jit: document union types
[official-gcc.git] / gcc / graphite-interchange.c
blob7a51ca438212320ce5e39c1397de3f4cfce510e5
1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
4 Copyright (C) 2009-2015 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 #include "config.h"
26 #ifdef HAVE_isl
27 #include <isl/aff.h>
28 #include <isl/set.h>
29 #include <isl/map.h>
30 #include <isl/union_map.h>
31 #include <isl/ilp.h>
32 #include <isl/val.h>
34 /* Since ISL-0.13, the extern is in val_gmp.h. */
35 #if !defined(HAVE_ISL_SCHED_CONSTRAINTS_COMPUTE_SCHEDULE) && defined(__cplusplus)
36 extern "C" {
37 #endif
38 #include <isl/val_gmp.h>
39 #if !defined(HAVE_ISL_SCHED_CONSTRAINTS_COMPUTE_SCHEDULE) && defined(__cplusplus)
41 #endif
42 #endif
44 #include "system.h"
45 #include "coretypes.h"
46 #include "alias.h"
47 #include "symtab.h"
48 #include "options.h"
49 #include "tree.h"
50 #include "fold-const.h"
51 #include "predict.h"
52 #include "tm.h"
53 #include "hard-reg-set.h"
54 #include "function.h"
55 #include "dominance.h"
56 #include "cfg.h"
57 #include "basic-block.h"
58 #include "tree-ssa-alias.h"
59 #include "internal-fn.h"
60 #include "gimple-expr.h"
61 #include "gimple.h"
62 #include "gimple-iterator.h"
63 #include "tree-ssa-loop.h"
64 #include "dumpfile.h"
65 #include "cfgloop.h"
66 #include "tree-chrec.h"
67 #include "tree-data-ref.h"
68 #include "tree-scalar-evolution.h"
69 #include "sese.h"
71 #ifdef HAVE_isl
72 #include "graphite-poly.h"
74 /* XXX isl rewrite following comment */
75 /* Builds a linear expression, of dimension DIM, representing PDR's
76 memory access:
78 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
80 For an array A[10][20] with two subscript locations s0 and s1, the
81 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
82 corresponds to a memory stride of 20.
84 OFFSET is a number of dimensions to prepend before the
85 subscript dimensions: s_0, s_1, ..., s_n.
87 Thus, the final linear expression has the following format:
88 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
89 where the expression itself is:
90 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
92 static isl_constraint *
93 build_linearized_memory_access (isl_map *map, poly_dr_p pdr)
95 isl_constraint *res;
96 isl_local_space *ls = isl_local_space_from_space (isl_map_get_space (map));
97 unsigned offset, nsubs;
98 int i;
99 isl_ctx *ctx;
101 isl_val *size, *subsize, *size1;
103 res = isl_equality_alloc (ls);
104 ctx = isl_local_space_get_ctx (ls);
105 size = isl_val_int_from_ui (ctx, 1);
107 nsubs = isl_set_dim (pdr->extent, isl_dim_set);
108 /* -1 for the already included L dimension. */
109 offset = isl_map_dim (map, isl_dim_out) - 1 - nsubs;
110 res = isl_constraint_set_coefficient_si (res, isl_dim_out, offset + nsubs, -1);
111 /* Go through all subscripts from last to first. First dimension
112 is the alias set, ignore it. */
113 for (i = nsubs - 1; i >= 1; i--)
115 isl_space *dc;
116 isl_aff *aff;
118 size1 = isl_val_copy (size);
119 res = isl_constraint_set_coefficient_val (res, isl_dim_out, offset + i, size);
120 dc = isl_set_get_space (pdr->extent);
121 aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
122 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, i, 1);
123 subsize = isl_set_max_val (pdr->extent, aff);
124 isl_aff_free (aff);
125 size = isl_val_mul (size1, subsize);
128 isl_val_free (size);
130 return res;
133 /* Set STRIDE to the stride of PDR in memory by advancing by one in
134 the loop at DEPTH. */
136 static void
137 pdr_stride_in_loop (mpz_t stride, graphite_dim_t depth, poly_dr_p pdr)
139 poly_bb_p pbb = PDR_PBB (pdr);
140 isl_map *map;
141 isl_set *set;
142 isl_aff *aff;
143 isl_space *dc;
144 isl_constraint *lma, *c;
145 isl_val *islstride;
146 graphite_dim_t time_depth;
147 unsigned offset, nt;
148 unsigned i;
149 /* XXX isl rewrite following comments. */
150 /* Builds a partial difference equations and inserts them
151 into pointset powerset polyhedron P. Polyhedron is assumed
152 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
154 TIME_DEPTH is the time dimension w.r.t. which we are
155 differentiating.
156 OFFSET represents the number of dimensions between
157 columns t_{time_depth} and t'_{time_depth}.
158 DIM_SCTR is the number of scattering dimensions. It is
159 essentially the dimensionality of the T vector.
161 The following equations are inserted into the polyhedron P:
162 | t_1 = t_1'
163 | ...
164 | t_{time_depth-1} = t'_{time_depth-1}
165 | t_{time_depth} = t'_{time_depth} + 1
166 | t_{time_depth+1} = t'_{time_depth + 1}
167 | ...
168 | t_{dim_sctr} = t'_{dim_sctr}. */
170 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
171 This is the core part of this alogrithm, since this
172 constraint asks for the memory access stride (difference)
173 between two consecutive points in time dimensions. */
175 /* Add equalities:
176 | t1 = t1'
177 | ...
178 | t_{time_depth-1} = t'_{time_depth-1}
179 | t_{time_depth+1} = t'_{time_depth+1}
180 | ...
181 | t_{dim_sctr} = t'_{dim_sctr}
183 This means that all the time dimensions are equal except for
184 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
185 step. More to this: we should be careful not to add equalities
186 to the 'coupled' dimensions, which happens when the one dimension
187 is stripmined dimension, and the other dimension corresponds
188 to the point loop inside stripmined dimension. */
190 /* pdr->accesses: [P1..nb_param,I1..nb_domain]->[a,S1..nb_subscript]
191 ??? [P] not used for PDRs?
192 pdr->extent: [a,S1..nb_subscript]
193 pbb->domain: [P1..nb_param,I1..nb_domain]
194 pbb->transformed: [P1..nb_param,I1..nb_domain]->[T1..Tnb_sctr]
195 [T] includes local vars (currently unused)
197 First we create [P,I] -> [T,a,S]. */
199 map = isl_map_flat_range_product (isl_map_copy (pbb->transformed),
200 isl_map_copy (pdr->accesses));
201 /* Add a dimension for L: [P,I] -> [T,a,S,L].*/
202 map = isl_map_add_dims (map, isl_dim_out, 1);
203 /* Build a constraint for "lma[S] - L == 0", effectively calculating
204 L in terms of subscripts. */
205 lma = build_linearized_memory_access (map, pdr);
206 /* And add it to the map, so we now have:
207 [P,I] -> [T,a,S,L] : lma([S]) == L. */
208 map = isl_map_add_constraint (map, lma);
210 /* Then we create [P,I,P',I'] -> [T,a,S,L,T',a',S',L']. */
211 map = isl_map_flat_product (map, isl_map_copy (map));
213 /* Now add the equality T[time_depth] == T'[time_depth]+1. This will
214 force L' to be the linear address at T[time_depth] + 1. */
215 time_depth = psct_dynamic_dim (pbb, depth);
216 /* Length of [a,S] plus [L] ... */
217 offset = 1 + isl_map_dim (pdr->accesses, isl_dim_out);
218 /* ... plus [T]. */
219 offset += isl_map_dim (pbb->transformed, isl_dim_out);
221 c = isl_equality_alloc (isl_local_space_from_space (isl_map_get_space (map)));
222 c = isl_constraint_set_coefficient_si (c, isl_dim_out, time_depth, 1);
223 c = isl_constraint_set_coefficient_si (c, isl_dim_out,
224 offset + time_depth, -1);
225 c = isl_constraint_set_constant_si (c, 1);
226 map = isl_map_add_constraint (map, c);
228 /* Now we equate most of the T/T' elements (making PITaSL nearly
229 the same is (PITaSL)', except for one dimension, namely for 'depth'
230 (an index into [I]), after translating to index into [T]. Take care
231 to not produce an empty map, which indicates we wanted to equate
232 two dimensions that are already coupled via the above time_depth
233 dimension. Happens with strip mining where several scatter dimension
234 are interdependend. */
235 /* Length of [T]. */
236 nt = pbb_nb_scattering_transform (pbb) + pbb_nb_local_vars (pbb);
237 for (i = 0; i < nt; i++)
238 if (i != time_depth)
240 isl_map *temp = isl_map_equate (isl_map_copy (map),
241 isl_dim_out, i,
242 isl_dim_out, offset + i);
243 if (isl_map_is_empty (temp))
244 isl_map_free (temp);
245 else
247 isl_map_free (map);
248 map = temp;
252 /* Now maximize the expression L' - L. */
253 set = isl_map_range (map);
254 dc = isl_set_get_space (set);
255 aff = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
256 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset - 1, -1);
257 aff = isl_aff_set_coefficient_si (aff, isl_dim_in, offset + offset - 1, 1);
258 islstride = isl_set_max_val (set, aff);
259 isl_val_get_num_gmp (islstride, stride);
260 isl_val_free (islstride);
261 isl_aff_free (aff);
262 isl_set_free (set);
264 if (dump_file && (dump_flags & TDF_DETAILS))
266 gmp_fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d: %Zd ",
267 pbb_index (pbb), PDR_ID (pdr), (int) depth, stride);
271 /* Sets STRIDES to the sum of all the strides of the data references
272 accessed in LOOP at DEPTH. */
274 static void
275 memory_strides_in_loop_1 (lst_p loop, graphite_dim_t depth, mpz_t strides)
277 int i, j;
278 lst_p l;
279 poly_dr_p pdr;
280 mpz_t s, n;
282 mpz_init (s);
283 mpz_init (n);
285 FOR_EACH_VEC_ELT (LST_SEQ (loop), j, l)
286 if (LST_LOOP_P (l))
287 memory_strides_in_loop_1 (l, depth, strides);
288 else
289 FOR_EACH_VEC_ELT (PBB_DRS (LST_PBB (l)), i, pdr)
291 pdr_stride_in_loop (s, depth, pdr);
292 mpz_set_si (n, PDR_NB_REFS (pdr));
293 mpz_mul (s, s, n);
294 mpz_add (strides, strides, s);
297 mpz_clear (s);
298 mpz_clear (n);
301 /* Sets STRIDES to the sum of all the strides of the data references
302 accessed in LOOP at DEPTH. */
304 static void
305 memory_strides_in_loop (lst_p loop, graphite_dim_t depth, mpz_t strides)
307 if (mpz_cmp_si (loop->memory_strides, -1) == 0)
309 mpz_set_si (strides, 0);
310 memory_strides_in_loop_1 (loop, depth, strides);
312 else
313 mpz_set (strides, loop->memory_strides);
316 /* Return true when the interchange of loops LOOP1 and LOOP2 is
317 profitable.
319 Example:
321 | int a[100][100];
323 | int
324 | foo (int N)
326 | int j;
327 | int i;
329 | for (i = 0; i < N; i++)
330 | for (j = 0; j < N; j++)
331 | a[j][2 * i] += 1;
333 | return a[N][12];
336 The data access A[j][i] is described like this:
338 | i j N a s0 s1 1
339 | 0 0 0 1 0 0 -5 = 0
340 | 0 -1 0 0 1 0 0 = 0
341 |-2 0 0 0 0 1 0 = 0
342 | 0 0 0 0 1 0 0 >= 0
343 | 0 0 0 0 0 1 0 >= 0
344 | 0 0 0 0 -1 0 100 >= 0
345 | 0 0 0 0 0 -1 100 >= 0
347 The linearized memory access L to A[100][100] is:
349 | i j N a s0 s1 1
350 | 0 0 0 0 100 1 0
352 TODO: the shown format is not valid as it does not show the fact
353 that the iteration domain "i j" is transformed using the scattering.
355 Next, to measure the impact of iterating once in loop "i", we build
356 a maximization problem: first, we add to DR accesses the dimensions
357 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
358 L1 and L2 are the linearized memory access functions.
360 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
361 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
362 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
363 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
364 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
365 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
366 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
367 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
368 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
370 Then, we generate the polyhedron P2 by interchanging the dimensions
371 (s0, s2), (s1, s3), (L1, L2), (k, i)
373 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
374 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
375 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
376 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
377 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
378 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
379 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
380 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
381 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
383 then we add to P2 the equality k = i + 1:
385 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
387 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
389 Similarly, to determine the impact of one iteration on loop "j", we
390 interchange (k, j), we add "k = j + 1", and we compute D2 the
391 maximal value of the difference.
393 Finally, the profitability test is D1 < D2: if in the outer loop
394 the strides are smaller than in the inner loop, then it is
395 profitable to interchange the loops at DEPTH1 and DEPTH2. */
397 static bool
398 lst_interchange_profitable_p (lst_p nest, int depth1, int depth2)
400 mpz_t d1, d2;
401 bool res;
403 gcc_assert (depth1 < depth2);
405 mpz_init (d1);
406 mpz_init (d2);
408 memory_strides_in_loop (nest, depth1, d1);
409 memory_strides_in_loop (nest, depth2, d2);
411 res = mpz_cmp (d1, d2) < 0;
413 mpz_clear (d1);
414 mpz_clear (d2);
416 return res;
419 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
420 scattering and assigns the resulting polyhedron to the transformed
421 scattering. */
423 static void
424 pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
425 poly_bb_p pbb)
427 unsigned i;
428 unsigned dim1 = psct_dynamic_dim (pbb, depth1);
429 unsigned dim2 = psct_dynamic_dim (pbb, depth2);
430 isl_space *d = isl_map_get_space (pbb->transformed);
431 isl_space *d1 = isl_space_range (d);
432 unsigned n = isl_space_dim (d1, isl_dim_out);
433 isl_space *d2 = isl_space_add_dims (d1, isl_dim_in, n);
434 isl_map *x = isl_map_universe (d2);
436 x = isl_map_equate (x, isl_dim_in, dim1, isl_dim_out, dim2);
437 x = isl_map_equate (x, isl_dim_in, dim2, isl_dim_out, dim1);
439 for (i = 0; i < n; i++)
440 if (i != dim1 && i != dim2)
441 x = isl_map_equate (x, isl_dim_in, i, isl_dim_out, i);
443 pbb->transformed = isl_map_apply_range (pbb->transformed, x);
446 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
447 the statements below LST. */
449 static void
450 lst_apply_interchange (lst_p lst, int depth1, int depth2)
452 if (!lst)
453 return;
455 if (LST_LOOP_P (lst))
457 int i;
458 lst_p l;
460 FOR_EACH_VEC_ELT (LST_SEQ (lst), i, l)
461 lst_apply_interchange (l, depth1, depth2);
463 else
464 pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
467 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
468 perfect: i.e. there are no sequence of statements. */
470 static bool
471 lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
473 if (loop1 == loop2)
474 return true;
476 if (!LST_LOOP_P (loop1))
477 return false;
479 return LST_SEQ (loop1).length () == 1
480 && lst_perfectly_nested_p (LST_SEQ (loop1)[0], loop2);
483 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
484 nest. To continue the naming tradition, this function is called
485 after perfect_nestify. NEST is set to the perfectly nested loop
486 that is created. BEFORE/AFTER are set to the loops distributed
487 before/after the loop NEST. */
489 static void
490 lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
491 lst_p *nest, lst_p *after)
493 poly_bb_p first, last;
495 gcc_assert (loop1 && loop2
496 && loop1 != loop2
497 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
499 first = LST_PBB (lst_find_first_pbb (loop2));
500 last = LST_PBB (lst_find_last_pbb (loop2));
502 *before = copy_lst (loop1);
503 *nest = copy_lst (loop1);
504 *after = copy_lst (loop1);
506 lst_remove_all_before_including_pbb (*before, first, false);
507 lst_remove_all_before_including_pbb (*after, last, true);
509 lst_remove_all_before_excluding_pbb (*nest, first, true);
510 lst_remove_all_before_excluding_pbb (*nest, last, false);
512 if (lst_empty_p (*before))
514 free_lst (*before);
515 *before = NULL;
517 if (lst_empty_p (*after))
519 free_lst (*after);
520 *after = NULL;
522 if (lst_empty_p (*nest))
524 free_lst (*nest);
525 *nest = NULL;
529 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
530 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
531 interchange. */
533 static bool
534 lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2)
536 int depth1 = lst_depth (loop1);
537 int depth2 = lst_depth (loop2);
538 lst_p transformed;
540 lst_p before = NULL, nest = NULL, after = NULL;
542 if (!lst_perfectly_nested_p (loop1, loop2))
543 lst_perfect_nestify (loop1, loop2, &before, &nest, &after);
545 if (!lst_interchange_profitable_p (loop2, depth1, depth2))
546 return false;
548 lst_apply_interchange (loop2, depth1, depth2);
550 /* Sync the transformed LST information and the PBB scatterings
551 before using the scatterings in the data dependence analysis. */
552 if (before || nest || after)
554 transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
555 before, nest, after);
556 lst_update_scattering (transformed);
557 free_lst (transformed);
560 if (graphite_legal_transform (scop))
562 if (dump_file && (dump_flags & TDF_DETAILS))
563 fprintf (dump_file,
564 "Loops at depths %d and %d will be interchanged.\n",
565 depth1, depth2);
567 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
568 lst_insert_in_sequence (before, loop1, true);
569 lst_insert_in_sequence (after, loop1, false);
571 if (nest)
573 lst_replace (loop1, nest);
574 free_lst (loop1);
577 return true;
580 /* Undo the transform. */
581 free_lst (before);
582 free_lst (nest);
583 free_lst (after);
584 lst_apply_interchange (loop2, depth2, depth1);
585 return false;
588 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
589 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
591 static bool
592 lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
593 lst_p inner_father)
595 int inner;
596 lst_p loop1, loop2;
598 gcc_assert (outer_father
599 && LST_LOOP_P (outer_father)
600 && LST_LOOP_P (LST_SEQ (outer_father)[outer])
601 && inner_father
602 && LST_LOOP_P (inner_father));
604 loop1 = LST_SEQ (outer_father)[outer];
606 FOR_EACH_VEC_ELT (LST_SEQ (inner_father), inner, loop2)
607 if (LST_LOOP_P (loop2)
608 && (lst_try_interchange_loops (scop, loop1, loop2)
609 || lst_interchange_select_inner (scop, outer_father, outer, loop2)))
610 return true;
612 return false;
615 /* Interchanges all the loops of LOOP and the loops of its body that
616 are considered profitable to interchange. Return the number of
617 interchanged loops. OUTER is the index in LST_SEQ (LOOP) that
618 points to the next outer loop to be considered for interchange. */
620 static int
621 lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
623 lst_p l;
624 int res = 0;
625 int i = 0;
626 lst_p father;
628 if (!loop || !LST_LOOP_P (loop))
629 return 0;
631 father = LST_LOOP_FATHER (loop);
632 if (father)
634 while (lst_interchange_select_inner (scop, father, outer, loop))
636 res++;
637 loop = LST_SEQ (father)[outer];
641 if (LST_LOOP_P (loop))
642 FOR_EACH_VEC_ELT (LST_SEQ (loop), i, l)
643 if (LST_LOOP_P (l))
644 res += lst_interchange_select_outer (scop, l, i);
646 return res;
649 /* Interchanges all the loop depths that are considered profitable for
650 SCOP. Return the number of interchanged loops. */
653 scop_do_interchange (scop_p scop)
655 int res = lst_interchange_select_outer
656 (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
658 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
660 return res;
664 #endif