fixing pr42337
[official-gcc.git] / gcc / ada / sem_util.adb
blobe56066b7d4d6533f8699590dcd1bb000d7ea4679
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ U T I L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Casing; use Casing;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Errout; use Errout;
31 with Elists; use Elists;
32 with Exp_Ch11; use Exp_Ch11;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Fname; use Fname;
37 with Freeze; use Freeze;
38 with Lib; use Lib;
39 with Lib.Xref; use Lib.Xref;
40 with Nlists; use Nlists;
41 with Output; use Output;
42 with Opt; use Opt;
43 with Rtsfind; use Rtsfind;
44 with Scans; use Scans;
45 with Scn; use Scn;
46 with Sem; use Sem;
47 with Sem_Aux; use Sem_Aux;
48 with Sem_Attr; use Sem_Attr;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_Disp; use Sem_Disp;
51 with Sem_Eval; use Sem_Eval;
52 with Sem_Res; use Sem_Res;
53 with Sem_SCIL; use Sem_SCIL;
54 with Sem_Type; use Sem_Type;
55 with Sinfo; use Sinfo;
56 with Sinput; use Sinput;
57 with Stand; use Stand;
58 with Style;
59 with Stringt; use Stringt;
60 with Targparm; use Targparm;
61 with Tbuild; use Tbuild;
62 with Ttypes; use Ttypes;
63 with Uname; use Uname;
65 with GNAT.HTable; use GNAT.HTable;
66 package body Sem_Util is
68 ----------------------------------------
69 -- Global_Variables for New_Copy_Tree --
70 ----------------------------------------
72 -- These global variables are used by New_Copy_Tree. See description
73 -- of the body of this subprogram for details. Global variables can be
74 -- safely used by New_Copy_Tree, since there is no case of a recursive
75 -- call from the processing inside New_Copy_Tree.
77 NCT_Hash_Threshhold : constant := 20;
78 -- If there are more than this number of pairs of entries in the
79 -- map, then Hash_Tables_Used will be set, and the hash tables will
80 -- be initialized and used for the searches.
82 NCT_Hash_Tables_Used : Boolean := False;
83 -- Set to True if hash tables are in use
85 NCT_Table_Entries : Nat;
86 -- Count entries in table to see if threshhold is reached
88 NCT_Hash_Table_Setup : Boolean := False;
89 -- Set to True if hash table contains data. We set this True if we
90 -- setup the hash table with data, and leave it set permanently
91 -- from then on, this is a signal that second and subsequent users
92 -- of the hash table must clear the old entries before reuse.
94 subtype NCT_Header_Num is Int range 0 .. 511;
95 -- Defines range of headers in hash tables (512 headers)
97 -----------------------
98 -- Local Subprograms --
99 -----------------------
101 function Build_Component_Subtype
102 (C : List_Id;
103 Loc : Source_Ptr;
104 T : Entity_Id) return Node_Id;
105 -- This function builds the subtype for Build_Actual_Subtype_Of_Component
106 -- and Build_Discriminal_Subtype_Of_Component. C is a list of constraints,
107 -- Loc is the source location, T is the original subtype.
109 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean;
110 -- Subsidiary to Is_Fully_Initialized_Type. For an unconstrained type
111 -- with discriminants whose default values are static, examine only the
112 -- components in the selected variant to determine whether all of them
113 -- have a default.
115 function Has_Null_Extension (T : Entity_Id) return Boolean;
116 -- T is a derived tagged type. Check whether the type extension is null.
117 -- If the parent type is fully initialized, T can be treated as such.
119 ------------------------------
120 -- Abstract_Interface_List --
121 ------------------------------
123 function Abstract_Interface_List (Typ : Entity_Id) return List_Id is
124 Nod : Node_Id;
126 begin
127 if Is_Concurrent_Type (Typ) then
129 -- If we are dealing with a synchronized subtype, go to the base
130 -- type, whose declaration has the interface list.
132 -- Shouldn't this be Declaration_Node???
134 Nod := Parent (Base_Type (Typ));
136 if Nkind (Nod) = N_Full_Type_Declaration then
137 return Empty_List;
138 end if;
140 elsif Ekind (Typ) = E_Record_Type_With_Private then
141 if Nkind (Parent (Typ)) = N_Full_Type_Declaration then
142 Nod := Type_Definition (Parent (Typ));
144 elsif Nkind (Parent (Typ)) = N_Private_Type_Declaration then
145 if Present (Full_View (Typ)) then
146 Nod := Type_Definition (Parent (Full_View (Typ)));
148 -- If the full-view is not available we cannot do anything else
149 -- here (the source has errors).
151 else
152 return Empty_List;
153 end if;
155 -- Support for generic formals with interfaces is still missing ???
157 elsif Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
158 return Empty_List;
160 else
161 pragma Assert
162 (Nkind (Parent (Typ)) = N_Private_Extension_Declaration);
163 Nod := Parent (Typ);
164 end if;
166 elsif Ekind (Typ) = E_Record_Subtype then
167 Nod := Type_Definition (Parent (Etype (Typ)));
169 elsif Ekind (Typ) = E_Record_Subtype_With_Private then
171 -- Recurse, because parent may still be a private extension. Also
172 -- note that the full view of the subtype or the full view of its
173 -- base type may (both) be unavailable.
175 return Abstract_Interface_List (Etype (Typ));
177 else pragma Assert ((Ekind (Typ)) = E_Record_Type);
178 if Nkind (Parent (Typ)) = N_Formal_Type_Declaration then
179 Nod := Formal_Type_Definition (Parent (Typ));
180 else
181 Nod := Type_Definition (Parent (Typ));
182 end if;
183 end if;
185 return Interface_List (Nod);
186 end Abstract_Interface_List;
188 --------------------------------
189 -- Add_Access_Type_To_Process --
190 --------------------------------
192 procedure Add_Access_Type_To_Process (E : Entity_Id; A : Entity_Id) is
193 L : Elist_Id;
195 begin
196 Ensure_Freeze_Node (E);
197 L := Access_Types_To_Process (Freeze_Node (E));
199 if No (L) then
200 L := New_Elmt_List;
201 Set_Access_Types_To_Process (Freeze_Node (E), L);
202 end if;
204 Append_Elmt (A, L);
205 end Add_Access_Type_To_Process;
207 ----------------------------
208 -- Add_Global_Declaration --
209 ----------------------------
211 procedure Add_Global_Declaration (N : Node_Id) is
212 Aux_Node : constant Node_Id := Aux_Decls_Node (Cunit (Current_Sem_Unit));
214 begin
215 if No (Declarations (Aux_Node)) then
216 Set_Declarations (Aux_Node, New_List);
217 end if;
219 Append_To (Declarations (Aux_Node), N);
220 Analyze (N);
221 end Add_Global_Declaration;
223 -----------------------
224 -- Alignment_In_Bits --
225 -----------------------
227 function Alignment_In_Bits (E : Entity_Id) return Uint is
228 begin
229 return Alignment (E) * System_Storage_Unit;
230 end Alignment_In_Bits;
232 -----------------------------------------
233 -- Apply_Compile_Time_Constraint_Error --
234 -----------------------------------------
236 procedure Apply_Compile_Time_Constraint_Error
237 (N : Node_Id;
238 Msg : String;
239 Reason : RT_Exception_Code;
240 Ent : Entity_Id := Empty;
241 Typ : Entity_Id := Empty;
242 Loc : Source_Ptr := No_Location;
243 Rep : Boolean := True;
244 Warn : Boolean := False)
246 Stat : constant Boolean := Is_Static_Expression (N);
247 R_Stat : constant Node_Id :=
248 Make_Raise_Constraint_Error (Sloc (N), Reason => Reason);
249 Rtyp : Entity_Id;
251 begin
252 if No (Typ) then
253 Rtyp := Etype (N);
254 else
255 Rtyp := Typ;
256 end if;
258 Discard_Node
259 (Compile_Time_Constraint_Error (N, Msg, Ent, Loc, Warn => Warn));
261 if not Rep then
262 return;
263 end if;
265 -- Now we replace the node by an N_Raise_Constraint_Error node
266 -- This does not need reanalyzing, so set it as analyzed now.
268 Rewrite (N, R_Stat);
269 Set_Analyzed (N, True);
271 Set_Etype (N, Rtyp);
272 Set_Raises_Constraint_Error (N);
274 -- Now deal with possible local raise handling
276 Possible_Local_Raise (N, Standard_Constraint_Error);
278 -- If the original expression was marked as static, the result is
279 -- still marked as static, but the Raises_Constraint_Error flag is
280 -- always set so that further static evaluation is not attempted.
282 if Stat then
283 Set_Is_Static_Expression (N);
284 end if;
285 end Apply_Compile_Time_Constraint_Error;
287 --------------------------
288 -- Build_Actual_Subtype --
289 --------------------------
291 function Build_Actual_Subtype
292 (T : Entity_Id;
293 N : Node_Or_Entity_Id) return Node_Id
295 Loc : Source_Ptr;
296 -- Normally Sloc (N), but may point to corresponding body in some cases
298 Constraints : List_Id;
299 Decl : Node_Id;
300 Discr : Entity_Id;
301 Hi : Node_Id;
302 Lo : Node_Id;
303 Subt : Entity_Id;
304 Disc_Type : Entity_Id;
305 Obj : Node_Id;
307 begin
308 Loc := Sloc (N);
310 if Nkind (N) = N_Defining_Identifier then
311 Obj := New_Reference_To (N, Loc);
313 -- If this is a formal parameter of a subprogram declaration, and
314 -- we are compiling the body, we want the declaration for the
315 -- actual subtype to carry the source position of the body, to
316 -- prevent anomalies in gdb when stepping through the code.
318 if Is_Formal (N) then
319 declare
320 Decl : constant Node_Id := Unit_Declaration_Node (Scope (N));
321 begin
322 if Nkind (Decl) = N_Subprogram_Declaration
323 and then Present (Corresponding_Body (Decl))
324 then
325 Loc := Sloc (Corresponding_Body (Decl));
326 end if;
327 end;
328 end if;
330 else
331 Obj := N;
332 end if;
334 if Is_Array_Type (T) then
335 Constraints := New_List;
336 for J in 1 .. Number_Dimensions (T) loop
338 -- Build an array subtype declaration with the nominal subtype and
339 -- the bounds of the actual. Add the declaration in front of the
340 -- local declarations for the subprogram, for analysis before any
341 -- reference to the formal in the body.
343 Lo :=
344 Make_Attribute_Reference (Loc,
345 Prefix =>
346 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
347 Attribute_Name => Name_First,
348 Expressions => New_List (
349 Make_Integer_Literal (Loc, J)));
351 Hi :=
352 Make_Attribute_Reference (Loc,
353 Prefix =>
354 Duplicate_Subexpr_No_Checks (Obj, Name_Req => True),
355 Attribute_Name => Name_Last,
356 Expressions => New_List (
357 Make_Integer_Literal (Loc, J)));
359 Append (Make_Range (Loc, Lo, Hi), Constraints);
360 end loop;
362 -- If the type has unknown discriminants there is no constrained
363 -- subtype to build. This is never called for a formal or for a
364 -- lhs, so returning the type is ok ???
366 elsif Has_Unknown_Discriminants (T) then
367 return T;
369 else
370 Constraints := New_List;
372 -- Type T is a generic derived type, inherit the discriminants from
373 -- the parent type.
375 if Is_Private_Type (T)
376 and then No (Full_View (T))
378 -- T was flagged as an error if it was declared as a formal
379 -- derived type with known discriminants. In this case there
380 -- is no need to look at the parent type since T already carries
381 -- its own discriminants.
383 and then not Error_Posted (T)
384 then
385 Disc_Type := Etype (Base_Type (T));
386 else
387 Disc_Type := T;
388 end if;
390 Discr := First_Discriminant (Disc_Type);
391 while Present (Discr) loop
392 Append_To (Constraints,
393 Make_Selected_Component (Loc,
394 Prefix =>
395 Duplicate_Subexpr_No_Checks (Obj),
396 Selector_Name => New_Occurrence_Of (Discr, Loc)));
397 Next_Discriminant (Discr);
398 end loop;
399 end if;
401 Subt :=
402 Make_Defining_Identifier (Loc,
403 Chars => New_Internal_Name ('S'));
404 Set_Is_Internal (Subt);
406 Decl :=
407 Make_Subtype_Declaration (Loc,
408 Defining_Identifier => Subt,
409 Subtype_Indication =>
410 Make_Subtype_Indication (Loc,
411 Subtype_Mark => New_Reference_To (T, Loc),
412 Constraint =>
413 Make_Index_Or_Discriminant_Constraint (Loc,
414 Constraints => Constraints)));
416 Mark_Rewrite_Insertion (Decl);
417 return Decl;
418 end Build_Actual_Subtype;
420 ---------------------------------------
421 -- Build_Actual_Subtype_Of_Component --
422 ---------------------------------------
424 function Build_Actual_Subtype_Of_Component
425 (T : Entity_Id;
426 N : Node_Id) return Node_Id
428 Loc : constant Source_Ptr := Sloc (N);
429 P : constant Node_Id := Prefix (N);
430 D : Elmt_Id;
431 Id : Node_Id;
432 Indx_Type : Entity_Id;
434 Deaccessed_T : Entity_Id;
435 -- This is either a copy of T, or if T is an access type, then it is
436 -- the directly designated type of this access type.
438 function Build_Actual_Array_Constraint return List_Id;
439 -- If one or more of the bounds of the component depends on
440 -- discriminants, build actual constraint using the discriminants
441 -- of the prefix.
443 function Build_Actual_Record_Constraint return List_Id;
444 -- Similar to previous one, for discriminated components constrained
445 -- by the discriminant of the enclosing object.
447 -----------------------------------
448 -- Build_Actual_Array_Constraint --
449 -----------------------------------
451 function Build_Actual_Array_Constraint return List_Id is
452 Constraints : constant List_Id := New_List;
453 Indx : Node_Id;
454 Hi : Node_Id;
455 Lo : Node_Id;
456 Old_Hi : Node_Id;
457 Old_Lo : Node_Id;
459 begin
460 Indx := First_Index (Deaccessed_T);
461 while Present (Indx) loop
462 Old_Lo := Type_Low_Bound (Etype (Indx));
463 Old_Hi := Type_High_Bound (Etype (Indx));
465 if Denotes_Discriminant (Old_Lo) then
466 Lo :=
467 Make_Selected_Component (Loc,
468 Prefix => New_Copy_Tree (P),
469 Selector_Name => New_Occurrence_Of (Entity (Old_Lo), Loc));
471 else
472 Lo := New_Copy_Tree (Old_Lo);
474 -- The new bound will be reanalyzed in the enclosing
475 -- declaration. For literal bounds that come from a type
476 -- declaration, the type of the context must be imposed, so
477 -- insure that analysis will take place. For non-universal
478 -- types this is not strictly necessary.
480 Set_Analyzed (Lo, False);
481 end if;
483 if Denotes_Discriminant (Old_Hi) then
484 Hi :=
485 Make_Selected_Component (Loc,
486 Prefix => New_Copy_Tree (P),
487 Selector_Name => New_Occurrence_Of (Entity (Old_Hi), Loc));
489 else
490 Hi := New_Copy_Tree (Old_Hi);
491 Set_Analyzed (Hi, False);
492 end if;
494 Append (Make_Range (Loc, Lo, Hi), Constraints);
495 Next_Index (Indx);
496 end loop;
498 return Constraints;
499 end Build_Actual_Array_Constraint;
501 ------------------------------------
502 -- Build_Actual_Record_Constraint --
503 ------------------------------------
505 function Build_Actual_Record_Constraint return List_Id is
506 Constraints : constant List_Id := New_List;
507 D : Elmt_Id;
508 D_Val : Node_Id;
510 begin
511 D := First_Elmt (Discriminant_Constraint (Deaccessed_T));
512 while Present (D) loop
513 if Denotes_Discriminant (Node (D)) then
514 D_Val := Make_Selected_Component (Loc,
515 Prefix => New_Copy_Tree (P),
516 Selector_Name => New_Occurrence_Of (Entity (Node (D)), Loc));
518 else
519 D_Val := New_Copy_Tree (Node (D));
520 end if;
522 Append (D_Val, Constraints);
523 Next_Elmt (D);
524 end loop;
526 return Constraints;
527 end Build_Actual_Record_Constraint;
529 -- Start of processing for Build_Actual_Subtype_Of_Component
531 begin
532 -- Why the test for Spec_Expression mode here???
534 if In_Spec_Expression then
535 return Empty;
537 -- More comments for the rest of this body would be good ???
539 elsif Nkind (N) = N_Explicit_Dereference then
540 if Is_Composite_Type (T)
541 and then not Is_Constrained (T)
542 and then not (Is_Class_Wide_Type (T)
543 and then Is_Constrained (Root_Type (T)))
544 and then not Has_Unknown_Discriminants (T)
545 then
546 -- If the type of the dereference is already constrained, it
547 -- is an actual subtype.
549 if Is_Array_Type (Etype (N))
550 and then Is_Constrained (Etype (N))
551 then
552 return Empty;
553 else
554 Remove_Side_Effects (P);
555 return Build_Actual_Subtype (T, N);
556 end if;
557 else
558 return Empty;
559 end if;
560 end if;
562 if Ekind (T) = E_Access_Subtype then
563 Deaccessed_T := Designated_Type (T);
564 else
565 Deaccessed_T := T;
566 end if;
568 if Ekind (Deaccessed_T) = E_Array_Subtype then
569 Id := First_Index (Deaccessed_T);
570 while Present (Id) loop
571 Indx_Type := Underlying_Type (Etype (Id));
573 if Denotes_Discriminant (Type_Low_Bound (Indx_Type))
574 or else
575 Denotes_Discriminant (Type_High_Bound (Indx_Type))
576 then
577 Remove_Side_Effects (P);
578 return
579 Build_Component_Subtype
580 (Build_Actual_Array_Constraint, Loc, Base_Type (T));
581 end if;
583 Next_Index (Id);
584 end loop;
586 elsif Is_Composite_Type (Deaccessed_T)
587 and then Has_Discriminants (Deaccessed_T)
588 and then not Has_Unknown_Discriminants (Deaccessed_T)
589 then
590 D := First_Elmt (Discriminant_Constraint (Deaccessed_T));
591 while Present (D) loop
592 if Denotes_Discriminant (Node (D)) then
593 Remove_Side_Effects (P);
594 return
595 Build_Component_Subtype (
596 Build_Actual_Record_Constraint, Loc, Base_Type (T));
597 end if;
599 Next_Elmt (D);
600 end loop;
601 end if;
603 -- If none of the above, the actual and nominal subtypes are the same
605 return Empty;
606 end Build_Actual_Subtype_Of_Component;
608 -----------------------------
609 -- Build_Component_Subtype --
610 -----------------------------
612 function Build_Component_Subtype
613 (C : List_Id;
614 Loc : Source_Ptr;
615 T : Entity_Id) return Node_Id
617 Subt : Entity_Id;
618 Decl : Node_Id;
620 begin
621 -- Unchecked_Union components do not require component subtypes
623 if Is_Unchecked_Union (T) then
624 return Empty;
625 end if;
627 Subt :=
628 Make_Defining_Identifier (Loc,
629 Chars => New_Internal_Name ('S'));
630 Set_Is_Internal (Subt);
632 Decl :=
633 Make_Subtype_Declaration (Loc,
634 Defining_Identifier => Subt,
635 Subtype_Indication =>
636 Make_Subtype_Indication (Loc,
637 Subtype_Mark => New_Reference_To (Base_Type (T), Loc),
638 Constraint =>
639 Make_Index_Or_Discriminant_Constraint (Loc,
640 Constraints => C)));
642 Mark_Rewrite_Insertion (Decl);
643 return Decl;
644 end Build_Component_Subtype;
646 ---------------------------
647 -- Build_Default_Subtype --
648 ---------------------------
650 function Build_Default_Subtype
651 (T : Entity_Id;
652 N : Node_Id) return Entity_Id
654 Loc : constant Source_Ptr := Sloc (N);
655 Disc : Entity_Id;
657 begin
658 if not Has_Discriminants (T) or else Is_Constrained (T) then
659 return T;
660 end if;
662 Disc := First_Discriminant (T);
664 if No (Discriminant_Default_Value (Disc)) then
665 return T;
666 end if;
668 declare
669 Act : constant Entity_Id :=
670 Make_Defining_Identifier (Loc,
671 Chars => New_Internal_Name ('S'));
673 Constraints : constant List_Id := New_List;
674 Decl : Node_Id;
676 begin
677 while Present (Disc) loop
678 Append_To (Constraints,
679 New_Copy_Tree (Discriminant_Default_Value (Disc)));
680 Next_Discriminant (Disc);
681 end loop;
683 Decl :=
684 Make_Subtype_Declaration (Loc,
685 Defining_Identifier => Act,
686 Subtype_Indication =>
687 Make_Subtype_Indication (Loc,
688 Subtype_Mark => New_Occurrence_Of (T, Loc),
689 Constraint =>
690 Make_Index_Or_Discriminant_Constraint (Loc,
691 Constraints => Constraints)));
693 Insert_Action (N, Decl);
694 Analyze (Decl);
695 return Act;
696 end;
697 end Build_Default_Subtype;
699 --------------------------------------------
700 -- Build_Discriminal_Subtype_Of_Component --
701 --------------------------------------------
703 function Build_Discriminal_Subtype_Of_Component
704 (T : Entity_Id) return Node_Id
706 Loc : constant Source_Ptr := Sloc (T);
707 D : Elmt_Id;
708 Id : Node_Id;
710 function Build_Discriminal_Array_Constraint return List_Id;
711 -- If one or more of the bounds of the component depends on
712 -- discriminants, build actual constraint using the discriminants
713 -- of the prefix.
715 function Build_Discriminal_Record_Constraint return List_Id;
716 -- Similar to previous one, for discriminated components constrained
717 -- by the discriminant of the enclosing object.
719 ----------------------------------------
720 -- Build_Discriminal_Array_Constraint --
721 ----------------------------------------
723 function Build_Discriminal_Array_Constraint return List_Id is
724 Constraints : constant List_Id := New_List;
725 Indx : Node_Id;
726 Hi : Node_Id;
727 Lo : Node_Id;
728 Old_Hi : Node_Id;
729 Old_Lo : Node_Id;
731 begin
732 Indx := First_Index (T);
733 while Present (Indx) loop
734 Old_Lo := Type_Low_Bound (Etype (Indx));
735 Old_Hi := Type_High_Bound (Etype (Indx));
737 if Denotes_Discriminant (Old_Lo) then
738 Lo := New_Occurrence_Of (Discriminal (Entity (Old_Lo)), Loc);
740 else
741 Lo := New_Copy_Tree (Old_Lo);
742 end if;
744 if Denotes_Discriminant (Old_Hi) then
745 Hi := New_Occurrence_Of (Discriminal (Entity (Old_Hi)), Loc);
747 else
748 Hi := New_Copy_Tree (Old_Hi);
749 end if;
751 Append (Make_Range (Loc, Lo, Hi), Constraints);
752 Next_Index (Indx);
753 end loop;
755 return Constraints;
756 end Build_Discriminal_Array_Constraint;
758 -----------------------------------------
759 -- Build_Discriminal_Record_Constraint --
760 -----------------------------------------
762 function Build_Discriminal_Record_Constraint return List_Id is
763 Constraints : constant List_Id := New_List;
764 D : Elmt_Id;
765 D_Val : Node_Id;
767 begin
768 D := First_Elmt (Discriminant_Constraint (T));
769 while Present (D) loop
770 if Denotes_Discriminant (Node (D)) then
771 D_Val :=
772 New_Occurrence_Of (Discriminal (Entity (Node (D))), Loc);
774 else
775 D_Val := New_Copy_Tree (Node (D));
776 end if;
778 Append (D_Val, Constraints);
779 Next_Elmt (D);
780 end loop;
782 return Constraints;
783 end Build_Discriminal_Record_Constraint;
785 -- Start of processing for Build_Discriminal_Subtype_Of_Component
787 begin
788 if Ekind (T) = E_Array_Subtype then
789 Id := First_Index (T);
790 while Present (Id) loop
791 if Denotes_Discriminant (Type_Low_Bound (Etype (Id))) or else
792 Denotes_Discriminant (Type_High_Bound (Etype (Id)))
793 then
794 return Build_Component_Subtype
795 (Build_Discriminal_Array_Constraint, Loc, T);
796 end if;
798 Next_Index (Id);
799 end loop;
801 elsif Ekind (T) = E_Record_Subtype
802 and then Has_Discriminants (T)
803 and then not Has_Unknown_Discriminants (T)
804 then
805 D := First_Elmt (Discriminant_Constraint (T));
806 while Present (D) loop
807 if Denotes_Discriminant (Node (D)) then
808 return Build_Component_Subtype
809 (Build_Discriminal_Record_Constraint, Loc, T);
810 end if;
812 Next_Elmt (D);
813 end loop;
814 end if;
816 -- If none of the above, the actual and nominal subtypes are the same
818 return Empty;
819 end Build_Discriminal_Subtype_Of_Component;
821 ------------------------------
822 -- Build_Elaboration_Entity --
823 ------------------------------
825 procedure Build_Elaboration_Entity (N : Node_Id; Spec_Id : Entity_Id) is
826 Loc : constant Source_Ptr := Sloc (N);
827 Decl : Node_Id;
828 Elab_Ent : Entity_Id;
830 procedure Set_Package_Name (Ent : Entity_Id);
831 -- Given an entity, sets the fully qualified name of the entity in
832 -- Name_Buffer, with components separated by double underscores. This
833 -- is a recursive routine that climbs the scope chain to Standard.
835 ----------------------
836 -- Set_Package_Name --
837 ----------------------
839 procedure Set_Package_Name (Ent : Entity_Id) is
840 begin
841 if Scope (Ent) /= Standard_Standard then
842 Set_Package_Name (Scope (Ent));
844 declare
845 Nam : constant String := Get_Name_String (Chars (Ent));
846 begin
847 Name_Buffer (Name_Len + 1) := '_';
848 Name_Buffer (Name_Len + 2) := '_';
849 Name_Buffer (Name_Len + 3 .. Name_Len + Nam'Length + 2) := Nam;
850 Name_Len := Name_Len + Nam'Length + 2;
851 end;
853 else
854 Get_Name_String (Chars (Ent));
855 end if;
856 end Set_Package_Name;
858 -- Start of processing for Build_Elaboration_Entity
860 begin
861 -- Ignore if already constructed
863 if Present (Elaboration_Entity (Spec_Id)) then
864 return;
865 end if;
867 -- Construct name of elaboration entity as xxx_E, where xxx is the unit
868 -- name with dots replaced by double underscore. We have to manually
869 -- construct this name, since it will be elaborated in the outer scope,
870 -- and thus will not have the unit name automatically prepended.
872 Set_Package_Name (Spec_Id);
874 -- Append _E
876 Name_Buffer (Name_Len + 1) := '_';
877 Name_Buffer (Name_Len + 2) := 'E';
878 Name_Len := Name_Len + 2;
880 -- Create elaboration flag
882 Elab_Ent :=
883 Make_Defining_Identifier (Loc, Chars => Name_Find);
884 Set_Elaboration_Entity (Spec_Id, Elab_Ent);
886 Decl :=
887 Make_Object_Declaration (Loc,
888 Defining_Identifier => Elab_Ent,
889 Object_Definition =>
890 New_Occurrence_Of (Standard_Boolean, Loc),
891 Expression =>
892 New_Occurrence_Of (Standard_False, Loc));
894 Push_Scope (Standard_Standard);
895 Add_Global_Declaration (Decl);
896 Pop_Scope;
898 -- Reset True_Constant indication, since we will indeed assign a value
899 -- to the variable in the binder main. We also kill the Current_Value
900 -- and Last_Assignment fields for the same reason.
902 Set_Is_True_Constant (Elab_Ent, False);
903 Set_Current_Value (Elab_Ent, Empty);
904 Set_Last_Assignment (Elab_Ent, Empty);
906 -- We do not want any further qualification of the name (if we did
907 -- not do this, we would pick up the name of the generic package
908 -- in the case of a library level generic instantiation).
910 Set_Has_Qualified_Name (Elab_Ent);
911 Set_Has_Fully_Qualified_Name (Elab_Ent);
912 end Build_Elaboration_Entity;
914 -----------------------------------
915 -- Cannot_Raise_Constraint_Error --
916 -----------------------------------
918 function Cannot_Raise_Constraint_Error (Expr : Node_Id) return Boolean is
919 begin
920 if Compile_Time_Known_Value (Expr) then
921 return True;
923 elsif Do_Range_Check (Expr) then
924 return False;
926 elsif Raises_Constraint_Error (Expr) then
927 return False;
929 else
930 case Nkind (Expr) is
931 when N_Identifier =>
932 return True;
934 when N_Expanded_Name =>
935 return True;
937 when N_Selected_Component =>
938 return not Do_Discriminant_Check (Expr);
940 when N_Attribute_Reference =>
941 if Do_Overflow_Check (Expr) then
942 return False;
944 elsif No (Expressions (Expr)) then
945 return True;
947 else
948 declare
949 N : Node_Id;
951 begin
952 N := First (Expressions (Expr));
953 while Present (N) loop
954 if Cannot_Raise_Constraint_Error (N) then
955 Next (N);
956 else
957 return False;
958 end if;
959 end loop;
961 return True;
962 end;
963 end if;
965 when N_Type_Conversion =>
966 if Do_Overflow_Check (Expr)
967 or else Do_Length_Check (Expr)
968 or else Do_Tag_Check (Expr)
969 then
970 return False;
971 else
972 return
973 Cannot_Raise_Constraint_Error (Expression (Expr));
974 end if;
976 when N_Unchecked_Type_Conversion =>
977 return Cannot_Raise_Constraint_Error (Expression (Expr));
979 when N_Unary_Op =>
980 if Do_Overflow_Check (Expr) then
981 return False;
982 else
983 return
984 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
985 end if;
987 when N_Op_Divide |
988 N_Op_Mod |
989 N_Op_Rem
991 if Do_Division_Check (Expr)
992 or else Do_Overflow_Check (Expr)
993 then
994 return False;
995 else
996 return
997 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
998 and then
999 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1000 end if;
1002 when N_Op_Add |
1003 N_Op_And |
1004 N_Op_Concat |
1005 N_Op_Eq |
1006 N_Op_Expon |
1007 N_Op_Ge |
1008 N_Op_Gt |
1009 N_Op_Le |
1010 N_Op_Lt |
1011 N_Op_Multiply |
1012 N_Op_Ne |
1013 N_Op_Or |
1014 N_Op_Rotate_Left |
1015 N_Op_Rotate_Right |
1016 N_Op_Shift_Left |
1017 N_Op_Shift_Right |
1018 N_Op_Shift_Right_Arithmetic |
1019 N_Op_Subtract |
1020 N_Op_Xor
1022 if Do_Overflow_Check (Expr) then
1023 return False;
1024 else
1025 return
1026 Cannot_Raise_Constraint_Error (Left_Opnd (Expr))
1027 and then
1028 Cannot_Raise_Constraint_Error (Right_Opnd (Expr));
1029 end if;
1031 when others =>
1032 return False;
1033 end case;
1034 end if;
1035 end Cannot_Raise_Constraint_Error;
1037 -----------------------------------------
1038 -- Check_Dynamically_Tagged_Expression --
1039 -----------------------------------------
1041 procedure Check_Dynamically_Tagged_Expression
1042 (Expr : Node_Id;
1043 Typ : Entity_Id;
1044 Related_Nod : Node_Id)
1046 begin
1047 pragma Assert (Is_Tagged_Type (Typ));
1049 -- In order to avoid spurious errors when analyzing the expanded code,
1050 -- this check is done only for nodes that come from source and for
1051 -- actuals of generic instantiations.
1053 if (Comes_From_Source (Related_Nod)
1054 or else In_Generic_Actual (Expr))
1055 and then (Is_Class_Wide_Type (Etype (Expr))
1056 or else Is_Dynamically_Tagged (Expr))
1057 and then Is_Tagged_Type (Typ)
1058 and then not Is_Class_Wide_Type (Typ)
1059 then
1060 Error_Msg_N ("dynamically tagged expression not allowed!", Expr);
1061 end if;
1062 end Check_Dynamically_Tagged_Expression;
1064 --------------------------
1065 -- Check_Fully_Declared --
1066 --------------------------
1068 procedure Check_Fully_Declared (T : Entity_Id; N : Node_Id) is
1069 begin
1070 if Ekind (T) = E_Incomplete_Type then
1072 -- Ada 2005 (AI-50217): If the type is available through a limited
1073 -- with_clause, verify that its full view has been analyzed.
1075 if From_With_Type (T)
1076 and then Present (Non_Limited_View (T))
1077 and then Ekind (Non_Limited_View (T)) /= E_Incomplete_Type
1078 then
1079 -- The non-limited view is fully declared
1080 null;
1082 else
1083 Error_Msg_NE
1084 ("premature usage of incomplete}", N, First_Subtype (T));
1085 end if;
1087 -- Need comments for these tests ???
1089 elsif Has_Private_Component (T)
1090 and then not Is_Generic_Type (Root_Type (T))
1091 and then not In_Spec_Expression
1092 then
1093 -- Special case: if T is the anonymous type created for a single
1094 -- task or protected object, use the name of the source object.
1096 if Is_Concurrent_Type (T)
1097 and then not Comes_From_Source (T)
1098 and then Nkind (N) = N_Object_Declaration
1099 then
1100 Error_Msg_NE ("type of& has incomplete component", N,
1101 Defining_Identifier (N));
1103 else
1104 Error_Msg_NE
1105 ("premature usage of incomplete}", N, First_Subtype (T));
1106 end if;
1107 end if;
1108 end Check_Fully_Declared;
1110 -------------------------
1111 -- Check_Nested_Access --
1112 -------------------------
1114 procedure Check_Nested_Access (Ent : Entity_Id) is
1115 Scop : constant Entity_Id := Current_Scope;
1116 Current_Subp : Entity_Id;
1117 Enclosing : Entity_Id;
1119 begin
1120 -- Currently only enabled for VM back-ends for efficiency, should we
1121 -- enable it more systematically ???
1123 -- Check for Is_Imported needs commenting below ???
1125 if VM_Target /= No_VM
1126 and then (Ekind (Ent) = E_Variable
1127 or else
1128 Ekind (Ent) = E_Constant
1129 or else
1130 Ekind (Ent) = E_Loop_Parameter)
1131 and then Scope (Ent) /= Empty
1132 and then not Is_Library_Level_Entity (Ent)
1133 and then not Is_Imported (Ent)
1134 then
1135 if Is_Subprogram (Scop)
1136 or else Is_Generic_Subprogram (Scop)
1137 or else Is_Entry (Scop)
1138 then
1139 Current_Subp := Scop;
1140 else
1141 Current_Subp := Current_Subprogram;
1142 end if;
1144 Enclosing := Enclosing_Subprogram (Ent);
1146 if Enclosing /= Empty
1147 and then Enclosing /= Current_Subp
1148 then
1149 Set_Has_Up_Level_Access (Ent, True);
1150 end if;
1151 end if;
1152 end Check_Nested_Access;
1154 ------------------------------------------
1155 -- Check_Potentially_Blocking_Operation --
1156 ------------------------------------------
1158 procedure Check_Potentially_Blocking_Operation (N : Node_Id) is
1159 S : Entity_Id;
1160 begin
1161 -- N is one of the potentially blocking operations listed in 9.5.1(8).
1162 -- When pragma Detect_Blocking is active, the run time will raise
1163 -- Program_Error. Here we only issue a warning, since we generally
1164 -- support the use of potentially blocking operations in the absence
1165 -- of the pragma.
1167 -- Indirect blocking through a subprogram call cannot be diagnosed
1168 -- statically without interprocedural analysis, so we do not attempt
1169 -- to do it here.
1171 S := Scope (Current_Scope);
1172 while Present (S) and then S /= Standard_Standard loop
1173 if Is_Protected_Type (S) then
1174 Error_Msg_N
1175 ("potentially blocking operation in protected operation?", N);
1177 return;
1178 end if;
1180 S := Scope (S);
1181 end loop;
1182 end Check_Potentially_Blocking_Operation;
1184 ------------------------------
1185 -- Check_Unprotected_Access --
1186 ------------------------------
1188 procedure Check_Unprotected_Access
1189 (Context : Node_Id;
1190 Expr : Node_Id)
1192 Cont_Encl_Typ : Entity_Id;
1193 Pref_Encl_Typ : Entity_Id;
1195 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id;
1196 -- Check whether Obj is a private component of a protected object.
1197 -- Return the protected type where the component resides, Empty
1198 -- otherwise.
1200 function Is_Public_Operation return Boolean;
1201 -- Verify that the enclosing operation is callable from outside the
1202 -- protected object, to minimize false positives.
1204 ------------------------------
1205 -- Enclosing_Protected_Type --
1206 ------------------------------
1208 function Enclosing_Protected_Type (Obj : Node_Id) return Entity_Id is
1209 begin
1210 if Is_Entity_Name (Obj) then
1211 declare
1212 Ent : Entity_Id := Entity (Obj);
1214 begin
1215 -- The object can be a renaming of a private component, use
1216 -- the original record component.
1218 if Is_Prival (Ent) then
1219 Ent := Prival_Link (Ent);
1220 end if;
1222 if Is_Protected_Type (Scope (Ent)) then
1223 return Scope (Ent);
1224 end if;
1225 end;
1226 end if;
1228 -- For indexed and selected components, recursively check the prefix
1230 if Nkind_In (Obj, N_Indexed_Component, N_Selected_Component) then
1231 return Enclosing_Protected_Type (Prefix (Obj));
1233 -- The object does not denote a protected component
1235 else
1236 return Empty;
1237 end if;
1238 end Enclosing_Protected_Type;
1240 -------------------------
1241 -- Is_Public_Operation --
1242 -------------------------
1244 function Is_Public_Operation return Boolean is
1245 S : Entity_Id;
1246 E : Entity_Id;
1248 begin
1249 S := Current_Scope;
1250 while Present (S)
1251 and then S /= Pref_Encl_Typ
1252 loop
1253 if Scope (S) = Pref_Encl_Typ then
1254 E := First_Entity (Pref_Encl_Typ);
1255 while Present (E)
1256 and then E /= First_Private_Entity (Pref_Encl_Typ)
1257 loop
1258 if E = S then
1259 return True;
1260 end if;
1261 Next_Entity (E);
1262 end loop;
1263 end if;
1265 S := Scope (S);
1266 end loop;
1268 return False;
1269 end Is_Public_Operation;
1271 -- Start of processing for Check_Unprotected_Access
1273 begin
1274 if Nkind (Expr) = N_Attribute_Reference
1275 and then Attribute_Name (Expr) = Name_Unchecked_Access
1276 then
1277 Cont_Encl_Typ := Enclosing_Protected_Type (Context);
1278 Pref_Encl_Typ := Enclosing_Protected_Type (Prefix (Expr));
1280 -- Check whether we are trying to export a protected component to a
1281 -- context with an equal or lower access level.
1283 if Present (Pref_Encl_Typ)
1284 and then No (Cont_Encl_Typ)
1285 and then Is_Public_Operation
1286 and then Scope_Depth (Pref_Encl_Typ) >=
1287 Object_Access_Level (Context)
1288 then
1289 Error_Msg_N
1290 ("?possible unprotected access to protected data", Expr);
1291 end if;
1292 end if;
1293 end Check_Unprotected_Access;
1295 ---------------
1296 -- Check_VMS --
1297 ---------------
1299 procedure Check_VMS (Construct : Node_Id) is
1300 begin
1301 if not OpenVMS_On_Target then
1302 Error_Msg_N
1303 ("this construct is allowed only in Open'V'M'S", Construct);
1304 end if;
1305 end Check_VMS;
1307 ------------------------
1308 -- Collect_Interfaces --
1309 ------------------------
1311 procedure Collect_Interfaces
1312 (T : Entity_Id;
1313 Ifaces_List : out Elist_Id;
1314 Exclude_Parents : Boolean := False;
1315 Use_Full_View : Boolean := True)
1317 procedure Collect (Typ : Entity_Id);
1318 -- Subsidiary subprogram used to traverse the whole list
1319 -- of directly and indirectly implemented interfaces
1321 -------------
1322 -- Collect --
1323 -------------
1325 procedure Collect (Typ : Entity_Id) is
1326 Ancestor : Entity_Id;
1327 Full_T : Entity_Id;
1328 Id : Node_Id;
1329 Iface : Entity_Id;
1331 begin
1332 Full_T := Typ;
1334 -- Handle private types
1336 if Use_Full_View
1337 and then Is_Private_Type (Typ)
1338 and then Present (Full_View (Typ))
1339 then
1340 Full_T := Full_View (Typ);
1341 end if;
1343 -- Include the ancestor if we are generating the whole list of
1344 -- abstract interfaces.
1346 if Etype (Full_T) /= Typ
1348 -- Protect the frontend against wrong sources. For example:
1350 -- package P is
1351 -- type A is tagged null record;
1352 -- type B is new A with private;
1353 -- type C is new A with private;
1354 -- private
1355 -- type B is new C with null record;
1356 -- type C is new B with null record;
1357 -- end P;
1359 and then Etype (Full_T) /= T
1360 then
1361 Ancestor := Etype (Full_T);
1362 Collect (Ancestor);
1364 if Is_Interface (Ancestor)
1365 and then not Exclude_Parents
1366 then
1367 Append_Unique_Elmt (Ancestor, Ifaces_List);
1368 end if;
1369 end if;
1371 -- Traverse the graph of ancestor interfaces
1373 if Is_Non_Empty_List (Abstract_Interface_List (Full_T)) then
1374 Id := First (Abstract_Interface_List (Full_T));
1375 while Present (Id) loop
1376 Iface := Etype (Id);
1378 -- Protect against wrong uses. For example:
1379 -- type I is interface;
1380 -- type O is tagged null record;
1381 -- type Wrong is new I and O with null record; -- ERROR
1383 if Is_Interface (Iface) then
1384 if Exclude_Parents
1385 and then Etype (T) /= T
1386 and then Interface_Present_In_Ancestor (Etype (T), Iface)
1387 then
1388 null;
1389 else
1390 Collect (Iface);
1391 Append_Unique_Elmt (Iface, Ifaces_List);
1392 end if;
1393 end if;
1395 Next (Id);
1396 end loop;
1397 end if;
1398 end Collect;
1400 -- Start of processing for Collect_Interfaces
1402 begin
1403 pragma Assert (Is_Tagged_Type (T) or else Is_Concurrent_Type (T));
1404 Ifaces_List := New_Elmt_List;
1405 Collect (T);
1406 end Collect_Interfaces;
1408 ----------------------------------
1409 -- Collect_Interface_Components --
1410 ----------------------------------
1412 procedure Collect_Interface_Components
1413 (Tagged_Type : Entity_Id;
1414 Components_List : out Elist_Id)
1416 procedure Collect (Typ : Entity_Id);
1417 -- Subsidiary subprogram used to climb to the parents
1419 -------------
1420 -- Collect --
1421 -------------
1423 procedure Collect (Typ : Entity_Id) is
1424 Tag_Comp : Entity_Id;
1425 Parent_Typ : Entity_Id;
1427 begin
1428 -- Handle private types
1430 if Present (Full_View (Etype (Typ))) then
1431 Parent_Typ := Full_View (Etype (Typ));
1432 else
1433 Parent_Typ := Etype (Typ);
1434 end if;
1436 if Parent_Typ /= Typ
1438 -- Protect the frontend against wrong sources. For example:
1440 -- package P is
1441 -- type A is tagged null record;
1442 -- type B is new A with private;
1443 -- type C is new A with private;
1444 -- private
1445 -- type B is new C with null record;
1446 -- type C is new B with null record;
1447 -- end P;
1449 and then Parent_Typ /= Tagged_Type
1450 then
1451 Collect (Parent_Typ);
1452 end if;
1454 -- Collect the components containing tags of secondary dispatch
1455 -- tables.
1457 Tag_Comp := Next_Tag_Component (First_Tag_Component (Typ));
1458 while Present (Tag_Comp) loop
1459 pragma Assert (Present (Related_Type (Tag_Comp)));
1460 Append_Elmt (Tag_Comp, Components_List);
1462 Tag_Comp := Next_Tag_Component (Tag_Comp);
1463 end loop;
1464 end Collect;
1466 -- Start of processing for Collect_Interface_Components
1468 begin
1469 pragma Assert (Ekind (Tagged_Type) = E_Record_Type
1470 and then Is_Tagged_Type (Tagged_Type));
1472 Components_List := New_Elmt_List;
1473 Collect (Tagged_Type);
1474 end Collect_Interface_Components;
1476 -----------------------------
1477 -- Collect_Interfaces_Info --
1478 -----------------------------
1480 procedure Collect_Interfaces_Info
1481 (T : Entity_Id;
1482 Ifaces_List : out Elist_Id;
1483 Components_List : out Elist_Id;
1484 Tags_List : out Elist_Id)
1486 Comps_List : Elist_Id;
1487 Comp_Elmt : Elmt_Id;
1488 Comp_Iface : Entity_Id;
1489 Iface_Elmt : Elmt_Id;
1490 Iface : Entity_Id;
1492 function Search_Tag (Iface : Entity_Id) return Entity_Id;
1493 -- Search for the secondary tag associated with the interface type
1494 -- Iface that is implemented by T.
1496 ----------------
1497 -- Search_Tag --
1498 ----------------
1500 function Search_Tag (Iface : Entity_Id) return Entity_Id is
1501 ADT : Elmt_Id;
1503 begin
1504 ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (T))));
1505 while Present (ADT)
1506 and then Ekind (Node (ADT)) = E_Constant
1507 and then Related_Type (Node (ADT)) /= Iface
1508 loop
1509 -- Skip the secondary dispatch tables of Iface
1511 Next_Elmt (ADT);
1512 Next_Elmt (ADT);
1513 Next_Elmt (ADT);
1514 Next_Elmt (ADT);
1515 end loop;
1517 pragma Assert (Ekind (Node (ADT)) = E_Constant);
1518 return Node (ADT);
1519 end Search_Tag;
1521 -- Start of processing for Collect_Interfaces_Info
1523 begin
1524 Collect_Interfaces (T, Ifaces_List);
1525 Collect_Interface_Components (T, Comps_List);
1527 -- Search for the record component and tag associated with each
1528 -- interface type of T.
1530 Components_List := New_Elmt_List;
1531 Tags_List := New_Elmt_List;
1533 Iface_Elmt := First_Elmt (Ifaces_List);
1534 while Present (Iface_Elmt) loop
1535 Iface := Node (Iface_Elmt);
1537 -- Associate the primary tag component and the primary dispatch table
1538 -- with all the interfaces that are parents of T
1540 if Is_Ancestor (Iface, T) then
1541 Append_Elmt (First_Tag_Component (T), Components_List);
1542 Append_Elmt (Node (First_Elmt (Access_Disp_Table (T))), Tags_List);
1544 -- Otherwise search for the tag component and secondary dispatch
1545 -- table of Iface
1547 else
1548 Comp_Elmt := First_Elmt (Comps_List);
1549 while Present (Comp_Elmt) loop
1550 Comp_Iface := Related_Type (Node (Comp_Elmt));
1552 if Comp_Iface = Iface
1553 or else Is_Ancestor (Iface, Comp_Iface)
1554 then
1555 Append_Elmt (Node (Comp_Elmt), Components_List);
1556 Append_Elmt (Search_Tag (Comp_Iface), Tags_List);
1557 exit;
1558 end if;
1560 Next_Elmt (Comp_Elmt);
1561 end loop;
1562 pragma Assert (Present (Comp_Elmt));
1563 end if;
1565 Next_Elmt (Iface_Elmt);
1566 end loop;
1567 end Collect_Interfaces_Info;
1569 ----------------------------------
1570 -- Collect_Primitive_Operations --
1571 ----------------------------------
1573 function Collect_Primitive_Operations (T : Entity_Id) return Elist_Id is
1574 B_Type : constant Entity_Id := Base_Type (T);
1575 B_Decl : constant Node_Id := Original_Node (Parent (B_Type));
1576 B_Scope : Entity_Id := Scope (B_Type);
1577 Op_List : Elist_Id;
1578 Formal : Entity_Id;
1579 Is_Prim : Boolean;
1580 Formal_Derived : Boolean := False;
1581 Id : Entity_Id;
1583 begin
1584 -- For tagged types, the primitive operations are collected as they
1585 -- are declared, and held in an explicit list which is simply returned.
1587 if Is_Tagged_Type (B_Type) then
1588 return Primitive_Operations (B_Type);
1590 -- An untagged generic type that is a derived type inherits the
1591 -- primitive operations of its parent type. Other formal types only
1592 -- have predefined operators, which are not explicitly represented.
1594 elsif Is_Generic_Type (B_Type) then
1595 if Nkind (B_Decl) = N_Formal_Type_Declaration
1596 and then Nkind (Formal_Type_Definition (B_Decl))
1597 = N_Formal_Derived_Type_Definition
1598 then
1599 Formal_Derived := True;
1600 else
1601 return New_Elmt_List;
1602 end if;
1603 end if;
1605 Op_List := New_Elmt_List;
1607 if B_Scope = Standard_Standard then
1608 if B_Type = Standard_String then
1609 Append_Elmt (Standard_Op_Concat, Op_List);
1611 elsif B_Type = Standard_Wide_String then
1612 Append_Elmt (Standard_Op_Concatw, Op_List);
1614 else
1615 null;
1616 end if;
1618 elsif (Is_Package_Or_Generic_Package (B_Scope)
1619 and then
1620 Nkind (Parent (Declaration_Node (First_Subtype (T)))) /=
1621 N_Package_Body)
1622 or else Is_Derived_Type (B_Type)
1623 then
1624 -- The primitive operations appear after the base type, except
1625 -- if the derivation happens within the private part of B_Scope
1626 -- and the type is a private type, in which case both the type
1627 -- and some primitive operations may appear before the base
1628 -- type, and the list of candidates starts after the type.
1630 if In_Open_Scopes (B_Scope)
1631 and then Scope (T) = B_Scope
1632 and then In_Private_Part (B_Scope)
1633 then
1634 Id := Next_Entity (T);
1635 else
1636 Id := Next_Entity (B_Type);
1637 end if;
1639 while Present (Id) loop
1641 -- Note that generic formal subprograms are not
1642 -- considered to be primitive operations and thus
1643 -- are never inherited.
1645 if Is_Overloadable (Id)
1646 and then Nkind (Parent (Parent (Id)))
1647 not in N_Formal_Subprogram_Declaration
1648 then
1649 Is_Prim := False;
1651 if Base_Type (Etype (Id)) = B_Type then
1652 Is_Prim := True;
1653 else
1654 Formal := First_Formal (Id);
1655 while Present (Formal) loop
1656 if Base_Type (Etype (Formal)) = B_Type then
1657 Is_Prim := True;
1658 exit;
1660 elsif Ekind (Etype (Formal)) = E_Anonymous_Access_Type
1661 and then Base_Type
1662 (Designated_Type (Etype (Formal))) = B_Type
1663 then
1664 Is_Prim := True;
1665 exit;
1666 end if;
1668 Next_Formal (Formal);
1669 end loop;
1670 end if;
1672 -- For a formal derived type, the only primitives are the
1673 -- ones inherited from the parent type. Operations appearing
1674 -- in the package declaration are not primitive for it.
1676 if Is_Prim
1677 and then (not Formal_Derived
1678 or else Present (Alias (Id)))
1679 then
1680 Append_Elmt (Id, Op_List);
1681 end if;
1682 end if;
1684 Next_Entity (Id);
1686 -- For a type declared in System, some of its operations
1687 -- may appear in the target-specific extension to System.
1689 if No (Id)
1690 and then Chars (B_Scope) = Name_System
1691 and then Scope (B_Scope) = Standard_Standard
1692 and then Present_System_Aux
1693 then
1694 B_Scope := System_Aux_Id;
1695 Id := First_Entity (System_Aux_Id);
1696 end if;
1697 end loop;
1698 end if;
1700 return Op_List;
1701 end Collect_Primitive_Operations;
1703 -----------------------------------
1704 -- Compile_Time_Constraint_Error --
1705 -----------------------------------
1707 function Compile_Time_Constraint_Error
1708 (N : Node_Id;
1709 Msg : String;
1710 Ent : Entity_Id := Empty;
1711 Loc : Source_Ptr := No_Location;
1712 Warn : Boolean := False) return Node_Id
1714 Msgc : String (1 .. Msg'Length + 2);
1715 -- Copy of message, with room for possible ? and ! at end
1717 Msgl : Natural;
1718 Wmsg : Boolean;
1719 P : Node_Id;
1720 OldP : Node_Id;
1721 Msgs : Boolean;
1722 Eloc : Source_Ptr;
1724 begin
1725 -- A static constraint error in an instance body is not a fatal error.
1726 -- we choose to inhibit the message altogether, because there is no
1727 -- obvious node (for now) on which to post it. On the other hand the
1728 -- offending node must be replaced with a constraint_error in any case.
1730 -- No messages are generated if we already posted an error on this node
1732 if not Error_Posted (N) then
1733 if Loc /= No_Location then
1734 Eloc := Loc;
1735 else
1736 Eloc := Sloc (N);
1737 end if;
1739 Msgc (1 .. Msg'Length) := Msg;
1740 Msgl := Msg'Length;
1742 -- Message is a warning, even in Ada 95 case
1744 if Msg (Msg'Last) = '?' then
1745 Wmsg := True;
1747 -- In Ada 83, all messages are warnings. In the private part and
1748 -- the body of an instance, constraint_checks are only warnings.
1749 -- We also make this a warning if the Warn parameter is set.
1751 elsif Warn
1752 or else (Ada_Version = Ada_83 and then Comes_From_Source (N))
1753 then
1754 Msgl := Msgl + 1;
1755 Msgc (Msgl) := '?';
1756 Wmsg := True;
1758 elsif In_Instance_Not_Visible then
1759 Msgl := Msgl + 1;
1760 Msgc (Msgl) := '?';
1761 Wmsg := True;
1763 -- Otherwise we have a real error message (Ada 95 static case)
1764 -- and we make this an unconditional message. Note that in the
1765 -- warning case we do not make the message unconditional, it seems
1766 -- quite reasonable to delete messages like this (about exceptions
1767 -- that will be raised) in dead code.
1769 else
1770 Wmsg := False;
1771 Msgl := Msgl + 1;
1772 Msgc (Msgl) := '!';
1773 end if;
1775 -- Should we generate a warning? The answer is not quite yes. The
1776 -- very annoying exception occurs in the case of a short circuit
1777 -- operator where the left operand is static and decisive. Climb
1778 -- parents to see if that is the case we have here. Conditional
1779 -- expressions with decisive conditions are a similar situation.
1781 Msgs := True;
1782 P := N;
1783 loop
1784 OldP := P;
1785 P := Parent (P);
1787 -- And then with False as left operand
1789 if Nkind (P) = N_And_Then
1790 and then Compile_Time_Known_Value (Left_Opnd (P))
1791 and then Is_False (Expr_Value (Left_Opnd (P)))
1792 then
1793 Msgs := False;
1794 exit;
1796 -- OR ELSE with True as left operand
1798 elsif Nkind (P) = N_Or_Else
1799 and then Compile_Time_Known_Value (Left_Opnd (P))
1800 and then Is_True (Expr_Value (Left_Opnd (P)))
1801 then
1802 Msgs := False;
1803 exit;
1805 -- Conditional expression
1807 elsif Nkind (P) = N_Conditional_Expression then
1808 declare
1809 Cond : constant Node_Id := First (Expressions (P));
1810 Texp : constant Node_Id := Next (Cond);
1811 Fexp : constant Node_Id := Next (Texp);
1813 begin
1814 if Compile_Time_Known_Value (Cond) then
1816 -- Condition is True and we are in the right operand
1818 if Is_True (Expr_Value (Cond))
1819 and then OldP = Fexp
1820 then
1821 Msgs := False;
1822 exit;
1824 -- Condition is False and we are in the left operand
1826 elsif Is_False (Expr_Value (Cond))
1827 and then OldP = Texp
1828 then
1829 Msgs := False;
1830 exit;
1831 end if;
1832 end if;
1833 end;
1835 -- Special case for component association in aggregates, where
1836 -- we want to keep climbing up to the parent aggregate.
1838 elsif Nkind (P) = N_Component_Association
1839 and then Nkind (Parent (P)) = N_Aggregate
1840 then
1841 null;
1843 -- Keep going if within subexpression
1845 else
1846 exit when Nkind (P) not in N_Subexpr;
1847 end if;
1848 end loop;
1850 if Msgs then
1851 if Present (Ent) then
1852 Error_Msg_NEL (Msgc (1 .. Msgl), N, Ent, Eloc);
1853 else
1854 Error_Msg_NEL (Msgc (1 .. Msgl), N, Etype (N), Eloc);
1855 end if;
1857 if Wmsg then
1858 if Inside_Init_Proc then
1859 Error_Msg_NEL
1860 ("\?& will be raised for objects of this type",
1861 N, Standard_Constraint_Error, Eloc);
1862 else
1863 Error_Msg_NEL
1864 ("\?& will be raised at run time",
1865 N, Standard_Constraint_Error, Eloc);
1866 end if;
1868 else
1869 Error_Msg
1870 ("\static expression fails Constraint_Check", Eloc);
1871 Set_Error_Posted (N);
1872 end if;
1873 end if;
1874 end if;
1876 return N;
1877 end Compile_Time_Constraint_Error;
1879 -----------------------
1880 -- Conditional_Delay --
1881 -----------------------
1883 procedure Conditional_Delay (New_Ent, Old_Ent : Entity_Id) is
1884 begin
1885 if Has_Delayed_Freeze (Old_Ent) and then not Is_Frozen (Old_Ent) then
1886 Set_Has_Delayed_Freeze (New_Ent);
1887 end if;
1888 end Conditional_Delay;
1890 -------------------------
1891 -- Copy_Parameter_List --
1892 -------------------------
1894 function Copy_Parameter_List (Subp_Id : Entity_Id) return List_Id is
1895 Loc : constant Source_Ptr := Sloc (Subp_Id);
1896 Plist : List_Id;
1897 Formal : Entity_Id;
1899 begin
1900 if No (First_Formal (Subp_Id)) then
1901 return No_List;
1902 else
1903 Plist := New_List;
1904 Formal := First_Formal (Subp_Id);
1905 while Present (Formal) loop
1906 Append
1907 (Make_Parameter_Specification (Loc,
1908 Defining_Identifier =>
1909 Make_Defining_Identifier (Sloc (Formal),
1910 Chars => Chars (Formal)),
1911 In_Present => In_Present (Parent (Formal)),
1912 Out_Present => Out_Present (Parent (Formal)),
1913 Parameter_Type =>
1914 New_Reference_To (Etype (Formal), Loc),
1915 Expression =>
1916 New_Copy_Tree (Expression (Parent (Formal)))),
1917 Plist);
1919 Next_Formal (Formal);
1920 end loop;
1921 end if;
1923 return Plist;
1924 end Copy_Parameter_List;
1926 --------------------
1927 -- Current_Entity --
1928 --------------------
1930 -- The currently visible definition for a given identifier is the
1931 -- one most chained at the start of the visibility chain, i.e. the
1932 -- one that is referenced by the Node_Id value of the name of the
1933 -- given identifier.
1935 function Current_Entity (N : Node_Id) return Entity_Id is
1936 begin
1937 return Get_Name_Entity_Id (Chars (N));
1938 end Current_Entity;
1940 -----------------------------
1941 -- Current_Entity_In_Scope --
1942 -----------------------------
1944 function Current_Entity_In_Scope (N : Node_Id) return Entity_Id is
1945 E : Entity_Id;
1946 CS : constant Entity_Id := Current_Scope;
1948 Transient_Case : constant Boolean := Scope_Is_Transient;
1950 begin
1951 E := Get_Name_Entity_Id (Chars (N));
1952 while Present (E)
1953 and then Scope (E) /= CS
1954 and then (not Transient_Case or else Scope (E) /= Scope (CS))
1955 loop
1956 E := Homonym (E);
1957 end loop;
1959 return E;
1960 end Current_Entity_In_Scope;
1962 -------------------
1963 -- Current_Scope --
1964 -------------------
1966 function Current_Scope return Entity_Id is
1967 begin
1968 if Scope_Stack.Last = -1 then
1969 return Standard_Standard;
1970 else
1971 declare
1972 C : constant Entity_Id :=
1973 Scope_Stack.Table (Scope_Stack.Last).Entity;
1974 begin
1975 if Present (C) then
1976 return C;
1977 else
1978 return Standard_Standard;
1979 end if;
1980 end;
1981 end if;
1982 end Current_Scope;
1984 ------------------------
1985 -- Current_Subprogram --
1986 ------------------------
1988 function Current_Subprogram return Entity_Id is
1989 Scop : constant Entity_Id := Current_Scope;
1990 begin
1991 if Is_Subprogram (Scop) or else Is_Generic_Subprogram (Scop) then
1992 return Scop;
1993 else
1994 return Enclosing_Subprogram (Scop);
1995 end if;
1996 end Current_Subprogram;
1998 ---------------------
1999 -- Defining_Entity --
2000 ---------------------
2002 function Defining_Entity (N : Node_Id) return Entity_Id is
2003 K : constant Node_Kind := Nkind (N);
2004 Err : Entity_Id := Empty;
2006 begin
2007 case K is
2008 when
2009 N_Subprogram_Declaration |
2010 N_Abstract_Subprogram_Declaration |
2011 N_Subprogram_Body |
2012 N_Package_Declaration |
2013 N_Subprogram_Renaming_Declaration |
2014 N_Subprogram_Body_Stub |
2015 N_Generic_Subprogram_Declaration |
2016 N_Generic_Package_Declaration |
2017 N_Formal_Subprogram_Declaration
2019 return Defining_Entity (Specification (N));
2021 when
2022 N_Component_Declaration |
2023 N_Defining_Program_Unit_Name |
2024 N_Discriminant_Specification |
2025 N_Entry_Body |
2026 N_Entry_Declaration |
2027 N_Entry_Index_Specification |
2028 N_Exception_Declaration |
2029 N_Exception_Renaming_Declaration |
2030 N_Formal_Object_Declaration |
2031 N_Formal_Package_Declaration |
2032 N_Formal_Type_Declaration |
2033 N_Full_Type_Declaration |
2034 N_Implicit_Label_Declaration |
2035 N_Incomplete_Type_Declaration |
2036 N_Loop_Parameter_Specification |
2037 N_Number_Declaration |
2038 N_Object_Declaration |
2039 N_Object_Renaming_Declaration |
2040 N_Package_Body_Stub |
2041 N_Parameter_Specification |
2042 N_Private_Extension_Declaration |
2043 N_Private_Type_Declaration |
2044 N_Protected_Body |
2045 N_Protected_Body_Stub |
2046 N_Protected_Type_Declaration |
2047 N_Single_Protected_Declaration |
2048 N_Single_Task_Declaration |
2049 N_Subtype_Declaration |
2050 N_Task_Body |
2051 N_Task_Body_Stub |
2052 N_Task_Type_Declaration
2054 return Defining_Identifier (N);
2056 when N_Subunit =>
2057 return Defining_Entity (Proper_Body (N));
2059 when
2060 N_Function_Instantiation |
2061 N_Function_Specification |
2062 N_Generic_Function_Renaming_Declaration |
2063 N_Generic_Package_Renaming_Declaration |
2064 N_Generic_Procedure_Renaming_Declaration |
2065 N_Package_Body |
2066 N_Package_Instantiation |
2067 N_Package_Renaming_Declaration |
2068 N_Package_Specification |
2069 N_Procedure_Instantiation |
2070 N_Procedure_Specification
2072 declare
2073 Nam : constant Node_Id := Defining_Unit_Name (N);
2075 begin
2076 if Nkind (Nam) in N_Entity then
2077 return Nam;
2079 -- For Error, make up a name and attach to declaration
2080 -- so we can continue semantic analysis
2082 elsif Nam = Error then
2083 Err :=
2084 Make_Defining_Identifier (Sloc (N),
2085 Chars => New_Internal_Name ('T'));
2086 Set_Defining_Unit_Name (N, Err);
2088 return Err;
2089 -- If not an entity, get defining identifier
2091 else
2092 return Defining_Identifier (Nam);
2093 end if;
2094 end;
2096 when N_Block_Statement =>
2097 return Entity (Identifier (N));
2099 when others =>
2100 raise Program_Error;
2102 end case;
2103 end Defining_Entity;
2105 --------------------------
2106 -- Denotes_Discriminant --
2107 --------------------------
2109 function Denotes_Discriminant
2110 (N : Node_Id;
2111 Check_Concurrent : Boolean := False) return Boolean
2113 E : Entity_Id;
2114 begin
2115 if not Is_Entity_Name (N)
2116 or else No (Entity (N))
2117 then
2118 return False;
2119 else
2120 E := Entity (N);
2121 end if;
2123 -- If we are checking for a protected type, the discriminant may have
2124 -- been rewritten as the corresponding discriminal of the original type
2125 -- or of the corresponding concurrent record, depending on whether we
2126 -- are in the spec or body of the protected type.
2128 return Ekind (E) = E_Discriminant
2129 or else
2130 (Check_Concurrent
2131 and then Ekind (E) = E_In_Parameter
2132 and then Present (Discriminal_Link (E))
2133 and then
2134 (Is_Concurrent_Type (Scope (Discriminal_Link (E)))
2135 or else
2136 Is_Concurrent_Record_Type (Scope (Discriminal_Link (E)))));
2138 end Denotes_Discriminant;
2140 -------------------------
2141 -- Denotes_Same_Object --
2142 -------------------------
2144 function Denotes_Same_Object (A1, A2 : Node_Id) return Boolean is
2145 begin
2146 -- If we have entity names, then must be same entity
2148 if Is_Entity_Name (A1) then
2149 if Is_Entity_Name (A2) then
2150 return Entity (A1) = Entity (A2);
2151 else
2152 return False;
2153 end if;
2155 -- No match if not same node kind
2157 elsif Nkind (A1) /= Nkind (A2) then
2158 return False;
2160 -- For selected components, must have same prefix and selector
2162 elsif Nkind (A1) = N_Selected_Component then
2163 return Denotes_Same_Object (Prefix (A1), Prefix (A2))
2164 and then
2165 Entity (Selector_Name (A1)) = Entity (Selector_Name (A2));
2167 -- For explicit dereferences, prefixes must be same
2169 elsif Nkind (A1) = N_Explicit_Dereference then
2170 return Denotes_Same_Object (Prefix (A1), Prefix (A2));
2172 -- For indexed components, prefixes and all subscripts must be the same
2174 elsif Nkind (A1) = N_Indexed_Component then
2175 if Denotes_Same_Object (Prefix (A1), Prefix (A2)) then
2176 declare
2177 Indx1 : Node_Id;
2178 Indx2 : Node_Id;
2180 begin
2181 Indx1 := First (Expressions (A1));
2182 Indx2 := First (Expressions (A2));
2183 while Present (Indx1) loop
2185 -- Shouldn't we be checking that values are the same???
2187 if not Denotes_Same_Object (Indx1, Indx2) then
2188 return False;
2189 end if;
2191 Next (Indx1);
2192 Next (Indx2);
2193 end loop;
2195 return True;
2196 end;
2197 else
2198 return False;
2199 end if;
2201 -- For slices, prefixes must match and bounds must match
2203 elsif Nkind (A1) = N_Slice
2204 and then Denotes_Same_Object (Prefix (A1), Prefix (A2))
2205 then
2206 declare
2207 Lo1, Lo2, Hi1, Hi2 : Node_Id;
2209 begin
2210 Get_Index_Bounds (Etype (A1), Lo1, Hi1);
2211 Get_Index_Bounds (Etype (A2), Lo2, Hi2);
2213 -- Check whether bounds are statically identical. There is no
2214 -- attempt to detect partial overlap of slices.
2216 -- What about an array and a slice of an array???
2218 return Denotes_Same_Object (Lo1, Lo2)
2219 and then Denotes_Same_Object (Hi1, Hi2);
2220 end;
2222 -- Literals will appear as indices. Isn't this where we should check
2223 -- Known_At_Compile_Time at least if we are generating warnings ???
2225 elsif Nkind (A1) = N_Integer_Literal then
2226 return Intval (A1) = Intval (A2);
2228 else
2229 return False;
2230 end if;
2231 end Denotes_Same_Object;
2233 -------------------------
2234 -- Denotes_Same_Prefix --
2235 -------------------------
2237 function Denotes_Same_Prefix (A1, A2 : Node_Id) return Boolean is
2239 begin
2240 if Is_Entity_Name (A1) then
2241 if Nkind_In (A2, N_Selected_Component, N_Indexed_Component) then
2242 return Denotes_Same_Object (A1, Prefix (A2))
2243 or else Denotes_Same_Prefix (A1, Prefix (A2));
2244 else
2245 return False;
2246 end if;
2248 elsif Is_Entity_Name (A2) then
2249 return Denotes_Same_Prefix (A2, A1);
2251 elsif Nkind_In (A1, N_Selected_Component, N_Indexed_Component, N_Slice)
2252 and then
2253 Nkind_In (A2, N_Selected_Component, N_Indexed_Component, N_Slice)
2254 then
2255 declare
2256 Root1, Root2 : Node_Id;
2257 Depth1, Depth2 : Int := 0;
2259 begin
2260 Root1 := Prefix (A1);
2261 while not Is_Entity_Name (Root1) loop
2262 if not Nkind_In
2263 (Root1, N_Selected_Component, N_Indexed_Component)
2264 then
2265 return False;
2266 else
2267 Root1 := Prefix (Root1);
2268 end if;
2270 Depth1 := Depth1 + 1;
2271 end loop;
2273 Root2 := Prefix (A2);
2274 while not Is_Entity_Name (Root2) loop
2275 if not Nkind_In
2276 (Root2, N_Selected_Component, N_Indexed_Component)
2277 then
2278 return False;
2279 else
2280 Root2 := Prefix (Root2);
2281 end if;
2283 Depth2 := Depth2 + 1;
2284 end loop;
2286 -- If both have the same depth and they do not denote the same
2287 -- object, they are disjoint and not warning is needed.
2289 if Depth1 = Depth2 then
2290 return False;
2292 elsif Depth1 > Depth2 then
2293 Root1 := Prefix (A1);
2294 for I in 1 .. Depth1 - Depth2 - 1 loop
2295 Root1 := Prefix (Root1);
2296 end loop;
2298 return Denotes_Same_Object (Root1, A2);
2300 else
2301 Root2 := Prefix (A2);
2302 for I in 1 .. Depth2 - Depth1 - 1 loop
2303 Root2 := Prefix (Root2);
2304 end loop;
2306 return Denotes_Same_Object (A1, Root2);
2307 end if;
2308 end;
2310 else
2311 return False;
2312 end if;
2313 end Denotes_Same_Prefix;
2315 ----------------------
2316 -- Denotes_Variable --
2317 ----------------------
2319 function Denotes_Variable (N : Node_Id) return Boolean is
2320 begin
2321 return Is_Variable (N) and then Paren_Count (N) = 0;
2322 end Denotes_Variable;
2324 -----------------------------
2325 -- Depends_On_Discriminant --
2326 -----------------------------
2328 function Depends_On_Discriminant (N : Node_Id) return Boolean is
2329 L : Node_Id;
2330 H : Node_Id;
2332 begin
2333 Get_Index_Bounds (N, L, H);
2334 return Denotes_Discriminant (L) or else Denotes_Discriminant (H);
2335 end Depends_On_Discriminant;
2337 -------------------------
2338 -- Designate_Same_Unit --
2339 -------------------------
2341 function Designate_Same_Unit
2342 (Name1 : Node_Id;
2343 Name2 : Node_Id) return Boolean
2345 K1 : constant Node_Kind := Nkind (Name1);
2346 K2 : constant Node_Kind := Nkind (Name2);
2348 function Prefix_Node (N : Node_Id) return Node_Id;
2349 -- Returns the parent unit name node of a defining program unit name
2350 -- or the prefix if N is a selected component or an expanded name.
2352 function Select_Node (N : Node_Id) return Node_Id;
2353 -- Returns the defining identifier node of a defining program unit
2354 -- name or the selector node if N is a selected component or an
2355 -- expanded name.
2357 -----------------
2358 -- Prefix_Node --
2359 -----------------
2361 function Prefix_Node (N : Node_Id) return Node_Id is
2362 begin
2363 if Nkind (N) = N_Defining_Program_Unit_Name then
2364 return Name (N);
2366 else
2367 return Prefix (N);
2368 end if;
2369 end Prefix_Node;
2371 -----------------
2372 -- Select_Node --
2373 -----------------
2375 function Select_Node (N : Node_Id) return Node_Id is
2376 begin
2377 if Nkind (N) = N_Defining_Program_Unit_Name then
2378 return Defining_Identifier (N);
2380 else
2381 return Selector_Name (N);
2382 end if;
2383 end Select_Node;
2385 -- Start of processing for Designate_Next_Unit
2387 begin
2388 if (K1 = N_Identifier or else
2389 K1 = N_Defining_Identifier)
2390 and then
2391 (K2 = N_Identifier or else
2392 K2 = N_Defining_Identifier)
2393 then
2394 return Chars (Name1) = Chars (Name2);
2396 elsif
2397 (K1 = N_Expanded_Name or else
2398 K1 = N_Selected_Component or else
2399 K1 = N_Defining_Program_Unit_Name)
2400 and then
2401 (K2 = N_Expanded_Name or else
2402 K2 = N_Selected_Component or else
2403 K2 = N_Defining_Program_Unit_Name)
2404 then
2405 return
2406 (Chars (Select_Node (Name1)) = Chars (Select_Node (Name2)))
2407 and then
2408 Designate_Same_Unit (Prefix_Node (Name1), Prefix_Node (Name2));
2410 else
2411 return False;
2412 end if;
2413 end Designate_Same_Unit;
2415 ----------------------------
2416 -- Enclosing_Generic_Body --
2417 ----------------------------
2419 function Enclosing_Generic_Body
2420 (N : Node_Id) return Node_Id
2422 P : Node_Id;
2423 Decl : Node_Id;
2424 Spec : Node_Id;
2426 begin
2427 P := Parent (N);
2428 while Present (P) loop
2429 if Nkind (P) = N_Package_Body
2430 or else Nkind (P) = N_Subprogram_Body
2431 then
2432 Spec := Corresponding_Spec (P);
2434 if Present (Spec) then
2435 Decl := Unit_Declaration_Node (Spec);
2437 if Nkind (Decl) = N_Generic_Package_Declaration
2438 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
2439 then
2440 return P;
2441 end if;
2442 end if;
2443 end if;
2445 P := Parent (P);
2446 end loop;
2448 return Empty;
2449 end Enclosing_Generic_Body;
2451 ----------------------------
2452 -- Enclosing_Generic_Unit --
2453 ----------------------------
2455 function Enclosing_Generic_Unit
2456 (N : Node_Id) return Node_Id
2458 P : Node_Id;
2459 Decl : Node_Id;
2460 Spec : Node_Id;
2462 begin
2463 P := Parent (N);
2464 while Present (P) loop
2465 if Nkind (P) = N_Generic_Package_Declaration
2466 or else Nkind (P) = N_Generic_Subprogram_Declaration
2467 then
2468 return P;
2470 elsif Nkind (P) = N_Package_Body
2471 or else Nkind (P) = N_Subprogram_Body
2472 then
2473 Spec := Corresponding_Spec (P);
2475 if Present (Spec) then
2476 Decl := Unit_Declaration_Node (Spec);
2478 if Nkind (Decl) = N_Generic_Package_Declaration
2479 or else Nkind (Decl) = N_Generic_Subprogram_Declaration
2480 then
2481 return Decl;
2482 end if;
2483 end if;
2484 end if;
2486 P := Parent (P);
2487 end loop;
2489 return Empty;
2490 end Enclosing_Generic_Unit;
2492 -------------------------------
2493 -- Enclosing_Lib_Unit_Entity --
2494 -------------------------------
2496 function Enclosing_Lib_Unit_Entity return Entity_Id is
2497 Unit_Entity : Entity_Id;
2499 begin
2500 -- Look for enclosing library unit entity by following scope links.
2501 -- Equivalent to, but faster than indexing through the scope stack.
2503 Unit_Entity := Current_Scope;
2504 while (Present (Scope (Unit_Entity))
2505 and then Scope (Unit_Entity) /= Standard_Standard)
2506 and not Is_Child_Unit (Unit_Entity)
2507 loop
2508 Unit_Entity := Scope (Unit_Entity);
2509 end loop;
2511 return Unit_Entity;
2512 end Enclosing_Lib_Unit_Entity;
2514 -----------------------------
2515 -- Enclosing_Lib_Unit_Node --
2516 -----------------------------
2518 function Enclosing_Lib_Unit_Node (N : Node_Id) return Node_Id is
2519 Current_Node : Node_Id;
2521 begin
2522 Current_Node := N;
2523 while Present (Current_Node)
2524 and then Nkind (Current_Node) /= N_Compilation_Unit
2525 loop
2526 Current_Node := Parent (Current_Node);
2527 end loop;
2529 if Nkind (Current_Node) /= N_Compilation_Unit then
2530 return Empty;
2531 end if;
2533 return Current_Node;
2534 end Enclosing_Lib_Unit_Node;
2536 --------------------------
2537 -- Enclosing_Subprogram --
2538 --------------------------
2540 function Enclosing_Subprogram (E : Entity_Id) return Entity_Id is
2541 Dynamic_Scope : constant Entity_Id := Enclosing_Dynamic_Scope (E);
2543 begin
2544 if Dynamic_Scope = Standard_Standard then
2545 return Empty;
2547 elsif Dynamic_Scope = Empty then
2548 return Empty;
2550 elsif Ekind (Dynamic_Scope) = E_Subprogram_Body then
2551 return Corresponding_Spec (Parent (Parent (Dynamic_Scope)));
2553 elsif Ekind (Dynamic_Scope) = E_Block
2554 or else Ekind (Dynamic_Scope) = E_Return_Statement
2555 then
2556 return Enclosing_Subprogram (Dynamic_Scope);
2558 elsif Ekind (Dynamic_Scope) = E_Task_Type then
2559 return Get_Task_Body_Procedure (Dynamic_Scope);
2561 elsif Convention (Dynamic_Scope) = Convention_Protected then
2562 return Protected_Body_Subprogram (Dynamic_Scope);
2564 else
2565 return Dynamic_Scope;
2566 end if;
2567 end Enclosing_Subprogram;
2569 ------------------------
2570 -- Ensure_Freeze_Node --
2571 ------------------------
2573 procedure Ensure_Freeze_Node (E : Entity_Id) is
2574 FN : Node_Id;
2576 begin
2577 if No (Freeze_Node (E)) then
2578 FN := Make_Freeze_Entity (Sloc (E));
2579 Set_Has_Delayed_Freeze (E);
2580 Set_Freeze_Node (E, FN);
2581 Set_Access_Types_To_Process (FN, No_Elist);
2582 Set_TSS_Elist (FN, No_Elist);
2583 Set_Entity (FN, E);
2584 end if;
2585 end Ensure_Freeze_Node;
2587 ----------------
2588 -- Enter_Name --
2589 ----------------
2591 procedure Enter_Name (Def_Id : Entity_Id) is
2592 C : constant Entity_Id := Current_Entity (Def_Id);
2593 E : constant Entity_Id := Current_Entity_In_Scope (Def_Id);
2594 S : constant Entity_Id := Current_Scope;
2596 begin
2597 Generate_Definition (Def_Id);
2599 -- Add new name to current scope declarations. Check for duplicate
2600 -- declaration, which may or may not be a genuine error.
2602 if Present (E) then
2604 -- Case of previous entity entered because of a missing declaration
2605 -- or else a bad subtype indication. Best is to use the new entity,
2606 -- and make the previous one invisible.
2608 if Etype (E) = Any_Type then
2609 Set_Is_Immediately_Visible (E, False);
2611 -- Case of renaming declaration constructed for package instances.
2612 -- if there is an explicit declaration with the same identifier,
2613 -- the renaming is not immediately visible any longer, but remains
2614 -- visible through selected component notation.
2616 elsif Nkind (Parent (E)) = N_Package_Renaming_Declaration
2617 and then not Comes_From_Source (E)
2618 then
2619 Set_Is_Immediately_Visible (E, False);
2621 -- The new entity may be the package renaming, which has the same
2622 -- same name as a generic formal which has been seen already.
2624 elsif Nkind (Parent (Def_Id)) = N_Package_Renaming_Declaration
2625 and then not Comes_From_Source (Def_Id)
2626 then
2627 Set_Is_Immediately_Visible (E, False);
2629 -- For a fat pointer corresponding to a remote access to subprogram,
2630 -- we use the same identifier as the RAS type, so that the proper
2631 -- name appears in the stub. This type is only retrieved through
2632 -- the RAS type and never by visibility, and is not added to the
2633 -- visibility list (see below).
2635 elsif Nkind (Parent (Def_Id)) = N_Full_Type_Declaration
2636 and then Present (Corresponding_Remote_Type (Def_Id))
2637 then
2638 null;
2640 -- A controller component for a type extension overrides the
2641 -- inherited component.
2643 elsif Chars (E) = Name_uController then
2644 null;
2646 -- Case of an implicit operation or derived literal. The new entity
2647 -- hides the implicit one, which is removed from all visibility,
2648 -- i.e. the entity list of its scope, and homonym chain of its name.
2650 elsif (Is_Overloadable (E) and then Is_Inherited_Operation (E))
2651 or else Is_Internal (E)
2652 then
2653 declare
2654 Prev : Entity_Id;
2655 Prev_Vis : Entity_Id;
2656 Decl : constant Node_Id := Parent (E);
2658 begin
2659 -- If E is an implicit declaration, it cannot be the first
2660 -- entity in the scope.
2662 Prev := First_Entity (Current_Scope);
2663 while Present (Prev)
2664 and then Next_Entity (Prev) /= E
2665 loop
2666 Next_Entity (Prev);
2667 end loop;
2669 if No (Prev) then
2671 -- If E is not on the entity chain of the current scope,
2672 -- it is an implicit declaration in the generic formal
2673 -- part of a generic subprogram. When analyzing the body,
2674 -- the generic formals are visible but not on the entity
2675 -- chain of the subprogram. The new entity will become
2676 -- the visible one in the body.
2678 pragma Assert
2679 (Nkind (Parent (Decl)) = N_Generic_Subprogram_Declaration);
2680 null;
2682 else
2683 Set_Next_Entity (Prev, Next_Entity (E));
2685 if No (Next_Entity (Prev)) then
2686 Set_Last_Entity (Current_Scope, Prev);
2687 end if;
2689 if E = Current_Entity (E) then
2690 Prev_Vis := Empty;
2692 else
2693 Prev_Vis := Current_Entity (E);
2694 while Homonym (Prev_Vis) /= E loop
2695 Prev_Vis := Homonym (Prev_Vis);
2696 end loop;
2697 end if;
2699 if Present (Prev_Vis) then
2701 -- Skip E in the visibility chain
2703 Set_Homonym (Prev_Vis, Homonym (E));
2705 else
2706 Set_Name_Entity_Id (Chars (E), Homonym (E));
2707 end if;
2708 end if;
2709 end;
2711 -- This section of code could use a comment ???
2713 elsif Present (Etype (E))
2714 and then Is_Concurrent_Type (Etype (E))
2715 and then E = Def_Id
2716 then
2717 return;
2719 -- If the homograph is a protected component renaming, it should not
2720 -- be hiding the current entity. Such renamings are treated as weak
2721 -- declarations.
2723 elsif Is_Prival (E) then
2724 Set_Is_Immediately_Visible (E, False);
2726 -- In this case the current entity is a protected component renaming.
2727 -- Perform minimal decoration by setting the scope and return since
2728 -- the prival should not be hiding other visible entities.
2730 elsif Is_Prival (Def_Id) then
2731 Set_Scope (Def_Id, Current_Scope);
2732 return;
2734 -- Analogous to privals, the discriminal generated for an entry
2735 -- index parameter acts as a weak declaration. Perform minimal
2736 -- decoration to avoid bogus errors.
2738 elsif Is_Discriminal (Def_Id)
2739 and then Ekind (Discriminal_Link (Def_Id)) = E_Entry_Index_Parameter
2740 then
2741 Set_Scope (Def_Id, Current_Scope);
2742 return;
2744 -- In the body or private part of an instance, a type extension
2745 -- may introduce a component with the same name as that of an
2746 -- actual. The legality rule is not enforced, but the semantics
2747 -- of the full type with two components of the same name are not
2748 -- clear at this point ???
2750 elsif In_Instance_Not_Visible then
2751 null;
2753 -- When compiling a package body, some child units may have become
2754 -- visible. They cannot conflict with local entities that hide them.
2756 elsif Is_Child_Unit (E)
2757 and then In_Open_Scopes (Scope (E))
2758 and then not Is_Immediately_Visible (E)
2759 then
2760 null;
2762 -- Conversely, with front-end inlining we may compile the parent
2763 -- body first, and a child unit subsequently. The context is now
2764 -- the parent spec, and body entities are not visible.
2766 elsif Is_Child_Unit (Def_Id)
2767 and then Is_Package_Body_Entity (E)
2768 and then not In_Package_Body (Current_Scope)
2769 then
2770 null;
2772 -- Case of genuine duplicate declaration
2774 else
2775 Error_Msg_Sloc := Sloc (E);
2777 -- If the previous declaration is an incomplete type declaration
2778 -- this may be an attempt to complete it with a private type.
2779 -- The following avoids confusing cascaded errors.
2781 if Nkind (Parent (E)) = N_Incomplete_Type_Declaration
2782 and then Nkind (Parent (Def_Id)) = N_Private_Type_Declaration
2783 then
2784 Error_Msg_N
2785 ("incomplete type cannot be completed with a private " &
2786 "declaration", Parent (Def_Id));
2787 Set_Is_Immediately_Visible (E, False);
2788 Set_Full_View (E, Def_Id);
2790 -- An inherited component of a record conflicts with a new
2791 -- discriminant. The discriminant is inserted first in the scope,
2792 -- but the error should be posted on it, not on the component.
2794 elsif Ekind (E) = E_Discriminant
2795 and then Present (Scope (Def_Id))
2796 and then Scope (Def_Id) /= Current_Scope
2797 then
2798 Error_Msg_Sloc := Sloc (Def_Id);
2799 Error_Msg_N ("& conflicts with declaration#", E);
2800 return;
2802 -- If the name of the unit appears in its own context clause,
2803 -- a dummy package with the name has already been created, and
2804 -- the error emitted. Try to continue quietly.
2806 elsif Error_Posted (E)
2807 and then Sloc (E) = No_Location
2808 and then Nkind (Parent (E)) = N_Package_Specification
2809 and then Current_Scope = Standard_Standard
2810 then
2811 Set_Scope (Def_Id, Current_Scope);
2812 return;
2814 else
2815 Error_Msg_N ("& conflicts with declaration#", Def_Id);
2817 -- Avoid cascaded messages with duplicate components in
2818 -- derived types.
2820 if Ekind (E) = E_Component
2821 or else Ekind (E) = E_Discriminant
2822 then
2823 return;
2824 end if;
2825 end if;
2827 if Nkind (Parent (Parent (Def_Id))) =
2828 N_Generic_Subprogram_Declaration
2829 and then Def_Id =
2830 Defining_Entity (Specification (Parent (Parent (Def_Id))))
2831 then
2832 Error_Msg_N ("\generic units cannot be overloaded", Def_Id);
2833 end if;
2835 -- If entity is in standard, then we are in trouble, because
2836 -- it means that we have a library package with a duplicated
2837 -- name. That's hard to recover from, so abort!
2839 if S = Standard_Standard then
2840 raise Unrecoverable_Error;
2842 -- Otherwise we continue with the declaration. Having two
2843 -- identical declarations should not cause us too much trouble!
2845 else
2846 null;
2847 end if;
2848 end if;
2849 end if;
2851 -- If we fall through, declaration is OK , or OK enough to continue
2853 -- If Def_Id is a discriminant or a record component we are in the
2854 -- midst of inheriting components in a derived record definition.
2855 -- Preserve their Ekind and Etype.
2857 if Ekind (Def_Id) = E_Discriminant
2858 or else Ekind (Def_Id) = E_Component
2859 then
2860 null;
2862 -- If a type is already set, leave it alone (happens whey a type
2863 -- declaration is reanalyzed following a call to the optimizer)
2865 elsif Present (Etype (Def_Id)) then
2866 null;
2868 -- Otherwise, the kind E_Void insures that premature uses of the entity
2869 -- will be detected. Any_Type insures that no cascaded errors will occur
2871 else
2872 Set_Ekind (Def_Id, E_Void);
2873 Set_Etype (Def_Id, Any_Type);
2874 end if;
2876 -- Inherited discriminants and components in derived record types are
2877 -- immediately visible. Itypes are not.
2879 if Ekind (Def_Id) = E_Discriminant
2880 or else Ekind (Def_Id) = E_Component
2881 or else (No (Corresponding_Remote_Type (Def_Id))
2882 and then not Is_Itype (Def_Id))
2883 then
2884 Set_Is_Immediately_Visible (Def_Id);
2885 Set_Current_Entity (Def_Id);
2886 end if;
2888 Set_Homonym (Def_Id, C);
2889 Append_Entity (Def_Id, S);
2890 Set_Public_Status (Def_Id);
2892 -- Warn if new entity hides an old one
2894 if Warn_On_Hiding and then Present (C)
2896 -- Don't warn for record components since they always have a well
2897 -- defined scope which does not confuse other uses. Note that in
2898 -- some cases, Ekind has not been set yet.
2900 and then Ekind (C) /= E_Component
2901 and then Ekind (C) /= E_Discriminant
2902 and then Nkind (Parent (C)) /= N_Component_Declaration
2903 and then Ekind (Def_Id) /= E_Component
2904 and then Ekind (Def_Id) /= E_Discriminant
2905 and then Nkind (Parent (Def_Id)) /= N_Component_Declaration
2907 -- Don't warn for one character variables. It is too common to use
2908 -- such variables as locals and will just cause too many false hits.
2910 and then Length_Of_Name (Chars (C)) /= 1
2912 -- Don't warn for non-source entities
2914 and then Comes_From_Source (C)
2915 and then Comes_From_Source (Def_Id)
2917 -- Don't warn unless entity in question is in extended main source
2919 and then In_Extended_Main_Source_Unit (Def_Id)
2921 -- Finally, the hidden entity must be either immediately visible
2922 -- or use visible (from a used package)
2924 and then
2925 (Is_Immediately_Visible (C)
2926 or else
2927 Is_Potentially_Use_Visible (C))
2928 then
2929 Error_Msg_Sloc := Sloc (C);
2930 Error_Msg_N ("declaration hides &#?", Def_Id);
2931 end if;
2932 end Enter_Name;
2934 --------------------------
2935 -- Explain_Limited_Type --
2936 --------------------------
2938 procedure Explain_Limited_Type (T : Entity_Id; N : Node_Id) is
2939 C : Entity_Id;
2941 begin
2942 -- For array, component type must be limited
2944 if Is_Array_Type (T) then
2945 Error_Msg_Node_2 := T;
2946 Error_Msg_NE
2947 ("\component type& of type& is limited", N, Component_Type (T));
2948 Explain_Limited_Type (Component_Type (T), N);
2950 elsif Is_Record_Type (T) then
2952 -- No need for extra messages if explicit limited record
2954 if Is_Limited_Record (Base_Type (T)) then
2955 return;
2956 end if;
2958 -- Otherwise find a limited component. Check only components that
2959 -- come from source, or inherited components that appear in the
2960 -- source of the ancestor.
2962 C := First_Component (T);
2963 while Present (C) loop
2964 if Is_Limited_Type (Etype (C))
2965 and then
2966 (Comes_From_Source (C)
2967 or else
2968 (Present (Original_Record_Component (C))
2969 and then
2970 Comes_From_Source (Original_Record_Component (C))))
2971 then
2972 Error_Msg_Node_2 := T;
2973 Error_Msg_NE ("\component& of type& has limited type", N, C);
2974 Explain_Limited_Type (Etype (C), N);
2975 return;
2976 end if;
2978 Next_Component (C);
2979 end loop;
2981 -- The type may be declared explicitly limited, even if no component
2982 -- of it is limited, in which case we fall out of the loop.
2983 return;
2984 end if;
2985 end Explain_Limited_Type;
2987 -----------------
2988 -- Find_Actual --
2989 -----------------
2991 procedure Find_Actual
2992 (N : Node_Id;
2993 Formal : out Entity_Id;
2994 Call : out Node_Id)
2996 Parnt : constant Node_Id := Parent (N);
2997 Actual : Node_Id;
2999 begin
3000 if (Nkind (Parnt) = N_Indexed_Component
3001 or else
3002 Nkind (Parnt) = N_Selected_Component)
3003 and then N = Prefix (Parnt)
3004 then
3005 Find_Actual (Parnt, Formal, Call);
3006 return;
3008 elsif Nkind (Parnt) = N_Parameter_Association
3009 and then N = Explicit_Actual_Parameter (Parnt)
3010 then
3011 Call := Parent (Parnt);
3013 elsif Nkind (Parnt) = N_Procedure_Call_Statement then
3014 Call := Parnt;
3016 else
3017 Formal := Empty;
3018 Call := Empty;
3019 return;
3020 end if;
3022 -- If we have a call to a subprogram look for the parameter. Note that
3023 -- we exclude overloaded calls, since we don't know enough to be sure
3024 -- of giving the right answer in this case.
3026 if Is_Entity_Name (Name (Call))
3027 and then Present (Entity (Name (Call)))
3028 and then Is_Overloadable (Entity (Name (Call)))
3029 and then not Is_Overloaded (Name (Call))
3030 then
3031 -- Fall here if we are definitely a parameter
3033 Actual := First_Actual (Call);
3034 Formal := First_Formal (Entity (Name (Call)));
3035 while Present (Formal) and then Present (Actual) loop
3036 if Actual = N then
3037 return;
3038 else
3039 Actual := Next_Actual (Actual);
3040 Formal := Next_Formal (Formal);
3041 end if;
3042 end loop;
3043 end if;
3045 -- Fall through here if we did not find matching actual
3047 Formal := Empty;
3048 Call := Empty;
3049 end Find_Actual;
3051 -------------------------------------
3052 -- Find_Corresponding_Discriminant --
3053 -------------------------------------
3055 function Find_Corresponding_Discriminant
3056 (Id : Node_Id;
3057 Typ : Entity_Id) return Entity_Id
3059 Par_Disc : Entity_Id;
3060 Old_Disc : Entity_Id;
3061 New_Disc : Entity_Id;
3063 begin
3064 Par_Disc := Original_Record_Component (Original_Discriminant (Id));
3066 -- The original type may currently be private, and the discriminant
3067 -- only appear on its full view.
3069 if Is_Private_Type (Scope (Par_Disc))
3070 and then not Has_Discriminants (Scope (Par_Disc))
3071 and then Present (Full_View (Scope (Par_Disc)))
3072 then
3073 Old_Disc := First_Discriminant (Full_View (Scope (Par_Disc)));
3074 else
3075 Old_Disc := First_Discriminant (Scope (Par_Disc));
3076 end if;
3078 if Is_Class_Wide_Type (Typ) then
3079 New_Disc := First_Discriminant (Root_Type (Typ));
3080 else
3081 New_Disc := First_Discriminant (Typ);
3082 end if;
3084 while Present (Old_Disc) and then Present (New_Disc) loop
3085 if Old_Disc = Par_Disc then
3086 return New_Disc;
3087 else
3088 Next_Discriminant (Old_Disc);
3089 Next_Discriminant (New_Disc);
3090 end if;
3091 end loop;
3093 -- Should always find it
3095 raise Program_Error;
3096 end Find_Corresponding_Discriminant;
3098 --------------------------
3099 -- Find_Overlaid_Entity --
3100 --------------------------
3102 procedure Find_Overlaid_Entity
3103 (N : Node_Id;
3104 Ent : out Entity_Id;
3105 Off : out Boolean)
3107 Expr : Node_Id;
3109 begin
3110 -- We are looking for one of the two following forms:
3112 -- for X'Address use Y'Address
3114 -- or
3116 -- Const : constant Address := expr;
3117 -- ...
3118 -- for X'Address use Const;
3120 -- In the second case, the expr is either Y'Address, or recursively a
3121 -- constant that eventually references Y'Address.
3123 Ent := Empty;
3124 Off := False;
3126 if Nkind (N) = N_Attribute_Definition_Clause
3127 and then Chars (N) = Name_Address
3128 then
3129 Expr := Expression (N);
3131 -- This loop checks the form of the expression for Y'Address,
3132 -- using recursion to deal with intermediate constants.
3134 loop
3135 -- Check for Y'Address
3137 if Nkind (Expr) = N_Attribute_Reference
3138 and then Attribute_Name (Expr) = Name_Address
3139 then
3140 Expr := Prefix (Expr);
3141 exit;
3143 -- Check for Const where Const is a constant entity
3145 elsif Is_Entity_Name (Expr)
3146 and then Ekind (Entity (Expr)) = E_Constant
3147 then
3148 Expr := Constant_Value (Entity (Expr));
3150 -- Anything else does not need checking
3152 else
3153 return;
3154 end if;
3155 end loop;
3157 -- This loop checks the form of the prefix for an entity,
3158 -- using recursion to deal with intermediate components.
3160 loop
3161 -- Check for Y where Y is an entity
3163 if Is_Entity_Name (Expr) then
3164 Ent := Entity (Expr);
3165 return;
3167 -- Check for components
3169 elsif
3170 Nkind_In (Expr, N_Selected_Component, N_Indexed_Component) then
3172 Expr := Prefix (Expr);
3173 Off := True;
3175 -- Anything else does not need checking
3177 else
3178 return;
3179 end if;
3180 end loop;
3181 end if;
3182 end Find_Overlaid_Entity;
3184 -------------------------
3185 -- Find_Parameter_Type --
3186 -------------------------
3188 function Find_Parameter_Type (Param : Node_Id) return Entity_Id is
3189 begin
3190 if Nkind (Param) /= N_Parameter_Specification then
3191 return Empty;
3193 -- For an access parameter, obtain the type from the formal entity
3194 -- itself, because access to subprogram nodes do not carry a type.
3195 -- Shouldn't we always use the formal entity ???
3197 elsif Nkind (Parameter_Type (Param)) = N_Access_Definition then
3198 return Etype (Defining_Identifier (Param));
3200 else
3201 return Etype (Parameter_Type (Param));
3202 end if;
3203 end Find_Parameter_Type;
3205 -----------------------------
3206 -- Find_Static_Alternative --
3207 -----------------------------
3209 function Find_Static_Alternative (N : Node_Id) return Node_Id is
3210 Expr : constant Node_Id := Expression (N);
3211 Val : constant Uint := Expr_Value (Expr);
3212 Alt : Node_Id;
3213 Choice : Node_Id;
3215 begin
3216 Alt := First (Alternatives (N));
3218 Search : loop
3219 if Nkind (Alt) /= N_Pragma then
3220 Choice := First (Discrete_Choices (Alt));
3221 while Present (Choice) loop
3223 -- Others choice, always matches
3225 if Nkind (Choice) = N_Others_Choice then
3226 exit Search;
3228 -- Range, check if value is in the range
3230 elsif Nkind (Choice) = N_Range then
3231 exit Search when
3232 Val >= Expr_Value (Low_Bound (Choice))
3233 and then
3234 Val <= Expr_Value (High_Bound (Choice));
3236 -- Choice is a subtype name. Note that we know it must
3237 -- be a static subtype, since otherwise it would have
3238 -- been diagnosed as illegal.
3240 elsif Is_Entity_Name (Choice)
3241 and then Is_Type (Entity (Choice))
3242 then
3243 exit Search when Is_In_Range (Expr, Etype (Choice),
3244 Assume_Valid => False);
3246 -- Choice is a subtype indication
3248 elsif Nkind (Choice) = N_Subtype_Indication then
3249 declare
3250 C : constant Node_Id := Constraint (Choice);
3251 R : constant Node_Id := Range_Expression (C);
3253 begin
3254 exit Search when
3255 Val >= Expr_Value (Low_Bound (R))
3256 and then
3257 Val <= Expr_Value (High_Bound (R));
3258 end;
3260 -- Choice is a simple expression
3262 else
3263 exit Search when Val = Expr_Value (Choice);
3264 end if;
3266 Next (Choice);
3267 end loop;
3268 end if;
3270 Next (Alt);
3271 pragma Assert (Present (Alt));
3272 end loop Search;
3274 -- The above loop *must* terminate by finding a match, since
3275 -- we know the case statement is valid, and the value of the
3276 -- expression is known at compile time. When we fall out of
3277 -- the loop, Alt points to the alternative that we know will
3278 -- be selected at run time.
3280 return Alt;
3281 end Find_Static_Alternative;
3283 ------------------
3284 -- First_Actual --
3285 ------------------
3287 function First_Actual (Node : Node_Id) return Node_Id is
3288 N : Node_Id;
3290 begin
3291 if No (Parameter_Associations (Node)) then
3292 return Empty;
3293 end if;
3295 N := First (Parameter_Associations (Node));
3297 if Nkind (N) = N_Parameter_Association then
3298 return First_Named_Actual (Node);
3299 else
3300 return N;
3301 end if;
3302 end First_Actual;
3304 -------------------------
3305 -- Full_Qualified_Name --
3306 -------------------------
3308 function Full_Qualified_Name (E : Entity_Id) return String_Id is
3309 Res : String_Id;
3310 pragma Warnings (Off, Res);
3312 function Internal_Full_Qualified_Name (E : Entity_Id) return String_Id;
3313 -- Compute recursively the qualified name without NUL at the end
3315 ----------------------------------
3316 -- Internal_Full_Qualified_Name --
3317 ----------------------------------
3319 function Internal_Full_Qualified_Name (E : Entity_Id) return String_Id is
3320 Ent : Entity_Id := E;
3321 Parent_Name : String_Id := No_String;
3323 begin
3324 -- Deals properly with child units
3326 if Nkind (Ent) = N_Defining_Program_Unit_Name then
3327 Ent := Defining_Identifier (Ent);
3328 end if;
3330 -- Compute qualification recursively (only "Standard" has no scope)
3332 if Present (Scope (Scope (Ent))) then
3333 Parent_Name := Internal_Full_Qualified_Name (Scope (Ent));
3334 end if;
3336 -- Every entity should have a name except some expanded blocks
3337 -- don't bother about those.
3339 if Chars (Ent) = No_Name then
3340 return Parent_Name;
3341 end if;
3343 -- Add a period between Name and qualification
3345 if Parent_Name /= No_String then
3346 Start_String (Parent_Name);
3347 Store_String_Char (Get_Char_Code ('.'));
3349 else
3350 Start_String;
3351 end if;
3353 -- Generates the entity name in upper case
3355 Get_Decoded_Name_String (Chars (Ent));
3356 Set_All_Upper_Case;
3357 Store_String_Chars (Name_Buffer (1 .. Name_Len));
3358 return End_String;
3359 end Internal_Full_Qualified_Name;
3361 -- Start of processing for Full_Qualified_Name
3363 begin
3364 Res := Internal_Full_Qualified_Name (E);
3365 Store_String_Char (Get_Char_Code (ASCII.NUL));
3366 return End_String;
3367 end Full_Qualified_Name;
3369 -----------------------
3370 -- Gather_Components --
3371 -----------------------
3373 procedure Gather_Components
3374 (Typ : Entity_Id;
3375 Comp_List : Node_Id;
3376 Governed_By : List_Id;
3377 Into : Elist_Id;
3378 Report_Errors : out Boolean)
3380 Assoc : Node_Id;
3381 Variant : Node_Id;
3382 Discrete_Choice : Node_Id;
3383 Comp_Item : Node_Id;
3385 Discrim : Entity_Id;
3386 Discrim_Name : Node_Id;
3387 Discrim_Value : Node_Id;
3389 begin
3390 Report_Errors := False;
3392 if No (Comp_List) or else Null_Present (Comp_List) then
3393 return;
3395 elsif Present (Component_Items (Comp_List)) then
3396 Comp_Item := First (Component_Items (Comp_List));
3398 else
3399 Comp_Item := Empty;
3400 end if;
3402 while Present (Comp_Item) loop
3404 -- Skip the tag of a tagged record, the interface tags, as well
3405 -- as all items that are not user components (anonymous types,
3406 -- rep clauses, Parent field, controller field).
3408 if Nkind (Comp_Item) = N_Component_Declaration then
3409 declare
3410 Comp : constant Entity_Id := Defining_Identifier (Comp_Item);
3411 begin
3412 if not Is_Tag (Comp)
3413 and then Chars (Comp) /= Name_uParent
3414 and then Chars (Comp) /= Name_uController
3415 then
3416 Append_Elmt (Comp, Into);
3417 end if;
3418 end;
3419 end if;
3421 Next (Comp_Item);
3422 end loop;
3424 if No (Variant_Part (Comp_List)) then
3425 return;
3426 else
3427 Discrim_Name := Name (Variant_Part (Comp_List));
3428 Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
3429 end if;
3431 -- Look for the discriminant that governs this variant part.
3432 -- The discriminant *must* be in the Governed_By List
3434 Assoc := First (Governed_By);
3435 Find_Constraint : loop
3436 Discrim := First (Choices (Assoc));
3437 exit Find_Constraint when Chars (Discrim_Name) = Chars (Discrim)
3438 or else (Present (Corresponding_Discriminant (Entity (Discrim)))
3439 and then
3440 Chars (Corresponding_Discriminant (Entity (Discrim)))
3441 = Chars (Discrim_Name))
3442 or else Chars (Original_Record_Component (Entity (Discrim)))
3443 = Chars (Discrim_Name);
3445 if No (Next (Assoc)) then
3446 if not Is_Constrained (Typ)
3447 and then Is_Derived_Type (Typ)
3448 and then Present (Stored_Constraint (Typ))
3449 then
3450 -- If the type is a tagged type with inherited discriminants,
3451 -- use the stored constraint on the parent in order to find
3452 -- the values of discriminants that are otherwise hidden by an
3453 -- explicit constraint. Renamed discriminants are handled in
3454 -- the code above.
3456 -- If several parent discriminants are renamed by a single
3457 -- discriminant of the derived type, the call to obtain the
3458 -- Corresponding_Discriminant field only retrieves the last
3459 -- of them. We recover the constraint on the others from the
3460 -- Stored_Constraint as well.
3462 declare
3463 D : Entity_Id;
3464 C : Elmt_Id;
3466 begin
3467 D := First_Discriminant (Etype (Typ));
3468 C := First_Elmt (Stored_Constraint (Typ));
3469 while Present (D) and then Present (C) loop
3470 if Chars (Discrim_Name) = Chars (D) then
3471 if Is_Entity_Name (Node (C))
3472 and then Entity (Node (C)) = Entity (Discrim)
3473 then
3474 -- D is renamed by Discrim, whose value is given in
3475 -- Assoc.
3477 null;
3479 else
3480 Assoc :=
3481 Make_Component_Association (Sloc (Typ),
3482 New_List
3483 (New_Occurrence_Of (D, Sloc (Typ))),
3484 Duplicate_Subexpr_No_Checks (Node (C)));
3485 end if;
3486 exit Find_Constraint;
3487 end if;
3489 Next_Discriminant (D);
3490 Next_Elmt (C);
3491 end loop;
3492 end;
3493 end if;
3494 end if;
3496 if No (Next (Assoc)) then
3497 Error_Msg_NE (" missing value for discriminant&",
3498 First (Governed_By), Discrim_Name);
3499 Report_Errors := True;
3500 return;
3501 end if;
3503 Next (Assoc);
3504 end loop Find_Constraint;
3506 Discrim_Value := Expression (Assoc);
3508 if not Is_OK_Static_Expression (Discrim_Value) then
3509 Error_Msg_FE
3510 ("value for discriminant & must be static!",
3511 Discrim_Value, Discrim);
3512 Why_Not_Static (Discrim_Value);
3513 Report_Errors := True;
3514 return;
3515 end if;
3517 Search_For_Discriminant_Value : declare
3518 Low : Node_Id;
3519 High : Node_Id;
3521 UI_High : Uint;
3522 UI_Low : Uint;
3523 UI_Discrim_Value : constant Uint := Expr_Value (Discrim_Value);
3525 begin
3526 Find_Discrete_Value : while Present (Variant) loop
3527 Discrete_Choice := First (Discrete_Choices (Variant));
3528 while Present (Discrete_Choice) loop
3530 exit Find_Discrete_Value when
3531 Nkind (Discrete_Choice) = N_Others_Choice;
3533 Get_Index_Bounds (Discrete_Choice, Low, High);
3535 UI_Low := Expr_Value (Low);
3536 UI_High := Expr_Value (High);
3538 exit Find_Discrete_Value when
3539 UI_Low <= UI_Discrim_Value
3540 and then
3541 UI_High >= UI_Discrim_Value;
3543 Next (Discrete_Choice);
3544 end loop;
3546 Next_Non_Pragma (Variant);
3547 end loop Find_Discrete_Value;
3548 end Search_For_Discriminant_Value;
3550 if No (Variant) then
3551 Error_Msg_NE
3552 ("value of discriminant & is out of range", Discrim_Value, Discrim);
3553 Report_Errors := True;
3554 return;
3555 end if;
3557 -- If we have found the corresponding choice, recursively add its
3558 -- components to the Into list.
3560 Gather_Components (Empty,
3561 Component_List (Variant), Governed_By, Into, Report_Errors);
3562 end Gather_Components;
3564 ------------------------
3565 -- Get_Actual_Subtype --
3566 ------------------------
3568 function Get_Actual_Subtype (N : Node_Id) return Entity_Id is
3569 Typ : constant Entity_Id := Etype (N);
3570 Utyp : Entity_Id := Underlying_Type (Typ);
3571 Decl : Node_Id;
3572 Atyp : Entity_Id;
3574 begin
3575 if No (Utyp) then
3576 Utyp := Typ;
3577 end if;
3579 -- If what we have is an identifier that references a subprogram
3580 -- formal, or a variable or constant object, then we get the actual
3581 -- subtype from the referenced entity if one has been built.
3583 if Nkind (N) = N_Identifier
3584 and then
3585 (Is_Formal (Entity (N))
3586 or else Ekind (Entity (N)) = E_Constant
3587 or else Ekind (Entity (N)) = E_Variable)
3588 and then Present (Actual_Subtype (Entity (N)))
3589 then
3590 return Actual_Subtype (Entity (N));
3592 -- Actual subtype of unchecked union is always itself. We never need
3593 -- the "real" actual subtype. If we did, we couldn't get it anyway
3594 -- because the discriminant is not available. The restrictions on
3595 -- Unchecked_Union are designed to make sure that this is OK.
3597 elsif Is_Unchecked_Union (Base_Type (Utyp)) then
3598 return Typ;
3600 -- Here for the unconstrained case, we must find actual subtype
3601 -- No actual subtype is available, so we must build it on the fly.
3603 -- Checking the type, not the underlying type, for constrainedness
3604 -- seems to be necessary. Maybe all the tests should be on the type???
3606 elsif (not Is_Constrained (Typ))
3607 and then (Is_Array_Type (Utyp)
3608 or else (Is_Record_Type (Utyp)
3609 and then Has_Discriminants (Utyp)))
3610 and then not Has_Unknown_Discriminants (Utyp)
3611 and then not (Ekind (Utyp) = E_String_Literal_Subtype)
3612 then
3613 -- Nothing to do if in spec expression (why not???)
3615 if In_Spec_Expression then
3616 return Typ;
3618 elsif Is_Private_Type (Typ)
3619 and then not Has_Discriminants (Typ)
3620 then
3621 -- If the type has no discriminants, there is no subtype to
3622 -- build, even if the underlying type is discriminated.
3624 return Typ;
3626 -- Else build the actual subtype
3628 else
3629 Decl := Build_Actual_Subtype (Typ, N);
3630 Atyp := Defining_Identifier (Decl);
3632 -- If Build_Actual_Subtype generated a new declaration then use it
3634 if Atyp /= Typ then
3636 -- The actual subtype is an Itype, so analyze the declaration,
3637 -- but do not attach it to the tree, to get the type defined.
3639 Set_Parent (Decl, N);
3640 Set_Is_Itype (Atyp);
3641 Analyze (Decl, Suppress => All_Checks);
3642 Set_Associated_Node_For_Itype (Atyp, N);
3643 Set_Has_Delayed_Freeze (Atyp, False);
3645 -- We need to freeze the actual subtype immediately. This is
3646 -- needed, because otherwise this Itype will not get frozen
3647 -- at all, and it is always safe to freeze on creation because
3648 -- any associated types must be frozen at this point.
3650 Freeze_Itype (Atyp, N);
3651 return Atyp;
3653 -- Otherwise we did not build a declaration, so return original
3655 else
3656 return Typ;
3657 end if;
3658 end if;
3660 -- For all remaining cases, the actual subtype is the same as
3661 -- the nominal type.
3663 else
3664 return Typ;
3665 end if;
3666 end Get_Actual_Subtype;
3668 -------------------------------------
3669 -- Get_Actual_Subtype_If_Available --
3670 -------------------------------------
3672 function Get_Actual_Subtype_If_Available (N : Node_Id) return Entity_Id is
3673 Typ : constant Entity_Id := Etype (N);
3675 begin
3676 -- If what we have is an identifier that references a subprogram
3677 -- formal, or a variable or constant object, then we get the actual
3678 -- subtype from the referenced entity if one has been built.
3680 if Nkind (N) = N_Identifier
3681 and then
3682 (Is_Formal (Entity (N))
3683 or else Ekind (Entity (N)) = E_Constant
3684 or else Ekind (Entity (N)) = E_Variable)
3685 and then Present (Actual_Subtype (Entity (N)))
3686 then
3687 return Actual_Subtype (Entity (N));
3689 -- Otherwise the Etype of N is returned unchanged
3691 else
3692 return Typ;
3693 end if;
3694 end Get_Actual_Subtype_If_Available;
3696 -------------------------------
3697 -- Get_Default_External_Name --
3698 -------------------------------
3700 function Get_Default_External_Name (E : Node_Or_Entity_Id) return Node_Id is
3701 begin
3702 Get_Decoded_Name_String (Chars (E));
3704 if Opt.External_Name_Imp_Casing = Uppercase then
3705 Set_Casing (All_Upper_Case);
3706 else
3707 Set_Casing (All_Lower_Case);
3708 end if;
3710 return
3711 Make_String_Literal (Sloc (E),
3712 Strval => String_From_Name_Buffer);
3713 end Get_Default_External_Name;
3715 ---------------------------
3716 -- Get_Enum_Lit_From_Pos --
3717 ---------------------------
3719 function Get_Enum_Lit_From_Pos
3720 (T : Entity_Id;
3721 Pos : Uint;
3722 Loc : Source_Ptr) return Node_Id
3724 Lit : Node_Id;
3726 begin
3727 -- In the case where the literal is of type Character, Wide_Character
3728 -- or Wide_Wide_Character or of a type derived from them, there needs
3729 -- to be some special handling since there is no explicit chain of
3730 -- literals to search. Instead, an N_Character_Literal node is created
3731 -- with the appropriate Char_Code and Chars fields.
3733 if Is_Standard_Character_Type (T) then
3734 Set_Character_Literal_Name (UI_To_CC (Pos));
3735 return
3736 Make_Character_Literal (Loc,
3737 Chars => Name_Find,
3738 Char_Literal_Value => Pos);
3740 -- For all other cases, we have a complete table of literals, and
3741 -- we simply iterate through the chain of literal until the one
3742 -- with the desired position value is found.
3745 else
3746 Lit := First_Literal (Base_Type (T));
3747 for J in 1 .. UI_To_Int (Pos) loop
3748 Next_Literal (Lit);
3749 end loop;
3751 return New_Occurrence_Of (Lit, Loc);
3752 end if;
3753 end Get_Enum_Lit_From_Pos;
3755 ------------------------
3756 -- Get_Generic_Entity --
3757 ------------------------
3759 function Get_Generic_Entity (N : Node_Id) return Entity_Id is
3760 Ent : constant Entity_Id := Entity (Name (N));
3761 begin
3762 if Present (Renamed_Object (Ent)) then
3763 return Renamed_Object (Ent);
3764 else
3765 return Ent;
3766 end if;
3767 end Get_Generic_Entity;
3769 ----------------------
3770 -- Get_Index_Bounds --
3771 ----------------------
3773 procedure Get_Index_Bounds (N : Node_Id; L, H : out Node_Id) is
3774 Kind : constant Node_Kind := Nkind (N);
3775 R : Node_Id;
3777 begin
3778 if Kind = N_Range then
3779 L := Low_Bound (N);
3780 H := High_Bound (N);
3782 elsif Kind = N_Subtype_Indication then
3783 R := Range_Expression (Constraint (N));
3785 if R = Error then
3786 L := Error;
3787 H := Error;
3788 return;
3790 else
3791 L := Low_Bound (Range_Expression (Constraint (N)));
3792 H := High_Bound (Range_Expression (Constraint (N)));
3793 end if;
3795 elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
3796 if Error_Posted (Scalar_Range (Entity (N))) then
3797 L := Error;
3798 H := Error;
3800 elsif Nkind (Scalar_Range (Entity (N))) = N_Subtype_Indication then
3801 Get_Index_Bounds (Scalar_Range (Entity (N)), L, H);
3803 else
3804 L := Low_Bound (Scalar_Range (Entity (N)));
3805 H := High_Bound (Scalar_Range (Entity (N)));
3806 end if;
3808 else
3809 -- N is an expression, indicating a range with one value
3811 L := N;
3812 H := N;
3813 end if;
3814 end Get_Index_Bounds;
3816 ----------------------------------
3817 -- Get_Library_Unit_Name_string --
3818 ----------------------------------
3820 procedure Get_Library_Unit_Name_String (Decl_Node : Node_Id) is
3821 Unit_Name_Id : constant Unit_Name_Type := Get_Unit_Name (Decl_Node);
3823 begin
3824 Get_Unit_Name_String (Unit_Name_Id);
3826 -- Remove seven last character (" (spec)" or " (body)")
3828 Name_Len := Name_Len - 7;
3829 pragma Assert (Name_Buffer (Name_Len + 1) = ' ');
3830 end Get_Library_Unit_Name_String;
3832 ------------------------
3833 -- Get_Name_Entity_Id --
3834 ------------------------
3836 function Get_Name_Entity_Id (Id : Name_Id) return Entity_Id is
3837 begin
3838 return Entity_Id (Get_Name_Table_Info (Id));
3839 end Get_Name_Entity_Id;
3841 -------------------
3842 -- Get_Pragma_Id --
3843 -------------------
3845 function Get_Pragma_Id (N : Node_Id) return Pragma_Id is
3846 begin
3847 return Get_Pragma_Id (Pragma_Name (N));
3848 end Get_Pragma_Id;
3850 ---------------------------
3851 -- Get_Referenced_Object --
3852 ---------------------------
3854 function Get_Referenced_Object (N : Node_Id) return Node_Id is
3855 R : Node_Id;
3857 begin
3858 R := N;
3859 while Is_Entity_Name (R)
3860 and then Present (Renamed_Object (Entity (R)))
3861 loop
3862 R := Renamed_Object (Entity (R));
3863 end loop;
3865 return R;
3866 end Get_Referenced_Object;
3868 ------------------------
3869 -- Get_Renamed_Entity --
3870 ------------------------
3872 function Get_Renamed_Entity (E : Entity_Id) return Entity_Id is
3873 R : Entity_Id;
3875 begin
3876 R := E;
3877 while Present (Renamed_Entity (R)) loop
3878 R := Renamed_Entity (R);
3879 end loop;
3881 return R;
3882 end Get_Renamed_Entity;
3884 -------------------------
3885 -- Get_Subprogram_Body --
3886 -------------------------
3888 function Get_Subprogram_Body (E : Entity_Id) return Node_Id is
3889 Decl : Node_Id;
3891 begin
3892 Decl := Unit_Declaration_Node (E);
3894 if Nkind (Decl) = N_Subprogram_Body then
3895 return Decl;
3897 -- The below comment is bad, because it is possible for
3898 -- Nkind (Decl) to be an N_Subprogram_Body_Stub ???
3900 else -- Nkind (Decl) = N_Subprogram_Declaration
3902 if Present (Corresponding_Body (Decl)) then
3903 return Unit_Declaration_Node (Corresponding_Body (Decl));
3905 -- Imported subprogram case
3907 else
3908 return Empty;
3909 end if;
3910 end if;
3911 end Get_Subprogram_Body;
3913 ---------------------------
3914 -- Get_Subprogram_Entity --
3915 ---------------------------
3917 function Get_Subprogram_Entity (Nod : Node_Id) return Entity_Id is
3918 Nam : Node_Id;
3919 Proc : Entity_Id;
3921 begin
3922 if Nkind (Nod) = N_Accept_Statement then
3923 Nam := Entry_Direct_Name (Nod);
3925 -- For an entry call, the prefix of the call is a selected component.
3926 -- Need additional code for internal calls ???
3928 elsif Nkind (Nod) = N_Entry_Call_Statement then
3929 if Nkind (Name (Nod)) = N_Selected_Component then
3930 Nam := Entity (Selector_Name (Name (Nod)));
3931 else
3932 Nam := Empty;
3933 end if;
3935 else
3936 Nam := Name (Nod);
3937 end if;
3939 if Nkind (Nam) = N_Explicit_Dereference then
3940 Proc := Etype (Prefix (Nam));
3941 elsif Is_Entity_Name (Nam) then
3942 Proc := Entity (Nam);
3943 else
3944 return Empty;
3945 end if;
3947 if Is_Object (Proc) then
3948 Proc := Etype (Proc);
3949 end if;
3951 if Ekind (Proc) = E_Access_Subprogram_Type then
3952 Proc := Directly_Designated_Type (Proc);
3953 end if;
3955 if not Is_Subprogram (Proc)
3956 and then Ekind (Proc) /= E_Subprogram_Type
3957 then
3958 return Empty;
3959 else
3960 return Proc;
3961 end if;
3962 end Get_Subprogram_Entity;
3964 -----------------------------
3965 -- Get_Task_Body_Procedure --
3966 -----------------------------
3968 function Get_Task_Body_Procedure (E : Entity_Id) return Node_Id is
3969 begin
3970 -- Note: A task type may be the completion of a private type with
3971 -- discriminants. When performing elaboration checks on a task
3972 -- declaration, the current view of the type may be the private one,
3973 -- and the procedure that holds the body of the task is held in its
3974 -- underlying type.
3976 -- This is an odd function, why not have Task_Body_Procedure do
3977 -- the following digging???
3979 return Task_Body_Procedure (Underlying_Type (Root_Type (E)));
3980 end Get_Task_Body_Procedure;
3982 -----------------------
3983 -- Has_Access_Values --
3984 -----------------------
3986 function Has_Access_Values (T : Entity_Id) return Boolean is
3987 Typ : constant Entity_Id := Underlying_Type (T);
3989 begin
3990 -- Case of a private type which is not completed yet. This can only
3991 -- happen in the case of a generic format type appearing directly, or
3992 -- as a component of the type to which this function is being applied
3993 -- at the top level. Return False in this case, since we certainly do
3994 -- not know that the type contains access types.
3996 if No (Typ) then
3997 return False;
3999 elsif Is_Access_Type (Typ) then
4000 return True;
4002 elsif Is_Array_Type (Typ) then
4003 return Has_Access_Values (Component_Type (Typ));
4005 elsif Is_Record_Type (Typ) then
4006 declare
4007 Comp : Entity_Id;
4009 begin
4010 -- Loop to Check components
4012 Comp := First_Component_Or_Discriminant (Typ);
4013 while Present (Comp) loop
4015 -- Check for access component, tag field does not count, even
4016 -- though it is implemented internally using an access type.
4018 if Has_Access_Values (Etype (Comp))
4019 and then Chars (Comp) /= Name_uTag
4020 then
4021 return True;
4022 end if;
4024 Next_Component_Or_Discriminant (Comp);
4025 end loop;
4026 end;
4028 return False;
4030 else
4031 return False;
4032 end if;
4033 end Has_Access_Values;
4035 ------------------------------
4036 -- Has_Compatible_Alignment --
4037 ------------------------------
4039 function Has_Compatible_Alignment
4040 (Obj : Entity_Id;
4041 Expr : Node_Id) return Alignment_Result
4043 function Has_Compatible_Alignment_Internal
4044 (Obj : Entity_Id;
4045 Expr : Node_Id;
4046 Default : Alignment_Result) return Alignment_Result;
4047 -- This is the internal recursive function that actually does the work.
4048 -- There is one additional parameter, which says what the result should
4049 -- be if no alignment information is found, and there is no definite
4050 -- indication of compatible alignments. At the outer level, this is set
4051 -- to Unknown, but for internal recursive calls in the case where types
4052 -- are known to be correct, it is set to Known_Compatible.
4054 ---------------------------------------
4055 -- Has_Compatible_Alignment_Internal --
4056 ---------------------------------------
4058 function Has_Compatible_Alignment_Internal
4059 (Obj : Entity_Id;
4060 Expr : Node_Id;
4061 Default : Alignment_Result) return Alignment_Result
4063 Result : Alignment_Result := Known_Compatible;
4064 -- Holds the current status of the result. Note that once a value of
4065 -- Known_Incompatible is set, it is sticky and does not get changed
4066 -- to Unknown (the value in Result only gets worse as we go along,
4067 -- never better).
4069 Offs : Uint := No_Uint;
4070 -- Set to a factor of the offset from the base object when Expr is a
4071 -- selected or indexed component, based on Component_Bit_Offset and
4072 -- Component_Size respectively. A negative value is used to represent
4073 -- a value which is not known at compile time.
4075 procedure Check_Prefix;
4076 -- Checks the prefix recursively in the case where the expression
4077 -- is an indexed or selected component.
4079 procedure Set_Result (R : Alignment_Result);
4080 -- If R represents a worse outcome (unknown instead of known
4081 -- compatible, or known incompatible), then set Result to R.
4083 ------------------
4084 -- Check_Prefix --
4085 ------------------
4087 procedure Check_Prefix is
4088 begin
4089 -- The subtlety here is that in doing a recursive call to check
4090 -- the prefix, we have to decide what to do in the case where we
4091 -- don't find any specific indication of an alignment problem.
4093 -- At the outer level, we normally set Unknown as the result in
4094 -- this case, since we can only set Known_Compatible if we really
4095 -- know that the alignment value is OK, but for the recursive
4096 -- call, in the case where the types match, and we have not
4097 -- specified a peculiar alignment for the object, we are only
4098 -- concerned about suspicious rep clauses, the default case does
4099 -- not affect us, since the compiler will, in the absence of such
4100 -- rep clauses, ensure that the alignment is correct.
4102 if Default = Known_Compatible
4103 or else
4104 (Etype (Obj) = Etype (Expr)
4105 and then (Unknown_Alignment (Obj)
4106 or else
4107 Alignment (Obj) = Alignment (Etype (Obj))))
4108 then
4109 Set_Result
4110 (Has_Compatible_Alignment_Internal
4111 (Obj, Prefix (Expr), Known_Compatible));
4113 -- In all other cases, we need a full check on the prefix
4115 else
4116 Set_Result
4117 (Has_Compatible_Alignment_Internal
4118 (Obj, Prefix (Expr), Unknown));
4119 end if;
4120 end Check_Prefix;
4122 ----------------
4123 -- Set_Result --
4124 ----------------
4126 procedure Set_Result (R : Alignment_Result) is
4127 begin
4128 if R > Result then
4129 Result := R;
4130 end if;
4131 end Set_Result;
4133 -- Start of processing for Has_Compatible_Alignment_Internal
4135 begin
4136 -- If Expr is a selected component, we must make sure there is no
4137 -- potentially troublesome component clause, and that the record is
4138 -- not packed.
4140 if Nkind (Expr) = N_Selected_Component then
4142 -- Packed record always generate unknown alignment
4144 if Is_Packed (Etype (Prefix (Expr))) then
4145 Set_Result (Unknown);
4146 end if;
4148 -- Check prefix and component offset
4150 Check_Prefix;
4151 Offs := Component_Bit_Offset (Entity (Selector_Name (Expr)));
4153 -- If Expr is an indexed component, we must make sure there is no
4154 -- potentially troublesome Component_Size clause and that the array
4155 -- is not bit-packed.
4157 elsif Nkind (Expr) = N_Indexed_Component then
4158 declare
4159 Typ : constant Entity_Id := Etype (Prefix (Expr));
4160 Ind : constant Node_Id := First_Index (Typ);
4162 begin
4163 -- Bit packed array always generates unknown alignment
4165 if Is_Bit_Packed_Array (Typ) then
4166 Set_Result (Unknown);
4167 end if;
4169 -- Check prefix and component offset
4171 Check_Prefix;
4172 Offs := Component_Size (Typ);
4174 -- Small optimization: compute the full offset when possible
4176 if Offs /= No_Uint
4177 and then Offs > Uint_0
4178 and then Present (Ind)
4179 and then Nkind (Ind) = N_Range
4180 and then Compile_Time_Known_Value (Low_Bound (Ind))
4181 and then Compile_Time_Known_Value (First (Expressions (Expr)))
4182 then
4183 Offs := Offs * (Expr_Value (First (Expressions (Expr)))
4184 - Expr_Value (Low_Bound ((Ind))));
4185 end if;
4186 end;
4187 end if;
4189 -- If we have a null offset, the result is entirely determined by
4190 -- the base object and has already been computed recursively.
4192 if Offs = Uint_0 then
4193 null;
4195 -- Case where we know the alignment of the object
4197 elsif Known_Alignment (Obj) then
4198 declare
4199 ObjA : constant Uint := Alignment (Obj);
4200 ExpA : Uint := No_Uint;
4201 SizA : Uint := No_Uint;
4203 begin
4204 -- If alignment of Obj is 1, then we are always OK
4206 if ObjA = 1 then
4207 Set_Result (Known_Compatible);
4209 -- Alignment of Obj is greater than 1, so we need to check
4211 else
4212 -- If we have an offset, see if it is compatible
4214 if Offs /= No_Uint and Offs > Uint_0 then
4215 if Offs mod (System_Storage_Unit * ObjA) /= 0 then
4216 Set_Result (Known_Incompatible);
4217 end if;
4219 -- See if Expr is an object with known alignment
4221 elsif Is_Entity_Name (Expr)
4222 and then Known_Alignment (Entity (Expr))
4223 then
4224 ExpA := Alignment (Entity (Expr));
4226 -- Otherwise, we can use the alignment of the type of
4227 -- Expr given that we already checked for
4228 -- discombobulating rep clauses for the cases of indexed
4229 -- and selected components above.
4231 elsif Known_Alignment (Etype (Expr)) then
4232 ExpA := Alignment (Etype (Expr));
4234 -- Otherwise the alignment is unknown
4236 else
4237 Set_Result (Default);
4238 end if;
4240 -- If we got an alignment, see if it is acceptable
4242 if ExpA /= No_Uint and then ExpA < ObjA then
4243 Set_Result (Known_Incompatible);
4244 end if;
4246 -- If Expr is not a piece of a larger object, see if size
4247 -- is given. If so, check that it is not too small for the
4248 -- required alignment.
4250 if Offs /= No_Uint then
4251 null;
4253 -- See if Expr is an object with known size
4255 elsif Is_Entity_Name (Expr)
4256 and then Known_Static_Esize (Entity (Expr))
4257 then
4258 SizA := Esize (Entity (Expr));
4260 -- Otherwise, we check the object size of the Expr type
4262 elsif Known_Static_Esize (Etype (Expr)) then
4263 SizA := Esize (Etype (Expr));
4264 end if;
4266 -- If we got a size, see if it is a multiple of the Obj
4267 -- alignment, if not, then the alignment cannot be
4268 -- acceptable, since the size is always a multiple of the
4269 -- alignment.
4271 if SizA /= No_Uint then
4272 if SizA mod (ObjA * Ttypes.System_Storage_Unit) /= 0 then
4273 Set_Result (Known_Incompatible);
4274 end if;
4275 end if;
4276 end if;
4277 end;
4279 -- If we do not know required alignment, any non-zero offset is a
4280 -- potential problem (but certainly may be OK, so result is unknown).
4282 elsif Offs /= No_Uint then
4283 Set_Result (Unknown);
4285 -- If we can't find the result by direct comparison of alignment
4286 -- values, then there is still one case that we can determine known
4287 -- result, and that is when we can determine that the types are the
4288 -- same, and no alignments are specified. Then we known that the
4289 -- alignments are compatible, even if we don't know the alignment
4290 -- value in the front end.
4292 elsif Etype (Obj) = Etype (Expr) then
4294 -- Types are the same, but we have to check for possible size
4295 -- and alignments on the Expr object that may make the alignment
4296 -- different, even though the types are the same.
4298 if Is_Entity_Name (Expr) then
4300 -- First check alignment of the Expr object. Any alignment less
4301 -- than Maximum_Alignment is worrisome since this is the case
4302 -- where we do not know the alignment of Obj.
4304 if Known_Alignment (Entity (Expr))
4305 and then
4306 UI_To_Int (Alignment (Entity (Expr))) <
4307 Ttypes.Maximum_Alignment
4308 then
4309 Set_Result (Unknown);
4311 -- Now check size of Expr object. Any size that is not an
4312 -- even multiple of Maximum_Alignment is also worrisome
4313 -- since it may cause the alignment of the object to be less
4314 -- than the alignment of the type.
4316 elsif Known_Static_Esize (Entity (Expr))
4317 and then
4318 (UI_To_Int (Esize (Entity (Expr))) mod
4319 (Ttypes.Maximum_Alignment * Ttypes.System_Storage_Unit))
4320 /= 0
4321 then
4322 Set_Result (Unknown);
4324 -- Otherwise same type is decisive
4326 else
4327 Set_Result (Known_Compatible);
4328 end if;
4329 end if;
4331 -- Another case to deal with is when there is an explicit size or
4332 -- alignment clause when the types are not the same. If so, then the
4333 -- result is Unknown. We don't need to do this test if the Default is
4334 -- Unknown, since that result will be set in any case.
4336 elsif Default /= Unknown
4337 and then (Has_Size_Clause (Etype (Expr))
4338 or else
4339 Has_Alignment_Clause (Etype (Expr)))
4340 then
4341 Set_Result (Unknown);
4343 -- If no indication found, set default
4345 else
4346 Set_Result (Default);
4347 end if;
4349 -- Return worst result found
4351 return Result;
4352 end Has_Compatible_Alignment_Internal;
4354 -- Start of processing for Has_Compatible_Alignment
4356 begin
4357 -- If Obj has no specified alignment, then set alignment from the type
4358 -- alignment. Perhaps we should always do this, but for sure we should
4359 -- do it when there is an address clause since we can do more if the
4360 -- alignment is known.
4362 if Unknown_Alignment (Obj) then
4363 Set_Alignment (Obj, Alignment (Etype (Obj)));
4364 end if;
4366 -- Now do the internal call that does all the work
4368 return Has_Compatible_Alignment_Internal (Obj, Expr, Unknown);
4369 end Has_Compatible_Alignment;
4371 ----------------------
4372 -- Has_Declarations --
4373 ----------------------
4375 function Has_Declarations (N : Node_Id) return Boolean is
4376 begin
4377 return Nkind_In (Nkind (N), N_Accept_Statement,
4378 N_Block_Statement,
4379 N_Compilation_Unit_Aux,
4380 N_Entry_Body,
4381 N_Package_Body,
4382 N_Protected_Body,
4383 N_Subprogram_Body,
4384 N_Task_Body,
4385 N_Package_Specification);
4386 end Has_Declarations;
4388 -------------------------------------------
4389 -- Has_Discriminant_Dependent_Constraint --
4390 -------------------------------------------
4392 function Has_Discriminant_Dependent_Constraint
4393 (Comp : Entity_Id) return Boolean
4395 Comp_Decl : constant Node_Id := Parent (Comp);
4396 Subt_Indic : constant Node_Id :=
4397 Subtype_Indication (Component_Definition (Comp_Decl));
4398 Constr : Node_Id;
4399 Assn : Node_Id;
4401 begin
4402 if Nkind (Subt_Indic) = N_Subtype_Indication then
4403 Constr := Constraint (Subt_Indic);
4405 if Nkind (Constr) = N_Index_Or_Discriminant_Constraint then
4406 Assn := First (Constraints (Constr));
4407 while Present (Assn) loop
4408 case Nkind (Assn) is
4409 when N_Subtype_Indication |
4410 N_Range |
4411 N_Identifier
4413 if Depends_On_Discriminant (Assn) then
4414 return True;
4415 end if;
4417 when N_Discriminant_Association =>
4418 if Depends_On_Discriminant (Expression (Assn)) then
4419 return True;
4420 end if;
4422 when others =>
4423 null;
4425 end case;
4427 Next (Assn);
4428 end loop;
4429 end if;
4430 end if;
4432 return False;
4433 end Has_Discriminant_Dependent_Constraint;
4435 --------------------
4436 -- Has_Infinities --
4437 --------------------
4439 function Has_Infinities (E : Entity_Id) return Boolean is
4440 begin
4441 return
4442 Is_Floating_Point_Type (E)
4443 and then Nkind (Scalar_Range (E)) = N_Range
4444 and then Includes_Infinities (Scalar_Range (E));
4445 end Has_Infinities;
4447 --------------------
4448 -- Has_Interfaces --
4449 --------------------
4451 function Has_Interfaces
4452 (T : Entity_Id;
4453 Use_Full_View : Boolean := True) return Boolean
4455 Typ : Entity_Id;
4457 begin
4458 -- Handle concurrent types
4460 if Is_Concurrent_Type (T) then
4461 Typ := Corresponding_Record_Type (T);
4462 else
4463 Typ := T;
4464 end if;
4466 if not Present (Typ)
4467 or else not Is_Record_Type (Typ)
4468 or else not Is_Tagged_Type (Typ)
4469 then
4470 return False;
4471 end if;
4473 -- Handle private types
4475 if Use_Full_View
4476 and then Present (Full_View (Typ))
4477 then
4478 Typ := Full_View (Typ);
4479 end if;
4481 -- Handle concurrent record types
4483 if Is_Concurrent_Record_Type (Typ)
4484 and then Is_Non_Empty_List (Abstract_Interface_List (Typ))
4485 then
4486 return True;
4487 end if;
4489 loop
4490 if Is_Interface (Typ)
4491 or else
4492 (Is_Record_Type (Typ)
4493 and then Present (Interfaces (Typ))
4494 and then not Is_Empty_Elmt_List (Interfaces (Typ)))
4495 then
4496 return True;
4497 end if;
4499 exit when Etype (Typ) = Typ
4501 -- Handle private types
4503 or else (Present (Full_View (Etype (Typ)))
4504 and then Full_View (Etype (Typ)) = Typ)
4506 -- Protect the frontend against wrong source with cyclic
4507 -- derivations
4509 or else Etype (Typ) = T;
4511 -- Climb to the ancestor type handling private types
4513 if Present (Full_View (Etype (Typ))) then
4514 Typ := Full_View (Etype (Typ));
4515 else
4516 Typ := Etype (Typ);
4517 end if;
4518 end loop;
4520 return False;
4521 end Has_Interfaces;
4523 ------------------------
4524 -- Has_Null_Exclusion --
4525 ------------------------
4527 function Has_Null_Exclusion (N : Node_Id) return Boolean is
4528 begin
4529 case Nkind (N) is
4530 when N_Access_Definition |
4531 N_Access_Function_Definition |
4532 N_Access_Procedure_Definition |
4533 N_Access_To_Object_Definition |
4534 N_Allocator |
4535 N_Derived_Type_Definition |
4536 N_Function_Specification |
4537 N_Subtype_Declaration =>
4538 return Null_Exclusion_Present (N);
4540 when N_Component_Definition |
4541 N_Formal_Object_Declaration |
4542 N_Object_Renaming_Declaration =>
4543 if Present (Subtype_Mark (N)) then
4544 return Null_Exclusion_Present (N);
4545 else pragma Assert (Present (Access_Definition (N)));
4546 return Null_Exclusion_Present (Access_Definition (N));
4547 end if;
4549 when N_Discriminant_Specification =>
4550 if Nkind (Discriminant_Type (N)) = N_Access_Definition then
4551 return Null_Exclusion_Present (Discriminant_Type (N));
4552 else
4553 return Null_Exclusion_Present (N);
4554 end if;
4556 when N_Object_Declaration =>
4557 if Nkind (Object_Definition (N)) = N_Access_Definition then
4558 return Null_Exclusion_Present (Object_Definition (N));
4559 else
4560 return Null_Exclusion_Present (N);
4561 end if;
4563 when N_Parameter_Specification =>
4564 if Nkind (Parameter_Type (N)) = N_Access_Definition then
4565 return Null_Exclusion_Present (Parameter_Type (N));
4566 else
4567 return Null_Exclusion_Present (N);
4568 end if;
4570 when others =>
4571 return False;
4573 end case;
4574 end Has_Null_Exclusion;
4576 ------------------------
4577 -- Has_Null_Extension --
4578 ------------------------
4580 function Has_Null_Extension (T : Entity_Id) return Boolean is
4581 B : constant Entity_Id := Base_Type (T);
4582 Comps : Node_Id;
4583 Ext : Node_Id;
4585 begin
4586 if Nkind (Parent (B)) = N_Full_Type_Declaration
4587 and then Present (Record_Extension_Part (Type_Definition (Parent (B))))
4588 then
4589 Ext := Record_Extension_Part (Type_Definition (Parent (B)));
4591 if Present (Ext) then
4592 if Null_Present (Ext) then
4593 return True;
4594 else
4595 Comps := Component_List (Ext);
4597 -- The null component list is rewritten during analysis to
4598 -- include the parent component. Any other component indicates
4599 -- that the extension was not originally null.
4601 return Null_Present (Comps)
4602 or else No (Next (First (Component_Items (Comps))));
4603 end if;
4604 else
4605 return False;
4606 end if;
4608 else
4609 return False;
4610 end if;
4611 end Has_Null_Extension;
4613 -------------------------------
4614 -- Has_Overriding_Initialize --
4615 -------------------------------
4617 function Has_Overriding_Initialize (T : Entity_Id) return Boolean is
4618 BT : constant Entity_Id := Base_Type (T);
4619 Comp : Entity_Id;
4620 P : Elmt_Id;
4622 begin
4623 if Is_Controlled (BT) then
4625 -- For derived types, check immediate ancestor, excluding
4626 -- Controlled itself.
4628 if Is_Derived_Type (BT)
4629 and then not In_Predefined_Unit (Etype (BT))
4630 and then Has_Overriding_Initialize (Etype (BT))
4631 then
4632 return True;
4634 elsif Present (Primitive_Operations (BT)) then
4635 P := First_Elmt (Primitive_Operations (BT));
4636 while Present (P) loop
4637 if Chars (Node (P)) = Name_Initialize
4638 and then Comes_From_Source (Node (P))
4639 then
4640 return True;
4641 end if;
4643 Next_Elmt (P);
4644 end loop;
4645 end if;
4647 return False;
4649 elsif Has_Controlled_Component (BT) then
4650 Comp := First_Component (BT);
4651 while Present (Comp) loop
4652 if Has_Overriding_Initialize (Etype (Comp)) then
4653 return True;
4654 end if;
4656 Next_Component (Comp);
4657 end loop;
4659 return False;
4661 else
4662 return False;
4663 end if;
4664 end Has_Overriding_Initialize;
4666 --------------------------------------
4667 -- Has_Preelaborable_Initialization --
4668 --------------------------------------
4670 function Has_Preelaborable_Initialization (E : Entity_Id) return Boolean is
4671 Has_PE : Boolean;
4673 procedure Check_Components (E : Entity_Id);
4674 -- Check component/discriminant chain, sets Has_PE False if a component
4675 -- or discriminant does not meet the preelaborable initialization rules.
4677 ----------------------
4678 -- Check_Components --
4679 ----------------------
4681 procedure Check_Components (E : Entity_Id) is
4682 Ent : Entity_Id;
4683 Exp : Node_Id;
4685 function Is_Preelaborable_Expression (N : Node_Id) return Boolean;
4686 -- Returns True if and only if the expression denoted by N does not
4687 -- violate restrictions on preelaborable constructs (RM-10.2.1(5-9)).
4689 ---------------------------------
4690 -- Is_Preelaborable_Expression --
4691 ---------------------------------
4693 function Is_Preelaborable_Expression (N : Node_Id) return Boolean is
4694 Exp : Node_Id;
4695 Assn : Node_Id;
4696 Choice : Node_Id;
4697 Comp_Type : Entity_Id;
4698 Is_Array_Aggr : Boolean;
4700 begin
4701 if Is_Static_Expression (N) then
4702 return True;
4704 elsif Nkind (N) = N_Null then
4705 return True;
4707 -- Attributes are allowed in general, even if their prefix is a
4708 -- formal type. (It seems that certain attributes known not to be
4709 -- static might not be allowed, but there are no rules to prevent
4710 -- them.)
4712 elsif Nkind (N) = N_Attribute_Reference then
4713 return True;
4715 -- The name of a discriminant evaluated within its parent type is
4716 -- defined to be preelaborable (10.2.1(8)). Note that we test for
4717 -- names that denote discriminals as well as discriminants to
4718 -- catch references occurring within init procs.
4720 elsif Is_Entity_Name (N)
4721 and then
4722 (Ekind (Entity (N)) = E_Discriminant
4723 or else
4724 ((Ekind (Entity (N)) = E_Constant
4725 or else Ekind (Entity (N)) = E_In_Parameter)
4726 and then Present (Discriminal_Link (Entity (N)))))
4727 then
4728 return True;
4730 elsif Nkind (N) = N_Qualified_Expression then
4731 return Is_Preelaborable_Expression (Expression (N));
4733 -- For aggregates we have to check that each of the associations
4734 -- is preelaborable.
4736 elsif Nkind (N) = N_Aggregate
4737 or else Nkind (N) = N_Extension_Aggregate
4738 then
4739 Is_Array_Aggr := Is_Array_Type (Etype (N));
4741 if Is_Array_Aggr then
4742 Comp_Type := Component_Type (Etype (N));
4743 end if;
4745 -- Check the ancestor part of extension aggregates, which must
4746 -- be either the name of a type that has preelaborable init or
4747 -- an expression that is preelaborable.
4749 if Nkind (N) = N_Extension_Aggregate then
4750 declare
4751 Anc_Part : constant Node_Id := Ancestor_Part (N);
4753 begin
4754 if Is_Entity_Name (Anc_Part)
4755 and then Is_Type (Entity (Anc_Part))
4756 then
4757 if not Has_Preelaborable_Initialization
4758 (Entity (Anc_Part))
4759 then
4760 return False;
4761 end if;
4763 elsif not Is_Preelaborable_Expression (Anc_Part) then
4764 return False;
4765 end if;
4766 end;
4767 end if;
4769 -- Check positional associations
4771 Exp := First (Expressions (N));
4772 while Present (Exp) loop
4773 if not Is_Preelaborable_Expression (Exp) then
4774 return False;
4775 end if;
4777 Next (Exp);
4778 end loop;
4780 -- Check named associations
4782 Assn := First (Component_Associations (N));
4783 while Present (Assn) loop
4784 Choice := First (Choices (Assn));
4785 while Present (Choice) loop
4786 if Is_Array_Aggr then
4787 if Nkind (Choice) = N_Others_Choice then
4788 null;
4790 elsif Nkind (Choice) = N_Range then
4791 if not Is_Static_Range (Choice) then
4792 return False;
4793 end if;
4795 elsif not Is_Static_Expression (Choice) then
4796 return False;
4797 end if;
4799 else
4800 Comp_Type := Etype (Choice);
4801 end if;
4803 Next (Choice);
4804 end loop;
4806 -- If the association has a <> at this point, then we have
4807 -- to check whether the component's type has preelaborable
4808 -- initialization. Note that this only occurs when the
4809 -- association's corresponding component does not have a
4810 -- default expression, the latter case having already been
4811 -- expanded as an expression for the association.
4813 if Box_Present (Assn) then
4814 if not Has_Preelaborable_Initialization (Comp_Type) then
4815 return False;
4816 end if;
4818 -- In the expression case we check whether the expression
4819 -- is preelaborable.
4821 elsif
4822 not Is_Preelaborable_Expression (Expression (Assn))
4823 then
4824 return False;
4825 end if;
4827 Next (Assn);
4828 end loop;
4830 -- If we get here then aggregate as a whole is preelaborable
4832 return True;
4834 -- All other cases are not preelaborable
4836 else
4837 return False;
4838 end if;
4839 end Is_Preelaborable_Expression;
4841 -- Start of processing for Check_Components
4843 begin
4844 -- Loop through entities of record or protected type
4846 Ent := E;
4847 while Present (Ent) loop
4849 -- We are interested only in components and discriminants
4851 if Ekind (Ent) = E_Component
4852 or else
4853 Ekind (Ent) = E_Discriminant
4854 then
4855 -- Get default expression if any. If there is no declaration
4856 -- node, it means we have an internal entity. The parent and
4857 -- tag fields are examples of such entities. For these cases,
4858 -- we just test the type of the entity.
4860 if Present (Declaration_Node (Ent)) then
4861 Exp := Expression (Declaration_Node (Ent));
4862 else
4863 Exp := Empty;
4864 end if;
4866 -- A component has PI if it has no default expression and the
4867 -- component type has PI.
4869 if No (Exp) then
4870 if not Has_Preelaborable_Initialization (Etype (Ent)) then
4871 Has_PE := False;
4872 exit;
4873 end if;
4875 -- Require the default expression to be preelaborable
4877 elsif not Is_Preelaborable_Expression (Exp) then
4878 Has_PE := False;
4879 exit;
4880 end if;
4881 end if;
4883 Next_Entity (Ent);
4884 end loop;
4885 end Check_Components;
4887 -- Start of processing for Has_Preelaborable_Initialization
4889 begin
4890 -- Immediate return if already marked as known preelaborable init. This
4891 -- covers types for which this function has already been called once
4892 -- and returned True (in which case the result is cached), and also
4893 -- types to which a pragma Preelaborable_Initialization applies.
4895 if Known_To_Have_Preelab_Init (E) then
4896 return True;
4897 end if;
4899 -- If the type is a subtype representing a generic actual type, then
4900 -- test whether its base type has preelaborable initialization since
4901 -- the subtype representing the actual does not inherit this attribute
4902 -- from the actual or formal. (but maybe it should???)
4904 if Is_Generic_Actual_Type (E) then
4905 return Has_Preelaborable_Initialization (Base_Type (E));
4906 end if;
4908 -- All elementary types have preelaborable initialization
4910 if Is_Elementary_Type (E) then
4911 Has_PE := True;
4913 -- Array types have PI if the component type has PI
4915 elsif Is_Array_Type (E) then
4916 Has_PE := Has_Preelaborable_Initialization (Component_Type (E));
4918 -- A derived type has preelaborable initialization if its parent type
4919 -- has preelaborable initialization and (in the case of a derived record
4920 -- extension) if the non-inherited components all have preelaborable
4921 -- initialization. However, a user-defined controlled type with an
4922 -- overriding Initialize procedure does not have preelaborable
4923 -- initialization.
4925 elsif Is_Derived_Type (E) then
4927 -- If the derived type is a private extension then it doesn't have
4928 -- preelaborable initialization.
4930 if Ekind (Base_Type (E)) = E_Record_Type_With_Private then
4931 return False;
4932 end if;
4934 -- First check whether ancestor type has preelaborable initialization
4936 Has_PE := Has_Preelaborable_Initialization (Etype (Base_Type (E)));
4938 -- If OK, check extension components (if any)
4940 if Has_PE and then Is_Record_Type (E) then
4941 Check_Components (First_Entity (E));
4942 end if;
4944 -- Check specifically for 10.2.1(11.4/2) exception: a controlled type
4945 -- with a user defined Initialize procedure does not have PI.
4947 if Has_PE
4948 and then Is_Controlled (E)
4949 and then Has_Overriding_Initialize (E)
4950 then
4951 Has_PE := False;
4952 end if;
4954 -- Private types not derived from a type having preelaborable init and
4955 -- that are not marked with pragma Preelaborable_Initialization do not
4956 -- have preelaborable initialization.
4958 elsif Is_Private_Type (E) then
4959 return False;
4961 -- Record type has PI if it is non private and all components have PI
4963 elsif Is_Record_Type (E) then
4964 Has_PE := True;
4965 Check_Components (First_Entity (E));
4967 -- Protected types must not have entries, and components must meet
4968 -- same set of rules as for record components.
4970 elsif Is_Protected_Type (E) then
4971 if Has_Entries (E) then
4972 Has_PE := False;
4973 else
4974 Has_PE := True;
4975 Check_Components (First_Entity (E));
4976 Check_Components (First_Private_Entity (E));
4977 end if;
4979 -- Type System.Address always has preelaborable initialization
4981 elsif Is_RTE (E, RE_Address) then
4982 Has_PE := True;
4984 -- In all other cases, type does not have preelaborable initialization
4986 else
4987 return False;
4988 end if;
4990 -- If type has preelaborable initialization, cache result
4992 if Has_PE then
4993 Set_Known_To_Have_Preelab_Init (E);
4994 end if;
4996 return Has_PE;
4997 end Has_Preelaborable_Initialization;
4999 ---------------------------
5000 -- Has_Private_Component --
5001 ---------------------------
5003 function Has_Private_Component (Type_Id : Entity_Id) return Boolean is
5004 Btype : Entity_Id := Base_Type (Type_Id);
5005 Component : Entity_Id;
5007 begin
5008 if Error_Posted (Type_Id)
5009 or else Error_Posted (Btype)
5010 then
5011 return False;
5012 end if;
5014 if Is_Class_Wide_Type (Btype) then
5015 Btype := Root_Type (Btype);
5016 end if;
5018 if Is_Private_Type (Btype) then
5019 declare
5020 UT : constant Entity_Id := Underlying_Type (Btype);
5021 begin
5022 if No (UT) then
5023 if No (Full_View (Btype)) then
5024 return not Is_Generic_Type (Btype)
5025 and then not Is_Generic_Type (Root_Type (Btype));
5026 else
5027 return not Is_Generic_Type (Root_Type (Full_View (Btype)));
5028 end if;
5029 else
5030 return not Is_Frozen (UT) and then Has_Private_Component (UT);
5031 end if;
5032 end;
5034 elsif Is_Array_Type (Btype) then
5035 return Has_Private_Component (Component_Type (Btype));
5037 elsif Is_Record_Type (Btype) then
5038 Component := First_Component (Btype);
5039 while Present (Component) loop
5040 if Has_Private_Component (Etype (Component)) then
5041 return True;
5042 end if;
5044 Next_Component (Component);
5045 end loop;
5047 return False;
5049 elsif Is_Protected_Type (Btype)
5050 and then Present (Corresponding_Record_Type (Btype))
5051 then
5052 return Has_Private_Component (Corresponding_Record_Type (Btype));
5054 else
5055 return False;
5056 end if;
5057 end Has_Private_Component;
5059 ----------------
5060 -- Has_Stream --
5061 ----------------
5063 function Has_Stream (T : Entity_Id) return Boolean is
5064 E : Entity_Id;
5066 begin
5067 if No (T) then
5068 return False;
5070 elsif Is_RTE (Root_Type (T), RE_Root_Stream_Type) then
5071 return True;
5073 elsif Is_Array_Type (T) then
5074 return Has_Stream (Component_Type (T));
5076 elsif Is_Record_Type (T) then
5077 E := First_Component (T);
5078 while Present (E) loop
5079 if Has_Stream (Etype (E)) then
5080 return True;
5081 else
5082 Next_Component (E);
5083 end if;
5084 end loop;
5086 return False;
5088 elsif Is_Private_Type (T) then
5089 return Has_Stream (Underlying_Type (T));
5091 else
5092 return False;
5093 end if;
5094 end Has_Stream;
5096 --------------------------
5097 -- Has_Tagged_Component --
5098 --------------------------
5100 function Has_Tagged_Component (Typ : Entity_Id) return Boolean is
5101 Comp : Entity_Id;
5103 begin
5104 if Is_Private_Type (Typ)
5105 and then Present (Underlying_Type (Typ))
5106 then
5107 return Has_Tagged_Component (Underlying_Type (Typ));
5109 elsif Is_Array_Type (Typ) then
5110 return Has_Tagged_Component (Component_Type (Typ));
5112 elsif Is_Tagged_Type (Typ) then
5113 return True;
5115 elsif Is_Record_Type (Typ) then
5116 Comp := First_Component (Typ);
5117 while Present (Comp) loop
5118 if Has_Tagged_Component (Etype (Comp)) then
5119 return True;
5120 end if;
5122 Next_Component (Comp);
5123 end loop;
5125 return False;
5127 else
5128 return False;
5129 end if;
5130 end Has_Tagged_Component;
5132 --------------------------
5133 -- Implements_Interface --
5134 --------------------------
5136 function Implements_Interface
5137 (Typ_Ent : Entity_Id;
5138 Iface_Ent : Entity_Id;
5139 Exclude_Parents : Boolean := False) return Boolean
5141 Ifaces_List : Elist_Id;
5142 Elmt : Elmt_Id;
5143 Iface : Entity_Id := Base_Type (Iface_Ent);
5144 Typ : Entity_Id := Base_Type (Typ_Ent);
5146 begin
5147 if Is_Class_Wide_Type (Typ) then
5148 Typ := Root_Type (Typ);
5149 end if;
5151 if not Has_Interfaces (Typ) then
5152 return False;
5153 end if;
5155 if Is_Class_Wide_Type (Iface) then
5156 Iface := Root_Type (Iface);
5157 end if;
5159 Collect_Interfaces (Typ, Ifaces_List);
5161 Elmt := First_Elmt (Ifaces_List);
5162 while Present (Elmt) loop
5163 if Is_Ancestor (Node (Elmt), Typ)
5164 and then Exclude_Parents
5165 then
5166 null;
5168 elsif Node (Elmt) = Iface then
5169 return True;
5170 end if;
5172 Next_Elmt (Elmt);
5173 end loop;
5175 return False;
5176 end Implements_Interface;
5178 -----------------
5179 -- In_Instance --
5180 -----------------
5182 function In_Instance return Boolean is
5183 Curr_Unit : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
5184 S : Entity_Id;
5186 begin
5187 S := Current_Scope;
5188 while Present (S)
5189 and then S /= Standard_Standard
5190 loop
5191 if (Ekind (S) = E_Function
5192 or else Ekind (S) = E_Package
5193 or else Ekind (S) = E_Procedure)
5194 and then Is_Generic_Instance (S)
5195 then
5196 -- A child instance is always compiled in the context of a parent
5197 -- instance. Nevertheless, the actuals are not analyzed in an
5198 -- instance context. We detect this case by examining the current
5199 -- compilation unit, which must be a child instance, and checking
5200 -- that it is not currently on the scope stack.
5202 if Is_Child_Unit (Curr_Unit)
5203 and then
5204 Nkind (Unit (Cunit (Current_Sem_Unit)))
5205 = N_Package_Instantiation
5206 and then not In_Open_Scopes (Curr_Unit)
5207 then
5208 return False;
5209 else
5210 return True;
5211 end if;
5212 end if;
5214 S := Scope (S);
5215 end loop;
5217 return False;
5218 end In_Instance;
5220 ----------------------
5221 -- In_Instance_Body --
5222 ----------------------
5224 function In_Instance_Body return Boolean is
5225 S : Entity_Id;
5227 begin
5228 S := Current_Scope;
5229 while Present (S)
5230 and then S /= Standard_Standard
5231 loop
5232 if (Ekind (S) = E_Function
5233 or else Ekind (S) = E_Procedure)
5234 and then Is_Generic_Instance (S)
5235 then
5236 return True;
5238 elsif Ekind (S) = E_Package
5239 and then In_Package_Body (S)
5240 and then Is_Generic_Instance (S)
5241 then
5242 return True;
5243 end if;
5245 S := Scope (S);
5246 end loop;
5248 return False;
5249 end In_Instance_Body;
5251 -----------------------------
5252 -- In_Instance_Not_Visible --
5253 -----------------------------
5255 function In_Instance_Not_Visible return Boolean is
5256 S : Entity_Id;
5258 begin
5259 S := Current_Scope;
5260 while Present (S)
5261 and then S /= Standard_Standard
5262 loop
5263 if (Ekind (S) = E_Function
5264 or else Ekind (S) = E_Procedure)
5265 and then Is_Generic_Instance (S)
5266 then
5267 return True;
5269 elsif Ekind (S) = E_Package
5270 and then (In_Package_Body (S) or else In_Private_Part (S))
5271 and then Is_Generic_Instance (S)
5272 then
5273 return True;
5274 end if;
5276 S := Scope (S);
5277 end loop;
5279 return False;
5280 end In_Instance_Not_Visible;
5282 ------------------------------
5283 -- In_Instance_Visible_Part --
5284 ------------------------------
5286 function In_Instance_Visible_Part return Boolean is
5287 S : Entity_Id;
5289 begin
5290 S := Current_Scope;
5291 while Present (S)
5292 and then S /= Standard_Standard
5293 loop
5294 if Ekind (S) = E_Package
5295 and then Is_Generic_Instance (S)
5296 and then not In_Package_Body (S)
5297 and then not In_Private_Part (S)
5298 then
5299 return True;
5300 end if;
5302 S := Scope (S);
5303 end loop;
5305 return False;
5306 end In_Instance_Visible_Part;
5308 ---------------------
5309 -- In_Package_Body --
5310 ---------------------
5312 function In_Package_Body return Boolean is
5313 S : Entity_Id;
5315 begin
5316 S := Current_Scope;
5317 while Present (S)
5318 and then S /= Standard_Standard
5319 loop
5320 if Ekind (S) = E_Package
5321 and then In_Package_Body (S)
5322 then
5323 return True;
5324 else
5325 S := Scope (S);
5326 end if;
5327 end loop;
5329 return False;
5330 end In_Package_Body;
5332 --------------------------------
5333 -- In_Parameter_Specification --
5334 --------------------------------
5336 function In_Parameter_Specification (N : Node_Id) return Boolean is
5337 PN : Node_Id;
5339 begin
5340 PN := Parent (N);
5341 while Present (PN) loop
5342 if Nkind (PN) = N_Parameter_Specification then
5343 return True;
5344 end if;
5346 PN := Parent (PN);
5347 end loop;
5349 return False;
5350 end In_Parameter_Specification;
5352 --------------------------------------
5353 -- In_Subprogram_Or_Concurrent_Unit --
5354 --------------------------------------
5356 function In_Subprogram_Or_Concurrent_Unit return Boolean is
5357 E : Entity_Id;
5358 K : Entity_Kind;
5360 begin
5361 -- Use scope chain to check successively outer scopes
5363 E := Current_Scope;
5364 loop
5365 K := Ekind (E);
5367 if K in Subprogram_Kind
5368 or else K in Concurrent_Kind
5369 or else K in Generic_Subprogram_Kind
5370 then
5371 return True;
5373 elsif E = Standard_Standard then
5374 return False;
5375 end if;
5377 E := Scope (E);
5378 end loop;
5379 end In_Subprogram_Or_Concurrent_Unit;
5381 ---------------------
5382 -- In_Visible_Part --
5383 ---------------------
5385 function In_Visible_Part (Scope_Id : Entity_Id) return Boolean is
5386 begin
5387 return
5388 Is_Package_Or_Generic_Package (Scope_Id)
5389 and then In_Open_Scopes (Scope_Id)
5390 and then not In_Package_Body (Scope_Id)
5391 and then not In_Private_Part (Scope_Id);
5392 end In_Visible_Part;
5394 ---------------------------------
5395 -- Insert_Explicit_Dereference --
5396 ---------------------------------
5398 procedure Insert_Explicit_Dereference (N : Node_Id) is
5399 New_Prefix : constant Node_Id := Relocate_Node (N);
5400 Ent : Entity_Id := Empty;
5401 Pref : Node_Id;
5402 I : Interp_Index;
5403 It : Interp;
5404 T : Entity_Id;
5406 begin
5407 Save_Interps (N, New_Prefix);
5409 -- Check if the node relocation requires readjustment of some SCIL
5410 -- dispatching node.
5412 if Generate_SCIL
5413 and then Nkind (N) = N_Function_Call
5414 then
5415 Adjust_SCIL_Node (N, New_Prefix);
5416 end if;
5418 Rewrite (N, Make_Explicit_Dereference (Sloc (N), Prefix => New_Prefix));
5420 Set_Etype (N, Designated_Type (Etype (New_Prefix)));
5422 if Is_Overloaded (New_Prefix) then
5424 -- The dereference is also overloaded, and its interpretations are
5425 -- the designated types of the interpretations of the original node.
5427 Set_Etype (N, Any_Type);
5429 Get_First_Interp (New_Prefix, I, It);
5430 while Present (It.Nam) loop
5431 T := It.Typ;
5433 if Is_Access_Type (T) then
5434 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
5435 end if;
5437 Get_Next_Interp (I, It);
5438 end loop;
5440 End_Interp_List;
5442 else
5443 -- Prefix is unambiguous: mark the original prefix (which might
5444 -- Come_From_Source) as a reference, since the new (relocated) one
5445 -- won't be taken into account.
5447 if Is_Entity_Name (New_Prefix) then
5448 Ent := Entity (New_Prefix);
5450 -- For a retrieval of a subcomponent of some composite object,
5451 -- retrieve the ultimate entity if there is one.
5453 elsif Nkind (New_Prefix) = N_Selected_Component
5454 or else Nkind (New_Prefix) = N_Indexed_Component
5455 then
5456 Pref := Prefix (New_Prefix);
5457 while Present (Pref)
5458 and then
5459 (Nkind (Pref) = N_Selected_Component
5460 or else Nkind (Pref) = N_Indexed_Component)
5461 loop
5462 Pref := Prefix (Pref);
5463 end loop;
5465 if Present (Pref) and then Is_Entity_Name (Pref) then
5466 Ent := Entity (Pref);
5467 end if;
5468 end if;
5470 if Present (Ent) then
5471 Generate_Reference (Ent, New_Prefix);
5472 end if;
5473 end if;
5474 end Insert_Explicit_Dereference;
5476 ------------------------------------------
5477 -- Inspect_Deferred_Constant_Completion --
5478 ------------------------------------------
5480 procedure Inspect_Deferred_Constant_Completion (Decls : List_Id) is
5481 Decl : Node_Id;
5483 begin
5484 Decl := First (Decls);
5485 while Present (Decl) loop
5487 -- Deferred constant signature
5489 if Nkind (Decl) = N_Object_Declaration
5490 and then Constant_Present (Decl)
5491 and then No (Expression (Decl))
5493 -- No need to check internally generated constants
5495 and then Comes_From_Source (Decl)
5497 -- The constant is not completed. A full object declaration
5498 -- or a pragma Import complete a deferred constant.
5500 and then not Has_Completion (Defining_Identifier (Decl))
5501 then
5502 Error_Msg_N
5503 ("constant declaration requires initialization expression",
5504 Defining_Identifier (Decl));
5505 end if;
5507 Decl := Next (Decl);
5508 end loop;
5509 end Inspect_Deferred_Constant_Completion;
5511 -------------------
5512 -- Is_AAMP_Float --
5513 -------------------
5515 function Is_AAMP_Float (E : Entity_Id) return Boolean is
5516 pragma Assert (Is_Type (E));
5517 begin
5518 return AAMP_On_Target
5519 and then Is_Floating_Point_Type (E)
5520 and then E = Base_Type (E);
5521 end Is_AAMP_Float;
5523 -----------------------------
5524 -- Is_Actual_Out_Parameter --
5525 -----------------------------
5527 function Is_Actual_Out_Parameter (N : Node_Id) return Boolean is
5528 Formal : Entity_Id;
5529 Call : Node_Id;
5530 begin
5531 Find_Actual (N, Formal, Call);
5532 return Present (Formal)
5533 and then Ekind (Formal) = E_Out_Parameter;
5534 end Is_Actual_Out_Parameter;
5536 -------------------------
5537 -- Is_Actual_Parameter --
5538 -------------------------
5540 function Is_Actual_Parameter (N : Node_Id) return Boolean is
5541 PK : constant Node_Kind := Nkind (Parent (N));
5543 begin
5544 case PK is
5545 when N_Parameter_Association =>
5546 return N = Explicit_Actual_Parameter (Parent (N));
5548 when N_Function_Call | N_Procedure_Call_Statement =>
5549 return Is_List_Member (N)
5550 and then
5551 List_Containing (N) = Parameter_Associations (Parent (N));
5553 when others =>
5554 return False;
5555 end case;
5556 end Is_Actual_Parameter;
5558 ---------------------
5559 -- Is_Aliased_View --
5560 ---------------------
5562 function Is_Aliased_View (Obj : Node_Id) return Boolean is
5563 E : Entity_Id;
5565 begin
5566 if Is_Entity_Name (Obj) then
5568 E := Entity (Obj);
5570 return
5571 (Is_Object (E)
5572 and then
5573 (Is_Aliased (E)
5574 or else (Present (Renamed_Object (E))
5575 and then Is_Aliased_View (Renamed_Object (E)))))
5577 or else ((Is_Formal (E)
5578 or else Ekind (E) = E_Generic_In_Out_Parameter
5579 or else Ekind (E) = E_Generic_In_Parameter)
5580 and then Is_Tagged_Type (Etype (E)))
5582 or else (Is_Concurrent_Type (E)
5583 and then In_Open_Scopes (E))
5585 -- Current instance of type, either directly or as rewritten
5586 -- reference to the current object.
5588 or else (Is_Entity_Name (Original_Node (Obj))
5589 and then Present (Entity (Original_Node (Obj)))
5590 and then Is_Type (Entity (Original_Node (Obj))))
5592 or else (Is_Type (E) and then E = Current_Scope)
5594 or else (Is_Incomplete_Or_Private_Type (E)
5595 and then Full_View (E) = Current_Scope);
5597 elsif Nkind (Obj) = N_Selected_Component then
5598 return Is_Aliased (Entity (Selector_Name (Obj)));
5600 elsif Nkind (Obj) = N_Indexed_Component then
5601 return Has_Aliased_Components (Etype (Prefix (Obj)))
5602 or else
5603 (Is_Access_Type (Etype (Prefix (Obj)))
5604 and then
5605 Has_Aliased_Components
5606 (Designated_Type (Etype (Prefix (Obj)))));
5608 elsif Nkind (Obj) = N_Unchecked_Type_Conversion
5609 or else Nkind (Obj) = N_Type_Conversion
5610 then
5611 return Is_Tagged_Type (Etype (Obj))
5612 and then Is_Aliased_View (Expression (Obj));
5614 elsif Nkind (Obj) = N_Explicit_Dereference then
5615 return Nkind (Original_Node (Obj)) /= N_Function_Call;
5617 else
5618 return False;
5619 end if;
5620 end Is_Aliased_View;
5622 -------------------------
5623 -- Is_Ancestor_Package --
5624 -------------------------
5626 function Is_Ancestor_Package
5627 (E1 : Entity_Id;
5628 E2 : Entity_Id) return Boolean
5630 Par : Entity_Id;
5632 begin
5633 Par := E2;
5634 while Present (Par)
5635 and then Par /= Standard_Standard
5636 loop
5637 if Par = E1 then
5638 return True;
5639 end if;
5641 Par := Scope (Par);
5642 end loop;
5644 return False;
5645 end Is_Ancestor_Package;
5647 ----------------------
5648 -- Is_Atomic_Object --
5649 ----------------------
5651 function Is_Atomic_Object (N : Node_Id) return Boolean is
5653 function Object_Has_Atomic_Components (N : Node_Id) return Boolean;
5654 -- Determines if given object has atomic components
5656 function Is_Atomic_Prefix (N : Node_Id) return Boolean;
5657 -- If prefix is an implicit dereference, examine designated type
5659 ----------------------
5660 -- Is_Atomic_Prefix --
5661 ----------------------
5663 function Is_Atomic_Prefix (N : Node_Id) return Boolean is
5664 begin
5665 if Is_Access_Type (Etype (N)) then
5666 return
5667 Has_Atomic_Components (Designated_Type (Etype (N)));
5668 else
5669 return Object_Has_Atomic_Components (N);
5670 end if;
5671 end Is_Atomic_Prefix;
5673 ----------------------------------
5674 -- Object_Has_Atomic_Components --
5675 ----------------------------------
5677 function Object_Has_Atomic_Components (N : Node_Id) return Boolean is
5678 begin
5679 if Has_Atomic_Components (Etype (N))
5680 or else Is_Atomic (Etype (N))
5681 then
5682 return True;
5684 elsif Is_Entity_Name (N)
5685 and then (Has_Atomic_Components (Entity (N))
5686 or else Is_Atomic (Entity (N)))
5687 then
5688 return True;
5690 elsif Nkind (N) = N_Indexed_Component
5691 or else Nkind (N) = N_Selected_Component
5692 then
5693 return Is_Atomic_Prefix (Prefix (N));
5695 else
5696 return False;
5697 end if;
5698 end Object_Has_Atomic_Components;
5700 -- Start of processing for Is_Atomic_Object
5702 begin
5703 if Is_Atomic (Etype (N))
5704 or else (Is_Entity_Name (N) and then Is_Atomic (Entity (N)))
5705 then
5706 return True;
5708 elsif Nkind (N) = N_Indexed_Component
5709 or else Nkind (N) = N_Selected_Component
5710 then
5711 return Is_Atomic_Prefix (Prefix (N));
5713 else
5714 return False;
5715 end if;
5716 end Is_Atomic_Object;
5718 -------------------------
5719 -- Is_Coextension_Root --
5720 -------------------------
5722 function Is_Coextension_Root (N : Node_Id) return Boolean is
5723 begin
5724 return
5725 Nkind (N) = N_Allocator
5726 and then Present (Coextensions (N))
5728 -- Anonymous access discriminants carry a list of all nested
5729 -- controlled coextensions.
5731 and then not Is_Dynamic_Coextension (N)
5732 and then not Is_Static_Coextension (N);
5733 end Is_Coextension_Root;
5735 -----------------------------
5736 -- Is_Concurrent_Interface --
5737 -----------------------------
5739 function Is_Concurrent_Interface (T : Entity_Id) return Boolean is
5740 begin
5741 return
5742 Is_Interface (T)
5743 and then
5744 (Is_Protected_Interface (T)
5745 or else Is_Synchronized_Interface (T)
5746 or else Is_Task_Interface (T));
5747 end Is_Concurrent_Interface;
5749 --------------------------------------
5750 -- Is_Controlling_Limited_Procedure --
5751 --------------------------------------
5753 function Is_Controlling_Limited_Procedure
5754 (Proc_Nam : Entity_Id) return Boolean
5756 Param_Typ : Entity_Id := Empty;
5758 begin
5759 if Ekind (Proc_Nam) = E_Procedure
5760 and then Present (Parameter_Specifications (Parent (Proc_Nam)))
5761 then
5762 Param_Typ := Etype (Parameter_Type (First (
5763 Parameter_Specifications (Parent (Proc_Nam)))));
5765 -- In this case where an Itype was created, the procedure call has been
5766 -- rewritten.
5768 elsif Present (Associated_Node_For_Itype (Proc_Nam))
5769 and then Present (Original_Node (Associated_Node_For_Itype (Proc_Nam)))
5770 and then
5771 Present (Parameter_Associations
5772 (Associated_Node_For_Itype (Proc_Nam)))
5773 then
5774 Param_Typ :=
5775 Etype (First (Parameter_Associations
5776 (Associated_Node_For_Itype (Proc_Nam))));
5777 end if;
5779 if Present (Param_Typ) then
5780 return
5781 Is_Interface (Param_Typ)
5782 and then Is_Limited_Record (Param_Typ);
5783 end if;
5785 return False;
5786 end Is_Controlling_Limited_Procedure;
5788 -----------------------------
5789 -- Is_CPP_Constructor_Call --
5790 -----------------------------
5792 function Is_CPP_Constructor_Call (N : Node_Id) return Boolean is
5793 begin
5794 return Nkind (N) = N_Function_Call
5795 and then Is_CPP_Class (Etype (Etype (N)))
5796 and then Is_Constructor (Entity (Name (N)))
5797 and then Is_Imported (Entity (Name (N)));
5798 end Is_CPP_Constructor_Call;
5800 ----------------------------------------------
5801 -- Is_Dependent_Component_Of_Mutable_Object --
5802 ----------------------------------------------
5804 function Is_Dependent_Component_Of_Mutable_Object
5805 (Object : Node_Id) return Boolean
5807 P : Node_Id;
5808 Prefix_Type : Entity_Id;
5809 P_Aliased : Boolean := False;
5810 Comp : Entity_Id;
5812 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean;
5813 -- Returns True if and only if Comp is declared within a variant part
5815 --------------------------------
5816 -- Is_Declared_Within_Variant --
5817 --------------------------------
5819 function Is_Declared_Within_Variant (Comp : Entity_Id) return Boolean is
5820 Comp_Decl : constant Node_Id := Parent (Comp);
5821 Comp_List : constant Node_Id := Parent (Comp_Decl);
5822 begin
5823 return Nkind (Parent (Comp_List)) = N_Variant;
5824 end Is_Declared_Within_Variant;
5826 -- Start of processing for Is_Dependent_Component_Of_Mutable_Object
5828 begin
5829 if Is_Variable (Object) then
5831 if Nkind (Object) = N_Selected_Component then
5832 P := Prefix (Object);
5833 Prefix_Type := Etype (P);
5835 if Is_Entity_Name (P) then
5837 if Ekind (Entity (P)) = E_Generic_In_Out_Parameter then
5838 Prefix_Type := Base_Type (Prefix_Type);
5839 end if;
5841 if Is_Aliased (Entity (P)) then
5842 P_Aliased := True;
5843 end if;
5845 -- A discriminant check on a selected component may be
5846 -- expanded into a dereference when removing side-effects.
5847 -- Recover the original node and its type, which may be
5848 -- unconstrained.
5850 elsif Nkind (P) = N_Explicit_Dereference
5851 and then not (Comes_From_Source (P))
5852 then
5853 P := Original_Node (P);
5854 Prefix_Type := Etype (P);
5856 else
5857 -- Check for prefix being an aliased component ???
5858 null;
5860 end if;
5862 -- A heap object is constrained by its initial value
5864 -- Ada 2005 (AI-363): Always assume the object could be mutable in
5865 -- the dereferenced case, since the access value might denote an
5866 -- unconstrained aliased object, whereas in Ada 95 the designated
5867 -- object is guaranteed to be constrained. A worst-case assumption
5868 -- has to apply in Ada 2005 because we can't tell at compile time
5869 -- whether the object is "constrained by its initial value"
5870 -- (despite the fact that 3.10.2(26/2) and 8.5.1(5/2) are
5871 -- semantic rules -- these rules are acknowledged to need fixing).
5873 if Ada_Version < Ada_05 then
5874 if Is_Access_Type (Prefix_Type)
5875 or else Nkind (P) = N_Explicit_Dereference
5876 then
5877 return False;
5878 end if;
5880 elsif Ada_Version >= Ada_05 then
5881 if Is_Access_Type (Prefix_Type) then
5883 -- If the access type is pool-specific, and there is no
5884 -- constrained partial view of the designated type, then the
5885 -- designated object is known to be constrained.
5887 if Ekind (Prefix_Type) = E_Access_Type
5888 and then not Has_Constrained_Partial_View
5889 (Designated_Type (Prefix_Type))
5890 then
5891 return False;
5893 -- Otherwise (general access type, or there is a constrained
5894 -- partial view of the designated type), we need to check
5895 -- based on the designated type.
5897 else
5898 Prefix_Type := Designated_Type (Prefix_Type);
5899 end if;
5900 end if;
5901 end if;
5903 Comp :=
5904 Original_Record_Component (Entity (Selector_Name (Object)));
5906 -- As per AI-0017, the renaming is illegal in a generic body,
5907 -- even if the subtype is indefinite.
5909 -- Ada 2005 (AI-363): In Ada 2005 an aliased object can be mutable
5911 if not Is_Constrained (Prefix_Type)
5912 and then (not Is_Indefinite_Subtype (Prefix_Type)
5913 or else
5914 (Is_Generic_Type (Prefix_Type)
5915 and then Ekind (Current_Scope) = E_Generic_Package
5916 and then In_Package_Body (Current_Scope)))
5918 and then (Is_Declared_Within_Variant (Comp)
5919 or else Has_Discriminant_Dependent_Constraint (Comp))
5920 and then (not P_Aliased or else Ada_Version >= Ada_05)
5921 then
5922 return True;
5924 else
5925 return
5926 Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
5928 end if;
5930 elsif Nkind (Object) = N_Indexed_Component
5931 or else Nkind (Object) = N_Slice
5932 then
5933 return Is_Dependent_Component_Of_Mutable_Object (Prefix (Object));
5935 -- A type conversion that Is_Variable is a view conversion:
5936 -- go back to the denoted object.
5938 elsif Nkind (Object) = N_Type_Conversion then
5939 return
5940 Is_Dependent_Component_Of_Mutable_Object (Expression (Object));
5941 end if;
5942 end if;
5944 return False;
5945 end Is_Dependent_Component_Of_Mutable_Object;
5947 ---------------------
5948 -- Is_Dereferenced --
5949 ---------------------
5951 function Is_Dereferenced (N : Node_Id) return Boolean is
5952 P : constant Node_Id := Parent (N);
5953 begin
5954 return
5955 (Nkind (P) = N_Selected_Component
5956 or else
5957 Nkind (P) = N_Explicit_Dereference
5958 or else
5959 Nkind (P) = N_Indexed_Component
5960 or else
5961 Nkind (P) = N_Slice)
5962 and then Prefix (P) = N;
5963 end Is_Dereferenced;
5965 ----------------------
5966 -- Is_Descendent_Of --
5967 ----------------------
5969 function Is_Descendent_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
5970 T : Entity_Id;
5971 Etyp : Entity_Id;
5973 begin
5974 pragma Assert (Nkind (T1) in N_Entity);
5975 pragma Assert (Nkind (T2) in N_Entity);
5977 T := Base_Type (T1);
5979 -- Immediate return if the types match
5981 if T = T2 then
5982 return True;
5984 -- Comment needed here ???
5986 elsif Ekind (T) = E_Class_Wide_Type then
5987 return Etype (T) = T2;
5989 -- All other cases
5991 else
5992 loop
5993 Etyp := Etype (T);
5995 -- Done if we found the type we are looking for
5997 if Etyp = T2 then
5998 return True;
6000 -- Done if no more derivations to check
6002 elsif T = T1
6003 or else T = Etyp
6004 then
6005 return False;
6007 -- Following test catches error cases resulting from prev errors
6009 elsif No (Etyp) then
6010 return False;
6012 elsif Is_Private_Type (T) and then Etyp = Full_View (T) then
6013 return False;
6015 elsif Is_Private_Type (Etyp) and then Full_View (Etyp) = T then
6016 return False;
6017 end if;
6019 T := Base_Type (Etyp);
6020 end loop;
6021 end if;
6022 end Is_Descendent_Of;
6024 --------------
6025 -- Is_False --
6026 --------------
6028 function Is_False (U : Uint) return Boolean is
6029 begin
6030 return (U = 0);
6031 end Is_False;
6033 ---------------------------
6034 -- Is_Fixed_Model_Number --
6035 ---------------------------
6037 function Is_Fixed_Model_Number (U : Ureal; T : Entity_Id) return Boolean is
6038 S : constant Ureal := Small_Value (T);
6039 M : Urealp.Save_Mark;
6040 R : Boolean;
6041 begin
6042 M := Urealp.Mark;
6043 R := (U = UR_Trunc (U / S) * S);
6044 Urealp.Release (M);
6045 return R;
6046 end Is_Fixed_Model_Number;
6048 -------------------------------
6049 -- Is_Fully_Initialized_Type --
6050 -------------------------------
6052 function Is_Fully_Initialized_Type (Typ : Entity_Id) return Boolean is
6053 begin
6054 if Is_Scalar_Type (Typ) then
6055 return False;
6057 elsif Is_Access_Type (Typ) then
6058 return True;
6060 elsif Is_Array_Type (Typ) then
6061 if Is_Fully_Initialized_Type (Component_Type (Typ)) then
6062 return True;
6063 end if;
6065 -- An interesting case, if we have a constrained type one of whose
6066 -- bounds is known to be null, then there are no elements to be
6067 -- initialized, so all the elements are initialized!
6069 if Is_Constrained (Typ) then
6070 declare
6071 Indx : Node_Id;
6072 Indx_Typ : Entity_Id;
6073 Lbd, Hbd : Node_Id;
6075 begin
6076 Indx := First_Index (Typ);
6077 while Present (Indx) loop
6078 if Etype (Indx) = Any_Type then
6079 return False;
6081 -- If index is a range, use directly
6083 elsif Nkind (Indx) = N_Range then
6084 Lbd := Low_Bound (Indx);
6085 Hbd := High_Bound (Indx);
6087 else
6088 Indx_Typ := Etype (Indx);
6090 if Is_Private_Type (Indx_Typ) then
6091 Indx_Typ := Full_View (Indx_Typ);
6092 end if;
6094 if No (Indx_Typ) or else Etype (Indx_Typ) = Any_Type then
6095 return False;
6096 else
6097 Lbd := Type_Low_Bound (Indx_Typ);
6098 Hbd := Type_High_Bound (Indx_Typ);
6099 end if;
6100 end if;
6102 if Compile_Time_Known_Value (Lbd)
6103 and then Compile_Time_Known_Value (Hbd)
6104 then
6105 if Expr_Value (Hbd) < Expr_Value (Lbd) then
6106 return True;
6107 end if;
6108 end if;
6110 Next_Index (Indx);
6111 end loop;
6112 end;
6113 end if;
6115 -- If no null indexes, then type is not fully initialized
6117 return False;
6119 -- Record types
6121 elsif Is_Record_Type (Typ) then
6122 if Has_Discriminants (Typ)
6123 and then
6124 Present (Discriminant_Default_Value (First_Discriminant (Typ)))
6125 and then Is_Fully_Initialized_Variant (Typ)
6126 then
6127 return True;
6128 end if;
6130 -- Controlled records are considered to be fully initialized if
6131 -- there is a user defined Initialize routine. This may not be
6132 -- entirely correct, but as the spec notes, we are guessing here
6133 -- what is best from the point of view of issuing warnings.
6135 if Is_Controlled (Typ) then
6136 declare
6137 Utyp : constant Entity_Id := Underlying_Type (Typ);
6139 begin
6140 if Present (Utyp) then
6141 declare
6142 Init : constant Entity_Id :=
6143 (Find_Prim_Op
6144 (Underlying_Type (Typ), Name_Initialize));
6146 begin
6147 if Present (Init)
6148 and then Comes_From_Source (Init)
6149 and then not
6150 Is_Predefined_File_Name
6151 (File_Name (Get_Source_File_Index (Sloc (Init))))
6152 then
6153 return True;
6155 elsif Has_Null_Extension (Typ)
6156 and then
6157 Is_Fully_Initialized_Type
6158 (Etype (Base_Type (Typ)))
6159 then
6160 return True;
6161 end if;
6162 end;
6163 end if;
6164 end;
6165 end if;
6167 -- Otherwise see if all record components are initialized
6169 declare
6170 Ent : Entity_Id;
6172 begin
6173 Ent := First_Entity (Typ);
6174 while Present (Ent) loop
6175 if Chars (Ent) = Name_uController then
6176 null;
6178 elsif Ekind (Ent) = E_Component
6179 and then (No (Parent (Ent))
6180 or else No (Expression (Parent (Ent))))
6181 and then not Is_Fully_Initialized_Type (Etype (Ent))
6183 -- Special VM case for tag components, which need to be
6184 -- defined in this case, but are never initialized as VMs
6185 -- are using other dispatching mechanisms. Ignore this
6186 -- uninitialized case. Note that this applies both to the
6187 -- uTag entry and the main vtable pointer (CPP_Class case).
6189 and then (Tagged_Type_Expansion or else not Is_Tag (Ent))
6190 then
6191 return False;
6192 end if;
6194 Next_Entity (Ent);
6195 end loop;
6196 end;
6198 -- No uninitialized components, so type is fully initialized.
6199 -- Note that this catches the case of no components as well.
6201 return True;
6203 elsif Is_Concurrent_Type (Typ) then
6204 return True;
6206 elsif Is_Private_Type (Typ) then
6207 declare
6208 U : constant Entity_Id := Underlying_Type (Typ);
6210 begin
6211 if No (U) then
6212 return False;
6213 else
6214 return Is_Fully_Initialized_Type (U);
6215 end if;
6216 end;
6218 else
6219 return False;
6220 end if;
6221 end Is_Fully_Initialized_Type;
6223 ----------------------------------
6224 -- Is_Fully_Initialized_Variant --
6225 ----------------------------------
6227 function Is_Fully_Initialized_Variant (Typ : Entity_Id) return Boolean is
6228 Loc : constant Source_Ptr := Sloc (Typ);
6229 Constraints : constant List_Id := New_List;
6230 Components : constant Elist_Id := New_Elmt_List;
6231 Comp_Elmt : Elmt_Id;
6232 Comp_Id : Node_Id;
6233 Comp_List : Node_Id;
6234 Discr : Entity_Id;
6235 Discr_Val : Node_Id;
6237 Report_Errors : Boolean;
6238 pragma Warnings (Off, Report_Errors);
6240 begin
6241 if Serious_Errors_Detected > 0 then
6242 return False;
6243 end if;
6245 if Is_Record_Type (Typ)
6246 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
6247 and then Nkind (Type_Definition (Parent (Typ))) = N_Record_Definition
6248 then
6249 Comp_List := Component_List (Type_Definition (Parent (Typ)));
6251 Discr := First_Discriminant (Typ);
6252 while Present (Discr) loop
6253 if Nkind (Parent (Discr)) = N_Discriminant_Specification then
6254 Discr_Val := Expression (Parent (Discr));
6256 if Present (Discr_Val)
6257 and then Is_OK_Static_Expression (Discr_Val)
6258 then
6259 Append_To (Constraints,
6260 Make_Component_Association (Loc,
6261 Choices => New_List (New_Occurrence_Of (Discr, Loc)),
6262 Expression => New_Copy (Discr_Val)));
6263 else
6264 return False;
6265 end if;
6266 else
6267 return False;
6268 end if;
6270 Next_Discriminant (Discr);
6271 end loop;
6273 Gather_Components
6274 (Typ => Typ,
6275 Comp_List => Comp_List,
6276 Governed_By => Constraints,
6277 Into => Components,
6278 Report_Errors => Report_Errors);
6280 -- Check that each component present is fully initialized
6282 Comp_Elmt := First_Elmt (Components);
6283 while Present (Comp_Elmt) loop
6284 Comp_Id := Node (Comp_Elmt);
6286 if Ekind (Comp_Id) = E_Component
6287 and then (No (Parent (Comp_Id))
6288 or else No (Expression (Parent (Comp_Id))))
6289 and then not Is_Fully_Initialized_Type (Etype (Comp_Id))
6290 then
6291 return False;
6292 end if;
6294 Next_Elmt (Comp_Elmt);
6295 end loop;
6297 return True;
6299 elsif Is_Private_Type (Typ) then
6300 declare
6301 U : constant Entity_Id := Underlying_Type (Typ);
6303 begin
6304 if No (U) then
6305 return False;
6306 else
6307 return Is_Fully_Initialized_Variant (U);
6308 end if;
6309 end;
6310 else
6311 return False;
6312 end if;
6313 end Is_Fully_Initialized_Variant;
6315 ------------
6316 -- Is_LHS --
6317 ------------
6319 -- We seem to have a lot of overlapping functions that do similar things
6320 -- (testing for left hand sides or lvalues???). Anyway, since this one is
6321 -- purely syntactic, it should be in Sem_Aux I would think???
6323 function Is_LHS (N : Node_Id) return Boolean is
6324 P : constant Node_Id := Parent (N);
6325 begin
6326 return Nkind (P) = N_Assignment_Statement
6327 and then Name (P) = N;
6328 end Is_LHS;
6330 ----------------------------
6331 -- Is_Inherited_Operation --
6332 ----------------------------
6334 function Is_Inherited_Operation (E : Entity_Id) return Boolean is
6335 Kind : constant Node_Kind := Nkind (Parent (E));
6336 begin
6337 pragma Assert (Is_Overloadable (E));
6338 return Kind = N_Full_Type_Declaration
6339 or else Kind = N_Private_Extension_Declaration
6340 or else Kind = N_Subtype_Declaration
6341 or else (Ekind (E) = E_Enumeration_Literal
6342 and then Is_Derived_Type (Etype (E)));
6343 end Is_Inherited_Operation;
6345 -----------------------------
6346 -- Is_Library_Level_Entity --
6347 -----------------------------
6349 function Is_Library_Level_Entity (E : Entity_Id) return Boolean is
6350 begin
6351 -- The following is a small optimization, and it also properly handles
6352 -- discriminals, which in task bodies might appear in expressions before
6353 -- the corresponding procedure has been created, and which therefore do
6354 -- not have an assigned scope.
6356 if Ekind (E) in Formal_Kind then
6357 return False;
6358 end if;
6360 -- Normal test is simply that the enclosing dynamic scope is Standard
6362 return Enclosing_Dynamic_Scope (E) = Standard_Standard;
6363 end Is_Library_Level_Entity;
6365 ---------------------------------
6366 -- Is_Local_Variable_Reference --
6367 ---------------------------------
6369 function Is_Local_Variable_Reference (Expr : Node_Id) return Boolean is
6370 begin
6371 if not Is_Entity_Name (Expr) then
6372 return False;
6374 else
6375 declare
6376 Ent : constant Entity_Id := Entity (Expr);
6377 Sub : constant Entity_Id := Enclosing_Subprogram (Ent);
6378 begin
6379 if Ekind (Ent) /= E_Variable
6380 and then
6381 Ekind (Ent) /= E_In_Out_Parameter
6382 then
6383 return False;
6384 else
6385 return Present (Sub) and then Sub = Current_Subprogram;
6386 end if;
6387 end;
6388 end if;
6389 end Is_Local_Variable_Reference;
6391 -------------------------
6392 -- Is_Object_Reference --
6393 -------------------------
6395 function Is_Object_Reference (N : Node_Id) return Boolean is
6396 begin
6397 if Is_Entity_Name (N) then
6398 return Present (Entity (N)) and then Is_Object (Entity (N));
6400 else
6401 case Nkind (N) is
6402 when N_Indexed_Component | N_Slice =>
6403 return
6404 Is_Object_Reference (Prefix (N))
6405 or else Is_Access_Type (Etype (Prefix (N)));
6407 -- In Ada95, a function call is a constant object; a procedure
6408 -- call is not.
6410 when N_Function_Call =>
6411 return Etype (N) /= Standard_Void_Type;
6413 -- A reference to the stream attribute Input is a function call
6415 when N_Attribute_Reference =>
6416 return Attribute_Name (N) = Name_Input;
6418 when N_Selected_Component =>
6419 return
6420 Is_Object_Reference (Selector_Name (N))
6421 and then
6422 (Is_Object_Reference (Prefix (N))
6423 or else Is_Access_Type (Etype (Prefix (N))));
6425 when N_Explicit_Dereference =>
6426 return True;
6428 -- A view conversion of a tagged object is an object reference
6430 when N_Type_Conversion =>
6431 return Is_Tagged_Type (Etype (Subtype_Mark (N)))
6432 and then Is_Tagged_Type (Etype (Expression (N)))
6433 and then Is_Object_Reference (Expression (N));
6435 -- An unchecked type conversion is considered to be an object if
6436 -- the operand is an object (this construction arises only as a
6437 -- result of expansion activities).
6439 when N_Unchecked_Type_Conversion =>
6440 return True;
6442 when others =>
6443 return False;
6444 end case;
6445 end if;
6446 end Is_Object_Reference;
6448 -----------------------------------
6449 -- Is_OK_Variable_For_Out_Formal --
6450 -----------------------------------
6452 function Is_OK_Variable_For_Out_Formal (AV : Node_Id) return Boolean is
6453 begin
6454 Note_Possible_Modification (AV, Sure => True);
6456 -- We must reject parenthesized variable names. The check for
6457 -- Comes_From_Source is present because there are currently
6458 -- cases where the compiler violates this rule (e.g. passing
6459 -- a task object to its controlled Initialize routine).
6461 if Paren_Count (AV) > 0 and then Comes_From_Source (AV) then
6462 return False;
6464 -- A variable is always allowed
6466 elsif Is_Variable (AV) then
6467 return True;
6469 -- Unchecked conversions are allowed only if they come from the
6470 -- generated code, which sometimes uses unchecked conversions for out
6471 -- parameters in cases where code generation is unaffected. We tell
6472 -- source unchecked conversions by seeing if they are rewrites of an
6473 -- original Unchecked_Conversion function call, or of an explicit
6474 -- conversion of a function call.
6476 elsif Nkind (AV) = N_Unchecked_Type_Conversion then
6477 if Nkind (Original_Node (AV)) = N_Function_Call then
6478 return False;
6480 elsif Comes_From_Source (AV)
6481 and then Nkind (Original_Node (Expression (AV))) = N_Function_Call
6482 then
6483 return False;
6485 elsif Nkind (Original_Node (AV)) = N_Type_Conversion then
6486 return Is_OK_Variable_For_Out_Formal (Expression (AV));
6488 else
6489 return True;
6490 end if;
6492 -- Normal type conversions are allowed if argument is a variable
6494 elsif Nkind (AV) = N_Type_Conversion then
6495 if Is_Variable (Expression (AV))
6496 and then Paren_Count (Expression (AV)) = 0
6497 then
6498 Note_Possible_Modification (Expression (AV), Sure => True);
6499 return True;
6501 -- We also allow a non-parenthesized expression that raises
6502 -- constraint error if it rewrites what used to be a variable
6504 elsif Raises_Constraint_Error (Expression (AV))
6505 and then Paren_Count (Expression (AV)) = 0
6506 and then Is_Variable (Original_Node (Expression (AV)))
6507 then
6508 return True;
6510 -- Type conversion of something other than a variable
6512 else
6513 return False;
6514 end if;
6516 -- If this node is rewritten, then test the original form, if that is
6517 -- OK, then we consider the rewritten node OK (for example, if the
6518 -- original node is a conversion, then Is_Variable will not be true
6519 -- but we still want to allow the conversion if it converts a variable).
6521 elsif Original_Node (AV) /= AV then
6522 return Is_OK_Variable_For_Out_Formal (Original_Node (AV));
6524 -- All other non-variables are rejected
6526 else
6527 return False;
6528 end if;
6529 end Is_OK_Variable_For_Out_Formal;
6531 -----------------------------------
6532 -- Is_Partially_Initialized_Type --
6533 -----------------------------------
6535 function Is_Partially_Initialized_Type (Typ : Entity_Id) return Boolean is
6536 begin
6537 if Is_Scalar_Type (Typ) then
6538 return False;
6540 elsif Is_Access_Type (Typ) then
6541 return True;
6543 elsif Is_Array_Type (Typ) then
6545 -- If component type is partially initialized, so is array type
6547 if Is_Partially_Initialized_Type (Component_Type (Typ)) then
6548 return True;
6550 -- Otherwise we are only partially initialized if we are fully
6551 -- initialized (this is the empty array case, no point in us
6552 -- duplicating that code here).
6554 else
6555 return Is_Fully_Initialized_Type (Typ);
6556 end if;
6558 elsif Is_Record_Type (Typ) then
6560 -- A discriminated type is always partially initialized
6562 if Has_Discriminants (Typ) then
6563 return True;
6565 -- A tagged type is always partially initialized
6567 elsif Is_Tagged_Type (Typ) then
6568 return True;
6570 -- Case of non-discriminated record
6572 else
6573 declare
6574 Ent : Entity_Id;
6576 Component_Present : Boolean := False;
6577 -- Set True if at least one component is present. If no
6578 -- components are present, then record type is fully
6579 -- initialized (another odd case, like the null array).
6581 begin
6582 -- Loop through components
6584 Ent := First_Entity (Typ);
6585 while Present (Ent) loop
6586 if Ekind (Ent) = E_Component then
6587 Component_Present := True;
6589 -- If a component has an initialization expression then
6590 -- the enclosing record type is partially initialized
6592 if Present (Parent (Ent))
6593 and then Present (Expression (Parent (Ent)))
6594 then
6595 return True;
6597 -- If a component is of a type which is itself partially
6598 -- initialized, then the enclosing record type is also.
6600 elsif Is_Partially_Initialized_Type (Etype (Ent)) then
6601 return True;
6602 end if;
6603 end if;
6605 Next_Entity (Ent);
6606 end loop;
6608 -- No initialized components found. If we found any components
6609 -- they were all uninitialized so the result is false.
6611 if Component_Present then
6612 return False;
6614 -- But if we found no components, then all the components are
6615 -- initialized so we consider the type to be initialized.
6617 else
6618 return True;
6619 end if;
6620 end;
6621 end if;
6623 -- Concurrent types are always fully initialized
6625 elsif Is_Concurrent_Type (Typ) then
6626 return True;
6628 -- For a private type, go to underlying type. If there is no underlying
6629 -- type then just assume this partially initialized. Not clear if this
6630 -- can happen in a non-error case, but no harm in testing for this.
6632 elsif Is_Private_Type (Typ) then
6633 declare
6634 U : constant Entity_Id := Underlying_Type (Typ);
6635 begin
6636 if No (U) then
6637 return True;
6638 else
6639 return Is_Partially_Initialized_Type (U);
6640 end if;
6641 end;
6643 -- For any other type (are there any?) assume partially initialized
6645 else
6646 return True;
6647 end if;
6648 end Is_Partially_Initialized_Type;
6650 ------------------------------------
6651 -- Is_Potentially_Persistent_Type --
6652 ------------------------------------
6654 function Is_Potentially_Persistent_Type (T : Entity_Id) return Boolean is
6655 Comp : Entity_Id;
6656 Indx : Node_Id;
6658 begin
6659 -- For private type, test corresponding full type
6661 if Is_Private_Type (T) then
6662 return Is_Potentially_Persistent_Type (Full_View (T));
6664 -- Scalar types are potentially persistent
6666 elsif Is_Scalar_Type (T) then
6667 return True;
6669 -- Record type is potentially persistent if not tagged and the types of
6670 -- all it components are potentially persistent, and no component has
6671 -- an initialization expression.
6673 elsif Is_Record_Type (T)
6674 and then not Is_Tagged_Type (T)
6675 and then not Is_Partially_Initialized_Type (T)
6676 then
6677 Comp := First_Component (T);
6678 while Present (Comp) loop
6679 if not Is_Potentially_Persistent_Type (Etype (Comp)) then
6680 return False;
6681 else
6682 Next_Entity (Comp);
6683 end if;
6684 end loop;
6686 return True;
6688 -- Array type is potentially persistent if its component type is
6689 -- potentially persistent and if all its constraints are static.
6691 elsif Is_Array_Type (T) then
6692 if not Is_Potentially_Persistent_Type (Component_Type (T)) then
6693 return False;
6694 end if;
6696 Indx := First_Index (T);
6697 while Present (Indx) loop
6698 if not Is_OK_Static_Subtype (Etype (Indx)) then
6699 return False;
6700 else
6701 Next_Index (Indx);
6702 end if;
6703 end loop;
6705 return True;
6707 -- All other types are not potentially persistent
6709 else
6710 return False;
6711 end if;
6712 end Is_Potentially_Persistent_Type;
6714 ---------------------------------
6715 -- Is_Protected_Self_Reference --
6716 ---------------------------------
6718 function Is_Protected_Self_Reference (N : Node_Id) return Boolean is
6720 function In_Access_Definition (N : Node_Id) return Boolean;
6721 -- Returns true if N belongs to an access definition
6723 --------------------------
6724 -- In_Access_Definition --
6725 --------------------------
6727 function In_Access_Definition (N : Node_Id) return Boolean is
6728 P : Node_Id;
6730 begin
6731 P := Parent (N);
6732 while Present (P) loop
6733 if Nkind (P) = N_Access_Definition then
6734 return True;
6735 end if;
6737 P := Parent (P);
6738 end loop;
6740 return False;
6741 end In_Access_Definition;
6743 -- Start of processing for Is_Protected_Self_Reference
6745 begin
6746 -- Verify that prefix is analyzed and has the proper form. Note that
6747 -- the attributes Elab_Spec, Elab_Body, and UET_Address, which also
6748 -- produce the address of an entity, do not analyze their prefix
6749 -- because they denote entities that are not necessarily visible.
6750 -- Neither of them can apply to a protected type.
6752 return Ada_Version >= Ada_05
6753 and then Is_Entity_Name (N)
6754 and then Present (Entity (N))
6755 and then Is_Protected_Type (Entity (N))
6756 and then In_Open_Scopes (Entity (N))
6757 and then not In_Access_Definition (N);
6758 end Is_Protected_Self_Reference;
6760 -----------------------------
6761 -- Is_RCI_Pkg_Spec_Or_Body --
6762 -----------------------------
6764 function Is_RCI_Pkg_Spec_Or_Body (Cunit : Node_Id) return Boolean is
6766 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean;
6767 -- Return True if the unit of Cunit is an RCI package declaration
6769 ---------------------------
6770 -- Is_RCI_Pkg_Decl_Cunit --
6771 ---------------------------
6773 function Is_RCI_Pkg_Decl_Cunit (Cunit : Node_Id) return Boolean is
6774 The_Unit : constant Node_Id := Unit (Cunit);
6776 begin
6777 if Nkind (The_Unit) /= N_Package_Declaration then
6778 return False;
6779 end if;
6781 return Is_Remote_Call_Interface (Defining_Entity (The_Unit));
6782 end Is_RCI_Pkg_Decl_Cunit;
6784 -- Start of processing for Is_RCI_Pkg_Spec_Or_Body
6786 begin
6787 return Is_RCI_Pkg_Decl_Cunit (Cunit)
6788 or else
6789 (Nkind (Unit (Cunit)) = N_Package_Body
6790 and then Is_RCI_Pkg_Decl_Cunit (Library_Unit (Cunit)));
6791 end Is_RCI_Pkg_Spec_Or_Body;
6793 -----------------------------------------
6794 -- Is_Remote_Access_To_Class_Wide_Type --
6795 -----------------------------------------
6797 function Is_Remote_Access_To_Class_Wide_Type
6798 (E : Entity_Id) return Boolean
6800 begin
6801 -- A remote access to class-wide type is a general access to object type
6802 -- declared in the visible part of a Remote_Types or Remote_Call_
6803 -- Interface unit.
6805 return Ekind (E) = E_General_Access_Type
6806 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
6807 end Is_Remote_Access_To_Class_Wide_Type;
6809 -----------------------------------------
6810 -- Is_Remote_Access_To_Subprogram_Type --
6811 -----------------------------------------
6813 function Is_Remote_Access_To_Subprogram_Type
6814 (E : Entity_Id) return Boolean
6816 begin
6817 return (Ekind (E) = E_Access_Subprogram_Type
6818 or else (Ekind (E) = E_Record_Type
6819 and then Present (Corresponding_Remote_Type (E))))
6820 and then (Is_Remote_Call_Interface (E) or else Is_Remote_Types (E));
6821 end Is_Remote_Access_To_Subprogram_Type;
6823 --------------------
6824 -- Is_Remote_Call --
6825 --------------------
6827 function Is_Remote_Call (N : Node_Id) return Boolean is
6828 begin
6829 if Nkind (N) /= N_Procedure_Call_Statement
6830 and then Nkind (N) /= N_Function_Call
6831 then
6832 -- An entry call cannot be remote
6834 return False;
6836 elsif Nkind (Name (N)) in N_Has_Entity
6837 and then Is_Remote_Call_Interface (Entity (Name (N)))
6838 then
6839 -- A subprogram declared in the spec of a RCI package is remote
6841 return True;
6843 elsif Nkind (Name (N)) = N_Explicit_Dereference
6844 and then Is_Remote_Access_To_Subprogram_Type
6845 (Etype (Prefix (Name (N))))
6846 then
6847 -- The dereference of a RAS is a remote call
6849 return True;
6851 elsif Present (Controlling_Argument (N))
6852 and then Is_Remote_Access_To_Class_Wide_Type
6853 (Etype (Controlling_Argument (N)))
6854 then
6855 -- Any primitive operation call with a controlling argument of
6856 -- a RACW type is a remote call.
6858 return True;
6859 end if;
6861 -- All other calls are local calls
6863 return False;
6864 end Is_Remote_Call;
6866 ----------------------
6867 -- Is_Renamed_Entry --
6868 ----------------------
6870 function Is_Renamed_Entry (Proc_Nam : Entity_Id) return Boolean is
6871 Orig_Node : Node_Id := Empty;
6872 Subp_Decl : Node_Id := Parent (Parent (Proc_Nam));
6874 function Is_Entry (Nam : Node_Id) return Boolean;
6875 -- Determine whether Nam is an entry. Traverse selectors if there are
6876 -- nested selected components.
6878 --------------
6879 -- Is_Entry --
6880 --------------
6882 function Is_Entry (Nam : Node_Id) return Boolean is
6883 begin
6884 if Nkind (Nam) = N_Selected_Component then
6885 return Is_Entry (Selector_Name (Nam));
6886 end if;
6888 return Ekind (Entity (Nam)) = E_Entry;
6889 end Is_Entry;
6891 -- Start of processing for Is_Renamed_Entry
6893 begin
6894 if Present (Alias (Proc_Nam)) then
6895 Subp_Decl := Parent (Parent (Alias (Proc_Nam)));
6896 end if;
6898 -- Look for a rewritten subprogram renaming declaration
6900 if Nkind (Subp_Decl) = N_Subprogram_Declaration
6901 and then Present (Original_Node (Subp_Decl))
6902 then
6903 Orig_Node := Original_Node (Subp_Decl);
6904 end if;
6906 -- The rewritten subprogram is actually an entry
6908 if Present (Orig_Node)
6909 and then Nkind (Orig_Node) = N_Subprogram_Renaming_Declaration
6910 and then Is_Entry (Name (Orig_Node))
6911 then
6912 return True;
6913 end if;
6915 return False;
6916 end Is_Renamed_Entry;
6918 ----------------------
6919 -- Is_Selector_Name --
6920 ----------------------
6922 function Is_Selector_Name (N : Node_Id) return Boolean is
6923 begin
6924 if not Is_List_Member (N) then
6925 declare
6926 P : constant Node_Id := Parent (N);
6927 K : constant Node_Kind := Nkind (P);
6928 begin
6929 return
6930 (K = N_Expanded_Name or else
6931 K = N_Generic_Association or else
6932 K = N_Parameter_Association or else
6933 K = N_Selected_Component)
6934 and then Selector_Name (P) = N;
6935 end;
6937 else
6938 declare
6939 L : constant List_Id := List_Containing (N);
6940 P : constant Node_Id := Parent (L);
6941 begin
6942 return (Nkind (P) = N_Discriminant_Association
6943 and then Selector_Names (P) = L)
6944 or else
6945 (Nkind (P) = N_Component_Association
6946 and then Choices (P) = L);
6947 end;
6948 end if;
6949 end Is_Selector_Name;
6951 ------------------
6952 -- Is_Statement --
6953 ------------------
6955 function Is_Statement (N : Node_Id) return Boolean is
6956 begin
6957 return
6958 Nkind (N) in N_Statement_Other_Than_Procedure_Call
6959 or else Nkind (N) = N_Procedure_Call_Statement;
6960 end Is_Statement;
6962 ---------------------------------
6963 -- Is_Synchronized_Tagged_Type --
6964 ---------------------------------
6966 function Is_Synchronized_Tagged_Type (E : Entity_Id) return Boolean is
6967 Kind : constant Entity_Kind := Ekind (Base_Type (E));
6969 begin
6970 -- A task or protected type derived from an interface is a tagged type.
6971 -- Such a tagged type is called a synchronized tagged type, as are
6972 -- synchronized interfaces and private extensions whose declaration
6973 -- includes the reserved word synchronized.
6975 return (Is_Tagged_Type (E)
6976 and then (Kind = E_Task_Type
6977 or else Kind = E_Protected_Type))
6978 or else
6979 (Is_Interface (E)
6980 and then Is_Synchronized_Interface (E))
6981 or else
6982 (Ekind (E) = E_Record_Type_With_Private
6983 and then (Synchronized_Present (Parent (E))
6984 or else Is_Synchronized_Interface (Etype (E))));
6985 end Is_Synchronized_Tagged_Type;
6987 -----------------
6988 -- Is_Transfer --
6989 -----------------
6991 function Is_Transfer (N : Node_Id) return Boolean is
6992 Kind : constant Node_Kind := Nkind (N);
6994 begin
6995 if Kind = N_Simple_Return_Statement
6996 or else
6997 Kind = N_Extended_Return_Statement
6998 or else
6999 Kind = N_Goto_Statement
7000 or else
7001 Kind = N_Raise_Statement
7002 or else
7003 Kind = N_Requeue_Statement
7004 then
7005 return True;
7007 elsif (Kind = N_Exit_Statement or else Kind in N_Raise_xxx_Error)
7008 and then No (Condition (N))
7009 then
7010 return True;
7012 elsif Kind = N_Procedure_Call_Statement
7013 and then Is_Entity_Name (Name (N))
7014 and then Present (Entity (Name (N)))
7015 and then No_Return (Entity (Name (N)))
7016 then
7017 return True;
7019 elsif Nkind (Original_Node (N)) = N_Raise_Statement then
7020 return True;
7022 else
7023 return False;
7024 end if;
7025 end Is_Transfer;
7027 -------------
7028 -- Is_True --
7029 -------------
7031 function Is_True (U : Uint) return Boolean is
7032 begin
7033 return (U /= 0);
7034 end Is_True;
7036 -------------------
7037 -- Is_Value_Type --
7038 -------------------
7040 function Is_Value_Type (T : Entity_Id) return Boolean is
7041 begin
7042 return VM_Target = CLI_Target
7043 and then Nkind (T) in N_Has_Chars
7044 and then Chars (T) /= No_Name
7045 and then Get_Name_String (Chars (T)) = "valuetype";
7046 end Is_Value_Type;
7048 -----------------
7049 -- Is_Delegate --
7050 -----------------
7052 function Is_Delegate (T : Entity_Id) return Boolean is
7053 Desig_Type : Entity_Id;
7055 begin
7056 if VM_Target /= CLI_Target then
7057 return False;
7058 end if;
7060 -- Access-to-subprograms are delegates in CIL
7062 if Ekind (T) = E_Access_Subprogram_Type then
7063 return True;
7064 end if;
7066 if Ekind (T) not in Access_Kind then
7068 -- A delegate is a managed pointer. If no designated type is defined
7069 -- it means that it's not a delegate.
7071 return False;
7072 end if;
7074 Desig_Type := Etype (Directly_Designated_Type (T));
7076 if not Is_Tagged_Type (Desig_Type) then
7077 return False;
7078 end if;
7080 -- Test if the type is inherited from [mscorlib]System.Delegate
7082 while Etype (Desig_Type) /= Desig_Type loop
7083 if Chars (Scope (Desig_Type)) /= No_Name
7084 and then Is_Imported (Scope (Desig_Type))
7085 and then Get_Name_String (Chars (Scope (Desig_Type))) = "delegate"
7086 then
7087 return True;
7088 end if;
7090 Desig_Type := Etype (Desig_Type);
7091 end loop;
7093 return False;
7094 end Is_Delegate;
7096 -----------------
7097 -- Is_Variable --
7098 -----------------
7100 function Is_Variable (N : Node_Id) return Boolean is
7102 Orig_Node : constant Node_Id := Original_Node (N);
7103 -- We do the test on the original node, since this is basically a test
7104 -- of syntactic categories, so it must not be disturbed by whatever
7105 -- rewriting might have occurred. For example, an aggregate, which is
7106 -- certainly NOT a variable, could be turned into a variable by
7107 -- expansion.
7109 function In_Protected_Function (E : Entity_Id) return Boolean;
7110 -- Within a protected function, the private components of the
7111 -- enclosing protected type are constants. A function nested within
7112 -- a (protected) procedure is not itself protected.
7114 function Is_Variable_Prefix (P : Node_Id) return Boolean;
7115 -- Prefixes can involve implicit dereferences, in which case we
7116 -- must test for the case of a reference of a constant access
7117 -- type, which can never be a variable.
7119 ---------------------------
7120 -- In_Protected_Function --
7121 ---------------------------
7123 function In_Protected_Function (E : Entity_Id) return Boolean is
7124 Prot : constant Entity_Id := Scope (E);
7125 S : Entity_Id;
7127 begin
7128 if not Is_Protected_Type (Prot) then
7129 return False;
7130 else
7131 S := Current_Scope;
7132 while Present (S) and then S /= Prot loop
7133 if Ekind (S) = E_Function
7134 and then Scope (S) = Prot
7135 then
7136 return True;
7137 end if;
7139 S := Scope (S);
7140 end loop;
7142 return False;
7143 end if;
7144 end In_Protected_Function;
7146 ------------------------
7147 -- Is_Variable_Prefix --
7148 ------------------------
7150 function Is_Variable_Prefix (P : Node_Id) return Boolean is
7151 begin
7152 if Is_Access_Type (Etype (P)) then
7153 return not Is_Access_Constant (Root_Type (Etype (P)));
7155 -- For the case of an indexed component whose prefix has a packed
7156 -- array type, the prefix has been rewritten into a type conversion.
7157 -- Determine variable-ness from the converted expression.
7159 elsif Nkind (P) = N_Type_Conversion
7160 and then not Comes_From_Source (P)
7161 and then Is_Array_Type (Etype (P))
7162 and then Is_Packed (Etype (P))
7163 then
7164 return Is_Variable (Expression (P));
7166 else
7167 return Is_Variable (P);
7168 end if;
7169 end Is_Variable_Prefix;
7171 -- Start of processing for Is_Variable
7173 begin
7174 -- Definitely OK if Assignment_OK is set. Since this is something that
7175 -- only gets set for expanded nodes, the test is on N, not Orig_Node.
7177 if Nkind (N) in N_Subexpr and then Assignment_OK (N) then
7178 return True;
7180 -- Normally we go to the original node, but there is one exception
7181 -- where we use the rewritten node, namely when it is an explicit
7182 -- dereference. The generated code may rewrite a prefix which is an
7183 -- access type with an explicit dereference. The dereference is a
7184 -- variable, even though the original node may not be (since it could
7185 -- be a constant of the access type).
7187 -- In Ada 2005 we have a further case to consider: the prefix may be
7188 -- a function call given in prefix notation. The original node appears
7189 -- to be a selected component, but we need to examine the call.
7191 elsif Nkind (N) = N_Explicit_Dereference
7192 and then Nkind (Orig_Node) /= N_Explicit_Dereference
7193 and then Present (Etype (Orig_Node))
7194 and then Is_Access_Type (Etype (Orig_Node))
7195 then
7196 -- Note that if the prefix is an explicit dereference that does not
7197 -- come from source, we must check for a rewritten function call in
7198 -- prefixed notation before other forms of rewriting, to prevent a
7199 -- compiler crash.
7201 return
7202 (Nkind (Orig_Node) = N_Function_Call
7203 and then not Is_Access_Constant (Etype (Prefix (N))))
7204 or else
7205 Is_Variable_Prefix (Original_Node (Prefix (N)));
7207 -- A function call is never a variable
7209 elsif Nkind (N) = N_Function_Call then
7210 return False;
7212 -- All remaining checks use the original node
7214 elsif Is_Entity_Name (Orig_Node)
7215 and then Present (Entity (Orig_Node))
7216 then
7217 declare
7218 E : constant Entity_Id := Entity (Orig_Node);
7219 K : constant Entity_Kind := Ekind (E);
7221 begin
7222 return (K = E_Variable
7223 and then Nkind (Parent (E)) /= N_Exception_Handler)
7224 or else (K = E_Component
7225 and then not In_Protected_Function (E))
7226 or else K = E_Out_Parameter
7227 or else K = E_In_Out_Parameter
7228 or else K = E_Generic_In_Out_Parameter
7230 -- Current instance of type:
7232 or else (Is_Type (E) and then In_Open_Scopes (E))
7233 or else (Is_Incomplete_Or_Private_Type (E)
7234 and then In_Open_Scopes (Full_View (E)));
7235 end;
7237 else
7238 case Nkind (Orig_Node) is
7239 when N_Indexed_Component | N_Slice =>
7240 return Is_Variable_Prefix (Prefix (Orig_Node));
7242 when N_Selected_Component =>
7243 return Is_Variable_Prefix (Prefix (Orig_Node))
7244 and then Is_Variable (Selector_Name (Orig_Node));
7246 -- For an explicit dereference, the type of the prefix cannot
7247 -- be an access to constant or an access to subprogram.
7249 when N_Explicit_Dereference =>
7250 declare
7251 Typ : constant Entity_Id := Etype (Prefix (Orig_Node));
7252 begin
7253 return Is_Access_Type (Typ)
7254 and then not Is_Access_Constant (Root_Type (Typ))
7255 and then Ekind (Typ) /= E_Access_Subprogram_Type;
7256 end;
7258 -- The type conversion is the case where we do not deal with the
7259 -- context dependent special case of an actual parameter. Thus
7260 -- the type conversion is only considered a variable for the
7261 -- purposes of this routine if the target type is tagged. However,
7262 -- a type conversion is considered to be a variable if it does not
7263 -- come from source (this deals for example with the conversions
7264 -- of expressions to their actual subtypes).
7266 when N_Type_Conversion =>
7267 return Is_Variable (Expression (Orig_Node))
7268 and then
7269 (not Comes_From_Source (Orig_Node)
7270 or else
7271 (Is_Tagged_Type (Etype (Subtype_Mark (Orig_Node)))
7272 and then
7273 Is_Tagged_Type (Etype (Expression (Orig_Node)))));
7275 -- GNAT allows an unchecked type conversion as a variable. This
7276 -- only affects the generation of internal expanded code, since
7277 -- calls to instantiations of Unchecked_Conversion are never
7278 -- considered variables (since they are function calls).
7279 -- This is also true for expression actions.
7281 when N_Unchecked_Type_Conversion =>
7282 return Is_Variable (Expression (Orig_Node));
7284 when others =>
7285 return False;
7286 end case;
7287 end if;
7288 end Is_Variable;
7290 ---------------------------
7291 -- Is_Visibly_Controlled --
7292 ---------------------------
7294 function Is_Visibly_Controlled (T : Entity_Id) return Boolean is
7295 Root : constant Entity_Id := Root_Type (T);
7296 begin
7297 return Chars (Scope (Root)) = Name_Finalization
7298 and then Chars (Scope (Scope (Root))) = Name_Ada
7299 and then Scope (Scope (Scope (Root))) = Standard_Standard;
7300 end Is_Visibly_Controlled;
7302 ------------------------
7303 -- Is_Volatile_Object --
7304 ------------------------
7306 function Is_Volatile_Object (N : Node_Id) return Boolean is
7308 function Object_Has_Volatile_Components (N : Node_Id) return Boolean;
7309 -- Determines if given object has volatile components
7311 function Is_Volatile_Prefix (N : Node_Id) return Boolean;
7312 -- If prefix is an implicit dereference, examine designated type
7314 ------------------------
7315 -- Is_Volatile_Prefix --
7316 ------------------------
7318 function Is_Volatile_Prefix (N : Node_Id) return Boolean is
7319 Typ : constant Entity_Id := Etype (N);
7321 begin
7322 if Is_Access_Type (Typ) then
7323 declare
7324 Dtyp : constant Entity_Id := Designated_Type (Typ);
7326 begin
7327 return Is_Volatile (Dtyp)
7328 or else Has_Volatile_Components (Dtyp);
7329 end;
7331 else
7332 return Object_Has_Volatile_Components (N);
7333 end if;
7334 end Is_Volatile_Prefix;
7336 ------------------------------------
7337 -- Object_Has_Volatile_Components --
7338 ------------------------------------
7340 function Object_Has_Volatile_Components (N : Node_Id) return Boolean is
7341 Typ : constant Entity_Id := Etype (N);
7343 begin
7344 if Is_Volatile (Typ)
7345 or else Has_Volatile_Components (Typ)
7346 then
7347 return True;
7349 elsif Is_Entity_Name (N)
7350 and then (Has_Volatile_Components (Entity (N))
7351 or else Is_Volatile (Entity (N)))
7352 then
7353 return True;
7355 elsif Nkind (N) = N_Indexed_Component
7356 or else Nkind (N) = N_Selected_Component
7357 then
7358 return Is_Volatile_Prefix (Prefix (N));
7360 else
7361 return False;
7362 end if;
7363 end Object_Has_Volatile_Components;
7365 -- Start of processing for Is_Volatile_Object
7367 begin
7368 if Is_Volatile (Etype (N))
7369 or else (Is_Entity_Name (N) and then Is_Volatile (Entity (N)))
7370 then
7371 return True;
7373 elsif Nkind (N) = N_Indexed_Component
7374 or else Nkind (N) = N_Selected_Component
7375 then
7376 return Is_Volatile_Prefix (Prefix (N));
7378 else
7379 return False;
7380 end if;
7381 end Is_Volatile_Object;
7383 -------------------------
7384 -- Kill_Current_Values --
7385 -------------------------
7387 procedure Kill_Current_Values
7388 (Ent : Entity_Id;
7389 Last_Assignment_Only : Boolean := False)
7391 begin
7392 -- ??? do we have to worry about clearing cached checks?
7394 if Is_Assignable (Ent) then
7395 Set_Last_Assignment (Ent, Empty);
7396 end if;
7398 if Is_Object (Ent) then
7399 if not Last_Assignment_Only then
7400 Kill_Checks (Ent);
7401 Set_Current_Value (Ent, Empty);
7403 if not Can_Never_Be_Null (Ent) then
7404 Set_Is_Known_Non_Null (Ent, False);
7405 end if;
7407 Set_Is_Known_Null (Ent, False);
7409 -- Reset Is_Known_Valid unless type is always valid, or if we have
7410 -- a loop parameter (loop parameters are always valid, since their
7411 -- bounds are defined by the bounds given in the loop header).
7413 if not Is_Known_Valid (Etype (Ent))
7414 and then Ekind (Ent) /= E_Loop_Parameter
7415 then
7416 Set_Is_Known_Valid (Ent, False);
7417 end if;
7418 end if;
7419 end if;
7420 end Kill_Current_Values;
7422 procedure Kill_Current_Values (Last_Assignment_Only : Boolean := False) is
7423 S : Entity_Id;
7425 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id);
7426 -- Clear current value for entity E and all entities chained to E
7428 ------------------------------------------
7429 -- Kill_Current_Values_For_Entity_Chain --
7430 ------------------------------------------
7432 procedure Kill_Current_Values_For_Entity_Chain (E : Entity_Id) is
7433 Ent : Entity_Id;
7434 begin
7435 Ent := E;
7436 while Present (Ent) loop
7437 Kill_Current_Values (Ent, Last_Assignment_Only);
7438 Next_Entity (Ent);
7439 end loop;
7440 end Kill_Current_Values_For_Entity_Chain;
7442 -- Start of processing for Kill_Current_Values
7444 begin
7445 -- Kill all saved checks, a special case of killing saved values
7447 if not Last_Assignment_Only then
7448 Kill_All_Checks;
7449 end if;
7451 -- Loop through relevant scopes, which includes the current scope and
7452 -- any parent scopes if the current scope is a block or a package.
7454 S := Current_Scope;
7455 Scope_Loop : loop
7457 -- Clear current values of all entities in current scope
7459 Kill_Current_Values_For_Entity_Chain (First_Entity (S));
7461 -- If scope is a package, also clear current values of all
7462 -- private entities in the scope.
7464 if Is_Package_Or_Generic_Package (S)
7465 or else Is_Concurrent_Type (S)
7466 then
7467 Kill_Current_Values_For_Entity_Chain (First_Private_Entity (S));
7468 end if;
7470 -- If this is a not a subprogram, deal with parents
7472 if not Is_Subprogram (S) then
7473 S := Scope (S);
7474 exit Scope_Loop when S = Standard_Standard;
7475 else
7476 exit Scope_Loop;
7477 end if;
7478 end loop Scope_Loop;
7479 end Kill_Current_Values;
7481 --------------------------
7482 -- Kill_Size_Check_Code --
7483 --------------------------
7485 procedure Kill_Size_Check_Code (E : Entity_Id) is
7486 begin
7487 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
7488 and then Present (Size_Check_Code (E))
7489 then
7490 Remove (Size_Check_Code (E));
7491 Set_Size_Check_Code (E, Empty);
7492 end if;
7493 end Kill_Size_Check_Code;
7495 --------------------------
7496 -- Known_To_Be_Assigned --
7497 --------------------------
7499 function Known_To_Be_Assigned (N : Node_Id) return Boolean is
7500 P : constant Node_Id := Parent (N);
7502 begin
7503 case Nkind (P) is
7505 -- Test left side of assignment
7507 when N_Assignment_Statement =>
7508 return N = Name (P);
7510 -- Function call arguments are never lvalues
7512 when N_Function_Call =>
7513 return False;
7515 -- Positional parameter for procedure or accept call
7517 when N_Procedure_Call_Statement |
7518 N_Accept_Statement
7520 declare
7521 Proc : Entity_Id;
7522 Form : Entity_Id;
7523 Act : Node_Id;
7525 begin
7526 Proc := Get_Subprogram_Entity (P);
7528 if No (Proc) then
7529 return False;
7530 end if;
7532 -- If we are not a list member, something is strange, so
7533 -- be conservative and return False.
7535 if not Is_List_Member (N) then
7536 return False;
7537 end if;
7539 -- We are going to find the right formal by stepping forward
7540 -- through the formals, as we step backwards in the actuals.
7542 Form := First_Formal (Proc);
7543 Act := N;
7544 loop
7545 -- If no formal, something is weird, so be conservative
7546 -- and return False.
7548 if No (Form) then
7549 return False;
7550 end if;
7552 Prev (Act);
7553 exit when No (Act);
7554 Next_Formal (Form);
7555 end loop;
7557 return Ekind (Form) /= E_In_Parameter;
7558 end;
7560 -- Named parameter for procedure or accept call
7562 when N_Parameter_Association =>
7563 declare
7564 Proc : Entity_Id;
7565 Form : Entity_Id;
7567 begin
7568 Proc := Get_Subprogram_Entity (Parent (P));
7570 if No (Proc) then
7571 return False;
7572 end if;
7574 -- Loop through formals to find the one that matches
7576 Form := First_Formal (Proc);
7577 loop
7578 -- If no matching formal, that's peculiar, some kind of
7579 -- previous error, so return False to be conservative.
7581 if No (Form) then
7582 return False;
7583 end if;
7585 -- Else test for match
7587 if Chars (Form) = Chars (Selector_Name (P)) then
7588 return Ekind (Form) /= E_In_Parameter;
7589 end if;
7591 Next_Formal (Form);
7592 end loop;
7593 end;
7595 -- Test for appearing in a conversion that itself appears
7596 -- in an lvalue context, since this should be an lvalue.
7598 when N_Type_Conversion =>
7599 return Known_To_Be_Assigned (P);
7601 -- All other references are definitely not known to be modifications
7603 when others =>
7604 return False;
7606 end case;
7607 end Known_To_Be_Assigned;
7609 -------------------
7610 -- May_Be_Lvalue --
7611 -------------------
7613 function May_Be_Lvalue (N : Node_Id) return Boolean is
7614 P : constant Node_Id := Parent (N);
7616 begin
7617 case Nkind (P) is
7619 -- Test left side of assignment
7621 when N_Assignment_Statement =>
7622 return N = Name (P);
7624 -- Test prefix of component or attribute. Note that the prefix of an
7625 -- explicit or implicit dereference cannot be an l-value.
7627 when N_Attribute_Reference =>
7628 return N = Prefix (P)
7629 and then Name_Implies_Lvalue_Prefix (Attribute_Name (P));
7631 -- For an expanded name, the name is an lvalue if the expanded name
7632 -- is an lvalue, but the prefix is never an lvalue, since it is just
7633 -- the scope where the name is found.
7635 when N_Expanded_Name =>
7636 if N = Prefix (P) then
7637 return May_Be_Lvalue (P);
7638 else
7639 return False;
7640 end if;
7642 -- For a selected component A.B, A is certainly an lvalue if A.B is.
7643 -- B is a little interesting, if we have A.B := 3, there is some
7644 -- discussion as to whether B is an lvalue or not, we choose to say
7645 -- it is. Note however that A is not an lvalue if it is of an access
7646 -- type since this is an implicit dereference.
7648 when N_Selected_Component =>
7649 if N = Prefix (P)
7650 and then Present (Etype (N))
7651 and then Is_Access_Type (Etype (N))
7652 then
7653 return False;
7654 else
7655 return May_Be_Lvalue (P);
7656 end if;
7658 -- For an indexed component or slice, the index or slice bounds is
7659 -- never an lvalue. The prefix is an lvalue if the indexed component
7660 -- or slice is an lvalue, except if it is an access type, where we
7661 -- have an implicit dereference.
7663 when N_Indexed_Component =>
7664 if N /= Prefix (P)
7665 or else (Present (Etype (N)) and then Is_Access_Type (Etype (N)))
7666 then
7667 return False;
7668 else
7669 return May_Be_Lvalue (P);
7670 end if;
7672 -- Prefix of a reference is an lvalue if the reference is an lvalue
7674 when N_Reference =>
7675 return May_Be_Lvalue (P);
7677 -- Prefix of explicit dereference is never an lvalue
7679 when N_Explicit_Dereference =>
7680 return False;
7682 -- Function call arguments are never lvalues
7684 when N_Function_Call =>
7685 return False;
7687 -- Positional parameter for procedure, entry, or accept call
7689 when N_Procedure_Call_Statement |
7690 N_Entry_Call_Statement |
7691 N_Accept_Statement
7693 declare
7694 Proc : Entity_Id;
7695 Form : Entity_Id;
7696 Act : Node_Id;
7698 begin
7699 Proc := Get_Subprogram_Entity (P);
7701 if No (Proc) then
7702 return True;
7703 end if;
7705 -- If we are not a list member, something is strange, so
7706 -- be conservative and return True.
7708 if not Is_List_Member (N) then
7709 return True;
7710 end if;
7712 -- We are going to find the right formal by stepping forward
7713 -- through the formals, as we step backwards in the actuals.
7715 Form := First_Formal (Proc);
7716 Act := N;
7717 loop
7718 -- If no formal, something is weird, so be conservative
7719 -- and return True.
7721 if No (Form) then
7722 return True;
7723 end if;
7725 Prev (Act);
7726 exit when No (Act);
7727 Next_Formal (Form);
7728 end loop;
7730 return Ekind (Form) /= E_In_Parameter;
7731 end;
7733 -- Named parameter for procedure or accept call
7735 when N_Parameter_Association =>
7736 declare
7737 Proc : Entity_Id;
7738 Form : Entity_Id;
7740 begin
7741 Proc := Get_Subprogram_Entity (Parent (P));
7743 if No (Proc) then
7744 return True;
7745 end if;
7747 -- Loop through formals to find the one that matches
7749 Form := First_Formal (Proc);
7750 loop
7751 -- If no matching formal, that's peculiar, some kind of
7752 -- previous error, so return True to be conservative.
7754 if No (Form) then
7755 return True;
7756 end if;
7758 -- Else test for match
7760 if Chars (Form) = Chars (Selector_Name (P)) then
7761 return Ekind (Form) /= E_In_Parameter;
7762 end if;
7764 Next_Formal (Form);
7765 end loop;
7766 end;
7768 -- Test for appearing in a conversion that itself appears in an
7769 -- lvalue context, since this should be an lvalue.
7771 when N_Type_Conversion =>
7772 return May_Be_Lvalue (P);
7774 -- Test for appearance in object renaming declaration
7776 when N_Object_Renaming_Declaration =>
7777 return True;
7779 -- All other references are definitely not lvalues
7781 when others =>
7782 return False;
7784 end case;
7785 end May_Be_Lvalue;
7787 -----------------------
7788 -- Mark_Coextensions --
7789 -----------------------
7791 procedure Mark_Coextensions (Context_Nod : Node_Id; Root_Nod : Node_Id) is
7792 Is_Dynamic : Boolean;
7793 -- Indicates whether the context causes nested coextensions to be
7794 -- dynamic or static
7796 function Mark_Allocator (N : Node_Id) return Traverse_Result;
7797 -- Recognize an allocator node and label it as a dynamic coextension
7799 --------------------
7800 -- Mark_Allocator --
7801 --------------------
7803 function Mark_Allocator (N : Node_Id) return Traverse_Result is
7804 begin
7805 if Nkind (N) = N_Allocator then
7806 if Is_Dynamic then
7807 Set_Is_Dynamic_Coextension (N);
7808 else
7809 Set_Is_Static_Coextension (N);
7810 end if;
7811 end if;
7813 return OK;
7814 end Mark_Allocator;
7816 procedure Mark_Allocators is new Traverse_Proc (Mark_Allocator);
7818 -- Start of processing Mark_Coextensions
7820 begin
7821 case Nkind (Context_Nod) is
7822 when N_Assignment_Statement |
7823 N_Simple_Return_Statement =>
7824 Is_Dynamic := Nkind (Expression (Context_Nod)) = N_Allocator;
7826 when N_Object_Declaration =>
7827 Is_Dynamic := Nkind (Root_Nod) = N_Allocator;
7829 -- This routine should not be called for constructs which may not
7830 -- contain coextensions.
7832 when others =>
7833 raise Program_Error;
7834 end case;
7836 Mark_Allocators (Root_Nod);
7837 end Mark_Coextensions;
7839 ----------------------
7840 -- Needs_One_Actual --
7841 ----------------------
7843 function Needs_One_Actual (E : Entity_Id) return Boolean is
7844 Formal : Entity_Id;
7846 begin
7847 if Ada_Version >= Ada_05
7848 and then Present (First_Formal (E))
7849 then
7850 Formal := Next_Formal (First_Formal (E));
7851 while Present (Formal) loop
7852 if No (Default_Value (Formal)) then
7853 return False;
7854 end if;
7856 Next_Formal (Formal);
7857 end loop;
7859 return True;
7861 else
7862 return False;
7863 end if;
7864 end Needs_One_Actual;
7866 ------------------------
7867 -- New_Copy_List_Tree --
7868 ------------------------
7870 function New_Copy_List_Tree (List : List_Id) return List_Id is
7871 NL : List_Id;
7872 E : Node_Id;
7874 begin
7875 if List = No_List then
7876 return No_List;
7878 else
7879 NL := New_List;
7880 E := First (List);
7882 while Present (E) loop
7883 Append (New_Copy_Tree (E), NL);
7884 E := Next (E);
7885 end loop;
7887 return NL;
7888 end if;
7889 end New_Copy_List_Tree;
7891 -------------------
7892 -- New_Copy_Tree --
7893 -------------------
7895 use Atree.Unchecked_Access;
7896 use Atree_Private_Part;
7898 -- Our approach here requires a two pass traversal of the tree. The
7899 -- first pass visits all nodes that eventually will be copied looking
7900 -- for defining Itypes. If any defining Itypes are found, then they are
7901 -- copied, and an entry is added to the replacement map. In the second
7902 -- phase, the tree is copied, using the replacement map to replace any
7903 -- Itype references within the copied tree.
7905 -- The following hash tables are used if the Map supplied has more
7906 -- than hash threshhold entries to speed up access to the map. If
7907 -- there are fewer entries, then the map is searched sequentially
7908 -- (because setting up a hash table for only a few entries takes
7909 -- more time than it saves.
7911 function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num;
7912 -- Hash function used for hash operations
7914 -------------------
7915 -- New_Copy_Hash --
7916 -------------------
7918 function New_Copy_Hash (E : Entity_Id) return NCT_Header_Num is
7919 begin
7920 return Nat (E) mod (NCT_Header_Num'Last + 1);
7921 end New_Copy_Hash;
7923 ---------------
7924 -- NCT_Assoc --
7925 ---------------
7927 -- The hash table NCT_Assoc associates old entities in the table
7928 -- with their corresponding new entities (i.e. the pairs of entries
7929 -- presented in the original Map argument are Key-Element pairs).
7931 package NCT_Assoc is new Simple_HTable (
7932 Header_Num => NCT_Header_Num,
7933 Element => Entity_Id,
7934 No_Element => Empty,
7935 Key => Entity_Id,
7936 Hash => New_Copy_Hash,
7937 Equal => Types."=");
7939 ---------------------
7940 -- NCT_Itype_Assoc --
7941 ---------------------
7943 -- The hash table NCT_Itype_Assoc contains entries only for those
7944 -- old nodes which have a non-empty Associated_Node_For_Itype set.
7945 -- The key is the associated node, and the element is the new node
7946 -- itself (NOT the associated node for the new node).
7948 package NCT_Itype_Assoc is new Simple_HTable (
7949 Header_Num => NCT_Header_Num,
7950 Element => Entity_Id,
7951 No_Element => Empty,
7952 Key => Entity_Id,
7953 Hash => New_Copy_Hash,
7954 Equal => Types."=");
7956 -- Start of processing for New_Copy_Tree function
7958 function New_Copy_Tree
7959 (Source : Node_Id;
7960 Map : Elist_Id := No_Elist;
7961 New_Sloc : Source_Ptr := No_Location;
7962 New_Scope : Entity_Id := Empty) return Node_Id
7964 Actual_Map : Elist_Id := Map;
7965 -- This is the actual map for the copy. It is initialized with the
7966 -- given elements, and then enlarged as required for Itypes that are
7967 -- copied during the first phase of the copy operation. The visit
7968 -- procedures add elements to this map as Itypes are encountered.
7969 -- The reason we cannot use Map directly, is that it may well be
7970 -- (and normally is) initialized to No_Elist, and if we have mapped
7971 -- entities, we have to reset it to point to a real Elist.
7973 function Assoc (N : Node_Or_Entity_Id) return Node_Id;
7974 -- Called during second phase to map entities into their corresponding
7975 -- copies using Actual_Map. If the argument is not an entity, or is not
7976 -- in Actual_Map, then it is returned unchanged.
7978 procedure Build_NCT_Hash_Tables;
7979 -- Builds hash tables (number of elements >= threshold value)
7981 function Copy_Elist_With_Replacement
7982 (Old_Elist : Elist_Id) return Elist_Id;
7983 -- Called during second phase to copy element list doing replacements
7985 procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id);
7986 -- Called during the second phase to process a copied Itype. The actual
7987 -- copy happened during the first phase (so that we could make the entry
7988 -- in the mapping), but we still have to deal with the descendents of
7989 -- the copied Itype and copy them where necessary.
7991 function Copy_List_With_Replacement (Old_List : List_Id) return List_Id;
7992 -- Called during second phase to copy list doing replacements
7994 function Copy_Node_With_Replacement (Old_Node : Node_Id) return Node_Id;
7995 -- Called during second phase to copy node doing replacements
7997 procedure Visit_Elist (E : Elist_Id);
7998 -- Called during first phase to visit all elements of an Elist
8000 procedure Visit_Field (F : Union_Id; N : Node_Id);
8001 -- Visit a single field, recursing to call Visit_Node or Visit_List
8002 -- if the field is a syntactic descendent of the current node (i.e.
8003 -- its parent is Node N).
8005 procedure Visit_Itype (Old_Itype : Entity_Id);
8006 -- Called during first phase to visit subsidiary fields of a defining
8007 -- Itype, and also create a copy and make an entry in the replacement
8008 -- map for the new copy.
8010 procedure Visit_List (L : List_Id);
8011 -- Called during first phase to visit all elements of a List
8013 procedure Visit_Node (N : Node_Or_Entity_Id);
8014 -- Called during first phase to visit a node and all its subtrees
8016 -----------
8017 -- Assoc --
8018 -----------
8020 function Assoc (N : Node_Or_Entity_Id) return Node_Id is
8021 E : Elmt_Id;
8022 Ent : Entity_Id;
8024 begin
8025 if not Has_Extension (N) or else No (Actual_Map) then
8026 return N;
8028 elsif NCT_Hash_Tables_Used then
8029 Ent := NCT_Assoc.Get (Entity_Id (N));
8031 if Present (Ent) then
8032 return Ent;
8033 else
8034 return N;
8035 end if;
8037 -- No hash table used, do serial search
8039 else
8040 E := First_Elmt (Actual_Map);
8041 while Present (E) loop
8042 if Node (E) = N then
8043 return Node (Next_Elmt (E));
8044 else
8045 E := Next_Elmt (Next_Elmt (E));
8046 end if;
8047 end loop;
8048 end if;
8050 return N;
8051 end Assoc;
8053 ---------------------------
8054 -- Build_NCT_Hash_Tables --
8055 ---------------------------
8057 procedure Build_NCT_Hash_Tables is
8058 Elmt : Elmt_Id;
8059 Ent : Entity_Id;
8060 begin
8061 if NCT_Hash_Table_Setup then
8062 NCT_Assoc.Reset;
8063 NCT_Itype_Assoc.Reset;
8064 end if;
8066 Elmt := First_Elmt (Actual_Map);
8067 while Present (Elmt) loop
8068 Ent := Node (Elmt);
8070 -- Get new entity, and associate old and new
8072 Next_Elmt (Elmt);
8073 NCT_Assoc.Set (Ent, Node (Elmt));
8075 if Is_Type (Ent) then
8076 declare
8077 Anode : constant Entity_Id :=
8078 Associated_Node_For_Itype (Ent);
8080 begin
8081 if Present (Anode) then
8083 -- Enter a link between the associated node of the
8084 -- old Itype and the new Itype, for updating later
8085 -- when node is copied.
8087 NCT_Itype_Assoc.Set (Anode, Node (Elmt));
8088 end if;
8089 end;
8090 end if;
8092 Next_Elmt (Elmt);
8093 end loop;
8095 NCT_Hash_Tables_Used := True;
8096 NCT_Hash_Table_Setup := True;
8097 end Build_NCT_Hash_Tables;
8099 ---------------------------------
8100 -- Copy_Elist_With_Replacement --
8101 ---------------------------------
8103 function Copy_Elist_With_Replacement
8104 (Old_Elist : Elist_Id) return Elist_Id
8106 M : Elmt_Id;
8107 New_Elist : Elist_Id;
8109 begin
8110 if No (Old_Elist) then
8111 return No_Elist;
8113 else
8114 New_Elist := New_Elmt_List;
8116 M := First_Elmt (Old_Elist);
8117 while Present (M) loop
8118 Append_Elmt (Copy_Node_With_Replacement (Node (M)), New_Elist);
8119 Next_Elmt (M);
8120 end loop;
8121 end if;
8123 return New_Elist;
8124 end Copy_Elist_With_Replacement;
8126 ---------------------------------
8127 -- Copy_Itype_With_Replacement --
8128 ---------------------------------
8130 -- This routine exactly parallels its phase one analog Visit_Itype,
8132 procedure Copy_Itype_With_Replacement (New_Itype : Entity_Id) is
8133 begin
8134 -- Translate Next_Entity, Scope and Etype fields, in case they
8135 -- reference entities that have been mapped into copies.
8137 Set_Next_Entity (New_Itype, Assoc (Next_Entity (New_Itype)));
8138 Set_Etype (New_Itype, Assoc (Etype (New_Itype)));
8140 if Present (New_Scope) then
8141 Set_Scope (New_Itype, New_Scope);
8142 else
8143 Set_Scope (New_Itype, Assoc (Scope (New_Itype)));
8144 end if;
8146 -- Copy referenced fields
8148 if Is_Discrete_Type (New_Itype) then
8149 Set_Scalar_Range (New_Itype,
8150 Copy_Node_With_Replacement (Scalar_Range (New_Itype)));
8152 elsif Has_Discriminants (Base_Type (New_Itype)) then
8153 Set_Discriminant_Constraint (New_Itype,
8154 Copy_Elist_With_Replacement
8155 (Discriminant_Constraint (New_Itype)));
8157 elsif Is_Array_Type (New_Itype) then
8158 if Present (First_Index (New_Itype)) then
8159 Set_First_Index (New_Itype,
8160 First (Copy_List_With_Replacement
8161 (List_Containing (First_Index (New_Itype)))));
8162 end if;
8164 if Is_Packed (New_Itype) then
8165 Set_Packed_Array_Type (New_Itype,
8166 Copy_Node_With_Replacement
8167 (Packed_Array_Type (New_Itype)));
8168 end if;
8169 end if;
8170 end Copy_Itype_With_Replacement;
8172 --------------------------------
8173 -- Copy_List_With_Replacement --
8174 --------------------------------
8176 function Copy_List_With_Replacement
8177 (Old_List : List_Id) return List_Id
8179 New_List : List_Id;
8180 E : Node_Id;
8182 begin
8183 if Old_List = No_List then
8184 return No_List;
8186 else
8187 New_List := Empty_List;
8189 E := First (Old_List);
8190 while Present (E) loop
8191 Append (Copy_Node_With_Replacement (E), New_List);
8192 Next (E);
8193 end loop;
8195 return New_List;
8196 end if;
8197 end Copy_List_With_Replacement;
8199 --------------------------------
8200 -- Copy_Node_With_Replacement --
8201 --------------------------------
8203 function Copy_Node_With_Replacement
8204 (Old_Node : Node_Id) return Node_Id
8206 New_Node : Node_Id;
8208 procedure Adjust_Named_Associations
8209 (Old_Node : Node_Id;
8210 New_Node : Node_Id);
8211 -- If a call node has named associations, these are chained through
8212 -- the First_Named_Actual, Next_Named_Actual links. These must be
8213 -- propagated separately to the new parameter list, because these
8214 -- are not syntactic fields.
8216 function Copy_Field_With_Replacement
8217 (Field : Union_Id) return Union_Id;
8218 -- Given Field, which is a field of Old_Node, return a copy of it
8219 -- if it is a syntactic field (i.e. its parent is Node), setting
8220 -- the parent of the copy to poit to New_Node. Otherwise returns
8221 -- the field (possibly mapped if it is an entity).
8223 -------------------------------
8224 -- Adjust_Named_Associations --
8225 -------------------------------
8227 procedure Adjust_Named_Associations
8228 (Old_Node : Node_Id;
8229 New_Node : Node_Id)
8231 Old_E : Node_Id;
8232 New_E : Node_Id;
8234 Old_Next : Node_Id;
8235 New_Next : Node_Id;
8237 begin
8238 Old_E := First (Parameter_Associations (Old_Node));
8239 New_E := First (Parameter_Associations (New_Node));
8240 while Present (Old_E) loop
8241 if Nkind (Old_E) = N_Parameter_Association
8242 and then Present (Next_Named_Actual (Old_E))
8243 then
8244 if First_Named_Actual (Old_Node)
8245 = Explicit_Actual_Parameter (Old_E)
8246 then
8247 Set_First_Named_Actual
8248 (New_Node, Explicit_Actual_Parameter (New_E));
8249 end if;
8251 -- Now scan parameter list from the beginning,to locate
8252 -- next named actual, which can be out of order.
8254 Old_Next := First (Parameter_Associations (Old_Node));
8255 New_Next := First (Parameter_Associations (New_Node));
8257 while Nkind (Old_Next) /= N_Parameter_Association
8258 or else Explicit_Actual_Parameter (Old_Next)
8259 /= Next_Named_Actual (Old_E)
8260 loop
8261 Next (Old_Next);
8262 Next (New_Next);
8263 end loop;
8265 Set_Next_Named_Actual
8266 (New_E, Explicit_Actual_Parameter (New_Next));
8267 end if;
8269 Next (Old_E);
8270 Next (New_E);
8271 end loop;
8272 end Adjust_Named_Associations;
8274 ---------------------------------
8275 -- Copy_Field_With_Replacement --
8276 ---------------------------------
8278 function Copy_Field_With_Replacement
8279 (Field : Union_Id) return Union_Id
8281 begin
8282 if Field = Union_Id (Empty) then
8283 return Field;
8285 elsif Field in Node_Range then
8286 declare
8287 Old_N : constant Node_Id := Node_Id (Field);
8288 New_N : Node_Id;
8290 begin
8291 -- If syntactic field, as indicated by the parent pointer
8292 -- being set, then copy the referenced node recursively.
8294 if Parent (Old_N) = Old_Node then
8295 New_N := Copy_Node_With_Replacement (Old_N);
8297 if New_N /= Old_N then
8298 Set_Parent (New_N, New_Node);
8299 end if;
8301 -- For semantic fields, update possible entity reference
8302 -- from the replacement map.
8304 else
8305 New_N := Assoc (Old_N);
8306 end if;
8308 return Union_Id (New_N);
8309 end;
8311 elsif Field in List_Range then
8312 declare
8313 Old_L : constant List_Id := List_Id (Field);
8314 New_L : List_Id;
8316 begin
8317 -- If syntactic field, as indicated by the parent pointer,
8318 -- then recursively copy the entire referenced list.
8320 if Parent (Old_L) = Old_Node then
8321 New_L := Copy_List_With_Replacement (Old_L);
8322 Set_Parent (New_L, New_Node);
8324 -- For semantic list, just returned unchanged
8326 else
8327 New_L := Old_L;
8328 end if;
8330 return Union_Id (New_L);
8331 end;
8333 -- Anything other than a list or a node is returned unchanged
8335 else
8336 return Field;
8337 end if;
8338 end Copy_Field_With_Replacement;
8340 -- Start of processing for Copy_Node_With_Replacement
8342 begin
8343 if Old_Node <= Empty_Or_Error then
8344 return Old_Node;
8346 elsif Has_Extension (Old_Node) then
8347 return Assoc (Old_Node);
8349 else
8350 New_Node := New_Copy (Old_Node);
8352 -- If the node we are copying is the associated node of a
8353 -- previously copied Itype, then adjust the associated node
8354 -- of the copy of that Itype accordingly.
8356 if Present (Actual_Map) then
8357 declare
8358 E : Elmt_Id;
8359 Ent : Entity_Id;
8361 begin
8362 -- Case of hash table used
8364 if NCT_Hash_Tables_Used then
8365 Ent := NCT_Itype_Assoc.Get (Old_Node);
8367 if Present (Ent) then
8368 Set_Associated_Node_For_Itype (Ent, New_Node);
8369 end if;
8371 -- Case of no hash table used
8373 else
8374 E := First_Elmt (Actual_Map);
8375 while Present (E) loop
8376 if Is_Itype (Node (E))
8377 and then
8378 Old_Node = Associated_Node_For_Itype (Node (E))
8379 then
8380 Set_Associated_Node_For_Itype
8381 (Node (Next_Elmt (E)), New_Node);
8382 end if;
8384 E := Next_Elmt (Next_Elmt (E));
8385 end loop;
8386 end if;
8387 end;
8388 end if;
8390 -- Recursively copy descendents
8392 Set_Field1
8393 (New_Node, Copy_Field_With_Replacement (Field1 (New_Node)));
8394 Set_Field2
8395 (New_Node, Copy_Field_With_Replacement (Field2 (New_Node)));
8396 Set_Field3
8397 (New_Node, Copy_Field_With_Replacement (Field3 (New_Node)));
8398 Set_Field4
8399 (New_Node, Copy_Field_With_Replacement (Field4 (New_Node)));
8400 Set_Field5
8401 (New_Node, Copy_Field_With_Replacement (Field5 (New_Node)));
8403 -- Adjust Sloc of new node if necessary
8405 if New_Sloc /= No_Location then
8406 Set_Sloc (New_Node, New_Sloc);
8408 -- If we adjust the Sloc, then we are essentially making
8409 -- a completely new node, so the Comes_From_Source flag
8410 -- should be reset to the proper default value.
8412 Nodes.Table (New_Node).Comes_From_Source :=
8413 Default_Node.Comes_From_Source;
8414 end if;
8416 -- If the node is call and has named associations,
8417 -- set the corresponding links in the copy.
8419 if (Nkind (Old_Node) = N_Function_Call
8420 or else Nkind (Old_Node) = N_Entry_Call_Statement
8421 or else
8422 Nkind (Old_Node) = N_Procedure_Call_Statement)
8423 and then Present (First_Named_Actual (Old_Node))
8424 then
8425 Adjust_Named_Associations (Old_Node, New_Node);
8426 end if;
8428 -- Reset First_Real_Statement for Handled_Sequence_Of_Statements.
8429 -- The replacement mechanism applies to entities, and is not used
8430 -- here. Eventually we may need a more general graph-copying
8431 -- routine. For now, do a sequential search to find desired node.
8433 if Nkind (Old_Node) = N_Handled_Sequence_Of_Statements
8434 and then Present (First_Real_Statement (Old_Node))
8435 then
8436 declare
8437 Old_F : constant Node_Id := First_Real_Statement (Old_Node);
8438 N1, N2 : Node_Id;
8440 begin
8441 N1 := First (Statements (Old_Node));
8442 N2 := First (Statements (New_Node));
8444 while N1 /= Old_F loop
8445 Next (N1);
8446 Next (N2);
8447 end loop;
8449 Set_First_Real_Statement (New_Node, N2);
8450 end;
8451 end if;
8452 end if;
8454 -- All done, return copied node
8456 return New_Node;
8457 end Copy_Node_With_Replacement;
8459 -----------------
8460 -- Visit_Elist --
8461 -----------------
8463 procedure Visit_Elist (E : Elist_Id) is
8464 Elmt : Elmt_Id;
8465 begin
8466 if Present (E) then
8467 Elmt := First_Elmt (E);
8469 while Elmt /= No_Elmt loop
8470 Visit_Node (Node (Elmt));
8471 Next_Elmt (Elmt);
8472 end loop;
8473 end if;
8474 end Visit_Elist;
8476 -----------------
8477 -- Visit_Field --
8478 -----------------
8480 procedure Visit_Field (F : Union_Id; N : Node_Id) is
8481 begin
8482 if F = Union_Id (Empty) then
8483 return;
8485 elsif F in Node_Range then
8487 -- Copy node if it is syntactic, i.e. its parent pointer is
8488 -- set to point to the field that referenced it (certain
8489 -- Itypes will also meet this criterion, which is fine, since
8490 -- these are clearly Itypes that do need to be copied, since
8491 -- we are copying their parent.)
8493 if Parent (Node_Id (F)) = N then
8494 Visit_Node (Node_Id (F));
8495 return;
8497 -- Another case, if we are pointing to an Itype, then we want
8498 -- to copy it if its associated node is somewhere in the tree
8499 -- being copied.
8501 -- Note: the exclusion of self-referential copies is just an
8502 -- optimization, since the search of the already copied list
8503 -- would catch it, but it is a common case (Etype pointing
8504 -- to itself for an Itype that is a base type).
8506 elsif Has_Extension (Node_Id (F))
8507 and then Is_Itype (Entity_Id (F))
8508 and then Node_Id (F) /= N
8509 then
8510 declare
8511 P : Node_Id;
8513 begin
8514 P := Associated_Node_For_Itype (Node_Id (F));
8515 while Present (P) loop
8516 if P = Source then
8517 Visit_Node (Node_Id (F));
8518 return;
8519 else
8520 P := Parent (P);
8521 end if;
8522 end loop;
8524 -- An Itype whose parent is not being copied definitely
8525 -- should NOT be copied, since it does not belong in any
8526 -- sense to the copied subtree.
8528 return;
8529 end;
8530 end if;
8532 elsif F in List_Range
8533 and then Parent (List_Id (F)) = N
8534 then
8535 Visit_List (List_Id (F));
8536 return;
8537 end if;
8538 end Visit_Field;
8540 -----------------
8541 -- Visit_Itype --
8542 -----------------
8544 procedure Visit_Itype (Old_Itype : Entity_Id) is
8545 New_Itype : Entity_Id;
8546 E : Elmt_Id;
8547 Ent : Entity_Id;
8549 begin
8550 -- Itypes that describe the designated type of access to subprograms
8551 -- have the structure of subprogram declarations, with signatures,
8552 -- etc. Either we duplicate the signatures completely, or choose to
8553 -- share such itypes, which is fine because their elaboration will
8554 -- have no side effects.
8556 if Ekind (Old_Itype) = E_Subprogram_Type then
8557 return;
8558 end if;
8560 New_Itype := New_Copy (Old_Itype);
8562 -- The new Itype has all the attributes of the old one, and
8563 -- we just copy the contents of the entity. However, the back-end
8564 -- needs different names for debugging purposes, so we create a
8565 -- new internal name for it in all cases.
8567 Set_Chars (New_Itype, New_Internal_Name ('T'));
8569 -- If our associated node is an entity that has already been copied,
8570 -- then set the associated node of the copy to point to the right
8571 -- copy. If we have copied an Itype that is itself the associated
8572 -- node of some previously copied Itype, then we set the right
8573 -- pointer in the other direction.
8575 if Present (Actual_Map) then
8577 -- Case of hash tables used
8579 if NCT_Hash_Tables_Used then
8581 Ent := NCT_Assoc.Get (Associated_Node_For_Itype (Old_Itype));
8583 if Present (Ent) then
8584 Set_Associated_Node_For_Itype (New_Itype, Ent);
8585 end if;
8587 Ent := NCT_Itype_Assoc.Get (Old_Itype);
8588 if Present (Ent) then
8589 Set_Associated_Node_For_Itype (Ent, New_Itype);
8591 -- If the hash table has no association for this Itype and
8592 -- its associated node, enter one now.
8594 else
8595 NCT_Itype_Assoc.Set
8596 (Associated_Node_For_Itype (Old_Itype), New_Itype);
8597 end if;
8599 -- Case of hash tables not used
8601 else
8602 E := First_Elmt (Actual_Map);
8603 while Present (E) loop
8604 if Associated_Node_For_Itype (Old_Itype) = Node (E) then
8605 Set_Associated_Node_For_Itype
8606 (New_Itype, Node (Next_Elmt (E)));
8607 end if;
8609 if Is_Type (Node (E))
8610 and then
8611 Old_Itype = Associated_Node_For_Itype (Node (E))
8612 then
8613 Set_Associated_Node_For_Itype
8614 (Node (Next_Elmt (E)), New_Itype);
8615 end if;
8617 E := Next_Elmt (Next_Elmt (E));
8618 end loop;
8619 end if;
8620 end if;
8622 if Present (Freeze_Node (New_Itype)) then
8623 Set_Is_Frozen (New_Itype, False);
8624 Set_Freeze_Node (New_Itype, Empty);
8625 end if;
8627 -- Add new association to map
8629 if No (Actual_Map) then
8630 Actual_Map := New_Elmt_List;
8631 end if;
8633 Append_Elmt (Old_Itype, Actual_Map);
8634 Append_Elmt (New_Itype, Actual_Map);
8636 if NCT_Hash_Tables_Used then
8637 NCT_Assoc.Set (Old_Itype, New_Itype);
8639 else
8640 NCT_Table_Entries := NCT_Table_Entries + 1;
8642 if NCT_Table_Entries > NCT_Hash_Threshhold then
8643 Build_NCT_Hash_Tables;
8644 end if;
8645 end if;
8647 -- If a record subtype is simply copied, the entity list will be
8648 -- shared. Thus cloned_Subtype must be set to indicate the sharing.
8650 if Ekind (Old_Itype) = E_Record_Subtype
8651 or else Ekind (Old_Itype) = E_Class_Wide_Subtype
8652 then
8653 Set_Cloned_Subtype (New_Itype, Old_Itype);
8654 end if;
8656 -- Visit descendents that eventually get copied
8658 Visit_Field (Union_Id (Etype (Old_Itype)), Old_Itype);
8660 if Is_Discrete_Type (Old_Itype) then
8661 Visit_Field (Union_Id (Scalar_Range (Old_Itype)), Old_Itype);
8663 elsif Has_Discriminants (Base_Type (Old_Itype)) then
8664 -- ??? This should involve call to Visit_Field
8665 Visit_Elist (Discriminant_Constraint (Old_Itype));
8667 elsif Is_Array_Type (Old_Itype) then
8668 if Present (First_Index (Old_Itype)) then
8669 Visit_Field (Union_Id (List_Containing
8670 (First_Index (Old_Itype))),
8671 Old_Itype);
8672 end if;
8674 if Is_Packed (Old_Itype) then
8675 Visit_Field (Union_Id (Packed_Array_Type (Old_Itype)),
8676 Old_Itype);
8677 end if;
8678 end if;
8679 end Visit_Itype;
8681 ----------------
8682 -- Visit_List --
8683 ----------------
8685 procedure Visit_List (L : List_Id) is
8686 N : Node_Id;
8687 begin
8688 if L /= No_List then
8689 N := First (L);
8691 while Present (N) loop
8692 Visit_Node (N);
8693 Next (N);
8694 end loop;
8695 end if;
8696 end Visit_List;
8698 ----------------
8699 -- Visit_Node --
8700 ----------------
8702 procedure Visit_Node (N : Node_Or_Entity_Id) is
8704 -- Start of processing for Visit_Node
8706 begin
8707 -- Handle case of an Itype, which must be copied
8709 if Has_Extension (N)
8710 and then Is_Itype (N)
8711 then
8712 -- Nothing to do if already in the list. This can happen with an
8713 -- Itype entity that appears more than once in the tree.
8714 -- Note that we do not want to visit descendents in this case.
8716 -- Test for already in list when hash table is used
8718 if NCT_Hash_Tables_Used then
8719 if Present (NCT_Assoc.Get (Entity_Id (N))) then
8720 return;
8721 end if;
8723 -- Test for already in list when hash table not used
8725 else
8726 declare
8727 E : Elmt_Id;
8728 begin
8729 if Present (Actual_Map) then
8730 E := First_Elmt (Actual_Map);
8731 while Present (E) loop
8732 if Node (E) = N then
8733 return;
8734 else
8735 E := Next_Elmt (Next_Elmt (E));
8736 end if;
8737 end loop;
8738 end if;
8739 end;
8740 end if;
8742 Visit_Itype (N);
8743 end if;
8745 -- Visit descendents
8747 Visit_Field (Field1 (N), N);
8748 Visit_Field (Field2 (N), N);
8749 Visit_Field (Field3 (N), N);
8750 Visit_Field (Field4 (N), N);
8751 Visit_Field (Field5 (N), N);
8752 end Visit_Node;
8754 -- Start of processing for New_Copy_Tree
8756 begin
8757 Actual_Map := Map;
8759 -- See if we should use hash table
8761 if No (Actual_Map) then
8762 NCT_Hash_Tables_Used := False;
8764 else
8765 declare
8766 Elmt : Elmt_Id;
8768 begin
8769 NCT_Table_Entries := 0;
8771 Elmt := First_Elmt (Actual_Map);
8772 while Present (Elmt) loop
8773 NCT_Table_Entries := NCT_Table_Entries + 1;
8774 Next_Elmt (Elmt);
8775 Next_Elmt (Elmt);
8776 end loop;
8778 if NCT_Table_Entries > NCT_Hash_Threshhold then
8779 Build_NCT_Hash_Tables;
8780 else
8781 NCT_Hash_Tables_Used := False;
8782 end if;
8783 end;
8784 end if;
8786 -- Hash table set up if required, now start phase one by visiting
8787 -- top node (we will recursively visit the descendents).
8789 Visit_Node (Source);
8791 -- Now the second phase of the copy can start. First we process
8792 -- all the mapped entities, copying their descendents.
8794 if Present (Actual_Map) then
8795 declare
8796 Elmt : Elmt_Id;
8797 New_Itype : Entity_Id;
8798 begin
8799 Elmt := First_Elmt (Actual_Map);
8800 while Present (Elmt) loop
8801 Next_Elmt (Elmt);
8802 New_Itype := Node (Elmt);
8803 Copy_Itype_With_Replacement (New_Itype);
8804 Next_Elmt (Elmt);
8805 end loop;
8806 end;
8807 end if;
8809 -- Now we can copy the actual tree
8811 return Copy_Node_With_Replacement (Source);
8812 end New_Copy_Tree;
8814 -------------------------
8815 -- New_External_Entity --
8816 -------------------------
8818 function New_External_Entity
8819 (Kind : Entity_Kind;
8820 Scope_Id : Entity_Id;
8821 Sloc_Value : Source_Ptr;
8822 Related_Id : Entity_Id;
8823 Suffix : Character;
8824 Suffix_Index : Nat := 0;
8825 Prefix : Character := ' ') return Entity_Id
8827 N : constant Entity_Id :=
8828 Make_Defining_Identifier (Sloc_Value,
8829 New_External_Name
8830 (Chars (Related_Id), Suffix, Suffix_Index, Prefix));
8832 begin
8833 Set_Ekind (N, Kind);
8834 Set_Is_Internal (N, True);
8835 Append_Entity (N, Scope_Id);
8836 Set_Public_Status (N);
8838 if Kind in Type_Kind then
8839 Init_Size_Align (N);
8840 end if;
8842 return N;
8843 end New_External_Entity;
8845 -------------------------
8846 -- New_Internal_Entity --
8847 -------------------------
8849 function New_Internal_Entity
8850 (Kind : Entity_Kind;
8851 Scope_Id : Entity_Id;
8852 Sloc_Value : Source_Ptr;
8853 Id_Char : Character) return Entity_Id
8855 N : constant Entity_Id :=
8856 Make_Defining_Identifier (Sloc_Value, New_Internal_Name (Id_Char));
8858 begin
8859 Set_Ekind (N, Kind);
8860 Set_Is_Internal (N, True);
8861 Append_Entity (N, Scope_Id);
8863 if Kind in Type_Kind then
8864 Init_Size_Align (N);
8865 end if;
8867 return N;
8868 end New_Internal_Entity;
8870 -----------------
8871 -- Next_Actual --
8872 -----------------
8874 function Next_Actual (Actual_Id : Node_Id) return Node_Id is
8875 N : Node_Id;
8877 begin
8878 -- If we are pointing at a positional parameter, it is a member of a
8879 -- node list (the list of parameters), and the next parameter is the
8880 -- next node on the list, unless we hit a parameter association, then
8881 -- we shift to using the chain whose head is the First_Named_Actual in
8882 -- the parent, and then is threaded using the Next_Named_Actual of the
8883 -- Parameter_Association. All this fiddling is because the original node
8884 -- list is in the textual call order, and what we need is the
8885 -- declaration order.
8887 if Is_List_Member (Actual_Id) then
8888 N := Next (Actual_Id);
8890 if Nkind (N) = N_Parameter_Association then
8891 return First_Named_Actual (Parent (Actual_Id));
8892 else
8893 return N;
8894 end if;
8896 else
8897 return Next_Named_Actual (Parent (Actual_Id));
8898 end if;
8899 end Next_Actual;
8901 procedure Next_Actual (Actual_Id : in out Node_Id) is
8902 begin
8903 Actual_Id := Next_Actual (Actual_Id);
8904 end Next_Actual;
8906 -----------------------
8907 -- Normalize_Actuals --
8908 -----------------------
8910 -- Chain actuals according to formals of subprogram. If there are no named
8911 -- associations, the chain is simply the list of Parameter Associations,
8912 -- since the order is the same as the declaration order. If there are named
8913 -- associations, then the First_Named_Actual field in the N_Function_Call
8914 -- or N_Procedure_Call_Statement node points to the Parameter_Association
8915 -- node for the parameter that comes first in declaration order. The
8916 -- remaining named parameters are then chained in declaration order using
8917 -- Next_Named_Actual.
8919 -- This routine also verifies that the number of actuals is compatible with
8920 -- the number and default values of formals, but performs no type checking
8921 -- (type checking is done by the caller).
8923 -- If the matching succeeds, Success is set to True and the caller proceeds
8924 -- with type-checking. If the match is unsuccessful, then Success is set to
8925 -- False, and the caller attempts a different interpretation, if there is
8926 -- one.
8928 -- If the flag Report is on, the call is not overloaded, and a failure to
8929 -- match can be reported here, rather than in the caller.
8931 procedure Normalize_Actuals
8932 (N : Node_Id;
8933 S : Entity_Id;
8934 Report : Boolean;
8935 Success : out Boolean)
8937 Actuals : constant List_Id := Parameter_Associations (N);
8938 Actual : Node_Id := Empty;
8939 Formal : Entity_Id;
8940 Last : Node_Id := Empty;
8941 First_Named : Node_Id := Empty;
8942 Found : Boolean;
8944 Formals_To_Match : Integer := 0;
8945 Actuals_To_Match : Integer := 0;
8947 procedure Chain (A : Node_Id);
8948 -- Add named actual at the proper place in the list, using the
8949 -- Next_Named_Actual link.
8951 function Reporting return Boolean;
8952 -- Determines if an error is to be reported. To report an error, we
8953 -- need Report to be True, and also we do not report errors caused
8954 -- by calls to init procs that occur within other init procs. Such
8955 -- errors must always be cascaded errors, since if all the types are
8956 -- declared correctly, the compiler will certainly build decent calls!
8958 -----------
8959 -- Chain --
8960 -----------
8962 procedure Chain (A : Node_Id) is
8963 begin
8964 if No (Last) then
8966 -- Call node points to first actual in list
8968 Set_First_Named_Actual (N, Explicit_Actual_Parameter (A));
8970 else
8971 Set_Next_Named_Actual (Last, Explicit_Actual_Parameter (A));
8972 end if;
8974 Last := A;
8975 Set_Next_Named_Actual (Last, Empty);
8976 end Chain;
8978 ---------------
8979 -- Reporting --
8980 ---------------
8982 function Reporting return Boolean is
8983 begin
8984 if not Report then
8985 return False;
8987 elsif not Within_Init_Proc then
8988 return True;
8990 elsif Is_Init_Proc (Entity (Name (N))) then
8991 return False;
8993 else
8994 return True;
8995 end if;
8996 end Reporting;
8998 -- Start of processing for Normalize_Actuals
9000 begin
9001 if Is_Access_Type (S) then
9003 -- The name in the call is a function call that returns an access
9004 -- to subprogram. The designated type has the list of formals.
9006 Formal := First_Formal (Designated_Type (S));
9007 else
9008 Formal := First_Formal (S);
9009 end if;
9011 while Present (Formal) loop
9012 Formals_To_Match := Formals_To_Match + 1;
9013 Next_Formal (Formal);
9014 end loop;
9016 -- Find if there is a named association, and verify that no positional
9017 -- associations appear after named ones.
9019 if Present (Actuals) then
9020 Actual := First (Actuals);
9021 end if;
9023 while Present (Actual)
9024 and then Nkind (Actual) /= N_Parameter_Association
9025 loop
9026 Actuals_To_Match := Actuals_To_Match + 1;
9027 Next (Actual);
9028 end loop;
9030 if No (Actual) and Actuals_To_Match = Formals_To_Match then
9032 -- Most common case: positional notation, no defaults
9034 Success := True;
9035 return;
9037 elsif Actuals_To_Match > Formals_To_Match then
9039 -- Too many actuals: will not work
9041 if Reporting then
9042 if Is_Entity_Name (Name (N)) then
9043 Error_Msg_N ("too many arguments in call to&", Name (N));
9044 else
9045 Error_Msg_N ("too many arguments in call", N);
9046 end if;
9047 end if;
9049 Success := False;
9050 return;
9051 end if;
9053 First_Named := Actual;
9055 while Present (Actual) loop
9056 if Nkind (Actual) /= N_Parameter_Association then
9057 Error_Msg_N
9058 ("positional parameters not allowed after named ones", Actual);
9059 Success := False;
9060 return;
9062 else
9063 Actuals_To_Match := Actuals_To_Match + 1;
9064 end if;
9066 Next (Actual);
9067 end loop;
9069 if Present (Actuals) then
9070 Actual := First (Actuals);
9071 end if;
9073 Formal := First_Formal (S);
9074 while Present (Formal) loop
9076 -- Match the formals in order. If the corresponding actual is
9077 -- positional, nothing to do. Else scan the list of named actuals
9078 -- to find the one with the right name.
9080 if Present (Actual)
9081 and then Nkind (Actual) /= N_Parameter_Association
9082 then
9083 Next (Actual);
9084 Actuals_To_Match := Actuals_To_Match - 1;
9085 Formals_To_Match := Formals_To_Match - 1;
9087 else
9088 -- For named parameters, search the list of actuals to find
9089 -- one that matches the next formal name.
9091 Actual := First_Named;
9092 Found := False;
9093 while Present (Actual) loop
9094 if Chars (Selector_Name (Actual)) = Chars (Formal) then
9095 Found := True;
9096 Chain (Actual);
9097 Actuals_To_Match := Actuals_To_Match - 1;
9098 Formals_To_Match := Formals_To_Match - 1;
9099 exit;
9100 end if;
9102 Next (Actual);
9103 end loop;
9105 if not Found then
9106 if Ekind (Formal) /= E_In_Parameter
9107 or else No (Default_Value (Formal))
9108 then
9109 if Reporting then
9110 if (Comes_From_Source (S)
9111 or else Sloc (S) = Standard_Location)
9112 and then Is_Overloadable (S)
9113 then
9114 if No (Actuals)
9115 and then
9116 (Nkind (Parent (N)) = N_Procedure_Call_Statement
9117 or else
9118 (Nkind (Parent (N)) = N_Function_Call
9119 or else
9120 Nkind (Parent (N)) = N_Parameter_Association))
9121 and then Ekind (S) /= E_Function
9122 then
9123 Set_Etype (N, Etype (S));
9124 else
9125 Error_Msg_Name_1 := Chars (S);
9126 Error_Msg_Sloc := Sloc (S);
9127 Error_Msg_NE
9128 ("missing argument for parameter & " &
9129 "in call to % declared #", N, Formal);
9130 end if;
9132 elsif Is_Overloadable (S) then
9133 Error_Msg_Name_1 := Chars (S);
9135 -- Point to type derivation that generated the
9136 -- operation.
9138 Error_Msg_Sloc := Sloc (Parent (S));
9140 Error_Msg_NE
9141 ("missing argument for parameter & " &
9142 "in call to % (inherited) #", N, Formal);
9144 else
9145 Error_Msg_NE
9146 ("missing argument for parameter &", N, Formal);
9147 end if;
9148 end if;
9150 Success := False;
9151 return;
9153 else
9154 Formals_To_Match := Formals_To_Match - 1;
9155 end if;
9156 end if;
9157 end if;
9159 Next_Formal (Formal);
9160 end loop;
9162 if Formals_To_Match = 0 and then Actuals_To_Match = 0 then
9163 Success := True;
9164 return;
9166 else
9167 if Reporting then
9169 -- Find some superfluous named actual that did not get
9170 -- attached to the list of associations.
9172 Actual := First (Actuals);
9173 while Present (Actual) loop
9174 if Nkind (Actual) = N_Parameter_Association
9175 and then Actual /= Last
9176 and then No (Next_Named_Actual (Actual))
9177 then
9178 Error_Msg_N ("unmatched actual & in call",
9179 Selector_Name (Actual));
9180 exit;
9181 end if;
9183 Next (Actual);
9184 end loop;
9185 end if;
9187 Success := False;
9188 return;
9189 end if;
9190 end Normalize_Actuals;
9192 --------------------------------
9193 -- Note_Possible_Modification --
9194 --------------------------------
9196 procedure Note_Possible_Modification (N : Node_Id; Sure : Boolean) is
9197 Modification_Comes_From_Source : constant Boolean :=
9198 Comes_From_Source (Parent (N));
9200 Ent : Entity_Id;
9201 Exp : Node_Id;
9203 begin
9204 -- Loop to find referenced entity, if there is one
9206 Exp := N;
9207 loop
9208 <<Continue>>
9209 Ent := Empty;
9211 if Is_Entity_Name (Exp) then
9212 Ent := Entity (Exp);
9214 -- If the entity is missing, it is an undeclared identifier,
9215 -- and there is nothing to annotate.
9217 if No (Ent) then
9218 return;
9219 end if;
9221 elsif Nkind (Exp) = N_Explicit_Dereference then
9222 declare
9223 P : constant Node_Id := Prefix (Exp);
9225 begin
9226 if Nkind (P) = N_Selected_Component
9227 and then Present (
9228 Entry_Formal (Entity (Selector_Name (P))))
9229 then
9230 -- Case of a reference to an entry formal
9232 Ent := Entry_Formal (Entity (Selector_Name (P)));
9234 elsif Nkind (P) = N_Identifier
9235 and then Nkind (Parent (Entity (P))) = N_Object_Declaration
9236 and then Present (Expression (Parent (Entity (P))))
9237 and then Nkind (Expression (Parent (Entity (P))))
9238 = N_Reference
9239 then
9240 -- Case of a reference to a value on which side effects have
9241 -- been removed.
9243 Exp := Prefix (Expression (Parent (Entity (P))));
9244 goto Continue;
9246 else
9247 return;
9249 end if;
9250 end;
9252 elsif Nkind (Exp) = N_Type_Conversion
9253 or else Nkind (Exp) = N_Unchecked_Type_Conversion
9254 then
9255 Exp := Expression (Exp);
9256 goto Continue;
9258 elsif Nkind (Exp) = N_Slice
9259 or else Nkind (Exp) = N_Indexed_Component
9260 or else Nkind (Exp) = N_Selected_Component
9261 then
9262 Exp := Prefix (Exp);
9263 goto Continue;
9265 else
9266 return;
9267 end if;
9269 -- Now look for entity being referenced
9271 if Present (Ent) then
9272 if Is_Object (Ent) then
9273 if Comes_From_Source (Exp)
9274 or else Modification_Comes_From_Source
9275 then
9276 if Has_Pragma_Unmodified (Ent) then
9277 Error_Msg_NE ("?pragma Unmodified given for &!", N, Ent);
9278 end if;
9280 Set_Never_Set_In_Source (Ent, False);
9281 end if;
9283 Set_Is_True_Constant (Ent, False);
9284 Set_Current_Value (Ent, Empty);
9285 Set_Is_Known_Null (Ent, False);
9287 if not Can_Never_Be_Null (Ent) then
9288 Set_Is_Known_Non_Null (Ent, False);
9289 end if;
9291 -- Follow renaming chain
9293 if (Ekind (Ent) = E_Variable or else Ekind (Ent) = E_Constant)
9294 and then Present (Renamed_Object (Ent))
9295 then
9296 Exp := Renamed_Object (Ent);
9297 goto Continue;
9298 end if;
9300 -- Generate a reference only if the assignment comes from
9301 -- source. This excludes, for example, calls to a dispatching
9302 -- assignment operation when the left-hand side is tagged.
9304 if Modification_Comes_From_Source then
9305 Generate_Reference (Ent, Exp, 'm');
9306 end if;
9308 Check_Nested_Access (Ent);
9309 end if;
9311 Kill_Checks (Ent);
9313 -- If we are sure this is a modification from source, and we know
9314 -- this modifies a constant, then give an appropriate warning.
9316 if Overlays_Constant (Ent)
9317 and then Modification_Comes_From_Source
9318 and then Sure
9319 then
9320 declare
9321 A : constant Node_Id := Address_Clause (Ent);
9322 begin
9323 if Present (A) then
9324 declare
9325 Exp : constant Node_Id := Expression (A);
9326 begin
9327 if Nkind (Exp) = N_Attribute_Reference
9328 and then Attribute_Name (Exp) = Name_Address
9329 and then Is_Entity_Name (Prefix (Exp))
9330 then
9331 Error_Msg_Sloc := Sloc (A);
9332 Error_Msg_NE
9333 ("constant& may be modified via address clause#?",
9334 N, Entity (Prefix (Exp)));
9335 end if;
9336 end;
9337 end if;
9338 end;
9339 end if;
9341 return;
9342 end if;
9343 end loop;
9344 end Note_Possible_Modification;
9346 -------------------------
9347 -- Object_Access_Level --
9348 -------------------------
9350 function Object_Access_Level (Obj : Node_Id) return Uint is
9351 E : Entity_Id;
9353 -- Returns the static accessibility level of the view denoted by Obj. Note
9354 -- that the value returned is the result of a call to Scope_Depth. Only
9355 -- scope depths associated with dynamic scopes can actually be returned.
9356 -- Since only relative levels matter for accessibility checking, the fact
9357 -- that the distance between successive levels of accessibility is not
9358 -- always one is immaterial (invariant: if level(E2) is deeper than
9359 -- level(E1), then Scope_Depth(E1) < Scope_Depth(E2)).
9361 function Reference_To (Obj : Node_Id) return Node_Id;
9362 -- An explicit dereference is created when removing side-effects from
9363 -- expressions for constraint checking purposes. In this case a local
9364 -- access type is created for it. The correct access level is that of
9365 -- the original source node. We detect this case by noting that the
9366 -- prefix of the dereference is created by an object declaration whose
9367 -- initial expression is a reference.
9369 ------------------
9370 -- Reference_To --
9371 ------------------
9373 function Reference_To (Obj : Node_Id) return Node_Id is
9374 Pref : constant Node_Id := Prefix (Obj);
9375 begin
9376 if Is_Entity_Name (Pref)
9377 and then Nkind (Parent (Entity (Pref))) = N_Object_Declaration
9378 and then Present (Expression (Parent (Entity (Pref))))
9379 and then Nkind (Expression (Parent (Entity (Pref)))) = N_Reference
9380 then
9381 return (Prefix (Expression (Parent (Entity (Pref)))));
9382 else
9383 return Empty;
9384 end if;
9385 end Reference_To;
9387 -- Start of processing for Object_Access_Level
9389 begin
9390 if Is_Entity_Name (Obj) then
9391 E := Entity (Obj);
9393 if Is_Prival (E) then
9394 E := Prival_Link (E);
9395 end if;
9397 -- If E is a type then it denotes a current instance. For this case
9398 -- we add one to the normal accessibility level of the type to ensure
9399 -- that current instances are treated as always being deeper than
9400 -- than the level of any visible named access type (see 3.10.2(21)).
9402 if Is_Type (E) then
9403 return Type_Access_Level (E) + 1;
9405 elsif Present (Renamed_Object (E)) then
9406 return Object_Access_Level (Renamed_Object (E));
9408 -- Similarly, if E is a component of the current instance of a
9409 -- protected type, any instance of it is assumed to be at a deeper
9410 -- level than the type. For a protected object (whose type is an
9411 -- anonymous protected type) its components are at the same level
9412 -- as the type itself.
9414 elsif not Is_Overloadable (E)
9415 and then Ekind (Scope (E)) = E_Protected_Type
9416 and then Comes_From_Source (Scope (E))
9417 then
9418 return Type_Access_Level (Scope (E)) + 1;
9420 else
9421 return Scope_Depth (Enclosing_Dynamic_Scope (E));
9422 end if;
9424 elsif Nkind (Obj) = N_Selected_Component then
9425 if Is_Access_Type (Etype (Prefix (Obj))) then
9426 return Type_Access_Level (Etype (Prefix (Obj)));
9427 else
9428 return Object_Access_Level (Prefix (Obj));
9429 end if;
9431 elsif Nkind (Obj) = N_Indexed_Component then
9432 if Is_Access_Type (Etype (Prefix (Obj))) then
9433 return Type_Access_Level (Etype (Prefix (Obj)));
9434 else
9435 return Object_Access_Level (Prefix (Obj));
9436 end if;
9438 elsif Nkind (Obj) = N_Explicit_Dereference then
9440 -- If the prefix is a selected access discriminant then we make a
9441 -- recursive call on the prefix, which will in turn check the level
9442 -- of the prefix object of the selected discriminant.
9444 if Nkind (Prefix (Obj)) = N_Selected_Component
9445 and then Ekind (Etype (Prefix (Obj))) = E_Anonymous_Access_Type
9446 and then
9447 Ekind (Entity (Selector_Name (Prefix (Obj)))) = E_Discriminant
9448 then
9449 return Object_Access_Level (Prefix (Obj));
9451 elsif not (Comes_From_Source (Obj)) then
9452 declare
9453 Ref : constant Node_Id := Reference_To (Obj);
9454 begin
9455 if Present (Ref) then
9456 return Object_Access_Level (Ref);
9457 else
9458 return Type_Access_Level (Etype (Prefix (Obj)));
9459 end if;
9460 end;
9462 else
9463 return Type_Access_Level (Etype (Prefix (Obj)));
9464 end if;
9466 elsif Nkind (Obj) = N_Type_Conversion
9467 or else Nkind (Obj) = N_Unchecked_Type_Conversion
9468 then
9469 return Object_Access_Level (Expression (Obj));
9471 -- Function results are objects, so we get either the access level of
9472 -- the function or, in the case of an indirect call, the level of the
9473 -- access-to-subprogram type.
9475 elsif Nkind (Obj) = N_Function_Call then
9476 if Is_Entity_Name (Name (Obj)) then
9477 return Subprogram_Access_Level (Entity (Name (Obj)));
9478 else
9479 return Type_Access_Level (Etype (Prefix (Name (Obj))));
9480 end if;
9482 -- For convenience we handle qualified expressions, even though
9483 -- they aren't technically object names.
9485 elsif Nkind (Obj) = N_Qualified_Expression then
9486 return Object_Access_Level (Expression (Obj));
9488 -- Otherwise return the scope level of Standard.
9489 -- (If there are cases that fall through
9490 -- to this point they will be treated as
9491 -- having global accessibility for now. ???)
9493 else
9494 return Scope_Depth (Standard_Standard);
9495 end if;
9496 end Object_Access_Level;
9498 -----------------------
9499 -- Private_Component --
9500 -----------------------
9502 function Private_Component (Type_Id : Entity_Id) return Entity_Id is
9503 Ancestor : constant Entity_Id := Base_Type (Type_Id);
9505 function Trace_Components
9506 (T : Entity_Id;
9507 Check : Boolean) return Entity_Id;
9508 -- Recursive function that does the work, and checks against circular
9509 -- definition for each subcomponent type.
9511 ----------------------
9512 -- Trace_Components --
9513 ----------------------
9515 function Trace_Components
9516 (T : Entity_Id;
9517 Check : Boolean) return Entity_Id
9519 Btype : constant Entity_Id := Base_Type (T);
9520 Component : Entity_Id;
9521 P : Entity_Id;
9522 Candidate : Entity_Id := Empty;
9524 begin
9525 if Check and then Btype = Ancestor then
9526 Error_Msg_N ("circular type definition", Type_Id);
9527 return Any_Type;
9528 end if;
9530 if Is_Private_Type (Btype)
9531 and then not Is_Generic_Type (Btype)
9532 then
9533 if Present (Full_View (Btype))
9534 and then Is_Record_Type (Full_View (Btype))
9535 and then not Is_Frozen (Btype)
9536 then
9537 -- To indicate that the ancestor depends on a private type, the
9538 -- current Btype is sufficient. However, to check for circular
9539 -- definition we must recurse on the full view.
9541 Candidate := Trace_Components (Full_View (Btype), True);
9543 if Candidate = Any_Type then
9544 return Any_Type;
9545 else
9546 return Btype;
9547 end if;
9549 else
9550 return Btype;
9551 end if;
9553 elsif Is_Array_Type (Btype) then
9554 return Trace_Components (Component_Type (Btype), True);
9556 elsif Is_Record_Type (Btype) then
9557 Component := First_Entity (Btype);
9558 while Present (Component) loop
9560 -- Skip anonymous types generated by constrained components
9562 if not Is_Type (Component) then
9563 P := Trace_Components (Etype (Component), True);
9565 if Present (P) then
9566 if P = Any_Type then
9567 return P;
9568 else
9569 Candidate := P;
9570 end if;
9571 end if;
9572 end if;
9574 Next_Entity (Component);
9575 end loop;
9577 return Candidate;
9579 else
9580 return Empty;
9581 end if;
9582 end Trace_Components;
9584 -- Start of processing for Private_Component
9586 begin
9587 return Trace_Components (Type_Id, False);
9588 end Private_Component;
9590 ---------------------------
9591 -- Primitive_Names_Match --
9592 ---------------------------
9594 function Primitive_Names_Match (E1, E2 : Entity_Id) return Boolean is
9596 function Non_Internal_Name (E : Entity_Id) return Name_Id;
9597 -- Given an internal name, returns the corresponding non-internal name
9599 ------------------------
9600 -- Non_Internal_Name --
9601 ------------------------
9603 function Non_Internal_Name (E : Entity_Id) return Name_Id is
9604 begin
9605 Get_Name_String (Chars (E));
9606 Name_Len := Name_Len - 1;
9607 return Name_Find;
9608 end Non_Internal_Name;
9610 -- Start of processing for Primitive_Names_Match
9612 begin
9613 pragma Assert (Present (E1) and then Present (E2));
9615 return Chars (E1) = Chars (E2)
9616 or else
9617 (not Is_Internal_Name (Chars (E1))
9618 and then Is_Internal_Name (Chars (E2))
9619 and then Non_Internal_Name (E2) = Chars (E1))
9620 or else
9621 (not Is_Internal_Name (Chars (E2))
9622 and then Is_Internal_Name (Chars (E1))
9623 and then Non_Internal_Name (E1) = Chars (E2))
9624 or else
9625 (Is_Predefined_Dispatching_Operation (E1)
9626 and then Is_Predefined_Dispatching_Operation (E2)
9627 and then Same_TSS (E1, E2))
9628 or else
9629 (Is_Init_Proc (E1) and then Is_Init_Proc (E2));
9630 end Primitive_Names_Match;
9632 -----------------------
9633 -- Process_End_Label --
9634 -----------------------
9636 procedure Process_End_Label
9637 (N : Node_Id;
9638 Typ : Character;
9639 Ent : Entity_Id)
9641 Loc : Source_Ptr;
9642 Nam : Node_Id;
9643 Scop : Entity_Id;
9645 Label_Ref : Boolean;
9646 -- Set True if reference to end label itself is required
9648 Endl : Node_Id;
9649 -- Gets set to the operator symbol or identifier that references the
9650 -- entity Ent. For the child unit case, this is the identifier from the
9651 -- designator. For other cases, this is simply Endl.
9653 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id);
9654 -- N is an identifier node that appears as a parent unit reference in
9655 -- the case where Ent is a child unit. This procedure generates an
9656 -- appropriate cross-reference entry. E is the corresponding entity.
9658 -------------------------
9659 -- Generate_Parent_Ref --
9660 -------------------------
9662 procedure Generate_Parent_Ref (N : Node_Id; E : Entity_Id) is
9663 begin
9664 -- If names do not match, something weird, skip reference
9666 if Chars (E) = Chars (N) then
9668 -- Generate the reference. We do NOT consider this as a reference
9669 -- for unreferenced symbol purposes.
9671 Generate_Reference (E, N, 'r', Set_Ref => False, Force => True);
9673 if Style_Check then
9674 Style.Check_Identifier (N, E);
9675 end if;
9676 end if;
9677 end Generate_Parent_Ref;
9679 -- Start of processing for Process_End_Label
9681 begin
9682 -- If no node, ignore. This happens in some error situations, and
9683 -- also for some internally generated structures where no end label
9684 -- references are required in any case.
9686 if No (N) then
9687 return;
9688 end if;
9690 -- Nothing to do if no End_Label, happens for internally generated
9691 -- constructs where we don't want an end label reference anyway. Also
9692 -- nothing to do if Endl is a string literal, which means there was
9693 -- some prior error (bad operator symbol)
9695 Endl := End_Label (N);
9697 if No (Endl) or else Nkind (Endl) = N_String_Literal then
9698 return;
9699 end if;
9701 -- Reference node is not in extended main source unit
9703 if not In_Extended_Main_Source_Unit (N) then
9705 -- Generally we do not collect references except for the extended
9706 -- main source unit. The one exception is the 'e' entry for a
9707 -- package spec, where it is useful for a client to have the
9708 -- ending information to define scopes.
9710 if Typ /= 'e' then
9711 return;
9713 else
9714 Label_Ref := False;
9716 -- For this case, we can ignore any parent references, but we
9717 -- need the package name itself for the 'e' entry.
9719 if Nkind (Endl) = N_Designator then
9720 Endl := Identifier (Endl);
9721 end if;
9722 end if;
9724 -- Reference is in extended main source unit
9726 else
9727 Label_Ref := True;
9729 -- For designator, generate references for the parent entries
9731 if Nkind (Endl) = N_Designator then
9733 -- Generate references for the prefix if the END line comes from
9734 -- source (otherwise we do not need these references) We climb the
9735 -- scope stack to find the expected entities.
9737 if Comes_From_Source (Endl) then
9738 Nam := Name (Endl);
9739 Scop := Current_Scope;
9740 while Nkind (Nam) = N_Selected_Component loop
9741 Scop := Scope (Scop);
9742 exit when No (Scop);
9743 Generate_Parent_Ref (Selector_Name (Nam), Scop);
9744 Nam := Prefix (Nam);
9745 end loop;
9747 if Present (Scop) then
9748 Generate_Parent_Ref (Nam, Scope (Scop));
9749 end if;
9750 end if;
9752 Endl := Identifier (Endl);
9753 end if;
9754 end if;
9756 -- If the end label is not for the given entity, then either we have
9757 -- some previous error, or this is a generic instantiation for which
9758 -- we do not need to make a cross-reference in this case anyway. In
9759 -- either case we simply ignore the call.
9761 if Chars (Ent) /= Chars (Endl) then
9762 return;
9763 end if;
9765 -- If label was really there, then generate a normal reference and then
9766 -- adjust the location in the end label to point past the name (which
9767 -- should almost always be the semicolon).
9769 Loc := Sloc (Endl);
9771 if Comes_From_Source (Endl) then
9773 -- If a label reference is required, then do the style check and
9774 -- generate an l-type cross-reference entry for the label
9776 if Label_Ref then
9777 if Style_Check then
9778 Style.Check_Identifier (Endl, Ent);
9779 end if;
9781 Generate_Reference (Ent, Endl, 'l', Set_Ref => False);
9782 end if;
9784 -- Set the location to point past the label (normally this will
9785 -- mean the semicolon immediately following the label). This is
9786 -- done for the sake of the 'e' or 't' entry generated below.
9788 Get_Decoded_Name_String (Chars (Endl));
9789 Set_Sloc (Endl, Sloc (Endl) + Source_Ptr (Name_Len));
9790 end if;
9792 -- Now generate the e/t reference
9794 Generate_Reference (Ent, Endl, Typ, Set_Ref => False, Force => True);
9796 -- Restore Sloc, in case modified above, since we have an identifier
9797 -- and the normal Sloc should be left set in the tree.
9799 Set_Sloc (Endl, Loc);
9800 end Process_End_Label;
9802 ------------------
9803 -- Real_Convert --
9804 ------------------
9806 -- We do the conversion to get the value of the real string by using
9807 -- the scanner, see Sinput for details on use of the internal source
9808 -- buffer for scanning internal strings.
9810 function Real_Convert (S : String) return Node_Id is
9811 Save_Src : constant Source_Buffer_Ptr := Source;
9812 Negative : Boolean;
9814 begin
9815 Source := Internal_Source_Ptr;
9816 Scan_Ptr := 1;
9818 for J in S'Range loop
9819 Source (Source_Ptr (J)) := S (J);
9820 end loop;
9822 Source (S'Length + 1) := EOF;
9824 if Source (Scan_Ptr) = '-' then
9825 Negative := True;
9826 Scan_Ptr := Scan_Ptr + 1;
9827 else
9828 Negative := False;
9829 end if;
9831 Scan;
9833 if Negative then
9834 Set_Realval (Token_Node, UR_Negate (Realval (Token_Node)));
9835 end if;
9837 Source := Save_Src;
9838 return Token_Node;
9839 end Real_Convert;
9841 ------------------------------------
9842 -- References_Generic_Formal_Type --
9843 ------------------------------------
9845 function References_Generic_Formal_Type (N : Node_Id) return Boolean is
9847 function Process (N : Node_Id) return Traverse_Result;
9848 -- Process one node in search for generic formal type
9850 -------------
9851 -- Process --
9852 -------------
9854 function Process (N : Node_Id) return Traverse_Result is
9855 begin
9856 if Nkind (N) in N_Has_Entity then
9857 declare
9858 E : constant Entity_Id := Entity (N);
9859 begin
9860 if Present (E) then
9861 if Is_Generic_Type (E) then
9862 return Abandon;
9863 elsif Present (Etype (E))
9864 and then Is_Generic_Type (Etype (E))
9865 then
9866 return Abandon;
9867 end if;
9868 end if;
9869 end;
9870 end if;
9872 return Atree.OK;
9873 end Process;
9875 function Traverse is new Traverse_Func (Process);
9876 -- Traverse tree to look for generic type
9878 begin
9879 if Inside_A_Generic then
9880 return Traverse (N) = Abandon;
9881 else
9882 return False;
9883 end if;
9884 end References_Generic_Formal_Type;
9886 --------------------
9887 -- Remove_Homonym --
9888 --------------------
9890 procedure Remove_Homonym (E : Entity_Id) is
9891 Prev : Entity_Id := Empty;
9892 H : Entity_Id;
9894 begin
9895 if E = Current_Entity (E) then
9896 if Present (Homonym (E)) then
9897 Set_Current_Entity (Homonym (E));
9898 else
9899 Set_Name_Entity_Id (Chars (E), Empty);
9900 end if;
9901 else
9902 H := Current_Entity (E);
9903 while Present (H) and then H /= E loop
9904 Prev := H;
9905 H := Homonym (H);
9906 end loop;
9908 Set_Homonym (Prev, Homonym (E));
9909 end if;
9910 end Remove_Homonym;
9912 ---------------------
9913 -- Rep_To_Pos_Flag --
9914 ---------------------
9916 function Rep_To_Pos_Flag (E : Entity_Id; Loc : Source_Ptr) return Node_Id is
9917 begin
9918 return New_Occurrence_Of
9919 (Boolean_Literals (not Range_Checks_Suppressed (E)), Loc);
9920 end Rep_To_Pos_Flag;
9922 --------------------
9923 -- Require_Entity --
9924 --------------------
9926 procedure Require_Entity (N : Node_Id) is
9927 begin
9928 if Is_Entity_Name (N) and then No (Entity (N)) then
9929 if Total_Errors_Detected /= 0 then
9930 Set_Entity (N, Any_Id);
9931 else
9932 raise Program_Error;
9933 end if;
9934 end if;
9935 end Require_Entity;
9937 ------------------------------
9938 -- Requires_Transient_Scope --
9939 ------------------------------
9941 -- A transient scope is required when variable-sized temporaries are
9942 -- allocated in the primary or secondary stack, or when finalization
9943 -- actions must be generated before the next instruction.
9945 function Requires_Transient_Scope (Id : Entity_Id) return Boolean is
9946 Typ : constant Entity_Id := Underlying_Type (Id);
9948 -- Start of processing for Requires_Transient_Scope
9950 begin
9951 -- This is a private type which is not completed yet. This can only
9952 -- happen in a default expression (of a formal parameter or of a
9953 -- record component). Do not expand transient scope in this case
9955 if No (Typ) then
9956 return False;
9958 -- Do not expand transient scope for non-existent procedure return
9960 elsif Typ = Standard_Void_Type then
9961 return False;
9963 -- Elementary types do not require a transient scope
9965 elsif Is_Elementary_Type (Typ) then
9966 return False;
9968 -- Generally, indefinite subtypes require a transient scope, since the
9969 -- back end cannot generate temporaries, since this is not a valid type
9970 -- for declaring an object. It might be possible to relax this in the
9971 -- future, e.g. by declaring the maximum possible space for the type.
9973 elsif Is_Indefinite_Subtype (Typ) then
9974 return True;
9976 -- Functions returning tagged types may dispatch on result so their
9977 -- returned value is allocated on the secondary stack. Controlled
9978 -- type temporaries need finalization.
9980 elsif Is_Tagged_Type (Typ)
9981 or else Has_Controlled_Component (Typ)
9982 then
9983 return not Is_Value_Type (Typ);
9985 -- Record type
9987 elsif Is_Record_Type (Typ) then
9988 declare
9989 Comp : Entity_Id;
9990 begin
9991 Comp := First_Entity (Typ);
9992 while Present (Comp) loop
9993 if Ekind (Comp) = E_Component
9994 and then Requires_Transient_Scope (Etype (Comp))
9995 then
9996 return True;
9997 else
9998 Next_Entity (Comp);
9999 end if;
10000 end loop;
10001 end;
10003 return False;
10005 -- String literal types never require transient scope
10007 elsif Ekind (Typ) = E_String_Literal_Subtype then
10008 return False;
10010 -- Array type. Note that we already know that this is a constrained
10011 -- array, since unconstrained arrays will fail the indefinite test.
10013 elsif Is_Array_Type (Typ) then
10015 -- If component type requires a transient scope, the array does too
10017 if Requires_Transient_Scope (Component_Type (Typ)) then
10018 return True;
10020 -- Otherwise, we only need a transient scope if the size is not
10021 -- known at compile time.
10023 else
10024 return not Size_Known_At_Compile_Time (Typ);
10025 end if;
10027 -- All other cases do not require a transient scope
10029 else
10030 return False;
10031 end if;
10032 end Requires_Transient_Scope;
10034 --------------------------
10035 -- Reset_Analyzed_Flags --
10036 --------------------------
10038 procedure Reset_Analyzed_Flags (N : Node_Id) is
10040 function Clear_Analyzed (N : Node_Id) return Traverse_Result;
10041 -- Function used to reset Analyzed flags in tree. Note that we do
10042 -- not reset Analyzed flags in entities, since there is no need to
10043 -- reanalyze entities, and indeed, it is wrong to do so, since it
10044 -- can result in generating auxiliary stuff more than once.
10046 --------------------
10047 -- Clear_Analyzed --
10048 --------------------
10050 function Clear_Analyzed (N : Node_Id) return Traverse_Result is
10051 begin
10052 if not Has_Extension (N) then
10053 Set_Analyzed (N, False);
10054 end if;
10056 return OK;
10057 end Clear_Analyzed;
10059 procedure Reset_Analyzed is new Traverse_Proc (Clear_Analyzed);
10061 -- Start of processing for Reset_Analyzed_Flags
10063 begin
10064 Reset_Analyzed (N);
10065 end Reset_Analyzed_Flags;
10067 ---------------------------
10068 -- Safe_To_Capture_Value --
10069 ---------------------------
10071 function Safe_To_Capture_Value
10072 (N : Node_Id;
10073 Ent : Entity_Id;
10074 Cond : Boolean := False) return Boolean
10076 begin
10077 -- The only entities for which we track constant values are variables
10078 -- which are not renamings, constants, out parameters, and in out
10079 -- parameters, so check if we have this case.
10081 -- Note: it may seem odd to track constant values for constants, but in
10082 -- fact this routine is used for other purposes than simply capturing
10083 -- the value. In particular, the setting of Known[_Non]_Null.
10085 if (Ekind (Ent) = E_Variable and then No (Renamed_Object (Ent)))
10086 or else
10087 Ekind (Ent) = E_Constant
10088 or else
10089 Ekind (Ent) = E_Out_Parameter
10090 or else
10091 Ekind (Ent) = E_In_Out_Parameter
10092 then
10093 null;
10095 -- For conditionals, we also allow loop parameters and all formals,
10096 -- including in parameters.
10098 elsif Cond
10099 and then
10100 (Ekind (Ent) = E_Loop_Parameter
10101 or else
10102 Ekind (Ent) = E_In_Parameter)
10103 then
10104 null;
10106 -- For all other cases, not just unsafe, but impossible to capture
10107 -- Current_Value, since the above are the only entities which have
10108 -- Current_Value fields.
10110 else
10111 return False;
10112 end if;
10114 -- Skip if volatile or aliased, since funny things might be going on in
10115 -- these cases which we cannot necessarily track. Also skip any variable
10116 -- for which an address clause is given, or whose address is taken. Also
10117 -- never capture value of library level variables (an attempt to do so
10118 -- can occur in the case of package elaboration code).
10120 if Treat_As_Volatile (Ent)
10121 or else Is_Aliased (Ent)
10122 or else Present (Address_Clause (Ent))
10123 or else Address_Taken (Ent)
10124 or else (Is_Library_Level_Entity (Ent)
10125 and then Ekind (Ent) = E_Variable)
10126 then
10127 return False;
10128 end if;
10130 -- OK, all above conditions are met. We also require that the scope of
10131 -- the reference be the same as the scope of the entity, not counting
10132 -- packages and blocks and loops.
10134 declare
10135 E_Scope : constant Entity_Id := Scope (Ent);
10136 R_Scope : Entity_Id;
10138 begin
10139 R_Scope := Current_Scope;
10140 while R_Scope /= Standard_Standard loop
10141 exit when R_Scope = E_Scope;
10143 if Ekind (R_Scope) /= E_Package
10144 and then
10145 Ekind (R_Scope) /= E_Block
10146 and then
10147 Ekind (R_Scope) /= E_Loop
10148 then
10149 return False;
10150 else
10151 R_Scope := Scope (R_Scope);
10152 end if;
10153 end loop;
10154 end;
10156 -- We also require that the reference does not appear in a context
10157 -- where it is not sure to be executed (i.e. a conditional context
10158 -- or an exception handler). We skip this if Cond is True, since the
10159 -- capturing of values from conditional tests handles this ok.
10161 if Cond then
10162 return True;
10163 end if;
10165 declare
10166 Desc : Node_Id;
10167 P : Node_Id;
10169 begin
10170 Desc := N;
10172 P := Parent (N);
10173 while Present (P) loop
10174 if Nkind (P) = N_If_Statement
10175 or else Nkind (P) = N_Case_Statement
10176 or else (Nkind (P) in N_Short_Circuit
10177 and then Desc = Right_Opnd (P))
10178 or else (Nkind (P) = N_Conditional_Expression
10179 and then Desc /= First (Expressions (P)))
10180 or else Nkind (P) = N_Exception_Handler
10181 or else Nkind (P) = N_Selective_Accept
10182 or else Nkind (P) = N_Conditional_Entry_Call
10183 or else Nkind (P) = N_Timed_Entry_Call
10184 or else Nkind (P) = N_Asynchronous_Select
10185 then
10186 return False;
10187 else
10188 Desc := P;
10189 P := Parent (P);
10190 end if;
10191 end loop;
10192 end;
10194 -- OK, looks safe to set value
10196 return True;
10197 end Safe_To_Capture_Value;
10199 ---------------
10200 -- Same_Name --
10201 ---------------
10203 function Same_Name (N1, N2 : Node_Id) return Boolean is
10204 K1 : constant Node_Kind := Nkind (N1);
10205 K2 : constant Node_Kind := Nkind (N2);
10207 begin
10208 if (K1 = N_Identifier or else K1 = N_Defining_Identifier)
10209 and then (K2 = N_Identifier or else K2 = N_Defining_Identifier)
10210 then
10211 return Chars (N1) = Chars (N2);
10213 elsif (K1 = N_Selected_Component or else K1 = N_Expanded_Name)
10214 and then (K2 = N_Selected_Component or else K2 = N_Expanded_Name)
10215 then
10216 return Same_Name (Selector_Name (N1), Selector_Name (N2))
10217 and then Same_Name (Prefix (N1), Prefix (N2));
10219 else
10220 return False;
10221 end if;
10222 end Same_Name;
10224 -----------------
10225 -- Same_Object --
10226 -----------------
10228 function Same_Object (Node1, Node2 : Node_Id) return Boolean is
10229 N1 : constant Node_Id := Original_Node (Node1);
10230 N2 : constant Node_Id := Original_Node (Node2);
10231 -- We do the tests on original nodes, since we are most interested
10232 -- in the original source, not any expansion that got in the way.
10234 K1 : constant Node_Kind := Nkind (N1);
10235 K2 : constant Node_Kind := Nkind (N2);
10237 begin
10238 -- First case, both are entities with same entity
10240 if K1 in N_Has_Entity
10241 and then K2 in N_Has_Entity
10242 and then Present (Entity (N1))
10243 and then Present (Entity (N2))
10244 and then (Ekind (Entity (N1)) = E_Variable
10245 or else
10246 Ekind (Entity (N1)) = E_Constant)
10247 and then Entity (N1) = Entity (N2)
10248 then
10249 return True;
10251 -- Second case, selected component with same selector, same record
10253 elsif K1 = N_Selected_Component
10254 and then K2 = N_Selected_Component
10255 and then Chars (Selector_Name (N1)) = Chars (Selector_Name (N2))
10256 then
10257 return Same_Object (Prefix (N1), Prefix (N2));
10259 -- Third case, indexed component with same subscripts, same array
10261 elsif K1 = N_Indexed_Component
10262 and then K2 = N_Indexed_Component
10263 and then Same_Object (Prefix (N1), Prefix (N2))
10264 then
10265 declare
10266 E1, E2 : Node_Id;
10267 begin
10268 E1 := First (Expressions (N1));
10269 E2 := First (Expressions (N2));
10270 while Present (E1) loop
10271 if not Same_Value (E1, E2) then
10272 return False;
10273 else
10274 Next (E1);
10275 Next (E2);
10276 end if;
10277 end loop;
10279 return True;
10280 end;
10282 -- Fourth case, slice of same array with same bounds
10284 elsif K1 = N_Slice
10285 and then K2 = N_Slice
10286 and then Nkind (Discrete_Range (N1)) = N_Range
10287 and then Nkind (Discrete_Range (N2)) = N_Range
10288 and then Same_Value (Low_Bound (Discrete_Range (N1)),
10289 Low_Bound (Discrete_Range (N2)))
10290 and then Same_Value (High_Bound (Discrete_Range (N1)),
10291 High_Bound (Discrete_Range (N2)))
10292 then
10293 return Same_Name (Prefix (N1), Prefix (N2));
10295 -- All other cases, not clearly the same object
10297 else
10298 return False;
10299 end if;
10300 end Same_Object;
10302 ---------------
10303 -- Same_Type --
10304 ---------------
10306 function Same_Type (T1, T2 : Entity_Id) return Boolean is
10307 begin
10308 if T1 = T2 then
10309 return True;
10311 elsif not Is_Constrained (T1)
10312 and then not Is_Constrained (T2)
10313 and then Base_Type (T1) = Base_Type (T2)
10314 then
10315 return True;
10317 -- For now don't bother with case of identical constraints, to be
10318 -- fiddled with later on perhaps (this is only used for optimization
10319 -- purposes, so it is not critical to do a best possible job)
10321 else
10322 return False;
10323 end if;
10324 end Same_Type;
10326 ----------------
10327 -- Same_Value --
10328 ----------------
10330 function Same_Value (Node1, Node2 : Node_Id) return Boolean is
10331 begin
10332 if Compile_Time_Known_Value (Node1)
10333 and then Compile_Time_Known_Value (Node2)
10334 and then Expr_Value (Node1) = Expr_Value (Node2)
10335 then
10336 return True;
10337 elsif Same_Object (Node1, Node2) then
10338 return True;
10339 else
10340 return False;
10341 end if;
10342 end Same_Value;
10344 ------------------------
10345 -- Scope_Is_Transient --
10346 ------------------------
10348 function Scope_Is_Transient return Boolean is
10349 begin
10350 return Scope_Stack.Table (Scope_Stack.Last).Is_Transient;
10351 end Scope_Is_Transient;
10353 ------------------
10354 -- Scope_Within --
10355 ------------------
10357 function Scope_Within (Scope1, Scope2 : Entity_Id) return Boolean is
10358 Scop : Entity_Id;
10360 begin
10361 Scop := Scope1;
10362 while Scop /= Standard_Standard loop
10363 Scop := Scope (Scop);
10365 if Scop = Scope2 then
10366 return True;
10367 end if;
10368 end loop;
10370 return False;
10371 end Scope_Within;
10373 --------------------------
10374 -- Scope_Within_Or_Same --
10375 --------------------------
10377 function Scope_Within_Or_Same (Scope1, Scope2 : Entity_Id) return Boolean is
10378 Scop : Entity_Id;
10380 begin
10381 Scop := Scope1;
10382 while Scop /= Standard_Standard loop
10383 if Scop = Scope2 then
10384 return True;
10385 else
10386 Scop := Scope (Scop);
10387 end if;
10388 end loop;
10390 return False;
10391 end Scope_Within_Or_Same;
10393 --------------------
10394 -- Set_Convention --
10395 --------------------
10397 procedure Set_Convention (E : Entity_Id; Val : Snames.Convention_Id) is
10398 begin
10399 Basic_Set_Convention (E, Val);
10401 if Is_Type (E)
10402 and then Is_Access_Subprogram_Type (Base_Type (E))
10403 and then Has_Foreign_Convention (E)
10404 then
10405 Set_Can_Use_Internal_Rep (E, False);
10406 end if;
10407 end Set_Convention;
10409 ------------------------
10410 -- Set_Current_Entity --
10411 ------------------------
10413 -- The given entity is to be set as the currently visible definition
10414 -- of its associated name (i.e. the Node_Id associated with its name).
10415 -- All we have to do is to get the name from the identifier, and
10416 -- then set the associated Node_Id to point to the given entity.
10418 procedure Set_Current_Entity (E : Entity_Id) is
10419 begin
10420 Set_Name_Entity_Id (Chars (E), E);
10421 end Set_Current_Entity;
10423 ---------------------------
10424 -- Set_Debug_Info_Needed --
10425 ---------------------------
10427 procedure Set_Debug_Info_Needed (T : Entity_Id) is
10429 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id);
10430 pragma Inline (Set_Debug_Info_Needed_If_Not_Set);
10431 -- Used to set debug info in a related node if not set already
10433 --------------------------------------
10434 -- Set_Debug_Info_Needed_If_Not_Set --
10435 --------------------------------------
10437 procedure Set_Debug_Info_Needed_If_Not_Set (E : Entity_Id) is
10438 begin
10439 if Present (E)
10440 and then not Needs_Debug_Info (E)
10441 then
10442 Set_Debug_Info_Needed (E);
10444 -- For a private type, indicate that the full view also needs
10445 -- debug information.
10447 if Is_Type (E)
10448 and then Is_Private_Type (E)
10449 and then Present (Full_View (E))
10450 then
10451 Set_Debug_Info_Needed (Full_View (E));
10452 end if;
10453 end if;
10454 end Set_Debug_Info_Needed_If_Not_Set;
10456 -- Start of processing for Set_Debug_Info_Needed
10458 begin
10459 -- Nothing to do if argument is Empty or has Debug_Info_Off set, which
10460 -- indicates that Debug_Info_Needed is never required for the entity.
10462 if No (T)
10463 or else Debug_Info_Off (T)
10464 then
10465 return;
10466 end if;
10468 -- Set flag in entity itself. Note that we will go through the following
10469 -- circuitry even if the flag is already set on T. That's intentional,
10470 -- it makes sure that the flag will be set in subsidiary entities.
10472 Set_Needs_Debug_Info (T);
10474 -- Set flag on subsidiary entities if not set already
10476 if Is_Object (T) then
10477 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
10479 elsif Is_Type (T) then
10480 Set_Debug_Info_Needed_If_Not_Set (Etype (T));
10482 if Is_Record_Type (T) then
10483 declare
10484 Ent : Entity_Id := First_Entity (T);
10485 begin
10486 while Present (Ent) loop
10487 Set_Debug_Info_Needed_If_Not_Set (Ent);
10488 Next_Entity (Ent);
10489 end loop;
10490 end;
10492 if Ekind (T) = E_Class_Wide_Subtype then
10493 Set_Debug_Info_Needed_If_Not_Set (Equivalent_Type (T));
10494 end if;
10496 elsif Is_Array_Type (T) then
10497 Set_Debug_Info_Needed_If_Not_Set (Component_Type (T));
10499 declare
10500 Indx : Node_Id := First_Index (T);
10501 begin
10502 while Present (Indx) loop
10503 Set_Debug_Info_Needed_If_Not_Set (Etype (Indx));
10504 Indx := Next_Index (Indx);
10505 end loop;
10506 end;
10508 if Is_Packed (T) then
10509 Set_Debug_Info_Needed_If_Not_Set (Packed_Array_Type (T));
10510 end if;
10512 elsif Is_Access_Type (T) then
10513 Set_Debug_Info_Needed_If_Not_Set (Directly_Designated_Type (T));
10515 elsif Is_Private_Type (T) then
10516 Set_Debug_Info_Needed_If_Not_Set (Full_View (T));
10518 elsif Is_Protected_Type (T) then
10519 Set_Debug_Info_Needed_If_Not_Set (Corresponding_Record_Type (T));
10520 end if;
10521 end if;
10522 end Set_Debug_Info_Needed;
10524 ---------------------------------
10525 -- Set_Entity_With_Style_Check --
10526 ---------------------------------
10528 procedure Set_Entity_With_Style_Check (N : Node_Id; Val : Entity_Id) is
10529 Val_Actual : Entity_Id;
10530 Nod : Node_Id;
10532 begin
10533 Set_Entity (N, Val);
10535 if Style_Check
10536 and then not Suppress_Style_Checks (Val)
10537 and then not In_Instance
10538 then
10539 if Nkind (N) = N_Identifier then
10540 Nod := N;
10541 elsif Nkind (N) = N_Expanded_Name then
10542 Nod := Selector_Name (N);
10543 else
10544 return;
10545 end if;
10547 -- A special situation arises for derived operations, where we want
10548 -- to do the check against the parent (since the Sloc of the derived
10549 -- operation points to the derived type declaration itself).
10551 Val_Actual := Val;
10552 while not Comes_From_Source (Val_Actual)
10553 and then Nkind (Val_Actual) in N_Entity
10554 and then (Ekind (Val_Actual) = E_Enumeration_Literal
10555 or else Is_Subprogram (Val_Actual)
10556 or else Is_Generic_Subprogram (Val_Actual))
10557 and then Present (Alias (Val_Actual))
10558 loop
10559 Val_Actual := Alias (Val_Actual);
10560 end loop;
10562 -- Renaming declarations for generic actuals do not come from source,
10563 -- and have a different name from that of the entity they rename, so
10564 -- there is no style check to perform here.
10566 if Chars (Nod) = Chars (Val_Actual) then
10567 Style.Check_Identifier (Nod, Val_Actual);
10568 end if;
10569 end if;
10571 Set_Entity (N, Val);
10572 end Set_Entity_With_Style_Check;
10574 ------------------------
10575 -- Set_Name_Entity_Id --
10576 ------------------------
10578 procedure Set_Name_Entity_Id (Id : Name_Id; Val : Entity_Id) is
10579 begin
10580 Set_Name_Table_Info (Id, Int (Val));
10581 end Set_Name_Entity_Id;
10583 ---------------------
10584 -- Set_Next_Actual --
10585 ---------------------
10587 procedure Set_Next_Actual (Ass1_Id : Node_Id; Ass2_Id : Node_Id) is
10588 begin
10589 if Nkind (Parent (Ass1_Id)) = N_Parameter_Association then
10590 Set_First_Named_Actual (Parent (Ass1_Id), Ass2_Id);
10591 end if;
10592 end Set_Next_Actual;
10594 ----------------------------------
10595 -- Set_Optimize_Alignment_Flags --
10596 ----------------------------------
10598 procedure Set_Optimize_Alignment_Flags (E : Entity_Id) is
10599 begin
10600 if Optimize_Alignment = 'S' then
10601 Set_Optimize_Alignment_Space (E);
10602 elsif Optimize_Alignment = 'T' then
10603 Set_Optimize_Alignment_Time (E);
10604 end if;
10605 end Set_Optimize_Alignment_Flags;
10607 -----------------------
10608 -- Set_Public_Status --
10609 -----------------------
10611 procedure Set_Public_Status (Id : Entity_Id) is
10612 S : constant Entity_Id := Current_Scope;
10614 function Within_HSS_Or_If (E : Entity_Id) return Boolean;
10615 -- Determines if E is defined within handled statement sequence or
10616 -- an if statement, returns True if so, False otherwise.
10618 ----------------------
10619 -- Within_HSS_Or_If --
10620 ----------------------
10622 function Within_HSS_Or_If (E : Entity_Id) return Boolean is
10623 N : Node_Id;
10624 begin
10625 N := Declaration_Node (E);
10626 loop
10627 N := Parent (N);
10629 if No (N) then
10630 return False;
10632 elsif Nkind_In (N, N_Handled_Sequence_Of_Statements,
10633 N_If_Statement)
10634 then
10635 return True;
10636 end if;
10637 end loop;
10638 end Within_HSS_Or_If;
10640 -- Start of processing for Set_Public_Status
10642 begin
10643 -- Everything in the scope of Standard is public
10645 if S = Standard_Standard then
10646 Set_Is_Public (Id);
10648 -- Entity is definitely not public if enclosing scope is not public
10650 elsif not Is_Public (S) then
10651 return;
10653 -- An object or function declaration that occurs in a handled sequence
10654 -- of statements or within an if statement is the declaration for a
10655 -- temporary object or local subprogram generated by the expander. It
10656 -- never needs to be made public and furthermore, making it public can
10657 -- cause back end problems.
10659 elsif Nkind_In (Parent (Id), N_Object_Declaration,
10660 N_Function_Specification)
10661 and then Within_HSS_Or_If (Id)
10662 then
10663 return;
10665 -- Entities in public packages or records are public
10667 elsif Ekind (S) = E_Package or Is_Record_Type (S) then
10668 Set_Is_Public (Id);
10670 -- The bounds of an entry family declaration can generate object
10671 -- declarations that are visible to the back-end, e.g. in the
10672 -- the declaration of a composite type that contains tasks.
10674 elsif Is_Concurrent_Type (S)
10675 and then not Has_Completion (S)
10676 and then Nkind (Parent (Id)) = N_Object_Declaration
10677 then
10678 Set_Is_Public (Id);
10679 end if;
10680 end Set_Public_Status;
10682 -----------------------------
10683 -- Set_Referenced_Modified --
10684 -----------------------------
10686 procedure Set_Referenced_Modified (N : Node_Id; Out_Param : Boolean) is
10687 Pref : Node_Id;
10689 begin
10690 -- Deal with indexed or selected component where prefix is modified
10692 if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
10693 Pref := Prefix (N);
10695 -- If prefix is access type, then it is the designated object that is
10696 -- being modified, which means we have no entity to set the flag on.
10698 if No (Etype (Pref)) or else Is_Access_Type (Etype (Pref)) then
10699 return;
10701 -- Otherwise chase the prefix
10703 else
10704 Set_Referenced_Modified (Pref, Out_Param);
10705 end if;
10707 -- Otherwise see if we have an entity name (only other case to process)
10709 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
10710 Set_Referenced_As_LHS (Entity (N), not Out_Param);
10711 Set_Referenced_As_Out_Parameter (Entity (N), Out_Param);
10712 end if;
10713 end Set_Referenced_Modified;
10715 ----------------------------
10716 -- Set_Scope_Is_Transient --
10717 ----------------------------
10719 procedure Set_Scope_Is_Transient (V : Boolean := True) is
10720 begin
10721 Scope_Stack.Table (Scope_Stack.Last).Is_Transient := V;
10722 end Set_Scope_Is_Transient;
10724 -------------------
10725 -- Set_Size_Info --
10726 -------------------
10728 procedure Set_Size_Info (T1, T2 : Entity_Id) is
10729 begin
10730 -- We copy Esize, but not RM_Size, since in general RM_Size is
10731 -- subtype specific and does not get inherited by all subtypes.
10733 Set_Esize (T1, Esize (T2));
10734 Set_Has_Biased_Representation (T1, Has_Biased_Representation (T2));
10736 if Is_Discrete_Or_Fixed_Point_Type (T1)
10737 and then
10738 Is_Discrete_Or_Fixed_Point_Type (T2)
10739 then
10740 Set_Is_Unsigned_Type (T1, Is_Unsigned_Type (T2));
10741 end if;
10743 Set_Alignment (T1, Alignment (T2));
10744 end Set_Size_Info;
10746 --------------------
10747 -- Static_Integer --
10748 --------------------
10750 function Static_Integer (N : Node_Id) return Uint is
10751 begin
10752 Analyze_And_Resolve (N, Any_Integer);
10754 if N = Error
10755 or else Error_Posted (N)
10756 or else Etype (N) = Any_Type
10757 then
10758 return No_Uint;
10759 end if;
10761 if Is_Static_Expression (N) then
10762 if not Raises_Constraint_Error (N) then
10763 return Expr_Value (N);
10764 else
10765 return No_Uint;
10766 end if;
10768 elsif Etype (N) = Any_Type then
10769 return No_Uint;
10771 else
10772 Flag_Non_Static_Expr
10773 ("static integer expression required here", N);
10774 return No_Uint;
10775 end if;
10776 end Static_Integer;
10778 --------------------------
10779 -- Statically_Different --
10780 --------------------------
10782 function Statically_Different (E1, E2 : Node_Id) return Boolean is
10783 R1 : constant Node_Id := Get_Referenced_Object (E1);
10784 R2 : constant Node_Id := Get_Referenced_Object (E2);
10785 begin
10786 return Is_Entity_Name (R1)
10787 and then Is_Entity_Name (R2)
10788 and then Entity (R1) /= Entity (R2)
10789 and then not Is_Formal (Entity (R1))
10790 and then not Is_Formal (Entity (R2));
10791 end Statically_Different;
10793 -----------------------------
10794 -- Subprogram_Access_Level --
10795 -----------------------------
10797 function Subprogram_Access_Level (Subp : Entity_Id) return Uint is
10798 begin
10799 if Present (Alias (Subp)) then
10800 return Subprogram_Access_Level (Alias (Subp));
10801 else
10802 return Scope_Depth (Enclosing_Dynamic_Scope (Subp));
10803 end if;
10804 end Subprogram_Access_Level;
10806 -----------------
10807 -- Trace_Scope --
10808 -----------------
10810 procedure Trace_Scope (N : Node_Id; E : Entity_Id; Msg : String) is
10811 begin
10812 if Debug_Flag_W then
10813 for J in 0 .. Scope_Stack.Last loop
10814 Write_Str (" ");
10815 end loop;
10817 Write_Str (Msg);
10818 Write_Name (Chars (E));
10819 Write_Str (" from ");
10820 Write_Location (Sloc (N));
10821 Write_Eol;
10822 end if;
10823 end Trace_Scope;
10825 -----------------------
10826 -- Transfer_Entities --
10827 -----------------------
10829 procedure Transfer_Entities (From : Entity_Id; To : Entity_Id) is
10830 Ent : Entity_Id := First_Entity (From);
10832 begin
10833 if No (Ent) then
10834 return;
10835 end if;
10837 if (Last_Entity (To)) = Empty then
10838 Set_First_Entity (To, Ent);
10839 else
10840 Set_Next_Entity (Last_Entity (To), Ent);
10841 end if;
10843 Set_Last_Entity (To, Last_Entity (From));
10845 while Present (Ent) loop
10846 Set_Scope (Ent, To);
10848 if not Is_Public (Ent) then
10849 Set_Public_Status (Ent);
10851 if Is_Public (Ent)
10852 and then Ekind (Ent) = E_Record_Subtype
10854 then
10855 -- The components of the propagated Itype must be public
10856 -- as well.
10858 declare
10859 Comp : Entity_Id;
10860 begin
10861 Comp := First_Entity (Ent);
10862 while Present (Comp) loop
10863 Set_Is_Public (Comp);
10864 Next_Entity (Comp);
10865 end loop;
10866 end;
10867 end if;
10868 end if;
10870 Next_Entity (Ent);
10871 end loop;
10873 Set_First_Entity (From, Empty);
10874 Set_Last_Entity (From, Empty);
10875 end Transfer_Entities;
10877 -----------------------
10878 -- Type_Access_Level --
10879 -----------------------
10881 function Type_Access_Level (Typ : Entity_Id) return Uint is
10882 Btyp : Entity_Id;
10884 begin
10885 Btyp := Base_Type (Typ);
10887 -- Ada 2005 (AI-230): For most cases of anonymous access types, we
10888 -- simply use the level where the type is declared. This is true for
10889 -- stand-alone object declarations, and for anonymous access types
10890 -- associated with components the level is the same as that of the
10891 -- enclosing composite type. However, special treatment is needed for
10892 -- the cases of access parameters, return objects of an anonymous access
10893 -- type, and, in Ada 95, access discriminants of limited types.
10895 if Ekind (Btyp) in Access_Kind then
10896 if Ekind (Btyp) = E_Anonymous_Access_Type then
10898 -- If the type is a nonlocal anonymous access type (such as for
10899 -- an access parameter) we treat it as being declared at the
10900 -- library level to ensure that names such as X.all'access don't
10901 -- fail static accessibility checks.
10903 if not Is_Local_Anonymous_Access (Typ) then
10904 return Scope_Depth (Standard_Standard);
10906 -- If this is a return object, the accessibility level is that of
10907 -- the result subtype of the enclosing function. The test here is
10908 -- little complicated, because we have to account for extended
10909 -- return statements that have been rewritten as blocks, in which
10910 -- case we have to find and the Is_Return_Object attribute of the
10911 -- itype's associated object. It would be nice to find a way to
10912 -- simplify this test, but it doesn't seem worthwhile to add a new
10913 -- flag just for purposes of this test. ???
10915 elsif Ekind (Scope (Btyp)) = E_Return_Statement
10916 or else
10917 (Is_Itype (Btyp)
10918 and then Nkind (Associated_Node_For_Itype (Btyp)) =
10919 N_Object_Declaration
10920 and then Is_Return_Object
10921 (Defining_Identifier
10922 (Associated_Node_For_Itype (Btyp))))
10923 then
10924 declare
10925 Scop : Entity_Id;
10927 begin
10928 Scop := Scope (Scope (Btyp));
10929 while Present (Scop) loop
10930 exit when Ekind (Scop) = E_Function;
10931 Scop := Scope (Scop);
10932 end loop;
10934 -- Treat the return object's type as having the level of the
10935 -- function's result subtype (as per RM05-6.5(5.3/2)).
10937 return Type_Access_Level (Etype (Scop));
10938 end;
10939 end if;
10940 end if;
10942 Btyp := Root_Type (Btyp);
10944 -- The accessibility level of anonymous access types associated with
10945 -- discriminants is that of the current instance of the type, and
10946 -- that's deeper than the type itself (AARM 3.10.2 (12.3.21)).
10948 -- AI-402: access discriminants have accessibility based on the
10949 -- object rather than the type in Ada 2005, so the above paragraph
10950 -- doesn't apply.
10952 -- ??? Needs completion with rules from AI-416
10954 if Ada_Version <= Ada_95
10955 and then Ekind (Typ) = E_Anonymous_Access_Type
10956 and then Present (Associated_Node_For_Itype (Typ))
10957 and then Nkind (Associated_Node_For_Itype (Typ)) =
10958 N_Discriminant_Specification
10959 then
10960 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp)) + 1;
10961 end if;
10962 end if;
10964 return Scope_Depth (Enclosing_Dynamic_Scope (Btyp));
10965 end Type_Access_Level;
10967 --------------------
10968 -- Ultimate_Alias --
10969 --------------------
10970 -- To do: add occurrences calling this new subprogram
10972 function Ultimate_Alias (Prim : Entity_Id) return Entity_Id is
10973 E : Entity_Id := Prim;
10975 begin
10976 while Present (Alias (E)) loop
10977 E := Alias (E);
10978 end loop;
10980 return E;
10981 end Ultimate_Alias;
10983 --------------------------
10984 -- Unit_Declaration_Node --
10985 --------------------------
10987 function Unit_Declaration_Node (Unit_Id : Entity_Id) return Node_Id is
10988 N : Node_Id := Parent (Unit_Id);
10990 begin
10991 -- Predefined operators do not have a full function declaration
10993 if Ekind (Unit_Id) = E_Operator then
10994 return N;
10995 end if;
10997 -- Isn't there some better way to express the following ???
10999 while Nkind (N) /= N_Abstract_Subprogram_Declaration
11000 and then Nkind (N) /= N_Formal_Package_Declaration
11001 and then Nkind (N) /= N_Function_Instantiation
11002 and then Nkind (N) /= N_Generic_Package_Declaration
11003 and then Nkind (N) /= N_Generic_Subprogram_Declaration
11004 and then Nkind (N) /= N_Package_Declaration
11005 and then Nkind (N) /= N_Package_Body
11006 and then Nkind (N) /= N_Package_Instantiation
11007 and then Nkind (N) /= N_Package_Renaming_Declaration
11008 and then Nkind (N) /= N_Procedure_Instantiation
11009 and then Nkind (N) /= N_Protected_Body
11010 and then Nkind (N) /= N_Subprogram_Declaration
11011 and then Nkind (N) /= N_Subprogram_Body
11012 and then Nkind (N) /= N_Subprogram_Body_Stub
11013 and then Nkind (N) /= N_Subprogram_Renaming_Declaration
11014 and then Nkind (N) /= N_Task_Body
11015 and then Nkind (N) /= N_Task_Type_Declaration
11016 and then Nkind (N) not in N_Formal_Subprogram_Declaration
11017 and then Nkind (N) not in N_Generic_Renaming_Declaration
11018 loop
11019 N := Parent (N);
11020 pragma Assert (Present (N));
11021 end loop;
11023 return N;
11024 end Unit_Declaration_Node;
11026 ------------------------------
11027 -- Universal_Interpretation --
11028 ------------------------------
11030 function Universal_Interpretation (Opnd : Node_Id) return Entity_Id is
11031 Index : Interp_Index;
11032 It : Interp;
11034 begin
11035 -- The argument may be a formal parameter of an operator or subprogram
11036 -- with multiple interpretations, or else an expression for an actual.
11038 if Nkind (Opnd) = N_Defining_Identifier
11039 or else not Is_Overloaded (Opnd)
11040 then
11041 if Etype (Opnd) = Universal_Integer
11042 or else Etype (Opnd) = Universal_Real
11043 then
11044 return Etype (Opnd);
11045 else
11046 return Empty;
11047 end if;
11049 else
11050 Get_First_Interp (Opnd, Index, It);
11051 while Present (It.Typ) loop
11052 if It.Typ = Universal_Integer
11053 or else It.Typ = Universal_Real
11054 then
11055 return It.Typ;
11056 end if;
11058 Get_Next_Interp (Index, It);
11059 end loop;
11061 return Empty;
11062 end if;
11063 end Universal_Interpretation;
11065 ---------------
11066 -- Unqualify --
11067 ---------------
11069 function Unqualify (Expr : Node_Id) return Node_Id is
11070 begin
11071 -- Recurse to handle unlikely case of multiple levels of qualification
11073 if Nkind (Expr) = N_Qualified_Expression then
11074 return Unqualify (Expression (Expr));
11076 -- Normal case, not a qualified expression
11078 else
11079 return Expr;
11080 end if;
11081 end Unqualify;
11083 ----------------------
11084 -- Within_Init_Proc --
11085 ----------------------
11087 function Within_Init_Proc return Boolean is
11088 S : Entity_Id;
11090 begin
11091 S := Current_Scope;
11092 while not Is_Overloadable (S) loop
11093 if S = Standard_Standard then
11094 return False;
11095 else
11096 S := Scope (S);
11097 end if;
11098 end loop;
11100 return Is_Init_Proc (S);
11101 end Within_Init_Proc;
11103 ----------------
11104 -- Wrong_Type --
11105 ----------------
11107 procedure Wrong_Type (Expr : Node_Id; Expected_Type : Entity_Id) is
11108 Found_Type : constant Entity_Id := First_Subtype (Etype (Expr));
11109 Expec_Type : constant Entity_Id := First_Subtype (Expected_Type);
11111 function Has_One_Matching_Field return Boolean;
11112 -- Determines if Expec_Type is a record type with a single component or
11113 -- discriminant whose type matches the found type or is one dimensional
11114 -- array whose component type matches the found type.
11116 ----------------------------
11117 -- Has_One_Matching_Field --
11118 ----------------------------
11120 function Has_One_Matching_Field return Boolean is
11121 E : Entity_Id;
11123 begin
11124 if Is_Array_Type (Expec_Type)
11125 and then Number_Dimensions (Expec_Type) = 1
11126 and then
11127 Covers (Etype (Component_Type (Expec_Type)), Found_Type)
11128 then
11129 return True;
11131 elsif not Is_Record_Type (Expec_Type) then
11132 return False;
11134 else
11135 E := First_Entity (Expec_Type);
11136 loop
11137 if No (E) then
11138 return False;
11140 elsif (Ekind (E) /= E_Discriminant
11141 and then Ekind (E) /= E_Component)
11142 or else (Chars (E) = Name_uTag
11143 or else Chars (E) = Name_uParent)
11144 then
11145 Next_Entity (E);
11147 else
11148 exit;
11149 end if;
11150 end loop;
11152 if not Covers (Etype (E), Found_Type) then
11153 return False;
11155 elsif Present (Next_Entity (E)) then
11156 return False;
11158 else
11159 return True;
11160 end if;
11161 end if;
11162 end Has_One_Matching_Field;
11164 -- Start of processing for Wrong_Type
11166 begin
11167 -- Don't output message if either type is Any_Type, or if a message
11168 -- has already been posted for this node. We need to do the latter
11169 -- check explicitly (it is ordinarily done in Errout), because we
11170 -- are using ! to force the output of the error messages.
11172 if Expec_Type = Any_Type
11173 or else Found_Type = Any_Type
11174 or else Error_Posted (Expr)
11175 then
11176 return;
11178 -- In an instance, there is an ongoing problem with completion of
11179 -- type derived from private types. Their structure is what Gigi
11180 -- expects, but the Etype is the parent type rather than the
11181 -- derived private type itself. Do not flag error in this case. The
11182 -- private completion is an entity without a parent, like an Itype.
11183 -- Similarly, full and partial views may be incorrect in the instance.
11184 -- There is no simple way to insure that it is consistent ???
11186 elsif In_Instance then
11187 if Etype (Etype (Expr)) = Etype (Expected_Type)
11188 and then
11189 (Has_Private_Declaration (Expected_Type)
11190 or else Has_Private_Declaration (Etype (Expr)))
11191 and then No (Parent (Expected_Type))
11192 then
11193 return;
11194 end if;
11195 end if;
11197 -- An interesting special check. If the expression is parenthesized
11198 -- and its type corresponds to the type of the sole component of the
11199 -- expected record type, or to the component type of the expected one
11200 -- dimensional array type, then assume we have a bad aggregate attempt.
11202 if Nkind (Expr) in N_Subexpr
11203 and then Paren_Count (Expr) /= 0
11204 and then Has_One_Matching_Field
11205 then
11206 Error_Msg_N ("positional aggregate cannot have one component", Expr);
11208 -- Another special check, if we are looking for a pool-specific access
11209 -- type and we found an E_Access_Attribute_Type, then we have the case
11210 -- of an Access attribute being used in a context which needs a pool-
11211 -- specific type, which is never allowed. The one extra check we make
11212 -- is that the expected designated type covers the Found_Type.
11214 elsif Is_Access_Type (Expec_Type)
11215 and then Ekind (Found_Type) = E_Access_Attribute_Type
11216 and then Ekind (Base_Type (Expec_Type)) /= E_General_Access_Type
11217 and then Ekind (Base_Type (Expec_Type)) /= E_Anonymous_Access_Type
11218 and then Covers
11219 (Designated_Type (Expec_Type), Designated_Type (Found_Type))
11220 then
11221 Error_Msg_N ("result must be general access type!", Expr);
11222 Error_Msg_NE ("add ALL to }!", Expr, Expec_Type);
11224 -- Another special check, if the expected type is an integer type,
11225 -- but the expression is of type System.Address, and the parent is
11226 -- an addition or subtraction operation whose left operand is the
11227 -- expression in question and whose right operand is of an integral
11228 -- type, then this is an attempt at address arithmetic, so give
11229 -- appropriate message.
11231 elsif Is_Integer_Type (Expec_Type)
11232 and then Is_RTE (Found_Type, RE_Address)
11233 and then (Nkind (Parent (Expr)) = N_Op_Add
11234 or else
11235 Nkind (Parent (Expr)) = N_Op_Subtract)
11236 and then Expr = Left_Opnd (Parent (Expr))
11237 and then Is_Integer_Type (Etype (Right_Opnd (Parent (Expr))))
11238 then
11239 Error_Msg_N
11240 ("address arithmetic not predefined in package System",
11241 Parent (Expr));
11242 Error_Msg_N
11243 ("\possible missing with/use of System.Storage_Elements",
11244 Parent (Expr));
11245 return;
11247 -- If the expected type is an anonymous access type, as for access
11248 -- parameters and discriminants, the error is on the designated types.
11250 elsif Ekind (Expec_Type) = E_Anonymous_Access_Type then
11251 if Comes_From_Source (Expec_Type) then
11252 Error_Msg_NE ("expected}!", Expr, Expec_Type);
11253 else
11254 Error_Msg_NE
11255 ("expected an access type with designated}",
11256 Expr, Designated_Type (Expec_Type));
11257 end if;
11259 if Is_Access_Type (Found_Type)
11260 and then not Comes_From_Source (Found_Type)
11261 then
11262 Error_Msg_NE
11263 ("\\found an access type with designated}!",
11264 Expr, Designated_Type (Found_Type));
11265 else
11266 if From_With_Type (Found_Type) then
11267 Error_Msg_NE ("\\found incomplete}!", Expr, Found_Type);
11268 Error_Msg_Qual_Level := 99;
11269 Error_Msg_NE ("\\missing `WITH &;", Expr, Scope (Found_Type));
11270 Error_Msg_Qual_Level := 0;
11271 else
11272 Error_Msg_NE ("found}!", Expr, Found_Type);
11273 end if;
11274 end if;
11276 -- Normal case of one type found, some other type expected
11278 else
11279 -- If the names of the two types are the same, see if some number
11280 -- of levels of qualification will help. Don't try more than three
11281 -- levels, and if we get to standard, it's no use (and probably
11282 -- represents an error in the compiler) Also do not bother with
11283 -- internal scope names.
11285 declare
11286 Expec_Scope : Entity_Id;
11287 Found_Scope : Entity_Id;
11289 begin
11290 Expec_Scope := Expec_Type;
11291 Found_Scope := Found_Type;
11293 for Levels in Int range 0 .. 3 loop
11294 if Chars (Expec_Scope) /= Chars (Found_Scope) then
11295 Error_Msg_Qual_Level := Levels;
11296 exit;
11297 end if;
11299 Expec_Scope := Scope (Expec_Scope);
11300 Found_Scope := Scope (Found_Scope);
11302 exit when Expec_Scope = Standard_Standard
11303 or else Found_Scope = Standard_Standard
11304 or else not Comes_From_Source (Expec_Scope)
11305 or else not Comes_From_Source (Found_Scope);
11306 end loop;
11307 end;
11309 if Is_Record_Type (Expec_Type)
11310 and then Present (Corresponding_Remote_Type (Expec_Type))
11311 then
11312 Error_Msg_NE ("expected}!", Expr,
11313 Corresponding_Remote_Type (Expec_Type));
11314 else
11315 Error_Msg_NE ("expected}!", Expr, Expec_Type);
11316 end if;
11318 if Is_Entity_Name (Expr)
11319 and then Is_Package_Or_Generic_Package (Entity (Expr))
11320 then
11321 Error_Msg_N ("\\found package name!", Expr);
11323 elsif Is_Entity_Name (Expr)
11324 and then
11325 (Ekind (Entity (Expr)) = E_Procedure
11326 or else
11327 Ekind (Entity (Expr)) = E_Generic_Procedure)
11328 then
11329 if Ekind (Expec_Type) = E_Access_Subprogram_Type then
11330 Error_Msg_N
11331 ("found procedure name, possibly missing Access attribute!",
11332 Expr);
11333 else
11334 Error_Msg_N
11335 ("\\found procedure name instead of function!", Expr);
11336 end if;
11338 elsif Nkind (Expr) = N_Function_Call
11339 and then Ekind (Expec_Type) = E_Access_Subprogram_Type
11340 and then Etype (Designated_Type (Expec_Type)) = Etype (Expr)
11341 and then No (Parameter_Associations (Expr))
11342 then
11343 Error_Msg_N
11344 ("found function name, possibly missing Access attribute!",
11345 Expr);
11347 -- Catch common error: a prefix or infix operator which is not
11348 -- directly visible because the type isn't.
11350 elsif Nkind (Expr) in N_Op
11351 and then Is_Overloaded (Expr)
11352 and then not Is_Immediately_Visible (Expec_Type)
11353 and then not Is_Potentially_Use_Visible (Expec_Type)
11354 and then not In_Use (Expec_Type)
11355 and then Has_Compatible_Type (Right_Opnd (Expr), Expec_Type)
11356 then
11357 Error_Msg_N
11358 ("operator of the type is not directly visible!", Expr);
11360 elsif Ekind (Found_Type) = E_Void
11361 and then Present (Parent (Found_Type))
11362 and then Nkind (Parent (Found_Type)) = N_Full_Type_Declaration
11363 then
11364 Error_Msg_NE ("\\found premature usage of}!", Expr, Found_Type);
11366 else
11367 Error_Msg_NE ("\\found}!", Expr, Found_Type);
11368 end if;
11370 -- A special check for cases like M1 and M2 = 0 where M1 and M2 are
11371 -- of the same modular type, and (M1 and M2) = 0 was intended.
11373 if Expec_Type = Standard_Boolean
11374 and then Is_Modular_Integer_Type (Found_Type)
11375 and then Nkind_In (Parent (Expr), N_Op_And, N_Op_Or, N_Op_Xor)
11376 and then Nkind (Right_Opnd (Parent (Expr))) in N_Op_Compare
11377 then
11378 declare
11379 Op : constant Node_Id := Right_Opnd (Parent (Expr));
11380 L : constant Node_Id := Left_Opnd (Op);
11381 R : constant Node_Id := Right_Opnd (Op);
11382 begin
11383 -- The case for the message is when the left operand of the
11384 -- comparison is the same modular type, or when it is an
11385 -- integer literal (or other universal integer expression),
11386 -- which would have been typed as the modular type if the
11387 -- parens had been there.
11389 if (Etype (L) = Found_Type
11390 or else
11391 Etype (L) = Universal_Integer)
11392 and then Is_Integer_Type (Etype (R))
11393 then
11394 Error_Msg_N
11395 ("\\possible missing parens for modular operation", Expr);
11396 end if;
11397 end;
11398 end if;
11400 -- Reset error message qualification indication
11402 Error_Msg_Qual_Level := 0;
11403 end if;
11404 end Wrong_Type;
11406 end Sem_Util;