2017-03-06 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / gimple-ssa-store-merging.c
blob17ac94ab2a7b696add647b33f11a47378612afd1
1 /* GIMPLE store merging pass.
2 Copyright (C) 2016-2017 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* The purpose of this pass is to combine multiple memory stores of
22 constant values to consecutive memory locations into fewer wider stores.
23 For example, if we have a sequence peforming four byte stores to
24 consecutive memory locations:
25 [p ] := imm1;
26 [p + 1B] := imm2;
27 [p + 2B] := imm3;
28 [p + 3B] := imm4;
29 we can transform this into a single 4-byte store if the target supports it:
30 [p] := imm1:imm2:imm3:imm4 //concatenated immediates according to endianness.
32 The algorithm is applied to each basic block in three phases:
34 1) Scan through the basic block recording constant assignments to
35 destinations that can be expressed as a store to memory of a certain size
36 at a certain bit offset. Record store chains to different bases in a
37 hash_map (m_stores) and make sure to terminate such chains when appropriate
38 (for example when when the stored values get used subsequently).
39 These stores can be a result of structure element initializers, array stores
40 etc. A store_immediate_info object is recorded for every such store.
41 Record as many such assignments to a single base as possible until a
42 statement that interferes with the store sequence is encountered.
44 2) Analyze the chain of stores recorded in phase 1) (i.e. the vector of
45 store_immediate_info objects) and coalesce contiguous stores into
46 merged_store_group objects.
48 For example, given the stores:
49 [p ] := 0;
50 [p + 1B] := 1;
51 [p + 3B] := 0;
52 [p + 4B] := 1;
53 [p + 5B] := 0;
54 [p + 6B] := 0;
55 This phase would produce two merged_store_group objects, one recording the
56 two bytes stored in the memory region [p : p + 1] and another
57 recording the four bytes stored in the memory region [p + 3 : p + 6].
59 3) The merged_store_group objects produced in phase 2) are processed
60 to generate the sequence of wider stores that set the contiguous memory
61 regions to the sequence of bytes that correspond to it. This may emit
62 multiple stores per store group to handle contiguous stores that are not
63 of a size that is a power of 2. For example it can try to emit a 40-bit
64 store as a 32-bit store followed by an 8-bit store.
65 We try to emit as wide stores as we can while respecting STRICT_ALIGNMENT or
66 SLOW_UNALIGNED_ACCESS rules.
68 Note on endianness and example:
69 Consider 2 contiguous 16-bit stores followed by 2 contiguous 8-bit stores:
70 [p ] := 0x1234;
71 [p + 2B] := 0x5678;
72 [p + 4B] := 0xab;
73 [p + 5B] := 0xcd;
75 The memory layout for little-endian (LE) and big-endian (BE) must be:
76 p |LE|BE|
77 ---------
78 0 |34|12|
79 1 |12|34|
80 2 |78|56|
81 3 |56|78|
82 4 |ab|ab|
83 5 |cd|cd|
85 To merge these into a single 48-bit merged value 'val' in phase 2)
86 on little-endian we insert stores to higher (consecutive) bitpositions
87 into the most significant bits of the merged value.
88 The final merged value would be: 0xcdab56781234
90 For big-endian we insert stores to higher bitpositions into the least
91 significant bits of the merged value.
92 The final merged value would be: 0x12345678abcd
94 Then, in phase 3), we want to emit this 48-bit value as a 32-bit store
95 followed by a 16-bit store. Again, we must consider endianness when
96 breaking down the 48-bit value 'val' computed above.
97 For little endian we emit:
98 [p] (32-bit) := 0x56781234; // val & 0x0000ffffffff;
99 [p + 4B] (16-bit) := 0xcdab; // (val & 0xffff00000000) >> 32;
101 Whereas for big-endian we emit:
102 [p] (32-bit) := 0x12345678; // (val & 0xffffffff0000) >> 16;
103 [p + 4B] (16-bit) := 0xabcd; // val & 0x00000000ffff; */
105 #include "config.h"
106 #include "system.h"
107 #include "coretypes.h"
108 #include "backend.h"
109 #include "tree.h"
110 #include "gimple.h"
111 #include "builtins.h"
112 #include "fold-const.h"
113 #include "tree-pass.h"
114 #include "ssa.h"
115 #include "gimple-pretty-print.h"
116 #include "alias.h"
117 #include "fold-const.h"
118 #include "params.h"
119 #include "print-tree.h"
120 #include "tree-hash-traits.h"
121 #include "gimple-iterator.h"
122 #include "gimplify.h"
123 #include "stor-layout.h"
124 #include "timevar.h"
125 #include "tree-cfg.h"
126 #include "tree-eh.h"
127 #include "target.h"
128 #include "gimplify-me.h"
129 #include "selftest.h"
131 /* The maximum size (in bits) of the stores this pass should generate. */
132 #define MAX_STORE_BITSIZE (BITS_PER_WORD)
133 #define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT)
135 namespace {
137 /* Struct recording the information about a single store of an immediate
138 to memory. These are created in the first phase and coalesced into
139 merged_store_group objects in the second phase. */
141 struct store_immediate_info
143 unsigned HOST_WIDE_INT bitsize;
144 unsigned HOST_WIDE_INT bitpos;
145 gimple *stmt;
146 unsigned int order;
147 store_immediate_info (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
148 gimple *, unsigned int);
151 store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs,
152 unsigned HOST_WIDE_INT bp,
153 gimple *st,
154 unsigned int ord)
155 : bitsize (bs), bitpos (bp), stmt (st), order (ord)
159 /* Struct representing a group of stores to contiguous memory locations.
160 These are produced by the second phase (coalescing) and consumed in the
161 third phase that outputs the widened stores. */
163 struct merged_store_group
165 unsigned HOST_WIDE_INT start;
166 unsigned HOST_WIDE_INT width;
167 /* The size of the allocated memory for val. */
168 unsigned HOST_WIDE_INT buf_size;
170 unsigned int align;
171 unsigned int first_order;
172 unsigned int last_order;
174 auto_vec<struct store_immediate_info *> stores;
175 /* We record the first and last original statements in the sequence because
176 we'll need their vuse/vdef and replacement position. It's easier to keep
177 track of them separately as 'stores' is reordered by apply_stores. */
178 gimple *last_stmt;
179 gimple *first_stmt;
180 unsigned char *val;
182 merged_store_group (store_immediate_info *);
183 ~merged_store_group ();
184 void merge_into (store_immediate_info *);
185 void merge_overlapping (store_immediate_info *);
186 bool apply_stores ();
189 /* Debug helper. Dump LEN elements of byte array PTR to FD in hex. */
191 static void
192 dump_char_array (FILE *fd, unsigned char *ptr, unsigned int len)
194 if (!fd)
195 return;
197 for (unsigned int i = 0; i < len; i++)
198 fprintf (fd, "%x ", ptr[i]);
199 fprintf (fd, "\n");
202 /* Shift left the bytes in PTR of SZ elements by AMNT bits, carrying over the
203 bits between adjacent elements. AMNT should be within
204 [0, BITS_PER_UNIT).
205 Example, AMNT = 2:
206 00011111|11100000 << 2 = 01111111|10000000
207 PTR[1] | PTR[0] PTR[1] | PTR[0]. */
209 static void
210 shift_bytes_in_array (unsigned char *ptr, unsigned int sz, unsigned int amnt)
212 if (amnt == 0)
213 return;
215 unsigned char carry_over = 0U;
216 unsigned char carry_mask = (~0U) << (unsigned char) (BITS_PER_UNIT - amnt);
217 unsigned char clear_mask = (~0U) << amnt;
219 for (unsigned int i = 0; i < sz; i++)
221 unsigned prev_carry_over = carry_over;
222 carry_over = (ptr[i] & carry_mask) >> (BITS_PER_UNIT - amnt);
224 ptr[i] <<= amnt;
225 if (i != 0)
227 ptr[i] &= clear_mask;
228 ptr[i] |= prev_carry_over;
233 /* Like shift_bytes_in_array but for big-endian.
234 Shift right the bytes in PTR of SZ elements by AMNT bits, carrying over the
235 bits between adjacent elements. AMNT should be within
236 [0, BITS_PER_UNIT).
237 Example, AMNT = 2:
238 00011111|11100000 >> 2 = 00000111|11111000
239 PTR[0] | PTR[1] PTR[0] | PTR[1]. */
241 static void
242 shift_bytes_in_array_right (unsigned char *ptr, unsigned int sz,
243 unsigned int amnt)
245 if (amnt == 0)
246 return;
248 unsigned char carry_over = 0U;
249 unsigned char carry_mask = ~(~0U << amnt);
251 for (unsigned int i = 0; i < sz; i++)
253 unsigned prev_carry_over = carry_over;
254 carry_over = ptr[i] & carry_mask;
256 carry_over <<= (unsigned char) BITS_PER_UNIT - amnt;
257 ptr[i] >>= amnt;
258 ptr[i] |= prev_carry_over;
262 /* Clear out LEN bits starting from bit START in the byte array
263 PTR. This clears the bits to the *right* from START.
264 START must be within [0, BITS_PER_UNIT) and counts starting from
265 the least significant bit. */
267 static void
268 clear_bit_region_be (unsigned char *ptr, unsigned int start,
269 unsigned int len)
271 if (len == 0)
272 return;
273 /* Clear len bits to the right of start. */
274 else if (len <= start + 1)
276 unsigned char mask = (~(~0U << len));
277 mask = mask << (start + 1U - len);
278 ptr[0] &= ~mask;
280 else if (start != BITS_PER_UNIT - 1)
282 clear_bit_region_be (ptr, start, (start % BITS_PER_UNIT) + 1);
283 clear_bit_region_be (ptr + 1, BITS_PER_UNIT - 1,
284 len - (start % BITS_PER_UNIT) - 1);
286 else if (start == BITS_PER_UNIT - 1
287 && len > BITS_PER_UNIT)
289 unsigned int nbytes = len / BITS_PER_UNIT;
290 for (unsigned int i = 0; i < nbytes; i++)
291 ptr[i] = 0U;
292 if (len % BITS_PER_UNIT != 0)
293 clear_bit_region_be (ptr + nbytes, BITS_PER_UNIT - 1,
294 len % BITS_PER_UNIT);
296 else
297 gcc_unreachable ();
300 /* In the byte array PTR clear the bit region starting at bit
301 START and is LEN bits wide.
302 For regions spanning multiple bytes do this recursively until we reach
303 zero LEN or a region contained within a single byte. */
305 static void
306 clear_bit_region (unsigned char *ptr, unsigned int start,
307 unsigned int len)
309 /* Degenerate base case. */
310 if (len == 0)
311 return;
312 else if (start >= BITS_PER_UNIT)
313 clear_bit_region (ptr + 1, start - BITS_PER_UNIT, len);
314 /* Second base case. */
315 else if ((start + len) <= BITS_PER_UNIT)
317 unsigned char mask = (~0U) << (unsigned char) (BITS_PER_UNIT - len);
318 mask >>= BITS_PER_UNIT - (start + len);
320 ptr[0] &= ~mask;
322 return;
324 /* Clear most significant bits in a byte and proceed with the next byte. */
325 else if (start != 0)
327 clear_bit_region (ptr, start, BITS_PER_UNIT - start);
328 clear_bit_region (ptr + 1, 0, len - (BITS_PER_UNIT - start));
330 /* Whole bytes need to be cleared. */
331 else if (start == 0 && len > BITS_PER_UNIT)
333 unsigned int nbytes = len / BITS_PER_UNIT;
334 /* We could recurse on each byte but do the loop here to avoid
335 recursing too deep. */
336 memset (ptr, '\0', nbytes);
337 /* Clear the remaining sub-byte region if there is one. */
338 if (len % BITS_PER_UNIT != 0)
339 clear_bit_region (ptr + nbytes, 0, len % BITS_PER_UNIT);
341 else
342 gcc_unreachable ();
345 /* Write BITLEN bits of EXPR to the byte array PTR at
346 bit position BITPOS. PTR should contain TOTAL_BYTES elements.
347 Return true if the operation succeeded. */
349 static bool
350 encode_tree_to_bitpos (tree expr, unsigned char *ptr, int bitlen, int bitpos,
351 unsigned int total_bytes)
353 unsigned int first_byte = bitpos / BITS_PER_UNIT;
354 tree tmp_int = expr;
355 bool sub_byte_op_p = ((bitlen % BITS_PER_UNIT)
356 || (bitpos % BITS_PER_UNIT)
357 || mode_for_size (bitlen, MODE_INT, 0) == BLKmode);
359 if (!sub_byte_op_p)
360 return (native_encode_expr (tmp_int, ptr + first_byte, total_bytes, 0)
361 != 0);
363 /* LITTLE-ENDIAN
364 We are writing a non byte-sized quantity or at a position that is not
365 at a byte boundary.
366 |--------|--------|--------| ptr + first_byte
368 xxx xxxxxxxx xxx< bp>
369 |______EXPR____|
371 First native_encode_expr EXPR into a temporary buffer and shift each
372 byte in the buffer by 'bp' (carrying the bits over as necessary).
373 |00000000|00xxxxxx|xxxxxxxx| << bp = |000xxxxx|xxxxxxxx|xxx00000|
374 <------bitlen---->< bp>
375 Then we clear the destination bits:
376 |---00000|00000000|000-----| ptr + first_byte
377 <-------bitlen--->< bp>
379 Finally we ORR the bytes of the shifted EXPR into the cleared region:
380 |---xxxxx||xxxxxxxx||xxx-----| ptr + first_byte.
382 BIG-ENDIAN
383 We are writing a non byte-sized quantity or at a position that is not
384 at a byte boundary.
385 ptr + first_byte |--------|--------|--------|
387 <bp >xxx xxxxxxxx xxx
388 |_____EXPR_____|
390 First native_encode_expr EXPR into a temporary buffer and shift each
391 byte in the buffer to the right by (carrying the bits over as necessary).
392 We shift by as much as needed to align the most significant bit of EXPR
393 with bitpos:
394 |00xxxxxx|xxxxxxxx| >> 3 = |00000xxx|xxxxxxxx|xxxxx000|
395 <---bitlen----> <bp ><-----bitlen----->
396 Then we clear the destination bits:
397 ptr + first_byte |-----000||00000000||00000---|
398 <bp ><-------bitlen----->
400 Finally we ORR the bytes of the shifted EXPR into the cleared region:
401 ptr + first_byte |---xxxxx||xxxxxxxx||xxx-----|.
402 The awkwardness comes from the fact that bitpos is counted from the
403 most significant bit of a byte. */
405 /* Allocate an extra byte so that we have space to shift into. */
406 unsigned int byte_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))) + 1;
407 unsigned char *tmpbuf = XALLOCAVEC (unsigned char, byte_size);
408 memset (tmpbuf, '\0', byte_size);
409 /* The store detection code should only have allowed constants that are
410 accepted by native_encode_expr. */
411 if (native_encode_expr (expr, tmpbuf, byte_size - 1, 0) == 0)
412 gcc_unreachable ();
414 /* The native_encode_expr machinery uses TYPE_MODE to determine how many
415 bytes to write. This means it can write more than
416 ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT bytes (for example
417 write 8 bytes for a bitlen of 40). Skip the bytes that are not within
418 bitlen and zero out the bits that are not relevant as well (that may
419 contain a sign bit due to sign-extension). */
420 unsigned int padding
421 = byte_size - ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT - 1;
422 /* On big-endian the padding is at the 'front' so just skip the initial
423 bytes. */
424 if (BYTES_BIG_ENDIAN)
425 tmpbuf += padding;
427 byte_size -= padding;
429 if (bitlen % BITS_PER_UNIT != 0)
431 if (BYTES_BIG_ENDIAN)
432 clear_bit_region_be (tmpbuf, BITS_PER_UNIT - 1,
433 BITS_PER_UNIT - (bitlen % BITS_PER_UNIT));
434 else
435 clear_bit_region (tmpbuf, bitlen,
436 byte_size * BITS_PER_UNIT - bitlen);
438 /* Left shifting relies on the last byte being clear if bitlen is
439 a multiple of BITS_PER_UNIT, which might not be clear if
440 there are padding bytes. */
441 else if (!BYTES_BIG_ENDIAN)
442 tmpbuf[byte_size - 1] = '\0';
444 /* Clear the bit region in PTR where the bits from TMPBUF will be
445 inserted into. */
446 if (BYTES_BIG_ENDIAN)
447 clear_bit_region_be (ptr + first_byte,
448 BITS_PER_UNIT - 1 - (bitpos % BITS_PER_UNIT), bitlen);
449 else
450 clear_bit_region (ptr + first_byte, bitpos % BITS_PER_UNIT, bitlen);
452 int shift_amnt;
453 int bitlen_mod = bitlen % BITS_PER_UNIT;
454 int bitpos_mod = bitpos % BITS_PER_UNIT;
456 bool skip_byte = false;
457 if (BYTES_BIG_ENDIAN)
459 /* BITPOS and BITLEN are exactly aligned and no shifting
460 is necessary. */
461 if (bitpos_mod + bitlen_mod == BITS_PER_UNIT
462 || (bitpos_mod == 0 && bitlen_mod == 0))
463 shift_amnt = 0;
464 /* |. . . . . . . .|
465 <bp > <blen >.
466 We always shift right for BYTES_BIG_ENDIAN so shift the beginning
467 of the value until it aligns with 'bp' in the next byte over. */
468 else if (bitpos_mod + bitlen_mod < BITS_PER_UNIT)
470 shift_amnt = bitlen_mod + bitpos_mod;
471 skip_byte = bitlen_mod != 0;
473 /* |. . . . . . . .|
474 <----bp--->
475 <---blen---->.
476 Shift the value right within the same byte so it aligns with 'bp'. */
477 else
478 shift_amnt = bitlen_mod + bitpos_mod - BITS_PER_UNIT;
480 else
481 shift_amnt = bitpos % BITS_PER_UNIT;
483 /* Create the shifted version of EXPR. */
484 if (!BYTES_BIG_ENDIAN)
486 shift_bytes_in_array (tmpbuf, byte_size, shift_amnt);
487 if (shift_amnt == 0)
488 byte_size--;
490 else
492 gcc_assert (BYTES_BIG_ENDIAN);
493 shift_bytes_in_array_right (tmpbuf, byte_size, shift_amnt);
494 /* If shifting right forced us to move into the next byte skip the now
495 empty byte. */
496 if (skip_byte)
498 tmpbuf++;
499 byte_size--;
503 /* Insert the bits from TMPBUF. */
504 for (unsigned int i = 0; i < byte_size; i++)
505 ptr[first_byte + i] |= tmpbuf[i];
507 return true;
510 /* Sorting function for store_immediate_info objects.
511 Sorts them by bitposition. */
513 static int
514 sort_by_bitpos (const void *x, const void *y)
516 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
517 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
519 if ((*tmp)->bitpos <= (*tmp2)->bitpos)
520 return -1;
521 else if ((*tmp)->bitpos > (*tmp2)->bitpos)
522 return 1;
524 gcc_unreachable ();
527 /* Sorting function for store_immediate_info objects.
528 Sorts them by the order field. */
530 static int
531 sort_by_order (const void *x, const void *y)
533 store_immediate_info *const *tmp = (store_immediate_info * const *) x;
534 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y;
536 if ((*tmp)->order < (*tmp2)->order)
537 return -1;
538 else if ((*tmp)->order > (*tmp2)->order)
539 return 1;
541 gcc_unreachable ();
544 /* Initialize a merged_store_group object from a store_immediate_info
545 object. */
547 merged_store_group::merged_store_group (store_immediate_info *info)
549 start = info->bitpos;
550 width = info->bitsize;
551 /* VAL has memory allocated for it in apply_stores once the group
552 width has been finalized. */
553 val = NULL;
554 align = get_object_alignment (gimple_assign_lhs (info->stmt));
555 stores.create (1);
556 stores.safe_push (info);
557 last_stmt = info->stmt;
558 last_order = info->order;
559 first_stmt = last_stmt;
560 first_order = last_order;
561 buf_size = 0;
564 merged_store_group::~merged_store_group ()
566 if (val)
567 XDELETEVEC (val);
570 /* Merge a store recorded by INFO into this merged store.
571 The store is not overlapping with the existing recorded
572 stores. */
574 void
575 merged_store_group::merge_into (store_immediate_info *info)
577 unsigned HOST_WIDE_INT wid = info->bitsize;
578 /* Make sure we're inserting in the position we think we're inserting. */
579 gcc_assert (info->bitpos == start + width);
581 width += wid;
582 gimple *stmt = info->stmt;
583 stores.safe_push (info);
584 if (info->order > last_order)
586 last_order = info->order;
587 last_stmt = stmt;
589 else if (info->order < first_order)
591 first_order = info->order;
592 first_stmt = stmt;
596 /* Merge a store described by INFO into this merged store.
597 INFO overlaps in some way with the current store (i.e. it's not contiguous
598 which is handled by merged_store_group::merge_into). */
600 void
601 merged_store_group::merge_overlapping (store_immediate_info *info)
603 gimple *stmt = info->stmt;
604 stores.safe_push (info);
606 /* If the store extends the size of the group, extend the width. */
607 if ((info->bitpos + info->bitsize) > (start + width))
608 width += info->bitpos + info->bitsize - (start + width);
610 if (info->order > last_order)
612 last_order = info->order;
613 last_stmt = stmt;
615 else if (info->order < first_order)
617 first_order = info->order;
618 first_stmt = stmt;
622 /* Go through all the recorded stores in this group in program order and
623 apply their values to the VAL byte array to create the final merged
624 value. Return true if the operation succeeded. */
626 bool
627 merged_store_group::apply_stores ()
629 /* The total width of the stores must add up to a whole number of bytes
630 and start at a byte boundary. We don't support emitting bitfield
631 references for now. Also, make sure we have more than one store
632 in the group, otherwise we cannot merge anything. */
633 if (width % BITS_PER_UNIT != 0
634 || start % BITS_PER_UNIT != 0
635 || stores.length () == 1)
636 return false;
638 stores.qsort (sort_by_order);
639 struct store_immediate_info *info;
640 unsigned int i;
641 /* Create a buffer of a size that is 2 times the number of bytes we're
642 storing. That way native_encode_expr can write power-of-2-sized
643 chunks without overrunning. */
644 buf_size = 2 * (ROUND_UP (width, BITS_PER_UNIT) / BITS_PER_UNIT);
645 val = XCNEWVEC (unsigned char, buf_size);
647 FOR_EACH_VEC_ELT (stores, i, info)
649 unsigned int pos_in_buffer = info->bitpos - start;
650 bool ret = encode_tree_to_bitpos (gimple_assign_rhs1 (info->stmt),
651 val, info->bitsize,
652 pos_in_buffer, buf_size);
653 if (dump_file && (dump_flags & TDF_DETAILS))
655 if (ret)
657 fprintf (dump_file, "After writing ");
658 print_generic_expr (dump_file,
659 gimple_assign_rhs1 (info->stmt), 0);
660 fprintf (dump_file, " of size " HOST_WIDE_INT_PRINT_DEC
661 " at position %d the merged region contains:\n",
662 info->bitsize, pos_in_buffer);
663 dump_char_array (dump_file, val, buf_size);
665 else
666 fprintf (dump_file, "Failed to merge stores\n");
668 if (!ret)
669 return false;
671 return true;
674 /* Structure describing the store chain. */
676 struct imm_store_chain_info
678 tree base_addr;
679 auto_vec<struct store_immediate_info *> m_store_info;
680 auto_vec<merged_store_group *> m_merged_store_groups;
682 imm_store_chain_info (tree b_a) : base_addr (b_a) {}
683 bool terminate_and_process_chain ();
684 bool coalesce_immediate_stores ();
685 bool output_merged_store (merged_store_group *);
686 bool output_merged_stores ();
689 const pass_data pass_data_tree_store_merging = {
690 GIMPLE_PASS, /* type */
691 "store-merging", /* name */
692 OPTGROUP_NONE, /* optinfo_flags */
693 TV_GIMPLE_STORE_MERGING, /* tv_id */
694 PROP_ssa, /* properties_required */
695 0, /* properties_provided */
696 0, /* properties_destroyed */
697 0, /* todo_flags_start */
698 TODO_update_ssa, /* todo_flags_finish */
701 class pass_store_merging : public gimple_opt_pass
703 public:
704 pass_store_merging (gcc::context *ctxt)
705 : gimple_opt_pass (pass_data_tree_store_merging, ctxt)
709 /* Pass not supported for PDP-endianness. */
710 virtual bool
711 gate (function *)
713 return flag_store_merging && (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
716 virtual unsigned int execute (function *);
718 private:
719 hash_map<tree_operand_hash, struct imm_store_chain_info *> m_stores;
721 bool terminate_and_process_all_chains ();
722 bool terminate_all_aliasing_chains (imm_store_chain_info **,
723 bool, gimple *);
724 bool terminate_and_release_chain (imm_store_chain_info *);
725 }; // class pass_store_merging
727 /* Terminate and process all recorded chains. Return true if any changes
728 were made. */
730 bool
731 pass_store_merging::terminate_and_process_all_chains ()
733 hash_map<tree_operand_hash, struct imm_store_chain_info *>::iterator iter
734 = m_stores.begin ();
735 bool ret = false;
736 for (; iter != m_stores.end (); ++iter)
737 ret |= terminate_and_release_chain ((*iter).second);
739 return ret;
742 /* Terminate all chains that are affected by the assignment to DEST, appearing
743 in statement STMT and ultimately points to the object BASE. Return true if
744 at least one aliasing chain was terminated. BASE and DEST are allowed to
745 be NULL_TREE. In that case the aliasing checks are performed on the whole
746 statement rather than a particular operand in it. VAR_OFFSET_P signifies
747 whether STMT represents a store to BASE offset by a variable amount.
748 If that is the case we have to terminate any chain anchored at BASE. */
750 bool
751 pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info
752 **chain_info,
753 bool var_offset_p,
754 gimple *stmt)
756 bool ret = false;
758 /* If the statement doesn't touch memory it can't alias. */
759 if (!gimple_vuse (stmt))
760 return false;
762 /* Check if the assignment destination (BASE) is part of a store chain.
763 This is to catch non-constant stores to destinations that may be part
764 of a chain. */
765 if (chain_info)
767 /* We have a chain at BASE and we're writing to [BASE + <variable>].
768 This can interfere with any of the stores so terminate
769 the chain. */
770 if (var_offset_p)
772 terminate_and_release_chain (*chain_info);
773 ret = true;
775 /* Otherwise go through every store in the chain to see if it
776 aliases with any of them. */
777 else
779 struct store_immediate_info *info;
780 unsigned int i;
781 FOR_EACH_VEC_ELT ((*chain_info)->m_store_info, i, info)
783 if (ref_maybe_used_by_stmt_p (stmt,
784 gimple_assign_lhs (info->stmt))
785 || stmt_may_clobber_ref_p (stmt,
786 gimple_assign_lhs (info->stmt)))
788 if (dump_file && (dump_flags & TDF_DETAILS))
790 fprintf (dump_file,
791 "stmt causes chain termination:\n");
792 print_gimple_stmt (dump_file, stmt, 0, 0);
794 terminate_and_release_chain (*chain_info);
795 ret = true;
796 break;
802 hash_map<tree_operand_hash, struct imm_store_chain_info *>::iterator iter
803 = m_stores.begin ();
805 /* Check for aliasing with all other store chains. */
806 for (; iter != m_stores.end (); ++iter)
808 /* We already checked all the stores in chain_info and terminated the
809 chain if necessary. Skip it here. */
810 if (chain_info && (*chain_info) == (*iter).second)
811 continue;
813 /* We can't use the base object here as that does not reliably exist.
814 Build a ao_ref from the base object address (if we know the
815 minimum and maximum offset and the maximum size we could improve
816 things here). */
817 ao_ref chain_ref;
818 ao_ref_init_from_ptr_and_size (&chain_ref, (*iter).first, NULL_TREE);
819 if (ref_maybe_used_by_stmt_p (stmt, &chain_ref)
820 || stmt_may_clobber_ref_p_1 (stmt, &chain_ref))
822 terminate_and_release_chain ((*iter).second);
823 ret = true;
827 return ret;
830 /* Helper function. Terminate the recorded chain storing to base object
831 BASE. Return true if the merging and output was successful. The m_stores
832 entry is removed after the processing in any case. */
834 bool
835 pass_store_merging::terminate_and_release_chain (imm_store_chain_info *chain_info)
837 bool ret = chain_info->terminate_and_process_chain ();
838 m_stores.remove (chain_info->base_addr);
839 delete chain_info;
840 return ret;
843 /* Go through the candidate stores recorded in m_store_info and merge them
844 into merged_store_group objects recorded into m_merged_store_groups
845 representing the widened stores. Return true if coalescing was successful
846 and the number of widened stores is fewer than the original number
847 of stores. */
849 bool
850 imm_store_chain_info::coalesce_immediate_stores ()
852 /* Anything less can't be processed. */
853 if (m_store_info.length () < 2)
854 return false;
856 if (dump_file && (dump_flags & TDF_DETAILS))
857 fprintf (dump_file, "Attempting to coalesce %u stores in chain.\n",
858 m_store_info.length ());
860 store_immediate_info *info;
861 unsigned int i;
863 /* Order the stores by the bitposition they write to. */
864 m_store_info.qsort (sort_by_bitpos);
866 info = m_store_info[0];
867 merged_store_group *merged_store = new merged_store_group (info);
869 FOR_EACH_VEC_ELT (m_store_info, i, info)
871 if (dump_file && (dump_flags & TDF_DETAILS))
873 fprintf (dump_file, "Store %u:\nbitsize:" HOST_WIDE_INT_PRINT_DEC
874 " bitpos:" HOST_WIDE_INT_PRINT_DEC " val:\n",
875 i, info->bitsize, info->bitpos);
876 print_generic_expr (dump_file, gimple_assign_rhs1 (info->stmt), 0);
877 fprintf (dump_file, "\n------------\n");
880 if (i == 0)
881 continue;
883 /* |---store 1---|
884 |---store 2---|
885 Overlapping stores. */
886 unsigned HOST_WIDE_INT start = info->bitpos;
887 if (IN_RANGE (start, merged_store->start,
888 merged_store->start + merged_store->width - 1))
890 merged_store->merge_overlapping (info);
891 continue;
894 /* |---store 1---| <gap> |---store 2---|.
895 Gap between stores. Start a new group. */
896 if (start != merged_store->start + merged_store->width)
898 /* Try to apply all the stores recorded for the group to determine
899 the bitpattern they write and discard it if that fails.
900 This will also reject single-store groups. */
901 if (!merged_store->apply_stores ())
902 delete merged_store;
903 else
904 m_merged_store_groups.safe_push (merged_store);
906 merged_store = new merged_store_group (info);
908 continue;
911 /* |---store 1---||---store 2---|
912 This store is consecutive to the previous one.
913 Merge it into the current store group. */
914 merged_store->merge_into (info);
917 /* Record or discard the last store group. */
918 if (!merged_store->apply_stores ())
919 delete merged_store;
920 else
921 m_merged_store_groups.safe_push (merged_store);
923 gcc_assert (m_merged_store_groups.length () <= m_store_info.length ());
924 bool success
925 = !m_merged_store_groups.is_empty ()
926 && m_merged_store_groups.length () < m_store_info.length ();
928 if (success && dump_file)
929 fprintf (dump_file, "Coalescing successful!\n"
930 "Merged into %u stores\n",
931 m_merged_store_groups.length ());
933 return success;
936 /* Return the type to use for the merged stores described by STMTS.
937 This is needed to get the alias sets right. */
939 static tree
940 get_alias_type_for_stmts (auto_vec<gimple *> &stmts)
942 gimple *stmt;
943 unsigned int i;
944 tree lhs = gimple_assign_lhs (stmts[0]);
945 tree type = reference_alias_ptr_type (lhs);
947 FOR_EACH_VEC_ELT (stmts, i, stmt)
949 if (i == 0)
950 continue;
952 lhs = gimple_assign_lhs (stmt);
953 tree type1 = reference_alias_ptr_type (lhs);
954 if (!alias_ptr_types_compatible_p (type, type1))
955 return ptr_type_node;
957 return type;
960 /* Return the location_t information we can find among the statements
961 in STMTS. */
963 static location_t
964 get_location_for_stmts (auto_vec<gimple *> &stmts)
966 gimple *stmt;
967 unsigned int i;
969 FOR_EACH_VEC_ELT (stmts, i, stmt)
970 if (gimple_has_location (stmt))
971 return gimple_location (stmt);
973 return UNKNOWN_LOCATION;
976 /* Used to decribe a store resulting from splitting a wide store in smaller
977 regularly-sized stores in split_group. */
979 struct split_store
981 unsigned HOST_WIDE_INT bytepos;
982 unsigned HOST_WIDE_INT size;
983 unsigned HOST_WIDE_INT align;
984 auto_vec<gimple *> orig_stmts;
985 split_store (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
986 unsigned HOST_WIDE_INT);
989 /* Simple constructor. */
991 split_store::split_store (unsigned HOST_WIDE_INT bp,
992 unsigned HOST_WIDE_INT sz,
993 unsigned HOST_WIDE_INT al)
994 : bytepos (bp), size (sz), align (al)
996 orig_stmts.create (0);
999 /* Record all statements corresponding to stores in GROUP that write to
1000 the region starting at BITPOS and is of size BITSIZE. Record such
1001 statements in STMTS. The stores in GROUP must be sorted by
1002 bitposition. */
1004 static void
1005 find_constituent_stmts (struct merged_store_group *group,
1006 auto_vec<gimple *> &stmts,
1007 unsigned HOST_WIDE_INT bitpos,
1008 unsigned HOST_WIDE_INT bitsize)
1010 struct store_immediate_info *info;
1011 unsigned int i;
1012 unsigned HOST_WIDE_INT end = bitpos + bitsize;
1013 FOR_EACH_VEC_ELT (group->stores, i, info)
1015 unsigned HOST_WIDE_INT stmt_start = info->bitpos;
1016 unsigned HOST_WIDE_INT stmt_end = stmt_start + info->bitsize;
1017 if (stmt_end < bitpos)
1018 continue;
1019 /* The stores in GROUP are ordered by bitposition so if we're past
1020 the region for this group return early. */
1021 if (stmt_start > end)
1022 return;
1024 if (IN_RANGE (stmt_start, bitpos, bitpos + bitsize)
1025 || IN_RANGE (stmt_end, bitpos, end)
1026 /* The statement writes a region that completely encloses the region
1027 that this group writes. Unlikely to occur but let's
1028 handle it. */
1029 || IN_RANGE (bitpos, stmt_start, stmt_end))
1030 stmts.safe_push (info->stmt);
1034 /* Split a merged store described by GROUP by populating the SPLIT_STORES
1035 vector with split_store structs describing the byte offset (from the base),
1036 the bit size and alignment of each store as well as the original statements
1037 involved in each such split group.
1038 This is to separate the splitting strategy from the statement
1039 building/emission/linking done in output_merged_store.
1040 At the moment just start with the widest possible size and keep emitting
1041 the widest we can until we have emitted all the bytes, halving the size
1042 when appropriate. */
1044 static bool
1045 split_group (merged_store_group *group,
1046 auto_vec<struct split_store *> &split_stores)
1048 unsigned HOST_WIDE_INT pos = group->start;
1049 unsigned HOST_WIDE_INT size = group->width;
1050 unsigned HOST_WIDE_INT bytepos = pos / BITS_PER_UNIT;
1051 unsigned HOST_WIDE_INT align = group->align;
1053 /* We don't handle partial bitfields for now. We shouldn't have
1054 reached this far. */
1055 gcc_assert ((size % BITS_PER_UNIT == 0) && (pos % BITS_PER_UNIT == 0));
1057 bool allow_unaligned
1058 = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED);
1060 unsigned int try_size = MAX_STORE_BITSIZE;
1061 while (try_size > size
1062 || (!allow_unaligned
1063 && try_size > align))
1065 try_size /= 2;
1066 if (try_size < BITS_PER_UNIT)
1067 return false;
1070 unsigned HOST_WIDE_INT try_pos = bytepos;
1071 group->stores.qsort (sort_by_bitpos);
1073 while (size > 0)
1075 struct split_store *store = new split_store (try_pos, try_size, align);
1076 unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT;
1077 find_constituent_stmts (group, store->orig_stmts, try_bitpos, try_size);
1078 split_stores.safe_push (store);
1080 try_pos += try_size / BITS_PER_UNIT;
1082 size -= try_size;
1083 align = try_size;
1084 while (size < try_size)
1085 try_size /= 2;
1087 return true;
1090 /* Given a merged store group GROUP output the widened version of it.
1091 The store chain is against the base object BASE.
1092 Try store sizes of at most MAX_STORE_BITSIZE bits wide and don't output
1093 unaligned stores for STRICT_ALIGNMENT targets or if it's too expensive.
1094 Make sure that the number of statements output is less than the number of
1095 original statements. If a better sequence is possible emit it and
1096 return true. */
1098 bool
1099 imm_store_chain_info::output_merged_store (merged_store_group *group)
1101 unsigned HOST_WIDE_INT start_byte_pos = group->start / BITS_PER_UNIT;
1103 unsigned int orig_num_stmts = group->stores.length ();
1104 if (orig_num_stmts < 2)
1105 return false;
1107 auto_vec<struct split_store *> split_stores;
1108 split_stores.create (0);
1109 if (!split_group (group, split_stores))
1110 return false;
1112 gimple_stmt_iterator last_gsi = gsi_for_stmt (group->last_stmt);
1113 gimple_seq seq = NULL;
1114 unsigned int num_stmts = 0;
1115 tree last_vdef, new_vuse;
1116 last_vdef = gimple_vdef (group->last_stmt);
1117 new_vuse = gimple_vuse (group->last_stmt);
1119 gimple *stmt = NULL;
1120 /* The new SSA names created. Keep track of them so that we can free them
1121 if we decide to not use the new sequence. */
1122 auto_vec<tree> new_ssa_names;
1123 split_store *split_store;
1124 unsigned int i;
1125 bool fail = false;
1127 tree addr = force_gimple_operand_1 (unshare_expr (base_addr), &seq,
1128 is_gimple_mem_ref_addr, NULL_TREE);
1129 FOR_EACH_VEC_ELT (split_stores, i, split_store)
1131 unsigned HOST_WIDE_INT try_size = split_store->size;
1132 unsigned HOST_WIDE_INT try_pos = split_store->bytepos;
1133 unsigned HOST_WIDE_INT align = split_store->align;
1134 tree offset_type = get_alias_type_for_stmts (split_store->orig_stmts);
1135 location_t loc = get_location_for_stmts (split_store->orig_stmts);
1137 tree int_type = build_nonstandard_integer_type (try_size, UNSIGNED);
1138 int_type = build_aligned_type (int_type, align);
1139 tree dest = fold_build2 (MEM_REF, int_type, addr,
1140 build_int_cst (offset_type, try_pos));
1142 tree src = native_interpret_expr (int_type,
1143 group->val + try_pos - start_byte_pos,
1144 group->buf_size);
1146 stmt = gimple_build_assign (dest, src);
1147 gimple_set_location (stmt, loc);
1148 gimple_set_vuse (stmt, new_vuse);
1149 gimple_seq_add_stmt_without_update (&seq, stmt);
1151 /* We didn't manage to reduce the number of statements. Bail out. */
1152 if (++num_stmts == orig_num_stmts)
1154 if (dump_file && (dump_flags & TDF_DETAILS))
1156 fprintf (dump_file, "Exceeded original number of stmts (%u)."
1157 " Not profitable to emit new sequence.\n",
1158 orig_num_stmts);
1160 unsigned int ssa_count;
1161 tree ssa_name;
1162 /* Don't forget to cleanup the temporary SSA names. */
1163 FOR_EACH_VEC_ELT (new_ssa_names, ssa_count, ssa_name)
1164 release_ssa_name (ssa_name);
1166 fail = true;
1167 break;
1170 tree new_vdef;
1171 if (i < split_stores.length () - 1)
1173 new_vdef = make_ssa_name (gimple_vop (cfun), stmt);
1174 new_ssa_names.safe_push (new_vdef);
1176 else
1177 new_vdef = last_vdef;
1179 gimple_set_vdef (stmt, new_vdef);
1180 SSA_NAME_DEF_STMT (new_vdef) = stmt;
1181 new_vuse = new_vdef;
1184 FOR_EACH_VEC_ELT (split_stores, i, split_store)
1185 delete split_store;
1187 if (fail)
1188 return false;
1190 gcc_assert (seq);
1191 if (dump_file)
1193 fprintf (dump_file,
1194 "New sequence of %u stmts to replace old one of %u stmts\n",
1195 num_stmts, orig_num_stmts);
1196 if (dump_flags & TDF_DETAILS)
1197 print_gimple_seq (dump_file, seq, 0, TDF_VOPS | TDF_MEMSYMS);
1199 gsi_insert_seq_after (&last_gsi, seq, GSI_SAME_STMT);
1201 return true;
1204 /* Process the merged_store_group objects created in the coalescing phase.
1205 The stores are all against the base object BASE.
1206 Try to output the widened stores and delete the original statements if
1207 successful. Return true iff any changes were made. */
1209 bool
1210 imm_store_chain_info::output_merged_stores ()
1212 unsigned int i;
1213 merged_store_group *merged_store;
1214 bool ret = false;
1215 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_store)
1217 if (output_merged_store (merged_store))
1219 unsigned int j;
1220 store_immediate_info *store;
1221 FOR_EACH_VEC_ELT (merged_store->stores, j, store)
1223 gimple *stmt = store->stmt;
1224 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1225 gsi_remove (&gsi, true);
1226 if (stmt != merged_store->last_stmt)
1228 unlink_stmt_vdef (stmt);
1229 release_defs (stmt);
1232 ret = true;
1235 if (ret && dump_file)
1236 fprintf (dump_file, "Merging successful!\n");
1238 return ret;
1241 /* Coalesce the store_immediate_info objects recorded against the base object
1242 BASE in the first phase and output them.
1243 Delete the allocated structures.
1244 Return true if any changes were made. */
1246 bool
1247 imm_store_chain_info::terminate_and_process_chain ()
1249 /* Process store chain. */
1250 bool ret = false;
1251 if (m_store_info.length () > 1)
1253 ret = coalesce_immediate_stores ();
1254 if (ret)
1255 ret = output_merged_stores ();
1258 /* Delete all the entries we allocated ourselves. */
1259 store_immediate_info *info;
1260 unsigned int i;
1261 FOR_EACH_VEC_ELT (m_store_info, i, info)
1262 delete info;
1264 merged_store_group *merged_info;
1265 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_info)
1266 delete merged_info;
1268 return ret;
1271 /* Return true iff LHS is a destination potentially interesting for
1272 store merging. In practice these are the codes that get_inner_reference
1273 can process. */
1275 static bool
1276 lhs_valid_for_store_merging_p (tree lhs)
1278 tree_code code = TREE_CODE (lhs);
1280 if (code == ARRAY_REF || code == ARRAY_RANGE_REF || code == MEM_REF
1281 || code == COMPONENT_REF || code == BIT_FIELD_REF)
1282 return true;
1284 return false;
1287 /* Return true if the tree RHS is a constant we want to consider
1288 during store merging. In practice accept all codes that
1289 native_encode_expr accepts. */
1291 static bool
1292 rhs_valid_for_store_merging_p (tree rhs)
1294 tree type = TREE_TYPE (rhs);
1295 if (TREE_CODE_CLASS (TREE_CODE (rhs)) != tcc_constant
1296 || !can_native_encode_type_p (type))
1297 return false;
1299 return true;
1302 /* Entry point for the pass. Go over each basic block recording chains of
1303 immediate stores. Upon encountering a terminating statement (as defined
1304 by stmt_terminates_chain_p) process the recorded stores and emit the widened
1305 variants. */
1307 unsigned int
1308 pass_store_merging::execute (function *fun)
1310 basic_block bb;
1311 hash_set<gimple *> orig_stmts;
1313 FOR_EACH_BB_FN (bb, fun)
1315 gimple_stmt_iterator gsi;
1316 unsigned HOST_WIDE_INT num_statements = 0;
1317 /* Record the original statements so that we can keep track of
1318 statements emitted in this pass and not re-process new
1319 statements. */
1320 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1322 if (is_gimple_debug (gsi_stmt (gsi)))
1323 continue;
1325 if (++num_statements > 2)
1326 break;
1329 if (num_statements < 2)
1330 continue;
1332 if (dump_file && (dump_flags & TDF_DETAILS))
1333 fprintf (dump_file, "Processing basic block <%d>:\n", bb->index);
1335 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1337 gimple *stmt = gsi_stmt (gsi);
1339 if (gimple_has_volatile_ops (stmt))
1341 /* Terminate all chains. */
1342 if (dump_file && (dump_flags & TDF_DETAILS))
1343 fprintf (dump_file, "Volatile access terminates "
1344 "all chains\n");
1345 terminate_and_process_all_chains ();
1346 continue;
1349 if (is_gimple_debug (stmt))
1350 continue;
1352 if (gimple_assign_single_p (stmt) && gimple_vdef (stmt)
1353 && !stmt_can_throw_internal (stmt)
1354 && lhs_valid_for_store_merging_p (gimple_assign_lhs (stmt)))
1356 tree lhs = gimple_assign_lhs (stmt);
1357 tree rhs = gimple_assign_rhs1 (stmt);
1359 HOST_WIDE_INT bitsize, bitpos;
1360 machine_mode mode;
1361 int unsignedp = 0, reversep = 0, volatilep = 0;
1362 tree offset, base_addr;
1363 base_addr
1364 = get_inner_reference (lhs, &bitsize, &bitpos, &offset, &mode,
1365 &unsignedp, &reversep, &volatilep);
1366 /* As a future enhancement we could handle stores with the same
1367 base and offset. */
1368 bool invalid = reversep
1369 || ((bitsize > MAX_BITSIZE_MODE_ANY_INT)
1370 && (TREE_CODE (rhs) != INTEGER_CST))
1371 || !rhs_valid_for_store_merging_p (rhs);
1373 /* We do not want to rewrite TARGET_MEM_REFs. */
1374 if (TREE_CODE (base_addr) == TARGET_MEM_REF)
1375 invalid = true;
1376 /* In some cases get_inner_reference may return a
1377 MEM_REF [ptr + byteoffset]. For the purposes of this pass
1378 canonicalize the base_addr to MEM_REF [ptr] and take
1379 byteoffset into account in the bitpos. This occurs in
1380 PR 23684 and this way we can catch more chains. */
1381 else if (TREE_CODE (base_addr) == MEM_REF)
1383 offset_int bit_off, byte_off = mem_ref_offset (base_addr);
1384 bit_off = byte_off << LOG2_BITS_PER_UNIT;
1385 bit_off += bitpos;
1386 if (!wi::neg_p (bit_off) && wi::fits_shwi_p (bit_off))
1387 bitpos = bit_off.to_shwi ();
1388 else
1389 invalid = true;
1390 base_addr = TREE_OPERAND (base_addr, 0);
1392 /* get_inner_reference returns the base object, get at its
1393 address now. */
1394 else
1396 if (bitpos < 0)
1397 invalid = true;
1398 base_addr = build_fold_addr_expr (base_addr);
1401 if (! invalid
1402 && offset != NULL_TREE)
1404 /* If the access is variable offset then a base
1405 decl has to be address-taken to be able to
1406 emit pointer-based stores to it.
1407 ??? We might be able to get away with
1408 re-using the original base up to the first
1409 variable part and then wrapping that inside
1410 a BIT_FIELD_REF. */
1411 tree base = get_base_address (base_addr);
1412 if (! base
1413 || (DECL_P (base)
1414 && ! TREE_ADDRESSABLE (base)))
1415 invalid = true;
1416 else
1417 base_addr = build2 (POINTER_PLUS_EXPR,
1418 TREE_TYPE (base_addr),
1419 base_addr, offset);
1422 struct imm_store_chain_info **chain_info
1423 = m_stores.get (base_addr);
1425 if (!invalid)
1427 store_immediate_info *info;
1428 if (chain_info)
1430 info = new store_immediate_info (
1431 bitsize, bitpos, stmt,
1432 (*chain_info)->m_store_info.length ());
1433 if (dump_file && (dump_flags & TDF_DETAILS))
1435 fprintf (dump_file,
1436 "Recording immediate store from stmt:\n");
1437 print_gimple_stmt (dump_file, stmt, 0, 0);
1439 (*chain_info)->m_store_info.safe_push (info);
1440 /* If we reach the limit of stores to merge in a chain
1441 terminate and process the chain now. */
1442 if ((*chain_info)->m_store_info.length ()
1443 == (unsigned int)
1444 PARAM_VALUE (PARAM_MAX_STORES_TO_MERGE))
1446 if (dump_file && (dump_flags & TDF_DETAILS))
1447 fprintf (dump_file,
1448 "Reached maximum number of statements"
1449 " to merge:\n");
1450 terminate_and_release_chain (*chain_info);
1452 continue;
1455 /* Store aliases any existing chain? */
1456 terminate_all_aliasing_chains (chain_info, false, stmt);
1457 /* Start a new chain. */
1458 struct imm_store_chain_info *new_chain
1459 = new imm_store_chain_info (base_addr);
1460 info = new store_immediate_info (bitsize, bitpos,
1461 stmt, 0);
1462 new_chain->m_store_info.safe_push (info);
1463 m_stores.put (base_addr, new_chain);
1464 if (dump_file && (dump_flags & TDF_DETAILS))
1466 fprintf (dump_file,
1467 "Starting new chain with statement:\n");
1468 print_gimple_stmt (dump_file, stmt, 0, 0);
1469 fprintf (dump_file, "The base object is:\n");
1470 print_generic_expr (dump_file, base_addr, 0);
1471 fprintf (dump_file, "\n");
1474 else
1475 terminate_all_aliasing_chains (chain_info,
1476 offset != NULL_TREE, stmt);
1478 continue;
1481 terminate_all_aliasing_chains (NULL, false, stmt);
1483 terminate_and_process_all_chains ();
1485 return 0;
1488 } // anon namespace
1490 /* Construct and return a store merging pass object. */
1492 gimple_opt_pass *
1493 make_pass_store_merging (gcc::context *ctxt)
1495 return new pass_store_merging (ctxt);
1498 #if CHECKING_P
1500 namespace selftest {
1502 /* Selftests for store merging helpers. */
1504 /* Assert that all elements of the byte arrays X and Y, both of length N
1505 are equal. */
1507 static void
1508 verify_array_eq (unsigned char *x, unsigned char *y, unsigned int n)
1510 for (unsigned int i = 0; i < n; i++)
1512 if (x[i] != y[i])
1514 fprintf (stderr, "Arrays do not match. X:\n");
1515 dump_char_array (stderr, x, n);
1516 fprintf (stderr, "Y:\n");
1517 dump_char_array (stderr, y, n);
1519 ASSERT_EQ (x[i], y[i]);
1523 /* Test shift_bytes_in_array and that it carries bits across between
1524 bytes correctly. */
1526 static void
1527 verify_shift_bytes_in_array (void)
1529 /* byte 1 | byte 0
1530 00011111 | 11100000. */
1531 unsigned char orig[2] = { 0xe0, 0x1f };
1532 unsigned char in[2];
1533 memcpy (in, orig, sizeof orig);
1535 unsigned char expected[2] = { 0x80, 0x7f };
1536 shift_bytes_in_array (in, sizeof (in), 2);
1537 verify_array_eq (in, expected, sizeof (in));
1539 memcpy (in, orig, sizeof orig);
1540 memcpy (expected, orig, sizeof orig);
1541 /* Check that shifting by zero doesn't change anything. */
1542 shift_bytes_in_array (in, sizeof (in), 0);
1543 verify_array_eq (in, expected, sizeof (in));
1547 /* Test shift_bytes_in_array_right and that it carries bits across between
1548 bytes correctly. */
1550 static void
1551 verify_shift_bytes_in_array_right (void)
1553 /* byte 1 | byte 0
1554 00011111 | 11100000. */
1555 unsigned char orig[2] = { 0x1f, 0xe0};
1556 unsigned char in[2];
1557 memcpy (in, orig, sizeof orig);
1558 unsigned char expected[2] = { 0x07, 0xf8};
1559 shift_bytes_in_array_right (in, sizeof (in), 2);
1560 verify_array_eq (in, expected, sizeof (in));
1562 memcpy (in, orig, sizeof orig);
1563 memcpy (expected, orig, sizeof orig);
1564 /* Check that shifting by zero doesn't change anything. */
1565 shift_bytes_in_array_right (in, sizeof (in), 0);
1566 verify_array_eq (in, expected, sizeof (in));
1569 /* Test clear_bit_region that it clears exactly the bits asked and
1570 nothing more. */
1572 static void
1573 verify_clear_bit_region (void)
1575 /* Start with all bits set and test clearing various patterns in them. */
1576 unsigned char orig[3] = { 0xff, 0xff, 0xff};
1577 unsigned char in[3];
1578 unsigned char expected[3];
1579 memcpy (in, orig, sizeof in);
1581 /* Check zeroing out all the bits. */
1582 clear_bit_region (in, 0, 3 * BITS_PER_UNIT);
1583 expected[0] = expected[1] = expected[2] = 0;
1584 verify_array_eq (in, expected, sizeof in);
1586 memcpy (in, orig, sizeof in);
1587 /* Leave the first and last bits intact. */
1588 clear_bit_region (in, 1, 3 * BITS_PER_UNIT - 2);
1589 expected[0] = 0x1;
1590 expected[1] = 0;
1591 expected[2] = 0x80;
1592 verify_array_eq (in, expected, sizeof in);
1595 /* Test verify_clear_bit_region_be that it clears exactly the bits asked and
1596 nothing more. */
1598 static void
1599 verify_clear_bit_region_be (void)
1601 /* Start with all bits set and test clearing various patterns in them. */
1602 unsigned char orig[3] = { 0xff, 0xff, 0xff};
1603 unsigned char in[3];
1604 unsigned char expected[3];
1605 memcpy (in, orig, sizeof in);
1607 /* Check zeroing out all the bits. */
1608 clear_bit_region_be (in, BITS_PER_UNIT - 1, 3 * BITS_PER_UNIT);
1609 expected[0] = expected[1] = expected[2] = 0;
1610 verify_array_eq (in, expected, sizeof in);
1612 memcpy (in, orig, sizeof in);
1613 /* Leave the first and last bits intact. */
1614 clear_bit_region_be (in, BITS_PER_UNIT - 2, 3 * BITS_PER_UNIT - 2);
1615 expected[0] = 0x80;
1616 expected[1] = 0;
1617 expected[2] = 0x1;
1618 verify_array_eq (in, expected, sizeof in);
1622 /* Run all of the selftests within this file. */
1624 void
1625 store_merging_c_tests (void)
1627 verify_shift_bytes_in_array ();
1628 verify_shift_bytes_in_array_right ();
1629 verify_clear_bit_region ();
1630 verify_clear_bit_region_be ();
1633 } // namespace selftest
1634 #endif /* CHECKING_P. */