2017-03-18 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / lower-subreg.c
bloba4dcec51bb563a75db52f24d4ef2f6b7f3c05b90
1 /* Decompose multiword subregs.
2 Copyright (C) 2007-2017 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@redhat.com>
4 Ian Lance Taylor <iant@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "cfghooks.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "expmed.h"
33 #include "insn-config.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
36 #include "cfgrtl.h"
37 #include "cfgbuild.h"
38 #include "dce.h"
39 #include "expr.h"
40 #include "tree-pass.h"
41 #include "lower-subreg.h"
42 #include "rtl-iter.h"
45 /* Decompose multi-word pseudo-registers into individual
46 pseudo-registers when possible and profitable. This is possible
47 when all the uses of a multi-word register are via SUBREG, or are
48 copies of the register to another location. Breaking apart the
49 register permits more CSE and permits better register allocation.
50 This is profitable if the machine does not have move instructions
51 to do this.
53 This pass only splits moves with modes that are wider than
54 word_mode and ASHIFTs, LSHIFTRTs, ASHIFTRTs and ZERO_EXTENDs with
55 integer modes that are twice the width of word_mode. The latter
56 could be generalized if there was a need to do this, but the trend in
57 architectures is to not need this.
59 There are two useful preprocessor defines for use by maintainers:
61 #define LOG_COSTS 1
63 if you wish to see the actual cost estimates that are being used
64 for each mode wider than word mode and the cost estimates for zero
65 extension and the shifts. This can be useful when port maintainers
66 are tuning insn rtx costs.
68 #define FORCE_LOWERING 1
70 if you wish to test the pass with all the transformation forced on.
71 This can be useful for finding bugs in the transformations. */
73 #define LOG_COSTS 0
74 #define FORCE_LOWERING 0
76 /* Bit N in this bitmap is set if regno N is used in a context in
77 which we can decompose it. */
78 static bitmap decomposable_context;
80 /* Bit N in this bitmap is set if regno N is used in a context in
81 which it can not be decomposed. */
82 static bitmap non_decomposable_context;
84 /* Bit N in this bitmap is set if regno N is used in a subreg
85 which changes the mode but not the size. This typically happens
86 when the register accessed as a floating-point value; we want to
87 avoid generating accesses to its subwords in integer modes. */
88 static bitmap subreg_context;
90 /* Bit N in the bitmap in element M of this array is set if there is a
91 copy from reg M to reg N. */
92 static vec<bitmap> reg_copy_graph;
94 struct target_lower_subreg default_target_lower_subreg;
95 #if SWITCHABLE_TARGET
96 struct target_lower_subreg *this_target_lower_subreg
97 = &default_target_lower_subreg;
98 #endif
100 #define twice_word_mode \
101 this_target_lower_subreg->x_twice_word_mode
102 #define choices \
103 this_target_lower_subreg->x_choices
105 /* RTXes used while computing costs. */
106 struct cost_rtxes {
107 /* Source and target registers. */
108 rtx source;
109 rtx target;
111 /* A twice_word_mode ZERO_EXTEND of SOURCE. */
112 rtx zext;
114 /* A shift of SOURCE. */
115 rtx shift;
117 /* A SET of TARGET. */
118 rtx set;
121 /* Return the cost of a CODE shift in mode MODE by OP1 bits, using the
122 rtxes in RTXES. SPEED_P selects between the speed and size cost. */
124 static int
125 shift_cost (bool speed_p, struct cost_rtxes *rtxes, enum rtx_code code,
126 machine_mode mode, int op1)
128 PUT_CODE (rtxes->shift, code);
129 PUT_MODE (rtxes->shift, mode);
130 PUT_MODE (rtxes->source, mode);
131 XEXP (rtxes->shift, 1) = GEN_INT (op1);
132 return set_src_cost (rtxes->shift, mode, speed_p);
135 /* For each X in the range [0, BITS_PER_WORD), set SPLITTING[X]
136 to true if it is profitable to split a double-word CODE shift
137 of X + BITS_PER_WORD bits. SPEED_P says whether we are testing
138 for speed or size profitability.
140 Use the rtxes in RTXES to calculate costs. WORD_MOVE_ZERO_COST is
141 the cost of moving zero into a word-mode register. WORD_MOVE_COST
142 is the cost of moving between word registers. */
144 static void
145 compute_splitting_shift (bool speed_p, struct cost_rtxes *rtxes,
146 bool *splitting, enum rtx_code code,
147 int word_move_zero_cost, int word_move_cost)
149 int wide_cost, narrow_cost, upper_cost, i;
151 for (i = 0; i < BITS_PER_WORD; i++)
153 wide_cost = shift_cost (speed_p, rtxes, code, twice_word_mode,
154 i + BITS_PER_WORD);
155 if (i == 0)
156 narrow_cost = word_move_cost;
157 else
158 narrow_cost = shift_cost (speed_p, rtxes, code, word_mode, i);
160 if (code != ASHIFTRT)
161 upper_cost = word_move_zero_cost;
162 else if (i == BITS_PER_WORD - 1)
163 upper_cost = word_move_cost;
164 else
165 upper_cost = shift_cost (speed_p, rtxes, code, word_mode,
166 BITS_PER_WORD - 1);
168 if (LOG_COSTS)
169 fprintf (stderr, "%s %s by %d: original cost %d, split cost %d + %d\n",
170 GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code),
171 i + BITS_PER_WORD, wide_cost, narrow_cost, upper_cost);
173 if (FORCE_LOWERING || wide_cost >= narrow_cost + upper_cost)
174 splitting[i] = true;
178 /* Compute what we should do when optimizing for speed or size; SPEED_P
179 selects which. Use RTXES for computing costs. */
181 static void
182 compute_costs (bool speed_p, struct cost_rtxes *rtxes)
184 unsigned int i;
185 int word_move_zero_cost, word_move_cost;
187 PUT_MODE (rtxes->target, word_mode);
188 SET_SRC (rtxes->set) = CONST0_RTX (word_mode);
189 word_move_zero_cost = set_rtx_cost (rtxes->set, speed_p);
191 SET_SRC (rtxes->set) = rtxes->source;
192 word_move_cost = set_rtx_cost (rtxes->set, speed_p);
194 if (LOG_COSTS)
195 fprintf (stderr, "%s move: from zero cost %d, from reg cost %d\n",
196 GET_MODE_NAME (word_mode), word_move_zero_cost, word_move_cost);
198 for (i = 0; i < MAX_MACHINE_MODE; i++)
200 machine_mode mode = (machine_mode) i;
201 int factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
202 if (factor > 1)
204 int mode_move_cost;
206 PUT_MODE (rtxes->target, mode);
207 PUT_MODE (rtxes->source, mode);
208 mode_move_cost = set_rtx_cost (rtxes->set, speed_p);
210 if (LOG_COSTS)
211 fprintf (stderr, "%s move: original cost %d, split cost %d * %d\n",
212 GET_MODE_NAME (mode), mode_move_cost,
213 word_move_cost, factor);
215 if (FORCE_LOWERING || mode_move_cost >= word_move_cost * factor)
217 choices[speed_p].move_modes_to_split[i] = true;
218 choices[speed_p].something_to_do = true;
223 /* For the moves and shifts, the only case that is checked is one
224 where the mode of the target is an integer mode twice the width
225 of the word_mode.
227 If it is not profitable to split a double word move then do not
228 even consider the shifts or the zero extension. */
229 if (choices[speed_p].move_modes_to_split[(int) twice_word_mode])
231 int zext_cost;
233 /* The only case here to check to see if moving the upper part with a
234 zero is cheaper than doing the zext itself. */
235 PUT_MODE (rtxes->source, word_mode);
236 zext_cost = set_src_cost (rtxes->zext, twice_word_mode, speed_p);
238 if (LOG_COSTS)
239 fprintf (stderr, "%s %s: original cost %d, split cost %d + %d\n",
240 GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (ZERO_EXTEND),
241 zext_cost, word_move_cost, word_move_zero_cost);
243 if (FORCE_LOWERING || zext_cost >= word_move_cost + word_move_zero_cost)
244 choices[speed_p].splitting_zext = true;
246 compute_splitting_shift (speed_p, rtxes,
247 choices[speed_p].splitting_ashift, ASHIFT,
248 word_move_zero_cost, word_move_cost);
249 compute_splitting_shift (speed_p, rtxes,
250 choices[speed_p].splitting_lshiftrt, LSHIFTRT,
251 word_move_zero_cost, word_move_cost);
252 compute_splitting_shift (speed_p, rtxes,
253 choices[speed_p].splitting_ashiftrt, ASHIFTRT,
254 word_move_zero_cost, word_move_cost);
258 /* Do one-per-target initialisation. This involves determining
259 which operations on the machine are profitable. If none are found,
260 then the pass just returns when called. */
262 void
263 init_lower_subreg (void)
265 struct cost_rtxes rtxes;
267 memset (this_target_lower_subreg, 0, sizeof (*this_target_lower_subreg));
269 twice_word_mode = GET_MODE_2XWIDER_MODE (word_mode);
271 rtxes.target = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
272 rtxes.source = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
273 rtxes.set = gen_rtx_SET (rtxes.target, rtxes.source);
274 rtxes.zext = gen_rtx_ZERO_EXTEND (twice_word_mode, rtxes.source);
275 rtxes.shift = gen_rtx_ASHIFT (twice_word_mode, rtxes.source, const0_rtx);
277 if (LOG_COSTS)
278 fprintf (stderr, "\nSize costs\n==========\n\n");
279 compute_costs (false, &rtxes);
281 if (LOG_COSTS)
282 fprintf (stderr, "\nSpeed costs\n===========\n\n");
283 compute_costs (true, &rtxes);
286 static bool
287 simple_move_operand (rtx x)
289 if (GET_CODE (x) == SUBREG)
290 x = SUBREG_REG (x);
292 if (!OBJECT_P (x))
293 return false;
295 if (GET_CODE (x) == LABEL_REF
296 || GET_CODE (x) == SYMBOL_REF
297 || GET_CODE (x) == HIGH
298 || GET_CODE (x) == CONST)
299 return false;
301 if (MEM_P (x)
302 && (MEM_VOLATILE_P (x)
303 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x))))
304 return false;
306 return true;
309 /* If INSN is a single set between two objects that we want to split,
310 return the single set. SPEED_P says whether we are optimizing
311 INSN for speed or size.
313 INSN should have been passed to recog and extract_insn before this
314 is called. */
316 static rtx
317 simple_move (rtx_insn *insn, bool speed_p)
319 rtx x;
320 rtx set;
321 machine_mode mode;
323 if (recog_data.n_operands != 2)
324 return NULL_RTX;
326 set = single_set (insn);
327 if (!set)
328 return NULL_RTX;
330 x = SET_DEST (set);
331 if (x != recog_data.operand[0] && x != recog_data.operand[1])
332 return NULL_RTX;
333 if (!simple_move_operand (x))
334 return NULL_RTX;
336 x = SET_SRC (set);
337 if (x != recog_data.operand[0] && x != recog_data.operand[1])
338 return NULL_RTX;
339 /* For the src we can handle ASM_OPERANDS, and it is beneficial for
340 things like x86 rdtsc which returns a DImode value. */
341 if (GET_CODE (x) != ASM_OPERANDS
342 && !simple_move_operand (x))
343 return NULL_RTX;
345 /* We try to decompose in integer modes, to avoid generating
346 inefficient code copying between integer and floating point
347 registers. That means that we can't decompose if this is a
348 non-integer mode for which there is no integer mode of the same
349 size. */
350 mode = GET_MODE (SET_DEST (set));
351 if (!SCALAR_INT_MODE_P (mode)
352 && (mode_for_size (GET_MODE_SIZE (mode) * BITS_PER_UNIT, MODE_INT, 0)
353 == BLKmode))
354 return NULL_RTX;
356 /* Reject PARTIAL_INT modes. They are used for processor specific
357 purposes and it's probably best not to tamper with them. */
358 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
359 return NULL_RTX;
361 if (!choices[speed_p].move_modes_to_split[(int) mode])
362 return NULL_RTX;
364 return set;
367 /* If SET is a copy from one multi-word pseudo-register to another,
368 record that in reg_copy_graph. Return whether it is such a
369 copy. */
371 static bool
372 find_pseudo_copy (rtx set)
374 rtx dest = SET_DEST (set);
375 rtx src = SET_SRC (set);
376 unsigned int rd, rs;
377 bitmap b;
379 if (!REG_P (dest) || !REG_P (src))
380 return false;
382 rd = REGNO (dest);
383 rs = REGNO (src);
384 if (HARD_REGISTER_NUM_P (rd) || HARD_REGISTER_NUM_P (rs))
385 return false;
387 b = reg_copy_graph[rs];
388 if (b == NULL)
390 b = BITMAP_ALLOC (NULL);
391 reg_copy_graph[rs] = b;
394 bitmap_set_bit (b, rd);
396 return true;
399 /* Look through the registers in DECOMPOSABLE_CONTEXT. For each case
400 where they are copied to another register, add the register to
401 which they are copied to DECOMPOSABLE_CONTEXT. Use
402 NON_DECOMPOSABLE_CONTEXT to limit this--we don't bother to track
403 copies of registers which are in NON_DECOMPOSABLE_CONTEXT. */
405 static void
406 propagate_pseudo_copies (void)
408 bitmap queue, propagate;
410 queue = BITMAP_ALLOC (NULL);
411 propagate = BITMAP_ALLOC (NULL);
413 bitmap_copy (queue, decomposable_context);
416 bitmap_iterator iter;
417 unsigned int i;
419 bitmap_clear (propagate);
421 EXECUTE_IF_SET_IN_BITMAP (queue, 0, i, iter)
423 bitmap b = reg_copy_graph[i];
424 if (b)
425 bitmap_ior_and_compl_into (propagate, b, non_decomposable_context);
428 bitmap_and_compl (queue, propagate, decomposable_context);
429 bitmap_ior_into (decomposable_context, propagate);
431 while (!bitmap_empty_p (queue));
433 BITMAP_FREE (queue);
434 BITMAP_FREE (propagate);
437 /* A pointer to one of these values is passed to
438 find_decomposable_subregs. */
440 enum classify_move_insn
442 /* Not a simple move from one location to another. */
443 NOT_SIMPLE_MOVE,
444 /* A simple move we want to decompose. */
445 DECOMPOSABLE_SIMPLE_MOVE,
446 /* Any other simple move. */
447 SIMPLE_MOVE
450 /* If we find a SUBREG in *LOC which we could use to decompose a
451 pseudo-register, set a bit in DECOMPOSABLE_CONTEXT. If we find an
452 unadorned register which is not a simple pseudo-register copy,
453 DATA will point at the type of move, and we set a bit in
454 DECOMPOSABLE_CONTEXT or NON_DECOMPOSABLE_CONTEXT as appropriate. */
456 static void
457 find_decomposable_subregs (rtx *loc, enum classify_move_insn *pcmi)
459 subrtx_var_iterator::array_type array;
460 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
462 rtx x = *iter;
463 if (GET_CODE (x) == SUBREG)
465 rtx inner = SUBREG_REG (x);
466 unsigned int regno, outer_size, inner_size, outer_words, inner_words;
468 if (!REG_P (inner))
469 continue;
471 regno = REGNO (inner);
472 if (HARD_REGISTER_NUM_P (regno))
474 iter.skip_subrtxes ();
475 continue;
478 outer_size = GET_MODE_SIZE (GET_MODE (x));
479 inner_size = GET_MODE_SIZE (GET_MODE (inner));
480 outer_words = (outer_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
481 inner_words = (inner_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
483 /* We only try to decompose single word subregs of multi-word
484 registers. When we find one, we return -1 to avoid iterating
485 over the inner register.
487 ??? This doesn't allow, e.g., DImode subregs of TImode values
488 on 32-bit targets. We would need to record the way the
489 pseudo-register was used, and only decompose if all the uses
490 were the same number and size of pieces. Hopefully this
491 doesn't happen much. */
493 if (outer_words == 1 && inner_words > 1)
495 bitmap_set_bit (decomposable_context, regno);
496 iter.skip_subrtxes ();
497 continue;
500 /* If this is a cast from one mode to another, where the modes
501 have the same size, and they are not tieable, then mark this
502 register as non-decomposable. If we decompose it we are
503 likely to mess up whatever the backend is trying to do. */
504 if (outer_words > 1
505 && outer_size == inner_size
506 && !MODES_TIEABLE_P (GET_MODE (x), GET_MODE (inner)))
508 bitmap_set_bit (non_decomposable_context, regno);
509 bitmap_set_bit (subreg_context, regno);
510 iter.skip_subrtxes ();
511 continue;
514 else if (REG_P (x))
516 unsigned int regno;
518 /* We will see an outer SUBREG before we see the inner REG, so
519 when we see a plain REG here it means a direct reference to
520 the register.
522 If this is not a simple copy from one location to another,
523 then we can not decompose this register. If this is a simple
524 copy we want to decompose, and the mode is right,
525 then we mark the register as decomposable.
526 Otherwise we don't say anything about this register --
527 it could be decomposed, but whether that would be
528 profitable depends upon how it is used elsewhere.
530 We only set bits in the bitmap for multi-word
531 pseudo-registers, since those are the only ones we care about
532 and it keeps the size of the bitmaps down. */
534 regno = REGNO (x);
535 if (!HARD_REGISTER_NUM_P (regno)
536 && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
538 switch (*pcmi)
540 case NOT_SIMPLE_MOVE:
541 bitmap_set_bit (non_decomposable_context, regno);
542 break;
543 case DECOMPOSABLE_SIMPLE_MOVE:
544 if (MODES_TIEABLE_P (GET_MODE (x), word_mode))
545 bitmap_set_bit (decomposable_context, regno);
546 break;
547 case SIMPLE_MOVE:
548 break;
549 default:
550 gcc_unreachable ();
554 else if (MEM_P (x))
556 enum classify_move_insn cmi_mem = NOT_SIMPLE_MOVE;
558 /* Any registers used in a MEM do not participate in a
559 SIMPLE_MOVE or DECOMPOSABLE_SIMPLE_MOVE. Do our own recursion
560 here, and return -1 to block the parent's recursion. */
561 find_decomposable_subregs (&XEXP (x, 0), &cmi_mem);
562 iter.skip_subrtxes ();
567 /* Decompose REGNO into word-sized components. We smash the REG node
568 in place. This ensures that (1) something goes wrong quickly if we
569 fail to make some replacement, and (2) the debug information inside
570 the symbol table is automatically kept up to date. */
572 static void
573 decompose_register (unsigned int regno)
575 rtx reg;
576 unsigned int words, i;
577 rtvec v;
579 reg = regno_reg_rtx[regno];
581 regno_reg_rtx[regno] = NULL_RTX;
583 words = GET_MODE_SIZE (GET_MODE (reg));
584 words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
586 v = rtvec_alloc (words);
587 for (i = 0; i < words; ++i)
588 RTVEC_ELT (v, i) = gen_reg_rtx_offset (reg, word_mode, i * UNITS_PER_WORD);
590 PUT_CODE (reg, CONCATN);
591 XVEC (reg, 0) = v;
593 if (dump_file)
595 fprintf (dump_file, "; Splitting reg %u ->", regno);
596 for (i = 0; i < words; ++i)
597 fprintf (dump_file, " %u", REGNO (XVECEXP (reg, 0, i)));
598 fputc ('\n', dump_file);
602 /* Get a SUBREG of a CONCATN. */
604 static rtx
605 simplify_subreg_concatn (machine_mode outermode, rtx op,
606 unsigned int byte)
608 unsigned int inner_size;
609 machine_mode innermode, partmode;
610 rtx part;
611 unsigned int final_offset;
613 gcc_assert (GET_CODE (op) == CONCATN);
614 gcc_assert (byte % GET_MODE_SIZE (outermode) == 0);
616 innermode = GET_MODE (op);
617 gcc_assert (byte < GET_MODE_SIZE (innermode));
618 if (GET_MODE_SIZE (outermode) > GET_MODE_SIZE (innermode))
619 return NULL_RTX;
621 inner_size = GET_MODE_SIZE (innermode) / XVECLEN (op, 0);
622 part = XVECEXP (op, 0, byte / inner_size);
623 partmode = GET_MODE (part);
625 /* VECTOR_CSTs in debug expressions are expanded into CONCATN instead of
626 regular CONST_VECTORs. They have vector or integer modes, depending
627 on the capabilities of the target. Cope with them. */
628 if (partmode == VOIDmode && VECTOR_MODE_P (innermode))
629 partmode = GET_MODE_INNER (innermode);
630 else if (partmode == VOIDmode)
632 enum mode_class mclass = GET_MODE_CLASS (innermode);
633 partmode = mode_for_size (inner_size * BITS_PER_UNIT, mclass, 0);
636 final_offset = byte % inner_size;
637 if (final_offset + GET_MODE_SIZE (outermode) > inner_size)
638 return NULL_RTX;
640 return simplify_gen_subreg (outermode, part, partmode, final_offset);
643 /* Wrapper around simplify_gen_subreg which handles CONCATN. */
645 static rtx
646 simplify_gen_subreg_concatn (machine_mode outermode, rtx op,
647 machine_mode innermode, unsigned int byte)
649 rtx ret;
651 /* We have to handle generating a SUBREG of a SUBREG of a CONCATN.
652 If OP is a SUBREG of a CONCATN, then it must be a simple mode
653 change with the same size and offset 0, or it must extract a
654 part. We shouldn't see anything else here. */
655 if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == CONCATN)
657 rtx op2;
659 if ((GET_MODE_SIZE (GET_MODE (op))
660 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
661 && SUBREG_BYTE (op) == 0)
662 return simplify_gen_subreg_concatn (outermode, SUBREG_REG (op),
663 GET_MODE (SUBREG_REG (op)), byte);
665 op2 = simplify_subreg_concatn (GET_MODE (op), SUBREG_REG (op),
666 SUBREG_BYTE (op));
667 if (op2 == NULL_RTX)
669 /* We don't handle paradoxical subregs here. */
670 gcc_assert (GET_MODE_SIZE (outermode)
671 <= GET_MODE_SIZE (GET_MODE (op)));
672 gcc_assert (GET_MODE_SIZE (GET_MODE (op))
673 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))));
674 op2 = simplify_subreg_concatn (outermode, SUBREG_REG (op),
675 byte + SUBREG_BYTE (op));
676 gcc_assert (op2 != NULL_RTX);
677 return op2;
680 op = op2;
681 gcc_assert (op != NULL_RTX);
682 gcc_assert (innermode == GET_MODE (op));
685 if (GET_CODE (op) == CONCATN)
686 return simplify_subreg_concatn (outermode, op, byte);
688 ret = simplify_gen_subreg (outermode, op, innermode, byte);
690 /* If we see an insn like (set (reg:DI) (subreg:DI (reg:SI) 0)) then
691 resolve_simple_move will ask for the high part of the paradoxical
692 subreg, which does not have a value. Just return a zero. */
693 if (ret == NULL_RTX
694 && GET_CODE (op) == SUBREG
695 && SUBREG_BYTE (op) == 0
696 && (GET_MODE_SIZE (innermode)
697 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op)))))
698 return CONST0_RTX (outermode);
700 gcc_assert (ret != NULL_RTX);
701 return ret;
704 /* Return whether we should resolve X into the registers into which it
705 was decomposed. */
707 static bool
708 resolve_reg_p (rtx x)
710 return GET_CODE (x) == CONCATN;
713 /* Return whether X is a SUBREG of a register which we need to
714 resolve. */
716 static bool
717 resolve_subreg_p (rtx x)
719 if (GET_CODE (x) != SUBREG)
720 return false;
721 return resolve_reg_p (SUBREG_REG (x));
724 /* Look for SUBREGs in *LOC which need to be decomposed. */
726 static bool
727 resolve_subreg_use (rtx *loc, rtx insn)
729 subrtx_ptr_iterator::array_type array;
730 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
732 rtx *loc = *iter;
733 rtx x = *loc;
734 if (resolve_subreg_p (x))
736 x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
737 SUBREG_BYTE (x));
739 /* It is possible for a note to contain a reference which we can
740 decompose. In this case, return 1 to the caller to indicate
741 that the note must be removed. */
742 if (!x)
744 gcc_assert (!insn);
745 return true;
748 validate_change (insn, loc, x, 1);
749 iter.skip_subrtxes ();
751 else if (resolve_reg_p (x))
752 /* Return 1 to the caller to indicate that we found a direct
753 reference to a register which is being decomposed. This can
754 happen inside notes, multiword shift or zero-extend
755 instructions. */
756 return true;
759 return false;
762 /* Resolve any decomposed registers which appear in register notes on
763 INSN. */
765 static void
766 resolve_reg_notes (rtx_insn *insn)
768 rtx *pnote, note;
770 note = find_reg_equal_equiv_note (insn);
771 if (note)
773 int old_count = num_validated_changes ();
774 if (resolve_subreg_use (&XEXP (note, 0), NULL_RTX))
775 remove_note (insn, note);
776 else
777 if (old_count != num_validated_changes ())
778 df_notes_rescan (insn);
781 pnote = &REG_NOTES (insn);
782 while (*pnote != NULL_RTX)
784 bool del = false;
786 note = *pnote;
787 switch (REG_NOTE_KIND (note))
789 case REG_DEAD:
790 case REG_UNUSED:
791 if (resolve_reg_p (XEXP (note, 0)))
792 del = true;
793 break;
795 default:
796 break;
799 if (del)
800 *pnote = XEXP (note, 1);
801 else
802 pnote = &XEXP (note, 1);
806 /* Return whether X can be decomposed into subwords. */
808 static bool
809 can_decompose_p (rtx x)
811 if (REG_P (x))
813 unsigned int regno = REGNO (x);
815 if (HARD_REGISTER_NUM_P (regno))
817 unsigned int byte, num_bytes;
819 num_bytes = GET_MODE_SIZE (GET_MODE (x));
820 for (byte = 0; byte < num_bytes; byte += UNITS_PER_WORD)
821 if (simplify_subreg_regno (regno, GET_MODE (x), byte, word_mode) < 0)
822 return false;
823 return true;
825 else
826 return !bitmap_bit_p (subreg_context, regno);
829 return true;
832 /* Decompose the registers used in a simple move SET within INSN. If
833 we don't change anything, return INSN, otherwise return the start
834 of the sequence of moves. */
836 static rtx_insn *
837 resolve_simple_move (rtx set, rtx_insn *insn)
839 rtx src, dest, real_dest;
840 rtx_insn *insns;
841 machine_mode orig_mode, dest_mode;
842 unsigned int words;
843 bool pushing;
845 src = SET_SRC (set);
846 dest = SET_DEST (set);
847 orig_mode = GET_MODE (dest);
849 words = (GET_MODE_SIZE (orig_mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
850 gcc_assert (words > 1);
852 start_sequence ();
854 /* We have to handle copying from a SUBREG of a decomposed reg where
855 the SUBREG is larger than word size. Rather than assume that we
856 can take a word_mode SUBREG of the destination, we copy to a new
857 register and then copy that to the destination. */
859 real_dest = NULL_RTX;
861 if (GET_CODE (src) == SUBREG
862 && resolve_reg_p (SUBREG_REG (src))
863 && (SUBREG_BYTE (src) != 0
864 || (GET_MODE_SIZE (orig_mode)
865 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))))
867 real_dest = dest;
868 dest = gen_reg_rtx (orig_mode);
869 if (REG_P (real_dest))
870 REG_ATTRS (dest) = REG_ATTRS (real_dest);
873 /* Similarly if we are copying to a SUBREG of a decomposed reg where
874 the SUBREG is larger than word size. */
876 if (GET_CODE (dest) == SUBREG
877 && resolve_reg_p (SUBREG_REG (dest))
878 && (SUBREG_BYTE (dest) != 0
879 || (GET_MODE_SIZE (orig_mode)
880 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))))
882 rtx reg, smove;
883 rtx_insn *minsn;
885 reg = gen_reg_rtx (orig_mode);
886 minsn = emit_move_insn (reg, src);
887 smove = single_set (minsn);
888 gcc_assert (smove != NULL_RTX);
889 resolve_simple_move (smove, minsn);
890 src = reg;
893 /* If we didn't have any big SUBREGS of decomposed registers, and
894 neither side of the move is a register we are decomposing, then
895 we don't have to do anything here. */
897 if (src == SET_SRC (set)
898 && dest == SET_DEST (set)
899 && !resolve_reg_p (src)
900 && !resolve_subreg_p (src)
901 && !resolve_reg_p (dest)
902 && !resolve_subreg_p (dest))
904 end_sequence ();
905 return insn;
908 /* It's possible for the code to use a subreg of a decomposed
909 register while forming an address. We need to handle that before
910 passing the address to emit_move_insn. We pass NULL_RTX as the
911 insn parameter to resolve_subreg_use because we can not validate
912 the insn yet. */
913 if (MEM_P (src) || MEM_P (dest))
915 int acg;
917 if (MEM_P (src))
918 resolve_subreg_use (&XEXP (src, 0), NULL_RTX);
919 if (MEM_P (dest))
920 resolve_subreg_use (&XEXP (dest, 0), NULL_RTX);
921 acg = apply_change_group ();
922 gcc_assert (acg);
925 /* If SRC is a register which we can't decompose, or has side
926 effects, we need to move via a temporary register. */
928 if (!can_decompose_p (src)
929 || side_effects_p (src)
930 || GET_CODE (src) == ASM_OPERANDS)
932 rtx reg;
934 reg = gen_reg_rtx (orig_mode);
936 if (AUTO_INC_DEC)
938 rtx_insn *move = emit_move_insn (reg, src);
939 if (MEM_P (src))
941 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
942 if (note)
943 add_reg_note (move, REG_INC, XEXP (note, 0));
946 else
947 emit_move_insn (reg, src);
949 src = reg;
952 /* If DEST is a register which we can't decompose, or has side
953 effects, we need to first move to a temporary register. We
954 handle the common case of pushing an operand directly. We also
955 go through a temporary register if it holds a floating point
956 value. This gives us better code on systems which can't move
957 data easily between integer and floating point registers. */
959 dest_mode = orig_mode;
960 pushing = push_operand (dest, dest_mode);
961 if (!can_decompose_p (dest)
962 || (side_effects_p (dest) && !pushing)
963 || (!SCALAR_INT_MODE_P (dest_mode)
964 && !resolve_reg_p (dest)
965 && !resolve_subreg_p (dest)))
967 if (real_dest == NULL_RTX)
968 real_dest = dest;
969 if (!SCALAR_INT_MODE_P (dest_mode))
971 dest_mode = mode_for_size (GET_MODE_SIZE (dest_mode) * BITS_PER_UNIT,
972 MODE_INT, 0);
973 gcc_assert (dest_mode != BLKmode);
975 dest = gen_reg_rtx (dest_mode);
976 if (REG_P (real_dest))
977 REG_ATTRS (dest) = REG_ATTRS (real_dest);
980 if (pushing)
982 unsigned int i, j, jinc;
984 gcc_assert (GET_MODE_SIZE (orig_mode) % UNITS_PER_WORD == 0);
985 gcc_assert (GET_CODE (XEXP (dest, 0)) != PRE_MODIFY);
986 gcc_assert (GET_CODE (XEXP (dest, 0)) != POST_MODIFY);
988 if (WORDS_BIG_ENDIAN == STACK_GROWS_DOWNWARD)
990 j = 0;
991 jinc = 1;
993 else
995 j = words - 1;
996 jinc = -1;
999 for (i = 0; i < words; ++i, j += jinc)
1001 rtx temp;
1003 temp = copy_rtx (XEXP (dest, 0));
1004 temp = adjust_automodify_address_nv (dest, word_mode, temp,
1005 j * UNITS_PER_WORD);
1006 emit_move_insn (temp,
1007 simplify_gen_subreg_concatn (word_mode, src,
1008 orig_mode,
1009 j * UNITS_PER_WORD));
1012 else
1014 unsigned int i;
1016 if (REG_P (dest) && !HARD_REGISTER_NUM_P (REGNO (dest)))
1017 emit_clobber (dest);
1019 for (i = 0; i < words; ++i)
1020 emit_move_insn (simplify_gen_subreg_concatn (word_mode, dest,
1021 dest_mode,
1022 i * UNITS_PER_WORD),
1023 simplify_gen_subreg_concatn (word_mode, src,
1024 orig_mode,
1025 i * UNITS_PER_WORD));
1028 if (real_dest != NULL_RTX)
1030 rtx mdest, smove;
1031 rtx_insn *minsn;
1033 if (dest_mode == orig_mode)
1034 mdest = dest;
1035 else
1036 mdest = simplify_gen_subreg (orig_mode, dest, GET_MODE (dest), 0);
1037 minsn = emit_move_insn (real_dest, mdest);
1039 if (AUTO_INC_DEC && MEM_P (real_dest)
1040 && !(resolve_reg_p (real_dest) || resolve_subreg_p (real_dest)))
1042 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
1043 if (note)
1044 add_reg_note (minsn, REG_INC, XEXP (note, 0));
1047 smove = single_set (minsn);
1048 gcc_assert (smove != NULL_RTX);
1050 resolve_simple_move (smove, minsn);
1053 insns = get_insns ();
1054 end_sequence ();
1056 copy_reg_eh_region_note_forward (insn, insns, NULL_RTX);
1058 emit_insn_before (insns, insn);
1060 /* If we get here via self-recursion, then INSN is not yet in the insns
1061 chain and delete_insn will fail. We only want to remove INSN from the
1062 current sequence. See PR56738. */
1063 if (in_sequence_p ())
1064 remove_insn (insn);
1065 else
1066 delete_insn (insn);
1068 return insns;
1071 /* Change a CLOBBER of a decomposed register into a CLOBBER of the
1072 component registers. Return whether we changed something. */
1074 static bool
1075 resolve_clobber (rtx pat, rtx_insn *insn)
1077 rtx reg;
1078 machine_mode orig_mode;
1079 unsigned int words, i;
1080 int ret;
1082 reg = XEXP (pat, 0);
1083 if (!resolve_reg_p (reg) && !resolve_subreg_p (reg))
1084 return false;
1086 orig_mode = GET_MODE (reg);
1087 words = GET_MODE_SIZE (orig_mode);
1088 words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1090 ret = validate_change (NULL_RTX, &XEXP (pat, 0),
1091 simplify_gen_subreg_concatn (word_mode, reg,
1092 orig_mode, 0),
1094 df_insn_rescan (insn);
1095 gcc_assert (ret != 0);
1097 for (i = words - 1; i > 0; --i)
1099 rtx x;
1101 x = simplify_gen_subreg_concatn (word_mode, reg, orig_mode,
1102 i * UNITS_PER_WORD);
1103 x = gen_rtx_CLOBBER (VOIDmode, x);
1104 emit_insn_after (x, insn);
1107 resolve_reg_notes (insn);
1109 return true;
1112 /* A USE of a decomposed register is no longer meaningful. Return
1113 whether we changed something. */
1115 static bool
1116 resolve_use (rtx pat, rtx_insn *insn)
1118 if (resolve_reg_p (XEXP (pat, 0)) || resolve_subreg_p (XEXP (pat, 0)))
1120 delete_insn (insn);
1121 return true;
1124 resolve_reg_notes (insn);
1126 return false;
1129 /* A VAR_LOCATION can be simplified. */
1131 static void
1132 resolve_debug (rtx_insn *insn)
1134 subrtx_ptr_iterator::array_type array;
1135 FOR_EACH_SUBRTX_PTR (iter, array, &PATTERN (insn), NONCONST)
1137 rtx *loc = *iter;
1138 rtx x = *loc;
1139 if (resolve_subreg_p (x))
1141 x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
1142 SUBREG_BYTE (x));
1144 if (x)
1145 *loc = x;
1146 else
1147 x = copy_rtx (*loc);
1149 if (resolve_reg_p (x))
1150 *loc = copy_rtx (x);
1153 df_insn_rescan (insn);
1155 resolve_reg_notes (insn);
1158 /* Check if INSN is a decomposable multiword-shift or zero-extend and
1159 set the decomposable_context bitmap accordingly. SPEED_P is true
1160 if we are optimizing INSN for speed rather than size. Return true
1161 if INSN is decomposable. */
1163 static bool
1164 find_decomposable_shift_zext (rtx_insn *insn, bool speed_p)
1166 rtx set;
1167 rtx op;
1168 rtx op_operand;
1170 set = single_set (insn);
1171 if (!set)
1172 return false;
1174 op = SET_SRC (set);
1175 if (GET_CODE (op) != ASHIFT
1176 && GET_CODE (op) != LSHIFTRT
1177 && GET_CODE (op) != ASHIFTRT
1178 && GET_CODE (op) != ZERO_EXTEND)
1179 return false;
1181 op_operand = XEXP (op, 0);
1182 if (!REG_P (SET_DEST (set)) || !REG_P (op_operand)
1183 || HARD_REGISTER_NUM_P (REGNO (SET_DEST (set)))
1184 || HARD_REGISTER_NUM_P (REGNO (op_operand))
1185 || GET_MODE (op) != twice_word_mode)
1186 return false;
1188 if (GET_CODE (op) == ZERO_EXTEND)
1190 if (GET_MODE (op_operand) != word_mode
1191 || !choices[speed_p].splitting_zext)
1192 return false;
1194 else /* left or right shift */
1196 bool *splitting = (GET_CODE (op) == ASHIFT
1197 ? choices[speed_p].splitting_ashift
1198 : GET_CODE (op) == ASHIFTRT
1199 ? choices[speed_p].splitting_ashiftrt
1200 : choices[speed_p].splitting_lshiftrt);
1201 if (!CONST_INT_P (XEXP (op, 1))
1202 || !IN_RANGE (INTVAL (XEXP (op, 1)), BITS_PER_WORD,
1203 2 * BITS_PER_WORD - 1)
1204 || !splitting[INTVAL (XEXP (op, 1)) - BITS_PER_WORD])
1205 return false;
1207 bitmap_set_bit (decomposable_context, REGNO (op_operand));
1210 bitmap_set_bit (decomposable_context, REGNO (SET_DEST (set)));
1212 return true;
1215 /* Decompose a more than word wide shift (in INSN) of a multiword
1216 pseudo or a multiword zero-extend of a wordmode pseudo into a move
1217 and 'set to zero' insn. Return a pointer to the new insn when a
1218 replacement was done. */
1220 static rtx_insn *
1221 resolve_shift_zext (rtx_insn *insn)
1223 rtx set;
1224 rtx op;
1225 rtx op_operand;
1226 rtx_insn *insns;
1227 rtx src_reg, dest_reg, dest_upper, upper_src = NULL_RTX;
1228 int src_reg_num, dest_reg_num, offset1, offset2, src_offset;
1230 set = single_set (insn);
1231 if (!set)
1232 return NULL;
1234 op = SET_SRC (set);
1235 if (GET_CODE (op) != ASHIFT
1236 && GET_CODE (op) != LSHIFTRT
1237 && GET_CODE (op) != ASHIFTRT
1238 && GET_CODE (op) != ZERO_EXTEND)
1239 return NULL;
1241 op_operand = XEXP (op, 0);
1243 /* We can tear this operation apart only if the regs were already
1244 torn apart. */
1245 if (!resolve_reg_p (SET_DEST (set)) && !resolve_reg_p (op_operand))
1246 return NULL;
1248 /* src_reg_num is the number of the word mode register which we
1249 are operating on. For a left shift and a zero_extend on little
1250 endian machines this is register 0. */
1251 src_reg_num = (GET_CODE (op) == LSHIFTRT || GET_CODE (op) == ASHIFTRT)
1252 ? 1 : 0;
1254 if (WORDS_BIG_ENDIAN
1255 && GET_MODE_SIZE (GET_MODE (op_operand)) > UNITS_PER_WORD)
1256 src_reg_num = 1 - src_reg_num;
1258 if (GET_CODE (op) == ZERO_EXTEND)
1259 dest_reg_num = WORDS_BIG_ENDIAN ? 1 : 0;
1260 else
1261 dest_reg_num = 1 - src_reg_num;
1263 offset1 = UNITS_PER_WORD * dest_reg_num;
1264 offset2 = UNITS_PER_WORD * (1 - dest_reg_num);
1265 src_offset = UNITS_PER_WORD * src_reg_num;
1267 start_sequence ();
1269 dest_reg = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1270 GET_MODE (SET_DEST (set)),
1271 offset1);
1272 dest_upper = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1273 GET_MODE (SET_DEST (set)),
1274 offset2);
1275 src_reg = simplify_gen_subreg_concatn (word_mode, op_operand,
1276 GET_MODE (op_operand),
1277 src_offset);
1278 if (GET_CODE (op) == ASHIFTRT
1279 && INTVAL (XEXP (op, 1)) != 2 * BITS_PER_WORD - 1)
1280 upper_src = expand_shift (RSHIFT_EXPR, word_mode, copy_rtx (src_reg),
1281 BITS_PER_WORD - 1, NULL_RTX, 0);
1283 if (GET_CODE (op) != ZERO_EXTEND)
1285 int shift_count = INTVAL (XEXP (op, 1));
1286 if (shift_count > BITS_PER_WORD)
1287 src_reg = expand_shift (GET_CODE (op) == ASHIFT ?
1288 LSHIFT_EXPR : RSHIFT_EXPR,
1289 word_mode, src_reg,
1290 shift_count - BITS_PER_WORD,
1291 dest_reg, GET_CODE (op) != ASHIFTRT);
1294 if (dest_reg != src_reg)
1295 emit_move_insn (dest_reg, src_reg);
1296 if (GET_CODE (op) != ASHIFTRT)
1297 emit_move_insn (dest_upper, CONST0_RTX (word_mode));
1298 else if (INTVAL (XEXP (op, 1)) == 2 * BITS_PER_WORD - 1)
1299 emit_move_insn (dest_upper, copy_rtx (src_reg));
1300 else
1301 emit_move_insn (dest_upper, upper_src);
1302 insns = get_insns ();
1304 end_sequence ();
1306 emit_insn_before (insns, insn);
1308 if (dump_file)
1310 rtx_insn *in;
1311 fprintf (dump_file, "; Replacing insn: %d with insns: ", INSN_UID (insn));
1312 for (in = insns; in != insn; in = NEXT_INSN (in))
1313 fprintf (dump_file, "%d ", INSN_UID (in));
1314 fprintf (dump_file, "\n");
1317 delete_insn (insn);
1318 return insns;
1321 /* Print to dump_file a description of what we're doing with shift code CODE.
1322 SPLITTING[X] is true if we are splitting shifts by X + BITS_PER_WORD. */
1324 static void
1325 dump_shift_choices (enum rtx_code code, bool *splitting)
1327 int i;
1328 const char *sep;
1330 fprintf (dump_file,
1331 " Splitting mode %s for %s lowering with shift amounts = ",
1332 GET_MODE_NAME (twice_word_mode), GET_RTX_NAME (code));
1333 sep = "";
1334 for (i = 0; i < BITS_PER_WORD; i++)
1335 if (splitting[i])
1337 fprintf (dump_file, "%s%d", sep, i + BITS_PER_WORD);
1338 sep = ",";
1340 fprintf (dump_file, "\n");
1343 /* Print to dump_file a description of what we're doing when optimizing
1344 for speed or size; SPEED_P says which. DESCRIPTION is a description
1345 of the SPEED_P choice. */
1347 static void
1348 dump_choices (bool speed_p, const char *description)
1350 unsigned int i;
1352 fprintf (dump_file, "Choices when optimizing for %s:\n", description);
1354 for (i = 0; i < MAX_MACHINE_MODE; i++)
1355 if (GET_MODE_SIZE ((machine_mode) i) > UNITS_PER_WORD)
1356 fprintf (dump_file, " %s mode %s for copy lowering.\n",
1357 choices[speed_p].move_modes_to_split[i]
1358 ? "Splitting"
1359 : "Skipping",
1360 GET_MODE_NAME ((machine_mode) i));
1362 fprintf (dump_file, " %s mode %s for zero_extend lowering.\n",
1363 choices[speed_p].splitting_zext ? "Splitting" : "Skipping",
1364 GET_MODE_NAME (twice_word_mode));
1366 dump_shift_choices (ASHIFT, choices[speed_p].splitting_ashift);
1367 dump_shift_choices (LSHIFTRT, choices[speed_p].splitting_lshiftrt);
1368 dump_shift_choices (ASHIFTRT, choices[speed_p].splitting_ashiftrt);
1369 fprintf (dump_file, "\n");
1372 /* Look for registers which are always accessed via word-sized SUBREGs
1373 or -if DECOMPOSE_COPIES is true- via copies. Decompose these
1374 registers into several word-sized pseudo-registers. */
1376 static void
1377 decompose_multiword_subregs (bool decompose_copies)
1379 unsigned int max;
1380 basic_block bb;
1381 bool speed_p;
1383 if (dump_file)
1385 dump_choices (false, "size");
1386 dump_choices (true, "speed");
1389 /* Check if this target even has any modes to consider lowering. */
1390 if (!choices[false].something_to_do && !choices[true].something_to_do)
1392 if (dump_file)
1393 fprintf (dump_file, "Nothing to do!\n");
1394 return;
1397 max = max_reg_num ();
1399 /* First see if there are any multi-word pseudo-registers. If there
1400 aren't, there is nothing we can do. This should speed up this
1401 pass in the normal case, since it should be faster than scanning
1402 all the insns. */
1404 unsigned int i;
1405 bool useful_modes_seen = false;
1407 for (i = FIRST_PSEUDO_REGISTER; i < max; ++i)
1408 if (regno_reg_rtx[i] != NULL)
1410 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
1411 if (choices[false].move_modes_to_split[(int) mode]
1412 || choices[true].move_modes_to_split[(int) mode])
1414 useful_modes_seen = true;
1415 break;
1419 if (!useful_modes_seen)
1421 if (dump_file)
1422 fprintf (dump_file, "Nothing to lower in this function.\n");
1423 return;
1427 if (df)
1429 df_set_flags (DF_DEFER_INSN_RESCAN);
1430 run_word_dce ();
1433 /* FIXME: It may be possible to change this code to look for each
1434 multi-word pseudo-register and to find each insn which sets or
1435 uses that register. That should be faster than scanning all the
1436 insns. */
1438 decomposable_context = BITMAP_ALLOC (NULL);
1439 non_decomposable_context = BITMAP_ALLOC (NULL);
1440 subreg_context = BITMAP_ALLOC (NULL);
1442 reg_copy_graph.create (max);
1443 reg_copy_graph.safe_grow_cleared (max);
1444 memset (reg_copy_graph.address (), 0, sizeof (bitmap) * max);
1446 speed_p = optimize_function_for_speed_p (cfun);
1447 FOR_EACH_BB_FN (bb, cfun)
1449 rtx_insn *insn;
1451 FOR_BB_INSNS (bb, insn)
1453 rtx set;
1454 enum classify_move_insn cmi;
1455 int i, n;
1457 if (!INSN_P (insn)
1458 || GET_CODE (PATTERN (insn)) == CLOBBER
1459 || GET_CODE (PATTERN (insn)) == USE)
1460 continue;
1462 recog_memoized (insn);
1464 if (find_decomposable_shift_zext (insn, speed_p))
1465 continue;
1467 extract_insn (insn);
1469 set = simple_move (insn, speed_p);
1471 if (!set)
1472 cmi = NOT_SIMPLE_MOVE;
1473 else
1475 /* We mark pseudo-to-pseudo copies as decomposable during the
1476 second pass only. The first pass is so early that there is
1477 good chance such moves will be optimized away completely by
1478 subsequent optimizations anyway.
1480 However, we call find_pseudo_copy even during the first pass
1481 so as to properly set up the reg_copy_graph. */
1482 if (find_pseudo_copy (set))
1483 cmi = decompose_copies? DECOMPOSABLE_SIMPLE_MOVE : SIMPLE_MOVE;
1484 else
1485 cmi = SIMPLE_MOVE;
1488 n = recog_data.n_operands;
1489 for (i = 0; i < n; ++i)
1491 find_decomposable_subregs (&recog_data.operand[i], &cmi);
1493 /* We handle ASM_OPERANDS as a special case to support
1494 things like x86 rdtsc which returns a DImode value.
1495 We can decompose the output, which will certainly be
1496 operand 0, but not the inputs. */
1498 if (cmi == SIMPLE_MOVE
1499 && GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1501 gcc_assert (i == 0);
1502 cmi = NOT_SIMPLE_MOVE;
1508 bitmap_and_compl_into (decomposable_context, non_decomposable_context);
1509 if (!bitmap_empty_p (decomposable_context))
1511 unsigned int i;
1512 sbitmap_iterator sbi;
1513 bitmap_iterator iter;
1514 unsigned int regno;
1516 propagate_pseudo_copies ();
1518 auto_sbitmap sub_blocks (last_basic_block_for_fn (cfun));
1519 bitmap_clear (sub_blocks);
1521 EXECUTE_IF_SET_IN_BITMAP (decomposable_context, 0, regno, iter)
1522 decompose_register (regno);
1524 FOR_EACH_BB_FN (bb, cfun)
1526 rtx_insn *insn;
1528 FOR_BB_INSNS (bb, insn)
1530 rtx pat;
1532 if (!INSN_P (insn))
1533 continue;
1535 pat = PATTERN (insn);
1536 if (GET_CODE (pat) == CLOBBER)
1537 resolve_clobber (pat, insn);
1538 else if (GET_CODE (pat) == USE)
1539 resolve_use (pat, insn);
1540 else if (DEBUG_INSN_P (insn))
1541 resolve_debug (insn);
1542 else
1544 rtx set;
1545 int i;
1547 recog_memoized (insn);
1548 extract_insn (insn);
1550 set = simple_move (insn, speed_p);
1551 if (set)
1553 rtx_insn *orig_insn = insn;
1554 bool cfi = control_flow_insn_p (insn);
1556 /* We can end up splitting loads to multi-word pseudos
1557 into separate loads to machine word size pseudos.
1558 When this happens, we first had one load that can
1559 throw, and after resolve_simple_move we'll have a
1560 bunch of loads (at least two). All those loads may
1561 trap if we can have non-call exceptions, so they
1562 all will end the current basic block. We split the
1563 block after the outer loop over all insns, but we
1564 make sure here that we will be able to split the
1565 basic block and still produce the correct control
1566 flow graph for it. */
1567 gcc_assert (!cfi
1568 || (cfun->can_throw_non_call_exceptions
1569 && can_throw_internal (insn)));
1571 insn = resolve_simple_move (set, insn);
1572 if (insn != orig_insn)
1574 recog_memoized (insn);
1575 extract_insn (insn);
1577 if (cfi)
1578 bitmap_set_bit (sub_blocks, bb->index);
1581 else
1583 rtx_insn *decomposed_shift;
1585 decomposed_shift = resolve_shift_zext (insn);
1586 if (decomposed_shift != NULL_RTX)
1588 insn = decomposed_shift;
1589 recog_memoized (insn);
1590 extract_insn (insn);
1594 for (i = recog_data.n_operands - 1; i >= 0; --i)
1595 resolve_subreg_use (recog_data.operand_loc[i], insn);
1597 resolve_reg_notes (insn);
1599 if (num_validated_changes () > 0)
1601 for (i = recog_data.n_dups - 1; i >= 0; --i)
1603 rtx *pl = recog_data.dup_loc[i];
1604 int dup_num = recog_data.dup_num[i];
1605 rtx *px = recog_data.operand_loc[dup_num];
1607 validate_unshare_change (insn, pl, *px, 1);
1610 i = apply_change_group ();
1611 gcc_assert (i);
1617 /* If we had insns to split that caused control flow insns in the middle
1618 of a basic block, split those blocks now. Note that we only handle
1619 the case where splitting a load has caused multiple possibly trapping
1620 loads to appear. */
1621 EXECUTE_IF_SET_IN_BITMAP (sub_blocks, 0, i, sbi)
1623 rtx_insn *insn, *end;
1624 edge fallthru;
1626 bb = BASIC_BLOCK_FOR_FN (cfun, i);
1627 insn = BB_HEAD (bb);
1628 end = BB_END (bb);
1630 while (insn != end)
1632 if (control_flow_insn_p (insn))
1634 /* Split the block after insn. There will be a fallthru
1635 edge, which is OK so we keep it. We have to create the
1636 exception edges ourselves. */
1637 fallthru = split_block (bb, insn);
1638 rtl_make_eh_edge (NULL, bb, BB_END (bb));
1639 bb = fallthru->dest;
1640 insn = BB_HEAD (bb);
1642 else
1643 insn = NEXT_INSN (insn);
1649 unsigned int i;
1650 bitmap b;
1652 FOR_EACH_VEC_ELT (reg_copy_graph, i, b)
1653 if (b)
1654 BITMAP_FREE (b);
1657 reg_copy_graph.release ();
1659 BITMAP_FREE (decomposable_context);
1660 BITMAP_FREE (non_decomposable_context);
1661 BITMAP_FREE (subreg_context);
1664 /* Implement first lower subreg pass. */
1666 namespace {
1668 const pass_data pass_data_lower_subreg =
1670 RTL_PASS, /* type */
1671 "subreg1", /* name */
1672 OPTGROUP_NONE, /* optinfo_flags */
1673 TV_LOWER_SUBREG, /* tv_id */
1674 0, /* properties_required */
1675 0, /* properties_provided */
1676 0, /* properties_destroyed */
1677 0, /* todo_flags_start */
1678 0, /* todo_flags_finish */
1681 class pass_lower_subreg : public rtl_opt_pass
1683 public:
1684 pass_lower_subreg (gcc::context *ctxt)
1685 : rtl_opt_pass (pass_data_lower_subreg, ctxt)
1688 /* opt_pass methods: */
1689 virtual bool gate (function *) { return flag_split_wide_types != 0; }
1690 virtual unsigned int execute (function *)
1692 decompose_multiword_subregs (false);
1693 return 0;
1696 }; // class pass_lower_subreg
1698 } // anon namespace
1700 rtl_opt_pass *
1701 make_pass_lower_subreg (gcc::context *ctxt)
1703 return new pass_lower_subreg (ctxt);
1706 /* Implement second lower subreg pass. */
1708 namespace {
1710 const pass_data pass_data_lower_subreg2 =
1712 RTL_PASS, /* type */
1713 "subreg2", /* name */
1714 OPTGROUP_NONE, /* optinfo_flags */
1715 TV_LOWER_SUBREG, /* tv_id */
1716 0, /* properties_required */
1717 0, /* properties_provided */
1718 0, /* properties_destroyed */
1719 0, /* todo_flags_start */
1720 TODO_df_finish, /* todo_flags_finish */
1723 class pass_lower_subreg2 : public rtl_opt_pass
1725 public:
1726 pass_lower_subreg2 (gcc::context *ctxt)
1727 : rtl_opt_pass (pass_data_lower_subreg2, ctxt)
1730 /* opt_pass methods: */
1731 virtual bool gate (function *) { return flag_split_wide_types != 0; }
1732 virtual unsigned int execute (function *)
1734 decompose_multiword_subregs (true);
1735 return 0;
1738 }; // class pass_lower_subreg2
1740 } // anon namespace
1742 rtl_opt_pass *
1743 make_pass_lower_subreg2 (gcc::context *ctxt)
1745 return new pass_lower_subreg2 (ctxt);