Merged r158704 through r158906 into branch.
[official-gcc.git] / gcc / fortran / trans-types.c
blob9d5378492cd8f7ddce5b359eca8210c8c1103336
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010
4 Free Software Foundation, Inc.
5 Contributed by Paul Brook <paul@nowt.org>
6 and Steven Bosscher <s.bosscher@student.tudelft.nl>
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* trans-types.c -- gfortran backend types */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tree.h"
30 #include "langhooks.h"
31 #include "tm.h"
32 #include "target.h"
33 #include "ggc.h"
34 #include "toplev.h"
35 #include "gfortran.h"
36 #include "trans.h"
37 #include "trans-types.h"
38 #include "trans-const.h"
39 #include "real.h"
40 #include "flags.h"
41 #include "dwarf2out.h"
44 #if (GFC_MAX_DIMENSIONS < 10)
45 #define GFC_RANK_DIGITS 1
46 #define GFC_RANK_PRINTF_FORMAT "%01d"
47 #elif (GFC_MAX_DIMENSIONS < 100)
48 #define GFC_RANK_DIGITS 2
49 #define GFC_RANK_PRINTF_FORMAT "%02d"
50 #else
51 #error If you really need >99 dimensions, continue the sequence above...
52 #endif
54 /* array of structs so we don't have to worry about xmalloc or free */
55 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
57 tree gfc_array_index_type;
58 tree gfc_array_range_type;
59 tree gfc_character1_type_node;
60 tree pvoid_type_node;
61 tree prvoid_type_node;
62 tree ppvoid_type_node;
63 tree pchar_type_node;
64 tree pfunc_type_node;
66 tree gfc_charlen_type_node;
68 static GTY(()) tree gfc_desc_dim_type;
69 static GTY(()) tree gfc_max_array_element_size;
70 static GTY(()) tree gfc_array_descriptor_base[2 * GFC_MAX_DIMENSIONS];
72 /* Arrays for all integral and real kinds. We'll fill this in at runtime
73 after the target has a chance to process command-line options. */
75 #define MAX_INT_KINDS 5
76 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
77 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
78 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
79 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
81 #define MAX_REAL_KINDS 5
82 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
83 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
84 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
86 #define MAX_CHARACTER_KINDS 2
87 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
88 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
89 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
92 /* The integer kind to use for array indices. This will be set to the
93 proper value based on target information from the backend. */
95 int gfc_index_integer_kind;
97 /* The default kinds of the various types. */
99 int gfc_default_integer_kind;
100 int gfc_max_integer_kind;
101 int gfc_default_real_kind;
102 int gfc_default_double_kind;
103 int gfc_default_character_kind;
104 int gfc_default_logical_kind;
105 int gfc_default_complex_kind;
106 int gfc_c_int_kind;
108 /* The kind size used for record offsets. If the target system supports
109 kind=8, this will be set to 8, otherwise it is set to 4. */
110 int gfc_intio_kind;
112 /* The integer kind used to store character lengths. */
113 int gfc_charlen_int_kind;
115 /* The size of the numeric storage unit and character storage unit. */
116 int gfc_numeric_storage_size;
117 int gfc_character_storage_size;
120 gfc_try
121 gfc_check_any_c_kind (gfc_typespec *ts)
123 int i;
125 for (i = 0; i < ISOCBINDING_NUMBER; i++)
127 /* Check for any C interoperable kind for the given type/kind in ts.
128 This can be used after verify_c_interop to make sure that the
129 Fortran kind being used exists in at least some form for C. */
130 if (c_interop_kinds_table[i].f90_type == ts->type &&
131 c_interop_kinds_table[i].value == ts->kind)
132 return SUCCESS;
135 return FAILURE;
139 static int
140 get_real_kind_from_node (tree type)
142 int i;
144 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
145 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
146 return gfc_real_kinds[i].kind;
148 return -4;
151 static int
152 get_int_kind_from_node (tree type)
154 int i;
156 if (!type)
157 return -2;
159 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
160 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
161 return gfc_integer_kinds[i].kind;
163 return -1;
166 /* Return a typenode for the "standard" C type with a given name. */
167 static tree
168 get_typenode_from_name (const char *name)
170 if (name == NULL || *name == '\0')
171 return NULL_TREE;
173 if (strcmp (name, "char") == 0)
174 return char_type_node;
175 if (strcmp (name, "unsigned char") == 0)
176 return unsigned_char_type_node;
177 if (strcmp (name, "signed char") == 0)
178 return signed_char_type_node;
180 if (strcmp (name, "short int") == 0)
181 return short_integer_type_node;
182 if (strcmp (name, "short unsigned int") == 0)
183 return short_unsigned_type_node;
185 if (strcmp (name, "int") == 0)
186 return integer_type_node;
187 if (strcmp (name, "unsigned int") == 0)
188 return unsigned_type_node;
190 if (strcmp (name, "long int") == 0)
191 return long_integer_type_node;
192 if (strcmp (name, "long unsigned int") == 0)
193 return long_unsigned_type_node;
195 if (strcmp (name, "long long int") == 0)
196 return long_long_integer_type_node;
197 if (strcmp (name, "long long unsigned int") == 0)
198 return long_long_unsigned_type_node;
200 gcc_unreachable ();
203 static int
204 get_int_kind_from_name (const char *name)
206 return get_int_kind_from_node (get_typenode_from_name (name));
210 /* Get the kind number corresponding to an integer of given size,
211 following the required return values for ISO_FORTRAN_ENV INT* constants:
212 -2 is returned if we support a kind of larger size, -1 otherwise. */
214 gfc_get_int_kind_from_width_isofortranenv (int size)
216 int i;
218 /* Look for a kind with matching storage size. */
219 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
220 if (gfc_integer_kinds[i].bit_size == size)
221 return gfc_integer_kinds[i].kind;
223 /* Look for a kind with larger storage size. */
224 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
225 if (gfc_integer_kinds[i].bit_size > size)
226 return -2;
228 return -1;
231 /* Get the kind number corresponding to a real of given storage size,
232 following the required return values for ISO_FORTRAN_ENV REAL* constants:
233 -2 is returned if we support a kind of larger size, -1 otherwise. */
235 gfc_get_real_kind_from_width_isofortranenv (int size)
237 int i;
239 size /= 8;
241 /* Look for a kind with matching storage size. */
242 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
243 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
244 return gfc_real_kinds[i].kind;
246 /* Look for a kind with larger storage size. */
247 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
248 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
249 return -2;
251 return -1;
256 static int
257 get_int_kind_from_width (int size)
259 int i;
261 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
262 if (gfc_integer_kinds[i].bit_size == size)
263 return gfc_integer_kinds[i].kind;
265 return -2;
268 static int
269 get_int_kind_from_minimal_width (int size)
271 int i;
273 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
274 if (gfc_integer_kinds[i].bit_size >= size)
275 return gfc_integer_kinds[i].kind;
277 return -2;
281 /* Generate the CInteropKind_t objects for the C interoperable
282 kinds. */
284 static
285 void init_c_interop_kinds (void)
287 int i;
289 /* init all pointers in the list to NULL */
290 for (i = 0; i < ISOCBINDING_NUMBER; i++)
292 /* Initialize the name and value fields. */
293 c_interop_kinds_table[i].name[0] = '\0';
294 c_interop_kinds_table[i].value = -100;
295 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
298 #define NAMED_INTCST(a,b,c,d) \
299 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
300 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
301 c_interop_kinds_table[a].value = c;
302 #define NAMED_REALCST(a,b,c) \
303 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
304 c_interop_kinds_table[a].f90_type = BT_REAL; \
305 c_interop_kinds_table[a].value = c;
306 #define NAMED_CMPXCST(a,b,c) \
307 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
308 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
309 c_interop_kinds_table[a].value = c;
310 #define NAMED_LOGCST(a,b,c) \
311 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
312 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
313 c_interop_kinds_table[a].value = c;
314 #define NAMED_CHARKNDCST(a,b,c) \
315 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
316 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
317 c_interop_kinds_table[a].value = c;
318 #define NAMED_CHARCST(a,b,c) \
319 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
320 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
321 c_interop_kinds_table[a].value = c;
322 #define DERIVED_TYPE(a,b,c) \
323 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
324 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
325 c_interop_kinds_table[a].value = c;
326 #define PROCEDURE(a,b) \
327 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
328 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
329 c_interop_kinds_table[a].value = 0;
330 #include "iso-c-binding.def"
334 /* Query the target to determine which machine modes are available for
335 computation. Choose KIND numbers for them. */
337 void
338 gfc_init_kinds (void)
340 unsigned int mode;
341 int i_index, r_index, kind;
342 bool saw_i4 = false, saw_i8 = false;
343 bool saw_r4 = false, saw_r8 = false, saw_r16 = false;
345 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
347 int kind, bitsize;
349 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
350 continue;
352 /* The middle end doesn't support constants larger than 2*HWI.
353 Perhaps the target hook shouldn't have accepted these either,
354 but just to be safe... */
355 bitsize = GET_MODE_BITSIZE (mode);
356 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
357 continue;
359 gcc_assert (i_index != MAX_INT_KINDS);
361 /* Let the kind equal the bit size divided by 8. This insulates the
362 programmer from the underlying byte size. */
363 kind = bitsize / 8;
365 if (kind == 4)
366 saw_i4 = true;
367 if (kind == 8)
368 saw_i8 = true;
370 gfc_integer_kinds[i_index].kind = kind;
371 gfc_integer_kinds[i_index].radix = 2;
372 gfc_integer_kinds[i_index].digits = bitsize - 1;
373 gfc_integer_kinds[i_index].bit_size = bitsize;
375 gfc_logical_kinds[i_index].kind = kind;
376 gfc_logical_kinds[i_index].bit_size = bitsize;
378 i_index += 1;
381 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
382 used for large file access. */
384 if (saw_i8)
385 gfc_intio_kind = 8;
386 else
387 gfc_intio_kind = 4;
389 /* If we do not at least have kind = 4, everything is pointless. */
390 gcc_assert(saw_i4);
392 /* Set the maximum integer kind. Used with at least BOZ constants. */
393 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
395 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
397 const struct real_format *fmt =
398 REAL_MODE_FORMAT ((enum machine_mode) mode);
399 int kind;
401 if (fmt == NULL)
402 continue;
403 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
404 continue;
406 /* Only let float/double/long double go through because the fortran
407 library assumes these are the only floating point types. */
409 if (mode != TYPE_MODE (float_type_node)
410 && (mode != TYPE_MODE (double_type_node))
411 && (mode != TYPE_MODE (long_double_type_node)))
412 continue;
414 /* Let the kind equal the precision divided by 8, rounding up. Again,
415 this insulates the programmer from the underlying byte size.
417 Also, it effectively deals with IEEE extended formats. There, the
418 total size of the type may equal 16, but it's got 6 bytes of padding
419 and the increased size can get in the way of a real IEEE quad format
420 which may also be supported by the target.
422 We round up so as to handle IA-64 __floatreg (RFmode), which is an
423 82 bit type. Not to be confused with __float80 (XFmode), which is
424 an 80 bit type also supported by IA-64. So XFmode should come out
425 to be kind=10, and RFmode should come out to be kind=11. Egads. */
427 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
429 if (kind == 4)
430 saw_r4 = true;
431 if (kind == 8)
432 saw_r8 = true;
433 if (kind == 16)
434 saw_r16 = true;
436 /* Careful we don't stumble a weird internal mode. */
437 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
438 /* Or have too many modes for the allocated space. */
439 gcc_assert (r_index != MAX_REAL_KINDS);
441 gfc_real_kinds[r_index].kind = kind;
442 gfc_real_kinds[r_index].radix = fmt->b;
443 gfc_real_kinds[r_index].digits = fmt->p;
444 gfc_real_kinds[r_index].min_exponent = fmt->emin;
445 gfc_real_kinds[r_index].max_exponent = fmt->emax;
446 if (fmt->pnan < fmt->p)
447 /* This is an IBM extended double format (or the MIPS variant)
448 made up of two IEEE doubles. The value of the long double is
449 the sum of the values of the two parts. The most significant
450 part is required to be the value of the long double rounded
451 to the nearest double. If we use emax of 1024 then we can't
452 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
453 rounding will make the most significant part overflow. */
454 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
455 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
456 r_index += 1;
459 /* Choose the default integer kind. We choose 4 unless the user
460 directs us otherwise. */
461 if (gfc_option.flag_default_integer)
463 if (!saw_i8)
464 fatal_error ("integer kind=8 not available for -fdefault-integer-8 option");
465 gfc_default_integer_kind = 8;
467 /* Even if the user specified that the default integer kind be 8,
468 the numeric storage size isn't 64. In this case, a warning will
469 be issued when NUMERIC_STORAGE_SIZE is used. */
470 gfc_numeric_storage_size = 4 * 8;
472 else if (saw_i4)
474 gfc_default_integer_kind = 4;
475 gfc_numeric_storage_size = 4 * 8;
477 else
479 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
480 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
483 /* Choose the default real kind. Again, we choose 4 when possible. */
484 if (gfc_option.flag_default_real)
486 if (!saw_r8)
487 fatal_error ("real kind=8 not available for -fdefault-real-8 option");
488 gfc_default_real_kind = 8;
490 else if (saw_r4)
491 gfc_default_real_kind = 4;
492 else
493 gfc_default_real_kind = gfc_real_kinds[0].kind;
495 /* Choose the default double kind. If -fdefault-real and -fdefault-double
496 are specified, we use kind=8, if it's available. If -fdefault-real is
497 specified without -fdefault-double, we use kind=16, if it's available.
498 Otherwise we do not change anything. */
499 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
500 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
502 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
503 gfc_default_double_kind = 8;
504 else if (gfc_option.flag_default_real && saw_r16)
505 gfc_default_double_kind = 16;
506 else if (saw_r4 && saw_r8)
507 gfc_default_double_kind = 8;
508 else
510 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
511 real ... occupies two contiguous numeric storage units.
513 Therefore we must be supplied a kind twice as large as we chose
514 for single precision. There are loopholes, in that double
515 precision must *occupy* two storage units, though it doesn't have
516 to *use* two storage units. Which means that you can make this
517 kind artificially wide by padding it. But at present there are
518 no GCC targets for which a two-word type does not exist, so we
519 just let gfc_validate_kind abort and tell us if something breaks. */
521 gfc_default_double_kind
522 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
525 /* The default logical kind is constrained to be the same as the
526 default integer kind. Similarly with complex and real. */
527 gfc_default_logical_kind = gfc_default_integer_kind;
528 gfc_default_complex_kind = gfc_default_real_kind;
530 /* We only have two character kinds: ASCII and UCS-4.
531 ASCII corresponds to a 8-bit integer type, if one is available.
532 UCS-4 corresponds to a 32-bit integer type, if one is available. */
533 i_index = 0;
534 if ((kind = get_int_kind_from_width (8)) > 0)
536 gfc_character_kinds[i_index].kind = kind;
537 gfc_character_kinds[i_index].bit_size = 8;
538 gfc_character_kinds[i_index].name = "ascii";
539 i_index++;
541 if ((kind = get_int_kind_from_width (32)) > 0)
543 gfc_character_kinds[i_index].kind = kind;
544 gfc_character_kinds[i_index].bit_size = 32;
545 gfc_character_kinds[i_index].name = "iso_10646";
546 i_index++;
549 /* Choose the smallest integer kind for our default character. */
550 gfc_default_character_kind = gfc_character_kinds[0].kind;
551 gfc_character_storage_size = gfc_default_character_kind * 8;
553 /* Choose the integer kind the same size as "void*" for our index kind. */
554 gfc_index_integer_kind = POINTER_SIZE / 8;
555 /* Pick a kind the same size as the C "int" type. */
556 gfc_c_int_kind = INT_TYPE_SIZE / 8;
558 /* initialize the C interoperable kinds */
559 init_c_interop_kinds();
562 /* Make sure that a valid kind is present. Returns an index into the
563 associated kinds array, -1 if the kind is not present. */
565 static int
566 validate_integer (int kind)
568 int i;
570 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
571 if (gfc_integer_kinds[i].kind == kind)
572 return i;
574 return -1;
577 static int
578 validate_real (int kind)
580 int i;
582 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
583 if (gfc_real_kinds[i].kind == kind)
584 return i;
586 return -1;
589 static int
590 validate_logical (int kind)
592 int i;
594 for (i = 0; gfc_logical_kinds[i].kind; i++)
595 if (gfc_logical_kinds[i].kind == kind)
596 return i;
598 return -1;
601 static int
602 validate_character (int kind)
604 int i;
606 for (i = 0; gfc_character_kinds[i].kind; i++)
607 if (gfc_character_kinds[i].kind == kind)
608 return i;
610 return -1;
613 /* Validate a kind given a basic type. The return value is the same
614 for the child functions, with -1 indicating nonexistence of the
615 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
618 gfc_validate_kind (bt type, int kind, bool may_fail)
620 int rc;
622 switch (type)
624 case BT_REAL: /* Fall through */
625 case BT_COMPLEX:
626 rc = validate_real (kind);
627 break;
628 case BT_INTEGER:
629 rc = validate_integer (kind);
630 break;
631 case BT_LOGICAL:
632 rc = validate_logical (kind);
633 break;
634 case BT_CHARACTER:
635 rc = validate_character (kind);
636 break;
638 default:
639 gfc_internal_error ("gfc_validate_kind(): Got bad type");
642 if (rc < 0 && !may_fail)
643 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
645 return rc;
649 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
650 Reuse common type nodes where possible. Recognize if the kind matches up
651 with a C type. This will be used later in determining which routines may
652 be scarfed from libm. */
654 static tree
655 gfc_build_int_type (gfc_integer_info *info)
657 int mode_precision = info->bit_size;
659 if (mode_precision == CHAR_TYPE_SIZE)
660 info->c_char = 1;
661 if (mode_precision == SHORT_TYPE_SIZE)
662 info->c_short = 1;
663 if (mode_precision == INT_TYPE_SIZE)
664 info->c_int = 1;
665 if (mode_precision == LONG_TYPE_SIZE)
666 info->c_long = 1;
667 if (mode_precision == LONG_LONG_TYPE_SIZE)
668 info->c_long_long = 1;
670 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
671 return intQI_type_node;
672 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
673 return intHI_type_node;
674 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
675 return intSI_type_node;
676 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
677 return intDI_type_node;
678 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
679 return intTI_type_node;
681 return make_signed_type (mode_precision);
684 tree
685 gfc_build_uint_type (int size)
687 if (size == CHAR_TYPE_SIZE)
688 return unsigned_char_type_node;
689 if (size == SHORT_TYPE_SIZE)
690 return short_unsigned_type_node;
691 if (size == INT_TYPE_SIZE)
692 return unsigned_type_node;
693 if (size == LONG_TYPE_SIZE)
694 return long_unsigned_type_node;
695 if (size == LONG_LONG_TYPE_SIZE)
696 return long_long_unsigned_type_node;
698 return make_unsigned_type (size);
702 static tree
703 gfc_build_real_type (gfc_real_info *info)
705 int mode_precision = info->mode_precision;
706 tree new_type;
708 if (mode_precision == FLOAT_TYPE_SIZE)
709 info->c_float = 1;
710 if (mode_precision == DOUBLE_TYPE_SIZE)
711 info->c_double = 1;
712 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
713 info->c_long_double = 1;
715 if (TYPE_PRECISION (float_type_node) == mode_precision)
716 return float_type_node;
717 if (TYPE_PRECISION (double_type_node) == mode_precision)
718 return double_type_node;
719 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
720 return long_double_type_node;
722 new_type = make_node (REAL_TYPE);
723 TYPE_PRECISION (new_type) = mode_precision;
724 layout_type (new_type);
725 return new_type;
728 static tree
729 gfc_build_complex_type (tree scalar_type)
731 tree new_type;
733 if (scalar_type == NULL)
734 return NULL;
735 if (scalar_type == float_type_node)
736 return complex_float_type_node;
737 if (scalar_type == double_type_node)
738 return complex_double_type_node;
739 if (scalar_type == long_double_type_node)
740 return complex_long_double_type_node;
742 new_type = make_node (COMPLEX_TYPE);
743 TREE_TYPE (new_type) = scalar_type;
744 layout_type (new_type);
745 return new_type;
748 static tree
749 gfc_build_logical_type (gfc_logical_info *info)
751 int bit_size = info->bit_size;
752 tree new_type;
754 if (bit_size == BOOL_TYPE_SIZE)
756 info->c_bool = 1;
757 return boolean_type_node;
760 new_type = make_unsigned_type (bit_size);
761 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
762 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
763 TYPE_PRECISION (new_type) = 1;
765 return new_type;
769 #if 0
770 /* Return the bit size of the C "size_t". */
772 static unsigned int
773 c_size_t_size (void)
775 #ifdef SIZE_TYPE
776 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
777 return INT_TYPE_SIZE;
778 if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
779 return LONG_TYPE_SIZE;
780 if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
781 return SHORT_TYPE_SIZE;
782 gcc_unreachable ();
783 #else
784 return LONG_TYPE_SIZE;
785 #endif
787 #endif
789 /* Create the backend type nodes. We map them to their
790 equivalent C type, at least for now. We also give
791 names to the types here, and we push them in the
792 global binding level context.*/
794 void
795 gfc_init_types (void)
797 char name_buf[18];
798 int index;
799 tree type;
800 unsigned n;
801 unsigned HOST_WIDE_INT hi;
802 unsigned HOST_WIDE_INT lo;
804 /* Create and name the types. */
805 #define PUSH_TYPE(name, node) \
806 pushdecl (build_decl (input_location, \
807 TYPE_DECL, get_identifier (name), node))
809 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
811 type = gfc_build_int_type (&gfc_integer_kinds[index]);
812 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
813 if (TYPE_STRING_FLAG (type))
814 type = make_signed_type (gfc_integer_kinds[index].bit_size);
815 gfc_integer_types[index] = type;
816 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
817 gfc_integer_kinds[index].kind);
818 PUSH_TYPE (name_buf, type);
821 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
823 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
824 gfc_logical_types[index] = type;
825 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
826 gfc_logical_kinds[index].kind);
827 PUSH_TYPE (name_buf, type);
830 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
832 type = gfc_build_real_type (&gfc_real_kinds[index]);
833 gfc_real_types[index] = type;
834 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
835 gfc_real_kinds[index].kind);
836 PUSH_TYPE (name_buf, type);
838 type = gfc_build_complex_type (type);
839 gfc_complex_types[index] = type;
840 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
841 gfc_real_kinds[index].kind);
842 PUSH_TYPE (name_buf, type);
845 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
847 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
848 type = build_qualified_type (type, TYPE_UNQUALIFIED);
849 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
850 gfc_character_kinds[index].kind);
851 PUSH_TYPE (name_buf, type);
852 gfc_character_types[index] = type;
853 gfc_pcharacter_types[index] = build_pointer_type (type);
855 gfc_character1_type_node = gfc_character_types[0];
857 PUSH_TYPE ("byte", unsigned_char_type_node);
858 PUSH_TYPE ("void", void_type_node);
860 /* DBX debugging output gets upset if these aren't set. */
861 if (!TYPE_NAME (integer_type_node))
862 PUSH_TYPE ("c_integer", integer_type_node);
863 if (!TYPE_NAME (char_type_node))
864 PUSH_TYPE ("c_char", char_type_node);
866 #undef PUSH_TYPE
868 pvoid_type_node = build_pointer_type (void_type_node);
869 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
870 ppvoid_type_node = build_pointer_type (pvoid_type_node);
871 pchar_type_node = build_pointer_type (gfc_character1_type_node);
872 pfunc_type_node
873 = build_pointer_type (build_function_type (void_type_node, NULL_TREE));
875 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
876 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
877 since this function is called before gfc_init_constants. */
878 gfc_array_range_type
879 = build_range_type (gfc_array_index_type,
880 build_int_cst (gfc_array_index_type, 0),
881 NULL_TREE);
883 /* The maximum array element size that can be handled is determined
884 by the number of bits available to store this field in the array
885 descriptor. */
887 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
888 lo = ~ (unsigned HOST_WIDE_INT) 0;
889 if (n > HOST_BITS_PER_WIDE_INT)
890 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
891 else
892 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
893 gfc_max_array_element_size
894 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
896 size_type_node = gfc_array_index_type;
898 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
899 boolean_true_node = build_int_cst (boolean_type_node, 1);
900 boolean_false_node = build_int_cst (boolean_type_node, 0);
902 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
903 gfc_charlen_int_kind = 4;
904 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
907 /* Get the type node for the given type and kind. */
909 tree
910 gfc_get_int_type (int kind)
912 int index = gfc_validate_kind (BT_INTEGER, kind, true);
913 return index < 0 ? 0 : gfc_integer_types[index];
916 tree
917 gfc_get_real_type (int kind)
919 int index = gfc_validate_kind (BT_REAL, kind, true);
920 return index < 0 ? 0 : gfc_real_types[index];
923 tree
924 gfc_get_complex_type (int kind)
926 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
927 return index < 0 ? 0 : gfc_complex_types[index];
930 tree
931 gfc_get_logical_type (int kind)
933 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
934 return index < 0 ? 0 : gfc_logical_types[index];
937 tree
938 gfc_get_char_type (int kind)
940 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
941 return index < 0 ? 0 : gfc_character_types[index];
944 tree
945 gfc_get_pchar_type (int kind)
947 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
948 return index < 0 ? 0 : gfc_pcharacter_types[index];
952 /* Create a character type with the given kind and length. */
954 tree
955 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
957 tree bounds, type;
959 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
960 type = build_array_type (eltype, bounds);
961 TYPE_STRING_FLAG (type) = 1;
963 return type;
966 tree
967 gfc_get_character_type_len (int kind, tree len)
969 gfc_validate_kind (BT_CHARACTER, kind, false);
970 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
974 /* Get a type node for a character kind. */
976 tree
977 gfc_get_character_type (int kind, gfc_charlen * cl)
979 tree len;
981 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
983 return gfc_get_character_type_len (kind, len);
986 /* Covert a basic type. This will be an array for character types. */
988 tree
989 gfc_typenode_for_spec (gfc_typespec * spec)
991 tree basetype;
993 switch (spec->type)
995 case BT_UNKNOWN:
996 gcc_unreachable ();
998 case BT_INTEGER:
999 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1000 has been resolved. This is done so we can convert C_PTR and
1001 C_FUNPTR to simple variables that get translated to (void *). */
1002 if (spec->f90_type == BT_VOID)
1004 if (spec->u.derived
1005 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1006 basetype = ptr_type_node;
1007 else
1008 basetype = pfunc_type_node;
1010 else
1011 basetype = gfc_get_int_type (spec->kind);
1012 break;
1014 case BT_REAL:
1015 basetype = gfc_get_real_type (spec->kind);
1016 break;
1018 case BT_COMPLEX:
1019 basetype = gfc_get_complex_type (spec->kind);
1020 break;
1022 case BT_LOGICAL:
1023 basetype = gfc_get_logical_type (spec->kind);
1024 break;
1026 case BT_CHARACTER:
1027 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1028 break;
1030 case BT_DERIVED:
1031 case BT_CLASS:
1032 basetype = gfc_get_derived_type (spec->u.derived);
1034 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1035 type and kind to fit a (void *) and the basetype returned was a
1036 ptr_type_node. We need to pass up this new information to the
1037 symbol that was declared of type C_PTR or C_FUNPTR. */
1038 if (spec->u.derived->attr.is_iso_c)
1040 spec->type = spec->u.derived->ts.type;
1041 spec->kind = spec->u.derived->ts.kind;
1042 spec->f90_type = spec->u.derived->ts.f90_type;
1044 break;
1045 case BT_VOID:
1046 /* This is for the second arg to c_f_pointer and c_f_procpointer
1047 of the iso_c_binding module, to accept any ptr type. */
1048 basetype = ptr_type_node;
1049 if (spec->f90_type == BT_VOID)
1051 if (spec->u.derived
1052 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1053 basetype = ptr_type_node;
1054 else
1055 basetype = pfunc_type_node;
1057 break;
1058 default:
1059 gcc_unreachable ();
1061 return basetype;
1064 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1066 static tree
1067 gfc_conv_array_bound (gfc_expr * expr)
1069 /* If expr is an integer constant, return that. */
1070 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1071 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1073 /* Otherwise return NULL. */
1074 return NULL_TREE;
1077 tree
1078 gfc_get_element_type (tree type)
1080 tree element;
1082 if (GFC_ARRAY_TYPE_P (type))
1084 if (TREE_CODE (type) == POINTER_TYPE)
1085 type = TREE_TYPE (type);
1086 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1087 element = TREE_TYPE (type);
1089 else
1091 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1092 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1094 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1095 element = TREE_TYPE (element);
1097 gcc_assert (TREE_CODE (element) == ARRAY_TYPE);
1098 element = TREE_TYPE (element);
1101 return element;
1104 /* Build an array. This function is called from gfc_sym_type().
1105 Actually returns array descriptor type.
1107 Format of array descriptors is as follows:
1109 struct gfc_array_descriptor
1111 array *data
1112 index offset;
1113 index dtype;
1114 struct descriptor_dimension dimension[N_DIM];
1117 struct descriptor_dimension
1119 index stride;
1120 index lbound;
1121 index ubound;
1124 Translation code should use gfc_conv_descriptor_* rather than
1125 accessing the descriptor directly. Any changes to the array
1126 descriptor type will require changes in gfc_conv_descriptor_* and
1127 gfc_build_array_initializer.
1129 This is represented internally as a RECORD_TYPE. The index nodes
1130 are gfc_array_index_type and the data node is a pointer to the
1131 data. See below for the handling of character types.
1133 The dtype member is formatted as follows:
1134 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1135 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1136 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1138 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1139 this generated poor code for assumed/deferred size arrays. These
1140 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1141 of the GENERIC grammar. Also, there is no way to explicitly set
1142 the array stride, so all data must be packed(1). I've tried to
1143 mark all the functions which would require modification with a GCC
1144 ARRAYS comment.
1146 The data component points to the first element in the array. The
1147 offset field is the position of the origin of the array (i.e. element
1148 (0, 0 ...)). This may be outside the bounds of the array.
1150 An element is accessed by
1151 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1152 This gives good performance as the computation does not involve the
1153 bounds of the array. For packed arrays, this is optimized further
1154 by substituting the known strides.
1156 This system has one problem: all array bounds must be within 2^31
1157 elements of the origin (2^63 on 64-bit machines). For example
1158 integer, dimension (80000:90000, 80000:90000, 2) :: array
1159 may not work properly on 32-bit machines because 80000*80000 >
1160 2^31, so the calculation for stride2 would overflow. This may
1161 still work, but I haven't checked, and it relies on the overflow
1162 doing the right thing.
1164 The way to fix this problem is to access elements as follows:
1165 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1166 Obviously this is much slower. I will make this a compile time
1167 option, something like -fsmall-array-offsets. Mixing code compiled
1168 with and without this switch will work.
1170 (1) This can be worked around by modifying the upper bound of the
1171 previous dimension. This requires extra fields in the descriptor
1172 (both real_ubound and fake_ubound). */
1175 /* Returns true if the array sym does not require a descriptor. */
1178 gfc_is_nodesc_array (gfc_symbol * sym)
1180 gcc_assert (sym->attr.dimension);
1182 /* We only want local arrays. */
1183 if (sym->attr.pointer || sym->attr.allocatable)
1184 return 0;
1186 if (sym->attr.dummy)
1188 if (sym->as->type != AS_ASSUMED_SHAPE)
1189 return 1;
1190 else
1191 return 0;
1194 if (sym->attr.result || sym->attr.function)
1195 return 0;
1197 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1199 return 1;
1203 /* Create an array descriptor type. */
1205 static tree
1206 gfc_build_array_type (tree type, gfc_array_spec * as,
1207 enum gfc_array_kind akind, bool restricted)
1209 tree lbound[GFC_MAX_DIMENSIONS];
1210 tree ubound[GFC_MAX_DIMENSIONS];
1211 int n;
1213 for (n = 0; n < as->rank; n++)
1215 /* Create expressions for the known bounds of the array. */
1216 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1217 lbound[n] = gfc_index_one_node;
1218 else
1219 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1220 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1223 if (as->type == AS_ASSUMED_SHAPE)
1224 akind = GFC_ARRAY_ASSUMED_SHAPE;
1225 return gfc_get_array_type_bounds (type, as->rank, as->corank, lbound,
1226 ubound, 0, akind, restricted);
1229 /* Returns the struct descriptor_dimension type. */
1231 static tree
1232 gfc_get_desc_dim_type (void)
1234 tree type;
1235 tree decl;
1236 tree fieldlist;
1238 if (gfc_desc_dim_type)
1239 return gfc_desc_dim_type;
1241 /* Build the type node. */
1242 type = make_node (RECORD_TYPE);
1244 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1245 TYPE_PACKED (type) = 1;
1247 /* Consists of the stride, lbound and ubound members. */
1248 decl = build_decl (input_location,
1249 FIELD_DECL,
1250 get_identifier ("stride"), gfc_array_index_type);
1251 DECL_CONTEXT (decl) = type;
1252 TREE_NO_WARNING (decl) = 1;
1253 fieldlist = decl;
1255 decl = build_decl (input_location,
1256 FIELD_DECL,
1257 get_identifier ("lbound"), gfc_array_index_type);
1258 DECL_CONTEXT (decl) = type;
1259 TREE_NO_WARNING (decl) = 1;
1260 fieldlist = chainon (fieldlist, decl);
1262 decl = build_decl (input_location,
1263 FIELD_DECL,
1264 get_identifier ("ubound"), gfc_array_index_type);
1265 DECL_CONTEXT (decl) = type;
1266 TREE_NO_WARNING (decl) = 1;
1267 fieldlist = chainon (fieldlist, decl);
1269 /* Finish off the type. */
1270 TYPE_FIELDS (type) = fieldlist;
1272 gfc_finish_type (type);
1273 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1275 gfc_desc_dim_type = type;
1276 return type;
1280 /* Return the DTYPE for an array. This describes the type and type parameters
1281 of the array. */
1282 /* TODO: Only call this when the value is actually used, and make all the
1283 unknown cases abort. */
1285 tree
1286 gfc_get_dtype (tree type)
1288 tree size;
1289 int n;
1290 HOST_WIDE_INT i;
1291 tree tmp;
1292 tree dtype;
1293 tree etype;
1294 int rank;
1296 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1298 if (GFC_TYPE_ARRAY_DTYPE (type))
1299 return GFC_TYPE_ARRAY_DTYPE (type);
1301 rank = GFC_TYPE_ARRAY_RANK (type);
1302 etype = gfc_get_element_type (type);
1304 switch (TREE_CODE (etype))
1306 case INTEGER_TYPE:
1307 n = GFC_DTYPE_INTEGER;
1308 break;
1310 case BOOLEAN_TYPE:
1311 n = GFC_DTYPE_LOGICAL;
1312 break;
1314 case REAL_TYPE:
1315 n = GFC_DTYPE_REAL;
1316 break;
1318 case COMPLEX_TYPE:
1319 n = GFC_DTYPE_COMPLEX;
1320 break;
1322 /* We will never have arrays of arrays. */
1323 case RECORD_TYPE:
1324 n = GFC_DTYPE_DERIVED;
1325 break;
1327 case ARRAY_TYPE:
1328 n = GFC_DTYPE_CHARACTER;
1329 break;
1331 default:
1332 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1333 /* We can strange array types for temporary arrays. */
1334 return gfc_index_zero_node;
1337 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1338 size = TYPE_SIZE_UNIT (etype);
1340 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1341 if (size && INTEGER_CST_P (size))
1343 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1344 internal_error ("Array element size too big");
1346 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1348 dtype = build_int_cst (gfc_array_index_type, i);
1350 if (size && !INTEGER_CST_P (size))
1352 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1353 tmp = fold_build2 (LSHIFT_EXPR, gfc_array_index_type,
1354 fold_convert (gfc_array_index_type, size), tmp);
1355 dtype = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp, dtype);
1357 /* If we don't know the size we leave it as zero. This should never happen
1358 for anything that is actually used. */
1359 /* TODO: Check this is actually true, particularly when repacking
1360 assumed size parameters. */
1362 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1363 return dtype;
1367 /* Build an array type for use without a descriptor, packed according
1368 to the value of PACKED. */
1370 tree
1371 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1372 bool restricted)
1374 tree range;
1375 tree type;
1376 tree tmp;
1377 int n;
1378 int known_stride;
1379 int known_offset;
1380 mpz_t offset;
1381 mpz_t stride;
1382 mpz_t delta;
1383 gfc_expr *expr;
1385 mpz_init_set_ui (offset, 0);
1386 mpz_init_set_ui (stride, 1);
1387 mpz_init (delta);
1389 /* We don't use build_array_type because this does not include include
1390 lang-specific information (i.e. the bounds of the array) when checking
1391 for duplicates. */
1392 type = make_node (ARRAY_TYPE);
1394 GFC_ARRAY_TYPE_P (type) = 1;
1395 TYPE_LANG_SPECIFIC (type) = (struct lang_type *)
1396 ggc_alloc_cleared (sizeof (struct lang_type));
1398 known_stride = (packed != PACKED_NO);
1399 known_offset = 1;
1400 for (n = 0; n < as->rank; n++)
1402 /* Fill in the stride and bound components of the type. */
1403 if (known_stride)
1404 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1405 else
1406 tmp = NULL_TREE;
1407 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1409 expr = as->lower[n];
1410 if (expr->expr_type == EXPR_CONSTANT)
1412 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1413 gfc_index_integer_kind);
1415 else
1417 known_stride = 0;
1418 tmp = NULL_TREE;
1420 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1422 if (known_stride)
1424 /* Calculate the offset. */
1425 mpz_mul (delta, stride, as->lower[n]->value.integer);
1426 mpz_sub (offset, offset, delta);
1428 else
1429 known_offset = 0;
1431 expr = as->upper[n];
1432 if (expr && expr->expr_type == EXPR_CONSTANT)
1434 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1435 gfc_index_integer_kind);
1437 else
1439 tmp = NULL_TREE;
1440 known_stride = 0;
1442 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1444 if (known_stride)
1446 /* Calculate the stride. */
1447 mpz_sub (delta, as->upper[n]->value.integer,
1448 as->lower[n]->value.integer);
1449 mpz_add_ui (delta, delta, 1);
1450 mpz_mul (stride, stride, delta);
1453 /* Only the first stride is known for partial packed arrays. */
1454 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1455 known_stride = 0;
1458 if (known_offset)
1460 GFC_TYPE_ARRAY_OFFSET (type) =
1461 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1463 else
1464 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1466 if (known_stride)
1468 GFC_TYPE_ARRAY_SIZE (type) =
1469 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1471 else
1472 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1474 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1475 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1476 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1477 NULL_TREE);
1478 /* TODO: use main type if it is unbounded. */
1479 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1480 build_pointer_type (build_array_type (etype, range));
1481 if (restricted)
1482 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1483 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1484 TYPE_QUAL_RESTRICT);
1486 if (known_stride)
1488 mpz_sub_ui (stride, stride, 1);
1489 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1491 else
1492 range = NULL_TREE;
1494 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1495 TYPE_DOMAIN (type) = range;
1497 build_pointer_type (etype);
1498 TREE_TYPE (type) = etype;
1500 layout_type (type);
1502 mpz_clear (offset);
1503 mpz_clear (stride);
1504 mpz_clear (delta);
1506 /* Represent packed arrays as multi-dimensional if they have rank >
1507 1 and with proper bounds, instead of flat arrays. This makes for
1508 better debug info. */
1509 if (known_offset)
1511 tree gtype = etype, rtype, type_decl;
1513 for (n = as->rank - 1; n >= 0; n--)
1515 rtype = build_range_type (gfc_array_index_type,
1516 GFC_TYPE_ARRAY_LBOUND (type, n),
1517 GFC_TYPE_ARRAY_UBOUND (type, n));
1518 gtype = build_array_type (gtype, rtype);
1520 TYPE_NAME (type) = type_decl = build_decl (input_location,
1521 TYPE_DECL, NULL, gtype);
1522 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1525 if (packed != PACKED_STATIC || !known_stride)
1527 /* For dummy arrays and automatic (heap allocated) arrays we
1528 want a pointer to the array. */
1529 type = build_pointer_type (type);
1530 if (restricted)
1531 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1532 GFC_ARRAY_TYPE_P (type) = 1;
1533 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1535 return type;
1538 /* Return or create the base type for an array descriptor. */
1540 static tree
1541 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted)
1543 tree fat_type, fieldlist, decl, arraytype;
1544 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1545 int idx = 2 * (dimen - 1) + restricted;
1547 gcc_assert (dimen >= 1 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1548 if (gfc_array_descriptor_base[idx])
1549 return gfc_array_descriptor_base[idx];
1551 /* Build the type node. */
1552 fat_type = make_node (RECORD_TYPE);
1554 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT "_"
1555 GFC_RANK_PRINTF_FORMAT, dimen, codimen);
1556 TYPE_NAME (fat_type) = get_identifier (name);
1558 /* Add the data member as the first element of the descriptor. */
1559 decl = build_decl (input_location,
1560 FIELD_DECL, get_identifier ("data"),
1561 restricted ? prvoid_type_node : ptr_type_node);
1563 DECL_CONTEXT (decl) = fat_type;
1564 fieldlist = decl;
1566 /* Add the base component. */
1567 decl = build_decl (input_location,
1568 FIELD_DECL, get_identifier ("offset"),
1569 gfc_array_index_type);
1570 DECL_CONTEXT (decl) = fat_type;
1571 TREE_NO_WARNING (decl) = 1;
1572 fieldlist = chainon (fieldlist, decl);
1574 /* Add the dtype component. */
1575 decl = build_decl (input_location,
1576 FIELD_DECL, get_identifier ("dtype"),
1577 gfc_array_index_type);
1578 DECL_CONTEXT (decl) = fat_type;
1579 TREE_NO_WARNING (decl) = 1;
1580 fieldlist = chainon (fieldlist, decl);
1582 /* Build the array type for the stride and bound components. */
1583 arraytype =
1584 build_array_type (gfc_get_desc_dim_type (),
1585 build_range_type (gfc_array_index_type,
1586 gfc_index_zero_node,
1587 gfc_rank_cst[codimen + dimen - 1]));
1589 decl = build_decl (input_location,
1590 FIELD_DECL, get_identifier ("dim"), arraytype);
1591 DECL_CONTEXT (decl) = fat_type;
1592 TREE_NO_WARNING (decl) = 1;
1593 fieldlist = chainon (fieldlist, decl);
1595 /* Finish off the type. */
1596 TYPE_FIELDS (fat_type) = fieldlist;
1598 gfc_finish_type (fat_type);
1599 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1601 gfc_array_descriptor_base[idx] = fat_type;
1602 return fat_type;
1605 /* Build an array (descriptor) type with given bounds. */
1607 tree
1608 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1609 tree * ubound, int packed,
1610 enum gfc_array_kind akind, bool restricted)
1612 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1613 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1614 const char *type_name;
1615 int n;
1617 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted);
1618 fat_type = build_distinct_type_copy (base_type);
1619 /* Make sure that nontarget and target array type have the same canonical
1620 type (and same stub decl for debug info). */
1621 base_type = gfc_get_array_descriptor_base (dimen, codimen, false);
1622 TYPE_CANONICAL (fat_type) = base_type;
1623 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1625 tmp = TYPE_NAME (etype);
1626 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1627 tmp = DECL_NAME (tmp);
1628 if (tmp)
1629 type_name = IDENTIFIER_POINTER (tmp);
1630 else
1631 type_name = "unknown";
1632 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_"
1633 GFC_RANK_PRINTF_FORMAT "_%.*s", dimen, codimen,
1634 GFC_MAX_SYMBOL_LEN, type_name);
1635 TYPE_NAME (fat_type) = get_identifier (name);
1637 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1638 TYPE_LANG_SPECIFIC (fat_type) = (struct lang_type *)
1639 ggc_alloc_cleared (sizeof (struct lang_type));
1641 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1642 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1643 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1645 /* Build an array descriptor record type. */
1646 if (packed != 0)
1647 stride = gfc_index_one_node;
1648 else
1649 stride = NULL_TREE;
1650 for (n = 0; n < dimen; n++)
1652 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1654 if (lbound)
1655 lower = lbound[n];
1656 else
1657 lower = NULL_TREE;
1659 if (lower != NULL_TREE)
1661 if (INTEGER_CST_P (lower))
1662 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1663 else
1664 lower = NULL_TREE;
1667 upper = ubound[n];
1668 if (upper != NULL_TREE)
1670 if (INTEGER_CST_P (upper))
1671 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1672 else
1673 upper = NULL_TREE;
1676 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1678 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, upper, lower);
1679 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp,
1680 gfc_index_one_node);
1681 stride =
1682 fold_build2 (MULT_EXPR, gfc_array_index_type, tmp, stride);
1683 /* Check the folding worked. */
1684 gcc_assert (INTEGER_CST_P (stride));
1686 else
1687 stride = NULL_TREE;
1689 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1691 /* TODO: known offsets for descriptors. */
1692 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1694 /* We define data as an array with the correct size if possible.
1695 Much better than doing pointer arithmetic. */
1696 if (stride)
1697 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1698 int_const_binop (MINUS_EXPR, stride,
1699 integer_one_node, 0));
1700 else
1701 rtype = gfc_array_range_type;
1702 arraytype = build_array_type (etype, rtype);
1703 arraytype = build_pointer_type (arraytype);
1704 if (restricted)
1705 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1706 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1708 /* This will generate the base declarations we need to emit debug
1709 information for this type. FIXME: there must be a better way to
1710 avoid divergence between compilations with and without debug
1711 information. */
1713 struct array_descr_info info;
1714 gfc_get_array_descr_info (fat_type, &info);
1715 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1718 return fat_type;
1721 /* Build a pointer type. This function is called from gfc_sym_type(). */
1723 static tree
1724 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1726 /* Array pointer types aren't actually pointers. */
1727 if (sym->attr.dimension)
1728 return type;
1729 else
1730 return build_pointer_type (type);
1733 /* Return the type for a symbol. Special handling is required for character
1734 types to get the correct level of indirection.
1735 For functions return the return type.
1736 For subroutines return void_type_node.
1737 Calling this multiple times for the same symbol should be avoided,
1738 especially for character and array types. */
1740 tree
1741 gfc_sym_type (gfc_symbol * sym)
1743 tree type;
1744 int byref;
1745 bool restricted;
1747 /* Procedure Pointers inside COMMON blocks. */
1748 if (sym->attr.proc_pointer && sym->attr.in_common)
1750 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
1751 sym->attr.proc_pointer = 0;
1752 type = build_pointer_type (gfc_get_function_type (sym));
1753 sym->attr.proc_pointer = 1;
1754 return type;
1757 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
1758 return void_type_node;
1760 /* In the case of a function the fake result variable may have a
1761 type different from the function type, so don't return early in
1762 that case. */
1763 if (sym->backend_decl && !sym->attr.function)
1764 return TREE_TYPE (sym->backend_decl);
1766 if (sym->ts.type == BT_CHARACTER
1767 && ((sym->attr.function && sym->attr.is_bind_c)
1768 || (sym->attr.result
1769 && sym->ns->proc_name
1770 && sym->ns->proc_name->attr.is_bind_c)))
1771 type = gfc_character1_type_node;
1772 else
1773 type = gfc_typenode_for_spec (&sym->ts);
1775 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
1776 byref = 1;
1777 else
1778 byref = 0;
1780 restricted = !sym->attr.target && !sym->attr.pointer
1781 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
1782 if (sym->attr.dimension)
1784 if (gfc_is_nodesc_array (sym))
1786 /* If this is a character argument of unknown length, just use the
1787 base type. */
1788 if (sym->ts.type != BT_CHARACTER
1789 || !(sym->attr.dummy || sym->attr.function)
1790 || sym->ts.u.cl->backend_decl)
1792 type = gfc_get_nodesc_array_type (type, sym->as,
1793 byref ? PACKED_FULL
1794 : PACKED_STATIC,
1795 restricted);
1796 byref = 0;
1799 else
1801 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
1802 if (sym->attr.pointer)
1803 akind = GFC_ARRAY_POINTER;
1804 else if (sym->attr.allocatable)
1805 akind = GFC_ARRAY_ALLOCATABLE;
1806 type = gfc_build_array_type (type, sym->as, akind, restricted);
1809 else
1811 if (sym->attr.allocatable || sym->attr.pointer)
1812 type = gfc_build_pointer_type (sym, type);
1813 if (sym->attr.pointer)
1814 GFC_POINTER_TYPE_P (type) = 1;
1817 /* We currently pass all parameters by reference.
1818 See f95_get_function_decl. For dummy function parameters return the
1819 function type. */
1820 if (byref)
1822 /* We must use pointer types for potentially absent variables. The
1823 optimizers assume a reference type argument is never NULL. */
1824 if (sym->attr.optional || sym->ns->proc_name->attr.entry_master)
1825 type = build_pointer_type (type);
1826 else
1828 type = build_reference_type (type);
1829 if (restricted)
1830 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1834 return (type);
1837 /* Layout and output debug info for a record type. */
1839 void
1840 gfc_finish_type (tree type)
1842 tree decl;
1844 decl = build_decl (input_location,
1845 TYPE_DECL, NULL_TREE, type);
1846 TYPE_STUB_DECL (type) = decl;
1847 layout_type (type);
1848 rest_of_type_compilation (type, 1);
1849 rest_of_decl_compilation (decl, 1, 0);
1852 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
1853 or RECORD_TYPE pointed to by STYPE. The new field is chained
1854 to the fieldlist pointed to by FIELDLIST.
1856 Returns a pointer to the new field. */
1858 tree
1859 gfc_add_field_to_struct (tree *fieldlist, tree context,
1860 tree name, tree type)
1862 tree decl;
1864 decl = build_decl (input_location,
1865 FIELD_DECL, name, type);
1867 DECL_CONTEXT (decl) = context;
1868 DECL_INITIAL (decl) = 0;
1869 DECL_ALIGN (decl) = 0;
1870 DECL_USER_ALIGN (decl) = 0;
1871 TREE_CHAIN (decl) = NULL_TREE;
1872 *fieldlist = chainon (*fieldlist, decl);
1874 return decl;
1878 /* Copy the backend_decl and component backend_decls if
1879 the two derived type symbols are "equal", as described
1880 in 4.4.2 and resolved by gfc_compare_derived_types. */
1882 static int
1883 copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
1884 bool from_gsym)
1886 gfc_component *to_cm;
1887 gfc_component *from_cm;
1889 if (from->backend_decl == NULL
1890 || !gfc_compare_derived_types (from, to))
1891 return 0;
1893 to->backend_decl = from->backend_decl;
1895 to_cm = to->components;
1896 from_cm = from->components;
1898 /* Copy the component declarations. If a component is itself
1899 a derived type, we need a copy of its component declarations.
1900 This is done by recursing into gfc_get_derived_type and
1901 ensures that the component's component declarations have
1902 been built. If it is a character, we need the character
1903 length, as well. */
1904 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
1906 to_cm->backend_decl = from_cm->backend_decl;
1907 if ((!from_cm->attr.pointer || from_gsym)
1908 && from_cm->ts.type == BT_DERIVED)
1909 gfc_get_derived_type (to_cm->ts.u.derived);
1911 else if (from_cm->ts.type == BT_CHARACTER)
1912 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
1915 return 1;
1919 /* Build a tree node for a procedure pointer component. */
1921 tree
1922 gfc_get_ppc_type (gfc_component* c)
1924 tree t;
1926 /* Explicit interface. */
1927 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
1928 return build_pointer_type (gfc_get_function_type (c->ts.interface));
1930 /* Implicit interface (only return value may be known). */
1931 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
1932 t = gfc_typenode_for_spec (&c->ts);
1933 else
1934 t = void_type_node;
1936 return build_pointer_type (build_function_type (t, NULL_TREE));
1940 /* Build a tree node for a derived type. If there are equal
1941 derived types, with different local names, these are built
1942 at the same time. If an equal derived type has been built
1943 in a parent namespace, this is used. */
1945 tree
1946 gfc_get_derived_type (gfc_symbol * derived)
1948 tree typenode = NULL, field = NULL, field_type = NULL, fieldlist = NULL;
1949 tree canonical = NULL_TREE;
1950 bool got_canonical = false;
1951 gfc_component *c;
1952 gfc_dt_list *dt;
1953 gfc_namespace *ns;
1954 gfc_gsymbol *gsym;
1956 gcc_assert (derived && derived->attr.flavor == FL_DERIVED);
1958 /* See if it's one of the iso_c_binding derived types. */
1959 if (derived->attr.is_iso_c == 1)
1961 if (derived->backend_decl)
1962 return derived->backend_decl;
1964 if (derived->intmod_sym_id == ISOCBINDING_PTR)
1965 derived->backend_decl = ptr_type_node;
1966 else
1967 derived->backend_decl = pfunc_type_node;
1969 /* Create a backend_decl for the __c_ptr_c_address field. */
1970 derived->components->backend_decl =
1971 gfc_add_field_to_struct (&(derived->backend_decl->type.values),
1972 derived->backend_decl,
1973 get_identifier (derived->components->name),
1974 gfc_typenode_for_spec (
1975 &(derived->components->ts)));
1977 derived->ts.kind = gfc_index_integer_kind;
1978 derived->ts.type = BT_INTEGER;
1979 /* Set the f90_type to BT_VOID as a way to recognize something of type
1980 BT_INTEGER that needs to fit a void * for the purpose of the
1981 iso_c_binding derived types. */
1982 derived->ts.f90_type = BT_VOID;
1984 return derived->backend_decl;
1987 /* If use associated, use the module type for this one. */
1988 if (gfc_option.flag_whole_file
1989 && derived->backend_decl == NULL
1990 && derived->attr.use_assoc
1991 && derived->module)
1993 gsym = gfc_find_gsymbol (gfc_gsym_root, derived->module);
1994 if (gsym && gsym->ns && gsym->type == GSYM_MODULE)
1996 gfc_symbol *s;
1997 s = NULL;
1998 gfc_find_symbol (derived->name, gsym->ns, 0, &s);
1999 if (s && s->backend_decl)
2001 copy_dt_decls_ifequal (s, derived, true);
2002 goto copy_derived_types;
2007 /* If a whole file compilation, the derived types from an earlier
2008 namespace can be used as the the canonical type. */
2009 if (gfc_option.flag_whole_file
2010 && derived->backend_decl == NULL
2011 && !derived->attr.use_assoc
2012 && gfc_global_ns_list)
2014 for (ns = gfc_global_ns_list;
2015 ns->translated && !got_canonical;
2016 ns = ns->sibling)
2018 dt = ns->derived_types;
2019 for (; dt && !canonical; dt = dt->next)
2021 copy_dt_decls_ifequal (dt->derived, derived, true);
2022 if (derived->backend_decl)
2023 got_canonical = true;
2028 /* Store up the canonical type to be added to this one. */
2029 if (got_canonical)
2031 if (TYPE_CANONICAL (derived->backend_decl))
2032 canonical = TYPE_CANONICAL (derived->backend_decl);
2033 else
2034 canonical = derived->backend_decl;
2036 derived->backend_decl = NULL_TREE;
2039 /* derived->backend_decl != 0 means we saw it before, but its
2040 components' backend_decl may have not been built. */
2041 if (derived->backend_decl)
2043 /* Its components' backend_decl have been built or we are
2044 seeing recursion through the formal arglist of a procedure
2045 pointer component. */
2046 if (TYPE_FIELDS (derived->backend_decl)
2047 || derived->attr.proc_pointer_comp)
2048 return derived->backend_decl;
2049 else
2050 typenode = derived->backend_decl;
2052 else
2054 /* We see this derived type first time, so build the type node. */
2055 typenode = make_node (RECORD_TYPE);
2056 TYPE_NAME (typenode) = get_identifier (derived->name);
2057 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2058 derived->backend_decl = typenode;
2061 /* Go through the derived type components, building them as
2062 necessary. The reason for doing this now is that it is
2063 possible to recurse back to this derived type through a
2064 pointer component (PR24092). If this happens, the fields
2065 will be built and so we can return the type. */
2066 for (c = derived->components; c; c = c->next)
2068 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2069 continue;
2071 if ((!c->attr.pointer && !c->attr.proc_pointer)
2072 || c->ts.u.derived->backend_decl == NULL)
2073 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2075 if (c->ts.u.derived && c->ts.u.derived->attr.is_iso_c)
2077 /* Need to copy the modified ts from the derived type. The
2078 typespec was modified because C_PTR/C_FUNPTR are translated
2079 into (void *) from derived types. */
2080 c->ts.type = c->ts.u.derived->ts.type;
2081 c->ts.kind = c->ts.u.derived->ts.kind;
2082 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2083 if (c->initializer)
2085 c->initializer->ts.type = c->ts.type;
2086 c->initializer->ts.kind = c->ts.kind;
2087 c->initializer->ts.f90_type = c->ts.f90_type;
2088 c->initializer->expr_type = EXPR_NULL;
2093 if (TYPE_FIELDS (derived->backend_decl))
2094 return derived->backend_decl;
2096 /* Build the type member list. Install the newly created RECORD_TYPE
2097 node as DECL_CONTEXT of each FIELD_DECL. */
2098 fieldlist = NULL_TREE;
2099 for (c = derived->components; c; c = c->next)
2101 if (c->attr.proc_pointer)
2102 field_type = gfc_get_ppc_type (c);
2103 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2104 field_type = c->ts.u.derived->backend_decl;
2105 else
2107 if (c->ts.type == BT_CHARACTER)
2109 /* Evaluate the string length. */
2110 gfc_conv_const_charlen (c->ts.u.cl);
2111 gcc_assert (c->ts.u.cl->backend_decl);
2114 field_type = gfc_typenode_for_spec (&c->ts);
2117 /* This returns an array descriptor type. Initialization may be
2118 required. */
2119 if (c->attr.dimension && !c->attr.proc_pointer)
2121 if (c->attr.pointer || c->attr.allocatable)
2123 enum gfc_array_kind akind;
2124 if (c->attr.pointer)
2125 akind = GFC_ARRAY_POINTER;
2126 else
2127 akind = GFC_ARRAY_ALLOCATABLE;
2128 /* Pointers to arrays aren't actually pointer types. The
2129 descriptors are separate, but the data is common. */
2130 field_type = gfc_build_array_type (field_type, c->as, akind,
2131 !c->attr.target
2132 && !c->attr.pointer);
2134 else
2135 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2136 PACKED_STATIC,
2137 !c->attr.target);
2139 else if ((c->attr.pointer || c->attr.allocatable)
2140 && !c->attr.proc_pointer)
2141 field_type = build_pointer_type (field_type);
2143 field = gfc_add_field_to_struct (&fieldlist, typenode,
2144 get_identifier (c->name), field_type);
2145 if (c->loc.lb)
2146 gfc_set_decl_location (field, &c->loc);
2147 else if (derived->declared_at.lb)
2148 gfc_set_decl_location (field, &derived->declared_at);
2150 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2152 gcc_assert (field);
2153 if (!c->backend_decl)
2154 c->backend_decl = field;
2157 /* Now we have the final fieldlist. Record it, then lay out the
2158 derived type, including the fields. */
2159 TYPE_FIELDS (typenode) = fieldlist;
2160 if (canonical)
2161 TYPE_CANONICAL (typenode) = canonical;
2163 gfc_finish_type (typenode);
2164 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2165 if (derived->module && derived->ns->proc_name
2166 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2168 if (derived->ns->proc_name->backend_decl
2169 && TREE_CODE (derived->ns->proc_name->backend_decl)
2170 == NAMESPACE_DECL)
2172 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2173 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2174 = derived->ns->proc_name->backend_decl;
2178 derived->backend_decl = typenode;
2180 copy_derived_types:
2182 for (dt = gfc_derived_types; dt; dt = dt->next)
2183 copy_dt_decls_ifequal (derived, dt->derived, false);
2185 return derived->backend_decl;
2190 gfc_return_by_reference (gfc_symbol * sym)
2192 if (!sym->attr.function)
2193 return 0;
2195 if (sym->attr.dimension)
2196 return 1;
2198 if (sym->ts.type == BT_CHARACTER
2199 && !sym->attr.is_bind_c
2200 && (!sym->attr.result
2201 || !sym->ns->proc_name
2202 || !sym->ns->proc_name->attr.is_bind_c))
2203 return 1;
2205 /* Possibly return complex numbers by reference for g77 compatibility.
2206 We don't do this for calls to intrinsics (as the library uses the
2207 -fno-f2c calling convention), nor for calls to functions which always
2208 require an explicit interface, as no compatibility problems can
2209 arise there. */
2210 if (gfc_option.flag_f2c
2211 && sym->ts.type == BT_COMPLEX
2212 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2213 return 1;
2215 return 0;
2218 static tree
2219 gfc_get_mixed_entry_union (gfc_namespace *ns)
2221 tree type;
2222 tree decl;
2223 tree fieldlist;
2224 char name[GFC_MAX_SYMBOL_LEN + 1];
2225 gfc_entry_list *el, *el2;
2227 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2228 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2230 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2232 /* Build the type node. */
2233 type = make_node (UNION_TYPE);
2235 TYPE_NAME (type) = get_identifier (name);
2236 fieldlist = NULL;
2238 for (el = ns->entries; el; el = el->next)
2240 /* Search for duplicates. */
2241 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2242 if (el2->sym->result == el->sym->result)
2243 break;
2245 if (el == el2)
2247 decl = build_decl (input_location,
2248 FIELD_DECL,
2249 get_identifier (el->sym->result->name),
2250 gfc_sym_type (el->sym->result));
2251 DECL_CONTEXT (decl) = type;
2252 fieldlist = chainon (fieldlist, decl);
2256 /* Finish off the type. */
2257 TYPE_FIELDS (type) = fieldlist;
2259 gfc_finish_type (type);
2260 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2261 return type;
2264 tree
2265 gfc_get_function_type (gfc_symbol * sym)
2267 tree type;
2268 tree typelist;
2269 gfc_formal_arglist *f;
2270 gfc_symbol *arg;
2271 int nstr;
2272 int alternate_return;
2274 /* Make sure this symbol is a function, a subroutine or the main
2275 program. */
2276 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2277 || sym->attr.flavor == FL_PROGRAM);
2279 if (sym->backend_decl)
2280 return TREE_TYPE (sym->backend_decl);
2282 nstr = 0;
2283 alternate_return = 0;
2284 typelist = NULL_TREE;
2286 if (sym->attr.entry_master)
2288 /* Additional parameter for selecting an entry point. */
2289 typelist = gfc_chainon_list (typelist, gfc_array_index_type);
2292 if (sym->result)
2293 arg = sym->result;
2294 else
2295 arg = sym;
2297 if (arg->ts.type == BT_CHARACTER)
2298 gfc_conv_const_charlen (arg->ts.u.cl);
2300 /* Some functions we use an extra parameter for the return value. */
2301 if (gfc_return_by_reference (sym))
2303 type = gfc_sym_type (arg);
2304 if (arg->ts.type == BT_COMPLEX
2305 || arg->attr.dimension
2306 || arg->ts.type == BT_CHARACTER)
2307 type = build_reference_type (type);
2309 typelist = gfc_chainon_list (typelist, type);
2310 if (arg->ts.type == BT_CHARACTER)
2311 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2314 /* Build the argument types for the function. */
2315 for (f = sym->formal; f; f = f->next)
2317 arg = f->sym;
2318 if (arg)
2320 /* Evaluate constant character lengths here so that they can be
2321 included in the type. */
2322 if (arg->ts.type == BT_CHARACTER)
2323 gfc_conv_const_charlen (arg->ts.u.cl);
2325 if (arg->attr.flavor == FL_PROCEDURE)
2327 type = gfc_get_function_type (arg);
2328 type = build_pointer_type (type);
2330 else
2331 type = gfc_sym_type (arg);
2333 /* Parameter Passing Convention
2335 We currently pass all parameters by reference.
2336 Parameters with INTENT(IN) could be passed by value.
2337 The problem arises if a function is called via an implicit
2338 prototype. In this situation the INTENT is not known.
2339 For this reason all parameters to global functions must be
2340 passed by reference. Passing by value would potentially
2341 generate bad code. Worse there would be no way of telling that
2342 this code was bad, except that it would give incorrect results.
2344 Contained procedures could pass by value as these are never
2345 used without an explicit interface, and cannot be passed as
2346 actual parameters for a dummy procedure. */
2347 if (arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2348 nstr++;
2349 typelist = gfc_chainon_list (typelist, type);
2351 else
2353 if (sym->attr.subroutine)
2354 alternate_return = 1;
2358 /* Add hidden string length parameters. */
2359 while (nstr--)
2360 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2362 if (typelist)
2363 typelist = gfc_chainon_list (typelist, void_type_node);
2365 if (alternate_return)
2366 type = integer_type_node;
2367 else if (!sym->attr.function || gfc_return_by_reference (sym))
2368 type = void_type_node;
2369 else if (sym->attr.mixed_entry_master)
2370 type = gfc_get_mixed_entry_union (sym->ns);
2371 else if (gfc_option.flag_f2c
2372 && sym->ts.type == BT_REAL
2373 && sym->ts.kind == gfc_default_real_kind
2374 && !sym->attr.always_explicit)
2376 /* Special case: f2c calling conventions require that (scalar)
2377 default REAL functions return the C type double instead. f2c
2378 compatibility is only an issue with functions that don't
2379 require an explicit interface, as only these could be
2380 implemented in Fortran 77. */
2381 sym->ts.kind = gfc_default_double_kind;
2382 type = gfc_typenode_for_spec (&sym->ts);
2383 sym->ts.kind = gfc_default_real_kind;
2385 else if (sym->result && sym->result->attr.proc_pointer)
2386 /* Procedure pointer return values. */
2388 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2390 /* Unset proc_pointer as gfc_get_function_type
2391 is called recursively. */
2392 sym->result->attr.proc_pointer = 0;
2393 type = build_pointer_type (gfc_get_function_type (sym->result));
2394 sym->result->attr.proc_pointer = 1;
2396 else
2397 type = gfc_sym_type (sym->result);
2399 else
2400 type = gfc_sym_type (sym);
2402 type = build_function_type (type, typelist);
2404 return type;
2407 /* Language hooks for middle-end access to type nodes. */
2409 /* Return an integer type with BITS bits of precision,
2410 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2412 tree
2413 gfc_type_for_size (unsigned bits, int unsignedp)
2415 if (!unsignedp)
2417 int i;
2418 for (i = 0; i <= MAX_INT_KINDS; ++i)
2420 tree type = gfc_integer_types[i];
2421 if (type && bits == TYPE_PRECISION (type))
2422 return type;
2425 /* Handle TImode as a special case because it is used by some backends
2426 (e.g. ARM) even though it is not available for normal use. */
2427 #if HOST_BITS_PER_WIDE_INT >= 64
2428 if (bits == TYPE_PRECISION (intTI_type_node))
2429 return intTI_type_node;
2430 #endif
2432 else
2434 if (bits == TYPE_PRECISION (unsigned_intQI_type_node))
2435 return unsigned_intQI_type_node;
2436 if (bits == TYPE_PRECISION (unsigned_intHI_type_node))
2437 return unsigned_intHI_type_node;
2438 if (bits == TYPE_PRECISION (unsigned_intSI_type_node))
2439 return unsigned_intSI_type_node;
2440 if (bits == TYPE_PRECISION (unsigned_intDI_type_node))
2441 return unsigned_intDI_type_node;
2442 if (bits == TYPE_PRECISION (unsigned_intTI_type_node))
2443 return unsigned_intTI_type_node;
2446 return NULL_TREE;
2449 /* Return a data type that has machine mode MODE. If the mode is an
2450 integer, then UNSIGNEDP selects between signed and unsigned types. */
2452 tree
2453 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2455 int i;
2456 tree *base;
2458 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2459 base = gfc_real_types;
2460 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2461 base = gfc_complex_types;
2462 else if (SCALAR_INT_MODE_P (mode))
2463 return gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2464 else if (VECTOR_MODE_P (mode))
2466 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2467 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2468 if (inner_type != NULL_TREE)
2469 return build_vector_type_for_mode (inner_type, mode);
2470 return NULL_TREE;
2472 else
2473 return NULL_TREE;
2475 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2477 tree type = base[i];
2478 if (type && mode == TYPE_MODE (type))
2479 return type;
2482 return NULL_TREE;
2485 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2486 in that case. */
2488 bool
2489 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2491 int rank, dim;
2492 bool indirect = false;
2493 tree etype, ptype, field, t, base_decl;
2494 tree data_off, dim_off, dim_size, elem_size;
2495 tree lower_suboff, upper_suboff, stride_suboff;
2497 if (! GFC_DESCRIPTOR_TYPE_P (type))
2499 if (! POINTER_TYPE_P (type))
2500 return false;
2501 type = TREE_TYPE (type);
2502 if (! GFC_DESCRIPTOR_TYPE_P (type))
2503 return false;
2504 indirect = true;
2507 rank = GFC_TYPE_ARRAY_RANK (type);
2508 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
2509 return false;
2511 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
2512 gcc_assert (POINTER_TYPE_P (etype));
2513 etype = TREE_TYPE (etype);
2514 gcc_assert (TREE_CODE (etype) == ARRAY_TYPE);
2515 etype = TREE_TYPE (etype);
2516 /* Can't handle variable sized elements yet. */
2517 if (int_size_in_bytes (etype) <= 0)
2518 return false;
2519 /* Nor non-constant lower bounds in assumed shape arrays. */
2520 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE)
2522 for (dim = 0; dim < rank; dim++)
2523 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
2524 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
2525 return false;
2528 memset (info, '\0', sizeof (*info));
2529 info->ndimensions = rank;
2530 info->element_type = etype;
2531 ptype = build_pointer_type (gfc_array_index_type);
2532 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
2533 if (!base_decl)
2535 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
2536 indirect ? build_pointer_type (ptype) : ptype);
2537 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
2539 info->base_decl = base_decl;
2540 if (indirect)
2541 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
2543 if (GFC_TYPE_ARRAY_SPAN (type))
2544 elem_size = GFC_TYPE_ARRAY_SPAN (type);
2545 else
2546 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
2547 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
2548 data_off = byte_position (field);
2549 field = TREE_CHAIN (field);
2550 field = TREE_CHAIN (field);
2551 field = TREE_CHAIN (field);
2552 dim_off = byte_position (field);
2553 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
2554 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
2555 stride_suboff = byte_position (field);
2556 field = TREE_CHAIN (field);
2557 lower_suboff = byte_position (field);
2558 field = TREE_CHAIN (field);
2559 upper_suboff = byte_position (field);
2561 t = base_decl;
2562 if (!integer_zerop (data_off))
2563 t = build2 (POINTER_PLUS_EXPR, ptype, t, data_off);
2564 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
2565 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
2566 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
2567 info->allocated = build2 (NE_EXPR, boolean_type_node,
2568 info->data_location, null_pointer_node);
2569 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER)
2570 info->associated = build2 (NE_EXPR, boolean_type_node,
2571 info->data_location, null_pointer_node);
2573 for (dim = 0; dim < rank; dim++)
2575 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2576 size_binop (PLUS_EXPR, dim_off, lower_suboff));
2577 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2578 info->dimen[dim].lower_bound = t;
2579 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2580 size_binop (PLUS_EXPR, dim_off, upper_suboff));
2581 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2582 info->dimen[dim].upper_bound = t;
2583 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE)
2585 /* Assumed shape arrays have known lower bounds. */
2586 info->dimen[dim].upper_bound
2587 = build2 (MINUS_EXPR, gfc_array_index_type,
2588 info->dimen[dim].upper_bound,
2589 info->dimen[dim].lower_bound);
2590 info->dimen[dim].lower_bound
2591 = fold_convert (gfc_array_index_type,
2592 GFC_TYPE_ARRAY_LBOUND (type, dim));
2593 info->dimen[dim].upper_bound
2594 = build2 (PLUS_EXPR, gfc_array_index_type,
2595 info->dimen[dim].lower_bound,
2596 info->dimen[dim].upper_bound);
2598 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2599 size_binop (PLUS_EXPR, dim_off, stride_suboff));
2600 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2601 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
2602 info->dimen[dim].stride = t;
2603 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
2606 return true;
2609 #include "gt-fortran-trans-types.h"