gcc/testsuite/ChangeLog:
[official-gcc.git] / gcc / ada / exp_ch4.adb
blob8dad953025bb33bb92cc388df5400b335bc36db4
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Aggr; use Exp_Aggr;
33 with Exp_Atag; use Exp_Atag;
34 with Exp_Ch2; use Exp_Ch2;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch6; use Exp_Ch6;
37 with Exp_Ch7; use Exp_Ch7;
38 with Exp_Ch9; use Exp_Ch9;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Fixd; use Exp_Fixd;
41 with Exp_Intr; use Exp_Intr;
42 with Exp_Pakd; use Exp_Pakd;
43 with Exp_Tss; use Exp_Tss;
44 with Exp_Util; use Exp_Util;
45 with Freeze; use Freeze;
46 with Inline; use Inline;
47 with Namet; use Namet;
48 with Nlists; use Nlists;
49 with Nmake; use Nmake;
50 with Opt; use Opt;
51 with Par_SCO; use Par_SCO;
52 with Restrict; use Restrict;
53 with Rident; use Rident;
54 with Rtsfind; use Rtsfind;
55 with Sem; use Sem;
56 with Sem_Aux; use Sem_Aux;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch3; use Sem_Ch3;
59 with Sem_Ch13; use Sem_Ch13;
60 with Sem_Eval; use Sem_Eval;
61 with Sem_Res; use Sem_Res;
62 with Sem_Type; use Sem_Type;
63 with Sem_Util; use Sem_Util;
64 with Sem_Warn; use Sem_Warn;
65 with Sinfo; use Sinfo;
66 with Snames; use Snames;
67 with Stand; use Stand;
68 with SCIL_LL; use SCIL_LL;
69 with Targparm; use Targparm;
70 with Tbuild; use Tbuild;
71 with Ttypes; use Ttypes;
72 with Uintp; use Uintp;
73 with Urealp; use Urealp;
74 with Validsw; use Validsw;
76 package body Exp_Ch4 is
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 procedure Binary_Op_Validity_Checks (N : Node_Id);
83 pragma Inline (Binary_Op_Validity_Checks);
84 -- Performs validity checks for a binary operator
86 procedure Build_Boolean_Array_Proc_Call
87 (N : Node_Id;
88 Op1 : Node_Id;
89 Op2 : Node_Id);
90 -- If a boolean array assignment can be done in place, build call to
91 -- corresponding library procedure.
93 procedure Displace_Allocator_Pointer (N : Node_Id);
94 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
95 -- Expand_Allocator_Expression. Allocating class-wide interface objects
96 -- this routine displaces the pointer to the allocated object to reference
97 -- the component referencing the corresponding secondary dispatch table.
99 procedure Expand_Allocator_Expression (N : Node_Id);
100 -- Subsidiary to Expand_N_Allocator, for the case when the expression
101 -- is a qualified expression or an aggregate.
103 procedure Expand_Array_Comparison (N : Node_Id);
104 -- This routine handles expansion of the comparison operators (N_Op_Lt,
105 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
106 -- code for these operators is similar, differing only in the details of
107 -- the actual comparison call that is made. Special processing (call a
108 -- run-time routine)
110 function Expand_Array_Equality
111 (Nod : Node_Id;
112 Lhs : Node_Id;
113 Rhs : Node_Id;
114 Bodies : List_Id;
115 Typ : Entity_Id) return Node_Id;
116 -- Expand an array equality into a call to a function implementing this
117 -- equality, and a call to it. Loc is the location for the generated nodes.
118 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
119 -- on which to attach bodies of local functions that are created in the
120 -- process. It is the responsibility of the caller to insert those bodies
121 -- at the right place. Nod provides the Sloc value for the generated code.
122 -- Normally the types used for the generated equality routine are taken
123 -- from Lhs and Rhs. However, in some situations of generated code, the
124 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
125 -- the type to be used for the formal parameters.
127 procedure Expand_Boolean_Operator (N : Node_Id);
128 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
129 -- case of array type arguments.
131 procedure Expand_Nonbinary_Modular_Op (N : Node_Id);
132 -- When generating C code, convert nonbinary modular arithmetic operations
133 -- into code that relies on the front-end expansion of operator Mod. No
134 -- expansion is performed if N is not a nonbinary modular operand.
136 procedure Expand_Short_Circuit_Operator (N : Node_Id);
137 -- Common expansion processing for short-circuit boolean operators
139 procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id);
140 -- Deal with comparison in MINIMIZED/ELIMINATED overflow mode. This is
141 -- where we allow comparison of "out of range" values.
143 function Expand_Composite_Equality
144 (Nod : Node_Id;
145 Typ : Entity_Id;
146 Lhs : Node_Id;
147 Rhs : Node_Id;
148 Bodies : List_Id) return Node_Id;
149 -- Local recursive function used to expand equality for nested composite
150 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
151 -- to attach bodies of local functions that are created in the process. It
152 -- is the responsibility of the caller to insert those bodies at the right
153 -- place. Nod provides the Sloc value for generated code. Lhs and Rhs are
154 -- the left and right sides for the comparison, and Typ is the type of the
155 -- objects to compare.
157 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id);
158 -- Routine to expand concatenation of a sequence of two or more operands
159 -- (in the list Operands) and replace node Cnode with the result of the
160 -- concatenation. The operands can be of any appropriate type, and can
161 -- include both arrays and singleton elements.
163 procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id);
164 -- N is an N_In membership test mode, with the overflow check mode set to
165 -- MINIMIZED or ELIMINATED, and the type of the left operand is a signed
166 -- integer type. This is a case where top level processing is required to
167 -- handle overflow checks in subtrees.
169 procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
170 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
171 -- fixed. We do not have such a type at runtime, so the purpose of this
172 -- routine is to find the real type by looking up the tree. We also
173 -- determine if the operation must be rounded.
175 function Has_Inferable_Discriminants (N : Node_Id) return Boolean;
176 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
177 -- discriminants if it has a constrained nominal type, unless the object
178 -- is a component of an enclosing Unchecked_Union object that is subject
179 -- to a per-object constraint and the enclosing object lacks inferable
180 -- discriminants.
182 -- An expression of an Unchecked_Union type has inferable discriminants
183 -- if it is either a name of an object with inferable discriminants or a
184 -- qualified expression whose subtype mark denotes a constrained subtype.
186 procedure Insert_Dereference_Action (N : Node_Id);
187 -- N is an expression whose type is an access. When the type of the
188 -- associated storage pool is derived from Checked_Pool, generate a
189 -- call to the 'Dereference' primitive operation.
191 function Make_Array_Comparison_Op
192 (Typ : Entity_Id;
193 Nod : Node_Id) return Node_Id;
194 -- Comparisons between arrays are expanded in line. This function produces
195 -- the body of the implementation of (a > b), where a and b are one-
196 -- dimensional arrays of some discrete type. The original node is then
197 -- expanded into the appropriate call to this function. Nod provides the
198 -- Sloc value for the generated code.
200 function Make_Boolean_Array_Op
201 (Typ : Entity_Id;
202 N : Node_Id) return Node_Id;
203 -- Boolean operations on boolean arrays are expanded in line. This function
204 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
205 -- b). It is used only the normal case and not the packed case. The type
206 -- involved, Typ, is the Boolean array type, and the logical operations in
207 -- the body are simple boolean operations. Note that Typ is always a
208 -- constrained type (the caller has ensured this by using
209 -- Convert_To_Actual_Subtype if necessary).
211 function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean;
212 -- For signed arithmetic operations when the current overflow mode is
213 -- MINIMIZED or ELIMINATED, we must call Apply_Arithmetic_Overflow_Checks
214 -- as the first thing we do. We then return. We count on the recursive
215 -- apparatus for overflow checks to call us back with an equivalent
216 -- operation that is in CHECKED mode, avoiding a recursive entry into this
217 -- routine, and that is when we will proceed with the expansion of the
218 -- operator (e.g. converting X+0 to X, or X**2 to X*X). We cannot do
219 -- these optimizations without first making this check, since there may be
220 -- operands further down the tree that are relying on the recursive calls
221 -- triggered by the top level nodes to properly process overflow checking
222 -- and remaining expansion on these nodes. Note that this call back may be
223 -- skipped if the operation is done in Bignum mode but that's fine, since
224 -- the Bignum call takes care of everything.
226 procedure Optimize_Length_Comparison (N : Node_Id);
227 -- Given an expression, if it is of the form X'Length op N (or the other
228 -- way round), where N is known at compile time to be 0 or 1, and X is a
229 -- simple entity, and op is a comparison operator, optimizes it into a
230 -- comparison of First and Last.
232 procedure Process_If_Case_Statements (N : Node_Id; Stmts : List_Id);
233 -- Inspect and process statement list Stmt of if or case expression N for
234 -- transient objects. If such objects are found, the routine generates code
235 -- to clean them up when the context of the expression is evaluated.
237 procedure Process_Transient_In_Expression
238 (Obj_Decl : Node_Id;
239 Expr : Node_Id;
240 Stmts : List_Id);
241 -- Subsidiary routine to the expansion of expression_with_actions, if and
242 -- case expressions. Generate all necessary code to finalize a transient
243 -- object when the enclosing context is elaborated or evaluated. Obj_Decl
244 -- denotes the declaration of the transient object, which is usually the
245 -- result of a controlled function call. Expr denotes the expression with
246 -- actions, if expression, or case expression node. Stmts denotes the
247 -- statement list which contains Decl, either at the top level or within a
248 -- nested construct.
250 procedure Rewrite_Comparison (N : Node_Id);
251 -- If N is the node for a comparison whose outcome can be determined at
252 -- compile time, then the node N can be rewritten with True or False. If
253 -- the outcome cannot be determined at compile time, the call has no
254 -- effect. If N is a type conversion, then this processing is applied to
255 -- its expression. If N is neither comparison nor a type conversion, the
256 -- call has no effect.
258 procedure Tagged_Membership
259 (N : Node_Id;
260 SCIL_Node : out Node_Id;
261 Result : out Node_Id);
262 -- Construct the expression corresponding to the tagged membership test.
263 -- Deals with a second operand being (or not) a class-wide type.
265 function Safe_In_Place_Array_Op
266 (Lhs : Node_Id;
267 Op1 : Node_Id;
268 Op2 : Node_Id) return Boolean;
269 -- In the context of an assignment, where the right-hand side is a boolean
270 -- operation on arrays, check whether operation can be performed in place.
272 procedure Unary_Op_Validity_Checks (N : Node_Id);
273 pragma Inline (Unary_Op_Validity_Checks);
274 -- Performs validity checks for a unary operator
276 -------------------------------
277 -- Binary_Op_Validity_Checks --
278 -------------------------------
280 procedure Binary_Op_Validity_Checks (N : Node_Id) is
281 begin
282 if Validity_Checks_On and Validity_Check_Operands then
283 Ensure_Valid (Left_Opnd (N));
284 Ensure_Valid (Right_Opnd (N));
285 end if;
286 end Binary_Op_Validity_Checks;
288 ------------------------------------
289 -- Build_Boolean_Array_Proc_Call --
290 ------------------------------------
292 procedure Build_Boolean_Array_Proc_Call
293 (N : Node_Id;
294 Op1 : Node_Id;
295 Op2 : Node_Id)
297 Loc : constant Source_Ptr := Sloc (N);
298 Kind : constant Node_Kind := Nkind (Expression (N));
299 Target : constant Node_Id :=
300 Make_Attribute_Reference (Loc,
301 Prefix => Name (N),
302 Attribute_Name => Name_Address);
304 Arg1 : Node_Id := Op1;
305 Arg2 : Node_Id := Op2;
306 Call_Node : Node_Id;
307 Proc_Name : Entity_Id;
309 begin
310 if Kind = N_Op_Not then
311 if Nkind (Op1) in N_Binary_Op then
313 -- Use negated version of the binary operators
315 if Nkind (Op1) = N_Op_And then
316 Proc_Name := RTE (RE_Vector_Nand);
318 elsif Nkind (Op1) = N_Op_Or then
319 Proc_Name := RTE (RE_Vector_Nor);
321 else pragma Assert (Nkind (Op1) = N_Op_Xor);
322 Proc_Name := RTE (RE_Vector_Xor);
323 end if;
325 Call_Node :=
326 Make_Procedure_Call_Statement (Loc,
327 Name => New_Occurrence_Of (Proc_Name, Loc),
329 Parameter_Associations => New_List (
330 Target,
331 Make_Attribute_Reference (Loc,
332 Prefix => Left_Opnd (Op1),
333 Attribute_Name => Name_Address),
335 Make_Attribute_Reference (Loc,
336 Prefix => Right_Opnd (Op1),
337 Attribute_Name => Name_Address),
339 Make_Attribute_Reference (Loc,
340 Prefix => Left_Opnd (Op1),
341 Attribute_Name => Name_Length)));
343 else
344 Proc_Name := RTE (RE_Vector_Not);
346 Call_Node :=
347 Make_Procedure_Call_Statement (Loc,
348 Name => New_Occurrence_Of (Proc_Name, Loc),
349 Parameter_Associations => New_List (
350 Target,
352 Make_Attribute_Reference (Loc,
353 Prefix => Op1,
354 Attribute_Name => Name_Address),
356 Make_Attribute_Reference (Loc,
357 Prefix => Op1,
358 Attribute_Name => Name_Length)));
359 end if;
361 else
362 -- We use the following equivalences:
364 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
365 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
366 -- (not X) xor (not Y) = X xor Y
367 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
369 if Nkind (Op1) = N_Op_Not then
370 Arg1 := Right_Opnd (Op1);
371 Arg2 := Right_Opnd (Op2);
373 if Kind = N_Op_And then
374 Proc_Name := RTE (RE_Vector_Nor);
375 elsif Kind = N_Op_Or then
376 Proc_Name := RTE (RE_Vector_Nand);
377 else
378 Proc_Name := RTE (RE_Vector_Xor);
379 end if;
381 else
382 if Kind = N_Op_And then
383 Proc_Name := RTE (RE_Vector_And);
384 elsif Kind = N_Op_Or then
385 Proc_Name := RTE (RE_Vector_Or);
386 elsif Nkind (Op2) = N_Op_Not then
387 Proc_Name := RTE (RE_Vector_Nxor);
388 Arg2 := Right_Opnd (Op2);
389 else
390 Proc_Name := RTE (RE_Vector_Xor);
391 end if;
392 end if;
394 Call_Node :=
395 Make_Procedure_Call_Statement (Loc,
396 Name => New_Occurrence_Of (Proc_Name, Loc),
397 Parameter_Associations => New_List (
398 Target,
399 Make_Attribute_Reference (Loc,
400 Prefix => Arg1,
401 Attribute_Name => Name_Address),
402 Make_Attribute_Reference (Loc,
403 Prefix => Arg2,
404 Attribute_Name => Name_Address),
405 Make_Attribute_Reference (Loc,
406 Prefix => Arg1,
407 Attribute_Name => Name_Length)));
408 end if;
410 Rewrite (N, Call_Node);
411 Analyze (N);
413 exception
414 when RE_Not_Available =>
415 return;
416 end Build_Boolean_Array_Proc_Call;
418 --------------------------------
419 -- Displace_Allocator_Pointer --
420 --------------------------------
422 procedure Displace_Allocator_Pointer (N : Node_Id) is
423 Loc : constant Source_Ptr := Sloc (N);
424 Orig_Node : constant Node_Id := Original_Node (N);
425 Dtyp : Entity_Id;
426 Etyp : Entity_Id;
427 PtrT : Entity_Id;
429 begin
430 -- Do nothing in case of VM targets: the virtual machine will handle
431 -- interfaces directly.
433 if not Tagged_Type_Expansion then
434 return;
435 end if;
437 pragma Assert (Nkind (N) = N_Identifier
438 and then Nkind (Orig_Node) = N_Allocator);
440 PtrT := Etype (Orig_Node);
441 Dtyp := Available_View (Designated_Type (PtrT));
442 Etyp := Etype (Expression (Orig_Node));
444 if Is_Class_Wide_Type (Dtyp) and then Is_Interface (Dtyp) then
446 -- If the type of the allocator expression is not an interface type
447 -- we can generate code to reference the record component containing
448 -- the pointer to the secondary dispatch table.
450 if not Is_Interface (Etyp) then
451 declare
452 Saved_Typ : constant Entity_Id := Etype (Orig_Node);
454 begin
455 -- 1) Get access to the allocated object
457 Rewrite (N,
458 Make_Explicit_Dereference (Loc, Relocate_Node (N)));
459 Set_Etype (N, Etyp);
460 Set_Analyzed (N);
462 -- 2) Add the conversion to displace the pointer to reference
463 -- the secondary dispatch table.
465 Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
466 Analyze_And_Resolve (N, Dtyp);
468 -- 3) The 'access to the secondary dispatch table will be used
469 -- as the value returned by the allocator.
471 Rewrite (N,
472 Make_Attribute_Reference (Loc,
473 Prefix => Relocate_Node (N),
474 Attribute_Name => Name_Access));
475 Set_Etype (N, Saved_Typ);
476 Set_Analyzed (N);
477 end;
479 -- If the type of the allocator expression is an interface type we
480 -- generate a run-time call to displace "this" to reference the
481 -- component containing the pointer to the secondary dispatch table
482 -- or else raise Constraint_Error if the actual object does not
483 -- implement the target interface. This case corresponds to the
484 -- following example:
486 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
487 -- begin
488 -- return new Iface_2'Class'(Obj);
489 -- end Op;
491 else
492 Rewrite (N,
493 Unchecked_Convert_To (PtrT,
494 Make_Function_Call (Loc,
495 Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
496 Parameter_Associations => New_List (
497 Unchecked_Convert_To (RTE (RE_Address),
498 Relocate_Node (N)),
500 New_Occurrence_Of
501 (Elists.Node
502 (First_Elmt
503 (Access_Disp_Table (Etype (Base_Type (Dtyp))))),
504 Loc)))));
505 Analyze_And_Resolve (N, PtrT);
506 end if;
507 end if;
508 end Displace_Allocator_Pointer;
510 ---------------------------------
511 -- Expand_Allocator_Expression --
512 ---------------------------------
514 procedure Expand_Allocator_Expression (N : Node_Id) is
515 Loc : constant Source_Ptr := Sloc (N);
516 Exp : constant Node_Id := Expression (Expression (N));
517 PtrT : constant Entity_Id := Etype (N);
518 DesigT : constant Entity_Id := Designated_Type (PtrT);
520 procedure Apply_Accessibility_Check
521 (Ref : Node_Id;
522 Built_In_Place : Boolean := False);
523 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
524 -- type, generate an accessibility check to verify that the level of the
525 -- type of the created object is not deeper than the level of the access
526 -- type. If the type of the qualified expression is class-wide, then
527 -- always generate the check (except in the case where it is known to be
528 -- unnecessary, see comment below). Otherwise, only generate the check
529 -- if the level of the qualified expression type is statically deeper
530 -- than the access type.
532 -- Although the static accessibility will generally have been performed
533 -- as a legality check, it won't have been done in cases where the
534 -- allocator appears in generic body, so a run-time check is needed in
535 -- general. One special case is when the access type is declared in the
536 -- same scope as the class-wide allocator, in which case the check can
537 -- never fail, so it need not be generated.
539 -- As an open issue, there seem to be cases where the static level
540 -- associated with the class-wide object's underlying type is not
541 -- sufficient to perform the proper accessibility check, such as for
542 -- allocators in nested subprograms or accept statements initialized by
543 -- class-wide formals when the actual originates outside at a deeper
544 -- static level. The nested subprogram case might require passing
545 -- accessibility levels along with class-wide parameters, and the task
546 -- case seems to be an actual gap in the language rules that needs to
547 -- be fixed by the ARG. ???
549 -------------------------------
550 -- Apply_Accessibility_Check --
551 -------------------------------
553 procedure Apply_Accessibility_Check
554 (Ref : Node_Id;
555 Built_In_Place : Boolean := False)
557 Pool_Id : constant Entity_Id := Associated_Storage_Pool (PtrT);
558 Cond : Node_Id;
559 Fin_Call : Node_Id;
560 Free_Stmt : Node_Id;
561 Obj_Ref : Node_Id;
562 Stmts : List_Id;
564 begin
565 if Ada_Version >= Ada_2005
566 and then Is_Class_Wide_Type (DesigT)
567 and then Tagged_Type_Expansion
568 and then not Scope_Suppress.Suppress (Accessibility_Check)
569 and then
570 (Type_Access_Level (Etype (Exp)) > Type_Access_Level (PtrT)
571 or else
572 (Is_Class_Wide_Type (Etype (Exp))
573 and then Scope (PtrT) /= Current_Scope))
574 then
575 -- If the allocator was built in place, Ref is already a reference
576 -- to the access object initialized to the result of the allocator
577 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). We call
578 -- Remove_Side_Effects for cases where the build-in-place call may
579 -- still be the prefix of the reference (to avoid generating
580 -- duplicate calls). Otherwise, it is the entity associated with
581 -- the object containing the address of the allocated object.
583 if Built_In_Place then
584 Remove_Side_Effects (Ref);
585 Obj_Ref := New_Copy_Tree (Ref);
586 else
587 Obj_Ref := New_Occurrence_Of (Ref, Loc);
588 end if;
590 -- For access to interface types we must generate code to displace
591 -- the pointer to the base of the object since the subsequent code
592 -- references components located in the TSD of the object (which
593 -- is associated with the primary dispatch table --see a-tags.ads)
594 -- and also generates code invoking Free, which requires also a
595 -- reference to the base of the unallocated object.
597 if Is_Interface (DesigT) and then Tagged_Type_Expansion then
598 Obj_Ref :=
599 Unchecked_Convert_To (Etype (Obj_Ref),
600 Make_Function_Call (Loc,
601 Name =>
602 New_Occurrence_Of (RTE (RE_Base_Address), Loc),
603 Parameter_Associations => New_List (
604 Unchecked_Convert_To (RTE (RE_Address),
605 New_Copy_Tree (Obj_Ref)))));
606 end if;
608 -- Step 1: Create the object clean up code
610 Stmts := New_List;
612 -- Deallocate the object if the accessibility check fails. This
613 -- is done only on targets or profiles that support deallocation.
615 -- Free (Obj_Ref);
617 if RTE_Available (RE_Free) then
618 Free_Stmt := Make_Free_Statement (Loc, New_Copy_Tree (Obj_Ref));
619 Set_Storage_Pool (Free_Stmt, Pool_Id);
621 Append_To (Stmts, Free_Stmt);
623 -- The target or profile cannot deallocate objects
625 else
626 Free_Stmt := Empty;
627 end if;
629 -- Finalize the object if applicable. Generate:
631 -- [Deep_]Finalize (Obj_Ref.all);
633 if Needs_Finalization (DesigT)
634 and then not No_Heap_Finalization (PtrT)
635 then
636 Fin_Call :=
637 Make_Final_Call
638 (Obj_Ref =>
639 Make_Explicit_Dereference (Loc, New_Copy (Obj_Ref)),
640 Typ => DesigT);
642 -- Guard against a missing [Deep_]Finalize when the designated
643 -- type was not properly frozen.
645 if No (Fin_Call) then
646 Fin_Call := Make_Null_Statement (Loc);
647 end if;
649 -- When the target or profile supports deallocation, wrap the
650 -- finalization call in a block to ensure proper deallocation
651 -- even if finalization fails. Generate:
653 -- begin
654 -- <Fin_Call>
655 -- exception
656 -- when others =>
657 -- <Free_Stmt>
658 -- raise;
659 -- end;
661 if Present (Free_Stmt) then
662 Fin_Call :=
663 Make_Block_Statement (Loc,
664 Handled_Statement_Sequence =>
665 Make_Handled_Sequence_Of_Statements (Loc,
666 Statements => New_List (Fin_Call),
668 Exception_Handlers => New_List (
669 Make_Exception_Handler (Loc,
670 Exception_Choices => New_List (
671 Make_Others_Choice (Loc)),
672 Statements => New_List (
673 New_Copy_Tree (Free_Stmt),
674 Make_Raise_Statement (Loc))))));
675 end if;
677 Prepend_To (Stmts, Fin_Call);
678 end if;
680 -- Signal the accessibility failure through a Program_Error
682 Append_To (Stmts,
683 Make_Raise_Program_Error (Loc,
684 Condition => New_Occurrence_Of (Standard_True, Loc),
685 Reason => PE_Accessibility_Check_Failed));
687 -- Step 2: Create the accessibility comparison
689 -- Generate:
690 -- Ref'Tag
692 Obj_Ref :=
693 Make_Attribute_Reference (Loc,
694 Prefix => Obj_Ref,
695 Attribute_Name => Name_Tag);
697 -- For tagged types, determine the accessibility level by looking
698 -- at the type specific data of the dispatch table. Generate:
700 -- Type_Specific_Data (Address (Ref'Tag)).Access_Level
702 if Tagged_Type_Expansion then
703 Cond := Build_Get_Access_Level (Loc, Obj_Ref);
705 -- Use a runtime call to determine the accessibility level when
706 -- compiling on virtual machine targets. Generate:
708 -- Get_Access_Level (Ref'Tag)
710 else
711 Cond :=
712 Make_Function_Call (Loc,
713 Name =>
714 New_Occurrence_Of (RTE (RE_Get_Access_Level), Loc),
715 Parameter_Associations => New_List (Obj_Ref));
716 end if;
718 Cond :=
719 Make_Op_Gt (Loc,
720 Left_Opnd => Cond,
721 Right_Opnd =>
722 Make_Integer_Literal (Loc, Type_Access_Level (PtrT)));
724 -- Due to the complexity and side effects of the check, utilize an
725 -- if statement instead of the regular Program_Error circuitry.
727 Insert_Action (N,
728 Make_Implicit_If_Statement (N,
729 Condition => Cond,
730 Then_Statements => Stmts));
731 end if;
732 end Apply_Accessibility_Check;
734 -- Local variables
736 Aggr_In_Place : constant Boolean := Is_Delayed_Aggregate (Exp);
737 Indic : constant Node_Id := Subtype_Mark (Expression (N));
738 T : constant Entity_Id := Entity (Indic);
739 Adj_Call : Node_Id;
740 Node : Node_Id;
741 Tag_Assign : Node_Id;
742 Temp : Entity_Id;
743 Temp_Decl : Node_Id;
745 TagT : Entity_Id := Empty;
746 -- Type used as source for tag assignment
748 TagR : Node_Id := Empty;
749 -- Target reference for tag assignment
751 -- Start of processing for Expand_Allocator_Expression
753 begin
754 -- Handle call to C++ constructor
756 if Is_CPP_Constructor_Call (Exp) then
757 Make_CPP_Constructor_Call_In_Allocator
758 (Allocator => N,
759 Function_Call => Exp);
760 return;
761 end if;
763 -- In the case of an Ada 2012 allocator whose initial value comes from a
764 -- function call, pass "the accessibility level determined by the point
765 -- of call" (AI05-0234) to the function. Conceptually, this belongs in
766 -- Expand_Call but it couldn't be done there (because the Etype of the
767 -- allocator wasn't set then) so we generate the parameter here. See
768 -- the Boolean variable Defer in (a block within) Expand_Call.
770 if Ada_Version >= Ada_2012 and then Nkind (Exp) = N_Function_Call then
771 declare
772 Subp : Entity_Id;
774 begin
775 if Nkind (Name (Exp)) = N_Explicit_Dereference then
776 Subp := Designated_Type (Etype (Prefix (Name (Exp))));
777 else
778 Subp := Entity (Name (Exp));
779 end if;
781 Subp := Ultimate_Alias (Subp);
783 if Present (Extra_Accessibility_Of_Result (Subp)) then
784 Add_Extra_Actual_To_Call
785 (Subprogram_Call => Exp,
786 Extra_Formal => Extra_Accessibility_Of_Result (Subp),
787 Extra_Actual => Dynamic_Accessibility_Level (PtrT));
788 end if;
789 end;
790 end if;
792 -- Case of tagged type or type requiring finalization
794 if Is_Tagged_Type (T) or else Needs_Finalization (T) then
796 -- Ada 2005 (AI-318-02): If the initialization expression is a call
797 -- to a build-in-place function, then access to the allocated object
798 -- must be passed to the function.
800 if Is_Build_In_Place_Function_Call (Exp) then
801 Make_Build_In_Place_Call_In_Allocator (N, Exp);
802 Apply_Accessibility_Check (N, Built_In_Place => True);
803 return;
805 -- Ada 2005 (AI-318-02): Specialization of the previous case for
806 -- expressions containing a build-in-place function call whose
807 -- returned object covers interface types, and Expr has calls to
808 -- Ada.Tags.Displace to displace the pointer to the returned build-
809 -- in-place object to reference the secondary dispatch table of a
810 -- covered interface type.
812 elsif Present (Unqual_BIP_Iface_Function_Call (Exp)) then
813 Make_Build_In_Place_Iface_Call_In_Allocator (N, Exp);
814 Apply_Accessibility_Check (N, Built_In_Place => True);
815 return;
816 end if;
818 -- Actions inserted before:
819 -- Temp : constant ptr_T := new T'(Expression);
820 -- Temp._tag = T'tag; -- when not class-wide
821 -- [Deep_]Adjust (Temp.all);
823 -- We analyze by hand the new internal allocator to avoid any
824 -- recursion and inappropriate call to Initialize.
826 -- We don't want to remove side effects when the expression must be
827 -- built in place. In the case of a build-in-place function call,
828 -- that could lead to a duplication of the call, which was already
829 -- substituted for the allocator.
831 if not Aggr_In_Place then
832 Remove_Side_Effects (Exp);
833 end if;
835 Temp := Make_Temporary (Loc, 'P', N);
837 -- For a class wide allocation generate the following code:
839 -- type Equiv_Record is record ... end record;
840 -- implicit subtype CW is <Class_Wide_Subytpe>;
841 -- temp : PtrT := new CW'(CW!(expr));
843 if Is_Class_Wide_Type (T) then
844 Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
846 -- Ada 2005 (AI-251): If the expression is a class-wide interface
847 -- object we generate code to move up "this" to reference the
848 -- base of the object before allocating the new object.
850 -- Note that Exp'Address is recursively expanded into a call
851 -- to Base_Address (Exp.Tag)
853 if Is_Class_Wide_Type (Etype (Exp))
854 and then Is_Interface (Etype (Exp))
855 and then Tagged_Type_Expansion
856 then
857 Set_Expression
858 (Expression (N),
859 Unchecked_Convert_To (Entity (Indic),
860 Make_Explicit_Dereference (Loc,
861 Unchecked_Convert_To (RTE (RE_Tag_Ptr),
862 Make_Attribute_Reference (Loc,
863 Prefix => Exp,
864 Attribute_Name => Name_Address)))));
865 else
866 Set_Expression
867 (Expression (N),
868 Unchecked_Convert_To (Entity (Indic), Exp));
869 end if;
871 Analyze_And_Resolve (Expression (N), Entity (Indic));
872 end if;
874 -- Processing for allocators returning non-interface types
876 if not Is_Interface (Directly_Designated_Type (PtrT)) then
877 if Aggr_In_Place then
878 Temp_Decl :=
879 Make_Object_Declaration (Loc,
880 Defining_Identifier => Temp,
881 Object_Definition => New_Occurrence_Of (PtrT, Loc),
882 Expression =>
883 Make_Allocator (Loc,
884 Expression =>
885 New_Occurrence_Of (Etype (Exp), Loc)));
887 -- Copy the Comes_From_Source flag for the allocator we just
888 -- built, since logically this allocator is a replacement of
889 -- the original allocator node. This is for proper handling of
890 -- restriction No_Implicit_Heap_Allocations.
892 Set_Comes_From_Source
893 (Expression (Temp_Decl), Comes_From_Source (N));
895 Set_No_Initialization (Expression (Temp_Decl));
896 Insert_Action (N, Temp_Decl);
898 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
899 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
901 else
902 Node := Relocate_Node (N);
903 Set_Analyzed (Node);
905 Temp_Decl :=
906 Make_Object_Declaration (Loc,
907 Defining_Identifier => Temp,
908 Constant_Present => True,
909 Object_Definition => New_Occurrence_Of (PtrT, Loc),
910 Expression => Node);
912 Insert_Action (N, Temp_Decl);
913 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
914 end if;
916 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
917 -- interface type. In this case we use the type of the qualified
918 -- expression to allocate the object.
920 else
921 declare
922 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
923 New_Decl : Node_Id;
925 begin
926 New_Decl :=
927 Make_Full_Type_Declaration (Loc,
928 Defining_Identifier => Def_Id,
929 Type_Definition =>
930 Make_Access_To_Object_Definition (Loc,
931 All_Present => True,
932 Null_Exclusion_Present => False,
933 Constant_Present =>
934 Is_Access_Constant (Etype (N)),
935 Subtype_Indication =>
936 New_Occurrence_Of (Etype (Exp), Loc)));
938 Insert_Action (N, New_Decl);
940 -- Inherit the allocation-related attributes from the original
941 -- access type.
943 Set_Finalization_Master
944 (Def_Id, Finalization_Master (PtrT));
946 Set_Associated_Storage_Pool
947 (Def_Id, Associated_Storage_Pool (PtrT));
949 -- Declare the object using the previous type declaration
951 if Aggr_In_Place then
952 Temp_Decl :=
953 Make_Object_Declaration (Loc,
954 Defining_Identifier => Temp,
955 Object_Definition => New_Occurrence_Of (Def_Id, Loc),
956 Expression =>
957 Make_Allocator (Loc,
958 New_Occurrence_Of (Etype (Exp), Loc)));
960 -- Copy the Comes_From_Source flag for the allocator we just
961 -- built, since logically this allocator is a replacement of
962 -- the original allocator node. This is for proper handling
963 -- of restriction No_Implicit_Heap_Allocations.
965 Set_Comes_From_Source
966 (Expression (Temp_Decl), Comes_From_Source (N));
968 Set_No_Initialization (Expression (Temp_Decl));
969 Insert_Action (N, Temp_Decl);
971 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
972 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
974 else
975 Node := Relocate_Node (N);
976 Set_Analyzed (Node);
978 Temp_Decl :=
979 Make_Object_Declaration (Loc,
980 Defining_Identifier => Temp,
981 Constant_Present => True,
982 Object_Definition => New_Occurrence_Of (Def_Id, Loc),
983 Expression => Node);
985 Insert_Action (N, Temp_Decl);
986 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
987 end if;
989 -- Generate an additional object containing the address of the
990 -- returned object. The type of this second object declaration
991 -- is the correct type required for the common processing that
992 -- is still performed by this subprogram. The displacement of
993 -- this pointer to reference the component associated with the
994 -- interface type will be done at the end of common processing.
996 New_Decl :=
997 Make_Object_Declaration (Loc,
998 Defining_Identifier => Make_Temporary (Loc, 'P'),
999 Object_Definition => New_Occurrence_Of (PtrT, Loc),
1000 Expression =>
1001 Unchecked_Convert_To (PtrT,
1002 New_Occurrence_Of (Temp, Loc)));
1004 Insert_Action (N, New_Decl);
1006 Temp_Decl := New_Decl;
1007 Temp := Defining_Identifier (New_Decl);
1008 end;
1009 end if;
1011 -- Generate the tag assignment
1013 -- Suppress the tag assignment for VM targets because VM tags are
1014 -- represented implicitly in objects.
1016 if not Tagged_Type_Expansion then
1017 null;
1019 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
1020 -- interface objects because in this case the tag does not change.
1022 elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
1023 pragma Assert (Is_Class_Wide_Type
1024 (Directly_Designated_Type (Etype (N))));
1025 null;
1027 elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
1028 TagT := T;
1029 TagR := New_Occurrence_Of (Temp, Loc);
1031 elsif Is_Private_Type (T)
1032 and then Is_Tagged_Type (Underlying_Type (T))
1033 then
1034 TagT := Underlying_Type (T);
1035 TagR :=
1036 Unchecked_Convert_To (Underlying_Type (T),
1037 Make_Explicit_Dereference (Loc,
1038 Prefix => New_Occurrence_Of (Temp, Loc)));
1039 end if;
1041 if Present (TagT) then
1042 declare
1043 Full_T : constant Entity_Id := Underlying_Type (TagT);
1045 begin
1046 Tag_Assign :=
1047 Make_Assignment_Statement (Loc,
1048 Name =>
1049 Make_Selected_Component (Loc,
1050 Prefix => TagR,
1051 Selector_Name =>
1052 New_Occurrence_Of
1053 (First_Tag_Component (Full_T), Loc)),
1055 Expression =>
1056 Unchecked_Convert_To (RTE (RE_Tag),
1057 New_Occurrence_Of
1058 (Elists.Node
1059 (First_Elmt (Access_Disp_Table (Full_T))), Loc)));
1060 end;
1062 -- The previous assignment has to be done in any case
1064 Set_Assignment_OK (Name (Tag_Assign));
1065 Insert_Action (N, Tag_Assign);
1066 end if;
1068 -- Generate an Adjust call if the object will be moved. In Ada 2005,
1069 -- the object may be inherently limited, in which case there is no
1070 -- Adjust procedure, and the object is built in place. In Ada 95, the
1071 -- object can be limited but not inherently limited if this allocator
1072 -- came from a return statement (we're allocating the result on the
1073 -- secondary stack). In that case, the object will be moved, so we do
1074 -- want to Adjust. However, if it's a nonlimited build-in-place
1075 -- function call, Adjust is not wanted.
1077 if Needs_Finalization (DesigT)
1078 and then Needs_Finalization (T)
1079 and then not Aggr_In_Place
1080 and then not Is_Limited_View (T)
1081 and then not Alloc_For_BIP_Return (N)
1082 and then not Is_Build_In_Place_Function_Call (Expression (N))
1083 then
1084 -- An unchecked conversion is needed in the classwide case because
1085 -- the designated type can be an ancestor of the subtype mark of
1086 -- the allocator.
1088 Adj_Call :=
1089 Make_Adjust_Call
1090 (Obj_Ref =>
1091 Unchecked_Convert_To (T,
1092 Make_Explicit_Dereference (Loc,
1093 Prefix => New_Occurrence_Of (Temp, Loc))),
1094 Typ => T);
1096 if Present (Adj_Call) then
1097 Insert_Action (N, Adj_Call);
1098 end if;
1099 end if;
1101 -- Note: the accessibility check must be inserted after the call to
1102 -- [Deep_]Adjust to ensure proper completion of the assignment.
1104 Apply_Accessibility_Check (Temp);
1106 Rewrite (N, New_Occurrence_Of (Temp, Loc));
1107 Analyze_And_Resolve (N, PtrT);
1109 -- Ada 2005 (AI-251): Displace the pointer to reference the record
1110 -- component containing the secondary dispatch table of the interface
1111 -- type.
1113 if Is_Interface (Directly_Designated_Type (PtrT)) then
1114 Displace_Allocator_Pointer (N);
1115 end if;
1117 -- Always force the generation of a temporary for aggregates when
1118 -- generating C code, to simplify the work in the code generator.
1120 elsif Aggr_In_Place
1121 or else (Modify_Tree_For_C and then Nkind (Exp) = N_Aggregate)
1122 then
1123 Temp := Make_Temporary (Loc, 'P', N);
1124 Temp_Decl :=
1125 Make_Object_Declaration (Loc,
1126 Defining_Identifier => Temp,
1127 Object_Definition => New_Occurrence_Of (PtrT, Loc),
1128 Expression =>
1129 Make_Allocator (Loc,
1130 Expression => New_Occurrence_Of (Etype (Exp), Loc)));
1132 -- Copy the Comes_From_Source flag for the allocator we just built,
1133 -- since logically this allocator is a replacement of the original
1134 -- allocator node. This is for proper handling of restriction
1135 -- No_Implicit_Heap_Allocations.
1137 Set_Comes_From_Source
1138 (Expression (Temp_Decl), Comes_From_Source (N));
1140 Set_No_Initialization (Expression (Temp_Decl));
1141 Insert_Action (N, Temp_Decl);
1143 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
1144 Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
1146 Rewrite (N, New_Occurrence_Of (Temp, Loc));
1147 Analyze_And_Resolve (N, PtrT);
1149 elsif Is_Access_Type (T) and then Can_Never_Be_Null (T) then
1150 Install_Null_Excluding_Check (Exp);
1152 elsif Is_Access_Type (DesigT)
1153 and then Nkind (Exp) = N_Allocator
1154 and then Nkind (Expression (Exp)) /= N_Qualified_Expression
1155 then
1156 -- Apply constraint to designated subtype indication
1158 Apply_Constraint_Check
1159 (Expression (Exp), Designated_Type (DesigT), No_Sliding => True);
1161 if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
1163 -- Propagate constraint_error to enclosing allocator
1165 Rewrite (Exp, New_Copy (Expression (Exp)));
1166 end if;
1168 else
1169 Build_Allocate_Deallocate_Proc (N, True);
1171 -- If we have:
1172 -- type A is access T1;
1173 -- X : A := new T2'(...);
1174 -- T1 and T2 can be different subtypes, and we might need to check
1175 -- both constraints. First check against the type of the qualified
1176 -- expression.
1178 Apply_Constraint_Check (Exp, T, No_Sliding => True);
1180 if Do_Range_Check (Exp) then
1181 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1182 end if;
1184 -- A check is also needed in cases where the designated subtype is
1185 -- constrained and differs from the subtype given in the qualified
1186 -- expression. Note that the check on the qualified expression does
1187 -- not allow sliding, but this check does (a relaxation from Ada 83).
1189 if Is_Constrained (DesigT)
1190 and then not Subtypes_Statically_Match (T, DesigT)
1191 then
1192 Apply_Constraint_Check
1193 (Exp, DesigT, No_Sliding => False);
1195 if Do_Range_Check (Exp) then
1196 Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
1197 end if;
1198 end if;
1200 -- For an access to unconstrained packed array, GIGI needs to see an
1201 -- expression with a constrained subtype in order to compute the
1202 -- proper size for the allocator.
1204 if Is_Array_Type (T)
1205 and then not Is_Constrained (T)
1206 and then Is_Packed (T)
1207 then
1208 declare
1209 ConstrT : constant Entity_Id := Make_Temporary (Loc, 'A');
1210 Internal_Exp : constant Node_Id := Relocate_Node (Exp);
1211 begin
1212 Insert_Action (Exp,
1213 Make_Subtype_Declaration (Loc,
1214 Defining_Identifier => ConstrT,
1215 Subtype_Indication =>
1216 Make_Subtype_From_Expr (Internal_Exp, T)));
1217 Freeze_Itype (ConstrT, Exp);
1218 Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
1219 end;
1220 end if;
1222 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1223 -- to a build-in-place function, then access to the allocated object
1224 -- must be passed to the function.
1226 if Is_Build_In_Place_Function_Call (Exp) then
1227 Make_Build_In_Place_Call_In_Allocator (N, Exp);
1228 end if;
1229 end if;
1231 exception
1232 when RE_Not_Available =>
1233 return;
1234 end Expand_Allocator_Expression;
1236 -----------------------------
1237 -- Expand_Array_Comparison --
1238 -----------------------------
1240 -- Expansion is only required in the case of array types. For the unpacked
1241 -- case, an appropriate runtime routine is called. For packed cases, and
1242 -- also in some other cases where a runtime routine cannot be called, the
1243 -- form of the expansion is:
1245 -- [body for greater_nn; boolean_expression]
1247 -- The body is built by Make_Array_Comparison_Op, and the form of the
1248 -- Boolean expression depends on the operator involved.
1250 procedure Expand_Array_Comparison (N : Node_Id) is
1251 Loc : constant Source_Ptr := Sloc (N);
1252 Op1 : Node_Id := Left_Opnd (N);
1253 Op2 : Node_Id := Right_Opnd (N);
1254 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
1255 Ctyp : constant Entity_Id := Component_Type (Typ1);
1257 Expr : Node_Id;
1258 Func_Body : Node_Id;
1259 Func_Name : Entity_Id;
1261 Comp : RE_Id;
1263 Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
1264 -- True for byte addressable target
1266 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
1267 -- Returns True if the length of the given operand is known to be less
1268 -- than 4. Returns False if this length is known to be four or greater
1269 -- or is not known at compile time.
1271 ------------------------
1272 -- Length_Less_Than_4 --
1273 ------------------------
1275 function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
1276 Otyp : constant Entity_Id := Etype (Opnd);
1278 begin
1279 if Ekind (Otyp) = E_String_Literal_Subtype then
1280 return String_Literal_Length (Otyp) < 4;
1282 else
1283 declare
1284 Ityp : constant Entity_Id := Etype (First_Index (Otyp));
1285 Lo : constant Node_Id := Type_Low_Bound (Ityp);
1286 Hi : constant Node_Id := Type_High_Bound (Ityp);
1287 Lov : Uint;
1288 Hiv : Uint;
1290 begin
1291 if Compile_Time_Known_Value (Lo) then
1292 Lov := Expr_Value (Lo);
1293 else
1294 return False;
1295 end if;
1297 if Compile_Time_Known_Value (Hi) then
1298 Hiv := Expr_Value (Hi);
1299 else
1300 return False;
1301 end if;
1303 return Hiv < Lov + 3;
1304 end;
1305 end if;
1306 end Length_Less_Than_4;
1308 -- Start of processing for Expand_Array_Comparison
1310 begin
1311 -- Deal first with unpacked case, where we can call a runtime routine
1312 -- except that we avoid this for targets for which are not addressable
1313 -- by bytes.
1315 if not Is_Bit_Packed_Array (Typ1)
1316 and then Byte_Addressable
1317 then
1318 -- The call we generate is:
1320 -- Compare_Array_xn[_Unaligned]
1321 -- (left'address, right'address, left'length, right'length) <op> 0
1323 -- x = U for unsigned, S for signed
1324 -- n = 8,16,32,64 for component size
1325 -- Add _Unaligned if length < 4 and component size is 8.
1326 -- <op> is the standard comparison operator
1328 if Component_Size (Typ1) = 8 then
1329 if Length_Less_Than_4 (Op1)
1330 or else
1331 Length_Less_Than_4 (Op2)
1332 then
1333 if Is_Unsigned_Type (Ctyp) then
1334 Comp := RE_Compare_Array_U8_Unaligned;
1335 else
1336 Comp := RE_Compare_Array_S8_Unaligned;
1337 end if;
1339 else
1340 if Is_Unsigned_Type (Ctyp) then
1341 Comp := RE_Compare_Array_U8;
1342 else
1343 Comp := RE_Compare_Array_S8;
1344 end if;
1345 end if;
1347 elsif Component_Size (Typ1) = 16 then
1348 if Is_Unsigned_Type (Ctyp) then
1349 Comp := RE_Compare_Array_U16;
1350 else
1351 Comp := RE_Compare_Array_S16;
1352 end if;
1354 elsif Component_Size (Typ1) = 32 then
1355 if Is_Unsigned_Type (Ctyp) then
1356 Comp := RE_Compare_Array_U32;
1357 else
1358 Comp := RE_Compare_Array_S32;
1359 end if;
1361 else pragma Assert (Component_Size (Typ1) = 64);
1362 if Is_Unsigned_Type (Ctyp) then
1363 Comp := RE_Compare_Array_U64;
1364 else
1365 Comp := RE_Compare_Array_S64;
1366 end if;
1367 end if;
1369 if RTE_Available (Comp) then
1371 -- Expand to a call only if the runtime function is available,
1372 -- otherwise fall back to inline code.
1374 Remove_Side_Effects (Op1, Name_Req => True);
1375 Remove_Side_Effects (Op2, Name_Req => True);
1377 Rewrite (Op1,
1378 Make_Function_Call (Sloc (Op1),
1379 Name => New_Occurrence_Of (RTE (Comp), Loc),
1381 Parameter_Associations => New_List (
1382 Make_Attribute_Reference (Loc,
1383 Prefix => Relocate_Node (Op1),
1384 Attribute_Name => Name_Address),
1386 Make_Attribute_Reference (Loc,
1387 Prefix => Relocate_Node (Op2),
1388 Attribute_Name => Name_Address),
1390 Make_Attribute_Reference (Loc,
1391 Prefix => Relocate_Node (Op1),
1392 Attribute_Name => Name_Length),
1394 Make_Attribute_Reference (Loc,
1395 Prefix => Relocate_Node (Op2),
1396 Attribute_Name => Name_Length))));
1398 Rewrite (Op2,
1399 Make_Integer_Literal (Sloc (Op2),
1400 Intval => Uint_0));
1402 Analyze_And_Resolve (Op1, Standard_Integer);
1403 Analyze_And_Resolve (Op2, Standard_Integer);
1404 return;
1405 end if;
1406 end if;
1408 -- Cases where we cannot make runtime call
1410 -- For (a <= b) we convert to not (a > b)
1412 if Chars (N) = Name_Op_Le then
1413 Rewrite (N,
1414 Make_Op_Not (Loc,
1415 Right_Opnd =>
1416 Make_Op_Gt (Loc,
1417 Left_Opnd => Op1,
1418 Right_Opnd => Op2)));
1419 Analyze_And_Resolve (N, Standard_Boolean);
1420 return;
1422 -- For < the Boolean expression is
1423 -- greater__nn (op2, op1)
1425 elsif Chars (N) = Name_Op_Lt then
1426 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1428 -- Switch operands
1430 Op1 := Right_Opnd (N);
1431 Op2 := Left_Opnd (N);
1433 -- For (a >= b) we convert to not (a < b)
1435 elsif Chars (N) = Name_Op_Ge then
1436 Rewrite (N,
1437 Make_Op_Not (Loc,
1438 Right_Opnd =>
1439 Make_Op_Lt (Loc,
1440 Left_Opnd => Op1,
1441 Right_Opnd => Op2)));
1442 Analyze_And_Resolve (N, Standard_Boolean);
1443 return;
1445 -- For > the Boolean expression is
1446 -- greater__nn (op1, op2)
1448 else
1449 pragma Assert (Chars (N) = Name_Op_Gt);
1450 Func_Body := Make_Array_Comparison_Op (Typ1, N);
1451 end if;
1453 Func_Name := Defining_Unit_Name (Specification (Func_Body));
1454 Expr :=
1455 Make_Function_Call (Loc,
1456 Name => New_Occurrence_Of (Func_Name, Loc),
1457 Parameter_Associations => New_List (Op1, Op2));
1459 Insert_Action (N, Func_Body);
1460 Rewrite (N, Expr);
1461 Analyze_And_Resolve (N, Standard_Boolean);
1462 end Expand_Array_Comparison;
1464 ---------------------------
1465 -- Expand_Array_Equality --
1466 ---------------------------
1468 -- Expand an equality function for multi-dimensional arrays. Here is an
1469 -- example of such a function for Nb_Dimension = 2
1471 -- function Enn (A : atyp; B : btyp) return boolean is
1472 -- begin
1473 -- if (A'length (1) = 0 or else A'length (2) = 0)
1474 -- and then
1475 -- (B'length (1) = 0 or else B'length (2) = 0)
1476 -- then
1477 -- return True; -- RM 4.5.2(22)
1478 -- end if;
1480 -- if A'length (1) /= B'length (1)
1481 -- or else
1482 -- A'length (2) /= B'length (2)
1483 -- then
1484 -- return False; -- RM 4.5.2(23)
1485 -- end if;
1487 -- declare
1488 -- A1 : Index_T1 := A'first (1);
1489 -- B1 : Index_T1 := B'first (1);
1490 -- begin
1491 -- loop
1492 -- declare
1493 -- A2 : Index_T2 := A'first (2);
1494 -- B2 : Index_T2 := B'first (2);
1495 -- begin
1496 -- loop
1497 -- if A (A1, A2) /= B (B1, B2) then
1498 -- return False;
1499 -- end if;
1501 -- exit when A2 = A'last (2);
1502 -- A2 := Index_T2'succ (A2);
1503 -- B2 := Index_T2'succ (B2);
1504 -- end loop;
1505 -- end;
1507 -- exit when A1 = A'last (1);
1508 -- A1 := Index_T1'succ (A1);
1509 -- B1 := Index_T1'succ (B1);
1510 -- end loop;
1511 -- end;
1513 -- return true;
1514 -- end Enn;
1516 -- Note on the formal types used (atyp and btyp). If either of the arrays
1517 -- is of a private type, we use the underlying type, and do an unchecked
1518 -- conversion of the actual. If either of the arrays has a bound depending
1519 -- on a discriminant, then we use the base type since otherwise we have an
1520 -- escaped discriminant in the function.
1522 -- If both arrays are constrained and have the same bounds, we can generate
1523 -- a loop with an explicit iteration scheme using a 'Range attribute over
1524 -- the first array.
1526 function Expand_Array_Equality
1527 (Nod : Node_Id;
1528 Lhs : Node_Id;
1529 Rhs : Node_Id;
1530 Bodies : List_Id;
1531 Typ : Entity_Id) return Node_Id
1533 Loc : constant Source_Ptr := Sloc (Nod);
1534 Decls : constant List_Id := New_List;
1535 Index_List1 : constant List_Id := New_List;
1536 Index_List2 : constant List_Id := New_List;
1538 Actuals : List_Id;
1539 Formals : List_Id;
1540 Func_Name : Entity_Id;
1541 Func_Body : Node_Id;
1543 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
1544 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
1546 Ltyp : Entity_Id;
1547 Rtyp : Entity_Id;
1548 -- The parameter types to be used for the formals
1550 function Arr_Attr
1551 (Arr : Entity_Id;
1552 Nam : Name_Id;
1553 Num : Int) return Node_Id;
1554 -- This builds the attribute reference Arr'Nam (Expr)
1556 function Component_Equality (Typ : Entity_Id) return Node_Id;
1557 -- Create one statement to compare corresponding components, designated
1558 -- by a full set of indexes.
1560 function Get_Arg_Type (N : Node_Id) return Entity_Id;
1561 -- Given one of the arguments, computes the appropriate type to be used
1562 -- for that argument in the corresponding function formal
1564 function Handle_One_Dimension
1565 (N : Int;
1566 Index : Node_Id) return Node_Id;
1567 -- This procedure returns the following code
1569 -- declare
1570 -- Bn : Index_T := B'First (N);
1571 -- begin
1572 -- loop
1573 -- xxx
1574 -- exit when An = A'Last (N);
1575 -- An := Index_T'Succ (An)
1576 -- Bn := Index_T'Succ (Bn)
1577 -- end loop;
1578 -- end;
1580 -- If both indexes are constrained and identical, the procedure
1581 -- returns a simpler loop:
1583 -- for An in A'Range (N) loop
1584 -- xxx
1585 -- end loop
1587 -- N is the dimension for which we are generating a loop. Index is the
1588 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1589 -- xxx statement is either the loop or declare for the next dimension
1590 -- or if this is the last dimension the comparison of corresponding
1591 -- components of the arrays.
1593 -- The actual way the code works is to return the comparison of
1594 -- corresponding components for the N+1 call. That's neater.
1596 function Test_Empty_Arrays return Node_Id;
1597 -- This function constructs the test for both arrays being empty
1598 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1599 -- and then
1600 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1602 function Test_Lengths_Correspond return Node_Id;
1603 -- This function constructs the test for arrays having different lengths
1604 -- in at least one index position, in which case the resulting code is:
1606 -- A'length (1) /= B'length (1)
1607 -- or else
1608 -- A'length (2) /= B'length (2)
1609 -- or else
1610 -- ...
1612 --------------
1613 -- Arr_Attr --
1614 --------------
1616 function Arr_Attr
1617 (Arr : Entity_Id;
1618 Nam : Name_Id;
1619 Num : Int) return Node_Id
1621 begin
1622 return
1623 Make_Attribute_Reference (Loc,
1624 Attribute_Name => Nam,
1625 Prefix => New_Occurrence_Of (Arr, Loc),
1626 Expressions => New_List (Make_Integer_Literal (Loc, Num)));
1627 end Arr_Attr;
1629 ------------------------
1630 -- Component_Equality --
1631 ------------------------
1633 function Component_Equality (Typ : Entity_Id) return Node_Id is
1634 Test : Node_Id;
1635 L, R : Node_Id;
1637 begin
1638 -- if a(i1...) /= b(j1...) then return false; end if;
1640 L :=
1641 Make_Indexed_Component (Loc,
1642 Prefix => Make_Identifier (Loc, Chars (A)),
1643 Expressions => Index_List1);
1645 R :=
1646 Make_Indexed_Component (Loc,
1647 Prefix => Make_Identifier (Loc, Chars (B)),
1648 Expressions => Index_List2);
1650 Test := Expand_Composite_Equality
1651 (Nod, Component_Type (Typ), L, R, Decls);
1653 -- If some (sub)component is an unchecked_union, the whole operation
1654 -- will raise program error.
1656 if Nkind (Test) = N_Raise_Program_Error then
1658 -- This node is going to be inserted at a location where a
1659 -- statement is expected: clear its Etype so analysis will set
1660 -- it to the expected Standard_Void_Type.
1662 Set_Etype (Test, Empty);
1663 return Test;
1665 else
1666 return
1667 Make_Implicit_If_Statement (Nod,
1668 Condition => Make_Op_Not (Loc, Right_Opnd => Test),
1669 Then_Statements => New_List (
1670 Make_Simple_Return_Statement (Loc,
1671 Expression => New_Occurrence_Of (Standard_False, Loc))));
1672 end if;
1673 end Component_Equality;
1675 ------------------
1676 -- Get_Arg_Type --
1677 ------------------
1679 function Get_Arg_Type (N : Node_Id) return Entity_Id is
1680 T : Entity_Id;
1681 X : Node_Id;
1683 begin
1684 T := Etype (N);
1686 if No (T) then
1687 return Typ;
1689 else
1690 T := Underlying_Type (T);
1692 X := First_Index (T);
1693 while Present (X) loop
1694 if Denotes_Discriminant (Type_Low_Bound (Etype (X)))
1695 or else
1696 Denotes_Discriminant (Type_High_Bound (Etype (X)))
1697 then
1698 T := Base_Type (T);
1699 exit;
1700 end if;
1702 Next_Index (X);
1703 end loop;
1705 return T;
1706 end if;
1707 end Get_Arg_Type;
1709 --------------------------
1710 -- Handle_One_Dimension --
1711 ---------------------------
1713 function Handle_One_Dimension
1714 (N : Int;
1715 Index : Node_Id) return Node_Id
1717 Need_Separate_Indexes : constant Boolean :=
1718 Ltyp /= Rtyp or else not Is_Constrained (Ltyp);
1719 -- If the index types are identical, and we are working with
1720 -- constrained types, then we can use the same index for both
1721 -- of the arrays.
1723 An : constant Entity_Id := Make_Temporary (Loc, 'A');
1725 Bn : Entity_Id;
1726 Index_T : Entity_Id;
1727 Stm_List : List_Id;
1728 Loop_Stm : Node_Id;
1730 begin
1731 if N > Number_Dimensions (Ltyp) then
1732 return Component_Equality (Ltyp);
1733 end if;
1735 -- Case where we generate a loop
1737 Index_T := Base_Type (Etype (Index));
1739 if Need_Separate_Indexes then
1740 Bn := Make_Temporary (Loc, 'B');
1741 else
1742 Bn := An;
1743 end if;
1745 Append (New_Occurrence_Of (An, Loc), Index_List1);
1746 Append (New_Occurrence_Of (Bn, Loc), Index_List2);
1748 Stm_List := New_List (
1749 Handle_One_Dimension (N + 1, Next_Index (Index)));
1751 if Need_Separate_Indexes then
1753 -- Generate guard for loop, followed by increments of indexes
1755 Append_To (Stm_List,
1756 Make_Exit_Statement (Loc,
1757 Condition =>
1758 Make_Op_Eq (Loc,
1759 Left_Opnd => New_Occurrence_Of (An, Loc),
1760 Right_Opnd => Arr_Attr (A, Name_Last, N))));
1762 Append_To (Stm_List,
1763 Make_Assignment_Statement (Loc,
1764 Name => New_Occurrence_Of (An, Loc),
1765 Expression =>
1766 Make_Attribute_Reference (Loc,
1767 Prefix => New_Occurrence_Of (Index_T, Loc),
1768 Attribute_Name => Name_Succ,
1769 Expressions => New_List (
1770 New_Occurrence_Of (An, Loc)))));
1772 Append_To (Stm_List,
1773 Make_Assignment_Statement (Loc,
1774 Name => New_Occurrence_Of (Bn, Loc),
1775 Expression =>
1776 Make_Attribute_Reference (Loc,
1777 Prefix => New_Occurrence_Of (Index_T, Loc),
1778 Attribute_Name => Name_Succ,
1779 Expressions => New_List (
1780 New_Occurrence_Of (Bn, Loc)))));
1781 end if;
1783 -- If separate indexes, we need a declare block for An and Bn, and a
1784 -- loop without an iteration scheme.
1786 if Need_Separate_Indexes then
1787 Loop_Stm :=
1788 Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
1790 return
1791 Make_Block_Statement (Loc,
1792 Declarations => New_List (
1793 Make_Object_Declaration (Loc,
1794 Defining_Identifier => An,
1795 Object_Definition => New_Occurrence_Of (Index_T, Loc),
1796 Expression => Arr_Attr (A, Name_First, N)),
1798 Make_Object_Declaration (Loc,
1799 Defining_Identifier => Bn,
1800 Object_Definition => New_Occurrence_Of (Index_T, Loc),
1801 Expression => Arr_Attr (B, Name_First, N))),
1803 Handled_Statement_Sequence =>
1804 Make_Handled_Sequence_Of_Statements (Loc,
1805 Statements => New_List (Loop_Stm)));
1807 -- If no separate indexes, return loop statement with explicit
1808 -- iteration scheme on its own
1810 else
1811 Loop_Stm :=
1812 Make_Implicit_Loop_Statement (Nod,
1813 Statements => Stm_List,
1814 Iteration_Scheme =>
1815 Make_Iteration_Scheme (Loc,
1816 Loop_Parameter_Specification =>
1817 Make_Loop_Parameter_Specification (Loc,
1818 Defining_Identifier => An,
1819 Discrete_Subtype_Definition =>
1820 Arr_Attr (A, Name_Range, N))));
1821 return Loop_Stm;
1822 end if;
1823 end Handle_One_Dimension;
1825 -----------------------
1826 -- Test_Empty_Arrays --
1827 -----------------------
1829 function Test_Empty_Arrays return Node_Id is
1830 Alist : Node_Id;
1831 Blist : Node_Id;
1833 Atest : Node_Id;
1834 Btest : Node_Id;
1836 begin
1837 Alist := Empty;
1838 Blist := Empty;
1839 for J in 1 .. Number_Dimensions (Ltyp) loop
1840 Atest :=
1841 Make_Op_Eq (Loc,
1842 Left_Opnd => Arr_Attr (A, Name_Length, J),
1843 Right_Opnd => Make_Integer_Literal (Loc, 0));
1845 Btest :=
1846 Make_Op_Eq (Loc,
1847 Left_Opnd => Arr_Attr (B, Name_Length, J),
1848 Right_Opnd => Make_Integer_Literal (Loc, 0));
1850 if No (Alist) then
1851 Alist := Atest;
1852 Blist := Btest;
1854 else
1855 Alist :=
1856 Make_Or_Else (Loc,
1857 Left_Opnd => Relocate_Node (Alist),
1858 Right_Opnd => Atest);
1860 Blist :=
1861 Make_Or_Else (Loc,
1862 Left_Opnd => Relocate_Node (Blist),
1863 Right_Opnd => Btest);
1864 end if;
1865 end loop;
1867 return
1868 Make_And_Then (Loc,
1869 Left_Opnd => Alist,
1870 Right_Opnd => Blist);
1871 end Test_Empty_Arrays;
1873 -----------------------------
1874 -- Test_Lengths_Correspond --
1875 -----------------------------
1877 function Test_Lengths_Correspond return Node_Id is
1878 Result : Node_Id;
1879 Rtest : Node_Id;
1881 begin
1882 Result := Empty;
1883 for J in 1 .. Number_Dimensions (Ltyp) loop
1884 Rtest :=
1885 Make_Op_Ne (Loc,
1886 Left_Opnd => Arr_Attr (A, Name_Length, J),
1887 Right_Opnd => Arr_Attr (B, Name_Length, J));
1889 if No (Result) then
1890 Result := Rtest;
1891 else
1892 Result :=
1893 Make_Or_Else (Loc,
1894 Left_Opnd => Relocate_Node (Result),
1895 Right_Opnd => Rtest);
1896 end if;
1897 end loop;
1899 return Result;
1900 end Test_Lengths_Correspond;
1902 -- Start of processing for Expand_Array_Equality
1904 begin
1905 Ltyp := Get_Arg_Type (Lhs);
1906 Rtyp := Get_Arg_Type (Rhs);
1908 -- For now, if the argument types are not the same, go to the base type,
1909 -- since the code assumes that the formals have the same type. This is
1910 -- fixable in future ???
1912 if Ltyp /= Rtyp then
1913 Ltyp := Base_Type (Ltyp);
1914 Rtyp := Base_Type (Rtyp);
1915 pragma Assert (Ltyp = Rtyp);
1916 end if;
1918 -- Build list of formals for function
1920 Formals := New_List (
1921 Make_Parameter_Specification (Loc,
1922 Defining_Identifier => A,
1923 Parameter_Type => New_Occurrence_Of (Ltyp, Loc)),
1925 Make_Parameter_Specification (Loc,
1926 Defining_Identifier => B,
1927 Parameter_Type => New_Occurrence_Of (Rtyp, Loc)));
1929 Func_Name := Make_Temporary (Loc, 'E');
1931 -- Build statement sequence for function
1933 Func_Body :=
1934 Make_Subprogram_Body (Loc,
1935 Specification =>
1936 Make_Function_Specification (Loc,
1937 Defining_Unit_Name => Func_Name,
1938 Parameter_Specifications => Formals,
1939 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
1941 Declarations => Decls,
1943 Handled_Statement_Sequence =>
1944 Make_Handled_Sequence_Of_Statements (Loc,
1945 Statements => New_List (
1947 Make_Implicit_If_Statement (Nod,
1948 Condition => Test_Empty_Arrays,
1949 Then_Statements => New_List (
1950 Make_Simple_Return_Statement (Loc,
1951 Expression =>
1952 New_Occurrence_Of (Standard_True, Loc)))),
1954 Make_Implicit_If_Statement (Nod,
1955 Condition => Test_Lengths_Correspond,
1956 Then_Statements => New_List (
1957 Make_Simple_Return_Statement (Loc,
1958 Expression => New_Occurrence_Of (Standard_False, Loc)))),
1960 Handle_One_Dimension (1, First_Index (Ltyp)),
1962 Make_Simple_Return_Statement (Loc,
1963 Expression => New_Occurrence_Of (Standard_True, Loc)))));
1965 Set_Has_Completion (Func_Name, True);
1966 Set_Is_Inlined (Func_Name);
1968 -- If the array type is distinct from the type of the arguments, it
1969 -- is the full view of a private type. Apply an unchecked conversion
1970 -- to insure that analysis of the call succeeds.
1972 declare
1973 L, R : Node_Id;
1975 begin
1976 L := Lhs;
1977 R := Rhs;
1979 if No (Etype (Lhs))
1980 or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
1981 then
1982 L := OK_Convert_To (Ltyp, Lhs);
1983 end if;
1985 if No (Etype (Rhs))
1986 or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
1987 then
1988 R := OK_Convert_To (Rtyp, Rhs);
1989 end if;
1991 Actuals := New_List (L, R);
1992 end;
1994 Append_To (Bodies, Func_Body);
1996 return
1997 Make_Function_Call (Loc,
1998 Name => New_Occurrence_Of (Func_Name, Loc),
1999 Parameter_Associations => Actuals);
2000 end Expand_Array_Equality;
2002 -----------------------------
2003 -- Expand_Boolean_Operator --
2004 -----------------------------
2006 -- Note that we first get the actual subtypes of the operands, since we
2007 -- always want to deal with types that have bounds.
2009 procedure Expand_Boolean_Operator (N : Node_Id) is
2010 Typ : constant Entity_Id := Etype (N);
2012 begin
2013 -- Special case of bit packed array where both operands are known to be
2014 -- properly aligned. In this case we use an efficient run time routine
2015 -- to carry out the operation (see System.Bit_Ops).
2017 if Is_Bit_Packed_Array (Typ)
2018 and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
2019 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
2020 then
2021 Expand_Packed_Boolean_Operator (N);
2022 return;
2023 end if;
2025 -- For the normal non-packed case, the general expansion is to build
2026 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
2027 -- and then inserting it into the tree. The original operator node is
2028 -- then rewritten as a call to this function. We also use this in the
2029 -- packed case if either operand is a possibly unaligned object.
2031 declare
2032 Loc : constant Source_Ptr := Sloc (N);
2033 L : constant Node_Id := Relocate_Node (Left_Opnd (N));
2034 R : constant Node_Id := Relocate_Node (Right_Opnd (N));
2035 Func_Body : Node_Id;
2036 Func_Name : Entity_Id;
2038 begin
2039 Convert_To_Actual_Subtype (L);
2040 Convert_To_Actual_Subtype (R);
2041 Ensure_Defined (Etype (L), N);
2042 Ensure_Defined (Etype (R), N);
2043 Apply_Length_Check (R, Etype (L));
2045 if Nkind (N) = N_Op_Xor then
2046 Silly_Boolean_Array_Xor_Test (N, Etype (L));
2047 end if;
2049 if Nkind (Parent (N)) = N_Assignment_Statement
2050 and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
2051 then
2052 Build_Boolean_Array_Proc_Call (Parent (N), L, R);
2054 elsif Nkind (Parent (N)) = N_Op_Not
2055 and then Nkind (N) = N_Op_And
2056 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
2057 and then Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
2058 then
2059 return;
2060 else
2062 Func_Body := Make_Boolean_Array_Op (Etype (L), N);
2063 Func_Name := Defining_Unit_Name (Specification (Func_Body));
2064 Insert_Action (N, Func_Body);
2066 -- Now rewrite the expression with a call
2068 Rewrite (N,
2069 Make_Function_Call (Loc,
2070 Name => New_Occurrence_Of (Func_Name, Loc),
2071 Parameter_Associations =>
2072 New_List (
2074 Make_Type_Conversion
2075 (Loc, New_Occurrence_Of (Etype (L), Loc), R))));
2077 Analyze_And_Resolve (N, Typ);
2078 end if;
2079 end;
2080 end Expand_Boolean_Operator;
2082 ------------------------------------------------
2083 -- Expand_Compare_Minimize_Eliminate_Overflow --
2084 ------------------------------------------------
2086 procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id) is
2087 Loc : constant Source_Ptr := Sloc (N);
2089 Result_Type : constant Entity_Id := Etype (N);
2090 -- Capture result type (could be a derived boolean type)
2092 Llo, Lhi : Uint;
2093 Rlo, Rhi : Uint;
2095 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
2096 -- Entity for Long_Long_Integer'Base
2098 Check : constant Overflow_Mode_Type := Overflow_Check_Mode;
2099 -- Current overflow checking mode
2101 procedure Set_True;
2102 procedure Set_False;
2103 -- These procedures rewrite N with an occurrence of Standard_True or
2104 -- Standard_False, and then makes a call to Warn_On_Known_Condition.
2106 ---------------
2107 -- Set_False --
2108 ---------------
2110 procedure Set_False is
2111 begin
2112 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
2113 Warn_On_Known_Condition (N);
2114 end Set_False;
2116 --------------
2117 -- Set_True --
2118 --------------
2120 procedure Set_True is
2121 begin
2122 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
2123 Warn_On_Known_Condition (N);
2124 end Set_True;
2126 -- Start of processing for Expand_Compare_Minimize_Eliminate_Overflow
2128 begin
2129 -- Nothing to do unless we have a comparison operator with operands
2130 -- that are signed integer types, and we are operating in either
2131 -- MINIMIZED or ELIMINATED overflow checking mode.
2133 if Nkind (N) not in N_Op_Compare
2134 or else Check not in Minimized_Or_Eliminated
2135 or else not Is_Signed_Integer_Type (Etype (Left_Opnd (N)))
2136 then
2137 return;
2138 end if;
2140 -- OK, this is the case we are interested in. First step is to process
2141 -- our operands using the Minimize_Eliminate circuitry which applies
2142 -- this processing to the two operand subtrees.
2144 Minimize_Eliminate_Overflows
2145 (Left_Opnd (N), Llo, Lhi, Top_Level => False);
2146 Minimize_Eliminate_Overflows
2147 (Right_Opnd (N), Rlo, Rhi, Top_Level => False);
2149 -- See if the range information decides the result of the comparison.
2150 -- We can only do this if we in fact have full range information (which
2151 -- won't be the case if either operand is bignum at this stage).
2153 if Llo /= No_Uint and then Rlo /= No_Uint then
2154 case N_Op_Compare (Nkind (N)) is
2155 when N_Op_Eq =>
2156 if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
2157 Set_True;
2158 elsif Llo > Rhi or else Lhi < Rlo then
2159 Set_False;
2160 end if;
2162 when N_Op_Ge =>
2163 if Llo >= Rhi then
2164 Set_True;
2165 elsif Lhi < Rlo then
2166 Set_False;
2167 end if;
2169 when N_Op_Gt =>
2170 if Llo > Rhi then
2171 Set_True;
2172 elsif Lhi <= Rlo then
2173 Set_False;
2174 end if;
2176 when N_Op_Le =>
2177 if Llo > Rhi then
2178 Set_False;
2179 elsif Lhi <= Rlo then
2180 Set_True;
2181 end if;
2183 when N_Op_Lt =>
2184 if Llo >= Rhi then
2185 Set_False;
2186 elsif Lhi < Rlo then
2187 Set_True;
2188 end if;
2190 when N_Op_Ne =>
2191 if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
2192 Set_False;
2193 elsif Llo > Rhi or else Lhi < Rlo then
2194 Set_True;
2195 end if;
2196 end case;
2198 -- All done if we did the rewrite
2200 if Nkind (N) not in N_Op_Compare then
2201 return;
2202 end if;
2203 end if;
2205 -- Otherwise, time to do the comparison
2207 declare
2208 Ltype : constant Entity_Id := Etype (Left_Opnd (N));
2209 Rtype : constant Entity_Id := Etype (Right_Opnd (N));
2211 begin
2212 -- If the two operands have the same signed integer type we are
2213 -- all set, nothing more to do. This is the case where either
2214 -- both operands were unchanged, or we rewrote both of them to
2215 -- be Long_Long_Integer.
2217 -- Note: Entity for the comparison may be wrong, but it's not worth
2218 -- the effort to change it, since the back end does not use it.
2220 if Is_Signed_Integer_Type (Ltype)
2221 and then Base_Type (Ltype) = Base_Type (Rtype)
2222 then
2223 return;
2225 -- Here if bignums are involved (can only happen in ELIMINATED mode)
2227 elsif Is_RTE (Ltype, RE_Bignum) or else Is_RTE (Rtype, RE_Bignum) then
2228 declare
2229 Left : Node_Id := Left_Opnd (N);
2230 Right : Node_Id := Right_Opnd (N);
2231 -- Bignum references for left and right operands
2233 begin
2234 if not Is_RTE (Ltype, RE_Bignum) then
2235 Left := Convert_To_Bignum (Left);
2236 elsif not Is_RTE (Rtype, RE_Bignum) then
2237 Right := Convert_To_Bignum (Right);
2238 end if;
2240 -- We rewrite our node with:
2242 -- do
2243 -- Bnn : Result_Type;
2244 -- declare
2245 -- M : Mark_Id := SS_Mark;
2246 -- begin
2247 -- Bnn := Big_xx (Left, Right); (xx = EQ, NT etc)
2248 -- SS_Release (M);
2249 -- end;
2250 -- in
2251 -- Bnn
2252 -- end
2254 declare
2255 Blk : constant Node_Id := Make_Bignum_Block (Loc);
2256 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
2257 Ent : RE_Id;
2259 begin
2260 case N_Op_Compare (Nkind (N)) is
2261 when N_Op_Eq => Ent := RE_Big_EQ;
2262 when N_Op_Ge => Ent := RE_Big_GE;
2263 when N_Op_Gt => Ent := RE_Big_GT;
2264 when N_Op_Le => Ent := RE_Big_LE;
2265 when N_Op_Lt => Ent := RE_Big_LT;
2266 when N_Op_Ne => Ent := RE_Big_NE;
2267 end case;
2269 -- Insert assignment to Bnn into the bignum block
2271 Insert_Before
2272 (First (Statements (Handled_Statement_Sequence (Blk))),
2273 Make_Assignment_Statement (Loc,
2274 Name => New_Occurrence_Of (Bnn, Loc),
2275 Expression =>
2276 Make_Function_Call (Loc,
2277 Name =>
2278 New_Occurrence_Of (RTE (Ent), Loc),
2279 Parameter_Associations => New_List (Left, Right))));
2281 -- Now do the rewrite with expression actions
2283 Rewrite (N,
2284 Make_Expression_With_Actions (Loc,
2285 Actions => New_List (
2286 Make_Object_Declaration (Loc,
2287 Defining_Identifier => Bnn,
2288 Object_Definition =>
2289 New_Occurrence_Of (Result_Type, Loc)),
2290 Blk),
2291 Expression => New_Occurrence_Of (Bnn, Loc)));
2292 Analyze_And_Resolve (N, Result_Type);
2293 end;
2294 end;
2296 -- No bignums involved, but types are different, so we must have
2297 -- rewritten one of the operands as a Long_Long_Integer but not
2298 -- the other one.
2300 -- If left operand is Long_Long_Integer, convert right operand
2301 -- and we are done (with a comparison of two Long_Long_Integers).
2303 elsif Ltype = LLIB then
2304 Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
2305 Analyze_And_Resolve (Right_Opnd (N), LLIB, Suppress => All_Checks);
2306 return;
2308 -- If right operand is Long_Long_Integer, convert left operand
2309 -- and we are done (with a comparison of two Long_Long_Integers).
2311 -- This is the only remaining possibility
2313 else pragma Assert (Rtype = LLIB);
2314 Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
2315 Analyze_And_Resolve (Left_Opnd (N), LLIB, Suppress => All_Checks);
2316 return;
2317 end if;
2318 end;
2319 end Expand_Compare_Minimize_Eliminate_Overflow;
2321 -------------------------------
2322 -- Expand_Composite_Equality --
2323 -------------------------------
2325 -- This function is only called for comparing internal fields of composite
2326 -- types when these fields are themselves composites. This is a special
2327 -- case because it is not possible to respect normal Ada visibility rules.
2329 function Expand_Composite_Equality
2330 (Nod : Node_Id;
2331 Typ : Entity_Id;
2332 Lhs : Node_Id;
2333 Rhs : Node_Id;
2334 Bodies : List_Id) return Node_Id
2336 Loc : constant Source_Ptr := Sloc (Nod);
2337 Full_Type : Entity_Id;
2338 Eq_Op : Entity_Id;
2340 function Find_Primitive_Eq return Node_Id;
2341 -- AI05-0123: Locate primitive equality for type if it exists, and
2342 -- build the corresponding call. If operation is abstract, replace
2343 -- call with an explicit raise. Return Empty if there is no primitive.
2345 -----------------------
2346 -- Find_Primitive_Eq --
2347 -----------------------
2349 function Find_Primitive_Eq return Node_Id is
2350 Prim_E : Elmt_Id;
2351 Prim : Node_Id;
2353 begin
2354 Prim_E := First_Elmt (Collect_Primitive_Operations (Typ));
2355 while Present (Prim_E) loop
2356 Prim := Node (Prim_E);
2358 -- Locate primitive equality with the right signature
2360 if Chars (Prim) = Name_Op_Eq
2361 and then Etype (First_Formal (Prim)) =
2362 Etype (Next_Formal (First_Formal (Prim)))
2363 and then Etype (Prim) = Standard_Boolean
2364 then
2365 if Is_Abstract_Subprogram (Prim) then
2366 return
2367 Make_Raise_Program_Error (Loc,
2368 Reason => PE_Explicit_Raise);
2370 else
2371 return
2372 Make_Function_Call (Loc,
2373 Name => New_Occurrence_Of (Prim, Loc),
2374 Parameter_Associations => New_List (Lhs, Rhs));
2375 end if;
2376 end if;
2378 Next_Elmt (Prim_E);
2379 end loop;
2381 -- If not found, predefined operation will be used
2383 return Empty;
2384 end Find_Primitive_Eq;
2386 -- Start of processing for Expand_Composite_Equality
2388 begin
2389 if Is_Private_Type (Typ) then
2390 Full_Type := Underlying_Type (Typ);
2391 else
2392 Full_Type := Typ;
2393 end if;
2395 -- If the private type has no completion the context may be the
2396 -- expansion of a composite equality for a composite type with some
2397 -- still incomplete components. The expression will not be analyzed
2398 -- until the enclosing type is completed, at which point this will be
2399 -- properly expanded, unless there is a bona fide completion error.
2401 if No (Full_Type) then
2402 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2403 end if;
2405 Full_Type := Base_Type (Full_Type);
2407 -- When the base type itself is private, use the full view to expand
2408 -- the composite equality.
2410 if Is_Private_Type (Full_Type) then
2411 Full_Type := Underlying_Type (Full_Type);
2412 end if;
2414 -- Case of array types
2416 if Is_Array_Type (Full_Type) then
2418 -- If the operand is an elementary type other than a floating-point
2419 -- type, then we can simply use the built-in block bitwise equality,
2420 -- since the predefined equality operators always apply and bitwise
2421 -- equality is fine for all these cases.
2423 if Is_Elementary_Type (Component_Type (Full_Type))
2424 and then not Is_Floating_Point_Type (Component_Type (Full_Type))
2425 then
2426 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2428 -- For composite component types, and floating-point types, use the
2429 -- expansion. This deals with tagged component types (where we use
2430 -- the applicable equality routine) and floating-point (where we
2431 -- need to worry about negative zeroes), and also the case of any
2432 -- composite type recursively containing such fields.
2434 else
2435 declare
2436 Comp_Typ : Entity_Id;
2437 Hi : Node_Id;
2438 Indx : Node_Id;
2439 Ityp : Entity_Id;
2440 Lo : Node_Id;
2442 begin
2443 -- Do the comparison in the type (or its full view) and not in
2444 -- its unconstrained base type, because the latter operation is
2445 -- more complex and would also require an unchecked conversion.
2447 if Is_Private_Type (Typ) then
2448 Comp_Typ := Underlying_Type (Typ);
2449 else
2450 Comp_Typ := Typ;
2451 end if;
2453 -- Except for the case where the bounds of the type depend on a
2454 -- discriminant, or else we would run into scoping issues.
2456 Indx := First_Index (Comp_Typ);
2457 while Present (Indx) loop
2458 Ityp := Etype (Indx);
2460 Lo := Type_Low_Bound (Ityp);
2461 Hi := Type_High_Bound (Ityp);
2463 if (Nkind (Lo) = N_Identifier
2464 and then Ekind (Entity (Lo)) = E_Discriminant)
2465 or else
2466 (Nkind (Hi) = N_Identifier
2467 and then Ekind (Entity (Hi)) = E_Discriminant)
2468 then
2469 Comp_Typ := Full_Type;
2470 exit;
2471 end if;
2473 Next_Index (Indx);
2474 end loop;
2476 return Expand_Array_Equality (Nod, Lhs, Rhs, Bodies, Comp_Typ);
2477 end;
2478 end if;
2480 -- Case of tagged record types
2482 elsif Is_Tagged_Type (Full_Type) then
2483 Eq_Op := Find_Primitive_Eq (Typ);
2484 pragma Assert (Present (Eq_Op));
2486 return
2487 Make_Function_Call (Loc,
2488 Name => New_Occurrence_Of (Eq_Op, Loc),
2489 Parameter_Associations =>
2490 New_List
2491 (Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
2492 Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
2494 -- Case of untagged record types
2496 elsif Is_Record_Type (Full_Type) then
2497 Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
2499 if Present (Eq_Op) then
2500 if Etype (First_Formal (Eq_Op)) /= Full_Type then
2502 -- Inherited equality from parent type. Convert the actuals to
2503 -- match signature of operation.
2505 declare
2506 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
2508 begin
2509 return
2510 Make_Function_Call (Loc,
2511 Name => New_Occurrence_Of (Eq_Op, Loc),
2512 Parameter_Associations => New_List (
2513 OK_Convert_To (T, Lhs),
2514 OK_Convert_To (T, Rhs)));
2515 end;
2517 else
2518 -- Comparison between Unchecked_Union components
2520 if Is_Unchecked_Union (Full_Type) then
2521 declare
2522 Lhs_Type : Node_Id := Full_Type;
2523 Rhs_Type : Node_Id := Full_Type;
2524 Lhs_Discr_Val : Node_Id;
2525 Rhs_Discr_Val : Node_Id;
2527 begin
2528 -- Lhs subtype
2530 if Nkind (Lhs) = N_Selected_Component then
2531 Lhs_Type := Etype (Entity (Selector_Name (Lhs)));
2532 end if;
2534 -- Rhs subtype
2536 if Nkind (Rhs) = N_Selected_Component then
2537 Rhs_Type := Etype (Entity (Selector_Name (Rhs)));
2538 end if;
2540 -- Lhs of the composite equality
2542 if Is_Constrained (Lhs_Type) then
2544 -- Since the enclosing record type can never be an
2545 -- Unchecked_Union (this code is executed for records
2546 -- that do not have variants), we may reference its
2547 -- discriminant(s).
2549 if Nkind (Lhs) = N_Selected_Component
2550 and then Has_Per_Object_Constraint
2551 (Entity (Selector_Name (Lhs)))
2552 then
2553 Lhs_Discr_Val :=
2554 Make_Selected_Component (Loc,
2555 Prefix => Prefix (Lhs),
2556 Selector_Name =>
2557 New_Copy
2558 (Get_Discriminant_Value
2559 (First_Discriminant (Lhs_Type),
2560 Lhs_Type,
2561 Stored_Constraint (Lhs_Type))));
2563 else
2564 Lhs_Discr_Val :=
2565 New_Copy
2566 (Get_Discriminant_Value
2567 (First_Discriminant (Lhs_Type),
2568 Lhs_Type,
2569 Stored_Constraint (Lhs_Type)));
2571 end if;
2572 else
2573 -- It is not possible to infer the discriminant since
2574 -- the subtype is not constrained.
2576 return
2577 Make_Raise_Program_Error (Loc,
2578 Reason => PE_Unchecked_Union_Restriction);
2579 end if;
2581 -- Rhs of the composite equality
2583 if Is_Constrained (Rhs_Type) then
2584 if Nkind (Rhs) = N_Selected_Component
2585 and then Has_Per_Object_Constraint
2586 (Entity (Selector_Name (Rhs)))
2587 then
2588 Rhs_Discr_Val :=
2589 Make_Selected_Component (Loc,
2590 Prefix => Prefix (Rhs),
2591 Selector_Name =>
2592 New_Copy
2593 (Get_Discriminant_Value
2594 (First_Discriminant (Rhs_Type),
2595 Rhs_Type,
2596 Stored_Constraint (Rhs_Type))));
2598 else
2599 Rhs_Discr_Val :=
2600 New_Copy
2601 (Get_Discriminant_Value
2602 (First_Discriminant (Rhs_Type),
2603 Rhs_Type,
2604 Stored_Constraint (Rhs_Type)));
2606 end if;
2607 else
2608 return
2609 Make_Raise_Program_Error (Loc,
2610 Reason => PE_Unchecked_Union_Restriction);
2611 end if;
2613 -- Call the TSS equality function with the inferred
2614 -- discriminant values.
2616 return
2617 Make_Function_Call (Loc,
2618 Name => New_Occurrence_Of (Eq_Op, Loc),
2619 Parameter_Associations => New_List (
2620 Lhs,
2621 Rhs,
2622 Lhs_Discr_Val,
2623 Rhs_Discr_Val));
2624 end;
2626 -- All cases other than comparing Unchecked_Union types
2628 else
2629 declare
2630 T : constant Entity_Id := Etype (First_Formal (Eq_Op));
2631 begin
2632 return
2633 Make_Function_Call (Loc,
2634 Name =>
2635 New_Occurrence_Of (Eq_Op, Loc),
2636 Parameter_Associations => New_List (
2637 OK_Convert_To (T, Lhs),
2638 OK_Convert_To (T, Rhs)));
2639 end;
2640 end if;
2641 end if;
2643 -- Equality composes in Ada 2012 for untagged record types. It also
2644 -- composes for bounded strings, because they are part of the
2645 -- predefined environment. We could make it compose for bounded
2646 -- strings by making them tagged, or by making sure all subcomponents
2647 -- are set to the same value, even when not used. Instead, we have
2648 -- this special case in the compiler, because it's more efficient.
2650 elsif Ada_Version >= Ada_2012 or else Is_Bounded_String (Typ) then
2652 -- If no TSS has been created for the type, check whether there is
2653 -- a primitive equality declared for it.
2655 declare
2656 Op : constant Node_Id := Find_Primitive_Eq;
2658 begin
2659 -- Use user-defined primitive if it exists, otherwise use
2660 -- predefined equality.
2662 if Present (Op) then
2663 return Op;
2664 else
2665 return Make_Op_Eq (Loc, Lhs, Rhs);
2666 end if;
2667 end;
2669 else
2670 return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs, Bodies);
2671 end if;
2673 -- Non-composite types (always use predefined equality)
2675 else
2676 return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
2677 end if;
2678 end Expand_Composite_Equality;
2680 ------------------------
2681 -- Expand_Concatenate --
2682 ------------------------
2684 procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id) is
2685 Loc : constant Source_Ptr := Sloc (Cnode);
2687 Atyp : constant Entity_Id := Base_Type (Etype (Cnode));
2688 -- Result type of concatenation
2690 Ctyp : constant Entity_Id := Base_Type (Component_Type (Etype (Cnode)));
2691 -- Component type. Elements of this component type can appear as one
2692 -- of the operands of concatenation as well as arrays.
2694 Istyp : constant Entity_Id := Etype (First_Index (Atyp));
2695 -- Index subtype
2697 Ityp : constant Entity_Id := Base_Type (Istyp);
2698 -- Index type. This is the base type of the index subtype, and is used
2699 -- for all computed bounds (which may be out of range of Istyp in the
2700 -- case of null ranges).
2702 Artyp : Entity_Id;
2703 -- This is the type we use to do arithmetic to compute the bounds and
2704 -- lengths of operands. The choice of this type is a little subtle and
2705 -- is discussed in a separate section at the start of the body code.
2707 Concatenation_Error : exception;
2708 -- Raised if concatenation is sure to raise a CE
2710 Result_May_Be_Null : Boolean := True;
2711 -- Reset to False if at least one operand is encountered which is known
2712 -- at compile time to be non-null. Used for handling the special case
2713 -- of setting the high bound to the last operand high bound for a null
2714 -- result, thus ensuring a proper high bound in the super-flat case.
2716 N : constant Nat := List_Length (Opnds);
2717 -- Number of concatenation operands including possibly null operands
2719 NN : Nat := 0;
2720 -- Number of operands excluding any known to be null, except that the
2721 -- last operand is always retained, in case it provides the bounds for
2722 -- a null result.
2724 Opnd : Node_Id := Empty;
2725 -- Current operand being processed in the loop through operands. After
2726 -- this loop is complete, always contains the last operand (which is not
2727 -- the same as Operands (NN), since null operands are skipped).
2729 -- Arrays describing the operands, only the first NN entries of each
2730 -- array are set (NN < N when we exclude known null operands).
2732 Is_Fixed_Length : array (1 .. N) of Boolean;
2733 -- True if length of corresponding operand known at compile time
2735 Operands : array (1 .. N) of Node_Id;
2736 -- Set to the corresponding entry in the Opnds list (but note that null
2737 -- operands are excluded, so not all entries in the list are stored).
2739 Fixed_Length : array (1 .. N) of Uint;
2740 -- Set to length of operand. Entries in this array are set only if the
2741 -- corresponding entry in Is_Fixed_Length is True.
2743 Opnd_Low_Bound : array (1 .. N) of Node_Id;
2744 -- Set to lower bound of operand. Either an integer literal in the case
2745 -- where the bound is known at compile time, else actual lower bound.
2746 -- The operand low bound is of type Ityp.
2748 Var_Length : array (1 .. N) of Entity_Id;
2749 -- Set to an entity of type Natural that contains the length of an
2750 -- operand whose length is not known at compile time. Entries in this
2751 -- array are set only if the corresponding entry in Is_Fixed_Length
2752 -- is False. The entity is of type Artyp.
2754 Aggr_Length : array (0 .. N) of Node_Id;
2755 -- The J'th entry in an expression node that represents the total length
2756 -- of operands 1 through J. It is either an integer literal node, or a
2757 -- reference to a constant entity with the right value, so it is fine
2758 -- to just do a Copy_Node to get an appropriate copy. The extra zero'th
2759 -- entry always is set to zero. The length is of type Artyp.
2761 Low_Bound : Node_Id;
2762 -- A tree node representing the low bound of the result (of type Ityp).
2763 -- This is either an integer literal node, or an identifier reference to
2764 -- a constant entity initialized to the appropriate value.
2766 Last_Opnd_Low_Bound : Node_Id := Empty;
2767 -- A tree node representing the low bound of the last operand. This
2768 -- need only be set if the result could be null. It is used for the
2769 -- special case of setting the right low bound for a null result.
2770 -- This is of type Ityp.
2772 Last_Opnd_High_Bound : Node_Id := Empty;
2773 -- A tree node representing the high bound of the last operand. This
2774 -- need only be set if the result could be null. It is used for the
2775 -- special case of setting the right high bound for a null result.
2776 -- This is of type Ityp.
2778 High_Bound : Node_Id := Empty;
2779 -- A tree node representing the high bound of the result (of type Ityp)
2781 Result : Node_Id;
2782 -- Result of the concatenation (of type Ityp)
2784 Actions : constant List_Id := New_List;
2785 -- Collect actions to be inserted
2787 Known_Non_Null_Operand_Seen : Boolean;
2788 -- Set True during generation of the assignments of operands into
2789 -- result once an operand known to be non-null has been seen.
2791 function Library_Level_Target return Boolean;
2792 -- Return True if the concatenation is within the expression of the
2793 -- declaration of a library-level object.
2795 function Make_Artyp_Literal (Val : Nat) return Node_Id;
2796 -- This function makes an N_Integer_Literal node that is returned in
2797 -- analyzed form with the type set to Artyp. Importantly this literal
2798 -- is not flagged as static, so that if we do computations with it that
2799 -- result in statically detected out of range conditions, we will not
2800 -- generate error messages but instead warning messages.
2802 function To_Artyp (X : Node_Id) return Node_Id;
2803 -- Given a node of type Ityp, returns the corresponding value of type
2804 -- Artyp. For non-enumeration types, this is a plain integer conversion.
2805 -- For enum types, the Pos of the value is returned.
2807 function To_Ityp (X : Node_Id) return Node_Id;
2808 -- The inverse function (uses Val in the case of enumeration types)
2810 --------------------------
2811 -- Library_Level_Target --
2812 --------------------------
2814 function Library_Level_Target return Boolean is
2815 P : Node_Id := Parent (Cnode);
2817 begin
2818 while Present (P) loop
2819 if Nkind (P) = N_Object_Declaration then
2820 return Is_Library_Level_Entity (Defining_Identifier (P));
2822 -- Prevent the search from going too far
2824 elsif Is_Body_Or_Package_Declaration (P) then
2825 return False;
2826 end if;
2828 P := Parent (P);
2829 end loop;
2831 return False;
2832 end Library_Level_Target;
2834 ------------------------
2835 -- Make_Artyp_Literal --
2836 ------------------------
2838 function Make_Artyp_Literal (Val : Nat) return Node_Id is
2839 Result : constant Node_Id := Make_Integer_Literal (Loc, Val);
2840 begin
2841 Set_Etype (Result, Artyp);
2842 Set_Analyzed (Result, True);
2843 Set_Is_Static_Expression (Result, False);
2844 return Result;
2845 end Make_Artyp_Literal;
2847 --------------
2848 -- To_Artyp --
2849 --------------
2851 function To_Artyp (X : Node_Id) return Node_Id is
2852 begin
2853 if Ityp = Base_Type (Artyp) then
2854 return X;
2856 elsif Is_Enumeration_Type (Ityp) then
2857 return
2858 Make_Attribute_Reference (Loc,
2859 Prefix => New_Occurrence_Of (Ityp, Loc),
2860 Attribute_Name => Name_Pos,
2861 Expressions => New_List (X));
2863 else
2864 return Convert_To (Artyp, X);
2865 end if;
2866 end To_Artyp;
2868 -------------
2869 -- To_Ityp --
2870 -------------
2872 function To_Ityp (X : Node_Id) return Node_Id is
2873 begin
2874 if Is_Enumeration_Type (Ityp) then
2875 return
2876 Make_Attribute_Reference (Loc,
2877 Prefix => New_Occurrence_Of (Ityp, Loc),
2878 Attribute_Name => Name_Val,
2879 Expressions => New_List (X));
2881 -- Case where we will do a type conversion
2883 else
2884 if Ityp = Base_Type (Artyp) then
2885 return X;
2886 else
2887 return Convert_To (Ityp, X);
2888 end if;
2889 end if;
2890 end To_Ityp;
2892 -- Local Declarations
2894 Opnd_Typ : Entity_Id;
2895 Ent : Entity_Id;
2896 Len : Uint;
2897 J : Nat;
2898 Clen : Node_Id;
2899 Set : Boolean;
2901 -- Start of processing for Expand_Concatenate
2903 begin
2904 -- Choose an appropriate computational type
2906 -- We will be doing calculations of lengths and bounds in this routine
2907 -- and computing one from the other in some cases, e.g. getting the high
2908 -- bound by adding the length-1 to the low bound.
2910 -- We can't just use the index type, or even its base type for this
2911 -- purpose for two reasons. First it might be an enumeration type which
2912 -- is not suitable for computations of any kind, and second it may
2913 -- simply not have enough range. For example if the index type is
2914 -- -128..+127 then lengths can be up to 256, which is out of range of
2915 -- the type.
2917 -- For enumeration types, we can simply use Standard_Integer, this is
2918 -- sufficient since the actual number of enumeration literals cannot
2919 -- possibly exceed the range of integer (remember we will be doing the
2920 -- arithmetic with POS values, not representation values).
2922 if Is_Enumeration_Type (Ityp) then
2923 Artyp := Standard_Integer;
2925 -- If index type is Positive, we use the standard unsigned type, to give
2926 -- more room on the top of the range, obviating the need for an overflow
2927 -- check when creating the upper bound. This is needed to avoid junk
2928 -- overflow checks in the common case of String types.
2930 -- ??? Disabled for now
2932 -- elsif Istyp = Standard_Positive then
2933 -- Artyp := Standard_Unsigned;
2935 -- For modular types, we use a 32-bit modular type for types whose size
2936 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
2937 -- identity type, and for larger unsigned types we use 64-bits.
2939 elsif Is_Modular_Integer_Type (Ityp) then
2940 if RM_Size (Ityp) < RM_Size (Standard_Unsigned) then
2941 Artyp := Standard_Unsigned;
2942 elsif RM_Size (Ityp) = RM_Size (Standard_Unsigned) then
2943 Artyp := Ityp;
2944 else
2945 Artyp := RTE (RE_Long_Long_Unsigned);
2946 end if;
2948 -- Similar treatment for signed types
2950 else
2951 if RM_Size (Ityp) < RM_Size (Standard_Integer) then
2952 Artyp := Standard_Integer;
2953 elsif RM_Size (Ityp) = RM_Size (Standard_Integer) then
2954 Artyp := Ityp;
2955 else
2956 Artyp := Standard_Long_Long_Integer;
2957 end if;
2958 end if;
2960 -- Supply dummy entry at start of length array
2962 Aggr_Length (0) := Make_Artyp_Literal (0);
2964 -- Go through operands setting up the above arrays
2966 J := 1;
2967 while J <= N loop
2968 Opnd := Remove_Head (Opnds);
2969 Opnd_Typ := Etype (Opnd);
2971 -- The parent got messed up when we put the operands in a list,
2972 -- so now put back the proper parent for the saved operand, that
2973 -- is to say the concatenation node, to make sure that each operand
2974 -- is seen as a subexpression, e.g. if actions must be inserted.
2976 Set_Parent (Opnd, Cnode);
2978 -- Set will be True when we have setup one entry in the array
2980 Set := False;
2982 -- Singleton element (or character literal) case
2984 if Base_Type (Opnd_Typ) = Ctyp then
2985 NN := NN + 1;
2986 Operands (NN) := Opnd;
2987 Is_Fixed_Length (NN) := True;
2988 Fixed_Length (NN) := Uint_1;
2989 Result_May_Be_Null := False;
2991 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
2992 -- since we know that the result cannot be null).
2994 Opnd_Low_Bound (NN) :=
2995 Make_Attribute_Reference (Loc,
2996 Prefix => New_Occurrence_Of (Istyp, Loc),
2997 Attribute_Name => Name_First);
2999 Set := True;
3001 -- String literal case (can only occur for strings of course)
3003 elsif Nkind (Opnd) = N_String_Literal then
3004 Len := String_Literal_Length (Opnd_Typ);
3006 if Len /= 0 then
3007 Result_May_Be_Null := False;
3008 end if;
3010 -- Capture last operand low and high bound if result could be null
3012 if J = N and then Result_May_Be_Null then
3013 Last_Opnd_Low_Bound :=
3014 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3016 Last_Opnd_High_Bound :=
3017 Make_Op_Subtract (Loc,
3018 Left_Opnd =>
3019 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ)),
3020 Right_Opnd => Make_Integer_Literal (Loc, 1));
3021 end if;
3023 -- Skip null string literal
3025 if J < N and then Len = 0 then
3026 goto Continue;
3027 end if;
3029 NN := NN + 1;
3030 Operands (NN) := Opnd;
3031 Is_Fixed_Length (NN) := True;
3033 -- Set length and bounds
3035 Fixed_Length (NN) := Len;
3037 Opnd_Low_Bound (NN) :=
3038 New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
3040 Set := True;
3042 -- All other cases
3044 else
3045 -- Check constrained case with known bounds
3047 if Is_Constrained (Opnd_Typ) then
3048 declare
3049 Index : constant Node_Id := First_Index (Opnd_Typ);
3050 Indx_Typ : constant Entity_Id := Etype (Index);
3051 Lo : constant Node_Id := Type_Low_Bound (Indx_Typ);
3052 Hi : constant Node_Id := Type_High_Bound (Indx_Typ);
3054 begin
3055 -- Fixed length constrained array type with known at compile
3056 -- time bounds is last case of fixed length operand.
3058 if Compile_Time_Known_Value (Lo)
3059 and then
3060 Compile_Time_Known_Value (Hi)
3061 then
3062 declare
3063 Loval : constant Uint := Expr_Value (Lo);
3064 Hival : constant Uint := Expr_Value (Hi);
3065 Len : constant Uint :=
3066 UI_Max (Hival - Loval + 1, Uint_0);
3068 begin
3069 if Len > 0 then
3070 Result_May_Be_Null := False;
3071 end if;
3073 -- Capture last operand bounds if result could be null
3075 if J = N and then Result_May_Be_Null then
3076 Last_Opnd_Low_Bound :=
3077 Convert_To (Ityp,
3078 Make_Integer_Literal (Loc, Expr_Value (Lo)));
3080 Last_Opnd_High_Bound :=
3081 Convert_To (Ityp,
3082 Make_Integer_Literal (Loc, Expr_Value (Hi)));
3083 end if;
3085 -- Exclude null length case unless last operand
3087 if J < N and then Len = 0 then
3088 goto Continue;
3089 end if;
3091 NN := NN + 1;
3092 Operands (NN) := Opnd;
3093 Is_Fixed_Length (NN) := True;
3094 Fixed_Length (NN) := Len;
3096 Opnd_Low_Bound (NN) :=
3097 To_Ityp
3098 (Make_Integer_Literal (Loc, Expr_Value (Lo)));
3099 Set := True;
3100 end;
3101 end if;
3102 end;
3103 end if;
3105 -- All cases where the length is not known at compile time, or the
3106 -- special case of an operand which is known to be null but has a
3107 -- lower bound other than 1 or is other than a string type.
3109 if not Set then
3110 NN := NN + 1;
3112 -- Capture operand bounds
3114 Opnd_Low_Bound (NN) :=
3115 Make_Attribute_Reference (Loc,
3116 Prefix =>
3117 Duplicate_Subexpr (Opnd, Name_Req => True),
3118 Attribute_Name => Name_First);
3120 -- Capture last operand bounds if result could be null
3122 if J = N and Result_May_Be_Null then
3123 Last_Opnd_Low_Bound :=
3124 Convert_To (Ityp,
3125 Make_Attribute_Reference (Loc,
3126 Prefix =>
3127 Duplicate_Subexpr (Opnd, Name_Req => True),
3128 Attribute_Name => Name_First));
3130 Last_Opnd_High_Bound :=
3131 Convert_To (Ityp,
3132 Make_Attribute_Reference (Loc,
3133 Prefix =>
3134 Duplicate_Subexpr (Opnd, Name_Req => True),
3135 Attribute_Name => Name_Last));
3136 end if;
3138 -- Capture length of operand in entity
3140 Operands (NN) := Opnd;
3141 Is_Fixed_Length (NN) := False;
3143 Var_Length (NN) := Make_Temporary (Loc, 'L');
3145 Append_To (Actions,
3146 Make_Object_Declaration (Loc,
3147 Defining_Identifier => Var_Length (NN),
3148 Constant_Present => True,
3149 Object_Definition => New_Occurrence_Of (Artyp, Loc),
3150 Expression =>
3151 Make_Attribute_Reference (Loc,
3152 Prefix =>
3153 Duplicate_Subexpr (Opnd, Name_Req => True),
3154 Attribute_Name => Name_Length)));
3155 end if;
3156 end if;
3158 -- Set next entry in aggregate length array
3160 -- For first entry, make either integer literal for fixed length
3161 -- or a reference to the saved length for variable length.
3163 if NN = 1 then
3164 if Is_Fixed_Length (1) then
3165 Aggr_Length (1) := Make_Integer_Literal (Loc, Fixed_Length (1));
3166 else
3167 Aggr_Length (1) := New_Occurrence_Of (Var_Length (1), Loc);
3168 end if;
3170 -- If entry is fixed length and only fixed lengths so far, make
3171 -- appropriate new integer literal adding new length.
3173 elsif Is_Fixed_Length (NN)
3174 and then Nkind (Aggr_Length (NN - 1)) = N_Integer_Literal
3175 then
3176 Aggr_Length (NN) :=
3177 Make_Integer_Literal (Loc,
3178 Intval => Fixed_Length (NN) + Intval (Aggr_Length (NN - 1)));
3180 -- All other cases, construct an addition node for the length and
3181 -- create an entity initialized to this length.
3183 else
3184 Ent := Make_Temporary (Loc, 'L');
3186 if Is_Fixed_Length (NN) then
3187 Clen := Make_Integer_Literal (Loc, Fixed_Length (NN));
3188 else
3189 Clen := New_Occurrence_Of (Var_Length (NN), Loc);
3190 end if;
3192 Append_To (Actions,
3193 Make_Object_Declaration (Loc,
3194 Defining_Identifier => Ent,
3195 Constant_Present => True,
3196 Object_Definition => New_Occurrence_Of (Artyp, Loc),
3197 Expression =>
3198 Make_Op_Add (Loc,
3199 Left_Opnd => New_Copy_Tree (Aggr_Length (NN - 1)),
3200 Right_Opnd => Clen)));
3202 Aggr_Length (NN) := Make_Identifier (Loc, Chars => Chars (Ent));
3203 end if;
3205 <<Continue>>
3206 J := J + 1;
3207 end loop;
3209 -- If we have only skipped null operands, return the last operand
3211 if NN = 0 then
3212 Result := Opnd;
3213 goto Done;
3214 end if;
3216 -- If we have only one non-null operand, return it and we are done.
3217 -- There is one case in which this cannot be done, and that is when
3218 -- the sole operand is of the element type, in which case it must be
3219 -- converted to an array, and the easiest way of doing that is to go
3220 -- through the normal general circuit.
3222 if NN = 1 and then Base_Type (Etype (Operands (1))) /= Ctyp then
3223 Result := Operands (1);
3224 goto Done;
3225 end if;
3227 -- Cases where we have a real concatenation
3229 -- Next step is to find the low bound for the result array that we
3230 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
3232 -- If the ultimate ancestor of the index subtype is a constrained array
3233 -- definition, then the lower bound is that of the index subtype as
3234 -- specified by (RM 4.5.3(6)).
3236 -- The right test here is to go to the root type, and then the ultimate
3237 -- ancestor is the first subtype of this root type.
3239 if Is_Constrained (First_Subtype (Root_Type (Atyp))) then
3240 Low_Bound :=
3241 Make_Attribute_Reference (Loc,
3242 Prefix =>
3243 New_Occurrence_Of (First_Subtype (Root_Type (Atyp)), Loc),
3244 Attribute_Name => Name_First);
3246 -- If the first operand in the list has known length we know that
3247 -- the lower bound of the result is the lower bound of this operand.
3249 elsif Is_Fixed_Length (1) then
3250 Low_Bound := Opnd_Low_Bound (1);
3252 -- OK, we don't know the lower bound, we have to build a horrible
3253 -- if expression node of the form
3255 -- if Cond1'Length /= 0 then
3256 -- Opnd1 low bound
3257 -- else
3258 -- if Opnd2'Length /= 0 then
3259 -- Opnd2 low bound
3260 -- else
3261 -- ...
3263 -- The nesting ends either when we hit an operand whose length is known
3264 -- at compile time, or on reaching the last operand, whose low bound we
3265 -- take unconditionally whether or not it is null. It's easiest to do
3266 -- this with a recursive procedure:
3268 else
3269 declare
3270 function Get_Known_Bound (J : Nat) return Node_Id;
3271 -- Returns the lower bound determined by operands J .. NN
3273 ---------------------
3274 -- Get_Known_Bound --
3275 ---------------------
3277 function Get_Known_Bound (J : Nat) return Node_Id is
3278 begin
3279 if Is_Fixed_Length (J) or else J = NN then
3280 return New_Copy_Tree (Opnd_Low_Bound (J));
3282 else
3283 return
3284 Make_If_Expression (Loc,
3285 Expressions => New_List (
3287 Make_Op_Ne (Loc,
3288 Left_Opnd =>
3289 New_Occurrence_Of (Var_Length (J), Loc),
3290 Right_Opnd =>
3291 Make_Integer_Literal (Loc, 0)),
3293 New_Copy_Tree (Opnd_Low_Bound (J)),
3294 Get_Known_Bound (J + 1)));
3295 end if;
3296 end Get_Known_Bound;
3298 begin
3299 Ent := Make_Temporary (Loc, 'L');
3301 Append_To (Actions,
3302 Make_Object_Declaration (Loc,
3303 Defining_Identifier => Ent,
3304 Constant_Present => True,
3305 Object_Definition => New_Occurrence_Of (Ityp, Loc),
3306 Expression => Get_Known_Bound (1)));
3308 Low_Bound := New_Occurrence_Of (Ent, Loc);
3309 end;
3310 end if;
3312 -- Now we can safely compute the upper bound, normally
3313 -- Low_Bound + Length - 1.
3315 High_Bound :=
3316 To_Ityp
3317 (Make_Op_Add (Loc,
3318 Left_Opnd => To_Artyp (New_Copy_Tree (Low_Bound)),
3319 Right_Opnd =>
3320 Make_Op_Subtract (Loc,
3321 Left_Opnd => New_Copy_Tree (Aggr_Length (NN)),
3322 Right_Opnd => Make_Artyp_Literal (1))));
3324 -- Note that calculation of the high bound may cause overflow in some
3325 -- very weird cases, so in the general case we need an overflow check on
3326 -- the high bound. We can avoid this for the common case of string types
3327 -- and other types whose index is Positive, since we chose a wider range
3328 -- for the arithmetic type. If checks are suppressed we do not set the
3329 -- flag, and possibly superfluous warnings will be omitted.
3331 if Istyp /= Standard_Positive
3332 and then not Overflow_Checks_Suppressed (Istyp)
3333 then
3334 Activate_Overflow_Check (High_Bound);
3335 end if;
3337 -- Handle the exceptional case where the result is null, in which case
3338 -- case the bounds come from the last operand (so that we get the proper
3339 -- bounds if the last operand is super-flat).
3341 if Result_May_Be_Null then
3342 Low_Bound :=
3343 Make_If_Expression (Loc,
3344 Expressions => New_List (
3345 Make_Op_Eq (Loc,
3346 Left_Opnd => New_Copy_Tree (Aggr_Length (NN)),
3347 Right_Opnd => Make_Artyp_Literal (0)),
3348 Last_Opnd_Low_Bound,
3349 Low_Bound));
3351 High_Bound :=
3352 Make_If_Expression (Loc,
3353 Expressions => New_List (
3354 Make_Op_Eq (Loc,
3355 Left_Opnd => New_Copy_Tree (Aggr_Length (NN)),
3356 Right_Opnd => Make_Artyp_Literal (0)),
3357 Last_Opnd_High_Bound,
3358 High_Bound));
3359 end if;
3361 -- Here is where we insert the saved up actions
3363 Insert_Actions (Cnode, Actions, Suppress => All_Checks);
3365 -- Now we construct an array object with appropriate bounds. We mark
3366 -- the target as internal to prevent useless initialization when
3367 -- Initialize_Scalars is enabled. Also since this is the actual result
3368 -- entity, we make sure we have debug information for the result.
3370 Ent := Make_Temporary (Loc, 'S');
3371 Set_Is_Internal (Ent);
3372 Set_Needs_Debug_Info (Ent);
3374 -- If the bound is statically known to be out of range, we do not want
3375 -- to abort, we want a warning and a runtime constraint error. Note that
3376 -- we have arranged that the result will not be treated as a static
3377 -- constant, so we won't get an illegality during this insertion.
3379 Insert_Action (Cnode,
3380 Make_Object_Declaration (Loc,
3381 Defining_Identifier => Ent,
3382 Object_Definition =>
3383 Make_Subtype_Indication (Loc,
3384 Subtype_Mark => New_Occurrence_Of (Atyp, Loc),
3385 Constraint =>
3386 Make_Index_Or_Discriminant_Constraint (Loc,
3387 Constraints => New_List (
3388 Make_Range (Loc,
3389 Low_Bound => Low_Bound,
3390 High_Bound => High_Bound))))),
3391 Suppress => All_Checks);
3393 -- If the result of the concatenation appears as the initializing
3394 -- expression of an object declaration, we can just rename the
3395 -- result, rather than copying it.
3397 Set_OK_To_Rename (Ent);
3399 -- Catch the static out of range case now
3401 if Raises_Constraint_Error (High_Bound) then
3402 raise Concatenation_Error;
3403 end if;
3405 -- Now we will generate the assignments to do the actual concatenation
3407 -- There is one case in which we will not do this, namely when all the
3408 -- following conditions are met:
3410 -- The result type is Standard.String
3412 -- There are nine or fewer retained (non-null) operands
3414 -- The optimization level is -O0 or the debug flag gnatd.C is set,
3415 -- and the debug flag gnatd.c is not set.
3417 -- The corresponding System.Concat_n.Str_Concat_n routine is
3418 -- available in the run time.
3420 -- If all these conditions are met then we generate a call to the
3421 -- relevant concatenation routine. The purpose of this is to avoid
3422 -- undesirable code bloat at -O0.
3424 -- If the concatenation is within the declaration of a library-level
3425 -- object, we call the built-in concatenation routines to prevent code
3426 -- bloat, regardless of the optimization level. This is space efficient
3427 -- and prevents linking problems when units are compiled with different
3428 -- optimization levels.
3430 if Atyp = Standard_String
3431 and then NN in 2 .. 9
3432 and then (((Optimization_Level = 0 or else Debug_Flag_Dot_CC)
3433 and then not Debug_Flag_Dot_C)
3434 or else Library_Level_Target)
3435 then
3436 declare
3437 RR : constant array (Nat range 2 .. 9) of RE_Id :=
3438 (RE_Str_Concat_2,
3439 RE_Str_Concat_3,
3440 RE_Str_Concat_4,
3441 RE_Str_Concat_5,
3442 RE_Str_Concat_6,
3443 RE_Str_Concat_7,
3444 RE_Str_Concat_8,
3445 RE_Str_Concat_9);
3447 begin
3448 if RTE_Available (RR (NN)) then
3449 declare
3450 Opnds : constant List_Id :=
3451 New_List (New_Occurrence_Of (Ent, Loc));
3453 begin
3454 for J in 1 .. NN loop
3455 if Is_List_Member (Operands (J)) then
3456 Remove (Operands (J));
3457 end if;
3459 if Base_Type (Etype (Operands (J))) = Ctyp then
3460 Append_To (Opnds,
3461 Make_Aggregate (Loc,
3462 Component_Associations => New_List (
3463 Make_Component_Association (Loc,
3464 Choices => New_List (
3465 Make_Integer_Literal (Loc, 1)),
3466 Expression => Operands (J)))));
3468 else
3469 Append_To (Opnds, Operands (J));
3470 end if;
3471 end loop;
3473 Insert_Action (Cnode,
3474 Make_Procedure_Call_Statement (Loc,
3475 Name => New_Occurrence_Of (RTE (RR (NN)), Loc),
3476 Parameter_Associations => Opnds));
3478 Result := New_Occurrence_Of (Ent, Loc);
3479 goto Done;
3480 end;
3481 end if;
3482 end;
3483 end if;
3485 -- Not special case so generate the assignments
3487 Known_Non_Null_Operand_Seen := False;
3489 for J in 1 .. NN loop
3490 declare
3491 Lo : constant Node_Id :=
3492 Make_Op_Add (Loc,
3493 Left_Opnd => To_Artyp (New_Copy_Tree (Low_Bound)),
3494 Right_Opnd => Aggr_Length (J - 1));
3496 Hi : constant Node_Id :=
3497 Make_Op_Add (Loc,
3498 Left_Opnd => To_Artyp (New_Copy_Tree (Low_Bound)),
3499 Right_Opnd =>
3500 Make_Op_Subtract (Loc,
3501 Left_Opnd => Aggr_Length (J),
3502 Right_Opnd => Make_Artyp_Literal (1)));
3504 begin
3505 -- Singleton case, simple assignment
3507 if Base_Type (Etype (Operands (J))) = Ctyp then
3508 Known_Non_Null_Operand_Seen := True;
3509 Insert_Action (Cnode,
3510 Make_Assignment_Statement (Loc,
3511 Name =>
3512 Make_Indexed_Component (Loc,
3513 Prefix => New_Occurrence_Of (Ent, Loc),
3514 Expressions => New_List (To_Ityp (Lo))),
3515 Expression => Operands (J)),
3516 Suppress => All_Checks);
3518 -- Array case, slice assignment, skipped when argument is fixed
3519 -- length and known to be null.
3521 elsif (not Is_Fixed_Length (J)) or else (Fixed_Length (J) > 0) then
3522 declare
3523 Assign : Node_Id :=
3524 Make_Assignment_Statement (Loc,
3525 Name =>
3526 Make_Slice (Loc,
3527 Prefix =>
3528 New_Occurrence_Of (Ent, Loc),
3529 Discrete_Range =>
3530 Make_Range (Loc,
3531 Low_Bound => To_Ityp (Lo),
3532 High_Bound => To_Ityp (Hi))),
3533 Expression => Operands (J));
3534 begin
3535 if Is_Fixed_Length (J) then
3536 Known_Non_Null_Operand_Seen := True;
3538 elsif not Known_Non_Null_Operand_Seen then
3540 -- Here if operand length is not statically known and no
3541 -- operand known to be non-null has been processed yet.
3542 -- If operand length is 0, we do not need to perform the
3543 -- assignment, and we must avoid the evaluation of the
3544 -- high bound of the slice, since it may underflow if the
3545 -- low bound is Ityp'First.
3547 Assign :=
3548 Make_Implicit_If_Statement (Cnode,
3549 Condition =>
3550 Make_Op_Ne (Loc,
3551 Left_Opnd =>
3552 New_Occurrence_Of (Var_Length (J), Loc),
3553 Right_Opnd => Make_Integer_Literal (Loc, 0)),
3554 Then_Statements => New_List (Assign));
3555 end if;
3557 Insert_Action (Cnode, Assign, Suppress => All_Checks);
3558 end;
3559 end if;
3560 end;
3561 end loop;
3563 -- Finally we build the result, which is a reference to the array object
3565 Result := New_Occurrence_Of (Ent, Loc);
3567 <<Done>>
3568 Rewrite (Cnode, Result);
3569 Analyze_And_Resolve (Cnode, Atyp);
3571 exception
3572 when Concatenation_Error =>
3574 -- Kill warning generated for the declaration of the static out of
3575 -- range high bound, and instead generate a Constraint_Error with
3576 -- an appropriate specific message.
3578 Kill_Dead_Code (Declaration_Node (Entity (High_Bound)));
3579 Apply_Compile_Time_Constraint_Error
3580 (N => Cnode,
3581 Msg => "concatenation result upper bound out of range??",
3582 Reason => CE_Range_Check_Failed);
3583 end Expand_Concatenate;
3585 ---------------------------------------------------
3586 -- Expand_Membership_Minimize_Eliminate_Overflow --
3587 ---------------------------------------------------
3589 procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id) is
3590 pragma Assert (Nkind (N) = N_In);
3591 -- Despite the name, this routine applies only to N_In, not to
3592 -- N_Not_In. The latter is always rewritten as not (X in Y).
3594 Result_Type : constant Entity_Id := Etype (N);
3595 -- Capture result type, may be a derived boolean type
3597 Loc : constant Source_Ptr := Sloc (N);
3598 Lop : constant Node_Id := Left_Opnd (N);
3599 Rop : constant Node_Id := Right_Opnd (N);
3601 -- Note: there are many referencs to Etype (Lop) and Etype (Rop). It
3602 -- is thus tempting to capture these values, but due to the rewrites
3603 -- that occur as a result of overflow checking, these values change
3604 -- as we go along, and it is safe just to always use Etype explicitly.
3606 Restype : constant Entity_Id := Etype (N);
3607 -- Save result type
3609 Lo, Hi : Uint;
3610 -- Bounds in Minimize calls, not used currently
3612 LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
3613 -- Entity for Long_Long_Integer'Base (Standard should export this???)
3615 begin
3616 Minimize_Eliminate_Overflows (Lop, Lo, Hi, Top_Level => False);
3618 -- If right operand is a subtype name, and the subtype name has no
3619 -- predicate, then we can just replace the right operand with an
3620 -- explicit range T'First .. T'Last, and use the explicit range code.
3622 if Nkind (Rop) /= N_Range
3623 and then No (Predicate_Function (Etype (Rop)))
3624 then
3625 declare
3626 Rtyp : constant Entity_Id := Etype (Rop);
3627 begin
3628 Rewrite (Rop,
3629 Make_Range (Loc,
3630 Low_Bound =>
3631 Make_Attribute_Reference (Loc,
3632 Attribute_Name => Name_First,
3633 Prefix => New_Occurrence_Of (Rtyp, Loc)),
3634 High_Bound =>
3635 Make_Attribute_Reference (Loc,
3636 Attribute_Name => Name_Last,
3637 Prefix => New_Occurrence_Of (Rtyp, Loc))));
3638 Analyze_And_Resolve (Rop, Rtyp, Suppress => All_Checks);
3639 end;
3640 end if;
3642 -- Here for the explicit range case. Note that the bounds of the range
3643 -- have not been processed for minimized or eliminated checks.
3645 if Nkind (Rop) = N_Range then
3646 Minimize_Eliminate_Overflows
3647 (Low_Bound (Rop), Lo, Hi, Top_Level => False);
3648 Minimize_Eliminate_Overflows
3649 (High_Bound (Rop), Lo, Hi, Top_Level => False);
3651 -- We have A in B .. C, treated as A >= B and then A <= C
3653 -- Bignum case
3655 if Is_RTE (Etype (Lop), RE_Bignum)
3656 or else Is_RTE (Etype (Low_Bound (Rop)), RE_Bignum)
3657 or else Is_RTE (Etype (High_Bound (Rop)), RE_Bignum)
3658 then
3659 declare
3660 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3661 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
3662 L : constant Entity_Id :=
3663 Make_Defining_Identifier (Loc, Name_uL);
3664 Lopnd : constant Node_Id := Convert_To_Bignum (Lop);
3665 Lbound : constant Node_Id :=
3666 Convert_To_Bignum (Low_Bound (Rop));
3667 Hbound : constant Node_Id :=
3668 Convert_To_Bignum (High_Bound (Rop));
3670 -- Now we rewrite the membership test node to look like
3672 -- do
3673 -- Bnn : Result_Type;
3674 -- declare
3675 -- M : Mark_Id := SS_Mark;
3676 -- L : Bignum := Lopnd;
3677 -- begin
3678 -- Bnn := Big_GE (L, Lbound) and then Big_LE (L, Hbound)
3679 -- SS_Release (M);
3680 -- end;
3681 -- in
3682 -- Bnn
3683 -- end
3685 begin
3686 -- Insert declaration of L into declarations of bignum block
3688 Insert_After
3689 (Last (Declarations (Blk)),
3690 Make_Object_Declaration (Loc,
3691 Defining_Identifier => L,
3692 Object_Definition =>
3693 New_Occurrence_Of (RTE (RE_Bignum), Loc),
3694 Expression => Lopnd));
3696 -- Insert assignment to Bnn into expressions of bignum block
3698 Insert_Before
3699 (First (Statements (Handled_Statement_Sequence (Blk))),
3700 Make_Assignment_Statement (Loc,
3701 Name => New_Occurrence_Of (Bnn, Loc),
3702 Expression =>
3703 Make_And_Then (Loc,
3704 Left_Opnd =>
3705 Make_Function_Call (Loc,
3706 Name =>
3707 New_Occurrence_Of (RTE (RE_Big_GE), Loc),
3708 Parameter_Associations => New_List (
3709 New_Occurrence_Of (L, Loc),
3710 Lbound)),
3712 Right_Opnd =>
3713 Make_Function_Call (Loc,
3714 Name =>
3715 New_Occurrence_Of (RTE (RE_Big_LE), Loc),
3716 Parameter_Associations => New_List (
3717 New_Occurrence_Of (L, Loc),
3718 Hbound)))));
3720 -- Now rewrite the node
3722 Rewrite (N,
3723 Make_Expression_With_Actions (Loc,
3724 Actions => New_List (
3725 Make_Object_Declaration (Loc,
3726 Defining_Identifier => Bnn,
3727 Object_Definition =>
3728 New_Occurrence_Of (Result_Type, Loc)),
3729 Blk),
3730 Expression => New_Occurrence_Of (Bnn, Loc)));
3731 Analyze_And_Resolve (N, Result_Type);
3732 return;
3733 end;
3735 -- Here if no bignums around
3737 else
3738 -- Case where types are all the same
3740 if Base_Type (Etype (Lop)) = Base_Type (Etype (Low_Bound (Rop)))
3741 and then
3742 Base_Type (Etype (Lop)) = Base_Type (Etype (High_Bound (Rop)))
3743 then
3744 null;
3746 -- If types are not all the same, it means that we have rewritten
3747 -- at least one of them to be of type Long_Long_Integer, and we
3748 -- will convert the other operands to Long_Long_Integer.
3750 else
3751 Convert_To_And_Rewrite (LLIB, Lop);
3752 Set_Analyzed (Lop, False);
3753 Analyze_And_Resolve (Lop, LLIB);
3755 -- For the right operand, avoid unnecessary recursion into
3756 -- this routine, we know that overflow is not possible.
3758 Convert_To_And_Rewrite (LLIB, Low_Bound (Rop));
3759 Convert_To_And_Rewrite (LLIB, High_Bound (Rop));
3760 Set_Analyzed (Rop, False);
3761 Analyze_And_Resolve (Rop, LLIB, Suppress => Overflow_Check);
3762 end if;
3764 -- Now the three operands are of the same signed integer type,
3765 -- so we can use the normal expansion routine for membership,
3766 -- setting the flag to prevent recursion into this procedure.
3768 Set_No_Minimize_Eliminate (N);
3769 Expand_N_In (N);
3770 end if;
3772 -- Right operand is a subtype name and the subtype has a predicate. We
3773 -- have to make sure the predicate is checked, and for that we need to
3774 -- use the standard N_In circuitry with appropriate types.
3776 else
3777 pragma Assert (Present (Predicate_Function (Etype (Rop))));
3779 -- If types are "right", just call Expand_N_In preventing recursion
3781 if Base_Type (Etype (Lop)) = Base_Type (Etype (Rop)) then
3782 Set_No_Minimize_Eliminate (N);
3783 Expand_N_In (N);
3785 -- Bignum case
3787 elsif Is_RTE (Etype (Lop), RE_Bignum) then
3789 -- For X in T, we want to rewrite our node as
3791 -- do
3792 -- Bnn : Result_Type;
3794 -- declare
3795 -- M : Mark_Id := SS_Mark;
3796 -- Lnn : Long_Long_Integer'Base
3797 -- Nnn : Bignum;
3799 -- begin
3800 -- Nnn := X;
3802 -- if not Bignum_In_LLI_Range (Nnn) then
3803 -- Bnn := False;
3804 -- else
3805 -- Lnn := From_Bignum (Nnn);
3806 -- Bnn :=
3807 -- Lnn in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3808 -- and then T'Base (Lnn) in T;
3809 -- end if;
3811 -- SS_Release (M);
3812 -- end
3813 -- in
3814 -- Bnn
3815 -- end
3817 -- A bit gruesome, but there doesn't seem to be a simpler way
3819 declare
3820 Blk : constant Node_Id := Make_Bignum_Block (Loc);
3821 Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
3822 Lnn : constant Entity_Id := Make_Temporary (Loc, 'L', N);
3823 Nnn : constant Entity_Id := Make_Temporary (Loc, 'N', N);
3824 T : constant Entity_Id := Etype (Rop);
3825 TB : constant Entity_Id := Base_Type (T);
3826 Nin : Node_Id;
3828 begin
3829 -- Mark the last membership operation to prevent recursion
3831 Nin :=
3832 Make_In (Loc,
3833 Left_Opnd => Convert_To (TB, New_Occurrence_Of (Lnn, Loc)),
3834 Right_Opnd => New_Occurrence_Of (T, Loc));
3835 Set_No_Minimize_Eliminate (Nin);
3837 -- Now decorate the block
3839 Insert_After
3840 (Last (Declarations (Blk)),
3841 Make_Object_Declaration (Loc,
3842 Defining_Identifier => Lnn,
3843 Object_Definition => New_Occurrence_Of (LLIB, Loc)));
3845 Insert_After
3846 (Last (Declarations (Blk)),
3847 Make_Object_Declaration (Loc,
3848 Defining_Identifier => Nnn,
3849 Object_Definition =>
3850 New_Occurrence_Of (RTE (RE_Bignum), Loc)));
3852 Insert_List_Before
3853 (First (Statements (Handled_Statement_Sequence (Blk))),
3854 New_List (
3855 Make_Assignment_Statement (Loc,
3856 Name => New_Occurrence_Of (Nnn, Loc),
3857 Expression => Relocate_Node (Lop)),
3859 Make_Implicit_If_Statement (N,
3860 Condition =>
3861 Make_Op_Not (Loc,
3862 Right_Opnd =>
3863 Make_Function_Call (Loc,
3864 Name =>
3865 New_Occurrence_Of
3866 (RTE (RE_Bignum_In_LLI_Range), Loc),
3867 Parameter_Associations => New_List (
3868 New_Occurrence_Of (Nnn, Loc)))),
3870 Then_Statements => New_List (
3871 Make_Assignment_Statement (Loc,
3872 Name => New_Occurrence_Of (Bnn, Loc),
3873 Expression =>
3874 New_Occurrence_Of (Standard_False, Loc))),
3876 Else_Statements => New_List (
3877 Make_Assignment_Statement (Loc,
3878 Name => New_Occurrence_Of (Lnn, Loc),
3879 Expression =>
3880 Make_Function_Call (Loc,
3881 Name =>
3882 New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
3883 Parameter_Associations => New_List (
3884 New_Occurrence_Of (Nnn, Loc)))),
3886 Make_Assignment_Statement (Loc,
3887 Name => New_Occurrence_Of (Bnn, Loc),
3888 Expression =>
3889 Make_And_Then (Loc,
3890 Left_Opnd =>
3891 Make_In (Loc,
3892 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
3893 Right_Opnd =>
3894 Make_Range (Loc,
3895 Low_Bound =>
3896 Convert_To (LLIB,
3897 Make_Attribute_Reference (Loc,
3898 Attribute_Name => Name_First,
3899 Prefix =>
3900 New_Occurrence_Of (TB, Loc))),
3902 High_Bound =>
3903 Convert_To (LLIB,
3904 Make_Attribute_Reference (Loc,
3905 Attribute_Name => Name_Last,
3906 Prefix =>
3907 New_Occurrence_Of (TB, Loc))))),
3909 Right_Opnd => Nin))))));
3911 -- Now we can do the rewrite
3913 Rewrite (N,
3914 Make_Expression_With_Actions (Loc,
3915 Actions => New_List (
3916 Make_Object_Declaration (Loc,
3917 Defining_Identifier => Bnn,
3918 Object_Definition =>
3919 New_Occurrence_Of (Result_Type, Loc)),
3920 Blk),
3921 Expression => New_Occurrence_Of (Bnn, Loc)));
3922 Analyze_And_Resolve (N, Result_Type);
3923 return;
3924 end;
3926 -- Not bignum case, but types don't match (this means we rewrote the
3927 -- left operand to be Long_Long_Integer).
3929 else
3930 pragma Assert (Base_Type (Etype (Lop)) = LLIB);
3932 -- We rewrite the membership test as (where T is the type with
3933 -- the predicate, i.e. the type of the right operand)
3935 -- Lop in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3936 -- and then T'Base (Lop) in T
3938 declare
3939 T : constant Entity_Id := Etype (Rop);
3940 TB : constant Entity_Id := Base_Type (T);
3941 Nin : Node_Id;
3943 begin
3944 -- The last membership test is marked to prevent recursion
3946 Nin :=
3947 Make_In (Loc,
3948 Left_Opnd => Convert_To (TB, Duplicate_Subexpr (Lop)),
3949 Right_Opnd => New_Occurrence_Of (T, Loc));
3950 Set_No_Minimize_Eliminate (Nin);
3952 -- Now do the rewrite
3954 Rewrite (N,
3955 Make_And_Then (Loc,
3956 Left_Opnd =>
3957 Make_In (Loc,
3958 Left_Opnd => Lop,
3959 Right_Opnd =>
3960 Make_Range (Loc,
3961 Low_Bound =>
3962 Convert_To (LLIB,
3963 Make_Attribute_Reference (Loc,
3964 Attribute_Name => Name_First,
3965 Prefix =>
3966 New_Occurrence_Of (TB, Loc))),
3967 High_Bound =>
3968 Convert_To (LLIB,
3969 Make_Attribute_Reference (Loc,
3970 Attribute_Name => Name_Last,
3971 Prefix =>
3972 New_Occurrence_Of (TB, Loc))))),
3973 Right_Opnd => Nin));
3974 Set_Analyzed (N, False);
3975 Analyze_And_Resolve (N, Restype);
3976 end;
3977 end if;
3978 end if;
3979 end Expand_Membership_Minimize_Eliminate_Overflow;
3981 ---------------------------------
3982 -- Expand_Nonbinary_Modular_Op --
3983 ---------------------------------
3985 procedure Expand_Nonbinary_Modular_Op (N : Node_Id) is
3986 Loc : constant Source_Ptr := Sloc (N);
3987 Typ : constant Entity_Id := Etype (N);
3989 procedure Expand_Modular_Addition;
3990 -- Expand the modular addition, handling the special case of adding a
3991 -- constant.
3993 procedure Expand_Modular_Op;
3994 -- Compute the general rule: (lhs OP rhs) mod Modulus
3996 procedure Expand_Modular_Subtraction;
3997 -- Expand the modular addition, handling the special case of subtracting
3998 -- a constant.
4000 -----------------------------
4001 -- Expand_Modular_Addition --
4002 -----------------------------
4004 procedure Expand_Modular_Addition is
4005 begin
4006 -- If this is not the addition of a constant then compute it using
4007 -- the general rule: (lhs + rhs) mod Modulus
4009 if Nkind (Right_Opnd (N)) /= N_Integer_Literal then
4010 Expand_Modular_Op;
4012 -- If this is an addition of a constant, convert it to a subtraction
4013 -- plus a conditional expression since we can compute it faster than
4014 -- computing the modulus.
4016 -- modMinusRhs = Modulus - rhs
4017 -- if lhs < modMinusRhs then lhs + rhs
4018 -- else lhs - modMinusRhs
4020 else
4021 declare
4022 Mod_Minus_Right : constant Uint :=
4023 Modulus (Typ) - Intval (Right_Opnd (N));
4025 Exprs : constant List_Id := New_List;
4026 Cond_Expr : constant Node_Id := New_Op_Node (N_Op_Lt, Loc);
4027 Then_Expr : constant Node_Id := New_Op_Node (N_Op_Add, Loc);
4028 Else_Expr : constant Node_Id := New_Op_Node (N_Op_Subtract,
4029 Loc);
4030 begin
4031 -- To prevent spurious visibility issues, convert all
4032 -- operands to Standard.Unsigned.
4034 Set_Left_Opnd (Cond_Expr,
4035 Unchecked_Convert_To (Standard_Unsigned,
4036 New_Copy_Tree (Left_Opnd (N))));
4037 Set_Right_Opnd (Cond_Expr,
4038 Make_Integer_Literal (Loc, Mod_Minus_Right));
4039 Append_To (Exprs, Cond_Expr);
4041 Set_Left_Opnd (Then_Expr,
4042 Unchecked_Convert_To (Standard_Unsigned,
4043 New_Copy_Tree (Left_Opnd (N))));
4044 Set_Right_Opnd (Then_Expr,
4045 Make_Integer_Literal (Loc, Intval (Right_Opnd (N))));
4046 Append_To (Exprs, Then_Expr);
4048 Set_Left_Opnd (Else_Expr,
4049 Unchecked_Convert_To (Standard_Unsigned,
4050 New_Copy_Tree (Left_Opnd (N))));
4051 Set_Right_Opnd (Else_Expr,
4052 Make_Integer_Literal (Loc, Mod_Minus_Right));
4053 Append_To (Exprs, Else_Expr);
4055 Rewrite (N,
4056 Unchecked_Convert_To (Typ,
4057 Make_If_Expression (Loc, Expressions => Exprs)));
4058 end;
4059 end if;
4060 end Expand_Modular_Addition;
4062 -----------------------
4063 -- Expand_Modular_Op --
4064 -----------------------
4066 procedure Expand_Modular_Op is
4067 Op_Expr : constant Node_Id := New_Op_Node (Nkind (N), Loc);
4068 Mod_Expr : constant Node_Id := New_Op_Node (N_Op_Mod, Loc);
4070 begin
4071 -- Convert nonbinary modular type operands into integer values. Thus
4072 -- we avoid never-ending loops expanding them, and we also ensure
4073 -- the back end never receives nonbinary modular type expressions.
4075 if Nkind_In (Nkind (N), N_Op_And, N_Op_Or, N_Op_Xor) then
4076 Set_Left_Opnd (Op_Expr,
4077 Unchecked_Convert_To (Standard_Unsigned,
4078 New_Copy_Tree (Left_Opnd (N))));
4079 Set_Right_Opnd (Op_Expr,
4080 Unchecked_Convert_To (Standard_Unsigned,
4081 New_Copy_Tree (Right_Opnd (N))));
4082 Set_Left_Opnd (Mod_Expr,
4083 Unchecked_Convert_To (Standard_Integer, Op_Expr));
4085 else
4086 Set_Left_Opnd (Op_Expr,
4087 Unchecked_Convert_To (Standard_Integer,
4088 New_Copy_Tree (Left_Opnd (N))));
4089 Set_Right_Opnd (Op_Expr,
4090 Unchecked_Convert_To (Standard_Integer,
4091 New_Copy_Tree (Right_Opnd (N))));
4093 -- Link this node to the tree to analyze it
4095 -- If the parent node is an expression with actions we link it to
4096 -- N since otherwise Force_Evaluation cannot identify if this node
4097 -- comes from the Expression and rejects generating the temporary.
4099 if Nkind (Parent (N)) = N_Expression_With_Actions then
4100 Set_Parent (Op_Expr, N);
4102 -- Common case
4104 else
4105 Set_Parent (Op_Expr, Parent (N));
4106 end if;
4108 Analyze (Op_Expr);
4110 -- Force generating a temporary because in the expansion of this
4111 -- expression we may generate code that performs this computation
4112 -- several times.
4114 Force_Evaluation (Op_Expr, Mode => Strict);
4116 Set_Left_Opnd (Mod_Expr, Op_Expr);
4117 end if;
4119 Set_Right_Opnd (Mod_Expr,
4120 Make_Integer_Literal (Loc, Modulus (Typ)));
4122 Rewrite (N,
4123 Unchecked_Convert_To (Typ, Mod_Expr));
4124 end Expand_Modular_Op;
4126 --------------------------------
4127 -- Expand_Modular_Subtraction --
4128 --------------------------------
4130 procedure Expand_Modular_Subtraction is
4131 begin
4132 -- If this is not the addition of a constant then compute it using
4133 -- the general rule: (lhs + rhs) mod Modulus
4135 if Nkind (Right_Opnd (N)) /= N_Integer_Literal then
4136 Expand_Modular_Op;
4138 -- If this is an addition of a constant, convert it to a subtraction
4139 -- plus a conditional expression since we can compute it faster than
4140 -- computing the modulus.
4142 -- modMinusRhs = Modulus - rhs
4143 -- if lhs < rhs then lhs + modMinusRhs
4144 -- else lhs - rhs
4146 else
4147 declare
4148 Mod_Minus_Right : constant Uint :=
4149 Modulus (Typ) - Intval (Right_Opnd (N));
4151 Exprs : constant List_Id := New_List;
4152 Cond_Expr : constant Node_Id := New_Op_Node (N_Op_Lt, Loc);
4153 Then_Expr : constant Node_Id := New_Op_Node (N_Op_Add, Loc);
4154 Else_Expr : constant Node_Id := New_Op_Node (N_Op_Subtract,
4155 Loc);
4156 begin
4157 Set_Left_Opnd (Cond_Expr,
4158 Unchecked_Convert_To (Standard_Unsigned,
4159 New_Copy_Tree (Left_Opnd (N))));
4160 Set_Right_Opnd (Cond_Expr,
4161 Make_Integer_Literal (Loc, Intval (Right_Opnd (N))));
4162 Append_To (Exprs, Cond_Expr);
4164 Set_Left_Opnd (Then_Expr,
4165 Unchecked_Convert_To (Standard_Unsigned,
4166 New_Copy_Tree (Left_Opnd (N))));
4167 Set_Right_Opnd (Then_Expr,
4168 Make_Integer_Literal (Loc, Mod_Minus_Right));
4169 Append_To (Exprs, Then_Expr);
4171 Set_Left_Opnd (Else_Expr,
4172 Unchecked_Convert_To (Standard_Unsigned,
4173 New_Copy_Tree (Left_Opnd (N))));
4174 Set_Right_Opnd (Else_Expr,
4175 Unchecked_Convert_To (Standard_Unsigned,
4176 New_Copy_Tree (Right_Opnd (N))));
4177 Append_To (Exprs, Else_Expr);
4179 Rewrite (N,
4180 Unchecked_Convert_To (Typ,
4181 Make_If_Expression (Loc, Expressions => Exprs)));
4182 end;
4183 end if;
4184 end Expand_Modular_Subtraction;
4186 -- Start of processing for Expand_Nonbinary_Modular_Op
4188 begin
4189 -- No action needed if front-end expansion is not required or if we
4190 -- have a binary modular operand.
4192 if not Expand_Nonbinary_Modular_Ops
4193 or else not Non_Binary_Modulus (Typ)
4194 then
4195 return;
4196 end if;
4198 case Nkind (N) is
4199 when N_Op_Add =>
4200 Expand_Modular_Addition;
4202 when N_Op_Subtract =>
4203 Expand_Modular_Subtraction;
4205 when N_Op_Minus =>
4207 -- Expand -expr into (0 - expr)
4209 Rewrite (N,
4210 Make_Op_Subtract (Loc,
4211 Left_Opnd => Make_Integer_Literal (Loc, 0),
4212 Right_Opnd => Right_Opnd (N)));
4213 Analyze_And_Resolve (N, Typ);
4215 when others =>
4216 Expand_Modular_Op;
4217 end case;
4219 Analyze_And_Resolve (N, Typ);
4220 end Expand_Nonbinary_Modular_Op;
4222 ------------------------
4223 -- Expand_N_Allocator --
4224 ------------------------
4226 procedure Expand_N_Allocator (N : Node_Id) is
4227 Etyp : constant Entity_Id := Etype (Expression (N));
4228 Loc : constant Source_Ptr := Sloc (N);
4229 PtrT : constant Entity_Id := Etype (N);
4231 procedure Rewrite_Coextension (N : Node_Id);
4232 -- Static coextensions have the same lifetime as the entity they
4233 -- constrain. Such occurrences can be rewritten as aliased objects
4234 -- and their unrestricted access used instead of the coextension.
4236 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id;
4237 -- Given a constrained array type E, returns a node representing the
4238 -- code to compute the size in storage elements for the given type.
4239 -- This is done without using the attribute (which malfunctions for
4240 -- large sizes ???)
4242 -------------------------
4243 -- Rewrite_Coextension --
4244 -------------------------
4246 procedure Rewrite_Coextension (N : Node_Id) is
4247 Temp_Id : constant Node_Id := Make_Temporary (Loc, 'C');
4248 Temp_Decl : Node_Id;
4250 begin
4251 -- Generate:
4252 -- Cnn : aliased Etyp;
4254 Temp_Decl :=
4255 Make_Object_Declaration (Loc,
4256 Defining_Identifier => Temp_Id,
4257 Aliased_Present => True,
4258 Object_Definition => New_Occurrence_Of (Etyp, Loc));
4260 if Nkind (Expression (N)) = N_Qualified_Expression then
4261 Set_Expression (Temp_Decl, Expression (Expression (N)));
4262 end if;
4264 Insert_Action (N, Temp_Decl);
4265 Rewrite (N,
4266 Make_Attribute_Reference (Loc,
4267 Prefix => New_Occurrence_Of (Temp_Id, Loc),
4268 Attribute_Name => Name_Unrestricted_Access));
4270 Analyze_And_Resolve (N, PtrT);
4271 end Rewrite_Coextension;
4273 ------------------------------
4274 -- Size_In_Storage_Elements --
4275 ------------------------------
4277 function Size_In_Storage_Elements (E : Entity_Id) return Node_Id is
4278 begin
4279 -- Logically this just returns E'Max_Size_In_Storage_Elements.
4280 -- However, the reason for the existence of this function is
4281 -- to construct a test for sizes too large, which means near the
4282 -- 32-bit limit on a 32-bit machine, and precisely the trouble
4283 -- is that we get overflows when sizes are greater than 2**31.
4285 -- So what we end up doing for array types is to use the expression:
4287 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
4289 -- which avoids this problem. All this is a bit bogus, but it does
4290 -- mean we catch common cases of trying to allocate arrays that
4291 -- are too large, and which in the absence of a check results in
4292 -- undetected chaos ???
4294 -- Note in particular that this is a pessimistic estimate in the
4295 -- case of packed array types, where an array element might occupy
4296 -- just a fraction of a storage element???
4298 declare
4299 Len : Node_Id;
4300 Res : Node_Id;
4301 pragma Warnings (Off, Res);
4303 begin
4304 for J in 1 .. Number_Dimensions (E) loop
4305 Len :=
4306 Make_Attribute_Reference (Loc,
4307 Prefix => New_Occurrence_Of (E, Loc),
4308 Attribute_Name => Name_Length,
4309 Expressions => New_List (Make_Integer_Literal (Loc, J)));
4311 if J = 1 then
4312 Res := Len;
4314 else
4315 Res :=
4316 Make_Op_Multiply (Loc,
4317 Left_Opnd => Res,
4318 Right_Opnd => Len);
4319 end if;
4320 end loop;
4322 return
4323 Make_Op_Multiply (Loc,
4324 Left_Opnd => Len,
4325 Right_Opnd =>
4326 Make_Attribute_Reference (Loc,
4327 Prefix => New_Occurrence_Of (Component_Type (E), Loc),
4328 Attribute_Name => Name_Max_Size_In_Storage_Elements));
4329 end;
4330 end Size_In_Storage_Elements;
4332 -- Local variables
4334 Dtyp : constant Entity_Id := Available_View (Designated_Type (PtrT));
4335 Desig : Entity_Id;
4336 Nod : Node_Id;
4337 Pool : Entity_Id;
4338 Rel_Typ : Entity_Id;
4339 Temp : Entity_Id;
4341 -- Start of processing for Expand_N_Allocator
4343 begin
4344 -- RM E.2.3(22). We enforce that the expected type of an allocator
4345 -- shall not be a remote access-to-class-wide-limited-private type
4347 -- Why is this being done at expansion time, seems clearly wrong ???
4349 Validate_Remote_Access_To_Class_Wide_Type (N);
4351 -- Processing for anonymous access-to-controlled types. These access
4352 -- types receive a special finalization master which appears in the
4353 -- declarations of the enclosing semantic unit. This expansion is done
4354 -- now to ensure that any additional types generated by this routine or
4355 -- Expand_Allocator_Expression inherit the proper type attributes.
4357 if (Ekind (PtrT) = E_Anonymous_Access_Type
4358 or else (Is_Itype (PtrT) and then No (Finalization_Master (PtrT))))
4359 and then Needs_Finalization (Dtyp)
4360 then
4361 -- Detect the allocation of an anonymous controlled object where the
4362 -- type of the context is named. For example:
4364 -- procedure Proc (Ptr : Named_Access_Typ);
4365 -- Proc (new Designated_Typ);
4367 -- Regardless of the anonymous-to-named access type conversion, the
4368 -- lifetime of the object must be associated with the named access
4369 -- type. Use the finalization-related attributes of this type.
4371 if Nkind_In (Parent (N), N_Type_Conversion,
4372 N_Unchecked_Type_Conversion)
4373 and then Ekind_In (Etype (Parent (N)), E_Access_Subtype,
4374 E_Access_Type,
4375 E_General_Access_Type)
4376 then
4377 Rel_Typ := Etype (Parent (N));
4378 else
4379 Rel_Typ := Empty;
4380 end if;
4382 -- Anonymous access-to-controlled types allocate on the global pool.
4383 -- Note that this is a "root type only" attribute.
4385 if No (Associated_Storage_Pool (PtrT)) then
4386 if Present (Rel_Typ) then
4387 Set_Associated_Storage_Pool
4388 (Root_Type (PtrT), Associated_Storage_Pool (Rel_Typ));
4389 else
4390 Set_Associated_Storage_Pool
4391 (Root_Type (PtrT), RTE (RE_Global_Pool_Object));
4392 end if;
4393 end if;
4395 -- The finalization master must be inserted and analyzed as part of
4396 -- the current semantic unit. Note that the master is updated when
4397 -- analysis changes current units. Note that this is a "root type
4398 -- only" attribute.
4400 if Present (Rel_Typ) then
4401 Set_Finalization_Master
4402 (Root_Type (PtrT), Finalization_Master (Rel_Typ));
4403 else
4404 Build_Anonymous_Master (Root_Type (PtrT));
4405 end if;
4406 end if;
4408 -- Set the storage pool and find the appropriate version of Allocate to
4409 -- call. Do not overwrite the storage pool if it is already set, which
4410 -- can happen for build-in-place function returns (see
4411 -- Exp_Ch4.Expand_N_Extended_Return_Statement).
4413 if No (Storage_Pool (N)) then
4414 Pool := Associated_Storage_Pool (Root_Type (PtrT));
4416 if Present (Pool) then
4417 Set_Storage_Pool (N, Pool);
4419 if Is_RTE (Pool, RE_SS_Pool) then
4420 Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
4422 -- In the case of an allocator for a simple storage pool, locate
4423 -- and save a reference to the pool type's Allocate routine.
4425 elsif Present (Get_Rep_Pragma
4426 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4427 then
4428 declare
4429 Pool_Type : constant Entity_Id := Base_Type (Etype (Pool));
4430 Alloc_Op : Entity_Id;
4431 begin
4432 Alloc_Op := Get_Name_Entity_Id (Name_Allocate);
4433 while Present (Alloc_Op) loop
4434 if Scope (Alloc_Op) = Scope (Pool_Type)
4435 and then Present (First_Formal (Alloc_Op))
4436 and then Etype (First_Formal (Alloc_Op)) = Pool_Type
4437 then
4438 Set_Procedure_To_Call (N, Alloc_Op);
4439 exit;
4440 else
4441 Alloc_Op := Homonym (Alloc_Op);
4442 end if;
4443 end loop;
4444 end;
4446 elsif Is_Class_Wide_Type (Etype (Pool)) then
4447 Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
4449 else
4450 Set_Procedure_To_Call (N,
4451 Find_Prim_Op (Etype (Pool), Name_Allocate));
4452 end if;
4453 end if;
4454 end if;
4456 -- Under certain circumstances we can replace an allocator by an access
4457 -- to statically allocated storage. The conditions, as noted in AARM
4458 -- 3.10 (10c) are as follows:
4460 -- Size and initial value is known at compile time
4461 -- Access type is access-to-constant
4463 -- The allocator is not part of a constraint on a record component,
4464 -- because in that case the inserted actions are delayed until the
4465 -- record declaration is fully analyzed, which is too late for the
4466 -- analysis of the rewritten allocator.
4468 if Is_Access_Constant (PtrT)
4469 and then Nkind (Expression (N)) = N_Qualified_Expression
4470 and then Compile_Time_Known_Value (Expression (Expression (N)))
4471 and then Size_Known_At_Compile_Time
4472 (Etype (Expression (Expression (N))))
4473 and then not Is_Record_Type (Current_Scope)
4474 then
4475 -- Here we can do the optimization. For the allocator
4477 -- new x'(y)
4479 -- We insert an object declaration
4481 -- Tnn : aliased x := y;
4483 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
4484 -- marked as requiring static allocation.
4486 Temp := Make_Temporary (Loc, 'T', Expression (Expression (N)));
4487 Desig := Subtype_Mark (Expression (N));
4489 -- If context is constrained, use constrained subtype directly,
4490 -- so that the constant is not labelled as having a nominally
4491 -- unconstrained subtype.
4493 if Entity (Desig) = Base_Type (Dtyp) then
4494 Desig := New_Occurrence_Of (Dtyp, Loc);
4495 end if;
4497 Insert_Action (N,
4498 Make_Object_Declaration (Loc,
4499 Defining_Identifier => Temp,
4500 Aliased_Present => True,
4501 Constant_Present => Is_Access_Constant (PtrT),
4502 Object_Definition => Desig,
4503 Expression => Expression (Expression (N))));
4505 Rewrite (N,
4506 Make_Attribute_Reference (Loc,
4507 Prefix => New_Occurrence_Of (Temp, Loc),
4508 Attribute_Name => Name_Unrestricted_Access));
4510 Analyze_And_Resolve (N, PtrT);
4512 -- We set the variable as statically allocated, since we don't want
4513 -- it going on the stack of the current procedure.
4515 Set_Is_Statically_Allocated (Temp);
4516 return;
4517 end if;
4519 -- Same if the allocator is an access discriminant for a local object:
4520 -- instead of an allocator we create a local value and constrain the
4521 -- enclosing object with the corresponding access attribute.
4523 if Is_Static_Coextension (N) then
4524 Rewrite_Coextension (N);
4525 return;
4526 end if;
4528 -- Check for size too large, we do this because the back end misses
4529 -- proper checks here and can generate rubbish allocation calls when
4530 -- we are near the limit. We only do this for the 32-bit address case
4531 -- since that is from a practical point of view where we see a problem.
4533 if System_Address_Size = 32
4534 and then not Storage_Checks_Suppressed (PtrT)
4535 and then not Storage_Checks_Suppressed (Dtyp)
4536 and then not Storage_Checks_Suppressed (Etyp)
4537 then
4538 -- The check we want to generate should look like
4540 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
4541 -- raise Storage_Error;
4542 -- end if;
4544 -- where 3.5 gigabytes is a constant large enough to accommodate any
4545 -- reasonable request for. But we can't do it this way because at
4546 -- least at the moment we don't compute this attribute right, and
4547 -- can silently give wrong results when the result gets large. Since
4548 -- this is all about large results, that's bad, so instead we only
4549 -- apply the check for constrained arrays, and manually compute the
4550 -- value of the attribute ???
4552 if Is_Array_Type (Etyp) and then Is_Constrained (Etyp) then
4553 Insert_Action (N,
4554 Make_Raise_Storage_Error (Loc,
4555 Condition =>
4556 Make_Op_Gt (Loc,
4557 Left_Opnd => Size_In_Storage_Elements (Etyp),
4558 Right_Opnd =>
4559 Make_Integer_Literal (Loc, Uint_7 * (Uint_2 ** 29))),
4560 Reason => SE_Object_Too_Large));
4561 end if;
4562 end if;
4564 -- If no storage pool has been specified, or the storage pool
4565 -- is System.Pool_Global.Global_Pool_Object, and the restriction
4566 -- No_Standard_Allocators_After_Elaboration is present, then generate
4567 -- a call to Elaboration_Allocators.Check_Standard_Allocator.
4569 if Nkind (N) = N_Allocator
4570 and then (No (Storage_Pool (N))
4571 or else Is_RTE (Storage_Pool (N), RE_Global_Pool_Object))
4572 and then Restriction_Active (No_Standard_Allocators_After_Elaboration)
4573 then
4574 Insert_Action (N,
4575 Make_Procedure_Call_Statement (Loc,
4576 Name =>
4577 New_Occurrence_Of (RTE (RE_Check_Standard_Allocator), Loc)));
4578 end if;
4580 -- Handle case of qualified expression (other than optimization above)
4581 -- First apply constraint checks, because the bounds or discriminants
4582 -- in the aggregate might not match the subtype mark in the allocator.
4584 if Nkind (Expression (N)) = N_Qualified_Expression then
4585 declare
4586 Exp : constant Node_Id := Expression (Expression (N));
4587 Typ : constant Entity_Id := Etype (Expression (N));
4589 begin
4590 Apply_Constraint_Check (Exp, Typ);
4591 Apply_Predicate_Check (Exp, Typ);
4592 end;
4594 Expand_Allocator_Expression (N);
4595 return;
4596 end if;
4598 -- If the allocator is for a type which requires initialization, and
4599 -- there is no initial value (i.e. operand is a subtype indication
4600 -- rather than a qualified expression), then we must generate a call to
4601 -- the initialization routine using an expressions action node:
4603 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
4605 -- Here ptr_T is the pointer type for the allocator, and T is the
4606 -- subtype of the allocator. A special case arises if the designated
4607 -- type of the access type is a task or contains tasks. In this case
4608 -- the call to Init (Temp.all ...) is replaced by code that ensures
4609 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
4610 -- for details). In addition, if the type T is a task type, then the
4611 -- first argument to Init must be converted to the task record type.
4613 declare
4614 T : constant Entity_Id := Etype (Expression (N));
4615 Args : List_Id;
4616 Decls : List_Id;
4617 Decl : Node_Id;
4618 Discr : Elmt_Id;
4619 Init : Entity_Id;
4620 Init_Arg1 : Node_Id;
4621 Init_Call : Node_Id;
4622 Temp_Decl : Node_Id;
4623 Temp_Type : Entity_Id;
4625 begin
4626 if No_Initialization (N) then
4628 -- Even though this might be a simple allocation, create a custom
4629 -- Allocate if the context requires it.
4631 if Present (Finalization_Master (PtrT)) then
4632 Build_Allocate_Deallocate_Proc
4633 (N => N,
4634 Is_Allocate => True);
4635 end if;
4637 -- Optimize the default allocation of an array object when pragma
4638 -- Initialize_Scalars or Normalize_Scalars is in effect. Construct an
4639 -- in-place initialization aggregate which may be convert into a fast
4640 -- memset by the backend.
4642 elsif Init_Or_Norm_Scalars
4643 and then Is_Array_Type (T)
4645 -- The array must lack atomic components because they are treated
4646 -- as non-static, and as a result the backend will not initialize
4647 -- the memory in one go.
4649 and then not Has_Atomic_Components (T)
4651 -- The array must not be packed because the invalid values in
4652 -- System.Scalar_Values are multiples of Storage_Unit.
4654 and then not Is_Packed (T)
4656 -- The array must have static non-empty ranges, otherwise the
4657 -- backend cannot initialize the memory in one go.
4659 and then Has_Static_Non_Empty_Array_Bounds (T)
4661 -- The optimization is only relevant for arrays of scalar types
4663 and then Is_Scalar_Type (Component_Type (T))
4665 -- Similar to regular array initialization using a type init proc,
4666 -- predicate checks are not performed because the initialization
4667 -- values are intentionally invalid, and may violate the predicate.
4669 and then not Has_Predicates (Component_Type (T))
4671 -- The component type must have a single initialization value
4673 and then Needs_Simple_Initialization
4674 (Typ => Component_Type (T),
4675 Consider_IS => True)
4676 then
4677 Set_Analyzed (N);
4678 Temp := Make_Temporary (Loc, 'P');
4680 -- Generate:
4681 -- Temp : Ptr_Typ := new ...;
4683 Insert_Action
4684 (Assoc_Node => N,
4685 Ins_Action =>
4686 Make_Object_Declaration (Loc,
4687 Defining_Identifier => Temp,
4688 Object_Definition => New_Occurrence_Of (PtrT, Loc),
4689 Expression => Relocate_Node (N)),
4690 Suppress => All_Checks);
4692 -- Generate:
4693 -- Temp.all := (others => ...);
4695 Insert_Action
4696 (Assoc_Node => N,
4697 Ins_Action =>
4698 Make_Assignment_Statement (Loc,
4699 Name =>
4700 Make_Explicit_Dereference (Loc,
4701 Prefix => New_Occurrence_Of (Temp, Loc)),
4702 Expression =>
4703 Get_Simple_Init_Val
4704 (Typ => T,
4705 N => N,
4706 Size => Esize (Component_Type (T)))),
4707 Suppress => All_Checks);
4709 Rewrite (N, New_Occurrence_Of (Temp, Loc));
4710 Analyze_And_Resolve (N, PtrT);
4712 -- Case of no initialization procedure present
4714 elsif not Has_Non_Null_Base_Init_Proc (T) then
4716 -- Case of simple initialization required
4718 if Needs_Simple_Initialization (T) then
4719 Check_Restriction (No_Default_Initialization, N);
4720 Rewrite (Expression (N),
4721 Make_Qualified_Expression (Loc,
4722 Subtype_Mark => New_Occurrence_Of (T, Loc),
4723 Expression => Get_Simple_Init_Val (T, N)));
4725 Analyze_And_Resolve (Expression (Expression (N)), T);
4726 Analyze_And_Resolve (Expression (N), T);
4727 Set_Paren_Count (Expression (Expression (N)), 1);
4728 Expand_N_Allocator (N);
4730 -- No initialization required
4732 else
4733 Build_Allocate_Deallocate_Proc
4734 (N => N,
4735 Is_Allocate => True);
4736 end if;
4738 -- Case of initialization procedure present, must be called
4740 else
4741 Check_Restriction (No_Default_Initialization, N);
4743 if not Restriction_Active (No_Default_Initialization) then
4744 Init := Base_Init_Proc (T);
4745 Nod := N;
4746 Temp := Make_Temporary (Loc, 'P');
4748 -- Construct argument list for the initialization routine call
4750 Init_Arg1 :=
4751 Make_Explicit_Dereference (Loc,
4752 Prefix =>
4753 New_Occurrence_Of (Temp, Loc));
4755 Set_Assignment_OK (Init_Arg1);
4756 Temp_Type := PtrT;
4758 -- The initialization procedure expects a specific type. if the
4759 -- context is access to class wide, indicate that the object
4760 -- being allocated has the right specific type.
4762 if Is_Class_Wide_Type (Dtyp) then
4763 Init_Arg1 := Unchecked_Convert_To (T, Init_Arg1);
4764 end if;
4766 -- If designated type is a concurrent type or if it is private
4767 -- type whose definition is a concurrent type, the first
4768 -- argument in the Init routine has to be unchecked conversion
4769 -- to the corresponding record type. If the designated type is
4770 -- a derived type, also convert the argument to its root type.
4772 if Is_Concurrent_Type (T) then
4773 Init_Arg1 :=
4774 Unchecked_Convert_To (
4775 Corresponding_Record_Type (T), Init_Arg1);
4777 elsif Is_Private_Type (T)
4778 and then Present (Full_View (T))
4779 and then Is_Concurrent_Type (Full_View (T))
4780 then
4781 Init_Arg1 :=
4782 Unchecked_Convert_To
4783 (Corresponding_Record_Type (Full_View (T)), Init_Arg1);
4785 elsif Etype (First_Formal (Init)) /= Base_Type (T) then
4786 declare
4787 Ftyp : constant Entity_Id := Etype (First_Formal (Init));
4789 begin
4790 Init_Arg1 := OK_Convert_To (Etype (Ftyp), Init_Arg1);
4791 Set_Etype (Init_Arg1, Ftyp);
4792 end;
4793 end if;
4795 Args := New_List (Init_Arg1);
4797 -- For the task case, pass the Master_Id of the access type as
4798 -- the value of the _Master parameter, and _Chain as the value
4799 -- of the _Chain parameter (_Chain will be defined as part of
4800 -- the generated code for the allocator).
4802 -- In Ada 2005, the context may be a function that returns an
4803 -- anonymous access type. In that case the Master_Id has been
4804 -- created when expanding the function declaration.
4806 if Has_Task (T) then
4807 if No (Master_Id (Base_Type (PtrT))) then
4809 -- The designated type was an incomplete type, and the
4810 -- access type did not get expanded. Salvage it now.
4812 if not Restriction_Active (No_Task_Hierarchy) then
4813 if Present (Parent (Base_Type (PtrT))) then
4814 Expand_N_Full_Type_Declaration
4815 (Parent (Base_Type (PtrT)));
4817 -- The only other possibility is an itype. For this
4818 -- case, the master must exist in the context. This is
4819 -- the case when the allocator initializes an access
4820 -- component in an init-proc.
4822 else
4823 pragma Assert (Is_Itype (PtrT));
4824 Build_Master_Renaming (PtrT, N);
4825 end if;
4826 end if;
4827 end if;
4829 -- If the context of the allocator is a declaration or an
4830 -- assignment, we can generate a meaningful image for it,
4831 -- even though subsequent assignments might remove the
4832 -- connection between task and entity. We build this image
4833 -- when the left-hand side is a simple variable, a simple
4834 -- indexed assignment or a simple selected component.
4836 if Nkind (Parent (N)) = N_Assignment_Statement then
4837 declare
4838 Nam : constant Node_Id := Name (Parent (N));
4840 begin
4841 if Is_Entity_Name (Nam) then
4842 Decls :=
4843 Build_Task_Image_Decls
4844 (Loc,
4845 New_Occurrence_Of
4846 (Entity (Nam), Sloc (Nam)), T);
4848 elsif Nkind_In (Nam, N_Indexed_Component,
4849 N_Selected_Component)
4850 and then Is_Entity_Name (Prefix (Nam))
4851 then
4852 Decls :=
4853 Build_Task_Image_Decls
4854 (Loc, Nam, Etype (Prefix (Nam)));
4855 else
4856 Decls := Build_Task_Image_Decls (Loc, T, T);
4857 end if;
4858 end;
4860 elsif Nkind (Parent (N)) = N_Object_Declaration then
4861 Decls :=
4862 Build_Task_Image_Decls
4863 (Loc, Defining_Identifier (Parent (N)), T);
4865 else
4866 Decls := Build_Task_Image_Decls (Loc, T, T);
4867 end if;
4869 if Restriction_Active (No_Task_Hierarchy) then
4870 Append_To (Args,
4871 New_Occurrence_Of (RTE (RE_Library_Task_Level), Loc));
4872 else
4873 Append_To (Args,
4874 New_Occurrence_Of
4875 (Master_Id (Base_Type (Root_Type (PtrT))), Loc));
4876 end if;
4878 Append_To (Args, Make_Identifier (Loc, Name_uChain));
4880 Decl := Last (Decls);
4881 Append_To (Args,
4882 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
4884 -- Has_Task is false, Decls not used
4886 else
4887 Decls := No_List;
4888 end if;
4890 -- Add discriminants if discriminated type
4892 declare
4893 Dis : Boolean := False;
4894 Typ : Entity_Id := Empty;
4896 begin
4897 if Has_Discriminants (T) then
4898 Dis := True;
4899 Typ := T;
4901 -- Type may be a private type with no visible discriminants
4902 -- in which case check full view if in scope, or the
4903 -- underlying_full_view if dealing with a type whose full
4904 -- view may be derived from a private type whose own full
4905 -- view has discriminants.
4907 elsif Is_Private_Type (T) then
4908 if Present (Full_View (T))
4909 and then Has_Discriminants (Full_View (T))
4910 then
4911 Dis := True;
4912 Typ := Full_View (T);
4914 elsif Present (Underlying_Full_View (T))
4915 and then Has_Discriminants (Underlying_Full_View (T))
4916 then
4917 Dis := True;
4918 Typ := Underlying_Full_View (T);
4919 end if;
4920 end if;
4922 if Dis then
4924 -- If the allocated object will be constrained by the
4925 -- default values for discriminants, then build a subtype
4926 -- with those defaults, and change the allocated subtype
4927 -- to that. Note that this happens in fewer cases in Ada
4928 -- 2005 (AI-363).
4930 if not Is_Constrained (Typ)
4931 and then Present (Discriminant_Default_Value
4932 (First_Discriminant (Typ)))
4933 and then (Ada_Version < Ada_2005
4934 or else not
4935 Object_Type_Has_Constrained_Partial_View
4936 (Typ, Current_Scope))
4937 then
4938 Typ := Build_Default_Subtype (Typ, N);
4939 Set_Expression (N, New_Occurrence_Of (Typ, Loc));
4940 end if;
4942 Discr := First_Elmt (Discriminant_Constraint (Typ));
4943 while Present (Discr) loop
4944 Nod := Node (Discr);
4945 Append (New_Copy_Tree (Node (Discr)), Args);
4947 -- AI-416: when the discriminant constraint is an
4948 -- anonymous access type make sure an accessibility
4949 -- check is inserted if necessary (3.10.2(22.q/2))
4951 if Ada_Version >= Ada_2005
4952 and then
4953 Ekind (Etype (Nod)) = E_Anonymous_Access_Type
4954 then
4955 Apply_Accessibility_Check
4956 (Nod, Typ, Insert_Node => Nod);
4957 end if;
4959 Next_Elmt (Discr);
4960 end loop;
4961 end if;
4962 end;
4964 -- We set the allocator as analyzed so that when we analyze
4965 -- the if expression node, we do not get an unwanted recursive
4966 -- expansion of the allocator expression.
4968 Set_Analyzed (N, True);
4969 Nod := Relocate_Node (N);
4971 -- Here is the transformation:
4972 -- input: new Ctrl_Typ
4973 -- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
4974 -- Ctrl_TypIP (Temp.all, ...);
4975 -- [Deep_]Initialize (Temp.all);
4977 -- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
4978 -- is the subtype of the allocator.
4980 Temp_Decl :=
4981 Make_Object_Declaration (Loc,
4982 Defining_Identifier => Temp,
4983 Constant_Present => True,
4984 Object_Definition => New_Occurrence_Of (Temp_Type, Loc),
4985 Expression => Nod);
4987 Set_Assignment_OK (Temp_Decl);
4988 Insert_Action (N, Temp_Decl, Suppress => All_Checks);
4990 Build_Allocate_Deallocate_Proc (Temp_Decl, True);
4992 -- If the designated type is a task type or contains tasks,
4993 -- create block to activate created tasks, and insert
4994 -- declaration for Task_Image variable ahead of call.
4996 if Has_Task (T) then
4997 declare
4998 L : constant List_Id := New_List;
4999 Blk : Node_Id;
5000 begin
5001 Build_Task_Allocate_Block (L, Nod, Args);
5002 Blk := Last (L);
5003 Insert_List_Before (First (Declarations (Blk)), Decls);
5004 Insert_Actions (N, L);
5005 end;
5007 else
5008 Insert_Action (N,
5009 Make_Procedure_Call_Statement (Loc,
5010 Name => New_Occurrence_Of (Init, Loc),
5011 Parameter_Associations => Args));
5012 end if;
5014 if Needs_Finalization (T) then
5016 -- Generate:
5017 -- [Deep_]Initialize (Init_Arg1);
5019 Init_Call :=
5020 Make_Init_Call
5021 (Obj_Ref => New_Copy_Tree (Init_Arg1),
5022 Typ => T);
5024 -- Guard against a missing [Deep_]Initialize when the
5025 -- designated type was not properly frozen.
5027 if Present (Init_Call) then
5028 Insert_Action (N, Init_Call);
5029 end if;
5030 end if;
5032 Rewrite (N, New_Occurrence_Of (Temp, Loc));
5033 Analyze_And_Resolve (N, PtrT);
5034 end if;
5035 end if;
5036 end;
5038 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
5039 -- object that has been rewritten as a reference, we displace "this"
5040 -- to reference properly its secondary dispatch table.
5042 if Nkind (N) = N_Identifier and then Is_Interface (Dtyp) then
5043 Displace_Allocator_Pointer (N);
5044 end if;
5046 exception
5047 when RE_Not_Available =>
5048 return;
5049 end Expand_N_Allocator;
5051 -----------------------
5052 -- Expand_N_And_Then --
5053 -----------------------
5055 procedure Expand_N_And_Then (N : Node_Id)
5056 renames Expand_Short_Circuit_Operator;
5058 ------------------------------
5059 -- Expand_N_Case_Expression --
5060 ------------------------------
5062 procedure Expand_N_Case_Expression (N : Node_Id) is
5064 function Is_Copy_Type (Typ : Entity_Id) return Boolean;
5065 -- Return True if we can copy objects of this type when expanding a case
5066 -- expression.
5068 ------------------
5069 -- Is_Copy_Type --
5070 ------------------
5072 function Is_Copy_Type (Typ : Entity_Id) return Boolean is
5073 begin
5074 -- If Minimize_Expression_With_Actions is True, we can afford to copy
5075 -- large objects, as long as they are constrained and not limited.
5077 return
5078 Is_Elementary_Type (Underlying_Type (Typ))
5079 or else
5080 (Minimize_Expression_With_Actions
5081 and then Is_Constrained (Underlying_Type (Typ))
5082 and then not Is_Limited_View (Underlying_Type (Typ)));
5083 end Is_Copy_Type;
5085 -- Local variables
5087 Loc : constant Source_Ptr := Sloc (N);
5088 Par : constant Node_Id := Parent (N);
5089 Typ : constant Entity_Id := Etype (N);
5091 Acts : List_Id;
5092 Alt : Node_Id;
5093 Case_Stmt : Node_Id;
5094 Decl : Node_Id;
5095 Expr : Node_Id;
5096 Target : Entity_Id;
5097 Target_Typ : Entity_Id;
5099 In_Predicate : Boolean := False;
5100 -- Flag set when the case expression appears within a predicate
5102 Optimize_Return_Stmt : Boolean := False;
5103 -- Flag set when the case expression can be optimized in the context of
5104 -- a simple return statement.
5106 -- Start of processing for Expand_N_Case_Expression
5108 begin
5109 -- Check for MINIMIZED/ELIMINATED overflow mode
5111 if Minimized_Eliminated_Overflow_Check (N) then
5112 Apply_Arithmetic_Overflow_Check (N);
5113 return;
5114 end if;
5116 -- If the case expression is a predicate specification, and the type
5117 -- to which it applies has a static predicate aspect, do not expand,
5118 -- because it will be converted to the proper predicate form later.
5120 if Ekind_In (Current_Scope, E_Function, E_Procedure)
5121 and then Is_Predicate_Function (Current_Scope)
5122 then
5123 In_Predicate := True;
5125 if Has_Static_Predicate_Aspect (Etype (First_Entity (Current_Scope)))
5126 then
5127 return;
5128 end if;
5129 end if;
5131 -- When the type of the case expression is elementary, expand
5133 -- (case X is when A => AX, when B => BX ...)
5135 -- into
5137 -- do
5138 -- Target : Typ;
5139 -- case X is
5140 -- when A =>
5141 -- Target := AX;
5142 -- when B =>
5143 -- Target := BX;
5144 -- ...
5145 -- end case;
5146 -- in Target end;
5148 -- In all other cases expand into
5150 -- do
5151 -- type Ptr_Typ is access all Typ;
5152 -- Target : Ptr_Typ;
5153 -- case X is
5154 -- when A =>
5155 -- Target := AX'Unrestricted_Access;
5156 -- when B =>
5157 -- Target := BX'Unrestricted_Access;
5158 -- ...
5159 -- end case;
5160 -- in Target.all end;
5162 -- This approach avoids extra copies of potentially large objects. It
5163 -- also allows handling of values of limited or unconstrained types.
5164 -- Note that we do the copy also for constrained, nonlimited types
5165 -- when minimizing expressions with actions (e.g. when generating C
5166 -- code) since it allows us to do the optimization below in more cases.
5168 -- Small optimization: when the case expression appears in the context
5169 -- of a simple return statement, expand into
5171 -- case X is
5172 -- when A =>
5173 -- return AX;
5174 -- when B =>
5175 -- return BX;
5176 -- ...
5177 -- end case;
5179 Case_Stmt :=
5180 Make_Case_Statement (Loc,
5181 Expression => Expression (N),
5182 Alternatives => New_List);
5184 -- Preserve the original context for which the case statement is being
5185 -- generated. This is needed by the finalization machinery to prevent
5186 -- the premature finalization of controlled objects found within the
5187 -- case statement.
5189 Set_From_Conditional_Expression (Case_Stmt);
5190 Acts := New_List;
5192 -- Scalar/Copy case
5194 if Is_Copy_Type (Typ) then
5195 Target_Typ := Typ;
5197 -- ??? Do not perform the optimization when the return statement is
5198 -- within a predicate function, as this causes spurious errors. Could
5199 -- this be a possible mismatch in handling this case somewhere else
5200 -- in semantic analysis?
5202 Optimize_Return_Stmt :=
5203 Nkind (Par) = N_Simple_Return_Statement and then not In_Predicate;
5205 -- Otherwise create an access type to handle the general case using
5206 -- 'Unrestricted_Access.
5208 -- Generate:
5209 -- type Ptr_Typ is access all Typ;
5211 else
5212 if Generate_C_Code then
5214 -- We cannot ensure that correct C code will be generated if any
5215 -- temporary is created down the line (to e.g. handle checks or
5216 -- capture values) since we might end up with dangling references
5217 -- to local variables, so better be safe and reject the construct.
5219 Error_Msg_N
5220 ("case expression too complex, use case statement instead", N);
5221 end if;
5223 Target_Typ := Make_Temporary (Loc, 'P');
5225 Append_To (Acts,
5226 Make_Full_Type_Declaration (Loc,
5227 Defining_Identifier => Target_Typ,
5228 Type_Definition =>
5229 Make_Access_To_Object_Definition (Loc,
5230 All_Present => True,
5231 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
5232 end if;
5234 -- Create the declaration of the target which captures the value of the
5235 -- expression.
5237 -- Generate:
5238 -- Target : [Ptr_]Typ;
5240 if not Optimize_Return_Stmt then
5241 Target := Make_Temporary (Loc, 'T');
5243 Decl :=
5244 Make_Object_Declaration (Loc,
5245 Defining_Identifier => Target,
5246 Object_Definition => New_Occurrence_Of (Target_Typ, Loc));
5247 Set_No_Initialization (Decl);
5249 Append_To (Acts, Decl);
5250 end if;
5252 -- Process the alternatives
5254 Alt := First (Alternatives (N));
5255 while Present (Alt) loop
5256 declare
5257 Alt_Expr : Node_Id := Expression (Alt);
5258 Alt_Loc : constant Source_Ptr := Sloc (Alt_Expr);
5259 Stmts : List_Id;
5261 begin
5262 -- Take the unrestricted access of the expression value for non-
5263 -- scalar types. This approach avoids big copies and covers the
5264 -- limited and unconstrained cases.
5266 -- Generate:
5267 -- AX'Unrestricted_Access
5269 if not Is_Copy_Type (Typ) then
5270 Alt_Expr :=
5271 Make_Attribute_Reference (Alt_Loc,
5272 Prefix => Relocate_Node (Alt_Expr),
5273 Attribute_Name => Name_Unrestricted_Access);
5274 end if;
5276 -- Generate:
5277 -- return AX['Unrestricted_Access];
5279 if Optimize_Return_Stmt then
5280 Stmts := New_List (
5281 Make_Simple_Return_Statement (Alt_Loc,
5282 Expression => Alt_Expr));
5284 -- Generate:
5285 -- Target := AX['Unrestricted_Access];
5287 else
5288 Stmts := New_List (
5289 Make_Assignment_Statement (Alt_Loc,
5290 Name => New_Occurrence_Of (Target, Loc),
5291 Expression => Alt_Expr));
5292 end if;
5294 -- Propagate declarations inserted in the node by Insert_Actions
5295 -- (for example, temporaries generated to remove side effects).
5296 -- These actions must remain attached to the alternative, given
5297 -- that they are generated by the corresponding expression.
5299 if Present (Actions (Alt)) then
5300 Prepend_List (Actions (Alt), Stmts);
5301 end if;
5303 -- Finalize any transient objects on exit from the alternative.
5304 -- This is done only in the return optimization case because
5305 -- otherwise the case expression is converted into an expression
5306 -- with actions which already contains this form of processing.
5308 if Optimize_Return_Stmt then
5309 Process_If_Case_Statements (N, Stmts);
5310 end if;
5312 Append_To
5313 (Alternatives (Case_Stmt),
5314 Make_Case_Statement_Alternative (Sloc (Alt),
5315 Discrete_Choices => Discrete_Choices (Alt),
5316 Statements => Stmts));
5317 end;
5319 Next (Alt);
5320 end loop;
5322 -- Rewrite the parent return statement as a case statement
5324 if Optimize_Return_Stmt then
5325 Rewrite (Par, Case_Stmt);
5326 Analyze (Par);
5328 -- Otherwise convert the case expression into an expression with actions
5330 else
5331 Append_To (Acts, Case_Stmt);
5333 if Is_Copy_Type (Typ) then
5334 Expr := New_Occurrence_Of (Target, Loc);
5336 else
5337 Expr :=
5338 Make_Explicit_Dereference (Loc,
5339 Prefix => New_Occurrence_Of (Target, Loc));
5340 end if;
5342 -- Generate:
5343 -- do
5344 -- ...
5345 -- in Target[.all] end;
5347 Rewrite (N,
5348 Make_Expression_With_Actions (Loc,
5349 Expression => Expr,
5350 Actions => Acts));
5352 Analyze_And_Resolve (N, Typ);
5353 end if;
5354 end Expand_N_Case_Expression;
5356 -----------------------------------
5357 -- Expand_N_Explicit_Dereference --
5358 -----------------------------------
5360 procedure Expand_N_Explicit_Dereference (N : Node_Id) is
5361 begin
5362 -- Insert explicit dereference call for the checked storage pool case
5364 Insert_Dereference_Action (Prefix (N));
5366 -- If the type is an Atomic type for which Atomic_Sync is enabled, then
5367 -- we set the atomic sync flag.
5369 if Is_Atomic (Etype (N))
5370 and then not Atomic_Synchronization_Disabled (Etype (N))
5371 then
5372 Activate_Atomic_Synchronization (N);
5373 end if;
5374 end Expand_N_Explicit_Dereference;
5376 --------------------------------------
5377 -- Expand_N_Expression_With_Actions --
5378 --------------------------------------
5380 procedure Expand_N_Expression_With_Actions (N : Node_Id) is
5381 Acts : constant List_Id := Actions (N);
5383 procedure Force_Boolean_Evaluation (Expr : Node_Id);
5384 -- Force the evaluation of Boolean expression Expr
5386 function Process_Action (Act : Node_Id) return Traverse_Result;
5387 -- Inspect and process a single action of an expression_with_actions for
5388 -- transient objects. If such objects are found, the routine generates
5389 -- code to clean them up when the context of the expression is evaluated
5390 -- or elaborated.
5392 ------------------------------
5393 -- Force_Boolean_Evaluation --
5394 ------------------------------
5396 procedure Force_Boolean_Evaluation (Expr : Node_Id) is
5397 Loc : constant Source_Ptr := Sloc (N);
5398 Flag_Decl : Node_Id;
5399 Flag_Id : Entity_Id;
5401 begin
5402 -- Relocate the expression to the actions list by capturing its value
5403 -- in a Boolean flag. Generate:
5404 -- Flag : constant Boolean := Expr;
5406 Flag_Id := Make_Temporary (Loc, 'F');
5408 Flag_Decl :=
5409 Make_Object_Declaration (Loc,
5410 Defining_Identifier => Flag_Id,
5411 Constant_Present => True,
5412 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
5413 Expression => Relocate_Node (Expr));
5415 Append (Flag_Decl, Acts);
5416 Analyze (Flag_Decl);
5418 -- Replace the expression with a reference to the flag
5420 Rewrite (Expression (N), New_Occurrence_Of (Flag_Id, Loc));
5421 Analyze (Expression (N));
5422 end Force_Boolean_Evaluation;
5424 --------------------
5425 -- Process_Action --
5426 --------------------
5428 function Process_Action (Act : Node_Id) return Traverse_Result is
5429 begin
5430 if Nkind (Act) = N_Object_Declaration
5431 and then Is_Finalizable_Transient (Act, N)
5432 then
5433 Process_Transient_In_Expression (Act, N, Acts);
5434 return Skip;
5436 -- Avoid processing temporary function results multiple times when
5437 -- dealing with nested expression_with_actions.
5439 elsif Nkind (Act) = N_Expression_With_Actions then
5440 return Abandon;
5442 -- Do not process temporary function results in loops. This is done
5443 -- by Expand_N_Loop_Statement and Build_Finalizer.
5445 elsif Nkind (Act) = N_Loop_Statement then
5446 return Abandon;
5447 end if;
5449 return OK;
5450 end Process_Action;
5452 procedure Process_Single_Action is new Traverse_Proc (Process_Action);
5454 -- Local variables
5456 Act : Node_Id;
5458 -- Start of processing for Expand_N_Expression_With_Actions
5460 begin
5461 -- Do not evaluate the expression when it denotes an entity because the
5462 -- expression_with_actions node will be replaced by the reference.
5464 if Is_Entity_Name (Expression (N)) then
5465 null;
5467 -- Do not evaluate the expression when there are no actions because the
5468 -- expression_with_actions node will be replaced by the expression.
5470 elsif No (Acts) or else Is_Empty_List (Acts) then
5471 null;
5473 -- Force the evaluation of the expression by capturing its value in a
5474 -- temporary. This ensures that aliases of transient objects do not leak
5475 -- to the expression of the expression_with_actions node:
5477 -- do
5478 -- Trans_Id : Ctrl_Typ := ...;
5479 -- Alias : ... := Trans_Id;
5480 -- in ... Alias ... end;
5482 -- In the example above, Trans_Id cannot be finalized at the end of the
5483 -- actions list because this may affect the alias and the final value of
5484 -- the expression_with_actions. Forcing the evaluation encapsulates the
5485 -- reference to the Alias within the actions list:
5487 -- do
5488 -- Trans_Id : Ctrl_Typ := ...;
5489 -- Alias : ... := Trans_Id;
5490 -- Val : constant Boolean := ... Alias ...;
5491 -- <finalize Trans_Id>
5492 -- in Val end;
5494 -- Once this transformation is performed, it is safe to finalize the
5495 -- transient object at the end of the actions list.
5497 -- Note that Force_Evaluation does not remove side effects in operators
5498 -- because it assumes that all operands are evaluated and side effect
5499 -- free. This is not the case when an operand depends implicitly on the
5500 -- transient object through the use of access types.
5502 elsif Is_Boolean_Type (Etype (Expression (N))) then
5503 Force_Boolean_Evaluation (Expression (N));
5505 -- The expression of an expression_with_actions node may not necessarily
5506 -- be Boolean when the node appears in an if expression. In this case do
5507 -- the usual forced evaluation to encapsulate potential aliasing.
5509 else
5510 Force_Evaluation (Expression (N));
5511 end if;
5513 -- Process all transient objects found within the actions of the EWA
5514 -- node.
5516 Act := First (Acts);
5517 while Present (Act) loop
5518 Process_Single_Action (Act);
5519 Next (Act);
5520 end loop;
5522 -- Deal with case where there are no actions. In this case we simply
5523 -- rewrite the node with its expression since we don't need the actions
5524 -- and the specification of this node does not allow a null action list.
5526 -- Note: we use Rewrite instead of Replace, because Codepeer is using
5527 -- the expanded tree and relying on being able to retrieve the original
5528 -- tree in cases like this. This raises a whole lot of issues of whether
5529 -- we have problems elsewhere, which will be addressed in the future???
5531 if Is_Empty_List (Acts) then
5532 Rewrite (N, Relocate_Node (Expression (N)));
5533 end if;
5534 end Expand_N_Expression_With_Actions;
5536 ----------------------------
5537 -- Expand_N_If_Expression --
5538 ----------------------------
5540 -- Deal with limited types and condition actions
5542 procedure Expand_N_If_Expression (N : Node_Id) is
5543 Cond : constant Node_Id := First (Expressions (N));
5544 Loc : constant Source_Ptr := Sloc (N);
5545 Thenx : constant Node_Id := Next (Cond);
5546 Elsex : constant Node_Id := Next (Thenx);
5547 Typ : constant Entity_Id := Etype (N);
5549 Actions : List_Id;
5550 Decl : Node_Id;
5551 Expr : Node_Id;
5552 New_If : Node_Id;
5553 New_N : Node_Id;
5555 begin
5556 -- Check for MINIMIZED/ELIMINATED overflow mode
5558 if Minimized_Eliminated_Overflow_Check (N) then
5559 Apply_Arithmetic_Overflow_Check (N);
5560 return;
5561 end if;
5563 -- Fold at compile time if condition known. We have already folded
5564 -- static if expressions, but it is possible to fold any case in which
5565 -- the condition is known at compile time, even though the result is
5566 -- non-static.
5568 -- Note that we don't do the fold of such cases in Sem_Elab because
5569 -- it can cause infinite loops with the expander adding a conditional
5570 -- expression, and Sem_Elab circuitry removing it repeatedly.
5572 if Compile_Time_Known_Value (Cond) then
5573 declare
5574 function Fold_Known_Value (Cond : Node_Id) return Boolean;
5575 -- Fold at compile time. Assumes condition known. Return True if
5576 -- folding occurred, meaning we're done.
5578 ----------------------
5579 -- Fold_Known_Value --
5580 ----------------------
5582 function Fold_Known_Value (Cond : Node_Id) return Boolean is
5583 begin
5584 if Is_True (Expr_Value (Cond)) then
5585 Expr := Thenx;
5586 Actions := Then_Actions (N);
5587 else
5588 Expr := Elsex;
5589 Actions := Else_Actions (N);
5590 end if;
5592 Remove (Expr);
5594 if Present (Actions) then
5596 -- To minimize the use of Expression_With_Actions, just skip
5597 -- the optimization as it is not critical for correctness.
5599 if Minimize_Expression_With_Actions then
5600 return False;
5601 end if;
5603 Rewrite (N,
5604 Make_Expression_With_Actions (Loc,
5605 Expression => Relocate_Node (Expr),
5606 Actions => Actions));
5607 Analyze_And_Resolve (N, Typ);
5609 else
5610 Rewrite (N, Relocate_Node (Expr));
5611 end if;
5613 -- Note that the result is never static (legitimate cases of
5614 -- static if expressions were folded in Sem_Eval).
5616 Set_Is_Static_Expression (N, False);
5617 return True;
5618 end Fold_Known_Value;
5620 begin
5621 if Fold_Known_Value (Cond) then
5622 return;
5623 end if;
5624 end;
5625 end if;
5627 -- If the type is limited, and the back end does not handle limited
5628 -- types, then we expand as follows to avoid the possibility of
5629 -- improper copying.
5631 -- type Ptr is access all Typ;
5632 -- Cnn : Ptr;
5633 -- if cond then
5634 -- <<then actions>>
5635 -- Cnn := then-expr'Unrestricted_Access;
5636 -- else
5637 -- <<else actions>>
5638 -- Cnn := else-expr'Unrestricted_Access;
5639 -- end if;
5641 -- and replace the if expression by a reference to Cnn.all.
5643 -- This special case can be skipped if the back end handles limited
5644 -- types properly and ensures that no incorrect copies are made.
5646 if Is_By_Reference_Type (Typ)
5647 and then not Back_End_Handles_Limited_Types
5648 then
5649 -- When the "then" or "else" expressions involve controlled function
5650 -- calls, generated temporaries are chained on the corresponding list
5651 -- of actions. These temporaries need to be finalized after the if
5652 -- expression is evaluated.
5654 Process_If_Case_Statements (N, Then_Actions (N));
5655 Process_If_Case_Statements (N, Else_Actions (N));
5657 declare
5658 Cnn : constant Entity_Id := Make_Temporary (Loc, 'C', N);
5659 Ptr_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
5661 begin
5662 -- Generate:
5663 -- type Ann is access all Typ;
5665 Insert_Action (N,
5666 Make_Full_Type_Declaration (Loc,
5667 Defining_Identifier => Ptr_Typ,
5668 Type_Definition =>
5669 Make_Access_To_Object_Definition (Loc,
5670 All_Present => True,
5671 Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
5673 -- Generate:
5674 -- Cnn : Ann;
5676 Decl :=
5677 Make_Object_Declaration (Loc,
5678 Defining_Identifier => Cnn,
5679 Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc));
5681 -- Generate:
5682 -- if Cond then
5683 -- Cnn := <Thenx>'Unrestricted_Access;
5684 -- else
5685 -- Cnn := <Elsex>'Unrestricted_Access;
5686 -- end if;
5688 New_If :=
5689 Make_Implicit_If_Statement (N,
5690 Condition => Relocate_Node (Cond),
5691 Then_Statements => New_List (
5692 Make_Assignment_Statement (Sloc (Thenx),
5693 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
5694 Expression =>
5695 Make_Attribute_Reference (Loc,
5696 Prefix => Relocate_Node (Thenx),
5697 Attribute_Name => Name_Unrestricted_Access))),
5699 Else_Statements => New_List (
5700 Make_Assignment_Statement (Sloc (Elsex),
5701 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
5702 Expression =>
5703 Make_Attribute_Reference (Loc,
5704 Prefix => Relocate_Node (Elsex),
5705 Attribute_Name => Name_Unrestricted_Access))));
5707 -- Preserve the original context for which the if statement is
5708 -- being generated. This is needed by the finalization machinery
5709 -- to prevent the premature finalization of controlled objects
5710 -- found within the if statement.
5712 Set_From_Conditional_Expression (New_If);
5714 New_N :=
5715 Make_Explicit_Dereference (Loc,
5716 Prefix => New_Occurrence_Of (Cnn, Loc));
5717 end;
5719 -- If the result is an unconstrained array and the if expression is in a
5720 -- context other than the initializing expression of the declaration of
5721 -- an object, then we pull out the if expression as follows:
5723 -- Cnn : constant typ := if-expression
5725 -- and then replace the if expression with an occurrence of Cnn. This
5726 -- avoids the need in the back end to create on-the-fly variable length
5727 -- temporaries (which it cannot do!)
5729 -- Note that the test for being in an object declaration avoids doing an
5730 -- unnecessary expansion, and also avoids infinite recursion.
5732 elsif Is_Array_Type (Typ) and then not Is_Constrained (Typ)
5733 and then (Nkind (Parent (N)) /= N_Object_Declaration
5734 or else Expression (Parent (N)) /= N)
5735 then
5736 declare
5737 Cnn : constant Node_Id := Make_Temporary (Loc, 'C', N);
5739 begin
5740 Insert_Action (N,
5741 Make_Object_Declaration (Loc,
5742 Defining_Identifier => Cnn,
5743 Constant_Present => True,
5744 Object_Definition => New_Occurrence_Of (Typ, Loc),
5745 Expression => Relocate_Node (N),
5746 Has_Init_Expression => True));
5748 Rewrite (N, New_Occurrence_Of (Cnn, Loc));
5749 return;
5750 end;
5752 -- For other types, we only need to expand if there are other actions
5753 -- associated with either branch.
5755 elsif Present (Then_Actions (N)) or else Present (Else_Actions (N)) then
5757 -- We now wrap the actions into the appropriate expression
5759 if Minimize_Expression_With_Actions
5760 and then (Is_Elementary_Type (Underlying_Type (Typ))
5761 or else Is_Constrained (Underlying_Type (Typ)))
5762 then
5763 -- If we can't use N_Expression_With_Actions nodes, then we insert
5764 -- the following sequence of actions (using Insert_Actions):
5766 -- Cnn : typ;
5767 -- if cond then
5768 -- <<then actions>>
5769 -- Cnn := then-expr;
5770 -- else
5771 -- <<else actions>>
5772 -- Cnn := else-expr
5773 -- end if;
5775 -- and replace the if expression by a reference to Cnn
5777 declare
5778 Cnn : constant Node_Id := Make_Temporary (Loc, 'C', N);
5780 begin
5781 Decl :=
5782 Make_Object_Declaration (Loc,
5783 Defining_Identifier => Cnn,
5784 Object_Definition => New_Occurrence_Of (Typ, Loc));
5786 New_If :=
5787 Make_Implicit_If_Statement (N,
5788 Condition => Relocate_Node (Cond),
5790 Then_Statements => New_List (
5791 Make_Assignment_Statement (Sloc (Thenx),
5792 Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
5793 Expression => Relocate_Node (Thenx))),
5795 Else_Statements => New_List (
5796 Make_Assignment_Statement (Sloc (Elsex),
5797 Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
5798 Expression => Relocate_Node (Elsex))));
5800 Set_Assignment_OK (Name (First (Then_Statements (New_If))));
5801 Set_Assignment_OK (Name (First (Else_Statements (New_If))));
5803 New_N := New_Occurrence_Of (Cnn, Loc);
5804 end;
5806 -- Regular path using Expression_With_Actions
5808 else
5809 if Present (Then_Actions (N)) then
5810 Rewrite (Thenx,
5811 Make_Expression_With_Actions (Sloc (Thenx),
5812 Actions => Then_Actions (N),
5813 Expression => Relocate_Node (Thenx)));
5815 Set_Then_Actions (N, No_List);
5816 Analyze_And_Resolve (Thenx, Typ);
5817 end if;
5819 if Present (Else_Actions (N)) then
5820 Rewrite (Elsex,
5821 Make_Expression_With_Actions (Sloc (Elsex),
5822 Actions => Else_Actions (N),
5823 Expression => Relocate_Node (Elsex)));
5825 Set_Else_Actions (N, No_List);
5826 Analyze_And_Resolve (Elsex, Typ);
5827 end if;
5829 return;
5830 end if;
5832 -- If no actions then no expansion needed, gigi will handle it using the
5833 -- same approach as a C conditional expression.
5835 else
5836 return;
5837 end if;
5839 -- Fall through here for either the limited expansion, or the case of
5840 -- inserting actions for nonlimited types. In both these cases, we must
5841 -- move the SLOC of the parent If statement to the newly created one and
5842 -- change it to the SLOC of the expression which, after expansion, will
5843 -- correspond to what is being evaluated.
5845 if Present (Parent (N)) and then Nkind (Parent (N)) = N_If_Statement then
5846 Set_Sloc (New_If, Sloc (Parent (N)));
5847 Set_Sloc (Parent (N), Loc);
5848 end if;
5850 -- Make sure Then_Actions and Else_Actions are appropriately moved
5851 -- to the new if statement.
5853 if Present (Then_Actions (N)) then
5854 Insert_List_Before
5855 (First (Then_Statements (New_If)), Then_Actions (N));
5856 end if;
5858 if Present (Else_Actions (N)) then
5859 Insert_List_Before
5860 (First (Else_Statements (New_If)), Else_Actions (N));
5861 end if;
5863 Insert_Action (N, Decl);
5864 Insert_Action (N, New_If);
5865 Rewrite (N, New_N);
5866 Analyze_And_Resolve (N, Typ);
5867 end Expand_N_If_Expression;
5869 -----------------
5870 -- Expand_N_In --
5871 -----------------
5873 procedure Expand_N_In (N : Node_Id) is
5874 Loc : constant Source_Ptr := Sloc (N);
5875 Restyp : constant Entity_Id := Etype (N);
5876 Lop : constant Node_Id := Left_Opnd (N);
5877 Rop : constant Node_Id := Right_Opnd (N);
5878 Static : constant Boolean := Is_OK_Static_Expression (N);
5880 procedure Substitute_Valid_Check;
5881 -- Replaces node N by Lop'Valid. This is done when we have an explicit
5882 -- test for the left operand being in range of its subtype.
5884 ----------------------------
5885 -- Substitute_Valid_Check --
5886 ----------------------------
5888 procedure Substitute_Valid_Check is
5889 function Is_OK_Object_Reference (Nod : Node_Id) return Boolean;
5890 -- Determine whether arbitrary node Nod denotes a source object that
5891 -- may safely act as prefix of attribute 'Valid.
5893 ----------------------------
5894 -- Is_OK_Object_Reference --
5895 ----------------------------
5897 function Is_OK_Object_Reference (Nod : Node_Id) return Boolean is
5898 Obj_Ref : Node_Id;
5900 begin
5901 -- Inspect the original operand
5903 Obj_Ref := Original_Node (Nod);
5905 -- The object reference must be a source construct, otherwise the
5906 -- codefix suggestion may refer to nonexistent code from a user
5907 -- perspective.
5909 if Comes_From_Source (Obj_Ref) then
5911 -- Recover the actual object reference. There may be more cases
5912 -- to consider???
5914 loop
5915 if Nkind_In (Obj_Ref, N_Type_Conversion,
5916 N_Unchecked_Type_Conversion)
5917 then
5918 Obj_Ref := Expression (Obj_Ref);
5919 else
5920 exit;
5921 end if;
5922 end loop;
5924 return Is_Object_Reference (Obj_Ref);
5925 end if;
5927 return False;
5928 end Is_OK_Object_Reference;
5930 -- Start of processing for Substitute_Valid_Check
5932 begin
5933 Rewrite (N,
5934 Make_Attribute_Reference (Loc,
5935 Prefix => Relocate_Node (Lop),
5936 Attribute_Name => Name_Valid));
5938 Analyze_And_Resolve (N, Restyp);
5940 -- Emit a warning when the left-hand operand of the membership test
5941 -- is a source object, otherwise the use of attribute 'Valid would be
5942 -- illegal. The warning is not given when overflow checking is either
5943 -- MINIMIZED or ELIMINATED, as the danger of optimization has been
5944 -- eliminated above.
5946 if Is_OK_Object_Reference (Lop)
5947 and then Overflow_Check_Mode not in Minimized_Or_Eliminated
5948 then
5949 Error_Msg_N
5950 ("??explicit membership test may be optimized away", N);
5951 Error_Msg_N -- CODEFIX
5952 ("\??use ''Valid attribute instead", N);
5953 end if;
5954 end Substitute_Valid_Check;
5956 -- Local variables
5958 Ltyp : Entity_Id;
5959 Rtyp : Entity_Id;
5961 -- Start of processing for Expand_N_In
5963 begin
5964 -- If set membership case, expand with separate procedure
5966 if Present (Alternatives (N)) then
5967 Expand_Set_Membership (N);
5968 return;
5969 end if;
5971 -- Not set membership, proceed with expansion
5973 Ltyp := Etype (Left_Opnd (N));
5974 Rtyp := Etype (Right_Opnd (N));
5976 -- If MINIMIZED/ELIMINATED overflow mode and type is a signed integer
5977 -- type, then expand with a separate procedure. Note the use of the
5978 -- flag No_Minimize_Eliminate to prevent infinite recursion.
5980 if Overflow_Check_Mode in Minimized_Or_Eliminated
5981 and then Is_Signed_Integer_Type (Ltyp)
5982 and then not No_Minimize_Eliminate (N)
5983 then
5984 Expand_Membership_Minimize_Eliminate_Overflow (N);
5985 return;
5986 end if;
5988 -- Check case of explicit test for an expression in range of its
5989 -- subtype. This is suspicious usage and we replace it with a 'Valid
5990 -- test and give a warning for scalar types.
5992 if Is_Scalar_Type (Ltyp)
5994 -- Only relevant for source comparisons
5996 and then Comes_From_Source (N)
5998 -- In floating-point this is a standard way to check for finite values
5999 -- and using 'Valid would typically be a pessimization.
6001 and then not Is_Floating_Point_Type (Ltyp)
6003 -- Don't give the message unless right operand is a type entity and
6004 -- the type of the left operand matches this type. Note that this
6005 -- eliminates the cases where MINIMIZED/ELIMINATED mode overflow
6006 -- checks have changed the type of the left operand.
6008 and then Nkind (Rop) in N_Has_Entity
6009 and then Ltyp = Entity (Rop)
6011 -- Skip this for predicated types, where such expressions are a
6012 -- reasonable way of testing if something meets the predicate.
6014 and then not Present (Predicate_Function (Ltyp))
6015 then
6016 Substitute_Valid_Check;
6017 return;
6018 end if;
6020 -- Do validity check on operands
6022 if Validity_Checks_On and Validity_Check_Operands then
6023 Ensure_Valid (Left_Opnd (N));
6024 Validity_Check_Range (Right_Opnd (N));
6025 end if;
6027 -- Case of explicit range
6029 if Nkind (Rop) = N_Range then
6030 declare
6031 Lo : constant Node_Id := Low_Bound (Rop);
6032 Hi : constant Node_Id := High_Bound (Rop);
6034 Lo_Orig : constant Node_Id := Original_Node (Lo);
6035 Hi_Orig : constant Node_Id := Original_Node (Hi);
6037 Lcheck : Compare_Result;
6038 Ucheck : Compare_Result;
6040 Warn1 : constant Boolean :=
6041 Constant_Condition_Warnings
6042 and then Comes_From_Source (N)
6043 and then not In_Instance;
6044 -- This must be true for any of the optimization warnings, we
6045 -- clearly want to give them only for source with the flag on. We
6046 -- also skip these warnings in an instance since it may be the
6047 -- case that different instantiations have different ranges.
6049 Warn2 : constant Boolean :=
6050 Warn1
6051 and then Nkind (Original_Node (Rop)) = N_Range
6052 and then Is_Integer_Type (Etype (Lo));
6053 -- For the case where only one bound warning is elided, we also
6054 -- insist on an explicit range and an integer type. The reason is
6055 -- that the use of enumeration ranges including an end point is
6056 -- common, as is the use of a subtype name, one of whose bounds is
6057 -- the same as the type of the expression.
6059 begin
6060 -- If test is explicit x'First .. x'Last, replace by valid check
6062 -- Could use some individual comments for this complex test ???
6064 if Is_Scalar_Type (Ltyp)
6066 -- And left operand is X'First where X matches left operand
6067 -- type (this eliminates cases of type mismatch, including
6068 -- the cases where ELIMINATED/MINIMIZED mode has changed the
6069 -- type of the left operand.
6071 and then Nkind (Lo_Orig) = N_Attribute_Reference
6072 and then Attribute_Name (Lo_Orig) = Name_First
6073 and then Nkind (Prefix (Lo_Orig)) in N_Has_Entity
6074 and then Entity (Prefix (Lo_Orig)) = Ltyp
6076 -- Same tests for right operand
6078 and then Nkind (Hi_Orig) = N_Attribute_Reference
6079 and then Attribute_Name (Hi_Orig) = Name_Last
6080 and then Nkind (Prefix (Hi_Orig)) in N_Has_Entity
6081 and then Entity (Prefix (Hi_Orig)) = Ltyp
6083 -- Relevant only for source cases
6085 and then Comes_From_Source (N)
6086 then
6087 Substitute_Valid_Check;
6088 goto Leave;
6089 end if;
6091 -- If bounds of type are known at compile time, and the end points
6092 -- are known at compile time and identical, this is another case
6093 -- for substituting a valid test. We only do this for discrete
6094 -- types, since it won't arise in practice for float types.
6096 if Comes_From_Source (N)
6097 and then Is_Discrete_Type (Ltyp)
6098 and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
6099 and then Compile_Time_Known_Value (Type_Low_Bound (Ltyp))
6100 and then Compile_Time_Known_Value (Lo)
6101 and then Compile_Time_Known_Value (Hi)
6102 and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
6103 and then Expr_Value (Type_Low_Bound (Ltyp)) = Expr_Value (Lo)
6105 -- Kill warnings in instances, since they may be cases where we
6106 -- have a test in the generic that makes sense with some types
6107 -- and not with other types.
6109 -- Similarly, do not rewrite membership as a validity check if
6110 -- within the predicate function for the type.
6112 then
6113 if In_Instance
6114 or else (Ekind (Current_Scope) = E_Function
6115 and then Is_Predicate_Function (Current_Scope))
6116 then
6117 null;
6119 else
6120 Substitute_Valid_Check;
6121 goto Leave;
6122 end if;
6123 end if;
6125 -- If we have an explicit range, do a bit of optimization based on
6126 -- range analysis (we may be able to kill one or both checks).
6128 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => False);
6129 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => False);
6131 -- If either check is known to fail, replace result by False since
6132 -- the other check does not matter. Preserve the static flag for
6133 -- legality checks, because we are constant-folding beyond RM 4.9.
6135 if Lcheck = LT or else Ucheck = GT then
6136 if Warn1 then
6137 Error_Msg_N ("?c?range test optimized away", N);
6138 Error_Msg_N ("\?c?value is known to be out of range", N);
6139 end if;
6141 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
6142 Analyze_And_Resolve (N, Restyp);
6143 Set_Is_Static_Expression (N, Static);
6144 goto Leave;
6146 -- If both checks are known to succeed, replace result by True,
6147 -- since we know we are in range.
6149 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
6150 if Warn1 then
6151 Error_Msg_N ("?c?range test optimized away", N);
6152 Error_Msg_N ("\?c?value is known to be in range", N);
6153 end if;
6155 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
6156 Analyze_And_Resolve (N, Restyp);
6157 Set_Is_Static_Expression (N, Static);
6158 goto Leave;
6160 -- If lower bound check succeeds and upper bound check is not
6161 -- known to succeed or fail, then replace the range check with
6162 -- a comparison against the upper bound.
6164 elsif Lcheck in Compare_GE then
6165 if Warn2 and then not In_Instance then
6166 Error_Msg_N ("??lower bound test optimized away", Lo);
6167 Error_Msg_N ("\??value is known to be in range", Lo);
6168 end if;
6170 Rewrite (N,
6171 Make_Op_Le (Loc,
6172 Left_Opnd => Lop,
6173 Right_Opnd => High_Bound (Rop)));
6174 Analyze_And_Resolve (N, Restyp);
6175 goto Leave;
6177 -- If upper bound check succeeds and lower bound check is not
6178 -- known to succeed or fail, then replace the range check with
6179 -- a comparison against the lower bound.
6181 elsif Ucheck in Compare_LE then
6182 if Warn2 and then not In_Instance then
6183 Error_Msg_N ("??upper bound test optimized away", Hi);
6184 Error_Msg_N ("\??value is known to be in range", Hi);
6185 end if;
6187 Rewrite (N,
6188 Make_Op_Ge (Loc,
6189 Left_Opnd => Lop,
6190 Right_Opnd => Low_Bound (Rop)));
6191 Analyze_And_Resolve (N, Restyp);
6192 goto Leave;
6193 end if;
6195 -- We couldn't optimize away the range check, but there is one
6196 -- more issue. If we are checking constant conditionals, then we
6197 -- see if we can determine the outcome assuming everything is
6198 -- valid, and if so give an appropriate warning.
6200 if Warn1 and then not Assume_No_Invalid_Values then
6201 Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
6202 Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
6204 -- Result is out of range for valid value
6206 if Lcheck = LT or else Ucheck = GT then
6207 Error_Msg_N
6208 ("?c?value can only be in range if it is invalid", N);
6210 -- Result is in range for valid value
6212 elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
6213 Error_Msg_N
6214 ("?c?value can only be out of range if it is invalid", N);
6216 -- Lower bound check succeeds if value is valid
6218 elsif Warn2 and then Lcheck in Compare_GE then
6219 Error_Msg_N
6220 ("?c?lower bound check only fails if it is invalid", Lo);
6222 -- Upper bound check succeeds if value is valid
6224 elsif Warn2 and then Ucheck in Compare_LE then
6225 Error_Msg_N
6226 ("?c?upper bound check only fails for invalid values", Hi);
6227 end if;
6228 end if;
6229 end;
6231 -- For all other cases of an explicit range, nothing to be done
6233 goto Leave;
6235 -- Here right operand is a subtype mark
6237 else
6238 declare
6239 Typ : Entity_Id := Etype (Rop);
6240 Is_Acc : constant Boolean := Is_Access_Type (Typ);
6241 Cond : Node_Id := Empty;
6242 New_N : Node_Id;
6243 Obj : Node_Id := Lop;
6244 SCIL_Node : Node_Id;
6246 begin
6247 Remove_Side_Effects (Obj);
6249 -- For tagged type, do tagged membership operation
6251 if Is_Tagged_Type (Typ) then
6253 -- No expansion will be performed for VM targets, as the VM
6254 -- back ends will handle the membership tests directly.
6256 if Tagged_Type_Expansion then
6257 Tagged_Membership (N, SCIL_Node, New_N);
6258 Rewrite (N, New_N);
6259 Analyze_And_Resolve (N, Restyp, Suppress => All_Checks);
6261 -- Update decoration of relocated node referenced by the
6262 -- SCIL node.
6264 if Generate_SCIL and then Present (SCIL_Node) then
6265 Set_SCIL_Node (N, SCIL_Node);
6266 end if;
6267 end if;
6269 goto Leave;
6271 -- If type is scalar type, rewrite as x in t'First .. t'Last.
6272 -- This reason we do this is that the bounds may have the wrong
6273 -- type if they come from the original type definition. Also this
6274 -- way we get all the processing above for an explicit range.
6276 -- Don't do this for predicated types, since in this case we
6277 -- want to check the predicate.
6279 elsif Is_Scalar_Type (Typ) then
6280 if No (Predicate_Function (Typ)) then
6281 Rewrite (Rop,
6282 Make_Range (Loc,
6283 Low_Bound =>
6284 Make_Attribute_Reference (Loc,
6285 Attribute_Name => Name_First,
6286 Prefix => New_Occurrence_Of (Typ, Loc)),
6288 High_Bound =>
6289 Make_Attribute_Reference (Loc,
6290 Attribute_Name => Name_Last,
6291 Prefix => New_Occurrence_Of (Typ, Loc))));
6292 Analyze_And_Resolve (N, Restyp);
6293 end if;
6295 goto Leave;
6297 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
6298 -- a membership test if the subtype mark denotes a constrained
6299 -- Unchecked_Union subtype and the expression lacks inferable
6300 -- discriminants.
6302 elsif Is_Unchecked_Union (Base_Type (Typ))
6303 and then Is_Constrained (Typ)
6304 and then not Has_Inferable_Discriminants (Lop)
6305 then
6306 Insert_Action (N,
6307 Make_Raise_Program_Error (Loc,
6308 Reason => PE_Unchecked_Union_Restriction));
6310 -- Prevent Gigi from generating incorrect code by rewriting the
6311 -- test as False. What is this undocumented thing about ???
6313 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
6314 goto Leave;
6315 end if;
6317 -- Here we have a non-scalar type
6319 if Is_Acc then
6320 Typ := Designated_Type (Typ);
6321 end if;
6323 if not Is_Constrained (Typ) then
6324 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
6325 Analyze_And_Resolve (N, Restyp);
6327 -- For the constrained array case, we have to check the subscripts
6328 -- for an exact match if the lengths are non-zero (the lengths
6329 -- must match in any case).
6331 elsif Is_Array_Type (Typ) then
6332 Check_Subscripts : declare
6333 function Build_Attribute_Reference
6334 (E : Node_Id;
6335 Nam : Name_Id;
6336 Dim : Nat) return Node_Id;
6337 -- Build attribute reference E'Nam (Dim)
6339 -------------------------------
6340 -- Build_Attribute_Reference --
6341 -------------------------------
6343 function Build_Attribute_Reference
6344 (E : Node_Id;
6345 Nam : Name_Id;
6346 Dim : Nat) return Node_Id
6348 begin
6349 return
6350 Make_Attribute_Reference (Loc,
6351 Prefix => E,
6352 Attribute_Name => Nam,
6353 Expressions => New_List (
6354 Make_Integer_Literal (Loc, Dim)));
6355 end Build_Attribute_Reference;
6357 -- Start of processing for Check_Subscripts
6359 begin
6360 for J in 1 .. Number_Dimensions (Typ) loop
6361 Evolve_And_Then (Cond,
6362 Make_Op_Eq (Loc,
6363 Left_Opnd =>
6364 Build_Attribute_Reference
6365 (Duplicate_Subexpr_No_Checks (Obj),
6366 Name_First, J),
6367 Right_Opnd =>
6368 Build_Attribute_Reference
6369 (New_Occurrence_Of (Typ, Loc), Name_First, J)));
6371 Evolve_And_Then (Cond,
6372 Make_Op_Eq (Loc,
6373 Left_Opnd =>
6374 Build_Attribute_Reference
6375 (Duplicate_Subexpr_No_Checks (Obj),
6376 Name_Last, J),
6377 Right_Opnd =>
6378 Build_Attribute_Reference
6379 (New_Occurrence_Of (Typ, Loc), Name_Last, J)));
6380 end loop;
6382 if Is_Acc then
6383 Cond :=
6384 Make_Or_Else (Loc,
6385 Left_Opnd =>
6386 Make_Op_Eq (Loc,
6387 Left_Opnd => Obj,
6388 Right_Opnd => Make_Null (Loc)),
6389 Right_Opnd => Cond);
6390 end if;
6392 Rewrite (N, Cond);
6393 Analyze_And_Resolve (N, Restyp);
6394 end Check_Subscripts;
6396 -- These are the cases where constraint checks may be required,
6397 -- e.g. records with possible discriminants
6399 else
6400 -- Expand the test into a series of discriminant comparisons.
6401 -- The expression that is built is the negation of the one that
6402 -- is used for checking discriminant constraints.
6404 Obj := Relocate_Node (Left_Opnd (N));
6406 if Has_Discriminants (Typ) then
6407 Cond := Make_Op_Not (Loc,
6408 Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
6410 if Is_Acc then
6411 Cond := Make_Or_Else (Loc,
6412 Left_Opnd =>
6413 Make_Op_Eq (Loc,
6414 Left_Opnd => Obj,
6415 Right_Opnd => Make_Null (Loc)),
6416 Right_Opnd => Cond);
6417 end if;
6419 else
6420 Cond := New_Occurrence_Of (Standard_True, Loc);
6421 end if;
6423 Rewrite (N, Cond);
6424 Analyze_And_Resolve (N, Restyp);
6425 end if;
6427 -- Ada 2012 (AI05-0149): Handle membership tests applied to an
6428 -- expression of an anonymous access type. This can involve an
6429 -- accessibility test and a tagged type membership test in the
6430 -- case of tagged designated types.
6432 if Ada_Version >= Ada_2012
6433 and then Is_Acc
6434 and then Ekind (Ltyp) = E_Anonymous_Access_Type
6435 then
6436 declare
6437 Expr_Entity : Entity_Id := Empty;
6438 New_N : Node_Id;
6439 Param_Level : Node_Id;
6440 Type_Level : Node_Id;
6442 begin
6443 if Is_Entity_Name (Lop) then
6444 Expr_Entity := Param_Entity (Lop);
6446 if not Present (Expr_Entity) then
6447 Expr_Entity := Entity (Lop);
6448 end if;
6449 end if;
6451 -- If a conversion of the anonymous access value to the
6452 -- tested type would be illegal, then the result is False.
6454 if not Valid_Conversion
6455 (Lop, Rtyp, Lop, Report_Errs => False)
6456 then
6457 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
6458 Analyze_And_Resolve (N, Restyp);
6460 -- Apply an accessibility check if the access object has an
6461 -- associated access level and when the level of the type is
6462 -- less deep than the level of the access parameter. This
6463 -- only occur for access parameters and stand-alone objects
6464 -- of an anonymous access type.
6466 else
6467 if Present (Expr_Entity)
6468 and then
6469 Present
6470 (Effective_Extra_Accessibility (Expr_Entity))
6471 and then UI_Gt (Object_Access_Level (Lop),
6472 Type_Access_Level (Rtyp))
6473 then
6474 Param_Level :=
6475 New_Occurrence_Of
6476 (Effective_Extra_Accessibility (Expr_Entity), Loc);
6478 Type_Level :=
6479 Make_Integer_Literal (Loc, Type_Access_Level (Rtyp));
6481 -- Return True only if the accessibility level of the
6482 -- expression entity is not deeper than the level of
6483 -- the tested access type.
6485 Rewrite (N,
6486 Make_And_Then (Loc,
6487 Left_Opnd => Relocate_Node (N),
6488 Right_Opnd => Make_Op_Le (Loc,
6489 Left_Opnd => Param_Level,
6490 Right_Opnd => Type_Level)));
6492 Analyze_And_Resolve (N);
6493 end if;
6495 -- If the designated type is tagged, do tagged membership
6496 -- operation.
6498 -- *** NOTE: we have to check not null before doing the
6499 -- tagged membership test (but maybe that can be done
6500 -- inside Tagged_Membership?).
6502 if Is_Tagged_Type (Typ) then
6503 Rewrite (N,
6504 Make_And_Then (Loc,
6505 Left_Opnd => Relocate_Node (N),
6506 Right_Opnd =>
6507 Make_Op_Ne (Loc,
6508 Left_Opnd => Obj,
6509 Right_Opnd => Make_Null (Loc))));
6511 -- No expansion will be performed for VM targets, as
6512 -- the VM back ends will handle the membership tests
6513 -- directly.
6515 if Tagged_Type_Expansion then
6517 -- Note that we have to pass Original_Node, because
6518 -- the membership test might already have been
6519 -- rewritten by earlier parts of membership test.
6521 Tagged_Membership
6522 (Original_Node (N), SCIL_Node, New_N);
6524 -- Update decoration of relocated node referenced
6525 -- by the SCIL node.
6527 if Generate_SCIL and then Present (SCIL_Node) then
6528 Set_SCIL_Node (New_N, SCIL_Node);
6529 end if;
6531 Rewrite (N,
6532 Make_And_Then (Loc,
6533 Left_Opnd => Relocate_Node (N),
6534 Right_Opnd => New_N));
6536 Analyze_And_Resolve (N, Restyp);
6537 end if;
6538 end if;
6539 end if;
6540 end;
6541 end if;
6542 end;
6543 end if;
6545 -- At this point, we have done the processing required for the basic
6546 -- membership test, but not yet dealt with the predicate.
6548 <<Leave>>
6550 -- If a predicate is present, then we do the predicate test, but we
6551 -- most certainly want to omit this if we are within the predicate
6552 -- function itself, since otherwise we have an infinite recursion.
6553 -- The check should also not be emitted when testing against a range
6554 -- (the check is only done when the right operand is a subtype; see
6555 -- RM12-4.5.2 (28.1/3-30/3)).
6557 Predicate_Check : declare
6558 function In_Range_Check return Boolean;
6559 -- Within an expanded range check that may raise Constraint_Error do
6560 -- not generate a predicate check as well. It is redundant because
6561 -- the context will add an explicit predicate check, and it will
6562 -- raise the wrong exception if it fails.
6564 --------------------
6565 -- In_Range_Check --
6566 --------------------
6568 function In_Range_Check return Boolean is
6569 P : Node_Id;
6570 begin
6571 P := Parent (N);
6572 while Present (P) loop
6573 if Nkind (P) = N_Raise_Constraint_Error then
6574 return True;
6576 elsif Nkind (P) in N_Statement_Other_Than_Procedure_Call
6577 or else Nkind (P) = N_Procedure_Call_Statement
6578 or else Nkind (P) in N_Declaration
6579 then
6580 return False;
6581 end if;
6583 P := Parent (P);
6584 end loop;
6586 return False;
6587 end In_Range_Check;
6589 -- Local variables
6591 PFunc : constant Entity_Id := Predicate_Function (Rtyp);
6592 R_Op : Node_Id;
6594 -- Start of processing for Predicate_Check
6596 begin
6597 if Present (PFunc)
6598 and then Current_Scope /= PFunc
6599 and then Nkind (Rop) /= N_Range
6600 then
6601 if not In_Range_Check then
6602 R_Op := Make_Predicate_Call (Rtyp, Lop, Mem => True);
6603 else
6604 R_Op := New_Occurrence_Of (Standard_True, Loc);
6605 end if;
6607 Rewrite (N,
6608 Make_And_Then (Loc,
6609 Left_Opnd => Relocate_Node (N),
6610 Right_Opnd => R_Op));
6612 -- Analyze new expression, mark left operand as analyzed to
6613 -- avoid infinite recursion adding predicate calls. Similarly,
6614 -- suppress further range checks on the call.
6616 Set_Analyzed (Left_Opnd (N));
6617 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
6619 -- All done, skip attempt at compile time determination of result
6621 return;
6622 end if;
6623 end Predicate_Check;
6624 end Expand_N_In;
6626 --------------------------------
6627 -- Expand_N_Indexed_Component --
6628 --------------------------------
6630 procedure Expand_N_Indexed_Component (N : Node_Id) is
6631 Loc : constant Source_Ptr := Sloc (N);
6632 Typ : constant Entity_Id := Etype (N);
6633 P : constant Node_Id := Prefix (N);
6634 T : constant Entity_Id := Etype (P);
6635 Atp : Entity_Id;
6637 begin
6638 -- A special optimization, if we have an indexed component that is
6639 -- selecting from a slice, then we can eliminate the slice, since, for
6640 -- example, x (i .. j)(k) is identical to x(k). The only difference is
6641 -- the range check required by the slice. The range check for the slice
6642 -- itself has already been generated. The range check for the
6643 -- subscripting operation is ensured by converting the subject to
6644 -- the subtype of the slice.
6646 -- This optimization not only generates better code, avoiding slice
6647 -- messing especially in the packed case, but more importantly bypasses
6648 -- some problems in handling this peculiar case, for example, the issue
6649 -- of dealing specially with object renamings.
6651 if Nkind (P) = N_Slice
6653 -- This optimization is disabled for CodePeer because it can transform
6654 -- an index-check constraint_error into a range-check constraint_error
6655 -- and CodePeer cares about that distinction.
6657 and then not CodePeer_Mode
6658 then
6659 Rewrite (N,
6660 Make_Indexed_Component (Loc,
6661 Prefix => Prefix (P),
6662 Expressions => New_List (
6663 Convert_To
6664 (Etype (First_Index (Etype (P))),
6665 First (Expressions (N))))));
6666 Analyze_And_Resolve (N, Typ);
6667 return;
6668 end if;
6670 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
6671 -- function, then additional actuals must be passed.
6673 if Is_Build_In_Place_Function_Call (P) then
6674 Make_Build_In_Place_Call_In_Anonymous_Context (P);
6676 -- Ada 2005 (AI-318-02): Specialization of the previous case for prefix
6677 -- containing build-in-place function calls whose returned object covers
6678 -- interface types.
6680 elsif Present (Unqual_BIP_Iface_Function_Call (P)) then
6681 Make_Build_In_Place_Iface_Call_In_Anonymous_Context (P);
6682 end if;
6684 -- If the prefix is an access type, then we unconditionally rewrite if
6685 -- as an explicit dereference. This simplifies processing for several
6686 -- cases, including packed array cases and certain cases in which checks
6687 -- must be generated. We used to try to do this only when it was
6688 -- necessary, but it cleans up the code to do it all the time.
6690 if Is_Access_Type (T) then
6691 Insert_Explicit_Dereference (P);
6692 Analyze_And_Resolve (P, Designated_Type (T));
6693 Atp := Designated_Type (T);
6694 else
6695 Atp := T;
6696 end if;
6698 -- Generate index and validity checks
6700 Generate_Index_Checks (N);
6702 if Validity_Checks_On and then Validity_Check_Subscripts then
6703 Apply_Subscript_Validity_Checks (N);
6704 end if;
6706 -- If selecting from an array with atomic components, and atomic sync
6707 -- is not suppressed for this array type, set atomic sync flag.
6709 if (Has_Atomic_Components (Atp)
6710 and then not Atomic_Synchronization_Disabled (Atp))
6711 or else (Is_Atomic (Typ)
6712 and then not Atomic_Synchronization_Disabled (Typ))
6713 or else (Is_Entity_Name (P)
6714 and then Has_Atomic_Components (Entity (P))
6715 and then not Atomic_Synchronization_Disabled (Entity (P)))
6716 then
6717 Activate_Atomic_Synchronization (N);
6718 end if;
6720 -- All done if the prefix is not a packed array implemented specially
6722 if not (Is_Packed (Etype (Prefix (N)))
6723 and then Present (Packed_Array_Impl_Type (Etype (Prefix (N)))))
6724 then
6725 return;
6726 end if;
6728 -- For packed arrays that are not bit-packed (i.e. the case of an array
6729 -- with one or more index types with a non-contiguous enumeration type),
6730 -- we can always use the normal packed element get circuit.
6732 if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
6733 Expand_Packed_Element_Reference (N);
6734 return;
6735 end if;
6737 -- For a reference to a component of a bit packed array, we convert it
6738 -- to a reference to the corresponding Packed_Array_Impl_Type. We only
6739 -- want to do this for simple references, and not for:
6741 -- Left side of assignment, or prefix of left side of assignment, or
6742 -- prefix of the prefix, to handle packed arrays of packed arrays,
6743 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
6745 -- Renaming objects in renaming associations
6746 -- This case is handled when a use of the renamed variable occurs
6748 -- Actual parameters for a procedure call
6749 -- This case is handled in Exp_Ch6.Expand_Actuals
6751 -- The second expression in a 'Read attribute reference
6753 -- The prefix of an address or bit or size attribute reference
6755 -- The following circuit detects these exceptions. Note that we need to
6756 -- deal with implicit dereferences when climbing up the parent chain,
6757 -- with the additional difficulty that the type of parents may have yet
6758 -- to be resolved since prefixes are usually resolved first.
6760 declare
6761 Child : Node_Id := N;
6762 Parnt : Node_Id := Parent (N);
6764 begin
6765 loop
6766 if Nkind (Parnt) = N_Unchecked_Expression then
6767 null;
6769 elsif Nkind_In (Parnt, N_Object_Renaming_Declaration,
6770 N_Procedure_Call_Statement)
6771 or else (Nkind (Parnt) = N_Parameter_Association
6772 and then
6773 Nkind (Parent (Parnt)) = N_Procedure_Call_Statement)
6774 then
6775 return;
6777 elsif Nkind (Parnt) = N_Attribute_Reference
6778 and then Nam_In (Attribute_Name (Parnt), Name_Address,
6779 Name_Bit,
6780 Name_Size)
6781 and then Prefix (Parnt) = Child
6782 then
6783 return;
6785 elsif Nkind (Parnt) = N_Assignment_Statement
6786 and then Name (Parnt) = Child
6787 then
6788 return;
6790 -- If the expression is an index of an indexed component, it must
6791 -- be expanded regardless of context.
6793 elsif Nkind (Parnt) = N_Indexed_Component
6794 and then Child /= Prefix (Parnt)
6795 then
6796 Expand_Packed_Element_Reference (N);
6797 return;
6799 elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
6800 and then Name (Parent (Parnt)) = Parnt
6801 then
6802 return;
6804 elsif Nkind (Parnt) = N_Attribute_Reference
6805 and then Attribute_Name (Parnt) = Name_Read
6806 and then Next (First (Expressions (Parnt))) = Child
6807 then
6808 return;
6810 elsif Nkind (Parnt) = N_Indexed_Component
6811 and then Prefix (Parnt) = Child
6812 then
6813 null;
6815 elsif Nkind (Parnt) = N_Selected_Component
6816 and then Prefix (Parnt) = Child
6817 and then not (Present (Etype (Selector_Name (Parnt)))
6818 and then
6819 Is_Access_Type (Etype (Selector_Name (Parnt))))
6820 then
6821 null;
6823 -- If the parent is a dereference, either implicit or explicit,
6824 -- then the packed reference needs to be expanded.
6826 else
6827 Expand_Packed_Element_Reference (N);
6828 return;
6829 end if;
6831 -- Keep looking up tree for unchecked expression, or if we are the
6832 -- prefix of a possible assignment left side.
6834 Child := Parnt;
6835 Parnt := Parent (Child);
6836 end loop;
6837 end;
6838 end Expand_N_Indexed_Component;
6840 ---------------------
6841 -- Expand_N_Not_In --
6842 ---------------------
6844 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
6845 -- can be done. This avoids needing to duplicate this expansion code.
6847 procedure Expand_N_Not_In (N : Node_Id) is
6848 Loc : constant Source_Ptr := Sloc (N);
6849 Typ : constant Entity_Id := Etype (N);
6850 Cfs : constant Boolean := Comes_From_Source (N);
6852 begin
6853 Rewrite (N,
6854 Make_Op_Not (Loc,
6855 Right_Opnd =>
6856 Make_In (Loc,
6857 Left_Opnd => Left_Opnd (N),
6858 Right_Opnd => Right_Opnd (N))));
6860 -- If this is a set membership, preserve list of alternatives
6862 Set_Alternatives (Right_Opnd (N), Alternatives (Original_Node (N)));
6864 -- We want this to appear as coming from source if original does (see
6865 -- transformations in Expand_N_In).
6867 Set_Comes_From_Source (N, Cfs);
6868 Set_Comes_From_Source (Right_Opnd (N), Cfs);
6870 -- Now analyze transformed node
6872 Analyze_And_Resolve (N, Typ);
6873 end Expand_N_Not_In;
6875 -------------------
6876 -- Expand_N_Null --
6877 -------------------
6879 -- The only replacement required is for the case of a null of a type that
6880 -- is an access to protected subprogram, or a subtype thereof. We represent
6881 -- such access values as a record, and so we must replace the occurrence of
6882 -- null by the equivalent record (with a null address and a null pointer in
6883 -- it), so that the back end creates the proper value.
6885 procedure Expand_N_Null (N : Node_Id) is
6886 Loc : constant Source_Ptr := Sloc (N);
6887 Typ : constant Entity_Id := Base_Type (Etype (N));
6888 Agg : Node_Id;
6890 begin
6891 if Is_Access_Protected_Subprogram_Type (Typ) then
6892 Agg :=
6893 Make_Aggregate (Loc,
6894 Expressions => New_List (
6895 New_Occurrence_Of (RTE (RE_Null_Address), Loc),
6896 Make_Null (Loc)));
6898 Rewrite (N, Agg);
6899 Analyze_And_Resolve (N, Equivalent_Type (Typ));
6901 -- For subsequent semantic analysis, the node must retain its type.
6902 -- Gigi in any case replaces this type by the corresponding record
6903 -- type before processing the node.
6905 Set_Etype (N, Typ);
6906 end if;
6908 exception
6909 when RE_Not_Available =>
6910 return;
6911 end Expand_N_Null;
6913 ---------------------
6914 -- Expand_N_Op_Abs --
6915 ---------------------
6917 procedure Expand_N_Op_Abs (N : Node_Id) is
6918 Loc : constant Source_Ptr := Sloc (N);
6919 Expr : constant Node_Id := Right_Opnd (N);
6921 begin
6922 Unary_Op_Validity_Checks (N);
6924 -- Check for MINIMIZED/ELIMINATED overflow mode
6926 if Minimized_Eliminated_Overflow_Check (N) then
6927 Apply_Arithmetic_Overflow_Check (N);
6928 return;
6929 end if;
6931 -- Deal with software overflow checking
6933 if Is_Signed_Integer_Type (Etype (N))
6934 and then Do_Overflow_Check (N)
6935 then
6936 -- The only case to worry about is when the argument is equal to the
6937 -- largest negative number, so what we do is to insert the check:
6939 -- [constraint_error when Expr = typ'Base'First]
6941 -- with the usual Duplicate_Subexpr use coding for expr
6943 Insert_Action (N,
6944 Make_Raise_Constraint_Error (Loc,
6945 Condition =>
6946 Make_Op_Eq (Loc,
6947 Left_Opnd => Duplicate_Subexpr (Expr),
6948 Right_Opnd =>
6949 Make_Attribute_Reference (Loc,
6950 Prefix =>
6951 New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
6952 Attribute_Name => Name_First)),
6953 Reason => CE_Overflow_Check_Failed));
6955 Set_Do_Overflow_Check (N, False);
6956 end if;
6957 end Expand_N_Op_Abs;
6959 ---------------------
6960 -- Expand_N_Op_Add --
6961 ---------------------
6963 procedure Expand_N_Op_Add (N : Node_Id) is
6964 Typ : constant Entity_Id := Etype (N);
6966 begin
6967 Binary_Op_Validity_Checks (N);
6969 -- Check for MINIMIZED/ELIMINATED overflow mode
6971 if Minimized_Eliminated_Overflow_Check (N) then
6972 Apply_Arithmetic_Overflow_Check (N);
6973 return;
6974 end if;
6976 -- N + 0 = 0 + N = N for integer types
6978 if Is_Integer_Type (Typ) then
6979 if Compile_Time_Known_Value (Right_Opnd (N))
6980 and then Expr_Value (Right_Opnd (N)) = Uint_0
6981 then
6982 Rewrite (N, Left_Opnd (N));
6983 return;
6985 elsif Compile_Time_Known_Value (Left_Opnd (N))
6986 and then Expr_Value (Left_Opnd (N)) = Uint_0
6987 then
6988 Rewrite (N, Right_Opnd (N));
6989 return;
6990 end if;
6991 end if;
6993 -- Arithmetic overflow checks for signed integer/fixed point types
6995 if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
6996 Apply_Arithmetic_Overflow_Check (N);
6997 return;
6998 end if;
7000 -- Overflow checks for floating-point if -gnateF mode active
7002 Check_Float_Op_Overflow (N);
7004 Expand_Nonbinary_Modular_Op (N);
7005 end Expand_N_Op_Add;
7007 ---------------------
7008 -- Expand_N_Op_And --
7009 ---------------------
7011 procedure Expand_N_Op_And (N : Node_Id) is
7012 Typ : constant Entity_Id := Etype (N);
7014 begin
7015 Binary_Op_Validity_Checks (N);
7017 if Is_Array_Type (Etype (N)) then
7018 Expand_Boolean_Operator (N);
7020 elsif Is_Boolean_Type (Etype (N)) then
7021 Adjust_Condition (Left_Opnd (N));
7022 Adjust_Condition (Right_Opnd (N));
7023 Set_Etype (N, Standard_Boolean);
7024 Adjust_Result_Type (N, Typ);
7026 elsif Is_Intrinsic_Subprogram (Entity (N)) then
7027 Expand_Intrinsic_Call (N, Entity (N));
7028 end if;
7030 Expand_Nonbinary_Modular_Op (N);
7031 end Expand_N_Op_And;
7033 ------------------------
7034 -- Expand_N_Op_Concat --
7035 ------------------------
7037 procedure Expand_N_Op_Concat (N : Node_Id) is
7038 Opnds : List_Id;
7039 -- List of operands to be concatenated
7041 Cnode : Node_Id;
7042 -- Node which is to be replaced by the result of concatenating the nodes
7043 -- in the list Opnds.
7045 begin
7046 -- Ensure validity of both operands
7048 Binary_Op_Validity_Checks (N);
7050 -- If we are the left operand of a concatenation higher up the tree,
7051 -- then do nothing for now, since we want to deal with a series of
7052 -- concatenations as a unit.
7054 if Nkind (Parent (N)) = N_Op_Concat
7055 and then N = Left_Opnd (Parent (N))
7056 then
7057 return;
7058 end if;
7060 -- We get here with a concatenation whose left operand may be a
7061 -- concatenation itself with a consistent type. We need to process
7062 -- these concatenation operands from left to right, which means
7063 -- from the deepest node in the tree to the highest node.
7065 Cnode := N;
7066 while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
7067 Cnode := Left_Opnd (Cnode);
7068 end loop;
7070 -- Now Cnode is the deepest concatenation, and its parents are the
7071 -- concatenation nodes above, so now we process bottom up, doing the
7072 -- operands.
7074 -- The outer loop runs more than once if more than one concatenation
7075 -- type is involved.
7077 Outer : loop
7078 Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
7079 Set_Parent (Opnds, N);
7081 -- The inner loop gathers concatenation operands
7083 Inner : while Cnode /= N
7084 and then Base_Type (Etype (Cnode)) =
7085 Base_Type (Etype (Parent (Cnode)))
7086 loop
7087 Cnode := Parent (Cnode);
7088 Append (Right_Opnd (Cnode), Opnds);
7089 end loop Inner;
7091 -- Note: The following code is a temporary workaround for N731-034
7092 -- and N829-028 and will be kept until the general issue of internal
7093 -- symbol serialization is addressed. The workaround is kept under a
7094 -- debug switch to avoid permiating into the general case.
7096 -- Wrap the node to concatenate into an expression actions node to
7097 -- keep it nicely packaged. This is useful in the case of an assert
7098 -- pragma with a concatenation where we want to be able to delete
7099 -- the concatenation and all its expansion stuff.
7101 if Debug_Flag_Dot_H then
7102 declare
7103 Cnod : constant Node_Id := New_Copy_Tree (Cnode);
7104 Typ : constant Entity_Id := Base_Type (Etype (Cnode));
7106 begin
7107 -- Note: use Rewrite rather than Replace here, so that for
7108 -- example Why_Not_Static can find the original concatenation
7109 -- node OK!
7111 Rewrite (Cnode,
7112 Make_Expression_With_Actions (Sloc (Cnode),
7113 Actions => New_List (Make_Null_Statement (Sloc (Cnode))),
7114 Expression => Cnod));
7116 Expand_Concatenate (Cnod, Opnds);
7117 Analyze_And_Resolve (Cnode, Typ);
7118 end;
7120 -- Default case
7122 else
7123 Expand_Concatenate (Cnode, Opnds);
7124 end if;
7126 exit Outer when Cnode = N;
7127 Cnode := Parent (Cnode);
7128 end loop Outer;
7129 end Expand_N_Op_Concat;
7131 ------------------------
7132 -- Expand_N_Op_Divide --
7133 ------------------------
7135 procedure Expand_N_Op_Divide (N : Node_Id) is
7136 Loc : constant Source_Ptr := Sloc (N);
7137 Lopnd : constant Node_Id := Left_Opnd (N);
7138 Ropnd : constant Node_Id := Right_Opnd (N);
7139 Ltyp : constant Entity_Id := Etype (Lopnd);
7140 Rtyp : constant Entity_Id := Etype (Ropnd);
7141 Typ : Entity_Id := Etype (N);
7142 Rknow : constant Boolean := Is_Integer_Type (Typ)
7143 and then
7144 Compile_Time_Known_Value (Ropnd);
7145 Rval : Uint;
7147 begin
7148 Binary_Op_Validity_Checks (N);
7150 -- Check for MINIMIZED/ELIMINATED overflow mode
7152 if Minimized_Eliminated_Overflow_Check (N) then
7153 Apply_Arithmetic_Overflow_Check (N);
7154 return;
7155 end if;
7157 -- Otherwise proceed with expansion of division
7159 if Rknow then
7160 Rval := Expr_Value (Ropnd);
7161 end if;
7163 -- N / 1 = N for integer types
7165 if Rknow and then Rval = Uint_1 then
7166 Rewrite (N, Lopnd);
7167 return;
7168 end if;
7170 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
7171 -- Is_Power_Of_2_For_Shift is set means that we know that our left
7172 -- operand is an unsigned integer, as required for this to work.
7174 if Nkind (Ropnd) = N_Op_Expon
7175 and then Is_Power_Of_2_For_Shift (Ropnd)
7177 -- We cannot do this transformation in configurable run time mode if we
7178 -- have 64-bit integers and long shifts are not available.
7180 and then (Esize (Ltyp) <= 32 or else Support_Long_Shifts_On_Target)
7181 then
7182 Rewrite (N,
7183 Make_Op_Shift_Right (Loc,
7184 Left_Opnd => Lopnd,
7185 Right_Opnd =>
7186 Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
7187 Analyze_And_Resolve (N, Typ);
7188 return;
7189 end if;
7191 -- Do required fixup of universal fixed operation
7193 if Typ = Universal_Fixed then
7194 Fixup_Universal_Fixed_Operation (N);
7195 Typ := Etype (N);
7196 end if;
7198 -- Divisions with fixed-point results
7200 if Is_Fixed_Point_Type (Typ) then
7202 -- No special processing if Treat_Fixed_As_Integer is set, since
7203 -- from a semantic point of view such operations are simply integer
7204 -- operations and will be treated that way.
7206 if not Treat_Fixed_As_Integer (N) then
7207 if Is_Integer_Type (Rtyp) then
7208 Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
7209 else
7210 Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
7211 end if;
7212 end if;
7214 -- Deal with divide-by-zero check if back end cannot handle them
7215 -- and the flag is set indicating that we need such a check. Note
7216 -- that we don't need to bother here with the case of mixed-mode
7217 -- (Right operand an integer type), since these will be rewritten
7218 -- with conversions to a divide with a fixed-point right operand.
7220 if Nkind (N) = N_Op_Divide
7221 and then Do_Division_Check (N)
7222 and then not Backend_Divide_Checks_On_Target
7223 and then not Is_Integer_Type (Rtyp)
7224 then
7225 Set_Do_Division_Check (N, False);
7226 Insert_Action (N,
7227 Make_Raise_Constraint_Error (Loc,
7228 Condition =>
7229 Make_Op_Eq (Loc,
7230 Left_Opnd => Duplicate_Subexpr_Move_Checks (Ropnd),
7231 Right_Opnd => Make_Real_Literal (Loc, Ureal_0)),
7232 Reason => CE_Divide_By_Zero));
7233 end if;
7235 -- Other cases of division of fixed-point operands. Again we exclude the
7236 -- case where Treat_Fixed_As_Integer is set.
7238 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
7239 and then not Treat_Fixed_As_Integer (N)
7240 then
7241 if Is_Integer_Type (Typ) then
7242 Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
7243 else
7244 pragma Assert (Is_Floating_Point_Type (Typ));
7245 Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
7246 end if;
7248 -- Mixed-mode operations can appear in a non-static universal context,
7249 -- in which case the integer argument must be converted explicitly.
7251 elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
7252 Rewrite (Ropnd,
7253 Convert_To (Universal_Real, Relocate_Node (Ropnd)));
7255 Analyze_And_Resolve (Ropnd, Universal_Real);
7257 elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
7258 Rewrite (Lopnd,
7259 Convert_To (Universal_Real, Relocate_Node (Lopnd)));
7261 Analyze_And_Resolve (Lopnd, Universal_Real);
7263 -- Non-fixed point cases, do integer zero divide and overflow checks
7265 elsif Is_Integer_Type (Typ) then
7266 Apply_Divide_Checks (N);
7267 end if;
7269 -- Overflow checks for floating-point if -gnateF mode active
7271 Check_Float_Op_Overflow (N);
7273 Expand_Nonbinary_Modular_Op (N);
7274 end Expand_N_Op_Divide;
7276 --------------------
7277 -- Expand_N_Op_Eq --
7278 --------------------
7280 procedure Expand_N_Op_Eq (N : Node_Id) is
7281 Loc : constant Source_Ptr := Sloc (N);
7282 Typ : constant Entity_Id := Etype (N);
7283 Lhs : constant Node_Id := Left_Opnd (N);
7284 Rhs : constant Node_Id := Right_Opnd (N);
7285 Bodies : constant List_Id := New_List;
7286 A_Typ : constant Entity_Id := Etype (Lhs);
7288 Typl : Entity_Id := A_Typ;
7289 Op_Name : Entity_Id;
7290 Prim : Elmt_Id;
7292 procedure Build_Equality_Call (Eq : Entity_Id);
7293 -- If a constructed equality exists for the type or for its parent,
7294 -- build and analyze call, adding conversions if the operation is
7295 -- inherited.
7297 function Has_Unconstrained_UU_Component (Typ : Node_Id) return Boolean;
7298 -- Determines whether a type has a subcomponent of an unconstrained
7299 -- Unchecked_Union subtype. Typ is a record type.
7301 -------------------------
7302 -- Build_Equality_Call --
7303 -------------------------
7305 procedure Build_Equality_Call (Eq : Entity_Id) is
7306 Op_Type : constant Entity_Id := Etype (First_Formal (Eq));
7307 L_Exp : Node_Id := Relocate_Node (Lhs);
7308 R_Exp : Node_Id := Relocate_Node (Rhs);
7310 begin
7311 -- Adjust operands if necessary to comparison type
7313 if Base_Type (Op_Type) /= Base_Type (A_Typ)
7314 and then not Is_Class_Wide_Type (A_Typ)
7315 then
7316 L_Exp := OK_Convert_To (Op_Type, L_Exp);
7317 R_Exp := OK_Convert_To (Op_Type, R_Exp);
7318 end if;
7320 -- If we have an Unchecked_Union, we need to add the inferred
7321 -- discriminant values as actuals in the function call. At this
7322 -- point, the expansion has determined that both operands have
7323 -- inferable discriminants.
7325 if Is_Unchecked_Union (Op_Type) then
7326 declare
7327 Lhs_Type : constant Node_Id := Etype (L_Exp);
7328 Rhs_Type : constant Node_Id := Etype (R_Exp);
7330 Lhs_Discr_Vals : Elist_Id;
7331 -- List of inferred discriminant values for left operand.
7333 Rhs_Discr_Vals : Elist_Id;
7334 -- List of inferred discriminant values for right operand.
7336 Discr : Entity_Id;
7338 begin
7339 Lhs_Discr_Vals := New_Elmt_List;
7340 Rhs_Discr_Vals := New_Elmt_List;
7342 -- Per-object constrained selected components require special
7343 -- attention. If the enclosing scope of the component is an
7344 -- Unchecked_Union, we cannot reference its discriminants
7345 -- directly. This is why we use the extra parameters of the
7346 -- equality function of the enclosing Unchecked_Union.
7348 -- type UU_Type (Discr : Integer := 0) is
7349 -- . . .
7350 -- end record;
7351 -- pragma Unchecked_Union (UU_Type);
7353 -- 1. Unchecked_Union enclosing record:
7355 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
7356 -- . . .
7357 -- Comp : UU_Type (Discr);
7358 -- . . .
7359 -- end Enclosing_UU_Type;
7360 -- pragma Unchecked_Union (Enclosing_UU_Type);
7362 -- Obj1 : Enclosing_UU_Type;
7363 -- Obj2 : Enclosing_UU_Type (1);
7365 -- [. . .] Obj1 = Obj2 [. . .]
7367 -- Generated code:
7369 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
7371 -- A and B are the formal parameters of the equality function
7372 -- of Enclosing_UU_Type. The function always has two extra
7373 -- formals to capture the inferred discriminant values for
7374 -- each discriminant of the type.
7376 -- 2. Non-Unchecked_Union enclosing record:
7378 -- type
7379 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
7380 -- is record
7381 -- . . .
7382 -- Comp : UU_Type (Discr);
7383 -- . . .
7384 -- end Enclosing_Non_UU_Type;
7386 -- Obj1 : Enclosing_Non_UU_Type;
7387 -- Obj2 : Enclosing_Non_UU_Type (1);
7389 -- ... Obj1 = Obj2 ...
7391 -- Generated code:
7393 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
7394 -- obj1.discr, obj2.discr)) then
7396 -- In this case we can directly reference the discriminants of
7397 -- the enclosing record.
7399 -- Process left operand of equality
7401 if Nkind (Lhs) = N_Selected_Component
7402 and then
7403 Has_Per_Object_Constraint (Entity (Selector_Name (Lhs)))
7404 then
7405 -- If enclosing record is an Unchecked_Union, use formals
7406 -- corresponding to each discriminant. The name of the
7407 -- formal is that of the discriminant, with added suffix,
7408 -- see Exp_Ch3.Build_Record_Equality for details.
7410 if Is_Unchecked_Union (Scope (Entity (Selector_Name (Lhs))))
7411 then
7412 Discr :=
7413 First_Discriminant
7414 (Scope (Entity (Selector_Name (Lhs))));
7415 while Present (Discr) loop
7416 Append_Elmt
7417 (Make_Identifier (Loc,
7418 Chars => New_External_Name (Chars (Discr), 'A')),
7419 To => Lhs_Discr_Vals);
7420 Next_Discriminant (Discr);
7421 end loop;
7423 -- If enclosing record is of a non-Unchecked_Union type, it
7424 -- is possible to reference its discriminants directly.
7426 else
7427 Discr := First_Discriminant (Lhs_Type);
7428 while Present (Discr) loop
7429 Append_Elmt
7430 (Make_Selected_Component (Loc,
7431 Prefix => Prefix (Lhs),
7432 Selector_Name =>
7433 New_Copy
7434 (Get_Discriminant_Value (Discr,
7435 Lhs_Type,
7436 Stored_Constraint (Lhs_Type)))),
7437 To => Lhs_Discr_Vals);
7438 Next_Discriminant (Discr);
7439 end loop;
7440 end if;
7442 -- Otherwise operand is on object with a constrained type.
7443 -- Infer the discriminant values from the constraint.
7445 else
7447 Discr := First_Discriminant (Lhs_Type);
7448 while Present (Discr) loop
7449 Append_Elmt
7450 (New_Copy
7451 (Get_Discriminant_Value (Discr,
7452 Lhs_Type,
7453 Stored_Constraint (Lhs_Type))),
7454 To => Lhs_Discr_Vals);
7455 Next_Discriminant (Discr);
7456 end loop;
7457 end if;
7459 -- Similar processing for right operand of equality
7461 if Nkind (Rhs) = N_Selected_Component
7462 and then
7463 Has_Per_Object_Constraint (Entity (Selector_Name (Rhs)))
7464 then
7465 if Is_Unchecked_Union
7466 (Scope (Entity (Selector_Name (Rhs))))
7467 then
7468 Discr :=
7469 First_Discriminant
7470 (Scope (Entity (Selector_Name (Rhs))));
7471 while Present (Discr) loop
7472 Append_Elmt
7473 (Make_Identifier (Loc,
7474 Chars => New_External_Name (Chars (Discr), 'B')),
7475 To => Rhs_Discr_Vals);
7476 Next_Discriminant (Discr);
7477 end loop;
7479 else
7480 Discr := First_Discriminant (Rhs_Type);
7481 while Present (Discr) loop
7482 Append_Elmt
7483 (Make_Selected_Component (Loc,
7484 Prefix => Prefix (Rhs),
7485 Selector_Name =>
7486 New_Copy (Get_Discriminant_Value
7487 (Discr,
7488 Rhs_Type,
7489 Stored_Constraint (Rhs_Type)))),
7490 To => Rhs_Discr_Vals);
7491 Next_Discriminant (Discr);
7492 end loop;
7493 end if;
7495 else
7496 Discr := First_Discriminant (Rhs_Type);
7497 while Present (Discr) loop
7498 Append_Elmt
7499 (New_Copy (Get_Discriminant_Value
7500 (Discr,
7501 Rhs_Type,
7502 Stored_Constraint (Rhs_Type))),
7503 To => Rhs_Discr_Vals);
7504 Next_Discriminant (Discr);
7505 end loop;
7506 end if;
7508 -- Now merge the list of discriminant values so that values
7509 -- of corresponding discriminants are adjacent.
7511 declare
7512 Params : List_Id;
7513 L_Elmt : Elmt_Id;
7514 R_Elmt : Elmt_Id;
7516 begin
7517 Params := New_List (L_Exp, R_Exp);
7518 L_Elmt := First_Elmt (Lhs_Discr_Vals);
7519 R_Elmt := First_Elmt (Rhs_Discr_Vals);
7520 while Present (L_Elmt) loop
7521 Append_To (Params, Node (L_Elmt));
7522 Append_To (Params, Node (R_Elmt));
7523 Next_Elmt (L_Elmt);
7524 Next_Elmt (R_Elmt);
7525 end loop;
7527 Rewrite (N,
7528 Make_Function_Call (Loc,
7529 Name => New_Occurrence_Of (Eq, Loc),
7530 Parameter_Associations => Params));
7531 end;
7532 end;
7534 -- Normal case, not an unchecked union
7536 else
7537 Rewrite (N,
7538 Make_Function_Call (Loc,
7539 Name => New_Occurrence_Of (Eq, Loc),
7540 Parameter_Associations => New_List (L_Exp, R_Exp)));
7541 end if;
7543 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7544 end Build_Equality_Call;
7546 ------------------------------------
7547 -- Has_Unconstrained_UU_Component --
7548 ------------------------------------
7550 function Has_Unconstrained_UU_Component
7551 (Typ : Node_Id) return Boolean
7553 Tdef : constant Node_Id :=
7554 Type_Definition (Declaration_Node (Base_Type (Typ)));
7555 Clist : Node_Id;
7556 Vpart : Node_Id;
7558 function Component_Is_Unconstrained_UU
7559 (Comp : Node_Id) return Boolean;
7560 -- Determines whether the subtype of the component is an
7561 -- unconstrained Unchecked_Union.
7563 function Variant_Is_Unconstrained_UU
7564 (Variant : Node_Id) return Boolean;
7565 -- Determines whether a component of the variant has an unconstrained
7566 -- Unchecked_Union subtype.
7568 -----------------------------------
7569 -- Component_Is_Unconstrained_UU --
7570 -----------------------------------
7572 function Component_Is_Unconstrained_UU
7573 (Comp : Node_Id) return Boolean
7575 begin
7576 if Nkind (Comp) /= N_Component_Declaration then
7577 return False;
7578 end if;
7580 declare
7581 Sindic : constant Node_Id :=
7582 Subtype_Indication (Component_Definition (Comp));
7584 begin
7585 -- Unconstrained nominal type. In the case of a constraint
7586 -- present, the node kind would have been N_Subtype_Indication.
7588 if Nkind (Sindic) = N_Identifier then
7589 return Is_Unchecked_Union (Base_Type (Etype (Sindic)));
7590 end if;
7592 return False;
7593 end;
7594 end Component_Is_Unconstrained_UU;
7596 ---------------------------------
7597 -- Variant_Is_Unconstrained_UU --
7598 ---------------------------------
7600 function Variant_Is_Unconstrained_UU
7601 (Variant : Node_Id) return Boolean
7603 Clist : constant Node_Id := Component_List (Variant);
7605 begin
7606 if Is_Empty_List (Component_Items (Clist)) then
7607 return False;
7608 end if;
7610 -- We only need to test one component
7612 declare
7613 Comp : Node_Id := First (Component_Items (Clist));
7615 begin
7616 while Present (Comp) loop
7617 if Component_Is_Unconstrained_UU (Comp) then
7618 return True;
7619 end if;
7621 Next (Comp);
7622 end loop;
7623 end;
7625 -- None of the components withing the variant were of
7626 -- unconstrained Unchecked_Union type.
7628 return False;
7629 end Variant_Is_Unconstrained_UU;
7631 -- Start of processing for Has_Unconstrained_UU_Component
7633 begin
7634 if Null_Present (Tdef) then
7635 return False;
7636 end if;
7638 Clist := Component_List (Tdef);
7639 Vpart := Variant_Part (Clist);
7641 -- Inspect available components
7643 if Present (Component_Items (Clist)) then
7644 declare
7645 Comp : Node_Id := First (Component_Items (Clist));
7647 begin
7648 while Present (Comp) loop
7650 -- One component is sufficient
7652 if Component_Is_Unconstrained_UU (Comp) then
7653 return True;
7654 end if;
7656 Next (Comp);
7657 end loop;
7658 end;
7659 end if;
7661 -- Inspect available components withing variants
7663 if Present (Vpart) then
7664 declare
7665 Variant : Node_Id := First (Variants (Vpart));
7667 begin
7668 while Present (Variant) loop
7670 -- One component within a variant is sufficient
7672 if Variant_Is_Unconstrained_UU (Variant) then
7673 return True;
7674 end if;
7676 Next (Variant);
7677 end loop;
7678 end;
7679 end if;
7681 -- Neither the available components, nor the components inside the
7682 -- variant parts were of an unconstrained Unchecked_Union subtype.
7684 return False;
7685 end Has_Unconstrained_UU_Component;
7687 -- Start of processing for Expand_N_Op_Eq
7689 begin
7690 Binary_Op_Validity_Checks (N);
7692 -- Deal with private types
7694 if Ekind (Typl) = E_Private_Type then
7695 Typl := Underlying_Type (Typl);
7696 elsif Ekind (Typl) = E_Private_Subtype then
7697 Typl := Underlying_Type (Base_Type (Typl));
7698 else
7699 null;
7700 end if;
7702 -- It may happen in error situations that the underlying type is not
7703 -- set. The error will be detected later, here we just defend the
7704 -- expander code.
7706 if No (Typl) then
7707 return;
7708 end if;
7710 -- Now get the implementation base type (note that plain Base_Type here
7711 -- might lead us back to the private type, which is not what we want!)
7713 Typl := Implementation_Base_Type (Typl);
7715 -- Equality between variant records results in a call to a routine
7716 -- that has conditional tests of the discriminant value(s), and hence
7717 -- violates the No_Implicit_Conditionals restriction.
7719 if Has_Variant_Part (Typl) then
7720 declare
7721 Msg : Boolean;
7723 begin
7724 Check_Restriction (Msg, No_Implicit_Conditionals, N);
7726 if Msg then
7727 Error_Msg_N
7728 ("\comparison of variant records tests discriminants", N);
7729 return;
7730 end if;
7731 end;
7732 end if;
7734 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7735 -- means we no longer have a comparison operation, we are all done.
7737 Expand_Compare_Minimize_Eliminate_Overflow (N);
7739 if Nkind (N) /= N_Op_Eq then
7740 return;
7741 end if;
7743 -- Boolean types (requiring handling of non-standard case)
7745 if Is_Boolean_Type (Typl) then
7746 Adjust_Condition (Left_Opnd (N));
7747 Adjust_Condition (Right_Opnd (N));
7748 Set_Etype (N, Standard_Boolean);
7749 Adjust_Result_Type (N, Typ);
7751 -- Array types
7753 elsif Is_Array_Type (Typl) then
7755 -- If we are doing full validity checking, and it is possible for the
7756 -- array elements to be invalid then expand out array comparisons to
7757 -- make sure that we check the array elements.
7759 if Validity_Check_Operands
7760 and then not Is_Known_Valid (Component_Type (Typl))
7761 then
7762 declare
7763 Save_Force_Validity_Checks : constant Boolean :=
7764 Force_Validity_Checks;
7765 begin
7766 Force_Validity_Checks := True;
7767 Rewrite (N,
7768 Expand_Array_Equality
7770 Relocate_Node (Lhs),
7771 Relocate_Node (Rhs),
7772 Bodies,
7773 Typl));
7774 Insert_Actions (N, Bodies);
7775 Analyze_And_Resolve (N, Standard_Boolean);
7776 Force_Validity_Checks := Save_Force_Validity_Checks;
7777 end;
7779 -- Packed case where both operands are known aligned
7781 elsif Is_Bit_Packed_Array (Typl)
7782 and then not Is_Possibly_Unaligned_Object (Lhs)
7783 and then not Is_Possibly_Unaligned_Object (Rhs)
7784 then
7785 Expand_Packed_Eq (N);
7787 -- Where the component type is elementary we can use a block bit
7788 -- comparison (if supported on the target) exception in the case
7789 -- of floating-point (negative zero issues require element by
7790 -- element comparison), and atomic/VFA types (where we must be sure
7791 -- to load elements independently) and possibly unaligned arrays.
7793 elsif Is_Elementary_Type (Component_Type (Typl))
7794 and then not Is_Floating_Point_Type (Component_Type (Typl))
7795 and then not Is_Atomic_Or_VFA (Component_Type (Typl))
7796 and then not Is_Possibly_Unaligned_Object (Lhs)
7797 and then not Is_Possibly_Unaligned_Object (Rhs)
7798 and then Support_Composite_Compare_On_Target
7799 then
7800 null;
7802 -- For composite and floating-point cases, expand equality loop to
7803 -- make sure of using proper comparisons for tagged types, and
7804 -- correctly handling the floating-point case.
7806 else
7807 Rewrite (N,
7808 Expand_Array_Equality
7810 Relocate_Node (Lhs),
7811 Relocate_Node (Rhs),
7812 Bodies,
7813 Typl));
7814 Insert_Actions (N, Bodies, Suppress => All_Checks);
7815 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7816 end if;
7818 -- Record Types
7820 elsif Is_Record_Type (Typl) then
7822 -- For tagged types, use the primitive "="
7824 if Is_Tagged_Type (Typl) then
7826 -- No need to do anything else compiling under restriction
7827 -- No_Dispatching_Calls. During the semantic analysis we
7828 -- already notified such violation.
7830 if Restriction_Active (No_Dispatching_Calls) then
7831 return;
7832 end if;
7834 -- If this is an untagged private type completed with a derivation
7835 -- of an untagged private type whose full view is a tagged type,
7836 -- we use the primitive operations of the private type (since it
7837 -- does not have a full view, and also because its equality
7838 -- primitive may have been overridden in its untagged full view).
7840 if Inherits_From_Tagged_Full_View (A_Typ) then
7842 -- Search for equality operation, checking that the operands
7843 -- have the same type. Note that we must find a matching entry,
7844 -- or something is very wrong.
7846 Prim := First_Elmt (Collect_Primitive_Operations (A_Typ));
7848 while Present (Prim) loop
7849 exit when Chars (Node (Prim)) = Name_Op_Eq
7850 and then Etype (First_Formal (Node (Prim))) =
7851 Etype (Next_Formal (First_Formal (Node (Prim))))
7852 and then
7853 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7855 Next_Elmt (Prim);
7856 end loop;
7858 pragma Assert (Present (Prim));
7859 Op_Name := Node (Prim);
7861 -- Find the type's predefined equality or an overriding
7862 -- user-defined equality. The reason for not simply calling
7863 -- Find_Prim_Op here is that there may be a user-defined
7864 -- overloaded equality op that precedes the equality that we
7865 -- want, so we have to explicitly search (e.g., there could be
7866 -- an equality with two different parameter types).
7868 else
7869 if Is_Class_Wide_Type (Typl) then
7870 Typl := Find_Specific_Type (Typl);
7871 end if;
7873 Prim := First_Elmt (Primitive_Operations (Typl));
7874 while Present (Prim) loop
7875 exit when Chars (Node (Prim)) = Name_Op_Eq
7876 and then Etype (First_Formal (Node (Prim))) =
7877 Etype (Next_Formal (First_Formal (Node (Prim))))
7878 and then
7879 Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7881 Next_Elmt (Prim);
7882 end loop;
7884 pragma Assert (Present (Prim));
7885 Op_Name := Node (Prim);
7886 end if;
7888 Build_Equality_Call (Op_Name);
7890 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
7891 -- predefined equality operator for a type which has a subcomponent
7892 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
7894 elsif Has_Unconstrained_UU_Component (Typl) then
7895 Insert_Action (N,
7896 Make_Raise_Program_Error (Loc,
7897 Reason => PE_Unchecked_Union_Restriction));
7899 -- Prevent Gigi from generating incorrect code by rewriting the
7900 -- equality as a standard False. (is this documented somewhere???)
7902 Rewrite (N,
7903 New_Occurrence_Of (Standard_False, Loc));
7905 elsif Is_Unchecked_Union (Typl) then
7907 -- If we can infer the discriminants of the operands, we make a
7908 -- call to the TSS equality function.
7910 if Has_Inferable_Discriminants (Lhs)
7911 and then
7912 Has_Inferable_Discriminants (Rhs)
7913 then
7914 Build_Equality_Call
7915 (TSS (Root_Type (Typl), TSS_Composite_Equality));
7917 else
7918 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
7919 -- the predefined equality operator for an Unchecked_Union type
7920 -- if either of the operands lack inferable discriminants.
7922 Insert_Action (N,
7923 Make_Raise_Program_Error (Loc,
7924 Reason => PE_Unchecked_Union_Restriction));
7926 -- Emit a warning on source equalities only, otherwise the
7927 -- message may appear out of place due to internal use. The
7928 -- warning is unconditional because it is required by the
7929 -- language.
7931 if Comes_From_Source (N) then
7932 Error_Msg_N
7933 ("Unchecked_Union discriminants cannot be determined??",
7935 Error_Msg_N
7936 ("\Program_Error will be raised for equality operation??",
7938 end if;
7940 -- Prevent Gigi from generating incorrect code by rewriting
7941 -- the equality as a standard False (documented where???).
7943 Rewrite (N,
7944 New_Occurrence_Of (Standard_False, Loc));
7945 end if;
7947 -- If a type support function is present (for complex cases), use it
7949 elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
7950 Build_Equality_Call
7951 (TSS (Root_Type (Typl), TSS_Composite_Equality));
7953 -- When comparing two Bounded_Strings, use the primitive equality of
7954 -- the root Super_String type.
7956 elsif Is_Bounded_String (Typl) then
7957 Prim :=
7958 First_Elmt (Collect_Primitive_Operations (Root_Type (Typl)));
7960 while Present (Prim) loop
7961 exit when Chars (Node (Prim)) = Name_Op_Eq
7962 and then Etype (First_Formal (Node (Prim))) =
7963 Etype (Next_Formal (First_Formal (Node (Prim))))
7964 and then Base_Type (Etype (Node (Prim))) = Standard_Boolean;
7966 Next_Elmt (Prim);
7967 end loop;
7969 -- A Super_String type should always have a primitive equality
7971 pragma Assert (Present (Prim));
7972 Build_Equality_Call (Node (Prim));
7974 -- Otherwise expand the component by component equality. Note that
7975 -- we never use block-bit comparisons for records, because of the
7976 -- problems with gaps. The back end will often be able to recombine
7977 -- the separate comparisons that we generate here.
7979 else
7980 Remove_Side_Effects (Lhs);
7981 Remove_Side_Effects (Rhs);
7982 Rewrite (N,
7983 Expand_Record_Equality (N, Typl, Lhs, Rhs, Bodies));
7985 Insert_Actions (N, Bodies, Suppress => All_Checks);
7986 Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
7987 end if;
7988 end if;
7990 -- Test if result is known at compile time
7992 Rewrite_Comparison (N);
7994 -- Special optimization of length comparison
7996 Optimize_Length_Comparison (N);
7998 -- One more special case: if we have a comparison of X'Result = expr
7999 -- in floating-point, then if not already there, change expr to be
8000 -- f'Machine (expr) to eliminate surprise from extra precision.
8002 if Is_Floating_Point_Type (Typl)
8003 and then Nkind (Original_Node (Lhs)) = N_Attribute_Reference
8004 and then Attribute_Name (Original_Node (Lhs)) = Name_Result
8005 then
8006 -- Stick in the Typ'Machine call if not already there
8008 if Nkind (Rhs) /= N_Attribute_Reference
8009 or else Attribute_Name (Rhs) /= Name_Machine
8010 then
8011 Rewrite (Rhs,
8012 Make_Attribute_Reference (Loc,
8013 Prefix => New_Occurrence_Of (Typl, Loc),
8014 Attribute_Name => Name_Machine,
8015 Expressions => New_List (Relocate_Node (Rhs))));
8016 Analyze_And_Resolve (Rhs, Typl);
8017 end if;
8018 end if;
8019 end Expand_N_Op_Eq;
8021 -----------------------
8022 -- Expand_N_Op_Expon --
8023 -----------------------
8025 procedure Expand_N_Op_Expon (N : Node_Id) is
8026 Loc : constant Source_Ptr := Sloc (N);
8027 Ovflo : constant Boolean := Do_Overflow_Check (N);
8028 Typ : constant Entity_Id := Etype (N);
8029 Rtyp : constant Entity_Id := Root_Type (Typ);
8031 Bastyp : Entity_Id;
8033 function Wrap_MA (Exp : Node_Id) return Node_Id;
8034 -- Given an expression Exp, if the root type is Float or Long_Float,
8035 -- then wrap the expression in a call of Bastyp'Machine, to stop any
8036 -- extra precision. This is done to ensure that X**A = X**B when A is
8037 -- a static constant and B is a variable with the same value. For any
8038 -- other type, the node Exp is returned unchanged.
8040 -------------
8041 -- Wrap_MA --
8042 -------------
8044 function Wrap_MA (Exp : Node_Id) return Node_Id is
8045 Loc : constant Source_Ptr := Sloc (Exp);
8047 begin
8048 if Rtyp = Standard_Float or else Rtyp = Standard_Long_Float then
8049 return
8050 Make_Attribute_Reference (Loc,
8051 Attribute_Name => Name_Machine,
8052 Prefix => New_Occurrence_Of (Bastyp, Loc),
8053 Expressions => New_List (Relocate_Node (Exp)));
8054 else
8055 return Exp;
8056 end if;
8057 end Wrap_MA;
8059 -- Local variables
8061 Base : Node_Id;
8062 Ent : Entity_Id;
8063 Etyp : Entity_Id;
8064 Exp : Node_Id;
8065 Exptyp : Entity_Id;
8066 Expv : Uint;
8067 Rent : RE_Id;
8068 Temp : Node_Id;
8069 Xnode : Node_Id;
8071 -- Start of processing for Expand_N_Op_Expon
8073 begin
8074 Binary_Op_Validity_Checks (N);
8076 -- CodePeer wants to see the unexpanded N_Op_Expon node
8078 if CodePeer_Mode then
8079 return;
8080 end if;
8082 -- Relocation of left and right operands must be done after performing
8083 -- the validity checks since the generation of validation checks may
8084 -- remove side effects.
8086 Base := Relocate_Node (Left_Opnd (N));
8087 Bastyp := Etype (Base);
8088 Exp := Relocate_Node (Right_Opnd (N));
8089 Exptyp := Etype (Exp);
8091 -- If either operand is of a private type, then we have the use of an
8092 -- intrinsic operator, and we get rid of the privateness, by using root
8093 -- types of underlying types for the actual operation. Otherwise the
8094 -- private types will cause trouble if we expand multiplications or
8095 -- shifts etc. We also do this transformation if the result type is
8096 -- different from the base type.
8098 if Is_Private_Type (Etype (Base))
8099 or else Is_Private_Type (Typ)
8100 or else Is_Private_Type (Exptyp)
8101 or else Rtyp /= Root_Type (Bastyp)
8102 then
8103 declare
8104 Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
8105 Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
8106 begin
8107 Rewrite (N,
8108 Unchecked_Convert_To (Typ,
8109 Make_Op_Expon (Loc,
8110 Left_Opnd => Unchecked_Convert_To (Bt, Base),
8111 Right_Opnd => Unchecked_Convert_To (Et, Exp))));
8112 Analyze_And_Resolve (N, Typ);
8113 return;
8114 end;
8115 end if;
8117 -- Check for MINIMIZED/ELIMINATED overflow mode
8119 if Minimized_Eliminated_Overflow_Check (N) then
8120 Apply_Arithmetic_Overflow_Check (N);
8121 return;
8122 end if;
8124 -- Test for case of known right argument where we can replace the
8125 -- exponentiation by an equivalent expression using multiplication.
8127 -- Note: use CRT_Safe version of Compile_Time_Known_Value because in
8128 -- configurable run-time mode, we may not have the exponentiation
8129 -- routine available, and we don't want the legality of the program
8130 -- to depend on how clever the compiler is in knowing values.
8132 if CRT_Safe_Compile_Time_Known_Value (Exp) then
8133 Expv := Expr_Value (Exp);
8135 -- We only fold small non-negative exponents. You might think we
8136 -- could fold small negative exponents for the real case, but we
8137 -- can't because we are required to raise Constraint_Error for
8138 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
8139 -- See ACVC test C4A012B, and it is not worth generating the test.
8141 -- For small negative exponents, we return the reciprocal of
8142 -- the folding of the exponentiation for the opposite (positive)
8143 -- exponent, as required by Ada RM 4.5.6(11/3).
8145 if abs Expv <= 4 then
8147 -- X ** 0 = 1 (or 1.0)
8149 if Expv = 0 then
8151 -- Call Remove_Side_Effects to ensure that any side effects
8152 -- in the ignored left operand (in particular function calls
8153 -- to user defined functions) are properly executed.
8155 Remove_Side_Effects (Base);
8157 if Ekind (Typ) in Integer_Kind then
8158 Xnode := Make_Integer_Literal (Loc, Intval => 1);
8159 else
8160 Xnode := Make_Real_Literal (Loc, Ureal_1);
8161 end if;
8163 -- X ** 1 = X
8165 elsif Expv = 1 then
8166 Xnode := Base;
8168 -- X ** 2 = X * X
8170 elsif Expv = 2 then
8171 Xnode :=
8172 Wrap_MA (
8173 Make_Op_Multiply (Loc,
8174 Left_Opnd => Duplicate_Subexpr (Base),
8175 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)));
8177 -- X ** 3 = X * X * X
8179 elsif Expv = 3 then
8180 Xnode :=
8181 Wrap_MA (
8182 Make_Op_Multiply (Loc,
8183 Left_Opnd =>
8184 Make_Op_Multiply (Loc,
8185 Left_Opnd => Duplicate_Subexpr (Base),
8186 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
8187 Right_Opnd => Duplicate_Subexpr_No_Checks (Base)));
8189 -- X ** 4 ->
8191 -- do
8192 -- En : constant base'type := base * base;
8193 -- in
8194 -- En * En
8196 elsif Expv = 4 then
8197 Temp := Make_Temporary (Loc, 'E', Base);
8199 Xnode :=
8200 Make_Expression_With_Actions (Loc,
8201 Actions => New_List (
8202 Make_Object_Declaration (Loc,
8203 Defining_Identifier => Temp,
8204 Constant_Present => True,
8205 Object_Definition => New_Occurrence_Of (Typ, Loc),
8206 Expression =>
8207 Wrap_MA (
8208 Make_Op_Multiply (Loc,
8209 Left_Opnd =>
8210 Duplicate_Subexpr (Base),
8211 Right_Opnd =>
8212 Duplicate_Subexpr_No_Checks (Base))))),
8214 Expression =>
8215 Wrap_MA (
8216 Make_Op_Multiply (Loc,
8217 Left_Opnd => New_Occurrence_Of (Temp, Loc),
8218 Right_Opnd => New_Occurrence_Of (Temp, Loc))));
8220 -- X ** N = 1.0 / X ** (-N)
8221 -- N in -4 .. -1
8223 else
8224 pragma Assert
8225 (Expv = -1 or Expv = -2 or Expv = -3 or Expv = -4);
8227 Xnode :=
8228 Make_Op_Divide (Loc,
8229 Left_Opnd =>
8230 Make_Float_Literal (Loc,
8231 Radix => Uint_1,
8232 Significand => Uint_1,
8233 Exponent => Uint_0),
8234 Right_Opnd =>
8235 Make_Op_Expon (Loc,
8236 Left_Opnd => Duplicate_Subexpr (Base),
8237 Right_Opnd =>
8238 Make_Integer_Literal (Loc,
8239 Intval => -Expv)));
8240 end if;
8242 Rewrite (N, Xnode);
8243 Analyze_And_Resolve (N, Typ);
8244 return;
8245 end if;
8246 end if;
8248 -- Deal with optimizing 2 ** expression to shift where possible
8250 -- Note: we used to check that Exptyp was an unsigned type. But that is
8251 -- an unnecessary check, since if Exp is negative, we have a run-time
8252 -- error that is either caught (so we get the right result) or we have
8253 -- suppressed the check, in which case the code is erroneous anyway.
8255 if Is_Integer_Type (Rtyp)
8257 -- The base value must be "safe compile-time known", and exactly 2
8259 and then Nkind (Base) = N_Integer_Literal
8260 and then CRT_Safe_Compile_Time_Known_Value (Base)
8261 and then Expr_Value (Base) = Uint_2
8263 -- We only handle cases where the right type is a integer
8265 and then Is_Integer_Type (Root_Type (Exptyp))
8266 and then Esize (Root_Type (Exptyp)) <= Esize (Standard_Integer)
8268 -- This transformation is not applicable for a modular type with a
8269 -- nonbinary modulus because we do not handle modular reduction in
8270 -- a correct manner if we attempt this transformation in this case.
8272 and then not Non_Binary_Modulus (Typ)
8273 then
8274 -- Handle the cases where our parent is a division or multiplication
8275 -- specially. In these cases we can convert to using a shift at the
8276 -- parent level if we are not doing overflow checking, since it is
8277 -- too tricky to combine the overflow check at the parent level.
8279 if not Ovflo
8280 and then Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply)
8281 then
8282 declare
8283 P : constant Node_Id := Parent (N);
8284 L : constant Node_Id := Left_Opnd (P);
8285 R : constant Node_Id := Right_Opnd (P);
8287 begin
8288 if (Nkind (P) = N_Op_Multiply
8289 and then
8290 ((Is_Integer_Type (Etype (L)) and then R = N)
8291 or else
8292 (Is_Integer_Type (Etype (R)) and then L = N))
8293 and then not Do_Overflow_Check (P))
8295 or else
8296 (Nkind (P) = N_Op_Divide
8297 and then Is_Integer_Type (Etype (L))
8298 and then Is_Unsigned_Type (Etype (L))
8299 and then R = N
8300 and then not Do_Overflow_Check (P))
8301 then
8302 Set_Is_Power_Of_2_For_Shift (N);
8303 return;
8304 end if;
8305 end;
8307 -- Here we just have 2 ** N on its own, so we can convert this to a
8308 -- shift node. We are prepared to deal with overflow here, and we
8309 -- also have to handle proper modular reduction for binary modular.
8311 else
8312 declare
8313 OK : Boolean;
8314 Lo : Uint;
8315 Hi : Uint;
8317 MaxS : Uint;
8318 -- Maximum shift count with no overflow
8320 TestS : Boolean;
8321 -- Set True if we must test the shift count
8323 Test_Gt : Node_Id;
8324 -- Node for test against TestS
8326 begin
8327 -- Compute maximum shift based on the underlying size. For a
8328 -- modular type this is one less than the size.
8330 if Is_Modular_Integer_Type (Typ) then
8332 -- For modular integer types, this is the size of the value
8333 -- being shifted minus one. Any larger values will cause
8334 -- modular reduction to a result of zero. Note that we do
8335 -- want the RM_Size here (e.g. mod 2 ** 7, we want a result
8336 -- of 6, since 2**7 should be reduced to zero).
8338 MaxS := RM_Size (Rtyp) - 1;
8340 -- For signed integer types, we use the size of the value
8341 -- being shifted minus 2. Larger values cause overflow.
8343 else
8344 MaxS := Esize (Rtyp) - 2;
8345 end if;
8347 -- Determine range to see if it can be larger than MaxS
8349 Determine_Range
8350 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
8351 TestS := (not OK) or else Hi > MaxS;
8353 -- Signed integer case
8355 if Is_Signed_Integer_Type (Typ) then
8357 -- Generate overflow check if overflow is active. Note that
8358 -- we can simply ignore the possibility of overflow if the
8359 -- flag is not set (means that overflow cannot happen or
8360 -- that overflow checks are suppressed).
8362 if Ovflo and TestS then
8363 Insert_Action (N,
8364 Make_Raise_Constraint_Error (Loc,
8365 Condition =>
8366 Make_Op_Gt (Loc,
8367 Left_Opnd => Duplicate_Subexpr (Right_Opnd (N)),
8368 Right_Opnd => Make_Integer_Literal (Loc, MaxS)),
8369 Reason => CE_Overflow_Check_Failed));
8370 end if;
8372 -- Now rewrite node as Shift_Left (1, right-operand)
8374 Rewrite (N,
8375 Make_Op_Shift_Left (Loc,
8376 Left_Opnd => Make_Integer_Literal (Loc, Uint_1),
8377 Right_Opnd => Right_Opnd (N)));
8379 -- Modular integer case
8381 else pragma Assert (Is_Modular_Integer_Type (Typ));
8383 -- If shift count can be greater than MaxS, we need to wrap
8384 -- the shift in a test that will reduce the result value to
8385 -- zero if this shift count is exceeded.
8387 if TestS then
8389 -- Note: build node for the comparison first, before we
8390 -- reuse the Right_Opnd, so that we have proper parents
8391 -- in place for the Duplicate_Subexpr call.
8393 Test_Gt :=
8394 Make_Op_Gt (Loc,
8395 Left_Opnd => Duplicate_Subexpr (Right_Opnd (N)),
8396 Right_Opnd => Make_Integer_Literal (Loc, MaxS));
8398 Rewrite (N,
8399 Make_If_Expression (Loc,
8400 Expressions => New_List (
8401 Test_Gt,
8402 Make_Integer_Literal (Loc, Uint_0),
8403 Make_Op_Shift_Left (Loc,
8404 Left_Opnd => Make_Integer_Literal (Loc, Uint_1),
8405 Right_Opnd => Right_Opnd (N)))));
8407 -- If we know shift count cannot be greater than MaxS, then
8408 -- it is safe to just rewrite as a shift with no test.
8410 else
8411 Rewrite (N,
8412 Make_Op_Shift_Left (Loc,
8413 Left_Opnd => Make_Integer_Literal (Loc, Uint_1),
8414 Right_Opnd => Right_Opnd (N)));
8415 end if;
8416 end if;
8418 Analyze_And_Resolve (N, Typ);
8419 return;
8420 end;
8421 end if;
8422 end if;
8424 -- Fall through if exponentiation must be done using a runtime routine
8426 -- First deal with modular case
8428 if Is_Modular_Integer_Type (Rtyp) then
8430 -- Nonbinary modular case, we call the special exponentiation
8431 -- routine for the nonbinary case, converting the argument to
8432 -- Long_Long_Integer and passing the modulus value. Then the
8433 -- result is converted back to the base type.
8435 if Non_Binary_Modulus (Rtyp) then
8436 Rewrite (N,
8437 Convert_To (Typ,
8438 Make_Function_Call (Loc,
8439 Name =>
8440 New_Occurrence_Of (RTE (RE_Exp_Modular), Loc),
8441 Parameter_Associations => New_List (
8442 Convert_To (RTE (RE_Unsigned), Base),
8443 Make_Integer_Literal (Loc, Modulus (Rtyp)),
8444 Exp))));
8446 -- Binary modular case, in this case, we call one of two routines,
8447 -- either the unsigned integer case, or the unsigned long long
8448 -- integer case, with a final "and" operation to do the required mod.
8450 else
8451 if UI_To_Int (Esize (Rtyp)) <= Standard_Integer_Size then
8452 Ent := RTE (RE_Exp_Unsigned);
8453 else
8454 Ent := RTE (RE_Exp_Long_Long_Unsigned);
8455 end if;
8457 Rewrite (N,
8458 Convert_To (Typ,
8459 Make_Op_And (Loc,
8460 Left_Opnd =>
8461 Make_Function_Call (Loc,
8462 Name => New_Occurrence_Of (Ent, Loc),
8463 Parameter_Associations => New_List (
8464 Convert_To (Etype (First_Formal (Ent)), Base),
8465 Exp)),
8466 Right_Opnd =>
8467 Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
8469 end if;
8471 -- Common exit point for modular type case
8473 Analyze_And_Resolve (N, Typ);
8474 return;
8476 -- Signed integer cases, done using either Integer or Long_Long_Integer.
8477 -- It is not worth having routines for Short_[Short_]Integer, since for
8478 -- most machines it would not help, and it would generate more code that
8479 -- might need certification when a certified run time is required.
8481 -- In the integer cases, we have two routines, one for when overflow
8482 -- checks are required, and one when they are not required, since there
8483 -- is a real gain in omitting checks on many machines.
8485 elsif Rtyp = Base_Type (Standard_Long_Long_Integer)
8486 or else (Rtyp = Base_Type (Standard_Long_Integer)
8487 and then
8488 Esize (Standard_Long_Integer) > Esize (Standard_Integer))
8489 or else Rtyp = Universal_Integer
8490 then
8491 Etyp := Standard_Long_Long_Integer;
8493 if Ovflo then
8494 Rent := RE_Exp_Long_Long_Integer;
8495 else
8496 Rent := RE_Exn_Long_Long_Integer;
8497 end if;
8499 elsif Is_Signed_Integer_Type (Rtyp) then
8500 Etyp := Standard_Integer;
8502 if Ovflo then
8503 Rent := RE_Exp_Integer;
8504 else
8505 Rent := RE_Exn_Integer;
8506 end if;
8508 -- Floating-point cases. We do not need separate routines for the
8509 -- overflow case here, since in the case of floating-point, we generate
8510 -- infinities anyway as a rule (either that or we automatically trap
8511 -- overflow), and if there is an infinity generated and a range check
8512 -- is required, the check will fail anyway.
8514 -- Historical note: we used to convert everything to Long_Long_Float
8515 -- and call a single common routine, but this had the undesirable effect
8516 -- of giving different results for small static exponent values and the
8517 -- same dynamic values.
8519 else
8520 pragma Assert (Is_Floating_Point_Type (Rtyp));
8522 if Rtyp = Standard_Float then
8523 Etyp := Standard_Float;
8524 Rent := RE_Exn_Float;
8526 elsif Rtyp = Standard_Long_Float then
8527 Etyp := Standard_Long_Float;
8528 Rent := RE_Exn_Long_Float;
8530 else
8531 Etyp := Standard_Long_Long_Float;
8532 Rent := RE_Exn_Long_Long_Float;
8533 end if;
8534 end if;
8536 -- Common processing for integer cases and floating-point cases.
8537 -- If we are in the right type, we can call runtime routine directly
8539 if Typ = Etyp
8540 and then Rtyp /= Universal_Integer
8541 and then Rtyp /= Universal_Real
8542 then
8543 Rewrite (N,
8544 Wrap_MA (
8545 Make_Function_Call (Loc,
8546 Name => New_Occurrence_Of (RTE (Rent), Loc),
8547 Parameter_Associations => New_List (Base, Exp))));
8549 -- Otherwise we have to introduce conversions (conversions are also
8550 -- required in the universal cases, since the runtime routine is
8551 -- typed using one of the standard types).
8553 else
8554 Rewrite (N,
8555 Convert_To (Typ,
8556 Make_Function_Call (Loc,
8557 Name => New_Occurrence_Of (RTE (Rent), Loc),
8558 Parameter_Associations => New_List (
8559 Convert_To (Etyp, Base),
8560 Exp))));
8561 end if;
8563 Analyze_And_Resolve (N, Typ);
8564 return;
8566 exception
8567 when RE_Not_Available =>
8568 return;
8569 end Expand_N_Op_Expon;
8571 --------------------
8572 -- Expand_N_Op_Ge --
8573 --------------------
8575 procedure Expand_N_Op_Ge (N : Node_Id) is
8576 Typ : constant Entity_Id := Etype (N);
8577 Op1 : constant Node_Id := Left_Opnd (N);
8578 Op2 : constant Node_Id := Right_Opnd (N);
8579 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
8581 begin
8582 Binary_Op_Validity_Checks (N);
8584 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8585 -- means we no longer have a comparison operation, we are all done.
8587 Expand_Compare_Minimize_Eliminate_Overflow (N);
8589 if Nkind (N) /= N_Op_Ge then
8590 return;
8591 end if;
8593 -- Array type case
8595 if Is_Array_Type (Typ1) then
8596 Expand_Array_Comparison (N);
8597 return;
8598 end if;
8600 -- Deal with boolean operands
8602 if Is_Boolean_Type (Typ1) then
8603 Adjust_Condition (Op1);
8604 Adjust_Condition (Op2);
8605 Set_Etype (N, Standard_Boolean);
8606 Adjust_Result_Type (N, Typ);
8607 end if;
8609 Rewrite_Comparison (N);
8611 Optimize_Length_Comparison (N);
8612 end Expand_N_Op_Ge;
8614 --------------------
8615 -- Expand_N_Op_Gt --
8616 --------------------
8618 procedure Expand_N_Op_Gt (N : Node_Id) is
8619 Typ : constant Entity_Id := Etype (N);
8620 Op1 : constant Node_Id := Left_Opnd (N);
8621 Op2 : constant Node_Id := Right_Opnd (N);
8622 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
8624 begin
8625 Binary_Op_Validity_Checks (N);
8627 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8628 -- means we no longer have a comparison operation, we are all done.
8630 Expand_Compare_Minimize_Eliminate_Overflow (N);
8632 if Nkind (N) /= N_Op_Gt then
8633 return;
8634 end if;
8636 -- Deal with array type operands
8638 if Is_Array_Type (Typ1) then
8639 Expand_Array_Comparison (N);
8640 return;
8641 end if;
8643 -- Deal with boolean type operands
8645 if Is_Boolean_Type (Typ1) then
8646 Adjust_Condition (Op1);
8647 Adjust_Condition (Op2);
8648 Set_Etype (N, Standard_Boolean);
8649 Adjust_Result_Type (N, Typ);
8650 end if;
8652 Rewrite_Comparison (N);
8654 Optimize_Length_Comparison (N);
8655 end Expand_N_Op_Gt;
8657 --------------------
8658 -- Expand_N_Op_Le --
8659 --------------------
8661 procedure Expand_N_Op_Le (N : Node_Id) is
8662 Typ : constant Entity_Id := Etype (N);
8663 Op1 : constant Node_Id := Left_Opnd (N);
8664 Op2 : constant Node_Id := Right_Opnd (N);
8665 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
8667 begin
8668 Binary_Op_Validity_Checks (N);
8670 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8671 -- means we no longer have a comparison operation, we are all done.
8673 Expand_Compare_Minimize_Eliminate_Overflow (N);
8675 if Nkind (N) /= N_Op_Le then
8676 return;
8677 end if;
8679 -- Deal with array type operands
8681 if Is_Array_Type (Typ1) then
8682 Expand_Array_Comparison (N);
8683 return;
8684 end if;
8686 -- Deal with Boolean type operands
8688 if Is_Boolean_Type (Typ1) then
8689 Adjust_Condition (Op1);
8690 Adjust_Condition (Op2);
8691 Set_Etype (N, Standard_Boolean);
8692 Adjust_Result_Type (N, Typ);
8693 end if;
8695 Rewrite_Comparison (N);
8697 Optimize_Length_Comparison (N);
8698 end Expand_N_Op_Le;
8700 --------------------
8701 -- Expand_N_Op_Lt --
8702 --------------------
8704 procedure Expand_N_Op_Lt (N : Node_Id) is
8705 Typ : constant Entity_Id := Etype (N);
8706 Op1 : constant Node_Id := Left_Opnd (N);
8707 Op2 : constant Node_Id := Right_Opnd (N);
8708 Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
8710 begin
8711 Binary_Op_Validity_Checks (N);
8713 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
8714 -- means we no longer have a comparison operation, we are all done.
8716 Expand_Compare_Minimize_Eliminate_Overflow (N);
8718 if Nkind (N) /= N_Op_Lt then
8719 return;
8720 end if;
8722 -- Deal with array type operands
8724 if Is_Array_Type (Typ1) then
8725 Expand_Array_Comparison (N);
8726 return;
8727 end if;
8729 -- Deal with Boolean type operands
8731 if Is_Boolean_Type (Typ1) then
8732 Adjust_Condition (Op1);
8733 Adjust_Condition (Op2);
8734 Set_Etype (N, Standard_Boolean);
8735 Adjust_Result_Type (N, Typ);
8736 end if;
8738 Rewrite_Comparison (N);
8740 Optimize_Length_Comparison (N);
8741 end Expand_N_Op_Lt;
8743 -----------------------
8744 -- Expand_N_Op_Minus --
8745 -----------------------
8747 procedure Expand_N_Op_Minus (N : Node_Id) is
8748 Loc : constant Source_Ptr := Sloc (N);
8749 Typ : constant Entity_Id := Etype (N);
8751 begin
8752 Unary_Op_Validity_Checks (N);
8754 -- Check for MINIMIZED/ELIMINATED overflow mode
8756 if Minimized_Eliminated_Overflow_Check (N) then
8757 Apply_Arithmetic_Overflow_Check (N);
8758 return;
8759 end if;
8761 if not Backend_Overflow_Checks_On_Target
8762 and then Is_Signed_Integer_Type (Etype (N))
8763 and then Do_Overflow_Check (N)
8764 then
8765 -- Software overflow checking expands -expr into (0 - expr)
8767 Rewrite (N,
8768 Make_Op_Subtract (Loc,
8769 Left_Opnd => Make_Integer_Literal (Loc, 0),
8770 Right_Opnd => Right_Opnd (N)));
8772 Analyze_And_Resolve (N, Typ);
8773 end if;
8775 Expand_Nonbinary_Modular_Op (N);
8776 end Expand_N_Op_Minus;
8778 ---------------------
8779 -- Expand_N_Op_Mod --
8780 ---------------------
8782 procedure Expand_N_Op_Mod (N : Node_Id) is
8783 Loc : constant Source_Ptr := Sloc (N);
8784 Typ : constant Entity_Id := Etype (N);
8785 DDC : constant Boolean := Do_Division_Check (N);
8787 Left : Node_Id;
8788 Right : Node_Id;
8790 LLB : Uint;
8791 Llo : Uint;
8792 Lhi : Uint;
8793 LOK : Boolean;
8794 Rlo : Uint;
8795 Rhi : Uint;
8796 ROK : Boolean;
8798 pragma Warnings (Off, Lhi);
8800 begin
8801 Binary_Op_Validity_Checks (N);
8803 -- Check for MINIMIZED/ELIMINATED overflow mode
8805 if Minimized_Eliminated_Overflow_Check (N) then
8806 Apply_Arithmetic_Overflow_Check (N);
8807 return;
8808 end if;
8810 if Is_Integer_Type (Etype (N)) then
8811 Apply_Divide_Checks (N);
8813 -- All done if we don't have a MOD any more, which can happen as a
8814 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
8816 if Nkind (N) /= N_Op_Mod then
8817 return;
8818 end if;
8819 end if;
8821 -- Proceed with expansion of mod operator
8823 Left := Left_Opnd (N);
8824 Right := Right_Opnd (N);
8826 Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
8827 Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
8829 -- Convert mod to rem if operands are both known to be non-negative, or
8830 -- both known to be non-positive (these are the cases in which rem and
8831 -- mod are the same, see (RM 4.5.5(28-30)). We do this since it is quite
8832 -- likely that this will improve the quality of code, (the operation now
8833 -- corresponds to the hardware remainder), and it does not seem likely
8834 -- that it could be harmful. It also avoids some cases of the elaborate
8835 -- expansion in Modify_Tree_For_C mode below (since Ada rem = C %).
8837 if (LOK and ROK)
8838 and then ((Llo >= 0 and then Rlo >= 0)
8839 or else
8840 (Lhi <= 0 and then Rhi <= 0))
8841 then
8842 Rewrite (N,
8843 Make_Op_Rem (Sloc (N),
8844 Left_Opnd => Left_Opnd (N),
8845 Right_Opnd => Right_Opnd (N)));
8847 -- Instead of reanalyzing the node we do the analysis manually. This
8848 -- avoids anomalies when the replacement is done in an instance and
8849 -- is epsilon more efficient.
8851 Set_Entity (N, Standard_Entity (S_Op_Rem));
8852 Set_Etype (N, Typ);
8853 Set_Do_Division_Check (N, DDC);
8854 Expand_N_Op_Rem (N);
8855 Set_Analyzed (N);
8856 return;
8858 -- Otherwise, normal mod processing
8860 else
8861 -- Apply optimization x mod 1 = 0. We don't really need that with
8862 -- gcc, but it is useful with other back ends and is certainly
8863 -- harmless.
8865 if Is_Integer_Type (Etype (N))
8866 and then Compile_Time_Known_Value (Right)
8867 and then Expr_Value (Right) = Uint_1
8868 then
8869 -- Call Remove_Side_Effects to ensure that any side effects in
8870 -- the ignored left operand (in particular function calls to
8871 -- user defined functions) are properly executed.
8873 Remove_Side_Effects (Left);
8875 Rewrite (N, Make_Integer_Literal (Loc, 0));
8876 Analyze_And_Resolve (N, Typ);
8877 return;
8878 end if;
8880 -- If we still have a mod operator and we are in Modify_Tree_For_C
8881 -- mode, and we have a signed integer type, then here is where we do
8882 -- the rewrite in terms of Rem. Note this rewrite bypasses the need
8883 -- for the special handling of the annoying case of largest negative
8884 -- number mod minus one.
8886 if Nkind (N) = N_Op_Mod
8887 and then Is_Signed_Integer_Type (Typ)
8888 and then Modify_Tree_For_C
8889 then
8890 -- In the general case, we expand A mod B as
8892 -- Tnn : constant typ := A rem B;
8893 -- ..
8894 -- (if (A >= 0) = (B >= 0) then Tnn
8895 -- elsif Tnn = 0 then 0
8896 -- else Tnn + B)
8898 -- The comparison can be written simply as A >= 0 if we know that
8899 -- B >= 0 which is a very common case.
8901 -- An important optimization is when B is known at compile time
8902 -- to be 2**K for some constant. In this case we can simply AND
8903 -- the left operand with the bit string 2**K-1 (i.e. K 1-bits)
8904 -- and that works for both the positive and negative cases.
8906 declare
8907 P2 : constant Nat := Power_Of_Two (Right);
8909 begin
8910 if P2 /= 0 then
8911 Rewrite (N,
8912 Unchecked_Convert_To (Typ,
8913 Make_Op_And (Loc,
8914 Left_Opnd =>
8915 Unchecked_Convert_To
8916 (Corresponding_Unsigned_Type (Typ), Left),
8917 Right_Opnd =>
8918 Make_Integer_Literal (Loc, 2 ** P2 - 1))));
8919 Analyze_And_Resolve (N, Typ);
8920 return;
8921 end if;
8922 end;
8924 -- Here for the full rewrite
8926 declare
8927 Tnn : constant Entity_Id := Make_Temporary (Sloc (N), 'T', N);
8928 Cmp : Node_Id;
8930 begin
8931 Cmp :=
8932 Make_Op_Ge (Loc,
8933 Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
8934 Right_Opnd => Make_Integer_Literal (Loc, 0));
8936 if not LOK or else Rlo < 0 then
8937 Cmp :=
8938 Make_Op_Eq (Loc,
8939 Left_Opnd => Cmp,
8940 Right_Opnd =>
8941 Make_Op_Ge (Loc,
8942 Left_Opnd => Duplicate_Subexpr_No_Checks (Right),
8943 Right_Opnd => Make_Integer_Literal (Loc, 0)));
8944 end if;
8946 Insert_Action (N,
8947 Make_Object_Declaration (Loc,
8948 Defining_Identifier => Tnn,
8949 Constant_Present => True,
8950 Object_Definition => New_Occurrence_Of (Typ, Loc),
8951 Expression =>
8952 Make_Op_Rem (Loc,
8953 Left_Opnd => Left,
8954 Right_Opnd => Right)));
8956 Rewrite (N,
8957 Make_If_Expression (Loc,
8958 Expressions => New_List (
8959 Cmp,
8960 New_Occurrence_Of (Tnn, Loc),
8961 Make_If_Expression (Loc,
8962 Is_Elsif => True,
8963 Expressions => New_List (
8964 Make_Op_Eq (Loc,
8965 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8966 Right_Opnd => Make_Integer_Literal (Loc, 0)),
8967 Make_Integer_Literal (Loc, 0),
8968 Make_Op_Add (Loc,
8969 Left_Opnd => New_Occurrence_Of (Tnn, Loc),
8970 Right_Opnd =>
8971 Duplicate_Subexpr_No_Checks (Right)))))));
8973 Analyze_And_Resolve (N, Typ);
8974 return;
8975 end;
8976 end if;
8978 -- Deal with annoying case of largest negative number mod minus one.
8979 -- Gigi may not handle this case correctly, because on some targets,
8980 -- the mod value is computed using a divide instruction which gives
8981 -- an overflow trap for this case.
8983 -- It would be a bit more efficient to figure out which targets
8984 -- this is really needed for, but in practice it is reasonable
8985 -- to do the following special check in all cases, since it means
8986 -- we get a clearer message, and also the overhead is minimal given
8987 -- that division is expensive in any case.
8989 -- In fact the check is quite easy, if the right operand is -1, then
8990 -- the mod value is always 0, and we can just ignore the left operand
8991 -- completely in this case.
8993 -- This only applies if we still have a mod operator. Skip if we
8994 -- have already rewritten this (e.g. in the case of eliminated
8995 -- overflow checks which have driven us into bignum mode).
8997 if Nkind (N) = N_Op_Mod then
8999 -- The operand type may be private (e.g. in the expansion of an
9000 -- intrinsic operation) so we must use the underlying type to get
9001 -- the bounds, and convert the literals explicitly.
9003 LLB :=
9004 Expr_Value
9005 (Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
9007 if ((not ROK) or else (Rlo <= (-1) and then (-1) <= Rhi))
9008 and then ((not LOK) or else (Llo = LLB))
9009 then
9010 Rewrite (N,
9011 Make_If_Expression (Loc,
9012 Expressions => New_List (
9013 Make_Op_Eq (Loc,
9014 Left_Opnd => Duplicate_Subexpr (Right),
9015 Right_Opnd =>
9016 Unchecked_Convert_To (Typ,
9017 Make_Integer_Literal (Loc, -1))),
9018 Unchecked_Convert_To (Typ,
9019 Make_Integer_Literal (Loc, Uint_0)),
9020 Relocate_Node (N))));
9022 Set_Analyzed (Next (Next (First (Expressions (N)))));
9023 Analyze_And_Resolve (N, Typ);
9024 end if;
9025 end if;
9026 end if;
9027 end Expand_N_Op_Mod;
9029 --------------------------
9030 -- Expand_N_Op_Multiply --
9031 --------------------------
9033 procedure Expand_N_Op_Multiply (N : Node_Id) is
9034 Loc : constant Source_Ptr := Sloc (N);
9035 Lop : constant Node_Id := Left_Opnd (N);
9036 Rop : constant Node_Id := Right_Opnd (N);
9038 Lp2 : constant Boolean :=
9039 Nkind (Lop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Lop);
9040 Rp2 : constant Boolean :=
9041 Nkind (Rop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Rop);
9043 Ltyp : constant Entity_Id := Etype (Lop);
9044 Rtyp : constant Entity_Id := Etype (Rop);
9045 Typ : Entity_Id := Etype (N);
9047 begin
9048 Binary_Op_Validity_Checks (N);
9050 -- Check for MINIMIZED/ELIMINATED overflow mode
9052 if Minimized_Eliminated_Overflow_Check (N) then
9053 Apply_Arithmetic_Overflow_Check (N);
9054 return;
9055 end if;
9057 -- Special optimizations for integer types
9059 if Is_Integer_Type (Typ) then
9061 -- N * 0 = 0 for integer types
9063 if Compile_Time_Known_Value (Rop)
9064 and then Expr_Value (Rop) = Uint_0
9065 then
9066 -- Call Remove_Side_Effects to ensure that any side effects in
9067 -- the ignored left operand (in particular function calls to
9068 -- user defined functions) are properly executed.
9070 Remove_Side_Effects (Lop);
9072 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
9073 Analyze_And_Resolve (N, Typ);
9074 return;
9075 end if;
9077 -- Similar handling for 0 * N = 0
9079 if Compile_Time_Known_Value (Lop)
9080 and then Expr_Value (Lop) = Uint_0
9081 then
9082 Remove_Side_Effects (Rop);
9083 Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
9084 Analyze_And_Resolve (N, Typ);
9085 return;
9086 end if;
9088 -- N * 1 = 1 * N = N for integer types
9090 -- This optimisation is not done if we are going to
9091 -- rewrite the product 1 * 2 ** N to a shift.
9093 if Compile_Time_Known_Value (Rop)
9094 and then Expr_Value (Rop) = Uint_1
9095 and then not Lp2
9096 then
9097 Rewrite (N, Lop);
9098 return;
9100 elsif Compile_Time_Known_Value (Lop)
9101 and then Expr_Value (Lop) = Uint_1
9102 and then not Rp2
9103 then
9104 Rewrite (N, Rop);
9105 return;
9106 end if;
9107 end if;
9109 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
9110 -- Is_Power_Of_2_For_Shift is set means that we know that our left
9111 -- operand is an integer, as required for this to work.
9113 if Rp2 then
9114 if Lp2 then
9116 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
9118 Rewrite (N,
9119 Make_Op_Expon (Loc,
9120 Left_Opnd => Make_Integer_Literal (Loc, 2),
9121 Right_Opnd =>
9122 Make_Op_Add (Loc,
9123 Left_Opnd => Right_Opnd (Lop),
9124 Right_Opnd => Right_Opnd (Rop))));
9125 Analyze_And_Resolve (N, Typ);
9126 return;
9128 else
9129 -- If the result is modular, perform the reduction of the result
9130 -- appropriately.
9132 if Is_Modular_Integer_Type (Typ)
9133 and then not Non_Binary_Modulus (Typ)
9134 then
9135 Rewrite (N,
9136 Make_Op_And (Loc,
9137 Left_Opnd =>
9138 Make_Op_Shift_Left (Loc,
9139 Left_Opnd => Lop,
9140 Right_Opnd =>
9141 Convert_To (Standard_Natural, Right_Opnd (Rop))),
9142 Right_Opnd =>
9143 Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
9145 else
9146 Rewrite (N,
9147 Make_Op_Shift_Left (Loc,
9148 Left_Opnd => Lop,
9149 Right_Opnd =>
9150 Convert_To (Standard_Natural, Right_Opnd (Rop))));
9151 end if;
9153 Analyze_And_Resolve (N, Typ);
9154 return;
9155 end if;
9157 -- Same processing for the operands the other way round
9159 elsif Lp2 then
9160 if Is_Modular_Integer_Type (Typ)
9161 and then not Non_Binary_Modulus (Typ)
9162 then
9163 Rewrite (N,
9164 Make_Op_And (Loc,
9165 Left_Opnd =>
9166 Make_Op_Shift_Left (Loc,
9167 Left_Opnd => Rop,
9168 Right_Opnd =>
9169 Convert_To (Standard_Natural, Right_Opnd (Lop))),
9170 Right_Opnd =>
9171 Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
9173 else
9174 Rewrite (N,
9175 Make_Op_Shift_Left (Loc,
9176 Left_Opnd => Rop,
9177 Right_Opnd =>
9178 Convert_To (Standard_Natural, Right_Opnd (Lop))));
9179 end if;
9181 Analyze_And_Resolve (N, Typ);
9182 return;
9183 end if;
9185 -- Do required fixup of universal fixed operation
9187 if Typ = Universal_Fixed then
9188 Fixup_Universal_Fixed_Operation (N);
9189 Typ := Etype (N);
9190 end if;
9192 -- Multiplications with fixed-point results
9194 if Is_Fixed_Point_Type (Typ) then
9196 -- No special processing if Treat_Fixed_As_Integer is set, since from
9197 -- a semantic point of view such operations are simply integer
9198 -- operations and will be treated that way.
9200 if not Treat_Fixed_As_Integer (N) then
9202 -- Case of fixed * integer => fixed
9204 if Is_Integer_Type (Rtyp) then
9205 Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
9207 -- Case of integer * fixed => fixed
9209 elsif Is_Integer_Type (Ltyp) then
9210 Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
9212 -- Case of fixed * fixed => fixed
9214 else
9215 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
9216 end if;
9217 end if;
9219 -- Other cases of multiplication of fixed-point operands. Again we
9220 -- exclude the cases where Treat_Fixed_As_Integer flag is set.
9222 elsif (Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp))
9223 and then not Treat_Fixed_As_Integer (N)
9224 then
9225 if Is_Integer_Type (Typ) then
9226 Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
9227 else
9228 pragma Assert (Is_Floating_Point_Type (Typ));
9229 Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
9230 end if;
9232 -- Mixed-mode operations can appear in a non-static universal context,
9233 -- in which case the integer argument must be converted explicitly.
9235 elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
9236 Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
9237 Analyze_And_Resolve (Rop, Universal_Real);
9239 elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
9240 Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
9241 Analyze_And_Resolve (Lop, Universal_Real);
9243 -- Non-fixed point cases, check software overflow checking required
9245 elsif Is_Signed_Integer_Type (Etype (N)) then
9246 Apply_Arithmetic_Overflow_Check (N);
9247 end if;
9249 -- Overflow checks for floating-point if -gnateF mode active
9251 Check_Float_Op_Overflow (N);
9253 Expand_Nonbinary_Modular_Op (N);
9254 end Expand_N_Op_Multiply;
9256 --------------------
9257 -- Expand_N_Op_Ne --
9258 --------------------
9260 procedure Expand_N_Op_Ne (N : Node_Id) is
9261 Typ : constant Entity_Id := Etype (Left_Opnd (N));
9263 begin
9264 -- Case of elementary type with standard operator
9266 if Is_Elementary_Type (Typ)
9267 and then Sloc (Entity (N)) = Standard_Location
9268 then
9269 Binary_Op_Validity_Checks (N);
9271 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if
9272 -- means we no longer have a /= operation, we are all done.
9274 Expand_Compare_Minimize_Eliminate_Overflow (N);
9276 if Nkind (N) /= N_Op_Ne then
9277 return;
9278 end if;
9280 -- Boolean types (requiring handling of non-standard case)
9282 if Is_Boolean_Type (Typ) then
9283 Adjust_Condition (Left_Opnd (N));
9284 Adjust_Condition (Right_Opnd (N));
9285 Set_Etype (N, Standard_Boolean);
9286 Adjust_Result_Type (N, Typ);
9287 end if;
9289 Rewrite_Comparison (N);
9291 -- For all cases other than elementary types, we rewrite node as the
9292 -- negation of an equality operation, and reanalyze. The equality to be
9293 -- used is defined in the same scope and has the same signature. This
9294 -- signature must be set explicitly since in an instance it may not have
9295 -- the same visibility as in the generic unit. This avoids duplicating
9296 -- or factoring the complex code for record/array equality tests etc.
9298 -- This case is also used for the minimal expansion performed in
9299 -- GNATprove mode.
9301 else
9302 declare
9303 Loc : constant Source_Ptr := Sloc (N);
9304 Neg : Node_Id;
9305 Ne : constant Entity_Id := Entity (N);
9307 begin
9308 Binary_Op_Validity_Checks (N);
9310 Neg :=
9311 Make_Op_Not (Loc,
9312 Right_Opnd =>
9313 Make_Op_Eq (Loc,
9314 Left_Opnd => Left_Opnd (N),
9315 Right_Opnd => Right_Opnd (N)));
9317 -- The level of parentheses is useless in GNATprove mode, and
9318 -- bumping its level here leads to wrong columns being used in
9319 -- check messages, hence skip it in this mode.
9321 if not GNATprove_Mode then
9322 Set_Paren_Count (Right_Opnd (Neg), 1);
9323 end if;
9325 if Scope (Ne) /= Standard_Standard then
9326 Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
9327 end if;
9329 -- For navigation purposes, we want to treat the inequality as an
9330 -- implicit reference to the corresponding equality. Preserve the
9331 -- Comes_From_ source flag to generate proper Xref entries.
9333 Preserve_Comes_From_Source (Neg, N);
9334 Preserve_Comes_From_Source (Right_Opnd (Neg), N);
9335 Rewrite (N, Neg);
9336 Analyze_And_Resolve (N, Standard_Boolean);
9337 end;
9338 end if;
9340 -- No need for optimization in GNATprove mode, where we would rather see
9341 -- the original source expression.
9343 if not GNATprove_Mode then
9344 Optimize_Length_Comparison (N);
9345 end if;
9346 end Expand_N_Op_Ne;
9348 ---------------------
9349 -- Expand_N_Op_Not --
9350 ---------------------
9352 -- If the argument is other than a Boolean array type, there is no special
9353 -- expansion required, except for dealing with validity checks, and non-
9354 -- standard boolean representations.
9356 -- For the packed array case, we call the special routine in Exp_Pakd,
9357 -- except that if the component size is greater than one, we use the
9358 -- standard routine generating a gruesome loop (it is so peculiar to have
9359 -- packed arrays with non-standard Boolean representations anyway, so it
9360 -- does not matter that we do not handle this case efficiently).
9362 -- For the unpacked array case (and for the special packed case where we
9363 -- have non standard Booleans, as discussed above), we generate and insert
9364 -- into the tree the following function definition:
9366 -- function Nnnn (A : arr) is
9367 -- B : arr;
9368 -- begin
9369 -- for J in a'range loop
9370 -- B (J) := not A (J);
9371 -- end loop;
9372 -- return B;
9373 -- end Nnnn;
9375 -- Here arr is the actual subtype of the parameter (and hence always
9376 -- constrained). Then we replace the not with a call to this function.
9378 procedure Expand_N_Op_Not (N : Node_Id) is
9379 Loc : constant Source_Ptr := Sloc (N);
9380 Typ : constant Entity_Id := Etype (N);
9381 Opnd : Node_Id;
9382 Arr : Entity_Id;
9383 A : Entity_Id;
9384 B : Entity_Id;
9385 J : Entity_Id;
9386 A_J : Node_Id;
9387 B_J : Node_Id;
9389 Func_Name : Entity_Id;
9390 Loop_Statement : Node_Id;
9392 begin
9393 Unary_Op_Validity_Checks (N);
9395 -- For boolean operand, deal with non-standard booleans
9397 if Is_Boolean_Type (Typ) then
9398 Adjust_Condition (Right_Opnd (N));
9399 Set_Etype (N, Standard_Boolean);
9400 Adjust_Result_Type (N, Typ);
9401 return;
9402 end if;
9404 -- Only array types need any other processing
9406 if not Is_Array_Type (Typ) then
9407 return;
9408 end if;
9410 -- Case of array operand. If bit packed with a component size of 1,
9411 -- handle it in Exp_Pakd if the operand is known to be aligned.
9413 if Is_Bit_Packed_Array (Typ)
9414 and then Component_Size (Typ) = 1
9415 and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
9416 then
9417 Expand_Packed_Not (N);
9418 return;
9419 end if;
9421 -- Case of array operand which is not bit-packed. If the context is
9422 -- a safe assignment, call in-place operation, If context is a larger
9423 -- boolean expression in the context of a safe assignment, expansion is
9424 -- done by enclosing operation.
9426 Opnd := Relocate_Node (Right_Opnd (N));
9427 Convert_To_Actual_Subtype (Opnd);
9428 Arr := Etype (Opnd);
9429 Ensure_Defined (Arr, N);
9430 Silly_Boolean_Array_Not_Test (N, Arr);
9432 if Nkind (Parent (N)) = N_Assignment_Statement then
9433 if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
9434 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
9435 return;
9437 -- Special case the negation of a binary operation
9439 elsif Nkind_In (Opnd, N_Op_And, N_Op_Or, N_Op_Xor)
9440 and then Safe_In_Place_Array_Op
9441 (Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
9442 then
9443 Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
9444 return;
9445 end if;
9447 elsif Nkind (Parent (N)) in N_Binary_Op
9448 and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
9449 then
9450 declare
9451 Op1 : constant Node_Id := Left_Opnd (Parent (N));
9452 Op2 : constant Node_Id := Right_Opnd (Parent (N));
9453 Lhs : constant Node_Id := Name (Parent (Parent (N)));
9455 begin
9456 if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
9458 -- (not A) op (not B) can be reduced to a single call
9460 if N = Op1 and then Nkind (Op2) = N_Op_Not then
9461 return;
9463 elsif N = Op2 and then Nkind (Op1) = N_Op_Not then
9464 return;
9466 -- A xor (not B) can also be special-cased
9468 elsif N = Op2 and then Nkind (Parent (N)) = N_Op_Xor then
9469 return;
9470 end if;
9471 end if;
9472 end;
9473 end if;
9475 A := Make_Defining_Identifier (Loc, Name_uA);
9476 B := Make_Defining_Identifier (Loc, Name_uB);
9477 J := Make_Defining_Identifier (Loc, Name_uJ);
9479 A_J :=
9480 Make_Indexed_Component (Loc,
9481 Prefix => New_Occurrence_Of (A, Loc),
9482 Expressions => New_List (New_Occurrence_Of (J, Loc)));
9484 B_J :=
9485 Make_Indexed_Component (Loc,
9486 Prefix => New_Occurrence_Of (B, Loc),
9487 Expressions => New_List (New_Occurrence_Of (J, Loc)));
9489 Loop_Statement :=
9490 Make_Implicit_Loop_Statement (N,
9491 Identifier => Empty,
9493 Iteration_Scheme =>
9494 Make_Iteration_Scheme (Loc,
9495 Loop_Parameter_Specification =>
9496 Make_Loop_Parameter_Specification (Loc,
9497 Defining_Identifier => J,
9498 Discrete_Subtype_Definition =>
9499 Make_Attribute_Reference (Loc,
9500 Prefix => Make_Identifier (Loc, Chars (A)),
9501 Attribute_Name => Name_Range))),
9503 Statements => New_List (
9504 Make_Assignment_Statement (Loc,
9505 Name => B_J,
9506 Expression => Make_Op_Not (Loc, A_J))));
9508 Func_Name := Make_Temporary (Loc, 'N');
9509 Set_Is_Inlined (Func_Name);
9511 Insert_Action (N,
9512 Make_Subprogram_Body (Loc,
9513 Specification =>
9514 Make_Function_Specification (Loc,
9515 Defining_Unit_Name => Func_Name,
9516 Parameter_Specifications => New_List (
9517 Make_Parameter_Specification (Loc,
9518 Defining_Identifier => A,
9519 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
9520 Result_Definition => New_Occurrence_Of (Typ, Loc)),
9522 Declarations => New_List (
9523 Make_Object_Declaration (Loc,
9524 Defining_Identifier => B,
9525 Object_Definition => New_Occurrence_Of (Arr, Loc))),
9527 Handled_Statement_Sequence =>
9528 Make_Handled_Sequence_Of_Statements (Loc,
9529 Statements => New_List (
9530 Loop_Statement,
9531 Make_Simple_Return_Statement (Loc,
9532 Expression => Make_Identifier (Loc, Chars (B)))))));
9534 Rewrite (N,
9535 Make_Function_Call (Loc,
9536 Name => New_Occurrence_Of (Func_Name, Loc),
9537 Parameter_Associations => New_List (Opnd)));
9539 Analyze_And_Resolve (N, Typ);
9540 end Expand_N_Op_Not;
9542 --------------------
9543 -- Expand_N_Op_Or --
9544 --------------------
9546 procedure Expand_N_Op_Or (N : Node_Id) is
9547 Typ : constant Entity_Id := Etype (N);
9549 begin
9550 Binary_Op_Validity_Checks (N);
9552 if Is_Array_Type (Etype (N)) then
9553 Expand_Boolean_Operator (N);
9555 elsif Is_Boolean_Type (Etype (N)) then
9556 Adjust_Condition (Left_Opnd (N));
9557 Adjust_Condition (Right_Opnd (N));
9558 Set_Etype (N, Standard_Boolean);
9559 Adjust_Result_Type (N, Typ);
9561 elsif Is_Intrinsic_Subprogram (Entity (N)) then
9562 Expand_Intrinsic_Call (N, Entity (N));
9563 end if;
9565 Expand_Nonbinary_Modular_Op (N);
9566 end Expand_N_Op_Or;
9568 ----------------------
9569 -- Expand_N_Op_Plus --
9570 ----------------------
9572 procedure Expand_N_Op_Plus (N : Node_Id) is
9573 begin
9574 Unary_Op_Validity_Checks (N);
9576 -- Check for MINIMIZED/ELIMINATED overflow mode
9578 if Minimized_Eliminated_Overflow_Check (N) then
9579 Apply_Arithmetic_Overflow_Check (N);
9580 return;
9581 end if;
9582 end Expand_N_Op_Plus;
9584 ---------------------
9585 -- Expand_N_Op_Rem --
9586 ---------------------
9588 procedure Expand_N_Op_Rem (N : Node_Id) is
9589 Loc : constant Source_Ptr := Sloc (N);
9590 Typ : constant Entity_Id := Etype (N);
9592 Left : Node_Id;
9593 Right : Node_Id;
9595 Lo : Uint;
9596 Hi : Uint;
9597 OK : Boolean;
9599 Lneg : Boolean;
9600 Rneg : Boolean;
9601 -- Set if corresponding operand can be negative
9603 pragma Unreferenced (Hi);
9605 begin
9606 Binary_Op_Validity_Checks (N);
9608 -- Check for MINIMIZED/ELIMINATED overflow mode
9610 if Minimized_Eliminated_Overflow_Check (N) then
9611 Apply_Arithmetic_Overflow_Check (N);
9612 return;
9613 end if;
9615 if Is_Integer_Type (Etype (N)) then
9616 Apply_Divide_Checks (N);
9618 -- All done if we don't have a REM any more, which can happen as a
9619 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
9621 if Nkind (N) /= N_Op_Rem then
9622 return;
9623 end if;
9624 end if;
9626 -- Proceed with expansion of REM
9628 Left := Left_Opnd (N);
9629 Right := Right_Opnd (N);
9631 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
9632 -- but it is useful with other back ends, and is certainly harmless.
9634 if Is_Integer_Type (Etype (N))
9635 and then Compile_Time_Known_Value (Right)
9636 and then Expr_Value (Right) = Uint_1
9637 then
9638 -- Call Remove_Side_Effects to ensure that any side effects in the
9639 -- ignored left operand (in particular function calls to user defined
9640 -- functions) are properly executed.
9642 Remove_Side_Effects (Left);
9644 Rewrite (N, Make_Integer_Literal (Loc, 0));
9645 Analyze_And_Resolve (N, Typ);
9646 return;
9647 end if;
9649 -- Deal with annoying case of largest negative number remainder minus
9650 -- one. Gigi may not handle this case correctly, because on some
9651 -- targets, the mod value is computed using a divide instruction
9652 -- which gives an overflow trap for this case.
9654 -- It would be a bit more efficient to figure out which targets this
9655 -- is really needed for, but in practice it is reasonable to do the
9656 -- following special check in all cases, since it means we get a clearer
9657 -- message, and also the overhead is minimal given that division is
9658 -- expensive in any case.
9660 -- In fact the check is quite easy, if the right operand is -1, then
9661 -- the remainder is always 0, and we can just ignore the left operand
9662 -- completely in this case.
9664 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
9665 Lneg := (not OK) or else Lo < 0;
9667 Determine_Range (Left, OK, Lo, Hi, Assume_Valid => True);
9668 Rneg := (not OK) or else Lo < 0;
9670 -- We won't mess with trying to find out if the left operand can really
9671 -- be the largest negative number (that's a pain in the case of private
9672 -- types and this is really marginal). We will just assume that we need
9673 -- the test if the left operand can be negative at all.
9675 if Lneg and Rneg then
9676 Rewrite (N,
9677 Make_If_Expression (Loc,
9678 Expressions => New_List (
9679 Make_Op_Eq (Loc,
9680 Left_Opnd => Duplicate_Subexpr (Right),
9681 Right_Opnd =>
9682 Unchecked_Convert_To (Typ, Make_Integer_Literal (Loc, -1))),
9684 Unchecked_Convert_To (Typ,
9685 Make_Integer_Literal (Loc, Uint_0)),
9687 Relocate_Node (N))));
9689 Set_Analyzed (Next (Next (First (Expressions (N)))));
9690 Analyze_And_Resolve (N, Typ);
9691 end if;
9692 end Expand_N_Op_Rem;
9694 -----------------------------
9695 -- Expand_N_Op_Rotate_Left --
9696 -----------------------------
9698 procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
9699 begin
9700 Binary_Op_Validity_Checks (N);
9702 -- If we are in Modify_Tree_For_C mode, there is no rotate left in C,
9703 -- so we rewrite in terms of logical shifts
9705 -- Shift_Left (Num, Bits) or Shift_Right (num, Esize - Bits)
9707 -- where Bits is the shift count mod Esize (the mod operation here
9708 -- deals with ludicrous large shift counts, which are apparently OK).
9710 -- What about nonbinary modulus ???
9712 declare
9713 Loc : constant Source_Ptr := Sloc (N);
9714 Rtp : constant Entity_Id := Etype (Right_Opnd (N));
9715 Typ : constant Entity_Id := Etype (N);
9717 begin
9718 if Modify_Tree_For_C then
9719 Rewrite (Right_Opnd (N),
9720 Make_Op_Rem (Loc,
9721 Left_Opnd => Relocate_Node (Right_Opnd (N)),
9722 Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
9724 Analyze_And_Resolve (Right_Opnd (N), Rtp);
9726 Rewrite (N,
9727 Make_Op_Or (Loc,
9728 Left_Opnd =>
9729 Make_Op_Shift_Left (Loc,
9730 Left_Opnd => Left_Opnd (N),
9731 Right_Opnd => Right_Opnd (N)),
9733 Right_Opnd =>
9734 Make_Op_Shift_Right (Loc,
9735 Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
9736 Right_Opnd =>
9737 Make_Op_Subtract (Loc,
9738 Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
9739 Right_Opnd =>
9740 Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
9742 Analyze_And_Resolve (N, Typ);
9743 end if;
9744 end;
9745 end Expand_N_Op_Rotate_Left;
9747 ------------------------------
9748 -- Expand_N_Op_Rotate_Right --
9749 ------------------------------
9751 procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
9752 begin
9753 Binary_Op_Validity_Checks (N);
9755 -- If we are in Modify_Tree_For_C mode, there is no rotate right in C,
9756 -- so we rewrite in terms of logical shifts
9758 -- Shift_Right (Num, Bits) or Shift_Left (num, Esize - Bits)
9760 -- where Bits is the shift count mod Esize (the mod operation here
9761 -- deals with ludicrous large shift counts, which are apparently OK).
9763 -- What about nonbinary modulus ???
9765 declare
9766 Loc : constant Source_Ptr := Sloc (N);
9767 Rtp : constant Entity_Id := Etype (Right_Opnd (N));
9768 Typ : constant Entity_Id := Etype (N);
9770 begin
9771 Rewrite (Right_Opnd (N),
9772 Make_Op_Rem (Loc,
9773 Left_Opnd => Relocate_Node (Right_Opnd (N)),
9774 Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
9776 Analyze_And_Resolve (Right_Opnd (N), Rtp);
9778 if Modify_Tree_For_C then
9779 Rewrite (N,
9780 Make_Op_Or (Loc,
9781 Left_Opnd =>
9782 Make_Op_Shift_Right (Loc,
9783 Left_Opnd => Left_Opnd (N),
9784 Right_Opnd => Right_Opnd (N)),
9786 Right_Opnd =>
9787 Make_Op_Shift_Left (Loc,
9788 Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
9789 Right_Opnd =>
9790 Make_Op_Subtract (Loc,
9791 Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
9792 Right_Opnd =>
9793 Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
9795 Analyze_And_Resolve (N, Typ);
9796 end if;
9797 end;
9798 end Expand_N_Op_Rotate_Right;
9800 ----------------------------
9801 -- Expand_N_Op_Shift_Left --
9802 ----------------------------
9804 -- Note: nothing in this routine depends on left as opposed to right shifts
9805 -- so we share the routine for expanding shift right operations.
9807 procedure Expand_N_Op_Shift_Left (N : Node_Id) is
9808 begin
9809 Binary_Op_Validity_Checks (N);
9811 -- If we are in Modify_Tree_For_C mode, then ensure that the right
9812 -- operand is not greater than the word size (since that would not
9813 -- be defined properly by the corresponding C shift operator).
9815 if Modify_Tree_For_C then
9816 declare
9817 Right : constant Node_Id := Right_Opnd (N);
9818 Loc : constant Source_Ptr := Sloc (Right);
9819 Typ : constant Entity_Id := Etype (N);
9820 Siz : constant Uint := Esize (Typ);
9821 Orig : Node_Id;
9822 OK : Boolean;
9823 Lo : Uint;
9824 Hi : Uint;
9826 begin
9827 if Compile_Time_Known_Value (Right) then
9828 if Expr_Value (Right) >= Siz then
9829 Rewrite (N, Make_Integer_Literal (Loc, 0));
9830 Analyze_And_Resolve (N, Typ);
9831 end if;
9833 -- Not compile time known, find range
9835 else
9836 Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
9838 -- Nothing to do if known to be OK range, otherwise expand
9840 if not OK or else Hi >= Siz then
9842 -- Prevent recursion on copy of shift node
9844 Orig := Relocate_Node (N);
9845 Set_Analyzed (Orig);
9847 -- Now do the rewrite
9849 Rewrite (N,
9850 Make_If_Expression (Loc,
9851 Expressions => New_List (
9852 Make_Op_Ge (Loc,
9853 Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
9854 Right_Opnd => Make_Integer_Literal (Loc, Siz)),
9855 Make_Integer_Literal (Loc, 0),
9856 Orig)));
9857 Analyze_And_Resolve (N, Typ);
9858 end if;
9859 end if;
9860 end;
9861 end if;
9862 end Expand_N_Op_Shift_Left;
9864 -----------------------------
9865 -- Expand_N_Op_Shift_Right --
9866 -----------------------------
9868 procedure Expand_N_Op_Shift_Right (N : Node_Id) is
9869 begin
9870 -- Share shift left circuit
9872 Expand_N_Op_Shift_Left (N);
9873 end Expand_N_Op_Shift_Right;
9875 ----------------------------------------
9876 -- Expand_N_Op_Shift_Right_Arithmetic --
9877 ----------------------------------------
9879 procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
9880 begin
9881 Binary_Op_Validity_Checks (N);
9883 -- If we are in Modify_Tree_For_C mode, there is no shift right
9884 -- arithmetic in C, so we rewrite in terms of logical shifts.
9886 -- Shift_Right (Num, Bits) or
9887 -- (if Num >= Sign
9888 -- then not (Shift_Right (Mask, bits))
9889 -- else 0)
9891 -- Here Mask is all 1 bits (2**size - 1), and Sign is 2**(size - 1)
9893 -- Note: in almost all C compilers it would work to just shift a
9894 -- signed integer right, but it's undefined and we cannot rely on it.
9896 -- Note: the above works fine for shift counts greater than or equal
9897 -- to the word size, since in this case (not (Shift_Right (Mask, bits)))
9898 -- generates all 1'bits.
9900 -- What about nonbinary modulus ???
9902 declare
9903 Loc : constant Source_Ptr := Sloc (N);
9904 Typ : constant Entity_Id := Etype (N);
9905 Sign : constant Uint := 2 ** (Esize (Typ) - 1);
9906 Mask : constant Uint := (2 ** Esize (Typ)) - 1;
9907 Left : constant Node_Id := Left_Opnd (N);
9908 Right : constant Node_Id := Right_Opnd (N);
9909 Maskx : Node_Id;
9911 begin
9912 if Modify_Tree_For_C then
9914 -- Here if not (Shift_Right (Mask, bits)) can be computed at
9915 -- compile time as a single constant.
9917 if Compile_Time_Known_Value (Right) then
9918 declare
9919 Val : constant Uint := Expr_Value (Right);
9921 begin
9922 if Val >= Esize (Typ) then
9923 Maskx := Make_Integer_Literal (Loc, Mask);
9925 else
9926 Maskx :=
9927 Make_Integer_Literal (Loc,
9928 Intval => Mask - (Mask / (2 ** Expr_Value (Right))));
9929 end if;
9930 end;
9932 else
9933 Maskx :=
9934 Make_Op_Not (Loc,
9935 Right_Opnd =>
9936 Make_Op_Shift_Right (Loc,
9937 Left_Opnd => Make_Integer_Literal (Loc, Mask),
9938 Right_Opnd => Duplicate_Subexpr_No_Checks (Right)));
9939 end if;
9941 -- Now do the rewrite
9943 Rewrite (N,
9944 Make_Op_Or (Loc,
9945 Left_Opnd =>
9946 Make_Op_Shift_Right (Loc,
9947 Left_Opnd => Left,
9948 Right_Opnd => Right),
9949 Right_Opnd =>
9950 Make_If_Expression (Loc,
9951 Expressions => New_List (
9952 Make_Op_Ge (Loc,
9953 Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
9954 Right_Opnd => Make_Integer_Literal (Loc, Sign)),
9955 Maskx,
9956 Make_Integer_Literal (Loc, 0)))));
9957 Analyze_And_Resolve (N, Typ);
9958 end if;
9959 end;
9960 end Expand_N_Op_Shift_Right_Arithmetic;
9962 --------------------------
9963 -- Expand_N_Op_Subtract --
9964 --------------------------
9966 procedure Expand_N_Op_Subtract (N : Node_Id) is
9967 Typ : constant Entity_Id := Etype (N);
9969 begin
9970 Binary_Op_Validity_Checks (N);
9972 -- Check for MINIMIZED/ELIMINATED overflow mode
9974 if Minimized_Eliminated_Overflow_Check (N) then
9975 Apply_Arithmetic_Overflow_Check (N);
9976 return;
9977 end if;
9979 -- N - 0 = N for integer types
9981 if Is_Integer_Type (Typ)
9982 and then Compile_Time_Known_Value (Right_Opnd (N))
9983 and then Expr_Value (Right_Opnd (N)) = 0
9984 then
9985 Rewrite (N, Left_Opnd (N));
9986 return;
9987 end if;
9989 -- Arithmetic overflow checks for signed integer/fixed point types
9991 if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
9992 Apply_Arithmetic_Overflow_Check (N);
9993 end if;
9995 -- Overflow checks for floating-point if -gnateF mode active
9997 Check_Float_Op_Overflow (N);
9999 Expand_Nonbinary_Modular_Op (N);
10000 end Expand_N_Op_Subtract;
10002 ---------------------
10003 -- Expand_N_Op_Xor --
10004 ---------------------
10006 procedure Expand_N_Op_Xor (N : Node_Id) is
10007 Typ : constant Entity_Id := Etype (N);
10009 begin
10010 Binary_Op_Validity_Checks (N);
10012 if Is_Array_Type (Etype (N)) then
10013 Expand_Boolean_Operator (N);
10015 elsif Is_Boolean_Type (Etype (N)) then
10016 Adjust_Condition (Left_Opnd (N));
10017 Adjust_Condition (Right_Opnd (N));
10018 Set_Etype (N, Standard_Boolean);
10019 Adjust_Result_Type (N, Typ);
10021 elsif Is_Intrinsic_Subprogram (Entity (N)) then
10022 Expand_Intrinsic_Call (N, Entity (N));
10023 end if;
10025 Expand_Nonbinary_Modular_Op (N);
10026 end Expand_N_Op_Xor;
10028 ----------------------
10029 -- Expand_N_Or_Else --
10030 ----------------------
10032 procedure Expand_N_Or_Else (N : Node_Id)
10033 renames Expand_Short_Circuit_Operator;
10035 -----------------------------------
10036 -- Expand_N_Qualified_Expression --
10037 -----------------------------------
10039 procedure Expand_N_Qualified_Expression (N : Node_Id) is
10040 Operand : constant Node_Id := Expression (N);
10041 Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
10043 begin
10044 -- Do validity check if validity checking operands
10046 if Validity_Checks_On and Validity_Check_Operands then
10047 Ensure_Valid (Operand);
10048 end if;
10050 -- Apply possible constraint check
10052 Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
10054 if Do_Range_Check (Operand) then
10055 Set_Do_Range_Check (Operand, False);
10056 Generate_Range_Check (Operand, Target_Type, CE_Range_Check_Failed);
10057 end if;
10058 end Expand_N_Qualified_Expression;
10060 ------------------------------------
10061 -- Expand_N_Quantified_Expression --
10062 ------------------------------------
10064 -- We expand:
10066 -- for all X in range => Cond
10068 -- into:
10070 -- T := True;
10071 -- for X in range loop
10072 -- if not Cond then
10073 -- T := False;
10074 -- exit;
10075 -- end if;
10076 -- end loop;
10078 -- Similarly, an existentially quantified expression:
10080 -- for some X in range => Cond
10082 -- becomes:
10084 -- T := False;
10085 -- for X in range loop
10086 -- if Cond then
10087 -- T := True;
10088 -- exit;
10089 -- end if;
10090 -- end loop;
10092 -- In both cases, the iteration may be over a container in which case it is
10093 -- given by an iterator specification, not a loop parameter specification.
10095 procedure Expand_N_Quantified_Expression (N : Node_Id) is
10096 Actions : constant List_Id := New_List;
10097 For_All : constant Boolean := All_Present (N);
10098 Iter_Spec : constant Node_Id := Iterator_Specification (N);
10099 Loc : constant Source_Ptr := Sloc (N);
10100 Loop_Spec : constant Node_Id := Loop_Parameter_Specification (N);
10101 Cond : Node_Id;
10102 Flag : Entity_Id;
10103 Scheme : Node_Id;
10104 Stmts : List_Id;
10106 begin
10107 -- Create the declaration of the flag which tracks the status of the
10108 -- quantified expression. Generate:
10110 -- Flag : Boolean := (True | False);
10112 Flag := Make_Temporary (Loc, 'T', N);
10114 Append_To (Actions,
10115 Make_Object_Declaration (Loc,
10116 Defining_Identifier => Flag,
10117 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
10118 Expression =>
10119 New_Occurrence_Of (Boolean_Literals (For_All), Loc)));
10121 -- Construct the circuitry which tracks the status of the quantified
10122 -- expression. Generate:
10124 -- if [not] Cond then
10125 -- Flag := (False | True);
10126 -- exit;
10127 -- end if;
10129 Cond := Relocate_Node (Condition (N));
10131 if For_All then
10132 Cond := Make_Op_Not (Loc, Cond);
10133 end if;
10135 Stmts := New_List (
10136 Make_Implicit_If_Statement (N,
10137 Condition => Cond,
10138 Then_Statements => New_List (
10139 Make_Assignment_Statement (Loc,
10140 Name => New_Occurrence_Of (Flag, Loc),
10141 Expression =>
10142 New_Occurrence_Of (Boolean_Literals (not For_All), Loc)),
10143 Make_Exit_Statement (Loc))));
10145 -- Build the loop equivalent of the quantified expression
10147 if Present (Iter_Spec) then
10148 Scheme :=
10149 Make_Iteration_Scheme (Loc,
10150 Iterator_Specification => Iter_Spec);
10151 else
10152 Scheme :=
10153 Make_Iteration_Scheme (Loc,
10154 Loop_Parameter_Specification => Loop_Spec);
10155 end if;
10157 Append_To (Actions,
10158 Make_Loop_Statement (Loc,
10159 Iteration_Scheme => Scheme,
10160 Statements => Stmts,
10161 End_Label => Empty));
10163 -- Transform the quantified expression
10165 Rewrite (N,
10166 Make_Expression_With_Actions (Loc,
10167 Expression => New_Occurrence_Of (Flag, Loc),
10168 Actions => Actions));
10169 Analyze_And_Resolve (N, Standard_Boolean);
10170 end Expand_N_Quantified_Expression;
10172 ---------------------------------
10173 -- Expand_N_Selected_Component --
10174 ---------------------------------
10176 procedure Expand_N_Selected_Component (N : Node_Id) is
10177 Loc : constant Source_Ptr := Sloc (N);
10178 Par : constant Node_Id := Parent (N);
10179 P : constant Node_Id := Prefix (N);
10180 S : constant Node_Id := Selector_Name (N);
10181 Ptyp : Entity_Id := Underlying_Type (Etype (P));
10182 Disc : Entity_Id;
10183 New_N : Node_Id;
10184 Dcon : Elmt_Id;
10185 Dval : Node_Id;
10187 function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
10188 -- Gigi needs a temporary for prefixes that depend on a discriminant,
10189 -- unless the context of an assignment can provide size information.
10190 -- Don't we have a general routine that does this???
10192 function Is_Subtype_Declaration return Boolean;
10193 -- The replacement of a discriminant reference by its value is required
10194 -- if this is part of the initialization of an temporary generated by a
10195 -- change of representation. This shows up as the construction of a
10196 -- discriminant constraint for a subtype declared at the same point as
10197 -- the entity in the prefix of the selected component. We recognize this
10198 -- case when the context of the reference is:
10199 -- subtype ST is T(Obj.D);
10200 -- where the entity for Obj comes from source, and ST has the same sloc.
10202 -----------------------
10203 -- In_Left_Hand_Side --
10204 -----------------------
10206 function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
10207 begin
10208 return (Nkind (Parent (Comp)) = N_Assignment_Statement
10209 and then Comp = Name (Parent (Comp)))
10210 or else (Present (Parent (Comp))
10211 and then Nkind (Parent (Comp)) in N_Subexpr
10212 and then In_Left_Hand_Side (Parent (Comp)));
10213 end In_Left_Hand_Side;
10215 -----------------------------
10216 -- Is_Subtype_Declaration --
10217 -----------------------------
10219 function Is_Subtype_Declaration return Boolean is
10220 Par : constant Node_Id := Parent (N);
10221 begin
10222 return
10223 Nkind (Par) = N_Index_Or_Discriminant_Constraint
10224 and then Nkind (Parent (Parent (Par))) = N_Subtype_Declaration
10225 and then Comes_From_Source (Entity (Prefix (N)))
10226 and then Sloc (Par) = Sloc (Entity (Prefix (N)));
10227 end Is_Subtype_Declaration;
10229 -- Start of processing for Expand_N_Selected_Component
10231 begin
10232 -- Insert explicit dereference if required
10234 if Is_Access_Type (Ptyp) then
10236 -- First set prefix type to proper access type, in case it currently
10237 -- has a private (non-access) view of this type.
10239 Set_Etype (P, Ptyp);
10241 Insert_Explicit_Dereference (P);
10242 Analyze_And_Resolve (P, Designated_Type (Ptyp));
10244 if Ekind (Etype (P)) = E_Private_Subtype
10245 and then Is_For_Access_Subtype (Etype (P))
10246 then
10247 Set_Etype (P, Base_Type (Etype (P)));
10248 end if;
10250 Ptyp := Etype (P);
10251 end if;
10253 -- Deal with discriminant check required
10255 if Do_Discriminant_Check (N) then
10256 if Present (Discriminant_Checking_Func
10257 (Original_Record_Component (Entity (S))))
10258 then
10259 -- Present the discriminant checking function to the backend, so
10260 -- that it can inline the call to the function.
10262 Add_Inlined_Body
10263 (Discriminant_Checking_Func
10264 (Original_Record_Component (Entity (S))),
10267 -- Now reset the flag and generate the call
10269 Set_Do_Discriminant_Check (N, False);
10270 Generate_Discriminant_Check (N);
10272 -- In the case of Unchecked_Union, no discriminant checking is
10273 -- actually performed.
10275 else
10276 Set_Do_Discriminant_Check (N, False);
10277 end if;
10278 end if;
10280 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
10281 -- function, then additional actuals must be passed.
10283 if Is_Build_In_Place_Function_Call (P) then
10284 Make_Build_In_Place_Call_In_Anonymous_Context (P);
10286 -- Ada 2005 (AI-318-02): Specialization of the previous case for prefix
10287 -- containing build-in-place function calls whose returned object covers
10288 -- interface types.
10290 elsif Present (Unqual_BIP_Iface_Function_Call (P)) then
10291 Make_Build_In_Place_Iface_Call_In_Anonymous_Context (P);
10292 end if;
10294 -- Gigi cannot handle unchecked conversions that are the prefix of a
10295 -- selected component with discriminants. This must be checked during
10296 -- expansion, because during analysis the type of the selector is not
10297 -- known at the point the prefix is analyzed. If the conversion is the
10298 -- target of an assignment, then we cannot force the evaluation.
10300 if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
10301 and then Has_Discriminants (Etype (N))
10302 and then not In_Left_Hand_Side (N)
10303 then
10304 Force_Evaluation (Prefix (N));
10305 end if;
10307 -- Remaining processing applies only if selector is a discriminant
10309 if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
10311 -- If the selector is a discriminant of a constrained record type,
10312 -- we may be able to rewrite the expression with the actual value
10313 -- of the discriminant, a useful optimization in some cases.
10315 if Is_Record_Type (Ptyp)
10316 and then Has_Discriminants (Ptyp)
10317 and then Is_Constrained (Ptyp)
10318 then
10319 -- Do this optimization for discrete types only, and not for
10320 -- access types (access discriminants get us into trouble).
10322 if not Is_Discrete_Type (Etype (N)) then
10323 null;
10325 -- Don't do this on the left-hand side of an assignment statement.
10326 -- Normally one would think that references like this would not
10327 -- occur, but they do in generated code, and mean that we really
10328 -- do want to assign the discriminant.
10330 elsif Nkind (Par) = N_Assignment_Statement
10331 and then Name (Par) = N
10332 then
10333 null;
10335 -- Don't do this optimization for the prefix of an attribute or
10336 -- the name of an object renaming declaration since these are
10337 -- contexts where we do not want the value anyway.
10339 elsif (Nkind (Par) = N_Attribute_Reference
10340 and then Prefix (Par) = N)
10341 or else Is_Renamed_Object (N)
10342 then
10343 null;
10345 -- Don't do this optimization if we are within the code for a
10346 -- discriminant check, since the whole point of such a check may
10347 -- be to verify the condition on which the code below depends.
10349 elsif Is_In_Discriminant_Check (N) then
10350 null;
10352 -- Green light to see if we can do the optimization. There is
10353 -- still one condition that inhibits the optimization below but
10354 -- now is the time to check the particular discriminant.
10356 else
10357 -- Loop through discriminants to find the matching discriminant
10358 -- constraint to see if we can copy it.
10360 Disc := First_Discriminant (Ptyp);
10361 Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
10362 Discr_Loop : while Present (Dcon) loop
10363 Dval := Node (Dcon);
10365 -- Check if this is the matching discriminant and if the
10366 -- discriminant value is simple enough to make sense to
10367 -- copy. We don't want to copy complex expressions, and
10368 -- indeed to do so can cause trouble (before we put in
10369 -- this guard, a discriminant expression containing an
10370 -- AND THEN was copied, causing problems for coverage
10371 -- analysis tools).
10373 -- However, if the reference is part of the initialization
10374 -- code generated for an object declaration, we must use
10375 -- the discriminant value from the subtype constraint,
10376 -- because the selected component may be a reference to the
10377 -- object being initialized, whose discriminant is not yet
10378 -- set. This only happens in complex cases involving changes
10379 -- or representation.
10381 if Disc = Entity (Selector_Name (N))
10382 and then (Is_Entity_Name (Dval)
10383 or else Compile_Time_Known_Value (Dval)
10384 or else Is_Subtype_Declaration)
10385 then
10386 -- Here we have the matching discriminant. Check for
10387 -- the case of a discriminant of a component that is
10388 -- constrained by an outer discriminant, which cannot
10389 -- be optimized away.
10391 if Denotes_Discriminant
10392 (Dval, Check_Concurrent => True)
10393 then
10394 exit Discr_Loop;
10396 elsif Nkind (Original_Node (Dval)) = N_Selected_Component
10397 and then
10398 Denotes_Discriminant
10399 (Selector_Name (Original_Node (Dval)), True)
10400 then
10401 exit Discr_Loop;
10403 -- Do not retrieve value if constraint is not static. It
10404 -- is generally not useful, and the constraint may be a
10405 -- rewritten outer discriminant in which case it is in
10406 -- fact incorrect.
10408 elsif Is_Entity_Name (Dval)
10409 and then
10410 Nkind (Parent (Entity (Dval))) = N_Object_Declaration
10411 and then Present (Expression (Parent (Entity (Dval))))
10412 and then not
10413 Is_OK_Static_Expression
10414 (Expression (Parent (Entity (Dval))))
10415 then
10416 exit Discr_Loop;
10418 -- In the context of a case statement, the expression may
10419 -- have the base type of the discriminant, and we need to
10420 -- preserve the constraint to avoid spurious errors on
10421 -- missing cases.
10423 elsif Nkind (Parent (N)) = N_Case_Statement
10424 and then Etype (Dval) /= Etype (Disc)
10425 then
10426 Rewrite (N,
10427 Make_Qualified_Expression (Loc,
10428 Subtype_Mark =>
10429 New_Occurrence_Of (Etype (Disc), Loc),
10430 Expression =>
10431 New_Copy_Tree (Dval)));
10432 Analyze_And_Resolve (N, Etype (Disc));
10434 -- In case that comes out as a static expression,
10435 -- reset it (a selected component is never static).
10437 Set_Is_Static_Expression (N, False);
10438 return;
10440 -- Otherwise we can just copy the constraint, but the
10441 -- result is certainly not static. In some cases the
10442 -- discriminant constraint has been analyzed in the
10443 -- context of the original subtype indication, but for
10444 -- itypes the constraint might not have been analyzed
10445 -- yet, and this must be done now.
10447 else
10448 Rewrite (N, New_Copy_Tree (Dval));
10449 Analyze_And_Resolve (N);
10450 Set_Is_Static_Expression (N, False);
10451 return;
10452 end if;
10453 end if;
10455 Next_Elmt (Dcon);
10456 Next_Discriminant (Disc);
10457 end loop Discr_Loop;
10459 -- Note: the above loop should always find a matching
10460 -- discriminant, but if it does not, we just missed an
10461 -- optimization due to some glitch (perhaps a previous
10462 -- error), so ignore.
10464 end if;
10465 end if;
10467 -- The only remaining processing is in the case of a discriminant of
10468 -- a concurrent object, where we rewrite the prefix to denote the
10469 -- corresponding record type. If the type is derived and has renamed
10470 -- discriminants, use corresponding discriminant, which is the one
10471 -- that appears in the corresponding record.
10473 if not Is_Concurrent_Type (Ptyp) then
10474 return;
10475 end if;
10477 Disc := Entity (Selector_Name (N));
10479 if Is_Derived_Type (Ptyp)
10480 and then Present (Corresponding_Discriminant (Disc))
10481 then
10482 Disc := Corresponding_Discriminant (Disc);
10483 end if;
10485 New_N :=
10486 Make_Selected_Component (Loc,
10487 Prefix =>
10488 Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
10489 New_Copy_Tree (P)),
10490 Selector_Name => Make_Identifier (Loc, Chars (Disc)));
10492 Rewrite (N, New_N);
10493 Analyze (N);
10494 end if;
10496 -- Set Atomic_Sync_Required if necessary for atomic component
10498 if Nkind (N) = N_Selected_Component then
10499 declare
10500 E : constant Entity_Id := Entity (Selector_Name (N));
10501 Set : Boolean;
10503 begin
10504 -- If component is atomic, but type is not, setting depends on
10505 -- disable/enable state for the component.
10507 if Is_Atomic (E) and then not Is_Atomic (Etype (E)) then
10508 Set := not Atomic_Synchronization_Disabled (E);
10510 -- If component is not atomic, but its type is atomic, setting
10511 -- depends on disable/enable state for the type.
10513 elsif not Is_Atomic (E) and then Is_Atomic (Etype (E)) then
10514 Set := not Atomic_Synchronization_Disabled (Etype (E));
10516 -- If both component and type are atomic, we disable if either
10517 -- component or its type have sync disabled.
10519 elsif Is_Atomic (E) and then Is_Atomic (Etype (E)) then
10520 Set := (not Atomic_Synchronization_Disabled (E))
10521 and then
10522 (not Atomic_Synchronization_Disabled (Etype (E)));
10524 else
10525 Set := False;
10526 end if;
10528 -- Set flag if required
10530 if Set then
10531 Activate_Atomic_Synchronization (N);
10532 end if;
10533 end;
10534 end if;
10535 end Expand_N_Selected_Component;
10537 --------------------
10538 -- Expand_N_Slice --
10539 --------------------
10541 procedure Expand_N_Slice (N : Node_Id) is
10542 Loc : constant Source_Ptr := Sloc (N);
10543 Typ : constant Entity_Id := Etype (N);
10545 function Is_Procedure_Actual (N : Node_Id) return Boolean;
10546 -- Check whether the argument is an actual for a procedure call, in
10547 -- which case the expansion of a bit-packed slice is deferred until the
10548 -- call itself is expanded. The reason this is required is that we might
10549 -- have an IN OUT or OUT parameter, and the copy out is essential, and
10550 -- that copy out would be missed if we created a temporary here in
10551 -- Expand_N_Slice. Note that we don't bother to test specifically for an
10552 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
10553 -- is harmless to defer expansion in the IN case, since the call
10554 -- processing will still generate the appropriate copy in operation,
10555 -- which will take care of the slice.
10557 procedure Make_Temporary_For_Slice;
10558 -- Create a named variable for the value of the slice, in cases where
10559 -- the back end cannot handle it properly, e.g. when packed types or
10560 -- unaligned slices are involved.
10562 -------------------------
10563 -- Is_Procedure_Actual --
10564 -------------------------
10566 function Is_Procedure_Actual (N : Node_Id) return Boolean is
10567 Par : Node_Id := Parent (N);
10569 begin
10570 loop
10571 -- If our parent is a procedure call we can return
10573 if Nkind (Par) = N_Procedure_Call_Statement then
10574 return True;
10576 -- If our parent is a type conversion, keep climbing the tree,
10577 -- since a type conversion can be a procedure actual. Also keep
10578 -- climbing if parameter association or a qualified expression,
10579 -- since these are additional cases that do can appear on
10580 -- procedure actuals.
10582 elsif Nkind_In (Par, N_Type_Conversion,
10583 N_Parameter_Association,
10584 N_Qualified_Expression)
10585 then
10586 Par := Parent (Par);
10588 -- Any other case is not what we are looking for
10590 else
10591 return False;
10592 end if;
10593 end loop;
10594 end Is_Procedure_Actual;
10596 ------------------------------
10597 -- Make_Temporary_For_Slice --
10598 ------------------------------
10600 procedure Make_Temporary_For_Slice is
10601 Ent : constant Entity_Id := Make_Temporary (Loc, 'T', N);
10602 Decl : Node_Id;
10604 begin
10605 Decl :=
10606 Make_Object_Declaration (Loc,
10607 Defining_Identifier => Ent,
10608 Object_Definition => New_Occurrence_Of (Typ, Loc));
10610 Set_No_Initialization (Decl);
10612 Insert_Actions (N, New_List (
10613 Decl,
10614 Make_Assignment_Statement (Loc,
10615 Name => New_Occurrence_Of (Ent, Loc),
10616 Expression => Relocate_Node (N))));
10618 Rewrite (N, New_Occurrence_Of (Ent, Loc));
10619 Analyze_And_Resolve (N, Typ);
10620 end Make_Temporary_For_Slice;
10622 -- Local variables
10624 Pref : constant Node_Id := Prefix (N);
10625 Pref_Typ : Entity_Id := Etype (Pref);
10627 -- Start of processing for Expand_N_Slice
10629 begin
10630 -- Special handling for access types
10632 if Is_Access_Type (Pref_Typ) then
10633 Pref_Typ := Designated_Type (Pref_Typ);
10635 Rewrite (Pref,
10636 Make_Explicit_Dereference (Sloc (N),
10637 Prefix => Relocate_Node (Pref)));
10639 Analyze_And_Resolve (Pref, Pref_Typ);
10640 end if;
10642 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
10643 -- function, then additional actuals must be passed.
10645 if Is_Build_In_Place_Function_Call (Pref) then
10646 Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
10648 -- Ada 2005 (AI-318-02): Specialization of the previous case for prefix
10649 -- containing build-in-place function calls whose returned object covers
10650 -- interface types.
10652 elsif Present (Unqual_BIP_Iface_Function_Call (Pref)) then
10653 Make_Build_In_Place_Iface_Call_In_Anonymous_Context (Pref);
10654 end if;
10656 -- The remaining case to be handled is packed slices. We can leave
10657 -- packed slices as they are in the following situations:
10659 -- 1. Right or left side of an assignment (we can handle this
10660 -- situation correctly in the assignment statement expansion).
10662 -- 2. Prefix of indexed component (the slide is optimized away in this
10663 -- case, see the start of Expand_N_Slice.)
10665 -- 3. Object renaming declaration, since we want the name of the
10666 -- slice, not the value.
10668 -- 4. Argument to procedure call, since copy-in/copy-out handling may
10669 -- be required, and this is handled in the expansion of call
10670 -- itself.
10672 -- 5. Prefix of an address attribute (this is an error which is caught
10673 -- elsewhere, and the expansion would interfere with generating the
10674 -- error message).
10676 if not Is_Packed (Typ) then
10678 -- Apply transformation for actuals of a function call, where
10679 -- Expand_Actuals is not used.
10681 if Nkind (Parent (N)) = N_Function_Call
10682 and then Is_Possibly_Unaligned_Slice (N)
10683 then
10684 Make_Temporary_For_Slice;
10685 end if;
10687 elsif Nkind (Parent (N)) = N_Assignment_Statement
10688 or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
10689 and then Parent (N) = Name (Parent (Parent (N))))
10690 then
10691 return;
10693 elsif Nkind (Parent (N)) = N_Indexed_Component
10694 or else Is_Renamed_Object (N)
10695 or else Is_Procedure_Actual (N)
10696 then
10697 return;
10699 elsif Nkind (Parent (N)) = N_Attribute_Reference
10700 and then Attribute_Name (Parent (N)) = Name_Address
10701 then
10702 return;
10704 else
10705 Make_Temporary_For_Slice;
10706 end if;
10707 end Expand_N_Slice;
10709 ------------------------------
10710 -- Expand_N_Type_Conversion --
10711 ------------------------------
10713 procedure Expand_N_Type_Conversion (N : Node_Id) is
10714 Loc : constant Source_Ptr := Sloc (N);
10715 Operand : constant Node_Id := Expression (N);
10716 Target_Type : constant Entity_Id := Etype (N);
10717 Operand_Type : Entity_Id := Etype (Operand);
10719 procedure Handle_Changed_Representation;
10720 -- This is called in the case of record and array type conversions to
10721 -- see if there is a change of representation to be handled. Change of
10722 -- representation is actually handled at the assignment statement level,
10723 -- and what this procedure does is rewrite node N conversion as an
10724 -- assignment to temporary. If there is no change of representation,
10725 -- then the conversion node is unchanged.
10727 procedure Raise_Accessibility_Error;
10728 -- Called when we know that an accessibility check will fail. Rewrites
10729 -- node N to an appropriate raise statement and outputs warning msgs.
10730 -- The Etype of the raise node is set to Target_Type. Note that in this
10731 -- case the rest of the processing should be skipped (i.e. the call to
10732 -- this procedure will be followed by "goto Done").
10734 procedure Real_Range_Check;
10735 -- Handles generation of range check for real target value
10737 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean;
10738 -- True iff Present (Effective_Extra_Accessibility (Id)) successfully
10739 -- evaluates to True.
10741 -----------------------------------
10742 -- Handle_Changed_Representation --
10743 -----------------------------------
10745 procedure Handle_Changed_Representation is
10746 Temp : Entity_Id;
10747 Decl : Node_Id;
10748 Odef : Node_Id;
10749 N_Ix : Node_Id;
10750 Cons : List_Id;
10752 begin
10753 -- Nothing else to do if no change of representation
10755 if Same_Representation (Operand_Type, Target_Type) then
10756 return;
10758 -- The real change of representation work is done by the assignment
10759 -- statement processing. So if this type conversion is appearing as
10760 -- the expression of an assignment statement, nothing needs to be
10761 -- done to the conversion.
10763 elsif Nkind (Parent (N)) = N_Assignment_Statement then
10764 return;
10766 -- Otherwise we need to generate a temporary variable, and do the
10767 -- change of representation assignment into that temporary variable.
10768 -- The conversion is then replaced by a reference to this variable.
10770 else
10771 Cons := No_List;
10773 -- If type is unconstrained we have to add a constraint, copied
10774 -- from the actual value of the left-hand side.
10776 if not Is_Constrained (Target_Type) then
10777 if Has_Discriminants (Operand_Type) then
10779 -- A change of representation can only apply to untagged
10780 -- types. We need to build the constraint that applies to
10781 -- the target type, using the constraints of the operand.
10782 -- The analysis is complicated if there are both inherited
10783 -- discriminants and constrained discriminants.
10784 -- We iterate over the discriminants of the target, and
10785 -- find the discriminant of the same name:
10787 -- a) If there is a corresponding discriminant in the object
10788 -- then the value is a selected component of the operand.
10790 -- b) Otherwise the value of a constrained discriminant is
10791 -- found in the stored constraint of the operand.
10793 declare
10794 Stored : constant Elist_Id :=
10795 Stored_Constraint (Operand_Type);
10797 Elmt : Elmt_Id;
10799 Disc_O : Entity_Id;
10800 -- Discriminant of the operand type. Its value in the
10801 -- object is captured in a selected component.
10803 Disc_S : Entity_Id;
10804 -- Stored discriminant of the operand. If present, it
10805 -- corresponds to a constrained discriminant of the
10806 -- parent type.
10808 Disc_T : Entity_Id;
10809 -- Discriminant of the target type
10811 begin
10812 Disc_T := First_Discriminant (Target_Type);
10813 Disc_O := First_Discriminant (Operand_Type);
10814 Disc_S := First_Stored_Discriminant (Operand_Type);
10816 if Present (Stored) then
10817 Elmt := First_Elmt (Stored);
10818 else
10819 Elmt := No_Elmt; -- init to avoid warning
10820 end if;
10822 Cons := New_List;
10823 while Present (Disc_T) loop
10824 if Present (Disc_O)
10825 and then Chars (Disc_T) = Chars (Disc_O)
10826 then
10827 Append_To (Cons,
10828 Make_Selected_Component (Loc,
10829 Prefix =>
10830 Duplicate_Subexpr_Move_Checks (Operand),
10831 Selector_Name =>
10832 Make_Identifier (Loc, Chars (Disc_O))));
10833 Next_Discriminant (Disc_O);
10835 elsif Present (Disc_S) then
10836 Append_To (Cons, New_Copy_Tree (Node (Elmt)));
10837 Next_Elmt (Elmt);
10838 end if;
10840 Next_Discriminant (Disc_T);
10841 end loop;
10842 end;
10844 elsif Is_Array_Type (Operand_Type) then
10845 N_Ix := First_Index (Target_Type);
10846 Cons := New_List;
10848 for J in 1 .. Number_Dimensions (Operand_Type) loop
10850 -- We convert the bounds explicitly. We use an unchecked
10851 -- conversion because bounds checks are done elsewhere.
10853 Append_To (Cons,
10854 Make_Range (Loc,
10855 Low_Bound =>
10856 Unchecked_Convert_To (Etype (N_Ix),
10857 Make_Attribute_Reference (Loc,
10858 Prefix =>
10859 Duplicate_Subexpr_No_Checks
10860 (Operand, Name_Req => True),
10861 Attribute_Name => Name_First,
10862 Expressions => New_List (
10863 Make_Integer_Literal (Loc, J)))),
10865 High_Bound =>
10866 Unchecked_Convert_To (Etype (N_Ix),
10867 Make_Attribute_Reference (Loc,
10868 Prefix =>
10869 Duplicate_Subexpr_No_Checks
10870 (Operand, Name_Req => True),
10871 Attribute_Name => Name_Last,
10872 Expressions => New_List (
10873 Make_Integer_Literal (Loc, J))))));
10875 Next_Index (N_Ix);
10876 end loop;
10877 end if;
10878 end if;
10880 Odef := New_Occurrence_Of (Target_Type, Loc);
10882 if Present (Cons) then
10883 Odef :=
10884 Make_Subtype_Indication (Loc,
10885 Subtype_Mark => Odef,
10886 Constraint =>
10887 Make_Index_Or_Discriminant_Constraint (Loc,
10888 Constraints => Cons));
10889 end if;
10891 Temp := Make_Temporary (Loc, 'C');
10892 Decl :=
10893 Make_Object_Declaration (Loc,
10894 Defining_Identifier => Temp,
10895 Object_Definition => Odef);
10897 Set_No_Initialization (Decl, True);
10899 -- Insert required actions. It is essential to suppress checks
10900 -- since we have suppressed default initialization, which means
10901 -- that the variable we create may have no discriminants.
10903 Insert_Actions (N,
10904 New_List (
10905 Decl,
10906 Make_Assignment_Statement (Loc,
10907 Name => New_Occurrence_Of (Temp, Loc),
10908 Expression => Relocate_Node (N))),
10909 Suppress => All_Checks);
10911 Rewrite (N, New_Occurrence_Of (Temp, Loc));
10912 return;
10913 end if;
10914 end Handle_Changed_Representation;
10916 -------------------------------
10917 -- Raise_Accessibility_Error --
10918 -------------------------------
10920 procedure Raise_Accessibility_Error is
10921 begin
10922 Error_Msg_Warn := SPARK_Mode /= On;
10923 Rewrite (N,
10924 Make_Raise_Program_Error (Sloc (N),
10925 Reason => PE_Accessibility_Check_Failed));
10926 Set_Etype (N, Target_Type);
10928 Error_Msg_N ("<<accessibility check failure", N);
10929 Error_Msg_NE ("\<<& [", N, Standard_Program_Error);
10930 end Raise_Accessibility_Error;
10932 ----------------------
10933 -- Real_Range_Check --
10934 ----------------------
10936 -- Case of conversions to floating-point or fixed-point. If range checks
10937 -- are enabled and the target type has a range constraint, we convert:
10939 -- typ (x)
10941 -- to
10943 -- Tnn : typ'Base := typ'Base (x);
10944 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
10945 -- Tnn
10947 -- This is necessary when there is a conversion of integer to float or
10948 -- to fixed-point to ensure that the correct checks are made. It is not
10949 -- necessary for float to float where it is enough to simply set the
10950 -- Do_Range_Check flag.
10952 procedure Real_Range_Check is
10953 Btyp : constant Entity_Id := Base_Type (Target_Type);
10954 Lo : constant Node_Id := Type_Low_Bound (Target_Type);
10955 Hi : constant Node_Id := Type_High_Bound (Target_Type);
10956 Xtyp : constant Entity_Id := Etype (Operand);
10958 Conv : Node_Id;
10959 Hi_Arg : Node_Id;
10960 Hi_Val : Node_Id;
10961 Lo_Arg : Node_Id;
10962 Lo_Val : Node_Id;
10963 Tnn : Entity_Id;
10965 begin
10966 -- Nothing to do if conversion was rewritten
10968 if Nkind (N) /= N_Type_Conversion then
10969 return;
10970 end if;
10972 -- Nothing to do if range checks suppressed, or target has the same
10973 -- range as the base type (or is the base type).
10975 if Range_Checks_Suppressed (Target_Type)
10976 or else (Lo = Type_Low_Bound (Btyp)
10977 and then
10978 Hi = Type_High_Bound (Btyp))
10979 then
10980 return;
10981 end if;
10983 -- Nothing to do if expression is an entity on which checks have been
10984 -- suppressed.
10986 if Is_Entity_Name (Operand)
10987 and then Range_Checks_Suppressed (Entity (Operand))
10988 then
10989 return;
10990 end if;
10992 -- Nothing to do if bounds are all static and we can tell that the
10993 -- expression is within the bounds of the target. Note that if the
10994 -- operand is of an unconstrained floating-point type, then we do
10995 -- not trust it to be in range (might be infinite)
10997 declare
10998 S_Lo : constant Node_Id := Type_Low_Bound (Xtyp);
10999 S_Hi : constant Node_Id := Type_High_Bound (Xtyp);
11001 begin
11002 if (not Is_Floating_Point_Type (Xtyp)
11003 or else Is_Constrained (Xtyp))
11004 and then Compile_Time_Known_Value (S_Lo)
11005 and then Compile_Time_Known_Value (S_Hi)
11006 and then Compile_Time_Known_Value (Hi)
11007 and then Compile_Time_Known_Value (Lo)
11008 then
11009 declare
11010 D_Lov : constant Ureal := Expr_Value_R (Lo);
11011 D_Hiv : constant Ureal := Expr_Value_R (Hi);
11012 S_Lov : Ureal;
11013 S_Hiv : Ureal;
11015 begin
11016 if Is_Real_Type (Xtyp) then
11017 S_Lov := Expr_Value_R (S_Lo);
11018 S_Hiv := Expr_Value_R (S_Hi);
11019 else
11020 S_Lov := UR_From_Uint (Expr_Value (S_Lo));
11021 S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
11022 end if;
11024 if D_Hiv > D_Lov
11025 and then S_Lov >= D_Lov
11026 and then S_Hiv <= D_Hiv
11027 then
11028 -- Unset the range check flag on the current value of
11029 -- Expression (N), since the captured Operand may have
11030 -- been rewritten (such as for the case of a conversion
11031 -- to a fixed-point type).
11033 Set_Do_Range_Check (Expression (N), False);
11035 return;
11036 end if;
11037 end;
11038 end if;
11039 end;
11041 -- For float to float conversions, we are done
11043 if Is_Floating_Point_Type (Xtyp)
11044 and then
11045 Is_Floating_Point_Type (Btyp)
11046 then
11047 return;
11048 end if;
11050 -- Otherwise rewrite the conversion as described above
11052 Conv := Relocate_Node (N);
11053 Rewrite (Subtype_Mark (Conv), New_Occurrence_Of (Btyp, Loc));
11054 Set_Etype (Conv, Btyp);
11056 -- Enable overflow except for case of integer to float conversions,
11057 -- where it is never required, since we can never have overflow in
11058 -- this case.
11060 if not Is_Integer_Type (Etype (Operand)) then
11061 Enable_Overflow_Check (Conv);
11062 end if;
11064 Tnn := Make_Temporary (Loc, 'T', Conv);
11066 -- For a conversion from Float to Fixed where the bounds of the
11067 -- fixed-point type are static, we can obtain a more accurate
11068 -- fixed-point value by converting the result of the floating-
11069 -- point expression to an appropriate integer type, and then
11070 -- performing an unchecked conversion to the target fixed-point
11071 -- type. The range check can then use the corresponding integer
11072 -- value of the bounds instead of requiring further conversions.
11073 -- This preserves the identity:
11075 -- Fix_Val = Fixed_Type (Float_Type (Fix_Val))
11077 -- which used to fail when Fix_Val was a bound of the type and
11078 -- the 'Small was not a representable number.
11079 -- This transformation requires an integer type large enough to
11080 -- accommodate a fixed-point value. This will not be the case
11081 -- in systems where Duration is larger than Long_Integer.
11083 if Is_Ordinary_Fixed_Point_Type (Target_Type)
11084 and then Is_Floating_Point_Type (Operand_Type)
11085 and then RM_Size (Base_Type (Target_Type)) <=
11086 RM_Size (Standard_Long_Integer)
11087 and then Nkind (Lo) = N_Real_Literal
11088 and then Nkind (Hi) = N_Real_Literal
11089 then
11090 -- Find the integer type of the right size to perform an unchecked
11091 -- conversion to the target fixed-point type.
11093 declare
11094 Bfx_Type : constant Entity_Id := Base_Type (Target_Type);
11095 Expr_Id : constant Entity_Id :=
11096 Make_Temporary (Loc, 'T', Conv);
11097 Int_Type : Entity_Id;
11099 begin
11100 if RM_Size (Bfx_Type) > RM_Size (Standard_Integer) then
11101 Int_Type := Standard_Long_Integer;
11103 elsif RM_Size (Bfx_Type) > RM_Size (Standard_Short_Integer) then
11104 Int_Type := Standard_Integer;
11106 else
11107 Int_Type := Standard_Short_Integer;
11108 end if;
11110 -- Generate a temporary with the integer value. Required in the
11111 -- CCG compiler to ensure that runtime checks reference this
11112 -- integer expression (instead of the resulting fixed-point
11113 -- value) because fixed-point values are handled by means of
11114 -- unsigned integer types).
11116 Insert_Action (N,
11117 Make_Object_Declaration (Loc,
11118 Defining_Identifier => Expr_Id,
11119 Object_Definition => New_Occurrence_Of (Int_Type, Loc),
11120 Constant_Present => True,
11121 Expression =>
11122 Convert_To (Int_Type, Expression (Conv))));
11124 -- Create integer objects for range checking of result.
11126 Lo_Arg :=
11127 Unchecked_Convert_To
11128 (Int_Type, New_Occurrence_Of (Expr_Id, Loc));
11130 Lo_Val :=
11131 Make_Integer_Literal (Loc, Corresponding_Integer_Value (Lo));
11133 Hi_Arg :=
11134 Unchecked_Convert_To
11135 (Int_Type, New_Occurrence_Of (Expr_Id, Loc));
11137 Hi_Val :=
11138 Make_Integer_Literal (Loc, Corresponding_Integer_Value (Hi));
11140 -- Rewrite conversion as an integer conversion of the
11141 -- original floating-point expression, followed by an
11142 -- unchecked conversion to the target fixed-point type.
11144 Conv :=
11145 Make_Unchecked_Type_Conversion (Loc,
11146 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
11147 Expression => New_Occurrence_Of (Expr_Id, Loc));
11148 end;
11150 -- All other conversions
11152 else
11153 Lo_Arg := New_Occurrence_Of (Tnn, Loc);
11154 Lo_Val :=
11155 Make_Attribute_Reference (Loc,
11156 Prefix => New_Occurrence_Of (Target_Type, Loc),
11157 Attribute_Name => Name_First);
11159 Hi_Arg := New_Occurrence_Of (Tnn, Loc);
11160 Hi_Val :=
11161 Make_Attribute_Reference (Loc,
11162 Prefix => New_Occurrence_Of (Target_Type, Loc),
11163 Attribute_Name => Name_Last);
11164 end if;
11166 -- Build code for range checking
11168 Insert_Actions (N, New_List (
11169 Make_Object_Declaration (Loc,
11170 Defining_Identifier => Tnn,
11171 Object_Definition => New_Occurrence_Of (Btyp, Loc),
11172 Constant_Present => True,
11173 Expression => Conv),
11175 Make_Raise_Constraint_Error (Loc,
11176 Condition =>
11177 Make_Or_Else (Loc,
11178 Left_Opnd =>
11179 Make_Op_Lt (Loc,
11180 Left_Opnd => Lo_Arg,
11181 Right_Opnd => Lo_Val),
11183 Right_Opnd =>
11184 Make_Op_Gt (Loc,
11185 Left_Opnd => Hi_Arg,
11186 Right_Opnd => Hi_Val)),
11187 Reason => CE_Range_Check_Failed)));
11189 Rewrite (N, New_Occurrence_Of (Tnn, Loc));
11190 Analyze_And_Resolve (N, Btyp);
11191 end Real_Range_Check;
11193 -----------------------------
11194 -- Has_Extra_Accessibility --
11195 -----------------------------
11197 -- Returns true for a formal of an anonymous access type or for an Ada
11198 -- 2012-style stand-alone object of an anonymous access type.
11200 function Has_Extra_Accessibility (Id : Entity_Id) return Boolean is
11201 begin
11202 if Is_Formal (Id) or else Ekind_In (Id, E_Constant, E_Variable) then
11203 return Present (Effective_Extra_Accessibility (Id));
11204 else
11205 return False;
11206 end if;
11207 end Has_Extra_Accessibility;
11209 -- Start of processing for Expand_N_Type_Conversion
11211 begin
11212 -- First remove check marks put by the semantic analysis on the type
11213 -- conversion between array types. We need these checks, and they will
11214 -- be generated by this expansion routine, but we do not depend on these
11215 -- flags being set, and since we do intend to expand the checks in the
11216 -- front end, we don't want them on the tree passed to the back end.
11218 if Is_Array_Type (Target_Type) then
11219 if Is_Constrained (Target_Type) then
11220 Set_Do_Length_Check (N, False);
11221 else
11222 Set_Do_Range_Check (Operand, False);
11223 end if;
11224 end if;
11226 -- Nothing at all to do if conversion is to the identical type so remove
11227 -- the conversion completely, it is useless, except that it may carry
11228 -- an Assignment_OK attribute, which must be propagated to the operand.
11230 if Operand_Type = Target_Type then
11231 if Assignment_OK (N) then
11232 Set_Assignment_OK (Operand);
11233 end if;
11235 Rewrite (N, Relocate_Node (Operand));
11236 goto Done;
11237 end if;
11239 -- Nothing to do if this is the second argument of read. This is a
11240 -- "backwards" conversion that will be handled by the specialized code
11241 -- in attribute processing.
11243 if Nkind (Parent (N)) = N_Attribute_Reference
11244 and then Attribute_Name (Parent (N)) = Name_Read
11245 and then Next (First (Expressions (Parent (N)))) = N
11246 then
11247 goto Done;
11248 end if;
11250 -- Check for case of converting to a type that has an invariant
11251 -- associated with it. This requires an invariant check. We insert
11252 -- a call:
11254 -- invariant_check (typ (expr))
11256 -- in the code, after removing side effects from the expression.
11257 -- This is clearer than replacing the conversion into an expression
11258 -- with actions, because the context may impose additional actions
11259 -- (tag checks, membership tests, etc.) that conflict with this
11260 -- rewriting (used previously).
11262 -- Note: the Comes_From_Source check, and then the resetting of this
11263 -- flag prevents what would otherwise be an infinite recursion.
11265 if Has_Invariants (Target_Type)
11266 and then Present (Invariant_Procedure (Target_Type))
11267 and then Comes_From_Source (N)
11268 then
11269 Set_Comes_From_Source (N, False);
11270 Remove_Side_Effects (N);
11271 Insert_Action (N, Make_Invariant_Call (Duplicate_Subexpr (N)));
11272 goto Done;
11273 end if;
11275 -- Here if we may need to expand conversion
11277 -- If the operand of the type conversion is an arithmetic operation on
11278 -- signed integers, and the based type of the signed integer type in
11279 -- question is smaller than Standard.Integer, we promote both of the
11280 -- operands to type Integer.
11282 -- For example, if we have
11284 -- target-type (opnd1 + opnd2)
11286 -- and opnd1 and opnd2 are of type short integer, then we rewrite
11287 -- this as:
11289 -- target-type (integer(opnd1) + integer(opnd2))
11291 -- We do this because we are always allowed to compute in a larger type
11292 -- if we do the right thing with the result, and in this case we are
11293 -- going to do a conversion which will do an appropriate check to make
11294 -- sure that things are in range of the target type in any case. This
11295 -- avoids some unnecessary intermediate overflows.
11297 -- We might consider a similar transformation in the case where the
11298 -- target is a real type or a 64-bit integer type, and the operand
11299 -- is an arithmetic operation using a 32-bit integer type. However,
11300 -- we do not bother with this case, because it could cause significant
11301 -- inefficiencies on 32-bit machines. On a 64-bit machine it would be
11302 -- much cheaper, but we don't want different behavior on 32-bit and
11303 -- 64-bit machines. Note that the exclusion of the 64-bit case also
11304 -- handles the configurable run-time cases where 64-bit arithmetic
11305 -- may simply be unavailable.
11307 -- Note: this circuit is partially redundant with respect to the circuit
11308 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
11309 -- the processing here. Also we still need the Checks circuit, since we
11310 -- have to be sure not to generate junk overflow checks in the first
11311 -- place, since it would be trick to remove them here.
11313 if Integer_Promotion_Possible (N) then
11315 -- All conditions met, go ahead with transformation
11317 declare
11318 Opnd : Node_Id;
11319 L, R : Node_Id;
11321 begin
11322 R :=
11323 Make_Type_Conversion (Loc,
11324 Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
11325 Expression => Relocate_Node (Right_Opnd (Operand)));
11327 Opnd := New_Op_Node (Nkind (Operand), Loc);
11328 Set_Right_Opnd (Opnd, R);
11330 if Nkind (Operand) in N_Binary_Op then
11331 L :=
11332 Make_Type_Conversion (Loc,
11333 Subtype_Mark => New_Occurrence_Of (Standard_Integer, Loc),
11334 Expression => Relocate_Node (Left_Opnd (Operand)));
11336 Set_Left_Opnd (Opnd, L);
11337 end if;
11339 Rewrite (N,
11340 Make_Type_Conversion (Loc,
11341 Subtype_Mark => Relocate_Node (Subtype_Mark (N)),
11342 Expression => Opnd));
11344 Analyze_And_Resolve (N, Target_Type);
11345 goto Done;
11346 end;
11347 end if;
11349 -- Do validity check if validity checking operands
11351 if Validity_Checks_On and Validity_Check_Operands then
11352 Ensure_Valid (Operand);
11353 end if;
11355 -- Special case of converting from non-standard boolean type
11357 if Is_Boolean_Type (Operand_Type)
11358 and then (Nonzero_Is_True (Operand_Type))
11359 then
11360 Adjust_Condition (Operand);
11361 Set_Etype (Operand, Standard_Boolean);
11362 Operand_Type := Standard_Boolean;
11363 end if;
11365 -- Case of converting to an access type
11367 if Is_Access_Type (Target_Type) then
11369 -- If this type conversion was internally generated by the front end
11370 -- to displace the pointer to the object to reference an interface
11371 -- type and the original node was an Unrestricted_Access attribute,
11372 -- then skip applying accessibility checks (because, according to the
11373 -- GNAT Reference Manual, this attribute is similar to 'Access except
11374 -- that all accessibility and aliased view checks are omitted).
11376 if not Comes_From_Source (N)
11377 and then Is_Interface (Designated_Type (Target_Type))
11378 and then Nkind (Original_Node (N)) = N_Attribute_Reference
11379 and then Attribute_Name (Original_Node (N)) =
11380 Name_Unrestricted_Access
11381 then
11382 null;
11384 -- Apply an accessibility check when the conversion operand is an
11385 -- access parameter (or a renaming thereof), unless conversion was
11386 -- expanded from an Unchecked_ or Unrestricted_Access attribute,
11387 -- or for the actual of a class-wide interface parameter. Note that
11388 -- other checks may still need to be applied below (such as tagged
11389 -- type checks).
11391 elsif Is_Entity_Name (Operand)
11392 and then Has_Extra_Accessibility (Entity (Operand))
11393 and then Ekind (Etype (Operand)) = E_Anonymous_Access_Type
11394 and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
11395 or else Attribute_Name (Original_Node (N)) = Name_Access)
11396 then
11397 if not Comes_From_Source (N)
11398 and then Nkind_In (Parent (N), N_Function_Call,
11399 N_Procedure_Call_Statement)
11400 and then Is_Interface (Designated_Type (Target_Type))
11401 and then Is_Class_Wide_Type (Designated_Type (Target_Type))
11402 then
11403 null;
11405 else
11406 Apply_Accessibility_Check
11407 (Operand, Target_Type, Insert_Node => Operand);
11408 end if;
11410 -- If the level of the operand type is statically deeper than the
11411 -- level of the target type, then force Program_Error. Note that this
11412 -- can only occur for cases where the attribute is within the body of
11413 -- an instantiation, otherwise the conversion will already have been
11414 -- rejected as illegal.
11416 -- Note: warnings are issued by the analyzer for the instance cases
11418 elsif In_Instance_Body
11420 -- The case where the target type is an anonymous access type of
11421 -- a discriminant is excluded, because the level of such a type
11422 -- depends on the context and currently the level returned for such
11423 -- types is zero, resulting in warnings about about check failures
11424 -- in certain legal cases involving class-wide interfaces as the
11425 -- designated type (some cases, such as return statements, are
11426 -- checked at run time, but not clear if these are handled right
11427 -- in general, see 3.10.2(12/2-12.5/3) ???).
11429 and then
11430 not (Ekind (Target_Type) = E_Anonymous_Access_Type
11431 and then Present (Associated_Node_For_Itype (Target_Type))
11432 and then Nkind (Associated_Node_For_Itype (Target_Type)) =
11433 N_Discriminant_Specification)
11434 and then
11435 Type_Access_Level (Operand_Type) > Type_Access_Level (Target_Type)
11436 then
11437 Raise_Accessibility_Error;
11438 goto Done;
11440 -- When the operand is a selected access discriminant the check needs
11441 -- to be made against the level of the object denoted by the prefix
11442 -- of the selected name. Force Program_Error for this case as well
11443 -- (this accessibility violation can only happen if within the body
11444 -- of an instantiation).
11446 elsif In_Instance_Body
11447 and then Ekind (Operand_Type) = E_Anonymous_Access_Type
11448 and then Nkind (Operand) = N_Selected_Component
11449 and then Ekind (Entity (Selector_Name (Operand))) = E_Discriminant
11450 and then Object_Access_Level (Operand) >
11451 Type_Access_Level (Target_Type)
11452 then
11453 Raise_Accessibility_Error;
11454 goto Done;
11455 end if;
11456 end if;
11458 -- Case of conversions of tagged types and access to tagged types
11460 -- When needed, that is to say when the expression is class-wide, Add
11461 -- runtime a tag check for (strict) downward conversion by using the
11462 -- membership test, generating:
11464 -- [constraint_error when Operand not in Target_Type'Class]
11466 -- or in the access type case
11468 -- [constraint_error
11469 -- when Operand /= null
11470 -- and then Operand.all not in
11471 -- Designated_Type (Target_Type)'Class]
11473 if (Is_Access_Type (Target_Type)
11474 and then Is_Tagged_Type (Designated_Type (Target_Type)))
11475 or else Is_Tagged_Type (Target_Type)
11476 then
11477 -- Do not do any expansion in the access type case if the parent is a
11478 -- renaming, since this is an error situation which will be caught by
11479 -- Sem_Ch8, and the expansion can interfere with this error check.
11481 if Is_Access_Type (Target_Type) and then Is_Renamed_Object (N) then
11482 goto Done;
11483 end if;
11485 -- Otherwise, proceed with processing tagged conversion
11487 Tagged_Conversion : declare
11488 Actual_Op_Typ : Entity_Id;
11489 Actual_Targ_Typ : Entity_Id;
11490 Make_Conversion : Boolean := False;
11491 Root_Op_Typ : Entity_Id;
11493 procedure Make_Tag_Check (Targ_Typ : Entity_Id);
11494 -- Create a membership check to test whether Operand is a member
11495 -- of Targ_Typ. If the original Target_Type is an access, include
11496 -- a test for null value. The check is inserted at N.
11498 --------------------
11499 -- Make_Tag_Check --
11500 --------------------
11502 procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
11503 Cond : Node_Id;
11505 begin
11506 -- Generate:
11507 -- [Constraint_Error
11508 -- when Operand /= null
11509 -- and then Operand.all not in Targ_Typ]
11511 if Is_Access_Type (Target_Type) then
11512 Cond :=
11513 Make_And_Then (Loc,
11514 Left_Opnd =>
11515 Make_Op_Ne (Loc,
11516 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
11517 Right_Opnd => Make_Null (Loc)),
11519 Right_Opnd =>
11520 Make_Not_In (Loc,
11521 Left_Opnd =>
11522 Make_Explicit_Dereference (Loc,
11523 Prefix => Duplicate_Subexpr_No_Checks (Operand)),
11524 Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc)));
11526 -- Generate:
11527 -- [Constraint_Error when Operand not in Targ_Typ]
11529 else
11530 Cond :=
11531 Make_Not_In (Loc,
11532 Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
11533 Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc));
11534 end if;
11536 Insert_Action (N,
11537 Make_Raise_Constraint_Error (Loc,
11538 Condition => Cond,
11539 Reason => CE_Tag_Check_Failed),
11540 Suppress => All_Checks);
11541 end Make_Tag_Check;
11543 -- Start of processing for Tagged_Conversion
11545 begin
11546 -- Handle entities from the limited view
11548 if Is_Access_Type (Operand_Type) then
11549 Actual_Op_Typ :=
11550 Available_View (Designated_Type (Operand_Type));
11551 else
11552 Actual_Op_Typ := Operand_Type;
11553 end if;
11555 if Is_Access_Type (Target_Type) then
11556 Actual_Targ_Typ :=
11557 Available_View (Designated_Type (Target_Type));
11558 else
11559 Actual_Targ_Typ := Target_Type;
11560 end if;
11562 Root_Op_Typ := Root_Type (Actual_Op_Typ);
11564 -- Ada 2005 (AI-251): Handle interface type conversion
11566 if Is_Interface (Actual_Op_Typ)
11567 or else
11568 Is_Interface (Actual_Targ_Typ)
11569 then
11570 Expand_Interface_Conversion (N);
11571 goto Done;
11572 end if;
11574 if not Tag_Checks_Suppressed (Actual_Targ_Typ) then
11576 -- Create a runtime tag check for a downward class-wide type
11577 -- conversion.
11579 if Is_Class_Wide_Type (Actual_Op_Typ)
11580 and then Actual_Op_Typ /= Actual_Targ_Typ
11581 and then Root_Op_Typ /= Actual_Targ_Typ
11582 and then Is_Ancestor (Root_Op_Typ, Actual_Targ_Typ,
11583 Use_Full_View => True)
11584 then
11585 Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
11586 Make_Conversion := True;
11587 end if;
11589 -- AI05-0073: If the result subtype of the function is defined
11590 -- by an access_definition designating a specific tagged type
11591 -- T, a check is made that the result value is null or the tag
11592 -- of the object designated by the result value identifies T.
11593 -- Constraint_Error is raised if this check fails.
11595 if Nkind (Parent (N)) = N_Simple_Return_Statement then
11596 declare
11597 Func : Entity_Id;
11598 Func_Typ : Entity_Id;
11600 begin
11601 -- Climb scope stack looking for the enclosing function
11603 Func := Current_Scope;
11604 while Present (Func)
11605 and then Ekind (Func) /= E_Function
11606 loop
11607 Func := Scope (Func);
11608 end loop;
11610 -- The function's return subtype must be defined using
11611 -- an access definition.
11613 if Nkind (Result_Definition (Parent (Func))) =
11614 N_Access_Definition
11615 then
11616 Func_Typ := Directly_Designated_Type (Etype (Func));
11618 -- The return subtype denotes a specific tagged type,
11619 -- in other words, a non class-wide type.
11621 if Is_Tagged_Type (Func_Typ)
11622 and then not Is_Class_Wide_Type (Func_Typ)
11623 then
11624 Make_Tag_Check (Actual_Targ_Typ);
11625 Make_Conversion := True;
11626 end if;
11627 end if;
11628 end;
11629 end if;
11631 -- We have generated a tag check for either a class-wide type
11632 -- conversion or for AI05-0073.
11634 if Make_Conversion then
11635 declare
11636 Conv : Node_Id;
11637 begin
11638 Conv :=
11639 Make_Unchecked_Type_Conversion (Loc,
11640 Subtype_Mark => New_Occurrence_Of (Target_Type, Loc),
11641 Expression => Relocate_Node (Expression (N)));
11642 Rewrite (N, Conv);
11643 Analyze_And_Resolve (N, Target_Type);
11644 end;
11645 end if;
11646 end if;
11647 end Tagged_Conversion;
11649 -- Case of other access type conversions
11651 elsif Is_Access_Type (Target_Type) then
11652 Apply_Constraint_Check (Operand, Target_Type);
11654 -- Case of conversions from a fixed-point type
11656 -- These conversions require special expansion and processing, found in
11657 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
11658 -- since from a semantic point of view, these are simple integer
11659 -- conversions, which do not need further processing.
11661 elsif Is_Fixed_Point_Type (Operand_Type)
11662 and then not Conversion_OK (N)
11663 then
11664 -- We should never see universal fixed at this case, since the
11665 -- expansion of the constituent divide or multiply should have
11666 -- eliminated the explicit mention of universal fixed.
11668 pragma Assert (Operand_Type /= Universal_Fixed);
11670 -- Check for special case of the conversion to universal real that
11671 -- occurs as a result of the use of a round attribute. In this case,
11672 -- the real type for the conversion is taken from the target type of
11673 -- the Round attribute and the result must be marked as rounded.
11675 if Target_Type = Universal_Real
11676 and then Nkind (Parent (N)) = N_Attribute_Reference
11677 and then Attribute_Name (Parent (N)) = Name_Round
11678 then
11679 Set_Rounded_Result (N);
11680 Set_Etype (N, Etype (Parent (N)));
11681 end if;
11683 -- Otherwise do correct fixed-conversion, but skip these if the
11684 -- Conversion_OK flag is set, because from a semantic point of view
11685 -- these are simple integer conversions needing no further processing
11686 -- (the backend will simply treat them as integers).
11688 if not Conversion_OK (N) then
11689 if Is_Fixed_Point_Type (Etype (N)) then
11690 Expand_Convert_Fixed_To_Fixed (N);
11691 Real_Range_Check;
11693 elsif Is_Integer_Type (Etype (N)) then
11694 Expand_Convert_Fixed_To_Integer (N);
11696 else
11697 pragma Assert (Is_Floating_Point_Type (Etype (N)));
11698 Expand_Convert_Fixed_To_Float (N);
11699 Real_Range_Check;
11700 end if;
11701 end if;
11703 -- Case of conversions to a fixed-point type
11705 -- These conversions require special expansion and processing, found in
11706 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
11707 -- since from a semantic point of view, these are simple integer
11708 -- conversions, which do not need further processing.
11710 elsif Is_Fixed_Point_Type (Target_Type)
11711 and then not Conversion_OK (N)
11712 then
11713 if Is_Integer_Type (Operand_Type) then
11714 Expand_Convert_Integer_To_Fixed (N);
11715 Real_Range_Check;
11716 else
11717 pragma Assert (Is_Floating_Point_Type (Operand_Type));
11718 Expand_Convert_Float_To_Fixed (N);
11719 Real_Range_Check;
11720 end if;
11722 -- Case of float-to-integer conversions
11724 -- We also handle float-to-fixed conversions with Conversion_OK set
11725 -- since semantically the fixed-point target is treated as though it
11726 -- were an integer in such cases.
11728 elsif Is_Floating_Point_Type (Operand_Type)
11729 and then
11730 (Is_Integer_Type (Target_Type)
11731 or else
11732 (Is_Fixed_Point_Type (Target_Type) and then Conversion_OK (N)))
11733 then
11734 -- One more check here, gcc is still not able to do conversions of
11735 -- this type with proper overflow checking, and so gigi is doing an
11736 -- approximation of what is required by doing floating-point compares
11737 -- with the end-point. But that can lose precision in some cases, and
11738 -- give a wrong result. Converting the operand to Universal_Real is
11739 -- helpful, but still does not catch all cases with 64-bit integers
11740 -- on targets with only 64-bit floats.
11742 -- The above comment seems obsoleted by Apply_Float_Conversion_Check
11743 -- Can this code be removed ???
11745 if Do_Range_Check (Operand) then
11746 Rewrite (Operand,
11747 Make_Type_Conversion (Loc,
11748 Subtype_Mark =>
11749 New_Occurrence_Of (Universal_Real, Loc),
11750 Expression =>
11751 Relocate_Node (Operand)));
11753 Set_Etype (Operand, Universal_Real);
11754 Enable_Range_Check (Operand);
11755 Set_Do_Range_Check (Expression (Operand), False);
11756 end if;
11758 -- Case of array conversions
11760 -- Expansion of array conversions, add required length/range checks but
11761 -- only do this if there is no change of representation. For handling of
11762 -- this case, see Handle_Changed_Representation.
11764 elsif Is_Array_Type (Target_Type) then
11765 if Is_Constrained (Target_Type) then
11766 Apply_Length_Check (Operand, Target_Type);
11767 else
11768 Apply_Range_Check (Operand, Target_Type);
11769 end if;
11771 Handle_Changed_Representation;
11773 -- Case of conversions of discriminated types
11775 -- Add required discriminant checks if target is constrained. Again this
11776 -- change is skipped if we have a change of representation.
11778 elsif Has_Discriminants (Target_Type)
11779 and then Is_Constrained (Target_Type)
11780 then
11781 Apply_Discriminant_Check (Operand, Target_Type);
11782 Handle_Changed_Representation;
11784 -- Case of all other record conversions. The only processing required
11785 -- is to check for a change of representation requiring the special
11786 -- assignment processing.
11788 elsif Is_Record_Type (Target_Type) then
11790 -- Ada 2005 (AI-216): Program_Error is raised when converting from
11791 -- a derived Unchecked_Union type to an unconstrained type that is
11792 -- not Unchecked_Union if the operand lacks inferable discriminants.
11794 if Is_Derived_Type (Operand_Type)
11795 and then Is_Unchecked_Union (Base_Type (Operand_Type))
11796 and then not Is_Constrained (Target_Type)
11797 and then not Is_Unchecked_Union (Base_Type (Target_Type))
11798 and then not Has_Inferable_Discriminants (Operand)
11799 then
11800 -- To prevent Gigi from generating illegal code, we generate a
11801 -- Program_Error node, but we give it the target type of the
11802 -- conversion (is this requirement documented somewhere ???)
11804 declare
11805 PE : constant Node_Id := Make_Raise_Program_Error (Loc,
11806 Reason => PE_Unchecked_Union_Restriction);
11808 begin
11809 Set_Etype (PE, Target_Type);
11810 Rewrite (N, PE);
11812 end;
11813 else
11814 Handle_Changed_Representation;
11815 end if;
11817 -- Case of conversions of enumeration types
11819 elsif Is_Enumeration_Type (Target_Type) then
11821 -- Special processing is required if there is a change of
11822 -- representation (from enumeration representation clauses).
11824 if not Same_Representation (Target_Type, Operand_Type) then
11826 -- Convert: x(y) to x'val (ytyp'val (y))
11828 Rewrite (N,
11829 Make_Attribute_Reference (Loc,
11830 Prefix => New_Occurrence_Of (Target_Type, Loc),
11831 Attribute_Name => Name_Val,
11832 Expressions => New_List (
11833 Make_Attribute_Reference (Loc,
11834 Prefix => New_Occurrence_Of (Operand_Type, Loc),
11835 Attribute_Name => Name_Pos,
11836 Expressions => New_List (Operand)))));
11838 Analyze_And_Resolve (N, Target_Type);
11839 end if;
11841 -- Case of conversions to floating-point
11843 elsif Is_Floating_Point_Type (Target_Type) then
11844 Real_Range_Check;
11845 end if;
11847 -- At this stage, either the conversion node has been transformed into
11848 -- some other equivalent expression, or left as a conversion that can be
11849 -- handled by Gigi, in the following cases:
11851 -- Conversions with no change of representation or type
11853 -- Numeric conversions involving integer, floating- and fixed-point
11854 -- values. Fixed-point values are allowed only if Conversion_OK is
11855 -- set, i.e. if the fixed-point values are to be treated as integers.
11857 -- No other conversions should be passed to Gigi
11859 -- Check: are these rules stated in sinfo??? if so, why restate here???
11861 -- The only remaining step is to generate a range check if we still have
11862 -- a type conversion at this stage and Do_Range_Check is set. For now we
11863 -- do this only for conversions of discrete types and for float-to-float
11864 -- conversions.
11866 if Nkind (N) = N_Type_Conversion then
11868 -- For now we only support floating-point cases where both source
11869 -- and target are floating-point types. Conversions where the source
11870 -- and target involve integer or fixed-point types are still TBD,
11871 -- though not clear whether those can even happen at this point, due
11872 -- to transformations above. ???
11874 if Is_Floating_Point_Type (Etype (N))
11875 and then Is_Floating_Point_Type (Etype (Expression (N)))
11876 then
11877 if Do_Range_Check (Expression (N))
11878 and then Is_Floating_Point_Type (Target_Type)
11879 then
11880 Generate_Range_Check
11881 (Expression (N), Target_Type, CE_Range_Check_Failed);
11882 end if;
11884 -- Discrete-to-discrete conversions
11886 elsif Is_Discrete_Type (Etype (N)) then
11887 declare
11888 Expr : constant Node_Id := Expression (N);
11889 Ftyp : Entity_Id;
11890 Ityp : Entity_Id;
11892 begin
11893 if Do_Range_Check (Expr)
11894 and then Is_Discrete_Type (Etype (Expr))
11895 then
11896 Set_Do_Range_Check (Expr, False);
11898 -- Before we do a range check, we have to deal with treating
11899 -- a fixed-point operand as an integer. The way we do this
11900 -- is simply to do an unchecked conversion to an appropriate
11901 -- integer type large enough to hold the result.
11903 -- This code is not active yet, because we are only dealing
11904 -- with discrete types so far ???
11906 if Nkind (Expr) in N_Has_Treat_Fixed_As_Integer
11907 and then Treat_Fixed_As_Integer (Expr)
11908 then
11909 Ftyp := Base_Type (Etype (Expr));
11911 if Esize (Ftyp) >= Esize (Standard_Integer) then
11912 Ityp := Standard_Long_Long_Integer;
11913 else
11914 Ityp := Standard_Integer;
11915 end if;
11917 Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
11918 end if;
11920 -- Reset overflow flag, since the range check will include
11921 -- dealing with possible overflow, and generate the check.
11922 -- If Address is either a source type or target type,
11923 -- suppress range check to avoid typing anomalies when
11924 -- it is a visible integer type.
11926 Set_Do_Overflow_Check (N, False);
11928 if not Is_Descendant_Of_Address (Etype (Expr))
11929 and then not Is_Descendant_Of_Address (Target_Type)
11930 then
11931 Generate_Range_Check
11932 (Expr, Target_Type, CE_Range_Check_Failed);
11933 end if;
11934 end if;
11935 end;
11936 end if;
11937 end if;
11939 -- Here at end of processing
11941 <<Done>>
11942 -- Apply predicate check if required. Note that we can't just call
11943 -- Apply_Predicate_Check here, because the type looks right after
11944 -- the conversion and it would omit the check. The Comes_From_Source
11945 -- guard is necessary to prevent infinite recursions when we generate
11946 -- internal conversions for the purpose of checking predicates.
11948 if Present (Predicate_Function (Target_Type))
11949 and then not Predicates_Ignored (Target_Type)
11950 and then Target_Type /= Operand_Type
11951 and then Comes_From_Source (N)
11952 then
11953 declare
11954 New_Expr : constant Node_Id := Duplicate_Subexpr (N);
11956 begin
11957 -- Avoid infinite recursion on the subsequent expansion of
11958 -- of the copy of the original type conversion.
11960 Set_Comes_From_Source (New_Expr, False);
11961 Insert_Action (N, Make_Predicate_Check (Target_Type, New_Expr));
11962 end;
11963 end if;
11964 end Expand_N_Type_Conversion;
11966 -----------------------------------
11967 -- Expand_N_Unchecked_Expression --
11968 -----------------------------------
11970 -- Remove the unchecked expression node from the tree. Its job was simply
11971 -- to make sure that its constituent expression was handled with checks
11972 -- off, and now that that is done, we can remove it from the tree, and
11973 -- indeed must, since Gigi does not expect to see these nodes.
11975 procedure Expand_N_Unchecked_Expression (N : Node_Id) is
11976 Exp : constant Node_Id := Expression (N);
11977 begin
11978 Set_Assignment_OK (Exp, Assignment_OK (N) or else Assignment_OK (Exp));
11979 Rewrite (N, Exp);
11980 end Expand_N_Unchecked_Expression;
11982 ----------------------------------------
11983 -- Expand_N_Unchecked_Type_Conversion --
11984 ----------------------------------------
11986 -- If this cannot be handled by Gigi and we haven't already made a
11987 -- temporary for it, do it now.
11989 procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
11990 Target_Type : constant Entity_Id := Etype (N);
11991 Operand : constant Node_Id := Expression (N);
11992 Operand_Type : constant Entity_Id := Etype (Operand);
11994 begin
11995 -- Nothing at all to do if conversion is to the identical type so remove
11996 -- the conversion completely, it is useless, except that it may carry
11997 -- an Assignment_OK indication which must be propagated to the operand.
11999 if Operand_Type = Target_Type then
12001 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
12003 if Assignment_OK (N) then
12004 Set_Assignment_OK (Operand);
12005 end if;
12007 Rewrite (N, Relocate_Node (Operand));
12008 return;
12009 end if;
12011 -- If we have a conversion of a compile time known value to a target
12012 -- type and the value is in range of the target type, then we can simply
12013 -- replace the construct by an integer literal of the correct type. We
12014 -- only apply this to integer types being converted. Possibly it may
12015 -- apply in other cases, but it is too much trouble to worry about.
12017 -- Note that we do not do this transformation if the Kill_Range_Check
12018 -- flag is set, since then the value may be outside the expected range.
12019 -- This happens in the Normalize_Scalars case.
12021 -- We also skip this if either the target or operand type is biased
12022 -- because in this case, the unchecked conversion is supposed to
12023 -- preserve the bit pattern, not the integer value.
12025 if Is_Integer_Type (Target_Type)
12026 and then not Has_Biased_Representation (Target_Type)
12027 and then Is_Integer_Type (Operand_Type)
12028 and then not Has_Biased_Representation (Operand_Type)
12029 and then Compile_Time_Known_Value (Operand)
12030 and then not Kill_Range_Check (N)
12031 then
12032 declare
12033 Val : constant Uint := Expr_Value (Operand);
12035 begin
12036 if Compile_Time_Known_Value (Type_Low_Bound (Target_Type))
12037 and then
12038 Compile_Time_Known_Value (Type_High_Bound (Target_Type))
12039 and then
12040 Val >= Expr_Value (Type_Low_Bound (Target_Type))
12041 and then
12042 Val <= Expr_Value (Type_High_Bound (Target_Type))
12043 then
12044 Rewrite (N, Make_Integer_Literal (Sloc (N), Val));
12046 -- If Address is the target type, just set the type to avoid a
12047 -- spurious type error on the literal when Address is a visible
12048 -- integer type.
12050 if Is_Descendant_Of_Address (Target_Type) then
12051 Set_Etype (N, Target_Type);
12052 else
12053 Analyze_And_Resolve (N, Target_Type);
12054 end if;
12056 return;
12057 end if;
12058 end;
12059 end if;
12061 -- Nothing to do if conversion is safe
12063 if Safe_Unchecked_Type_Conversion (N) then
12064 return;
12065 end if;
12067 -- Otherwise force evaluation unless Assignment_OK flag is set (this
12068 -- flag indicates ??? More comments needed here)
12070 if Assignment_OK (N) then
12071 null;
12072 else
12073 Force_Evaluation (N);
12074 end if;
12075 end Expand_N_Unchecked_Type_Conversion;
12077 ----------------------------
12078 -- Expand_Record_Equality --
12079 ----------------------------
12081 -- For non-variant records, Equality is expanded when needed into:
12083 -- and then Lhs.Discr1 = Rhs.Discr1
12084 -- and then ...
12085 -- and then Lhs.Discrn = Rhs.Discrn
12086 -- and then Lhs.Cmp1 = Rhs.Cmp1
12087 -- and then ...
12088 -- and then Lhs.Cmpn = Rhs.Cmpn
12090 -- The expression is folded by the back end for adjacent fields. This
12091 -- function is called for tagged record in only one occasion: for imple-
12092 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
12093 -- otherwise the primitive "=" is used directly.
12095 function Expand_Record_Equality
12096 (Nod : Node_Id;
12097 Typ : Entity_Id;
12098 Lhs : Node_Id;
12099 Rhs : Node_Id;
12100 Bodies : List_Id) return Node_Id
12102 Loc : constant Source_Ptr := Sloc (Nod);
12104 Result : Node_Id;
12105 C : Entity_Id;
12107 First_Time : Boolean := True;
12109 function Element_To_Compare (C : Entity_Id) return Entity_Id;
12110 -- Return the next discriminant or component to compare, starting with
12111 -- C, skipping inherited components.
12113 ------------------------
12114 -- Element_To_Compare --
12115 ------------------------
12117 function Element_To_Compare (C : Entity_Id) return Entity_Id is
12118 Comp : Entity_Id;
12120 begin
12121 Comp := C;
12122 loop
12123 -- Exit loop when the next element to be compared is found, or
12124 -- there is no more such element.
12126 exit when No (Comp);
12128 exit when Ekind_In (Comp, E_Discriminant, E_Component)
12129 and then not (
12131 -- Skip inherited components
12133 -- Note: for a tagged type, we always generate the "=" primitive
12134 -- for the base type (not on the first subtype), so the test for
12135 -- Comp /= Original_Record_Component (Comp) is True for
12136 -- inherited components only.
12138 (Is_Tagged_Type (Typ)
12139 and then Comp /= Original_Record_Component (Comp))
12141 -- Skip _Tag
12143 or else Chars (Comp) = Name_uTag
12145 -- Skip interface elements (secondary tags???)
12147 or else Is_Interface (Etype (Comp)));
12149 Next_Entity (Comp);
12150 end loop;
12152 return Comp;
12153 end Element_To_Compare;
12155 -- Start of processing for Expand_Record_Equality
12157 begin
12158 -- Generates the following code: (assuming that Typ has one Discr and
12159 -- component C2 is also a record)
12161 -- Lhs.Discr1 = Rhs.Discr1
12162 -- and then Lhs.C1 = Rhs.C1
12163 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
12164 -- and then ...
12165 -- and then Lhs.Cmpn = Rhs.Cmpn
12167 Result := New_Occurrence_Of (Standard_True, Loc);
12168 C := Element_To_Compare (First_Entity (Typ));
12169 while Present (C) loop
12170 declare
12171 New_Lhs : Node_Id;
12172 New_Rhs : Node_Id;
12173 Check : Node_Id;
12175 begin
12176 if First_Time then
12177 New_Lhs := Lhs;
12178 New_Rhs := Rhs;
12179 else
12180 New_Lhs := New_Copy_Tree (Lhs);
12181 New_Rhs := New_Copy_Tree (Rhs);
12182 end if;
12184 Check :=
12185 Expand_Composite_Equality (Nod, Etype (C),
12186 Lhs =>
12187 Make_Selected_Component (Loc,
12188 Prefix => New_Lhs,
12189 Selector_Name => New_Occurrence_Of (C, Loc)),
12190 Rhs =>
12191 Make_Selected_Component (Loc,
12192 Prefix => New_Rhs,
12193 Selector_Name => New_Occurrence_Of (C, Loc)),
12194 Bodies => Bodies);
12196 -- If some (sub)component is an unchecked_union, the whole
12197 -- operation will raise program error.
12199 if Nkind (Check) = N_Raise_Program_Error then
12200 Result := Check;
12201 Set_Etype (Result, Standard_Boolean);
12202 exit;
12203 else
12204 if First_Time then
12205 Result := Check;
12207 -- Generate logical "and" for CodePeer to simplify the
12208 -- generated code and analysis.
12210 elsif CodePeer_Mode then
12211 Result :=
12212 Make_Op_And (Loc,
12213 Left_Opnd => Result,
12214 Right_Opnd => Check);
12216 else
12217 Result :=
12218 Make_And_Then (Loc,
12219 Left_Opnd => Result,
12220 Right_Opnd => Check);
12221 end if;
12222 end if;
12223 end;
12225 First_Time := False;
12226 C := Element_To_Compare (Next_Entity (C));
12227 end loop;
12229 return Result;
12230 end Expand_Record_Equality;
12232 ---------------------------
12233 -- Expand_Set_Membership --
12234 ---------------------------
12236 procedure Expand_Set_Membership (N : Node_Id) is
12237 Lop : constant Node_Id := Left_Opnd (N);
12238 Alt : Node_Id;
12239 Res : Node_Id;
12241 function Make_Cond (Alt : Node_Id) return Node_Id;
12242 -- If the alternative is a subtype mark, create a simple membership
12243 -- test. Otherwise create an equality test for it.
12245 ---------------
12246 -- Make_Cond --
12247 ---------------
12249 function Make_Cond (Alt : Node_Id) return Node_Id is
12250 Cond : Node_Id;
12251 L : constant Node_Id := New_Copy_Tree (Lop);
12252 R : constant Node_Id := Relocate_Node (Alt);
12254 begin
12255 if (Is_Entity_Name (Alt) and then Is_Type (Entity (Alt)))
12256 or else Nkind (Alt) = N_Range
12257 then
12258 Cond :=
12259 Make_In (Sloc (Alt),
12260 Left_Opnd => L,
12261 Right_Opnd => R);
12262 else
12263 Cond :=
12264 Make_Op_Eq (Sloc (Alt),
12265 Left_Opnd => L,
12266 Right_Opnd => R);
12267 end if;
12269 return Cond;
12270 end Make_Cond;
12272 -- Start of processing for Expand_Set_Membership
12274 begin
12275 Remove_Side_Effects (Lop);
12277 Alt := Last (Alternatives (N));
12278 Res := Make_Cond (Alt);
12280 Prev (Alt);
12281 while Present (Alt) loop
12282 Res :=
12283 Make_Or_Else (Sloc (Alt),
12284 Left_Opnd => Make_Cond (Alt),
12285 Right_Opnd => Res);
12286 Prev (Alt);
12287 end loop;
12289 Rewrite (N, Res);
12290 Analyze_And_Resolve (N, Standard_Boolean);
12291 end Expand_Set_Membership;
12293 -----------------------------------
12294 -- Expand_Short_Circuit_Operator --
12295 -----------------------------------
12297 -- Deal with special expansion if actions are present for the right operand
12298 -- and deal with optimizing case of arguments being True or False. We also
12299 -- deal with the special case of non-standard boolean values.
12301 procedure Expand_Short_Circuit_Operator (N : Node_Id) is
12302 Loc : constant Source_Ptr := Sloc (N);
12303 Typ : constant Entity_Id := Etype (N);
12304 Left : constant Node_Id := Left_Opnd (N);
12305 Right : constant Node_Id := Right_Opnd (N);
12306 LocR : constant Source_Ptr := Sloc (Right);
12307 Actlist : List_Id;
12309 Shortcut_Value : constant Boolean := Nkind (N) = N_Or_Else;
12310 Shortcut_Ent : constant Entity_Id := Boolean_Literals (Shortcut_Value);
12311 -- If Left = Shortcut_Value then Right need not be evaluated
12313 function Make_Test_Expr (Opnd : Node_Id) return Node_Id;
12314 -- For Opnd a boolean expression, return a Boolean expression equivalent
12315 -- to Opnd /= Shortcut_Value.
12317 --------------------
12318 -- Make_Test_Expr --
12319 --------------------
12321 function Make_Test_Expr (Opnd : Node_Id) return Node_Id is
12322 begin
12323 if Shortcut_Value then
12324 return Make_Op_Not (Sloc (Opnd), Opnd);
12325 else
12326 return Opnd;
12327 end if;
12328 end Make_Test_Expr;
12330 -- Local variables
12332 Op_Var : Entity_Id;
12333 -- Entity for a temporary variable holding the value of the operator,
12334 -- used for expansion in the case where actions are present.
12336 -- Start of processing for Expand_Short_Circuit_Operator
12338 begin
12339 -- Deal with non-standard booleans
12341 if Is_Boolean_Type (Typ) then
12342 Adjust_Condition (Left);
12343 Adjust_Condition (Right);
12344 Set_Etype (N, Standard_Boolean);
12345 end if;
12347 -- Check for cases where left argument is known to be True or False
12349 if Compile_Time_Known_Value (Left) then
12351 -- Mark SCO for left condition as compile time known
12353 if Generate_SCO and then Comes_From_Source (Left) then
12354 Set_SCO_Condition (Left, Expr_Value_E (Left) = Standard_True);
12355 end if;
12357 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
12358 -- Any actions associated with Right will be executed unconditionally
12359 -- and can thus be inserted into the tree unconditionally.
12361 if Expr_Value_E (Left) /= Shortcut_Ent then
12362 if Present (Actions (N)) then
12363 Insert_Actions (N, Actions (N));
12364 end if;
12366 Rewrite (N, Right);
12368 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
12369 -- In this case we can forget the actions associated with Right,
12370 -- since they will never be executed.
12372 else
12373 Kill_Dead_Code (Right);
12374 Kill_Dead_Code (Actions (N));
12375 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
12376 end if;
12378 Adjust_Result_Type (N, Typ);
12379 return;
12380 end if;
12382 -- If Actions are present for the right operand, we have to do some
12383 -- special processing. We can't just let these actions filter back into
12384 -- code preceding the short circuit (which is what would have happened
12385 -- if we had not trapped them in the short-circuit form), since they
12386 -- must only be executed if the right operand of the short circuit is
12387 -- executed and not otherwise.
12389 if Present (Actions (N)) then
12390 Actlist := Actions (N);
12392 -- The old approach is to expand:
12394 -- left AND THEN right
12396 -- into
12398 -- C : Boolean := False;
12399 -- IF left THEN
12400 -- Actions;
12401 -- IF right THEN
12402 -- C := True;
12403 -- END IF;
12404 -- END IF;
12406 -- and finally rewrite the operator into a reference to C. Similarly
12407 -- for left OR ELSE right, with negated values. Note that this
12408 -- rewrite causes some difficulties for coverage analysis because
12409 -- of the introduction of the new variable C, which obscures the
12410 -- structure of the test.
12412 -- We use this "old approach" if Minimize_Expression_With_Actions
12413 -- is True.
12415 if Minimize_Expression_With_Actions then
12416 Op_Var := Make_Temporary (Loc, 'C', Related_Node => N);
12418 Insert_Action (N,
12419 Make_Object_Declaration (Loc,
12420 Defining_Identifier => Op_Var,
12421 Object_Definition =>
12422 New_Occurrence_Of (Standard_Boolean, Loc),
12423 Expression =>
12424 New_Occurrence_Of (Shortcut_Ent, Loc)));
12426 Append_To (Actlist,
12427 Make_Implicit_If_Statement (Right,
12428 Condition => Make_Test_Expr (Right),
12429 Then_Statements => New_List (
12430 Make_Assignment_Statement (LocR,
12431 Name => New_Occurrence_Of (Op_Var, LocR),
12432 Expression =>
12433 New_Occurrence_Of
12434 (Boolean_Literals (not Shortcut_Value), LocR)))));
12436 Insert_Action (N,
12437 Make_Implicit_If_Statement (Left,
12438 Condition => Make_Test_Expr (Left),
12439 Then_Statements => Actlist));
12441 Rewrite (N, New_Occurrence_Of (Op_Var, Loc));
12442 Analyze_And_Resolve (N, Standard_Boolean);
12444 -- The new approach (the default) is to use an
12445 -- Expression_With_Actions node for the right operand of the
12446 -- short-circuit form. Note that this solves the traceability
12447 -- problems for coverage analysis.
12449 else
12450 Rewrite (Right,
12451 Make_Expression_With_Actions (LocR,
12452 Expression => Relocate_Node (Right),
12453 Actions => Actlist));
12455 Set_Actions (N, No_List);
12456 Analyze_And_Resolve (Right, Standard_Boolean);
12457 end if;
12459 Adjust_Result_Type (N, Typ);
12460 return;
12461 end if;
12463 -- No actions present, check for cases of right argument True/False
12465 if Compile_Time_Known_Value (Right) then
12467 -- Mark SCO for left condition as compile time known
12469 if Generate_SCO and then Comes_From_Source (Right) then
12470 Set_SCO_Condition (Right, Expr_Value_E (Right) = Standard_True);
12471 end if;
12473 -- Change (Left and then True), (Left or else False) to Left. Note
12474 -- that we know there are no actions associated with the right
12475 -- operand, since we just checked for this case above.
12477 if Expr_Value_E (Right) /= Shortcut_Ent then
12478 Rewrite (N, Left);
12480 -- Change (Left and then False), (Left or else True) to Right,
12481 -- making sure to preserve any side effects associated with the Left
12482 -- operand.
12484 else
12485 Remove_Side_Effects (Left);
12486 Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
12487 end if;
12488 end if;
12490 Adjust_Result_Type (N, Typ);
12491 end Expand_Short_Circuit_Operator;
12493 -------------------------------------
12494 -- Fixup_Universal_Fixed_Operation --
12495 -------------------------------------
12497 procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
12498 Conv : constant Node_Id := Parent (N);
12500 begin
12501 -- We must have a type conversion immediately above us
12503 pragma Assert (Nkind (Conv) = N_Type_Conversion);
12505 -- Normally the type conversion gives our target type. The exception
12506 -- occurs in the case of the Round attribute, where the conversion
12507 -- will be to universal real, and our real type comes from the Round
12508 -- attribute (as well as an indication that we must round the result)
12510 if Nkind (Parent (Conv)) = N_Attribute_Reference
12511 and then Attribute_Name (Parent (Conv)) = Name_Round
12512 then
12513 Set_Etype (N, Etype (Parent (Conv)));
12514 Set_Rounded_Result (N);
12516 -- Normal case where type comes from conversion above us
12518 else
12519 Set_Etype (N, Etype (Conv));
12520 end if;
12521 end Fixup_Universal_Fixed_Operation;
12523 ---------------------------------
12524 -- Has_Inferable_Discriminants --
12525 ---------------------------------
12527 function Has_Inferable_Discriminants (N : Node_Id) return Boolean is
12529 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean;
12530 -- Determines whether the left-most prefix of a selected component is a
12531 -- formal parameter in a subprogram. Assumes N is a selected component.
12533 --------------------------------
12534 -- Prefix_Is_Formal_Parameter --
12535 --------------------------------
12537 function Prefix_Is_Formal_Parameter (N : Node_Id) return Boolean is
12538 Sel_Comp : Node_Id;
12540 begin
12541 -- Move to the left-most prefix by climbing up the tree
12543 Sel_Comp := N;
12544 while Present (Parent (Sel_Comp))
12545 and then Nkind (Parent (Sel_Comp)) = N_Selected_Component
12546 loop
12547 Sel_Comp := Parent (Sel_Comp);
12548 end loop;
12550 return Ekind (Entity (Prefix (Sel_Comp))) in Formal_Kind;
12551 end Prefix_Is_Formal_Parameter;
12553 -- Start of processing for Has_Inferable_Discriminants
12555 begin
12556 -- For selected components, the subtype of the selector must be a
12557 -- constrained Unchecked_Union. If the component is subject to a
12558 -- per-object constraint, then the enclosing object must have inferable
12559 -- discriminants.
12561 if Nkind (N) = N_Selected_Component then
12562 if Has_Per_Object_Constraint (Entity (Selector_Name (N))) then
12564 -- A small hack. If we have a per-object constrained selected
12565 -- component of a formal parameter, return True since we do not
12566 -- know the actual parameter association yet.
12568 if Prefix_Is_Formal_Parameter (N) then
12569 return True;
12571 -- Otherwise, check the enclosing object and the selector
12573 else
12574 return Has_Inferable_Discriminants (Prefix (N))
12575 and then Has_Inferable_Discriminants (Selector_Name (N));
12576 end if;
12578 -- The call to Has_Inferable_Discriminants will determine whether
12579 -- the selector has a constrained Unchecked_Union nominal type.
12581 else
12582 return Has_Inferable_Discriminants (Selector_Name (N));
12583 end if;
12585 -- A qualified expression has inferable discriminants if its subtype
12586 -- mark is a constrained Unchecked_Union subtype.
12588 elsif Nkind (N) = N_Qualified_Expression then
12589 return Is_Unchecked_Union (Etype (Subtype_Mark (N)))
12590 and then Is_Constrained (Etype (Subtype_Mark (N)));
12592 -- For all other names, it is sufficient to have a constrained
12593 -- Unchecked_Union nominal subtype.
12595 else
12596 return Is_Unchecked_Union (Base_Type (Etype (N)))
12597 and then Is_Constrained (Etype (N));
12598 end if;
12599 end Has_Inferable_Discriminants;
12601 -------------------------------
12602 -- Insert_Dereference_Action --
12603 -------------------------------
12605 procedure Insert_Dereference_Action (N : Node_Id) is
12606 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
12607 -- Return true if type of P is derived from Checked_Pool;
12609 -----------------------------
12610 -- Is_Checked_Storage_Pool --
12611 -----------------------------
12613 function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
12614 T : Entity_Id;
12616 begin
12617 if No (P) then
12618 return False;
12619 end if;
12621 T := Etype (P);
12622 while T /= Etype (T) loop
12623 if Is_RTE (T, RE_Checked_Pool) then
12624 return True;
12625 else
12626 T := Etype (T);
12627 end if;
12628 end loop;
12630 return False;
12631 end Is_Checked_Storage_Pool;
12633 -- Local variables
12635 Context : constant Node_Id := Parent (N);
12636 Ptr_Typ : constant Entity_Id := Etype (N);
12637 Desig_Typ : constant Entity_Id :=
12638 Available_View (Designated_Type (Ptr_Typ));
12639 Loc : constant Source_Ptr := Sloc (N);
12640 Pool : constant Entity_Id := Associated_Storage_Pool (Ptr_Typ);
12642 Addr : Entity_Id;
12643 Alig : Entity_Id;
12644 Deref : Node_Id;
12645 Size : Entity_Id;
12646 Size_Bits : Node_Id;
12647 Stmt : Node_Id;
12649 -- Start of processing for Insert_Dereference_Action
12651 begin
12652 pragma Assert (Nkind (Context) = N_Explicit_Dereference);
12654 -- Do not re-expand a dereference which has already been processed by
12655 -- this routine.
12657 if Has_Dereference_Action (Context) then
12658 return;
12660 -- Do not perform this type of expansion for internally-generated
12661 -- dereferences.
12663 elsif not Comes_From_Source (Original_Node (Context)) then
12664 return;
12666 -- A dereference action is only applicable to objects which have been
12667 -- allocated on a checked pool.
12669 elsif not Is_Checked_Storage_Pool (Pool) then
12670 return;
12671 end if;
12673 -- Extract the address of the dereferenced object. Generate:
12675 -- Addr : System.Address := <N>'Pool_Address;
12677 Addr := Make_Temporary (Loc, 'P');
12679 Insert_Action (N,
12680 Make_Object_Declaration (Loc,
12681 Defining_Identifier => Addr,
12682 Object_Definition =>
12683 New_Occurrence_Of (RTE (RE_Address), Loc),
12684 Expression =>
12685 Make_Attribute_Reference (Loc,
12686 Prefix => Duplicate_Subexpr_Move_Checks (N),
12687 Attribute_Name => Name_Pool_Address)));
12689 -- Calculate the size of the dereferenced object. Generate:
12691 -- Size : Storage_Count := <N>.all'Size / Storage_Unit;
12693 Deref :=
12694 Make_Explicit_Dereference (Loc,
12695 Prefix => Duplicate_Subexpr_Move_Checks (N));
12696 Set_Has_Dereference_Action (Deref);
12698 Size_Bits :=
12699 Make_Attribute_Reference (Loc,
12700 Prefix => Deref,
12701 Attribute_Name => Name_Size);
12703 -- Special case of an unconstrained array: need to add descriptor size
12705 if Is_Array_Type (Desig_Typ)
12706 and then not Is_Constrained (First_Subtype (Desig_Typ))
12707 then
12708 Size_Bits :=
12709 Make_Op_Add (Loc,
12710 Left_Opnd =>
12711 Make_Attribute_Reference (Loc,
12712 Prefix =>
12713 New_Occurrence_Of (First_Subtype (Desig_Typ), Loc),
12714 Attribute_Name => Name_Descriptor_Size),
12715 Right_Opnd => Size_Bits);
12716 end if;
12718 Size := Make_Temporary (Loc, 'S');
12719 Insert_Action (N,
12720 Make_Object_Declaration (Loc,
12721 Defining_Identifier => Size,
12722 Object_Definition =>
12723 New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
12724 Expression =>
12725 Make_Op_Divide (Loc,
12726 Left_Opnd => Size_Bits,
12727 Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
12729 -- Calculate the alignment of the dereferenced object. Generate:
12730 -- Alig : constant Storage_Count := <N>.all'Alignment;
12732 Deref :=
12733 Make_Explicit_Dereference (Loc,
12734 Prefix => Duplicate_Subexpr_Move_Checks (N));
12735 Set_Has_Dereference_Action (Deref);
12737 Alig := Make_Temporary (Loc, 'A');
12738 Insert_Action (N,
12739 Make_Object_Declaration (Loc,
12740 Defining_Identifier => Alig,
12741 Object_Definition =>
12742 New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
12743 Expression =>
12744 Make_Attribute_Reference (Loc,
12745 Prefix => Deref,
12746 Attribute_Name => Name_Alignment)));
12748 -- A dereference of a controlled object requires special processing. The
12749 -- finalization machinery requests additional space from the underlying
12750 -- pool to allocate and hide two pointers. As a result, a checked pool
12751 -- may mark the wrong memory as valid. Since checked pools do not have
12752 -- knowledge of hidden pointers, we have to bring the two pointers back
12753 -- in view in order to restore the original state of the object.
12755 -- The address manipulation is not performed for access types that are
12756 -- subject to pragma No_Heap_Finalization because the two pointers do
12757 -- not exist in the first place.
12759 if No_Heap_Finalization (Ptr_Typ) then
12760 null;
12762 elsif Needs_Finalization (Desig_Typ) then
12764 -- Adjust the address and size of the dereferenced object. Generate:
12765 -- Adjust_Controlled_Dereference (Addr, Size, Alig);
12767 Stmt :=
12768 Make_Procedure_Call_Statement (Loc,
12769 Name =>
12770 New_Occurrence_Of (RTE (RE_Adjust_Controlled_Dereference), Loc),
12771 Parameter_Associations => New_List (
12772 New_Occurrence_Of (Addr, Loc),
12773 New_Occurrence_Of (Size, Loc),
12774 New_Occurrence_Of (Alig, Loc)));
12776 -- Class-wide types complicate things because we cannot determine
12777 -- statically whether the actual object is truly controlled. We must
12778 -- generate a runtime check to detect this property. Generate:
12780 -- if Needs_Finalization (<N>.all'Tag) then
12781 -- <Stmt>;
12782 -- end if;
12784 if Is_Class_Wide_Type (Desig_Typ) then
12785 Deref :=
12786 Make_Explicit_Dereference (Loc,
12787 Prefix => Duplicate_Subexpr_Move_Checks (N));
12788 Set_Has_Dereference_Action (Deref);
12790 Stmt :=
12791 Make_Implicit_If_Statement (N,
12792 Condition =>
12793 Make_Function_Call (Loc,
12794 Name =>
12795 New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
12796 Parameter_Associations => New_List (
12797 Make_Attribute_Reference (Loc,
12798 Prefix => Deref,
12799 Attribute_Name => Name_Tag))),
12800 Then_Statements => New_List (Stmt));
12801 end if;
12803 Insert_Action (N, Stmt);
12804 end if;
12806 -- Generate:
12807 -- Dereference (Pool, Addr, Size, Alig);
12809 Insert_Action (N,
12810 Make_Procedure_Call_Statement (Loc,
12811 Name =>
12812 New_Occurrence_Of
12813 (Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
12814 Parameter_Associations => New_List (
12815 New_Occurrence_Of (Pool, Loc),
12816 New_Occurrence_Of (Addr, Loc),
12817 New_Occurrence_Of (Size, Loc),
12818 New_Occurrence_Of (Alig, Loc))));
12820 -- Mark the explicit dereference as processed to avoid potential
12821 -- infinite expansion.
12823 Set_Has_Dereference_Action (Context);
12825 exception
12826 when RE_Not_Available =>
12827 return;
12828 end Insert_Dereference_Action;
12830 --------------------------------
12831 -- Integer_Promotion_Possible --
12832 --------------------------------
12834 function Integer_Promotion_Possible (N : Node_Id) return Boolean is
12835 Operand : constant Node_Id := Expression (N);
12836 Operand_Type : constant Entity_Id := Etype (Operand);
12837 Root_Operand_Type : constant Entity_Id := Root_Type (Operand_Type);
12839 begin
12840 pragma Assert (Nkind (N) = N_Type_Conversion);
12842 return
12844 -- We only do the transformation for source constructs. We assume
12845 -- that the expander knows what it is doing when it generates code.
12847 Comes_From_Source (N)
12849 -- If the operand type is Short_Integer or Short_Short_Integer,
12850 -- then we will promote to Integer, which is available on all
12851 -- targets, and is sufficient to ensure no intermediate overflow.
12852 -- Furthermore it is likely to be as efficient or more efficient
12853 -- than using the smaller type for the computation so we do this
12854 -- unconditionally.
12856 and then
12857 (Root_Operand_Type = Base_Type (Standard_Short_Integer)
12858 or else
12859 Root_Operand_Type = Base_Type (Standard_Short_Short_Integer))
12861 -- Test for interesting operation, which includes addition,
12862 -- division, exponentiation, multiplication, subtraction, absolute
12863 -- value and unary negation. Unary "+" is omitted since it is a
12864 -- no-op and thus can't overflow.
12866 and then Nkind_In (Operand, N_Op_Abs,
12867 N_Op_Add,
12868 N_Op_Divide,
12869 N_Op_Expon,
12870 N_Op_Minus,
12871 N_Op_Multiply,
12872 N_Op_Subtract);
12873 end Integer_Promotion_Possible;
12875 ------------------------------
12876 -- Make_Array_Comparison_Op --
12877 ------------------------------
12879 -- This is a hand-coded expansion of the following generic function:
12881 -- generic
12882 -- type elem is (<>);
12883 -- type index is (<>);
12884 -- type a is array (index range <>) of elem;
12886 -- function Gnnn (X : a; Y: a) return boolean is
12887 -- J : index := Y'first;
12889 -- begin
12890 -- if X'length = 0 then
12891 -- return false;
12893 -- elsif Y'length = 0 then
12894 -- return true;
12896 -- else
12897 -- for I in X'range loop
12898 -- if X (I) = Y (J) then
12899 -- if J = Y'last then
12900 -- exit;
12901 -- else
12902 -- J := index'succ (J);
12903 -- end if;
12905 -- else
12906 -- return X (I) > Y (J);
12907 -- end if;
12908 -- end loop;
12910 -- return X'length > Y'length;
12911 -- end if;
12912 -- end Gnnn;
12914 -- Note that since we are essentially doing this expansion by hand, we
12915 -- do not need to generate an actual or formal generic part, just the
12916 -- instantiated function itself.
12918 -- Perhaps we could have the actual generic available in the run-time,
12919 -- obtained by rtsfind, and actually expand a real instantiation ???
12921 function Make_Array_Comparison_Op
12922 (Typ : Entity_Id;
12923 Nod : Node_Id) return Node_Id
12925 Loc : constant Source_Ptr := Sloc (Nod);
12927 X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
12928 Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
12929 I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
12930 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
12932 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
12934 Loop_Statement : Node_Id;
12935 Loop_Body : Node_Id;
12936 If_Stat : Node_Id;
12937 Inner_If : Node_Id;
12938 Final_Expr : Node_Id;
12939 Func_Body : Node_Id;
12940 Func_Name : Entity_Id;
12941 Formals : List_Id;
12942 Length1 : Node_Id;
12943 Length2 : Node_Id;
12945 begin
12946 -- if J = Y'last then
12947 -- exit;
12948 -- else
12949 -- J := index'succ (J);
12950 -- end if;
12952 Inner_If :=
12953 Make_Implicit_If_Statement (Nod,
12954 Condition =>
12955 Make_Op_Eq (Loc,
12956 Left_Opnd => New_Occurrence_Of (J, Loc),
12957 Right_Opnd =>
12958 Make_Attribute_Reference (Loc,
12959 Prefix => New_Occurrence_Of (Y, Loc),
12960 Attribute_Name => Name_Last)),
12962 Then_Statements => New_List (
12963 Make_Exit_Statement (Loc)),
12965 Else_Statements =>
12966 New_List (
12967 Make_Assignment_Statement (Loc,
12968 Name => New_Occurrence_Of (J, Loc),
12969 Expression =>
12970 Make_Attribute_Reference (Loc,
12971 Prefix => New_Occurrence_Of (Index, Loc),
12972 Attribute_Name => Name_Succ,
12973 Expressions => New_List (New_Occurrence_Of (J, Loc))))));
12975 -- if X (I) = Y (J) then
12976 -- if ... end if;
12977 -- else
12978 -- return X (I) > Y (J);
12979 -- end if;
12981 Loop_Body :=
12982 Make_Implicit_If_Statement (Nod,
12983 Condition =>
12984 Make_Op_Eq (Loc,
12985 Left_Opnd =>
12986 Make_Indexed_Component (Loc,
12987 Prefix => New_Occurrence_Of (X, Loc),
12988 Expressions => New_List (New_Occurrence_Of (I, Loc))),
12990 Right_Opnd =>
12991 Make_Indexed_Component (Loc,
12992 Prefix => New_Occurrence_Of (Y, Loc),
12993 Expressions => New_List (New_Occurrence_Of (J, Loc)))),
12995 Then_Statements => New_List (Inner_If),
12997 Else_Statements => New_List (
12998 Make_Simple_Return_Statement (Loc,
12999 Expression =>
13000 Make_Op_Gt (Loc,
13001 Left_Opnd =>
13002 Make_Indexed_Component (Loc,
13003 Prefix => New_Occurrence_Of (X, Loc),
13004 Expressions => New_List (New_Occurrence_Of (I, Loc))),
13006 Right_Opnd =>
13007 Make_Indexed_Component (Loc,
13008 Prefix => New_Occurrence_Of (Y, Loc),
13009 Expressions => New_List (
13010 New_Occurrence_Of (J, Loc)))))));
13012 -- for I in X'range loop
13013 -- if ... end if;
13014 -- end loop;
13016 Loop_Statement :=
13017 Make_Implicit_Loop_Statement (Nod,
13018 Identifier => Empty,
13020 Iteration_Scheme =>
13021 Make_Iteration_Scheme (Loc,
13022 Loop_Parameter_Specification =>
13023 Make_Loop_Parameter_Specification (Loc,
13024 Defining_Identifier => I,
13025 Discrete_Subtype_Definition =>
13026 Make_Attribute_Reference (Loc,
13027 Prefix => New_Occurrence_Of (X, Loc),
13028 Attribute_Name => Name_Range))),
13030 Statements => New_List (Loop_Body));
13032 -- if X'length = 0 then
13033 -- return false;
13034 -- elsif Y'length = 0 then
13035 -- return true;
13036 -- else
13037 -- for ... loop ... end loop;
13038 -- return X'length > Y'length;
13039 -- end if;
13041 Length1 :=
13042 Make_Attribute_Reference (Loc,
13043 Prefix => New_Occurrence_Of (X, Loc),
13044 Attribute_Name => Name_Length);
13046 Length2 :=
13047 Make_Attribute_Reference (Loc,
13048 Prefix => New_Occurrence_Of (Y, Loc),
13049 Attribute_Name => Name_Length);
13051 Final_Expr :=
13052 Make_Op_Gt (Loc,
13053 Left_Opnd => Length1,
13054 Right_Opnd => Length2);
13056 If_Stat :=
13057 Make_Implicit_If_Statement (Nod,
13058 Condition =>
13059 Make_Op_Eq (Loc,
13060 Left_Opnd =>
13061 Make_Attribute_Reference (Loc,
13062 Prefix => New_Occurrence_Of (X, Loc),
13063 Attribute_Name => Name_Length),
13064 Right_Opnd =>
13065 Make_Integer_Literal (Loc, 0)),
13067 Then_Statements =>
13068 New_List (
13069 Make_Simple_Return_Statement (Loc,
13070 Expression => New_Occurrence_Of (Standard_False, Loc))),
13072 Elsif_Parts => New_List (
13073 Make_Elsif_Part (Loc,
13074 Condition =>
13075 Make_Op_Eq (Loc,
13076 Left_Opnd =>
13077 Make_Attribute_Reference (Loc,
13078 Prefix => New_Occurrence_Of (Y, Loc),
13079 Attribute_Name => Name_Length),
13080 Right_Opnd =>
13081 Make_Integer_Literal (Loc, 0)),
13083 Then_Statements =>
13084 New_List (
13085 Make_Simple_Return_Statement (Loc,
13086 Expression => New_Occurrence_Of (Standard_True, Loc))))),
13088 Else_Statements => New_List (
13089 Loop_Statement,
13090 Make_Simple_Return_Statement (Loc,
13091 Expression => Final_Expr)));
13093 -- (X : a; Y: a)
13095 Formals := New_List (
13096 Make_Parameter_Specification (Loc,
13097 Defining_Identifier => X,
13098 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
13100 Make_Parameter_Specification (Loc,
13101 Defining_Identifier => Y,
13102 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
13104 -- function Gnnn (...) return boolean is
13105 -- J : index := Y'first;
13106 -- begin
13107 -- if ... end if;
13108 -- end Gnnn;
13110 Func_Name := Make_Temporary (Loc, 'G');
13112 Func_Body :=
13113 Make_Subprogram_Body (Loc,
13114 Specification =>
13115 Make_Function_Specification (Loc,
13116 Defining_Unit_Name => Func_Name,
13117 Parameter_Specifications => Formals,
13118 Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
13120 Declarations => New_List (
13121 Make_Object_Declaration (Loc,
13122 Defining_Identifier => J,
13123 Object_Definition => New_Occurrence_Of (Index, Loc),
13124 Expression =>
13125 Make_Attribute_Reference (Loc,
13126 Prefix => New_Occurrence_Of (Y, Loc),
13127 Attribute_Name => Name_First))),
13129 Handled_Statement_Sequence =>
13130 Make_Handled_Sequence_Of_Statements (Loc,
13131 Statements => New_List (If_Stat)));
13133 return Func_Body;
13134 end Make_Array_Comparison_Op;
13136 ---------------------------
13137 -- Make_Boolean_Array_Op --
13138 ---------------------------
13140 -- For logical operations on boolean arrays, expand in line the following,
13141 -- replacing 'and' with 'or' or 'xor' where needed:
13143 -- function Annn (A : typ; B: typ) return typ is
13144 -- C : typ;
13145 -- begin
13146 -- for J in A'range loop
13147 -- C (J) := A (J) op B (J);
13148 -- end loop;
13149 -- return C;
13150 -- end Annn;
13152 -- Here typ is the boolean array type
13154 function Make_Boolean_Array_Op
13155 (Typ : Entity_Id;
13156 N : Node_Id) return Node_Id
13158 Loc : constant Source_Ptr := Sloc (N);
13160 A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
13161 B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
13162 C : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uC);
13163 J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
13165 A_J : Node_Id;
13166 B_J : Node_Id;
13167 C_J : Node_Id;
13168 Op : Node_Id;
13170 Formals : List_Id;
13171 Func_Name : Entity_Id;
13172 Func_Body : Node_Id;
13173 Loop_Statement : Node_Id;
13175 begin
13176 A_J :=
13177 Make_Indexed_Component (Loc,
13178 Prefix => New_Occurrence_Of (A, Loc),
13179 Expressions => New_List (New_Occurrence_Of (J, Loc)));
13181 B_J :=
13182 Make_Indexed_Component (Loc,
13183 Prefix => New_Occurrence_Of (B, Loc),
13184 Expressions => New_List (New_Occurrence_Of (J, Loc)));
13186 C_J :=
13187 Make_Indexed_Component (Loc,
13188 Prefix => New_Occurrence_Of (C, Loc),
13189 Expressions => New_List (New_Occurrence_Of (J, Loc)));
13191 if Nkind (N) = N_Op_And then
13192 Op :=
13193 Make_Op_And (Loc,
13194 Left_Opnd => A_J,
13195 Right_Opnd => B_J);
13197 elsif Nkind (N) = N_Op_Or then
13198 Op :=
13199 Make_Op_Or (Loc,
13200 Left_Opnd => A_J,
13201 Right_Opnd => B_J);
13203 else
13204 Op :=
13205 Make_Op_Xor (Loc,
13206 Left_Opnd => A_J,
13207 Right_Opnd => B_J);
13208 end if;
13210 Loop_Statement :=
13211 Make_Implicit_Loop_Statement (N,
13212 Identifier => Empty,
13214 Iteration_Scheme =>
13215 Make_Iteration_Scheme (Loc,
13216 Loop_Parameter_Specification =>
13217 Make_Loop_Parameter_Specification (Loc,
13218 Defining_Identifier => J,
13219 Discrete_Subtype_Definition =>
13220 Make_Attribute_Reference (Loc,
13221 Prefix => New_Occurrence_Of (A, Loc),
13222 Attribute_Name => Name_Range))),
13224 Statements => New_List (
13225 Make_Assignment_Statement (Loc,
13226 Name => C_J,
13227 Expression => Op)));
13229 Formals := New_List (
13230 Make_Parameter_Specification (Loc,
13231 Defining_Identifier => A,
13232 Parameter_Type => New_Occurrence_Of (Typ, Loc)),
13234 Make_Parameter_Specification (Loc,
13235 Defining_Identifier => B,
13236 Parameter_Type => New_Occurrence_Of (Typ, Loc)));
13238 Func_Name := Make_Temporary (Loc, 'A');
13239 Set_Is_Inlined (Func_Name);
13241 Func_Body :=
13242 Make_Subprogram_Body (Loc,
13243 Specification =>
13244 Make_Function_Specification (Loc,
13245 Defining_Unit_Name => Func_Name,
13246 Parameter_Specifications => Formals,
13247 Result_Definition => New_Occurrence_Of (Typ, Loc)),
13249 Declarations => New_List (
13250 Make_Object_Declaration (Loc,
13251 Defining_Identifier => C,
13252 Object_Definition => New_Occurrence_Of (Typ, Loc))),
13254 Handled_Statement_Sequence =>
13255 Make_Handled_Sequence_Of_Statements (Loc,
13256 Statements => New_List (
13257 Loop_Statement,
13258 Make_Simple_Return_Statement (Loc,
13259 Expression => New_Occurrence_Of (C, Loc)))));
13261 return Func_Body;
13262 end Make_Boolean_Array_Op;
13264 -----------------------------------------
13265 -- Minimized_Eliminated_Overflow_Check --
13266 -----------------------------------------
13268 function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean is
13269 begin
13270 return
13271 Is_Signed_Integer_Type (Etype (N))
13272 and then Overflow_Check_Mode in Minimized_Or_Eliminated;
13273 end Minimized_Eliminated_Overflow_Check;
13275 --------------------------------
13276 -- Optimize_Length_Comparison --
13277 --------------------------------
13279 procedure Optimize_Length_Comparison (N : Node_Id) is
13280 Loc : constant Source_Ptr := Sloc (N);
13281 Typ : constant Entity_Id := Etype (N);
13282 Result : Node_Id;
13284 Left : Node_Id;
13285 Right : Node_Id;
13286 -- First and Last attribute reference nodes, which end up as left and
13287 -- right operands of the optimized result.
13289 Is_Zero : Boolean;
13290 -- True for comparison operand of zero
13292 Comp : Node_Id;
13293 -- Comparison operand, set only if Is_Zero is false
13295 Ent : Entity_Id := Empty;
13296 -- Entity whose length is being compared
13298 Index : Node_Id := Empty;
13299 -- Integer_Literal node for length attribute expression, or Empty
13300 -- if there is no such expression present.
13302 Ityp : Entity_Id;
13303 -- Type of array index to which 'Length is applied
13305 Op : Node_Kind := Nkind (N);
13306 -- Kind of comparison operator, gets flipped if operands backwards
13308 function Is_Optimizable (N : Node_Id) return Boolean;
13309 -- Tests N to see if it is an optimizable comparison value (defined as
13310 -- constant zero or one, or something else where the value is known to
13311 -- be positive and in the range of 32-bits, and where the corresponding
13312 -- Length value is also known to be 32-bits. If result is true, sets
13313 -- Is_Zero, Ityp, and Comp accordingly.
13315 function Is_Entity_Length (N : Node_Id) return Boolean;
13316 -- Tests if N is a length attribute applied to a simple entity. If so,
13317 -- returns True, and sets Ent to the entity, and Index to the integer
13318 -- literal provided as an attribute expression, or to Empty if none.
13319 -- Also returns True if the expression is a generated type conversion
13320 -- whose expression is of the desired form. This latter case arises
13321 -- when Apply_Universal_Integer_Attribute_Check installs a conversion
13322 -- to check for being in range, which is not needed in this context.
13323 -- Returns False if neither condition holds.
13325 function Prepare_64 (N : Node_Id) return Node_Id;
13326 -- Given a discrete expression, returns a Long_Long_Integer typed
13327 -- expression representing the underlying value of the expression.
13328 -- This is done with an unchecked conversion to the result type. We
13329 -- use unchecked conversion to handle the enumeration type case.
13331 ----------------------
13332 -- Is_Entity_Length --
13333 ----------------------
13335 function Is_Entity_Length (N : Node_Id) return Boolean is
13336 begin
13337 if Nkind (N) = N_Attribute_Reference
13338 and then Attribute_Name (N) = Name_Length
13339 and then Is_Entity_Name (Prefix (N))
13340 then
13341 Ent := Entity (Prefix (N));
13343 if Present (Expressions (N)) then
13344 Index := First (Expressions (N));
13345 else
13346 Index := Empty;
13347 end if;
13349 return True;
13351 elsif Nkind (N) = N_Type_Conversion
13352 and then not Comes_From_Source (N)
13353 then
13354 return Is_Entity_Length (Expression (N));
13356 else
13357 return False;
13358 end if;
13359 end Is_Entity_Length;
13361 --------------------
13362 -- Is_Optimizable --
13363 --------------------
13365 function Is_Optimizable (N : Node_Id) return Boolean is
13366 Val : Uint;
13367 OK : Boolean;
13368 Lo : Uint;
13369 Hi : Uint;
13370 Indx : Node_Id;
13372 begin
13373 if Compile_Time_Known_Value (N) then
13374 Val := Expr_Value (N);
13376 if Val = Uint_0 then
13377 Is_Zero := True;
13378 Comp := Empty;
13379 return True;
13381 elsif Val = Uint_1 then
13382 Is_Zero := False;
13383 Comp := Empty;
13384 return True;
13385 end if;
13386 end if;
13388 -- Here we have to make sure of being within 32-bits
13390 Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
13392 if not OK
13393 or else Lo < Uint_1
13394 or else Hi > UI_From_Int (Int'Last)
13395 then
13396 return False;
13397 end if;
13399 -- Comparison value was within range, so now we must check the index
13400 -- value to make sure it is also within 32-bits.
13402 Indx := First_Index (Etype (Ent));
13404 if Present (Index) then
13405 for J in 2 .. UI_To_Int (Intval (Index)) loop
13406 Next_Index (Indx);
13407 end loop;
13408 end if;
13410 Ityp := Etype (Indx);
13412 if Esize (Ityp) > 32 then
13413 return False;
13414 end if;
13416 Is_Zero := False;
13417 Comp := N;
13418 return True;
13419 end Is_Optimizable;
13421 ----------------
13422 -- Prepare_64 --
13423 ----------------
13425 function Prepare_64 (N : Node_Id) return Node_Id is
13426 begin
13427 return Unchecked_Convert_To (Standard_Long_Long_Integer, N);
13428 end Prepare_64;
13430 -- Start of processing for Optimize_Length_Comparison
13432 begin
13433 -- Nothing to do if not a comparison
13435 if Op not in N_Op_Compare then
13436 return;
13437 end if;
13439 -- Nothing to do if special -gnatd.P debug flag set.
13441 if Debug_Flag_Dot_PP then
13442 return;
13443 end if;
13445 -- Ent'Length op 0/1
13447 if Is_Entity_Length (Left_Opnd (N))
13448 and then Is_Optimizable (Right_Opnd (N))
13449 then
13450 null;
13452 -- 0/1 op Ent'Length
13454 elsif Is_Entity_Length (Right_Opnd (N))
13455 and then Is_Optimizable (Left_Opnd (N))
13456 then
13457 -- Flip comparison to opposite sense
13459 case Op is
13460 when N_Op_Lt => Op := N_Op_Gt;
13461 when N_Op_Le => Op := N_Op_Ge;
13462 when N_Op_Gt => Op := N_Op_Lt;
13463 when N_Op_Ge => Op := N_Op_Le;
13464 when others => null;
13465 end case;
13467 -- Else optimization not possible
13469 else
13470 return;
13471 end if;
13473 -- Fall through if we will do the optimization
13475 -- Cases to handle:
13477 -- X'Length = 0 => X'First > X'Last
13478 -- X'Length = 1 => X'First = X'Last
13479 -- X'Length = n => X'First + (n - 1) = X'Last
13481 -- X'Length /= 0 => X'First <= X'Last
13482 -- X'Length /= 1 => X'First /= X'Last
13483 -- X'Length /= n => X'First + (n - 1) /= X'Last
13485 -- X'Length >= 0 => always true, warn
13486 -- X'Length >= 1 => X'First <= X'Last
13487 -- X'Length >= n => X'First + (n - 1) <= X'Last
13489 -- X'Length > 0 => X'First <= X'Last
13490 -- X'Length > 1 => X'First < X'Last
13491 -- X'Length > n => X'First + (n - 1) < X'Last
13493 -- X'Length <= 0 => X'First > X'Last (warn, could be =)
13494 -- X'Length <= 1 => X'First >= X'Last
13495 -- X'Length <= n => X'First + (n - 1) >= X'Last
13497 -- X'Length < 0 => always false (warn)
13498 -- X'Length < 1 => X'First > X'Last
13499 -- X'Length < n => X'First + (n - 1) > X'Last
13501 -- Note: for the cases of n (not constant 0,1), we require that the
13502 -- corresponding index type be integer or shorter (i.e. not 64-bit),
13503 -- and the same for the comparison value. Then we do the comparison
13504 -- using 64-bit arithmetic (actually long long integer), so that we
13505 -- cannot have overflow intefering with the result.
13507 -- First deal with warning cases
13509 if Is_Zero then
13510 case Op is
13512 -- X'Length >= 0
13514 when N_Op_Ge =>
13515 Rewrite (N,
13516 Convert_To (Typ, New_Occurrence_Of (Standard_True, Loc)));
13517 Analyze_And_Resolve (N, Typ);
13518 Warn_On_Known_Condition (N);
13519 return;
13521 -- X'Length < 0
13523 when N_Op_Lt =>
13524 Rewrite (N,
13525 Convert_To (Typ, New_Occurrence_Of (Standard_False, Loc)));
13526 Analyze_And_Resolve (N, Typ);
13527 Warn_On_Known_Condition (N);
13528 return;
13530 when N_Op_Le =>
13531 if Constant_Condition_Warnings
13532 and then Comes_From_Source (Original_Node (N))
13533 then
13534 Error_Msg_N ("could replace by ""'=""?c?", N);
13535 end if;
13537 Op := N_Op_Eq;
13539 when others =>
13540 null;
13541 end case;
13542 end if;
13544 -- Build the First reference we will use
13546 Left :=
13547 Make_Attribute_Reference (Loc,
13548 Prefix => New_Occurrence_Of (Ent, Loc),
13549 Attribute_Name => Name_First);
13551 if Present (Index) then
13552 Set_Expressions (Left, New_List (New_Copy (Index)));
13553 end if;
13555 -- If general value case, then do the addition of (n - 1), and
13556 -- also add the needed conversions to type Long_Long_Integer.
13558 if Present (Comp) then
13559 Left :=
13560 Make_Op_Add (Loc,
13561 Left_Opnd => Prepare_64 (Left),
13562 Right_Opnd =>
13563 Make_Op_Subtract (Loc,
13564 Left_Opnd => Prepare_64 (Comp),
13565 Right_Opnd => Make_Integer_Literal (Loc, 1)));
13566 end if;
13568 -- Build the Last reference we will use
13570 Right :=
13571 Make_Attribute_Reference (Loc,
13572 Prefix => New_Occurrence_Of (Ent, Loc),
13573 Attribute_Name => Name_Last);
13575 if Present (Index) then
13576 Set_Expressions (Right, New_List (New_Copy (Index)));
13577 end if;
13579 -- If general operand, convert Last reference to Long_Long_Integer
13581 if Present (Comp) then
13582 Right := Prepare_64 (Right);
13583 end if;
13585 -- Check for cases to optimize
13587 -- X'Length = 0 => X'First > X'Last
13588 -- X'Length < 1 => X'First > X'Last
13589 -- X'Length < n => X'First + (n - 1) > X'Last
13591 if (Is_Zero and then Op = N_Op_Eq)
13592 or else (not Is_Zero and then Op = N_Op_Lt)
13593 then
13594 Result :=
13595 Make_Op_Gt (Loc,
13596 Left_Opnd => Left,
13597 Right_Opnd => Right);
13599 -- X'Length = 1 => X'First = X'Last
13600 -- X'Length = n => X'First + (n - 1) = X'Last
13602 elsif not Is_Zero and then Op = N_Op_Eq then
13603 Result :=
13604 Make_Op_Eq (Loc,
13605 Left_Opnd => Left,
13606 Right_Opnd => Right);
13608 -- X'Length /= 0 => X'First <= X'Last
13609 -- X'Length > 0 => X'First <= X'Last
13611 elsif Is_Zero and (Op = N_Op_Ne or else Op = N_Op_Gt) then
13612 Result :=
13613 Make_Op_Le (Loc,
13614 Left_Opnd => Left,
13615 Right_Opnd => Right);
13617 -- X'Length /= 1 => X'First /= X'Last
13618 -- X'Length /= n => X'First + (n - 1) /= X'Last
13620 elsif not Is_Zero and then Op = N_Op_Ne then
13621 Result :=
13622 Make_Op_Ne (Loc,
13623 Left_Opnd => Left,
13624 Right_Opnd => Right);
13626 -- X'Length >= 1 => X'First <= X'Last
13627 -- X'Length >= n => X'First + (n - 1) <= X'Last
13629 elsif not Is_Zero and then Op = N_Op_Ge then
13630 Result :=
13631 Make_Op_Le (Loc,
13632 Left_Opnd => Left,
13633 Right_Opnd => Right);
13635 -- X'Length > 1 => X'First < X'Last
13636 -- X'Length > n => X'First + (n = 1) < X'Last
13638 elsif not Is_Zero and then Op = N_Op_Gt then
13639 Result :=
13640 Make_Op_Lt (Loc,
13641 Left_Opnd => Left,
13642 Right_Opnd => Right);
13644 -- X'Length <= 1 => X'First >= X'Last
13645 -- X'Length <= n => X'First + (n - 1) >= X'Last
13647 elsif not Is_Zero and then Op = N_Op_Le then
13648 Result :=
13649 Make_Op_Ge (Loc,
13650 Left_Opnd => Left,
13651 Right_Opnd => Right);
13653 -- Should not happen at this stage
13655 else
13656 raise Program_Error;
13657 end if;
13659 -- Rewrite and finish up
13661 Rewrite (N, Result);
13662 Analyze_And_Resolve (N, Typ);
13663 return;
13664 end Optimize_Length_Comparison;
13666 --------------------------------
13667 -- Process_If_Case_Statements --
13668 --------------------------------
13670 procedure Process_If_Case_Statements (N : Node_Id; Stmts : List_Id) is
13671 Decl : Node_Id;
13673 begin
13674 Decl := First (Stmts);
13675 while Present (Decl) loop
13676 if Nkind (Decl) = N_Object_Declaration
13677 and then Is_Finalizable_Transient (Decl, N)
13678 then
13679 Process_Transient_In_Expression (Decl, N, Stmts);
13680 end if;
13682 Next (Decl);
13683 end loop;
13684 end Process_If_Case_Statements;
13686 -------------------------------------
13687 -- Process_Transient_In_Expression --
13688 -------------------------------------
13690 procedure Process_Transient_In_Expression
13691 (Obj_Decl : Node_Id;
13692 Expr : Node_Id;
13693 Stmts : List_Id)
13695 Loc : constant Source_Ptr := Sloc (Obj_Decl);
13696 Obj_Id : constant Entity_Id := Defining_Identifier (Obj_Decl);
13698 Hook_Context : constant Node_Id := Find_Hook_Context (Expr);
13699 -- The node on which to insert the hook as an action. This is usually
13700 -- the innermost enclosing non-transient construct.
13702 Fin_Call : Node_Id;
13703 Hook_Assign : Node_Id;
13704 Hook_Clear : Node_Id;
13705 Hook_Decl : Node_Id;
13706 Hook_Insert : Node_Id;
13707 Ptr_Decl : Node_Id;
13709 Fin_Context : Node_Id;
13710 -- The node after which to insert the finalization actions of the
13711 -- transient object.
13713 begin
13714 pragma Assert (Nkind_In (Expr, N_Case_Expression,
13715 N_Expression_With_Actions,
13716 N_If_Expression));
13718 -- When the context is a Boolean evaluation, all three nodes capture the
13719 -- result of their computation in a local temporary:
13721 -- do
13722 -- Trans_Id : Ctrl_Typ := ...;
13723 -- Result : constant Boolean := ... Trans_Id ...;
13724 -- <finalize Trans_Id>
13725 -- in Result end;
13727 -- As a result, the finalization of any transient objects can safely
13728 -- take place after the result capture.
13730 -- ??? could this be extended to elementary types?
13732 if Is_Boolean_Type (Etype (Expr)) then
13733 Fin_Context := Last (Stmts);
13735 -- Otherwise the immediate context may not be safe enough to carry
13736 -- out transient object finalization due to aliasing and nesting of
13737 -- constructs. Insert calls to [Deep_]Finalize after the innermost
13738 -- enclosing non-transient construct.
13740 else
13741 Fin_Context := Hook_Context;
13742 end if;
13744 -- Mark the transient object as successfully processed to avoid double
13745 -- finalization.
13747 Set_Is_Finalized_Transient (Obj_Id);
13749 -- Construct all the pieces necessary to hook and finalize a transient
13750 -- object.
13752 Build_Transient_Object_Statements
13753 (Obj_Decl => Obj_Decl,
13754 Fin_Call => Fin_Call,
13755 Hook_Assign => Hook_Assign,
13756 Hook_Clear => Hook_Clear,
13757 Hook_Decl => Hook_Decl,
13758 Ptr_Decl => Ptr_Decl,
13759 Finalize_Obj => False);
13761 -- Add the access type which provides a reference to the transient
13762 -- object. Generate:
13764 -- type Ptr_Typ is access all Desig_Typ;
13766 Insert_Action (Hook_Context, Ptr_Decl);
13768 -- Add the temporary which acts as a hook to the transient object.
13769 -- Generate:
13771 -- Hook : Ptr_Id := null;
13773 Insert_Action (Hook_Context, Hook_Decl);
13775 -- When the transient object is initialized by an aggregate, the hook
13776 -- must capture the object after the last aggregate assignment takes
13777 -- place. Only then is the object considered initialized. Generate:
13779 -- Hook := Ptr_Typ (Obj_Id);
13780 -- <or>
13781 -- Hook := Obj_Id'Unrestricted_Access;
13783 if Ekind_In (Obj_Id, E_Constant, E_Variable)
13784 and then Present (Last_Aggregate_Assignment (Obj_Id))
13785 then
13786 Hook_Insert := Last_Aggregate_Assignment (Obj_Id);
13788 -- Otherwise the hook seizes the related object immediately
13790 else
13791 Hook_Insert := Obj_Decl;
13792 end if;
13794 Insert_After_And_Analyze (Hook_Insert, Hook_Assign);
13796 -- When the node is part of a return statement, there is no need to
13797 -- insert a finalization call, as the general finalization mechanism
13798 -- (see Build_Finalizer) would take care of the transient object on
13799 -- subprogram exit. Note that it would also be impossible to insert the
13800 -- finalization code after the return statement as this will render it
13801 -- unreachable.
13803 if Nkind (Fin_Context) = N_Simple_Return_Statement then
13804 null;
13806 -- Finalize the hook after the context has been evaluated. Generate:
13808 -- if Hook /= null then
13809 -- [Deep_]Finalize (Hook.all);
13810 -- Hook := null;
13811 -- end if;
13813 else
13814 Insert_Action_After (Fin_Context,
13815 Make_Implicit_If_Statement (Obj_Decl,
13816 Condition =>
13817 Make_Op_Ne (Loc,
13818 Left_Opnd =>
13819 New_Occurrence_Of (Defining_Entity (Hook_Decl), Loc),
13820 Right_Opnd => Make_Null (Loc)),
13822 Then_Statements => New_List (
13823 Fin_Call,
13824 Hook_Clear)));
13825 end if;
13826 end Process_Transient_In_Expression;
13828 ------------------------
13829 -- Rewrite_Comparison --
13830 ------------------------
13832 procedure Rewrite_Comparison (N : Node_Id) is
13833 Typ : constant Entity_Id := Etype (N);
13835 False_Result : Boolean;
13836 True_Result : Boolean;
13838 begin
13839 if Nkind (N) = N_Type_Conversion then
13840 Rewrite_Comparison (Expression (N));
13841 return;
13843 elsif Nkind (N) not in N_Op_Compare then
13844 return;
13845 end if;
13847 -- Determine the potential outcome of the comparison assuming that the
13848 -- operands are valid and emit a warning when the comparison evaluates
13849 -- to True or False only in the presence of invalid values.
13851 Warn_On_Constant_Valid_Condition (N);
13853 -- Determine the potential outcome of the comparison assuming that the
13854 -- operands are not valid.
13856 Test_Comparison
13857 (Op => N,
13858 Assume_Valid => False,
13859 True_Result => True_Result,
13860 False_Result => False_Result);
13862 -- The outcome is a decisive False or True, rewrite the operator
13864 if False_Result or True_Result then
13865 Rewrite (N,
13866 Convert_To (Typ,
13867 New_Occurrence_Of (Boolean_Literals (True_Result), Sloc (N))));
13869 Analyze_And_Resolve (N, Typ);
13870 Warn_On_Known_Condition (N);
13871 end if;
13872 end Rewrite_Comparison;
13874 ----------------------------
13875 -- Safe_In_Place_Array_Op --
13876 ----------------------------
13878 function Safe_In_Place_Array_Op
13879 (Lhs : Node_Id;
13880 Op1 : Node_Id;
13881 Op2 : Node_Id) return Boolean
13883 Target : Entity_Id;
13885 function Is_Safe_Operand (Op : Node_Id) return Boolean;
13886 -- Operand is safe if it cannot overlap part of the target of the
13887 -- operation. If the operand and the target are identical, the operand
13888 -- is safe. The operand can be empty in the case of negation.
13890 function Is_Unaliased (N : Node_Id) return Boolean;
13891 -- Check that N is a stand-alone entity
13893 ------------------
13894 -- Is_Unaliased --
13895 ------------------
13897 function Is_Unaliased (N : Node_Id) return Boolean is
13898 begin
13899 return
13900 Is_Entity_Name (N)
13901 and then No (Address_Clause (Entity (N)))
13902 and then No (Renamed_Object (Entity (N)));
13903 end Is_Unaliased;
13905 ---------------------
13906 -- Is_Safe_Operand --
13907 ---------------------
13909 function Is_Safe_Operand (Op : Node_Id) return Boolean is
13910 begin
13911 if No (Op) then
13912 return True;
13914 elsif Is_Entity_Name (Op) then
13915 return Is_Unaliased (Op);
13917 elsif Nkind_In (Op, N_Indexed_Component, N_Selected_Component) then
13918 return Is_Unaliased (Prefix (Op));
13920 elsif Nkind (Op) = N_Slice then
13921 return
13922 Is_Unaliased (Prefix (Op))
13923 and then Entity (Prefix (Op)) /= Target;
13925 elsif Nkind (Op) = N_Op_Not then
13926 return Is_Safe_Operand (Right_Opnd (Op));
13928 else
13929 return False;
13930 end if;
13931 end Is_Safe_Operand;
13933 -- Start of processing for Safe_In_Place_Array_Op
13935 begin
13936 -- Skip this processing if the component size is different from system
13937 -- storage unit (since at least for NOT this would cause problems).
13939 if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
13940 return False;
13942 -- Cannot do in place stuff if non-standard Boolean representation
13944 elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
13945 return False;
13947 elsif not Is_Unaliased (Lhs) then
13948 return False;
13950 else
13951 Target := Entity (Lhs);
13952 return Is_Safe_Operand (Op1) and then Is_Safe_Operand (Op2);
13953 end if;
13954 end Safe_In_Place_Array_Op;
13956 -----------------------
13957 -- Tagged_Membership --
13958 -----------------------
13960 -- There are two different cases to consider depending on whether the right
13961 -- operand is a class-wide type or not. If not we just compare the actual
13962 -- tag of the left expr to the target type tag:
13964 -- Left_Expr.Tag = Right_Type'Tag;
13966 -- If it is a class-wide type we use the RT function CW_Membership which is
13967 -- usually implemented by looking in the ancestor tables contained in the
13968 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
13970 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
13971 -- function IW_Membership which is usually implemented by looking in the
13972 -- table of abstract interface types plus the ancestor table contained in
13973 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
13975 procedure Tagged_Membership
13976 (N : Node_Id;
13977 SCIL_Node : out Node_Id;
13978 Result : out Node_Id)
13980 Left : constant Node_Id := Left_Opnd (N);
13981 Right : constant Node_Id := Right_Opnd (N);
13982 Loc : constant Source_Ptr := Sloc (N);
13984 Full_R_Typ : Entity_Id;
13985 Left_Type : Entity_Id;
13986 New_Node : Node_Id;
13987 Right_Type : Entity_Id;
13988 Obj_Tag : Node_Id;
13990 begin
13991 SCIL_Node := Empty;
13993 -- Handle entities from the limited view
13995 Left_Type := Available_View (Etype (Left));
13996 Right_Type := Available_View (Etype (Right));
13998 -- In the case where the type is an access type, the test is applied
13999 -- using the designated types (needed in Ada 2012 for implicit anonymous
14000 -- access conversions, for AI05-0149).
14002 if Is_Access_Type (Right_Type) then
14003 Left_Type := Designated_Type (Left_Type);
14004 Right_Type := Designated_Type (Right_Type);
14005 end if;
14007 if Is_Class_Wide_Type (Left_Type) then
14008 Left_Type := Root_Type (Left_Type);
14009 end if;
14011 if Is_Class_Wide_Type (Right_Type) then
14012 Full_R_Typ := Underlying_Type (Root_Type (Right_Type));
14013 else
14014 Full_R_Typ := Underlying_Type (Right_Type);
14015 end if;
14017 Obj_Tag :=
14018 Make_Selected_Component (Loc,
14019 Prefix => Relocate_Node (Left),
14020 Selector_Name =>
14021 New_Occurrence_Of (First_Tag_Component (Left_Type), Loc));
14023 if Is_Class_Wide_Type (Right_Type) or else Is_Interface (Left_Type) then
14025 -- No need to issue a run-time check if we statically know that the
14026 -- result of this membership test is always true. For example,
14027 -- considering the following declarations:
14029 -- type Iface is interface;
14030 -- type T is tagged null record;
14031 -- type DT is new T and Iface with null record;
14033 -- Obj1 : T;
14034 -- Obj2 : DT;
14036 -- These membership tests are always true:
14038 -- Obj1 in T'Class
14039 -- Obj2 in T'Class;
14040 -- Obj2 in Iface'Class;
14042 -- We do not need to handle cases where the membership is illegal.
14043 -- For example:
14045 -- Obj1 in DT'Class; -- Compile time error
14046 -- Obj1 in Iface'Class; -- Compile time error
14048 if not Is_Class_Wide_Type (Left_Type)
14049 and then (Is_Ancestor (Etype (Right_Type), Left_Type,
14050 Use_Full_View => True)
14051 or else (Is_Interface (Etype (Right_Type))
14052 and then Interface_Present_In_Ancestor
14053 (Typ => Left_Type,
14054 Iface => Etype (Right_Type))))
14055 then
14056 Result := New_Occurrence_Of (Standard_True, Loc);
14057 return;
14058 end if;
14060 -- Ada 2005 (AI-251): Class-wide applied to interfaces
14062 if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
14064 -- Support to: "Iface_CW_Typ in Typ'Class"
14066 or else Is_Interface (Left_Type)
14067 then
14068 -- Issue error if IW_Membership operation not available in a
14069 -- configurable run time setting.
14071 if not RTE_Available (RE_IW_Membership) then
14072 Error_Msg_CRT
14073 ("dynamic membership test on interface types", N);
14074 Result := Empty;
14075 return;
14076 end if;
14078 Result :=
14079 Make_Function_Call (Loc,
14080 Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
14081 Parameter_Associations => New_List (
14082 Make_Attribute_Reference (Loc,
14083 Prefix => Obj_Tag,
14084 Attribute_Name => Name_Address),
14085 New_Occurrence_Of (
14086 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))),
14087 Loc)));
14089 -- Ada 95: Normal case
14091 else
14092 Build_CW_Membership (Loc,
14093 Obj_Tag_Node => Obj_Tag,
14094 Typ_Tag_Node =>
14095 New_Occurrence_Of (
14096 Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc),
14097 Related_Nod => N,
14098 New_Node => New_Node);
14100 -- Generate the SCIL node for this class-wide membership test.
14101 -- Done here because the previous call to Build_CW_Membership
14102 -- relocates Obj_Tag.
14104 if Generate_SCIL then
14105 SCIL_Node := Make_SCIL_Membership_Test (Sloc (N));
14106 Set_SCIL_Entity (SCIL_Node, Etype (Right_Type));
14107 Set_SCIL_Tag_Value (SCIL_Node, Obj_Tag);
14108 end if;
14110 Result := New_Node;
14111 end if;
14113 -- Right_Type is not a class-wide type
14115 else
14116 -- No need to check the tag of the object if Right_Typ is abstract
14118 if Is_Abstract_Type (Right_Type) then
14119 Result := New_Occurrence_Of (Standard_False, Loc);
14121 else
14122 Result :=
14123 Make_Op_Eq (Loc,
14124 Left_Opnd => Obj_Tag,
14125 Right_Opnd =>
14126 New_Occurrence_Of
14127 (Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc));
14128 end if;
14129 end if;
14130 end Tagged_Membership;
14132 ------------------------------
14133 -- Unary_Op_Validity_Checks --
14134 ------------------------------
14136 procedure Unary_Op_Validity_Checks (N : Node_Id) is
14137 begin
14138 if Validity_Checks_On and Validity_Check_Operands then
14139 Ensure_Valid (Right_Opnd (N));
14140 end if;
14141 end Unary_Op_Validity_Checks;
14143 end Exp_Ch4;