fixing pr42337
[official-gcc.git] / gcc / ada / s-taprop-vxworks.adb
blob4cde338bfd3c85649e124d310d99e0906cd1e501
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- This is the VxWorks version of this package
34 -- This package contains all the GNULL primitives that interface directly with
35 -- the underlying OS.
37 pragma Polling (Off);
38 -- Turn off polling, we do not want ATC polling to take place during tasking
39 -- operations. It causes infinite loops and other problems.
41 with Ada.Unchecked_Conversion;
42 with Ada.Unchecked_Deallocation;
44 with Interfaces.C;
46 with System.Tasking.Debug;
47 with System.Interrupt_Management;
49 with System.Soft_Links;
50 -- We use System.Soft_Links instead of System.Tasking.Initialization
51 -- because the later is a higher level package that we shouldn't depend
52 -- on. For example when using the restricted run time, it is replaced by
53 -- System.Tasking.Restricted.Stages.
55 with System.Task_Info;
56 with System.VxWorks.Ext;
58 package body System.Task_Primitives.Operations is
60 package SSL renames System.Soft_Links;
62 use System.Tasking.Debug;
63 use System.Tasking;
64 use System.OS_Interface;
65 use System.Parameters;
66 use type System.VxWorks.Ext.t_id;
67 use type Interfaces.C.int;
69 subtype int is System.OS_Interface.int;
71 Relative : constant := 0;
73 ----------------
74 -- Local Data --
75 ----------------
77 -- The followings are logically constants, but need to be initialized at
78 -- run time.
80 Single_RTS_Lock : aliased RTS_Lock;
81 -- This is a lock to allow only one thread of control in the RTS at a
82 -- time; it is used to execute in mutual exclusion from all other tasks.
83 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
85 Environment_Task_Id : Task_Id;
86 -- A variable to hold Task_Id for the environment task
88 Unblocked_Signal_Mask : aliased sigset_t;
89 -- The set of signals that should unblocked in all tasks
91 -- The followings are internal configuration constants needed
93 Time_Slice_Val : Integer;
94 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
96 Locking_Policy : Character;
97 pragma Import (C, Locking_Policy, "__gl_locking_policy");
99 Dispatching_Policy : Character;
100 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
102 function Get_Policy (Prio : System.Any_Priority) return Character;
103 pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
104 -- Get priority specific dispatching policy
106 Mutex_Protocol : Priority_Type;
108 Foreign_Task_Elaborated : aliased Boolean := True;
109 -- Used to identified fake tasks (i.e., non-Ada Threads)
111 type Set_Stack_Limit_Proc_Acc is access procedure;
112 pragma Convention (C, Set_Stack_Limit_Proc_Acc);
114 Set_Stack_Limit_Hook : Set_Stack_Limit_Proc_Acc;
115 pragma Import (C, Set_Stack_Limit_Hook, "__gnat_set_stack_limit_hook");
116 -- Procedure to be called when a task is created to set stack
117 -- limit.
119 --------------------
120 -- Local Packages --
121 --------------------
123 package Specific is
125 procedure Initialize;
126 pragma Inline (Initialize);
127 -- Initialize task specific data
129 function Is_Valid_Task return Boolean;
130 pragma Inline (Is_Valid_Task);
131 -- Does executing thread have a TCB?
133 procedure Set (Self_Id : Task_Id);
134 pragma Inline (Set);
135 -- Set the self id for the current task
137 procedure Delete;
138 pragma Inline (Delete);
139 -- Delete the task specific data associated with the current task
141 function Self return Task_Id;
142 pragma Inline (Self);
143 -- Return a pointer to the Ada Task Control Block of the calling task
145 end Specific;
147 package body Specific is separate;
148 -- The body of this package is target specific
150 ---------------------------------
151 -- Support for foreign threads --
152 ---------------------------------
154 function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
155 -- Allocate and Initialize a new ATCB for the current Thread
157 function Register_Foreign_Thread
158 (Thread : Thread_Id) return Task_Id is separate;
160 -----------------------
161 -- Local Subprograms --
162 -----------------------
164 procedure Abort_Handler (signo : Signal);
165 -- Handler for the abort (SIGABRT) signal to handle asynchronous abort
167 procedure Install_Signal_Handlers;
168 -- Install the default signal handlers for the current task
170 function To_Address is
171 new Ada.Unchecked_Conversion (Task_Id, System.Address);
173 -------------------
174 -- Abort_Handler --
175 -------------------
177 procedure Abort_Handler (signo : Signal) is
178 pragma Unreferenced (signo);
180 Self_ID : constant Task_Id := Self;
181 Old_Set : aliased sigset_t;
183 Result : int;
184 pragma Warnings (Off, Result);
186 begin
187 -- It is not safe to raise an exception when using ZCX and the GCC
188 -- exception handling mechanism.
190 if ZCX_By_Default and then GCC_ZCX_Support then
191 return;
192 end if;
194 if Self_ID.Deferral_Level = 0
195 and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
196 and then not Self_ID.Aborting
197 then
198 Self_ID.Aborting := True;
200 -- Make sure signals used for RTS internal purpose are unmasked
202 Result :=
203 pthread_sigmask
204 (SIG_UNBLOCK,
205 Unblocked_Signal_Mask'Access,
206 Old_Set'Access);
207 pragma Assert (Result = 0);
209 raise Standard'Abort_Signal;
210 end if;
211 end Abort_Handler;
213 -----------------
214 -- Stack_Guard --
215 -----------------
217 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
218 pragma Unreferenced (T);
219 pragma Unreferenced (On);
221 begin
222 -- Nothing needed (why not???)
224 null;
225 end Stack_Guard;
227 -------------------
228 -- Get_Thread_Id --
229 -------------------
231 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
232 begin
233 return T.Common.LL.Thread;
234 end Get_Thread_Id;
236 ----------
237 -- Self --
238 ----------
240 function Self return Task_Id renames Specific.Self;
242 -----------------------------
243 -- Install_Signal_Handlers --
244 -----------------------------
246 procedure Install_Signal_Handlers is
247 act : aliased struct_sigaction;
248 old_act : aliased struct_sigaction;
249 Tmp_Set : aliased sigset_t;
250 Result : int;
252 begin
253 act.sa_flags := 0;
254 act.sa_handler := Abort_Handler'Address;
256 Result := sigemptyset (Tmp_Set'Access);
257 pragma Assert (Result = 0);
258 act.sa_mask := Tmp_Set;
260 Result :=
261 sigaction
262 (Signal (Interrupt_Management.Abort_Task_Interrupt),
263 act'Unchecked_Access,
264 old_act'Unchecked_Access);
265 pragma Assert (Result = 0);
267 Interrupt_Management.Initialize_Interrupts;
268 end Install_Signal_Handlers;
270 ---------------------
271 -- Initialize_Lock --
272 ---------------------
274 procedure Initialize_Lock
275 (Prio : System.Any_Priority;
276 L : not null access Lock)
278 begin
279 L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
280 L.Prio_Ceiling := int (Prio);
281 L.Protocol := Mutex_Protocol;
282 pragma Assert (L.Mutex /= 0);
283 end Initialize_Lock;
285 procedure Initialize_Lock
286 (L : not null access RTS_Lock;
287 Level : Lock_Level)
289 pragma Unreferenced (Level);
290 begin
291 L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
292 L.Prio_Ceiling := int (System.Any_Priority'Last);
293 L.Protocol := Mutex_Protocol;
294 pragma Assert (L.Mutex /= 0);
295 end Initialize_Lock;
297 -------------------
298 -- Finalize_Lock --
299 -------------------
301 procedure Finalize_Lock (L : not null access Lock) is
302 Result : int;
303 begin
304 Result := semDelete (L.Mutex);
305 pragma Assert (Result = 0);
306 end Finalize_Lock;
308 procedure Finalize_Lock (L : not null access RTS_Lock) is
309 Result : int;
310 begin
311 Result := semDelete (L.Mutex);
312 pragma Assert (Result = 0);
313 end Finalize_Lock;
315 ----------------
316 -- Write_Lock --
317 ----------------
319 procedure Write_Lock
320 (L : not null access Lock;
321 Ceiling_Violation : out Boolean)
323 Result : int;
325 begin
326 if L.Protocol = Prio_Protect
327 and then int (Self.Common.Current_Priority) > L.Prio_Ceiling
328 then
329 Ceiling_Violation := True;
330 return;
331 else
332 Ceiling_Violation := False;
333 end if;
335 Result := semTake (L.Mutex, WAIT_FOREVER);
336 pragma Assert (Result = 0);
337 end Write_Lock;
339 procedure Write_Lock
340 (L : not null access RTS_Lock;
341 Global_Lock : Boolean := False)
343 Result : int;
344 begin
345 if not Single_Lock or else Global_Lock then
346 Result := semTake (L.Mutex, WAIT_FOREVER);
347 pragma Assert (Result = 0);
348 end if;
349 end Write_Lock;
351 procedure Write_Lock (T : Task_Id) is
352 Result : int;
353 begin
354 if not Single_Lock then
355 Result := semTake (T.Common.LL.L.Mutex, WAIT_FOREVER);
356 pragma Assert (Result = 0);
357 end if;
358 end Write_Lock;
360 ---------------
361 -- Read_Lock --
362 ---------------
364 procedure Read_Lock
365 (L : not null access Lock;
366 Ceiling_Violation : out Boolean)
368 begin
369 Write_Lock (L, Ceiling_Violation);
370 end Read_Lock;
372 ------------
373 -- Unlock --
374 ------------
376 procedure Unlock (L : not null access Lock) is
377 Result : int;
378 begin
379 Result := semGive (L.Mutex);
380 pragma Assert (Result = 0);
381 end Unlock;
383 procedure Unlock
384 (L : not null access RTS_Lock;
385 Global_Lock : Boolean := False)
387 Result : int;
388 begin
389 if not Single_Lock or else Global_Lock then
390 Result := semGive (L.Mutex);
391 pragma Assert (Result = 0);
392 end if;
393 end Unlock;
395 procedure Unlock (T : Task_Id) is
396 Result : int;
397 begin
398 if not Single_Lock then
399 Result := semGive (T.Common.LL.L.Mutex);
400 pragma Assert (Result = 0);
401 end if;
402 end Unlock;
404 -----------------
405 -- Set_Ceiling --
406 -----------------
408 -- Dynamic priority ceilings are not supported by the underlying system
410 procedure Set_Ceiling
411 (L : not null access Lock;
412 Prio : System.Any_Priority)
414 pragma Unreferenced (L, Prio);
415 begin
416 null;
417 end Set_Ceiling;
419 -----------
420 -- Sleep --
421 -----------
423 procedure Sleep (Self_ID : Task_Id; Reason : System.Tasking.Task_States) is
424 pragma Unreferenced (Reason);
426 Result : int;
428 begin
429 pragma Assert (Self_ID = Self);
431 -- Release the mutex before sleeping
433 Result :=
434 semGive (if Single_Lock
435 then Single_RTS_Lock.Mutex
436 else Self_ID.Common.LL.L.Mutex);
437 pragma Assert (Result = 0);
439 -- Perform a blocking operation to take the CV semaphore. Note that a
440 -- blocking operation in VxWorks will reenable task scheduling. When we
441 -- are no longer blocked and control is returned, task scheduling will
442 -- again be disabled.
444 Result := semTake (Self_ID.Common.LL.CV, WAIT_FOREVER);
445 pragma Assert (Result = 0);
447 -- Take the mutex back
449 Result :=
450 semTake ((if Single_Lock
451 then Single_RTS_Lock.Mutex
452 else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
453 pragma Assert (Result = 0);
454 end Sleep;
456 -----------------
457 -- Timed_Sleep --
458 -----------------
460 -- This is for use within the run-time system, so abort is assumed to be
461 -- already deferred, and the caller should be holding its own ATCB lock.
463 procedure Timed_Sleep
464 (Self_ID : Task_Id;
465 Time : Duration;
466 Mode : ST.Delay_Modes;
467 Reason : System.Tasking.Task_States;
468 Timedout : out Boolean;
469 Yielded : out Boolean)
471 pragma Unreferenced (Reason);
473 Orig : constant Duration := Monotonic_Clock;
474 Absolute : Duration;
475 Ticks : int;
476 Result : int;
477 Wakeup : Boolean := False;
479 begin
480 Timedout := False;
481 Yielded := True;
483 if Mode = Relative then
484 Absolute := Orig + Time;
486 -- Systematically add one since the first tick will delay *at most*
487 -- 1 / Rate_Duration seconds, so we need to add one to be on the
488 -- safe side.
490 Ticks := To_Clock_Ticks (Time);
492 if Ticks > 0 and then Ticks < int'Last then
493 Ticks := Ticks + 1;
494 end if;
496 else
497 Absolute := Time;
498 Ticks := To_Clock_Ticks (Time - Monotonic_Clock);
499 end if;
501 if Ticks > 0 then
502 loop
503 -- Release the mutex before sleeping
505 Result :=
506 semGive (if Single_Lock
507 then Single_RTS_Lock.Mutex
508 else Self_ID.Common.LL.L.Mutex);
509 pragma Assert (Result = 0);
511 -- Perform a blocking operation to take the CV semaphore. Note
512 -- that a blocking operation in VxWorks will reenable task
513 -- scheduling. When we are no longer blocked and control is
514 -- returned, task scheduling will again be disabled.
516 Result := semTake (Self_ID.Common.LL.CV, Ticks);
518 if Result = 0 then
520 -- Somebody may have called Wakeup for us
522 Wakeup := True;
524 else
525 if errno /= S_objLib_OBJ_TIMEOUT then
526 Wakeup := True;
528 else
529 -- If Ticks = int'last, it was most probably truncated so
530 -- let's make another round after recomputing Ticks from
531 -- the absolute time.
533 if Ticks /= int'Last then
534 Timedout := True;
536 else
537 Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
539 if Ticks < 0 then
540 Timedout := True;
541 end if;
542 end if;
543 end if;
544 end if;
546 -- Take the mutex back
548 Result :=
549 semTake ((if Single_Lock
550 then Single_RTS_Lock.Mutex
551 else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
552 pragma Assert (Result = 0);
554 exit when Timedout or Wakeup;
555 end loop;
557 else
558 Timedout := True;
560 -- Should never hold a lock while yielding
562 if Single_Lock then
563 Result := semGive (Single_RTS_Lock.Mutex);
564 taskDelay (0);
565 Result := semTake (Single_RTS_Lock.Mutex, WAIT_FOREVER);
567 else
568 Result := semGive (Self_ID.Common.LL.L.Mutex);
569 taskDelay (0);
570 Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
571 end if;
572 end if;
573 end Timed_Sleep;
575 -----------------
576 -- Timed_Delay --
577 -----------------
579 -- This is for use in implementing delay statements, so we assume the
580 -- caller is holding no locks.
582 procedure Timed_Delay
583 (Self_ID : Task_Id;
584 Time : Duration;
585 Mode : ST.Delay_Modes)
587 Orig : constant Duration := Monotonic_Clock;
588 Absolute : Duration;
589 Ticks : int;
590 Timedout : Boolean;
591 Aborted : Boolean := False;
593 Result : int;
594 pragma Warnings (Off, Result);
596 begin
597 if Mode = Relative then
598 Absolute := Orig + Time;
599 Ticks := To_Clock_Ticks (Time);
601 if Ticks > 0 and then Ticks < int'Last then
603 -- First tick will delay anytime between 0 and 1 / sysClkRateGet
604 -- seconds, so we need to add one to be on the safe side.
606 Ticks := Ticks + 1;
607 end if;
609 else
610 Absolute := Time;
611 Ticks := To_Clock_Ticks (Time - Orig);
612 end if;
614 if Ticks > 0 then
616 -- Modifying State, locking the TCB
618 Result :=
619 semTake ((if Single_Lock
620 then Single_RTS_Lock.Mutex
621 else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
623 pragma Assert (Result = 0);
625 Self_ID.Common.State := Delay_Sleep;
626 Timedout := False;
628 loop
629 Aborted := Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
631 -- Release the TCB before sleeping
633 Result :=
634 semGive (if Single_Lock
635 then Single_RTS_Lock.Mutex
636 else Self_ID.Common.LL.L.Mutex);
637 pragma Assert (Result = 0);
639 exit when Aborted;
641 Result := semTake (Self_ID.Common.LL.CV, Ticks);
643 if Result /= 0 then
645 -- If Ticks = int'last, it was most probably truncated
646 -- so let's make another round after recomputing Ticks
647 -- from the absolute time.
649 if errno = S_objLib_OBJ_TIMEOUT and then Ticks /= int'Last then
650 Timedout := True;
651 else
652 Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
654 if Ticks < 0 then
655 Timedout := True;
656 end if;
657 end if;
658 end if;
660 -- Take back the lock after having slept, to protect further
661 -- access to Self_ID.
663 Result :=
664 semTake
665 ((if Single_Lock
666 then Single_RTS_Lock.Mutex
667 else Self_ID.Common.LL.L.Mutex), WAIT_FOREVER);
669 pragma Assert (Result = 0);
671 exit when Timedout;
672 end loop;
674 Self_ID.Common.State := Runnable;
676 Result :=
677 semGive
678 (if Single_Lock
679 then Single_RTS_Lock.Mutex
680 else Self_ID.Common.LL.L.Mutex);
682 else
683 taskDelay (0);
684 end if;
685 end Timed_Delay;
687 ---------------------
688 -- Monotonic_Clock --
689 ---------------------
691 function Monotonic_Clock return Duration is
692 TS : aliased timespec;
693 Result : int;
694 begin
695 Result := clock_gettime (CLOCK_REALTIME, TS'Unchecked_Access);
696 pragma Assert (Result = 0);
697 return To_Duration (TS);
698 end Monotonic_Clock;
700 -------------------
701 -- RT_Resolution --
702 -------------------
704 function RT_Resolution return Duration is
705 begin
706 return 1.0 / Duration (sysClkRateGet);
707 end RT_Resolution;
709 ------------
710 -- Wakeup --
711 ------------
713 procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
714 pragma Unreferenced (Reason);
715 Result : int;
716 begin
717 Result := semGive (T.Common.LL.CV);
718 pragma Assert (Result = 0);
719 end Wakeup;
721 -----------
722 -- Yield --
723 -----------
725 procedure Yield (Do_Yield : Boolean := True) is
726 pragma Unreferenced (Do_Yield);
727 Result : int;
728 pragma Unreferenced (Result);
729 begin
730 Result := taskDelay (0);
731 end Yield;
733 ------------------
734 -- Set_Priority --
735 ------------------
737 type Prio_Array_Type is array (System.Any_Priority) of Integer;
738 pragma Atomic_Components (Prio_Array_Type);
740 Prio_Array : Prio_Array_Type;
741 -- Global array containing the id of the currently running task for each
742 -- priority. Note that we assume that we are on a single processor with
743 -- run-till-blocked scheduling.
745 procedure Set_Priority
746 (T : Task_Id;
747 Prio : System.Any_Priority;
748 Loss_Of_Inheritance : Boolean := False)
750 Array_Item : Integer;
751 Result : int;
753 begin
754 Result :=
755 taskPrioritySet
756 (T.Common.LL.Thread, To_VxWorks_Priority (int (Prio)));
757 pragma Assert (Result = 0);
759 if (Dispatching_Policy = 'F' or else Get_Policy (Prio) = 'F')
760 and then Loss_Of_Inheritance
761 and then Prio < T.Common.Current_Priority
762 then
763 -- Annex D requirement (RM D.2.2(9)):
765 -- If the task drops its priority due to the loss of inherited
766 -- priority, it is added at the head of the ready queue for its
767 -- new active priority.
769 Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
770 Prio_Array (T.Common.Base_Priority) := Array_Item;
772 loop
773 -- Give some processes a chance to arrive
775 taskDelay (0);
777 -- Then wait for our turn to proceed
779 exit when Array_Item = Prio_Array (T.Common.Base_Priority)
780 or else Prio_Array (T.Common.Base_Priority) = 1;
781 end loop;
783 Prio_Array (T.Common.Base_Priority) :=
784 Prio_Array (T.Common.Base_Priority) - 1;
785 end if;
787 T.Common.Current_Priority := Prio;
788 end Set_Priority;
790 ------------------
791 -- Get_Priority --
792 ------------------
794 function Get_Priority (T : Task_Id) return System.Any_Priority is
795 begin
796 return T.Common.Current_Priority;
797 end Get_Priority;
799 ----------------
800 -- Enter_Task --
801 ----------------
803 procedure Enter_Task (Self_ID : Task_Id) is
804 procedure Init_Float;
805 pragma Import (C, Init_Float, "__gnat_init_float");
806 -- Properly initializes the FPU for PPC/MIPS systems
808 begin
809 -- Store the user-level task id in the Thread field (to be used
810 -- internally by the run-time system) and the kernel-level task id in
811 -- the LWP field (to be used by the debugger).
813 Self_ID.Common.LL.Thread := taskIdSelf;
814 Self_ID.Common.LL.LWP := getpid;
816 Specific.Set (Self_ID);
818 Init_Float;
820 -- Install the signal handlers
822 -- This is called for each task since there is no signal inheritance
823 -- between VxWorks tasks.
825 Install_Signal_Handlers;
827 -- If stack checking is enabled, set the stack limit for this task
829 if Set_Stack_Limit_Hook /= null then
830 Set_Stack_Limit_Hook.all;
831 end if;
832 end Enter_Task;
834 --------------
835 -- New_ATCB --
836 --------------
838 function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
839 begin
840 return new Ada_Task_Control_Block (Entry_Num);
841 end New_ATCB;
843 -------------------
844 -- Is_Valid_Task --
845 -------------------
847 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
849 -----------------------------
850 -- Register_Foreign_Thread --
851 -----------------------------
853 function Register_Foreign_Thread return Task_Id is
854 begin
855 if Is_Valid_Task then
856 return Self;
857 else
858 return Register_Foreign_Thread (taskIdSelf);
859 end if;
860 end Register_Foreign_Thread;
862 --------------------
863 -- Initialize_TCB --
864 --------------------
866 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
867 begin
868 Self_ID.Common.LL.CV := semBCreate (SEM_Q_PRIORITY, SEM_EMPTY);
869 Self_ID.Common.LL.Thread := 0;
871 if Self_ID.Common.LL.CV = 0 then
872 Succeeded := False;
874 else
875 Succeeded := True;
877 if not Single_Lock then
878 Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
879 end if;
880 end if;
881 end Initialize_TCB;
883 -----------------
884 -- Create_Task --
885 -----------------
887 procedure Create_Task
888 (T : Task_Id;
889 Wrapper : System.Address;
890 Stack_Size : System.Parameters.Size_Type;
891 Priority : System.Any_Priority;
892 Succeeded : out Boolean)
894 Adjusted_Stack_Size : size_t;
895 Result : int;
897 use System.Task_Info;
899 begin
900 -- Ask for four extra bytes of stack space so that the ATCB pointer can
901 -- be stored below the stack limit, plus extra space for the frame of
902 -- Task_Wrapper. This is so the user gets the amount of stack requested
903 -- exclusive of the needs.
905 -- We also have to allocate n more bytes for the task name storage and
906 -- enough space for the Wind Task Control Block which is around 0x778
907 -- bytes. VxWorks also seems to carve out additional space, so use 2048
908 -- as a nice round number. We might want to increment to the nearest
909 -- page size in case we ever support VxVMI.
911 -- ??? - we should come back and visit this so we can set the task name
912 -- to something appropriate.
914 Adjusted_Stack_Size := size_t (Stack_Size) + 2048;
916 -- Since the initial signal mask of a thread is inherited from the
917 -- creator, and the Environment task has all its signals masked, we do
918 -- not need to manipulate caller's signal mask at this point. All tasks
919 -- in RTS will have All_Tasks_Mask initially.
921 -- We now compute the VxWorks task name and options, then spawn ...
923 declare
924 Name : aliased String (1 .. T.Common.Task_Image_Len + 1);
925 Name_Address : System.Address;
926 -- Task name we are going to hand down to VxWorks
928 function Get_Task_Options return int;
929 pragma Import (C, Get_Task_Options, "__gnat_get_task_options");
930 -- Function that returns the options to be set for the task that we
931 -- are creating. We fetch the options assigned to the current task,
932 -- so offering some user level control over the options for a task
933 -- hierarchy, and force VX_FP_TASK because it is almost always
934 -- required.
936 begin
937 -- If there is no Ada task name handy, let VxWorks choose one.
938 -- Otherwise, tell VxWorks what the Ada task name is.
940 if T.Common.Task_Image_Len = 0 then
941 Name_Address := System.Null_Address;
942 else
943 Name (1 .. Name'Last - 1) :=
944 T.Common.Task_Image (1 .. T.Common.Task_Image_Len);
945 Name (Name'Last) := ASCII.NUL;
946 Name_Address := Name'Address;
947 end if;
949 -- Now spawn the VxWorks task for real
951 T.Common.LL.Thread :=
952 taskSpawn
953 (Name_Address,
954 To_VxWorks_Priority (int (Priority)),
955 Get_Task_Options,
956 Adjusted_Stack_Size,
957 Wrapper,
958 To_Address (T));
959 end;
961 -- Set processor affinity
963 if T.Common.Task_Info /= Unspecified_Task_Info then
964 Result :=
965 taskCpuAffinitySet (T.Common.LL.Thread, T.Common.Task_Info);
967 if Result = -1 then
968 taskDelete (T.Common.LL.Thread);
969 T.Common.LL.Thread := -1;
970 end if;
971 end if;
973 if T.Common.LL.Thread = -1 then
974 Succeeded := False;
975 else
976 Succeeded := True;
977 Task_Creation_Hook (T.Common.LL.Thread);
978 Set_Priority (T, Priority);
979 end if;
980 end Create_Task;
982 ------------------
983 -- Finalize_TCB --
984 ------------------
986 procedure Finalize_TCB (T : Task_Id) is
987 Result : int;
988 Tmp : Task_Id := T;
989 Is_Self : constant Boolean := (T = Self);
991 procedure Free is new
992 Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
994 begin
995 if not Single_Lock then
996 Result := semDelete (T.Common.LL.L.Mutex);
997 pragma Assert (Result = 0);
998 end if;
1000 T.Common.LL.Thread := 0;
1002 Result := semDelete (T.Common.LL.CV);
1003 pragma Assert (Result = 0);
1005 if T.Known_Tasks_Index /= -1 then
1006 Known_Tasks (T.Known_Tasks_Index) := null;
1007 end if;
1009 Free (Tmp);
1011 if Is_Self then
1012 Specific.Delete;
1013 end if;
1014 end Finalize_TCB;
1016 ---------------
1017 -- Exit_Task --
1018 ---------------
1020 procedure Exit_Task is
1021 begin
1022 Specific.Set (null);
1023 end Exit_Task;
1025 ----------------
1026 -- Abort_Task --
1027 ----------------
1029 procedure Abort_Task (T : Task_Id) is
1030 Result : int;
1031 begin
1032 Result :=
1033 kill
1034 (T.Common.LL.Thread,
1035 Signal (Interrupt_Management.Abort_Task_Interrupt));
1036 pragma Assert (Result = 0);
1037 end Abort_Task;
1039 ----------------
1040 -- Initialize --
1041 ----------------
1043 procedure Initialize (S : in out Suspension_Object) is
1044 begin
1045 -- Initialize internal state (always to False (RM D.10(6)))
1047 S.State := False;
1048 S.Waiting := False;
1050 -- Initialize internal mutex
1052 -- Use simpler binary semaphore instead of VxWorks
1053 -- mutual exclusion semaphore, because we don't need
1054 -- the fancier semantics and their overhead.
1056 S.L := semBCreate (SEM_Q_FIFO, SEM_FULL);
1058 -- Initialize internal condition variable
1060 S.CV := semBCreate (SEM_Q_FIFO, SEM_EMPTY);
1061 end Initialize;
1063 --------------
1064 -- Finalize --
1065 --------------
1067 procedure Finalize (S : in out Suspension_Object) is
1068 pragma Unmodified (S);
1069 -- S may be modified on other targets, but not on VxWorks
1071 Result : STATUS;
1073 begin
1074 -- Destroy internal mutex
1076 Result := semDelete (S.L);
1077 pragma Assert (Result = OK);
1079 -- Destroy internal condition variable
1081 Result := semDelete (S.CV);
1082 pragma Assert (Result = OK);
1083 end Finalize;
1085 -------------------
1086 -- Current_State --
1087 -------------------
1089 function Current_State (S : Suspension_Object) return Boolean is
1090 begin
1091 -- We do not want to use lock on this read operation. State is marked
1092 -- as Atomic so that we ensure that the value retrieved is correct.
1094 return S.State;
1095 end Current_State;
1097 ---------------
1098 -- Set_False --
1099 ---------------
1101 procedure Set_False (S : in out Suspension_Object) is
1102 Result : STATUS;
1104 begin
1105 SSL.Abort_Defer.all;
1107 Result := semTake (S.L, WAIT_FOREVER);
1108 pragma Assert (Result = OK);
1110 S.State := False;
1112 Result := semGive (S.L);
1113 pragma Assert (Result = OK);
1115 SSL.Abort_Undefer.all;
1116 end Set_False;
1118 --------------
1119 -- Set_True --
1120 --------------
1122 procedure Set_True (S : in out Suspension_Object) is
1123 Result : STATUS;
1125 begin
1126 SSL.Abort_Defer.all;
1128 Result := semTake (S.L, WAIT_FOREVER);
1129 pragma Assert (Result = OK);
1131 -- If there is already a task waiting on this suspension object then
1132 -- we resume it, leaving the state of the suspension object to False,
1133 -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1134 -- the state to True.
1136 if S.Waiting then
1137 S.Waiting := False;
1138 S.State := False;
1140 Result := semGive (S.CV);
1141 pragma Assert (Result = OK);
1142 else
1143 S.State := True;
1144 end if;
1146 Result := semGive (S.L);
1147 pragma Assert (Result = OK);
1149 SSL.Abort_Undefer.all;
1150 end Set_True;
1152 ------------------------
1153 -- Suspend_Until_True --
1154 ------------------------
1156 procedure Suspend_Until_True (S : in out Suspension_Object) is
1157 Result : STATUS;
1159 begin
1160 SSL.Abort_Defer.all;
1162 Result := semTake (S.L, WAIT_FOREVER);
1164 if S.Waiting then
1166 -- Program_Error must be raised upon calling Suspend_Until_True
1167 -- if another task is already waiting on that suspension object
1168 -- (ARM D.10 par. 10).
1170 Result := semGive (S.L);
1171 pragma Assert (Result = OK);
1173 SSL.Abort_Undefer.all;
1175 raise Program_Error;
1177 else
1178 -- Suspend the task if the state is False. Otherwise, the task
1179 -- continues its execution, and the state of the suspension object
1180 -- is set to False (ARM D.10 par. 9).
1182 if S.State then
1183 S.State := False;
1185 Result := semGive (S.L);
1186 pragma Assert (Result = 0);
1188 SSL.Abort_Undefer.all;
1190 else
1191 S.Waiting := True;
1193 -- Release the mutex before sleeping
1195 Result := semGive (S.L);
1196 pragma Assert (Result = OK);
1198 SSL.Abort_Undefer.all;
1200 Result := semTake (S.CV, WAIT_FOREVER);
1201 pragma Assert (Result = 0);
1202 end if;
1203 end if;
1204 end Suspend_Until_True;
1206 ----------------
1207 -- Check_Exit --
1208 ----------------
1210 -- Dummy version
1212 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1213 pragma Unreferenced (Self_ID);
1214 begin
1215 return True;
1216 end Check_Exit;
1218 --------------------
1219 -- Check_No_Locks --
1220 --------------------
1222 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1223 pragma Unreferenced (Self_ID);
1224 begin
1225 return True;
1226 end Check_No_Locks;
1228 ----------------------
1229 -- Environment_Task --
1230 ----------------------
1232 function Environment_Task return Task_Id is
1233 begin
1234 return Environment_Task_Id;
1235 end Environment_Task;
1237 --------------
1238 -- Lock_RTS --
1239 --------------
1241 procedure Lock_RTS is
1242 begin
1243 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1244 end Lock_RTS;
1246 ----------------
1247 -- Unlock_RTS --
1248 ----------------
1250 procedure Unlock_RTS is
1251 begin
1252 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1253 end Unlock_RTS;
1255 ------------------
1256 -- Suspend_Task --
1257 ------------------
1259 function Suspend_Task
1260 (T : ST.Task_Id;
1261 Thread_Self : Thread_Id) return Boolean
1263 begin
1264 if T.Common.LL.Thread /= 0
1265 and then T.Common.LL.Thread /= Thread_Self
1266 then
1267 return taskSuspend (T.Common.LL.Thread) = 0;
1268 else
1269 return True;
1270 end if;
1271 end Suspend_Task;
1273 -----------------
1274 -- Resume_Task --
1275 -----------------
1277 function Resume_Task
1278 (T : ST.Task_Id;
1279 Thread_Self : Thread_Id) return Boolean
1281 begin
1282 if T.Common.LL.Thread /= 0
1283 and then T.Common.LL.Thread /= Thread_Self
1284 then
1285 return taskResume (T.Common.LL.Thread) = 0;
1286 else
1287 return True;
1288 end if;
1289 end Resume_Task;
1291 --------------------
1292 -- Stop_All_Tasks --
1293 --------------------
1295 procedure Stop_All_Tasks
1297 Thread_Self : constant Thread_Id := taskIdSelf;
1298 C : Task_Id;
1300 Dummy : int;
1301 pragma Unreferenced (Dummy);
1303 begin
1304 Dummy := Int_Lock;
1306 C := All_Tasks_List;
1307 while C /= null loop
1308 if C.Common.LL.Thread /= 0
1309 and then C.Common.LL.Thread /= Thread_Self
1310 then
1311 Dummy := Task_Stop (C.Common.LL.Thread);
1312 end if;
1314 C := C.Common.All_Tasks_Link;
1315 end loop;
1317 Dummy := Int_Unlock;
1318 end Stop_All_Tasks;
1320 ---------------
1321 -- Stop_Task --
1322 ---------------
1324 function Stop_Task (T : ST.Task_Id) return Boolean is
1325 begin
1326 if T.Common.LL.Thread /= 0 then
1327 return Task_Stop (T.Common.LL.Thread) = 0;
1328 else
1329 return True;
1330 end if;
1331 end Stop_Task;
1333 -------------------
1334 -- Continue_Task --
1335 -------------------
1337 function Continue_Task (T : ST.Task_Id) return Boolean
1339 begin
1340 if T.Common.LL.Thread /= 0 then
1341 return Task_Cont (T.Common.LL.Thread) = 0;
1342 else
1343 return True;
1344 end if;
1345 end Continue_Task;
1347 ----------------
1348 -- Initialize --
1349 ----------------
1351 procedure Initialize (Environment_Task : Task_Id) is
1352 Result : int;
1354 begin
1355 Environment_Task_Id := Environment_Task;
1357 Interrupt_Management.Initialize;
1358 Specific.Initialize;
1360 if Locking_Policy = 'C' then
1361 Mutex_Protocol := Prio_Protect;
1362 elsif Locking_Policy = 'I' then
1363 Mutex_Protocol := Prio_Inherit;
1364 else
1365 Mutex_Protocol := Prio_None;
1366 end if;
1368 if Time_Slice_Val > 0 then
1369 Result :=
1370 Set_Time_Slice
1371 (To_Clock_Ticks
1372 (Duration (Time_Slice_Val) / Duration (1_000_000.0)));
1374 elsif Dispatching_Policy = 'R' then
1375 Result := Set_Time_Slice (To_Clock_Ticks (0.01));
1377 end if;
1379 Result := sigemptyset (Unblocked_Signal_Mask'Access);
1380 pragma Assert (Result = 0);
1382 for J in Interrupt_Management.Signal_ID loop
1383 if System.Interrupt_Management.Keep_Unmasked (J) then
1384 Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
1385 pragma Assert (Result = 0);
1386 end if;
1387 end loop;
1389 -- Initialize the lock used to synchronize chain of all ATCBs
1391 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1393 -- Make environment task known here because it doesn't go through
1394 -- Activate_Tasks, which does it for all other tasks.
1396 Known_Tasks (Known_Tasks'First) := Environment_Task;
1397 Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1399 Enter_Task (Environment_Task);
1400 end Initialize;
1402 end System.Task_Primitives.Operations;