fixing pr42337
[official-gcc.git] / gcc / ada / sem_res.adb
blob96a295cd218b6c56f9ca3b8eb100bd6e244776f0
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Exp_Tss; use Exp_Tss;
38 with Exp_Util; use Exp_Util;
39 with Fname; use Fname;
40 with Freeze; use Freeze;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Aggr; use Sem_Aggr;
55 with Sem_Attr; use Sem_Attr;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch4; use Sem_Ch4;
58 with Sem_Ch6; use Sem_Ch6;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Disp; use Sem_Disp;
62 with Sem_Dist; use Sem_Dist;
63 with Sem_Elim; use Sem_Elim;
64 with Sem_Elab; use Sem_Elab;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Intr; use Sem_Intr;
67 with Sem_Util; use Sem_Util;
68 with Sem_Type; use Sem_Type;
69 with Sem_Warn; use Sem_Warn;
70 with Sinfo; use Sinfo;
71 with Snames; use Snames;
72 with Stand; use Stand;
73 with Stringt; use Stringt;
74 with Style; use Style;
75 with Tbuild; use Tbuild;
76 with Uintp; use Uintp;
77 with Urealp; use Urealp;
79 package body Sem_Res is
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 -- Second pass (top-down) type checking and overload resolution procedures
86 -- Typ is the type required by context. These procedures propagate the
87 -- type information recursively to the descendants of N. If the node
88 -- is not overloaded, its Etype is established in the first pass. If
89 -- overloaded, the Resolve routines set the correct type. For arith.
90 -- operators, the Etype is the base type of the context.
92 -- Note that Resolve_Attribute is separated off in Sem_Attr
94 procedure Check_Discriminant_Use (N : Node_Id);
95 -- Enforce the restrictions on the use of discriminants when constraining
96 -- a component of a discriminated type (record or concurrent type).
98 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
99 -- Given a node for an operator associated with type T, check that
100 -- the operator is visible. Operators all of whose operands are
101 -- universal must be checked for visibility during resolution
102 -- because their type is not determinable based on their operands.
104 procedure Check_Fully_Declared_Prefix
105 (Typ : Entity_Id;
106 Pref : Node_Id);
107 -- Check that the type of the prefix of a dereference is not incomplete
109 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
110 -- Given a call node, N, which is known to occur immediately within the
111 -- subprogram being called, determines whether it is a detectable case of
112 -- an infinite recursion, and if so, outputs appropriate messages. Returns
113 -- True if an infinite recursion is detected, and False otherwise.
115 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
116 -- If the type of the object being initialized uses the secondary stack
117 -- directly or indirectly, create a transient scope for the call to the
118 -- init proc. This is because we do not create transient scopes for the
119 -- initialization of individual components within the init proc itself.
120 -- Could be optimized away perhaps?
122 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
123 -- N is the node for a logical operator. If the operator is predefined, and
124 -- the root type of the operands is Standard.Boolean, then a check is made
125 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
126 -- the style check for Style_Check_Boolean_And_Or.
128 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
129 -- Determine whether E is an access type declared by an access
130 -- declaration, and not an (anonymous) allocator type.
132 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
133 -- Utility to check whether the name in the call is a predefined
134 -- operator, in which case the call is made into an operator node.
135 -- An instance of an intrinsic conversion operation may be given
136 -- an operator name, but is not treated like an operator.
138 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
139 -- If a default expression in entry call N depends on the discriminants
140 -- of the task, it must be replaced with a reference to the discriminant
141 -- of the task being called.
143 procedure Resolve_Op_Concat_Arg
144 (N : Node_Id;
145 Arg : Node_Id;
146 Typ : Entity_Id;
147 Is_Comp : Boolean);
148 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
149 -- concatenation operator. The operand is either of the array type or of
150 -- the component type. If the operand is an aggregate, and the component
151 -- type is composite, this is ambiguous if component type has aggregates.
153 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
154 -- Does the first part of the work of Resolve_Op_Concat
156 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
157 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
158 -- has been resolved. See Resolve_Op_Concat for details.
160 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
161 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
162 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
163 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
164 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
165 procedure Resolve_Conditional_Expression (N : Node_Id; Typ : Entity_Id);
166 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
167 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
168 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
169 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
170 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
171 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
172 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
173 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
174 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
193 function Operator_Kind
194 (Op_Name : Name_Id;
195 Is_Binary : Boolean) return Node_Kind;
196 -- Utility to map the name of an operator into the corresponding Node. Used
197 -- by other node rewriting procedures.
199 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
200 -- Resolve actuals of call, and add default expressions for missing ones.
201 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
202 -- called subprogram.
204 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
205 -- Called from Resolve_Call, when the prefix denotes an entry or element
206 -- of entry family. Actuals are resolved as for subprograms, and the node
207 -- is rebuilt as an entry call. Also called for protected operations. Typ
208 -- is the context type, which is used when the operation is a protected
209 -- function with no arguments, and the return value is indexed.
211 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
212 -- A call to a user-defined intrinsic operator is rewritten as a call
213 -- to the corresponding predefined operator, with suitable conversions.
215 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
216 -- Ditto, for unary operators (only arithmetic ones)
218 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
219 -- If an operator node resolves to a call to a user-defined operator,
220 -- rewrite the node as a function call.
222 procedure Make_Call_Into_Operator
223 (N : Node_Id;
224 Typ : Entity_Id;
225 Op_Id : Entity_Id);
226 -- Inverse transformation: if an operator is given in functional notation,
227 -- then after resolving the node, transform into an operator node, so
228 -- that operands are resolved properly. Recall that predefined operators
229 -- do not have a full signature and special resolution rules apply.
231 procedure Rewrite_Renamed_Operator
232 (N : Node_Id;
233 Op : Entity_Id;
234 Typ : Entity_Id);
235 -- An operator can rename another, e.g. in an instantiation. In that
236 -- case, the proper operator node must be constructed and resolved.
238 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
239 -- The String_Literal_Subtype is built for all strings that are not
240 -- operands of a static concatenation operation. If the argument is
241 -- not a N_String_Literal node, then the call has no effect.
243 procedure Set_Slice_Subtype (N : Node_Id);
244 -- Build subtype of array type, with the range specified by the slice
246 procedure Simplify_Type_Conversion (N : Node_Id);
247 -- Called after N has been resolved and evaluated, but before range checks
248 -- have been applied. Currently simplifies a combination of floating-point
249 -- to integer conversion and Truncation attribute.
251 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
252 -- A universal_fixed expression in an universal context is unambiguous
253 -- if there is only one applicable fixed point type. Determining whether
254 -- there is only one requires a search over all visible entities, and
255 -- happens only in very pathological cases (see 6115-006).
257 function Valid_Conversion
258 (N : Node_Id;
259 Target : Entity_Id;
260 Operand : Node_Id) return Boolean;
261 -- Verify legality rules given in 4.6 (8-23). Target is the target
262 -- type of the conversion, which may be an implicit conversion of
263 -- an actual parameter to an anonymous access type (in which case
264 -- N denotes the actual parameter and N = Operand).
266 -------------------------
267 -- Ambiguous_Character --
268 -------------------------
270 procedure Ambiguous_Character (C : Node_Id) is
271 E : Entity_Id;
273 begin
274 if Nkind (C) = N_Character_Literal then
275 Error_Msg_N ("ambiguous character literal", C);
277 -- First the ones in Standard
279 Error_Msg_N
280 ("\\possible interpretation: Character!", C);
281 Error_Msg_N
282 ("\\possible interpretation: Wide_Character!", C);
284 -- Include Wide_Wide_Character in Ada 2005 mode
286 if Ada_Version >= Ada_05 then
287 Error_Msg_N
288 ("\\possible interpretation: Wide_Wide_Character!", C);
289 end if;
291 -- Now any other types that match
293 E := Current_Entity (C);
294 while Present (E) loop
295 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
296 E := Homonym (E);
297 end loop;
298 end if;
299 end Ambiguous_Character;
301 -------------------------
302 -- Analyze_And_Resolve --
303 -------------------------
305 procedure Analyze_And_Resolve (N : Node_Id) is
306 begin
307 Analyze (N);
308 Resolve (N);
309 end Analyze_And_Resolve;
311 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
312 begin
313 Analyze (N);
314 Resolve (N, Typ);
315 end Analyze_And_Resolve;
317 -- Version withs check(s) suppressed
319 procedure Analyze_And_Resolve
320 (N : Node_Id;
321 Typ : Entity_Id;
322 Suppress : Check_Id)
324 Scop : constant Entity_Id := Current_Scope;
326 begin
327 if Suppress = All_Checks then
328 declare
329 Svg : constant Suppress_Array := Scope_Suppress;
330 begin
331 Scope_Suppress := (others => True);
332 Analyze_And_Resolve (N, Typ);
333 Scope_Suppress := Svg;
334 end;
336 else
337 declare
338 Svg : constant Boolean := Scope_Suppress (Suppress);
340 begin
341 Scope_Suppress (Suppress) := True;
342 Analyze_And_Resolve (N, Typ);
343 Scope_Suppress (Suppress) := Svg;
344 end;
345 end if;
347 if Current_Scope /= Scop
348 and then Scope_Is_Transient
349 then
350 -- This can only happen if a transient scope was created
351 -- for an inner expression, which will be removed upon
352 -- completion of the analysis of an enclosing construct.
353 -- The transient scope must have the suppress status of
354 -- the enclosing environment, not of this Analyze call.
356 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
357 Scope_Suppress;
358 end if;
359 end Analyze_And_Resolve;
361 procedure Analyze_And_Resolve
362 (N : Node_Id;
363 Suppress : Check_Id)
365 Scop : constant Entity_Id := Current_Scope;
367 begin
368 if Suppress = All_Checks then
369 declare
370 Svg : constant Suppress_Array := Scope_Suppress;
371 begin
372 Scope_Suppress := (others => True);
373 Analyze_And_Resolve (N);
374 Scope_Suppress := Svg;
375 end;
377 else
378 declare
379 Svg : constant Boolean := Scope_Suppress (Suppress);
381 begin
382 Scope_Suppress (Suppress) := True;
383 Analyze_And_Resolve (N);
384 Scope_Suppress (Suppress) := Svg;
385 end;
386 end if;
388 if Current_Scope /= Scop
389 and then Scope_Is_Transient
390 then
391 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
392 Scope_Suppress;
393 end if;
394 end Analyze_And_Resolve;
396 ----------------------------
397 -- Check_Discriminant_Use --
398 ----------------------------
400 procedure Check_Discriminant_Use (N : Node_Id) is
401 PN : constant Node_Id := Parent (N);
402 Disc : constant Entity_Id := Entity (N);
403 P : Node_Id;
404 D : Node_Id;
406 begin
407 -- Any use in a spec-expression is legal
409 if In_Spec_Expression then
410 null;
412 elsif Nkind (PN) = N_Range then
414 -- Discriminant cannot be used to constrain a scalar type
416 P := Parent (PN);
418 if Nkind (P) = N_Range_Constraint
419 and then Nkind (Parent (P)) = N_Subtype_Indication
420 and then Nkind (Parent (Parent (P))) = N_Component_Definition
421 then
422 Error_Msg_N ("discriminant cannot constrain scalar type", N);
424 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
426 -- The following check catches the unusual case where
427 -- a discriminant appears within an index constraint
428 -- that is part of a larger expression within a constraint
429 -- on a component, e.g. "C : Int range 1 .. F (new A(1 .. D))".
430 -- For now we only check case of record components, and
431 -- note that a similar check should also apply in the
432 -- case of discriminant constraints below. ???
434 -- Note that the check for N_Subtype_Declaration below is to
435 -- detect the valid use of discriminants in the constraints of a
436 -- subtype declaration when this subtype declaration appears
437 -- inside the scope of a record type (which is syntactically
438 -- illegal, but which may be created as part of derived type
439 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
440 -- for more info.
442 if Ekind (Current_Scope) = E_Record_Type
443 and then Scope (Disc) = Current_Scope
444 and then not
445 (Nkind (Parent (P)) = N_Subtype_Indication
446 and then
447 Nkind_In (Parent (Parent (P)), N_Component_Definition,
448 N_Subtype_Declaration)
449 and then Paren_Count (N) = 0)
450 then
451 Error_Msg_N
452 ("discriminant must appear alone in component constraint", N);
453 return;
454 end if;
456 -- Detect a common error:
458 -- type R (D : Positive := 100) is record
459 -- Name : String (1 .. D);
460 -- end record;
462 -- The default value causes an object of type R to be allocated
463 -- with room for Positive'Last characters. The RM does not mandate
464 -- the allocation of the maximum size, but that is what GNAT does
465 -- so we should warn the programmer that there is a problem.
467 Check_Large : declare
468 SI : Node_Id;
469 T : Entity_Id;
470 TB : Node_Id;
471 CB : Entity_Id;
473 function Large_Storage_Type (T : Entity_Id) return Boolean;
474 -- Return True if type T has a large enough range that
475 -- any array whose index type covered the whole range of
476 -- the type would likely raise Storage_Error.
478 ------------------------
479 -- Large_Storage_Type --
480 ------------------------
482 function Large_Storage_Type (T : Entity_Id) return Boolean is
483 begin
484 -- The type is considered large if its bounds are known at
485 -- compile time and if it requires at least as many bits as
486 -- a Positive to store the possible values.
488 return Compile_Time_Known_Value (Type_Low_Bound (T))
489 and then Compile_Time_Known_Value (Type_High_Bound (T))
490 and then
491 Minimum_Size (T, Biased => True) >=
492 RM_Size (Standard_Positive);
493 end Large_Storage_Type;
495 -- Start of processing for Check_Large
497 begin
498 -- Check that the Disc has a large range
500 if not Large_Storage_Type (Etype (Disc)) then
501 goto No_Danger;
502 end if;
504 -- If the enclosing type is limited, we allocate only the
505 -- default value, not the maximum, and there is no need for
506 -- a warning.
508 if Is_Limited_Type (Scope (Disc)) then
509 goto No_Danger;
510 end if;
512 -- Check that it is the high bound
514 if N /= High_Bound (PN)
515 or else No (Discriminant_Default_Value (Disc))
516 then
517 goto No_Danger;
518 end if;
520 -- Check the array allows a large range at this bound.
521 -- First find the array
523 SI := Parent (P);
525 if Nkind (SI) /= N_Subtype_Indication then
526 goto No_Danger;
527 end if;
529 T := Entity (Subtype_Mark (SI));
531 if not Is_Array_Type (T) then
532 goto No_Danger;
533 end if;
535 -- Next, find the dimension
537 TB := First_Index (T);
538 CB := First (Constraints (P));
539 while True
540 and then Present (TB)
541 and then Present (CB)
542 and then CB /= PN
543 loop
544 Next_Index (TB);
545 Next (CB);
546 end loop;
548 if CB /= PN then
549 goto No_Danger;
550 end if;
552 -- Now, check the dimension has a large range
554 if not Large_Storage_Type (Etype (TB)) then
555 goto No_Danger;
556 end if;
558 -- Warn about the danger
560 Error_Msg_N
561 ("?creation of & object may raise Storage_Error!",
562 Scope (Disc));
564 <<No_Danger>>
565 null;
567 end Check_Large;
568 end if;
570 -- Legal case is in index or discriminant constraint
572 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
573 N_Discriminant_Association)
574 then
575 if Paren_Count (N) > 0 then
576 Error_Msg_N
577 ("discriminant in constraint must appear alone", N);
579 elsif Nkind (N) = N_Expanded_Name
580 and then Comes_From_Source (N)
581 then
582 Error_Msg_N
583 ("discriminant must appear alone as a direct name", N);
584 end if;
586 return;
588 -- Otherwise, context is an expression. It should not be within
589 -- (i.e. a subexpression of) a constraint for a component.
591 else
592 D := PN;
593 P := Parent (PN);
594 while not Nkind_In (P, N_Component_Declaration,
595 N_Subtype_Indication,
596 N_Entry_Declaration)
597 loop
598 D := P;
599 P := Parent (P);
600 exit when No (P);
601 end loop;
603 -- If the discriminant is used in an expression that is a bound
604 -- of a scalar type, an Itype is created and the bounds are attached
605 -- to its range, not to the original subtype indication. Such use
606 -- is of course a double fault.
608 if (Nkind (P) = N_Subtype_Indication
609 and then Nkind_In (Parent (P), N_Component_Definition,
610 N_Derived_Type_Definition)
611 and then D = Constraint (P))
613 -- The constraint itself may be given by a subtype indication,
614 -- rather than by a more common discrete range.
616 or else (Nkind (P) = N_Subtype_Indication
617 and then
618 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
619 or else Nkind (P) = N_Entry_Declaration
620 or else Nkind (D) = N_Defining_Identifier
621 then
622 Error_Msg_N
623 ("discriminant in constraint must appear alone", N);
624 end if;
625 end if;
626 end Check_Discriminant_Use;
628 --------------------------------
629 -- Check_For_Visible_Operator --
630 --------------------------------
632 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
633 begin
634 if Is_Invisible_Operator (N, T) then
635 Error_Msg_NE
636 ("operator for} is not directly visible!", N, First_Subtype (T));
637 Error_Msg_N ("use clause would make operation legal!", N);
638 end if;
639 end Check_For_Visible_Operator;
641 ----------------------------------
642 -- Check_Fully_Declared_Prefix --
643 ----------------------------------
645 procedure Check_Fully_Declared_Prefix
646 (Typ : Entity_Id;
647 Pref : Node_Id)
649 begin
650 -- Check that the designated type of the prefix of a dereference is
651 -- not an incomplete type. This cannot be done unconditionally, because
652 -- dereferences of private types are legal in default expressions. This
653 -- case is taken care of in Check_Fully_Declared, called below. There
654 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
656 -- This consideration also applies to similar checks for allocators,
657 -- qualified expressions, and type conversions.
659 -- An additional exception concerns other per-object expressions that
660 -- are not directly related to component declarations, in particular
661 -- representation pragmas for tasks. These will be per-object
662 -- expressions if they depend on discriminants or some global entity.
663 -- If the task has access discriminants, the designated type may be
664 -- incomplete at the point the expression is resolved. This resolution
665 -- takes place within the body of the initialization procedure, where
666 -- the discriminant is replaced by its discriminal.
668 if Is_Entity_Name (Pref)
669 and then Ekind (Entity (Pref)) = E_In_Parameter
670 then
671 null;
673 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
674 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
675 -- Analyze_Object_Renaming, and Freeze_Entity.
677 elsif Ada_Version >= Ada_05
678 and then Is_Entity_Name (Pref)
679 and then Is_Access_Type (Etype (Pref))
680 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
681 E_Incomplete_Type
682 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
683 then
684 null;
685 else
686 Check_Fully_Declared (Typ, Parent (Pref));
687 end if;
688 end Check_Fully_Declared_Prefix;
690 ------------------------------
691 -- Check_Infinite_Recursion --
692 ------------------------------
694 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
695 P : Node_Id;
696 C : Node_Id;
698 function Same_Argument_List return Boolean;
699 -- Check whether list of actuals is identical to list of formals
700 -- of called function (which is also the enclosing scope).
702 ------------------------
703 -- Same_Argument_List --
704 ------------------------
706 function Same_Argument_List return Boolean is
707 A : Node_Id;
708 F : Entity_Id;
709 Subp : Entity_Id;
711 begin
712 if not Is_Entity_Name (Name (N)) then
713 return False;
714 else
715 Subp := Entity (Name (N));
716 end if;
718 F := First_Formal (Subp);
719 A := First_Actual (N);
720 while Present (F) and then Present (A) loop
721 if not Is_Entity_Name (A)
722 or else Entity (A) /= F
723 then
724 return False;
725 end if;
727 Next_Actual (A);
728 Next_Formal (F);
729 end loop;
731 return True;
732 end Same_Argument_List;
734 -- Start of processing for Check_Infinite_Recursion
736 begin
737 -- Special case, if this is a procedure call and is a call to the
738 -- current procedure with the same argument list, then this is for
739 -- sure an infinite recursion and we insert a call to raise SE.
741 if Is_List_Member (N)
742 and then List_Length (List_Containing (N)) = 1
743 and then Same_Argument_List
744 then
745 declare
746 P : constant Node_Id := Parent (N);
747 begin
748 if Nkind (P) = N_Handled_Sequence_Of_Statements
749 and then Nkind (Parent (P)) = N_Subprogram_Body
750 and then Is_Empty_List (Declarations (Parent (P)))
751 then
752 Error_Msg_N ("!?infinite recursion", N);
753 Error_Msg_N ("\!?Storage_Error will be raised at run time", N);
754 Insert_Action (N,
755 Make_Raise_Storage_Error (Sloc (N),
756 Reason => SE_Infinite_Recursion));
757 return True;
758 end if;
759 end;
760 end if;
762 -- If not that special case, search up tree, quitting if we reach a
763 -- construct (e.g. a conditional) that tells us that this is not a
764 -- case for an infinite recursion warning.
766 C := N;
767 loop
768 P := Parent (C);
770 -- If no parent, then we were not inside a subprogram, this can for
771 -- example happen when processing certain pragmas in a spec. Just
772 -- return False in this case.
774 if No (P) then
775 return False;
776 end if;
778 -- Done if we get to subprogram body, this is definitely an infinite
779 -- recursion case if we did not find anything to stop us.
781 exit when Nkind (P) = N_Subprogram_Body;
783 -- If appearing in conditional, result is false
785 if Nkind_In (P, N_Or_Else,
786 N_And_Then,
787 N_If_Statement,
788 N_Case_Statement)
789 then
790 return False;
792 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
793 and then C /= First (Statements (P))
794 then
795 -- If the call is the expression of a return statement and the
796 -- actuals are identical to the formals, it's worth a warning.
797 -- However, we skip this if there is an immediately preceding
798 -- raise statement, since the call is never executed.
800 -- Furthermore, this corresponds to a common idiom:
802 -- function F (L : Thing) return Boolean is
803 -- begin
804 -- raise Program_Error;
805 -- return F (L);
806 -- end F;
808 -- for generating a stub function
810 if Nkind (Parent (N)) = N_Simple_Return_Statement
811 and then Same_Argument_List
812 then
813 exit when not Is_List_Member (Parent (N));
815 -- OK, return statement is in a statement list, look for raise
817 declare
818 Nod : Node_Id;
820 begin
821 -- Skip past N_Freeze_Entity nodes generated by expansion
823 Nod := Prev (Parent (N));
824 while Present (Nod)
825 and then Nkind (Nod) = N_Freeze_Entity
826 loop
827 Prev (Nod);
828 end loop;
830 -- If no raise statement, give warning
832 exit when Nkind (Nod) /= N_Raise_Statement
833 and then
834 (Nkind (Nod) not in N_Raise_xxx_Error
835 or else Present (Condition (Nod)));
836 end;
837 end if;
839 return False;
841 else
842 C := P;
843 end if;
844 end loop;
846 Error_Msg_N ("!?possible infinite recursion", N);
847 Error_Msg_N ("\!?Storage_Error may be raised at run time", N);
849 return True;
850 end Check_Infinite_Recursion;
852 -------------------------------
853 -- Check_Initialization_Call --
854 -------------------------------
856 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
857 Typ : constant Entity_Id := Etype (First_Formal (Nam));
859 function Uses_SS (T : Entity_Id) return Boolean;
860 -- Check whether the creation of an object of the type will involve
861 -- use of the secondary stack. If T is a record type, this is true
862 -- if the expression for some component uses the secondary stack, e.g.
863 -- through a call to a function that returns an unconstrained value.
864 -- False if T is controlled, because cleanups occur elsewhere.
866 -------------
867 -- Uses_SS --
868 -------------
870 function Uses_SS (T : Entity_Id) return Boolean is
871 Comp : Entity_Id;
872 Expr : Node_Id;
873 Full_Type : Entity_Id := Underlying_Type (T);
875 begin
876 -- Normally we want to use the underlying type, but if it's not set
877 -- then continue with T.
879 if not Present (Full_Type) then
880 Full_Type := T;
881 end if;
883 if Is_Controlled (Full_Type) then
884 return False;
886 elsif Is_Array_Type (Full_Type) then
887 return Uses_SS (Component_Type (Full_Type));
889 elsif Is_Record_Type (Full_Type) then
890 Comp := First_Component (Full_Type);
891 while Present (Comp) loop
892 if Ekind (Comp) = E_Component
893 and then Nkind (Parent (Comp)) = N_Component_Declaration
894 then
895 -- The expression for a dynamic component may be rewritten
896 -- as a dereference, so retrieve original node.
898 Expr := Original_Node (Expression (Parent (Comp)));
900 -- Return True if the expression is a call to a function
901 -- (including an attribute function such as Image) with
902 -- a result that requires a transient scope.
904 if (Nkind (Expr) = N_Function_Call
905 or else (Nkind (Expr) = N_Attribute_Reference
906 and then Present (Expressions (Expr))))
907 and then Requires_Transient_Scope (Etype (Expr))
908 then
909 return True;
911 elsif Uses_SS (Etype (Comp)) then
912 return True;
913 end if;
914 end if;
916 Next_Component (Comp);
917 end loop;
919 return False;
921 else
922 return False;
923 end if;
924 end Uses_SS;
926 -- Start of processing for Check_Initialization_Call
928 begin
929 -- Establish a transient scope if the type needs it
931 if Uses_SS (Typ) then
932 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
933 end if;
934 end Check_Initialization_Call;
936 ---------------------------------------
937 -- Check_No_Direct_Boolean_Operators --
938 ---------------------------------------
940 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
941 begin
942 if Scope (Entity (N)) = Standard_Standard
943 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
944 then
945 -- Restriction only applies to original source code
947 if Comes_From_Source (N) then
948 Check_Restriction (No_Direct_Boolean_Operators, N);
949 end if;
950 end if;
952 if Style_Check then
953 Check_Boolean_Operator (N);
954 end if;
955 end Check_No_Direct_Boolean_Operators;
957 ------------------------------
958 -- Check_Parameterless_Call --
959 ------------------------------
961 procedure Check_Parameterless_Call (N : Node_Id) is
962 Nam : Node_Id;
964 function Prefix_Is_Access_Subp return Boolean;
965 -- If the prefix is of an access_to_subprogram type, the node must be
966 -- rewritten as a call. Ditto if the prefix is overloaded and all its
967 -- interpretations are access to subprograms.
969 ---------------------------
970 -- Prefix_Is_Access_Subp --
971 ---------------------------
973 function Prefix_Is_Access_Subp return Boolean is
974 I : Interp_Index;
975 It : Interp;
977 begin
978 if not Is_Overloaded (N) then
979 return
980 Ekind (Etype (N)) = E_Subprogram_Type
981 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
982 else
983 Get_First_Interp (N, I, It);
984 while Present (It.Typ) loop
985 if Ekind (It.Typ) /= E_Subprogram_Type
986 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
987 then
988 return False;
989 end if;
991 Get_Next_Interp (I, It);
992 end loop;
994 return True;
995 end if;
996 end Prefix_Is_Access_Subp;
998 -- Start of processing for Check_Parameterless_Call
1000 begin
1001 -- Defend against junk stuff if errors already detected
1003 if Total_Errors_Detected /= 0 then
1004 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1005 return;
1006 elsif Nkind (N) in N_Has_Chars
1007 and then Chars (N) in Error_Name_Or_No_Name
1008 then
1009 return;
1010 end if;
1012 Require_Entity (N);
1013 end if;
1015 -- If the context expects a value, and the name is a procedure, this is
1016 -- most likely a missing 'Access. Don't try to resolve the parameterless
1017 -- call, error will be caught when the outer call is analyzed.
1019 if Is_Entity_Name (N)
1020 and then Ekind (Entity (N)) = E_Procedure
1021 and then not Is_Overloaded (N)
1022 and then
1023 Nkind_In (Parent (N), N_Parameter_Association,
1024 N_Function_Call,
1025 N_Procedure_Call_Statement)
1026 then
1027 return;
1028 end if;
1030 -- Rewrite as call if overloadable entity that is (or could be, in the
1031 -- overloaded case) a function call. If we know for sure that the entity
1032 -- is an enumeration literal, we do not rewrite it.
1034 if (Is_Entity_Name (N)
1035 and then Is_Overloadable (Entity (N))
1036 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1037 or else Is_Overloaded (N)))
1039 -- Rewrite as call if it is an explicit dereference of an expression of
1040 -- a subprogram access type, and the subprogram type is not that of a
1041 -- procedure or entry.
1043 or else
1044 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1046 -- Rewrite as call if it is a selected component which is a function,
1047 -- this is the case of a call to a protected function (which may be
1048 -- overloaded with other protected operations).
1050 or else
1051 (Nkind (N) = N_Selected_Component
1052 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1053 or else
1054 ((Ekind (Entity (Selector_Name (N))) = E_Entry
1055 or else
1056 Ekind (Entity (Selector_Name (N))) = E_Procedure)
1057 and then Is_Overloaded (Selector_Name (N)))))
1059 -- If one of the above three conditions is met, rewrite as call.
1060 -- Apply the rewriting only once.
1062 then
1063 if Nkind (Parent (N)) /= N_Function_Call
1064 or else N /= Name (Parent (N))
1065 then
1066 Nam := New_Copy (N);
1068 -- If overloaded, overload set belongs to new copy
1070 Save_Interps (N, Nam);
1072 -- Change node to parameterless function call (note that the
1073 -- Parameter_Associations associations field is left set to Empty,
1074 -- its normal default value since there are no parameters)
1076 Change_Node (N, N_Function_Call);
1077 Set_Name (N, Nam);
1078 Set_Sloc (N, Sloc (Nam));
1079 Analyze_Call (N);
1080 end if;
1082 elsif Nkind (N) = N_Parameter_Association then
1083 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1084 end if;
1085 end Check_Parameterless_Call;
1087 -----------------------------
1088 -- Is_Definite_Access_Type --
1089 -----------------------------
1091 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1092 Btyp : constant Entity_Id := Base_Type (E);
1093 begin
1094 return Ekind (Btyp) = E_Access_Type
1095 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1096 and then Comes_From_Source (Btyp));
1097 end Is_Definite_Access_Type;
1099 ----------------------
1100 -- Is_Predefined_Op --
1101 ----------------------
1103 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1104 begin
1105 return Is_Intrinsic_Subprogram (Nam)
1106 and then not Is_Generic_Instance (Nam)
1107 and then Chars (Nam) in Any_Operator_Name
1108 and then (No (Alias (Nam))
1109 or else Is_Predefined_Op (Alias (Nam)));
1110 end Is_Predefined_Op;
1112 -----------------------------
1113 -- Make_Call_Into_Operator --
1114 -----------------------------
1116 procedure Make_Call_Into_Operator
1117 (N : Node_Id;
1118 Typ : Entity_Id;
1119 Op_Id : Entity_Id)
1121 Op_Name : constant Name_Id := Chars (Op_Id);
1122 Act1 : Node_Id := First_Actual (N);
1123 Act2 : Node_Id := Next_Actual (Act1);
1124 Error : Boolean := False;
1125 Func : constant Entity_Id := Entity (Name (N));
1126 Is_Binary : constant Boolean := Present (Act2);
1127 Op_Node : Node_Id;
1128 Opnd_Type : Entity_Id;
1129 Orig_Type : Entity_Id := Empty;
1130 Pack : Entity_Id;
1132 type Kind_Test is access function (E : Entity_Id) return Boolean;
1134 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1135 -- If the operand is not universal, and the operator is given by a
1136 -- expanded name, verify that the operand has an interpretation with
1137 -- a type defined in the given scope of the operator.
1139 function Type_In_P (Test : Kind_Test) return Entity_Id;
1140 -- Find a type of the given class in the package Pack that contains
1141 -- the operator.
1143 ---------------------------
1144 -- Operand_Type_In_Scope --
1145 ---------------------------
1147 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1148 Nod : constant Node_Id := Right_Opnd (Op_Node);
1149 I : Interp_Index;
1150 It : Interp;
1152 begin
1153 if not Is_Overloaded (Nod) then
1154 return Scope (Base_Type (Etype (Nod))) = S;
1156 else
1157 Get_First_Interp (Nod, I, It);
1158 while Present (It.Typ) loop
1159 if Scope (Base_Type (It.Typ)) = S then
1160 return True;
1161 end if;
1163 Get_Next_Interp (I, It);
1164 end loop;
1166 return False;
1167 end if;
1168 end Operand_Type_In_Scope;
1170 ---------------
1171 -- Type_In_P --
1172 ---------------
1174 function Type_In_P (Test : Kind_Test) return Entity_Id is
1175 E : Entity_Id;
1177 function In_Decl return Boolean;
1178 -- Verify that node is not part of the type declaration for the
1179 -- candidate type, which would otherwise be invisible.
1181 -------------
1182 -- In_Decl --
1183 -------------
1185 function In_Decl return Boolean is
1186 Decl_Node : constant Node_Id := Parent (E);
1187 N2 : Node_Id;
1189 begin
1190 N2 := N;
1192 if Etype (E) = Any_Type then
1193 return True;
1195 elsif No (Decl_Node) then
1196 return False;
1198 else
1199 while Present (N2)
1200 and then Nkind (N2) /= N_Compilation_Unit
1201 loop
1202 if N2 = Decl_Node then
1203 return True;
1204 else
1205 N2 := Parent (N2);
1206 end if;
1207 end loop;
1209 return False;
1210 end if;
1211 end In_Decl;
1213 -- Start of processing for Type_In_P
1215 begin
1216 -- If the context type is declared in the prefix package, this
1217 -- is the desired base type.
1219 if Scope (Base_Type (Typ)) = Pack
1220 and then Test (Typ)
1221 then
1222 return Base_Type (Typ);
1224 else
1225 E := First_Entity (Pack);
1226 while Present (E) loop
1227 if Test (E)
1228 and then not In_Decl
1229 then
1230 return E;
1231 end if;
1233 Next_Entity (E);
1234 end loop;
1236 return Empty;
1237 end if;
1238 end Type_In_P;
1240 -- Start of processing for Make_Call_Into_Operator
1242 begin
1243 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1245 -- Binary operator
1247 if Is_Binary then
1248 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1249 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1250 Save_Interps (Act1, Left_Opnd (Op_Node));
1251 Save_Interps (Act2, Right_Opnd (Op_Node));
1252 Act1 := Left_Opnd (Op_Node);
1253 Act2 := Right_Opnd (Op_Node);
1255 -- Unary operator
1257 else
1258 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1259 Save_Interps (Act1, Right_Opnd (Op_Node));
1260 Act1 := Right_Opnd (Op_Node);
1261 end if;
1263 -- If the operator is denoted by an expanded name, and the prefix is
1264 -- not Standard, but the operator is a predefined one whose scope is
1265 -- Standard, then this is an implicit_operator, inserted as an
1266 -- interpretation by the procedure of the same name. This procedure
1267 -- overestimates the presence of implicit operators, because it does
1268 -- not examine the type of the operands. Verify now that the operand
1269 -- type appears in the given scope. If right operand is universal,
1270 -- check the other operand. In the case of concatenation, either
1271 -- argument can be the component type, so check the type of the result.
1272 -- If both arguments are literals, look for a type of the right kind
1273 -- defined in the given scope. This elaborate nonsense is brought to
1274 -- you courtesy of b33302a. The type itself must be frozen, so we must
1275 -- find the type of the proper class in the given scope.
1277 -- A final wrinkle is the multiplication operator for fixed point
1278 -- types, which is defined in Standard only, and not in the scope of
1279 -- the fixed_point type itself.
1281 if Nkind (Name (N)) = N_Expanded_Name then
1282 Pack := Entity (Prefix (Name (N)));
1284 -- If the entity being called is defined in the given package,
1285 -- it is a renaming of a predefined operator, and known to be
1286 -- legal.
1288 if Scope (Entity (Name (N))) = Pack
1289 and then Pack /= Standard_Standard
1290 then
1291 null;
1293 -- Visibility does not need to be checked in an instance: if the
1294 -- operator was not visible in the generic it has been diagnosed
1295 -- already, else there is an implicit copy of it in the instance.
1297 elsif In_Instance then
1298 null;
1300 elsif (Op_Name = Name_Op_Multiply
1301 or else Op_Name = Name_Op_Divide)
1302 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1303 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1304 then
1305 if Pack /= Standard_Standard then
1306 Error := True;
1307 end if;
1309 -- Ada 2005, AI-420: Predefined equality on Universal_Access
1310 -- is available.
1312 elsif Ada_Version >= Ada_05
1313 and then (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1314 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1315 then
1316 null;
1318 else
1319 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1321 if Op_Name = Name_Op_Concat then
1322 Opnd_Type := Base_Type (Typ);
1324 elsif (Scope (Opnd_Type) = Standard_Standard
1325 and then Is_Binary)
1326 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1327 and then Is_Binary
1328 and then not Comes_From_Source (Opnd_Type))
1329 then
1330 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1331 end if;
1333 if Scope (Opnd_Type) = Standard_Standard then
1335 -- Verify that the scope contains a type that corresponds to
1336 -- the given literal. Optimize the case where Pack is Standard.
1338 if Pack /= Standard_Standard then
1340 if Opnd_Type = Universal_Integer then
1341 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1343 elsif Opnd_Type = Universal_Real then
1344 Orig_Type := Type_In_P (Is_Real_Type'Access);
1346 elsif Opnd_Type = Any_String then
1347 Orig_Type := Type_In_P (Is_String_Type'Access);
1349 elsif Opnd_Type = Any_Access then
1350 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1352 elsif Opnd_Type = Any_Composite then
1353 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1355 if Present (Orig_Type) then
1356 if Has_Private_Component (Orig_Type) then
1357 Orig_Type := Empty;
1358 else
1359 Set_Etype (Act1, Orig_Type);
1361 if Is_Binary then
1362 Set_Etype (Act2, Orig_Type);
1363 end if;
1364 end if;
1365 end if;
1367 else
1368 Orig_Type := Empty;
1369 end if;
1371 Error := No (Orig_Type);
1372 end if;
1374 elsif Ekind (Opnd_Type) = E_Allocator_Type
1375 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1376 then
1377 Error := True;
1379 -- If the type is defined elsewhere, and the operator is not
1380 -- defined in the given scope (by a renaming declaration, e.g.)
1381 -- then this is an error as well. If an extension of System is
1382 -- present, and the type may be defined there, Pack must be
1383 -- System itself.
1385 elsif Scope (Opnd_Type) /= Pack
1386 and then Scope (Op_Id) /= Pack
1387 and then (No (System_Aux_Id)
1388 or else Scope (Opnd_Type) /= System_Aux_Id
1389 or else Pack /= Scope (System_Aux_Id))
1390 then
1391 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1392 Error := True;
1393 else
1394 Error := not Operand_Type_In_Scope (Pack);
1395 end if;
1397 elsif Pack = Standard_Standard
1398 and then not Operand_Type_In_Scope (Standard_Standard)
1399 then
1400 Error := True;
1401 end if;
1402 end if;
1404 if Error then
1405 Error_Msg_Node_2 := Pack;
1406 Error_Msg_NE
1407 ("& not declared in&", N, Selector_Name (Name (N)));
1408 Set_Etype (N, Any_Type);
1409 return;
1410 end if;
1411 end if;
1413 Set_Chars (Op_Node, Op_Name);
1415 if not Is_Private_Type (Etype (N)) then
1416 Set_Etype (Op_Node, Base_Type (Etype (N)));
1417 else
1418 Set_Etype (Op_Node, Etype (N));
1419 end if;
1421 -- If this is a call to a function that renames a predefined equality,
1422 -- the renaming declaration provides a type that must be used to
1423 -- resolve the operands. This must be done now because resolution of
1424 -- the equality node will not resolve any remaining ambiguity, and it
1425 -- assumes that the first operand is not overloaded.
1427 if (Op_Name = Name_Op_Eq or else Op_Name = Name_Op_Ne)
1428 and then Ekind (Func) = E_Function
1429 and then Is_Overloaded (Act1)
1430 then
1431 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1432 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1433 end if;
1435 Set_Entity (Op_Node, Op_Id);
1436 Generate_Reference (Op_Id, N, ' ');
1438 -- Do rewrite setting Comes_From_Source on the result if the original
1439 -- call came from source. Although it is not strictly the case that the
1440 -- operator as such comes from the source, logically it corresponds
1441 -- exactly to the function call in the source, so it should be marked
1442 -- this way (e.g. to make sure that validity checks work fine).
1444 declare
1445 CS : constant Boolean := Comes_From_Source (N);
1446 begin
1447 Rewrite (N, Op_Node);
1448 Set_Comes_From_Source (N, CS);
1449 end;
1451 -- If this is an arithmetic operator and the result type is private,
1452 -- the operands and the result must be wrapped in conversion to
1453 -- expose the underlying numeric type and expand the proper checks,
1454 -- e.g. on division.
1456 if Is_Private_Type (Typ) then
1457 case Nkind (N) is
1458 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1459 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
1460 Resolve_Intrinsic_Operator (N, Typ);
1462 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
1463 Resolve_Intrinsic_Unary_Operator (N, Typ);
1465 when others =>
1466 Resolve (N, Typ);
1467 end case;
1468 else
1469 Resolve (N, Typ);
1470 end if;
1472 -- For predefined operators on literals, the operation freezes
1473 -- their type.
1475 if Present (Orig_Type) then
1476 Set_Etype (Act1, Orig_Type);
1477 Freeze_Expression (Act1);
1478 end if;
1479 end Make_Call_Into_Operator;
1481 -------------------
1482 -- Operator_Kind --
1483 -------------------
1485 function Operator_Kind
1486 (Op_Name : Name_Id;
1487 Is_Binary : Boolean) return Node_Kind
1489 Kind : Node_Kind;
1491 begin
1492 if Is_Binary then
1493 if Op_Name = Name_Op_And then
1494 Kind := N_Op_And;
1495 elsif Op_Name = Name_Op_Or then
1496 Kind := N_Op_Or;
1497 elsif Op_Name = Name_Op_Xor then
1498 Kind := N_Op_Xor;
1499 elsif Op_Name = Name_Op_Eq then
1500 Kind := N_Op_Eq;
1501 elsif Op_Name = Name_Op_Ne then
1502 Kind := N_Op_Ne;
1503 elsif Op_Name = Name_Op_Lt then
1504 Kind := N_Op_Lt;
1505 elsif Op_Name = Name_Op_Le then
1506 Kind := N_Op_Le;
1507 elsif Op_Name = Name_Op_Gt then
1508 Kind := N_Op_Gt;
1509 elsif Op_Name = Name_Op_Ge then
1510 Kind := N_Op_Ge;
1511 elsif Op_Name = Name_Op_Add then
1512 Kind := N_Op_Add;
1513 elsif Op_Name = Name_Op_Subtract then
1514 Kind := N_Op_Subtract;
1515 elsif Op_Name = Name_Op_Concat then
1516 Kind := N_Op_Concat;
1517 elsif Op_Name = Name_Op_Multiply then
1518 Kind := N_Op_Multiply;
1519 elsif Op_Name = Name_Op_Divide then
1520 Kind := N_Op_Divide;
1521 elsif Op_Name = Name_Op_Mod then
1522 Kind := N_Op_Mod;
1523 elsif Op_Name = Name_Op_Rem then
1524 Kind := N_Op_Rem;
1525 elsif Op_Name = Name_Op_Expon then
1526 Kind := N_Op_Expon;
1527 else
1528 raise Program_Error;
1529 end if;
1531 -- Unary operators
1533 else
1534 if Op_Name = Name_Op_Add then
1535 Kind := N_Op_Plus;
1536 elsif Op_Name = Name_Op_Subtract then
1537 Kind := N_Op_Minus;
1538 elsif Op_Name = Name_Op_Abs then
1539 Kind := N_Op_Abs;
1540 elsif Op_Name = Name_Op_Not then
1541 Kind := N_Op_Not;
1542 else
1543 raise Program_Error;
1544 end if;
1545 end if;
1547 return Kind;
1548 end Operator_Kind;
1550 ----------------------------
1551 -- Preanalyze_And_Resolve --
1552 ----------------------------
1554 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1555 Save_Full_Analysis : constant Boolean := Full_Analysis;
1557 begin
1558 Full_Analysis := False;
1559 Expander_Mode_Save_And_Set (False);
1561 -- We suppress all checks for this analysis, since the checks will
1562 -- be applied properly, and in the right location, when the default
1563 -- expression is reanalyzed and reexpanded later on.
1565 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1567 Expander_Mode_Restore;
1568 Full_Analysis := Save_Full_Analysis;
1569 end Preanalyze_And_Resolve;
1571 -- Version without context type
1573 procedure Preanalyze_And_Resolve (N : Node_Id) is
1574 Save_Full_Analysis : constant Boolean := Full_Analysis;
1576 begin
1577 Full_Analysis := False;
1578 Expander_Mode_Save_And_Set (False);
1580 Analyze (N);
1581 Resolve (N, Etype (N), Suppress => All_Checks);
1583 Expander_Mode_Restore;
1584 Full_Analysis := Save_Full_Analysis;
1585 end Preanalyze_And_Resolve;
1587 ----------------------------------
1588 -- Replace_Actual_Discriminants --
1589 ----------------------------------
1591 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1592 Loc : constant Source_Ptr := Sloc (N);
1593 Tsk : Node_Id := Empty;
1595 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1597 -------------------
1598 -- Process_Discr --
1599 -------------------
1601 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1602 Ent : Entity_Id;
1604 begin
1605 if Nkind (Nod) = N_Identifier then
1606 Ent := Entity (Nod);
1608 if Present (Ent)
1609 and then Ekind (Ent) = E_Discriminant
1610 then
1611 Rewrite (Nod,
1612 Make_Selected_Component (Loc,
1613 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1614 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1616 Set_Etype (Nod, Etype (Ent));
1617 end if;
1619 end if;
1621 return OK;
1622 end Process_Discr;
1624 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1626 -- Start of processing for Replace_Actual_Discriminants
1628 begin
1629 if not Expander_Active then
1630 return;
1631 end if;
1633 if Nkind (Name (N)) = N_Selected_Component then
1634 Tsk := Prefix (Name (N));
1636 elsif Nkind (Name (N)) = N_Indexed_Component then
1637 Tsk := Prefix (Prefix (Name (N)));
1638 end if;
1640 if No (Tsk) then
1641 return;
1642 else
1643 Replace_Discrs (Default);
1644 end if;
1645 end Replace_Actual_Discriminants;
1647 -------------
1648 -- Resolve --
1649 -------------
1651 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1652 Ambiguous : Boolean := False;
1653 Ctx_Type : Entity_Id := Typ;
1654 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1655 Err_Type : Entity_Id := Empty;
1656 Found : Boolean := False;
1657 From_Lib : Boolean;
1658 I : Interp_Index;
1659 I1 : Interp_Index := 0; -- prevent junk warning
1660 It : Interp;
1661 It1 : Interp;
1662 Seen : Entity_Id := Empty; -- prevent junk warning
1664 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1665 -- Determine whether a node comes from a predefined library unit or
1666 -- Standard.
1668 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1669 -- Try and fix up a literal so that it matches its expected type. New
1670 -- literals are manufactured if necessary to avoid cascaded errors.
1672 procedure Resolution_Failed;
1673 -- Called when attempt at resolving current expression fails
1675 ------------------------------------
1676 -- Comes_From_Predefined_Lib_Unit --
1677 -------------------------------------
1679 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1680 begin
1681 return
1682 Sloc (Nod) = Standard_Location
1683 or else Is_Predefined_File_Name (Unit_File_Name (
1684 Get_Source_Unit (Sloc (Nod))));
1685 end Comes_From_Predefined_Lib_Unit;
1687 --------------------
1688 -- Patch_Up_Value --
1689 --------------------
1691 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1692 begin
1693 if Nkind (N) = N_Integer_Literal
1694 and then Is_Real_Type (Typ)
1695 then
1696 Rewrite (N,
1697 Make_Real_Literal (Sloc (N),
1698 Realval => UR_From_Uint (Intval (N))));
1699 Set_Etype (N, Universal_Real);
1700 Set_Is_Static_Expression (N);
1702 elsif Nkind (N) = N_Real_Literal
1703 and then Is_Integer_Type (Typ)
1704 then
1705 Rewrite (N,
1706 Make_Integer_Literal (Sloc (N),
1707 Intval => UR_To_Uint (Realval (N))));
1708 Set_Etype (N, Universal_Integer);
1709 Set_Is_Static_Expression (N);
1711 elsif Nkind (N) = N_String_Literal
1712 and then Is_Character_Type (Typ)
1713 then
1714 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1715 Rewrite (N,
1716 Make_Character_Literal (Sloc (N),
1717 Chars => Name_Find,
1718 Char_Literal_Value =>
1719 UI_From_Int (Character'Pos ('A'))));
1720 Set_Etype (N, Any_Character);
1721 Set_Is_Static_Expression (N);
1723 elsif Nkind (N) /= N_String_Literal
1724 and then Is_String_Type (Typ)
1725 then
1726 Rewrite (N,
1727 Make_String_Literal (Sloc (N),
1728 Strval => End_String));
1730 elsif Nkind (N) = N_Range then
1731 Patch_Up_Value (Low_Bound (N), Typ);
1732 Patch_Up_Value (High_Bound (N), Typ);
1733 end if;
1734 end Patch_Up_Value;
1736 -----------------------
1737 -- Resolution_Failed --
1738 -----------------------
1740 procedure Resolution_Failed is
1741 begin
1742 Patch_Up_Value (N, Typ);
1743 Set_Etype (N, Typ);
1744 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1745 Set_Is_Overloaded (N, False);
1747 -- The caller will return without calling the expander, so we need
1748 -- to set the analyzed flag. Note that it is fine to set Analyzed
1749 -- to True even if we are in the middle of a shallow analysis,
1750 -- (see the spec of sem for more details) since this is an error
1751 -- situation anyway, and there is no point in repeating the
1752 -- analysis later (indeed it won't work to repeat it later, since
1753 -- we haven't got a clear resolution of which entity is being
1754 -- referenced.)
1756 Set_Analyzed (N, True);
1757 return;
1758 end Resolution_Failed;
1760 -- Start of processing for Resolve
1762 begin
1763 if N = Error then
1764 return;
1765 end if;
1767 -- Access attribute on remote subprogram cannot be used for
1768 -- a non-remote access-to-subprogram type.
1770 if Nkind (N) = N_Attribute_Reference
1771 and then (Attribute_Name (N) = Name_Access
1772 or else Attribute_Name (N) = Name_Unrestricted_Access
1773 or else Attribute_Name (N) = Name_Unchecked_Access)
1774 and then Comes_From_Source (N)
1775 and then Is_Entity_Name (Prefix (N))
1776 and then Is_Subprogram (Entity (Prefix (N)))
1777 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1778 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1779 then
1780 Error_Msg_N
1781 ("prefix must statically denote a non-remote subprogram", N);
1782 end if;
1784 From_Lib := Comes_From_Predefined_Lib_Unit (N);
1786 -- If the context is a Remote_Access_To_Subprogram, access attributes
1787 -- must be resolved with the corresponding fat pointer. There is no need
1788 -- to check for the attribute name since the return type of an
1789 -- attribute is never a remote type.
1791 if Nkind (N) = N_Attribute_Reference
1792 and then Comes_From_Source (N)
1793 and then (Is_Remote_Call_Interface (Typ)
1794 or else Is_Remote_Types (Typ))
1795 then
1796 declare
1797 Attr : constant Attribute_Id :=
1798 Get_Attribute_Id (Attribute_Name (N));
1799 Pref : constant Node_Id := Prefix (N);
1800 Decl : Node_Id;
1801 Spec : Node_Id;
1802 Is_Remote : Boolean := True;
1804 begin
1805 -- Check that Typ is a remote access-to-subprogram type
1807 if Is_Remote_Access_To_Subprogram_Type (Typ) then
1808 -- Prefix (N) must statically denote a remote subprogram
1809 -- declared in a package specification.
1811 if Attr = Attribute_Access then
1812 Decl := Unit_Declaration_Node (Entity (Pref));
1814 if Nkind (Decl) = N_Subprogram_Body then
1815 Spec := Corresponding_Spec (Decl);
1817 if not No (Spec) then
1818 Decl := Unit_Declaration_Node (Spec);
1819 end if;
1820 end if;
1822 Spec := Parent (Decl);
1824 if not Is_Entity_Name (Prefix (N))
1825 or else Nkind (Spec) /= N_Package_Specification
1826 or else
1827 not Is_Remote_Call_Interface (Defining_Entity (Spec))
1828 then
1829 Is_Remote := False;
1830 Error_Msg_N
1831 ("prefix must statically denote a remote subprogram ",
1833 end if;
1834 end if;
1836 -- If we are generating code for a distributed program.
1837 -- perform semantic checks against the corresponding
1838 -- remote entities.
1840 if (Attr = Attribute_Access
1841 or else Attr = Attribute_Unchecked_Access
1842 or else Attr = Attribute_Unrestricted_Access)
1843 and then Expander_Active
1844 and then Get_PCS_Name /= Name_No_DSA
1845 then
1846 Check_Subtype_Conformant
1847 (New_Id => Entity (Prefix (N)),
1848 Old_Id => Designated_Type
1849 (Corresponding_Remote_Type (Typ)),
1850 Err_Loc => N);
1852 if Is_Remote then
1853 Process_Remote_AST_Attribute (N, Typ);
1854 end if;
1855 end if;
1856 end if;
1857 end;
1858 end if;
1860 Debug_A_Entry ("resolving ", N);
1862 if Comes_From_Source (N) then
1863 if Is_Fixed_Point_Type (Typ) then
1864 Check_Restriction (No_Fixed_Point, N);
1866 elsif Is_Floating_Point_Type (Typ)
1867 and then Typ /= Universal_Real
1868 and then Typ /= Any_Real
1869 then
1870 Check_Restriction (No_Floating_Point, N);
1871 end if;
1872 end if;
1874 -- Return if already analyzed
1876 if Analyzed (N) then
1877 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
1878 return;
1880 -- Return if type = Any_Type (previous error encountered)
1882 elsif Etype (N) = Any_Type then
1883 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
1884 return;
1885 end if;
1887 Check_Parameterless_Call (N);
1889 -- If not overloaded, then we know the type, and all that needs doing
1890 -- is to check that this type is compatible with the context.
1892 if not Is_Overloaded (N) then
1893 Found := Covers (Typ, Etype (N));
1894 Expr_Type := Etype (N);
1896 -- In the overloaded case, we must select the interpretation that
1897 -- is compatible with the context (i.e. the type passed to Resolve)
1899 else
1900 -- Loop through possible interpretations
1902 Get_First_Interp (N, I, It);
1903 Interp_Loop : while Present (It.Typ) loop
1905 -- We are only interested in interpretations that are compatible
1906 -- with the expected type, any other interpretations are ignored.
1908 if not Covers (Typ, It.Typ) then
1909 if Debug_Flag_V then
1910 Write_Str (" interpretation incompatible with context");
1911 Write_Eol;
1912 end if;
1914 else
1915 -- Skip the current interpretation if it is disabled by an
1916 -- abstract operator. This action is performed only when the
1917 -- type against which we are resolving is the same as the
1918 -- type of the interpretation.
1920 if Ada_Version >= Ada_05
1921 and then It.Typ = Typ
1922 and then Typ /= Universal_Integer
1923 and then Typ /= Universal_Real
1924 and then Present (It.Abstract_Op)
1925 then
1926 goto Continue;
1927 end if;
1929 -- First matching interpretation
1931 if not Found then
1932 Found := True;
1933 I1 := I;
1934 Seen := It.Nam;
1935 Expr_Type := It.Typ;
1937 -- Matching interpretation that is not the first, maybe an
1938 -- error, but there are some cases where preference rules are
1939 -- used to choose between the two possibilities. These and
1940 -- some more obscure cases are handled in Disambiguate.
1942 else
1943 -- If the current statement is part of a predefined library
1944 -- unit, then all interpretations which come from user level
1945 -- packages should not be considered.
1947 if From_Lib
1948 and then not Comes_From_Predefined_Lib_Unit (It.Nam)
1949 then
1950 goto Continue;
1951 end if;
1953 Error_Msg_Sloc := Sloc (Seen);
1954 It1 := Disambiguate (N, I1, I, Typ);
1956 -- Disambiguation has succeeded. Skip the remaining
1957 -- interpretations.
1959 if It1 /= No_Interp then
1960 Seen := It1.Nam;
1961 Expr_Type := It1.Typ;
1963 while Present (It.Typ) loop
1964 Get_Next_Interp (I, It);
1965 end loop;
1967 else
1968 -- Before we issue an ambiguity complaint, check for
1969 -- the case of a subprogram call where at least one
1970 -- of the arguments is Any_Type, and if so, suppress
1971 -- the message, since it is a cascaded error.
1973 if Nkind_In (N, N_Function_Call,
1974 N_Procedure_Call_Statement)
1975 then
1976 declare
1977 A : Node_Id;
1978 E : Node_Id;
1980 begin
1981 A := First_Actual (N);
1982 while Present (A) loop
1983 E := A;
1985 if Nkind (E) = N_Parameter_Association then
1986 E := Explicit_Actual_Parameter (E);
1987 end if;
1989 if Etype (E) = Any_Type then
1990 if Debug_Flag_V then
1991 Write_Str ("Any_Type in call");
1992 Write_Eol;
1993 end if;
1995 exit Interp_Loop;
1996 end if;
1998 Next_Actual (A);
1999 end loop;
2000 end;
2002 elsif Nkind (N) in N_Binary_Op
2003 and then (Etype (Left_Opnd (N)) = Any_Type
2004 or else Etype (Right_Opnd (N)) = Any_Type)
2005 then
2006 exit Interp_Loop;
2008 elsif Nkind (N) in N_Unary_Op
2009 and then Etype (Right_Opnd (N)) = Any_Type
2010 then
2011 exit Interp_Loop;
2012 end if;
2014 -- Not that special case, so issue message using the
2015 -- flag Ambiguous to control printing of the header
2016 -- message only at the start of an ambiguous set.
2018 if not Ambiguous then
2019 if Nkind (N) = N_Function_Call
2020 and then Nkind (Name (N)) = N_Explicit_Dereference
2021 then
2022 Error_Msg_N
2023 ("ambiguous expression "
2024 & "(cannot resolve indirect call)!", N);
2025 else
2026 Error_Msg_NE -- CODEFIX
2027 ("ambiguous expression (cannot resolve&)!",
2028 N, It.Nam);
2029 end if;
2031 Ambiguous := True;
2033 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2034 Error_Msg_N
2035 ("\\possible interpretation (inherited)#!", N);
2036 else
2037 Error_Msg_N -- CODEFIX
2038 ("\\possible interpretation#!", N);
2039 end if;
2040 end if;
2042 Error_Msg_Sloc := Sloc (It.Nam);
2044 -- By default, the error message refers to the candidate
2045 -- interpretation. But if it is a predefined operator, it
2046 -- is implicitly declared at the declaration of the type
2047 -- of the operand. Recover the sloc of that declaration
2048 -- for the error message.
2050 if Nkind (N) in N_Op
2051 and then Scope (It.Nam) = Standard_Standard
2052 and then not Is_Overloaded (Right_Opnd (N))
2053 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2054 Standard_Standard
2055 then
2056 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2058 if Comes_From_Source (Err_Type)
2059 and then Present (Parent (Err_Type))
2060 then
2061 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2062 end if;
2064 elsif Nkind (N) in N_Binary_Op
2065 and then Scope (It.Nam) = Standard_Standard
2066 and then not Is_Overloaded (Left_Opnd (N))
2067 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2068 Standard_Standard
2069 then
2070 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2072 if Comes_From_Source (Err_Type)
2073 and then Present (Parent (Err_Type))
2074 then
2075 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2076 end if;
2078 -- If this is an indirect call, use the subprogram_type
2079 -- in the message, to have a meaningful location.
2080 -- Indicate as well if this is an inherited operation,
2081 -- created by a type declaration.
2083 elsif Nkind (N) = N_Function_Call
2084 and then Nkind (Name (N)) = N_Explicit_Dereference
2085 and then Is_Type (It.Nam)
2086 then
2087 Err_Type := It.Nam;
2088 Error_Msg_Sloc :=
2089 Sloc (Associated_Node_For_Itype (Err_Type));
2090 else
2091 Err_Type := Empty;
2092 end if;
2094 if Nkind (N) in N_Op
2095 and then Scope (It.Nam) = Standard_Standard
2096 and then Present (Err_Type)
2097 then
2098 -- Special-case the message for universal_fixed
2099 -- operators, which are not declared with the type
2100 -- of the operand, but appear forever in Standard.
2102 if It.Typ = Universal_Fixed
2103 and then Scope (It.Nam) = Standard_Standard
2104 then
2105 Error_Msg_N
2106 ("\\possible interpretation as " &
2107 "universal_fixed operation " &
2108 "(RM 4.5.5 (19))", N);
2109 else
2110 Error_Msg_N
2111 ("\\possible interpretation (predefined)#!", N);
2112 end if;
2114 elsif
2115 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2116 then
2117 Error_Msg_N
2118 ("\\possible interpretation (inherited)#!", N);
2119 else
2120 Error_Msg_N -- CODEFIX
2121 ("\\possible interpretation#!", N);
2122 end if;
2124 end if;
2125 end if;
2127 -- We have a matching interpretation, Expr_Type is the type
2128 -- from this interpretation, and Seen is the entity.
2130 -- For an operator, just set the entity name. The type will be
2131 -- set by the specific operator resolution routine.
2133 if Nkind (N) in N_Op then
2134 Set_Entity (N, Seen);
2135 Generate_Reference (Seen, N);
2137 elsif Nkind (N) = N_Character_Literal then
2138 Set_Etype (N, Expr_Type);
2140 elsif Nkind (N) = N_Conditional_Expression then
2141 Set_Etype (N, Expr_Type);
2143 -- For an explicit dereference, attribute reference, range,
2144 -- short-circuit form (which is not an operator node), or call
2145 -- with a name that is an explicit dereference, there is
2146 -- nothing to be done at this point.
2148 elsif Nkind_In (N, N_Explicit_Dereference,
2149 N_Attribute_Reference,
2150 N_And_Then,
2151 N_Indexed_Component,
2152 N_Or_Else,
2153 N_Range,
2154 N_Selected_Component,
2155 N_Slice)
2156 or else Nkind (Name (N)) = N_Explicit_Dereference
2157 then
2158 null;
2160 -- For procedure or function calls, set the type of the name,
2161 -- and also the entity pointer for the prefix
2163 elsif Nkind_In (N, N_Procedure_Call_Statement, N_Function_Call)
2164 and then (Is_Entity_Name (Name (N))
2165 or else Nkind (Name (N)) = N_Operator_Symbol)
2166 then
2167 Set_Etype (Name (N), Expr_Type);
2168 Set_Entity (Name (N), Seen);
2169 Generate_Reference (Seen, Name (N));
2171 elsif Nkind (N) = N_Function_Call
2172 and then Nkind (Name (N)) = N_Selected_Component
2173 then
2174 Set_Etype (Name (N), Expr_Type);
2175 Set_Entity (Selector_Name (Name (N)), Seen);
2176 Generate_Reference (Seen, Selector_Name (Name (N)));
2178 -- For all other cases, just set the type of the Name
2180 else
2181 Set_Etype (Name (N), Expr_Type);
2182 end if;
2184 end if;
2186 <<Continue>>
2188 -- Move to next interpretation
2190 exit Interp_Loop when No (It.Typ);
2192 Get_Next_Interp (I, It);
2193 end loop Interp_Loop;
2194 end if;
2196 -- At this stage Found indicates whether or not an acceptable
2197 -- interpretation exists. If not, then we have an error, except
2198 -- that if the context is Any_Type as a result of some other error,
2199 -- then we suppress the error report.
2201 if not Found then
2202 if Typ /= Any_Type then
2204 -- If type we are looking for is Void, then this is the procedure
2205 -- call case, and the error is simply that what we gave is not a
2206 -- procedure name (we think of procedure calls as expressions with
2207 -- types internally, but the user doesn't think of them this way!)
2209 if Typ = Standard_Void_Type then
2211 -- Special case message if function used as a procedure
2213 if Nkind (N) = N_Procedure_Call_Statement
2214 and then Is_Entity_Name (Name (N))
2215 and then Ekind (Entity (Name (N))) = E_Function
2216 then
2217 Error_Msg_NE
2218 ("cannot use function & in a procedure call",
2219 Name (N), Entity (Name (N)));
2221 -- Otherwise give general message (not clear what cases this
2222 -- covers, but no harm in providing for them!)
2224 else
2225 Error_Msg_N ("expect procedure name in procedure call", N);
2226 end if;
2228 Found := True;
2230 -- Otherwise we do have a subexpression with the wrong type
2232 -- Check for the case of an allocator which uses an access type
2233 -- instead of the designated type. This is a common error and we
2234 -- specialize the message, posting an error on the operand of the
2235 -- allocator, complaining that we expected the designated type of
2236 -- the allocator.
2238 elsif Nkind (N) = N_Allocator
2239 and then Ekind (Typ) in Access_Kind
2240 and then Ekind (Etype (N)) in Access_Kind
2241 and then Designated_Type (Etype (N)) = Typ
2242 then
2243 Wrong_Type (Expression (N), Designated_Type (Typ));
2244 Found := True;
2246 -- Check for view mismatch on Null in instances, for which the
2247 -- view-swapping mechanism has no identifier.
2249 elsif (In_Instance or else In_Inlined_Body)
2250 and then (Nkind (N) = N_Null)
2251 and then Is_Private_Type (Typ)
2252 and then Is_Access_Type (Full_View (Typ))
2253 then
2254 Resolve (N, Full_View (Typ));
2255 Set_Etype (N, Typ);
2256 return;
2258 -- Check for an aggregate. Sometimes we can get bogus aggregates
2259 -- from misuse of parentheses, and we are about to complain about
2260 -- the aggregate without even looking inside it.
2262 -- Instead, if we have an aggregate of type Any_Composite, then
2263 -- analyze and resolve the component fields, and then only issue
2264 -- another message if we get no errors doing this (otherwise
2265 -- assume that the errors in the aggregate caused the problem).
2267 elsif Nkind (N) = N_Aggregate
2268 and then Etype (N) = Any_Composite
2269 then
2270 -- Disable expansion in any case. If there is a type mismatch
2271 -- it may be fatal to try to expand the aggregate. The flag
2272 -- would otherwise be set to false when the error is posted.
2274 Expander_Active := False;
2276 declare
2277 procedure Check_Aggr (Aggr : Node_Id);
2278 -- Check one aggregate, and set Found to True if we have a
2279 -- definite error in any of its elements
2281 procedure Check_Elmt (Aelmt : Node_Id);
2282 -- Check one element of aggregate and set Found to True if
2283 -- we definitely have an error in the element.
2285 ----------------
2286 -- Check_Aggr --
2287 ----------------
2289 procedure Check_Aggr (Aggr : Node_Id) is
2290 Elmt : Node_Id;
2292 begin
2293 if Present (Expressions (Aggr)) then
2294 Elmt := First (Expressions (Aggr));
2295 while Present (Elmt) loop
2296 Check_Elmt (Elmt);
2297 Next (Elmt);
2298 end loop;
2299 end if;
2301 if Present (Component_Associations (Aggr)) then
2302 Elmt := First (Component_Associations (Aggr));
2303 while Present (Elmt) loop
2305 -- If this is a default-initialized component, then
2306 -- there is nothing to check. The box will be
2307 -- replaced by the appropriate call during late
2308 -- expansion.
2310 if not Box_Present (Elmt) then
2311 Check_Elmt (Expression (Elmt));
2312 end if;
2314 Next (Elmt);
2315 end loop;
2316 end if;
2317 end Check_Aggr;
2319 ----------------
2320 -- Check_Elmt --
2321 ----------------
2323 procedure Check_Elmt (Aelmt : Node_Id) is
2324 begin
2325 -- If we have a nested aggregate, go inside it (to
2326 -- attempt a naked analyze-resolve of the aggregate
2327 -- can cause undesirable cascaded errors). Do not
2328 -- resolve expression if it needs a type from context,
2329 -- as for integer * fixed expression.
2331 if Nkind (Aelmt) = N_Aggregate then
2332 Check_Aggr (Aelmt);
2334 else
2335 Analyze (Aelmt);
2337 if not Is_Overloaded (Aelmt)
2338 and then Etype (Aelmt) /= Any_Fixed
2339 then
2340 Resolve (Aelmt);
2341 end if;
2343 if Etype (Aelmt) = Any_Type then
2344 Found := True;
2345 end if;
2346 end if;
2347 end Check_Elmt;
2349 begin
2350 Check_Aggr (N);
2351 end;
2352 end if;
2354 -- If an error message was issued already, Found got reset
2355 -- to True, so if it is still False, issue the standard
2356 -- Wrong_Type message.
2358 if not Found then
2359 if Is_Overloaded (N)
2360 and then Nkind (N) = N_Function_Call
2361 then
2362 declare
2363 Subp_Name : Node_Id;
2364 begin
2365 if Is_Entity_Name (Name (N)) then
2366 Subp_Name := Name (N);
2368 elsif Nkind (Name (N)) = N_Selected_Component then
2370 -- Protected operation: retrieve operation name
2372 Subp_Name := Selector_Name (Name (N));
2373 else
2374 raise Program_Error;
2375 end if;
2377 Error_Msg_Node_2 := Typ;
2378 Error_Msg_NE ("no visible interpretation of&" &
2379 " matches expected type&", N, Subp_Name);
2380 end;
2382 if All_Errors_Mode then
2383 declare
2384 Index : Interp_Index;
2385 It : Interp;
2387 begin
2388 Error_Msg_N ("\\possible interpretations:", N);
2390 Get_First_Interp (Name (N), Index, It);
2391 while Present (It.Nam) loop
2392 Error_Msg_Sloc := Sloc (It.Nam);
2393 Error_Msg_Node_2 := It.Nam;
2394 Error_Msg_NE
2395 ("\\ type& for & declared#", N, It.Typ);
2396 Get_Next_Interp (Index, It);
2397 end loop;
2398 end;
2400 else
2401 Error_Msg_N ("\use -gnatf for details", N);
2402 end if;
2403 else
2404 Wrong_Type (N, Typ);
2405 end if;
2406 end if;
2407 end if;
2409 Resolution_Failed;
2410 return;
2412 -- Test if we have more than one interpretation for the context
2414 elsif Ambiguous then
2415 Resolution_Failed;
2416 return;
2418 -- Here we have an acceptable interpretation for the context
2420 else
2421 -- Propagate type information and normalize tree for various
2422 -- predefined operations. If the context only imposes a class of
2423 -- types, rather than a specific type, propagate the actual type
2424 -- downward.
2426 if Typ = Any_Integer
2427 or else Typ = Any_Boolean
2428 or else Typ = Any_Modular
2429 or else Typ = Any_Real
2430 or else Typ = Any_Discrete
2431 then
2432 Ctx_Type := Expr_Type;
2434 -- Any_Fixed is legal in a real context only if a specific
2435 -- fixed point type is imposed. If Norman Cohen can be
2436 -- confused by this, it deserves a separate message.
2438 if Typ = Any_Real
2439 and then Expr_Type = Any_Fixed
2440 then
2441 Error_Msg_N ("illegal context for mixed mode operation", N);
2442 Set_Etype (N, Universal_Real);
2443 Ctx_Type := Universal_Real;
2444 end if;
2445 end if;
2447 -- A user-defined operator is transformed into a function call at
2448 -- this point, so that further processing knows that operators are
2449 -- really operators (i.e. are predefined operators). User-defined
2450 -- operators that are intrinsic are just renamings of the predefined
2451 -- ones, and need not be turned into calls either, but if they rename
2452 -- a different operator, we must transform the node accordingly.
2453 -- Instantiations of Unchecked_Conversion are intrinsic but are
2454 -- treated as functions, even if given an operator designator.
2456 if Nkind (N) in N_Op
2457 and then Present (Entity (N))
2458 and then Ekind (Entity (N)) /= E_Operator
2459 then
2461 if not Is_Predefined_Op (Entity (N)) then
2462 Rewrite_Operator_As_Call (N, Entity (N));
2464 elsif Present (Alias (Entity (N)))
2465 and then
2466 Nkind (Parent (Parent (Entity (N)))) =
2467 N_Subprogram_Renaming_Declaration
2468 then
2469 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2471 -- If the node is rewritten, it will be fully resolved in
2472 -- Rewrite_Renamed_Operator.
2474 if Analyzed (N) then
2475 return;
2476 end if;
2477 end if;
2478 end if;
2480 case N_Subexpr'(Nkind (N)) is
2482 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2484 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2486 when N_Short_Circuit
2487 => Resolve_Short_Circuit (N, Ctx_Type);
2489 when N_Attribute_Reference
2490 => Resolve_Attribute (N, Ctx_Type);
2492 when N_Character_Literal
2493 => Resolve_Character_Literal (N, Ctx_Type);
2495 when N_Conditional_Expression
2496 => Resolve_Conditional_Expression (N, Ctx_Type);
2498 when N_Expanded_Name
2499 => Resolve_Entity_Name (N, Ctx_Type);
2501 when N_Extension_Aggregate
2502 => Resolve_Extension_Aggregate (N, Ctx_Type);
2504 when N_Explicit_Dereference
2505 => Resolve_Explicit_Dereference (N, Ctx_Type);
2507 when N_Function_Call
2508 => Resolve_Call (N, Ctx_Type);
2510 when N_Identifier
2511 => Resolve_Entity_Name (N, Ctx_Type);
2513 when N_Indexed_Component
2514 => Resolve_Indexed_Component (N, Ctx_Type);
2516 when N_Integer_Literal
2517 => Resolve_Integer_Literal (N, Ctx_Type);
2519 when N_Membership_Test
2520 => Resolve_Membership_Op (N, Ctx_Type);
2522 when N_Null => Resolve_Null (N, Ctx_Type);
2524 when N_Op_And | N_Op_Or | N_Op_Xor
2525 => Resolve_Logical_Op (N, Ctx_Type);
2527 when N_Op_Eq | N_Op_Ne
2528 => Resolve_Equality_Op (N, Ctx_Type);
2530 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
2531 => Resolve_Comparison_Op (N, Ctx_Type);
2533 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
2535 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
2536 N_Op_Divide | N_Op_Mod | N_Op_Rem
2538 => Resolve_Arithmetic_Op (N, Ctx_Type);
2540 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
2542 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
2544 when N_Op_Plus | N_Op_Minus | N_Op_Abs
2545 => Resolve_Unary_Op (N, Ctx_Type);
2547 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
2549 when N_Procedure_Call_Statement
2550 => Resolve_Call (N, Ctx_Type);
2552 when N_Operator_Symbol
2553 => Resolve_Operator_Symbol (N, Ctx_Type);
2555 when N_Qualified_Expression
2556 => Resolve_Qualified_Expression (N, Ctx_Type);
2558 when N_Raise_xxx_Error
2559 => Set_Etype (N, Ctx_Type);
2561 when N_Range => Resolve_Range (N, Ctx_Type);
2563 when N_Real_Literal
2564 => Resolve_Real_Literal (N, Ctx_Type);
2566 when N_Reference => Resolve_Reference (N, Ctx_Type);
2568 when N_Selected_Component
2569 => Resolve_Selected_Component (N, Ctx_Type);
2571 when N_Slice => Resolve_Slice (N, Ctx_Type);
2573 when N_String_Literal
2574 => Resolve_String_Literal (N, Ctx_Type);
2576 when N_Subprogram_Info
2577 => Resolve_Subprogram_Info (N, Ctx_Type);
2579 when N_Type_Conversion
2580 => Resolve_Type_Conversion (N, Ctx_Type);
2582 when N_Unchecked_Expression =>
2583 Resolve_Unchecked_Expression (N, Ctx_Type);
2585 when N_Unchecked_Type_Conversion =>
2586 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2588 end case;
2590 -- If the subexpression was replaced by a non-subexpression, then
2591 -- all we do is to expand it. The only legitimate case we know of
2592 -- is converting procedure call statement to entry call statements,
2593 -- but there may be others, so we are making this test general.
2595 if Nkind (N) not in N_Subexpr then
2596 Debug_A_Exit ("resolving ", N, " (done)");
2597 Expand (N);
2598 return;
2599 end if;
2601 -- The expression is definitely NOT overloaded at this point, so
2602 -- we reset the Is_Overloaded flag to avoid any confusion when
2603 -- reanalyzing the node.
2605 Set_Is_Overloaded (N, False);
2607 -- Freeze expression type, entity if it is a name, and designated
2608 -- type if it is an allocator (RM 13.14(10,11,13)).
2610 -- Now that the resolution of the type of the node is complete,
2611 -- and we did not detect an error, we can expand this node. We
2612 -- skip the expand call if we are in a default expression, see
2613 -- section "Handling of Default Expressions" in Sem spec.
2615 Debug_A_Exit ("resolving ", N, " (done)");
2617 -- We unconditionally freeze the expression, even if we are in
2618 -- default expression mode (the Freeze_Expression routine tests
2619 -- this flag and only freezes static types if it is set).
2621 Freeze_Expression (N);
2623 -- Now we can do the expansion
2625 Expand (N);
2626 end if;
2627 end Resolve;
2629 -------------
2630 -- Resolve --
2631 -------------
2633 -- Version with check(s) suppressed
2635 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
2636 begin
2637 if Suppress = All_Checks then
2638 declare
2639 Svg : constant Suppress_Array := Scope_Suppress;
2640 begin
2641 Scope_Suppress := (others => True);
2642 Resolve (N, Typ);
2643 Scope_Suppress := Svg;
2644 end;
2646 else
2647 declare
2648 Svg : constant Boolean := Scope_Suppress (Suppress);
2649 begin
2650 Scope_Suppress (Suppress) := True;
2651 Resolve (N, Typ);
2652 Scope_Suppress (Suppress) := Svg;
2653 end;
2654 end if;
2655 end Resolve;
2657 -------------
2658 -- Resolve --
2659 -------------
2661 -- Version with implicit type
2663 procedure Resolve (N : Node_Id) is
2664 begin
2665 Resolve (N, Etype (N));
2666 end Resolve;
2668 ---------------------
2669 -- Resolve_Actuals --
2670 ---------------------
2672 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
2673 Loc : constant Source_Ptr := Sloc (N);
2674 A : Node_Id;
2675 F : Entity_Id;
2676 A_Typ : Entity_Id;
2677 F_Typ : Entity_Id;
2678 Prev : Node_Id := Empty;
2679 Orig_A : Node_Id;
2681 procedure Check_Argument_Order;
2682 -- Performs a check for the case where the actuals are all simple
2683 -- identifiers that correspond to the formal names, but in the wrong
2684 -- order, which is considered suspicious and cause for a warning.
2686 procedure Check_Prefixed_Call;
2687 -- If the original node is an overloaded call in prefix notation,
2688 -- insert an 'Access or a dereference as needed over the first actual.
2689 -- Try_Object_Operation has already verified that there is a valid
2690 -- interpretation, but the form of the actual can only be determined
2691 -- once the primitive operation is identified.
2693 procedure Insert_Default;
2694 -- If the actual is missing in a call, insert in the actuals list
2695 -- an instance of the default expression. The insertion is always
2696 -- a named association.
2698 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
2699 -- Check whether T1 and T2, or their full views, are derived from a
2700 -- common type. Used to enforce the restrictions on array conversions
2701 -- of AI95-00246.
2703 function Static_Concatenation (N : Node_Id) return Boolean;
2704 -- Predicate to determine whether an actual that is a concatenation
2705 -- will be evaluated statically and does not need a transient scope.
2706 -- This must be determined before the actual is resolved and expanded
2707 -- because if needed the transient scope must be introduced earlier.
2709 --------------------------
2710 -- Check_Argument_Order --
2711 --------------------------
2713 procedure Check_Argument_Order is
2714 begin
2715 -- Nothing to do if no parameters, or original node is neither a
2716 -- function call nor a procedure call statement (happens in the
2717 -- operator-transformed-to-function call case), or the call does
2718 -- not come from source, or this warning is off.
2720 if not Warn_On_Parameter_Order
2721 or else
2722 No (Parameter_Associations (N))
2723 or else
2724 not Nkind_In (Original_Node (N), N_Procedure_Call_Statement,
2725 N_Function_Call)
2726 or else
2727 not Comes_From_Source (N)
2728 then
2729 return;
2730 end if;
2732 declare
2733 Nargs : constant Nat := List_Length (Parameter_Associations (N));
2735 begin
2736 -- Nothing to do if only one parameter
2738 if Nargs < 2 then
2739 return;
2740 end if;
2742 -- Here if at least two arguments
2744 declare
2745 Actuals : array (1 .. Nargs) of Node_Id;
2746 Actual : Node_Id;
2747 Formal : Node_Id;
2749 Wrong_Order : Boolean := False;
2750 -- Set True if an out of order case is found
2752 begin
2753 -- Collect identifier names of actuals, fail if any actual is
2754 -- not a simple identifier, and record max length of name.
2756 Actual := First (Parameter_Associations (N));
2757 for J in Actuals'Range loop
2758 if Nkind (Actual) /= N_Identifier then
2759 return;
2760 else
2761 Actuals (J) := Actual;
2762 Next (Actual);
2763 end if;
2764 end loop;
2766 -- If we got this far, all actuals are identifiers and the list
2767 -- of their names is stored in the Actuals array.
2769 Formal := First_Formal (Nam);
2770 for J in Actuals'Range loop
2772 -- If we ran out of formals, that's odd, probably an error
2773 -- which will be detected elsewhere, but abandon the search.
2775 if No (Formal) then
2776 return;
2777 end if;
2779 -- If name matches and is in order OK
2781 if Chars (Formal) = Chars (Actuals (J)) then
2782 null;
2784 else
2785 -- If no match, see if it is elsewhere in list and if so
2786 -- flag potential wrong order if type is compatible.
2788 for K in Actuals'Range loop
2789 if Chars (Formal) = Chars (Actuals (K))
2790 and then
2791 Has_Compatible_Type (Actuals (K), Etype (Formal))
2792 then
2793 Wrong_Order := True;
2794 goto Continue;
2795 end if;
2796 end loop;
2798 -- No match
2800 return;
2801 end if;
2803 <<Continue>> Next_Formal (Formal);
2804 end loop;
2806 -- If Formals left over, also probably an error, skip warning
2808 if Present (Formal) then
2809 return;
2810 end if;
2812 -- Here we give the warning if something was out of order
2814 if Wrong_Order then
2815 Error_Msg_N
2816 ("actuals for this call may be in wrong order?", N);
2817 end if;
2818 end;
2819 end;
2820 end Check_Argument_Order;
2822 -------------------------
2823 -- Check_Prefixed_Call --
2824 -------------------------
2826 procedure Check_Prefixed_Call is
2827 Act : constant Node_Id := First_Actual (N);
2828 A_Type : constant Entity_Id := Etype (Act);
2829 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
2830 Orig : constant Node_Id := Original_Node (N);
2831 New_A : Node_Id;
2833 begin
2834 -- Check whether the call is a prefixed call, with or without
2835 -- additional actuals.
2837 if Nkind (Orig) = N_Selected_Component
2838 or else
2839 (Nkind (Orig) = N_Indexed_Component
2840 and then Nkind (Prefix (Orig)) = N_Selected_Component
2841 and then Is_Entity_Name (Prefix (Prefix (Orig)))
2842 and then Is_Entity_Name (Act)
2843 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
2844 then
2845 if Is_Access_Type (A_Type)
2846 and then not Is_Access_Type (F_Type)
2847 then
2848 -- Introduce dereference on object in prefix
2850 New_A :=
2851 Make_Explicit_Dereference (Sloc (Act),
2852 Prefix => Relocate_Node (Act));
2853 Rewrite (Act, New_A);
2854 Analyze (Act);
2856 elsif Is_Access_Type (F_Type)
2857 and then not Is_Access_Type (A_Type)
2858 then
2859 -- Introduce an implicit 'Access in prefix
2861 if not Is_Aliased_View (Act) then
2862 Error_Msg_NE
2863 ("object in prefixed call to& must be aliased"
2864 & " (RM-2005 4.3.1 (13))",
2865 Prefix (Act), Nam);
2866 end if;
2868 Rewrite (Act,
2869 Make_Attribute_Reference (Loc,
2870 Attribute_Name => Name_Access,
2871 Prefix => Relocate_Node (Act)));
2872 end if;
2874 Analyze (Act);
2875 end if;
2876 end Check_Prefixed_Call;
2878 --------------------
2879 -- Insert_Default --
2880 --------------------
2882 procedure Insert_Default is
2883 Actval : Node_Id;
2884 Assoc : Node_Id;
2886 begin
2887 -- Missing argument in call, nothing to insert
2889 if No (Default_Value (F)) then
2890 return;
2892 else
2893 -- Note that we do a full New_Copy_Tree, so that any associated
2894 -- Itypes are properly copied. This may not be needed any more,
2895 -- but it does no harm as a safety measure! Defaults of a generic
2896 -- formal may be out of bounds of the corresponding actual (see
2897 -- cc1311b) and an additional check may be required.
2899 Actval :=
2900 New_Copy_Tree
2901 (Default_Value (F),
2902 New_Scope => Current_Scope,
2903 New_Sloc => Loc);
2905 if Is_Concurrent_Type (Scope (Nam))
2906 and then Has_Discriminants (Scope (Nam))
2907 then
2908 Replace_Actual_Discriminants (N, Actval);
2909 end if;
2911 if Is_Overloadable (Nam)
2912 and then Present (Alias (Nam))
2913 then
2914 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
2915 and then not Is_Tagged_Type (Etype (F))
2916 then
2917 -- If default is a real literal, do not introduce a
2918 -- conversion whose effect may depend on the run-time
2919 -- size of universal real.
2921 if Nkind (Actval) = N_Real_Literal then
2922 Set_Etype (Actval, Base_Type (Etype (F)));
2923 else
2924 Actval := Unchecked_Convert_To (Etype (F), Actval);
2925 end if;
2926 end if;
2928 if Is_Scalar_Type (Etype (F)) then
2929 Enable_Range_Check (Actval);
2930 end if;
2932 Set_Parent (Actval, N);
2934 -- Resolve aggregates with their base type, to avoid scope
2935 -- anomalies: the subtype was first built in the subprogram
2936 -- declaration, and the current call may be nested.
2938 if Nkind (Actval) = N_Aggregate then
2939 Analyze_And_Resolve (Actval, Etype (F));
2940 else
2941 Analyze_And_Resolve (Actval, Etype (Actval));
2942 end if;
2944 else
2945 Set_Parent (Actval, N);
2947 -- See note above concerning aggregates
2949 if Nkind (Actval) = N_Aggregate
2950 and then Has_Discriminants (Etype (Actval))
2951 then
2952 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
2954 -- Resolve entities with their own type, which may differ
2955 -- from the type of a reference in a generic context (the
2956 -- view swapping mechanism did not anticipate the re-analysis
2957 -- of default values in calls).
2959 elsif Is_Entity_Name (Actval) then
2960 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
2962 else
2963 Analyze_And_Resolve (Actval, Etype (Actval));
2964 end if;
2965 end if;
2967 -- If default is a tag indeterminate function call, propagate
2968 -- tag to obtain proper dispatching.
2970 if Is_Controlling_Formal (F)
2971 and then Nkind (Default_Value (F)) = N_Function_Call
2972 then
2973 Set_Is_Controlling_Actual (Actval);
2974 end if;
2976 end if;
2978 -- If the default expression raises constraint error, then just
2979 -- silently replace it with an N_Raise_Constraint_Error node,
2980 -- since we already gave the warning on the subprogram spec.
2982 if Raises_Constraint_Error (Actval) then
2983 Rewrite (Actval,
2984 Make_Raise_Constraint_Error (Loc,
2985 Reason => CE_Range_Check_Failed));
2986 Set_Raises_Constraint_Error (Actval);
2987 Set_Etype (Actval, Etype (F));
2988 end if;
2990 Assoc :=
2991 Make_Parameter_Association (Loc,
2992 Explicit_Actual_Parameter => Actval,
2993 Selector_Name => Make_Identifier (Loc, Chars (F)));
2995 -- Case of insertion is first named actual
2997 if No (Prev) or else
2998 Nkind (Parent (Prev)) /= N_Parameter_Association
2999 then
3000 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3001 Set_First_Named_Actual (N, Actval);
3003 if No (Prev) then
3004 if No (Parameter_Associations (N)) then
3005 Set_Parameter_Associations (N, New_List (Assoc));
3006 else
3007 Append (Assoc, Parameter_Associations (N));
3008 end if;
3010 else
3011 Insert_After (Prev, Assoc);
3012 end if;
3014 -- Case of insertion is not first named actual
3016 else
3017 Set_Next_Named_Actual
3018 (Assoc, Next_Named_Actual (Parent (Prev)));
3019 Set_Next_Named_Actual (Parent (Prev), Actval);
3020 Append (Assoc, Parameter_Associations (N));
3021 end if;
3023 Mark_Rewrite_Insertion (Assoc);
3024 Mark_Rewrite_Insertion (Actval);
3026 Prev := Actval;
3027 end Insert_Default;
3029 -------------------
3030 -- Same_Ancestor --
3031 -------------------
3033 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3034 FT1 : Entity_Id := T1;
3035 FT2 : Entity_Id := T2;
3037 begin
3038 if Is_Private_Type (T1)
3039 and then Present (Full_View (T1))
3040 then
3041 FT1 := Full_View (T1);
3042 end if;
3044 if Is_Private_Type (T2)
3045 and then Present (Full_View (T2))
3046 then
3047 FT2 := Full_View (T2);
3048 end if;
3050 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3051 end Same_Ancestor;
3053 --------------------------
3054 -- Static_Concatenation --
3055 --------------------------
3057 function Static_Concatenation (N : Node_Id) return Boolean is
3058 begin
3059 case Nkind (N) is
3060 when N_String_Literal =>
3061 return True;
3063 when N_Op_Concat =>
3065 -- Concatenation is static when both operands are static
3066 -- and the concatenation operator is a predefined one.
3068 return Scope (Entity (N)) = Standard_Standard
3069 and then
3070 Static_Concatenation (Left_Opnd (N))
3071 and then
3072 Static_Concatenation (Right_Opnd (N));
3074 when others =>
3075 if Is_Entity_Name (N) then
3076 declare
3077 Ent : constant Entity_Id := Entity (N);
3078 begin
3079 return Ekind (Ent) = E_Constant
3080 and then Present (Constant_Value (Ent))
3081 and then
3082 Is_Static_Expression (Constant_Value (Ent));
3083 end;
3085 else
3086 return False;
3087 end if;
3088 end case;
3089 end Static_Concatenation;
3091 -- Start of processing for Resolve_Actuals
3093 begin
3094 Check_Argument_Order;
3096 if Present (First_Actual (N)) then
3097 Check_Prefixed_Call;
3098 end if;
3100 A := First_Actual (N);
3101 F := First_Formal (Nam);
3102 while Present (F) loop
3103 if No (A) and then Needs_No_Actuals (Nam) then
3104 null;
3106 -- If we have an error in any actual or formal, indicated by a type
3107 -- of Any_Type, then abandon resolution attempt, and set result type
3108 -- to Any_Type.
3110 elsif (Present (A) and then Etype (A) = Any_Type)
3111 or else Etype (F) = Any_Type
3112 then
3113 Set_Etype (N, Any_Type);
3114 return;
3115 end if;
3117 -- Case where actual is present
3119 -- If the actual is an entity, generate a reference to it now. We
3120 -- do this before the actual is resolved, because a formal of some
3121 -- protected subprogram, or a task discriminant, will be rewritten
3122 -- during expansion, and the reference to the source entity may
3123 -- be lost.
3125 if Present (A)
3126 and then Is_Entity_Name (A)
3127 and then Comes_From_Source (N)
3128 then
3129 Orig_A := Entity (A);
3131 if Present (Orig_A) then
3132 if Is_Formal (Orig_A)
3133 and then Ekind (F) /= E_In_Parameter
3134 then
3135 Generate_Reference (Orig_A, A, 'm');
3136 elsif not Is_Overloaded (A) then
3137 Generate_Reference (Orig_A, A);
3138 end if;
3139 end if;
3140 end if;
3142 if Present (A)
3143 and then (Nkind (Parent (A)) /= N_Parameter_Association
3144 or else
3145 Chars (Selector_Name (Parent (A))) = Chars (F))
3146 then
3147 -- If style checking mode on, check match of formal name
3149 if Style_Check then
3150 if Nkind (Parent (A)) = N_Parameter_Association then
3151 Check_Identifier (Selector_Name (Parent (A)), F);
3152 end if;
3153 end if;
3155 -- If the formal is Out or In_Out, do not resolve and expand the
3156 -- conversion, because it is subsequently expanded into explicit
3157 -- temporaries and assignments. However, the object of the
3158 -- conversion can be resolved. An exception is the case of tagged
3159 -- type conversion with a class-wide actual. In that case we want
3160 -- the tag check to occur and no temporary will be needed (no
3161 -- representation change can occur) and the parameter is passed by
3162 -- reference, so we go ahead and resolve the type conversion.
3163 -- Another exception is the case of reference to component or
3164 -- subcomponent of a bit-packed array, in which case we want to
3165 -- defer expansion to the point the in and out assignments are
3166 -- performed.
3168 if Ekind (F) /= E_In_Parameter
3169 and then Nkind (A) = N_Type_Conversion
3170 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3171 then
3172 if Ekind (F) = E_In_Out_Parameter
3173 and then Is_Array_Type (Etype (F))
3174 then
3175 if Has_Aliased_Components (Etype (Expression (A)))
3176 /= Has_Aliased_Components (Etype (F))
3177 then
3179 -- In a view conversion, the conversion must be legal in
3180 -- both directions, and thus both component types must be
3181 -- aliased, or neither (4.6 (8)).
3183 -- The additional rule 4.6 (24.9.2) seems unduly
3184 -- restrictive: the privacy requirement should not apply
3185 -- to generic types, and should be checked in an
3186 -- instance. ARG query is in order ???
3188 Error_Msg_N
3189 ("both component types in a view conversion must be"
3190 & " aliased, or neither", A);
3192 elsif
3193 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3194 then
3195 if Is_By_Reference_Type (Etype (F))
3196 or else Is_By_Reference_Type (Etype (Expression (A)))
3197 then
3198 Error_Msg_N
3199 ("view conversion between unrelated by reference " &
3200 "array types not allowed (\'A'I-00246)", A);
3201 else
3202 declare
3203 Comp_Type : constant Entity_Id :=
3204 Component_Type
3205 (Etype (Expression (A)));
3206 begin
3207 if Comes_From_Source (A)
3208 and then Ada_Version >= Ada_05
3209 and then
3210 ((Is_Private_Type (Comp_Type)
3211 and then not Is_Generic_Type (Comp_Type))
3212 or else Is_Tagged_Type (Comp_Type)
3213 or else Is_Volatile (Comp_Type))
3214 then
3215 Error_Msg_N
3216 ("component type of a view conversion cannot"
3217 & " be private, tagged, or volatile"
3218 & " (RM 4.6 (24))",
3219 Expression (A));
3220 end if;
3221 end;
3222 end if;
3223 end if;
3224 end if;
3226 if (Conversion_OK (A)
3227 or else Valid_Conversion (A, Etype (A), Expression (A)))
3228 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3229 then
3230 Resolve (Expression (A));
3231 end if;
3233 -- If the actual is a function call that returns a limited
3234 -- unconstrained object that needs finalization, create a
3235 -- transient scope for it, so that it can receive the proper
3236 -- finalization list.
3238 elsif Nkind (A) = N_Function_Call
3239 and then Is_Limited_Record (Etype (F))
3240 and then not Is_Constrained (Etype (F))
3241 and then Expander_Active
3242 and then
3243 (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3244 then
3245 Establish_Transient_Scope (A, False);
3247 -- A small optimization: if one of the actuals is a concatenation
3248 -- create a block around a procedure call to recover stack space.
3249 -- This alleviates stack usage when several procedure calls in
3250 -- the same statement list use concatenation. We do not perform
3251 -- this wrapping for code statements, where the argument is a
3252 -- static string, and we want to preserve warnings involving
3253 -- sequences of such statements.
3255 elsif Nkind (A) = N_Op_Concat
3256 and then Nkind (N) = N_Procedure_Call_Statement
3257 and then Expander_Active
3258 and then
3259 not (Is_Intrinsic_Subprogram (Nam)
3260 and then Chars (Nam) = Name_Asm)
3261 and then not Static_Concatenation (A)
3262 then
3263 Establish_Transient_Scope (A, False);
3264 Resolve (A, Etype (F));
3266 else
3267 if Nkind (A) = N_Type_Conversion
3268 and then Is_Array_Type (Etype (F))
3269 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3270 and then
3271 (Is_Limited_Type (Etype (F))
3272 or else Is_Limited_Type (Etype (Expression (A))))
3273 then
3274 Error_Msg_N
3275 ("conversion between unrelated limited array types " &
3276 "not allowed (\A\I-00246)", A);
3278 if Is_Limited_Type (Etype (F)) then
3279 Explain_Limited_Type (Etype (F), A);
3280 end if;
3282 if Is_Limited_Type (Etype (Expression (A))) then
3283 Explain_Limited_Type (Etype (Expression (A)), A);
3284 end if;
3285 end if;
3287 -- (Ada 2005: AI-251): If the actual is an allocator whose
3288 -- directly designated type is a class-wide interface, we build
3289 -- an anonymous access type to use it as the type of the
3290 -- allocator. Later, when the subprogram call is expanded, if
3291 -- the interface has a secondary dispatch table the expander
3292 -- will add a type conversion to force the correct displacement
3293 -- of the pointer.
3295 if Nkind (A) = N_Allocator then
3296 declare
3297 DDT : constant Entity_Id :=
3298 Directly_Designated_Type (Base_Type (Etype (F)));
3300 New_Itype : Entity_Id;
3302 begin
3303 if Is_Class_Wide_Type (DDT)
3304 and then Is_Interface (DDT)
3305 then
3306 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3307 Set_Etype (New_Itype, Etype (A));
3308 Set_Directly_Designated_Type (New_Itype,
3309 Directly_Designated_Type (Etype (A)));
3310 Set_Etype (A, New_Itype);
3311 end if;
3313 -- Ada 2005, AI-162:If the actual is an allocator, the
3314 -- innermost enclosing statement is the master of the
3315 -- created object. This needs to be done with expansion
3316 -- enabled only, otherwise the transient scope will not
3317 -- be removed in the expansion of the wrapped construct.
3319 if (Is_Controlled (DDT) or else Has_Task (DDT))
3320 and then Expander_Active
3321 then
3322 Establish_Transient_Scope (A, False);
3323 end if;
3324 end;
3325 end if;
3327 -- (Ada 2005): The call may be to a primitive operation of
3328 -- a tagged synchronized type, declared outside of the type.
3329 -- In this case the controlling actual must be converted to
3330 -- its corresponding record type, which is the formal type.
3331 -- The actual may be a subtype, either because of a constraint
3332 -- or because it is a generic actual, so use base type to
3333 -- locate concurrent type.
3335 A_Typ := Base_Type (Etype (A));
3336 F_Typ := Base_Type (Etype (F));
3338 declare
3339 Full_A_Typ : Entity_Id;
3341 begin
3342 if Present (Full_View (A_Typ)) then
3343 Full_A_Typ := Base_Type (Full_View (A_Typ));
3344 else
3345 Full_A_Typ := A_Typ;
3346 end if;
3348 -- Tagged synchronized type (case 1): the actual is a
3349 -- concurrent type
3351 if Is_Concurrent_Type (A_Typ)
3352 and then Corresponding_Record_Type (A_Typ) = F_Typ
3353 then
3354 Rewrite (A,
3355 Unchecked_Convert_To
3356 (Corresponding_Record_Type (A_Typ), A));
3357 Resolve (A, Etype (F));
3359 -- Tagged synchronized type (case 2): the formal is a
3360 -- concurrent type
3362 elsif Ekind (Full_A_Typ) = E_Record_Type
3363 and then Present
3364 (Corresponding_Concurrent_Type (Full_A_Typ))
3365 and then Is_Concurrent_Type (F_Typ)
3366 and then Present (Corresponding_Record_Type (F_Typ))
3367 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
3368 then
3369 Resolve (A, Corresponding_Record_Type (F_Typ));
3371 -- Common case
3373 else
3374 Resolve (A, Etype (F));
3375 end if;
3376 end;
3377 end if;
3379 A_Typ := Etype (A);
3380 F_Typ := Etype (F);
3382 -- For mode IN, if actual is an entity, and the type of the formal
3383 -- has warnings suppressed, then we reset Never_Set_In_Source for
3384 -- the calling entity. The reason for this is to catch cases like
3385 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
3386 -- uses trickery to modify an IN parameter.
3388 if Ekind (F) = E_In_Parameter
3389 and then Is_Entity_Name (A)
3390 and then Present (Entity (A))
3391 and then Ekind (Entity (A)) = E_Variable
3392 and then Has_Warnings_Off (F_Typ)
3393 then
3394 Set_Never_Set_In_Source (Entity (A), False);
3395 end if;
3397 -- Perform error checks for IN and IN OUT parameters
3399 if Ekind (F) /= E_Out_Parameter then
3401 -- Check unset reference. For scalar parameters, it is clearly
3402 -- wrong to pass an uninitialized value as either an IN or
3403 -- IN-OUT parameter. For composites, it is also clearly an
3404 -- error to pass a completely uninitialized value as an IN
3405 -- parameter, but the case of IN OUT is trickier. We prefer
3406 -- not to give a warning here. For example, suppose there is
3407 -- a routine that sets some component of a record to False.
3408 -- It is perfectly reasonable to make this IN-OUT and allow
3409 -- either initialized or uninitialized records to be passed
3410 -- in this case.
3412 -- For partially initialized composite values, we also avoid
3413 -- warnings, since it is quite likely that we are passing a
3414 -- partially initialized value and only the initialized fields
3415 -- will in fact be read in the subprogram.
3417 if Is_Scalar_Type (A_Typ)
3418 or else (Ekind (F) = E_In_Parameter
3419 and then not Is_Partially_Initialized_Type (A_Typ))
3420 then
3421 Check_Unset_Reference (A);
3422 end if;
3424 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
3425 -- actual to a nested call, since this is case of reading an
3426 -- out parameter, which is not allowed.
3428 if Ada_Version = Ada_83
3429 and then Is_Entity_Name (A)
3430 and then Ekind (Entity (A)) = E_Out_Parameter
3431 then
3432 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
3433 end if;
3434 end if;
3436 -- Case of OUT or IN OUT parameter
3438 if Ekind (F) /= E_In_Parameter then
3440 -- For an Out parameter, check for useless assignment. Note
3441 -- that we can't set Last_Assignment this early, because we may
3442 -- kill current values in Resolve_Call, and that call would
3443 -- clobber the Last_Assignment field.
3445 -- Note: call Warn_On_Useless_Assignment before doing the check
3446 -- below for Is_OK_Variable_For_Out_Formal so that the setting
3447 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
3448 -- reflects the last assignment, not this one!
3450 if Ekind (F) = E_Out_Parameter then
3451 if Warn_On_Modified_As_Out_Parameter (F)
3452 and then Is_Entity_Name (A)
3453 and then Present (Entity (A))
3454 and then Comes_From_Source (N)
3455 then
3456 Warn_On_Useless_Assignment (Entity (A), A);
3457 end if;
3458 end if;
3460 -- Validate the form of the actual. Note that the call to
3461 -- Is_OK_Variable_For_Out_Formal generates the required
3462 -- reference in this case.
3464 if not Is_OK_Variable_For_Out_Formal (A) then
3465 Error_Msg_NE ("actual for& must be a variable", A, F);
3466 end if;
3468 -- What's the following about???
3470 if Is_Entity_Name (A) then
3471 Kill_Checks (Entity (A));
3472 else
3473 Kill_All_Checks;
3474 end if;
3475 end if;
3477 if Etype (A) = Any_Type then
3478 Set_Etype (N, Any_Type);
3479 return;
3480 end if;
3482 -- Apply appropriate range checks for in, out, and in-out
3483 -- parameters. Out and in-out parameters also need a separate
3484 -- check, if there is a type conversion, to make sure the return
3485 -- value meets the constraints of the variable before the
3486 -- conversion.
3488 -- Gigi looks at the check flag and uses the appropriate types.
3489 -- For now since one flag is used there is an optimization which
3490 -- might not be done in the In Out case since Gigi does not do
3491 -- any analysis. More thought required about this ???
3493 if Ekind (F) = E_In_Parameter
3494 or else Ekind (F) = E_In_Out_Parameter
3495 then
3496 if Is_Scalar_Type (Etype (A)) then
3497 Apply_Scalar_Range_Check (A, F_Typ);
3499 elsif Is_Array_Type (Etype (A)) then
3500 Apply_Length_Check (A, F_Typ);
3502 elsif Is_Record_Type (F_Typ)
3503 and then Has_Discriminants (F_Typ)
3504 and then Is_Constrained (F_Typ)
3505 and then (not Is_Derived_Type (F_Typ)
3506 or else Comes_From_Source (Nam))
3507 then
3508 Apply_Discriminant_Check (A, F_Typ);
3510 elsif Is_Access_Type (F_Typ)
3511 and then Is_Array_Type (Designated_Type (F_Typ))
3512 and then Is_Constrained (Designated_Type (F_Typ))
3513 then
3514 Apply_Length_Check (A, F_Typ);
3516 elsif Is_Access_Type (F_Typ)
3517 and then Has_Discriminants (Designated_Type (F_Typ))
3518 and then Is_Constrained (Designated_Type (F_Typ))
3519 then
3520 Apply_Discriminant_Check (A, F_Typ);
3522 else
3523 Apply_Range_Check (A, F_Typ);
3524 end if;
3526 -- Ada 2005 (AI-231)
3528 if Ada_Version >= Ada_05
3529 and then Is_Access_Type (F_Typ)
3530 and then Can_Never_Be_Null (F_Typ)
3531 and then Known_Null (A)
3532 then
3533 Apply_Compile_Time_Constraint_Error
3534 (N => A,
3535 Msg => "(Ada 2005) null not allowed in "
3536 & "null-excluding formal?",
3537 Reason => CE_Null_Not_Allowed);
3538 end if;
3539 end if;
3541 if Ekind (F) = E_Out_Parameter
3542 or else Ekind (F) = E_In_Out_Parameter
3543 then
3544 if Nkind (A) = N_Type_Conversion then
3545 if Is_Scalar_Type (A_Typ) then
3546 Apply_Scalar_Range_Check
3547 (Expression (A), Etype (Expression (A)), A_Typ);
3548 else
3549 Apply_Range_Check
3550 (Expression (A), Etype (Expression (A)), A_Typ);
3551 end if;
3553 else
3554 if Is_Scalar_Type (F_Typ) then
3555 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
3557 elsif Is_Array_Type (F_Typ)
3558 and then Ekind (F) = E_Out_Parameter
3559 then
3560 Apply_Length_Check (A, F_Typ);
3562 else
3563 Apply_Range_Check (A, A_Typ, F_Typ);
3564 end if;
3565 end if;
3566 end if;
3568 -- An actual associated with an access parameter is implicitly
3569 -- converted to the anonymous access type of the formal and must
3570 -- satisfy the legality checks for access conversions.
3572 if Ekind (F_Typ) = E_Anonymous_Access_Type then
3573 if not Valid_Conversion (A, F_Typ, A) then
3574 Error_Msg_N
3575 ("invalid implicit conversion for access parameter", A);
3576 end if;
3577 end if;
3579 -- Check bad case of atomic/volatile argument (RM C.6(12))
3581 if Is_By_Reference_Type (Etype (F))
3582 and then Comes_From_Source (N)
3583 then
3584 if Is_Atomic_Object (A)
3585 and then not Is_Atomic (Etype (F))
3586 then
3587 Error_Msg_N
3588 ("cannot pass atomic argument to non-atomic formal",
3591 elsif Is_Volatile_Object (A)
3592 and then not Is_Volatile (Etype (F))
3593 then
3594 Error_Msg_N
3595 ("cannot pass volatile argument to non-volatile formal",
3597 end if;
3598 end if;
3600 -- Check that subprograms don't have improper controlling
3601 -- arguments (RM 3.9.2 (9)).
3603 -- A primitive operation may have an access parameter of an
3604 -- incomplete tagged type, but a dispatching call is illegal
3605 -- if the type is still incomplete.
3607 if Is_Controlling_Formal (F) then
3608 Set_Is_Controlling_Actual (A);
3610 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3611 declare
3612 Desig : constant Entity_Id := Designated_Type (Etype (F));
3613 begin
3614 if Ekind (Desig) = E_Incomplete_Type
3615 and then No (Full_View (Desig))
3616 and then No (Non_Limited_View (Desig))
3617 then
3618 Error_Msg_NE
3619 ("premature use of incomplete type& " &
3620 "in dispatching call", A, Desig);
3621 end if;
3622 end;
3623 end if;
3625 elsif Nkind (A) = N_Explicit_Dereference then
3626 Validate_Remote_Access_To_Class_Wide_Type (A);
3627 end if;
3629 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
3630 and then not Is_Class_Wide_Type (F_Typ)
3631 and then not Is_Controlling_Formal (F)
3632 then
3633 Error_Msg_N ("class-wide argument not allowed here!", A);
3635 if Is_Subprogram (Nam)
3636 and then Comes_From_Source (Nam)
3637 then
3638 Error_Msg_Node_2 := F_Typ;
3639 Error_Msg_NE
3640 ("& is not a dispatching operation of &!", A, Nam);
3641 end if;
3643 elsif Is_Access_Type (A_Typ)
3644 and then Is_Access_Type (F_Typ)
3645 and then Ekind (F_Typ) /= E_Access_Subprogram_Type
3646 and then Ekind (F_Typ) /= E_Anonymous_Access_Subprogram_Type
3647 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
3648 or else (Nkind (A) = N_Attribute_Reference
3649 and then
3650 Is_Class_Wide_Type (Etype (Prefix (A)))))
3651 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
3652 and then not Is_Controlling_Formal (F)
3654 -- Disable these checks for call to imported C++ subprograms
3656 and then not
3657 (Is_Entity_Name (Name (N))
3658 and then Is_Imported (Entity (Name (N)))
3659 and then Convention (Entity (Name (N))) = Convention_CPP)
3660 then
3661 Error_Msg_N
3662 ("access to class-wide argument not allowed here!", A);
3664 if Is_Subprogram (Nam)
3665 and then Comes_From_Source (Nam)
3666 then
3667 Error_Msg_Node_2 := Designated_Type (F_Typ);
3668 Error_Msg_NE
3669 ("& is not a dispatching operation of &!", A, Nam);
3670 end if;
3671 end if;
3673 Eval_Actual (A);
3675 -- If it is a named association, treat the selector_name as
3676 -- a proper identifier, and mark the corresponding entity.
3678 if Nkind (Parent (A)) = N_Parameter_Association then
3679 Set_Entity (Selector_Name (Parent (A)), F);
3680 Generate_Reference (F, Selector_Name (Parent (A)));
3681 Set_Etype (Selector_Name (Parent (A)), F_Typ);
3682 Generate_Reference (F_Typ, N, ' ');
3683 end if;
3685 Prev := A;
3687 if Ekind (F) /= E_Out_Parameter then
3688 Check_Unset_Reference (A);
3689 end if;
3691 Next_Actual (A);
3693 -- Case where actual is not present
3695 else
3696 Insert_Default;
3697 end if;
3699 Next_Formal (F);
3700 end loop;
3701 end Resolve_Actuals;
3703 -----------------------
3704 -- Resolve_Allocator --
3705 -----------------------
3707 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
3708 E : constant Node_Id := Expression (N);
3709 Subtyp : Entity_Id;
3710 Discrim : Entity_Id;
3711 Constr : Node_Id;
3712 Aggr : Node_Id;
3713 Assoc : Node_Id := Empty;
3714 Disc_Exp : Node_Id;
3716 procedure Check_Allocator_Discrim_Accessibility
3717 (Disc_Exp : Node_Id;
3718 Alloc_Typ : Entity_Id);
3719 -- Check that accessibility level associated with an access discriminant
3720 -- initialized in an allocator by the expression Disc_Exp is not deeper
3721 -- than the level of the allocator type Alloc_Typ. An error message is
3722 -- issued if this condition is violated. Specialized checks are done for
3723 -- the cases of a constraint expression which is an access attribute or
3724 -- an access discriminant.
3726 function In_Dispatching_Context return Boolean;
3727 -- If the allocator is an actual in a call, it is allowed to be class-
3728 -- wide when the context is not because it is a controlling actual.
3730 procedure Propagate_Coextensions (Root : Node_Id);
3731 -- Propagate all nested coextensions which are located one nesting
3732 -- level down the tree to the node Root. Example:
3734 -- Top_Record
3735 -- Level_1_Coextension
3736 -- Level_2_Coextension
3738 -- The algorithm is paired with delay actions done by the Expander. In
3739 -- the above example, assume all coextensions are controlled types.
3740 -- The cycle of analysis, resolution and expansion will yield:
3742 -- 1) Analyze Top_Record
3743 -- 2) Analyze Level_1_Coextension
3744 -- 3) Analyze Level_2_Coextension
3745 -- 4) Resolve Level_2_Coextension. The allocator is marked as a
3746 -- coextension.
3747 -- 5) Expand Level_2_Coextension. A temporary variable Temp_1 is
3748 -- generated to capture the allocated object. Temp_1 is attached
3749 -- to the coextension chain of Level_2_Coextension.
3750 -- 6) Resolve Level_1_Coextension. The allocator is marked as a
3751 -- coextension. A forward tree traversal is performed which finds
3752 -- Level_2_Coextension's list and copies its contents into its
3753 -- own list.
3754 -- 7) Expand Level_1_Coextension. A temporary variable Temp_2 is
3755 -- generated to capture the allocated object. Temp_2 is attached
3756 -- to the coextension chain of Level_1_Coextension. Currently, the
3757 -- contents of the list are [Temp_2, Temp_1].
3758 -- 8) Resolve Top_Record. A forward tree traversal is performed which
3759 -- finds Level_1_Coextension's list and copies its contents into
3760 -- its own list.
3761 -- 9) Expand Top_Record. Generate finalization calls for Temp_1 and
3762 -- Temp_2 and attach them to Top_Record's finalization list.
3764 -------------------------------------------
3765 -- Check_Allocator_Discrim_Accessibility --
3766 -------------------------------------------
3768 procedure Check_Allocator_Discrim_Accessibility
3769 (Disc_Exp : Node_Id;
3770 Alloc_Typ : Entity_Id)
3772 begin
3773 if Type_Access_Level (Etype (Disc_Exp)) >
3774 Type_Access_Level (Alloc_Typ)
3775 then
3776 Error_Msg_N
3777 ("operand type has deeper level than allocator type", Disc_Exp);
3779 -- When the expression is an Access attribute the level of the prefix
3780 -- object must not be deeper than that of the allocator's type.
3782 elsif Nkind (Disc_Exp) = N_Attribute_Reference
3783 and then Get_Attribute_Id (Attribute_Name (Disc_Exp))
3784 = Attribute_Access
3785 and then Object_Access_Level (Prefix (Disc_Exp))
3786 > Type_Access_Level (Alloc_Typ)
3787 then
3788 Error_Msg_N
3789 ("prefix of attribute has deeper level than allocator type",
3790 Disc_Exp);
3792 -- When the expression is an access discriminant the check is against
3793 -- the level of the prefix object.
3795 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
3796 and then Nkind (Disc_Exp) = N_Selected_Component
3797 and then Object_Access_Level (Prefix (Disc_Exp))
3798 > Type_Access_Level (Alloc_Typ)
3799 then
3800 Error_Msg_N
3801 ("access discriminant has deeper level than allocator type",
3802 Disc_Exp);
3804 -- All other cases are legal
3806 else
3807 null;
3808 end if;
3809 end Check_Allocator_Discrim_Accessibility;
3811 ----------------------------
3812 -- In_Dispatching_Context --
3813 ----------------------------
3815 function In_Dispatching_Context return Boolean is
3816 Par : constant Node_Id := Parent (N);
3817 begin
3818 return Nkind_In (Par, N_Function_Call, N_Procedure_Call_Statement)
3819 and then Is_Entity_Name (Name (Par))
3820 and then Is_Dispatching_Operation (Entity (Name (Par)));
3821 end In_Dispatching_Context;
3823 ----------------------------
3824 -- Propagate_Coextensions --
3825 ----------------------------
3827 procedure Propagate_Coextensions (Root : Node_Id) is
3829 procedure Copy_List (From : Elist_Id; To : Elist_Id);
3830 -- Copy the contents of list From into list To, preserving the
3831 -- order of elements.
3833 function Process_Allocator (Nod : Node_Id) return Traverse_Result;
3834 -- Recognize an allocator or a rewritten allocator node and add it
3835 -- along with its nested coextensions to the list of Root.
3837 ---------------
3838 -- Copy_List --
3839 ---------------
3841 procedure Copy_List (From : Elist_Id; To : Elist_Id) is
3842 From_Elmt : Elmt_Id;
3843 begin
3844 From_Elmt := First_Elmt (From);
3845 while Present (From_Elmt) loop
3846 Append_Elmt (Node (From_Elmt), To);
3847 Next_Elmt (From_Elmt);
3848 end loop;
3849 end Copy_List;
3851 -----------------------
3852 -- Process_Allocator --
3853 -----------------------
3855 function Process_Allocator (Nod : Node_Id) return Traverse_Result is
3856 Orig_Nod : Node_Id := Nod;
3858 begin
3859 -- This is a possible rewritten subtype indication allocator. Any
3860 -- nested coextensions will appear as discriminant constraints.
3862 if Nkind (Nod) = N_Identifier
3863 and then Present (Original_Node (Nod))
3864 and then Nkind (Original_Node (Nod)) = N_Subtype_Indication
3865 then
3866 declare
3867 Discr : Node_Id;
3868 Discr_Elmt : Elmt_Id;
3870 begin
3871 if Is_Record_Type (Entity (Nod)) then
3872 Discr_Elmt :=
3873 First_Elmt (Discriminant_Constraint (Entity (Nod)));
3874 while Present (Discr_Elmt) loop
3875 Discr := Node (Discr_Elmt);
3877 if Nkind (Discr) = N_Identifier
3878 and then Present (Original_Node (Discr))
3879 and then Nkind (Original_Node (Discr)) = N_Allocator
3880 and then Present (Coextensions (
3881 Original_Node (Discr)))
3882 then
3883 if No (Coextensions (Root)) then
3884 Set_Coextensions (Root, New_Elmt_List);
3885 end if;
3887 Copy_List
3888 (From => Coextensions (Original_Node (Discr)),
3889 To => Coextensions (Root));
3890 end if;
3892 Next_Elmt (Discr_Elmt);
3893 end loop;
3895 -- There is no need to continue the traversal of this
3896 -- subtree since all the information has already been
3897 -- propagated.
3899 return Skip;
3900 end if;
3901 end;
3903 -- Case of either a stand alone allocator or a rewritten allocator
3904 -- with an aggregate.
3906 else
3907 if Present (Original_Node (Nod)) then
3908 Orig_Nod := Original_Node (Nod);
3909 end if;
3911 if Nkind (Orig_Nod) = N_Allocator then
3913 -- Propagate the list of nested coextensions to the Root
3914 -- allocator. This is done through list copy since a single
3915 -- allocator may have multiple coextensions. Do not touch
3916 -- coextensions roots.
3918 if not Is_Coextension_Root (Orig_Nod)
3919 and then Present (Coextensions (Orig_Nod))
3920 then
3921 if No (Coextensions (Root)) then
3922 Set_Coextensions (Root, New_Elmt_List);
3923 end if;
3925 Copy_List
3926 (From => Coextensions (Orig_Nod),
3927 To => Coextensions (Root));
3928 end if;
3930 -- There is no need to continue the traversal of this
3931 -- subtree since all the information has already been
3932 -- propagated.
3934 return Skip;
3935 end if;
3936 end if;
3938 -- Keep on traversing, looking for the next allocator
3940 return OK;
3941 end Process_Allocator;
3943 procedure Process_Allocators is
3944 new Traverse_Proc (Process_Allocator);
3946 -- Start of processing for Propagate_Coextensions
3948 begin
3949 Process_Allocators (Expression (Root));
3950 end Propagate_Coextensions;
3952 -- Start of processing for Resolve_Allocator
3954 begin
3955 -- Replace general access with specific type
3957 if Ekind (Etype (N)) = E_Allocator_Type then
3958 Set_Etype (N, Base_Type (Typ));
3959 end if;
3961 if Is_Abstract_Type (Typ) then
3962 Error_Msg_N ("type of allocator cannot be abstract", N);
3963 end if;
3965 -- For qualified expression, resolve the expression using the
3966 -- given subtype (nothing to do for type mark, subtype indication)
3968 if Nkind (E) = N_Qualified_Expression then
3969 if Is_Class_Wide_Type (Etype (E))
3970 and then not Is_Class_Wide_Type (Designated_Type (Typ))
3971 and then not In_Dispatching_Context
3972 then
3973 Error_Msg_N
3974 ("class-wide allocator not allowed for this access type", N);
3975 end if;
3977 Resolve (Expression (E), Etype (E));
3978 Check_Unset_Reference (Expression (E));
3980 -- A qualified expression requires an exact match of the type,
3981 -- class-wide matching is not allowed.
3983 if (Is_Class_Wide_Type (Etype (Expression (E)))
3984 or else Is_Class_Wide_Type (Etype (E)))
3985 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
3986 then
3987 Wrong_Type (Expression (E), Etype (E));
3988 end if;
3990 -- A special accessibility check is needed for allocators that
3991 -- constrain access discriminants. The level of the type of the
3992 -- expression used to constrain an access discriminant cannot be
3993 -- deeper than the type of the allocator (in contrast to access
3994 -- parameters, where the level of the actual can be arbitrary).
3996 -- We can't use Valid_Conversion to perform this check because
3997 -- in general the type of the allocator is unrelated to the type
3998 -- of the access discriminant.
4000 if Ekind (Typ) /= E_Anonymous_Access_Type
4001 or else Is_Local_Anonymous_Access (Typ)
4002 then
4003 Subtyp := Entity (Subtype_Mark (E));
4005 Aggr := Original_Node (Expression (E));
4007 if Has_Discriminants (Subtyp)
4008 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4009 then
4010 Discrim := First_Discriminant (Base_Type (Subtyp));
4012 -- Get the first component expression of the aggregate
4014 if Present (Expressions (Aggr)) then
4015 Disc_Exp := First (Expressions (Aggr));
4017 elsif Present (Component_Associations (Aggr)) then
4018 Assoc := First (Component_Associations (Aggr));
4020 if Present (Assoc) then
4021 Disc_Exp := Expression (Assoc);
4022 else
4023 Disc_Exp := Empty;
4024 end if;
4026 else
4027 Disc_Exp := Empty;
4028 end if;
4030 while Present (Discrim) and then Present (Disc_Exp) loop
4031 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4032 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4033 end if;
4035 Next_Discriminant (Discrim);
4037 if Present (Discrim) then
4038 if Present (Assoc) then
4039 Next (Assoc);
4040 Disc_Exp := Expression (Assoc);
4042 elsif Present (Next (Disc_Exp)) then
4043 Next (Disc_Exp);
4045 else
4046 Assoc := First (Component_Associations (Aggr));
4048 if Present (Assoc) then
4049 Disc_Exp := Expression (Assoc);
4050 else
4051 Disc_Exp := Empty;
4052 end if;
4053 end if;
4054 end if;
4055 end loop;
4056 end if;
4057 end if;
4059 -- For a subtype mark or subtype indication, freeze the subtype
4061 else
4062 Freeze_Expression (E);
4064 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4065 Error_Msg_N
4066 ("initialization required for access-to-constant allocator", N);
4067 end if;
4069 -- A special accessibility check is needed for allocators that
4070 -- constrain access discriminants. The level of the type of the
4071 -- expression used to constrain an access discriminant cannot be
4072 -- deeper than the type of the allocator (in contrast to access
4073 -- parameters, where the level of the actual can be arbitrary).
4074 -- We can't use Valid_Conversion to perform this check because
4075 -- in general the type of the allocator is unrelated to the type
4076 -- of the access discriminant.
4078 if Nkind (Original_Node (E)) = N_Subtype_Indication
4079 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4080 or else Is_Local_Anonymous_Access (Typ))
4081 then
4082 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4084 if Has_Discriminants (Subtyp) then
4085 Discrim := First_Discriminant (Base_Type (Subtyp));
4086 Constr := First (Constraints (Constraint (Original_Node (E))));
4087 while Present (Discrim) and then Present (Constr) loop
4088 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4089 if Nkind (Constr) = N_Discriminant_Association then
4090 Disc_Exp := Original_Node (Expression (Constr));
4091 else
4092 Disc_Exp := Original_Node (Constr);
4093 end if;
4095 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4096 end if;
4098 Next_Discriminant (Discrim);
4099 Next (Constr);
4100 end loop;
4101 end if;
4102 end if;
4103 end if;
4105 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4106 -- check that the level of the type of the created object is not deeper
4107 -- than the level of the allocator's access type, since extensions can
4108 -- now occur at deeper levels than their ancestor types. This is a
4109 -- static accessibility level check; a run-time check is also needed in
4110 -- the case of an initialized allocator with a class-wide argument (see
4111 -- Expand_Allocator_Expression).
4113 if Ada_Version >= Ada_05
4114 and then Is_Class_Wide_Type (Designated_Type (Typ))
4115 then
4116 declare
4117 Exp_Typ : Entity_Id;
4119 begin
4120 if Nkind (E) = N_Qualified_Expression then
4121 Exp_Typ := Etype (E);
4122 elsif Nkind (E) = N_Subtype_Indication then
4123 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4124 else
4125 Exp_Typ := Entity (E);
4126 end if;
4128 if Type_Access_Level (Exp_Typ) > Type_Access_Level (Typ) then
4129 if In_Instance_Body then
4130 Error_Msg_N ("?type in allocator has deeper level than" &
4131 " designated class-wide type", E);
4132 Error_Msg_N ("\?Program_Error will be raised at run time",
4134 Rewrite (N,
4135 Make_Raise_Program_Error (Sloc (N),
4136 Reason => PE_Accessibility_Check_Failed));
4137 Set_Etype (N, Typ);
4139 -- Do not apply Ada 2005 accessibility checks on a class-wide
4140 -- allocator if the type given in the allocator is a formal
4141 -- type. A run-time check will be performed in the instance.
4143 elsif not Is_Generic_Type (Exp_Typ) then
4144 Error_Msg_N ("type in allocator has deeper level than" &
4145 " designated class-wide type", E);
4146 end if;
4147 end if;
4148 end;
4149 end if;
4151 -- Check for allocation from an empty storage pool
4153 if No_Pool_Assigned (Typ) then
4154 declare
4155 Loc : constant Source_Ptr := Sloc (N);
4156 begin
4157 Error_Msg_N ("?allocation from empty storage pool!", N);
4158 Error_Msg_N ("\?Storage_Error will be raised at run time!", N);
4159 Insert_Action (N,
4160 Make_Raise_Storage_Error (Loc,
4161 Reason => SE_Empty_Storage_Pool));
4162 end;
4164 -- If the context is an unchecked conversion, as may happen within
4165 -- an inlined subprogram, the allocator is being resolved with its
4166 -- own anonymous type. In that case, if the target type has a specific
4167 -- storage pool, it must be inherited explicitly by the allocator type.
4169 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
4170 and then No (Associated_Storage_Pool (Typ))
4171 then
4172 Set_Associated_Storage_Pool
4173 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
4174 end if;
4176 -- An erroneous allocator may be rewritten as a raise Program_Error
4177 -- statement.
4179 if Nkind (N) = N_Allocator then
4181 -- An anonymous access discriminant is the definition of a
4182 -- coextension.
4184 if Ekind (Typ) = E_Anonymous_Access_Type
4185 and then Nkind (Associated_Node_For_Itype (Typ)) =
4186 N_Discriminant_Specification
4187 then
4188 -- Avoid marking an allocator as a dynamic coextension if it is
4189 -- within a static construct.
4191 if not Is_Static_Coextension (N) then
4192 Set_Is_Dynamic_Coextension (N);
4193 end if;
4195 -- Cleanup for potential static coextensions
4197 else
4198 Set_Is_Dynamic_Coextension (N, False);
4199 Set_Is_Static_Coextension (N, False);
4200 end if;
4202 -- There is no need to propagate any nested coextensions if they
4203 -- are marked as static since they will be rewritten on the spot.
4205 if not Is_Static_Coextension (N) then
4206 Propagate_Coextensions (N);
4207 end if;
4208 end if;
4209 end Resolve_Allocator;
4211 ---------------------------
4212 -- Resolve_Arithmetic_Op --
4213 ---------------------------
4215 -- Used for resolving all arithmetic operators except exponentiation
4217 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
4218 L : constant Node_Id := Left_Opnd (N);
4219 R : constant Node_Id := Right_Opnd (N);
4220 TL : constant Entity_Id := Base_Type (Etype (L));
4221 TR : constant Entity_Id := Base_Type (Etype (R));
4222 T : Entity_Id;
4223 Rop : Node_Id;
4225 B_Typ : constant Entity_Id := Base_Type (Typ);
4226 -- We do the resolution using the base type, because intermediate values
4227 -- in expressions always are of the base type, not a subtype of it.
4229 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
4230 -- Returns True if N is in a context that expects "any real type"
4232 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
4233 -- Return True iff given type is Integer or universal real/integer
4235 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
4236 -- Choose type of integer literal in fixed-point operation to conform
4237 -- to available fixed-point type. T is the type of the other operand,
4238 -- which is needed to determine the expected type of N.
4240 procedure Set_Operand_Type (N : Node_Id);
4241 -- Set operand type to T if universal
4243 -------------------------------
4244 -- Expected_Type_Is_Any_Real --
4245 -------------------------------
4247 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
4248 begin
4249 -- N is the expression after "delta" in a fixed_point_definition;
4250 -- see RM-3.5.9(6):
4252 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
4253 N_Decimal_Fixed_Point_Definition,
4255 -- N is one of the bounds in a real_range_specification;
4256 -- see RM-3.5.7(5):
4258 N_Real_Range_Specification,
4260 -- N is the expression of a delta_constraint;
4261 -- see RM-J.3(3):
4263 N_Delta_Constraint);
4264 end Expected_Type_Is_Any_Real;
4266 -----------------------------
4267 -- Is_Integer_Or_Universal --
4268 -----------------------------
4270 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
4271 T : Entity_Id;
4272 Index : Interp_Index;
4273 It : Interp;
4275 begin
4276 if not Is_Overloaded (N) then
4277 T := Etype (N);
4278 return Base_Type (T) = Base_Type (Standard_Integer)
4279 or else T = Universal_Integer
4280 or else T = Universal_Real;
4281 else
4282 Get_First_Interp (N, Index, It);
4283 while Present (It.Typ) loop
4284 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
4285 or else It.Typ = Universal_Integer
4286 or else It.Typ = Universal_Real
4287 then
4288 return True;
4289 end if;
4291 Get_Next_Interp (Index, It);
4292 end loop;
4293 end if;
4295 return False;
4296 end Is_Integer_Or_Universal;
4298 ----------------------------
4299 -- Set_Mixed_Mode_Operand --
4300 ----------------------------
4302 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
4303 Index : Interp_Index;
4304 It : Interp;
4306 begin
4307 if Universal_Interpretation (N) = Universal_Integer then
4309 -- A universal integer literal is resolved as standard integer
4310 -- except in the case of a fixed-point result, where we leave it
4311 -- as universal (to be handled by Exp_Fixd later on)
4313 if Is_Fixed_Point_Type (T) then
4314 Resolve (N, Universal_Integer);
4315 else
4316 Resolve (N, Standard_Integer);
4317 end if;
4319 elsif Universal_Interpretation (N) = Universal_Real
4320 and then (T = Base_Type (Standard_Integer)
4321 or else T = Universal_Integer
4322 or else T = Universal_Real)
4323 then
4324 -- A universal real can appear in a fixed-type context. We resolve
4325 -- the literal with that context, even though this might raise an
4326 -- exception prematurely (the other operand may be zero).
4328 Resolve (N, B_Typ);
4330 elsif Etype (N) = Base_Type (Standard_Integer)
4331 and then T = Universal_Real
4332 and then Is_Overloaded (N)
4333 then
4334 -- Integer arg in mixed-mode operation. Resolve with universal
4335 -- type, in case preference rule must be applied.
4337 Resolve (N, Universal_Integer);
4339 elsif Etype (N) = T
4340 and then B_Typ /= Universal_Fixed
4341 then
4342 -- Not a mixed-mode operation, resolve with context
4344 Resolve (N, B_Typ);
4346 elsif Etype (N) = Any_Fixed then
4348 -- N may itself be a mixed-mode operation, so use context type
4350 Resolve (N, B_Typ);
4352 elsif Is_Fixed_Point_Type (T)
4353 and then B_Typ = Universal_Fixed
4354 and then Is_Overloaded (N)
4355 then
4356 -- Must be (fixed * fixed) operation, operand must have one
4357 -- compatible interpretation.
4359 Resolve (N, Any_Fixed);
4361 elsif Is_Fixed_Point_Type (B_Typ)
4362 and then (T = Universal_Real
4363 or else Is_Fixed_Point_Type (T))
4364 and then Is_Overloaded (N)
4365 then
4366 -- C * F(X) in a fixed context, where C is a real literal or a
4367 -- fixed-point expression. F must have either a fixed type
4368 -- interpretation or an integer interpretation, but not both.
4370 Get_First_Interp (N, Index, It);
4371 while Present (It.Typ) loop
4372 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
4374 if Analyzed (N) then
4375 Error_Msg_N ("ambiguous operand in fixed operation", N);
4376 else
4377 Resolve (N, Standard_Integer);
4378 end if;
4380 elsif Is_Fixed_Point_Type (It.Typ) then
4382 if Analyzed (N) then
4383 Error_Msg_N ("ambiguous operand in fixed operation", N);
4384 else
4385 Resolve (N, It.Typ);
4386 end if;
4387 end if;
4389 Get_Next_Interp (Index, It);
4390 end loop;
4392 -- Reanalyze the literal with the fixed type of the context. If
4393 -- context is Universal_Fixed, we are within a conversion, leave
4394 -- the literal as a universal real because there is no usable
4395 -- fixed type, and the target of the conversion plays no role in
4396 -- the resolution.
4398 declare
4399 Op2 : Node_Id;
4400 T2 : Entity_Id;
4402 begin
4403 if N = L then
4404 Op2 := R;
4405 else
4406 Op2 := L;
4407 end if;
4409 if B_Typ = Universal_Fixed
4410 and then Nkind (Op2) = N_Real_Literal
4411 then
4412 T2 := Universal_Real;
4413 else
4414 T2 := B_Typ;
4415 end if;
4417 Set_Analyzed (Op2, False);
4418 Resolve (Op2, T2);
4419 end;
4421 else
4422 Resolve (N);
4423 end if;
4424 end Set_Mixed_Mode_Operand;
4426 ----------------------
4427 -- Set_Operand_Type --
4428 ----------------------
4430 procedure Set_Operand_Type (N : Node_Id) is
4431 begin
4432 if Etype (N) = Universal_Integer
4433 or else Etype (N) = Universal_Real
4434 then
4435 Set_Etype (N, T);
4436 end if;
4437 end Set_Operand_Type;
4439 -- Start of processing for Resolve_Arithmetic_Op
4441 begin
4442 if Comes_From_Source (N)
4443 and then Ekind (Entity (N)) = E_Function
4444 and then Is_Imported (Entity (N))
4445 and then Is_Intrinsic_Subprogram (Entity (N))
4446 then
4447 Resolve_Intrinsic_Operator (N, Typ);
4448 return;
4450 -- Special-case for mixed-mode universal expressions or fixed point
4451 -- type operation: each argument is resolved separately. The same
4452 -- treatment is required if one of the operands of a fixed point
4453 -- operation is universal real, since in this case we don't do a
4454 -- conversion to a specific fixed-point type (instead the expander
4455 -- takes care of the case).
4457 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
4458 and then Present (Universal_Interpretation (L))
4459 and then Present (Universal_Interpretation (R))
4460 then
4461 Resolve (L, Universal_Interpretation (L));
4462 Resolve (R, Universal_Interpretation (R));
4463 Set_Etype (N, B_Typ);
4465 elsif (B_Typ = Universal_Real
4466 or else Etype (N) = Universal_Fixed
4467 or else (Etype (N) = Any_Fixed
4468 and then Is_Fixed_Point_Type (B_Typ))
4469 or else (Is_Fixed_Point_Type (B_Typ)
4470 and then (Is_Integer_Or_Universal (L)
4471 or else
4472 Is_Integer_Or_Universal (R))))
4473 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
4474 then
4475 if TL = Universal_Integer or else TR = Universal_Integer then
4476 Check_For_Visible_Operator (N, B_Typ);
4477 end if;
4479 -- If context is a fixed type and one operand is integer, the
4480 -- other is resolved with the type of the context.
4482 if Is_Fixed_Point_Type (B_Typ)
4483 and then (Base_Type (TL) = Base_Type (Standard_Integer)
4484 or else TL = Universal_Integer)
4485 then
4486 Resolve (R, B_Typ);
4487 Resolve (L, TL);
4489 elsif Is_Fixed_Point_Type (B_Typ)
4490 and then (Base_Type (TR) = Base_Type (Standard_Integer)
4491 or else TR = Universal_Integer)
4492 then
4493 Resolve (L, B_Typ);
4494 Resolve (R, TR);
4496 else
4497 Set_Mixed_Mode_Operand (L, TR);
4498 Set_Mixed_Mode_Operand (R, TL);
4499 end if;
4501 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
4502 -- multiplying operators from being used when the expected type is
4503 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
4504 -- some cases where the expected type is actually Any_Real;
4505 -- Expected_Type_Is_Any_Real takes care of that case.
4507 if Etype (N) = Universal_Fixed
4508 or else Etype (N) = Any_Fixed
4509 then
4510 if B_Typ = Universal_Fixed
4511 and then not Expected_Type_Is_Any_Real (N)
4512 and then not Nkind_In (Parent (N), N_Type_Conversion,
4513 N_Unchecked_Type_Conversion)
4514 then
4515 Error_Msg_N ("type cannot be determined from context!", N);
4516 Error_Msg_N ("\explicit conversion to result type required", N);
4518 Set_Etype (L, Any_Type);
4519 Set_Etype (R, Any_Type);
4521 else
4522 if Ada_Version = Ada_83
4523 and then Etype (N) = Universal_Fixed
4524 and then not
4525 Nkind_In (Parent (N), N_Type_Conversion,
4526 N_Unchecked_Type_Conversion)
4527 then
4528 Error_Msg_N
4529 ("(Ada 83) fixed-point operation "
4530 & "needs explicit conversion", N);
4531 end if;
4533 -- The expected type is "any real type" in contexts like
4534 -- type T is delta <universal_fixed-expression> ...
4535 -- in which case we need to set the type to Universal_Real
4536 -- so that static expression evaluation will work properly.
4538 if Expected_Type_Is_Any_Real (N) then
4539 Set_Etype (N, Universal_Real);
4540 else
4541 Set_Etype (N, B_Typ);
4542 end if;
4543 end if;
4545 elsif Is_Fixed_Point_Type (B_Typ)
4546 and then (Is_Integer_Or_Universal (L)
4547 or else Nkind (L) = N_Real_Literal
4548 or else Nkind (R) = N_Real_Literal
4549 or else Is_Integer_Or_Universal (R))
4550 then
4551 Set_Etype (N, B_Typ);
4553 elsif Etype (N) = Any_Fixed then
4555 -- If no previous errors, this is only possible if one operand
4556 -- is overloaded and the context is universal. Resolve as such.
4558 Set_Etype (N, B_Typ);
4559 end if;
4561 else
4562 if (TL = Universal_Integer or else TL = Universal_Real)
4563 and then
4564 (TR = Universal_Integer or else TR = Universal_Real)
4565 then
4566 Check_For_Visible_Operator (N, B_Typ);
4567 end if;
4569 -- If the context is Universal_Fixed and the operands are also
4570 -- universal fixed, this is an error, unless there is only one
4571 -- applicable fixed_point type (usually duration).
4573 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
4574 T := Unique_Fixed_Point_Type (N);
4576 if T = Any_Type then
4577 Set_Etype (N, T);
4578 return;
4579 else
4580 Resolve (L, T);
4581 Resolve (R, T);
4582 end if;
4584 else
4585 Resolve (L, B_Typ);
4586 Resolve (R, B_Typ);
4587 end if;
4589 -- If one of the arguments was resolved to a non-universal type.
4590 -- label the result of the operation itself with the same type.
4591 -- Do the same for the universal argument, if any.
4593 T := Intersect_Types (L, R);
4594 Set_Etype (N, Base_Type (T));
4595 Set_Operand_Type (L);
4596 Set_Operand_Type (R);
4597 end if;
4599 Generate_Operator_Reference (N, Typ);
4600 Eval_Arithmetic_Op (N);
4602 -- Set overflow and division checking bit. Much cleverer code needed
4603 -- here eventually and perhaps the Resolve routines should be separated
4604 -- for the various arithmetic operations, since they will need
4605 -- different processing. ???
4607 if Nkind (N) in N_Op then
4608 if not Overflow_Checks_Suppressed (Etype (N)) then
4609 Enable_Overflow_Check (N);
4610 end if;
4612 -- Give warning if explicit division by zero
4614 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
4615 and then not Division_Checks_Suppressed (Etype (N))
4616 then
4617 Rop := Right_Opnd (N);
4619 if Compile_Time_Known_Value (Rop)
4620 and then ((Is_Integer_Type (Etype (Rop))
4621 and then Expr_Value (Rop) = Uint_0)
4622 or else
4623 (Is_Real_Type (Etype (Rop))
4624 and then Expr_Value_R (Rop) = Ureal_0))
4625 then
4626 -- Specialize the warning message according to the operation
4628 case Nkind (N) is
4629 when N_Op_Divide =>
4630 Apply_Compile_Time_Constraint_Error
4631 (N, "division by zero?", CE_Divide_By_Zero,
4632 Loc => Sloc (Right_Opnd (N)));
4634 when N_Op_Rem =>
4635 Apply_Compile_Time_Constraint_Error
4636 (N, "rem with zero divisor?", CE_Divide_By_Zero,
4637 Loc => Sloc (Right_Opnd (N)));
4639 when N_Op_Mod =>
4640 Apply_Compile_Time_Constraint_Error
4641 (N, "mod with zero divisor?", CE_Divide_By_Zero,
4642 Loc => Sloc (Right_Opnd (N)));
4644 -- Division by zero can only happen with division, rem,
4645 -- and mod operations.
4647 when others =>
4648 raise Program_Error;
4649 end case;
4651 -- Otherwise just set the flag to check at run time
4653 else
4654 Activate_Division_Check (N);
4655 end if;
4656 end if;
4658 -- If Restriction No_Implicit_Conditionals is active, then it is
4659 -- violated if either operand can be negative for mod, or for rem
4660 -- if both operands can be negative.
4662 if Restrictions.Set (No_Implicit_Conditionals)
4663 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
4664 then
4665 declare
4666 Lo : Uint;
4667 Hi : Uint;
4668 OK : Boolean;
4670 LNeg : Boolean;
4671 RNeg : Boolean;
4672 -- Set if corresponding operand might be negative
4674 begin
4675 Determine_Range
4676 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
4677 LNeg := (not OK) or else Lo < 0;
4679 Determine_Range
4680 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
4681 RNeg := (not OK) or else Lo < 0;
4683 -- Check if we will be generating conditionals. There are two
4684 -- cases where that can happen, first for REM, the only case
4685 -- is largest negative integer mod -1, where the division can
4686 -- overflow, but we still have to give the right result. The
4687 -- front end generates a test for this annoying case. Here we
4688 -- just test if both operands can be negative (that's what the
4689 -- expander does, so we match its logic here).
4691 -- The second case is mod where either operand can be negative.
4692 -- In this case, the back end has to generate additonal tests.
4694 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
4695 or else
4696 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
4697 then
4698 Check_Restriction (No_Implicit_Conditionals, N);
4699 end if;
4700 end;
4701 end if;
4702 end if;
4704 Check_Unset_Reference (L);
4705 Check_Unset_Reference (R);
4706 end Resolve_Arithmetic_Op;
4708 ------------------
4709 -- Resolve_Call --
4710 ------------------
4712 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
4713 Loc : constant Source_Ptr := Sloc (N);
4714 Subp : constant Node_Id := Name (N);
4715 Nam : Entity_Id;
4716 I : Interp_Index;
4717 It : Interp;
4718 Norm_OK : Boolean;
4719 Scop : Entity_Id;
4720 Rtype : Entity_Id;
4722 begin
4723 -- The context imposes a unique interpretation with type Typ on a
4724 -- procedure or function call. Find the entity of the subprogram that
4725 -- yields the expected type, and propagate the corresponding formal
4726 -- constraints on the actuals. The caller has established that an
4727 -- interpretation exists, and emitted an error if not unique.
4729 -- First deal with the case of a call to an access-to-subprogram,
4730 -- dereference made explicit in Analyze_Call.
4732 if Ekind (Etype (Subp)) = E_Subprogram_Type then
4733 if not Is_Overloaded (Subp) then
4734 Nam := Etype (Subp);
4736 else
4737 -- Find the interpretation whose type (a subprogram type) has a
4738 -- return type that is compatible with the context. Analysis of
4739 -- the node has established that one exists.
4741 Nam := Empty;
4743 Get_First_Interp (Subp, I, It);
4744 while Present (It.Typ) loop
4745 if Covers (Typ, Etype (It.Typ)) then
4746 Nam := It.Typ;
4747 exit;
4748 end if;
4750 Get_Next_Interp (I, It);
4751 end loop;
4753 if No (Nam) then
4754 raise Program_Error;
4755 end if;
4756 end if;
4758 -- If the prefix is not an entity, then resolve it
4760 if not Is_Entity_Name (Subp) then
4761 Resolve (Subp, Nam);
4762 end if;
4764 -- For an indirect call, we always invalidate checks, since we do not
4765 -- know whether the subprogram is local or global. Yes we could do
4766 -- better here, e.g. by knowing that there are no local subprograms,
4767 -- but it does not seem worth the effort. Similarly, we kill all
4768 -- knowledge of current constant values.
4770 Kill_Current_Values;
4772 -- If this is a procedure call which is really an entry call, do
4773 -- the conversion of the procedure call to an entry call. Protected
4774 -- operations use the same circuitry because the name in the call
4775 -- can be an arbitrary expression with special resolution rules.
4777 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
4778 or else (Is_Entity_Name (Subp)
4779 and then Ekind (Entity (Subp)) = E_Entry)
4780 then
4781 Resolve_Entry_Call (N, Typ);
4782 Check_Elab_Call (N);
4784 -- Kill checks and constant values, as above for indirect case
4785 -- Who knows what happens when another task is activated?
4787 Kill_Current_Values;
4788 return;
4790 -- Normal subprogram call with name established in Resolve
4792 elsif not (Is_Type (Entity (Subp))) then
4793 Nam := Entity (Subp);
4794 Set_Entity_With_Style_Check (Subp, Nam);
4796 -- Otherwise we must have the case of an overloaded call
4798 else
4799 pragma Assert (Is_Overloaded (Subp));
4801 -- Initialize Nam to prevent warning (we know it will be assigned
4802 -- in the loop below, but the compiler does not know that).
4804 Nam := Empty;
4806 Get_First_Interp (Subp, I, It);
4807 while Present (It.Typ) loop
4808 if Covers (Typ, It.Typ) then
4809 Nam := It.Nam;
4810 Set_Entity_With_Style_Check (Subp, Nam);
4811 exit;
4812 end if;
4814 Get_Next_Interp (I, It);
4815 end loop;
4816 end if;
4818 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
4819 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
4820 and then Nkind (Subp) /= N_Explicit_Dereference
4821 and then Present (Parameter_Associations (N))
4822 then
4823 -- The prefix is a parameterless function call that returns an access
4824 -- to subprogram. If parameters are present in the current call, add
4825 -- add an explicit dereference. We use the base type here because
4826 -- within an instance these may be subtypes.
4828 -- The dereference is added either in Analyze_Call or here. Should
4829 -- be consolidated ???
4831 Set_Is_Overloaded (Subp, False);
4832 Set_Etype (Subp, Etype (Nam));
4833 Insert_Explicit_Dereference (Subp);
4834 Nam := Designated_Type (Etype (Nam));
4835 Resolve (Subp, Nam);
4836 end if;
4838 -- Check that a call to Current_Task does not occur in an entry body
4840 if Is_RTE (Nam, RE_Current_Task) then
4841 declare
4842 P : Node_Id;
4844 begin
4845 P := N;
4846 loop
4847 P := Parent (P);
4849 -- Exclude calls that occur within the default of a formal
4850 -- parameter of the entry, since those are evaluated outside
4851 -- of the body.
4853 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
4855 if Nkind (P) = N_Entry_Body
4856 or else (Nkind (P) = N_Subprogram_Body
4857 and then Is_Entry_Barrier_Function (P))
4858 then
4859 Rtype := Etype (N);
4860 Error_Msg_NE
4861 ("?& should not be used in entry body (RM C.7(17))",
4862 N, Nam);
4863 Error_Msg_NE
4864 ("\Program_Error will be raised at run time?", N, Nam);
4865 Rewrite (N,
4866 Make_Raise_Program_Error (Loc,
4867 Reason => PE_Current_Task_In_Entry_Body));
4868 Set_Etype (N, Rtype);
4869 return;
4870 end if;
4871 end loop;
4872 end;
4873 end if;
4875 -- Check that a procedure call does not occur in the context of the
4876 -- entry call statement of a conditional or timed entry call. Note that
4877 -- the case of a call to a subprogram renaming of an entry will also be
4878 -- rejected. The test for N not being an N_Entry_Call_Statement is
4879 -- defensive, covering the possibility that the processing of entry
4880 -- calls might reach this point due to later modifications of the code
4881 -- above.
4883 if Nkind (Parent (N)) = N_Entry_Call_Alternative
4884 and then Nkind (N) /= N_Entry_Call_Statement
4885 and then Entry_Call_Statement (Parent (N)) = N
4886 then
4887 if Ada_Version < Ada_05 then
4888 Error_Msg_N ("entry call required in select statement", N);
4890 -- Ada 2005 (AI-345): If a procedure_call_statement is used
4891 -- for a procedure_or_entry_call, the procedure_name or
4892 -- procedure_prefix of the procedure_call_statement shall denote
4893 -- an entry renamed by a procedure, or (a view of) a primitive
4894 -- subprogram of a limited interface whose first parameter is
4895 -- a controlling parameter.
4897 elsif Nkind (N) = N_Procedure_Call_Statement
4898 and then not Is_Renamed_Entry (Nam)
4899 and then not Is_Controlling_Limited_Procedure (Nam)
4900 then
4901 Error_Msg_N
4902 ("entry call or dispatching primitive of interface required", N);
4903 end if;
4904 end if;
4906 -- Check that this is not a call to a protected procedure or entry from
4907 -- within a protected function.
4909 if Ekind (Current_Scope) = E_Function
4910 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
4911 and then Ekind (Nam) /= E_Function
4912 and then Scope (Nam) = Scope (Current_Scope)
4913 then
4914 Error_Msg_N ("within protected function, protected " &
4915 "object is constant", N);
4916 Error_Msg_N ("\cannot call operation that may modify it", N);
4917 end if;
4919 -- Freeze the subprogram name if not in a spec-expression. Note that we
4920 -- freeze procedure calls as well as function calls. Procedure calls are
4921 -- not frozen according to the rules (RM 13.14(14)) because it is
4922 -- impossible to have a procedure call to a non-frozen procedure in pure
4923 -- Ada, but in the code that we generate in the expander, this rule
4924 -- needs extending because we can generate procedure calls that need
4925 -- freezing.
4927 if Is_Entity_Name (Subp) and then not In_Spec_Expression then
4928 Freeze_Expression (Subp);
4929 end if;
4931 -- For a predefined operator, the type of the result is the type imposed
4932 -- by context, except for a predefined operation on universal fixed.
4933 -- Otherwise The type of the call is the type returned by the subprogram
4934 -- being called.
4936 if Is_Predefined_Op (Nam) then
4937 if Etype (N) /= Universal_Fixed then
4938 Set_Etype (N, Typ);
4939 end if;
4941 -- If the subprogram returns an array type, and the context requires the
4942 -- component type of that array type, the node is really an indexing of
4943 -- the parameterless call. Resolve as such. A pathological case occurs
4944 -- when the type of the component is an access to the array type. In
4945 -- this case the call is truly ambiguous.
4947 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
4948 and then
4949 ((Is_Array_Type (Etype (Nam))
4950 and then Covers (Typ, Component_Type (Etype (Nam))))
4951 or else (Is_Access_Type (Etype (Nam))
4952 and then Is_Array_Type (Designated_Type (Etype (Nam)))
4953 and then
4954 Covers (Typ,
4955 Component_Type (Designated_Type (Etype (Nam))))))
4956 then
4957 declare
4958 Index_Node : Node_Id;
4959 New_Subp : Node_Id;
4960 Ret_Type : constant Entity_Id := Etype (Nam);
4962 begin
4963 if Is_Access_Type (Ret_Type)
4964 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
4965 then
4966 Error_Msg_N
4967 ("cannot disambiguate function call and indexing", N);
4968 else
4969 New_Subp := Relocate_Node (Subp);
4970 Set_Entity (Subp, Nam);
4972 if (Is_Array_Type (Ret_Type)
4973 and then Component_Type (Ret_Type) /= Any_Type)
4974 or else
4975 (Is_Access_Type (Ret_Type)
4976 and then
4977 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
4978 then
4979 if Needs_No_Actuals (Nam) then
4981 -- Indexed call to a parameterless function
4983 Index_Node :=
4984 Make_Indexed_Component (Loc,
4985 Prefix =>
4986 Make_Function_Call (Loc,
4987 Name => New_Subp),
4988 Expressions => Parameter_Associations (N));
4989 else
4990 -- An Ada 2005 prefixed call to a primitive operation
4991 -- whose first parameter is the prefix. This prefix was
4992 -- prepended to the parameter list, which is actually a
4993 -- list of indices. Remove the prefix in order to build
4994 -- the proper indexed component.
4996 Index_Node :=
4997 Make_Indexed_Component (Loc,
4998 Prefix =>
4999 Make_Function_Call (Loc,
5000 Name => New_Subp,
5001 Parameter_Associations =>
5002 New_List
5003 (Remove_Head (Parameter_Associations (N)))),
5004 Expressions => Parameter_Associations (N));
5005 end if;
5007 -- Since we are correcting a node classification error made
5008 -- by the parser, we call Replace rather than Rewrite.
5010 Replace (N, Index_Node);
5011 Set_Etype (Prefix (N), Ret_Type);
5012 Set_Etype (N, Typ);
5013 Resolve_Indexed_Component (N, Typ);
5014 Check_Elab_Call (Prefix (N));
5015 end if;
5016 end if;
5018 return;
5019 end;
5021 else
5022 Set_Etype (N, Etype (Nam));
5023 end if;
5025 -- In the case where the call is to an overloaded subprogram, Analyze
5026 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
5027 -- such a case Normalize_Actuals needs to be called once more to order
5028 -- the actuals correctly. Otherwise the call will have the ordering
5029 -- given by the last overloaded subprogram whether this is the correct
5030 -- one being called or not.
5032 if Is_Overloaded (Subp) then
5033 Normalize_Actuals (N, Nam, False, Norm_OK);
5034 pragma Assert (Norm_OK);
5035 end if;
5037 -- In any case, call is fully resolved now. Reset Overload flag, to
5038 -- prevent subsequent overload resolution if node is analyzed again
5040 Set_Is_Overloaded (Subp, False);
5041 Set_Is_Overloaded (N, False);
5043 -- If we are calling the current subprogram from immediately within its
5044 -- body, then that is the case where we can sometimes detect cases of
5045 -- infinite recursion statically. Do not try this in case restriction
5046 -- No_Recursion is in effect anyway, and do it only for source calls.
5048 if Comes_From_Source (N) then
5049 Scop := Current_Scope;
5051 -- Issue warning for possible infinite recursion in the absence
5052 -- of the No_Recursion restriction.
5054 if Nam = Scop
5055 and then not Restriction_Active (No_Recursion)
5056 and then Check_Infinite_Recursion (N)
5057 then
5058 -- Here we detected and flagged an infinite recursion, so we do
5059 -- not need to test the case below for further warnings. Also if
5060 -- we now have a raise SE node, we are all done.
5062 if Nkind (N) = N_Raise_Storage_Error then
5063 return;
5064 end if;
5066 -- If call is to immediately containing subprogram, then check for
5067 -- the case of a possible run-time detectable infinite recursion.
5069 else
5070 Scope_Loop : while Scop /= Standard_Standard loop
5071 if Nam = Scop then
5073 -- Although in general case, recursion is not statically
5074 -- checkable, the case of calling an immediately containing
5075 -- subprogram is easy to catch.
5077 Check_Restriction (No_Recursion, N);
5079 -- If the recursive call is to a parameterless subprogram,
5080 -- then even if we can't statically detect infinite
5081 -- recursion, this is pretty suspicious, and we output a
5082 -- warning. Furthermore, we will try later to detect some
5083 -- cases here at run time by expanding checking code (see
5084 -- Detect_Infinite_Recursion in package Exp_Ch6).
5086 -- If the recursive call is within a handler, do not emit a
5087 -- warning, because this is a common idiom: loop until input
5088 -- is correct, catch illegal input in handler and restart.
5090 if No (First_Formal (Nam))
5091 and then Etype (Nam) = Standard_Void_Type
5092 and then not Error_Posted (N)
5093 and then Nkind (Parent (N)) /= N_Exception_Handler
5094 then
5095 -- For the case of a procedure call. We give the message
5096 -- only if the call is the first statement in a sequence
5097 -- of statements, or if all previous statements are
5098 -- simple assignments. This is simply a heuristic to
5099 -- decrease false positives, without losing too many good
5100 -- warnings. The idea is that these previous statements
5101 -- may affect global variables the procedure depends on.
5103 if Nkind (N) = N_Procedure_Call_Statement
5104 and then Is_List_Member (N)
5105 then
5106 declare
5107 P : Node_Id;
5108 begin
5109 P := Prev (N);
5110 while Present (P) loop
5111 if Nkind (P) /= N_Assignment_Statement then
5112 exit Scope_Loop;
5113 end if;
5115 Prev (P);
5116 end loop;
5117 end;
5118 end if;
5120 -- Do not give warning if we are in a conditional context
5122 declare
5123 K : constant Node_Kind := Nkind (Parent (N));
5124 begin
5125 if (K = N_Loop_Statement
5126 and then Present (Iteration_Scheme (Parent (N))))
5127 or else K = N_If_Statement
5128 or else K = N_Elsif_Part
5129 or else K = N_Case_Statement_Alternative
5130 then
5131 exit Scope_Loop;
5132 end if;
5133 end;
5135 -- Here warning is to be issued
5137 Set_Has_Recursive_Call (Nam);
5138 Error_Msg_N
5139 ("?possible infinite recursion!", N);
5140 Error_Msg_N
5141 ("\?Storage_Error may be raised at run time!", N);
5142 end if;
5144 exit Scope_Loop;
5145 end if;
5147 Scop := Scope (Scop);
5148 end loop Scope_Loop;
5149 end if;
5150 end if;
5152 -- If subprogram name is a predefined operator, it was given in
5153 -- functional notation. Replace call node with operator node, so
5154 -- that actuals can be resolved appropriately.
5156 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
5157 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
5158 return;
5160 elsif Present (Alias (Nam))
5161 and then Is_Predefined_Op (Alias (Nam))
5162 then
5163 Resolve_Actuals (N, Nam);
5164 Make_Call_Into_Operator (N, Typ, Alias (Nam));
5165 return;
5166 end if;
5168 -- Create a transient scope if the resulting type requires it
5170 -- There are several notable exceptions:
5172 -- a) In init procs, the transient scope overhead is not needed, and is
5173 -- even incorrect when the call is a nested initialization call for a
5174 -- component whose expansion may generate adjust calls. However, if the
5175 -- call is some other procedure call within an initialization procedure
5176 -- (for example a call to Create_Task in the init_proc of the task
5177 -- run-time record) a transient scope must be created around this call.
5179 -- b) Enumeration literal pseudo-calls need no transient scope
5181 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
5182 -- functions) do not use the secondary stack even though the return
5183 -- type may be unconstrained.
5185 -- d) Calls to a build-in-place function, since such functions may
5186 -- allocate their result directly in a target object, and cases where
5187 -- the result does get allocated in the secondary stack are checked for
5188 -- within the specialized Exp_Ch6 procedures for expanding those
5189 -- build-in-place calls.
5191 -- e) If the subprogram is marked Inline_Always, then even if it returns
5192 -- an unconstrained type the call does not require use of the secondary
5193 -- stack. However, inlining will only take place if the body to inline
5194 -- is already present. It may not be available if e.g. the subprogram is
5195 -- declared in a child instance.
5197 -- If this is an initialization call for a type whose construction
5198 -- uses the secondary stack, and it is not a nested call to initialize
5199 -- a component, we do need to create a transient scope for it. We
5200 -- check for this by traversing the type in Check_Initialization_Call.
5202 if Is_Inlined (Nam)
5203 and then Has_Pragma_Inline_Always (Nam)
5204 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
5205 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
5206 then
5207 null;
5209 elsif Ekind (Nam) = E_Enumeration_Literal
5210 or else Is_Build_In_Place_Function (Nam)
5211 or else Is_Intrinsic_Subprogram (Nam)
5212 then
5213 null;
5215 elsif Expander_Active
5216 and then Is_Type (Etype (Nam))
5217 and then Requires_Transient_Scope (Etype (Nam))
5218 and then
5219 (not Within_Init_Proc
5220 or else
5221 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
5222 then
5223 Establish_Transient_Scope (N, Sec_Stack => True);
5225 -- If the call appears within the bounds of a loop, it will
5226 -- be rewritten and reanalyzed, nothing left to do here.
5228 if Nkind (N) /= N_Function_Call then
5229 return;
5230 end if;
5232 elsif Is_Init_Proc (Nam)
5233 and then not Within_Init_Proc
5234 then
5235 Check_Initialization_Call (N, Nam);
5236 end if;
5238 -- A protected function cannot be called within the definition of the
5239 -- enclosing protected type.
5241 if Is_Protected_Type (Scope (Nam))
5242 and then In_Open_Scopes (Scope (Nam))
5243 and then not Has_Completion (Scope (Nam))
5244 then
5245 Error_Msg_NE
5246 ("& cannot be called before end of protected definition", N, Nam);
5247 end if;
5249 -- Propagate interpretation to actuals, and add default expressions
5250 -- where needed.
5252 if Present (First_Formal (Nam)) then
5253 Resolve_Actuals (N, Nam);
5255 -- Overloaded literals are rewritten as function calls, for purpose of
5256 -- resolution. After resolution, we can replace the call with the
5257 -- literal itself.
5259 elsif Ekind (Nam) = E_Enumeration_Literal then
5260 Copy_Node (Subp, N);
5261 Resolve_Entity_Name (N, Typ);
5263 -- Avoid validation, since it is a static function call
5265 Generate_Reference (Nam, Subp);
5266 return;
5267 end if;
5269 -- If the subprogram is not global, then kill all saved values and
5270 -- checks. This is a bit conservative, since in many cases we could do
5271 -- better, but it is not worth the effort. Similarly, we kill constant
5272 -- values. However we do not need to do this for internal entities
5273 -- (unless they are inherited user-defined subprograms), since they
5274 -- are not in the business of molesting local values.
5276 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
5277 -- kill all checks and values for calls to global subprograms. This
5278 -- takes care of the case where an access to a local subprogram is
5279 -- taken, and could be passed directly or indirectly and then called
5280 -- from almost any context.
5282 -- Note: we do not do this step till after resolving the actuals. That
5283 -- way we still take advantage of the current value information while
5284 -- scanning the actuals.
5286 -- We suppress killing values if we are processing the nodes associated
5287 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
5288 -- type kills all the values as part of analyzing the code that
5289 -- initializes the dispatch tables.
5291 if Inside_Freezing_Actions = 0
5292 and then (not Is_Library_Level_Entity (Nam)
5293 or else Suppress_Value_Tracking_On_Call
5294 (Nearest_Dynamic_Scope (Current_Scope)))
5295 and then (Comes_From_Source (Nam)
5296 or else (Present (Alias (Nam))
5297 and then Comes_From_Source (Alias (Nam))))
5298 then
5299 Kill_Current_Values;
5300 end if;
5302 -- If we are warning about unread OUT parameters, this is the place to
5303 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
5304 -- after the above call to Kill_Current_Values (since that call clears
5305 -- the Last_Assignment field of all local variables).
5307 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
5308 and then Comes_From_Source (N)
5309 and then In_Extended_Main_Source_Unit (N)
5310 then
5311 declare
5312 F : Entity_Id;
5313 A : Node_Id;
5315 begin
5316 F := First_Formal (Nam);
5317 A := First_Actual (N);
5318 while Present (F) and then Present (A) loop
5319 if (Ekind (F) = E_Out_Parameter
5320 or else
5321 Ekind (F) = E_In_Out_Parameter)
5322 and then Warn_On_Modified_As_Out_Parameter (F)
5323 and then Is_Entity_Name (A)
5324 and then Present (Entity (A))
5325 and then Comes_From_Source (N)
5326 and then Safe_To_Capture_Value (N, Entity (A))
5327 then
5328 Set_Last_Assignment (Entity (A), A);
5329 end if;
5331 Next_Formal (F);
5332 Next_Actual (A);
5333 end loop;
5334 end;
5335 end if;
5337 -- If the subprogram is a primitive operation, check whether or not
5338 -- it is a correct dispatching call.
5340 if Is_Overloadable (Nam)
5341 and then Is_Dispatching_Operation (Nam)
5342 then
5343 Check_Dispatching_Call (N);
5345 elsif Ekind (Nam) /= E_Subprogram_Type
5346 and then Is_Abstract_Subprogram (Nam)
5347 and then not In_Instance
5348 then
5349 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
5350 end if;
5352 -- If this is a dispatching call, generate the appropriate reference,
5353 -- for better source navigation in GPS.
5355 if Is_Overloadable (Nam)
5356 and then Present (Controlling_Argument (N))
5357 then
5358 Generate_Reference (Nam, Subp, 'R');
5360 -- Normal case, not a dispatching call
5362 else
5363 Generate_Reference (Nam, Subp);
5364 end if;
5366 if Is_Intrinsic_Subprogram (Nam) then
5367 Check_Intrinsic_Call (N);
5368 end if;
5370 -- Check for violation of restriction No_Specific_Termination_Handlers
5371 -- and warn on a potentially blocking call to Abort_Task.
5373 if Is_RTE (Nam, RE_Set_Specific_Handler)
5374 or else
5375 Is_RTE (Nam, RE_Specific_Handler)
5376 then
5377 Check_Restriction (No_Specific_Termination_Handlers, N);
5379 elsif Is_RTE (Nam, RE_Abort_Task) then
5380 Check_Potentially_Blocking_Operation (N);
5381 end if;
5383 -- Issue an error for a call to an eliminated subprogram
5385 Check_For_Eliminated_Subprogram (Subp, Nam);
5387 -- All done, evaluate call and deal with elaboration issues
5389 Eval_Call (N);
5390 Check_Elab_Call (N);
5391 Warn_On_Overlapping_Actuals (Nam, N);
5392 end Resolve_Call;
5394 -------------------------------
5395 -- Resolve_Character_Literal --
5396 -------------------------------
5398 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
5399 B_Typ : constant Entity_Id := Base_Type (Typ);
5400 C : Entity_Id;
5402 begin
5403 -- Verify that the character does belong to the type of the context
5405 Set_Etype (N, B_Typ);
5406 Eval_Character_Literal (N);
5408 -- Wide_Wide_Character literals must always be defined, since the set
5409 -- of wide wide character literals is complete, i.e. if a character
5410 -- literal is accepted by the parser, then it is OK for wide wide
5411 -- character (out of range character literals are rejected).
5413 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
5414 return;
5416 -- Always accept character literal for type Any_Character, which
5417 -- occurs in error situations and in comparisons of literals, both
5418 -- of which should accept all literals.
5420 elsif B_Typ = Any_Character then
5421 return;
5423 -- For Standard.Character or a type derived from it, check that
5424 -- the literal is in range
5426 elsif Root_Type (B_Typ) = Standard_Character then
5427 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
5428 return;
5429 end if;
5431 -- For Standard.Wide_Character or a type derived from it, check
5432 -- that the literal is in range
5434 elsif Root_Type (B_Typ) = Standard_Wide_Character then
5435 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
5436 return;
5437 end if;
5439 -- For Standard.Wide_Wide_Character or a type derived from it, we
5440 -- know the literal is in range, since the parser checked!
5442 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
5443 return;
5445 -- If the entity is already set, this has already been resolved in a
5446 -- generic context, or comes from expansion. Nothing else to do.
5448 elsif Present (Entity (N)) then
5449 return;
5451 -- Otherwise we have a user defined character type, and we can use the
5452 -- standard visibility mechanisms to locate the referenced entity.
5454 else
5455 C := Current_Entity (N);
5456 while Present (C) loop
5457 if Etype (C) = B_Typ then
5458 Set_Entity_With_Style_Check (N, C);
5459 Generate_Reference (C, N);
5460 return;
5461 end if;
5463 C := Homonym (C);
5464 end loop;
5465 end if;
5467 -- If we fall through, then the literal does not match any of the
5468 -- entries of the enumeration type. This isn't just a constraint
5469 -- error situation, it is an illegality (see RM 4.2).
5471 Error_Msg_NE
5472 ("character not defined for }", N, First_Subtype (B_Typ));
5473 end Resolve_Character_Literal;
5475 ---------------------------
5476 -- Resolve_Comparison_Op --
5477 ---------------------------
5479 -- Context requires a boolean type, and plays no role in resolution.
5480 -- Processing identical to that for equality operators. The result
5481 -- type is the base type, which matters when pathological subtypes of
5482 -- booleans with limited ranges are used.
5484 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
5485 L : constant Node_Id := Left_Opnd (N);
5486 R : constant Node_Id := Right_Opnd (N);
5487 T : Entity_Id;
5489 begin
5490 -- If this is an intrinsic operation which is not predefined, use the
5491 -- types of its declared arguments to resolve the possibly overloaded
5492 -- operands. Otherwise the operands are unambiguous and specify the
5493 -- expected type.
5495 if Scope (Entity (N)) /= Standard_Standard then
5496 T := Etype (First_Entity (Entity (N)));
5498 else
5499 T := Find_Unique_Type (L, R);
5501 if T = Any_Fixed then
5502 T := Unique_Fixed_Point_Type (L);
5503 end if;
5504 end if;
5506 Set_Etype (N, Base_Type (Typ));
5507 Generate_Reference (T, N, ' ');
5509 if T /= Any_Type then
5510 if T = Any_String or else
5511 T = Any_Composite or else
5512 T = Any_Character
5513 then
5514 if T = Any_Character then
5515 Ambiguous_Character (L);
5516 else
5517 Error_Msg_N ("ambiguous operands for comparison", N);
5518 end if;
5520 Set_Etype (N, Any_Type);
5521 return;
5523 else
5524 Resolve (L, T);
5525 Resolve (R, T);
5526 Check_Unset_Reference (L);
5527 Check_Unset_Reference (R);
5528 Generate_Operator_Reference (N, T);
5529 Check_Low_Bound_Tested (N);
5530 Eval_Relational_Op (N);
5531 end if;
5532 end if;
5533 end Resolve_Comparison_Op;
5535 ------------------------------------
5536 -- Resolve_Conditional_Expression --
5537 ------------------------------------
5539 procedure Resolve_Conditional_Expression (N : Node_Id; Typ : Entity_Id) is
5540 Condition : constant Node_Id := First (Expressions (N));
5541 Then_Expr : constant Node_Id := Next (Condition);
5542 Else_Expr : Node_Id := Next (Then_Expr);
5544 begin
5545 Resolve (Condition, Any_Boolean);
5546 Resolve (Then_Expr, Typ);
5548 -- If ELSE expression present, just resolve using the determined type
5550 if Present (Else_Expr) then
5551 Resolve (Else_Expr, Typ);
5553 -- If no ELSE expression is present, root type must be Standard.Boolean
5554 -- and we provide a Standard.True result converted to the appropriate
5555 -- Boolean type (in case it is a derived boolean type).
5557 elsif Root_Type (Typ) = Standard_Boolean then
5558 Else_Expr :=
5559 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
5560 Analyze_And_Resolve (Else_Expr, Typ);
5561 Append_To (Expressions (N), Else_Expr);
5563 else
5564 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
5565 Append_To (Expressions (N), Error);
5566 end if;
5568 Set_Etype (N, Typ);
5569 Eval_Conditional_Expression (N);
5570 end Resolve_Conditional_Expression;
5572 -----------------------------------------
5573 -- Resolve_Discrete_Subtype_Indication --
5574 -----------------------------------------
5576 procedure Resolve_Discrete_Subtype_Indication
5577 (N : Node_Id;
5578 Typ : Entity_Id)
5580 R : Node_Id;
5581 S : Entity_Id;
5583 begin
5584 Analyze (Subtype_Mark (N));
5585 S := Entity (Subtype_Mark (N));
5587 if Nkind (Constraint (N)) /= N_Range_Constraint then
5588 Error_Msg_N ("expect range constraint for discrete type", N);
5589 Set_Etype (N, Any_Type);
5591 else
5592 R := Range_Expression (Constraint (N));
5594 if R = Error then
5595 return;
5596 end if;
5598 Analyze (R);
5600 if Base_Type (S) /= Base_Type (Typ) then
5601 Error_Msg_NE
5602 ("expect subtype of }", N, First_Subtype (Typ));
5604 -- Rewrite the constraint as a range of Typ
5605 -- to allow compilation to proceed further.
5607 Set_Etype (N, Typ);
5608 Rewrite (Low_Bound (R),
5609 Make_Attribute_Reference (Sloc (Low_Bound (R)),
5610 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
5611 Attribute_Name => Name_First));
5612 Rewrite (High_Bound (R),
5613 Make_Attribute_Reference (Sloc (High_Bound (R)),
5614 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
5615 Attribute_Name => Name_First));
5617 else
5618 Resolve (R, Typ);
5619 Set_Etype (N, Etype (R));
5621 -- Additionally, we must check that the bounds are compatible
5622 -- with the given subtype, which might be different from the
5623 -- type of the context.
5625 Apply_Range_Check (R, S);
5627 -- ??? If the above check statically detects a Constraint_Error
5628 -- it replaces the offending bound(s) of the range R with a
5629 -- Constraint_Error node. When the itype which uses these bounds
5630 -- is frozen the resulting call to Duplicate_Subexpr generates
5631 -- a new temporary for the bounds.
5633 -- Unfortunately there are other itypes that are also made depend
5634 -- on these bounds, so when Duplicate_Subexpr is called they get
5635 -- a forward reference to the newly created temporaries and Gigi
5636 -- aborts on such forward references. This is probably sign of a
5637 -- more fundamental problem somewhere else in either the order of
5638 -- itype freezing or the way certain itypes are constructed.
5640 -- To get around this problem we call Remove_Side_Effects right
5641 -- away if either bounds of R are a Constraint_Error.
5643 declare
5644 L : constant Node_Id := Low_Bound (R);
5645 H : constant Node_Id := High_Bound (R);
5647 begin
5648 if Nkind (L) = N_Raise_Constraint_Error then
5649 Remove_Side_Effects (L);
5650 end if;
5652 if Nkind (H) = N_Raise_Constraint_Error then
5653 Remove_Side_Effects (H);
5654 end if;
5655 end;
5657 Check_Unset_Reference (Low_Bound (R));
5658 Check_Unset_Reference (High_Bound (R));
5659 end if;
5660 end if;
5661 end Resolve_Discrete_Subtype_Indication;
5663 -------------------------
5664 -- Resolve_Entity_Name --
5665 -------------------------
5667 -- Used to resolve identifiers and expanded names
5669 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
5670 E : constant Entity_Id := Entity (N);
5672 begin
5673 -- If garbage from errors, set to Any_Type and return
5675 if No (E) and then Total_Errors_Detected /= 0 then
5676 Set_Etype (N, Any_Type);
5677 return;
5678 end if;
5680 -- Replace named numbers by corresponding literals. Note that this is
5681 -- the one case where Resolve_Entity_Name must reset the Etype, since
5682 -- it is currently marked as universal.
5684 if Ekind (E) = E_Named_Integer then
5685 Set_Etype (N, Typ);
5686 Eval_Named_Integer (N);
5688 elsif Ekind (E) = E_Named_Real then
5689 Set_Etype (N, Typ);
5690 Eval_Named_Real (N);
5692 -- Allow use of subtype only if it is a concurrent type where we are
5693 -- currently inside the body. This will eventually be expanded into a
5694 -- call to Self (for tasks) or _object (for protected objects). Any
5695 -- other use of a subtype is invalid.
5697 elsif Is_Type (E) then
5698 if Is_Concurrent_Type (E)
5699 and then In_Open_Scopes (E)
5700 then
5701 null;
5702 else
5703 Error_Msg_N
5704 ("invalid use of subtype mark in expression or call", N);
5705 end if;
5707 -- Check discriminant use if entity is discriminant in current scope,
5708 -- i.e. discriminant of record or concurrent type currently being
5709 -- analyzed. Uses in corresponding body are unrestricted.
5711 elsif Ekind (E) = E_Discriminant
5712 and then Scope (E) = Current_Scope
5713 and then not Has_Completion (Current_Scope)
5714 then
5715 Check_Discriminant_Use (N);
5717 -- A parameterless generic function cannot appear in a context that
5718 -- requires resolution.
5720 elsif Ekind (E) = E_Generic_Function then
5721 Error_Msg_N ("illegal use of generic function", N);
5723 elsif Ekind (E) = E_Out_Parameter
5724 and then Ada_Version = Ada_83
5725 and then (Nkind (Parent (N)) in N_Op
5726 or else (Nkind (Parent (N)) = N_Assignment_Statement
5727 and then N = Expression (Parent (N)))
5728 or else Nkind (Parent (N)) = N_Explicit_Dereference)
5729 then
5730 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
5732 -- In all other cases, just do the possible static evaluation
5734 else
5735 -- A deferred constant that appears in an expression must have a
5736 -- completion, unless it has been removed by in-place expansion of
5737 -- an aggregate.
5739 if Ekind (E) = E_Constant
5740 and then Comes_From_Source (E)
5741 and then No (Constant_Value (E))
5742 and then Is_Frozen (Etype (E))
5743 and then not In_Spec_Expression
5744 and then not Is_Imported (E)
5745 then
5747 if No_Initialization (Parent (E))
5748 or else (Present (Full_View (E))
5749 and then No_Initialization (Parent (Full_View (E))))
5750 then
5751 null;
5752 else
5753 Error_Msg_N (
5754 "deferred constant is frozen before completion", N);
5755 end if;
5756 end if;
5758 Eval_Entity_Name (N);
5759 end if;
5760 end Resolve_Entity_Name;
5762 -------------------
5763 -- Resolve_Entry --
5764 -------------------
5766 procedure Resolve_Entry (Entry_Name : Node_Id) is
5767 Loc : constant Source_Ptr := Sloc (Entry_Name);
5768 Nam : Entity_Id;
5769 New_N : Node_Id;
5770 S : Entity_Id;
5771 Tsk : Entity_Id;
5772 E_Name : Node_Id;
5773 Index : Node_Id;
5775 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
5776 -- If the bounds of the entry family being called depend on task
5777 -- discriminants, build a new index subtype where a discriminant is
5778 -- replaced with the value of the discriminant of the target task.
5779 -- The target task is the prefix of the entry name in the call.
5781 -----------------------
5782 -- Actual_Index_Type --
5783 -----------------------
5785 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
5786 Typ : constant Entity_Id := Entry_Index_Type (E);
5787 Tsk : constant Entity_Id := Scope (E);
5788 Lo : constant Node_Id := Type_Low_Bound (Typ);
5789 Hi : constant Node_Id := Type_High_Bound (Typ);
5790 New_T : Entity_Id;
5792 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
5793 -- If the bound is given by a discriminant, replace with a reference
5794 -- to the discriminant of the same name in the target task. If the
5795 -- entry name is the target of a requeue statement and the entry is
5796 -- in the current protected object, the bound to be used is the
5797 -- discriminal of the object (see apply_range_checks for details of
5798 -- the transformation).
5800 -----------------------------
5801 -- Actual_Discriminant_Ref --
5802 -----------------------------
5804 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
5805 Typ : constant Entity_Id := Etype (Bound);
5806 Ref : Node_Id;
5808 begin
5809 Remove_Side_Effects (Bound);
5811 if not Is_Entity_Name (Bound)
5812 or else Ekind (Entity (Bound)) /= E_Discriminant
5813 then
5814 return Bound;
5816 elsif Is_Protected_Type (Tsk)
5817 and then In_Open_Scopes (Tsk)
5818 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
5819 then
5820 return New_Occurrence_Of (Discriminal (Entity (Bound)), Loc);
5822 else
5823 Ref :=
5824 Make_Selected_Component (Loc,
5825 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
5826 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
5827 Analyze (Ref);
5828 Resolve (Ref, Typ);
5829 return Ref;
5830 end if;
5831 end Actual_Discriminant_Ref;
5833 -- Start of processing for Actual_Index_Type
5835 begin
5836 if not Has_Discriminants (Tsk)
5837 or else (not Is_Entity_Name (Lo)
5838 and then
5839 not Is_Entity_Name (Hi))
5840 then
5841 return Entry_Index_Type (E);
5843 else
5844 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
5845 Set_Etype (New_T, Base_Type (Typ));
5846 Set_Size_Info (New_T, Typ);
5847 Set_RM_Size (New_T, RM_Size (Typ));
5848 Set_Scalar_Range (New_T,
5849 Make_Range (Sloc (Entry_Name),
5850 Low_Bound => Actual_Discriminant_Ref (Lo),
5851 High_Bound => Actual_Discriminant_Ref (Hi)));
5853 return New_T;
5854 end if;
5855 end Actual_Index_Type;
5857 -- Start of processing of Resolve_Entry
5859 begin
5860 -- Find name of entry being called, and resolve prefix of name
5861 -- with its own type. The prefix can be overloaded, and the name
5862 -- and signature of the entry must be taken into account.
5864 if Nkind (Entry_Name) = N_Indexed_Component then
5866 -- Case of dealing with entry family within the current tasks
5868 E_Name := Prefix (Entry_Name);
5870 else
5871 E_Name := Entry_Name;
5872 end if;
5874 if Is_Entity_Name (E_Name) then
5876 -- Entry call to an entry (or entry family) in the current task. This
5877 -- is legal even though the task will deadlock. Rewrite as call to
5878 -- current task.
5880 -- This can also be a call to an entry in an enclosing task. If this
5881 -- is a single task, we have to retrieve its name, because the scope
5882 -- of the entry is the task type, not the object. If the enclosing
5883 -- task is a task type, the identity of the task is given by its own
5884 -- self variable.
5886 -- Finally this can be a requeue on an entry of the same task or
5887 -- protected object.
5889 S := Scope (Entity (E_Name));
5891 for J in reverse 0 .. Scope_Stack.Last loop
5892 if Is_Task_Type (Scope_Stack.Table (J).Entity)
5893 and then not Comes_From_Source (S)
5894 then
5895 -- S is an enclosing task or protected object. The concurrent
5896 -- declaration has been converted into a type declaration, and
5897 -- the object itself has an object declaration that follows
5898 -- the type in the same declarative part.
5900 Tsk := Next_Entity (S);
5901 while Etype (Tsk) /= S loop
5902 Next_Entity (Tsk);
5903 end loop;
5905 S := Tsk;
5906 exit;
5908 elsif S = Scope_Stack.Table (J).Entity then
5910 -- Call to current task. Will be transformed into call to Self
5912 exit;
5914 end if;
5915 end loop;
5917 New_N :=
5918 Make_Selected_Component (Loc,
5919 Prefix => New_Occurrence_Of (S, Loc),
5920 Selector_Name =>
5921 New_Occurrence_Of (Entity (E_Name), Loc));
5922 Rewrite (E_Name, New_N);
5923 Analyze (E_Name);
5925 elsif Nkind (Entry_Name) = N_Selected_Component
5926 and then Is_Overloaded (Prefix (Entry_Name))
5927 then
5928 -- Use the entry name (which must be unique at this point) to find
5929 -- the prefix that returns the corresponding task type or protected
5930 -- type.
5932 declare
5933 Pref : constant Node_Id := Prefix (Entry_Name);
5934 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
5935 I : Interp_Index;
5936 It : Interp;
5938 begin
5939 Get_First_Interp (Pref, I, It);
5940 while Present (It.Typ) loop
5941 if Scope (Ent) = It.Typ then
5942 Set_Etype (Pref, It.Typ);
5943 exit;
5944 end if;
5946 Get_Next_Interp (I, It);
5947 end loop;
5948 end;
5949 end if;
5951 if Nkind (Entry_Name) = N_Selected_Component then
5952 Resolve (Prefix (Entry_Name));
5954 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
5955 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
5956 Resolve (Prefix (Prefix (Entry_Name)));
5957 Index := First (Expressions (Entry_Name));
5958 Resolve (Index, Entry_Index_Type (Nam));
5960 -- Up to this point the expression could have been the actual in a
5961 -- simple entry call, and be given by a named association.
5963 if Nkind (Index) = N_Parameter_Association then
5964 Error_Msg_N ("expect expression for entry index", Index);
5965 else
5966 Apply_Range_Check (Index, Actual_Index_Type (Nam));
5967 end if;
5968 end if;
5969 end Resolve_Entry;
5971 ------------------------
5972 -- Resolve_Entry_Call --
5973 ------------------------
5975 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
5976 Entry_Name : constant Node_Id := Name (N);
5977 Loc : constant Source_Ptr := Sloc (Entry_Name);
5978 Actuals : List_Id;
5979 First_Named : Node_Id;
5980 Nam : Entity_Id;
5981 Norm_OK : Boolean;
5982 Obj : Node_Id;
5983 Was_Over : Boolean;
5985 begin
5986 -- We kill all checks here, because it does not seem worth the effort to
5987 -- do anything better, an entry call is a big operation.
5989 Kill_All_Checks;
5991 -- Processing of the name is similar for entry calls and protected
5992 -- operation calls. Once the entity is determined, we can complete
5993 -- the resolution of the actuals.
5995 -- The selector may be overloaded, in the case of a protected object
5996 -- with overloaded functions. The type of the context is used for
5997 -- resolution.
5999 if Nkind (Entry_Name) = N_Selected_Component
6000 and then Is_Overloaded (Selector_Name (Entry_Name))
6001 and then Typ /= Standard_Void_Type
6002 then
6003 declare
6004 I : Interp_Index;
6005 It : Interp;
6007 begin
6008 Get_First_Interp (Selector_Name (Entry_Name), I, It);
6009 while Present (It.Typ) loop
6010 if Covers (Typ, It.Typ) then
6011 Set_Entity (Selector_Name (Entry_Name), It.Nam);
6012 Set_Etype (Entry_Name, It.Typ);
6014 Generate_Reference (It.Typ, N, ' ');
6015 end if;
6017 Get_Next_Interp (I, It);
6018 end loop;
6019 end;
6020 end if;
6022 Resolve_Entry (Entry_Name);
6024 if Nkind (Entry_Name) = N_Selected_Component then
6026 -- Simple entry call
6028 Nam := Entity (Selector_Name (Entry_Name));
6029 Obj := Prefix (Entry_Name);
6030 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
6032 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
6034 -- Call to member of entry family
6036 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
6037 Obj := Prefix (Prefix (Entry_Name));
6038 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
6039 end if;
6041 -- We cannot in general check the maximum depth of protected entry
6042 -- calls at compile time. But we can tell that any protected entry
6043 -- call at all violates a specified nesting depth of zero.
6045 if Is_Protected_Type (Scope (Nam)) then
6046 Check_Restriction (Max_Entry_Queue_Length, N);
6047 end if;
6049 -- Use context type to disambiguate a protected function that can be
6050 -- called without actuals and that returns an array type, and where
6051 -- the argument list may be an indexing of the returned value.
6053 if Ekind (Nam) = E_Function
6054 and then Needs_No_Actuals (Nam)
6055 and then Present (Parameter_Associations (N))
6056 and then
6057 ((Is_Array_Type (Etype (Nam))
6058 and then Covers (Typ, Component_Type (Etype (Nam))))
6060 or else (Is_Access_Type (Etype (Nam))
6061 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6062 and then Covers (Typ,
6063 Component_Type (Designated_Type (Etype (Nam))))))
6064 then
6065 declare
6066 Index_Node : Node_Id;
6068 begin
6069 Index_Node :=
6070 Make_Indexed_Component (Loc,
6071 Prefix =>
6072 Make_Function_Call (Loc,
6073 Name => Relocate_Node (Entry_Name)),
6074 Expressions => Parameter_Associations (N));
6076 -- Since we are correcting a node classification error made by
6077 -- the parser, we call Replace rather than Rewrite.
6079 Replace (N, Index_Node);
6080 Set_Etype (Prefix (N), Etype (Nam));
6081 Set_Etype (N, Typ);
6082 Resolve_Indexed_Component (N, Typ);
6083 return;
6084 end;
6085 end if;
6087 -- The operation name may have been overloaded. Order the actuals
6088 -- according to the formals of the resolved entity, and set the
6089 -- return type to that of the operation.
6091 if Was_Over then
6092 Normalize_Actuals (N, Nam, False, Norm_OK);
6093 pragma Assert (Norm_OK);
6094 Set_Etype (N, Etype (Nam));
6095 end if;
6097 Resolve_Actuals (N, Nam);
6098 Generate_Reference (Nam, Entry_Name);
6100 if Ekind (Nam) = E_Entry
6101 or else Ekind (Nam) = E_Entry_Family
6102 then
6103 Check_Potentially_Blocking_Operation (N);
6104 end if;
6106 -- Verify that a procedure call cannot masquerade as an entry
6107 -- call where an entry call is expected.
6109 if Ekind (Nam) = E_Procedure then
6110 if Nkind (Parent (N)) = N_Entry_Call_Alternative
6111 and then N = Entry_Call_Statement (Parent (N))
6112 then
6113 Error_Msg_N ("entry call required in select statement", N);
6115 elsif Nkind (Parent (N)) = N_Triggering_Alternative
6116 and then N = Triggering_Statement (Parent (N))
6117 then
6118 Error_Msg_N ("triggering statement cannot be procedure call", N);
6120 elsif Ekind (Scope (Nam)) = E_Task_Type
6121 and then not In_Open_Scopes (Scope (Nam))
6122 then
6123 Error_Msg_N ("task has no entry with this name", Entry_Name);
6124 end if;
6125 end if;
6127 -- After resolution, entry calls and protected procedure calls are
6128 -- changed into entry calls, for expansion. The structure of the node
6129 -- does not change, so it can safely be done in place. Protected
6130 -- function calls must keep their structure because they are
6131 -- subexpressions.
6133 if Ekind (Nam) /= E_Function then
6135 -- A protected operation that is not a function may modify the
6136 -- corresponding object, and cannot apply to a constant. If this
6137 -- is an internal call, the prefix is the type itself.
6139 if Is_Protected_Type (Scope (Nam))
6140 and then not Is_Variable (Obj)
6141 and then (not Is_Entity_Name (Obj)
6142 or else not Is_Type (Entity (Obj)))
6143 then
6144 Error_Msg_N
6145 ("prefix of protected procedure or entry call must be variable",
6146 Entry_Name);
6147 end if;
6149 Actuals := Parameter_Associations (N);
6150 First_Named := First_Named_Actual (N);
6152 Rewrite (N,
6153 Make_Entry_Call_Statement (Loc,
6154 Name => Entry_Name,
6155 Parameter_Associations => Actuals));
6157 Set_First_Named_Actual (N, First_Named);
6158 Set_Analyzed (N, True);
6160 -- Protected functions can return on the secondary stack, in which
6161 -- case we must trigger the transient scope mechanism.
6163 elsif Expander_Active
6164 and then Requires_Transient_Scope (Etype (Nam))
6165 then
6166 Establish_Transient_Scope (N, Sec_Stack => True);
6167 end if;
6168 end Resolve_Entry_Call;
6170 -------------------------
6171 -- Resolve_Equality_Op --
6172 -------------------------
6174 -- Both arguments must have the same type, and the boolean context does
6175 -- not participate in the resolution. The first pass verifies that the
6176 -- interpretation is not ambiguous, and the type of the left argument is
6177 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
6178 -- are strings or aggregates, allocators, or Null, they are ambiguous even
6179 -- though they carry a single (universal) type. Diagnose this case here.
6181 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
6182 L : constant Node_Id := Left_Opnd (N);
6183 R : constant Node_Id := Right_Opnd (N);
6184 T : Entity_Id := Find_Unique_Type (L, R);
6186 function Find_Unique_Access_Type return Entity_Id;
6187 -- In the case of allocators, make a last-ditch attempt to find a single
6188 -- access type with the right designated type. This is semantically
6189 -- dubious, and of no interest to any real code, but c48008a makes it
6190 -- all worthwhile.
6192 -----------------------------
6193 -- Find_Unique_Access_Type --
6194 -----------------------------
6196 function Find_Unique_Access_Type return Entity_Id is
6197 Acc : Entity_Id;
6198 E : Entity_Id;
6199 S : Entity_Id;
6201 begin
6202 if Ekind (Etype (R)) = E_Allocator_Type then
6203 Acc := Designated_Type (Etype (R));
6204 elsif Ekind (Etype (L)) = E_Allocator_Type then
6205 Acc := Designated_Type (Etype (L));
6206 else
6207 return Empty;
6208 end if;
6210 S := Current_Scope;
6211 while S /= Standard_Standard loop
6212 E := First_Entity (S);
6213 while Present (E) loop
6214 if Is_Type (E)
6215 and then Is_Access_Type (E)
6216 and then Ekind (E) /= E_Allocator_Type
6217 and then Designated_Type (E) = Base_Type (Acc)
6218 then
6219 return E;
6220 end if;
6222 Next_Entity (E);
6223 end loop;
6225 S := Scope (S);
6226 end loop;
6228 return Empty;
6229 end Find_Unique_Access_Type;
6231 -- Start of processing for Resolve_Equality_Op
6233 begin
6234 Set_Etype (N, Base_Type (Typ));
6235 Generate_Reference (T, N, ' ');
6237 if T = Any_Fixed then
6238 T := Unique_Fixed_Point_Type (L);
6239 end if;
6241 if T /= Any_Type then
6242 if T = Any_String
6243 or else T = Any_Composite
6244 or else T = Any_Character
6245 then
6246 if T = Any_Character then
6247 Ambiguous_Character (L);
6248 else
6249 Error_Msg_N ("ambiguous operands for equality", N);
6250 end if;
6252 Set_Etype (N, Any_Type);
6253 return;
6255 elsif T = Any_Access
6256 or else Ekind (T) = E_Allocator_Type
6257 or else Ekind (T) = E_Access_Attribute_Type
6258 then
6259 T := Find_Unique_Access_Type;
6261 if No (T) then
6262 Error_Msg_N ("ambiguous operands for equality", N);
6263 Set_Etype (N, Any_Type);
6264 return;
6265 end if;
6266 end if;
6268 Resolve (L, T);
6269 Resolve (R, T);
6271 -- If the unique type is a class-wide type then it will be expanded
6272 -- into a dispatching call to the predefined primitive. Therefore we
6273 -- check here for potential violation of such restriction.
6275 if Is_Class_Wide_Type (T) then
6276 Check_Restriction (No_Dispatching_Calls, N);
6277 end if;
6279 if Warn_On_Redundant_Constructs
6280 and then Comes_From_Source (N)
6281 and then Is_Entity_Name (R)
6282 and then Entity (R) = Standard_True
6283 and then Comes_From_Source (R)
6284 then
6285 Error_Msg_N ("?comparison with True is redundant!", R);
6286 end if;
6288 Check_Unset_Reference (L);
6289 Check_Unset_Reference (R);
6290 Generate_Operator_Reference (N, T);
6291 Check_Low_Bound_Tested (N);
6293 -- If this is an inequality, it may be the implicit inequality
6294 -- created for a user-defined operation, in which case the corres-
6295 -- ponding equality operation is not intrinsic, and the operation
6296 -- cannot be constant-folded. Else fold.
6298 if Nkind (N) = N_Op_Eq
6299 or else Comes_From_Source (Entity (N))
6300 or else Ekind (Entity (N)) = E_Operator
6301 or else Is_Intrinsic_Subprogram
6302 (Corresponding_Equality (Entity (N)))
6303 then
6304 Eval_Relational_Op (N);
6306 elsif Nkind (N) = N_Op_Ne
6307 and then Is_Abstract_Subprogram (Entity (N))
6308 then
6309 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
6310 end if;
6312 -- Ada 2005: If one operand is an anonymous access type, convert the
6313 -- other operand to it, to ensure that the underlying types match in
6314 -- the back-end. Same for access_to_subprogram, and the conversion
6315 -- verifies that the types are subtype conformant.
6317 -- We apply the same conversion in the case one of the operands is a
6318 -- private subtype of the type of the other.
6320 -- Why the Expander_Active test here ???
6322 if Expander_Active
6323 and then
6324 (Ekind (T) = E_Anonymous_Access_Type
6325 or else Ekind (T) = E_Anonymous_Access_Subprogram_Type
6326 or else Is_Private_Type (T))
6327 then
6328 if Etype (L) /= T then
6329 Rewrite (L,
6330 Make_Unchecked_Type_Conversion (Sloc (L),
6331 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
6332 Expression => Relocate_Node (L)));
6333 Analyze_And_Resolve (L, T);
6334 end if;
6336 if (Etype (R)) /= T then
6337 Rewrite (R,
6338 Make_Unchecked_Type_Conversion (Sloc (R),
6339 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
6340 Expression => Relocate_Node (R)));
6341 Analyze_And_Resolve (R, T);
6342 end if;
6343 end if;
6344 end if;
6345 end Resolve_Equality_Op;
6347 ----------------------------------
6348 -- Resolve_Explicit_Dereference --
6349 ----------------------------------
6351 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
6352 Loc : constant Source_Ptr := Sloc (N);
6353 New_N : Node_Id;
6354 P : constant Node_Id := Prefix (N);
6355 I : Interp_Index;
6356 It : Interp;
6358 begin
6359 Check_Fully_Declared_Prefix (Typ, P);
6361 if Is_Overloaded (P) then
6363 -- Use the context type to select the prefix that has the correct
6364 -- designated type.
6366 Get_First_Interp (P, I, It);
6367 while Present (It.Typ) loop
6368 exit when Is_Access_Type (It.Typ)
6369 and then Covers (Typ, Designated_Type (It.Typ));
6370 Get_Next_Interp (I, It);
6371 end loop;
6373 if Present (It.Typ) then
6374 Resolve (P, It.Typ);
6375 else
6376 -- If no interpretation covers the designated type of the prefix,
6377 -- this is the pathological case where not all implementations of
6378 -- the prefix allow the interpretation of the node as a call. Now
6379 -- that the expected type is known, Remove other interpretations
6380 -- from prefix, rewrite it as a call, and resolve again, so that
6381 -- the proper call node is generated.
6383 Get_First_Interp (P, I, It);
6384 while Present (It.Typ) loop
6385 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
6386 Remove_Interp (I);
6387 end if;
6389 Get_Next_Interp (I, It);
6390 end loop;
6392 New_N :=
6393 Make_Function_Call (Loc,
6394 Name =>
6395 Make_Explicit_Dereference (Loc,
6396 Prefix => P),
6397 Parameter_Associations => New_List);
6399 Save_Interps (N, New_N);
6400 Rewrite (N, New_N);
6401 Analyze_And_Resolve (N, Typ);
6402 return;
6403 end if;
6405 Set_Etype (N, Designated_Type (It.Typ));
6407 else
6408 Resolve (P);
6409 end if;
6411 if Is_Access_Type (Etype (P)) then
6412 Apply_Access_Check (N);
6413 end if;
6415 -- If the designated type is a packed unconstrained array type, and the
6416 -- explicit dereference is not in the context of an attribute reference,
6417 -- then we must compute and set the actual subtype, since it is needed
6418 -- by Gigi. The reason we exclude the attribute case is that this is
6419 -- handled fine by Gigi, and in fact we use such attributes to build the
6420 -- actual subtype. We also exclude generated code (which builds actual
6421 -- subtypes directly if they are needed).
6423 if Is_Array_Type (Etype (N))
6424 and then Is_Packed (Etype (N))
6425 and then not Is_Constrained (Etype (N))
6426 and then Nkind (Parent (N)) /= N_Attribute_Reference
6427 and then Comes_From_Source (N)
6428 then
6429 Set_Etype (N, Get_Actual_Subtype (N));
6430 end if;
6432 -- Note: No Eval processing is required for an explicit dereference,
6433 -- because such a name can never be static.
6435 end Resolve_Explicit_Dereference;
6437 -------------------------------
6438 -- Resolve_Indexed_Component --
6439 -------------------------------
6441 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
6442 Name : constant Node_Id := Prefix (N);
6443 Expr : Node_Id;
6444 Array_Type : Entity_Id := Empty; -- to prevent junk warning
6445 Index : Node_Id;
6447 begin
6448 if Is_Overloaded (Name) then
6450 -- Use the context type to select the prefix that yields the correct
6451 -- component type.
6453 declare
6454 I : Interp_Index;
6455 It : Interp;
6456 I1 : Interp_Index := 0;
6457 P : constant Node_Id := Prefix (N);
6458 Found : Boolean := False;
6460 begin
6461 Get_First_Interp (P, I, It);
6462 while Present (It.Typ) loop
6463 if (Is_Array_Type (It.Typ)
6464 and then Covers (Typ, Component_Type (It.Typ)))
6465 or else (Is_Access_Type (It.Typ)
6466 and then Is_Array_Type (Designated_Type (It.Typ))
6467 and then Covers
6468 (Typ, Component_Type (Designated_Type (It.Typ))))
6469 then
6470 if Found then
6471 It := Disambiguate (P, I1, I, Any_Type);
6473 if It = No_Interp then
6474 Error_Msg_N ("ambiguous prefix for indexing", N);
6475 Set_Etype (N, Typ);
6476 return;
6478 else
6479 Found := True;
6480 Array_Type := It.Typ;
6481 I1 := I;
6482 end if;
6484 else
6485 Found := True;
6486 Array_Type := It.Typ;
6487 I1 := I;
6488 end if;
6489 end if;
6491 Get_Next_Interp (I, It);
6492 end loop;
6493 end;
6495 else
6496 Array_Type := Etype (Name);
6497 end if;
6499 Resolve (Name, Array_Type);
6500 Array_Type := Get_Actual_Subtype_If_Available (Name);
6502 -- If prefix is access type, dereference to get real array type.
6503 -- Note: we do not apply an access check because the expander always
6504 -- introduces an explicit dereference, and the check will happen there.
6506 if Is_Access_Type (Array_Type) then
6507 Array_Type := Designated_Type (Array_Type);
6508 end if;
6510 -- If name was overloaded, set component type correctly now
6511 -- If a misplaced call to an entry family (which has no index types)
6512 -- return. Error will be diagnosed from calling context.
6514 if Is_Array_Type (Array_Type) then
6515 Set_Etype (N, Component_Type (Array_Type));
6516 else
6517 return;
6518 end if;
6520 Index := First_Index (Array_Type);
6521 Expr := First (Expressions (N));
6523 -- The prefix may have resolved to a string literal, in which case its
6524 -- etype has a special representation. This is only possible currently
6525 -- if the prefix is a static concatenation, written in functional
6526 -- notation.
6528 if Ekind (Array_Type) = E_String_Literal_Subtype then
6529 Resolve (Expr, Standard_Positive);
6531 else
6532 while Present (Index) and Present (Expr) loop
6533 Resolve (Expr, Etype (Index));
6534 Check_Unset_Reference (Expr);
6536 if Is_Scalar_Type (Etype (Expr)) then
6537 Apply_Scalar_Range_Check (Expr, Etype (Index));
6538 else
6539 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
6540 end if;
6542 Next_Index (Index);
6543 Next (Expr);
6544 end loop;
6545 end if;
6547 -- Do not generate the warning on suspicious index if we are analyzing
6548 -- package Ada.Tags; otherwise we will report the warning with the
6549 -- Prims_Ptr field of the dispatch table.
6551 if Scope (Etype (Prefix (N))) = Standard_Standard
6552 or else not
6553 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
6554 Ada_Tags)
6555 then
6556 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
6557 Eval_Indexed_Component (N);
6558 end if;
6559 end Resolve_Indexed_Component;
6561 -----------------------------
6562 -- Resolve_Integer_Literal --
6563 -----------------------------
6565 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
6566 begin
6567 Set_Etype (N, Typ);
6568 Eval_Integer_Literal (N);
6569 end Resolve_Integer_Literal;
6571 --------------------------------
6572 -- Resolve_Intrinsic_Operator --
6573 --------------------------------
6575 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
6576 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
6577 Op : Entity_Id;
6578 Arg1 : Node_Id;
6579 Arg2 : Node_Id;
6581 begin
6582 Op := Entity (N);
6583 while Scope (Op) /= Standard_Standard loop
6584 Op := Homonym (Op);
6585 pragma Assert (Present (Op));
6586 end loop;
6588 Set_Entity (N, Op);
6589 Set_Is_Overloaded (N, False);
6591 -- If the operand type is private, rewrite with suitable conversions on
6592 -- the operands and the result, to expose the proper underlying numeric
6593 -- type.
6595 if Is_Private_Type (Typ) then
6596 Arg1 := Unchecked_Convert_To (Btyp, Left_Opnd (N));
6598 if Nkind (N) = N_Op_Expon then
6599 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
6600 else
6601 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
6602 end if;
6604 Save_Interps (Left_Opnd (N), Expression (Arg1));
6605 Save_Interps (Right_Opnd (N), Expression (Arg2));
6607 Set_Left_Opnd (N, Arg1);
6608 Set_Right_Opnd (N, Arg2);
6610 Set_Etype (N, Btyp);
6611 Rewrite (N, Unchecked_Convert_To (Typ, N));
6612 Resolve (N, Typ);
6614 elsif Typ /= Etype (Left_Opnd (N))
6615 or else Typ /= Etype (Right_Opnd (N))
6616 then
6617 -- Add explicit conversion where needed, and save interpretations in
6618 -- case operands are overloaded.
6620 Arg1 := Convert_To (Typ, Left_Opnd (N));
6621 Arg2 := Convert_To (Typ, Right_Opnd (N));
6623 if Nkind (Arg1) = N_Type_Conversion then
6624 Save_Interps (Left_Opnd (N), Expression (Arg1));
6625 else
6626 Save_Interps (Left_Opnd (N), Arg1);
6627 end if;
6629 if Nkind (Arg2) = N_Type_Conversion then
6630 Save_Interps (Right_Opnd (N), Expression (Arg2));
6631 else
6632 Save_Interps (Right_Opnd (N), Arg2);
6633 end if;
6635 Rewrite (Left_Opnd (N), Arg1);
6636 Rewrite (Right_Opnd (N), Arg2);
6637 Analyze (Arg1);
6638 Analyze (Arg2);
6639 Resolve_Arithmetic_Op (N, Typ);
6641 else
6642 Resolve_Arithmetic_Op (N, Typ);
6643 end if;
6644 end Resolve_Intrinsic_Operator;
6646 --------------------------------------
6647 -- Resolve_Intrinsic_Unary_Operator --
6648 --------------------------------------
6650 procedure Resolve_Intrinsic_Unary_Operator
6651 (N : Node_Id;
6652 Typ : Entity_Id)
6654 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
6655 Op : Entity_Id;
6656 Arg2 : Node_Id;
6658 begin
6659 Op := Entity (N);
6660 while Scope (Op) /= Standard_Standard loop
6661 Op := Homonym (Op);
6662 pragma Assert (Present (Op));
6663 end loop;
6665 Set_Entity (N, Op);
6667 if Is_Private_Type (Typ) then
6668 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
6669 Save_Interps (Right_Opnd (N), Expression (Arg2));
6671 Set_Right_Opnd (N, Arg2);
6673 Set_Etype (N, Btyp);
6674 Rewrite (N, Unchecked_Convert_To (Typ, N));
6675 Resolve (N, Typ);
6677 else
6678 Resolve_Unary_Op (N, Typ);
6679 end if;
6680 end Resolve_Intrinsic_Unary_Operator;
6682 ------------------------
6683 -- Resolve_Logical_Op --
6684 ------------------------
6686 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
6687 B_Typ : Entity_Id;
6689 begin
6690 Check_No_Direct_Boolean_Operators (N);
6692 -- Predefined operations on scalar types yield the base type. On the
6693 -- other hand, logical operations on arrays yield the type of the
6694 -- arguments (and the context).
6696 if Is_Array_Type (Typ) then
6697 B_Typ := Typ;
6698 else
6699 B_Typ := Base_Type (Typ);
6700 end if;
6702 -- The following test is required because the operands of the operation
6703 -- may be literals, in which case the resulting type appears to be
6704 -- compatible with a signed integer type, when in fact it is compatible
6705 -- only with modular types. If the context itself is universal, the
6706 -- operation is illegal.
6708 if not Valid_Boolean_Arg (Typ) then
6709 Error_Msg_N ("invalid context for logical operation", N);
6710 Set_Etype (N, Any_Type);
6711 return;
6713 elsif Typ = Any_Modular then
6714 Error_Msg_N
6715 ("no modular type available in this context", N);
6716 Set_Etype (N, Any_Type);
6717 return;
6718 elsif Is_Modular_Integer_Type (Typ)
6719 and then Etype (Left_Opnd (N)) = Universal_Integer
6720 and then Etype (Right_Opnd (N)) = Universal_Integer
6721 then
6722 Check_For_Visible_Operator (N, B_Typ);
6723 end if;
6725 Resolve (Left_Opnd (N), B_Typ);
6726 Resolve (Right_Opnd (N), B_Typ);
6728 Check_Unset_Reference (Left_Opnd (N));
6729 Check_Unset_Reference (Right_Opnd (N));
6731 Set_Etype (N, B_Typ);
6732 Generate_Operator_Reference (N, B_Typ);
6733 Eval_Logical_Op (N);
6734 end Resolve_Logical_Op;
6736 ---------------------------
6737 -- Resolve_Membership_Op --
6738 ---------------------------
6740 -- The context can only be a boolean type, and does not determine
6741 -- the arguments. Arguments should be unambiguous, but the preference
6742 -- rule for universal types applies.
6744 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
6745 pragma Warnings (Off, Typ);
6747 L : constant Node_Id := Left_Opnd (N);
6748 R : constant Node_Id := Right_Opnd (N);
6749 T : Entity_Id;
6751 procedure Resolve_Set_Membership;
6752 -- Analysis has determined a unique type for the left operand.
6753 -- Use it to resolve the disjuncts.
6755 ----------------------------
6756 -- Resolve_Set_Membership --
6757 ----------------------------
6759 procedure Resolve_Set_Membership is
6760 Alt : Node_Id;
6762 begin
6763 Resolve (L, Etype (L));
6765 Alt := First (Alternatives (N));
6766 while Present (Alt) loop
6768 -- Alternative is an expression, a range
6769 -- or a subtype mark.
6771 if not Is_Entity_Name (Alt)
6772 or else not Is_Type (Entity (Alt))
6773 then
6774 Resolve (Alt, Etype (L));
6775 end if;
6777 Next (Alt);
6778 end loop;
6779 end Resolve_Set_Membership;
6781 -- Start of processing for Resolve_Membership_Op
6783 begin
6784 if L = Error or else R = Error then
6785 return;
6786 end if;
6788 if Present (Alternatives (N)) then
6789 Resolve_Set_Membership;
6790 return;
6792 elsif not Is_Overloaded (R)
6793 and then
6794 (Etype (R) = Universal_Integer or else
6795 Etype (R) = Universal_Real)
6796 and then Is_Overloaded (L)
6797 then
6798 T := Etype (R);
6800 -- Ada 2005 (AI-251): Support the following case:
6802 -- type I is interface;
6803 -- type T is tagged ...
6805 -- function Test (O : I'Class) is
6806 -- begin
6807 -- return O in T'Class.
6808 -- end Test;
6810 -- In this case we have nothing else to do. The membership test will be
6811 -- done at run-time.
6813 elsif Ada_Version >= Ada_05
6814 and then Is_Class_Wide_Type (Etype (L))
6815 and then Is_Interface (Etype (L))
6816 and then Is_Class_Wide_Type (Etype (R))
6817 and then not Is_Interface (Etype (R))
6818 then
6819 return;
6821 else
6822 T := Intersect_Types (L, R);
6823 end if;
6825 Resolve (L, T);
6826 Check_Unset_Reference (L);
6828 if Nkind (R) = N_Range
6829 and then not Is_Scalar_Type (T)
6830 then
6831 Error_Msg_N ("scalar type required for range", R);
6832 end if;
6834 if Is_Entity_Name (R) then
6835 Freeze_Expression (R);
6836 else
6837 Resolve (R, T);
6838 Check_Unset_Reference (R);
6839 end if;
6841 Eval_Membership_Op (N);
6842 end Resolve_Membership_Op;
6844 ------------------
6845 -- Resolve_Null --
6846 ------------------
6848 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
6849 Loc : constant Source_Ptr := Sloc (N);
6851 begin
6852 -- Handle restriction against anonymous null access values This
6853 -- restriction can be turned off using -gnatdj.
6855 -- Ada 2005 (AI-231): Remove restriction
6857 if Ada_Version < Ada_05
6858 and then not Debug_Flag_J
6859 and then Ekind (Typ) = E_Anonymous_Access_Type
6860 and then Comes_From_Source (N)
6861 then
6862 -- In the common case of a call which uses an explicitly null value
6863 -- for an access parameter, give specialized error message.
6865 if Nkind_In (Parent (N), N_Procedure_Call_Statement,
6866 N_Function_Call)
6867 then
6868 Error_Msg_N
6869 ("null is not allowed as argument for an access parameter", N);
6871 -- Standard message for all other cases (are there any?)
6873 else
6874 Error_Msg_N
6875 ("null cannot be of an anonymous access type", N);
6876 end if;
6877 end if;
6879 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
6880 -- assignment to a null-excluding object
6882 if Ada_Version >= Ada_05
6883 and then Can_Never_Be_Null (Typ)
6884 and then Nkind (Parent (N)) = N_Assignment_Statement
6885 then
6886 if not Inside_Init_Proc then
6887 Insert_Action
6888 (Compile_Time_Constraint_Error (N,
6889 "(Ada 2005) null not allowed in null-excluding objects?"),
6890 Make_Raise_Constraint_Error (Loc,
6891 Reason => CE_Access_Check_Failed));
6892 else
6893 Insert_Action (N,
6894 Make_Raise_Constraint_Error (Loc,
6895 Reason => CE_Access_Check_Failed));
6896 end if;
6897 end if;
6899 -- In a distributed context, null for a remote access to subprogram may
6900 -- need to be replaced with a special record aggregate. In this case,
6901 -- return after having done the transformation.
6903 if (Ekind (Typ) = E_Record_Type
6904 or else Is_Remote_Access_To_Subprogram_Type (Typ))
6905 and then Remote_AST_Null_Value (N, Typ)
6906 then
6907 return;
6908 end if;
6910 -- The null literal takes its type from the context
6912 Set_Etype (N, Typ);
6913 end Resolve_Null;
6915 -----------------------
6916 -- Resolve_Op_Concat --
6917 -----------------------
6919 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
6921 -- We wish to avoid deep recursion, because concatenations are often
6922 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
6923 -- operands nonrecursively until we find something that is not a simple
6924 -- concatenation (A in this case). We resolve that, and then walk back
6925 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
6926 -- to do the rest of the work at each level. The Parent pointers allow
6927 -- us to avoid recursion, and thus avoid running out of memory. See also
6928 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
6930 NN : Node_Id := N;
6931 Op1 : Node_Id;
6933 begin
6934 -- The following code is equivalent to:
6936 -- Resolve_Op_Concat_First (NN, Typ);
6937 -- Resolve_Op_Concat_Arg (N, ...);
6938 -- Resolve_Op_Concat_Rest (N, Typ);
6940 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
6941 -- operand is a concatenation.
6943 -- Walk down left operands
6945 loop
6946 Resolve_Op_Concat_First (NN, Typ);
6947 Op1 := Left_Opnd (NN);
6948 exit when not (Nkind (Op1) = N_Op_Concat
6949 and then not Is_Array_Type (Component_Type (Typ))
6950 and then Entity (Op1) = Entity (NN));
6951 NN := Op1;
6952 end loop;
6954 -- Now (given the above example) NN is A&B and Op1 is A
6956 -- First resolve Op1 ...
6958 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
6960 -- ... then walk NN back up until we reach N (where we started), calling
6961 -- Resolve_Op_Concat_Rest along the way.
6963 loop
6964 Resolve_Op_Concat_Rest (NN, Typ);
6965 exit when NN = N;
6966 NN := Parent (NN);
6967 end loop;
6968 end Resolve_Op_Concat;
6970 ---------------------------
6971 -- Resolve_Op_Concat_Arg --
6972 ---------------------------
6974 procedure Resolve_Op_Concat_Arg
6975 (N : Node_Id;
6976 Arg : Node_Id;
6977 Typ : Entity_Id;
6978 Is_Comp : Boolean)
6980 Btyp : constant Entity_Id := Base_Type (Typ);
6982 begin
6983 if In_Instance then
6984 if Is_Comp
6985 or else (not Is_Overloaded (Arg)
6986 and then Etype (Arg) /= Any_Composite
6987 and then Covers (Component_Type (Typ), Etype (Arg)))
6988 then
6989 Resolve (Arg, Component_Type (Typ));
6990 else
6991 Resolve (Arg, Btyp);
6992 end if;
6994 elsif Has_Compatible_Type (Arg, Component_Type (Typ)) then
6995 if Nkind (Arg) = N_Aggregate
6996 and then Is_Composite_Type (Component_Type (Typ))
6997 then
6998 if Is_Private_Type (Component_Type (Typ)) then
6999 Resolve (Arg, Btyp);
7000 else
7001 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
7002 Set_Etype (Arg, Any_Type);
7003 end if;
7005 else
7006 if Is_Overloaded (Arg)
7007 and then Has_Compatible_Type (Arg, Typ)
7008 and then Etype (Arg) /= Any_Type
7009 then
7010 declare
7011 I : Interp_Index;
7012 It : Interp;
7013 Func : Entity_Id;
7015 begin
7016 Get_First_Interp (Arg, I, It);
7017 Func := It.Nam;
7018 Get_Next_Interp (I, It);
7020 -- Special-case the error message when the overloading is
7021 -- caused by a function that yields an array and can be
7022 -- called without parameters.
7024 if It.Nam = Func then
7025 Error_Msg_Sloc := Sloc (Func);
7026 Error_Msg_N ("ambiguous call to function#", Arg);
7027 Error_Msg_NE
7028 ("\\interpretation as call yields&", Arg, Typ);
7029 Error_Msg_NE
7030 ("\\interpretation as indexing of call yields&",
7031 Arg, Component_Type (Typ));
7033 else
7034 Error_Msg_N
7035 ("ambiguous operand for concatenation!", Arg);
7036 Get_First_Interp (Arg, I, It);
7037 while Present (It.Nam) loop
7038 Error_Msg_Sloc := Sloc (It.Nam);
7040 if Base_Type (It.Typ) = Base_Type (Typ)
7041 or else Base_Type (It.Typ) =
7042 Base_Type (Component_Type (Typ))
7043 then
7044 Error_Msg_N -- CODEFIX
7045 ("\\possible interpretation#", Arg);
7046 end if;
7048 Get_Next_Interp (I, It);
7049 end loop;
7050 end if;
7051 end;
7052 end if;
7054 Resolve (Arg, Component_Type (Typ));
7056 if Nkind (Arg) = N_String_Literal then
7057 Set_Etype (Arg, Component_Type (Typ));
7058 end if;
7060 if Arg = Left_Opnd (N) then
7061 Set_Is_Component_Left_Opnd (N);
7062 else
7063 Set_Is_Component_Right_Opnd (N);
7064 end if;
7065 end if;
7067 else
7068 Resolve (Arg, Btyp);
7069 end if;
7071 Check_Unset_Reference (Arg);
7072 end Resolve_Op_Concat_Arg;
7074 -----------------------------
7075 -- Resolve_Op_Concat_First --
7076 -----------------------------
7078 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
7079 Btyp : constant Entity_Id := Base_Type (Typ);
7080 Op1 : constant Node_Id := Left_Opnd (N);
7081 Op2 : constant Node_Id := Right_Opnd (N);
7083 begin
7084 -- The parser folds an enormous sequence of concatenations of string
7085 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
7086 -- in the right operand. If the expression resolves to a predefined "&"
7087 -- operator, all is well. Otherwise, the parser's folding is wrong, so
7088 -- we give an error. See P_Simple_Expression in Par.Ch4.
7090 if Nkind (Op2) = N_String_Literal
7091 and then Is_Folded_In_Parser (Op2)
7092 and then Ekind (Entity (N)) = E_Function
7093 then
7094 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
7095 and then String_Length (Strval (Op1)) = 0);
7096 Error_Msg_N ("too many user-defined concatenations", N);
7097 return;
7098 end if;
7100 Set_Etype (N, Btyp);
7102 if Is_Limited_Composite (Btyp) then
7103 Error_Msg_N ("concatenation not available for limited array", N);
7104 Explain_Limited_Type (Btyp, N);
7105 end if;
7106 end Resolve_Op_Concat_First;
7108 ----------------------------
7109 -- Resolve_Op_Concat_Rest --
7110 ----------------------------
7112 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
7113 Op1 : constant Node_Id := Left_Opnd (N);
7114 Op2 : constant Node_Id := Right_Opnd (N);
7116 begin
7117 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
7119 Generate_Operator_Reference (N, Typ);
7121 if Is_String_Type (Typ) then
7122 Eval_Concatenation (N);
7123 end if;
7125 -- If this is not a static concatenation, but the result is a string
7126 -- type (and not an array of strings) ensure that static string operands
7127 -- have their subtypes properly constructed.
7129 if Nkind (N) /= N_String_Literal
7130 and then Is_Character_Type (Component_Type (Typ))
7131 then
7132 Set_String_Literal_Subtype (Op1, Typ);
7133 Set_String_Literal_Subtype (Op2, Typ);
7134 end if;
7135 end Resolve_Op_Concat_Rest;
7137 ----------------------
7138 -- Resolve_Op_Expon --
7139 ----------------------
7141 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
7142 B_Typ : constant Entity_Id := Base_Type (Typ);
7144 begin
7145 -- Catch attempts to do fixed-point exponentiation with universal
7146 -- operands, which is a case where the illegality is not caught during
7147 -- normal operator analysis.
7149 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
7150 Error_Msg_N ("exponentiation not available for fixed point", N);
7151 return;
7152 end if;
7154 if Comes_From_Source (N)
7155 and then Ekind (Entity (N)) = E_Function
7156 and then Is_Imported (Entity (N))
7157 and then Is_Intrinsic_Subprogram (Entity (N))
7158 then
7159 Resolve_Intrinsic_Operator (N, Typ);
7160 return;
7161 end if;
7163 if Etype (Left_Opnd (N)) = Universal_Integer
7164 or else Etype (Left_Opnd (N)) = Universal_Real
7165 then
7166 Check_For_Visible_Operator (N, B_Typ);
7167 end if;
7169 -- We do the resolution using the base type, because intermediate values
7170 -- in expressions always are of the base type, not a subtype of it.
7172 Resolve (Left_Opnd (N), B_Typ);
7173 Resolve (Right_Opnd (N), Standard_Integer);
7175 Check_Unset_Reference (Left_Opnd (N));
7176 Check_Unset_Reference (Right_Opnd (N));
7178 Set_Etype (N, B_Typ);
7179 Generate_Operator_Reference (N, B_Typ);
7180 Eval_Op_Expon (N);
7182 -- Set overflow checking bit. Much cleverer code needed here eventually
7183 -- and perhaps the Resolve routines should be separated for the various
7184 -- arithmetic operations, since they will need different processing. ???
7186 if Nkind (N) in N_Op then
7187 if not Overflow_Checks_Suppressed (Etype (N)) then
7188 Enable_Overflow_Check (N);
7189 end if;
7190 end if;
7191 end Resolve_Op_Expon;
7193 --------------------
7194 -- Resolve_Op_Not --
7195 --------------------
7197 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
7198 B_Typ : Entity_Id;
7200 function Parent_Is_Boolean return Boolean;
7201 -- This function determines if the parent node is a boolean operator
7202 -- or operation (comparison op, membership test, or short circuit form)
7203 -- and the not in question is the left operand of this operation.
7204 -- Note that if the not is in parens, then false is returned.
7206 -----------------------
7207 -- Parent_Is_Boolean --
7208 -----------------------
7210 function Parent_Is_Boolean return Boolean is
7211 begin
7212 if Paren_Count (N) /= 0 then
7213 return False;
7215 else
7216 case Nkind (Parent (N)) is
7217 when N_Op_And |
7218 N_Op_Eq |
7219 N_Op_Ge |
7220 N_Op_Gt |
7221 N_Op_Le |
7222 N_Op_Lt |
7223 N_Op_Ne |
7224 N_Op_Or |
7225 N_Op_Xor |
7226 N_In |
7227 N_Not_In |
7228 N_And_Then |
7229 N_Or_Else =>
7231 return Left_Opnd (Parent (N)) = N;
7233 when others =>
7234 return False;
7235 end case;
7236 end if;
7237 end Parent_Is_Boolean;
7239 -- Start of processing for Resolve_Op_Not
7241 begin
7242 -- Predefined operations on scalar types yield the base type. On the
7243 -- other hand, logical operations on arrays yield the type of the
7244 -- arguments (and the context).
7246 if Is_Array_Type (Typ) then
7247 B_Typ := Typ;
7248 else
7249 B_Typ := Base_Type (Typ);
7250 end if;
7252 -- Straightforward case of incorrect arguments
7254 if not Valid_Boolean_Arg (Typ) then
7255 Error_Msg_N ("invalid operand type for operator&", N);
7256 Set_Etype (N, Any_Type);
7257 return;
7259 -- Special case of probable missing parens
7261 elsif Typ = Universal_Integer or else Typ = Any_Modular then
7262 if Parent_Is_Boolean then
7263 Error_Msg_N
7264 ("operand of not must be enclosed in parentheses",
7265 Right_Opnd (N));
7266 else
7267 Error_Msg_N
7268 ("no modular type available in this context", N);
7269 end if;
7271 Set_Etype (N, Any_Type);
7272 return;
7274 -- OK resolution of not
7276 else
7277 -- Warn if non-boolean types involved. This is a case like not a < b
7278 -- where a and b are modular, where we will get (not a) < b and most
7279 -- likely not (a < b) was intended.
7281 if Warn_On_Questionable_Missing_Parens
7282 and then not Is_Boolean_Type (Typ)
7283 and then Parent_Is_Boolean
7284 then
7285 Error_Msg_N ("?not expression should be parenthesized here!", N);
7286 end if;
7288 -- Warn on double negation if checking redundant constructs
7290 if Warn_On_Redundant_Constructs
7291 and then Comes_From_Source (N)
7292 and then Comes_From_Source (Right_Opnd (N))
7293 and then Root_Type (Typ) = Standard_Boolean
7294 and then Nkind (Right_Opnd (N)) = N_Op_Not
7295 then
7296 Error_Msg_N ("redundant double negation?", N);
7297 end if;
7299 -- Complete resolution and evaluation of NOT
7301 Resolve (Right_Opnd (N), B_Typ);
7302 Check_Unset_Reference (Right_Opnd (N));
7303 Set_Etype (N, B_Typ);
7304 Generate_Operator_Reference (N, B_Typ);
7305 Eval_Op_Not (N);
7306 end if;
7307 end Resolve_Op_Not;
7309 -----------------------------
7310 -- Resolve_Operator_Symbol --
7311 -----------------------------
7313 -- Nothing to be done, all resolved already
7315 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
7316 pragma Warnings (Off, N);
7317 pragma Warnings (Off, Typ);
7319 begin
7320 null;
7321 end Resolve_Operator_Symbol;
7323 ----------------------------------
7324 -- Resolve_Qualified_Expression --
7325 ----------------------------------
7327 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
7328 pragma Warnings (Off, Typ);
7330 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
7331 Expr : constant Node_Id := Expression (N);
7333 begin
7334 Resolve (Expr, Target_Typ);
7336 -- A qualified expression requires an exact match of the type,
7337 -- class-wide matching is not allowed. However, if the qualifying
7338 -- type is specific and the expression has a class-wide type, it
7339 -- may still be okay, since it can be the result of the expansion
7340 -- of a call to a dispatching function, so we also have to check
7341 -- class-wideness of the type of the expression's original node.
7343 if (Is_Class_Wide_Type (Target_Typ)
7344 or else
7345 (Is_Class_Wide_Type (Etype (Expr))
7346 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
7347 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
7348 then
7349 Wrong_Type (Expr, Target_Typ);
7350 end if;
7352 -- If the target type is unconstrained, then we reset the type of
7353 -- the result from the type of the expression. For other cases, the
7354 -- actual subtype of the expression is the target type.
7356 if Is_Composite_Type (Target_Typ)
7357 and then not Is_Constrained (Target_Typ)
7358 then
7359 Set_Etype (N, Etype (Expr));
7360 end if;
7362 Eval_Qualified_Expression (N);
7363 end Resolve_Qualified_Expression;
7365 -------------------
7366 -- Resolve_Range --
7367 -------------------
7369 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
7370 L : constant Node_Id := Low_Bound (N);
7371 H : constant Node_Id := High_Bound (N);
7373 begin
7374 Set_Etype (N, Typ);
7375 Resolve (L, Typ);
7376 Resolve (H, Typ);
7378 Check_Unset_Reference (L);
7379 Check_Unset_Reference (H);
7381 -- We have to check the bounds for being within the base range as
7382 -- required for a non-static context. Normally this is automatic and
7383 -- done as part of evaluating expressions, but the N_Range node is an
7384 -- exception, since in GNAT we consider this node to be a subexpression,
7385 -- even though in Ada it is not. The circuit in Sem_Eval could check for
7386 -- this, but that would put the test on the main evaluation path for
7387 -- expressions.
7389 Check_Non_Static_Context (L);
7390 Check_Non_Static_Context (H);
7392 -- Check for an ambiguous range over character literals. This will
7393 -- happen with a membership test involving only literals.
7395 if Typ = Any_Character then
7396 Ambiguous_Character (L);
7397 Set_Etype (N, Any_Type);
7398 return;
7399 end if;
7401 -- If bounds are static, constant-fold them, so size computations
7402 -- are identical between front-end and back-end. Do not perform this
7403 -- transformation while analyzing generic units, as type information
7404 -- would then be lost when reanalyzing the constant node in the
7405 -- instance.
7407 if Is_Discrete_Type (Typ) and then Expander_Active then
7408 if Is_OK_Static_Expression (L) then
7409 Fold_Uint (L, Expr_Value (L), Is_Static_Expression (L));
7410 end if;
7412 if Is_OK_Static_Expression (H) then
7413 Fold_Uint (H, Expr_Value (H), Is_Static_Expression (H));
7414 end if;
7415 end if;
7416 end Resolve_Range;
7418 --------------------------
7419 -- Resolve_Real_Literal --
7420 --------------------------
7422 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
7423 Actual_Typ : constant Entity_Id := Etype (N);
7425 begin
7426 -- Special processing for fixed-point literals to make sure that the
7427 -- value is an exact multiple of small where this is required. We
7428 -- skip this for the universal real case, and also for generic types.
7430 if Is_Fixed_Point_Type (Typ)
7431 and then Typ /= Universal_Fixed
7432 and then Typ /= Any_Fixed
7433 and then not Is_Generic_Type (Typ)
7434 then
7435 declare
7436 Val : constant Ureal := Realval (N);
7437 Cintr : constant Ureal := Val / Small_Value (Typ);
7438 Cint : constant Uint := UR_Trunc (Cintr);
7439 Den : constant Uint := Norm_Den (Cintr);
7440 Stat : Boolean;
7442 begin
7443 -- Case of literal is not an exact multiple of the Small
7445 if Den /= 1 then
7447 -- For a source program literal for a decimal fixed-point
7448 -- type, this is statically illegal (RM 4.9(36)).
7450 if Is_Decimal_Fixed_Point_Type (Typ)
7451 and then Actual_Typ = Universal_Real
7452 and then Comes_From_Source (N)
7453 then
7454 Error_Msg_N ("value has extraneous low order digits", N);
7455 end if;
7457 -- Generate a warning if literal from source
7459 if Is_Static_Expression (N)
7460 and then Warn_On_Bad_Fixed_Value
7461 then
7462 Error_Msg_N
7463 ("?static fixed-point value is not a multiple of Small!",
7465 end if;
7467 -- Replace literal by a value that is the exact representation
7468 -- of a value of the type, i.e. a multiple of the small value,
7469 -- by truncation, since Machine_Rounds is false for all GNAT
7470 -- fixed-point types (RM 4.9(38)).
7472 Stat := Is_Static_Expression (N);
7473 Rewrite (N,
7474 Make_Real_Literal (Sloc (N),
7475 Realval => Small_Value (Typ) * Cint));
7477 Set_Is_Static_Expression (N, Stat);
7478 end if;
7480 -- In all cases, set the corresponding integer field
7482 Set_Corresponding_Integer_Value (N, Cint);
7483 end;
7484 end if;
7486 -- Now replace the actual type by the expected type as usual
7488 Set_Etype (N, Typ);
7489 Eval_Real_Literal (N);
7490 end Resolve_Real_Literal;
7492 -----------------------
7493 -- Resolve_Reference --
7494 -----------------------
7496 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
7497 P : constant Node_Id := Prefix (N);
7499 begin
7500 -- Replace general access with specific type
7502 if Ekind (Etype (N)) = E_Allocator_Type then
7503 Set_Etype (N, Base_Type (Typ));
7504 end if;
7506 Resolve (P, Designated_Type (Etype (N)));
7508 -- If we are taking the reference of a volatile entity, then treat
7509 -- it as a potential modification of this entity. This is much too
7510 -- conservative, but is necessary because remove side effects can
7511 -- result in transformations of normal assignments into reference
7512 -- sequences that otherwise fail to notice the modification.
7514 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
7515 Note_Possible_Modification (P, Sure => False);
7516 end if;
7517 end Resolve_Reference;
7519 --------------------------------
7520 -- Resolve_Selected_Component --
7521 --------------------------------
7523 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
7524 Comp : Entity_Id;
7525 Comp1 : Entity_Id := Empty; -- prevent junk warning
7526 P : constant Node_Id := Prefix (N);
7527 S : constant Node_Id := Selector_Name (N);
7528 T : Entity_Id := Etype (P);
7529 I : Interp_Index;
7530 I1 : Interp_Index := 0; -- prevent junk warning
7531 It : Interp;
7532 It1 : Interp;
7533 Found : Boolean;
7535 function Init_Component return Boolean;
7536 -- Check whether this is the initialization of a component within an
7537 -- init proc (by assignment or call to another init proc). If true,
7538 -- there is no need for a discriminant check.
7540 --------------------
7541 -- Init_Component --
7542 --------------------
7544 function Init_Component return Boolean is
7545 begin
7546 return Inside_Init_Proc
7547 and then Nkind (Prefix (N)) = N_Identifier
7548 and then Chars (Prefix (N)) = Name_uInit
7549 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
7550 end Init_Component;
7552 -- Start of processing for Resolve_Selected_Component
7554 begin
7555 if Is_Overloaded (P) then
7557 -- Use the context type to select the prefix that has a selector
7558 -- of the correct name and type.
7560 Found := False;
7561 Get_First_Interp (P, I, It);
7563 Search : while Present (It.Typ) loop
7564 if Is_Access_Type (It.Typ) then
7565 T := Designated_Type (It.Typ);
7566 else
7567 T := It.Typ;
7568 end if;
7570 if Is_Record_Type (T) then
7572 -- The visible components of a class-wide type are those of
7573 -- the root type.
7575 if Is_Class_Wide_Type (T) then
7576 T := Etype (T);
7577 end if;
7579 Comp := First_Entity (T);
7580 while Present (Comp) loop
7581 if Chars (Comp) = Chars (S)
7582 and then Covers (Etype (Comp), Typ)
7583 then
7584 if not Found then
7585 Found := True;
7586 I1 := I;
7587 It1 := It;
7588 Comp1 := Comp;
7590 else
7591 It := Disambiguate (P, I1, I, Any_Type);
7593 if It = No_Interp then
7594 Error_Msg_N
7595 ("ambiguous prefix for selected component", N);
7596 Set_Etype (N, Typ);
7597 return;
7599 else
7600 It1 := It;
7602 -- There may be an implicit dereference. Retrieve
7603 -- designated record type.
7605 if Is_Access_Type (It1.Typ) then
7606 T := Designated_Type (It1.Typ);
7607 else
7608 T := It1.Typ;
7609 end if;
7611 if Scope (Comp1) /= T then
7613 -- Resolution chooses the new interpretation.
7614 -- Find the component with the right name.
7616 Comp1 := First_Entity (T);
7617 while Present (Comp1)
7618 and then Chars (Comp1) /= Chars (S)
7619 loop
7620 Comp1 := Next_Entity (Comp1);
7621 end loop;
7622 end if;
7624 exit Search;
7625 end if;
7626 end if;
7627 end if;
7629 Comp := Next_Entity (Comp);
7630 end loop;
7632 end if;
7634 Get_Next_Interp (I, It);
7635 end loop Search;
7637 Resolve (P, It1.Typ);
7638 Set_Etype (N, Typ);
7639 Set_Entity_With_Style_Check (S, Comp1);
7641 else
7642 -- Resolve prefix with its type
7644 Resolve (P, T);
7645 end if;
7647 -- Generate cross-reference. We needed to wait until full overloading
7648 -- resolution was complete to do this, since otherwise we can't tell if
7649 -- we are an lvalue or not.
7651 if May_Be_Lvalue (N) then
7652 Generate_Reference (Entity (S), S, 'm');
7653 else
7654 Generate_Reference (Entity (S), S, 'r');
7655 end if;
7657 -- If prefix is an access type, the node will be transformed into an
7658 -- explicit dereference during expansion. The type of the node is the
7659 -- designated type of that of the prefix.
7661 if Is_Access_Type (Etype (P)) then
7662 T := Designated_Type (Etype (P));
7663 Check_Fully_Declared_Prefix (T, P);
7664 else
7665 T := Etype (P);
7666 end if;
7668 if Has_Discriminants (T)
7669 and then (Ekind (Entity (S)) = E_Component
7670 or else
7671 Ekind (Entity (S)) = E_Discriminant)
7672 and then Present (Original_Record_Component (Entity (S)))
7673 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
7674 and then Present (Discriminant_Checking_Func
7675 (Original_Record_Component (Entity (S))))
7676 and then not Discriminant_Checks_Suppressed (T)
7677 and then not Init_Component
7678 then
7679 Set_Do_Discriminant_Check (N);
7680 end if;
7682 if Ekind (Entity (S)) = E_Void then
7683 Error_Msg_N ("premature use of component", S);
7684 end if;
7686 -- If the prefix is a record conversion, this may be a renamed
7687 -- discriminant whose bounds differ from those of the original
7688 -- one, so we must ensure that a range check is performed.
7690 if Nkind (P) = N_Type_Conversion
7691 and then Ekind (Entity (S)) = E_Discriminant
7692 and then Is_Discrete_Type (Typ)
7693 then
7694 Set_Etype (N, Base_Type (Typ));
7695 end if;
7697 -- Note: No Eval processing is required, because the prefix is of a
7698 -- record type, or protected type, and neither can possibly be static.
7700 end Resolve_Selected_Component;
7702 -------------------
7703 -- Resolve_Shift --
7704 -------------------
7706 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
7707 B_Typ : constant Entity_Id := Base_Type (Typ);
7708 L : constant Node_Id := Left_Opnd (N);
7709 R : constant Node_Id := Right_Opnd (N);
7711 begin
7712 -- We do the resolution using the base type, because intermediate values
7713 -- in expressions always are of the base type, not a subtype of it.
7715 Resolve (L, B_Typ);
7716 Resolve (R, Standard_Natural);
7718 Check_Unset_Reference (L);
7719 Check_Unset_Reference (R);
7721 Set_Etype (N, B_Typ);
7722 Generate_Operator_Reference (N, B_Typ);
7723 Eval_Shift (N);
7724 end Resolve_Shift;
7726 ---------------------------
7727 -- Resolve_Short_Circuit --
7728 ---------------------------
7730 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
7731 B_Typ : constant Entity_Id := Base_Type (Typ);
7732 L : constant Node_Id := Left_Opnd (N);
7733 R : constant Node_Id := Right_Opnd (N);
7735 begin
7736 Resolve (L, B_Typ);
7737 Resolve (R, B_Typ);
7739 -- Check for issuing warning for always False assert/check, this happens
7740 -- when assertions are turned off, in which case the pragma Assert/Check
7741 -- was transformed into:
7743 -- if False and then <condition> then ...
7745 -- and we detect this pattern
7747 if Warn_On_Assertion_Failure
7748 and then Is_Entity_Name (R)
7749 and then Entity (R) = Standard_False
7750 and then Nkind (Parent (N)) = N_If_Statement
7751 and then Nkind (N) = N_And_Then
7752 and then Is_Entity_Name (L)
7753 and then Entity (L) = Standard_False
7754 then
7755 declare
7756 Orig : constant Node_Id := Original_Node (Parent (N));
7758 begin
7759 if Nkind (Orig) = N_Pragma
7760 and then Pragma_Name (Orig) = Name_Assert
7761 then
7762 -- Don't want to warn if original condition is explicit False
7764 declare
7765 Expr : constant Node_Id :=
7766 Original_Node
7767 (Expression
7768 (First (Pragma_Argument_Associations (Orig))));
7769 begin
7770 if Is_Entity_Name (Expr)
7771 and then Entity (Expr) = Standard_False
7772 then
7773 null;
7774 else
7775 -- Issue warning. Note that we don't want to make this
7776 -- an unconditional warning, because if the assert is
7777 -- within deleted code we do not want the warning. But
7778 -- we do not want the deletion of the IF/AND-THEN to
7779 -- take this message with it. We achieve this by making
7780 -- sure that the expanded code points to the Sloc of
7781 -- the expression, not the original pragma.
7783 Error_Msg_N ("?assertion would fail at run-time", Orig);
7784 end if;
7785 end;
7787 -- Similar processing for Check pragma
7789 elsif Nkind (Orig) = N_Pragma
7790 and then Pragma_Name (Orig) = Name_Check
7791 then
7792 -- Don't want to warn if original condition is explicit False
7794 declare
7795 Expr : constant Node_Id :=
7796 Original_Node
7797 (Expression
7798 (Next (First
7799 (Pragma_Argument_Associations (Orig)))));
7800 begin
7801 if Is_Entity_Name (Expr)
7802 and then Entity (Expr) = Standard_False
7803 then
7804 null;
7805 else
7806 Error_Msg_N ("?check would fail at run-time", Orig);
7807 end if;
7808 end;
7809 end if;
7810 end;
7811 end if;
7813 -- Continue with processing of short circuit
7815 Check_Unset_Reference (L);
7816 Check_Unset_Reference (R);
7818 Set_Etype (N, B_Typ);
7819 Eval_Short_Circuit (N);
7820 end Resolve_Short_Circuit;
7822 -------------------
7823 -- Resolve_Slice --
7824 -------------------
7826 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
7827 Name : constant Node_Id := Prefix (N);
7828 Drange : constant Node_Id := Discrete_Range (N);
7829 Array_Type : Entity_Id := Empty;
7830 Index : Node_Id;
7832 begin
7833 if Is_Overloaded (Name) then
7835 -- Use the context type to select the prefix that yields the correct
7836 -- array type.
7838 declare
7839 I : Interp_Index;
7840 I1 : Interp_Index := 0;
7841 It : Interp;
7842 P : constant Node_Id := Prefix (N);
7843 Found : Boolean := False;
7845 begin
7846 Get_First_Interp (P, I, It);
7847 while Present (It.Typ) loop
7848 if (Is_Array_Type (It.Typ)
7849 and then Covers (Typ, It.Typ))
7850 or else (Is_Access_Type (It.Typ)
7851 and then Is_Array_Type (Designated_Type (It.Typ))
7852 and then Covers (Typ, Designated_Type (It.Typ)))
7853 then
7854 if Found then
7855 It := Disambiguate (P, I1, I, Any_Type);
7857 if It = No_Interp then
7858 Error_Msg_N ("ambiguous prefix for slicing", N);
7859 Set_Etype (N, Typ);
7860 return;
7861 else
7862 Found := True;
7863 Array_Type := It.Typ;
7864 I1 := I;
7865 end if;
7866 else
7867 Found := True;
7868 Array_Type := It.Typ;
7869 I1 := I;
7870 end if;
7871 end if;
7873 Get_Next_Interp (I, It);
7874 end loop;
7875 end;
7877 else
7878 Array_Type := Etype (Name);
7879 end if;
7881 Resolve (Name, Array_Type);
7883 if Is_Access_Type (Array_Type) then
7884 Apply_Access_Check (N);
7885 Array_Type := Designated_Type (Array_Type);
7887 -- If the prefix is an access to an unconstrained array, we must use
7888 -- the actual subtype of the object to perform the index checks. The
7889 -- object denoted by the prefix is implicit in the node, so we build
7890 -- an explicit representation for it in order to compute the actual
7891 -- subtype.
7893 if not Is_Constrained (Array_Type) then
7894 Remove_Side_Effects (Prefix (N));
7896 declare
7897 Obj : constant Node_Id :=
7898 Make_Explicit_Dereference (Sloc (N),
7899 Prefix => New_Copy_Tree (Prefix (N)));
7900 begin
7901 Set_Etype (Obj, Array_Type);
7902 Set_Parent (Obj, Parent (N));
7903 Array_Type := Get_Actual_Subtype (Obj);
7904 end;
7905 end if;
7907 elsif Is_Entity_Name (Name)
7908 or else (Nkind (Name) = N_Function_Call
7909 and then not Is_Constrained (Etype (Name)))
7910 then
7911 Array_Type := Get_Actual_Subtype (Name);
7913 -- If the name is a selected component that depends on discriminants,
7914 -- build an actual subtype for it. This can happen only when the name
7915 -- itself is overloaded; otherwise the actual subtype is created when
7916 -- the selected component is analyzed.
7918 elsif Nkind (Name) = N_Selected_Component
7919 and then Full_Analysis
7920 and then Depends_On_Discriminant (First_Index (Array_Type))
7921 then
7922 declare
7923 Act_Decl : constant Node_Id :=
7924 Build_Actual_Subtype_Of_Component (Array_Type, Name);
7925 begin
7926 Insert_Action (N, Act_Decl);
7927 Array_Type := Defining_Identifier (Act_Decl);
7928 end;
7930 -- Maybe this should just be "else", instead of checking for the
7931 -- specific case of slice??? This is needed for the case where
7932 -- the prefix is an Image attribute, which gets expanded to a
7933 -- slice, and so has a constrained subtype which we want to use
7934 -- for the slice range check applied below (the range check won't
7935 -- get done if the unconstrained subtype of the 'Image is used).
7937 elsif Nkind (Name) = N_Slice then
7938 Array_Type := Etype (Name);
7939 end if;
7941 -- If name was overloaded, set slice type correctly now
7943 Set_Etype (N, Array_Type);
7945 -- If the range is specified by a subtype mark, no resolution is
7946 -- necessary. Else resolve the bounds, and apply needed checks.
7948 if not Is_Entity_Name (Drange) then
7949 Index := First_Index (Array_Type);
7950 Resolve (Drange, Base_Type (Etype (Index)));
7952 if Nkind (Drange) = N_Range
7954 -- Do not apply the range check to nodes associated with the
7955 -- frontend expansion of the dispatch table. We first check
7956 -- if Ada.Tags is already loaded to void the addition of an
7957 -- undesired dependence on such run-time unit.
7959 and then
7960 (not Tagged_Type_Expansion
7961 or else not
7962 (RTU_Loaded (Ada_Tags)
7963 and then Nkind (Prefix (N)) = N_Selected_Component
7964 and then Present (Entity (Selector_Name (Prefix (N))))
7965 and then Entity (Selector_Name (Prefix (N))) =
7966 RTE_Record_Component (RE_Prims_Ptr)))
7967 then
7968 Apply_Range_Check (Drange, Etype (Index));
7969 end if;
7970 end if;
7972 Set_Slice_Subtype (N);
7974 if Nkind (Drange) = N_Range then
7975 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
7976 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
7977 end if;
7979 Eval_Slice (N);
7980 end Resolve_Slice;
7982 ----------------------------
7983 -- Resolve_String_Literal --
7984 ----------------------------
7986 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
7987 C_Typ : constant Entity_Id := Component_Type (Typ);
7988 R_Typ : constant Entity_Id := Root_Type (C_Typ);
7989 Loc : constant Source_Ptr := Sloc (N);
7990 Str : constant String_Id := Strval (N);
7991 Strlen : constant Nat := String_Length (Str);
7992 Subtype_Id : Entity_Id;
7993 Need_Check : Boolean;
7995 begin
7996 -- For a string appearing in a concatenation, defer creation of the
7997 -- string_literal_subtype until the end of the resolution of the
7998 -- concatenation, because the literal may be constant-folded away. This
7999 -- is a useful optimization for long concatenation expressions.
8001 -- If the string is an aggregate built for a single character (which
8002 -- happens in a non-static context) or a is null string to which special
8003 -- checks may apply, we build the subtype. Wide strings must also get a
8004 -- string subtype if they come from a one character aggregate. Strings
8005 -- generated by attributes might be static, but it is often hard to
8006 -- determine whether the enclosing context is static, so we generate
8007 -- subtypes for them as well, thus losing some rarer optimizations ???
8008 -- Same for strings that come from a static conversion.
8010 Need_Check :=
8011 (Strlen = 0 and then Typ /= Standard_String)
8012 or else Nkind (Parent (N)) /= N_Op_Concat
8013 or else (N /= Left_Opnd (Parent (N))
8014 and then N /= Right_Opnd (Parent (N)))
8015 or else ((Typ = Standard_Wide_String
8016 or else Typ = Standard_Wide_Wide_String)
8017 and then Nkind (Original_Node (N)) /= N_String_Literal);
8019 -- If the resolving type is itself a string literal subtype, we can just
8020 -- reuse it, since there is no point in creating another.
8022 if Ekind (Typ) = E_String_Literal_Subtype then
8023 Subtype_Id := Typ;
8025 elsif Nkind (Parent (N)) = N_Op_Concat
8026 and then not Need_Check
8027 and then not Nkind_In (Original_Node (N), N_Character_Literal,
8028 N_Attribute_Reference,
8029 N_Qualified_Expression,
8030 N_Type_Conversion)
8031 then
8032 Subtype_Id := Typ;
8034 -- Otherwise we must create a string literal subtype. Note that the
8035 -- whole idea of string literal subtypes is simply to avoid the need
8036 -- for building a full fledged array subtype for each literal.
8038 else
8039 Set_String_Literal_Subtype (N, Typ);
8040 Subtype_Id := Etype (N);
8041 end if;
8043 if Nkind (Parent (N)) /= N_Op_Concat
8044 or else Need_Check
8045 then
8046 Set_Etype (N, Subtype_Id);
8047 Eval_String_Literal (N);
8048 end if;
8050 if Is_Limited_Composite (Typ)
8051 or else Is_Private_Composite (Typ)
8052 then
8053 Error_Msg_N ("string literal not available for private array", N);
8054 Set_Etype (N, Any_Type);
8055 return;
8056 end if;
8058 -- The validity of a null string has been checked in the call to
8059 -- Eval_String_Literal.
8061 if Strlen = 0 then
8062 return;
8064 -- Always accept string literal with component type Any_Character, which
8065 -- occurs in error situations and in comparisons of literals, both of
8066 -- which should accept all literals.
8068 elsif R_Typ = Any_Character then
8069 return;
8071 -- If the type is bit-packed, then we always transform the string
8072 -- literal into a full fledged aggregate.
8074 elsif Is_Bit_Packed_Array (Typ) then
8075 null;
8077 -- Deal with cases of Wide_Wide_String, Wide_String, and String
8079 else
8080 -- For Standard.Wide_Wide_String, or any other type whose component
8081 -- type is Standard.Wide_Wide_Character, we know that all the
8082 -- characters in the string must be acceptable, since the parser
8083 -- accepted the characters as valid character literals.
8085 if R_Typ = Standard_Wide_Wide_Character then
8086 null;
8088 -- For the case of Standard.String, or any other type whose component
8089 -- type is Standard.Character, we must make sure that there are no
8090 -- wide characters in the string, i.e. that it is entirely composed
8091 -- of characters in range of type Character.
8093 -- If the string literal is the result of a static concatenation, the
8094 -- test has already been performed on the components, and need not be
8095 -- repeated.
8097 elsif R_Typ = Standard_Character
8098 and then Nkind (Original_Node (N)) /= N_Op_Concat
8099 then
8100 for J in 1 .. Strlen loop
8101 if not In_Character_Range (Get_String_Char (Str, J)) then
8103 -- If we are out of range, post error. This is one of the
8104 -- very few places that we place the flag in the middle of
8105 -- a token, right under the offending wide character. Not
8106 -- quite clear if this is right wrt wide character encoding
8107 -- sequences, but it's only an error message!
8109 Error_Msg
8110 ("literal out of range of type Standard.Character",
8111 Source_Ptr (Int (Loc) + J));
8112 return;
8113 end if;
8114 end loop;
8116 -- For the case of Standard.Wide_String, or any other type whose
8117 -- component type is Standard.Wide_Character, we must make sure that
8118 -- there are no wide characters in the string, i.e. that it is
8119 -- entirely composed of characters in range of type Wide_Character.
8121 -- If the string literal is the result of a static concatenation,
8122 -- the test has already been performed on the components, and need
8123 -- not be repeated.
8125 elsif R_Typ = Standard_Wide_Character
8126 and then Nkind (Original_Node (N)) /= N_Op_Concat
8127 then
8128 for J in 1 .. Strlen loop
8129 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
8131 -- If we are out of range, post error. This is one of the
8132 -- very few places that we place the flag in the middle of
8133 -- a token, right under the offending wide character.
8135 -- This is not quite right, because characters in general
8136 -- will take more than one character position ???
8138 Error_Msg
8139 ("literal out of range of type Standard.Wide_Character",
8140 Source_Ptr (Int (Loc) + J));
8141 return;
8142 end if;
8143 end loop;
8145 -- If the root type is not a standard character, then we will convert
8146 -- the string into an aggregate and will let the aggregate code do
8147 -- the checking. Standard Wide_Wide_Character is also OK here.
8149 else
8150 null;
8151 end if;
8153 -- See if the component type of the array corresponding to the string
8154 -- has compile time known bounds. If yes we can directly check
8155 -- whether the evaluation of the string will raise constraint error.
8156 -- Otherwise we need to transform the string literal into the
8157 -- corresponding character aggregate and let the aggregate
8158 -- code do the checking.
8160 if Is_Standard_Character_Type (R_Typ) then
8162 -- Check for the case of full range, where we are definitely OK
8164 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
8165 return;
8166 end if;
8168 -- Here the range is not the complete base type range, so check
8170 declare
8171 Comp_Typ_Lo : constant Node_Id :=
8172 Type_Low_Bound (Component_Type (Typ));
8173 Comp_Typ_Hi : constant Node_Id :=
8174 Type_High_Bound (Component_Type (Typ));
8176 Char_Val : Uint;
8178 begin
8179 if Compile_Time_Known_Value (Comp_Typ_Lo)
8180 and then Compile_Time_Known_Value (Comp_Typ_Hi)
8181 then
8182 for J in 1 .. Strlen loop
8183 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
8185 if Char_Val < Expr_Value (Comp_Typ_Lo)
8186 or else Char_Val > Expr_Value (Comp_Typ_Hi)
8187 then
8188 Apply_Compile_Time_Constraint_Error
8189 (N, "character out of range?", CE_Range_Check_Failed,
8190 Loc => Source_Ptr (Int (Loc) + J));
8191 end if;
8192 end loop;
8194 return;
8195 end if;
8196 end;
8197 end if;
8198 end if;
8200 -- If we got here we meed to transform the string literal into the
8201 -- equivalent qualified positional array aggregate. This is rather
8202 -- heavy artillery for this situation, but it is hard work to avoid.
8204 declare
8205 Lits : constant List_Id := New_List;
8206 P : Source_Ptr := Loc + 1;
8207 C : Char_Code;
8209 begin
8210 -- Build the character literals, we give them source locations that
8211 -- correspond to the string positions, which is a bit tricky given
8212 -- the possible presence of wide character escape sequences.
8214 for J in 1 .. Strlen loop
8215 C := Get_String_Char (Str, J);
8216 Set_Character_Literal_Name (C);
8218 Append_To (Lits,
8219 Make_Character_Literal (P,
8220 Chars => Name_Find,
8221 Char_Literal_Value => UI_From_CC (C)));
8223 if In_Character_Range (C) then
8224 P := P + 1;
8226 -- Should we have a call to Skip_Wide here ???
8227 -- ??? else
8228 -- Skip_Wide (P);
8230 end if;
8231 end loop;
8233 Rewrite (N,
8234 Make_Qualified_Expression (Loc,
8235 Subtype_Mark => New_Reference_To (Typ, Loc),
8236 Expression =>
8237 Make_Aggregate (Loc, Expressions => Lits)));
8239 Analyze_And_Resolve (N, Typ);
8240 end;
8241 end Resolve_String_Literal;
8243 -----------------------------
8244 -- Resolve_Subprogram_Info --
8245 -----------------------------
8247 procedure Resolve_Subprogram_Info (N : Node_Id; Typ : Entity_Id) is
8248 begin
8249 Set_Etype (N, Typ);
8250 end Resolve_Subprogram_Info;
8252 -----------------------------
8253 -- Resolve_Type_Conversion --
8254 -----------------------------
8256 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
8257 Conv_OK : constant Boolean := Conversion_OK (N);
8258 Operand : constant Node_Id := Expression (N);
8259 Operand_Typ : constant Entity_Id := Etype (Operand);
8260 Target_Typ : constant Entity_Id := Etype (N);
8261 Rop : Node_Id;
8262 Orig_N : Node_Id;
8263 Orig_T : Node_Id;
8265 begin
8266 if not Conv_OK
8267 and then not Valid_Conversion (N, Target_Typ, Operand)
8268 then
8269 return;
8270 end if;
8272 if Etype (Operand) = Any_Fixed then
8274 -- Mixed-mode operation involving a literal. Context must be a fixed
8275 -- type which is applied to the literal subsequently.
8277 if Is_Fixed_Point_Type (Typ) then
8278 Set_Etype (Operand, Universal_Real);
8280 elsif Is_Numeric_Type (Typ)
8281 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
8282 and then (Etype (Right_Opnd (Operand)) = Universal_Real
8283 or else
8284 Etype (Left_Opnd (Operand)) = Universal_Real)
8285 then
8286 -- Return if expression is ambiguous
8288 if Unique_Fixed_Point_Type (N) = Any_Type then
8289 return;
8291 -- If nothing else, the available fixed type is Duration
8293 else
8294 Set_Etype (Operand, Standard_Duration);
8295 end if;
8297 -- Resolve the real operand with largest available precision
8299 if Etype (Right_Opnd (Operand)) = Universal_Real then
8300 Rop := New_Copy_Tree (Right_Opnd (Operand));
8301 else
8302 Rop := New_Copy_Tree (Left_Opnd (Operand));
8303 end if;
8305 Resolve (Rop, Universal_Real);
8307 -- If the operand is a literal (it could be a non-static and
8308 -- illegal exponentiation) check whether the use of Duration
8309 -- is potentially inaccurate.
8311 if Nkind (Rop) = N_Real_Literal
8312 and then Realval (Rop) /= Ureal_0
8313 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
8314 then
8315 Error_Msg_N
8316 ("?universal real operand can only " &
8317 "be interpreted as Duration!",
8318 Rop);
8319 Error_Msg_N
8320 ("\?precision will be lost in the conversion!", Rop);
8321 end if;
8323 elsif Is_Numeric_Type (Typ)
8324 and then Nkind (Operand) in N_Op
8325 and then Unique_Fixed_Point_Type (N) /= Any_Type
8326 then
8327 Set_Etype (Operand, Standard_Duration);
8329 else
8330 Error_Msg_N ("invalid context for mixed mode operation", N);
8331 Set_Etype (Operand, Any_Type);
8332 return;
8333 end if;
8334 end if;
8336 Resolve (Operand);
8338 -- Note: we do the Eval_Type_Conversion call before applying the
8339 -- required checks for a subtype conversion. This is important, since
8340 -- both are prepared under certain circumstances to change the type
8341 -- conversion to a constraint error node, but in the case of
8342 -- Eval_Type_Conversion this may reflect an illegality in the static
8343 -- case, and we would miss the illegality (getting only a warning
8344 -- message), if we applied the type conversion checks first.
8346 Eval_Type_Conversion (N);
8348 -- Even when evaluation is not possible, we may be able to simplify the
8349 -- conversion or its expression. This needs to be done before applying
8350 -- checks, since otherwise the checks may use the original expression
8351 -- and defeat the simplifications. This is specifically the case for
8352 -- elimination of the floating-point Truncation attribute in
8353 -- float-to-int conversions.
8355 Simplify_Type_Conversion (N);
8357 -- If after evaluation we still have a type conversion, then we may need
8358 -- to apply checks required for a subtype conversion.
8360 -- Skip these type conversion checks if universal fixed operands
8361 -- operands involved, since range checks are handled separately for
8362 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
8364 if Nkind (N) = N_Type_Conversion
8365 and then not Is_Generic_Type (Root_Type (Target_Typ))
8366 and then Target_Typ /= Universal_Fixed
8367 and then Operand_Typ /= Universal_Fixed
8368 then
8369 Apply_Type_Conversion_Checks (N);
8370 end if;
8372 -- Issue warning for conversion of simple object to its own type. We
8373 -- have to test the original nodes, since they may have been rewritten
8374 -- by various optimizations.
8376 Orig_N := Original_Node (N);
8378 if Warn_On_Redundant_Constructs
8379 and then Comes_From_Source (Orig_N)
8380 and then Nkind (Orig_N) = N_Type_Conversion
8381 and then not In_Instance
8382 then
8383 Orig_N := Original_Node (Expression (Orig_N));
8384 Orig_T := Target_Typ;
8386 -- If the node is part of a larger expression, the Target_Type
8387 -- may not be the original type of the node if the context is a
8388 -- condition. Recover original type to see if conversion is needed.
8390 if Is_Boolean_Type (Orig_T)
8391 and then Nkind (Parent (N)) in N_Op
8392 then
8393 Orig_T := Etype (Parent (N));
8394 end if;
8396 if Is_Entity_Name (Orig_N)
8397 and then
8398 (Etype (Entity (Orig_N)) = Orig_T
8399 or else
8400 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
8401 and then Covers (Orig_T, Etype (Entity (Orig_N)))))
8402 then
8403 -- One more check, do not give warning if the analyzed conversion
8404 -- has an expression with non-static bounds, and the bounds of the
8405 -- target are static. This avoids junk warnings in cases where the
8406 -- conversion is necessary to establish staticness, for example in
8407 -- a case statement.
8409 if not Is_OK_Static_Subtype (Operand_Typ)
8410 and then Is_OK_Static_Subtype (Target_Typ)
8411 then
8412 null;
8414 -- Here we give the redundant conversion warning
8416 else
8417 Error_Msg_Node_2 := Orig_T;
8418 Error_Msg_NE -- CODEFIX
8419 ("?redundant conversion, & is of type &!",
8420 N, Entity (Orig_N));
8421 end if;
8422 end if;
8423 end if;
8425 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
8426 -- No need to perform any interface conversion if the type of the
8427 -- expression coincides with the target type.
8429 if Ada_Version >= Ada_05
8430 and then Expander_Active
8431 and then Operand_Typ /= Target_Typ
8432 then
8433 declare
8434 Opnd : Entity_Id := Operand_Typ;
8435 Target : Entity_Id := Target_Typ;
8437 begin
8438 if Is_Access_Type (Opnd) then
8439 Opnd := Directly_Designated_Type (Opnd);
8440 end if;
8442 if Is_Access_Type (Target_Typ) then
8443 Target := Directly_Designated_Type (Target);
8444 end if;
8446 if Opnd = Target then
8447 null;
8449 -- Conversion from interface type
8451 elsif Is_Interface (Opnd) then
8453 -- Ada 2005 (AI-217): Handle entities from limited views
8455 if From_With_Type (Opnd) then
8456 Error_Msg_Qual_Level := 99;
8457 Error_Msg_NE ("missing WITH clause on package &", N,
8458 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
8459 Error_Msg_N
8460 ("type conversions require visibility of the full view",
8463 elsif From_With_Type (Target)
8464 and then not
8465 (Is_Access_Type (Target_Typ)
8466 and then Present (Non_Limited_View (Etype (Target))))
8467 then
8468 Error_Msg_Qual_Level := 99;
8469 Error_Msg_NE ("missing WITH clause on package &", N,
8470 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
8471 Error_Msg_N
8472 ("type conversions require visibility of the full view",
8475 else
8476 Expand_Interface_Conversion (N, Is_Static => False);
8477 end if;
8479 -- Conversion to interface type
8481 elsif Is_Interface (Target) then
8483 -- Handle subtypes
8485 if Ekind (Opnd) = E_Protected_Subtype
8486 or else Ekind (Opnd) = E_Task_Subtype
8487 then
8488 Opnd := Etype (Opnd);
8489 end if;
8491 if not Interface_Present_In_Ancestor
8492 (Typ => Opnd,
8493 Iface => Target)
8494 then
8495 if Is_Class_Wide_Type (Opnd) then
8497 -- The static analysis is not enough to know if the
8498 -- interface is implemented or not. Hence we must pass
8499 -- the work to the expander to generate code to evaluate
8500 -- the conversion at run-time.
8502 Expand_Interface_Conversion (N, Is_Static => False);
8504 else
8505 Error_Msg_Name_1 := Chars (Etype (Target));
8506 Error_Msg_Name_2 := Chars (Opnd);
8507 Error_Msg_N
8508 ("wrong interface conversion (% is not a progenitor " &
8509 "of %)", N);
8510 end if;
8512 else
8513 Expand_Interface_Conversion (N);
8514 end if;
8515 end if;
8516 end;
8517 end if;
8518 end Resolve_Type_Conversion;
8520 ----------------------
8521 -- Resolve_Unary_Op --
8522 ----------------------
8524 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
8525 B_Typ : constant Entity_Id := Base_Type (Typ);
8526 R : constant Node_Id := Right_Opnd (N);
8527 OK : Boolean;
8528 Lo : Uint;
8529 Hi : Uint;
8531 begin
8532 -- Deal with intrinsic unary operators
8534 if Comes_From_Source (N)
8535 and then Ekind (Entity (N)) = E_Function
8536 and then Is_Imported (Entity (N))
8537 and then Is_Intrinsic_Subprogram (Entity (N))
8538 then
8539 Resolve_Intrinsic_Unary_Operator (N, Typ);
8540 return;
8541 end if;
8543 -- Deal with universal cases
8545 if Etype (R) = Universal_Integer
8546 or else
8547 Etype (R) = Universal_Real
8548 then
8549 Check_For_Visible_Operator (N, B_Typ);
8550 end if;
8552 Set_Etype (N, B_Typ);
8553 Resolve (R, B_Typ);
8555 -- Generate warning for expressions like abs (x mod 2)
8557 if Warn_On_Redundant_Constructs
8558 and then Nkind (N) = N_Op_Abs
8559 then
8560 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
8562 if OK and then Hi >= Lo and then Lo >= 0 then
8563 Error_Msg_N
8564 ("?abs applied to known non-negative value has no effect", N);
8565 end if;
8566 end if;
8568 -- Deal with reference generation
8570 Check_Unset_Reference (R);
8571 Generate_Operator_Reference (N, B_Typ);
8572 Eval_Unary_Op (N);
8574 -- Set overflow checking bit. Much cleverer code needed here eventually
8575 -- and perhaps the Resolve routines should be separated for the various
8576 -- arithmetic operations, since they will need different processing ???
8578 if Nkind (N) in N_Op then
8579 if not Overflow_Checks_Suppressed (Etype (N)) then
8580 Enable_Overflow_Check (N);
8581 end if;
8582 end if;
8584 -- Generate warning for expressions like -5 mod 3 for integers. No need
8585 -- to worry in the floating-point case, since parens do not affect the
8586 -- result so there is no point in giving in a warning.
8588 declare
8589 Norig : constant Node_Id := Original_Node (N);
8590 Rorig : Node_Id;
8591 Val : Uint;
8592 HB : Uint;
8593 LB : Uint;
8594 Lval : Uint;
8595 Opnd : Node_Id;
8597 begin
8598 if Warn_On_Questionable_Missing_Parens
8599 and then Comes_From_Source (Norig)
8600 and then Is_Integer_Type (Typ)
8601 and then Nkind (Norig) = N_Op_Minus
8602 then
8603 Rorig := Original_Node (Right_Opnd (Norig));
8605 -- We are looking for cases where the right operand is not
8606 -- parenthesized, and is a binary operator, multiply, divide, or
8607 -- mod. These are the cases where the grouping can affect results.
8609 if Paren_Count (Rorig) = 0
8610 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
8611 then
8612 -- For mod, we always give the warning, since the value is
8613 -- affected by the parenthesization (e.g. (-5) mod 315 /=
8614 -- -(5 mod 315)). But for the other cases, the only concern is
8615 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
8616 -- overflows, but (-2) * 64 does not). So we try to give the
8617 -- message only when overflow is possible.
8619 if Nkind (Rorig) /= N_Op_Mod
8620 and then Compile_Time_Known_Value (R)
8621 then
8622 Val := Expr_Value (R);
8624 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
8625 HB := Expr_Value (Type_High_Bound (Typ));
8626 else
8627 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
8628 end if;
8630 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
8631 LB := Expr_Value (Type_Low_Bound (Typ));
8632 else
8633 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
8634 end if;
8636 -- Note that the test below is deliberately excluding the
8637 -- largest negative number, since that is a potentially
8638 -- troublesome case (e.g. -2 * x, where the result is the
8639 -- largest negative integer has an overflow with 2 * x).
8641 if Val > LB and then Val <= HB then
8642 return;
8643 end if;
8644 end if;
8646 -- For the multiplication case, the only case we have to worry
8647 -- about is when (-a)*b is exactly the largest negative number
8648 -- so that -(a*b) can cause overflow. This can only happen if
8649 -- a is a power of 2, and more generally if any operand is a
8650 -- constant that is not a power of 2, then the parentheses
8651 -- cannot affect whether overflow occurs. We only bother to
8652 -- test the left most operand
8654 -- Loop looking at left operands for one that has known value
8656 Opnd := Rorig;
8657 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
8658 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
8659 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
8661 -- Operand value of 0 or 1 skips warning
8663 if Lval <= 1 then
8664 return;
8666 -- Otherwise check power of 2, if power of 2, warn, if
8667 -- anything else, skip warning.
8669 else
8670 while Lval /= 2 loop
8671 if Lval mod 2 = 1 then
8672 return;
8673 else
8674 Lval := Lval / 2;
8675 end if;
8676 end loop;
8678 exit Opnd_Loop;
8679 end if;
8680 end if;
8682 -- Keep looking at left operands
8684 Opnd := Left_Opnd (Opnd);
8685 end loop Opnd_Loop;
8687 -- For rem or "/" we can only have a problematic situation
8688 -- if the divisor has a value of minus one or one. Otherwise
8689 -- overflow is impossible (divisor > 1) or we have a case of
8690 -- division by zero in any case.
8692 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
8693 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
8694 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
8695 then
8696 return;
8697 end if;
8699 -- If we fall through warning should be issued
8701 Error_Msg_N
8702 ("?unary minus expression should be parenthesized here!", N);
8703 end if;
8704 end if;
8705 end;
8706 end Resolve_Unary_Op;
8708 ----------------------------------
8709 -- Resolve_Unchecked_Expression --
8710 ----------------------------------
8712 procedure Resolve_Unchecked_Expression
8713 (N : Node_Id;
8714 Typ : Entity_Id)
8716 begin
8717 Resolve (Expression (N), Typ, Suppress => All_Checks);
8718 Set_Etype (N, Typ);
8719 end Resolve_Unchecked_Expression;
8721 ---------------------------------------
8722 -- Resolve_Unchecked_Type_Conversion --
8723 ---------------------------------------
8725 procedure Resolve_Unchecked_Type_Conversion
8726 (N : Node_Id;
8727 Typ : Entity_Id)
8729 pragma Warnings (Off, Typ);
8731 Operand : constant Node_Id := Expression (N);
8732 Opnd_Type : constant Entity_Id := Etype (Operand);
8734 begin
8735 -- Resolve operand using its own type
8737 Resolve (Operand, Opnd_Type);
8738 Eval_Unchecked_Conversion (N);
8740 end Resolve_Unchecked_Type_Conversion;
8742 ------------------------------
8743 -- Rewrite_Operator_As_Call --
8744 ------------------------------
8746 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
8747 Loc : constant Source_Ptr := Sloc (N);
8748 Actuals : constant List_Id := New_List;
8749 New_N : Node_Id;
8751 begin
8752 if Nkind (N) in N_Binary_Op then
8753 Append (Left_Opnd (N), Actuals);
8754 end if;
8756 Append (Right_Opnd (N), Actuals);
8758 New_N :=
8759 Make_Function_Call (Sloc => Loc,
8760 Name => New_Occurrence_Of (Nam, Loc),
8761 Parameter_Associations => Actuals);
8763 Preserve_Comes_From_Source (New_N, N);
8764 Preserve_Comes_From_Source (Name (New_N), N);
8765 Rewrite (N, New_N);
8766 Set_Etype (N, Etype (Nam));
8767 end Rewrite_Operator_As_Call;
8769 ------------------------------
8770 -- Rewrite_Renamed_Operator --
8771 ------------------------------
8773 procedure Rewrite_Renamed_Operator
8774 (N : Node_Id;
8775 Op : Entity_Id;
8776 Typ : Entity_Id)
8778 Nam : constant Name_Id := Chars (Op);
8779 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
8780 Op_Node : Node_Id;
8782 begin
8783 -- Rewrite the operator node using the real operator, not its renaming.
8784 -- Exclude user-defined intrinsic operations of the same name, which are
8785 -- treated separately and rewritten as calls.
8787 if Ekind (Op) /= E_Function
8788 or else Chars (N) /= Nam
8789 then
8790 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
8791 Set_Chars (Op_Node, Nam);
8792 Set_Etype (Op_Node, Etype (N));
8793 Set_Entity (Op_Node, Op);
8794 Set_Right_Opnd (Op_Node, Right_Opnd (N));
8796 -- Indicate that both the original entity and its renaming are
8797 -- referenced at this point.
8799 Generate_Reference (Entity (N), N);
8800 Generate_Reference (Op, N);
8802 if Is_Binary then
8803 Set_Left_Opnd (Op_Node, Left_Opnd (N));
8804 end if;
8806 Rewrite (N, Op_Node);
8808 -- If the context type is private, add the appropriate conversions
8809 -- so that the operator is applied to the full view. This is done
8810 -- in the routines that resolve intrinsic operators,
8812 if Is_Intrinsic_Subprogram (Op)
8813 and then Is_Private_Type (Typ)
8814 then
8815 case Nkind (N) is
8816 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
8817 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
8818 Resolve_Intrinsic_Operator (N, Typ);
8820 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
8821 Resolve_Intrinsic_Unary_Operator (N, Typ);
8823 when others =>
8824 Resolve (N, Typ);
8825 end case;
8826 end if;
8828 elsif Ekind (Op) = E_Function
8829 and then Is_Intrinsic_Subprogram (Op)
8830 then
8831 -- Operator renames a user-defined operator of the same name. Use
8832 -- the original operator in the node, which is the one that Gigi
8833 -- knows about.
8835 Set_Entity (N, Op);
8836 Set_Is_Overloaded (N, False);
8837 end if;
8838 end Rewrite_Renamed_Operator;
8840 -----------------------
8841 -- Set_Slice_Subtype --
8842 -----------------------
8844 -- Build an implicit subtype declaration to represent the type delivered
8845 -- by the slice. This is an abbreviated version of an array subtype. We
8846 -- define an index subtype for the slice, using either the subtype name
8847 -- or the discrete range of the slice. To be consistent with index usage
8848 -- elsewhere, we create a list header to hold the single index. This list
8849 -- is not otherwise attached to the syntax tree.
8851 procedure Set_Slice_Subtype (N : Node_Id) is
8852 Loc : constant Source_Ptr := Sloc (N);
8853 Index_List : constant List_Id := New_List;
8854 Index : Node_Id;
8855 Index_Subtype : Entity_Id;
8856 Index_Type : Entity_Id;
8857 Slice_Subtype : Entity_Id;
8858 Drange : constant Node_Id := Discrete_Range (N);
8860 begin
8861 if Is_Entity_Name (Drange) then
8862 Index_Subtype := Entity (Drange);
8864 else
8865 -- We force the evaluation of a range. This is definitely needed in
8866 -- the renamed case, and seems safer to do unconditionally. Note in
8867 -- any case that since we will create and insert an Itype referring
8868 -- to this range, we must make sure any side effect removal actions
8869 -- are inserted before the Itype definition.
8871 if Nkind (Drange) = N_Range then
8872 Force_Evaluation (Low_Bound (Drange));
8873 Force_Evaluation (High_Bound (Drange));
8874 end if;
8876 Index_Type := Base_Type (Etype (Drange));
8878 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
8880 Set_Scalar_Range (Index_Subtype, Drange);
8881 Set_Etype (Index_Subtype, Index_Type);
8882 Set_Size_Info (Index_Subtype, Index_Type);
8883 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
8884 end if;
8886 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
8888 Index := New_Occurrence_Of (Index_Subtype, Loc);
8889 Set_Etype (Index, Index_Subtype);
8890 Append (Index, Index_List);
8892 Set_First_Index (Slice_Subtype, Index);
8893 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
8894 Set_Is_Constrained (Slice_Subtype, True);
8896 Check_Compile_Time_Size (Slice_Subtype);
8898 -- The Etype of the existing Slice node is reset to this slice subtype.
8899 -- Its bounds are obtained from its first index.
8901 Set_Etype (N, Slice_Subtype);
8903 -- In the packed case, this must be immediately frozen
8905 -- Couldn't we always freeze here??? and if we did, then the above
8906 -- call to Check_Compile_Time_Size could be eliminated, which would
8907 -- be nice, because then that routine could be made private to Freeze.
8909 -- Why the test for In_Spec_Expression here ???
8911 if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
8912 Freeze_Itype (Slice_Subtype, N);
8913 end if;
8915 end Set_Slice_Subtype;
8917 --------------------------------
8918 -- Set_String_Literal_Subtype --
8919 --------------------------------
8921 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
8922 Loc : constant Source_Ptr := Sloc (N);
8923 Low_Bound : constant Node_Id :=
8924 Type_Low_Bound (Etype (First_Index (Typ)));
8925 Subtype_Id : Entity_Id;
8927 begin
8928 if Nkind (N) /= N_String_Literal then
8929 return;
8930 end if;
8932 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
8933 Set_String_Literal_Length (Subtype_Id, UI_From_Int
8934 (String_Length (Strval (N))));
8935 Set_Etype (Subtype_Id, Base_Type (Typ));
8936 Set_Is_Constrained (Subtype_Id);
8937 Set_Etype (N, Subtype_Id);
8939 if Is_OK_Static_Expression (Low_Bound) then
8941 -- The low bound is set from the low bound of the corresponding
8942 -- index type. Note that we do not store the high bound in the
8943 -- string literal subtype, but it can be deduced if necessary
8944 -- from the length and the low bound.
8946 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
8948 else
8949 Set_String_Literal_Low_Bound
8950 (Subtype_Id, Make_Integer_Literal (Loc, 1));
8951 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Standard_Positive);
8953 -- Build bona fide subtype for the string, and wrap it in an
8954 -- unchecked conversion, because the backend expects the
8955 -- String_Literal_Subtype to have a static lower bound.
8957 declare
8958 Index_List : constant List_Id := New_List;
8959 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
8960 High_Bound : constant Node_Id :=
8961 Make_Op_Add (Loc,
8962 Left_Opnd => New_Copy_Tree (Low_Bound),
8963 Right_Opnd =>
8964 Make_Integer_Literal (Loc,
8965 String_Length (Strval (N)) - 1));
8966 Array_Subtype : Entity_Id;
8967 Index_Subtype : Entity_Id;
8968 Drange : Node_Id;
8969 Index : Node_Id;
8971 begin
8972 Index_Subtype :=
8973 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
8974 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
8975 Set_Scalar_Range (Index_Subtype, Drange);
8976 Set_Parent (Drange, N);
8977 Analyze_And_Resolve (Drange, Index_Type);
8979 -- In the context, the Index_Type may already have a constraint,
8980 -- so use common base type on string subtype. The base type may
8981 -- be used when generating attributes of the string, for example
8982 -- in the context of a slice assignment.
8984 Set_Etype (Index_Subtype, Base_Type (Index_Type));
8985 Set_Size_Info (Index_Subtype, Index_Type);
8986 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
8988 Array_Subtype := Create_Itype (E_Array_Subtype, N);
8990 Index := New_Occurrence_Of (Index_Subtype, Loc);
8991 Set_Etype (Index, Index_Subtype);
8992 Append (Index, Index_List);
8994 Set_First_Index (Array_Subtype, Index);
8995 Set_Etype (Array_Subtype, Base_Type (Typ));
8996 Set_Is_Constrained (Array_Subtype, True);
8998 Rewrite (N,
8999 Make_Unchecked_Type_Conversion (Loc,
9000 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
9001 Expression => Relocate_Node (N)));
9002 Set_Etype (N, Array_Subtype);
9003 end;
9004 end if;
9005 end Set_String_Literal_Subtype;
9007 ------------------------------
9008 -- Simplify_Type_Conversion --
9009 ------------------------------
9011 procedure Simplify_Type_Conversion (N : Node_Id) is
9012 begin
9013 if Nkind (N) = N_Type_Conversion then
9014 declare
9015 Operand : constant Node_Id := Expression (N);
9016 Target_Typ : constant Entity_Id := Etype (N);
9017 Opnd_Typ : constant Entity_Id := Etype (Operand);
9019 begin
9020 if Is_Floating_Point_Type (Opnd_Typ)
9021 and then
9022 (Is_Integer_Type (Target_Typ)
9023 or else (Is_Fixed_Point_Type (Target_Typ)
9024 and then Conversion_OK (N)))
9025 and then Nkind (Operand) = N_Attribute_Reference
9026 and then Attribute_Name (Operand) = Name_Truncation
9028 -- Special processing required if the conversion is the expression
9029 -- of a Truncation attribute reference. In this case we replace:
9031 -- ityp (ftyp'Truncation (x))
9033 -- by
9035 -- ityp (x)
9037 -- with the Float_Truncate flag set, which is more efficient
9039 then
9040 Rewrite (Operand,
9041 Relocate_Node (First (Expressions (Operand))));
9042 Set_Float_Truncate (N, True);
9043 end if;
9044 end;
9045 end if;
9046 end Simplify_Type_Conversion;
9048 -----------------------------
9049 -- Unique_Fixed_Point_Type --
9050 -----------------------------
9052 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
9053 T1 : Entity_Id := Empty;
9054 T2 : Entity_Id;
9055 Item : Node_Id;
9056 Scop : Entity_Id;
9058 procedure Fixed_Point_Error;
9059 -- Give error messages for true ambiguity. Messages are posted on node
9060 -- N, and entities T1, T2 are the possible interpretations.
9062 -----------------------
9063 -- Fixed_Point_Error --
9064 -----------------------
9066 procedure Fixed_Point_Error is
9067 begin
9068 Error_Msg_N ("ambiguous universal_fixed_expression", N);
9069 Error_Msg_NE ("\\possible interpretation as}", N, T1);
9070 Error_Msg_NE ("\\possible interpretation as}", N, T2);
9071 end Fixed_Point_Error;
9073 -- Start of processing for Unique_Fixed_Point_Type
9075 begin
9076 -- The operations on Duration are visible, so Duration is always a
9077 -- possible interpretation.
9079 T1 := Standard_Duration;
9081 -- Look for fixed-point types in enclosing scopes
9083 Scop := Current_Scope;
9084 while Scop /= Standard_Standard loop
9085 T2 := First_Entity (Scop);
9086 while Present (T2) loop
9087 if Is_Fixed_Point_Type (T2)
9088 and then Current_Entity (T2) = T2
9089 and then Scope (Base_Type (T2)) = Scop
9090 then
9091 if Present (T1) then
9092 Fixed_Point_Error;
9093 return Any_Type;
9094 else
9095 T1 := T2;
9096 end if;
9097 end if;
9099 Next_Entity (T2);
9100 end loop;
9102 Scop := Scope (Scop);
9103 end loop;
9105 -- Look for visible fixed type declarations in the context
9107 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
9108 while Present (Item) loop
9109 if Nkind (Item) = N_With_Clause then
9110 Scop := Entity (Name (Item));
9111 T2 := First_Entity (Scop);
9112 while Present (T2) loop
9113 if Is_Fixed_Point_Type (T2)
9114 and then Scope (Base_Type (T2)) = Scop
9115 and then (Is_Potentially_Use_Visible (T2)
9116 or else In_Use (T2))
9117 then
9118 if Present (T1) then
9119 Fixed_Point_Error;
9120 return Any_Type;
9121 else
9122 T1 := T2;
9123 end if;
9124 end if;
9126 Next_Entity (T2);
9127 end loop;
9128 end if;
9130 Next (Item);
9131 end loop;
9133 if Nkind (N) = N_Real_Literal then
9134 Error_Msg_NE ("?real literal interpreted as }!", N, T1);
9135 else
9136 Error_Msg_NE ("?universal_fixed expression interpreted as }!", N, T1);
9137 end if;
9139 return T1;
9140 end Unique_Fixed_Point_Type;
9142 ----------------------
9143 -- Valid_Conversion --
9144 ----------------------
9146 function Valid_Conversion
9147 (N : Node_Id;
9148 Target : Entity_Id;
9149 Operand : Node_Id) return Boolean
9151 Target_Type : constant Entity_Id := Base_Type (Target);
9152 Opnd_Type : Entity_Id := Etype (Operand);
9154 function Conversion_Check
9155 (Valid : Boolean;
9156 Msg : String) return Boolean;
9157 -- Little routine to post Msg if Valid is False, returns Valid value
9159 function Valid_Tagged_Conversion
9160 (Target_Type : Entity_Id;
9161 Opnd_Type : Entity_Id) return Boolean;
9162 -- Specifically test for validity of tagged conversions
9164 function Valid_Array_Conversion return Boolean;
9165 -- Check index and component conformance, and accessibility levels
9166 -- if the component types are anonymous access types (Ada 2005)
9168 ----------------------
9169 -- Conversion_Check --
9170 ----------------------
9172 function Conversion_Check
9173 (Valid : Boolean;
9174 Msg : String) return Boolean
9176 begin
9177 if not Valid then
9178 Error_Msg_N (Msg, Operand);
9179 end if;
9181 return Valid;
9182 end Conversion_Check;
9184 ----------------------------
9185 -- Valid_Array_Conversion --
9186 ----------------------------
9188 function Valid_Array_Conversion return Boolean
9190 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
9191 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
9193 Opnd_Index : Node_Id;
9194 Opnd_Index_Type : Entity_Id;
9196 Target_Comp_Type : constant Entity_Id :=
9197 Component_Type (Target_Type);
9198 Target_Comp_Base : constant Entity_Id :=
9199 Base_Type (Target_Comp_Type);
9201 Target_Index : Node_Id;
9202 Target_Index_Type : Entity_Id;
9204 begin
9205 -- Error if wrong number of dimensions
9208 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
9209 then
9210 Error_Msg_N
9211 ("incompatible number of dimensions for conversion", Operand);
9212 return False;
9214 -- Number of dimensions matches
9216 else
9217 -- Loop through indexes of the two arrays
9219 Target_Index := First_Index (Target_Type);
9220 Opnd_Index := First_Index (Opnd_Type);
9221 while Present (Target_Index) and then Present (Opnd_Index) loop
9222 Target_Index_Type := Etype (Target_Index);
9223 Opnd_Index_Type := Etype (Opnd_Index);
9225 -- Error if index types are incompatible
9227 if not (Is_Integer_Type (Target_Index_Type)
9228 and then Is_Integer_Type (Opnd_Index_Type))
9229 and then (Root_Type (Target_Index_Type)
9230 /= Root_Type (Opnd_Index_Type))
9231 then
9232 Error_Msg_N
9233 ("incompatible index types for array conversion",
9234 Operand);
9235 return False;
9236 end if;
9238 Next_Index (Target_Index);
9239 Next_Index (Opnd_Index);
9240 end loop;
9242 -- If component types have same base type, all set
9244 if Target_Comp_Base = Opnd_Comp_Base then
9245 null;
9247 -- Here if base types of components are not the same. The only
9248 -- time this is allowed is if we have anonymous access types.
9250 -- The conversion of arrays of anonymous access types can lead
9251 -- to dangling pointers. AI-392 formalizes the accessibility
9252 -- checks that must be applied to such conversions to prevent
9253 -- out-of-scope references.
9255 elsif
9256 (Ekind (Target_Comp_Base) = E_Anonymous_Access_Type
9257 or else
9258 Ekind (Target_Comp_Base) = E_Anonymous_Access_Subprogram_Type)
9259 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
9260 and then
9261 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
9262 then
9263 if Type_Access_Level (Target_Type) <
9264 Type_Access_Level (Opnd_Type)
9265 then
9266 if In_Instance_Body then
9267 Error_Msg_N ("?source array type " &
9268 "has deeper accessibility level than target", Operand);
9269 Error_Msg_N ("\?Program_Error will be raised at run time",
9270 Operand);
9271 Rewrite (N,
9272 Make_Raise_Program_Error (Sloc (N),
9273 Reason => PE_Accessibility_Check_Failed));
9274 Set_Etype (N, Target_Type);
9275 return False;
9277 -- Conversion not allowed because of accessibility levels
9279 else
9280 Error_Msg_N ("source array type " &
9281 "has deeper accessibility level than target", Operand);
9282 return False;
9283 end if;
9284 else
9285 null;
9286 end if;
9288 -- All other cases where component base types do not match
9290 else
9291 Error_Msg_N
9292 ("incompatible component types for array conversion",
9293 Operand);
9294 return False;
9295 end if;
9297 -- Check that component subtypes statically match. For numeric
9298 -- types this means that both must be either constrained or
9299 -- unconstrained. For enumeration types the bounds must match.
9300 -- All of this is checked in Subtypes_Statically_Match.
9302 if not Subtypes_Statically_Match
9303 (Target_Comp_Type, Opnd_Comp_Type)
9304 then
9305 Error_Msg_N
9306 ("component subtypes must statically match", Operand);
9307 return False;
9308 end if;
9309 end if;
9311 return True;
9312 end Valid_Array_Conversion;
9314 -----------------------------
9315 -- Valid_Tagged_Conversion --
9316 -----------------------------
9318 function Valid_Tagged_Conversion
9319 (Target_Type : Entity_Id;
9320 Opnd_Type : Entity_Id) return Boolean
9322 begin
9323 -- Upward conversions are allowed (RM 4.6(22))
9325 if Covers (Target_Type, Opnd_Type)
9326 or else Is_Ancestor (Target_Type, Opnd_Type)
9327 then
9328 return True;
9330 -- Downward conversion are allowed if the operand is class-wide
9331 -- (RM 4.6(23)).
9333 elsif Is_Class_Wide_Type (Opnd_Type)
9334 and then Covers (Opnd_Type, Target_Type)
9335 then
9336 return True;
9338 elsif Covers (Opnd_Type, Target_Type)
9339 or else Is_Ancestor (Opnd_Type, Target_Type)
9340 then
9341 return
9342 Conversion_Check (False,
9343 "downward conversion of tagged objects not allowed");
9345 -- Ada 2005 (AI-251): The conversion to/from interface types is
9346 -- always valid
9348 elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
9349 return True;
9351 -- If the operand is a class-wide type obtained through a limited_
9352 -- with clause, and the context includes the non-limited view, use
9353 -- it to determine whether the conversion is legal.
9355 elsif Is_Class_Wide_Type (Opnd_Type)
9356 and then From_With_Type (Opnd_Type)
9357 and then Present (Non_Limited_View (Etype (Opnd_Type)))
9358 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
9359 then
9360 return True;
9362 elsif Is_Access_Type (Opnd_Type)
9363 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
9364 then
9365 return True;
9367 else
9368 Error_Msg_NE
9369 ("invalid tagged conversion, not compatible with}",
9370 N, First_Subtype (Opnd_Type));
9371 return False;
9372 end if;
9373 end Valid_Tagged_Conversion;
9375 -- Start of processing for Valid_Conversion
9377 begin
9378 Check_Parameterless_Call (Operand);
9380 if Is_Overloaded (Operand) then
9381 declare
9382 I : Interp_Index;
9383 I1 : Interp_Index;
9384 It : Interp;
9385 It1 : Interp;
9386 N1 : Entity_Id;
9388 begin
9389 -- Remove procedure calls, which syntactically cannot appear in
9390 -- this context, but which cannot be removed by type checking,
9391 -- because the context does not impose a type.
9393 -- When compiling for VMS, spurious ambiguities can be produced
9394 -- when arithmetic operations have a literal operand and return
9395 -- System.Address or a descendant of it. These ambiguities are
9396 -- otherwise resolved by the context, but for conversions there
9397 -- is no context type and the removal of the spurious operations
9398 -- must be done explicitly here.
9400 -- The node may be labelled overloaded, but still contain only
9401 -- one interpretation because others were discarded in previous
9402 -- filters. If this is the case, retain the single interpretation
9403 -- if legal.
9405 Get_First_Interp (Operand, I, It);
9406 Opnd_Type := It.Typ;
9407 Get_Next_Interp (I, It);
9409 if Present (It.Typ)
9410 and then Opnd_Type /= Standard_Void_Type
9411 then
9412 -- More than one candidate interpretation is available
9414 Get_First_Interp (Operand, I, It);
9415 while Present (It.Typ) loop
9416 if It.Typ = Standard_Void_Type then
9417 Remove_Interp (I);
9418 end if;
9420 if Present (System_Aux_Id)
9421 and then Is_Descendent_Of_Address (It.Typ)
9422 then
9423 Remove_Interp (I);
9424 end if;
9426 Get_Next_Interp (I, It);
9427 end loop;
9428 end if;
9430 Get_First_Interp (Operand, I, It);
9431 I1 := I;
9432 It1 := It;
9434 if No (It.Typ) then
9435 Error_Msg_N ("illegal operand in conversion", Operand);
9436 return False;
9437 end if;
9439 Get_Next_Interp (I, It);
9441 if Present (It.Typ) then
9442 N1 := It1.Nam;
9443 It1 := Disambiguate (Operand, I1, I, Any_Type);
9445 if It1 = No_Interp then
9446 Error_Msg_N ("ambiguous operand in conversion", Operand);
9448 Error_Msg_Sloc := Sloc (It.Nam);
9449 Error_Msg_N -- CODEFIX
9450 ("\\possible interpretation#!", Operand);
9452 Error_Msg_Sloc := Sloc (N1);
9453 Error_Msg_N -- CODEFIX
9454 ("\\possible interpretation#!", Operand);
9456 return False;
9457 end if;
9458 end if;
9460 Set_Etype (Operand, It1.Typ);
9461 Opnd_Type := It1.Typ;
9462 end;
9463 end if;
9465 -- Numeric types
9467 if Is_Numeric_Type (Target_Type) then
9469 -- A universal fixed expression can be converted to any numeric type
9471 if Opnd_Type = Universal_Fixed then
9472 return True;
9474 -- Also no need to check when in an instance or inlined body, because
9475 -- the legality has been established when the template was analyzed.
9476 -- Furthermore, numeric conversions may occur where only a private
9477 -- view of the operand type is visible at the instantiation point.
9478 -- This results in a spurious error if we check that the operand type
9479 -- is a numeric type.
9481 -- Note: in a previous version of this unit, the following tests were
9482 -- applied only for generated code (Comes_From_Source set to False),
9483 -- but in fact the test is required for source code as well, since
9484 -- this situation can arise in source code.
9486 elsif In_Instance or else In_Inlined_Body then
9487 return True;
9489 -- Otherwise we need the conversion check
9491 else
9492 return Conversion_Check
9493 (Is_Numeric_Type (Opnd_Type),
9494 "illegal operand for numeric conversion");
9495 end if;
9497 -- Array types
9499 elsif Is_Array_Type (Target_Type) then
9500 if not Is_Array_Type (Opnd_Type)
9501 or else Opnd_Type = Any_Composite
9502 or else Opnd_Type = Any_String
9503 then
9504 Error_Msg_N
9505 ("illegal operand for array conversion", Operand);
9506 return False;
9507 else
9508 return Valid_Array_Conversion;
9509 end if;
9511 -- Ada 2005 (AI-251): Anonymous access types where target references an
9512 -- interface type.
9514 elsif (Ekind (Target_Type) = E_General_Access_Type
9515 or else
9516 Ekind (Target_Type) = E_Anonymous_Access_Type)
9517 and then Is_Interface (Directly_Designated_Type (Target_Type))
9518 then
9519 -- Check the static accessibility rule of 4.6(17). Note that the
9520 -- check is not enforced when within an instance body, since the
9521 -- RM requires such cases to be caught at run time.
9523 if Ekind (Target_Type) /= E_Anonymous_Access_Type then
9524 if Type_Access_Level (Opnd_Type) >
9525 Type_Access_Level (Target_Type)
9526 then
9527 -- In an instance, this is a run-time check, but one we know
9528 -- will fail, so generate an appropriate warning. The raise
9529 -- will be generated by Expand_N_Type_Conversion.
9531 if In_Instance_Body then
9532 Error_Msg_N
9533 ("?cannot convert local pointer to non-local access type",
9534 Operand);
9535 Error_Msg_N
9536 ("\?Program_Error will be raised at run time", Operand);
9537 else
9538 Error_Msg_N
9539 ("cannot convert local pointer to non-local access type",
9540 Operand);
9541 return False;
9542 end if;
9544 -- Special accessibility checks are needed in the case of access
9545 -- discriminants declared for a limited type.
9547 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
9548 and then not Is_Local_Anonymous_Access (Opnd_Type)
9549 then
9550 -- When the operand is a selected access discriminant the check
9551 -- needs to be made against the level of the object denoted by
9552 -- the prefix of the selected name (Object_Access_Level handles
9553 -- checking the prefix of the operand for this case).
9555 if Nkind (Operand) = N_Selected_Component
9556 and then Object_Access_Level (Operand) >
9557 Type_Access_Level (Target_Type)
9558 then
9559 -- In an instance, this is a run-time check, but one we know
9560 -- will fail, so generate an appropriate warning. The raise
9561 -- will be generated by Expand_N_Type_Conversion.
9563 if In_Instance_Body then
9564 Error_Msg_N
9565 ("?cannot convert access discriminant to non-local" &
9566 " access type", Operand);
9567 Error_Msg_N
9568 ("\?Program_Error will be raised at run time", Operand);
9569 else
9570 Error_Msg_N
9571 ("cannot convert access discriminant to non-local" &
9572 " access type", Operand);
9573 return False;
9574 end if;
9575 end if;
9577 -- The case of a reference to an access discriminant from
9578 -- within a limited type declaration (which will appear as
9579 -- a discriminal) is always illegal because the level of the
9580 -- discriminant is considered to be deeper than any (nameable)
9581 -- access type.
9583 if Is_Entity_Name (Operand)
9584 and then not Is_Local_Anonymous_Access (Opnd_Type)
9585 and then (Ekind (Entity (Operand)) = E_In_Parameter
9586 or else Ekind (Entity (Operand)) = E_Constant)
9587 and then Present (Discriminal_Link (Entity (Operand)))
9588 then
9589 Error_Msg_N
9590 ("discriminant has deeper accessibility level than target",
9591 Operand);
9592 return False;
9593 end if;
9594 end if;
9595 end if;
9597 return True;
9599 -- General and anonymous access types
9601 elsif (Ekind (Target_Type) = E_General_Access_Type
9602 or else Ekind (Target_Type) = E_Anonymous_Access_Type)
9603 and then
9604 Conversion_Check
9605 (Is_Access_Type (Opnd_Type)
9606 and then Ekind (Opnd_Type) /=
9607 E_Access_Subprogram_Type
9608 and then Ekind (Opnd_Type) /=
9609 E_Access_Protected_Subprogram_Type,
9610 "must be an access-to-object type")
9611 then
9612 if Is_Access_Constant (Opnd_Type)
9613 and then not Is_Access_Constant (Target_Type)
9614 then
9615 Error_Msg_N
9616 ("access-to-constant operand type not allowed", Operand);
9617 return False;
9618 end if;
9620 -- Check the static accessibility rule of 4.6(17). Note that the
9621 -- check is not enforced when within an instance body, since the RM
9622 -- requires such cases to be caught at run time.
9624 if Ekind (Target_Type) /= E_Anonymous_Access_Type
9625 or else Is_Local_Anonymous_Access (Target_Type)
9626 then
9627 if Type_Access_Level (Opnd_Type)
9628 > Type_Access_Level (Target_Type)
9629 then
9630 -- In an instance, this is a run-time check, but one we know
9631 -- will fail, so generate an appropriate warning. The raise
9632 -- will be generated by Expand_N_Type_Conversion.
9634 if In_Instance_Body then
9635 Error_Msg_N
9636 ("?cannot convert local pointer to non-local access type",
9637 Operand);
9638 Error_Msg_N
9639 ("\?Program_Error will be raised at run time", Operand);
9641 else
9642 -- Avoid generation of spurious error message
9644 if not Error_Posted (N) then
9645 Error_Msg_N
9646 ("cannot convert local pointer to non-local access type",
9647 Operand);
9648 end if;
9650 return False;
9651 end if;
9653 -- Special accessibility checks are needed in the case of access
9654 -- discriminants declared for a limited type.
9656 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
9657 and then not Is_Local_Anonymous_Access (Opnd_Type)
9658 then
9660 -- When the operand is a selected access discriminant the check
9661 -- needs to be made against the level of the object denoted by
9662 -- the prefix of the selected name (Object_Access_Level handles
9663 -- checking the prefix of the operand for this case).
9665 if Nkind (Operand) = N_Selected_Component
9666 and then Object_Access_Level (Operand) >
9667 Type_Access_Level (Target_Type)
9668 then
9669 -- In an instance, this is a run-time check, but one we know
9670 -- will fail, so generate an appropriate warning. The raise
9671 -- will be generated by Expand_N_Type_Conversion.
9673 if In_Instance_Body then
9674 Error_Msg_N
9675 ("?cannot convert access discriminant to non-local" &
9676 " access type", Operand);
9677 Error_Msg_N
9678 ("\?Program_Error will be raised at run time",
9679 Operand);
9681 else
9682 Error_Msg_N
9683 ("cannot convert access discriminant to non-local" &
9684 " access type", Operand);
9685 return False;
9686 end if;
9687 end if;
9689 -- The case of a reference to an access discriminant from
9690 -- within a limited type declaration (which will appear as
9691 -- a discriminal) is always illegal because the level of the
9692 -- discriminant is considered to be deeper than any (nameable)
9693 -- access type.
9695 if Is_Entity_Name (Operand)
9696 and then (Ekind (Entity (Operand)) = E_In_Parameter
9697 or else Ekind (Entity (Operand)) = E_Constant)
9698 and then Present (Discriminal_Link (Entity (Operand)))
9699 then
9700 Error_Msg_N
9701 ("discriminant has deeper accessibility level than target",
9702 Operand);
9703 return False;
9704 end if;
9705 end if;
9706 end if;
9708 -- In the presence of limited_with clauses we have to use non-limited
9709 -- views, if available.
9711 Check_Limited : declare
9712 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
9713 -- Helper function to handle limited views
9715 --------------------------
9716 -- Full_Designated_Type --
9717 --------------------------
9719 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
9720 Desig : constant Entity_Id := Designated_Type (T);
9722 begin
9723 -- Handle the limited view of a type
9725 if Is_Incomplete_Type (Desig)
9726 and then From_With_Type (Desig)
9727 and then Present (Non_Limited_View (Desig))
9728 then
9729 return Available_View (Desig);
9730 else
9731 return Desig;
9732 end if;
9733 end Full_Designated_Type;
9735 -- Local Declarations
9737 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
9738 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
9740 Same_Base : constant Boolean :=
9741 Base_Type (Target) = Base_Type (Opnd);
9743 -- Start of processing for Check_Limited
9745 begin
9746 if Is_Tagged_Type (Target) then
9747 return Valid_Tagged_Conversion (Target, Opnd);
9749 else
9750 if not Same_Base then
9751 Error_Msg_NE
9752 ("target designated type not compatible with }",
9753 N, Base_Type (Opnd));
9754 return False;
9756 -- Ada 2005 AI-384: legality rule is symmetric in both
9757 -- designated types. The conversion is legal (with possible
9758 -- constraint check) if either designated type is
9759 -- unconstrained.
9761 elsif Subtypes_Statically_Match (Target, Opnd)
9762 or else
9763 (Has_Discriminants (Target)
9764 and then
9765 (not Is_Constrained (Opnd)
9766 or else not Is_Constrained (Target)))
9767 then
9768 -- Special case, if Value_Size has been used to make the
9769 -- sizes different, the conversion is not allowed even
9770 -- though the subtypes statically match.
9772 if Known_Static_RM_Size (Target)
9773 and then Known_Static_RM_Size (Opnd)
9774 and then RM_Size (Target) /= RM_Size (Opnd)
9775 then
9776 Error_Msg_NE
9777 ("target designated subtype not compatible with }",
9778 N, Opnd);
9779 Error_Msg_NE
9780 ("\because sizes of the two designated subtypes differ",
9781 N, Opnd);
9782 return False;
9784 -- Normal case where conversion is allowed
9786 else
9787 return True;
9788 end if;
9790 else
9791 Error_Msg_NE
9792 ("target designated subtype not compatible with }",
9793 N, Opnd);
9794 return False;
9795 end if;
9796 end if;
9797 end Check_Limited;
9799 -- Access to subprogram types. If the operand is an access parameter,
9800 -- the type has a deeper accessibility that any master, and cannot
9801 -- be assigned. We must make an exception if the conversion is part
9802 -- of an assignment and the target is the return object of an extended
9803 -- return statement, because in that case the accessibility check
9804 -- takes place after the return.
9806 elsif Is_Access_Subprogram_Type (Target_Type)
9807 and then No (Corresponding_Remote_Type (Opnd_Type))
9808 then
9809 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
9810 and then Is_Entity_Name (Operand)
9811 and then Ekind (Entity (Operand)) = E_In_Parameter
9812 and then
9813 (Nkind (Parent (N)) /= N_Assignment_Statement
9814 or else not Is_Entity_Name (Name (Parent (N)))
9815 or else not Is_Return_Object (Entity (Name (Parent (N)))))
9816 then
9817 Error_Msg_N
9818 ("illegal attempt to store anonymous access to subprogram",
9819 Operand);
9820 Error_Msg_N
9821 ("\value has deeper accessibility than any master " &
9822 "(RM 3.10.2 (13))",
9823 Operand);
9825 Error_Msg_NE
9826 ("\use named access type for& instead of access parameter",
9827 Operand, Entity (Operand));
9828 end if;
9830 -- Check that the designated types are subtype conformant
9832 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
9833 Old_Id => Designated_Type (Opnd_Type),
9834 Err_Loc => N);
9836 -- Check the static accessibility rule of 4.6(20)
9838 if Type_Access_Level (Opnd_Type) >
9839 Type_Access_Level (Target_Type)
9840 then
9841 Error_Msg_N
9842 ("operand type has deeper accessibility level than target",
9843 Operand);
9845 -- Check that if the operand type is declared in a generic body,
9846 -- then the target type must be declared within that same body
9847 -- (enforces last sentence of 4.6(20)).
9849 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
9850 declare
9851 O_Gen : constant Node_Id :=
9852 Enclosing_Generic_Body (Opnd_Type);
9854 T_Gen : Node_Id;
9856 begin
9857 T_Gen := Enclosing_Generic_Body (Target_Type);
9858 while Present (T_Gen) and then T_Gen /= O_Gen loop
9859 T_Gen := Enclosing_Generic_Body (T_Gen);
9860 end loop;
9862 if T_Gen /= O_Gen then
9863 Error_Msg_N
9864 ("target type must be declared in same generic body"
9865 & " as operand type", N);
9866 end if;
9867 end;
9868 end if;
9870 return True;
9872 -- Remote subprogram access types
9874 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
9875 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
9876 then
9877 -- It is valid to convert from one RAS type to another provided
9878 -- that their specification statically match.
9880 Check_Subtype_Conformant
9881 (New_Id =>
9882 Designated_Type (Corresponding_Remote_Type (Target_Type)),
9883 Old_Id =>
9884 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
9885 Err_Loc =>
9887 return True;
9889 -- If both are tagged types, check legality of view conversions
9891 elsif Is_Tagged_Type (Target_Type)
9892 and then Is_Tagged_Type (Opnd_Type)
9893 then
9894 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
9896 -- Types derived from the same root type are convertible
9898 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
9899 return True;
9901 -- In an instance or an inlined body, there may be inconsistent
9902 -- views of the same type, or of types derived from a common root.
9904 elsif (In_Instance or In_Inlined_Body)
9905 and then
9906 Root_Type (Underlying_Type (Target_Type)) =
9907 Root_Type (Underlying_Type (Opnd_Type))
9908 then
9909 return True;
9911 -- Special check for common access type error case
9913 elsif Ekind (Target_Type) = E_Access_Type
9914 and then Is_Access_Type (Opnd_Type)
9915 then
9916 Error_Msg_N ("target type must be general access type!", N);
9917 Error_Msg_NE ("add ALL to }!", N, Target_Type);
9918 return False;
9920 else
9921 Error_Msg_NE ("invalid conversion, not compatible with }",
9922 N, Opnd_Type);
9923 return False;
9924 end if;
9925 end Valid_Conversion;
9927 end Sem_Res;