is marked By_Protected_Procedure", Subp);
10655 end if;
10656 end if;
10657 end Check_Pragma_Implemented;
10659 --------------------------------
10660 -- Inherit_Pragma_Implemented --
10661 --------------------------------
10663 procedure Inherit_Pragma_Implemented
10664 (Subp : Entity_Id;
10665 Iface_Subp : Entity_Id)
10667 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10668 Loc : constant Source_Ptr := Sloc (Subp);
10669 Impl_Prag : Node_Id;
10671 begin
10672 -- Since the implementation kind is stored as a representation item
10673 -- rather than a flag, create a pragma node.
10675 Impl_Prag :=
10676 Make_Pragma (Loc,
10677 Chars => Name_Implemented,
10678 Pragma_Argument_Associations => New_List (
10679 Make_Pragma_Argument_Association (Loc,
10680 Expression => New_Occurrence_Of (Subp, Loc)),
10682 Make_Pragma_Argument_Association (Loc,
10683 Expression => Make_Identifier (Loc, Iface_Kind))));
10685 -- The pragma doesn't need to be analyzed because it is internally
10686 -- built. It is safe to directly register it as a rep item since we
10687 -- are only interested in the characters of the implementation kind.
10689 Record_Rep_Item (Subp, Impl_Prag);
10690 end Inherit_Pragma_Implemented;
10692 -- Start of processing for Check_Abstract_Overriding
10694 begin
10695 Op_List := Primitive_Operations (T);
10697 -- Loop to check primitive operations
10699 Elmt := First_Elmt (Op_List);
10700 while Present (Elmt) loop
10701 Subp := Node (Elmt);
10702 Alias_Subp := Alias (Subp);
10704 -- Inherited subprograms are identified by the fact that they do not
10705 -- come from source, and the associated source location is the
10706 -- location of the first subtype of the derived type.
10708 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10709 -- subprograms that "require overriding".
10711 -- Special exception, do not complain about failure to override the
10712 -- stream routines _Input and _Output, as well as the primitive
10713 -- operations used in dispatching selects since we always provide
10714 -- automatic overridings for these subprograms.
10716 -- The partial view of T may have been a private extension, for
10717 -- which inherited functions dispatching on result are abstract.
10718 -- If the full view is a null extension, there is no need for
10719 -- overriding in Ada 2005, but wrappers need to be built for them
10720 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10722 if Is_Null_Extension (T)
10723 and then Has_Controlling_Result (Subp)
10724 and then Ada_Version >= Ada_2005
10725 and then Present (Alias_Subp)
10726 and then not Comes_From_Source (Subp)
10727 and then not Is_Abstract_Subprogram (Alias_Subp)
10728 and then not Is_Access_Type (Etype (Subp))
10729 then
10730 null;
10732 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10733 -- processing because this check is done with the aliased
10734 -- entity
10736 elsif Present (Interface_Alias (Subp)) then
10737 null;
10739 elsif (Is_Abstract_Subprogram (Subp)
10740 or else Requires_Overriding (Subp)
10741 or else
10742 (Has_Controlling_Result (Subp)
10743 and then Present (Alias_Subp)
10744 and then not Comes_From_Source (Subp)
10745 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10746 and then not Is_TSS (Subp, TSS_Stream_Input)
10747 and then not Is_TSS (Subp, TSS_Stream_Output)
10748 and then not Is_Abstract_Type (T)
10749 and then not Is_Predefined_Interface_Primitive (Subp)
10751 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10752 -- with abstract interface types because the check will be done
10753 -- with the aliased entity (otherwise we generate a duplicated
10754 -- error message).
10756 and then not Present (Interface_Alias (Subp))
10757 then
10758 if Present (Alias_Subp) then
10760 -- Only perform the check for a derived subprogram when the
10761 -- type has an explicit record extension. This avoids incorrect
10762 -- flagging of abstract subprograms for the case of a type
10763 -- without an extension that is derived from a formal type
10764 -- with a tagged actual (can occur within a private part).
10766 -- Ada 2005 (AI-391): In the case of an inherited function with
10767 -- a controlling result of the type, the rule does not apply if
10768 -- the type is a null extension (unless the parent function
10769 -- itself is abstract, in which case the function must still be
10770 -- be overridden). The expander will generate an overriding
10771 -- wrapper function calling the parent subprogram (see
10772 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10774 Type_Def := Type_Definition (Parent (T));
10776 if Nkind (Type_Def) = N_Derived_Type_Definition
10777 and then Present (Record_Extension_Part (Type_Def))
10778 and then
10779 (Ada_Version < Ada_2005
10780 or else not Is_Null_Extension (T)
10781 or else Ekind (Subp) = E_Procedure
10782 or else not Has_Controlling_Result (Subp)
10783 or else Is_Abstract_Subprogram (Alias_Subp)
10784 or else Requires_Overriding (Subp)
10785 or else Is_Access_Type (Etype (Subp)))
10786 then
10787 -- Avoid reporting error in case of abstract predefined
10788 -- primitive inherited from interface type because the
10789 -- body of internally generated predefined primitives
10790 -- of tagged types are generated later by Freeze_Type
10792 if Is_Interface (Root_Type (T))
10793 and then Is_Abstract_Subprogram (Subp)
10794 and then Is_Predefined_Dispatching_Operation (Subp)
10795 and then not Comes_From_Source (Ultimate_Alias (Subp))
10796 then
10797 null;
10799 -- A null extension is not obliged to override an inherited
10800 -- procedure subject to pragma Extensions_Visible with value
10801 -- False and at least one controlling OUT parameter
10802 -- (SPARK RM 6.1.7(6)).
10804 elsif Is_Null_Extension (T)
10805 and then Is_EVF_Procedure (Subp)
10806 then
10807 null;
10809 else
10810 Error_Msg_NE
10811 ("type must be declared abstract or & overridden",
10812 T, Subp);
10814 -- Traverse the whole chain of aliased subprograms to
10815 -- complete the error notification. This is especially
10816 -- useful for traceability of the chain of entities when
10817 -- the subprogram corresponds with an interface
10818 -- subprogram (which may be defined in another package).
10820 if Present (Alias_Subp) then
10821 declare
10822 E : Entity_Id;
10824 begin
10825 E := Subp;
10826 while Present (Alias (E)) loop
10828 -- Avoid reporting redundant errors on entities
10829 -- inherited from interfaces
10831 if Sloc (E) /= Sloc (T) then
10832 Error_Msg_Sloc := Sloc (E);
10833 Error_Msg_NE
10834 ("\& has been inherited #", T, Subp);
10835 end if;
10837 E := Alias (E);
10838 end loop;
10840 Error_Msg_Sloc := Sloc (E);
10842 -- AI05-0068: report if there is an overriding
10843 -- non-abstract subprogram that is invisible.
10845 if Is_Hidden (E)
10846 and then not Is_Abstract_Subprogram (E)
10847 then
10848 Error_Msg_NE
10849 ("\& subprogram# is not visible",
10850 T, Subp);
10852 -- Clarify the case where a non-null extension must
10853 -- override inherited procedure subject to pragma
10854 -- Extensions_Visible with value False and at least
10855 -- one controlling OUT param.
10857 elsif Is_EVF_Procedure (E) then
10858 Error_Msg_NE
10859 ("\& # is subject to Extensions_Visible False",
10860 T, Subp);
10862 else
10863 Error_Msg_NE
10864 ("\& has been inherited from subprogram #",
10865 T, Subp);
10866 end if;
10867 end;
10868 end if;
10869 end if;
10871 -- Ada 2005 (AI-345): Protected or task type implementing
10872 -- abstract interfaces.
10874 elsif Is_Concurrent_Record_Type (T)
10875 and then Present (Interfaces (T))
10876 then
10877 -- There is no need to check here RM 9.4(11.9/3) since we
10878 -- are processing the corresponding record type and the
10879 -- mode of the overriding subprograms was verified by
10880 -- Check_Conformance when the corresponding concurrent
10881 -- type declaration was analyzed.
10883 Error_Msg_NE
10884 ("interface subprogram & must be overridden", T, Subp);
10886 -- Examine primitive operations of synchronized type to find
10887 -- homonyms that have the wrong profile.
10889 declare
10890 Prim : Entity_Id;
10892 begin
10893 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10894 while Present (Prim) loop
10895 if Chars (Prim) = Chars (Subp) then
10896 Error_Msg_NE
10897 ("profile is not type conformant with prefixed "
10898 & "view profile of inherited operation&",
10899 Prim, Subp);
10900 end if;
10902 Next_Entity (Prim);
10903 end loop;
10904 end;
10905 end if;
10907 else
10908 Error_Msg_Node_2 := T;
10909 Error_Msg_N
10910 ("abstract subprogram& not allowed for type&", Subp);
10912 -- Also post unconditional warning on the type (unconditional
10913 -- so that if there are more than one of these cases, we get
10914 -- them all, and not just the first one).
10916 Error_Msg_Node_2 := Subp;
10917 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10918 end if;
10920 -- A subprogram subject to pragma Extensions_Visible with value
10921 -- "True" cannot override a subprogram subject to the same pragma
10922 -- with value "False" (SPARK RM 6.1.7(5)).
10924 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10925 and then Present (Overridden_Operation (Subp))
10926 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10927 Extensions_Visible_False
10928 then
10929 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10930 Error_Msg_N
10931 ("subprogram & with Extensions_Visible True cannot override "
10932 & "subprogram # with Extensions_Visible False", Subp);
10933 end if;
10935 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10937 -- Subp is an expander-generated procedure which maps an interface
10938 -- alias to a protected wrapper. The interface alias is flagged by
10939 -- pragma Implemented. Ensure that Subp is a procedure when the
10940 -- implementation kind is By_Protected_Procedure or an entry when
10941 -- By_Entry.
10943 if Ada_Version >= Ada_2012
10944 and then Is_Hidden (Subp)
10945 and then Present (Interface_Alias (Subp))
10946 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10947 then
10948 Check_Pragma_Implemented (Subp);
10949 end if;
10951 -- Subp is an interface primitive which overrides another interface
10952 -- primitive marked with pragma Implemented.
10954 if Ada_Version >= Ada_2012
10955 and then Present (Overridden_Operation (Subp))
10956 and then Has_Rep_Pragma
10957 (Overridden_Operation (Subp), Name_Implemented)
10958 then
10959 -- If the overriding routine is also marked by Implemented, check
10960 -- that the two implementation kinds are conforming.
10962 if Has_Rep_Pragma (Subp, Name_Implemented) then
10963 Check_Pragma_Implemented
10964 (Subp => Subp,
10965 Iface_Subp => Overridden_Operation (Subp));
10967 -- Otherwise the overriding routine inherits the implementation
10968 -- kind from the overridden subprogram.
10970 else
10971 Inherit_Pragma_Implemented
10972 (Subp => Subp,
10973 Iface_Subp => Overridden_Operation (Subp));
10974 end if;
10975 end if;
10977 -- If the operation is a wrapper for a synchronized primitive, it
10978 -- may be called indirectly through a dispatching select. We assume
10979 -- that it will be referenced elsewhere indirectly, and suppress
10980 -- warnings about an unused entity.
10982 if Is_Primitive_Wrapper (Subp)
10983 and then Present (Wrapped_Entity (Subp))
10984 then
10985 Set_Referenced (Wrapped_Entity (Subp));
10986 end if;
10988 Next_Elmt (Elmt);
10989 end loop;
10990 end Check_Abstract_Overriding;
10992 ------------------------------------------------
10993 -- Check_Access_Discriminant_Requires_Limited --
10994 ------------------------------------------------
10996 procedure Check_Access_Discriminant_Requires_Limited
10997 (D : Node_Id;
10998 Loc : Node_Id)
11000 begin
11001 -- A discriminant_specification for an access discriminant shall appear
11002 -- only in the declaration for a task or protected type, or for a type
11003 -- with the reserved word 'limited' in its definition or in one of its
11004 -- ancestors (RM 3.7(10)).
11006 -- AI-0063: The proper condition is that type must be immutably limited,
11007 -- or else be a partial view.
11009 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
11010 if Is_Limited_View (Current_Scope)
11011 or else
11012 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
11013 and then Limited_Present (Parent (Current_Scope)))
11014 then
11015 null;
11017 else
11018 Error_Msg_N
11019 ("access discriminants allowed only for limited types", Loc);
11020 end if;
11021 end if;
11022 end Check_Access_Discriminant_Requires_Limited;
11024 -----------------------------------
11025 -- Check_Aliased_Component_Types --
11026 -----------------------------------
11028 procedure Check_Aliased_Component_Types (T : Entity_Id) is
11029 C : Entity_Id;
11031 begin
11032 -- ??? Also need to check components of record extensions, but not
11033 -- components of protected types (which are always limited).
11035 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
11036 -- types to be unconstrained. This is safe because it is illegal to
11037 -- create access subtypes to such types with explicit discriminant
11038 -- constraints.
11040 if not Is_Limited_Type (T) then
11041 if Ekind (T) = E_Record_Type then
11042 C := First_Component (T);
11043 while Present (C) loop
11044 if Is_Aliased (C)
11045 and then Has_Discriminants (Etype (C))
11046 and then not Is_Constrained (Etype (C))
11047 and then not In_Instance_Body
11048 and then Ada_Version < Ada_2005
11049 then
11050 Error_Msg_N
11051 ("aliased component must be constrained (RM 3.6(11))",
11053 end if;
11055 Next_Component (C);
11056 end loop;
11058 elsif Ekind (T) = E_Array_Type then
11059 if Has_Aliased_Components (T)
11060 and then Has_Discriminants (Component_Type (T))
11061 and then not Is_Constrained (Component_Type (T))
11062 and then not In_Instance_Body
11063 and then Ada_Version < Ada_2005
11064 then
11065 Error_Msg_N
11066 ("aliased component type must be constrained (RM 3.6(11))",
11068 end if;
11069 end if;
11070 end if;
11071 end Check_Aliased_Component_Types;
11073 ---------------------------------------
11074 -- Check_Anonymous_Access_Components --
11075 ---------------------------------------
11077 procedure Check_Anonymous_Access_Components
11078 (Typ_Decl : Node_Id;
11079 Typ : Entity_Id;
11080 Prev : Entity_Id;
11081 Comp_List : Node_Id)
11083 Loc : constant Source_Ptr := Sloc (Typ_Decl);
11084 Anon_Access : Entity_Id;
11085 Acc_Def : Node_Id;
11086 Comp : Node_Id;
11087 Comp_Def : Node_Id;
11088 Decl : Node_Id;
11089 Type_Def : Node_Id;
11091 procedure Build_Incomplete_Type_Declaration;
11092 -- If the record type contains components that include an access to the
11093 -- current record, then create an incomplete type declaration for the
11094 -- record, to be used as the designated type of the anonymous access.
11095 -- This is done only once, and only if there is no previous partial
11096 -- view of the type.
11098 function Designates_T (Subt : Node_Id) return Boolean;
11099 -- Check whether a node designates the enclosing record type, or 'Class
11100 -- of that type
11102 function Mentions_T (Acc_Def : Node_Id) return Boolean;
11103 -- Check whether an access definition includes a reference to
11104 -- the enclosing record type. The reference can be a subtype mark
11105 -- in the access definition itself, a 'Class attribute reference, or
11106 -- recursively a reference appearing in a parameter specification
11107 -- or result definition of an access_to_subprogram definition.
11109 --------------------------------------
11110 -- Build_Incomplete_Type_Declaration --
11111 --------------------------------------
11113 procedure Build_Incomplete_Type_Declaration is
11114 Decl : Node_Id;
11115 Inc_T : Entity_Id;
11116 H : Entity_Id;
11118 -- Is_Tagged indicates whether the type is tagged. It is tagged if
11119 -- it's "is new ... with record" or else "is tagged record ...".
11121 Is_Tagged : constant Boolean :=
11122 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
11123 and then
11124 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
11125 or else
11126 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
11127 and then Tagged_Present (Type_Definition (Typ_Decl)));
11129 begin
11130 -- If there is a previous partial view, no need to create a new one
11131 -- If the partial view, given by Prev, is incomplete, If Prev is
11132 -- a private declaration, full declaration is flagged accordingly.
11134 if Prev /= Typ then
11135 if Is_Tagged then
11136 Make_Class_Wide_Type (Prev);
11137 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
11138 Set_Etype (Class_Wide_Type (Typ), Typ);
11139 end if;
11141 return;
11143 elsif Has_Private_Declaration (Typ) then
11145 -- If we refer to T'Class inside T, and T is the completion of a
11146 -- private type, then make sure the class-wide type exists.
11148 if Is_Tagged then
11149 Make_Class_Wide_Type (Typ);
11150 end if;
11152 return;
11154 -- If there was a previous anonymous access type, the incomplete
11155 -- type declaration will have been created already.
11157 elsif Present (Current_Entity (Typ))
11158 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
11159 and then Full_View (Current_Entity (Typ)) = Typ
11160 then
11161 if Is_Tagged
11162 and then Comes_From_Source (Current_Entity (Typ))
11163 and then not Is_Tagged_Type (Current_Entity (Typ))
11164 then
11165 Make_Class_Wide_Type (Typ);
11166 Error_Msg_N
11167 ("incomplete view of tagged type should be declared tagged??",
11168 Parent (Current_Entity (Typ)));
11169 end if;
11170 return;
11172 else
11173 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
11174 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
11176 -- Type has already been inserted into the current scope. Remove
11177 -- it, and add incomplete declaration for type, so that subsequent
11178 -- anonymous access types can use it. The entity is unchained from
11179 -- the homonym list and from immediate visibility. After analysis,
11180 -- the entity in the incomplete declaration becomes immediately
11181 -- visible in the record declaration that follows.
11183 H := Current_Entity (Typ);
11185 if H = Typ then
11186 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
11187 else
11188 while Present (H)
11189 and then Homonym (H) /= Typ
11190 loop
11191 H := Homonym (Typ);
11192 end loop;
11194 Set_Homonym (H, Homonym (Typ));
11195 end if;
11197 Insert_Before (Typ_Decl, Decl);
11198 Analyze (Decl);
11199 Set_Full_View (Inc_T, Typ);
11201 if Is_Tagged then
11203 -- Create a common class-wide type for both views, and set the
11204 -- Etype of the class-wide type to the full view.
11206 Make_Class_Wide_Type (Inc_T);
11207 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
11208 Set_Etype (Class_Wide_Type (Typ), Typ);
11209 end if;
11210 end if;
11211 end Build_Incomplete_Type_Declaration;
11213 ------------------
11214 -- Designates_T --
11215 ------------------
11217 function Designates_T (Subt : Node_Id) return Boolean is
11218 Type_Id : constant Name_Id := Chars (Typ);
11220 function Names_T (Nam : Node_Id) return Boolean;
11221 -- The record type has not been introduced in the current scope
11222 -- yet, so we must examine the name of the type itself, either
11223 -- an identifier T, or an expanded name of the form P.T, where
11224 -- P denotes the current scope.
11226 -------------
11227 -- Names_T --
11228 -------------
11230 function Names_T (Nam : Node_Id) return Boolean is
11231 begin
11232 if Nkind (Nam) = N_Identifier then
11233 return Chars (Nam) = Type_Id;
11235 elsif Nkind (Nam) = N_Selected_Component then
11236 if Chars (Selector_Name (Nam)) = Type_Id then
11237 if Nkind (Prefix (Nam)) = N_Identifier then
11238 return Chars (Prefix (Nam)) = Chars (Current_Scope);
11240 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
11241 return Chars (Selector_Name (Prefix (Nam))) =
11242 Chars (Current_Scope);
11243 else
11244 return False;
11245 end if;
11247 else
11248 return False;
11249 end if;
11251 else
11252 return False;
11253 end if;
11254 end Names_T;
11256 -- Start of processing for Designates_T
11258 begin
11259 if Nkind (Subt) = N_Identifier then
11260 return Chars (Subt) = Type_Id;
11262 -- Reference can be through an expanded name which has not been
11263 -- analyzed yet, and which designates enclosing scopes.
11265 elsif Nkind (Subt) = N_Selected_Component then
11266 if Names_T (Subt) then
11267 return True;
11269 -- Otherwise it must denote an entity that is already visible.
11270 -- The access definition may name a subtype of the enclosing
11271 -- type, if there is a previous incomplete declaration for it.
11273 else
11274 Find_Selected_Component (Subt);
11275 return
11276 Is_Entity_Name (Subt)
11277 and then Scope (Entity (Subt)) = Current_Scope
11278 and then
11279 (Chars (Base_Type (Entity (Subt))) = Type_Id
11280 or else
11281 (Is_Class_Wide_Type (Entity (Subt))
11282 and then
11283 Chars (Etype (Base_Type (Entity (Subt)))) =
11284 Type_Id));
11285 end if;
11287 -- A reference to the current type may appear as the prefix of
11288 -- a 'Class attribute.
11290 elsif Nkind (Subt) = N_Attribute_Reference
11291 and then Attribute_Name (Subt) = Name_Class
11292 then
11293 return Names_T (Prefix (Subt));
11295 else
11296 return False;
11297 end if;
11298 end Designates_T;
11300 ----------------
11301 -- Mentions_T --
11302 ----------------
11304 function Mentions_T (Acc_Def : Node_Id) return Boolean is
11305 Param_Spec : Node_Id;
11307 Acc_Subprg : constant Node_Id :=
11308 Access_To_Subprogram_Definition (Acc_Def);
11310 begin
11311 if No (Acc_Subprg) then
11312 return Designates_T (Subtype_Mark (Acc_Def));
11313 end if;
11315 -- Component is an access_to_subprogram: examine its formals,
11316 -- and result definition in the case of an access_to_function.
11318 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
11319 while Present (Param_Spec) loop
11320 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
11321 and then Mentions_T (Parameter_Type (Param_Spec))
11322 then
11323 return True;
11325 elsif Designates_T (Parameter_Type (Param_Spec)) then
11326 return True;
11327 end if;
11329 Next (Param_Spec);
11330 end loop;
11332 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
11333 if Nkind (Result_Definition (Acc_Subprg)) =
11334 N_Access_Definition
11335 then
11336 return Mentions_T (Result_Definition (Acc_Subprg));
11337 else
11338 return Designates_T (Result_Definition (Acc_Subprg));
11339 end if;
11340 end if;
11342 return False;
11343 end Mentions_T;
11345 -- Start of processing for Check_Anonymous_Access_Components
11347 begin
11348 if No (Comp_List) then
11349 return;
11350 end if;
11352 Comp := First (Component_Items (Comp_List));
11353 while Present (Comp) loop
11354 if Nkind (Comp) = N_Component_Declaration
11355 and then Present
11356 (Access_Definition (Component_Definition (Comp)))
11357 and then
11358 Mentions_T (Access_Definition (Component_Definition (Comp)))
11359 then
11360 Comp_Def := Component_Definition (Comp);
11361 Acc_Def :=
11362 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
11364 Build_Incomplete_Type_Declaration;
11365 Anon_Access := Make_Temporary (Loc, 'S');
11367 -- Create a declaration for the anonymous access type: either
11368 -- an access_to_object or an access_to_subprogram.
11370 if Present (Acc_Def) then
11371 if Nkind (Acc_Def) = N_Access_Function_Definition then
11372 Type_Def :=
11373 Make_Access_Function_Definition (Loc,
11374 Parameter_Specifications =>
11375 Parameter_Specifications (Acc_Def),
11376 Result_Definition => Result_Definition (Acc_Def));
11377 else
11378 Type_Def :=
11379 Make_Access_Procedure_Definition (Loc,
11380 Parameter_Specifications =>
11381 Parameter_Specifications (Acc_Def));
11382 end if;
11384 else
11385 Type_Def :=
11386 Make_Access_To_Object_Definition (Loc,
11387 Subtype_Indication =>
11388 Relocate_Node
11389 (Subtype_Mark (Access_Definition (Comp_Def))));
11391 Set_Constant_Present
11392 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
11393 Set_All_Present
11394 (Type_Def, All_Present (Access_Definition (Comp_Def)));
11395 end if;
11397 Set_Null_Exclusion_Present
11398 (Type_Def,
11399 Null_Exclusion_Present (Access_Definition (Comp_Def)));
11401 Decl :=
11402 Make_Full_Type_Declaration (Loc,
11403 Defining_Identifier => Anon_Access,
11404 Type_Definition => Type_Def);
11406 Insert_Before (Typ_Decl, Decl);
11407 Analyze (Decl);
11409 -- If an access to subprogram, create the extra formals
11411 if Present (Acc_Def) then
11412 Create_Extra_Formals (Designated_Type (Anon_Access));
11414 -- If an access to object, preserve entity of designated type,
11415 -- for ASIS use, before rewriting the component definition.
11417 else
11418 declare
11419 Desig : Entity_Id;
11421 begin
11422 Desig := Entity (Subtype_Indication (Type_Def));
11424 -- If the access definition is to the current record,
11425 -- the visible entity at this point is an incomplete
11426 -- type. Retrieve the full view to simplify ASIS queries
11428 if Ekind (Desig) = E_Incomplete_Type then
11429 Desig := Full_View (Desig);
11430 end if;
11432 Set_Entity
11433 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
11434 end;
11435 end if;
11437 Rewrite (Comp_Def,
11438 Make_Component_Definition (Loc,
11439 Subtype_Indication =>
11440 New_Occurrence_Of (Anon_Access, Loc)));
11442 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
11443 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
11444 else
11445 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
11446 end if;
11448 Set_Is_Local_Anonymous_Access (Anon_Access);
11449 end if;
11451 Next (Comp);
11452 end loop;
11454 if Present (Variant_Part (Comp_List)) then
11455 declare
11456 V : Node_Id;
11457 begin
11458 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
11459 while Present (V) loop
11460 Check_Anonymous_Access_Components
11461 (Typ_Decl, Typ, Prev, Component_List (V));
11462 Next_Non_Pragma (V);
11463 end loop;
11464 end;
11465 end if;
11466 end Check_Anonymous_Access_Components;
11468 ----------------------
11469 -- Check_Completion --
11470 ----------------------
11472 procedure Check_Completion (Body_Id : Node_Id := Empty) is
11473 E : Entity_Id;
11475 procedure Post_Error;
11476 -- Post error message for lack of completion for entity E
11478 ----------------
11479 -- Post_Error --
11480 ----------------
11482 procedure Post_Error is
11483 procedure Missing_Body;
11484 -- Output missing body message
11486 ------------------
11487 -- Missing_Body --
11488 ------------------
11490 procedure Missing_Body is
11491 begin
11492 -- Spec is in same unit, so we can post on spec
11494 if In_Same_Source_Unit (Body_Id, E) then
11495 Error_Msg_N ("missing body for &", E);
11497 -- Spec is in a separate unit, so we have to post on the body
11499 else
11500 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
11501 end if;
11502 end Missing_Body;
11504 -- Start of processing for Post_Error
11506 begin
11507 if not Comes_From_Source (E) then
11508 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
11510 -- It may be an anonymous protected type created for a
11511 -- single variable. Post error on variable, if present.
11513 declare
11514 Var : Entity_Id;
11516 begin
11517 Var := First_Entity (Current_Scope);
11518 while Present (Var) loop
11519 exit when Etype (Var) = E
11520 and then Comes_From_Source (Var);
11522 Next_Entity (Var);
11523 end loop;
11525 if Present (Var) then
11526 E := Var;
11527 end if;
11528 end;
11529 end if;
11530 end if;
11532 -- If a generated entity has no completion, then either previous
11533 -- semantic errors have disabled the expansion phase, or else we had
11534 -- missing subunits, or else we are compiling without expansion,
11535 -- or else something is very wrong.
11537 if not Comes_From_Source (E) then
11538 pragma Assert
11539 (Serious_Errors_Detected > 0
11540 or else Configurable_Run_Time_Violations > 0
11541 or else Subunits_Missing
11542 or else not Expander_Active);
11543 return;
11545 -- Here for source entity
11547 else
11548 -- Here if no body to post the error message, so we post the error
11549 -- on the declaration that has no completion. This is not really
11550 -- the right place to post it, think about this later ???
11552 if No (Body_Id) then
11553 if Is_Type (E) then
11554 Error_Msg_NE
11555 ("missing full declaration for }", Parent (E), E);
11556 else
11557 Error_Msg_NE ("missing body for &", Parent (E), E);
11558 end if;
11560 -- Package body has no completion for a declaration that appears
11561 -- in the corresponding spec. Post error on the body, with a
11562 -- reference to the non-completed declaration.
11564 else
11565 Error_Msg_Sloc := Sloc (E);
11567 if Is_Type (E) then
11568 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
11570 elsif Is_Overloadable (E)
11571 and then Current_Entity_In_Scope (E) /= E
11572 then
11573 -- It may be that the completion is mistyped and appears as
11574 -- a distinct overloading of the entity.
11576 declare
11577 Candidate : constant Entity_Id :=
11578 Current_Entity_In_Scope (E);
11579 Decl : constant Node_Id :=
11580 Unit_Declaration_Node (Candidate);
11582 begin
11583 if Is_Overloadable (Candidate)
11584 and then Ekind (Candidate) = Ekind (E)
11585 and then Nkind (Decl) = N_Subprogram_Body
11586 and then Acts_As_Spec (Decl)
11587 then
11588 Check_Type_Conformant (Candidate, E);
11590 else
11591 Missing_Body;
11592 end if;
11593 end;
11595 else
11596 Missing_Body;
11597 end if;
11598 end if;
11599 end if;
11600 end Post_Error;
11602 -- Local variables
11604 Pack_Id : constant Entity_Id := Current_Scope;
11606 -- Start of processing for Check_Completion
11608 begin
11609 E := First_Entity (Pack_Id);
11610 while Present (E) loop
11611 if Is_Intrinsic_Subprogram (E) then
11612 null;
11614 -- The following situation requires special handling: a child unit
11615 -- that appears in the context clause of the body of its parent:
11617 -- procedure Parent.Child (...);
11619 -- with Parent.Child;
11620 -- package body Parent is
11622 -- Here Parent.Child appears as a local entity, but should not be
11623 -- flagged as requiring completion, because it is a compilation
11624 -- unit.
11626 -- Ignore missing completion for a subprogram that does not come from
11627 -- source (including the _Call primitive operation of RAS types,
11628 -- which has to have the flag Comes_From_Source for other purposes):
11629 -- we assume that the expander will provide the missing completion.
11630 -- In case of previous errors, other expansion actions that provide
11631 -- bodies for null procedures with not be invoked, so inhibit message
11632 -- in those cases.
11634 -- Note that E_Operator is not in the list that follows, because
11635 -- this kind is reserved for predefined operators, that are
11636 -- intrinsic and do not need completion.
11638 elsif Ekind_In (E, E_Function,
11639 E_Procedure,
11640 E_Generic_Function,
11641 E_Generic_Procedure)
11642 then
11643 if Has_Completion (E) then
11644 null;
11646 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
11647 null;
11649 elsif Is_Subprogram (E)
11650 and then (not Comes_From_Source (E)
11651 or else Chars (E) = Name_uCall)
11652 then
11653 null;
11655 elsif
11656 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
11657 then
11658 null;
11660 elsif Nkind (Parent (E)) = N_Procedure_Specification
11661 and then Null_Present (Parent (E))
11662 and then Serious_Errors_Detected > 0
11663 then
11664 null;
11666 else
11667 Post_Error;
11668 end if;
11670 elsif Is_Entry (E) then
11671 if not Has_Completion (E) and then
11672 (Ekind (Scope (E)) = E_Protected_Object
11673 or else Ekind (Scope (E)) = E_Protected_Type)
11674 then
11675 Post_Error;
11676 end if;
11678 elsif Is_Package_Or_Generic_Package (E) then
11679 if Unit_Requires_Body (E) then
11680 if not Has_Completion (E)
11681 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
11682 N_Compilation_Unit
11683 then
11684 Post_Error;
11685 end if;
11687 elsif not Is_Child_Unit (E) then
11688 May_Need_Implicit_Body (E);
11689 end if;
11691 -- A formal incomplete type (Ada 2012) does not require a completion;
11692 -- other incomplete type declarations do.
11694 elsif Ekind (E) = E_Incomplete_Type
11695 and then No (Underlying_Type (E))
11696 and then not Is_Generic_Type (E)
11697 then
11698 Post_Error;
11700 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11701 and then not Has_Completion (E)
11702 then
11703 Post_Error;
11705 -- A single task declared in the current scope is a constant, verify
11706 -- that the body of its anonymous type is in the same scope. If the
11707 -- task is defined elsewhere, this may be a renaming declaration for
11708 -- which no completion is needed.
11710 elsif Ekind (E) = E_Constant
11711 and then Ekind (Etype (E)) = E_Task_Type
11712 and then not Has_Completion (Etype (E))
11713 and then Scope (Etype (E)) = Current_Scope
11714 then
11715 Post_Error;
11717 elsif Ekind (E) = E_Protected_Object
11718 and then not Has_Completion (Etype (E))
11719 then
11720 Post_Error;
11722 elsif Ekind (E) = E_Record_Type then
11723 if Is_Tagged_Type (E) then
11724 Check_Abstract_Overriding (E);
11725 Check_Conventions (E);
11726 end if;
11728 Check_Aliased_Component_Types (E);
11730 elsif Ekind (E) = E_Array_Type then
11731 Check_Aliased_Component_Types (E);
11733 end if;
11735 Next_Entity (E);
11736 end loop;
11737 end Check_Completion;
11739 ------------------------------------
11740 -- Check_CPP_Type_Has_No_Defaults --
11741 ------------------------------------
11743 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11744 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11745 Clist : Node_Id;
11746 Comp : Node_Id;
11748 begin
11749 -- Obtain the component list
11751 if Nkind (Tdef) = N_Record_Definition then
11752 Clist := Component_List (Tdef);
11753 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11754 Clist := Component_List (Record_Extension_Part (Tdef));
11755 end if;
11757 -- Check all components to ensure no default expressions
11759 if Present (Clist) then
11760 Comp := First (Component_Items (Clist));
11761 while Present (Comp) loop
11762 if Present (Expression (Comp)) then
11763 Error_Msg_N
11764 ("component of imported 'C'P'P type cannot have "
11765 & "default expression", Expression (Comp));
11766 end if;
11768 Next (Comp);
11769 end loop;
11770 end if;
11771 end Check_CPP_Type_Has_No_Defaults;
11773 ----------------------------
11774 -- Check_Delta_Expression --
11775 ----------------------------
11777 procedure Check_Delta_Expression (E : Node_Id) is
11778 begin
11779 if not (Is_Real_Type (Etype (E))) then
11780 Wrong_Type (E, Any_Real);
11782 elsif not Is_OK_Static_Expression (E) then
11783 Flag_Non_Static_Expr
11784 ("non-static expression used for delta value!", E);
11786 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11787 Error_Msg_N ("delta expression must be positive", E);
11789 else
11790 return;
11791 end if;
11793 -- If any of above errors occurred, then replace the incorrect
11794 -- expression by the real 0.1, which should prevent further errors.
11796 Rewrite (E,
11797 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11798 Analyze_And_Resolve (E, Standard_Float);
11799 end Check_Delta_Expression;
11801 -----------------------------
11802 -- Check_Digits_Expression --
11803 -----------------------------
11805 procedure Check_Digits_Expression (E : Node_Id) is
11806 begin
11807 if not (Is_Integer_Type (Etype (E))) then
11808 Wrong_Type (E, Any_Integer);
11810 elsif not Is_OK_Static_Expression (E) then
11811 Flag_Non_Static_Expr
11812 ("non-static expression used for digits value!", E);
11814 elsif Expr_Value (E) <= 0 then
11815 Error_Msg_N ("digits value must be greater than zero", E);
11817 else
11818 return;
11819 end if;
11821 -- If any of above errors occurred, then replace the incorrect
11822 -- expression by the integer 1, which should prevent further errors.
11824 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11825 Analyze_And_Resolve (E, Standard_Integer);
11827 end Check_Digits_Expression;
11829 --------------------------
11830 -- Check_Initialization --
11831 --------------------------
11833 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11834 begin
11835 -- Special processing for limited types
11837 if Is_Limited_Type (T)
11838 and then not In_Instance
11839 and then not In_Inlined_Body
11840 then
11841 if not OK_For_Limited_Init (T, Exp) then
11843 -- In GNAT mode, this is just a warning, to allow it to be evilly
11844 -- turned off. Otherwise it is a real error.
11846 if GNAT_Mode then
11847 Error_Msg_N
11848 ("??cannot initialize entities of limited type!", Exp);
11850 elsif Ada_Version < Ada_2005 then
11852 -- The side effect removal machinery may generate illegal Ada
11853 -- code to avoid the usage of access types and 'reference in
11854 -- SPARK mode. Since this is legal code with respect to theorem
11855 -- proving, do not emit the error.
11857 if GNATprove_Mode
11858 and then Nkind (Exp) = N_Function_Call
11859 and then Nkind (Parent (Exp)) = N_Object_Declaration
11860 and then not Comes_From_Source
11861 (Defining_Identifier (Parent (Exp)))
11862 then
11863 null;
11865 else
11866 Error_Msg_N
11867 ("cannot initialize entities of limited type", Exp);
11868 Explain_Limited_Type (T, Exp);
11869 end if;
11871 else
11872 -- Specialize error message according to kind of illegal
11873 -- initial expression.
11875 if Nkind (Exp) = N_Type_Conversion
11876 and then Nkind (Expression (Exp)) = N_Function_Call
11877 then
11878 -- No error for internally-generated object declarations,
11879 -- which can come from build-in-place assignment statements.
11881 if Nkind (Parent (Exp)) = N_Object_Declaration
11882 and then not Comes_From_Source
11883 (Defining_Identifier (Parent (Exp)))
11884 then
11885 null;
11887 else
11888 Error_Msg_N
11889 ("illegal context for call to function with limited "
11890 & "result", Exp);
11891 end if;
11893 else
11894 Error_Msg_N
11895 ("initialization of limited object requires aggregate or "
11896 & "function call", Exp);
11897 end if;
11898 end if;
11899 end if;
11900 end if;
11902 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11903 -- set unless we can be sure that no range check is required.
11905 if (GNATprove_Mode or not Expander_Active)
11906 and then Is_Scalar_Type (T)
11907 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11908 then
11909 Set_Do_Range_Check (Exp);
11910 end if;
11911 end Check_Initialization;
11913 ----------------------
11914 -- Check_Interfaces --
11915 ----------------------
11917 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11918 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11920 Iface : Node_Id;
11921 Iface_Def : Node_Id;
11922 Iface_Typ : Entity_Id;
11923 Parent_Node : Node_Id;
11925 Is_Task : Boolean := False;
11926 -- Set True if parent type or any progenitor is a task interface
11928 Is_Protected : Boolean := False;
11929 -- Set True if parent type or any progenitor is a protected interface
11931 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11932 -- Check that a progenitor is compatible with declaration. If an error
11933 -- message is output, it is posted on Error_Node.
11935 ------------------
11936 -- Check_Ifaces --
11937 ------------------
11939 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11940 Iface_Id : constant Entity_Id :=
11941 Defining_Identifier (Parent (Iface_Def));
11942 Type_Def : Node_Id;
11944 begin
11945 if Nkind (N) = N_Private_Extension_Declaration then
11946 Type_Def := N;
11947 else
11948 Type_Def := Type_Definition (N);
11949 end if;
11951 if Is_Task_Interface (Iface_Id) then
11952 Is_Task := True;
11954 elsif Is_Protected_Interface (Iface_Id) then
11955 Is_Protected := True;
11956 end if;
11958 if Is_Synchronized_Interface (Iface_Id) then
11960 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11961 -- extension derived from a synchronized interface must explicitly
11962 -- be declared synchronized, because the full view will be a
11963 -- synchronized type.
11965 if Nkind (N) = N_Private_Extension_Declaration then
11966 if not Synchronized_Present (N) then
11967 Error_Msg_NE
11968 ("private extension of& must be explicitly synchronized",
11969 N, Iface_Id);
11970 end if;
11972 -- However, by 3.9.4(16/2), a full type that is a record extension
11973 -- is never allowed to derive from a synchronized interface (note
11974 -- that interfaces must be excluded from this check, because those
11975 -- are represented by derived type definitions in some cases).
11977 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11978 and then not Interface_Present (Type_Definition (N))
11979 then
11980 Error_Msg_N ("record extension cannot derive from synchronized "
11981 & "interface", Error_Node);
11982 end if;
11983 end if;
11985 -- Check that the characteristics of the progenitor are compatible
11986 -- with the explicit qualifier in the declaration.
11987 -- The check only applies to qualifiers that come from source.
11988 -- Limited_Present also appears in the declaration of corresponding
11989 -- records, and the check does not apply to them.
11991 if Limited_Present (Type_Def)
11992 and then not
11993 Is_Concurrent_Record_Type (Defining_Identifier (N))
11994 then
11995 if Is_Limited_Interface (Parent_Type)
11996 and then not Is_Limited_Interface (Iface_Id)
11997 then
11998 Error_Msg_NE
11999 ("progenitor & must be limited interface",
12000 Error_Node, Iface_Id);
12002 elsif
12003 (Task_Present (Iface_Def)
12004 or else Protected_Present (Iface_Def)
12005 or else Synchronized_Present (Iface_Def))
12006 and then Nkind (N) /= N_Private_Extension_Declaration
12007 and then not Error_Posted (N)
12008 then
12009 Error_Msg_NE
12010 ("progenitor & must be limited interface",
12011 Error_Node, Iface_Id);
12012 end if;
12014 -- Protected interfaces can only inherit from limited, synchronized
12015 -- or protected interfaces.
12017 elsif Nkind (N) = N_Full_Type_Declaration
12018 and then Protected_Present (Type_Def)
12019 then
12020 if Limited_Present (Iface_Def)
12021 or else Synchronized_Present (Iface_Def)
12022 or else Protected_Present (Iface_Def)
12023 then
12024 null;
12026 elsif Task_Present (Iface_Def) then
12027 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12028 & "from task interface", Error_Node);
12030 else
12031 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12032 & "from non-limited interface", Error_Node);
12033 end if;
12035 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
12036 -- limited and synchronized.
12038 elsif Synchronized_Present (Type_Def) then
12039 if Limited_Present (Iface_Def)
12040 or else Synchronized_Present (Iface_Def)
12041 then
12042 null;
12044 elsif Protected_Present (Iface_Def)
12045 and then Nkind (N) /= N_Private_Extension_Declaration
12046 then
12047 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12048 & "from protected interface", Error_Node);
12050 elsif Task_Present (Iface_Def)
12051 and then Nkind (N) /= N_Private_Extension_Declaration
12052 then
12053 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12054 & "from task interface", Error_Node);
12056 elsif not Is_Limited_Interface (Iface_Id) then
12057 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12058 & "from non-limited interface", Error_Node);
12059 end if;
12061 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
12062 -- synchronized or task interfaces.
12064 elsif Nkind (N) = N_Full_Type_Declaration
12065 and then Task_Present (Type_Def)
12066 then
12067 if Limited_Present (Iface_Def)
12068 or else Synchronized_Present (Iface_Def)
12069 or else Task_Present (Iface_Def)
12070 then
12071 null;
12073 elsif Protected_Present (Iface_Def) then
12074 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12075 & "protected interface", Error_Node);
12077 else
12078 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12079 & "non-limited interface", Error_Node);
12080 end if;
12081 end if;
12082 end Check_Ifaces;
12084 -- Start of processing for Check_Interfaces
12086 begin
12087 if Is_Interface (Parent_Type) then
12088 if Is_Task_Interface (Parent_Type) then
12089 Is_Task := True;
12091 elsif Is_Protected_Interface (Parent_Type) then
12092 Is_Protected := True;
12093 end if;
12094 end if;
12096 if Nkind (N) = N_Private_Extension_Declaration then
12098 -- Check that progenitors are compatible with declaration
12100 Iface := First (Interface_List (Def));
12101 while Present (Iface) loop
12102 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12104 Parent_Node := Parent (Base_Type (Iface_Typ));
12105 Iface_Def := Type_Definition (Parent_Node);
12107 if not Is_Interface (Iface_Typ) then
12108 Diagnose_Interface (Iface, Iface_Typ);
12109 else
12110 Check_Ifaces (Iface_Def, Iface);
12111 end if;
12113 Next (Iface);
12114 end loop;
12116 if Is_Task and Is_Protected then
12117 Error_Msg_N
12118 ("type cannot derive from task and protected interface", N);
12119 end if;
12121 return;
12122 end if;
12124 -- Full type declaration of derived type.
12125 -- Check compatibility with parent if it is interface type
12127 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
12128 and then Is_Interface (Parent_Type)
12129 then
12130 Parent_Node := Parent (Parent_Type);
12132 -- More detailed checks for interface varieties
12134 Check_Ifaces
12135 (Iface_Def => Type_Definition (Parent_Node),
12136 Error_Node => Subtype_Indication (Type_Definition (N)));
12137 end if;
12139 Iface := First (Interface_List (Def));
12140 while Present (Iface) loop
12141 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12143 Parent_Node := Parent (Base_Type (Iface_Typ));
12144 Iface_Def := Type_Definition (Parent_Node);
12146 if not Is_Interface (Iface_Typ) then
12147 Diagnose_Interface (Iface, Iface_Typ);
12149 else
12150 -- "The declaration of a specific descendant of an interface
12151 -- type freezes the interface type" RM 13.14
12153 Freeze_Before (N, Iface_Typ);
12154 Check_Ifaces (Iface_Def, Error_Node => Iface);
12155 end if;
12157 Next (Iface);
12158 end loop;
12160 if Is_Task and Is_Protected then
12161 Error_Msg_N
12162 ("type cannot derive from task and protected interface", N);
12163 end if;
12164 end Check_Interfaces;
12166 ------------------------------------
12167 -- Check_Or_Process_Discriminants --
12168 ------------------------------------
12170 -- If an incomplete or private type declaration was already given for the
12171 -- type, the discriminants may have already been processed if they were
12172 -- present on the incomplete declaration. In this case a full conformance
12173 -- check has been performed in Find_Type_Name, and we then recheck here
12174 -- some properties that can't be checked on the partial view alone.
12175 -- Otherwise we call Process_Discriminants.
12177 procedure Check_Or_Process_Discriminants
12178 (N : Node_Id;
12179 T : Entity_Id;
12180 Prev : Entity_Id := Empty)
12182 begin
12183 if Has_Discriminants (T) then
12185 -- Discriminants are already set on T if they were already present
12186 -- on the partial view. Make them visible to component declarations.
12188 declare
12189 D : Entity_Id;
12190 -- Discriminant on T (full view) referencing expr on partial view
12192 Prev_D : Entity_Id;
12193 -- Entity of corresponding discriminant on partial view
12195 New_D : Node_Id;
12196 -- Discriminant specification for full view, expression is
12197 -- the syntactic copy on full view (which has been checked for
12198 -- conformance with partial view), only used here to post error
12199 -- message.
12201 begin
12202 D := First_Discriminant (T);
12203 New_D := First (Discriminant_Specifications (N));
12204 while Present (D) loop
12205 Prev_D := Current_Entity (D);
12206 Set_Current_Entity (D);
12207 Set_Is_Immediately_Visible (D);
12208 Set_Homonym (D, Prev_D);
12210 -- Handle the case where there is an untagged partial view and
12211 -- the full view is tagged: must disallow discriminants with
12212 -- defaults, unless compiling for Ada 2012, which allows a
12213 -- limited tagged type to have defaulted discriminants (see
12214 -- AI05-0214). However, suppress error here if it was already
12215 -- reported on the default expression of the partial view.
12217 if Is_Tagged_Type (T)
12218 and then Present (Expression (Parent (D)))
12219 and then (not Is_Limited_Type (Current_Scope)
12220 or else Ada_Version < Ada_2012)
12221 and then not Error_Posted (Expression (Parent (D)))
12222 then
12223 if Ada_Version >= Ada_2012 then
12224 Error_Msg_N
12225 ("discriminants of nonlimited tagged type cannot have "
12226 & "defaults",
12227 Expression (New_D));
12228 else
12229 Error_Msg_N
12230 ("discriminants of tagged type cannot have defaults",
12231 Expression (New_D));
12232 end if;
12233 end if;
12235 -- Ada 2005 (AI-230): Access discriminant allowed in
12236 -- non-limited record types.
12238 if Ada_Version < Ada_2005 then
12240 -- This restriction gets applied to the full type here. It
12241 -- has already been applied earlier to the partial view.
12243 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
12244 end if;
12246 Next_Discriminant (D);
12247 Next (New_D);
12248 end loop;
12249 end;
12251 elsif Present (Discriminant_Specifications (N)) then
12252 Process_Discriminants (N, Prev);
12253 end if;
12254 end Check_Or_Process_Discriminants;
12256 ----------------------
12257 -- Check_Real_Bound --
12258 ----------------------
12260 procedure Check_Real_Bound (Bound : Node_Id) is
12261 begin
12262 if not Is_Real_Type (Etype (Bound)) then
12263 Error_Msg_N
12264 ("bound in real type definition must be of real type", Bound);
12266 elsif not Is_OK_Static_Expression (Bound) then
12267 Flag_Non_Static_Expr
12268 ("non-static expression used for real type bound!", Bound);
12270 else
12271 return;
12272 end if;
12274 Rewrite
12275 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
12276 Analyze (Bound);
12277 Resolve (Bound, Standard_Float);
12278 end Check_Real_Bound;
12280 ------------------------------
12281 -- Complete_Private_Subtype --
12282 ------------------------------
12284 procedure Complete_Private_Subtype
12285 (Priv : Entity_Id;
12286 Full : Entity_Id;
12287 Full_Base : Entity_Id;
12288 Related_Nod : Node_Id)
12290 Save_Next_Entity : Entity_Id;
12291 Save_Homonym : Entity_Id;
12293 begin
12294 -- Set semantic attributes for (implicit) private subtype completion.
12295 -- If the full type has no discriminants, then it is a copy of the
12296 -- full view of the base. Otherwise, it is a subtype of the base with
12297 -- a possible discriminant constraint. Save and restore the original
12298 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12299 -- not corrupt the entity chain.
12301 -- Note that the type of the full view is the same entity as the type
12302 -- of the partial view. In this fashion, the subtype has access to the
12303 -- correct view of the parent.
12305 Save_Next_Entity := Next_Entity (Full);
12306 Save_Homonym := Homonym (Priv);
12308 case Ekind (Full_Base) is
12309 when Class_Wide_Kind
12310 | Private_Kind
12311 | Protected_Kind
12312 | Task_Kind
12313 | E_Record_Subtype
12314 | E_Record_Type
12316 Copy_Node (Priv, Full);
12318 Set_Has_Discriminants
12319 (Full, Has_Discriminants (Full_Base));
12320 Set_Has_Unknown_Discriminants
12321 (Full, Has_Unknown_Discriminants (Full_Base));
12322 Set_First_Entity (Full, First_Entity (Full_Base));
12323 Set_Last_Entity (Full, Last_Entity (Full_Base));
12325 -- If the underlying base type is constrained, we know that the
12326 -- full view of the subtype is constrained as well (the converse
12327 -- is not necessarily true).
12329 if Is_Constrained (Full_Base) then
12330 Set_Is_Constrained (Full);
12331 end if;
12333 when others =>
12334 Copy_Node (Full_Base, Full);
12336 Set_Chars (Full, Chars (Priv));
12337 Conditional_Delay (Full, Priv);
12338 Set_Sloc (Full, Sloc (Priv));
12339 end case;
12341 Link_Entities (Full, Save_Next_Entity);
12342 Set_Homonym (Full, Save_Homonym);
12343 Set_Associated_Node_For_Itype (Full, Related_Nod);
12345 -- Set common attributes for all subtypes: kind, convention, etc.
12347 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
12348 Set_Convention (Full, Convention (Full_Base));
12350 -- The Etype of the full view is inconsistent. Gigi needs to see the
12351 -- structural full view, which is what the current scheme gives: the
12352 -- Etype of the full view is the etype of the full base. However, if the
12353 -- full base is a derived type, the full view then looks like a subtype
12354 -- of the parent, not a subtype of the full base. If instead we write:
12356 -- Set_Etype (Full, Full_Base);
12358 -- then we get inconsistencies in the front-end (confusion between
12359 -- views). Several outstanding bugs are related to this ???
12361 Set_Is_First_Subtype (Full, False);
12362 Set_Scope (Full, Scope (Priv));
12363 Set_Size_Info (Full, Full_Base);
12364 Set_RM_Size (Full, RM_Size (Full_Base));
12365 Set_Is_Itype (Full);
12367 -- For the unusual case of a type with unknown discriminants whose
12368 -- completion is an array, use the proper full base.
12370 if Is_Array_Type (Full_Base)
12371 and then Has_Unknown_Discriminants (Priv)
12372 then
12373 Set_Etype (Full, Full_Base);
12374 end if;
12376 -- A subtype of a private-type-without-discriminants, whose full-view
12377 -- has discriminants with default expressions, is not constrained.
12379 if not Has_Discriminants (Priv) then
12380 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
12382 if Has_Discriminants (Full_Base) then
12383 Set_Discriminant_Constraint
12384 (Full, Discriminant_Constraint (Full_Base));
12386 -- The partial view may have been indefinite, the full view
12387 -- might not be.
12389 Set_Has_Unknown_Discriminants
12390 (Full, Has_Unknown_Discriminants (Full_Base));
12391 end if;
12392 end if;
12394 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
12395 Set_Depends_On_Private (Full, Has_Private_Component (Full));
12397 -- Freeze the private subtype entity if its parent is delayed, and not
12398 -- already frozen. We skip this processing if the type is an anonymous
12399 -- subtype of a record component, or is the corresponding record of a
12400 -- protected type, since these are processed when the enclosing type
12401 -- is frozen. If the parent type is declared in a nested package then
12402 -- the freezing of the private and full views also happens later.
12404 if not Is_Type (Scope (Full)) then
12405 if Is_Itype (Priv)
12406 and then In_Same_Source_Unit (Full, Full_Base)
12407 and then Scope (Full_Base) /= Scope (Full)
12408 then
12409 Set_Has_Delayed_Freeze (Full);
12410 Set_Has_Delayed_Freeze (Priv);
12412 else
12413 Set_Has_Delayed_Freeze (Full,
12414 Has_Delayed_Freeze (Full_Base)
12415 and then not Is_Frozen (Full_Base));
12416 end if;
12417 end if;
12419 Set_Freeze_Node (Full, Empty);
12420 Set_Is_Frozen (Full, False);
12421 Set_Full_View (Priv, Full);
12423 if Has_Discriminants (Full) then
12424 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
12425 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
12427 if Has_Unknown_Discriminants (Full) then
12428 Set_Discriminant_Constraint (Full, No_Elist);
12429 end if;
12430 end if;
12432 if Ekind (Full_Base) = E_Record_Type
12433 and then Has_Discriminants (Full_Base)
12434 and then Has_Discriminants (Priv) -- might not, if errors
12435 and then not Has_Unknown_Discriminants (Priv)
12436 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
12437 then
12438 Create_Constrained_Components
12439 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
12441 -- If the full base is itself derived from private, build a congruent
12442 -- subtype of its underlying type, for use by the back end. For a
12443 -- constrained record component, the declaration cannot be placed on
12444 -- the component list, but it must nevertheless be built an analyzed, to
12445 -- supply enough information for Gigi to compute the size of component.
12447 elsif Ekind (Full_Base) in Private_Kind
12448 and then Is_Derived_Type (Full_Base)
12449 and then Has_Discriminants (Full_Base)
12450 and then (Ekind (Current_Scope) /= E_Record_Subtype)
12451 then
12452 if not Is_Itype (Priv)
12453 and then
12454 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
12455 then
12456 Build_Underlying_Full_View
12457 (Parent (Priv), Full, Etype (Full_Base));
12459 elsif Nkind (Related_Nod) = N_Component_Declaration then
12460 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
12461 end if;
12463 elsif Is_Record_Type (Full_Base) then
12465 -- Show Full is simply a renaming of Full_Base
12467 Set_Cloned_Subtype (Full, Full_Base);
12468 end if;
12470 -- It is unsafe to share the bounds of a scalar type, because the Itype
12471 -- is elaborated on demand, and if a bound is non-static then different
12472 -- orders of elaboration in different units will lead to different
12473 -- external symbols.
12475 if Is_Scalar_Type (Full_Base) then
12476 Set_Scalar_Range (Full,
12477 Make_Range (Sloc (Related_Nod),
12478 Low_Bound =>
12479 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
12480 High_Bound =>
12481 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
12483 -- This completion inherits the bounds of the full parent, but if
12484 -- the parent is an unconstrained floating point type, so is the
12485 -- completion.
12487 if Is_Floating_Point_Type (Full_Base) then
12488 Set_Includes_Infinities
12489 (Scalar_Range (Full), Has_Infinities (Full_Base));
12490 end if;
12491 end if;
12493 -- ??? It seems that a lot of fields are missing that should be copied
12494 -- from Full_Base to Full. Here are some that are introduced in a
12495 -- non-disruptive way but a cleanup is necessary.
12497 if Is_Tagged_Type (Full_Base) then
12498 Set_Is_Tagged_Type (Full);
12499 Set_Direct_Primitive_Operations
12500 (Full, Direct_Primitive_Operations (Full_Base));
12501 Set_No_Tagged_Streams_Pragma
12502 (Full, No_Tagged_Streams_Pragma (Full_Base));
12504 -- Inherit class_wide type of full_base in case the partial view was
12505 -- not tagged. Otherwise it has already been created when the private
12506 -- subtype was analyzed.
12508 if No (Class_Wide_Type (Full)) then
12509 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
12510 end if;
12512 -- If this is a subtype of a protected or task type, constrain its
12513 -- corresponding record, unless this is a subtype without constraints,
12514 -- i.e. a simple renaming as with an actual subtype in an instance.
12516 elsif Is_Concurrent_Type (Full_Base) then
12517 if Has_Discriminants (Full)
12518 and then Present (Corresponding_Record_Type (Full_Base))
12519 and then
12520 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
12521 then
12522 Set_Corresponding_Record_Type (Full,
12523 Constrain_Corresponding_Record
12524 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
12526 else
12527 Set_Corresponding_Record_Type (Full,
12528 Corresponding_Record_Type (Full_Base));
12529 end if;
12530 end if;
12532 -- Link rep item chain, and also setting of Has_Predicates from private
12533 -- subtype to full subtype, since we will need these on the full subtype
12534 -- to create the predicate function. Note that the full subtype may
12535 -- already have rep items, inherited from the full view of the base
12536 -- type, so we must be sure not to overwrite these entries.
12538 declare
12539 Append : Boolean;
12540 Item : Node_Id;
12541 Next_Item : Node_Id;
12542 Priv_Item : Node_Id;
12544 begin
12545 Item := First_Rep_Item (Full);
12546 Priv_Item := First_Rep_Item (Priv);
12548 -- If no existing rep items on full type, we can just link directly
12549 -- to the list of items on the private type, if any exist.. Same if
12550 -- the rep items are only those inherited from the base
12552 if (No (Item)
12553 or else Nkind (Item) /= N_Aspect_Specification
12554 or else Entity (Item) = Full_Base)
12555 and then Present (First_Rep_Item (Priv))
12556 then
12557 Set_First_Rep_Item (Full, Priv_Item);
12559 -- Otherwise, search to the end of items currently linked to the full
12560 -- subtype and append the private items to the end. However, if Priv
12561 -- and Full already have the same list of rep items, then the append
12562 -- is not done, as that would create a circularity.
12564 -- The partial view may have a predicate and the rep item lists of
12565 -- both views agree when inherited from the same ancestor. In that
12566 -- case, simply propagate the list from one view to the other.
12567 -- A more complex analysis needed here ???
12569 elsif Present (Priv_Item)
12570 and then Item = Next_Rep_Item (Priv_Item)
12571 then
12572 Set_First_Rep_Item (Full, Priv_Item);
12574 elsif Item /= Priv_Item then
12575 Append := True;
12576 loop
12577 Next_Item := Next_Rep_Item (Item);
12578 exit when No (Next_Item);
12579 Item := Next_Item;
12581 -- If the private view has aspect specifications, the full view
12582 -- inherits them. Since these aspects may already have been
12583 -- attached to the full view during derivation, do not append
12584 -- them if already present.
12586 if Item = First_Rep_Item (Priv) then
12587 Append := False;
12588 exit;
12589 end if;
12590 end loop;
12592 -- And link the private type items at the end of the chain
12594 if Append then
12595 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
12596 end if;
12597 end if;
12598 end;
12600 -- Make sure Has_Predicates is set on full type if it is set on the
12601 -- private type. Note that it may already be set on the full type and
12602 -- if so, we don't want to unset it. Similarly, propagate information
12603 -- about delayed aspects, because the corresponding pragmas must be
12604 -- analyzed when one of the views is frozen. This last step is needed
12605 -- in particular when the full type is a scalar type for which an
12606 -- anonymous base type is constructed.
12608 -- The predicate functions are generated either at the freeze point
12609 -- of the type or at the end of the visible part, and we must avoid
12610 -- generating them twice.
12612 if Has_Predicates (Priv) then
12613 Set_Has_Predicates (Full);
12615 if Present (Predicate_Function (Priv))
12616 and then No (Predicate_Function (Full))
12617 then
12618 Set_Predicate_Function (Full, Predicate_Function (Priv));
12619 end if;
12620 end if;
12622 if Has_Delayed_Aspects (Priv) then
12623 Set_Has_Delayed_Aspects (Full);
12624 end if;
12625 end Complete_Private_Subtype;
12627 ----------------------------
12628 -- Constant_Redeclaration --
12629 ----------------------------
12631 procedure Constant_Redeclaration
12632 (Id : Entity_Id;
12633 N : Node_Id;
12634 T : out Entity_Id)
12636 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
12637 Obj_Def : constant Node_Id := Object_Definition (N);
12638 New_T : Entity_Id;
12640 procedure Check_Possible_Deferred_Completion
12641 (Prev_Id : Entity_Id;
12642 Prev_Obj_Def : Node_Id;
12643 Curr_Obj_Def : Node_Id);
12644 -- Determine whether the two object definitions describe the partial
12645 -- and the full view of a constrained deferred constant. Generate
12646 -- a subtype for the full view and verify that it statically matches
12647 -- the subtype of the partial view.
12649 procedure Check_Recursive_Declaration (Typ : Entity_Id);
12650 -- If deferred constant is an access type initialized with an allocator,
12651 -- check whether there is an illegal recursion in the definition,
12652 -- through a default value of some record subcomponent. This is normally
12653 -- detected when generating init procs, but requires this additional
12654 -- mechanism when expansion is disabled.
12656 ----------------------------------------
12657 -- Check_Possible_Deferred_Completion --
12658 ----------------------------------------
12660 procedure Check_Possible_Deferred_Completion
12661 (Prev_Id : Entity_Id;
12662 Prev_Obj_Def : Node_Id;
12663 Curr_Obj_Def : Node_Id)
12665 begin
12666 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
12667 and then Present (Constraint (Prev_Obj_Def))
12668 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
12669 and then Present (Constraint (Curr_Obj_Def))
12670 then
12671 declare
12672 Loc : constant Source_Ptr := Sloc (N);
12673 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
12674 Decl : constant Node_Id :=
12675 Make_Subtype_Declaration (Loc,
12676 Defining_Identifier => Def_Id,
12677 Subtype_Indication =>
12678 Relocate_Node (Curr_Obj_Def));
12680 begin
12681 Insert_Before_And_Analyze (N, Decl);
12682 Set_Etype (Id, Def_Id);
12684 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
12685 Error_Msg_Sloc := Sloc (Prev_Id);
12686 Error_Msg_N ("subtype does not statically match deferred "
12687 & "declaration #", N);
12688 end if;
12689 end;
12690 end if;
12691 end Check_Possible_Deferred_Completion;
12693 ---------------------------------
12694 -- Check_Recursive_Declaration --
12695 ---------------------------------
12697 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
12698 Comp : Entity_Id;
12700 begin
12701 if Is_Record_Type (Typ) then
12702 Comp := First_Component (Typ);
12703 while Present (Comp) loop
12704 if Comes_From_Source (Comp) then
12705 if Present (Expression (Parent (Comp)))
12706 and then Is_Entity_Name (Expression (Parent (Comp)))
12707 and then Entity (Expression (Parent (Comp))) = Prev
12708 then
12709 Error_Msg_Sloc := Sloc (Parent (Comp));
12710 Error_Msg_NE
12711 ("illegal circularity with declaration for & #",
12712 N, Comp);
12713 return;
12715 elsif Is_Record_Type (Etype (Comp)) then
12716 Check_Recursive_Declaration (Etype (Comp));
12717 end if;
12718 end if;
12720 Next_Component (Comp);
12721 end loop;
12722 end if;
12723 end Check_Recursive_Declaration;
12725 -- Start of processing for Constant_Redeclaration
12727 begin
12728 if Nkind (Parent (Prev)) = N_Object_Declaration then
12729 if Nkind (Object_Definition
12730 (Parent (Prev))) = N_Subtype_Indication
12731 then
12732 -- Find type of new declaration. The constraints of the two
12733 -- views must match statically, but there is no point in
12734 -- creating an itype for the full view.
12736 if Nkind (Obj_Def) = N_Subtype_Indication then
12737 Find_Type (Subtype_Mark (Obj_Def));
12738 New_T := Entity (Subtype_Mark (Obj_Def));
12740 else
12741 Find_Type (Obj_Def);
12742 New_T := Entity (Obj_Def);
12743 end if;
12745 T := Etype (Prev);
12747 else
12748 -- The full view may impose a constraint, even if the partial
12749 -- view does not, so construct the subtype.
12751 New_T := Find_Type_Of_Object (Obj_Def, N);
12752 T := New_T;
12753 end if;
12755 else
12756 -- Current declaration is illegal, diagnosed below in Enter_Name
12758 T := Empty;
12759 New_T := Any_Type;
12760 end if;
12762 -- If previous full declaration or a renaming declaration exists, or if
12763 -- a homograph is present, let Enter_Name handle it, either with an
12764 -- error or with the removal of an overridden implicit subprogram.
12765 -- The previous one is a full declaration if it has an expression
12766 -- (which in the case of an aggregate is indicated by the Init flag).
12768 if Ekind (Prev) /= E_Constant
12769 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12770 or else Present (Expression (Parent (Prev)))
12771 or else Has_Init_Expression (Parent (Prev))
12772 or else Present (Full_View (Prev))
12773 then
12774 Enter_Name (Id);
12776 -- Verify that types of both declarations match, or else that both types
12777 -- are anonymous access types whose designated subtypes statically match
12778 -- (as allowed in Ada 2005 by AI-385).
12780 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12781 and then
12782 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12783 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12784 or else Is_Access_Constant (Etype (New_T)) /=
12785 Is_Access_Constant (Etype (Prev))
12786 or else Can_Never_Be_Null (Etype (New_T)) /=
12787 Can_Never_Be_Null (Etype (Prev))
12788 or else Null_Exclusion_Present (Parent (Prev)) /=
12789 Null_Exclusion_Present (Parent (Id))
12790 or else not Subtypes_Statically_Match
12791 (Designated_Type (Etype (Prev)),
12792 Designated_Type (Etype (New_T))))
12793 then
12794 Error_Msg_Sloc := Sloc (Prev);
12795 Error_Msg_N ("type does not match declaration#", N);
12796 Set_Full_View (Prev, Id);
12797 Set_Etype (Id, Any_Type);
12799 -- A deferred constant whose type is an anonymous array is always
12800 -- illegal (unless imported). A detailed error message might be
12801 -- helpful for Ada beginners.
12803 if Nkind (Object_Definition (Parent (Prev)))
12804 = N_Constrained_Array_Definition
12805 and then Nkind (Object_Definition (N))
12806 = N_Constrained_Array_Definition
12807 then
12808 Error_Msg_N ("\each anonymous array is a distinct type", N);
12809 Error_Msg_N ("a deferred constant must have a named type",
12810 Object_Definition (Parent (Prev)));
12811 end if;
12813 elsif
12814 Null_Exclusion_Present (Parent (Prev))
12815 and then not Null_Exclusion_Present (N)
12816 then
12817 Error_Msg_Sloc := Sloc (Prev);
12818 Error_Msg_N ("null-exclusion does not match declaration#", N);
12819 Set_Full_View (Prev, Id);
12820 Set_Etype (Id, Any_Type);
12822 -- If so, process the full constant declaration
12824 else
12825 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12826 -- the deferred declaration is constrained, then the subtype defined
12827 -- by the subtype_indication in the full declaration shall match it
12828 -- statically.
12830 Check_Possible_Deferred_Completion
12831 (Prev_Id => Prev,
12832 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12833 Curr_Obj_Def => Obj_Def);
12835 Set_Full_View (Prev, Id);
12836 Set_Is_Public (Id, Is_Public (Prev));
12837 Set_Is_Internal (Id);
12838 Append_Entity (Id, Current_Scope);
12840 -- Check ALIASED present if present before (RM 7.4(7))
12842 if Is_Aliased (Prev)
12843 and then not Aliased_Present (N)
12844 then
12845 Error_Msg_Sloc := Sloc (Prev);
12846 Error_Msg_N ("ALIASED required (see declaration #)", N);
12847 end if;
12849 -- Check that placement is in private part and that the incomplete
12850 -- declaration appeared in the visible part.
12852 if Ekind (Current_Scope) = E_Package
12853 and then not In_Private_Part (Current_Scope)
12854 then
12855 Error_Msg_Sloc := Sloc (Prev);
12856 Error_Msg_N
12857 ("full constant for declaration # must be in private part", N);
12859 elsif Ekind (Current_Scope) = E_Package
12860 and then
12861 List_Containing (Parent (Prev)) /=
12862 Visible_Declarations (Package_Specification (Current_Scope))
12863 then
12864 Error_Msg_N
12865 ("deferred constant must be declared in visible part",
12866 Parent (Prev));
12867 end if;
12869 if Is_Access_Type (T)
12870 and then Nkind (Expression (N)) = N_Allocator
12871 then
12872 Check_Recursive_Declaration (Designated_Type (T));
12873 end if;
12875 -- A deferred constant is a visible entity. If type has invariants,
12876 -- verify that the initial value satisfies them. This is not done in
12877 -- GNATprove mode, as GNATprove handles invariant checks itself.
12879 if Has_Invariants (T)
12880 and then Present (Invariant_Procedure (T))
12881 and then not GNATprove_Mode
12882 then
12883 Insert_After (N,
12884 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12885 end if;
12886 end if;
12887 end Constant_Redeclaration;
12889 ----------------------
12890 -- Constrain_Access --
12891 ----------------------
12893 procedure Constrain_Access
12894 (Def_Id : in out Entity_Id;
12895 S : Node_Id;
12896 Related_Nod : Node_Id)
12898 T : constant Entity_Id := Entity (Subtype_Mark (S));
12899 Desig_Type : constant Entity_Id := Designated_Type (T);
12900 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12901 Constraint_OK : Boolean := True;
12903 begin
12904 if Is_Array_Type (Desig_Type) then
12905 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12907 elsif (Is_Record_Type (Desig_Type)
12908 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12909 and then not Is_Constrained (Desig_Type)
12910 then
12911 -- ??? The following code is a temporary bypass to ignore a
12912 -- discriminant constraint on access type if it is constraining
12913 -- the current record. Avoid creating the implicit subtype of the
12914 -- record we are currently compiling since right now, we cannot
12915 -- handle these. For now, just return the access type itself.
12917 if Desig_Type = Current_Scope
12918 and then No (Def_Id)
12919 then
12920 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12921 Def_Id := Entity (Subtype_Mark (S));
12923 -- This call added to ensure that the constraint is analyzed
12924 -- (needed for a B test). Note that we still return early from
12925 -- this procedure to avoid recursive processing. ???
12927 Constrain_Discriminated_Type
12928 (Desig_Subtype, S, Related_Nod, For_Access => True);
12929 return;
12930 end if;
12932 -- Enforce rule that the constraint is illegal if there is an
12933 -- unconstrained view of the designated type. This means that the
12934 -- partial view (either a private type declaration or a derivation
12935 -- from a private type) has no discriminants. (Defect Report
12936 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12938 -- Rule updated for Ada 2005: The private type is said to have
12939 -- a constrained partial view, given that objects of the type
12940 -- can be declared. Furthermore, the rule applies to all access
12941 -- types, unlike the rule concerning default discriminants (see
12942 -- RM 3.7.1(7/3))
12944 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12945 and then Has_Private_Declaration (Desig_Type)
12946 and then In_Open_Scopes (Scope (Desig_Type))
12947 and then Has_Discriminants (Desig_Type)
12948 then
12949 declare
12950 Pack : constant Node_Id :=
12951 Unit_Declaration_Node (Scope (Desig_Type));
12952 Decls : List_Id;
12953 Decl : Node_Id;
12955 begin
12956 if Nkind (Pack) = N_Package_Declaration then
12957 Decls := Visible_Declarations (Specification (Pack));
12958 Decl := First (Decls);
12959 while Present (Decl) loop
12960 if (Nkind (Decl) = N_Private_Type_Declaration
12961 and then Chars (Defining_Identifier (Decl)) =
12962 Chars (Desig_Type))
12964 or else
12965 (Nkind (Decl) = N_Full_Type_Declaration
12966 and then
12967 Chars (Defining_Identifier (Decl)) =
12968 Chars (Desig_Type)
12969 and then Is_Derived_Type (Desig_Type)
12970 and then
12971 Has_Private_Declaration (Etype (Desig_Type)))
12972 then
12973 if No (Discriminant_Specifications (Decl)) then
12974 Error_Msg_N
12975 ("cannot constrain access type if designated "
12976 & "type has constrained partial view", S);
12977 end if;
12979 exit;
12980 end if;
12982 Next (Decl);
12983 end loop;
12984 end if;
12985 end;
12986 end if;
12988 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12989 For_Access => True);
12991 elsif Is_Concurrent_Type (Desig_Type)
12992 and then not Is_Constrained (Desig_Type)
12993 then
12994 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12996 else
12997 Error_Msg_N ("invalid constraint on access type", S);
12999 -- We simply ignore an invalid constraint
13001 Desig_Subtype := Desig_Type;
13002 Constraint_OK := False;
13003 end if;
13005 if No (Def_Id) then
13006 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
13007 else
13008 Set_Ekind (Def_Id, E_Access_Subtype);
13009 end if;
13011 if Constraint_OK then
13012 Set_Etype (Def_Id, Base_Type (T));
13014 if Is_Private_Type (Desig_Type) then
13015 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
13016 end if;
13017 else
13018 Set_Etype (Def_Id, Any_Type);
13019 end if;
13021 Set_Size_Info (Def_Id, T);
13022 Set_Is_Constrained (Def_Id, Constraint_OK);
13023 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
13024 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13025 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
13027 Conditional_Delay (Def_Id, T);
13029 -- AI-363 : Subtypes of general access types whose designated types have
13030 -- default discriminants are disallowed. In instances, the rule has to
13031 -- be checked against the actual, of which T is the subtype. In a
13032 -- generic body, the rule is checked assuming that the actual type has
13033 -- defaulted discriminants.
13035 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
13036 if Ekind (Base_Type (T)) = E_General_Access_Type
13037 and then Has_Defaulted_Discriminants (Desig_Type)
13038 then
13039 if Ada_Version < Ada_2005 then
13040 Error_Msg_N
13041 ("access subtype of general access type would not " &
13042 "be allowed in Ada 2005?y?", S);
13043 else
13044 Error_Msg_N
13045 ("access subtype of general access type not allowed", S);
13046 end if;
13048 Error_Msg_N ("\discriminants have defaults", S);
13050 elsif Is_Access_Type (T)
13051 and then Is_Generic_Type (Desig_Type)
13052 and then Has_Discriminants (Desig_Type)
13053 and then In_Package_Body (Current_Scope)
13054 then
13055 if Ada_Version < Ada_2005 then
13056 Error_Msg_N
13057 ("access subtype would not be allowed in generic body "
13058 & "in Ada 2005?y?", S);
13059 else
13060 Error_Msg_N
13061 ("access subtype not allowed in generic body", S);
13062 end if;
13064 Error_Msg_N
13065 ("\designated type is a discriminated formal", S);
13066 end if;
13067 end if;
13068 end Constrain_Access;
13070 ---------------------
13071 -- Constrain_Array --
13072 ---------------------
13074 procedure Constrain_Array
13075 (Def_Id : in out Entity_Id;
13076 SI : Node_Id;
13077 Related_Nod : Node_Id;
13078 Related_Id : Entity_Id;
13079 Suffix : Character)
13081 C : constant Node_Id := Constraint (SI);
13082 Number_Of_Constraints : Nat := 0;
13083 Index : Node_Id;
13084 S, T : Entity_Id;
13085 Constraint_OK : Boolean := True;
13087 begin
13088 T := Entity (Subtype_Mark (SI));
13090 if Is_Access_Type (T) then
13091 T := Designated_Type (T);
13092 end if;
13094 -- If an index constraint follows a subtype mark in a subtype indication
13095 -- then the type or subtype denoted by the subtype mark must not already
13096 -- impose an index constraint. The subtype mark must denote either an
13097 -- unconstrained array type or an access type whose designated type
13098 -- is such an array type... (RM 3.6.1)
13100 if Is_Constrained (T) then
13101 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
13102 Constraint_OK := False;
13104 else
13105 S := First (Constraints (C));
13106 while Present (S) loop
13107 Number_Of_Constraints := Number_Of_Constraints + 1;
13108 Next (S);
13109 end loop;
13111 -- In either case, the index constraint must provide a discrete
13112 -- range for each index of the array type and the type of each
13113 -- discrete range must be the same as that of the corresponding
13114 -- index. (RM 3.6.1)
13116 if Number_Of_Constraints /= Number_Dimensions (T) then
13117 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
13118 Constraint_OK := False;
13120 else
13121 S := First (Constraints (C));
13122 Index := First_Index (T);
13123 Analyze (Index);
13125 -- Apply constraints to each index type
13127 for J in 1 .. Number_Of_Constraints loop
13128 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
13129 Next (Index);
13130 Next (S);
13131 end loop;
13133 end if;
13134 end if;
13136 if No (Def_Id) then
13137 Def_Id :=
13138 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
13139 Set_Parent (Def_Id, Related_Nod);
13141 else
13142 Set_Ekind (Def_Id, E_Array_Subtype);
13143 end if;
13145 Set_Size_Info (Def_Id, (T));
13146 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13147 Set_Etype (Def_Id, Base_Type (T));
13149 if Constraint_OK then
13150 Set_First_Index (Def_Id, First (Constraints (C)));
13151 else
13152 Set_First_Index (Def_Id, First_Index (T));
13153 end if;
13155 Set_Is_Constrained (Def_Id, True);
13156 Set_Is_Aliased (Def_Id, Is_Aliased (T));
13157 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13159 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
13160 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
13162 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
13163 -- We need to initialize the attribute because if Def_Id is previously
13164 -- analyzed through a limited_with clause, it will have the attributes
13165 -- of an incomplete type, one of which is an Elist that overlaps the
13166 -- Packed_Array_Impl_Type field.
13168 Set_Packed_Array_Impl_Type (Def_Id, Empty);
13170 -- Build a freeze node if parent still needs one. Also make sure that
13171 -- the Depends_On_Private status is set because the subtype will need
13172 -- reprocessing at the time the base type does, and also we must set a
13173 -- conditional delay.
13175 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
13176 Conditional_Delay (Def_Id, T);
13177 end Constrain_Array;
13179 ------------------------------
13180 -- Constrain_Component_Type --
13181 ------------------------------
13183 function Constrain_Component_Type
13184 (Comp : Entity_Id;
13185 Constrained_Typ : Entity_Id;
13186 Related_Node : Node_Id;
13187 Typ : Entity_Id;
13188 Constraints : Elist_Id) return Entity_Id
13190 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
13191 Compon_Type : constant Entity_Id := Etype (Comp);
13193 function Build_Constrained_Array_Type
13194 (Old_Type : Entity_Id) return Entity_Id;
13195 -- If Old_Type is an array type, one of whose indexes is constrained
13196 -- by a discriminant, build an Itype whose constraint replaces the
13197 -- discriminant with its value in the constraint.
13199 function Build_Constrained_Discriminated_Type
13200 (Old_Type : Entity_Id) return Entity_Id;
13201 -- Ditto for record components
13203 function Build_Constrained_Access_Type
13204 (Old_Type : Entity_Id) return Entity_Id;
13205 -- Ditto for access types. Makes use of previous two functions, to
13206 -- constrain designated type.
13208 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
13209 -- T is an array or discriminated type, C is a list of constraints
13210 -- that apply to T. This routine builds the constrained subtype.
13212 function Is_Discriminant (Expr : Node_Id) return Boolean;
13213 -- Returns True if Expr is a discriminant
13215 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
13216 -- Find the value of discriminant Discrim in Constraint
13218 -----------------------------------
13219 -- Build_Constrained_Access_Type --
13220 -----------------------------------
13222 function Build_Constrained_Access_Type
13223 (Old_Type : Entity_Id) return Entity_Id
13225 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
13226 Itype : Entity_Id;
13227 Desig_Subtype : Entity_Id;
13228 Scop : Entity_Id;
13230 begin
13231 -- if the original access type was not embedded in the enclosing
13232 -- type definition, there is no need to produce a new access
13233 -- subtype. In fact every access type with an explicit constraint
13234 -- generates an itype whose scope is the enclosing record.
13236 if not Is_Type (Scope (Old_Type)) then
13237 return Old_Type;
13239 elsif Is_Array_Type (Desig_Type) then
13240 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
13242 elsif Has_Discriminants (Desig_Type) then
13244 -- This may be an access type to an enclosing record type for
13245 -- which we are constructing the constrained components. Return
13246 -- the enclosing record subtype. This is not always correct,
13247 -- but avoids infinite recursion. ???
13249 Desig_Subtype := Any_Type;
13251 for J in reverse 0 .. Scope_Stack.Last loop
13252 Scop := Scope_Stack.Table (J).Entity;
13254 if Is_Type (Scop)
13255 and then Base_Type (Scop) = Base_Type (Desig_Type)
13256 then
13257 Desig_Subtype := Scop;
13258 end if;
13260 exit when not Is_Type (Scop);
13261 end loop;
13263 if Desig_Subtype = Any_Type then
13264 Desig_Subtype :=
13265 Build_Constrained_Discriminated_Type (Desig_Type);
13266 end if;
13268 else
13269 return Old_Type;
13270 end if;
13272 if Desig_Subtype /= Desig_Type then
13274 -- The Related_Node better be here or else we won't be able
13275 -- to attach new itypes to a node in the tree.
13277 pragma Assert (Present (Related_Node));
13279 Itype := Create_Itype (E_Access_Subtype, Related_Node);
13281 Set_Etype (Itype, Base_Type (Old_Type));
13282 Set_Size_Info (Itype, (Old_Type));
13283 Set_Directly_Designated_Type (Itype, Desig_Subtype);
13284 Set_Depends_On_Private (Itype, Has_Private_Component
13285 (Old_Type));
13286 Set_Is_Access_Constant (Itype, Is_Access_Constant
13287 (Old_Type));
13289 -- The new itype needs freezing when it depends on a not frozen
13290 -- type and the enclosing subtype needs freezing.
13292 if Has_Delayed_Freeze (Constrained_Typ)
13293 and then not Is_Frozen (Constrained_Typ)
13294 then
13295 Conditional_Delay (Itype, Base_Type (Old_Type));
13296 end if;
13298 return Itype;
13300 else
13301 return Old_Type;
13302 end if;
13303 end Build_Constrained_Access_Type;
13305 ----------------------------------
13306 -- Build_Constrained_Array_Type --
13307 ----------------------------------
13309 function Build_Constrained_Array_Type
13310 (Old_Type : Entity_Id) return Entity_Id
13312 Lo_Expr : Node_Id;
13313 Hi_Expr : Node_Id;
13314 Old_Index : Node_Id;
13315 Range_Node : Node_Id;
13316 Constr_List : List_Id;
13318 Need_To_Create_Itype : Boolean := False;
13320 begin
13321 Old_Index := First_Index (Old_Type);
13322 while Present (Old_Index) loop
13323 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13325 if Is_Discriminant (Lo_Expr)
13326 or else
13327 Is_Discriminant (Hi_Expr)
13328 then
13329 Need_To_Create_Itype := True;
13330 end if;
13332 Next_Index (Old_Index);
13333 end loop;
13335 if Need_To_Create_Itype then
13336 Constr_List := New_List;
13338 Old_Index := First_Index (Old_Type);
13339 while Present (Old_Index) loop
13340 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13342 if Is_Discriminant (Lo_Expr) then
13343 Lo_Expr := Get_Discr_Value (Lo_Expr);
13344 end if;
13346 if Is_Discriminant (Hi_Expr) then
13347 Hi_Expr := Get_Discr_Value (Hi_Expr);
13348 end if;
13350 Range_Node :=
13351 Make_Range
13352 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
13354 Append (Range_Node, To => Constr_List);
13356 Next_Index (Old_Index);
13357 end loop;
13359 return Build_Subtype (Old_Type, Constr_List);
13361 else
13362 return Old_Type;
13363 end if;
13364 end Build_Constrained_Array_Type;
13366 ------------------------------------------
13367 -- Build_Constrained_Discriminated_Type --
13368 ------------------------------------------
13370 function Build_Constrained_Discriminated_Type
13371 (Old_Type : Entity_Id) return Entity_Id
13373 Expr : Node_Id;
13374 Constr_List : List_Id;
13375 Old_Constraint : Elmt_Id;
13377 Need_To_Create_Itype : Boolean := False;
13379 begin
13380 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13381 while Present (Old_Constraint) loop
13382 Expr := Node (Old_Constraint);
13384 if Is_Discriminant (Expr) then
13385 Need_To_Create_Itype := True;
13386 end if;
13388 Next_Elmt (Old_Constraint);
13389 end loop;
13391 if Need_To_Create_Itype then
13392 Constr_List := New_List;
13394 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13395 while Present (Old_Constraint) loop
13396 Expr := Node (Old_Constraint);
13398 if Is_Discriminant (Expr) then
13399 Expr := Get_Discr_Value (Expr);
13400 end if;
13402 Append (New_Copy_Tree (Expr), To => Constr_List);
13404 Next_Elmt (Old_Constraint);
13405 end loop;
13407 return Build_Subtype (Old_Type, Constr_List);
13409 else
13410 return Old_Type;
13411 end if;
13412 end Build_Constrained_Discriminated_Type;
13414 -------------------
13415 -- Build_Subtype --
13416 -------------------
13418 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
13419 Indic : Node_Id;
13420 Subtyp_Decl : Node_Id;
13421 Def_Id : Entity_Id;
13422 Btyp : Entity_Id := Base_Type (T);
13424 begin
13425 -- The Related_Node better be here or else we won't be able to
13426 -- attach new itypes to a node in the tree.
13428 pragma Assert (Present (Related_Node));
13430 -- If the view of the component's type is incomplete or private
13431 -- with unknown discriminants, then the constraint must be applied
13432 -- to the full type.
13434 if Has_Unknown_Discriminants (Btyp)
13435 and then Present (Underlying_Type (Btyp))
13436 then
13437 Btyp := Underlying_Type (Btyp);
13438 end if;
13440 Indic :=
13441 Make_Subtype_Indication (Loc,
13442 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
13443 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
13445 Def_Id := Create_Itype (Ekind (T), Related_Node);
13447 Subtyp_Decl :=
13448 Make_Subtype_Declaration (Loc,
13449 Defining_Identifier => Def_Id,
13450 Subtype_Indication => Indic);
13452 Set_Parent (Subtyp_Decl, Parent (Related_Node));
13454 -- Itypes must be analyzed with checks off (see package Itypes)
13456 Analyze (Subtyp_Decl, Suppress => All_Checks);
13458 if Is_Itype (Def_Id) and then Has_Predicates (T) then
13459 Inherit_Predicate_Flags (Def_Id, T);
13461 -- Indicate where the predicate function may be found
13463 if Is_Itype (T) then
13464 if Present (Predicate_Function (Def_Id)) then
13465 null;
13467 elsif Present (Predicate_Function (T)) then
13468 Set_Predicate_Function (Def_Id, Predicate_Function (T));
13470 else
13471 Set_Predicated_Parent (Def_Id, Predicated_Parent (T));
13472 end if;
13474 elsif No (Predicate_Function (Def_Id)) then
13475 Set_Predicated_Parent (Def_Id, T);
13476 end if;
13477 end if;
13479 return Def_Id;
13480 end Build_Subtype;
13482 ---------------------
13483 -- Get_Discr_Value --
13484 ---------------------
13486 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
13487 D : Entity_Id;
13488 E : Elmt_Id;
13490 begin
13491 -- The discriminant may be declared for the type, in which case we
13492 -- find it by iterating over the list of discriminants. If the
13493 -- discriminant is inherited from a parent type, it appears as the
13494 -- corresponding discriminant of the current type. This will be the
13495 -- case when constraining an inherited component whose constraint is
13496 -- given by a discriminant of the parent.
13498 D := First_Discriminant (Typ);
13499 E := First_Elmt (Constraints);
13501 while Present (D) loop
13502 if D = Entity (Discrim)
13503 or else D = CR_Discriminant (Entity (Discrim))
13504 or else Corresponding_Discriminant (D) = Entity (Discrim)
13505 then
13506 return Node (E);
13507 end if;
13509 Next_Discriminant (D);
13510 Next_Elmt (E);
13511 end loop;
13513 -- The Corresponding_Discriminant mechanism is incomplete, because
13514 -- the correspondence between new and old discriminants is not one
13515 -- to one: one new discriminant can constrain several old ones. In
13516 -- that case, scan sequentially the stored_constraint, the list of
13517 -- discriminants of the parents, and the constraints.
13519 -- Previous code checked for the present of the Stored_Constraint
13520 -- list for the derived type, but did not use it at all. Should it
13521 -- be present when the component is a discriminated task type?
13523 if Is_Derived_Type (Typ)
13524 and then Scope (Entity (Discrim)) = Etype (Typ)
13525 then
13526 D := First_Discriminant (Etype (Typ));
13527 E := First_Elmt (Constraints);
13528 while Present (D) loop
13529 if D = Entity (Discrim) then
13530 return Node (E);
13531 end if;
13533 Next_Discriminant (D);
13534 Next_Elmt (E);
13535 end loop;
13536 end if;
13538 -- Something is wrong if we did not find the value
13540 raise Program_Error;
13541 end Get_Discr_Value;
13543 ---------------------
13544 -- Is_Discriminant --
13545 ---------------------
13547 function Is_Discriminant (Expr : Node_Id) return Boolean is
13548 Discrim_Scope : Entity_Id;
13550 begin
13551 if Denotes_Discriminant (Expr) then
13552 Discrim_Scope := Scope (Entity (Expr));
13554 -- Either we have a reference to one of Typ's discriminants,
13556 pragma Assert (Discrim_Scope = Typ
13558 -- or to the discriminants of the parent type, in the case
13559 -- of a derivation of a tagged type with variants.
13561 or else Discrim_Scope = Etype (Typ)
13562 or else Full_View (Discrim_Scope) = Etype (Typ)
13564 -- or same as above for the case where the discriminants
13565 -- were declared in Typ's private view.
13567 or else (Is_Private_Type (Discrim_Scope)
13568 and then Chars (Discrim_Scope) = Chars (Typ))
13570 -- or else we are deriving from the full view and the
13571 -- discriminant is declared in the private entity.
13573 or else (Is_Private_Type (Typ)
13574 and then Chars (Discrim_Scope) = Chars (Typ))
13576 -- Or we are constrained the corresponding record of a
13577 -- synchronized type that completes a private declaration.
13579 or else (Is_Concurrent_Record_Type (Typ)
13580 and then
13581 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
13583 -- or we have a class-wide type, in which case make sure the
13584 -- discriminant found belongs to the root type.
13586 or else (Is_Class_Wide_Type (Typ)
13587 and then Etype (Typ) = Discrim_Scope));
13589 return True;
13590 end if;
13592 -- In all other cases we have something wrong
13594 return False;
13595 end Is_Discriminant;
13597 -- Start of processing for Constrain_Component_Type
13599 begin
13600 if Nkind (Parent (Comp)) = N_Component_Declaration
13601 and then Comes_From_Source (Parent (Comp))
13602 and then Comes_From_Source
13603 (Subtype_Indication (Component_Definition (Parent (Comp))))
13604 and then
13605 Is_Entity_Name
13606 (Subtype_Indication (Component_Definition (Parent (Comp))))
13607 then
13608 return Compon_Type;
13610 elsif Is_Array_Type (Compon_Type) then
13611 return Build_Constrained_Array_Type (Compon_Type);
13613 elsif Has_Discriminants (Compon_Type) then
13614 return Build_Constrained_Discriminated_Type (Compon_Type);
13616 elsif Is_Access_Type (Compon_Type) then
13617 return Build_Constrained_Access_Type (Compon_Type);
13619 else
13620 return Compon_Type;
13621 end if;
13622 end Constrain_Component_Type;
13624 --------------------------
13625 -- Constrain_Concurrent --
13626 --------------------------
13628 -- For concurrent types, the associated record value type carries the same
13629 -- discriminants, so when we constrain a concurrent type, we must constrain
13630 -- the corresponding record type as well.
13632 procedure Constrain_Concurrent
13633 (Def_Id : in out Entity_Id;
13634 SI : Node_Id;
13635 Related_Nod : Node_Id;
13636 Related_Id : Entity_Id;
13637 Suffix : Character)
13639 -- Retrieve Base_Type to ensure getting to the concurrent type in the
13640 -- case of a private subtype (needed when only doing semantic analysis).
13642 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
13643 T_Val : Entity_Id;
13645 begin
13646 if Is_Access_Type (T_Ent) then
13647 T_Ent := Designated_Type (T_Ent);
13648 end if;
13650 T_Val := Corresponding_Record_Type (T_Ent);
13652 if Present (T_Val) then
13654 if No (Def_Id) then
13655 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13657 -- Elaborate itype now, as it may be used in a subsequent
13658 -- synchronized operation in another scope.
13660 if Nkind (Related_Nod) = N_Full_Type_Declaration then
13661 Build_Itype_Reference (Def_Id, Related_Nod);
13662 end if;
13663 end if;
13665 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13666 Set_First_Private_Entity (Def_Id, First_Private_Entity (T_Ent));
13668 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13669 Set_Corresponding_Record_Type (Def_Id,
13670 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
13672 else
13673 -- If there is no associated record, expansion is disabled and this
13674 -- is a generic context. Create a subtype in any case, so that
13675 -- semantic analysis can proceed.
13677 if No (Def_Id) then
13678 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13679 end if;
13681 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13682 end if;
13683 end Constrain_Concurrent;
13685 ------------------------------------
13686 -- Constrain_Corresponding_Record --
13687 ------------------------------------
13689 function Constrain_Corresponding_Record
13690 (Prot_Subt : Entity_Id;
13691 Corr_Rec : Entity_Id;
13692 Related_Nod : Node_Id) return Entity_Id
13694 T_Sub : constant Entity_Id :=
13695 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
13697 begin
13698 Set_Etype (T_Sub, Corr_Rec);
13699 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
13700 Set_Is_Constrained (T_Sub, True);
13701 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
13702 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
13704 if Has_Discriminants (Prot_Subt) then -- False only if errors.
13705 Set_Discriminant_Constraint
13706 (T_Sub, Discriminant_Constraint (Prot_Subt));
13707 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
13708 Create_Constrained_Components
13709 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
13710 end if;
13712 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
13714 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
13715 Conditional_Delay (T_Sub, Corr_Rec);
13717 else
13718 -- This is a component subtype: it will be frozen in the context of
13719 -- the enclosing record's init_proc, so that discriminant references
13720 -- are resolved to discriminals. (Note: we used to skip freezing
13721 -- altogether in that case, which caused errors downstream for
13722 -- components of a bit packed array type).
13724 Set_Has_Delayed_Freeze (T_Sub);
13725 end if;
13727 return T_Sub;
13728 end Constrain_Corresponding_Record;
13730 -----------------------
13731 -- Constrain_Decimal --
13732 -----------------------
13734 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
13735 T : constant Entity_Id := Entity (Subtype_Mark (S));
13736 C : constant Node_Id := Constraint (S);
13737 Loc : constant Source_Ptr := Sloc (C);
13738 Range_Expr : Node_Id;
13739 Digits_Expr : Node_Id;
13740 Digits_Val : Uint;
13741 Bound_Val : Ureal;
13743 begin
13744 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
13746 if Nkind (C) = N_Range_Constraint then
13747 Range_Expr := Range_Expression (C);
13748 Digits_Val := Digits_Value (T);
13750 else
13751 pragma Assert (Nkind (C) = N_Digits_Constraint);
13753 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13755 Digits_Expr := Digits_Expression (C);
13756 Analyze_And_Resolve (Digits_Expr, Any_Integer);
13758 Check_Digits_Expression (Digits_Expr);
13759 Digits_Val := Expr_Value (Digits_Expr);
13761 if Digits_Val > Digits_Value (T) then
13762 Error_Msg_N
13763 ("digits expression is incompatible with subtype", C);
13764 Digits_Val := Digits_Value (T);
13765 end if;
13767 if Present (Range_Constraint (C)) then
13768 Range_Expr := Range_Expression (Range_Constraint (C));
13769 else
13770 Range_Expr := Empty;
13771 end if;
13772 end if;
13774 Set_Etype (Def_Id, Base_Type (T));
13775 Set_Size_Info (Def_Id, (T));
13776 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13777 Set_Delta_Value (Def_Id, Delta_Value (T));
13778 Set_Scale_Value (Def_Id, Scale_Value (T));
13779 Set_Small_Value (Def_Id, Small_Value (T));
13780 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13781 Set_Digits_Value (Def_Id, Digits_Val);
13783 -- Manufacture range from given digits value if no range present
13785 if No (Range_Expr) then
13786 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13787 Range_Expr :=
13788 Make_Range (Loc,
13789 Low_Bound =>
13790 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13791 High_Bound =>
13792 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13793 end if;
13795 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13796 Set_Discrete_RM_Size (Def_Id);
13798 -- Unconditionally delay the freeze, since we cannot set size
13799 -- information in all cases correctly until the freeze point.
13801 Set_Has_Delayed_Freeze (Def_Id);
13802 end Constrain_Decimal;
13804 ----------------------------------
13805 -- Constrain_Discriminated_Type --
13806 ----------------------------------
13808 procedure Constrain_Discriminated_Type
13809 (Def_Id : Entity_Id;
13810 S : Node_Id;
13811 Related_Nod : Node_Id;
13812 For_Access : Boolean := False)
13814 E : Entity_Id := Entity (Subtype_Mark (S));
13815 T : Entity_Id;
13817 procedure Fixup_Bad_Constraint;
13818 -- Called after finding a bad constraint, and after having posted an
13819 -- appropriate error message. The goal is to leave type Def_Id in as
13820 -- reasonable state as possible.
13822 --------------------------
13823 -- Fixup_Bad_Constraint --
13824 --------------------------
13826 procedure Fixup_Bad_Constraint is
13827 begin
13828 -- Set a reasonable Ekind for the entity, including incomplete types.
13830 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13832 -- Set Etype to the known type, to reduce chances of cascaded errors
13834 Set_Etype (Def_Id, E);
13835 Set_Error_Posted (Def_Id);
13836 end Fixup_Bad_Constraint;
13838 -- Local variables
13840 C : Node_Id;
13841 Constr : Elist_Id := New_Elmt_List;
13843 -- Start of processing for Constrain_Discriminated_Type
13845 begin
13846 C := Constraint (S);
13848 -- A discriminant constraint is only allowed in a subtype indication,
13849 -- after a subtype mark. This subtype mark must denote either a type
13850 -- with discriminants, or an access type whose designated type is a
13851 -- type with discriminants. A discriminant constraint specifies the
13852 -- values of these discriminants (RM 3.7.2(5)).
13854 T := Base_Type (Entity (Subtype_Mark (S)));
13856 if Is_Access_Type (T) then
13857 T := Designated_Type (T);
13858 end if;
13860 -- In an instance it may be necessary to retrieve the full view of a
13861 -- type with unknown discriminants, or a full view with defaulted
13862 -- discriminants. In other contexts the constraint is illegal.
13864 if In_Instance
13865 and then Is_Private_Type (T)
13866 and then Present (Full_View (T))
13867 and then
13868 (Has_Unknown_Discriminants (T)
13869 or else
13870 (not Has_Discriminants (T)
13871 and then Has_Discriminants (Full_View (T))
13872 and then Present (Discriminant_Default_Value
13873 (First_Discriminant (Full_View (T))))))
13874 then
13875 T := Full_View (T);
13876 E := Full_View (E);
13877 end if;
13879 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13880 -- generating an error for access-to-incomplete subtypes.
13882 if Ada_Version >= Ada_2005
13883 and then Ekind (T) = E_Incomplete_Type
13884 and then Nkind (Parent (S)) = N_Subtype_Declaration
13885 and then not Is_Itype (Def_Id)
13886 then
13887 -- A little sanity check: emit an error message if the type has
13888 -- discriminants to begin with. Type T may be a regular incomplete
13889 -- type or imported via a limited with clause.
13891 if Has_Discriminants (T)
13892 or else (From_Limited_With (T)
13893 and then Present (Non_Limited_View (T))
13894 and then Nkind (Parent (Non_Limited_View (T))) =
13895 N_Full_Type_Declaration
13896 and then Present (Discriminant_Specifications
13897 (Parent (Non_Limited_View (T)))))
13898 then
13899 Error_Msg_N
13900 ("(Ada 2005) incomplete subtype may not be constrained", C);
13901 else
13902 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13903 end if;
13905 Fixup_Bad_Constraint;
13906 return;
13908 -- Check that the type has visible discriminants. The type may be
13909 -- a private type with unknown discriminants whose full view has
13910 -- discriminants which are invisible.
13912 elsif not Has_Discriminants (T)
13913 or else
13914 (Has_Unknown_Discriminants (T)
13915 and then Is_Private_Type (T))
13916 then
13917 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13918 Fixup_Bad_Constraint;
13919 return;
13921 elsif Is_Constrained (E)
13922 or else (Ekind (E) = E_Class_Wide_Subtype
13923 and then Present (Discriminant_Constraint (E)))
13924 then
13925 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13926 Fixup_Bad_Constraint;
13927 return;
13928 end if;
13930 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13931 -- applies to the base type.
13933 T := Base_Type (T);
13935 Constr := Build_Discriminant_Constraints (T, S);
13937 -- If the list returned was empty we had an error in building the
13938 -- discriminant constraint. We have also already signalled an error
13939 -- in the incomplete type case
13941 if Is_Empty_Elmt_List (Constr) then
13942 Fixup_Bad_Constraint;
13943 return;
13944 end if;
13946 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
13947 end Constrain_Discriminated_Type;
13949 ---------------------------
13950 -- Constrain_Enumeration --
13951 ---------------------------
13953 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13954 T : constant Entity_Id := Entity (Subtype_Mark (S));
13955 C : constant Node_Id := Constraint (S);
13957 begin
13958 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13960 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13962 Set_Etype (Def_Id, Base_Type (T));
13963 Set_Size_Info (Def_Id, (T));
13964 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13965 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13967 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13969 Set_Discrete_RM_Size (Def_Id);
13970 end Constrain_Enumeration;
13972 ----------------------
13973 -- Constrain_Float --
13974 ----------------------
13976 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13977 T : constant Entity_Id := Entity (Subtype_Mark (S));
13978 C : Node_Id;
13979 D : Node_Id;
13980 Rais : Node_Id;
13982 begin
13983 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13985 Set_Etype (Def_Id, Base_Type (T));
13986 Set_Size_Info (Def_Id, (T));
13987 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13989 -- Process the constraint
13991 C := Constraint (S);
13993 -- Digits constraint present
13995 if Nkind (C) = N_Digits_Constraint then
13997 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13998 Check_Restriction (No_Obsolescent_Features, C);
14000 if Warn_On_Obsolescent_Feature then
14001 Error_Msg_N
14002 ("subtype digits constraint is an " &
14003 "obsolescent feature (RM J.3(8))?j?", C);
14004 end if;
14006 D := Digits_Expression (C);
14007 Analyze_And_Resolve (D, Any_Integer);
14008 Check_Digits_Expression (D);
14009 Set_Digits_Value (Def_Id, Expr_Value (D));
14011 -- Check that digits value is in range. Obviously we can do this
14012 -- at compile time, but it is strictly a runtime check, and of
14013 -- course there is an ACVC test that checks this.
14015 if Digits_Value (Def_Id) > Digits_Value (T) then
14016 Error_Msg_Uint_1 := Digits_Value (T);
14017 Error_Msg_N ("??digits value is too large, maximum is ^", D);
14018 Rais :=
14019 Make_Raise_Constraint_Error (Sloc (D),
14020 Reason => CE_Range_Check_Failed);
14021 Insert_Action (Declaration_Node (Def_Id), Rais);
14022 end if;
14024 C := Range_Constraint (C);
14026 -- No digits constraint present
14028 else
14029 Set_Digits_Value (Def_Id, Digits_Value (T));
14030 end if;
14032 -- Range constraint present
14034 if Nkind (C) = N_Range_Constraint then
14035 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14037 -- No range constraint present
14039 else
14040 pragma Assert (No (C));
14041 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14042 end if;
14044 Set_Is_Constrained (Def_Id);
14045 end Constrain_Float;
14047 ---------------------
14048 -- Constrain_Index --
14049 ---------------------
14051 procedure Constrain_Index
14052 (Index : Node_Id;
14053 S : Node_Id;
14054 Related_Nod : Node_Id;
14055 Related_Id : Entity_Id;
14056 Suffix : Character;
14057 Suffix_Index : Nat)
14059 Def_Id : Entity_Id;
14060 R : Node_Id := Empty;
14061 T : constant Entity_Id := Etype (Index);
14063 begin
14064 Def_Id :=
14065 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
14066 Set_Etype (Def_Id, Base_Type (T));
14068 if Nkind (S) = N_Range
14069 or else
14070 (Nkind (S) = N_Attribute_Reference
14071 and then Attribute_Name (S) = Name_Range)
14072 then
14073 -- A Range attribute will be transformed into N_Range by Resolve
14075 Analyze (S);
14076 Set_Etype (S, T);
14077 R := S;
14079 Process_Range_Expr_In_Decl (R, T);
14081 if not Error_Posted (S)
14082 and then
14083 (Nkind (S) /= N_Range
14084 or else not Covers (T, (Etype (Low_Bound (S))))
14085 or else not Covers (T, (Etype (High_Bound (S)))))
14086 then
14087 if Base_Type (T) /= Any_Type
14088 and then Etype (Low_Bound (S)) /= Any_Type
14089 and then Etype (High_Bound (S)) /= Any_Type
14090 then
14091 Error_Msg_N ("range expected", S);
14092 end if;
14093 end if;
14095 elsif Nkind (S) = N_Subtype_Indication then
14097 -- The parser has verified that this is a discrete indication
14099 Resolve_Discrete_Subtype_Indication (S, T);
14100 Bad_Predicated_Subtype_Use
14101 ("subtype& has predicate, not allowed in index constraint",
14102 S, Entity (Subtype_Mark (S)));
14104 R := Range_Expression (Constraint (S));
14106 -- Capture values of bounds and generate temporaries for them if
14107 -- needed, since checks may cause duplication of the expressions
14108 -- which must not be reevaluated.
14110 -- The forced evaluation removes side effects from expressions, which
14111 -- should occur also in GNATprove mode. Otherwise, we end up with
14112 -- unexpected insertions of actions at places where this is not
14113 -- supposed to occur, e.g. on default parameters of a call.
14115 if Expander_Active or GNATprove_Mode then
14116 Force_Evaluation
14117 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
14118 Force_Evaluation
14119 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
14120 end if;
14122 elsif Nkind (S) = N_Discriminant_Association then
14124 -- Syntactically valid in subtype indication
14126 Error_Msg_N ("invalid index constraint", S);
14127 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14128 return;
14130 -- Subtype_Mark case, no anonymous subtypes to construct
14132 else
14133 Analyze (S);
14135 if Is_Entity_Name (S) then
14136 if not Is_Type (Entity (S)) then
14137 Error_Msg_N ("expect subtype mark for index constraint", S);
14139 elsif Base_Type (Entity (S)) /= Base_Type (T) then
14140 Wrong_Type (S, Base_Type (T));
14142 -- Check error of subtype with predicate in index constraint
14144 else
14145 Bad_Predicated_Subtype_Use
14146 ("subtype& has predicate, not allowed in index constraint",
14147 S, Entity (S));
14148 end if;
14150 return;
14152 else
14153 Error_Msg_N ("invalid index constraint", S);
14154 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14155 return;
14156 end if;
14157 end if;
14159 -- Complete construction of the Itype
14161 if Is_Modular_Integer_Type (T) then
14162 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14164 elsif Is_Integer_Type (T) then
14165 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14167 else
14168 Set_Ekind (Def_Id, E_Enumeration_Subtype);
14169 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
14170 Set_First_Literal (Def_Id, First_Literal (T));
14171 end if;
14173 Set_Size_Info (Def_Id, (T));
14174 Set_RM_Size (Def_Id, RM_Size (T));
14175 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14177 Set_Scalar_Range (Def_Id, R);
14179 Set_Etype (S, Def_Id);
14180 Set_Discrete_RM_Size (Def_Id);
14181 end Constrain_Index;
14183 -----------------------
14184 -- Constrain_Integer --
14185 -----------------------
14187 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
14188 T : constant Entity_Id := Entity (Subtype_Mark (S));
14189 C : constant Node_Id := Constraint (S);
14191 begin
14192 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14194 if Is_Modular_Integer_Type (T) then
14195 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14196 else
14197 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14198 end if;
14200 Set_Etype (Def_Id, Base_Type (T));
14201 Set_Size_Info (Def_Id, (T));
14202 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14203 Set_Discrete_RM_Size (Def_Id);
14204 end Constrain_Integer;
14206 ------------------------------
14207 -- Constrain_Ordinary_Fixed --
14208 ------------------------------
14210 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
14211 T : constant Entity_Id := Entity (Subtype_Mark (S));
14212 C : Node_Id;
14213 D : Node_Id;
14214 Rais : Node_Id;
14216 begin
14217 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
14218 Set_Etype (Def_Id, Base_Type (T));
14219 Set_Size_Info (Def_Id, (T));
14220 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14221 Set_Small_Value (Def_Id, Small_Value (T));
14223 -- Process the constraint
14225 C := Constraint (S);
14227 -- Delta constraint present
14229 if Nkind (C) = N_Delta_Constraint then
14231 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
14232 Check_Restriction (No_Obsolescent_Features, C);
14234 if Warn_On_Obsolescent_Feature then
14235 Error_Msg_S
14236 ("subtype delta constraint is an " &
14237 "obsolescent feature (RM J.3(7))?j?");
14238 end if;
14240 D := Delta_Expression (C);
14241 Analyze_And_Resolve (D, Any_Real);
14242 Check_Delta_Expression (D);
14243 Set_Delta_Value (Def_Id, Expr_Value_R (D));
14245 -- Check that delta value is in range. Obviously we can do this
14246 -- at compile time, but it is strictly a runtime check, and of
14247 -- course there is an ACVC test that checks this.
14249 if Delta_Value (Def_Id) < Delta_Value (T) then
14250 Error_Msg_N ("??delta value is too small", D);
14251 Rais :=
14252 Make_Raise_Constraint_Error (Sloc (D),
14253 Reason => CE_Range_Check_Failed);
14254 Insert_Action (Declaration_Node (Def_Id), Rais);
14255 end if;
14257 C := Range_Constraint (C);
14259 -- No delta constraint present
14261 else
14262 Set_Delta_Value (Def_Id, Delta_Value (T));
14263 end if;
14265 -- Range constraint present
14267 if Nkind (C) = N_Range_Constraint then
14268 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14270 -- No range constraint present
14272 else
14273 pragma Assert (No (C));
14274 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14275 end if;
14277 Set_Discrete_RM_Size (Def_Id);
14279 -- Unconditionally delay the freeze, since we cannot set size
14280 -- information in all cases correctly until the freeze point.
14282 Set_Has_Delayed_Freeze (Def_Id);
14283 end Constrain_Ordinary_Fixed;
14285 -----------------------
14286 -- Contain_Interface --
14287 -----------------------
14289 function Contain_Interface
14290 (Iface : Entity_Id;
14291 Ifaces : Elist_Id) return Boolean
14293 Iface_Elmt : Elmt_Id;
14295 begin
14296 if Present (Ifaces) then
14297 Iface_Elmt := First_Elmt (Ifaces);
14298 while Present (Iface_Elmt) loop
14299 if Node (Iface_Elmt) = Iface then
14300 return True;
14301 end if;
14303 Next_Elmt (Iface_Elmt);
14304 end loop;
14305 end if;
14307 return False;
14308 end Contain_Interface;
14310 ---------------------------
14311 -- Convert_Scalar_Bounds --
14312 ---------------------------
14314 procedure Convert_Scalar_Bounds
14315 (N : Node_Id;
14316 Parent_Type : Entity_Id;
14317 Derived_Type : Entity_Id;
14318 Loc : Source_Ptr)
14320 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
14322 Lo : Node_Id;
14323 Hi : Node_Id;
14324 Rng : Node_Id;
14326 begin
14327 -- Defend against previous errors
14329 if No (Scalar_Range (Derived_Type)) then
14330 Check_Error_Detected;
14331 return;
14332 end if;
14334 Lo := Build_Scalar_Bound
14335 (Type_Low_Bound (Derived_Type),
14336 Parent_Type, Implicit_Base);
14338 Hi := Build_Scalar_Bound
14339 (Type_High_Bound (Derived_Type),
14340 Parent_Type, Implicit_Base);
14342 Rng :=
14343 Make_Range (Loc,
14344 Low_Bound => Lo,
14345 High_Bound => Hi);
14347 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
14349 Set_Parent (Rng, N);
14350 Set_Scalar_Range (Derived_Type, Rng);
14352 -- Analyze the bounds
14354 Analyze_And_Resolve (Lo, Implicit_Base);
14355 Analyze_And_Resolve (Hi, Implicit_Base);
14357 -- Analyze the range itself, except that we do not analyze it if
14358 -- the bounds are real literals, and we have a fixed-point type.
14359 -- The reason for this is that we delay setting the bounds in this
14360 -- case till we know the final Small and Size values (see circuit
14361 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14363 if Is_Fixed_Point_Type (Parent_Type)
14364 and then Nkind (Lo) = N_Real_Literal
14365 and then Nkind (Hi) = N_Real_Literal
14366 then
14367 return;
14369 -- Here we do the analysis of the range
14371 -- Note: we do this manually, since if we do a normal Analyze and
14372 -- Resolve call, there are problems with the conversions used for
14373 -- the derived type range.
14375 else
14376 Set_Etype (Rng, Implicit_Base);
14377 Set_Analyzed (Rng, True);
14378 end if;
14379 end Convert_Scalar_Bounds;
14381 -------------------
14382 -- Copy_And_Swap --
14383 -------------------
14385 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
14386 begin
14387 -- Initialize new full declaration entity by copying the pertinent
14388 -- fields of the corresponding private declaration entity.
14390 -- We temporarily set Ekind to a value appropriate for a type to
14391 -- avoid assert failures in Einfo from checking for setting type
14392 -- attributes on something that is not a type. Ekind (Priv) is an
14393 -- appropriate choice, since it allowed the attributes to be set
14394 -- in the first place. This Ekind value will be modified later.
14396 Set_Ekind (Full, Ekind (Priv));
14398 -- Also set Etype temporarily to Any_Type, again, in the absence
14399 -- of errors, it will be properly reset, and if there are errors,
14400 -- then we want a value of Any_Type to remain.
14402 Set_Etype (Full, Any_Type);
14404 -- Now start copying attributes
14406 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
14408 if Has_Discriminants (Full) then
14409 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
14410 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
14411 end if;
14413 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
14414 Set_Homonym (Full, Homonym (Priv));
14415 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
14416 Set_Is_Public (Full, Is_Public (Priv));
14417 Set_Is_Pure (Full, Is_Pure (Priv));
14418 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
14419 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
14420 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
14421 Set_Has_Pragma_Unreferenced_Objects
14422 (Full, Has_Pragma_Unreferenced_Objects
14423 (Priv));
14425 Conditional_Delay (Full, Priv);
14427 if Is_Tagged_Type (Full) then
14428 Set_Direct_Primitive_Operations
14429 (Full, Direct_Primitive_Operations (Priv));
14430 Set_No_Tagged_Streams_Pragma
14431 (Full, No_Tagged_Streams_Pragma (Priv));
14433 if Is_Base_Type (Priv) then
14434 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
14435 end if;
14436 end if;
14438 Set_Is_Volatile (Full, Is_Volatile (Priv));
14439 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
14440 Set_Scope (Full, Scope (Priv));
14441 Set_Prev_Entity (Full, Prev_Entity (Priv));
14442 Set_Next_Entity (Full, Next_Entity (Priv));
14443 Set_First_Entity (Full, First_Entity (Priv));
14444 Set_Last_Entity (Full, Last_Entity (Priv));
14446 -- If access types have been recorded for later handling, keep them in
14447 -- the full view so that they get handled when the full view freeze
14448 -- node is expanded.
14450 if Present (Freeze_Node (Priv))
14451 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
14452 then
14453 Ensure_Freeze_Node (Full);
14454 Set_Access_Types_To_Process
14455 (Freeze_Node (Full),
14456 Access_Types_To_Process (Freeze_Node (Priv)));
14457 end if;
14459 -- Swap the two entities. Now Private is the full type entity and Full
14460 -- is the private one. They will be swapped back at the end of the
14461 -- private part. This swapping ensures that the entity that is visible
14462 -- in the private part is the full declaration.
14464 Exchange_Entities (Priv, Full);
14465 Append_Entity (Full, Scope (Full));
14466 end Copy_And_Swap;
14468 -------------------------------------
14469 -- Copy_Array_Base_Type_Attributes --
14470 -------------------------------------
14472 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
14473 begin
14474 Set_Component_Alignment (T1, Component_Alignment (T2));
14475 Set_Component_Type (T1, Component_Type (T2));
14476 Set_Component_Size (T1, Component_Size (T2));
14477 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
14478 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
14479 Propagate_Concurrent_Flags (T1, T2);
14480 Set_Is_Packed (T1, Is_Packed (T2));
14481 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
14482 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
14483 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
14484 end Copy_Array_Base_Type_Attributes;
14486 -----------------------------------
14487 -- Copy_Array_Subtype_Attributes --
14488 -----------------------------------
14490 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
14491 begin
14492 Set_Size_Info (T1, T2);
14494 Set_First_Index (T1, First_Index (T2));
14495 Set_Is_Aliased (T1, Is_Aliased (T2));
14496 Set_Is_Volatile (T1, Is_Volatile (T2));
14497 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
14498 Set_Is_Constrained (T1, Is_Constrained (T2));
14499 Set_Depends_On_Private (T1, Has_Private_Component (T2));
14500 Inherit_Rep_Item_Chain (T1, T2);
14501 Set_Convention (T1, Convention (T2));
14502 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
14503 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
14504 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
14505 end Copy_Array_Subtype_Attributes;
14507 -----------------------------------
14508 -- Create_Constrained_Components --
14509 -----------------------------------
14511 procedure Create_Constrained_Components
14512 (Subt : Entity_Id;
14513 Decl_Node : Node_Id;
14514 Typ : Entity_Id;
14515 Constraints : Elist_Id)
14517 Loc : constant Source_Ptr := Sloc (Subt);
14518 Comp_List : constant Elist_Id := New_Elmt_List;
14519 Parent_Type : constant Entity_Id := Etype (Typ);
14520 Assoc_List : constant List_Id := New_List;
14521 Discr_Val : Elmt_Id;
14522 Errors : Boolean;
14523 New_C : Entity_Id;
14524 Old_C : Entity_Id;
14525 Is_Static : Boolean := True;
14527 procedure Collect_Fixed_Components (Typ : Entity_Id);
14528 -- Collect parent type components that do not appear in a variant part
14530 procedure Create_All_Components;
14531 -- Iterate over Comp_List to create the components of the subtype
14533 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
14534 -- Creates a new component from Old_Compon, copying all the fields from
14535 -- it, including its Etype, inserts the new component in the Subt entity
14536 -- chain and returns the new component.
14538 function Is_Variant_Record (T : Entity_Id) return Boolean;
14539 -- If true, and discriminants are static, collect only components from
14540 -- variants selected by discriminant values.
14542 ------------------------------
14543 -- Collect_Fixed_Components --
14544 ------------------------------
14546 procedure Collect_Fixed_Components (Typ : Entity_Id) is
14547 begin
14548 -- Build association list for discriminants, and find components of the
14549 -- variant part selected by the values of the discriminants.
14551 Old_C := First_Discriminant (Typ);
14552 Discr_Val := First_Elmt (Constraints);
14553 while Present (Old_C) loop
14554 Append_To (Assoc_List,
14555 Make_Component_Association (Loc,
14556 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
14557 Expression => New_Copy (Node (Discr_Val))));
14559 Next_Elmt (Discr_Val);
14560 Next_Discriminant (Old_C);
14561 end loop;
14563 -- The tag and the possible parent component are unconditionally in
14564 -- the subtype.
14566 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
14567 Old_C := First_Component (Typ);
14568 while Present (Old_C) loop
14569 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
14570 Append_Elmt (Old_C, Comp_List);
14571 end if;
14573 Next_Component (Old_C);
14574 end loop;
14575 end if;
14576 end Collect_Fixed_Components;
14578 ---------------------------
14579 -- Create_All_Components --
14580 ---------------------------
14582 procedure Create_All_Components is
14583 Comp : Elmt_Id;
14585 begin
14586 Comp := First_Elmt (Comp_List);
14587 while Present (Comp) loop
14588 Old_C := Node (Comp);
14589 New_C := Create_Component (Old_C);
14591 Set_Etype
14592 (New_C,
14593 Constrain_Component_Type
14594 (Old_C, Subt, Decl_Node, Typ, Constraints));
14595 Set_Is_Public (New_C, Is_Public (Subt));
14597 Next_Elmt (Comp);
14598 end loop;
14599 end Create_All_Components;
14601 ----------------------
14602 -- Create_Component --
14603 ----------------------
14605 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
14606 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
14608 begin
14609 if Ekind (Old_Compon) = E_Discriminant
14610 and then Is_Completely_Hidden (Old_Compon)
14611 then
14612 -- This is a shadow discriminant created for a discriminant of
14613 -- the parent type, which needs to be present in the subtype.
14614 -- Give the shadow discriminant an internal name that cannot
14615 -- conflict with that of visible components.
14617 Set_Chars (New_Compon, New_Internal_Name ('C'));
14618 end if;
14620 -- Set the parent so we have a proper link for freezing etc. This is
14621 -- not a real parent pointer, since of course our parent does not own
14622 -- up to us and reference us, we are an illegitimate child of the
14623 -- original parent.
14625 Set_Parent (New_Compon, Parent (Old_Compon));
14627 -- We do not want this node marked as Comes_From_Source, since
14628 -- otherwise it would get first class status and a separate cross-
14629 -- reference line would be generated. Illegitimate children do not
14630 -- rate such recognition.
14632 Set_Comes_From_Source (New_Compon, False);
14634 -- But it is a real entity, and a birth certificate must be properly
14635 -- registered by entering it into the entity list, and setting its
14636 -- scope to the given subtype. This turns out to be useful for the
14637 -- LLVM code generator, but that scope is not used otherwise.
14639 Enter_Name (New_Compon);
14640 Set_Scope (New_Compon, Subt);
14642 return New_Compon;
14643 end Create_Component;
14645 -----------------------
14646 -- Is_Variant_Record --
14647 -----------------------
14649 function Is_Variant_Record (T : Entity_Id) return Boolean is
14650 begin
14651 return Nkind (Parent (T)) = N_Full_Type_Declaration
14652 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
14653 and then Present (Component_List (Type_Definition (Parent (T))))
14654 and then
14655 Present
14656 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
14657 end Is_Variant_Record;
14659 -- Start of processing for Create_Constrained_Components
14661 begin
14662 pragma Assert (Subt /= Base_Type (Subt));
14663 pragma Assert (Typ = Base_Type (Typ));
14665 Set_First_Entity (Subt, Empty);
14666 Set_Last_Entity (Subt, Empty);
14668 -- Check whether constraint is fully static, in which case we can
14669 -- optimize the list of components.
14671 Discr_Val := First_Elmt (Constraints);
14672 while Present (Discr_Val) loop
14673 if not Is_OK_Static_Expression (Node (Discr_Val)) then
14674 Is_Static := False;
14675 exit;
14676 end if;
14678 Next_Elmt (Discr_Val);
14679 end loop;
14681 Set_Has_Static_Discriminants (Subt, Is_Static);
14683 Push_Scope (Subt);
14685 -- Inherit the discriminants of the parent type
14687 Add_Discriminants : declare
14688 Num_Disc : Nat;
14689 Num_Gird : Nat;
14691 begin
14692 Num_Disc := 0;
14693 Old_C := First_Discriminant (Typ);
14695 while Present (Old_C) loop
14696 Num_Disc := Num_Disc + 1;
14697 New_C := Create_Component (Old_C);
14698 Set_Is_Public (New_C, Is_Public (Subt));
14699 Next_Discriminant (Old_C);
14700 end loop;
14702 -- For an untagged derived subtype, the number of discriminants may
14703 -- be smaller than the number of inherited discriminants, because
14704 -- several of them may be renamed by a single new discriminant or
14705 -- constrained. In this case, add the hidden discriminants back into
14706 -- the subtype, because they need to be present if the optimizer of
14707 -- the GCC 4.x back-end decides to break apart assignments between
14708 -- objects using the parent view into member-wise assignments.
14710 Num_Gird := 0;
14712 if Is_Derived_Type (Typ)
14713 and then not Is_Tagged_Type (Typ)
14714 then
14715 Old_C := First_Stored_Discriminant (Typ);
14717 while Present (Old_C) loop
14718 Num_Gird := Num_Gird + 1;
14719 Next_Stored_Discriminant (Old_C);
14720 end loop;
14721 end if;
14723 if Num_Gird > Num_Disc then
14725 -- Find out multiple uses of new discriminants, and add hidden
14726 -- components for the extra renamed discriminants. We recognize
14727 -- multiple uses through the Corresponding_Discriminant of a
14728 -- new discriminant: if it constrains several old discriminants,
14729 -- this field points to the last one in the parent type. The
14730 -- stored discriminants of the derived type have the same name
14731 -- as those of the parent.
14733 declare
14734 Constr : Elmt_Id;
14735 New_Discr : Entity_Id;
14736 Old_Discr : Entity_Id;
14738 begin
14739 Constr := First_Elmt (Stored_Constraint (Typ));
14740 Old_Discr := First_Stored_Discriminant (Typ);
14741 while Present (Constr) loop
14742 if Is_Entity_Name (Node (Constr))
14743 and then Ekind (Entity (Node (Constr))) = E_Discriminant
14744 then
14745 New_Discr := Entity (Node (Constr));
14747 if Chars (Corresponding_Discriminant (New_Discr)) /=
14748 Chars (Old_Discr)
14749 then
14750 -- The new discriminant has been used to rename a
14751 -- subsequent old discriminant. Introduce a shadow
14752 -- component for the current old discriminant.
14754 New_C := Create_Component (Old_Discr);
14755 Set_Original_Record_Component (New_C, Old_Discr);
14756 end if;
14758 else
14759 -- The constraint has eliminated the old discriminant.
14760 -- Introduce a shadow component.
14762 New_C := Create_Component (Old_Discr);
14763 Set_Original_Record_Component (New_C, Old_Discr);
14764 end if;
14766 Next_Elmt (Constr);
14767 Next_Stored_Discriminant (Old_Discr);
14768 end loop;
14769 end;
14770 end if;
14771 end Add_Discriminants;
14773 if Is_Static
14774 and then Is_Variant_Record (Typ)
14775 then
14776 Collect_Fixed_Components (Typ);
14778 Gather_Components (
14779 Typ,
14780 Component_List (Type_Definition (Parent (Typ))),
14781 Governed_By => Assoc_List,
14782 Into => Comp_List,
14783 Report_Errors => Errors);
14784 pragma Assert (not Errors
14785 or else Serious_Errors_Detected > 0);
14787 Create_All_Components;
14789 -- If the subtype declaration is created for a tagged type derivation
14790 -- with constraints, we retrieve the record definition of the parent
14791 -- type to select the components of the proper variant.
14793 elsif Is_Static
14794 and then Is_Tagged_Type (Typ)
14795 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14796 and then
14797 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14798 and then Is_Variant_Record (Parent_Type)
14799 then
14800 Collect_Fixed_Components (Typ);
14802 Gather_Components
14803 (Typ,
14804 Component_List (Type_Definition (Parent (Parent_Type))),
14805 Governed_By => Assoc_List,
14806 Into => Comp_List,
14807 Report_Errors => Errors);
14809 -- Note: previously there was a check at this point that no errors
14810 -- were detected. As a consequence of AI05-220 there may be an error
14811 -- if an inherited discriminant that controls a variant has a non-
14812 -- static constraint.
14814 -- If the tagged derivation has a type extension, collect all the
14815 -- new components therein.
14817 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14818 then
14819 Old_C := First_Component (Typ);
14820 while Present (Old_C) loop
14821 if Original_Record_Component (Old_C) = Old_C
14822 and then Chars (Old_C) /= Name_uTag
14823 and then Chars (Old_C) /= Name_uParent
14824 then
14825 Append_Elmt (Old_C, Comp_List);
14826 end if;
14828 Next_Component (Old_C);
14829 end loop;
14830 end if;
14832 Create_All_Components;
14834 else
14835 -- If discriminants are not static, or if this is a multi-level type
14836 -- extension, we have to include all components of the parent type.
14838 Old_C := First_Component (Typ);
14839 while Present (Old_C) loop
14840 New_C := Create_Component (Old_C);
14842 Set_Etype
14843 (New_C,
14844 Constrain_Component_Type
14845 (Old_C, Subt, Decl_Node, Typ, Constraints));
14846 Set_Is_Public (New_C, Is_Public (Subt));
14848 Next_Component (Old_C);
14849 end loop;
14850 end if;
14852 End_Scope;
14853 end Create_Constrained_Components;
14855 ------------------------------------------
14856 -- Decimal_Fixed_Point_Type_Declaration --
14857 ------------------------------------------
14859 procedure Decimal_Fixed_Point_Type_Declaration
14860 (T : Entity_Id;
14861 Def : Node_Id)
14863 Loc : constant Source_Ptr := Sloc (Def);
14864 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14865 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14866 Implicit_Base : Entity_Id;
14867 Digs_Val : Uint;
14868 Delta_Val : Ureal;
14869 Scale_Val : Uint;
14870 Bound_Val : Ureal;
14872 begin
14873 Check_SPARK_05_Restriction
14874 ("decimal fixed point type is not allowed", Def);
14875 Check_Restriction (No_Fixed_Point, Def);
14877 -- Create implicit base type
14879 Implicit_Base :=
14880 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14881 Set_Etype (Implicit_Base, Implicit_Base);
14883 -- Analyze and process delta expression
14885 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14887 Check_Delta_Expression (Delta_Expr);
14888 Delta_Val := Expr_Value_R (Delta_Expr);
14890 -- Check delta is power of 10, and determine scale value from it
14892 declare
14893 Val : Ureal;
14895 begin
14896 Scale_Val := Uint_0;
14897 Val := Delta_Val;
14899 if Val < Ureal_1 then
14900 while Val < Ureal_1 loop
14901 Val := Val * Ureal_10;
14902 Scale_Val := Scale_Val + 1;
14903 end loop;
14905 if Scale_Val > 18 then
14906 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14907 Scale_Val := UI_From_Int (+18);
14908 end if;
14910 else
14911 while Val > Ureal_1 loop
14912 Val := Val / Ureal_10;
14913 Scale_Val := Scale_Val - 1;
14914 end loop;
14916 if Scale_Val < -18 then
14917 Error_Msg_N ("scale is less than minimum value of -18", Def);
14918 Scale_Val := UI_From_Int (-18);
14919 end if;
14920 end if;
14922 if Val /= Ureal_1 then
14923 Error_Msg_N ("delta expression must be a power of 10", Def);
14924 Delta_Val := Ureal_10 ** (-Scale_Val);
14925 end if;
14926 end;
14928 -- Set delta, scale and small (small = delta for decimal type)
14930 Set_Delta_Value (Implicit_Base, Delta_Val);
14931 Set_Scale_Value (Implicit_Base, Scale_Val);
14932 Set_Small_Value (Implicit_Base, Delta_Val);
14934 -- Analyze and process digits expression
14936 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14937 Check_Digits_Expression (Digs_Expr);
14938 Digs_Val := Expr_Value (Digs_Expr);
14940 if Digs_Val > 18 then
14941 Digs_Val := UI_From_Int (+18);
14942 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14943 end if;
14945 Set_Digits_Value (Implicit_Base, Digs_Val);
14946 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14948 -- Set range of base type from digits value for now. This will be
14949 -- expanded to represent the true underlying base range by Freeze.
14951 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14953 -- Note: We leave size as zero for now, size will be set at freeze
14954 -- time. We have to do this for ordinary fixed-point, because the size
14955 -- depends on the specified small, and we might as well do the same for
14956 -- decimal fixed-point.
14958 pragma Assert (Esize (Implicit_Base) = Uint_0);
14960 -- If there are bounds given in the declaration use them as the
14961 -- bounds of the first named subtype.
14963 if Present (Real_Range_Specification (Def)) then
14964 declare
14965 RRS : constant Node_Id := Real_Range_Specification (Def);
14966 Low : constant Node_Id := Low_Bound (RRS);
14967 High : constant Node_Id := High_Bound (RRS);
14968 Low_Val : Ureal;
14969 High_Val : Ureal;
14971 begin
14972 Analyze_And_Resolve (Low, Any_Real);
14973 Analyze_And_Resolve (High, Any_Real);
14974 Check_Real_Bound (Low);
14975 Check_Real_Bound (High);
14976 Low_Val := Expr_Value_R (Low);
14977 High_Val := Expr_Value_R (High);
14979 if Low_Val < (-Bound_Val) then
14980 Error_Msg_N
14981 ("range low bound too small for digits value", Low);
14982 Low_Val := -Bound_Val;
14983 end if;
14985 if High_Val > Bound_Val then
14986 Error_Msg_N
14987 ("range high bound too large for digits value", High);
14988 High_Val := Bound_Val;
14989 end if;
14991 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14992 end;
14994 -- If no explicit range, use range that corresponds to given
14995 -- digits value. This will end up as the final range for the
14996 -- first subtype.
14998 else
14999 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
15000 end if;
15002 -- Complete entity for first subtype. The inheritance of the rep item
15003 -- chain ensures that SPARK-related pragmas are not clobbered when the
15004 -- decimal fixed point type acts as a full view of a private type.
15006 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
15007 Set_Etype (T, Implicit_Base);
15008 Set_Size_Info (T, Implicit_Base);
15009 Inherit_Rep_Item_Chain (T, Implicit_Base);
15010 Set_Digits_Value (T, Digs_Val);
15011 Set_Delta_Value (T, Delta_Val);
15012 Set_Small_Value (T, Delta_Val);
15013 Set_Scale_Value (T, Scale_Val);
15014 Set_Is_Constrained (T);
15015 end Decimal_Fixed_Point_Type_Declaration;
15017 -----------------------------------
15018 -- Derive_Progenitor_Subprograms --
15019 -----------------------------------
15021 procedure Derive_Progenitor_Subprograms
15022 (Parent_Type : Entity_Id;
15023 Tagged_Type : Entity_Id)
15025 E : Entity_Id;
15026 Elmt : Elmt_Id;
15027 Iface : Entity_Id;
15028 Iface_Alias : Entity_Id;
15029 Iface_Elmt : Elmt_Id;
15030 Iface_Subp : Entity_Id;
15031 New_Subp : Entity_Id := Empty;
15032 Prim_Elmt : Elmt_Id;
15033 Subp : Entity_Id;
15034 Typ : Entity_Id;
15036 begin
15037 pragma Assert (Ada_Version >= Ada_2005
15038 and then Is_Record_Type (Tagged_Type)
15039 and then Is_Tagged_Type (Tagged_Type)
15040 and then Has_Interfaces (Tagged_Type));
15042 -- Step 1: Transfer to the full-view primitives associated with the
15043 -- partial-view that cover interface primitives. Conceptually this
15044 -- work should be done later by Process_Full_View; done here to
15045 -- simplify its implementation at later stages. It can be safely
15046 -- done here because interfaces must be visible in the partial and
15047 -- private view (RM 7.3(7.3/2)).
15049 -- Small optimization: This work is only required if the parent may
15050 -- have entities whose Alias attribute reference an interface primitive.
15051 -- Such a situation may occur if the parent is an abstract type and the
15052 -- primitive has not been yet overridden or if the parent is a generic
15053 -- formal type covering interfaces.
15055 -- If the tagged type is not abstract, it cannot have abstract
15056 -- primitives (the only entities in the list of primitives of
15057 -- non-abstract tagged types that can reference abstract primitives
15058 -- through its Alias attribute are the internal entities that have
15059 -- attribute Interface_Alias, and these entities are generated later
15060 -- by Add_Internal_Interface_Entities).
15062 if In_Private_Part (Current_Scope)
15063 and then (Is_Abstract_Type (Parent_Type)
15064 or else
15065 Is_Generic_Type (Parent_Type))
15066 then
15067 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
15068 while Present (Elmt) loop
15069 Subp := Node (Elmt);
15071 -- At this stage it is not possible to have entities in the list
15072 -- of primitives that have attribute Interface_Alias.
15074 pragma Assert (No (Interface_Alias (Subp)));
15076 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
15078 if Is_Interface (Typ) then
15079 E := Find_Primitive_Covering_Interface
15080 (Tagged_Type => Tagged_Type,
15081 Iface_Prim => Subp);
15083 if Present (E)
15084 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
15085 then
15086 Replace_Elmt (Elmt, E);
15087 Remove_Homonym (Subp);
15088 end if;
15089 end if;
15091 Next_Elmt (Elmt);
15092 end loop;
15093 end if;
15095 -- Step 2: Add primitives of progenitors that are not implemented by
15096 -- parents of Tagged_Type.
15098 if Present (Interfaces (Base_Type (Tagged_Type))) then
15099 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
15100 while Present (Iface_Elmt) loop
15101 Iface := Node (Iface_Elmt);
15103 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
15104 while Present (Prim_Elmt) loop
15105 Iface_Subp := Node (Prim_Elmt);
15106 Iface_Alias := Ultimate_Alias (Iface_Subp);
15108 -- Exclude derivation of predefined primitives except those
15109 -- that come from source, or are inherited from one that comes
15110 -- from source. Required to catch declarations of equality
15111 -- operators of interfaces. For example:
15113 -- type Iface is interface;
15114 -- function "=" (Left, Right : Iface) return Boolean;
15116 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
15117 or else Comes_From_Source (Iface_Alias)
15118 then
15119 E :=
15120 Find_Primitive_Covering_Interface
15121 (Tagged_Type => Tagged_Type,
15122 Iface_Prim => Iface_Subp);
15124 -- If not found we derive a new primitive leaving its alias
15125 -- attribute referencing the interface primitive.
15127 if No (E) then
15128 Derive_Subprogram
15129 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15131 -- Ada 2012 (AI05-0197): If the covering primitive's name
15132 -- differs from the name of the interface primitive then it
15133 -- is a private primitive inherited from a parent type. In
15134 -- such case, given that Tagged_Type covers the interface,
15135 -- the inherited private primitive becomes visible. For such
15136 -- purpose we add a new entity that renames the inherited
15137 -- private primitive.
15139 elsif Chars (E) /= Chars (Iface_Subp) then
15140 pragma Assert (Has_Suffix (E, 'P'));
15141 Derive_Subprogram
15142 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15143 Set_Alias (New_Subp, E);
15144 Set_Is_Abstract_Subprogram (New_Subp,
15145 Is_Abstract_Subprogram (E));
15147 -- Propagate to the full view interface entities associated
15148 -- with the partial view.
15150 elsif In_Private_Part (Current_Scope)
15151 and then Present (Alias (E))
15152 and then Alias (E) = Iface_Subp
15153 and then
15154 List_Containing (Parent (E)) /=
15155 Private_Declarations
15156 (Specification
15157 (Unit_Declaration_Node (Current_Scope)))
15158 then
15159 Append_Elmt (E, Primitive_Operations (Tagged_Type));
15160 end if;
15161 end if;
15163 Next_Elmt (Prim_Elmt);
15164 end loop;
15166 Next_Elmt (Iface_Elmt);
15167 end loop;
15168 end if;
15169 end Derive_Progenitor_Subprograms;
15171 -----------------------
15172 -- Derive_Subprogram --
15173 -----------------------
15175 procedure Derive_Subprogram
15176 (New_Subp : out Entity_Id;
15177 Parent_Subp : Entity_Id;
15178 Derived_Type : Entity_Id;
15179 Parent_Type : Entity_Id;
15180 Actual_Subp : Entity_Id := Empty)
15182 Formal : Entity_Id;
15183 -- Formal parameter of parent primitive operation
15185 Formal_Of_Actual : Entity_Id;
15186 -- Formal parameter of actual operation, when the derivation is to
15187 -- create a renaming for a primitive operation of an actual in an
15188 -- instantiation.
15190 New_Formal : Entity_Id;
15191 -- Formal of inherited operation
15193 Visible_Subp : Entity_Id := Parent_Subp;
15195 function Is_Private_Overriding return Boolean;
15196 -- If Subp is a private overriding of a visible operation, the inherited
15197 -- operation derives from the overridden op (even though its body is the
15198 -- overriding one) and the inherited operation is visible now. See
15199 -- sem_disp to see the full details of the handling of the overridden
15200 -- subprogram, which is removed from the list of primitive operations of
15201 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15202 -- and used to diagnose abstract operations that need overriding in the
15203 -- derived type.
15205 procedure Replace_Type (Id, New_Id : Entity_Id);
15206 -- When the type is an anonymous access type, create a new access type
15207 -- designating the derived type.
15209 procedure Set_Derived_Name;
15210 -- This procedure sets the appropriate Chars name for New_Subp. This
15211 -- is normally just a copy of the parent name. An exception arises for
15212 -- type support subprograms, where the name is changed to reflect the
15213 -- name of the derived type, e.g. if type foo is derived from type bar,
15214 -- then a procedure barDA is derived with a name fooDA.
15216 ---------------------------
15217 -- Is_Private_Overriding --
15218 ---------------------------
15220 function Is_Private_Overriding return Boolean is
15221 Prev : Entity_Id;
15223 begin
15224 -- If the parent is not a dispatching operation there is no
15225 -- need to investigate overridings
15227 if not Is_Dispatching_Operation (Parent_Subp) then
15228 return False;
15229 end if;
15231 -- The visible operation that is overridden is a homonym of the
15232 -- parent subprogram. We scan the homonym chain to find the one
15233 -- whose alias is the subprogram we are deriving.
15235 Prev := Current_Entity (Parent_Subp);
15236 while Present (Prev) loop
15237 if Ekind (Prev) = Ekind (Parent_Subp)
15238 and then Alias (Prev) = Parent_Subp
15239 and then Scope (Parent_Subp) = Scope (Prev)
15240 and then not Is_Hidden (Prev)
15241 then
15242 Visible_Subp := Prev;
15243 return True;
15244 end if;
15246 Prev := Homonym (Prev);
15247 end loop;
15249 return False;
15250 end Is_Private_Overriding;
15252 ------------------
15253 -- Replace_Type --
15254 ------------------
15256 procedure Replace_Type (Id, New_Id : Entity_Id) is
15257 Id_Type : constant Entity_Id := Etype (Id);
15258 Acc_Type : Entity_Id;
15259 Par : constant Node_Id := Parent (Derived_Type);
15261 begin
15262 -- When the type is an anonymous access type, create a new access
15263 -- type designating the derived type. This itype must be elaborated
15264 -- at the point of the derivation, not on subsequent calls that may
15265 -- be out of the proper scope for Gigi, so we insert a reference to
15266 -- it after the derivation.
15268 if Ekind (Id_Type) = E_Anonymous_Access_Type then
15269 declare
15270 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
15272 begin
15273 if Ekind (Desig_Typ) = E_Record_Type_With_Private
15274 and then Present (Full_View (Desig_Typ))
15275 and then not Is_Private_Type (Parent_Type)
15276 then
15277 Desig_Typ := Full_View (Desig_Typ);
15278 end if;
15280 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
15282 -- Ada 2005 (AI-251): Handle also derivations of abstract
15283 -- interface primitives.
15285 or else (Is_Interface (Desig_Typ)
15286 and then not Is_Class_Wide_Type (Desig_Typ))
15287 then
15288 Acc_Type := New_Copy (Id_Type);
15289 Set_Etype (Acc_Type, Acc_Type);
15290 Set_Scope (Acc_Type, New_Subp);
15292 -- Set size of anonymous access type. If we have an access
15293 -- to an unconstrained array, this is a fat pointer, so it
15294 -- is sizes at twice addtress size.
15296 if Is_Array_Type (Desig_Typ)
15297 and then not Is_Constrained (Desig_Typ)
15298 then
15299 Init_Size (Acc_Type, 2 * System_Address_Size);
15301 -- Other cases use a thin pointer
15303 else
15304 Init_Size (Acc_Type, System_Address_Size);
15305 end if;
15307 -- Set remaining characterstics of anonymous access type
15309 Init_Alignment (Acc_Type);
15310 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
15312 Set_Etype (New_Id, Acc_Type);
15313 Set_Scope (New_Id, New_Subp);
15315 -- Create a reference to it
15317 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
15319 else
15320 Set_Etype (New_Id, Id_Type);
15321 end if;
15322 end;
15324 -- In Ada2012, a formal may have an incomplete type but the type
15325 -- derivation that inherits the primitive follows the full view.
15327 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
15328 or else
15329 (Ekind (Id_Type) = E_Record_Type_With_Private
15330 and then Present (Full_View (Id_Type))
15331 and then
15332 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
15333 or else
15334 (Ada_Version >= Ada_2012
15335 and then Ekind (Id_Type) = E_Incomplete_Type
15336 and then Full_View (Id_Type) = Parent_Type)
15337 then
15338 -- Constraint checks on formals are generated during expansion,
15339 -- based on the signature of the original subprogram. The bounds
15340 -- of the derived type are not relevant, and thus we can use
15341 -- the base type for the formals. However, the return type may be
15342 -- used in a context that requires that the proper static bounds
15343 -- be used (a case statement, for example) and for those cases
15344 -- we must use the derived type (first subtype), not its base.
15346 -- If the derived_type_definition has no constraints, we know that
15347 -- the derived type has the same constraints as the first subtype
15348 -- of the parent, and we can also use it rather than its base,
15349 -- which can lead to more efficient code.
15351 if Etype (Id) = Parent_Type then
15352 if Is_Scalar_Type (Parent_Type)
15353 and then
15354 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
15355 then
15356 Set_Etype (New_Id, Derived_Type);
15358 elsif Nkind (Par) = N_Full_Type_Declaration
15359 and then
15360 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
15361 and then
15362 Is_Entity_Name
15363 (Subtype_Indication (Type_Definition (Par)))
15364 then
15365 Set_Etype (New_Id, Derived_Type);
15367 else
15368 Set_Etype (New_Id, Base_Type (Derived_Type));
15369 end if;
15371 else
15372 Set_Etype (New_Id, Base_Type (Derived_Type));
15373 end if;
15375 else
15376 Set_Etype (New_Id, Etype (Id));
15377 end if;
15378 end Replace_Type;
15380 ----------------------
15381 -- Set_Derived_Name --
15382 ----------------------
15384 procedure Set_Derived_Name is
15385 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
15386 begin
15387 if Nm = TSS_Null then
15388 Set_Chars (New_Subp, Chars (Parent_Subp));
15389 else
15390 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
15391 end if;
15392 end Set_Derived_Name;
15394 -- Start of processing for Derive_Subprogram
15396 begin
15397 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
15398 Set_Ekind (New_Subp, Ekind (Parent_Subp));
15400 -- Check whether the inherited subprogram is a private operation that
15401 -- should be inherited but not yet made visible. Such subprograms can
15402 -- become visible at a later point (e.g., the private part of a public
15403 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15404 -- following predicate is true, then this is not such a private
15405 -- operation and the subprogram simply inherits the name of the parent
15406 -- subprogram. Note the special check for the names of controlled
15407 -- operations, which are currently exempted from being inherited with
15408 -- a hidden name because they must be findable for generation of
15409 -- implicit run-time calls.
15411 if not Is_Hidden (Parent_Subp)
15412 or else Is_Internal (Parent_Subp)
15413 or else Is_Private_Overriding
15414 or else Is_Internal_Name (Chars (Parent_Subp))
15415 or else (Is_Controlled (Parent_Type)
15416 and then Nam_In (Chars (Parent_Subp), Name_Adjust,
15417 Name_Finalize,
15418 Name_Initialize))
15419 then
15420 Set_Derived_Name;
15422 -- An inherited dispatching equality will be overridden by an internally
15423 -- generated one, or by an explicit one, so preserve its name and thus
15424 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15425 -- private operation it may become invisible if the full view has
15426 -- progenitors, and the dispatch table will be malformed.
15427 -- We check that the type is limited to handle the anomalous declaration
15428 -- of Limited_Controlled, which is derived from a non-limited type, and
15429 -- which is handled specially elsewhere as well.
15431 elsif Chars (Parent_Subp) = Name_Op_Eq
15432 and then Is_Dispatching_Operation (Parent_Subp)
15433 and then Etype (Parent_Subp) = Standard_Boolean
15434 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
15435 and then
15436 Etype (First_Formal (Parent_Subp)) =
15437 Etype (Next_Formal (First_Formal (Parent_Subp)))
15438 then
15439 Set_Derived_Name;
15441 -- If parent is hidden, this can be a regular derivation if the
15442 -- parent is immediately visible in a non-instantiating context,
15443 -- or if we are in the private part of an instance. This test
15444 -- should still be refined ???
15446 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15447 -- operation as a non-visible operation in cases where the parent
15448 -- subprogram might not be visible now, but was visible within the
15449 -- original generic, so it would be wrong to make the inherited
15450 -- subprogram non-visible now. (Not clear if this test is fully
15451 -- correct; are there any cases where we should declare the inherited
15452 -- operation as not visible to avoid it being overridden, e.g., when
15453 -- the parent type is a generic actual with private primitives ???)
15455 -- (they should be treated the same as other private inherited
15456 -- subprograms, but it's not clear how to do this cleanly). ???
15458 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15459 and then Is_Immediately_Visible (Parent_Subp)
15460 and then not In_Instance)
15461 or else In_Instance_Not_Visible
15462 then
15463 Set_Derived_Name;
15465 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15466 -- overrides an interface primitive because interface primitives
15467 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15469 elsif Ada_Version >= Ada_2005
15470 and then Is_Dispatching_Operation (Parent_Subp)
15471 and then Present (Covered_Interface_Op (Parent_Subp))
15472 then
15473 Set_Derived_Name;
15475 -- Otherwise, the type is inheriting a private operation, so enter it
15476 -- with a special name so it can't be overridden.
15478 else
15479 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
15480 end if;
15482 Set_Parent (New_Subp, Parent (Derived_Type));
15484 if Present (Actual_Subp) then
15485 Replace_Type (Actual_Subp, New_Subp);
15486 else
15487 Replace_Type (Parent_Subp, New_Subp);
15488 end if;
15490 Conditional_Delay (New_Subp, Parent_Subp);
15492 -- If we are creating a renaming for a primitive operation of an
15493 -- actual of a generic derived type, we must examine the signature
15494 -- of the actual primitive, not that of the generic formal, which for
15495 -- example may be an interface. However the name and initial value
15496 -- of the inherited operation are those of the formal primitive.
15498 Formal := First_Formal (Parent_Subp);
15500 if Present (Actual_Subp) then
15501 Formal_Of_Actual := First_Formal (Actual_Subp);
15502 else
15503 Formal_Of_Actual := Empty;
15504 end if;
15506 while Present (Formal) loop
15507 New_Formal := New_Copy (Formal);
15509 -- Normally we do not go copying parents, but in the case of
15510 -- formals, we need to link up to the declaration (which is the
15511 -- parameter specification), and it is fine to link up to the
15512 -- original formal's parameter specification in this case.
15514 Set_Parent (New_Formal, Parent (Formal));
15515 Append_Entity (New_Formal, New_Subp);
15517 if Present (Formal_Of_Actual) then
15518 Replace_Type (Formal_Of_Actual, New_Formal);
15519 Next_Formal (Formal_Of_Actual);
15520 else
15521 Replace_Type (Formal, New_Formal);
15522 end if;
15524 Next_Formal (Formal);
15525 end loop;
15527 -- If this derivation corresponds to a tagged generic actual, then
15528 -- primitive operations rename those of the actual. Otherwise the
15529 -- primitive operations rename those of the parent type, If the parent
15530 -- renames an intrinsic operator, so does the new subprogram. We except
15531 -- concatenation, which is always properly typed, and does not get
15532 -- expanded as other intrinsic operations.
15534 if No (Actual_Subp) then
15535 if Is_Intrinsic_Subprogram (Parent_Subp) then
15536 Set_Is_Intrinsic_Subprogram (New_Subp);
15538 if Present (Alias (Parent_Subp))
15539 and then Chars (Parent_Subp) /= Name_Op_Concat
15540 then
15541 Set_Alias (New_Subp, Alias (Parent_Subp));
15542 else
15543 Set_Alias (New_Subp, Parent_Subp);
15544 end if;
15546 else
15547 Set_Alias (New_Subp, Parent_Subp);
15548 end if;
15550 else
15551 Set_Alias (New_Subp, Actual_Subp);
15552 end if;
15554 -- Derived subprograms of a tagged type must inherit the convention
15555 -- of the parent subprogram (a requirement of AI-117). Derived
15556 -- subprograms of untagged types simply get convention Ada by default.
15558 -- If the derived type is a tagged generic formal type with unknown
15559 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15561 -- However, if the type is derived from a generic formal, the further
15562 -- inherited subprogram has the convention of the non-generic ancestor.
15563 -- Otherwise there would be no way to override the operation.
15564 -- (This is subject to forthcoming ARG discussions).
15566 if Is_Tagged_Type (Derived_Type) then
15567 if Is_Generic_Type (Derived_Type)
15568 and then Has_Unknown_Discriminants (Derived_Type)
15569 then
15570 Set_Convention (New_Subp, Convention_Intrinsic);
15572 else
15573 if Is_Generic_Type (Parent_Type)
15574 and then Has_Unknown_Discriminants (Parent_Type)
15575 then
15576 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
15577 else
15578 Set_Convention (New_Subp, Convention (Parent_Subp));
15579 end if;
15580 end if;
15581 end if;
15583 -- Predefined controlled operations retain their name even if the parent
15584 -- is hidden (see above), but they are not primitive operations if the
15585 -- ancestor is not visible, for example if the parent is a private
15586 -- extension completed with a controlled extension. Note that a full
15587 -- type that is controlled can break privacy: the flag Is_Controlled is
15588 -- set on both views of the type.
15590 if Is_Controlled (Parent_Type)
15591 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
15592 Name_Adjust,
15593 Name_Finalize)
15594 and then Is_Hidden (Parent_Subp)
15595 and then not Is_Visibly_Controlled (Parent_Type)
15596 then
15597 Set_Is_Hidden (New_Subp);
15598 end if;
15600 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
15601 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
15603 if Ekind (Parent_Subp) = E_Procedure then
15604 Set_Is_Valued_Procedure
15605 (New_Subp, Is_Valued_Procedure (Parent_Subp));
15606 else
15607 Set_Has_Controlling_Result
15608 (New_Subp, Has_Controlling_Result (Parent_Subp));
15609 end if;
15611 -- No_Return must be inherited properly. If this is overridden in the
15612 -- case of a dispatching operation, then a check is made in Sem_Disp
15613 -- that the overriding operation is also No_Return (no such check is
15614 -- required for the case of non-dispatching operation.
15616 Set_No_Return (New_Subp, No_Return (Parent_Subp));
15618 -- A derived function with a controlling result is abstract. If the
15619 -- Derived_Type is a nonabstract formal generic derived type, then
15620 -- inherited operations are not abstract: the required check is done at
15621 -- instantiation time. If the derivation is for a generic actual, the
15622 -- function is not abstract unless the actual is.
15624 if Is_Generic_Type (Derived_Type)
15625 and then not Is_Abstract_Type (Derived_Type)
15626 then
15627 null;
15629 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15630 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15632 -- A subprogram subject to pragma Extensions_Visible with value False
15633 -- requires overriding if the subprogram has at least one controlling
15634 -- OUT parameter (SPARK RM 6.1.7(6)).
15636 elsif Ada_Version >= Ada_2005
15637 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15638 or else (Is_Tagged_Type (Derived_Type)
15639 and then Etype (New_Subp) = Derived_Type
15640 and then not Is_Null_Extension (Derived_Type))
15641 or else (Is_Tagged_Type (Derived_Type)
15642 and then Ekind (Etype (New_Subp)) =
15643 E_Anonymous_Access_Type
15644 and then Designated_Type (Etype (New_Subp)) =
15645 Derived_Type
15646 and then not Is_Null_Extension (Derived_Type))
15647 or else (Comes_From_Source (Alias (New_Subp))
15648 and then Is_EVF_Procedure (Alias (New_Subp))))
15649 and then No (Actual_Subp)
15650 then
15651 if not Is_Tagged_Type (Derived_Type)
15652 or else Is_Abstract_Type (Derived_Type)
15653 or else Is_Abstract_Subprogram (Alias (New_Subp))
15654 then
15655 Set_Is_Abstract_Subprogram (New_Subp);
15656 else
15657 Set_Requires_Overriding (New_Subp);
15658 end if;
15660 elsif Ada_Version < Ada_2005
15661 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15662 or else (Is_Tagged_Type (Derived_Type)
15663 and then Etype (New_Subp) = Derived_Type
15664 and then No (Actual_Subp)))
15665 then
15666 Set_Is_Abstract_Subprogram (New_Subp);
15668 -- AI05-0097 : an inherited operation that dispatches on result is
15669 -- abstract if the derived type is abstract, even if the parent type
15670 -- is concrete and the derived type is a null extension.
15672 elsif Has_Controlling_Result (Alias (New_Subp))
15673 and then Is_Abstract_Type (Etype (New_Subp))
15674 then
15675 Set_Is_Abstract_Subprogram (New_Subp);
15677 -- Finally, if the parent type is abstract we must verify that all
15678 -- inherited operations are either non-abstract or overridden, or that
15679 -- the derived type itself is abstract (this check is performed at the
15680 -- end of a package declaration, in Check_Abstract_Overriding). A
15681 -- private overriding in the parent type will not be visible in the
15682 -- derivation if we are not in an inner package or in a child unit of
15683 -- the parent type, in which case the abstractness of the inherited
15684 -- operation is carried to the new subprogram.
15686 elsif Is_Abstract_Type (Parent_Type)
15687 and then not In_Open_Scopes (Scope (Parent_Type))
15688 and then Is_Private_Overriding
15689 and then Is_Abstract_Subprogram (Visible_Subp)
15690 then
15691 if No (Actual_Subp) then
15692 Set_Alias (New_Subp, Visible_Subp);
15693 Set_Is_Abstract_Subprogram (New_Subp, True);
15695 else
15696 -- If this is a derivation for an instance of a formal derived
15697 -- type, abstractness comes from the primitive operation of the
15698 -- actual, not from the operation inherited from the ancestor.
15700 Set_Is_Abstract_Subprogram
15701 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
15702 end if;
15703 end if;
15705 New_Overloaded_Entity (New_Subp, Derived_Type);
15707 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15708 -- preconditions and the derived type is abstract, the derived operation
15709 -- is abstract as well if parent subprogram is not abstract or null.
15711 if Is_Abstract_Type (Derived_Type)
15712 and then Has_Non_Trivial_Precondition (Parent_Subp)
15713 and then Present (Interfaces (Derived_Type))
15714 then
15716 -- Add useful attributes of subprogram before the freeze point,
15717 -- in case freezing is delayed or there are previous errors.
15719 Set_Is_Dispatching_Operation (New_Subp);
15721 declare
15722 Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp);
15724 begin
15725 if Present (Iface_Prim)
15726 and then Has_Non_Trivial_Precondition (Iface_Prim)
15727 then
15728 Set_Is_Abstract_Subprogram (New_Subp);
15729 end if;
15730 end;
15731 end if;
15733 -- Check for case of a derived subprogram for the instantiation of a
15734 -- formal derived tagged type, if so mark the subprogram as dispatching
15735 -- and inherit the dispatching attributes of the actual subprogram. The
15736 -- derived subprogram is effectively renaming of the actual subprogram,
15737 -- so it needs to have the same attributes as the actual.
15739 if Present (Actual_Subp)
15740 and then Is_Dispatching_Operation (Actual_Subp)
15741 then
15742 Set_Is_Dispatching_Operation (New_Subp);
15744 if Present (DTC_Entity (Actual_Subp)) then
15745 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
15746 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
15747 end if;
15748 end if;
15750 -- Indicate that a derived subprogram does not require a body and that
15751 -- it does not require processing of default expressions.
15753 Set_Has_Completion (New_Subp);
15754 Set_Default_Expressions_Processed (New_Subp);
15756 if Ekind (New_Subp) = E_Function then
15757 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
15758 end if;
15759 end Derive_Subprogram;
15761 ------------------------
15762 -- Derive_Subprograms --
15763 ------------------------
15765 procedure Derive_Subprograms
15766 (Parent_Type : Entity_Id;
15767 Derived_Type : Entity_Id;
15768 Generic_Actual : Entity_Id := Empty)
15770 Op_List : constant Elist_Id :=
15771 Collect_Primitive_Operations (Parent_Type);
15773 function Check_Derived_Type return Boolean;
15774 -- Check that all the entities derived from Parent_Type are found in
15775 -- the list of primitives of Derived_Type exactly in the same order.
15777 procedure Derive_Interface_Subprogram
15778 (New_Subp : out Entity_Id;
15779 Subp : Entity_Id;
15780 Actual_Subp : Entity_Id);
15781 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15782 -- (which is an interface primitive). If Generic_Actual is present then
15783 -- Actual_Subp is the actual subprogram corresponding with the generic
15784 -- subprogram Subp.
15786 ------------------------
15787 -- Check_Derived_Type --
15788 ------------------------
15790 function Check_Derived_Type return Boolean is
15791 E : Entity_Id;
15792 Elmt : Elmt_Id;
15793 List : Elist_Id;
15794 New_Subp : Entity_Id;
15795 Op_Elmt : Elmt_Id;
15796 Subp : Entity_Id;
15798 begin
15799 -- Traverse list of entities in the current scope searching for
15800 -- an incomplete type whose full-view is derived type.
15802 E := First_Entity (Scope (Derived_Type));
15803 while Present (E) and then E /= Derived_Type loop
15804 if Ekind (E) = E_Incomplete_Type
15805 and then Present (Full_View (E))
15806 and then Full_View (E) = Derived_Type
15807 then
15808 -- Disable this test if Derived_Type completes an incomplete
15809 -- type because in such case more primitives can be added
15810 -- later to the list of primitives of Derived_Type by routine
15811 -- Process_Incomplete_Dependents
15813 return True;
15814 end if;
15816 E := Next_Entity (E);
15817 end loop;
15819 List := Collect_Primitive_Operations (Derived_Type);
15820 Elmt := First_Elmt (List);
15822 Op_Elmt := First_Elmt (Op_List);
15823 while Present (Op_Elmt) loop
15824 Subp := Node (Op_Elmt);
15825 New_Subp := Node (Elmt);
15827 -- At this early stage Derived_Type has no entities with attribute
15828 -- Interface_Alias. In addition, such primitives are always
15829 -- located at the end of the list of primitives of Parent_Type.
15830 -- Therefore, if found we can safely stop processing pending
15831 -- entities.
15833 exit when Present (Interface_Alias (Subp));
15835 -- Handle hidden entities
15837 if not Is_Predefined_Dispatching_Operation (Subp)
15838 and then Is_Hidden (Subp)
15839 then
15840 if Present (New_Subp)
15841 and then Primitive_Names_Match (Subp, New_Subp)
15842 then
15843 Next_Elmt (Elmt);
15844 end if;
15846 else
15847 if not Present (New_Subp)
15848 or else Ekind (Subp) /= Ekind (New_Subp)
15849 or else not Primitive_Names_Match (Subp, New_Subp)
15850 then
15851 return False;
15852 end if;
15854 Next_Elmt (Elmt);
15855 end if;
15857 Next_Elmt (Op_Elmt);
15858 end loop;
15860 return True;
15861 end Check_Derived_Type;
15863 ---------------------------------
15864 -- Derive_Interface_Subprogram --
15865 ---------------------------------
15867 procedure Derive_Interface_Subprogram
15868 (New_Subp : out Entity_Id;
15869 Subp : Entity_Id;
15870 Actual_Subp : Entity_Id)
15872 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15873 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15875 begin
15876 pragma Assert (Is_Interface (Iface_Type));
15878 Derive_Subprogram
15879 (New_Subp => New_Subp,
15880 Parent_Subp => Iface_Subp,
15881 Derived_Type => Derived_Type,
15882 Parent_Type => Iface_Type,
15883 Actual_Subp => Actual_Subp);
15885 -- Given that this new interface entity corresponds with a primitive
15886 -- of the parent that was not overridden we must leave it associated
15887 -- with its parent primitive to ensure that it will share the same
15888 -- dispatch table slot when overridden. We must set the Alias to Subp
15889 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15890 -- (in case we inherited Subp from Iface_Type via a nonabstract
15891 -- generic formal type).
15893 if No (Actual_Subp) then
15894 Set_Alias (New_Subp, Subp);
15896 declare
15897 T : Entity_Id := Find_Dispatching_Type (Subp);
15898 begin
15899 while Etype (T) /= T loop
15900 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15901 Set_Is_Abstract_Subprogram (New_Subp, False);
15902 exit;
15903 end if;
15905 T := Etype (T);
15906 end loop;
15907 end;
15909 -- For instantiations this is not needed since the previous call to
15910 -- Derive_Subprogram leaves the entity well decorated.
15912 else
15913 pragma Assert (Alias (New_Subp) = Actual_Subp);
15914 null;
15915 end if;
15916 end Derive_Interface_Subprogram;
15918 -- Local variables
15920 Alias_Subp : Entity_Id;
15921 Act_List : Elist_Id;
15922 Act_Elmt : Elmt_Id;
15923 Act_Subp : Entity_Id := Empty;
15924 Elmt : Elmt_Id;
15925 Need_Search : Boolean := False;
15926 New_Subp : Entity_Id := Empty;
15927 Parent_Base : Entity_Id;
15928 Subp : Entity_Id;
15930 -- Start of processing for Derive_Subprograms
15932 begin
15933 if Ekind (Parent_Type) = E_Record_Type_With_Private
15934 and then Has_Discriminants (Parent_Type)
15935 and then Present (Full_View (Parent_Type))
15936 then
15937 Parent_Base := Full_View (Parent_Type);
15938 else
15939 Parent_Base := Parent_Type;
15940 end if;
15942 if Present (Generic_Actual) then
15943 Act_List := Collect_Primitive_Operations (Generic_Actual);
15944 Act_Elmt := First_Elmt (Act_List);
15945 else
15946 Act_List := No_Elist;
15947 Act_Elmt := No_Elmt;
15948 end if;
15950 -- Derive primitives inherited from the parent. Note that if the generic
15951 -- actual is present, this is not really a type derivation, it is a
15952 -- completion within an instance.
15954 -- Case 1: Derived_Type does not implement interfaces
15956 if not Is_Tagged_Type (Derived_Type)
15957 or else (not Has_Interfaces (Derived_Type)
15958 and then not (Present (Generic_Actual)
15959 and then Has_Interfaces (Generic_Actual)))
15960 then
15961 Elmt := First_Elmt (Op_List);
15962 while Present (Elmt) loop
15963 Subp := Node (Elmt);
15965 -- Literals are derived earlier in the process of building the
15966 -- derived type, and are skipped here.
15968 if Ekind (Subp) = E_Enumeration_Literal then
15969 null;
15971 -- The actual is a direct descendant and the common primitive
15972 -- operations appear in the same order.
15974 -- If the generic parent type is present, the derived type is an
15975 -- instance of a formal derived type, and within the instance its
15976 -- operations are those of the actual. We derive from the formal
15977 -- type but make the inherited operations aliases of the
15978 -- corresponding operations of the actual.
15980 else
15981 pragma Assert (No (Node (Act_Elmt))
15982 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15983 and then
15984 Type_Conformant
15985 (Subp, Node (Act_Elmt),
15986 Skip_Controlling_Formals => True)));
15988 Derive_Subprogram
15989 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15991 if Present (Act_Elmt) then
15992 Next_Elmt (Act_Elmt);
15993 end if;
15994 end if;
15996 Next_Elmt (Elmt);
15997 end loop;
15999 -- Case 2: Derived_Type implements interfaces
16001 else
16002 -- If the parent type has no predefined primitives we remove
16003 -- predefined primitives from the list of primitives of generic
16004 -- actual to simplify the complexity of this algorithm.
16006 if Present (Generic_Actual) then
16007 declare
16008 Has_Predefined_Primitives : Boolean := False;
16010 begin
16011 -- Check if the parent type has predefined primitives
16013 Elmt := First_Elmt (Op_List);
16014 while Present (Elmt) loop
16015 Subp := Node (Elmt);
16017 if Is_Predefined_Dispatching_Operation (Subp)
16018 and then not Comes_From_Source (Ultimate_Alias (Subp))
16019 then
16020 Has_Predefined_Primitives := True;
16021 exit;
16022 end if;
16024 Next_Elmt (Elmt);
16025 end loop;
16027 -- Remove predefined primitives of Generic_Actual. We must use
16028 -- an auxiliary list because in case of tagged types the value
16029 -- returned by Collect_Primitive_Operations is the value stored
16030 -- in its Primitive_Operations attribute (and we don't want to
16031 -- modify its current contents).
16033 if not Has_Predefined_Primitives then
16034 declare
16035 Aux_List : constant Elist_Id := New_Elmt_List;
16037 begin
16038 Elmt := First_Elmt (Act_List);
16039 while Present (Elmt) loop
16040 Subp := Node (Elmt);
16042 if not Is_Predefined_Dispatching_Operation (Subp)
16043 or else Comes_From_Source (Subp)
16044 then
16045 Append_Elmt (Subp, Aux_List);
16046 end if;
16048 Next_Elmt (Elmt);
16049 end loop;
16051 Act_List := Aux_List;
16052 end;
16053 end if;
16055 Act_Elmt := First_Elmt (Act_List);
16056 Act_Subp := Node (Act_Elmt);
16057 end;
16058 end if;
16060 -- Stage 1: If the generic actual is not present we derive the
16061 -- primitives inherited from the parent type. If the generic parent
16062 -- type is present, the derived type is an instance of a formal
16063 -- derived type, and within the instance its operations are those of
16064 -- the actual. We derive from the formal type but make the inherited
16065 -- operations aliases of the corresponding operations of the actual.
16067 Elmt := First_Elmt (Op_List);
16068 while Present (Elmt) loop
16069 Subp := Node (Elmt);
16070 Alias_Subp := Ultimate_Alias (Subp);
16072 -- Do not derive internal entities of the parent that link
16073 -- interface primitives with their covering primitive. These
16074 -- entities will be added to this type when frozen.
16076 if Present (Interface_Alias (Subp)) then
16077 goto Continue;
16078 end if;
16080 -- If the generic actual is present find the corresponding
16081 -- operation in the generic actual. If the parent type is a
16082 -- direct ancestor of the derived type then, even if it is an
16083 -- interface, the operations are inherited from the primary
16084 -- dispatch table and are in the proper order. If we detect here
16085 -- that primitives are not in the same order we traverse the list
16086 -- of primitive operations of the actual to find the one that
16087 -- implements the interface primitive.
16089 if Need_Search
16090 or else
16091 (Present (Generic_Actual)
16092 and then Present (Act_Subp)
16093 and then not
16094 (Primitive_Names_Match (Subp, Act_Subp)
16095 and then
16096 Type_Conformant (Subp, Act_Subp,
16097 Skip_Controlling_Formals => True)))
16098 then
16099 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
16100 Use_Full_View => True));
16102 -- Remember that we need searching for all pending primitives
16104 Need_Search := True;
16106 -- Handle entities associated with interface primitives
16108 if Present (Alias_Subp)
16109 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16110 and then not Is_Predefined_Dispatching_Operation (Subp)
16111 then
16112 -- Search for the primitive in the homonym chain
16114 Act_Subp :=
16115 Find_Primitive_Covering_Interface
16116 (Tagged_Type => Generic_Actual,
16117 Iface_Prim => Alias_Subp);
16119 -- Previous search may not locate primitives covering
16120 -- interfaces defined in generics units or instantiations.
16121 -- (it fails if the covering primitive has formals whose
16122 -- type is also defined in generics or instantiations).
16123 -- In such case we search in the list of primitives of the
16124 -- generic actual for the internal entity that links the
16125 -- interface primitive and the covering primitive.
16127 if No (Act_Subp)
16128 and then Is_Generic_Type (Parent_Type)
16129 then
16130 -- This code has been designed to handle only generic
16131 -- formals that implement interfaces that are defined
16132 -- in a generic unit or instantiation. If this code is
16133 -- needed for other cases we must review it because
16134 -- (given that it relies on Original_Location to locate
16135 -- the primitive of Generic_Actual that covers the
16136 -- interface) it could leave linked through attribute
16137 -- Alias entities of unrelated instantiations).
16139 pragma Assert
16140 (Is_Generic_Unit
16141 (Scope (Find_Dispatching_Type (Alias_Subp)))
16142 or else
16143 Instantiation_Depth
16144 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
16146 declare
16147 Iface_Prim_Loc : constant Source_Ptr :=
16148 Original_Location (Sloc (Alias_Subp));
16150 Elmt : Elmt_Id;
16151 Prim : Entity_Id;
16153 begin
16154 Elmt :=
16155 First_Elmt (Primitive_Operations (Generic_Actual));
16157 Search : while Present (Elmt) loop
16158 Prim := Node (Elmt);
16160 if Present (Interface_Alias (Prim))
16161 and then Original_Location
16162 (Sloc (Interface_Alias (Prim))) =
16163 Iface_Prim_Loc
16164 then
16165 Act_Subp := Alias (Prim);
16166 exit Search;
16167 end if;
16169 Next_Elmt (Elmt);
16170 end loop Search;
16171 end;
16172 end if;
16174 pragma Assert (Present (Act_Subp)
16175 or else Is_Abstract_Type (Generic_Actual)
16176 or else Serious_Errors_Detected > 0);
16178 -- Handle predefined primitives plus the rest of user-defined
16179 -- primitives
16181 else
16182 Act_Elmt := First_Elmt (Act_List);
16183 while Present (Act_Elmt) loop
16184 Act_Subp := Node (Act_Elmt);
16186 exit when Primitive_Names_Match (Subp, Act_Subp)
16187 and then Type_Conformant
16188 (Subp, Act_Subp,
16189 Skip_Controlling_Formals => True)
16190 and then No (Interface_Alias (Act_Subp));
16192 Next_Elmt (Act_Elmt);
16193 end loop;
16195 if No (Act_Elmt) then
16196 Act_Subp := Empty;
16197 end if;
16198 end if;
16199 end if;
16201 -- Case 1: If the parent is a limited interface then it has the
16202 -- predefined primitives of synchronized interfaces. However, the
16203 -- actual type may be a non-limited type and hence it does not
16204 -- have such primitives.
16206 if Present (Generic_Actual)
16207 and then not Present (Act_Subp)
16208 and then Is_Limited_Interface (Parent_Base)
16209 and then Is_Predefined_Interface_Primitive (Subp)
16210 then
16211 null;
16213 -- Case 2: Inherit entities associated with interfaces that were
16214 -- not covered by the parent type. We exclude here null interface
16215 -- primitives because they do not need special management.
16217 -- We also exclude interface operations that are renamings. If the
16218 -- subprogram is an explicit renaming of an interface primitive,
16219 -- it is a regular primitive operation, and the presence of its
16220 -- alias is not relevant: it has to be derived like any other
16221 -- primitive.
16223 elsif Present (Alias (Subp))
16224 and then Nkind (Unit_Declaration_Node (Subp)) /=
16225 N_Subprogram_Renaming_Declaration
16226 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16227 and then not
16228 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
16229 and then Null_Present (Parent (Alias_Subp)))
16230 then
16231 -- If this is an abstract private type then we transfer the
16232 -- derivation of the interface primitive from the partial view
16233 -- to the full view. This is safe because all the interfaces
16234 -- must be visible in the partial view. Done to avoid adding
16235 -- a new interface derivation to the private part of the
16236 -- enclosing package; otherwise this new derivation would be
16237 -- decorated as hidden when the analysis of the enclosing
16238 -- package completes.
16240 if Is_Abstract_Type (Derived_Type)
16241 and then In_Private_Part (Current_Scope)
16242 and then Has_Private_Declaration (Derived_Type)
16243 then
16244 declare
16245 Partial_View : Entity_Id;
16246 Elmt : Elmt_Id;
16247 Ent : Entity_Id;
16249 begin
16250 Partial_View := First_Entity (Current_Scope);
16251 loop
16252 exit when No (Partial_View)
16253 or else (Has_Private_Declaration (Partial_View)
16254 and then
16255 Full_View (Partial_View) = Derived_Type);
16257 Next_Entity (Partial_View);
16258 end loop;
16260 -- If the partial view was not found then the source code
16261 -- has errors and the derivation is not needed.
16263 if Present (Partial_View) then
16264 Elmt :=
16265 First_Elmt (Primitive_Operations (Partial_View));
16266 while Present (Elmt) loop
16267 Ent := Node (Elmt);
16269 if Present (Alias (Ent))
16270 and then Ultimate_Alias (Ent) = Alias (Subp)
16271 then
16272 Append_Elmt
16273 (Ent, Primitive_Operations (Derived_Type));
16274 exit;
16275 end if;
16277 Next_Elmt (Elmt);
16278 end loop;
16280 -- If the interface primitive was not found in the
16281 -- partial view then this interface primitive was
16282 -- overridden. We add a derivation to activate in
16283 -- Derive_Progenitor_Subprograms the machinery to
16284 -- search for it.
16286 if No (Elmt) then
16287 Derive_Interface_Subprogram
16288 (New_Subp => New_Subp,
16289 Subp => Subp,
16290 Actual_Subp => Act_Subp);
16291 end if;
16292 end if;
16293 end;
16294 else
16295 Derive_Interface_Subprogram
16296 (New_Subp => New_Subp,
16297 Subp => Subp,
16298 Actual_Subp => Act_Subp);
16299 end if;
16301 -- Case 3: Common derivation
16303 else
16304 Derive_Subprogram
16305 (New_Subp => New_Subp,
16306 Parent_Subp => Subp,
16307 Derived_Type => Derived_Type,
16308 Parent_Type => Parent_Base,
16309 Actual_Subp => Act_Subp);
16310 end if;
16312 -- No need to update Act_Elm if we must search for the
16313 -- corresponding operation in the generic actual
16315 if not Need_Search
16316 and then Present (Act_Elmt)
16317 then
16318 Next_Elmt (Act_Elmt);
16319 Act_Subp := Node (Act_Elmt);
16320 end if;
16322 <<Continue>>
16323 Next_Elmt (Elmt);
16324 end loop;
16326 -- Inherit additional operations from progenitors. If the derived
16327 -- type is a generic actual, there are not new primitive operations
16328 -- for the type because it has those of the actual, and therefore
16329 -- nothing needs to be done. The renamings generated above are not
16330 -- primitive operations, and their purpose is simply to make the
16331 -- proper operations visible within an instantiation.
16333 if No (Generic_Actual) then
16334 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
16335 end if;
16336 end if;
16338 -- Final check: Direct descendants must have their primitives in the
16339 -- same order. We exclude from this test untagged types and instances
16340 -- of formal derived types. We skip this test if we have already
16341 -- reported serious errors in the sources.
16343 pragma Assert (not Is_Tagged_Type (Derived_Type)
16344 or else Present (Generic_Actual)
16345 or else Serious_Errors_Detected > 0
16346 or else Check_Derived_Type);
16347 end Derive_Subprograms;
16349 --------------------------------
16350 -- Derived_Standard_Character --
16351 --------------------------------
16353 procedure Derived_Standard_Character
16354 (N : Node_Id;
16355 Parent_Type : Entity_Id;
16356 Derived_Type : Entity_Id)
16358 Loc : constant Source_Ptr := Sloc (N);
16359 Def : constant Node_Id := Type_Definition (N);
16360 Indic : constant Node_Id := Subtype_Indication (Def);
16361 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
16362 Implicit_Base : constant Entity_Id :=
16363 Create_Itype
16364 (E_Enumeration_Type, N, Derived_Type, 'B');
16366 Lo : Node_Id;
16367 Hi : Node_Id;
16369 begin
16370 Discard_Node (Process_Subtype (Indic, N));
16372 Set_Etype (Implicit_Base, Parent_Base);
16373 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
16374 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
16376 Set_Is_Character_Type (Implicit_Base, True);
16377 Set_Has_Delayed_Freeze (Implicit_Base);
16379 -- The bounds of the implicit base are the bounds of the parent base.
16380 -- Note that their type is the parent base.
16382 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
16383 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
16385 Set_Scalar_Range (Implicit_Base,
16386 Make_Range (Loc,
16387 Low_Bound => Lo,
16388 High_Bound => Hi));
16390 Conditional_Delay (Derived_Type, Parent_Type);
16392 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
16393 Set_Etype (Derived_Type, Implicit_Base);
16394 Set_Size_Info (Derived_Type, Parent_Type);
16396 if Unknown_RM_Size (Derived_Type) then
16397 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
16398 end if;
16400 Set_Is_Character_Type (Derived_Type, True);
16402 if Nkind (Indic) /= N_Subtype_Indication then
16404 -- If no explicit constraint, the bounds are those
16405 -- of the parent type.
16407 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
16408 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
16409 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
16410 end if;
16412 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
16414 -- Because the implicit base is used in the conversion of the bounds, we
16415 -- have to freeze it now. This is similar to what is done for numeric
16416 -- types, and it equally suspicious, but otherwise a non-static bound
16417 -- will have a reference to an unfrozen type, which is rejected by Gigi
16418 -- (???). This requires specific care for definition of stream
16419 -- attributes. For details, see comments at the end of
16420 -- Build_Derived_Numeric_Type.
16422 Freeze_Before (N, Implicit_Base);
16423 end Derived_Standard_Character;
16425 ------------------------------
16426 -- Derived_Type_Declaration --
16427 ------------------------------
16429 procedure Derived_Type_Declaration
16430 (T : Entity_Id;
16431 N : Node_Id;
16432 Is_Completion : Boolean)
16434 Parent_Type : Entity_Id;
16436 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
16437 -- Check whether the parent type is a generic formal, or derives
16438 -- directly or indirectly from one.
16440 ------------------------
16441 -- Comes_From_Generic --
16442 ------------------------
16444 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
16445 begin
16446 if Is_Generic_Type (Typ) then
16447 return True;
16449 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
16450 return True;
16452 elsif Is_Private_Type (Typ)
16453 and then Present (Full_View (Typ))
16454 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
16455 then
16456 return True;
16458 elsif Is_Generic_Actual_Type (Typ) then
16459 return True;
16461 else
16462 return False;
16463 end if;
16464 end Comes_From_Generic;
16466 -- Local variables
16468 Def : constant Node_Id := Type_Definition (N);
16469 Iface_Def : Node_Id;
16470 Indic : constant Node_Id := Subtype_Indication (Def);
16471 Extension : constant Node_Id := Record_Extension_Part (Def);
16472 Parent_Node : Node_Id;
16473 Taggd : Boolean;
16475 -- Start of processing for Derived_Type_Declaration
16477 begin
16478 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
16480 if SPARK_Mode = On
16481 and then Is_Tagged_Type (Parent_Type)
16482 then
16483 declare
16484 Partial_View : constant Entity_Id :=
16485 Incomplete_Or_Partial_View (Parent_Type);
16487 begin
16488 -- If the partial view was not found then the parent type is not
16489 -- a private type. Otherwise check if the partial view is a tagged
16490 -- private type.
16492 if Present (Partial_View)
16493 and then Is_Private_Type (Partial_View)
16494 and then not Is_Tagged_Type (Partial_View)
16495 then
16496 Error_Msg_NE
16497 ("cannot derive from & declared as untagged private "
16498 & "(SPARK RM 3.4(1))", N, Partial_View);
16499 end if;
16500 end;
16501 end if;
16503 -- Ada 2005 (AI-251): In case of interface derivation check that the
16504 -- parent is also an interface.
16506 if Interface_Present (Def) then
16507 Check_SPARK_05_Restriction ("interface is not allowed", Def);
16509 if not Is_Interface (Parent_Type) then
16510 Diagnose_Interface (Indic, Parent_Type);
16512 else
16513 Parent_Node := Parent (Base_Type (Parent_Type));
16514 Iface_Def := Type_Definition (Parent_Node);
16516 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
16517 -- other limited interfaces.
16519 if Limited_Present (Def) then
16520 if Limited_Present (Iface_Def) then
16521 null;
16523 elsif Protected_Present (Iface_Def) then
16524 Error_Msg_NE
16525 ("descendant of & must be declared as a protected "
16526 & "interface", N, Parent_Type);
16528 elsif Synchronized_Present (Iface_Def) then
16529 Error_Msg_NE
16530 ("descendant of & must be declared as a synchronized "
16531 & "interface", N, Parent_Type);
16533 elsif Task_Present (Iface_Def) then
16534 Error_Msg_NE
16535 ("descendant of & must be declared as a task interface",
16536 N, Parent_Type);
16538 else
16539 Error_Msg_N
16540 ("(Ada 2005) limited interface cannot inherit from "
16541 & "non-limited interface", Indic);
16542 end if;
16544 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
16545 -- from non-limited or limited interfaces.
16547 elsif not Protected_Present (Def)
16548 and then not Synchronized_Present (Def)
16549 and then not Task_Present (Def)
16550 then
16551 if Limited_Present (Iface_Def) then
16552 null;
16554 elsif Protected_Present (Iface_Def) then
16555 Error_Msg_NE
16556 ("descendant of & must be declared as a protected "
16557 & "interface", N, Parent_Type);
16559 elsif Synchronized_Present (Iface_Def) then
16560 Error_Msg_NE
16561 ("descendant of & must be declared as a synchronized "
16562 & "interface", N, Parent_Type);
16564 elsif Task_Present (Iface_Def) then
16565 Error_Msg_NE
16566 ("descendant of & must be declared as a task interface",
16567 N, Parent_Type);
16568 else
16569 null;
16570 end if;
16571 end if;
16572 end if;
16573 end if;
16575 if Is_Tagged_Type (Parent_Type)
16576 and then Is_Concurrent_Type (Parent_Type)
16577 and then not Is_Interface (Parent_Type)
16578 then
16579 Error_Msg_N
16580 ("parent type of a record extension cannot be a synchronized "
16581 & "tagged type (RM 3.9.1 (3/1))", N);
16582 Set_Etype (T, Any_Type);
16583 return;
16584 end if;
16586 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16587 -- interfaces
16589 if Is_Tagged_Type (Parent_Type)
16590 and then Is_Non_Empty_List (Interface_List (Def))
16591 then
16592 declare
16593 Intf : Node_Id;
16594 T : Entity_Id;
16596 begin
16597 Intf := First (Interface_List (Def));
16598 while Present (Intf) loop
16599 T := Find_Type_Of_Subtype_Indic (Intf);
16601 if not Is_Interface (T) then
16602 Diagnose_Interface (Intf, T);
16604 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16605 -- a limited type from having a nonlimited progenitor.
16607 elsif (Limited_Present (Def)
16608 or else (not Is_Interface (Parent_Type)
16609 and then Is_Limited_Type (Parent_Type)))
16610 and then not Is_Limited_Interface (T)
16611 then
16612 Error_Msg_NE
16613 ("progenitor interface& of limited type must be limited",
16614 N, T);
16615 end if;
16617 Next (Intf);
16618 end loop;
16619 end;
16620 end if;
16622 if Parent_Type = Any_Type
16623 or else Etype (Parent_Type) = Any_Type
16624 or else (Is_Class_Wide_Type (Parent_Type)
16625 and then Etype (Parent_Type) = T)
16626 then
16627 -- If Parent_Type is undefined or illegal, make new type into a
16628 -- subtype of Any_Type, and set a few attributes to prevent cascaded
16629 -- errors. If this is a self-definition, emit error now.
16631 if T = Parent_Type or else T = Etype (Parent_Type) then
16632 Error_Msg_N ("type cannot be used in its own definition", Indic);
16633 end if;
16635 Set_Ekind (T, Ekind (Parent_Type));
16636 Set_Etype (T, Any_Type);
16637 Set_Scalar_Range (T, Scalar_Range (Any_Type));
16639 if Is_Tagged_Type (T)
16640 and then Is_Record_Type (T)
16641 then
16642 Set_Direct_Primitive_Operations (T, New_Elmt_List);
16643 end if;
16645 return;
16646 end if;
16648 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
16649 -- an interface is special because the list of interfaces in the full
16650 -- view can be given in any order. For example:
16652 -- type A is interface;
16653 -- type B is interface and A;
16654 -- type D is new B with private;
16655 -- private
16656 -- type D is new A and B with null record; -- 1 --
16658 -- In this case we perform the following transformation of -1-:
16660 -- type D is new B and A with null record;
16662 -- If the parent of the full-view covers the parent of the partial-view
16663 -- we have two possible cases:
16665 -- 1) They have the same parent
16666 -- 2) The parent of the full-view implements some further interfaces
16668 -- In both cases we do not need to perform the transformation. In the
16669 -- first case the source program is correct and the transformation is
16670 -- not needed; in the second case the source program does not fulfill
16671 -- the no-hidden interfaces rule (AI-396) and the error will be reported
16672 -- later.
16674 -- This transformation not only simplifies the rest of the analysis of
16675 -- this type declaration but also simplifies the correct generation of
16676 -- the object layout to the expander.
16678 if In_Private_Part (Current_Scope)
16679 and then Is_Interface (Parent_Type)
16680 then
16681 declare
16682 Iface : Node_Id;
16683 Partial_View : Entity_Id;
16684 Partial_View_Parent : Entity_Id;
16685 New_Iface : Node_Id;
16687 begin
16688 -- Look for the associated private type declaration
16690 Partial_View := Incomplete_Or_Partial_View (T);
16692 -- If the partial view was not found then the source code has
16693 -- errors and the transformation is not needed.
16695 if Present (Partial_View) then
16696 Partial_View_Parent := Etype (Partial_View);
16698 -- If the parent of the full-view covers the parent of the
16699 -- partial-view we have nothing else to do.
16701 if Interface_Present_In_Ancestor
16702 (Parent_Type, Partial_View_Parent)
16703 then
16704 null;
16706 -- Traverse the list of interfaces of the full-view to look
16707 -- for the parent of the partial-view and perform the tree
16708 -- transformation.
16710 else
16711 Iface := First (Interface_List (Def));
16712 while Present (Iface) loop
16713 if Etype (Iface) = Etype (Partial_View) then
16714 Rewrite (Subtype_Indication (Def),
16715 New_Copy (Subtype_Indication
16716 (Parent (Partial_View))));
16718 New_Iface :=
16719 Make_Identifier (Sloc (N), Chars (Parent_Type));
16720 Append (New_Iface, Interface_List (Def));
16722 -- Analyze the transformed code
16724 Derived_Type_Declaration (T, N, Is_Completion);
16725 return;
16726 end if;
16728 Next (Iface);
16729 end loop;
16730 end if;
16731 end if;
16732 end;
16733 end if;
16735 -- Only composite types other than array types are allowed to have
16736 -- discriminants.
16738 if Present (Discriminant_Specifications (N)) then
16739 if (Is_Elementary_Type (Parent_Type)
16740 or else
16741 Is_Array_Type (Parent_Type))
16742 and then not Error_Posted (N)
16743 then
16744 Error_Msg_N
16745 ("elementary or array type cannot have discriminants",
16746 Defining_Identifier (First (Discriminant_Specifications (N))));
16748 -- Unset Has_Discriminants flag to prevent cascaded errors, but
16749 -- only if we are not already processing a malformed syntax tree.
16751 if Is_Type (T) then
16752 Set_Has_Discriminants (T, False);
16753 end if;
16755 -- The type is allowed to have discriminants
16757 else
16758 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
16759 end if;
16760 end if;
16762 -- In Ada 83, a derived type defined in a package specification cannot
16763 -- be used for further derivation until the end of its visible part.
16764 -- Note that derivation in the private part of the package is allowed.
16766 if Ada_Version = Ada_83
16767 and then Is_Derived_Type (Parent_Type)
16768 and then In_Visible_Part (Scope (Parent_Type))
16769 then
16770 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
16771 Error_Msg_N
16772 ("(Ada 83): premature use of type for derivation", Indic);
16773 end if;
16774 end if;
16776 -- Check for early use of incomplete or private type
16778 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
16779 Error_Msg_N ("premature derivation of incomplete type", Indic);
16780 return;
16782 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
16783 and then not Comes_From_Generic (Parent_Type))
16784 or else Has_Private_Component (Parent_Type)
16785 then
16786 -- The ancestor type of a formal type can be incomplete, in which
16787 -- case only the operations of the partial view are available in the
16788 -- generic. Subsequent checks may be required when the full view is
16789 -- analyzed to verify that a derivation from a tagged type has an
16790 -- extension.
16792 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
16793 null;
16795 elsif No (Underlying_Type (Parent_Type))
16796 or else Has_Private_Component (Parent_Type)
16797 then
16798 Error_Msg_N
16799 ("premature derivation of derived or private type", Indic);
16801 -- Flag the type itself as being in error, this prevents some
16802 -- nasty problems with subsequent uses of the malformed type.
16804 Set_Error_Posted (T);
16806 -- Check that within the immediate scope of an untagged partial
16807 -- view it's illegal to derive from the partial view if the
16808 -- full view is tagged. (7.3(7))
16810 -- We verify that the Parent_Type is a partial view by checking
16811 -- that it is not a Full_Type_Declaration (i.e. a private type or
16812 -- private extension declaration), to distinguish a partial view
16813 -- from a derivation from a private type which also appears as
16814 -- E_Private_Type. If the parent base type is not declared in an
16815 -- enclosing scope there is no need to check.
16817 elsif Present (Full_View (Parent_Type))
16818 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
16819 and then not Is_Tagged_Type (Parent_Type)
16820 and then Is_Tagged_Type (Full_View (Parent_Type))
16821 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
16822 then
16823 Error_Msg_N
16824 ("premature derivation from type with tagged full view",
16825 Indic);
16826 end if;
16827 end if;
16829 -- Check that form of derivation is appropriate
16831 Taggd := Is_Tagged_Type (Parent_Type);
16833 -- Set the parent type to the class-wide type's specific type in this
16834 -- case to prevent cascading errors
16836 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16837 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16838 Set_Etype (T, Etype (Parent_Type));
16839 return;
16840 end if;
16842 if Present (Extension) and then not Taggd then
16843 Error_Msg_N
16844 ("type derived from untagged type cannot have extension", Indic);
16846 elsif No (Extension) and then Taggd then
16848 -- If this declaration is within a private part (or body) of a
16849 -- generic instantiation then the derivation is allowed (the parent
16850 -- type can only appear tagged in this case if it's a generic actual
16851 -- type, since it would otherwise have been rejected in the analysis
16852 -- of the generic template).
16854 if not Is_Generic_Actual_Type (Parent_Type)
16855 or else In_Visible_Part (Scope (Parent_Type))
16856 then
16857 if Is_Class_Wide_Type (Parent_Type) then
16858 Error_Msg_N
16859 ("parent type must not be a class-wide type", Indic);
16861 -- Use specific type to prevent cascaded errors.
16863 Parent_Type := Etype (Parent_Type);
16865 else
16866 Error_Msg_N
16867 ("type derived from tagged type must have extension", Indic);
16868 end if;
16869 end if;
16870 end if;
16872 -- AI-443: Synchronized formal derived types require a private
16873 -- extension. There is no point in checking the ancestor type or
16874 -- the progenitors since the construct is wrong to begin with.
16876 if Ada_Version >= Ada_2005
16877 and then Is_Generic_Type (T)
16878 and then Present (Original_Node (N))
16879 then
16880 declare
16881 Decl : constant Node_Id := Original_Node (N);
16883 begin
16884 if Nkind (Decl) = N_Formal_Type_Declaration
16885 and then Nkind (Formal_Type_Definition (Decl)) =
16886 N_Formal_Derived_Type_Definition
16887 and then Synchronized_Present (Formal_Type_Definition (Decl))
16888 and then No (Extension)
16890 -- Avoid emitting a duplicate error message
16892 and then not Error_Posted (Indic)
16893 then
16894 Error_Msg_N
16895 ("synchronized derived type must have extension", N);
16896 end if;
16897 end;
16898 end if;
16900 if Null_Exclusion_Present (Def)
16901 and then not Is_Access_Type (Parent_Type)
16902 then
16903 Error_Msg_N ("null exclusion can only apply to an access type", N);
16904 end if;
16906 -- Avoid deriving parent primitives of underlying record views
16908 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16909 Derive_Subps => not Is_Underlying_Record_View (T));
16911 -- AI-419: The parent type of an explicitly limited derived type must
16912 -- be a limited type or a limited interface.
16914 if Limited_Present (Def) then
16915 Set_Is_Limited_Record (T);
16917 if Is_Interface (T) then
16918 Set_Is_Limited_Interface (T);
16919 end if;
16921 if not Is_Limited_Type (Parent_Type)
16922 and then
16923 (not Is_Interface (Parent_Type)
16924 or else not Is_Limited_Interface (Parent_Type))
16925 then
16926 -- AI05-0096: a derivation in the private part of an instance is
16927 -- legal if the generic formal is untagged limited, and the actual
16928 -- is non-limited.
16930 if Is_Generic_Actual_Type (Parent_Type)
16931 and then In_Private_Part (Current_Scope)
16932 and then
16933 not Is_Tagged_Type
16934 (Generic_Parent_Type (Parent (Parent_Type)))
16935 then
16936 null;
16938 else
16939 Error_Msg_NE
16940 ("parent type& of limited type must be limited",
16941 N, Parent_Type);
16942 end if;
16943 end if;
16944 end if;
16946 -- In SPARK, there are no derived type definitions other than type
16947 -- extensions of tagged record types.
16949 if No (Extension) then
16950 Check_SPARK_05_Restriction
16951 ("derived type is not allowed", Original_Node (N));
16952 end if;
16953 end Derived_Type_Declaration;
16955 ------------------------
16956 -- Diagnose_Interface --
16957 ------------------------
16959 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16960 begin
16961 if not Is_Interface (E) and then E /= Any_Type then
16962 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16963 end if;
16964 end Diagnose_Interface;
16966 ----------------------------------
16967 -- Enumeration_Type_Declaration --
16968 ----------------------------------
16970 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16971 Ev : Uint;
16972 L : Node_Id;
16973 R_Node : Node_Id;
16974 B_Node : Node_Id;
16976 begin
16977 -- Create identifier node representing lower bound
16979 B_Node := New_Node (N_Identifier, Sloc (Def));
16980 L := First (Literals (Def));
16981 Set_Chars (B_Node, Chars (L));
16982 Set_Entity (B_Node, L);
16983 Set_Etype (B_Node, T);
16984 Set_Is_Static_Expression (B_Node, True);
16986 R_Node := New_Node (N_Range, Sloc (Def));
16987 Set_Low_Bound (R_Node, B_Node);
16989 Set_Ekind (T, E_Enumeration_Type);
16990 Set_First_Literal (T, L);
16991 Set_Etype (T, T);
16992 Set_Is_Constrained (T);
16994 Ev := Uint_0;
16996 -- Loop through literals of enumeration type setting pos and rep values
16997 -- except that if the Ekind is already set, then it means the literal
16998 -- was already constructed (case of a derived type declaration and we
16999 -- should not disturb the Pos and Rep values.
17001 while Present (L) loop
17002 if Ekind (L) /= E_Enumeration_Literal then
17003 Set_Ekind (L, E_Enumeration_Literal);
17004 Set_Enumeration_Pos (L, Ev);
17005 Set_Enumeration_Rep (L, Ev);
17006 Set_Is_Known_Valid (L, True);
17007 end if;
17009 Set_Etype (L, T);
17010 New_Overloaded_Entity (L);
17011 Generate_Definition (L);
17012 Set_Convention (L, Convention_Intrinsic);
17014 -- Case of character literal
17016 if Nkind (L) = N_Defining_Character_Literal then
17017 Set_Is_Character_Type (T, True);
17019 -- Check violation of No_Wide_Characters
17021 if Restriction_Check_Required (No_Wide_Characters) then
17022 Get_Name_String (Chars (L));
17024 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
17025 Check_Restriction (No_Wide_Characters, L);
17026 end if;
17027 end if;
17028 end if;
17030 Ev := Ev + 1;
17031 Next (L);
17032 end loop;
17034 -- Now create a node representing upper bound
17036 B_Node := New_Node (N_Identifier, Sloc (Def));
17037 Set_Chars (B_Node, Chars (Last (Literals (Def))));
17038 Set_Entity (B_Node, Last (Literals (Def)));
17039 Set_Etype (B_Node, T);
17040 Set_Is_Static_Expression (B_Node, True);
17042 Set_High_Bound (R_Node, B_Node);
17044 -- Initialize various fields of the type. Some of this information
17045 -- may be overwritten later through rep.clauses.
17047 Set_Scalar_Range (T, R_Node);
17048 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
17049 Set_Enum_Esize (T);
17050 Set_Enum_Pos_To_Rep (T, Empty);
17052 -- Set Discard_Names if configuration pragma set, or if there is
17053 -- a parameterless pragma in the current declarative region
17055 if Global_Discard_Names or else Discard_Names (Scope (T)) then
17056 Set_Discard_Names (T);
17057 end if;
17059 -- Process end label if there is one
17061 if Present (Def) then
17062 Process_End_Label (Def, 'e', T);
17063 end if;
17064 end Enumeration_Type_Declaration;
17066 ---------------------------------
17067 -- Expand_To_Stored_Constraint --
17068 ---------------------------------
17070 function Expand_To_Stored_Constraint
17071 (Typ : Entity_Id;
17072 Constraint : Elist_Id) return Elist_Id
17074 Explicitly_Discriminated_Type : Entity_Id;
17075 Expansion : Elist_Id;
17076 Discriminant : Entity_Id;
17078 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
17079 -- Find the nearest type that actually specifies discriminants
17081 ---------------------------------
17082 -- Type_With_Explicit_Discrims --
17083 ---------------------------------
17085 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
17086 Typ : constant E := Base_Type (Id);
17088 begin
17089 if Ekind (Typ) in Incomplete_Or_Private_Kind then
17090 if Present (Full_View (Typ)) then
17091 return Type_With_Explicit_Discrims (Full_View (Typ));
17092 end if;
17094 else
17095 if Has_Discriminants (Typ) then
17096 return Typ;
17097 end if;
17098 end if;
17100 if Etype (Typ) = Typ then
17101 return Empty;
17102 elsif Has_Discriminants (Typ) then
17103 return Typ;
17104 else
17105 return Type_With_Explicit_Discrims (Etype (Typ));
17106 end if;
17108 end Type_With_Explicit_Discrims;
17110 -- Start of processing for Expand_To_Stored_Constraint
17112 begin
17113 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
17114 return No_Elist;
17115 end if;
17117 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
17119 if No (Explicitly_Discriminated_Type) then
17120 return No_Elist;
17121 end if;
17123 Expansion := New_Elmt_List;
17125 Discriminant :=
17126 First_Stored_Discriminant (Explicitly_Discriminated_Type);
17127 while Present (Discriminant) loop
17128 Append_Elmt
17129 (Get_Discriminant_Value
17130 (Discriminant, Explicitly_Discriminated_Type, Constraint),
17131 To => Expansion);
17132 Next_Stored_Discriminant (Discriminant);
17133 end loop;
17135 return Expansion;
17136 end Expand_To_Stored_Constraint;
17138 ---------------------------
17139 -- Find_Hidden_Interface --
17140 ---------------------------
17142 function Find_Hidden_Interface
17143 (Src : Elist_Id;
17144 Dest : Elist_Id) return Entity_Id
17146 Iface : Entity_Id;
17147 Iface_Elmt : Elmt_Id;
17149 begin
17150 if Present (Src) and then Present (Dest) then
17151 Iface_Elmt := First_Elmt (Src);
17152 while Present (Iface_Elmt) loop
17153 Iface := Node (Iface_Elmt);
17155 if Is_Interface (Iface)
17156 and then not Contain_Interface (Iface, Dest)
17157 then
17158 return Iface;
17159 end if;
17161 Next_Elmt (Iface_Elmt);
17162 end loop;
17163 end if;
17165 return Empty;
17166 end Find_Hidden_Interface;
17168 --------------------
17169 -- Find_Type_Name --
17170 --------------------
17172 function Find_Type_Name (N : Node_Id) return Entity_Id is
17173 Id : constant Entity_Id := Defining_Identifier (N);
17174 New_Id : Entity_Id;
17175 Prev : Entity_Id;
17176 Prev_Par : Node_Id;
17178 procedure Check_Duplicate_Aspects;
17179 -- Check that aspects specified in a completion have not been specified
17180 -- already in the partial view.
17182 procedure Tag_Mismatch;
17183 -- Diagnose a tagged partial view whose full view is untagged. We post
17184 -- the message on the full view, with a reference to the previous
17185 -- partial view. The partial view can be private or incomplete, and
17186 -- these are handled in a different manner, so we determine the position
17187 -- of the error message from the respective slocs of both.
17189 -----------------------------
17190 -- Check_Duplicate_Aspects --
17191 -----------------------------
17193 procedure Check_Duplicate_Aspects is
17194 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
17195 -- Return the corresponding aspect of the partial view which matches
17196 -- the aspect id of Asp. Return Empty is no such aspect exists.
17198 -----------------------------
17199 -- Get_Partial_View_Aspect --
17200 -----------------------------
17202 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
17203 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
17204 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par);
17205 Prev_Asp : Node_Id;
17207 begin
17208 if Present (Prev_Asps) then
17209 Prev_Asp := First (Prev_Asps);
17210 while Present (Prev_Asp) loop
17211 if Get_Aspect_Id (Prev_Asp) = Asp_Id then
17212 return Prev_Asp;
17213 end if;
17215 Next (Prev_Asp);
17216 end loop;
17217 end if;
17219 return Empty;
17220 end Get_Partial_View_Aspect;
17222 -- Local variables
17224 Full_Asps : constant List_Id := Aspect_Specifications (N);
17225 Full_Asp : Node_Id;
17226 Part_Asp : Node_Id;
17228 -- Start of processing for Check_Duplicate_Aspects
17230 begin
17231 if Present (Full_Asps) then
17232 Full_Asp := First (Full_Asps);
17233 while Present (Full_Asp) loop
17234 Part_Asp := Get_Partial_View_Aspect (Full_Asp);
17236 -- An aspect and its class-wide counterpart are two distinct
17237 -- aspects and may apply to both views of an entity.
17239 if Present (Part_Asp)
17240 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
17241 then
17242 Error_Msg_N
17243 ("aspect already specified in private declaration",
17244 Full_Asp);
17246 Remove (Full_Asp);
17247 return;
17248 end if;
17250 if Has_Discriminants (Prev)
17251 and then not Has_Unknown_Discriminants (Prev)
17252 and then Get_Aspect_Id (Full_Asp) =
17253 Aspect_Implicit_Dereference
17254 then
17255 Error_Msg_N
17256 ("cannot specify aspect if partial view has known "
17257 & "discriminants", Full_Asp);
17258 end if;
17260 Next (Full_Asp);
17261 end loop;
17262 end if;
17263 end Check_Duplicate_Aspects;
17265 ------------------
17266 -- Tag_Mismatch --
17267 ------------------
17269 procedure Tag_Mismatch is
17270 begin
17271 if Sloc (Prev) < Sloc (Id) then
17272 if Ada_Version >= Ada_2012
17273 and then Nkind (N) = N_Private_Type_Declaration
17274 then
17275 Error_Msg_NE
17276 ("declaration of private } must be a tagged type ", Id, Prev);
17277 else
17278 Error_Msg_NE
17279 ("full declaration of } must be a tagged type ", Id, Prev);
17280 end if;
17282 else
17283 if Ada_Version >= Ada_2012
17284 and then Nkind (N) = N_Private_Type_Declaration
17285 then
17286 Error_Msg_NE
17287 ("declaration of private } must be a tagged type ", Prev, Id);
17288 else
17289 Error_Msg_NE
17290 ("full declaration of } must be a tagged type ", Prev, Id);
17291 end if;
17292 end if;
17293 end Tag_Mismatch;
17295 -- Start of processing for Find_Type_Name
17297 begin
17298 -- Find incomplete declaration, if one was given
17300 Prev := Current_Entity_In_Scope (Id);
17302 -- New type declaration
17304 if No (Prev) then
17305 Enter_Name (Id);
17306 return Id;
17308 -- Previous declaration exists
17310 else
17311 Prev_Par := Parent (Prev);
17313 -- Error if not incomplete/private case except if previous
17314 -- declaration is implicit, etc. Enter_Name will emit error if
17315 -- appropriate.
17317 if not Is_Incomplete_Or_Private_Type (Prev) then
17318 Enter_Name (Id);
17319 New_Id := Id;
17321 -- Check invalid completion of private or incomplete type
17323 elsif not Nkind_In (N, N_Full_Type_Declaration,
17324 N_Task_Type_Declaration,
17325 N_Protected_Type_Declaration)
17326 and then
17327 (Ada_Version < Ada_2012
17328 or else not Is_Incomplete_Type (Prev)
17329 or else not Nkind_In (N, N_Private_Type_Declaration,
17330 N_Private_Extension_Declaration))
17331 then
17332 -- Completion must be a full type declarations (RM 7.3(4))
17334 Error_Msg_Sloc := Sloc (Prev);
17335 Error_Msg_NE ("invalid completion of }", Id, Prev);
17337 -- Set scope of Id to avoid cascaded errors. Entity is never
17338 -- examined again, except when saving globals in generics.
17340 Set_Scope (Id, Current_Scope);
17341 New_Id := Id;
17343 -- If this is a repeated incomplete declaration, no further
17344 -- checks are possible.
17346 if Nkind (N) = N_Incomplete_Type_Declaration then
17347 return Prev;
17348 end if;
17350 -- Case of full declaration of incomplete type
17352 elsif Ekind (Prev) = E_Incomplete_Type
17353 and then (Ada_Version < Ada_2012
17354 or else No (Full_View (Prev))
17355 or else not Is_Private_Type (Full_View (Prev)))
17356 then
17357 -- Indicate that the incomplete declaration has a matching full
17358 -- declaration. The defining occurrence of the incomplete
17359 -- declaration remains the visible one, and the procedure
17360 -- Get_Full_View dereferences it whenever the type is used.
17362 if Present (Full_View (Prev)) then
17363 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17364 end if;
17366 Set_Full_View (Prev, Id);
17367 Append_Entity (Id, Current_Scope);
17368 Set_Is_Public (Id, Is_Public (Prev));
17369 Set_Is_Internal (Id);
17370 New_Id := Prev;
17372 -- If the incomplete view is tagged, a class_wide type has been
17373 -- created already. Use it for the private type as well, in order
17374 -- to prevent multiple incompatible class-wide types that may be
17375 -- created for self-referential anonymous access components.
17377 if Is_Tagged_Type (Prev)
17378 and then Present (Class_Wide_Type (Prev))
17379 then
17380 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
17381 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
17383 -- Type of the class-wide type is the current Id. Previously
17384 -- this was not done for private declarations because of order-
17385 -- of-elaboration issues in the back end, but gigi now handles
17386 -- this properly.
17388 Set_Etype (Class_Wide_Type (Id), Id);
17389 end if;
17391 -- Case of full declaration of private type
17393 else
17394 -- If the private type was a completion of an incomplete type then
17395 -- update Prev to reference the private type
17397 if Ada_Version >= Ada_2012
17398 and then Ekind (Prev) = E_Incomplete_Type
17399 and then Present (Full_View (Prev))
17400 and then Is_Private_Type (Full_View (Prev))
17401 then
17402 Prev := Full_View (Prev);
17403 Prev_Par := Parent (Prev);
17404 end if;
17406 if Nkind (N) = N_Full_Type_Declaration
17407 and then Nkind_In
17408 (Type_Definition (N), N_Record_Definition,
17409 N_Derived_Type_Definition)
17410 and then Interface_Present (Type_Definition (N))
17411 then
17412 Error_Msg_N
17413 ("completion of private type cannot be an interface", N);
17414 end if;
17416 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
17417 if Etype (Prev) /= Prev then
17419 -- Prev is a private subtype or a derived type, and needs
17420 -- no completion.
17422 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17423 New_Id := Id;
17425 elsif Ekind (Prev) = E_Private_Type
17426 and then Nkind_In (N, N_Task_Type_Declaration,
17427 N_Protected_Type_Declaration)
17428 then
17429 Error_Msg_N
17430 ("completion of nonlimited type cannot be limited", N);
17432 elsif Ekind (Prev) = E_Record_Type_With_Private
17433 and then Nkind_In (N, N_Task_Type_Declaration,
17434 N_Protected_Type_Declaration)
17435 then
17436 if not Is_Limited_Record (Prev) then
17437 Error_Msg_N
17438 ("completion of nonlimited type cannot be limited", N);
17440 elsif No (Interface_List (N)) then
17441 Error_Msg_N
17442 ("completion of tagged private type must be tagged",
17444 end if;
17445 end if;
17447 -- Ada 2005 (AI-251): Private extension declaration of a task
17448 -- type or a protected type. This case arises when covering
17449 -- interface types.
17451 elsif Nkind_In (N, N_Task_Type_Declaration,
17452 N_Protected_Type_Declaration)
17453 then
17454 null;
17456 elsif Nkind (N) /= N_Full_Type_Declaration
17457 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
17458 then
17459 Error_Msg_N
17460 ("full view of private extension must be an extension", N);
17462 elsif not (Abstract_Present (Parent (Prev)))
17463 and then Abstract_Present (Type_Definition (N))
17464 then
17465 Error_Msg_N
17466 ("full view of non-abstract extension cannot be abstract", N);
17467 end if;
17469 if not In_Private_Part (Current_Scope) then
17470 Error_Msg_N
17471 ("declaration of full view must appear in private part", N);
17472 end if;
17474 if Ada_Version >= Ada_2012 then
17475 Check_Duplicate_Aspects;
17476 end if;
17478 Copy_And_Swap (Prev, Id);
17479 Set_Has_Private_Declaration (Prev);
17480 Set_Has_Private_Declaration (Id);
17482 -- AI12-0133: Indicate whether we have a partial view with
17483 -- unknown discriminants, in which case initialization of objects
17484 -- of the type do not receive an invariant check.
17486 Set_Partial_View_Has_Unknown_Discr
17487 (Prev, Has_Unknown_Discriminants (Id));
17489 -- Preserve aspect and iterator flags that may have been set on
17490 -- the partial view.
17492 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
17493 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
17495 -- If no error, propagate freeze_node from private to full view.
17496 -- It may have been generated for an early operational item.
17498 if Present (Freeze_Node (Id))
17499 and then Serious_Errors_Detected = 0
17500 and then No (Full_View (Id))
17501 then
17502 Set_Freeze_Node (Prev, Freeze_Node (Id));
17503 Set_Freeze_Node (Id, Empty);
17504 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
17505 end if;
17507 Set_Full_View (Id, Prev);
17508 New_Id := Prev;
17509 end if;
17511 -- Verify that full declaration conforms to partial one
17513 if Is_Incomplete_Or_Private_Type (Prev)
17514 and then Present (Discriminant_Specifications (Prev_Par))
17515 then
17516 if Present (Discriminant_Specifications (N)) then
17517 if Ekind (Prev) = E_Incomplete_Type then
17518 Check_Discriminant_Conformance (N, Prev, Prev);
17519 else
17520 Check_Discriminant_Conformance (N, Prev, Id);
17521 end if;
17523 else
17524 Error_Msg_N
17525 ("missing discriminants in full type declaration", N);
17527 -- To avoid cascaded errors on subsequent use, share the
17528 -- discriminants of the partial view.
17530 Set_Discriminant_Specifications (N,
17531 Discriminant_Specifications (Prev_Par));
17532 end if;
17533 end if;
17535 -- A prior untagged partial view can have an associated class-wide
17536 -- type due to use of the class attribute, and in this case the full
17537 -- type must also be tagged. This Ada 95 usage is deprecated in favor
17538 -- of incomplete tagged declarations, but we check for it.
17540 if Is_Type (Prev)
17541 and then (Is_Tagged_Type (Prev)
17542 or else Present (Class_Wide_Type (Prev)))
17543 then
17544 -- Ada 2012 (AI05-0162): A private type may be the completion of
17545 -- an incomplete type.
17547 if Ada_Version >= Ada_2012
17548 and then Is_Incomplete_Type (Prev)
17549 and then Nkind_In (N, N_Private_Type_Declaration,
17550 N_Private_Extension_Declaration)
17551 then
17552 -- No need to check private extensions since they are tagged
17554 if Nkind (N) = N_Private_Type_Declaration
17555 and then not Tagged_Present (N)
17556 then
17557 Tag_Mismatch;
17558 end if;
17560 -- The full declaration is either a tagged type (including
17561 -- a synchronized type that implements interfaces) or a
17562 -- type extension, otherwise this is an error.
17564 elsif Nkind_In (N, N_Task_Type_Declaration,
17565 N_Protected_Type_Declaration)
17566 then
17567 if No (Interface_List (N)) and then not Error_Posted (N) then
17568 Tag_Mismatch;
17569 end if;
17571 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
17573 -- Indicate that the previous declaration (tagged incomplete
17574 -- or private declaration) requires the same on the full one.
17576 if not Tagged_Present (Type_Definition (N)) then
17577 Tag_Mismatch;
17578 Set_Is_Tagged_Type (Id);
17579 end if;
17581 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
17582 if No (Record_Extension_Part (Type_Definition (N))) then
17583 Error_Msg_NE
17584 ("full declaration of } must be a record extension",
17585 Prev, Id);
17587 -- Set some attributes to produce a usable full view
17589 Set_Is_Tagged_Type (Id);
17590 end if;
17592 else
17593 Tag_Mismatch;
17594 end if;
17595 end if;
17597 if Present (Prev)
17598 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
17599 and then Present (Premature_Use (Parent (Prev)))
17600 then
17601 Error_Msg_Sloc := Sloc (N);
17602 Error_Msg_N
17603 ("\full declaration #", Premature_Use (Parent (Prev)));
17604 end if;
17606 return New_Id;
17607 end if;
17608 end Find_Type_Name;
17610 -------------------------
17611 -- Find_Type_Of_Object --
17612 -------------------------
17614 function Find_Type_Of_Object
17615 (Obj_Def : Node_Id;
17616 Related_Nod : Node_Id) return Entity_Id
17618 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
17619 P : Node_Id := Parent (Obj_Def);
17620 T : Entity_Id;
17621 Nam : Name_Id;
17623 begin
17624 -- If the parent is a component_definition node we climb to the
17625 -- component_declaration node
17627 if Nkind (P) = N_Component_Definition then
17628 P := Parent (P);
17629 end if;
17631 -- Case of an anonymous array subtype
17633 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
17634 N_Unconstrained_Array_Definition)
17635 then
17636 T := Empty;
17637 Array_Type_Declaration (T, Obj_Def);
17639 -- Create an explicit subtype whenever possible
17641 elsif Nkind (P) /= N_Component_Declaration
17642 and then Def_Kind = N_Subtype_Indication
17643 then
17644 -- Base name of subtype on object name, which will be unique in
17645 -- the current scope.
17647 -- If this is a duplicate declaration, return base type, to avoid
17648 -- generating duplicate anonymous types.
17650 if Error_Posted (P) then
17651 Analyze (Subtype_Mark (Obj_Def));
17652 return Entity (Subtype_Mark (Obj_Def));
17653 end if;
17655 Nam :=
17656 New_External_Name
17657 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
17659 T := Make_Defining_Identifier (Sloc (P), Nam);
17661 Insert_Action (Obj_Def,
17662 Make_Subtype_Declaration (Sloc (P),
17663 Defining_Identifier => T,
17664 Subtype_Indication => Relocate_Node (Obj_Def)));
17666 -- This subtype may need freezing, and this will not be done
17667 -- automatically if the object declaration is not in declarative
17668 -- part. Since this is an object declaration, the type cannot always
17669 -- be frozen here. Deferred constants do not freeze their type
17670 -- (which often enough will be private).
17672 if Nkind (P) = N_Object_Declaration
17673 and then Constant_Present (P)
17674 and then No (Expression (P))
17675 then
17676 null;
17678 -- Here we freeze the base type of object type to catch premature use
17679 -- of discriminated private type without a full view.
17681 else
17682 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
17683 end if;
17685 -- Ada 2005 AI-406: the object definition in an object declaration
17686 -- can be an access definition.
17688 elsif Def_Kind = N_Access_Definition then
17689 T := Access_Definition (Related_Nod, Obj_Def);
17691 Set_Is_Local_Anonymous_Access
17693 V => (Ada_Version < Ada_2012)
17694 or else (Nkind (P) /= N_Object_Declaration)
17695 or else Is_Library_Level_Entity (Defining_Identifier (P)));
17697 -- Otherwise, the object definition is just a subtype_mark
17699 else
17700 T := Process_Subtype (Obj_Def, Related_Nod);
17702 -- If expansion is disabled an object definition that is an aggregate
17703 -- will not get expanded and may lead to scoping problems in the back
17704 -- end, if the object is referenced in an inner scope. In that case
17705 -- create an itype reference for the object definition now. This
17706 -- may be redundant in some cases, but harmless.
17708 if Is_Itype (T)
17709 and then Nkind (Related_Nod) = N_Object_Declaration
17710 and then ASIS_Mode
17711 then
17712 Build_Itype_Reference (T, Related_Nod);
17713 end if;
17714 end if;
17716 return T;
17717 end Find_Type_Of_Object;
17719 --------------------------------
17720 -- Find_Type_Of_Subtype_Indic --
17721 --------------------------------
17723 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
17724 Typ : Entity_Id;
17726 begin
17727 -- Case of subtype mark with a constraint
17729 if Nkind (S) = N_Subtype_Indication then
17730 Find_Type (Subtype_Mark (S));
17731 Typ := Entity (Subtype_Mark (S));
17733 if not
17734 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
17735 then
17736 Error_Msg_N
17737 ("incorrect constraint for this kind of type", Constraint (S));
17738 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17739 end if;
17741 -- Otherwise we have a subtype mark without a constraint
17743 elsif Error_Posted (S) then
17744 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
17745 return Any_Type;
17747 else
17748 Find_Type (S);
17749 Typ := Entity (S);
17750 end if;
17752 -- Check No_Wide_Characters restriction
17754 Check_Wide_Character_Restriction (Typ, S);
17756 return Typ;
17757 end Find_Type_Of_Subtype_Indic;
17759 -------------------------------------
17760 -- Floating_Point_Type_Declaration --
17761 -------------------------------------
17763 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17764 Digs : constant Node_Id := Digits_Expression (Def);
17765 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
17766 Digs_Val : Uint;
17767 Base_Typ : Entity_Id;
17768 Implicit_Base : Entity_Id;
17769 Bound : Node_Id;
17771 function Can_Derive_From (E : Entity_Id) return Boolean;
17772 -- Find if given digits value, and possibly a specified range, allows
17773 -- derivation from specified type
17775 function Find_Base_Type return Entity_Id;
17776 -- Find a predefined base type that Def can derive from, or generate
17777 -- an error and substitute Long_Long_Float if none exists.
17779 ---------------------
17780 -- Can_Derive_From --
17781 ---------------------
17783 function Can_Derive_From (E : Entity_Id) return Boolean is
17784 Spec : constant Entity_Id := Real_Range_Specification (Def);
17786 begin
17787 -- Check specified "digits" constraint
17789 if Digs_Val > Digits_Value (E) then
17790 return False;
17791 end if;
17793 -- Check for matching range, if specified
17795 if Present (Spec) then
17796 if Expr_Value_R (Type_Low_Bound (E)) >
17797 Expr_Value_R (Low_Bound (Spec))
17798 then
17799 return False;
17800 end if;
17802 if Expr_Value_R (Type_High_Bound (E)) <
17803 Expr_Value_R (High_Bound (Spec))
17804 then
17805 return False;
17806 end if;
17807 end if;
17809 return True;
17810 end Can_Derive_From;
17812 --------------------
17813 -- Find_Base_Type --
17814 --------------------
17816 function Find_Base_Type return Entity_Id is
17817 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
17819 begin
17820 -- Iterate over the predefined types in order, returning the first
17821 -- one that Def can derive from.
17823 while Present (Choice) loop
17824 if Can_Derive_From (Node (Choice)) then
17825 return Node (Choice);
17826 end if;
17828 Next_Elmt (Choice);
17829 end loop;
17831 -- If we can't derive from any existing type, use Long_Long_Float
17832 -- and give appropriate message explaining the problem.
17834 if Digs_Val > Max_Digs_Val then
17835 -- It might be the case that there is a type with the requested
17836 -- range, just not the combination of digits and range.
17838 Error_Msg_N
17839 ("no predefined type has requested range and precision",
17840 Real_Range_Specification (Def));
17842 else
17843 Error_Msg_N
17844 ("range too large for any predefined type",
17845 Real_Range_Specification (Def));
17846 end if;
17848 return Standard_Long_Long_Float;
17849 end Find_Base_Type;
17851 -- Start of processing for Floating_Point_Type_Declaration
17853 begin
17854 Check_Restriction (No_Floating_Point, Def);
17856 -- Create an implicit base type
17858 Implicit_Base :=
17859 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17861 -- Analyze and verify digits value
17863 Analyze_And_Resolve (Digs, Any_Integer);
17864 Check_Digits_Expression (Digs);
17865 Digs_Val := Expr_Value (Digs);
17867 -- Process possible range spec and find correct type to derive from
17869 Process_Real_Range_Specification (Def);
17871 -- Check that requested number of digits is not too high.
17873 if Digs_Val > Max_Digs_Val then
17875 -- The check for Max_Base_Digits may be somewhat expensive, as it
17876 -- requires reading System, so only do it when necessary.
17878 declare
17879 Max_Base_Digits : constant Uint :=
17880 Expr_Value
17881 (Expression
17882 (Parent (RTE (RE_Max_Base_Digits))));
17884 begin
17885 if Digs_Val > Max_Base_Digits then
17886 Error_Msg_Uint_1 := Max_Base_Digits;
17887 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17889 elsif No (Real_Range_Specification (Def)) then
17890 Error_Msg_Uint_1 := Max_Digs_Val;
17891 Error_Msg_N ("types with more than ^ digits need range spec "
17892 & "(RM 3.5.7(6))", Digs);
17893 end if;
17894 end;
17895 end if;
17897 -- Find a suitable type to derive from or complain and use a substitute
17899 Base_Typ := Find_Base_Type;
17901 -- If there are bounds given in the declaration use them as the bounds
17902 -- of the type, otherwise use the bounds of the predefined base type
17903 -- that was chosen based on the Digits value.
17905 if Present (Real_Range_Specification (Def)) then
17906 Set_Scalar_Range (T, Real_Range_Specification (Def));
17907 Set_Is_Constrained (T);
17909 -- The bounds of this range must be converted to machine numbers
17910 -- in accordance with RM 4.9(38).
17912 Bound := Type_Low_Bound (T);
17914 if Nkind (Bound) = N_Real_Literal then
17915 Set_Realval
17916 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17917 Set_Is_Machine_Number (Bound);
17918 end if;
17920 Bound := Type_High_Bound (T);
17922 if Nkind (Bound) = N_Real_Literal then
17923 Set_Realval
17924 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17925 Set_Is_Machine_Number (Bound);
17926 end if;
17928 else
17929 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17930 end if;
17932 -- Complete definition of implicit base and declared first subtype. The
17933 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17934 -- are not clobbered when the floating point type acts as a full view of
17935 -- a private type.
17937 Set_Etype (Implicit_Base, Base_Typ);
17938 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17939 Set_Size_Info (Implicit_Base, Base_Typ);
17940 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17941 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17942 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17943 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17945 Set_Ekind (T, E_Floating_Point_Subtype);
17946 Set_Etype (T, Implicit_Base);
17947 Set_Size_Info (T, Implicit_Base);
17948 Set_RM_Size (T, RM_Size (Implicit_Base));
17949 Inherit_Rep_Item_Chain (T, Implicit_Base);
17950 Set_Digits_Value (T, Digs_Val);
17951 end Floating_Point_Type_Declaration;
17953 ----------------------------
17954 -- Get_Discriminant_Value --
17955 ----------------------------
17957 -- This is the situation:
17959 -- There is a non-derived type
17961 -- type T0 (Dx, Dy, Dz...)
17963 -- There are zero or more levels of derivation, with each derivation
17964 -- either purely inheriting the discriminants, or defining its own.
17966 -- type Ti is new Ti-1
17967 -- or
17968 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17969 -- or
17970 -- subtype Ti is ...
17972 -- The subtype issue is avoided by the use of Original_Record_Component,
17973 -- and the fact that derived subtypes also derive the constraints.
17975 -- This chain leads back from
17977 -- Typ_For_Constraint
17979 -- Typ_For_Constraint has discriminants, and the value for each
17980 -- discriminant is given by its corresponding Elmt of Constraints.
17982 -- Discriminant is some discriminant in this hierarchy
17984 -- We need to return its value
17986 -- We do this by recursively searching each level, and looking for
17987 -- Discriminant. Once we get to the bottom, we start backing up
17988 -- returning the value for it which may in turn be a discriminant
17989 -- further up, so on the backup we continue the substitution.
17991 function Get_Discriminant_Value
17992 (Discriminant : Entity_Id;
17993 Typ_For_Constraint : Entity_Id;
17994 Constraint : Elist_Id) return Node_Id
17996 function Root_Corresponding_Discriminant
17997 (Discr : Entity_Id) return Entity_Id;
17998 -- Given a discriminant, traverse the chain of inherited discriminants
17999 -- and return the topmost discriminant.
18001 function Search_Derivation_Levels
18002 (Ti : Entity_Id;
18003 Discrim_Values : Elist_Id;
18004 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
18005 -- This is the routine that performs the recursive search of levels
18006 -- as described above.
18008 -------------------------------------
18009 -- Root_Corresponding_Discriminant --
18010 -------------------------------------
18012 function Root_Corresponding_Discriminant
18013 (Discr : Entity_Id) return Entity_Id
18015 D : Entity_Id;
18017 begin
18018 D := Discr;
18019 while Present (Corresponding_Discriminant (D)) loop
18020 D := Corresponding_Discriminant (D);
18021 end loop;
18023 return D;
18024 end Root_Corresponding_Discriminant;
18026 ------------------------------
18027 -- Search_Derivation_Levels --
18028 ------------------------------
18030 function Search_Derivation_Levels
18031 (Ti : Entity_Id;
18032 Discrim_Values : Elist_Id;
18033 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
18035 Assoc : Elmt_Id;
18036 Disc : Entity_Id;
18037 Result : Node_Or_Entity_Id;
18038 Result_Entity : Node_Id;
18040 begin
18041 -- If inappropriate type, return Error, this happens only in
18042 -- cascaded error situations, and we want to avoid a blow up.
18044 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
18045 return Error;
18046 end if;
18048 -- Look deeper if possible. Use Stored_Constraints only for
18049 -- untagged types. For tagged types use the given constraint.
18050 -- This asymmetry needs explanation???
18052 if not Stored_Discrim_Values
18053 and then Present (Stored_Constraint (Ti))
18054 and then not Is_Tagged_Type (Ti)
18055 then
18056 Result :=
18057 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
18059 else
18060 declare
18061 Td : Entity_Id := Etype (Ti);
18063 begin
18064 -- If the parent type is private, the full view may include
18065 -- renamed discriminants, and it is those stored values that
18066 -- may be needed (the partial view never has more information
18067 -- than the full view).
18069 if Is_Private_Type (Td) and then Present (Full_View (Td)) then
18070 Td := Full_View (Td);
18071 end if;
18073 if Td = Ti then
18074 Result := Discriminant;
18076 else
18077 if Present (Stored_Constraint (Ti)) then
18078 Result :=
18079 Search_Derivation_Levels
18080 (Td, Stored_Constraint (Ti), True);
18081 else
18082 Result :=
18083 Search_Derivation_Levels
18084 (Td, Discrim_Values, Stored_Discrim_Values);
18085 end if;
18086 end if;
18087 end;
18088 end if;
18090 -- Extra underlying places to search, if not found above. For
18091 -- concurrent types, the relevant discriminant appears in the
18092 -- corresponding record. For a type derived from a private type
18093 -- without discriminant, the full view inherits the discriminants
18094 -- of the full view of the parent.
18096 if Result = Discriminant then
18097 if Is_Concurrent_Type (Ti)
18098 and then Present (Corresponding_Record_Type (Ti))
18099 then
18100 Result :=
18101 Search_Derivation_Levels (
18102 Corresponding_Record_Type (Ti),
18103 Discrim_Values,
18104 Stored_Discrim_Values);
18106 elsif Is_Private_Type (Ti)
18107 and then not Has_Discriminants (Ti)
18108 and then Present (Full_View (Ti))
18109 and then Etype (Full_View (Ti)) /= Ti
18110 then
18111 Result :=
18112 Search_Derivation_Levels (
18113 Full_View (Ti),
18114 Discrim_Values,
18115 Stored_Discrim_Values);
18116 end if;
18117 end if;
18119 -- If Result is not a (reference to a) discriminant, return it,
18120 -- otherwise set Result_Entity to the discriminant.
18122 if Nkind (Result) = N_Defining_Identifier then
18123 pragma Assert (Result = Discriminant);
18124 Result_Entity := Result;
18126 else
18127 if not Denotes_Discriminant (Result) then
18128 return Result;
18129 end if;
18131 Result_Entity := Entity (Result);
18132 end if;
18134 -- See if this level of derivation actually has discriminants because
18135 -- tagged derivations can add them, hence the lower levels need not
18136 -- have any.
18138 if not Has_Discriminants (Ti) then
18139 return Result;
18140 end if;
18142 -- Scan Ti's discriminants for Result_Entity, and return its
18143 -- corresponding value, if any.
18145 Result_Entity := Original_Record_Component (Result_Entity);
18147 Assoc := First_Elmt (Discrim_Values);
18149 if Stored_Discrim_Values then
18150 Disc := First_Stored_Discriminant (Ti);
18151 else
18152 Disc := First_Discriminant (Ti);
18153 end if;
18155 while Present (Disc) loop
18157 -- If no further associations return the discriminant, value will
18158 -- be found on the second pass.
18160 if No (Assoc) then
18161 return Result;
18162 end if;
18164 if Original_Record_Component (Disc) = Result_Entity then
18165 return Node (Assoc);
18166 end if;
18168 Next_Elmt (Assoc);
18170 if Stored_Discrim_Values then
18171 Next_Stored_Discriminant (Disc);
18172 else
18173 Next_Discriminant (Disc);
18174 end if;
18175 end loop;
18177 -- Could not find it
18179 return Result;
18180 end Search_Derivation_Levels;
18182 -- Local Variables
18184 Result : Node_Or_Entity_Id;
18186 -- Start of processing for Get_Discriminant_Value
18188 begin
18189 -- ??? This routine is a gigantic mess and will be deleted. For the
18190 -- time being just test for the trivial case before calling recurse.
18192 -- We are now celebrating the 20th anniversary of this comment!
18194 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
18195 declare
18196 D : Entity_Id;
18197 E : Elmt_Id;
18199 begin
18200 D := First_Discriminant (Typ_For_Constraint);
18201 E := First_Elmt (Constraint);
18202 while Present (D) loop
18203 if Chars (D) = Chars (Discriminant) then
18204 return Node (E);
18205 end if;
18207 Next_Discriminant (D);
18208 Next_Elmt (E);
18209 end loop;
18210 end;
18211 end if;
18213 Result := Search_Derivation_Levels
18214 (Typ_For_Constraint, Constraint, False);
18216 -- ??? hack to disappear when this routine is gone
18218 if Nkind (Result) = N_Defining_Identifier then
18219 declare
18220 D : Entity_Id;
18221 E : Elmt_Id;
18223 begin
18224 D := First_Discriminant (Typ_For_Constraint);
18225 E := First_Elmt (Constraint);
18226 while Present (D) loop
18227 if Root_Corresponding_Discriminant (D) = Discriminant then
18228 return Node (E);
18229 end if;
18231 Next_Discriminant (D);
18232 Next_Elmt (E);
18233 end loop;
18234 end;
18235 end if;
18237 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
18238 return Result;
18239 end Get_Discriminant_Value;
18241 --------------------------
18242 -- Has_Range_Constraint --
18243 --------------------------
18245 function Has_Range_Constraint (N : Node_Id) return Boolean is
18246 C : constant Node_Id := Constraint (N);
18248 begin
18249 if Nkind (C) = N_Range_Constraint then
18250 return True;
18252 elsif Nkind (C) = N_Digits_Constraint then
18253 return
18254 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
18255 or else Present (Range_Constraint (C));
18257 elsif Nkind (C) = N_Delta_Constraint then
18258 return Present (Range_Constraint (C));
18260 else
18261 return False;
18262 end if;
18263 end Has_Range_Constraint;
18265 ------------------------
18266 -- Inherit_Components --
18267 ------------------------
18269 function Inherit_Components
18270 (N : Node_Id;
18271 Parent_Base : Entity_Id;
18272 Derived_Base : Entity_Id;
18273 Is_Tagged : Boolean;
18274 Inherit_Discr : Boolean;
18275 Discs : Elist_Id) return Elist_Id
18277 Assoc_List : constant Elist_Id := New_Elmt_List;
18279 procedure Inherit_Component
18280 (Old_C : Entity_Id;
18281 Plain_Discrim : Boolean := False;
18282 Stored_Discrim : Boolean := False);
18283 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18284 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18285 -- True, Old_C is a stored discriminant. If they are both false then
18286 -- Old_C is a regular component.
18288 -----------------------
18289 -- Inherit_Component --
18290 -----------------------
18292 procedure Inherit_Component
18293 (Old_C : Entity_Id;
18294 Plain_Discrim : Boolean := False;
18295 Stored_Discrim : Boolean := False)
18297 procedure Set_Anonymous_Type (Id : Entity_Id);
18298 -- Id denotes the entity of an access discriminant or anonymous
18299 -- access component. Set the type of Id to either the same type of
18300 -- Old_C or create a new one depending on whether the parent and
18301 -- the child types are in the same scope.
18303 ------------------------
18304 -- Set_Anonymous_Type --
18305 ------------------------
18307 procedure Set_Anonymous_Type (Id : Entity_Id) is
18308 Old_Typ : constant Entity_Id := Etype (Old_C);
18310 begin
18311 if Scope (Parent_Base) = Scope (Derived_Base) then
18312 Set_Etype (Id, Old_Typ);
18314 -- The parent and the derived type are in two different scopes.
18315 -- Reuse the type of the original discriminant / component by
18316 -- copying it in order to preserve all attributes.
18318 else
18319 declare
18320 Typ : constant Entity_Id := New_Copy (Old_Typ);
18322 begin
18323 Set_Etype (Id, Typ);
18325 -- Since we do not generate component declarations for
18326 -- inherited components, associate the itype with the
18327 -- derived type.
18329 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
18330 Set_Scope (Typ, Derived_Base);
18331 end;
18332 end if;
18333 end Set_Anonymous_Type;
18335 -- Local variables and constants
18337 New_C : constant Entity_Id := New_Copy (Old_C);
18339 Corr_Discrim : Entity_Id;
18340 Discrim : Entity_Id;
18342 -- Start of processing for Inherit_Component
18344 begin
18345 pragma Assert (not Is_Tagged or not Stored_Discrim);
18347 Set_Parent (New_C, Parent (Old_C));
18349 -- Regular discriminants and components must be inserted in the scope
18350 -- of the Derived_Base. Do it here.
18352 if not Stored_Discrim then
18353 Enter_Name (New_C);
18354 end if;
18356 -- For tagged types the Original_Record_Component must point to
18357 -- whatever this field was pointing to in the parent type. This has
18358 -- already been achieved by the call to New_Copy above.
18360 if not Is_Tagged then
18361 Set_Original_Record_Component (New_C, New_C);
18362 Set_Corresponding_Record_Component (New_C, Old_C);
18363 end if;
18365 -- Set the proper type of an access discriminant
18367 if Ekind (New_C) = E_Discriminant
18368 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
18369 then
18370 Set_Anonymous_Type (New_C);
18371 end if;
18373 -- If we have inherited a component then see if its Etype contains
18374 -- references to Parent_Base discriminants. In this case, replace
18375 -- these references with the constraints given in Discs. We do not
18376 -- do this for the partial view of private types because this is
18377 -- not needed (only the components of the full view will be used
18378 -- for code generation) and cause problem. We also avoid this
18379 -- transformation in some error situations.
18381 if Ekind (New_C) = E_Component then
18383 -- Set the proper type of an anonymous access component
18385 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
18386 Set_Anonymous_Type (New_C);
18388 elsif (Is_Private_Type (Derived_Base)
18389 and then not Is_Generic_Type (Derived_Base))
18390 or else (Is_Empty_Elmt_List (Discs)
18391 and then not Expander_Active)
18392 then
18393 Set_Etype (New_C, Etype (Old_C));
18395 else
18396 -- The current component introduces a circularity of the
18397 -- following kind:
18399 -- limited with Pack_2;
18400 -- package Pack_1 is
18401 -- type T_1 is tagged record
18402 -- Comp : access Pack_2.T_2;
18403 -- ...
18404 -- end record;
18405 -- end Pack_1;
18407 -- with Pack_1;
18408 -- package Pack_2 is
18409 -- type T_2 is new Pack_1.T_1 with ...;
18410 -- end Pack_2;
18412 Set_Etype
18413 (New_C,
18414 Constrain_Component_Type
18415 (Old_C, Derived_Base, N, Parent_Base, Discs));
18416 end if;
18417 end if;
18419 -- In derived tagged types it is illegal to reference a non
18420 -- discriminant component in the parent type. To catch this, mark
18421 -- these components with an Ekind of E_Void. This will be reset in
18422 -- Record_Type_Definition after processing the record extension of
18423 -- the derived type.
18425 -- If the declaration is a private extension, there is no further
18426 -- record extension to process, and the components retain their
18427 -- current kind, because they are visible at this point.
18429 if Is_Tagged and then Ekind (New_C) = E_Component
18430 and then Nkind (N) /= N_Private_Extension_Declaration
18431 then
18432 Set_Ekind (New_C, E_Void);
18433 end if;
18435 if Plain_Discrim then
18436 Set_Corresponding_Discriminant (New_C, Old_C);
18437 Build_Discriminal (New_C);
18439 -- If we are explicitly inheriting a stored discriminant it will be
18440 -- completely hidden.
18442 elsif Stored_Discrim then
18443 Set_Corresponding_Discriminant (New_C, Empty);
18444 Set_Discriminal (New_C, Empty);
18445 Set_Is_Completely_Hidden (New_C);
18447 -- Set the Original_Record_Component of each discriminant in the
18448 -- derived base to point to the corresponding stored that we just
18449 -- created.
18451 Discrim := First_Discriminant (Derived_Base);
18452 while Present (Discrim) loop
18453 Corr_Discrim := Corresponding_Discriminant (Discrim);
18455 -- Corr_Discrim could be missing in an error situation
18457 if Present (Corr_Discrim)
18458 and then Original_Record_Component (Corr_Discrim) = Old_C
18459 then
18460 Set_Original_Record_Component (Discrim, New_C);
18461 Set_Corresponding_Record_Component (Discrim, Empty);
18462 end if;
18464 Next_Discriminant (Discrim);
18465 end loop;
18467 Append_Entity (New_C, Derived_Base);
18468 end if;
18470 if not Is_Tagged then
18471 Append_Elmt (Old_C, Assoc_List);
18472 Append_Elmt (New_C, Assoc_List);
18473 end if;
18474 end Inherit_Component;
18476 -- Variables local to Inherit_Component
18478 Loc : constant Source_Ptr := Sloc (N);
18480 Parent_Discrim : Entity_Id;
18481 Stored_Discrim : Entity_Id;
18482 D : Entity_Id;
18483 Component : Entity_Id;
18485 -- Start of processing for Inherit_Components
18487 begin
18488 if not Is_Tagged then
18489 Append_Elmt (Parent_Base, Assoc_List);
18490 Append_Elmt (Derived_Base, Assoc_List);
18491 end if;
18493 -- Inherit parent discriminants if needed
18495 if Inherit_Discr then
18496 Parent_Discrim := First_Discriminant (Parent_Base);
18497 while Present (Parent_Discrim) loop
18498 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
18499 Next_Discriminant (Parent_Discrim);
18500 end loop;
18501 end if;
18503 -- Create explicit stored discrims for untagged types when necessary
18505 if not Has_Unknown_Discriminants (Derived_Base)
18506 and then Has_Discriminants (Parent_Base)
18507 and then not Is_Tagged
18508 and then
18509 (not Inherit_Discr
18510 or else First_Discriminant (Parent_Base) /=
18511 First_Stored_Discriminant (Parent_Base))
18512 then
18513 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
18514 while Present (Stored_Discrim) loop
18515 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
18516 Next_Stored_Discriminant (Stored_Discrim);
18517 end loop;
18518 end if;
18520 -- See if we can apply the second transformation for derived types, as
18521 -- explained in point 6. in the comments above Build_Derived_Record_Type
18522 -- This is achieved by appending Derived_Base discriminants into Discs,
18523 -- which has the side effect of returning a non empty Discs list to the
18524 -- caller of Inherit_Components, which is what we want. This must be
18525 -- done for private derived types if there are explicit stored
18526 -- discriminants, to ensure that we can retrieve the values of the
18527 -- constraints provided in the ancestors.
18529 if Inherit_Discr
18530 and then Is_Empty_Elmt_List (Discs)
18531 and then Present (First_Discriminant (Derived_Base))
18532 and then
18533 (not Is_Private_Type (Derived_Base)
18534 or else Is_Completely_Hidden
18535 (First_Stored_Discriminant (Derived_Base))
18536 or else Is_Generic_Type (Derived_Base))
18537 then
18538 D := First_Discriminant (Derived_Base);
18539 while Present (D) loop
18540 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
18541 Next_Discriminant (D);
18542 end loop;
18543 end if;
18545 -- Finally, inherit non-discriminant components unless they are not
18546 -- visible because defined or inherited from the full view of the
18547 -- parent. Don't inherit the _parent field of the parent type.
18549 Component := First_Entity (Parent_Base);
18550 while Present (Component) loop
18552 -- Ada 2005 (AI-251): Do not inherit components associated with
18553 -- secondary tags of the parent.
18555 if Ekind (Component) = E_Component
18556 and then Present (Related_Type (Component))
18557 then
18558 null;
18560 elsif Ekind (Component) /= E_Component
18561 or else Chars (Component) = Name_uParent
18562 then
18563 null;
18565 -- If the derived type is within the parent type's declarative
18566 -- region, then the components can still be inherited even though
18567 -- they aren't visible at this point. This can occur for cases
18568 -- such as within public child units where the components must
18569 -- become visible upon entering the child unit's private part.
18571 elsif not Is_Visible_Component (Component)
18572 and then not In_Open_Scopes (Scope (Parent_Base))
18573 then
18574 null;
18576 elsif Ekind_In (Derived_Base, E_Private_Type,
18577 E_Limited_Private_Type)
18578 then
18579 null;
18581 else
18582 Inherit_Component (Component);
18583 end if;
18585 Next_Entity (Component);
18586 end loop;
18588 -- For tagged derived types, inherited discriminants cannot be used in
18589 -- component declarations of the record extension part. To achieve this
18590 -- we mark the inherited discriminants as not visible.
18592 if Is_Tagged and then Inherit_Discr then
18593 D := First_Discriminant (Derived_Base);
18594 while Present (D) loop
18595 Set_Is_Immediately_Visible (D, False);
18596 Next_Discriminant (D);
18597 end loop;
18598 end if;
18600 return Assoc_List;
18601 end Inherit_Components;
18603 -----------------------------
18604 -- Inherit_Predicate_Flags --
18605 -----------------------------
18607 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
18608 begin
18609 if Present (Predicate_Function (Subt)) then
18610 return;
18611 end if;
18613 Set_Has_Predicates (Subt, Has_Predicates (Par));
18614 Set_Has_Static_Predicate_Aspect
18615 (Subt, Has_Static_Predicate_Aspect (Par));
18616 Set_Has_Dynamic_Predicate_Aspect
18617 (Subt, Has_Dynamic_Predicate_Aspect (Par));
18619 -- A named subtype does not inherit the predicate function of its
18620 -- parent but an itype declared for a loop index needs the discrete
18621 -- predicate information of its parent to execute the loop properly.
18622 -- A non-discrete type may has a static predicate (for example True)
18623 -- but has no static_discrete_predicate.
18625 if Is_Itype (Subt) and then Present (Predicate_Function (Par)) then
18626 Set_Subprograms_For_Type (Subt, Subprograms_For_Type (Par));
18628 if Has_Static_Predicate (Par) and then Is_Discrete_Type (Par) then
18629 Set_Static_Discrete_Predicate
18630 (Subt, Static_Discrete_Predicate (Par));
18631 end if;
18632 end if;
18633 end Inherit_Predicate_Flags;
18635 ----------------------
18636 -- Is_EVF_Procedure --
18637 ----------------------
18639 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
18640 Formal : Entity_Id;
18642 begin
18643 -- Examine the formals of an Extensions_Visible False procedure looking
18644 -- for a controlling OUT parameter.
18646 if Ekind (Subp) = E_Procedure
18647 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
18648 then
18649 Formal := First_Formal (Subp);
18650 while Present (Formal) loop
18651 if Ekind (Formal) = E_Out_Parameter
18652 and then Is_Controlling_Formal (Formal)
18653 then
18654 return True;
18655 end if;
18657 Next_Formal (Formal);
18658 end loop;
18659 end if;
18661 return False;
18662 end Is_EVF_Procedure;
18664 -----------------------
18665 -- Is_Null_Extension --
18666 -----------------------
18668 function Is_Null_Extension (T : Entity_Id) return Boolean is
18669 Type_Decl : constant Node_Id := Parent (Base_Type (T));
18670 Comp_List : Node_Id;
18671 Comp : Node_Id;
18673 begin
18674 if Nkind (Type_Decl) /= N_Full_Type_Declaration
18675 or else not Is_Tagged_Type (T)
18676 or else Nkind (Type_Definition (Type_Decl)) /=
18677 N_Derived_Type_Definition
18678 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
18679 then
18680 return False;
18681 end if;
18683 Comp_List :=
18684 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
18686 if Present (Discriminant_Specifications (Type_Decl)) then
18687 return False;
18689 elsif Present (Comp_List)
18690 and then Is_Non_Empty_List (Component_Items (Comp_List))
18691 then
18692 Comp := First (Component_Items (Comp_List));
18694 -- Only user-defined components are relevant. The component list
18695 -- may also contain a parent component and internal components
18696 -- corresponding to secondary tags, but these do not determine
18697 -- whether this is a null extension.
18699 while Present (Comp) loop
18700 if Comes_From_Source (Comp) then
18701 return False;
18702 end if;
18704 Next (Comp);
18705 end loop;
18707 return True;
18709 else
18710 return True;
18711 end if;
18712 end Is_Null_Extension;
18714 ------------------------------
18715 -- Is_Valid_Constraint_Kind --
18716 ------------------------------
18718 function Is_Valid_Constraint_Kind
18719 (T_Kind : Type_Kind;
18720 Constraint_Kind : Node_Kind) return Boolean
18722 begin
18723 case T_Kind is
18724 when Enumeration_Kind
18725 | Integer_Kind
18727 return Constraint_Kind = N_Range_Constraint;
18729 when Decimal_Fixed_Point_Kind =>
18730 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18731 N_Range_Constraint);
18733 when Ordinary_Fixed_Point_Kind =>
18734 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
18735 N_Range_Constraint);
18737 when Float_Kind =>
18738 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18739 N_Range_Constraint);
18741 when Access_Kind
18742 | Array_Kind
18743 | Class_Wide_Kind
18744 | Concurrent_Kind
18745 | Private_Kind
18746 | E_Incomplete_Type
18747 | E_Record_Subtype
18748 | E_Record_Type
18750 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
18752 when others =>
18753 return True; -- Error will be detected later
18754 end case;
18755 end Is_Valid_Constraint_Kind;
18757 --------------------------
18758 -- Is_Visible_Component --
18759 --------------------------
18761 function Is_Visible_Component
18762 (C : Entity_Id;
18763 N : Node_Id := Empty) return Boolean
18765 Original_Comp : Entity_Id := Empty;
18766 Original_Type : Entity_Id;
18767 Type_Scope : Entity_Id;
18769 function Is_Local_Type (Typ : Entity_Id) return Boolean;
18770 -- Check whether parent type of inherited component is declared locally,
18771 -- possibly within a nested package or instance. The current scope is
18772 -- the derived record itself.
18774 -------------------
18775 -- Is_Local_Type --
18776 -------------------
18778 function Is_Local_Type (Typ : Entity_Id) return Boolean is
18779 Scop : Entity_Id;
18781 begin
18782 Scop := Scope (Typ);
18783 while Present (Scop)
18784 and then Scop /= Standard_Standard
18785 loop
18786 if Scop = Scope (Current_Scope) then
18787 return True;
18788 end if;
18790 Scop := Scope (Scop);
18791 end loop;
18793 return False;
18794 end Is_Local_Type;
18796 -- Start of processing for Is_Visible_Component
18798 begin
18799 if Ekind_In (C, E_Component, E_Discriminant) then
18800 Original_Comp := Original_Record_Component (C);
18801 end if;
18803 if No (Original_Comp) then
18805 -- Premature usage, or previous error
18807 return False;
18809 else
18810 Original_Type := Scope (Original_Comp);
18811 Type_Scope := Scope (Base_Type (Scope (C)));
18812 end if;
18814 -- This test only concerns tagged types
18816 if not Is_Tagged_Type (Original_Type) then
18818 -- Check if this is a renamed discriminant (hidden either by the
18819 -- derived type or by some ancestor), unless we are analyzing code
18820 -- generated by the expander since it may reference such components
18821 -- (for example see the expansion of Deep_Adjust).
18823 if Ekind (C) = E_Discriminant and then Present (N) then
18824 return
18825 not Comes_From_Source (N)
18826 or else not Is_Completely_Hidden (C);
18827 else
18828 return True;
18829 end if;
18831 -- If it is _Parent or _Tag, there is no visibility issue
18833 elsif not Comes_From_Source (Original_Comp) then
18834 return True;
18836 -- Discriminants are visible unless the (private) type has unknown
18837 -- discriminants. If the discriminant reference is inserted for a
18838 -- discriminant check on a full view it is also visible.
18840 elsif Ekind (Original_Comp) = E_Discriminant
18841 and then
18842 (not Has_Unknown_Discriminants (Original_Type)
18843 or else (Present (N)
18844 and then Nkind (N) = N_Selected_Component
18845 and then Nkind (Prefix (N)) = N_Type_Conversion
18846 and then not Comes_From_Source (Prefix (N))))
18847 then
18848 return True;
18850 -- In the body of an instantiation, check the visibility of a component
18851 -- in case it has a homograph that is a primitive operation of a private
18852 -- type which was not visible in the generic unit.
18854 -- Should Is_Prefixed_Call be propagated from template to instance???
18856 elsif In_Instance_Body then
18857 if not Is_Tagged_Type (Original_Type)
18858 or else not Is_Private_Type (Original_Type)
18859 then
18860 return True;
18862 else
18863 declare
18864 Subp_Elmt : Elmt_Id;
18866 begin
18867 Subp_Elmt := First_Elmt (Primitive_Operations (Original_Type));
18868 while Present (Subp_Elmt) loop
18870 -- The component is hidden by a primitive operation
18872 if Chars (Node (Subp_Elmt)) = Chars (C) then
18873 return False;
18874 end if;
18876 Next_Elmt (Subp_Elmt);
18877 end loop;
18879 return True;
18880 end;
18881 end if;
18883 -- If the component has been declared in an ancestor which is currently
18884 -- a private type, then it is not visible. The same applies if the
18885 -- component's containing type is not in an open scope and the original
18886 -- component's enclosing type is a visible full view of a private type
18887 -- (which can occur in cases where an attempt is being made to reference
18888 -- a component in a sibling package that is inherited from a visible
18889 -- component of a type in an ancestor package; the component in the
18890 -- sibling package should not be visible even though the component it
18891 -- inherited from is visible). This does not apply however in the case
18892 -- where the scope of the type is a private child unit, or when the
18893 -- parent comes from a local package in which the ancestor is currently
18894 -- visible. The latter suppression of visibility is needed for cases
18895 -- that are tested in B730006.
18897 elsif Is_Private_Type (Original_Type)
18898 or else
18899 (not Is_Private_Descendant (Type_Scope)
18900 and then not In_Open_Scopes (Type_Scope)
18901 and then Has_Private_Declaration (Original_Type))
18902 then
18903 -- If the type derives from an entity in a formal package, there
18904 -- are no additional visible components.
18906 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
18907 N_Formal_Package_Declaration
18908 then
18909 return False;
18911 -- if we are not in the private part of the current package, there
18912 -- are no additional visible components.
18914 elsif Ekind (Scope (Current_Scope)) = E_Package
18915 and then not In_Private_Part (Scope (Current_Scope))
18916 then
18917 return False;
18918 else
18919 return
18920 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
18921 and then In_Open_Scopes (Scope (Original_Type))
18922 and then Is_Local_Type (Type_Scope);
18923 end if;
18925 -- There is another weird way in which a component may be invisible when
18926 -- the private and the full view are not derived from the same ancestor.
18927 -- Here is an example :
18929 -- type A1 is tagged record F1 : integer; end record;
18930 -- type A2 is new A1 with record F2 : integer; end record;
18931 -- type T is new A1 with private;
18932 -- private
18933 -- type T is new A2 with null record;
18935 -- In this case, the full view of T inherits F1 and F2 but the private
18936 -- view inherits only F1
18938 else
18939 declare
18940 Ancestor : Entity_Id := Scope (C);
18942 begin
18943 loop
18944 if Ancestor = Original_Type then
18945 return True;
18947 -- The ancestor may have a partial view of the original type,
18948 -- but if the full view is in scope, as in a child body, the
18949 -- component is visible.
18951 elsif In_Private_Part (Scope (Original_Type))
18952 and then Full_View (Ancestor) = Original_Type
18953 then
18954 return True;
18956 elsif Ancestor = Etype (Ancestor) then
18958 -- No further ancestors to examine
18960 return False;
18961 end if;
18963 Ancestor := Etype (Ancestor);
18964 end loop;
18965 end;
18966 end if;
18967 end Is_Visible_Component;
18969 --------------------------
18970 -- Make_Class_Wide_Type --
18971 --------------------------
18973 procedure Make_Class_Wide_Type (T : Entity_Id) is
18974 CW_Type : Entity_Id;
18975 CW_Name : Name_Id;
18976 Next_E : Entity_Id;
18977 Prev_E : Entity_Id;
18979 begin
18980 if Present (Class_Wide_Type (T)) then
18982 -- The class-wide type is a partially decorated entity created for a
18983 -- unanalyzed tagged type referenced through a limited with clause.
18984 -- When the tagged type is analyzed, its class-wide type needs to be
18985 -- redecorated. Note that we reuse the entity created by Decorate_
18986 -- Tagged_Type in order to preserve all links.
18988 if Materialize_Entity (Class_Wide_Type (T)) then
18989 CW_Type := Class_Wide_Type (T);
18990 Set_Materialize_Entity (CW_Type, False);
18992 -- The class wide type can have been defined by the partial view, in
18993 -- which case everything is already done.
18995 else
18996 return;
18997 end if;
18999 -- Default case, we need to create a new class-wide type
19001 else
19002 CW_Type :=
19003 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
19004 end if;
19006 -- Inherit root type characteristics
19008 CW_Name := Chars (CW_Type);
19009 Next_E := Next_Entity (CW_Type);
19010 Prev_E := Prev_Entity (CW_Type);
19011 Copy_Node (T, CW_Type);
19012 Set_Comes_From_Source (CW_Type, False);
19013 Set_Chars (CW_Type, CW_Name);
19014 Set_Parent (CW_Type, Parent (T));
19015 Set_Prev_Entity (CW_Type, Prev_E);
19016 Set_Next_Entity (CW_Type, Next_E);
19018 -- Ensure we have a new freeze node for the class-wide type. The partial
19019 -- view may have freeze action of its own, requiring a proper freeze
19020 -- node, and the same freeze node cannot be shared between the two
19021 -- types.
19023 Set_Has_Delayed_Freeze (CW_Type);
19024 Set_Freeze_Node (CW_Type, Empty);
19026 -- Customize the class-wide type: It has no prim. op., it cannot be
19027 -- abstract, its Etype points back to the specific root type, and it
19028 -- cannot have any invariants.
19030 Set_Ekind (CW_Type, E_Class_Wide_Type);
19031 Set_Is_Tagged_Type (CW_Type, True);
19032 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
19033 Set_Is_Abstract_Type (CW_Type, False);
19034 Set_Is_Constrained (CW_Type, False);
19035 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
19036 Set_Default_SSO (CW_Type);
19037 Set_Has_Inheritable_Invariants (CW_Type, False);
19038 Set_Has_Inherited_Invariants (CW_Type, False);
19039 Set_Has_Own_Invariants (CW_Type, False);
19041 if Ekind (T) = E_Class_Wide_Subtype then
19042 Set_Etype (CW_Type, Etype (Base_Type (T)));
19043 else
19044 Set_Etype (CW_Type, T);
19045 end if;
19047 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
19049 -- If this is the class_wide type of a constrained subtype, it does
19050 -- not have discriminants.
19052 Set_Has_Discriminants (CW_Type,
19053 Has_Discriminants (T) and then not Is_Constrained (T));
19055 Set_Has_Unknown_Discriminants (CW_Type, True);
19056 Set_Class_Wide_Type (T, CW_Type);
19057 Set_Equivalent_Type (CW_Type, Empty);
19059 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
19061 Set_Class_Wide_Type (CW_Type, CW_Type);
19062 end Make_Class_Wide_Type;
19064 ----------------
19065 -- Make_Index --
19066 ----------------
19068 procedure Make_Index
19069 (N : Node_Id;
19070 Related_Nod : Node_Id;
19071 Related_Id : Entity_Id := Empty;
19072 Suffix_Index : Nat := 1;
19073 In_Iter_Schm : Boolean := False)
19075 R : Node_Id;
19076 T : Entity_Id;
19077 Def_Id : Entity_Id := Empty;
19078 Found : Boolean := False;
19080 begin
19081 -- For a discrete range used in a constrained array definition and
19082 -- defined by a range, an implicit conversion to the predefined type
19083 -- INTEGER is assumed if each bound is either a numeric literal, a named
19084 -- number, or an attribute, and the type of both bounds (prior to the
19085 -- implicit conversion) is the type universal_integer. Otherwise, both
19086 -- bounds must be of the same discrete type, other than universal
19087 -- integer; this type must be determinable independently of the
19088 -- context, but using the fact that the type must be discrete and that
19089 -- both bounds must have the same type.
19091 -- Character literals also have a universal type in the absence of
19092 -- of additional context, and are resolved to Standard_Character.
19094 if Nkind (N) = N_Range then
19096 -- The index is given by a range constraint. The bounds are known
19097 -- to be of a consistent type.
19099 if not Is_Overloaded (N) then
19100 T := Etype (N);
19102 -- For universal bounds, choose the specific predefined type
19104 if T = Universal_Integer then
19105 T := Standard_Integer;
19107 elsif T = Any_Character then
19108 Ambiguous_Character (Low_Bound (N));
19110 T := Standard_Character;
19111 end if;
19113 -- The node may be overloaded because some user-defined operators
19114 -- are available, but if a universal interpretation exists it is
19115 -- also the selected one.
19117 elsif Universal_Interpretation (N) = Universal_Integer then
19118 T := Standard_Integer;
19120 else
19121 T := Any_Type;
19123 declare
19124 Ind : Interp_Index;
19125 It : Interp;
19127 begin
19128 Get_First_Interp (N, Ind, It);
19129 while Present (It.Typ) loop
19130 if Is_Discrete_Type (It.Typ) then
19132 if Found
19133 and then not Covers (It.Typ, T)
19134 and then not Covers (T, It.Typ)
19135 then
19136 Error_Msg_N ("ambiguous bounds in discrete range", N);
19137 exit;
19138 else
19139 T := It.Typ;
19140 Found := True;
19141 end if;
19142 end if;
19144 Get_Next_Interp (Ind, It);
19145 end loop;
19147 if T = Any_Type then
19148 Error_Msg_N ("discrete type required for range", N);
19149 Set_Etype (N, Any_Type);
19150 return;
19152 elsif T = Universal_Integer then
19153 T := Standard_Integer;
19154 end if;
19155 end;
19156 end if;
19158 if not Is_Discrete_Type (T) then
19159 Error_Msg_N ("discrete type required for range", N);
19160 Set_Etype (N, Any_Type);
19161 return;
19162 end if;
19164 if Nkind (Low_Bound (N)) = N_Attribute_Reference
19165 and then Attribute_Name (Low_Bound (N)) = Name_First
19166 and then Is_Entity_Name (Prefix (Low_Bound (N)))
19167 and then Is_Type (Entity (Prefix (Low_Bound (N))))
19168 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
19169 then
19170 -- The type of the index will be the type of the prefix, as long
19171 -- as the upper bound is 'Last of the same type.
19173 Def_Id := Entity (Prefix (Low_Bound (N)));
19175 if Nkind (High_Bound (N)) /= N_Attribute_Reference
19176 or else Attribute_Name (High_Bound (N)) /= Name_Last
19177 or else not Is_Entity_Name (Prefix (High_Bound (N)))
19178 or else Entity (Prefix (High_Bound (N))) /= Def_Id
19179 then
19180 Def_Id := Empty;
19181 end if;
19182 end if;
19184 R := N;
19185 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
19187 elsif Nkind (N) = N_Subtype_Indication then
19189 -- The index is given by a subtype with a range constraint
19191 T := Base_Type (Entity (Subtype_Mark (N)));
19193 if not Is_Discrete_Type (T) then
19194 Error_Msg_N ("discrete type required for range", N);
19195 Set_Etype (N, Any_Type);
19196 return;
19197 end if;
19199 R := Range_Expression (Constraint (N));
19201 Resolve (R, T);
19202 Process_Range_Expr_In_Decl
19203 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
19205 elsif Nkind (N) = N_Attribute_Reference then
19207 -- Catch beginner's error (use of attribute other than 'Range)
19209 if Attribute_Name (N) /= Name_Range then
19210 Error_Msg_N ("expect attribute ''Range", N);
19211 Set_Etype (N, Any_Type);
19212 return;
19213 end if;
19215 -- If the node denotes the range of a type mark, that is also the
19216 -- resulting type, and we do not need to create an Itype for it.
19218 if Is_Entity_Name (Prefix (N))
19219 and then Comes_From_Source (N)
19220 and then Is_Type (Entity (Prefix (N)))
19221 and then Is_Discrete_Type (Entity (Prefix (N)))
19222 then
19223 Def_Id := Entity (Prefix (N));
19224 end if;
19226 Analyze_And_Resolve (N);
19227 T := Etype (N);
19228 R := N;
19230 -- If none of the above, must be a subtype. We convert this to a
19231 -- range attribute reference because in the case of declared first
19232 -- named subtypes, the types in the range reference can be different
19233 -- from the type of the entity. A range attribute normalizes the
19234 -- reference and obtains the correct types for the bounds.
19236 -- This transformation is in the nature of an expansion, is only
19237 -- done if expansion is active. In particular, it is not done on
19238 -- formal generic types, because we need to retain the name of the
19239 -- original index for instantiation purposes.
19241 else
19242 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
19243 Error_Msg_N ("invalid subtype mark in discrete range ", N);
19244 Set_Etype (N, Any_Integer);
19245 return;
19247 else
19248 -- The type mark may be that of an incomplete type. It is only
19249 -- now that we can get the full view, previous analysis does
19250 -- not look specifically for a type mark.
19252 Set_Entity (N, Get_Full_View (Entity (N)));
19253 Set_Etype (N, Entity (N));
19254 Def_Id := Entity (N);
19256 if not Is_Discrete_Type (Def_Id) then
19257 Error_Msg_N ("discrete type required for index", N);
19258 Set_Etype (N, Any_Type);
19259 return;
19260 end if;
19261 end if;
19263 if Expander_Active then
19264 Rewrite (N,
19265 Make_Attribute_Reference (Sloc (N),
19266 Attribute_Name => Name_Range,
19267 Prefix => Relocate_Node (N)));
19269 -- The original was a subtype mark that does not freeze. This
19270 -- means that the rewritten version must not freeze either.
19272 Set_Must_Not_Freeze (N);
19273 Set_Must_Not_Freeze (Prefix (N));
19274 Analyze_And_Resolve (N);
19275 T := Etype (N);
19276 R := N;
19278 -- If expander is inactive, type is legal, nothing else to construct
19280 else
19281 return;
19282 end if;
19283 end if;
19285 if not Is_Discrete_Type (T) then
19286 Error_Msg_N ("discrete type required for range", N);
19287 Set_Etype (N, Any_Type);
19288 return;
19290 elsif T = Any_Type then
19291 Set_Etype (N, Any_Type);
19292 return;
19293 end if;
19295 -- We will now create the appropriate Itype to describe the range, but
19296 -- first a check. If we originally had a subtype, then we just label
19297 -- the range with this subtype. Not only is there no need to construct
19298 -- a new subtype, but it is wrong to do so for two reasons:
19300 -- 1. A legality concern, if we have a subtype, it must not freeze,
19301 -- and the Itype would cause freezing incorrectly
19303 -- 2. An efficiency concern, if we created an Itype, it would not be
19304 -- recognized as the same type for the purposes of eliminating
19305 -- checks in some circumstances.
19307 -- We signal this case by setting the subtype entity in Def_Id
19309 if No (Def_Id) then
19310 Def_Id :=
19311 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
19312 Set_Etype (Def_Id, Base_Type (T));
19314 if Is_Signed_Integer_Type (T) then
19315 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
19317 elsif Is_Modular_Integer_Type (T) then
19318 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
19320 else
19321 Set_Ekind (Def_Id, E_Enumeration_Subtype);
19322 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
19323 Set_First_Literal (Def_Id, First_Literal (T));
19324 end if;
19326 Set_Size_Info (Def_Id, (T));
19327 Set_RM_Size (Def_Id, RM_Size (T));
19328 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
19330 Set_Scalar_Range (Def_Id, R);
19331 Conditional_Delay (Def_Id, T);
19333 if Nkind (N) = N_Subtype_Indication then
19334 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
19335 end if;
19337 -- In the subtype indication case, if the immediate parent of the
19338 -- new subtype is non-static, then the subtype we create is non-
19339 -- static, even if its bounds are static.
19341 if Nkind (N) = N_Subtype_Indication
19342 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
19343 then
19344 Set_Is_Non_Static_Subtype (Def_Id);
19345 end if;
19346 end if;
19348 -- Final step is to label the index with this constructed type
19350 Set_Etype (N, Def_Id);
19351 end Make_Index;
19353 ------------------------------
19354 -- Modular_Type_Declaration --
19355 ------------------------------
19357 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19358 Mod_Expr : constant Node_Id := Expression (Def);
19359 M_Val : Uint;
19361 procedure Set_Modular_Size (Bits : Int);
19362 -- Sets RM_Size to Bits, and Esize to normal word size above this
19364 ----------------------
19365 -- Set_Modular_Size --
19366 ----------------------
19368 procedure Set_Modular_Size (Bits : Int) is
19369 begin
19370 Set_RM_Size (T, UI_From_Int (Bits));
19372 if Bits <= 8 then
19373 Init_Esize (T, 8);
19375 elsif Bits <= 16 then
19376 Init_Esize (T, 16);
19378 elsif Bits <= 32 then
19379 Init_Esize (T, 32);
19381 else
19382 Init_Esize (T, System_Max_Binary_Modulus_Power);
19383 end if;
19385 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
19386 Set_Is_Known_Valid (T);
19387 end if;
19388 end Set_Modular_Size;
19390 -- Start of processing for Modular_Type_Declaration
19392 begin
19393 -- If the mod expression is (exactly) 2 * literal, where literal is
19394 -- 64 or less,then almost certainly the * was meant to be **. Warn.
19396 if Warn_On_Suspicious_Modulus_Value
19397 and then Nkind (Mod_Expr) = N_Op_Multiply
19398 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
19399 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
19400 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
19401 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
19402 then
19403 Error_Msg_N
19404 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
19405 end if;
19407 -- Proceed with analysis of mod expression
19409 Analyze_And_Resolve (Mod_Expr, Any_Integer);
19410 Set_Etype (T, T);
19411 Set_Ekind (T, E_Modular_Integer_Type);
19412 Init_Alignment (T);
19413 Set_Is_Constrained (T);
19415 if not Is_OK_Static_Expression (Mod_Expr) then
19416 Flag_Non_Static_Expr
19417 ("non-static expression used for modular type bound!", Mod_Expr);
19418 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19419 else
19420 M_Val := Expr_Value (Mod_Expr);
19421 end if;
19423 if M_Val < 1 then
19424 Error_Msg_N ("modulus value must be positive", Mod_Expr);
19425 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19426 end if;
19428 if M_Val > 2 ** Standard_Long_Integer_Size then
19429 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
19430 end if;
19432 Set_Modulus (T, M_Val);
19434 -- Create bounds for the modular type based on the modulus given in
19435 -- the type declaration and then analyze and resolve those bounds.
19437 Set_Scalar_Range (T,
19438 Make_Range (Sloc (Mod_Expr),
19439 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
19440 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
19442 -- Properly analyze the literals for the range. We do this manually
19443 -- because we can't go calling Resolve, since we are resolving these
19444 -- bounds with the type, and this type is certainly not complete yet.
19446 Set_Etype (Low_Bound (Scalar_Range (T)), T);
19447 Set_Etype (High_Bound (Scalar_Range (T)), T);
19448 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
19449 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
19451 -- Loop through powers of two to find number of bits required
19453 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
19455 -- Binary case
19457 if M_Val = 2 ** Bits then
19458 Set_Modular_Size (Bits);
19459 return;
19461 -- Nonbinary case
19463 elsif M_Val < 2 ** Bits then
19464 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
19465 Set_Non_Binary_Modulus (T);
19467 if Bits > System_Max_Nonbinary_Modulus_Power then
19468 Error_Msg_Uint_1 :=
19469 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
19470 Error_Msg_F
19471 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
19472 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19473 return;
19475 else
19476 -- In the nonbinary case, set size as per RM 13.3(55)
19478 Set_Modular_Size (Bits);
19479 return;
19480 end if;
19481 end if;
19483 end loop;
19485 -- If we fall through, then the size exceed System.Max_Binary_Modulus
19486 -- so we just signal an error and set the maximum size.
19488 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
19489 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
19491 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19492 Init_Alignment (T);
19494 end Modular_Type_Declaration;
19496 --------------------------
19497 -- New_Concatenation_Op --
19498 --------------------------
19500 procedure New_Concatenation_Op (Typ : Entity_Id) is
19501 Loc : constant Source_Ptr := Sloc (Typ);
19502 Op : Entity_Id;
19504 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
19505 -- Create abbreviated declaration for the formal of a predefined
19506 -- Operator 'Op' of type 'Typ'
19508 --------------------
19509 -- Make_Op_Formal --
19510 --------------------
19512 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
19513 Formal : Entity_Id;
19514 begin
19515 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
19516 Set_Etype (Formal, Typ);
19517 Set_Mechanism (Formal, Default_Mechanism);
19518 return Formal;
19519 end Make_Op_Formal;
19521 -- Start of processing for New_Concatenation_Op
19523 begin
19524 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
19526 Set_Ekind (Op, E_Operator);
19527 Set_Scope (Op, Current_Scope);
19528 Set_Etype (Op, Typ);
19529 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
19530 Set_Is_Immediately_Visible (Op);
19531 Set_Is_Intrinsic_Subprogram (Op);
19532 Set_Has_Completion (Op);
19533 Append_Entity (Op, Current_Scope);
19535 Set_Name_Entity_Id (Name_Op_Concat, Op);
19537 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19538 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19539 end New_Concatenation_Op;
19541 -------------------------
19542 -- OK_For_Limited_Init --
19543 -------------------------
19545 -- ???Check all calls of this, and compare the conditions under which it's
19546 -- called.
19548 function OK_For_Limited_Init
19549 (Typ : Entity_Id;
19550 Exp : Node_Id) return Boolean
19552 begin
19553 return Is_CPP_Constructor_Call (Exp)
19554 or else (Ada_Version >= Ada_2005
19555 and then not Debug_Flag_Dot_L
19556 and then OK_For_Limited_Init_In_05 (Typ, Exp));
19557 end OK_For_Limited_Init;
19559 -------------------------------
19560 -- OK_For_Limited_Init_In_05 --
19561 -------------------------------
19563 function OK_For_Limited_Init_In_05
19564 (Typ : Entity_Id;
19565 Exp : Node_Id) return Boolean
19567 begin
19568 -- An object of a limited interface type can be initialized with any
19569 -- expression of a nonlimited descendant type. However this does not
19570 -- apply if this is a view conversion of some other expression. This
19571 -- is checked below.
19573 if Is_Class_Wide_Type (Typ)
19574 and then Is_Limited_Interface (Typ)
19575 and then not Is_Limited_Type (Etype (Exp))
19576 and then Nkind (Exp) /= N_Type_Conversion
19577 then
19578 return True;
19579 end if;
19581 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19582 -- case of limited aggregates (including extension aggregates), and
19583 -- function calls. The function call may have been given in prefixed
19584 -- notation, in which case the original node is an indexed component.
19585 -- If the function is parameterless, the original node was an explicit
19586 -- dereference. The function may also be parameterless, in which case
19587 -- the source node is just an identifier.
19589 -- A branch of a conditional expression may have been removed if the
19590 -- condition is statically known. This happens during expansion, and
19591 -- thus will not happen if previous errors were encountered. The check
19592 -- will have been performed on the chosen branch, which replaces the
19593 -- original conditional expression.
19595 if No (Exp) then
19596 return True;
19597 end if;
19599 case Nkind (Original_Node (Exp)) is
19600 when N_Aggregate
19601 | N_Extension_Aggregate
19602 | N_Function_Call
19603 | N_Op
19605 return True;
19607 when N_Identifier =>
19608 return Present (Entity (Original_Node (Exp)))
19609 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
19611 when N_Qualified_Expression =>
19612 return
19613 OK_For_Limited_Init_In_05
19614 (Typ, Expression (Original_Node (Exp)));
19616 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
19617 -- with a function call, the expander has rewritten the call into an
19618 -- N_Type_Conversion node to force displacement of the pointer to
19619 -- reference the component containing the secondary dispatch table.
19620 -- Otherwise a type conversion is not a legal context.
19621 -- A return statement for a build-in-place function returning a
19622 -- synchronized type also introduces an unchecked conversion.
19624 when N_Type_Conversion
19625 | N_Unchecked_Type_Conversion
19627 return not Comes_From_Source (Exp)
19628 and then
19629 OK_For_Limited_Init_In_05
19630 (Typ, Expression (Original_Node (Exp)));
19632 when N_Explicit_Dereference
19633 | N_Indexed_Component
19634 | N_Selected_Component
19636 return Nkind (Exp) = N_Function_Call;
19638 -- A use of 'Input is a function call, hence allowed. Normally the
19639 -- attribute will be changed to a call, but the attribute by itself
19640 -- can occur with -gnatc.
19642 when N_Attribute_Reference =>
19643 return Attribute_Name (Original_Node (Exp)) = Name_Input;
19645 -- "return raise ..." is OK
19647 when N_Raise_Expression =>
19648 return True;
19650 -- For a case expression, all dependent expressions must be legal
19652 when N_Case_Expression =>
19653 declare
19654 Alt : Node_Id;
19656 begin
19657 Alt := First (Alternatives (Original_Node (Exp)));
19658 while Present (Alt) loop
19659 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
19660 return False;
19661 end if;
19663 Next (Alt);
19664 end loop;
19666 return True;
19667 end;
19669 -- For an if expression, all dependent expressions must be legal
19671 when N_If_Expression =>
19672 declare
19673 Then_Expr : constant Node_Id :=
19674 Next (First (Expressions (Original_Node (Exp))));
19675 Else_Expr : constant Node_Id := Next (Then_Expr);
19676 begin
19677 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
19678 and then
19679 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
19680 end;
19682 when others =>
19683 return False;
19684 end case;
19685 end OK_For_Limited_Init_In_05;
19687 -------------------------------------------
19688 -- Ordinary_Fixed_Point_Type_Declaration --
19689 -------------------------------------------
19691 procedure Ordinary_Fixed_Point_Type_Declaration
19692 (T : Entity_Id;
19693 Def : Node_Id)
19695 Loc : constant Source_Ptr := Sloc (Def);
19696 Delta_Expr : constant Node_Id := Delta_Expression (Def);
19697 RRS : constant Node_Id := Real_Range_Specification (Def);
19698 Implicit_Base : Entity_Id;
19699 Delta_Val : Ureal;
19700 Small_Val : Ureal;
19701 Low_Val : Ureal;
19702 High_Val : Ureal;
19704 begin
19705 Check_Restriction (No_Fixed_Point, Def);
19707 -- Create implicit base type
19709 Implicit_Base :=
19710 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
19711 Set_Etype (Implicit_Base, Implicit_Base);
19713 -- Analyze and process delta expression
19715 Analyze_And_Resolve (Delta_Expr, Any_Real);
19717 Check_Delta_Expression (Delta_Expr);
19718 Delta_Val := Expr_Value_R (Delta_Expr);
19720 Set_Delta_Value (Implicit_Base, Delta_Val);
19722 -- Compute default small from given delta, which is the largest power
19723 -- of two that does not exceed the given delta value.
19725 declare
19726 Tmp : Ureal;
19727 Scale : Int;
19729 begin
19730 Tmp := Ureal_1;
19731 Scale := 0;
19733 if Delta_Val < Ureal_1 then
19734 while Delta_Val < Tmp loop
19735 Tmp := Tmp / Ureal_2;
19736 Scale := Scale + 1;
19737 end loop;
19739 else
19740 loop
19741 Tmp := Tmp * Ureal_2;
19742 exit when Tmp > Delta_Val;
19743 Scale := Scale - 1;
19744 end loop;
19745 end if;
19747 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
19748 end;
19750 Set_Small_Value (Implicit_Base, Small_Val);
19752 -- If no range was given, set a dummy range
19754 if RRS <= Empty_Or_Error then
19755 Low_Val := -Small_Val;
19756 High_Val := Small_Val;
19758 -- Otherwise analyze and process given range
19760 else
19761 declare
19762 Low : constant Node_Id := Low_Bound (RRS);
19763 High : constant Node_Id := High_Bound (RRS);
19765 begin
19766 Analyze_And_Resolve (Low, Any_Real);
19767 Analyze_And_Resolve (High, Any_Real);
19768 Check_Real_Bound (Low);
19769 Check_Real_Bound (High);
19771 -- Obtain and set the range
19773 Low_Val := Expr_Value_R (Low);
19774 High_Val := Expr_Value_R (High);
19776 if Low_Val > High_Val then
19777 Error_Msg_NE ("??fixed point type& has null range", Def, T);
19778 end if;
19779 end;
19780 end if;
19782 -- The range for both the implicit base and the declared first subtype
19783 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
19784 -- set a temporary range in place. Note that the bounds of the base
19785 -- type will be widened to be symmetrical and to fill the available
19786 -- bits when the type is frozen.
19788 -- We could do this with all discrete types, and probably should, but
19789 -- we absolutely have to do it for fixed-point, since the end-points
19790 -- of the range and the size are determined by the small value, which
19791 -- could be reset before the freeze point.
19793 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
19794 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
19796 -- Complete definition of first subtype. The inheritance of the rep item
19797 -- chain ensures that SPARK-related pragmas are not clobbered when the
19798 -- ordinary fixed point type acts as a full view of a private type.
19800 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
19801 Set_Etype (T, Implicit_Base);
19802 Init_Size_Align (T);
19803 Inherit_Rep_Item_Chain (T, Implicit_Base);
19804 Set_Small_Value (T, Small_Val);
19805 Set_Delta_Value (T, Delta_Val);
19806 Set_Is_Constrained (T);
19807 end Ordinary_Fixed_Point_Type_Declaration;
19809 ----------------------------------
19810 -- Preanalyze_Assert_Expression --
19811 ----------------------------------
19813 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19814 begin
19815 In_Assertion_Expr := In_Assertion_Expr + 1;
19816 Preanalyze_Spec_Expression (N, T);
19817 In_Assertion_Expr := In_Assertion_Expr - 1;
19818 end Preanalyze_Assert_Expression;
19820 -----------------------------------
19821 -- Preanalyze_Default_Expression --
19822 -----------------------------------
19824 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
19825 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
19826 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19828 begin
19829 In_Default_Expr := True;
19830 In_Spec_Expression := True;
19832 Preanalyze_With_Freezing_And_Resolve (N, T);
19834 In_Default_Expr := Save_In_Default_Expr;
19835 In_Spec_Expression := Save_In_Spec_Expression;
19836 end Preanalyze_Default_Expression;
19838 --------------------------------
19839 -- Preanalyze_Spec_Expression --
19840 --------------------------------
19842 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19843 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19844 begin
19845 In_Spec_Expression := True;
19846 Preanalyze_And_Resolve (N, T);
19847 In_Spec_Expression := Save_In_Spec_Expression;
19848 end Preanalyze_Spec_Expression;
19850 ----------------------------------------
19851 -- Prepare_Private_Subtype_Completion --
19852 ----------------------------------------
19854 procedure Prepare_Private_Subtype_Completion
19855 (Id : Entity_Id;
19856 Related_Nod : Node_Id)
19858 Id_B : constant Entity_Id := Base_Type (Id);
19859 Full_B : Entity_Id := Full_View (Id_B);
19860 Full : Entity_Id;
19862 begin
19863 if Present (Full_B) then
19865 -- Get to the underlying full view if necessary
19867 if Is_Private_Type (Full_B)
19868 and then Present (Underlying_Full_View (Full_B))
19869 then
19870 Full_B := Underlying_Full_View (Full_B);
19871 end if;
19873 -- The Base_Type is already completed, we can complete the subtype
19874 -- now. We have to create a new entity with the same name, Thus we
19875 -- can't use Create_Itype.
19877 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
19878 Set_Is_Itype (Full);
19879 Set_Associated_Node_For_Itype (Full, Related_Nod);
19880 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
19881 end if;
19883 -- The parent subtype may be private, but the base might not, in some
19884 -- nested instances. In that case, the subtype does not need to be
19885 -- exchanged. It would still be nice to make private subtypes and their
19886 -- bases consistent at all times ???
19888 if Is_Private_Type (Id_B) then
19889 Append_Elmt (Id, Private_Dependents (Id_B));
19890 end if;
19891 end Prepare_Private_Subtype_Completion;
19893 ---------------------------
19894 -- Process_Discriminants --
19895 ---------------------------
19897 procedure Process_Discriminants
19898 (N : Node_Id;
19899 Prev : Entity_Id := Empty)
19901 Elist : constant Elist_Id := New_Elmt_List;
19902 Id : Node_Id;
19903 Discr : Node_Id;
19904 Discr_Number : Uint;
19905 Discr_Type : Entity_Id;
19906 Default_Present : Boolean := False;
19907 Default_Not_Present : Boolean := False;
19909 begin
19910 -- A composite type other than an array type can have discriminants.
19911 -- On entry, the current scope is the composite type.
19913 -- The discriminants are initially entered into the scope of the type
19914 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19915 -- use, as explained at the end of this procedure.
19917 Discr := First (Discriminant_Specifications (N));
19918 while Present (Discr) loop
19919 Enter_Name (Defining_Identifier (Discr));
19921 -- For navigation purposes we add a reference to the discriminant
19922 -- in the entity for the type. If the current declaration is a
19923 -- completion, place references on the partial view. Otherwise the
19924 -- type is the current scope.
19926 if Present (Prev) then
19928 -- The references go on the partial view, if present. If the
19929 -- partial view has discriminants, the references have been
19930 -- generated already.
19932 if not Has_Discriminants (Prev) then
19933 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
19934 end if;
19935 else
19936 Generate_Reference
19937 (Current_Scope, Defining_Identifier (Discr), 'd');
19938 end if;
19940 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
19941 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
19943 -- Ada 2005 (AI-254)
19945 if Present (Access_To_Subprogram_Definition
19946 (Discriminant_Type (Discr)))
19947 and then Protected_Present (Access_To_Subprogram_Definition
19948 (Discriminant_Type (Discr)))
19949 then
19950 Discr_Type :=
19951 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
19952 end if;
19954 else
19955 Find_Type (Discriminant_Type (Discr));
19956 Discr_Type := Etype (Discriminant_Type (Discr));
19958 if Error_Posted (Discriminant_Type (Discr)) then
19959 Discr_Type := Any_Type;
19960 end if;
19961 end if;
19963 -- Handling of discriminants that are access types
19965 if Is_Access_Type (Discr_Type) then
19967 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19968 -- limited record types
19970 if Ada_Version < Ada_2005 then
19971 Check_Access_Discriminant_Requires_Limited
19972 (Discr, Discriminant_Type (Discr));
19973 end if;
19975 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
19976 Error_Msg_N
19977 ("(Ada 83) access discriminant not allowed", Discr);
19978 end if;
19980 -- If not access type, must be a discrete type
19982 elsif not Is_Discrete_Type (Discr_Type) then
19983 Error_Msg_N
19984 ("discriminants must have a discrete or access type",
19985 Discriminant_Type (Discr));
19986 end if;
19988 Set_Etype (Defining_Identifier (Discr), Discr_Type);
19990 -- If a discriminant specification includes the assignment compound
19991 -- delimiter followed by an expression, the expression is the default
19992 -- expression of the discriminant; the default expression must be of
19993 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19994 -- a default expression, we do the special preanalysis, since this
19995 -- expression does not freeze (see section "Handling of Default and
19996 -- Per-Object Expressions" in spec of package Sem).
19998 if Present (Expression (Discr)) then
19999 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
20001 -- Legaity checks
20003 if Nkind (N) = N_Formal_Type_Declaration then
20004 Error_Msg_N
20005 ("discriminant defaults not allowed for formal type",
20006 Expression (Discr));
20008 -- Flag an error for a tagged type with defaulted discriminants,
20009 -- excluding limited tagged types when compiling for Ada 2012
20010 -- (see AI05-0214).
20012 elsif Is_Tagged_Type (Current_Scope)
20013 and then (not Is_Limited_Type (Current_Scope)
20014 or else Ada_Version < Ada_2012)
20015 and then Comes_From_Source (N)
20016 then
20017 -- Note: see similar test in Check_Or_Process_Discriminants, to
20018 -- handle the (illegal) case of the completion of an untagged
20019 -- view with discriminants with defaults by a tagged full view.
20020 -- We skip the check if Discr does not come from source, to
20021 -- account for the case of an untagged derived type providing
20022 -- defaults for a renamed discriminant from a private untagged
20023 -- ancestor with a tagged full view (ACATS B460006).
20025 if Ada_Version >= Ada_2012 then
20026 Error_Msg_N
20027 ("discriminants of nonlimited tagged type cannot have"
20028 & " defaults",
20029 Expression (Discr));
20030 else
20031 Error_Msg_N
20032 ("discriminants of tagged type cannot have defaults",
20033 Expression (Discr));
20034 end if;
20036 else
20037 Default_Present := True;
20038 Append_Elmt (Expression (Discr), Elist);
20040 -- Tag the defining identifiers for the discriminants with
20041 -- their corresponding default expressions from the tree.
20043 Set_Discriminant_Default_Value
20044 (Defining_Identifier (Discr), Expression (Discr));
20045 end if;
20047 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
20048 -- gets set unless we can be sure that no range check is required.
20050 if (GNATprove_Mode or not Expander_Active)
20051 and then not
20052 Is_In_Range
20053 (Expression (Discr), Discr_Type, Assume_Valid => True)
20054 then
20055 Set_Do_Range_Check (Expression (Discr));
20056 end if;
20058 -- No default discriminant value given
20060 else
20061 Default_Not_Present := True;
20062 end if;
20064 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
20065 -- Discr_Type but with the null-exclusion attribute
20067 if Ada_Version >= Ada_2005 then
20069 -- Ada 2005 (AI-231): Static checks
20071 if Can_Never_Be_Null (Discr_Type) then
20072 Null_Exclusion_Static_Checks (Discr);
20074 elsif Is_Access_Type (Discr_Type)
20075 and then Null_Exclusion_Present (Discr)
20077 -- No need to check itypes because in their case this check
20078 -- was done at their point of creation
20080 and then not Is_Itype (Discr_Type)
20081 then
20082 if Can_Never_Be_Null (Discr_Type) then
20083 Error_Msg_NE
20084 ("`NOT NULL` not allowed (& already excludes null)",
20085 Discr,
20086 Discr_Type);
20087 end if;
20089 Set_Etype (Defining_Identifier (Discr),
20090 Create_Null_Excluding_Itype
20091 (T => Discr_Type,
20092 Related_Nod => Discr));
20094 -- Check for improper null exclusion if the type is otherwise
20095 -- legal for a discriminant.
20097 elsif Null_Exclusion_Present (Discr)
20098 and then Is_Discrete_Type (Discr_Type)
20099 then
20100 Error_Msg_N
20101 ("null exclusion can only apply to an access type", Discr);
20102 end if;
20104 -- Ada 2005 (AI-402): access discriminants of nonlimited types
20105 -- can't have defaults. Synchronized types, or types that are
20106 -- explicitly limited are fine, but special tests apply to derived
20107 -- types in generics: in a generic body we have to assume the
20108 -- worst, and therefore defaults are not allowed if the parent is
20109 -- a generic formal private type (see ACATS B370001).
20111 if Is_Access_Type (Discr_Type) and then Default_Present then
20112 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
20113 or else Is_Limited_Record (Current_Scope)
20114 or else Is_Concurrent_Type (Current_Scope)
20115 or else Is_Concurrent_Record_Type (Current_Scope)
20116 or else Ekind (Current_Scope) = E_Limited_Private_Type
20117 then
20118 if not Is_Derived_Type (Current_Scope)
20119 or else not Is_Generic_Type (Etype (Current_Scope))
20120 or else not In_Package_Body (Scope (Etype (Current_Scope)))
20121 or else Limited_Present
20122 (Type_Definition (Parent (Current_Scope)))
20123 then
20124 null;
20126 else
20127 Error_Msg_N
20128 ("access discriminants of nonlimited types cannot "
20129 & "have defaults", Expression (Discr));
20130 end if;
20132 elsif Present (Expression (Discr)) then
20133 Error_Msg_N
20134 ("(Ada 2005) access discriminants of nonlimited types "
20135 & "cannot have defaults", Expression (Discr));
20136 end if;
20137 end if;
20138 end if;
20140 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(4)).
20141 -- This check is relevant only when SPARK_Mode is on as it is not a
20142 -- standard Ada legality rule.
20144 if SPARK_Mode = On
20145 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
20146 then
20147 Error_Msg_N ("discriminant cannot be volatile", Discr);
20148 end if;
20150 Next (Discr);
20151 end loop;
20153 -- An element list consisting of the default expressions of the
20154 -- discriminants is constructed in the above loop and used to set
20155 -- the Discriminant_Constraint attribute for the type. If an object
20156 -- is declared of this (record or task) type without any explicit
20157 -- discriminant constraint given, this element list will form the
20158 -- actual parameters for the corresponding initialization procedure
20159 -- for the type.
20161 Set_Discriminant_Constraint (Current_Scope, Elist);
20162 Set_Stored_Constraint (Current_Scope, No_Elist);
20164 -- Default expressions must be provided either for all or for none
20165 -- of the discriminants of a discriminant part. (RM 3.7.1)
20167 if Default_Present and then Default_Not_Present then
20168 Error_Msg_N
20169 ("incomplete specification of defaults for discriminants", N);
20170 end if;
20172 -- The use of the name of a discriminant is not allowed in default
20173 -- expressions of a discriminant part if the specification of the
20174 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
20176 -- To detect this, the discriminant names are entered initially with an
20177 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
20178 -- attempt to use a void entity (for example in an expression that is
20179 -- type-checked) produces the error message: premature usage. Now after
20180 -- completing the semantic analysis of the discriminant part, we can set
20181 -- the Ekind of all the discriminants appropriately.
20183 Discr := First (Discriminant_Specifications (N));
20184 Discr_Number := Uint_1;
20185 while Present (Discr) loop
20186 Id := Defining_Identifier (Discr);
20187 Set_Ekind (Id, E_Discriminant);
20188 Init_Component_Location (Id);
20189 Init_Esize (Id);
20190 Set_Discriminant_Number (Id, Discr_Number);
20192 -- Make sure this is always set, even in illegal programs
20194 Set_Corresponding_Discriminant (Id, Empty);
20196 -- Initialize the Original_Record_Component to the entity itself.
20197 -- Inherit_Components will propagate the right value to
20198 -- discriminants in derived record types.
20200 Set_Original_Record_Component (Id, Id);
20202 -- Create the discriminal for the discriminant
20204 Build_Discriminal (Id);
20206 Next (Discr);
20207 Discr_Number := Discr_Number + 1;
20208 end loop;
20210 Set_Has_Discriminants (Current_Scope);
20211 end Process_Discriminants;
20213 -----------------------
20214 -- Process_Full_View --
20215 -----------------------
20217 -- WARNING: This routine manages Ghost regions. Return statements must be
20218 -- replaced by gotos which jump to the end of the routine and restore the
20219 -- Ghost mode.
20221 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
20222 procedure Collect_Implemented_Interfaces
20223 (Typ : Entity_Id;
20224 Ifaces : Elist_Id);
20225 -- Ada 2005: Gather all the interfaces that Typ directly or
20226 -- inherently implements. Duplicate entries are not added to
20227 -- the list Ifaces.
20229 ------------------------------------
20230 -- Collect_Implemented_Interfaces --
20231 ------------------------------------
20233 procedure Collect_Implemented_Interfaces
20234 (Typ : Entity_Id;
20235 Ifaces : Elist_Id)
20237 Iface : Entity_Id;
20238 Iface_Elmt : Elmt_Id;
20240 begin
20241 -- Abstract interfaces are only associated with tagged record types
20243 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
20244 return;
20245 end if;
20247 -- Recursively climb to the ancestors
20249 if Etype (Typ) /= Typ
20251 -- Protect the frontend against wrong cyclic declarations like:
20253 -- type B is new A with private;
20254 -- type C is new A with private;
20255 -- private
20256 -- type B is new C with null record;
20257 -- type C is new B with null record;
20259 and then Etype (Typ) /= Priv_T
20260 and then Etype (Typ) /= Full_T
20261 then
20262 -- Keep separate the management of private type declarations
20264 if Ekind (Typ) = E_Record_Type_With_Private then
20266 -- Handle the following illegal usage:
20267 -- type Private_Type is tagged private;
20268 -- private
20269 -- type Private_Type is new Type_Implementing_Iface;
20271 if Present (Full_View (Typ))
20272 and then Etype (Typ) /= Full_View (Typ)
20273 then
20274 if Is_Interface (Etype (Typ)) then
20275 Append_Unique_Elmt (Etype (Typ), Ifaces);
20276 end if;
20278 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20279 end if;
20281 -- Non-private types
20283 else
20284 if Is_Interface (Etype (Typ)) then
20285 Append_Unique_Elmt (Etype (Typ), Ifaces);
20286 end if;
20288 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20289 end if;
20290 end if;
20292 -- Handle entities in the list of abstract interfaces
20294 if Present (Interfaces (Typ)) then
20295 Iface_Elmt := First_Elmt (Interfaces (Typ));
20296 while Present (Iface_Elmt) loop
20297 Iface := Node (Iface_Elmt);
20299 pragma Assert (Is_Interface (Iface));
20301 if not Contain_Interface (Iface, Ifaces) then
20302 Append_Elmt (Iface, Ifaces);
20303 Collect_Implemented_Interfaces (Iface, Ifaces);
20304 end if;
20306 Next_Elmt (Iface_Elmt);
20307 end loop;
20308 end if;
20309 end Collect_Implemented_Interfaces;
20311 -- Local variables
20313 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
20314 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
20315 -- Save the Ghost-related attributes to restore on exit
20317 Full_Indic : Node_Id;
20318 Full_Parent : Entity_Id;
20319 Priv_Parent : Entity_Id;
20321 -- Start of processing for Process_Full_View
20323 begin
20324 Mark_And_Set_Ghost_Completion (N, Priv_T);
20326 -- First some sanity checks that must be done after semantic
20327 -- decoration of the full view and thus cannot be placed with other
20328 -- similar checks in Find_Type_Name
20330 if not Is_Limited_Type (Priv_T)
20331 and then (Is_Limited_Type (Full_T)
20332 or else Is_Limited_Composite (Full_T))
20333 then
20334 if In_Instance then
20335 null;
20336 else
20337 Error_Msg_N
20338 ("completion of nonlimited type cannot be limited", Full_T);
20339 Explain_Limited_Type (Full_T, Full_T);
20340 end if;
20342 elsif Is_Abstract_Type (Full_T)
20343 and then not Is_Abstract_Type (Priv_T)
20344 then
20345 Error_Msg_N
20346 ("completion of nonabstract type cannot be abstract", Full_T);
20348 elsif Is_Tagged_Type (Priv_T)
20349 and then Is_Limited_Type (Priv_T)
20350 and then not Is_Limited_Type (Full_T)
20351 then
20352 -- If pragma CPP_Class was applied to the private declaration
20353 -- propagate the limitedness to the full-view
20355 if Is_CPP_Class (Priv_T) then
20356 Set_Is_Limited_Record (Full_T);
20358 -- GNAT allow its own definition of Limited_Controlled to disobey
20359 -- this rule in order in ease the implementation. This test is safe
20360 -- because Root_Controlled is defined in a child of System that
20361 -- normal programs are not supposed to use.
20363 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
20364 Set_Is_Limited_Composite (Full_T);
20365 else
20366 Error_Msg_N
20367 ("completion of limited tagged type must be limited", Full_T);
20368 end if;
20370 elsif Is_Generic_Type (Priv_T) then
20371 Error_Msg_N ("generic type cannot have a completion", Full_T);
20372 end if;
20374 -- Check that ancestor interfaces of private and full views are
20375 -- consistent. We omit this check for synchronized types because
20376 -- they are performed on the corresponding record type when frozen.
20378 if Ada_Version >= Ada_2005
20379 and then Is_Tagged_Type (Priv_T)
20380 and then Is_Tagged_Type (Full_T)
20381 and then not Is_Concurrent_Type (Full_T)
20382 then
20383 declare
20384 Iface : Entity_Id;
20385 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
20386 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
20388 begin
20389 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
20390 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
20392 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20393 -- an interface type if and only if the full type is descendant
20394 -- of the interface type (AARM 7.3 (7.3/2)).
20396 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
20398 if Present (Iface) then
20399 Error_Msg_NE
20400 ("interface in partial view& not implemented by full type "
20401 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20402 end if;
20404 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
20406 if Present (Iface) then
20407 Error_Msg_NE
20408 ("interface & not implemented by partial view "
20409 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20410 end if;
20411 end;
20412 end if;
20414 if Is_Tagged_Type (Priv_T)
20415 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20416 and then Is_Derived_Type (Full_T)
20417 then
20418 Priv_Parent := Etype (Priv_T);
20420 -- The full view of a private extension may have been transformed
20421 -- into an unconstrained derived type declaration and a subtype
20422 -- declaration (see build_derived_record_type for details).
20424 if Nkind (N) = N_Subtype_Declaration then
20425 Full_Indic := Subtype_Indication (N);
20426 Full_Parent := Etype (Base_Type (Full_T));
20427 else
20428 Full_Indic := Subtype_Indication (Type_Definition (N));
20429 Full_Parent := Etype (Full_T);
20430 end if;
20432 -- Check that the parent type of the full type is a descendant of
20433 -- the ancestor subtype given in the private extension. If either
20434 -- entity has an Etype equal to Any_Type then we had some previous
20435 -- error situation [7.3(8)].
20437 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
20438 goto Leave;
20440 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20441 -- any order. Therefore we don't have to check that its parent must
20442 -- be a descendant of the parent of the private type declaration.
20444 elsif Is_Interface (Priv_Parent)
20445 and then Is_Interface (Full_Parent)
20446 then
20447 null;
20449 -- Ada 2005 (AI-251): If the parent of the private type declaration
20450 -- is an interface there is no need to check that it is an ancestor
20451 -- of the associated full type declaration. The required tests for
20452 -- this case are performed by Build_Derived_Record_Type.
20454 elsif not Is_Interface (Base_Type (Priv_Parent))
20455 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
20456 then
20457 Error_Msg_N
20458 ("parent of full type must descend from parent of private "
20459 & "extension", Full_Indic);
20461 -- First check a formal restriction, and then proceed with checking
20462 -- Ada rules. Since the formal restriction is not a serious error, we
20463 -- don't prevent further error detection for this check, hence the
20464 -- ELSE.
20466 else
20467 -- In formal mode, when completing a private extension the type
20468 -- named in the private part must be exactly the same as that
20469 -- named in the visible part.
20471 if Priv_Parent /= Full_Parent then
20472 Error_Msg_Name_1 := Chars (Priv_Parent);
20473 Check_SPARK_05_Restriction ("% expected", Full_Indic);
20474 end if;
20476 -- Check the rules of 7.3(10): if the private extension inherits
20477 -- known discriminants, then the full type must also inherit those
20478 -- discriminants from the same (ancestor) type, and the parent
20479 -- subtype of the full type must be constrained if and only if
20480 -- the ancestor subtype of the private extension is constrained.
20482 if No (Discriminant_Specifications (Parent (Priv_T)))
20483 and then not Has_Unknown_Discriminants (Priv_T)
20484 and then Has_Discriminants (Base_Type (Priv_Parent))
20485 then
20486 declare
20487 Priv_Indic : constant Node_Id :=
20488 Subtype_Indication (Parent (Priv_T));
20490 Priv_Constr : constant Boolean :=
20491 Is_Constrained (Priv_Parent)
20492 or else
20493 Nkind (Priv_Indic) = N_Subtype_Indication
20494 or else
20495 Is_Constrained (Entity (Priv_Indic));
20497 Full_Constr : constant Boolean :=
20498 Is_Constrained (Full_Parent)
20499 or else
20500 Nkind (Full_Indic) = N_Subtype_Indication
20501 or else
20502 Is_Constrained (Entity (Full_Indic));
20504 Priv_Discr : Entity_Id;
20505 Full_Discr : Entity_Id;
20507 begin
20508 Priv_Discr := First_Discriminant (Priv_Parent);
20509 Full_Discr := First_Discriminant (Full_Parent);
20510 while Present (Priv_Discr) and then Present (Full_Discr) loop
20511 if Original_Record_Component (Priv_Discr) =
20512 Original_Record_Component (Full_Discr)
20513 or else
20514 Corresponding_Discriminant (Priv_Discr) =
20515 Corresponding_Discriminant (Full_Discr)
20516 then
20517 null;
20518 else
20519 exit;
20520 end if;
20522 Next_Discriminant (Priv_Discr);
20523 Next_Discriminant (Full_Discr);
20524 end loop;
20526 if Present (Priv_Discr) or else Present (Full_Discr) then
20527 Error_Msg_N
20528 ("full view must inherit discriminants of the parent "
20529 & "type used in the private extension", Full_Indic);
20531 elsif Priv_Constr and then not Full_Constr then
20532 Error_Msg_N
20533 ("parent subtype of full type must be constrained",
20534 Full_Indic);
20536 elsif Full_Constr and then not Priv_Constr then
20537 Error_Msg_N
20538 ("parent subtype of full type must be unconstrained",
20539 Full_Indic);
20540 end if;
20541 end;
20543 -- Check the rules of 7.3(12): if a partial view has neither
20544 -- known or unknown discriminants, then the full type
20545 -- declaration shall define a definite subtype.
20547 elsif not Has_Unknown_Discriminants (Priv_T)
20548 and then not Has_Discriminants (Priv_T)
20549 and then not Is_Constrained (Full_T)
20550 then
20551 Error_Msg_N
20552 ("full view must define a constrained type if partial view "
20553 & "has no discriminants", Full_T);
20554 end if;
20556 -- ??????? Do we implement the following properly ?????
20557 -- If the ancestor subtype of a private extension has constrained
20558 -- discriminants, then the parent subtype of the full view shall
20559 -- impose a statically matching constraint on those discriminants
20560 -- [7.3(13)].
20561 end if;
20563 else
20564 -- For untagged types, verify that a type without discriminants is
20565 -- not completed with an unconstrained type. A separate error message
20566 -- is produced if the full type has defaulted discriminants.
20568 if Is_Definite_Subtype (Priv_T)
20569 and then not Is_Definite_Subtype (Full_T)
20570 then
20571 Error_Msg_Sloc := Sloc (Parent (Priv_T));
20572 Error_Msg_NE
20573 ("full view of& not compatible with declaration#",
20574 Full_T, Priv_T);
20576 if not Is_Tagged_Type (Full_T) then
20577 Error_Msg_N
20578 ("\one is constrained, the other unconstrained", Full_T);
20579 end if;
20580 end if;
20581 end if;
20583 -- AI-419: verify that the use of "limited" is consistent
20585 declare
20586 Orig_Decl : constant Node_Id := Original_Node (N);
20588 begin
20589 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20590 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
20591 and then Nkind
20592 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
20593 then
20594 if not Limited_Present (Parent (Priv_T))
20595 and then not Synchronized_Present (Parent (Priv_T))
20596 and then Limited_Present (Type_Definition (Orig_Decl))
20597 then
20598 Error_Msg_N
20599 ("full view of non-limited extension cannot be limited", N);
20601 -- Conversely, if the partial view carries the limited keyword,
20602 -- the full view must as well, even if it may be redundant.
20604 elsif Limited_Present (Parent (Priv_T))
20605 and then not Limited_Present (Type_Definition (Orig_Decl))
20606 then
20607 Error_Msg_N
20608 ("full view of limited extension must be explicitly limited",
20610 end if;
20611 end if;
20612 end;
20614 -- Ada 2005 (AI-443): A synchronized private extension must be
20615 -- completed by a task or protected type.
20617 if Ada_Version >= Ada_2005
20618 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20619 and then Synchronized_Present (Parent (Priv_T))
20620 and then not Is_Concurrent_Type (Full_T)
20621 then
20622 Error_Msg_N ("full view of synchronized extension must " &
20623 "be synchronized type", N);
20624 end if;
20626 -- Ada 2005 AI-363: if the full view has discriminants with
20627 -- defaults, it is illegal to declare constrained access subtypes
20628 -- whose designated type is the current type. This allows objects
20629 -- of the type that are declared in the heap to be unconstrained.
20631 if not Has_Unknown_Discriminants (Priv_T)
20632 and then not Has_Discriminants (Priv_T)
20633 and then Has_Discriminants (Full_T)
20634 and then
20635 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
20636 then
20637 Set_Has_Constrained_Partial_View (Full_T);
20638 Set_Has_Constrained_Partial_View (Priv_T);
20639 end if;
20641 -- Create a full declaration for all its subtypes recorded in
20642 -- Private_Dependents and swap them similarly to the base type. These
20643 -- are subtypes that have been define before the full declaration of
20644 -- the private type. We also swap the entry in Private_Dependents list
20645 -- so we can properly restore the private view on exit from the scope.
20647 declare
20648 Priv_Elmt : Elmt_Id;
20649 Priv_Scop : Entity_Id;
20650 Priv : Entity_Id;
20651 Full : Entity_Id;
20653 begin
20654 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
20655 while Present (Priv_Elmt) loop
20656 Priv := Node (Priv_Elmt);
20657 Priv_Scop := Scope (Priv);
20659 if Ekind_In (Priv, E_Private_Subtype,
20660 E_Limited_Private_Subtype,
20661 E_Record_Subtype_With_Private)
20662 then
20663 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
20664 Set_Is_Itype (Full);
20665 Set_Parent (Full, Parent (Priv));
20666 Set_Associated_Node_For_Itype (Full, N);
20668 -- Now we need to complete the private subtype, but since the
20669 -- base type has already been swapped, we must also swap the
20670 -- subtypes (and thus, reverse the arguments in the call to
20671 -- Complete_Private_Subtype). Also note that we may need to
20672 -- re-establish the scope of the private subtype.
20674 Copy_And_Swap (Priv, Full);
20676 if not In_Open_Scopes (Priv_Scop) then
20677 Push_Scope (Priv_Scop);
20679 else
20680 -- Reset Priv_Scop to Empty to indicate no scope was pushed
20682 Priv_Scop := Empty;
20683 end if;
20685 Complete_Private_Subtype (Full, Priv, Full_T, N);
20687 if Present (Priv_Scop) then
20688 Pop_Scope;
20689 end if;
20691 Replace_Elmt (Priv_Elmt, Full);
20692 end if;
20694 Next_Elmt (Priv_Elmt);
20695 end loop;
20696 end;
20698 -- If the private view was tagged, copy the new primitive operations
20699 -- from the private view to the full view.
20701 if Is_Tagged_Type (Full_T) then
20702 declare
20703 Disp_Typ : Entity_Id;
20704 Full_List : Elist_Id;
20705 Prim : Entity_Id;
20706 Prim_Elmt : Elmt_Id;
20707 Priv_List : Elist_Id;
20709 function Contains
20710 (E : Entity_Id;
20711 L : Elist_Id) return Boolean;
20712 -- Determine whether list L contains element E
20714 --------------
20715 -- Contains --
20716 --------------
20718 function Contains
20719 (E : Entity_Id;
20720 L : Elist_Id) return Boolean
20722 List_Elmt : Elmt_Id;
20724 begin
20725 List_Elmt := First_Elmt (L);
20726 while Present (List_Elmt) loop
20727 if Node (List_Elmt) = E then
20728 return True;
20729 end if;
20731 Next_Elmt (List_Elmt);
20732 end loop;
20734 return False;
20735 end Contains;
20737 -- Start of processing
20739 begin
20740 if Is_Tagged_Type (Priv_T) then
20741 Priv_List := Primitive_Operations (Priv_T);
20742 Prim_Elmt := First_Elmt (Priv_List);
20744 -- In the case of a concurrent type completing a private tagged
20745 -- type, primitives may have been declared in between the two
20746 -- views. These subprograms need to be wrapped the same way
20747 -- entries and protected procedures are handled because they
20748 -- cannot be directly shared by the two views.
20750 if Is_Concurrent_Type (Full_T) then
20751 declare
20752 Conc_Typ : constant Entity_Id :=
20753 Corresponding_Record_Type (Full_T);
20754 Curr_Nod : Node_Id := Parent (Conc_Typ);
20755 Wrap_Spec : Node_Id;
20757 begin
20758 while Present (Prim_Elmt) loop
20759 Prim := Node (Prim_Elmt);
20761 if Comes_From_Source (Prim)
20762 and then not Is_Abstract_Subprogram (Prim)
20763 then
20764 Wrap_Spec :=
20765 Make_Subprogram_Declaration (Sloc (Prim),
20766 Specification =>
20767 Build_Wrapper_Spec
20768 (Subp_Id => Prim,
20769 Obj_Typ => Conc_Typ,
20770 Formals =>
20771 Parameter_Specifications
20772 (Parent (Prim))));
20774 Insert_After (Curr_Nod, Wrap_Spec);
20775 Curr_Nod := Wrap_Spec;
20777 Analyze (Wrap_Spec);
20779 -- Remove the wrapper from visibility to avoid
20780 -- spurious conflict with the wrapped entity.
20782 Set_Is_Immediately_Visible
20783 (Defining_Entity (Specification (Wrap_Spec)),
20784 False);
20785 end if;
20787 Next_Elmt (Prim_Elmt);
20788 end loop;
20790 goto Leave;
20791 end;
20793 -- For non-concurrent types, transfer explicit primitives, but
20794 -- omit those inherited from the parent of the private view
20795 -- since they will be re-inherited later on.
20797 else
20798 Full_List := Primitive_Operations (Full_T);
20799 while Present (Prim_Elmt) loop
20800 Prim := Node (Prim_Elmt);
20802 if Comes_From_Source (Prim)
20803 and then not Contains (Prim, Full_List)
20804 then
20805 Append_Elmt (Prim, Full_List);
20806 end if;
20808 Next_Elmt (Prim_Elmt);
20809 end loop;
20810 end if;
20812 -- Untagged private view
20814 else
20815 Full_List := Primitive_Operations (Full_T);
20817 -- In this case the partial view is untagged, so here we locate
20818 -- all of the earlier primitives that need to be treated as
20819 -- dispatching (those that appear between the two views). Note
20820 -- that these additional operations must all be new operations
20821 -- (any earlier operations that override inherited operations
20822 -- of the full view will already have been inserted in the
20823 -- primitives list, marked by Check_Operation_From_Private_View
20824 -- as dispatching. Note that implicit "/=" operators are
20825 -- excluded from being added to the primitives list since they
20826 -- shouldn't be treated as dispatching (tagged "/=" is handled
20827 -- specially).
20829 Prim := Next_Entity (Full_T);
20830 while Present (Prim) and then Prim /= Priv_T loop
20831 if Ekind_In (Prim, E_Procedure, E_Function) then
20832 Disp_Typ := Find_Dispatching_Type (Prim);
20834 if Disp_Typ = Full_T
20835 and then (Chars (Prim) /= Name_Op_Ne
20836 or else Comes_From_Source (Prim))
20837 then
20838 Check_Controlling_Formals (Full_T, Prim);
20840 if Is_Suitable_Primitive (Prim)
20841 and then not Is_Dispatching_Operation (Prim)
20842 then
20843 Append_Elmt (Prim, Full_List);
20844 Set_Is_Dispatching_Operation (Prim);
20845 Set_DT_Position_Value (Prim, No_Uint);
20846 end if;
20848 elsif Is_Dispatching_Operation (Prim)
20849 and then Disp_Typ /= Full_T
20850 then
20851 -- Verify that it is not otherwise controlled by a
20852 -- formal or a return value of type T.
20854 Check_Controlling_Formals (Disp_Typ, Prim);
20855 end if;
20856 end if;
20858 Next_Entity (Prim);
20859 end loop;
20860 end if;
20862 -- For the tagged case, the two views can share the same primitive
20863 -- operations list and the same class-wide type. Update attributes
20864 -- of the class-wide type which depend on the full declaration.
20866 if Is_Tagged_Type (Priv_T) then
20867 Set_Direct_Primitive_Operations (Priv_T, Full_List);
20868 Set_Class_Wide_Type
20869 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
20871 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
20872 end if;
20873 end;
20874 end if;
20876 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20878 if Known_To_Have_Preelab_Init (Priv_T) then
20880 -- Case where there is a pragma Preelaborable_Initialization. We
20881 -- always allow this in predefined units, which is cheating a bit,
20882 -- but it means we don't have to struggle to meet the requirements in
20883 -- the RM for having Preelaborable Initialization. Otherwise we
20884 -- require that the type meets the RM rules. But we can't check that
20885 -- yet, because of the rule about overriding Initialize, so we simply
20886 -- set a flag that will be checked at freeze time.
20888 if not In_Predefined_Unit (Full_T) then
20889 Set_Must_Have_Preelab_Init (Full_T);
20890 end if;
20891 end if;
20893 -- If pragma CPP_Class was applied to the private type declaration,
20894 -- propagate it now to the full type declaration.
20896 if Is_CPP_Class (Priv_T) then
20897 Set_Is_CPP_Class (Full_T);
20898 Set_Convention (Full_T, Convention_CPP);
20900 -- Check that components of imported CPP types do not have default
20901 -- expressions.
20903 Check_CPP_Type_Has_No_Defaults (Full_T);
20904 end if;
20906 -- If the private view has user specified stream attributes, then so has
20907 -- the full view.
20909 -- Why the test, how could these flags be already set in Full_T ???
20911 if Has_Specified_Stream_Read (Priv_T) then
20912 Set_Has_Specified_Stream_Read (Full_T);
20913 end if;
20915 if Has_Specified_Stream_Write (Priv_T) then
20916 Set_Has_Specified_Stream_Write (Full_T);
20917 end if;
20919 if Has_Specified_Stream_Input (Priv_T) then
20920 Set_Has_Specified_Stream_Input (Full_T);
20921 end if;
20923 if Has_Specified_Stream_Output (Priv_T) then
20924 Set_Has_Specified_Stream_Output (Full_T);
20925 end if;
20927 -- Propagate Default_Initial_Condition-related attributes from the
20928 -- partial view to the full view and its base type.
20930 Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T);
20931 Propagate_DIC_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20933 -- Propagate invariant-related attributes from the partial view to the
20934 -- full view and its base type.
20936 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
20937 Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20939 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20940 -- in the full view without advertising the inheritance in the partial
20941 -- view. This can only occur when the partial view has no parent type
20942 -- and the full view has an interface as a parent. Any other scenarios
20943 -- are illegal because implemented interfaces must match between the
20944 -- two views.
20946 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
20947 declare
20948 Full_Par : constant Entity_Id := Etype (Full_T);
20949 Priv_Par : constant Entity_Id := Etype (Priv_T);
20951 begin
20952 if not Is_Interface (Priv_Par)
20953 and then Is_Interface (Full_Par)
20954 and then Has_Inheritable_Invariants (Full_Par)
20955 then
20956 Error_Msg_N
20957 ("hidden inheritance of class-wide type invariants not "
20958 & "allowed", N);
20959 end if;
20960 end;
20961 end if;
20963 -- Propagate predicates to full type, and predicate function if already
20964 -- defined. It is not clear that this can actually happen? the partial
20965 -- view cannot be frozen yet, and the predicate function has not been
20966 -- built. Still it is a cheap check and seems safer to make it.
20968 if Has_Predicates (Priv_T) then
20969 Set_Has_Predicates (Full_T);
20971 if Present (Predicate_Function (Priv_T)) then
20972 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20973 end if;
20974 end if;
20976 <<Leave>>
20977 Restore_Ghost_Region (Saved_GM, Saved_IGR);
20978 end Process_Full_View;
20980 -----------------------------------
20981 -- Process_Incomplete_Dependents --
20982 -----------------------------------
20984 procedure Process_Incomplete_Dependents
20985 (N : Node_Id;
20986 Full_T : Entity_Id;
20987 Inc_T : Entity_Id)
20989 Inc_Elmt : Elmt_Id;
20990 Priv_Dep : Entity_Id;
20991 New_Subt : Entity_Id;
20993 Disc_Constraint : Elist_Id;
20995 begin
20996 if No (Private_Dependents (Inc_T)) then
20997 return;
20998 end if;
21000 -- Itypes that may be generated by the completion of an incomplete
21001 -- subtype are not used by the back-end and not attached to the tree.
21002 -- They are created only for constraint-checking purposes.
21004 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
21005 while Present (Inc_Elmt) loop
21006 Priv_Dep := Node (Inc_Elmt);
21008 if Ekind (Priv_Dep) = E_Subprogram_Type then
21010 -- An Access_To_Subprogram type may have a return type or a
21011 -- parameter type that is incomplete. Replace with the full view.
21013 if Etype (Priv_Dep) = Inc_T then
21014 Set_Etype (Priv_Dep, Full_T);
21015 end if;
21017 declare
21018 Formal : Entity_Id;
21020 begin
21021 Formal := First_Formal (Priv_Dep);
21022 while Present (Formal) loop
21023 if Etype (Formal) = Inc_T then
21024 Set_Etype (Formal, Full_T);
21025 end if;
21027 Next_Formal (Formal);
21028 end loop;
21029 end;
21031 elsif Is_Overloadable (Priv_Dep) then
21033 -- If a subprogram in the incomplete dependents list is primitive
21034 -- for a tagged full type then mark it as a dispatching operation,
21035 -- check whether it overrides an inherited subprogram, and check
21036 -- restrictions on its controlling formals. Note that a protected
21037 -- operation is never dispatching: only its wrapper operation
21038 -- (which has convention Ada) is.
21040 if Is_Tagged_Type (Full_T)
21041 and then Is_Primitive (Priv_Dep)
21042 and then Convention (Priv_Dep) /= Convention_Protected
21043 then
21044 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
21045 Set_Is_Dispatching_Operation (Priv_Dep);
21046 Check_Controlling_Formals (Full_T, Priv_Dep);
21047 end if;
21049 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
21051 -- Can happen during processing of a body before the completion
21052 -- of a TA type. Ignore, because spec is also on dependent list.
21054 return;
21056 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
21057 -- corresponding subtype of the full view.
21059 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype
21060 and then Comes_From_Source (Priv_Dep)
21061 then
21062 Set_Subtype_Indication
21063 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
21064 Set_Etype (Priv_Dep, Full_T);
21065 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
21066 Set_Analyzed (Parent (Priv_Dep), False);
21068 -- Reanalyze the declaration, suppressing the call to Enter_Name
21069 -- to avoid duplicate names.
21071 Analyze_Subtype_Declaration
21072 (N => Parent (Priv_Dep),
21073 Skip => True);
21075 -- Dependent is a subtype
21077 else
21078 -- We build a new subtype indication using the full view of the
21079 -- incomplete parent. The discriminant constraints have been
21080 -- elaborated already at the point of the subtype declaration.
21082 New_Subt := Create_Itype (E_Void, N);
21084 if Has_Discriminants (Full_T) then
21085 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
21086 else
21087 Disc_Constraint := No_Elist;
21088 end if;
21090 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
21091 Set_Full_View (Priv_Dep, New_Subt);
21092 end if;
21094 Next_Elmt (Inc_Elmt);
21095 end loop;
21096 end Process_Incomplete_Dependents;
21098 --------------------------------
21099 -- Process_Range_Expr_In_Decl --
21100 --------------------------------
21102 procedure Process_Range_Expr_In_Decl
21103 (R : Node_Id;
21104 T : Entity_Id;
21105 Subtyp : Entity_Id := Empty;
21106 Check_List : List_Id := Empty_List;
21107 R_Check_Off : Boolean := False;
21108 In_Iter_Schm : Boolean := False)
21110 Lo, Hi : Node_Id;
21111 R_Checks : Check_Result;
21112 Insert_Node : Node_Id;
21113 Def_Id : Entity_Id;
21115 begin
21116 Analyze_And_Resolve (R, Base_Type (T));
21118 if Nkind (R) = N_Range then
21120 -- In SPARK, all ranges should be static, with the exception of the
21121 -- discrete type definition of a loop parameter specification.
21123 if not In_Iter_Schm
21124 and then not Is_OK_Static_Range (R)
21125 then
21126 Check_SPARK_05_Restriction ("range should be static", R);
21127 end if;
21129 Lo := Low_Bound (R);
21130 Hi := High_Bound (R);
21132 -- Validity checks on the range of a quantified expression are
21133 -- delayed until the construct is transformed into a loop.
21135 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
21136 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
21137 then
21138 null;
21140 -- We need to ensure validity of the bounds here, because if we
21141 -- go ahead and do the expansion, then the expanded code will get
21142 -- analyzed with range checks suppressed and we miss the check.
21144 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
21145 -- the temporaries generated by routine Remove_Side_Effects by means
21146 -- of validity checks must use the same names. When a range appears
21147 -- in the parent of a generic, the range is processed with checks
21148 -- disabled as part of the generic context and with checks enabled
21149 -- for code generation purposes. This leads to link issues as the
21150 -- generic contains references to xxx_FIRST/_LAST, but the inlined
21151 -- template sees the temporaries generated by Remove_Side_Effects.
21153 else
21154 Validity_Check_Range (R, Subtyp);
21155 end if;
21157 -- If there were errors in the declaration, try and patch up some
21158 -- common mistakes in the bounds. The cases handled are literals
21159 -- which are Integer where the expected type is Real and vice versa.
21160 -- These corrections allow the compilation process to proceed further
21161 -- along since some basic assumptions of the format of the bounds
21162 -- are guaranteed.
21164 if Etype (R) = Any_Type then
21165 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
21166 Rewrite (Lo,
21167 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
21169 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
21170 Rewrite (Hi,
21171 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
21173 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
21174 Rewrite (Lo,
21175 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
21177 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
21178 Rewrite (Hi,
21179 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
21180 end if;
21182 Set_Etype (Lo, T);
21183 Set_Etype (Hi, T);
21184 end if;
21186 -- If the bounds of the range have been mistakenly given as string
21187 -- literals (perhaps in place of character literals), then an error
21188 -- has already been reported, but we rewrite the string literal as a
21189 -- bound of the range's type to avoid blowups in later processing
21190 -- that looks at static values.
21192 if Nkind (Lo) = N_String_Literal then
21193 Rewrite (Lo,
21194 Make_Attribute_Reference (Sloc (Lo),
21195 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
21196 Attribute_Name => Name_First));
21197 Analyze_And_Resolve (Lo);
21198 end if;
21200 if Nkind (Hi) = N_String_Literal then
21201 Rewrite (Hi,
21202 Make_Attribute_Reference (Sloc (Hi),
21203 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
21204 Attribute_Name => Name_First));
21205 Analyze_And_Resolve (Hi);
21206 end if;
21208 -- If bounds aren't scalar at this point then exit, avoiding
21209 -- problems with further processing of the range in this procedure.
21211 if not Is_Scalar_Type (Etype (Lo)) then
21212 return;
21213 end if;
21215 -- Resolve (actually Sem_Eval) has checked that the bounds are in
21216 -- then range of the base type. Here we check whether the bounds
21217 -- are in the range of the subtype itself. Note that if the bounds
21218 -- represent the null range the Constraint_Error exception should
21219 -- not be raised.
21221 -- ??? The following code should be cleaned up as follows
21223 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
21224 -- is done in the call to Range_Check (R, T); below
21226 -- 2. The use of R_Check_Off should be investigated and possibly
21227 -- removed, this would clean up things a bit.
21229 if Is_Null_Range (Lo, Hi) then
21230 null;
21232 else
21233 -- Capture values of bounds and generate temporaries for them
21234 -- if needed, before applying checks, since checks may cause
21235 -- duplication of the expression without forcing evaluation.
21237 -- The forced evaluation removes side effects from expressions,
21238 -- which should occur also in GNATprove mode. Otherwise, we end up
21239 -- with unexpected insertions of actions at places where this is
21240 -- not supposed to occur, e.g. on default parameters of a call.
21242 if Expander_Active or GNATprove_Mode then
21244 -- Call Force_Evaluation to create declarations as needed to
21245 -- deal with side effects, and also create typ_FIRST/LAST
21246 -- entities for bounds if we have a subtype name.
21248 -- Note: we do this transformation even if expansion is not
21249 -- active if we are in GNATprove_Mode since the transformation
21250 -- is in general required to ensure that the resulting tree has
21251 -- proper Ada semantics.
21253 Force_Evaluation
21254 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
21255 Force_Evaluation
21256 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
21257 end if;
21259 -- We use a flag here instead of suppressing checks on the type
21260 -- because the type we check against isn't necessarily the place
21261 -- where we put the check.
21263 if not R_Check_Off then
21264 R_Checks := Get_Range_Checks (R, T);
21266 -- Look up tree to find an appropriate insertion point. We
21267 -- can't just use insert_actions because later processing
21268 -- depends on the insertion node. Prior to Ada 2012 the
21269 -- insertion point could only be a declaration or a loop, but
21270 -- quantified expressions can appear within any context in an
21271 -- expression, and the insertion point can be any statement,
21272 -- pragma, or declaration.
21274 Insert_Node := Parent (R);
21275 while Present (Insert_Node) loop
21276 exit when
21277 Nkind (Insert_Node) in N_Declaration
21278 and then
21279 not Nkind_In
21280 (Insert_Node, N_Component_Declaration,
21281 N_Loop_Parameter_Specification,
21282 N_Function_Specification,
21283 N_Procedure_Specification);
21285 exit when Nkind (Insert_Node) in N_Later_Decl_Item
21286 or else Nkind (Insert_Node) in
21287 N_Statement_Other_Than_Procedure_Call
21288 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
21289 N_Pragma);
21291 Insert_Node := Parent (Insert_Node);
21292 end loop;
21294 -- Why would Type_Decl not be present??? Without this test,
21295 -- short regression tests fail.
21297 if Present (Insert_Node) then
21299 -- Case of loop statement. Verify that the range is part
21300 -- of the subtype indication of the iteration scheme.
21302 if Nkind (Insert_Node) = N_Loop_Statement then
21303 declare
21304 Indic : Node_Id;
21306 begin
21307 Indic := Parent (R);
21308 while Present (Indic)
21309 and then Nkind (Indic) /= N_Subtype_Indication
21310 loop
21311 Indic := Parent (Indic);
21312 end loop;
21314 if Present (Indic) then
21315 Def_Id := Etype (Subtype_Mark (Indic));
21317 Insert_Range_Checks
21318 (R_Checks,
21319 Insert_Node,
21320 Def_Id,
21321 Sloc (Insert_Node),
21323 Do_Before => True);
21324 end if;
21325 end;
21327 -- Insertion before a declaration. If the declaration
21328 -- includes discriminants, the list of applicable checks
21329 -- is given by the caller.
21331 elsif Nkind (Insert_Node) in N_Declaration then
21332 Def_Id := Defining_Identifier (Insert_Node);
21334 if (Ekind (Def_Id) = E_Record_Type
21335 and then Depends_On_Discriminant (R))
21336 or else
21337 (Ekind (Def_Id) = E_Protected_Type
21338 and then Has_Discriminants (Def_Id))
21339 then
21340 Append_Range_Checks
21341 (R_Checks,
21342 Check_List, Def_Id, Sloc (Insert_Node), R);
21344 else
21345 Insert_Range_Checks
21346 (R_Checks,
21347 Insert_Node, Def_Id, Sloc (Insert_Node), R);
21349 end if;
21351 -- Insertion before a statement. Range appears in the
21352 -- context of a quantified expression. Insertion will
21353 -- take place when expression is expanded.
21355 else
21356 null;
21357 end if;
21358 end if;
21359 end if;
21360 end if;
21362 -- Case of other than an explicit N_Range node
21364 -- The forced evaluation removes side effects from expressions, which
21365 -- should occur also in GNATprove mode. Otherwise, we end up with
21366 -- unexpected insertions of actions at places where this is not
21367 -- supposed to occur, e.g. on default parameters of a call.
21369 elsif Expander_Active or GNATprove_Mode then
21370 Get_Index_Bounds (R, Lo, Hi);
21371 Force_Evaluation (Lo);
21372 Force_Evaluation (Hi);
21373 end if;
21374 end Process_Range_Expr_In_Decl;
21376 --------------------------------------
21377 -- Process_Real_Range_Specification --
21378 --------------------------------------
21380 procedure Process_Real_Range_Specification (Def : Node_Id) is
21381 Spec : constant Node_Id := Real_Range_Specification (Def);
21382 Lo : Node_Id;
21383 Hi : Node_Id;
21384 Err : Boolean := False;
21386 procedure Analyze_Bound (N : Node_Id);
21387 -- Analyze and check one bound
21389 -------------------
21390 -- Analyze_Bound --
21391 -------------------
21393 procedure Analyze_Bound (N : Node_Id) is
21394 begin
21395 Analyze_And_Resolve (N, Any_Real);
21397 if not Is_OK_Static_Expression (N) then
21398 Flag_Non_Static_Expr
21399 ("bound in real type definition is not static!", N);
21400 Err := True;
21401 end if;
21402 end Analyze_Bound;
21404 -- Start of processing for Process_Real_Range_Specification
21406 begin
21407 if Present (Spec) then
21408 Lo := Low_Bound (Spec);
21409 Hi := High_Bound (Spec);
21410 Analyze_Bound (Lo);
21411 Analyze_Bound (Hi);
21413 -- If error, clear away junk range specification
21415 if Err then
21416 Set_Real_Range_Specification (Def, Empty);
21417 end if;
21418 end if;
21419 end Process_Real_Range_Specification;
21421 ---------------------
21422 -- Process_Subtype --
21423 ---------------------
21425 function Process_Subtype
21426 (S : Node_Id;
21427 Related_Nod : Node_Id;
21428 Related_Id : Entity_Id := Empty;
21429 Suffix : Character := ' ') return Entity_Id
21431 P : Node_Id;
21432 Def_Id : Entity_Id;
21433 Error_Node : Node_Id;
21434 Full_View_Id : Entity_Id;
21435 Subtype_Mark_Id : Entity_Id;
21437 May_Have_Null_Exclusion : Boolean;
21439 procedure Check_Incomplete (T : Node_Id);
21440 -- Called to verify that an incomplete type is not used prematurely
21442 ----------------------
21443 -- Check_Incomplete --
21444 ----------------------
21446 procedure Check_Incomplete (T : Node_Id) is
21447 begin
21448 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21450 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
21451 and then
21452 not (Ada_Version >= Ada_2005
21453 and then
21454 (Nkind (Parent (T)) = N_Subtype_Declaration
21455 or else (Nkind (Parent (T)) = N_Subtype_Indication
21456 and then Nkind (Parent (Parent (T))) =
21457 N_Subtype_Declaration)))
21458 then
21459 Error_Msg_N ("invalid use of type before its full declaration", T);
21460 end if;
21461 end Check_Incomplete;
21463 -- Start of processing for Process_Subtype
21465 begin
21466 -- Case of no constraints present
21468 if Nkind (S) /= N_Subtype_Indication then
21469 Find_Type (S);
21471 -- No way to proceed if the subtype indication is malformed. This
21472 -- will happen for example when the subtype indication in an object
21473 -- declaration is missing altogether and the expression is analyzed
21474 -- as if it were that indication.
21476 if not Is_Entity_Name (S) then
21477 return Any_Type;
21478 end if;
21480 Check_Incomplete (S);
21481 P := Parent (S);
21483 -- Ada 2005 (AI-231): Static check
21485 if Ada_Version >= Ada_2005
21486 and then Present (P)
21487 and then Null_Exclusion_Present (P)
21488 and then Nkind (P) /= N_Access_To_Object_Definition
21489 and then not Is_Access_Type (Entity (S))
21490 then
21491 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
21492 end if;
21494 -- The following is ugly, can't we have a range or even a flag???
21496 May_Have_Null_Exclusion :=
21497 Nkind_In (P, N_Access_Definition,
21498 N_Access_Function_Definition,
21499 N_Access_Procedure_Definition,
21500 N_Access_To_Object_Definition,
21501 N_Allocator,
21502 N_Component_Definition)
21503 or else
21504 Nkind_In (P, N_Derived_Type_Definition,
21505 N_Discriminant_Specification,
21506 N_Formal_Object_Declaration,
21507 N_Object_Declaration,
21508 N_Object_Renaming_Declaration,
21509 N_Parameter_Specification,
21510 N_Subtype_Declaration);
21512 -- Create an Itype that is a duplicate of Entity (S) but with the
21513 -- null-exclusion attribute.
21515 if May_Have_Null_Exclusion
21516 and then Is_Access_Type (Entity (S))
21517 and then Null_Exclusion_Present (P)
21519 -- No need to check the case of an access to object definition.
21520 -- It is correct to define double not-null pointers.
21522 -- Example:
21523 -- type Not_Null_Int_Ptr is not null access Integer;
21524 -- type Acc is not null access Not_Null_Int_Ptr;
21526 and then Nkind (P) /= N_Access_To_Object_Definition
21527 then
21528 if Can_Never_Be_Null (Entity (S)) then
21529 case Nkind (Related_Nod) is
21530 when N_Full_Type_Declaration =>
21531 if Nkind (Type_Definition (Related_Nod))
21532 in N_Array_Type_Definition
21533 then
21534 Error_Node :=
21535 Subtype_Indication
21536 (Component_Definition
21537 (Type_Definition (Related_Nod)));
21538 else
21539 Error_Node :=
21540 Subtype_Indication (Type_Definition (Related_Nod));
21541 end if;
21543 when N_Subtype_Declaration =>
21544 Error_Node := Subtype_Indication (Related_Nod);
21546 when N_Object_Declaration =>
21547 Error_Node := Object_Definition (Related_Nod);
21549 when N_Component_Declaration =>
21550 Error_Node :=
21551 Subtype_Indication (Component_Definition (Related_Nod));
21553 when N_Allocator =>
21554 Error_Node := Expression (Related_Nod);
21556 when others =>
21557 pragma Assert (False);
21558 Error_Node := Related_Nod;
21559 end case;
21561 Error_Msg_NE
21562 ("`NOT NULL` not allowed (& already excludes null)",
21563 Error_Node,
21564 Entity (S));
21565 end if;
21567 Set_Etype (S,
21568 Create_Null_Excluding_Itype
21569 (T => Entity (S),
21570 Related_Nod => P));
21571 Set_Entity (S, Etype (S));
21572 end if;
21574 return Entity (S);
21576 -- Case of constraint present, so that we have an N_Subtype_Indication
21577 -- node (this node is created only if constraints are present).
21579 else
21580 Find_Type (Subtype_Mark (S));
21582 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
21583 and then not
21584 (Nkind (Parent (S)) = N_Subtype_Declaration
21585 and then Is_Itype (Defining_Identifier (Parent (S))))
21586 then
21587 Check_Incomplete (Subtype_Mark (S));
21588 end if;
21590 P := Parent (S);
21591 Subtype_Mark_Id := Entity (Subtype_Mark (S));
21593 -- Explicit subtype declaration case
21595 if Nkind (P) = N_Subtype_Declaration then
21596 Def_Id := Defining_Identifier (P);
21598 -- Explicit derived type definition case
21600 elsif Nkind (P) = N_Derived_Type_Definition then
21601 Def_Id := Defining_Identifier (Parent (P));
21603 -- Implicit case, the Def_Id must be created as an implicit type.
21604 -- The one exception arises in the case of concurrent types, array
21605 -- and access types, where other subsidiary implicit types may be
21606 -- created and must appear before the main implicit type. In these
21607 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
21608 -- has not yet been called to create Def_Id.
21610 else
21611 if Is_Array_Type (Subtype_Mark_Id)
21612 or else Is_Concurrent_Type (Subtype_Mark_Id)
21613 or else Is_Access_Type (Subtype_Mark_Id)
21614 then
21615 Def_Id := Empty;
21617 -- For the other cases, we create a new unattached Itype,
21618 -- and set the indication to ensure it gets attached later.
21620 else
21621 Def_Id :=
21622 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21623 end if;
21624 end if;
21626 -- If the kind of constraint is invalid for this kind of type,
21627 -- then give an error, and then pretend no constraint was given.
21629 if not Is_Valid_Constraint_Kind
21630 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
21631 then
21632 Error_Msg_N
21633 ("incorrect constraint for this kind of type", Constraint (S));
21635 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
21637 -- Set Ekind of orphan itype, to prevent cascaded errors
21639 if Present (Def_Id) then
21640 Set_Ekind (Def_Id, Ekind (Any_Type));
21641 end if;
21643 -- Make recursive call, having got rid of the bogus constraint
21645 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
21646 end if;
21648 -- Remaining processing depends on type. Select on Base_Type kind to
21649 -- ensure getting to the concrete type kind in the case of a private
21650 -- subtype (needed when only doing semantic analysis).
21652 case Ekind (Base_Type (Subtype_Mark_Id)) is
21653 when Access_Kind =>
21655 -- If this is a constraint on a class-wide type, discard it.
21656 -- There is currently no way to express a partial discriminant
21657 -- constraint on a type with unknown discriminants. This is
21658 -- a pathology that the ACATS wisely decides not to test.
21660 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
21661 if Comes_From_Source (S) then
21662 Error_Msg_N
21663 ("constraint on class-wide type ignored??",
21664 Constraint (S));
21665 end if;
21667 if Nkind (P) = N_Subtype_Declaration then
21668 Set_Subtype_Indication (P,
21669 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
21670 end if;
21672 return Subtype_Mark_Id;
21673 end if;
21675 Constrain_Access (Def_Id, S, Related_Nod);
21677 if Expander_Active
21678 and then Is_Itype (Designated_Type (Def_Id))
21679 and then Nkind (Related_Nod) = N_Subtype_Declaration
21680 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
21681 then
21682 Build_Itype_Reference
21683 (Designated_Type (Def_Id), Related_Nod);
21684 end if;
21686 when Array_Kind =>
21687 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21689 when Decimal_Fixed_Point_Kind =>
21690 Constrain_Decimal (Def_Id, S);
21692 when Enumeration_Kind =>
21693 Constrain_Enumeration (Def_Id, S);
21695 when Ordinary_Fixed_Point_Kind =>
21696 Constrain_Ordinary_Fixed (Def_Id, S);
21698 when Float_Kind =>
21699 Constrain_Float (Def_Id, S);
21701 when Integer_Kind =>
21702 Constrain_Integer (Def_Id, S);
21704 when Class_Wide_Kind
21705 | E_Incomplete_Type
21706 | E_Record_Subtype
21707 | E_Record_Type
21709 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21711 if Ekind (Def_Id) = E_Incomplete_Type then
21712 Set_Private_Dependents (Def_Id, New_Elmt_List);
21713 end if;
21715 when Private_Kind =>
21717 -- A private type with unknown discriminants may be completed
21718 -- by an unconstrained array type.
21720 if Has_Unknown_Discriminants (Subtype_Mark_Id)
21721 and then Present (Full_View (Subtype_Mark_Id))
21722 and then Is_Array_Type (Full_View (Subtype_Mark_Id))
21723 then
21724 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21726 -- ... but more commonly is completed by a discriminated record
21727 -- type.
21729 else
21730 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21731 end if;
21733 -- The base type may be private but Def_Id may be a full view
21734 -- in an instance.
21736 if Is_Private_Type (Def_Id) then
21737 Set_Private_Dependents (Def_Id, New_Elmt_List);
21738 end if;
21740 -- In case of an invalid constraint prevent further processing
21741 -- since the type constructed is missing expected fields.
21743 if Etype (Def_Id) = Any_Type then
21744 return Def_Id;
21745 end if;
21747 -- If the full view is that of a task with discriminants,
21748 -- we must constrain both the concurrent type and its
21749 -- corresponding record type. Otherwise we will just propagate
21750 -- the constraint to the full view, if available.
21752 if Present (Full_View (Subtype_Mark_Id))
21753 and then Has_Discriminants (Subtype_Mark_Id)
21754 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
21755 then
21756 Full_View_Id :=
21757 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21759 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
21760 Constrain_Concurrent (Full_View_Id, S,
21761 Related_Nod, Related_Id, Suffix);
21762 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
21763 Set_Full_View (Def_Id, Full_View_Id);
21765 -- Introduce an explicit reference to the private subtype,
21766 -- to prevent scope anomalies in gigi if first use appears
21767 -- in a nested context, e.g. a later function body.
21768 -- Should this be generated in other contexts than a full
21769 -- type declaration?
21771 if Is_Itype (Def_Id)
21772 and then
21773 Nkind (Parent (P)) = N_Full_Type_Declaration
21774 then
21775 Build_Itype_Reference (Def_Id, Parent (P));
21776 end if;
21778 else
21779 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
21780 end if;
21782 when Concurrent_Kind =>
21783 Constrain_Concurrent (Def_Id, S,
21784 Related_Nod, Related_Id, Suffix);
21786 when others =>
21787 Error_Msg_N ("invalid subtype mark in subtype indication", S);
21788 end case;
21790 -- Size, Alignment, Representation aspects and Convention are always
21791 -- inherited from the base type.
21793 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
21794 Set_Rep_Info (Def_Id, (Subtype_Mark_Id));
21795 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
21797 -- The anonymous subtype created for the subtype indication
21798 -- inherits the predicates of the parent.
21800 if Has_Predicates (Subtype_Mark_Id) then
21801 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21803 -- Indicate where the predicate function may be found
21805 if No (Predicate_Function (Def_Id)) and then Is_Itype (Def_Id) then
21806 Set_Predicated_Parent (Def_Id, Subtype_Mark_Id);
21807 end if;
21808 end if;
21810 return Def_Id;
21811 end if;
21812 end Process_Subtype;
21814 -----------------------------
21815 -- Record_Type_Declaration --
21816 -----------------------------
21818 procedure Record_Type_Declaration
21819 (T : Entity_Id;
21820 N : Node_Id;
21821 Prev : Entity_Id)
21823 Def : constant Node_Id := Type_Definition (N);
21824 Is_Tagged : Boolean;
21825 Tag_Comp : Entity_Id;
21827 begin
21828 -- These flags must be initialized before calling Process_Discriminants
21829 -- because this routine makes use of them.
21831 Set_Ekind (T, E_Record_Type);
21832 Set_Etype (T, T);
21833 Init_Size_Align (T);
21834 Set_Interfaces (T, No_Elist);
21835 Set_Stored_Constraint (T, No_Elist);
21836 Set_Default_SSO (T);
21837 Set_No_Reordering (T, No_Component_Reordering);
21839 -- Normal case
21841 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
21842 if Limited_Present (Def) then
21843 Check_SPARK_05_Restriction ("limited is not allowed", N);
21844 end if;
21846 if Abstract_Present (Def) then
21847 Check_SPARK_05_Restriction ("abstract is not allowed", N);
21848 end if;
21850 -- The flag Is_Tagged_Type might have already been set by
21851 -- Find_Type_Name if it detected an error for declaration T. This
21852 -- arises in the case of private tagged types where the full view
21853 -- omits the word tagged.
21855 Is_Tagged :=
21856 Tagged_Present (Def)
21857 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21859 Set_Is_Limited_Record (T, Limited_Present (Def));
21861 if Is_Tagged then
21862 Set_Is_Tagged_Type (T, True);
21863 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21864 end if;
21866 -- Type is abstract if full declaration carries keyword, or if
21867 -- previous partial view did.
21869 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
21870 or else Abstract_Present (Def));
21872 else
21873 Check_SPARK_05_Restriction ("interface is not allowed", N);
21875 Is_Tagged := True;
21876 Analyze_Interface_Declaration (T, Def);
21878 if Present (Discriminant_Specifications (N)) then
21879 Error_Msg_N
21880 ("interface types cannot have discriminants",
21881 Defining_Identifier
21882 (First (Discriminant_Specifications (N))));
21883 end if;
21884 end if;
21886 -- First pass: if there are self-referential access components,
21887 -- create the required anonymous access type declarations, and if
21888 -- need be an incomplete type declaration for T itself.
21890 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21892 if Ada_Version >= Ada_2005
21893 and then Present (Interface_List (Def))
21894 then
21895 Check_Interfaces (N, Def);
21897 declare
21898 Ifaces_List : Elist_Id;
21900 begin
21901 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21902 -- already in the parents.
21904 Collect_Interfaces
21905 (T => T,
21906 Ifaces_List => Ifaces_List,
21907 Exclude_Parents => True);
21909 Set_Interfaces (T, Ifaces_List);
21910 end;
21911 end if;
21913 -- Records constitute a scope for the component declarations within.
21914 -- The scope is created prior to the processing of these declarations.
21915 -- Discriminants are processed first, so that they are visible when
21916 -- processing the other components. The Ekind of the record type itself
21917 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21919 -- Enter record scope
21921 Push_Scope (T);
21923 -- If an incomplete or private type declaration was already given for
21924 -- the type, then this scope already exists, and the discriminants have
21925 -- been declared within. We must verify that the full declaration
21926 -- matches the incomplete one.
21928 Check_Or_Process_Discriminants (N, T, Prev);
21930 Set_Is_Constrained (T, not Has_Discriminants (T));
21931 Set_Has_Delayed_Freeze (T, True);
21933 -- For tagged types add a manually analyzed component corresponding
21934 -- to the component _tag, the corresponding piece of tree will be
21935 -- expanded as part of the freezing actions if it is not a CPP_Class.
21937 if Is_Tagged then
21939 -- Do not add the tag unless we are in expansion mode
21941 if Expander_Active then
21942 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21943 Enter_Name (Tag_Comp);
21945 Set_Ekind (Tag_Comp, E_Component);
21946 Set_Is_Tag (Tag_Comp);
21947 Set_Is_Aliased (Tag_Comp);
21948 Set_Etype (Tag_Comp, RTE (RE_Tag));
21949 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21950 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21951 Init_Component_Location (Tag_Comp);
21953 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21954 -- implemented interfaces.
21956 if Has_Interfaces (T) then
21957 Add_Interface_Tag_Components (N, T);
21958 end if;
21959 end if;
21961 Make_Class_Wide_Type (T);
21962 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21963 end if;
21965 -- We must suppress range checks when processing record components in
21966 -- the presence of discriminants, since we don't want spurious checks to
21967 -- be generated during their analysis, but Suppress_Range_Checks flags
21968 -- must be reset the after processing the record definition.
21970 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21971 -- couldn't we just use the normal range check suppression method here.
21972 -- That would seem cleaner ???
21974 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21975 Set_Kill_Range_Checks (T, True);
21976 Record_Type_Definition (Def, Prev);
21977 Set_Kill_Range_Checks (T, False);
21978 else
21979 Record_Type_Definition (Def, Prev);
21980 end if;
21982 -- Exit from record scope
21984 End_Scope;
21986 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21987 -- the implemented interfaces and associate them an aliased entity.
21989 if Is_Tagged
21990 and then not Is_Empty_List (Interface_List (Def))
21991 then
21992 Derive_Progenitor_Subprograms (T, T);
21993 end if;
21995 Check_Function_Writable_Actuals (N);
21996 end Record_Type_Declaration;
21998 ----------------------------
21999 -- Record_Type_Definition --
22000 ----------------------------
22002 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
22003 Component : Entity_Id;
22004 Ctrl_Components : Boolean := False;
22005 Final_Storage_Only : Boolean;
22006 T : Entity_Id;
22008 begin
22009 if Ekind (Prev_T) = E_Incomplete_Type then
22010 T := Full_View (Prev_T);
22011 else
22012 T := Prev_T;
22013 end if;
22015 -- In SPARK, tagged types and type extensions may only be declared in
22016 -- the specification of library unit packages.
22018 if Present (Def) and then Is_Tagged_Type (T) then
22019 declare
22020 Typ : Node_Id;
22021 Ctxt : Node_Id;
22023 begin
22024 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
22025 Typ := Parent (Def);
22026 else
22027 pragma Assert
22028 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
22029 Typ := Parent (Parent (Def));
22030 end if;
22032 Ctxt := Parent (Typ);
22034 if Nkind (Ctxt) = N_Package_Body
22035 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
22036 then
22037 Check_SPARK_05_Restriction
22038 ("type should be defined in package specification", Typ);
22040 elsif Nkind (Ctxt) /= N_Package_Specification
22041 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
22042 then
22043 Check_SPARK_05_Restriction
22044 ("type should be defined in library unit package", Typ);
22045 end if;
22046 end;
22047 end if;
22049 Final_Storage_Only := not Is_Controlled (T);
22051 -- Ada 2005: Check whether an explicit Limited is present in a derived
22052 -- type declaration.
22054 if Nkind (Parent (Def)) = N_Derived_Type_Definition
22055 and then Limited_Present (Parent (Def))
22056 then
22057 Set_Is_Limited_Record (T);
22058 end if;
22060 -- If the component list of a record type is defined by the reserved
22061 -- word null and there is no discriminant part, then the record type has
22062 -- no components and all records of the type are null records (RM 3.7)
22063 -- This procedure is also called to process the extension part of a
22064 -- record extension, in which case the current scope may have inherited
22065 -- components.
22067 if No (Def)
22068 or else No (Component_List (Def))
22069 or else Null_Present (Component_List (Def))
22070 then
22071 if not Is_Tagged_Type (T) then
22072 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
22073 end if;
22075 else
22076 Analyze_Declarations (Component_Items (Component_List (Def)));
22078 if Present (Variant_Part (Component_List (Def))) then
22079 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
22080 Analyze (Variant_Part (Component_List (Def)));
22081 end if;
22082 end if;
22084 -- After completing the semantic analysis of the record definition,
22085 -- record components, both new and inherited, are accessible. Set their
22086 -- kind accordingly. Exclude malformed itypes from illegal declarations,
22087 -- whose Ekind may be void.
22089 Component := First_Entity (Current_Scope);
22090 while Present (Component) loop
22091 if Ekind (Component) = E_Void
22092 and then not Is_Itype (Component)
22093 then
22094 Set_Ekind (Component, E_Component);
22095 Init_Component_Location (Component);
22096 end if;
22098 Propagate_Concurrent_Flags (T, Etype (Component));
22100 if Ekind (Component) /= E_Component then
22101 null;
22103 -- Do not set Has_Controlled_Component on a class-wide equivalent
22104 -- type. See Make_CW_Equivalent_Type.
22106 elsif not Is_Class_Wide_Equivalent_Type (T)
22107 and then (Has_Controlled_Component (Etype (Component))
22108 or else (Chars (Component) /= Name_uParent
22109 and then Is_Controlled (Etype (Component))))
22110 then
22111 Set_Has_Controlled_Component (T, True);
22112 Final_Storage_Only :=
22113 Final_Storage_Only
22114 and then Finalize_Storage_Only (Etype (Component));
22115 Ctrl_Components := True;
22116 end if;
22118 Next_Entity (Component);
22119 end loop;
22121 -- A Type is Finalize_Storage_Only only if all its controlled components
22122 -- are also.
22124 if Ctrl_Components then
22125 Set_Finalize_Storage_Only (T, Final_Storage_Only);
22126 end if;
22128 -- Place reference to end record on the proper entity, which may
22129 -- be a partial view.
22131 if Present (Def) then
22132 Process_End_Label (Def, 'e', Prev_T);
22133 end if;
22134 end Record_Type_Definition;
22136 ------------------------
22137 -- Replace_Components --
22138 ------------------------
22140 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
22141 function Process (N : Node_Id) return Traverse_Result;
22143 -------------
22144 -- Process --
22145 -------------
22147 function Process (N : Node_Id) return Traverse_Result is
22148 Comp : Entity_Id;
22150 begin
22151 if Nkind (N) = N_Discriminant_Specification then
22152 Comp := First_Discriminant (Typ);
22153 while Present (Comp) loop
22154 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22155 Set_Defining_Identifier (N, Comp);
22156 exit;
22157 end if;
22159 Next_Discriminant (Comp);
22160 end loop;
22162 elsif Nkind (N) = N_Variant_Part then
22163 Comp := First_Discriminant (Typ);
22164 while Present (Comp) loop
22165 if Chars (Comp) = Chars (Name (N)) then
22166 Set_Entity (Name (N), Comp);
22167 exit;
22168 end if;
22170 Next_Discriminant (Comp);
22171 end loop;
22173 elsif Nkind (N) = N_Component_Declaration then
22174 Comp := First_Component (Typ);
22175 while Present (Comp) loop
22176 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22177 Set_Defining_Identifier (N, Comp);
22178 exit;
22179 end if;
22181 Next_Component (Comp);
22182 end loop;
22183 end if;
22185 return OK;
22186 end Process;
22188 procedure Replace is new Traverse_Proc (Process);
22190 -- Start of processing for Replace_Components
22192 begin
22193 Replace (Decl);
22194 end Replace_Components;
22196 -------------------------------
22197 -- Set_Completion_Referenced --
22198 -------------------------------
22200 procedure Set_Completion_Referenced (E : Entity_Id) is
22201 begin
22202 -- If in main unit, mark entity that is a completion as referenced,
22203 -- warnings go on the partial view when needed.
22205 if In_Extended_Main_Source_Unit (E) then
22206 Set_Referenced (E);
22207 end if;
22208 end Set_Completion_Referenced;
22210 ---------------------
22211 -- Set_Default_SSO --
22212 ---------------------
22214 procedure Set_Default_SSO (T : Entity_Id) is
22215 begin
22216 case Opt.Default_SSO is
22217 when ' ' =>
22218 null;
22219 when 'L' =>
22220 Set_SSO_Set_Low_By_Default (T, True);
22221 when 'H' =>
22222 Set_SSO_Set_High_By_Default (T, True);
22223 when others =>
22224 raise Program_Error;
22225 end case;
22226 end Set_Default_SSO;
22228 ---------------------
22229 -- Set_Fixed_Range --
22230 ---------------------
22232 -- The range for fixed-point types is complicated by the fact that we
22233 -- do not know the exact end points at the time of the declaration. This
22234 -- is true for three reasons:
22236 -- A size clause may affect the fudging of the end-points.
22237 -- A small clause may affect the values of the end-points.
22238 -- We try to include the end-points if it does not affect the size.
22240 -- This means that the actual end-points must be established at the
22241 -- point when the type is frozen. Meanwhile, we first narrow the range
22242 -- as permitted (so that it will fit if necessary in a small specified
22243 -- size), and then build a range subtree with these narrowed bounds.
22244 -- Set_Fixed_Range constructs the range from real literal values, and
22245 -- sets the range as the Scalar_Range of the given fixed-point type entity.
22247 -- The parent of this range is set to point to the entity so that it is
22248 -- properly hooked into the tree (unlike normal Scalar_Range entries for
22249 -- other scalar types, which are just pointers to the range in the
22250 -- original tree, this would otherwise be an orphan).
22252 -- The tree is left unanalyzed. When the type is frozen, the processing
22253 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
22254 -- analyzed, and uses this as an indication that it should complete
22255 -- work on the range (it will know the final small and size values).
22257 procedure Set_Fixed_Range
22258 (E : Entity_Id;
22259 Loc : Source_Ptr;
22260 Lo : Ureal;
22261 Hi : Ureal)
22263 S : constant Node_Id :=
22264 Make_Range (Loc,
22265 Low_Bound => Make_Real_Literal (Loc, Lo),
22266 High_Bound => Make_Real_Literal (Loc, Hi));
22267 begin
22268 Set_Scalar_Range (E, S);
22269 Set_Parent (S, E);
22271 -- Before the freeze point, the bounds of a fixed point are universal
22272 -- and carry the corresponding type.
22274 Set_Etype (Low_Bound (S), Universal_Real);
22275 Set_Etype (High_Bound (S), Universal_Real);
22276 end Set_Fixed_Range;
22278 ----------------------------------
22279 -- Set_Scalar_Range_For_Subtype --
22280 ----------------------------------
22282 procedure Set_Scalar_Range_For_Subtype
22283 (Def_Id : Entity_Id;
22284 R : Node_Id;
22285 Subt : Entity_Id)
22287 Kind : constant Entity_Kind := Ekind (Def_Id);
22289 begin
22290 -- Defend against previous error
22292 if Nkind (R) = N_Error then
22293 return;
22294 end if;
22296 Set_Scalar_Range (Def_Id, R);
22298 -- We need to link the range into the tree before resolving it so
22299 -- that types that are referenced, including importantly the subtype
22300 -- itself, are properly frozen (Freeze_Expression requires that the
22301 -- expression be properly linked into the tree). Of course if it is
22302 -- already linked in, then we do not disturb the current link.
22304 if No (Parent (R)) then
22305 Set_Parent (R, Def_Id);
22306 end if;
22308 -- Reset the kind of the subtype during analysis of the range, to
22309 -- catch possible premature use in the bounds themselves.
22311 Set_Ekind (Def_Id, E_Void);
22312 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
22313 Set_Ekind (Def_Id, Kind);
22314 end Set_Scalar_Range_For_Subtype;
22316 --------------------------------------------------------
22317 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22318 --------------------------------------------------------
22320 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22321 (E : Entity_Id)
22323 begin
22324 -- Make sure set if encountered during Expand_To_Stored_Constraint
22326 Set_Stored_Constraint (E, No_Elist);
22328 -- Give it the right value
22330 if Is_Constrained (E) and then Has_Discriminants (E) then
22331 Set_Stored_Constraint (E,
22332 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
22333 end if;
22334 end Set_Stored_Constraint_From_Discriminant_Constraint;
22336 -------------------------------------
22337 -- Signed_Integer_Type_Declaration --
22338 -------------------------------------
22340 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
22341 Implicit_Base : Entity_Id;
22342 Base_Typ : Entity_Id;
22343 Lo_Val : Uint;
22344 Hi_Val : Uint;
22345 Errs : Boolean := False;
22346 Lo : Node_Id;
22347 Hi : Node_Id;
22349 function Can_Derive_From (E : Entity_Id) return Boolean;
22350 -- Determine whether given bounds allow derivation from specified type
22352 procedure Check_Bound (Expr : Node_Id);
22353 -- Check bound to make sure it is integral and static. If not, post
22354 -- appropriate error message and set Errs flag
22356 ---------------------
22357 -- Can_Derive_From --
22358 ---------------------
22360 -- Note we check both bounds against both end values, to deal with
22361 -- strange types like ones with a range of 0 .. -12341234.
22363 function Can_Derive_From (E : Entity_Id) return Boolean is
22364 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
22365 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
22366 begin
22367 return Lo <= Lo_Val and then Lo_Val <= Hi
22368 and then
22369 Lo <= Hi_Val and then Hi_Val <= Hi;
22370 end Can_Derive_From;
22372 -----------------
22373 -- Check_Bound --
22374 -----------------
22376 procedure Check_Bound (Expr : Node_Id) is
22377 begin
22378 -- If a range constraint is used as an integer type definition, each
22379 -- bound of the range must be defined by a static expression of some
22380 -- integer type, but the two bounds need not have the same integer
22381 -- type (Negative bounds are allowed.) (RM 3.5.4)
22383 if not Is_Integer_Type (Etype (Expr)) then
22384 Error_Msg_N
22385 ("integer type definition bounds must be of integer type", Expr);
22386 Errs := True;
22388 elsif not Is_OK_Static_Expression (Expr) then
22389 Flag_Non_Static_Expr
22390 ("non-static expression used for integer type bound!", Expr);
22391 Errs := True;
22393 -- The bounds are folded into literals, and we set their type to be
22394 -- universal, to avoid typing difficulties: we cannot set the type
22395 -- of the literal to the new type, because this would be a forward
22396 -- reference for the back end, and if the original type is user-
22397 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
22399 else
22400 if Is_Entity_Name (Expr) then
22401 Fold_Uint (Expr, Expr_Value (Expr), True);
22402 end if;
22404 Set_Etype (Expr, Universal_Integer);
22405 end if;
22406 end Check_Bound;
22408 -- Start of processing for Signed_Integer_Type_Declaration
22410 begin
22411 -- Create an anonymous base type
22413 Implicit_Base :=
22414 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
22416 -- Analyze and check the bounds, they can be of any integer type
22418 Lo := Low_Bound (Def);
22419 Hi := High_Bound (Def);
22421 -- Arbitrarily use Integer as the type if either bound had an error
22423 if Hi = Error or else Lo = Error then
22424 Base_Typ := Any_Integer;
22425 Set_Error_Posted (T, True);
22427 -- Here both bounds are OK expressions
22429 else
22430 Analyze_And_Resolve (Lo, Any_Integer);
22431 Analyze_And_Resolve (Hi, Any_Integer);
22433 Check_Bound (Lo);
22434 Check_Bound (Hi);
22436 if Errs then
22437 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22438 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22439 end if;
22441 -- Find type to derive from
22443 Lo_Val := Expr_Value (Lo);
22444 Hi_Val := Expr_Value (Hi);
22446 if Can_Derive_From (Standard_Short_Short_Integer) then
22447 Base_Typ := Base_Type (Standard_Short_Short_Integer);
22449 elsif Can_Derive_From (Standard_Short_Integer) then
22450 Base_Typ := Base_Type (Standard_Short_Integer);
22452 elsif Can_Derive_From (Standard_Integer) then
22453 Base_Typ := Base_Type (Standard_Integer);
22455 elsif Can_Derive_From (Standard_Long_Integer) then
22456 Base_Typ := Base_Type (Standard_Long_Integer);
22458 elsif Can_Derive_From (Standard_Long_Long_Integer) then
22459 Check_Restriction (No_Long_Long_Integers, Def);
22460 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22462 else
22463 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22464 Error_Msg_N ("integer type definition bounds out of range", Def);
22465 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22466 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22467 end if;
22468 end if;
22470 -- Complete both implicit base and declared first subtype entities. The
22471 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22472 -- are not clobbered when the signed integer type acts as a full view of
22473 -- a private type.
22475 Set_Etype (Implicit_Base, Base_Typ);
22476 Set_Size_Info (Implicit_Base, Base_Typ);
22477 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
22478 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
22479 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
22481 Set_Ekind (T, E_Signed_Integer_Subtype);
22482 Set_Etype (T, Implicit_Base);
22483 Set_Size_Info (T, Implicit_Base);
22484 Inherit_Rep_Item_Chain (T, Implicit_Base);
22485 Set_Scalar_Range (T, Def);
22486 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
22487 Set_Is_Constrained (T);
22488 end Signed_Integer_Type_Declaration;
22490 end Sem_Ch3;