fixing pr42337
[official-gcc.git] / gcc / ada / s-taprop-tru64.adb
blobcd23f16d9caf71ce6b84b9f9e76396e172736029
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- This is a Tru64 version of this package
34 -- This package contains all the GNULL primitives that interface directly with
35 -- the underlying OS.
37 pragma Polling (Off);
38 -- Turn off polling, we do not want ATC polling to take place during tasking
39 -- operations. It causes infinite loops and other problems.
41 with Ada.Unchecked_Deallocation;
43 with Interfaces;
44 with Interfaces.C;
46 with System.Tasking.Debug;
47 with System.Interrupt_Management;
48 with System.OS_Primitives;
49 with System.Task_Info;
51 with System.Soft_Links;
52 -- We use System.Soft_Links instead of System.Tasking.Initialization
53 -- because the later is a higher level package that we shouldn't depend on.
54 -- For example when using the restricted run time, it is replaced by
55 -- System.Tasking.Restricted.Stages.
57 package body System.Task_Primitives.Operations is
59 package SSL renames System.Soft_Links;
61 use System.Tasking.Debug;
62 use System.Tasking;
63 use Interfaces.C;
64 use System.OS_Interface;
65 use System.Parameters;
66 use System.OS_Primitives;
68 ----------------
69 -- Local Data --
70 ----------------
72 -- The followings are logically constants, but need to be initialized
73 -- at run time.
75 Single_RTS_Lock : aliased RTS_Lock;
76 -- This is a lock to allow only one thread of control in the RTS at
77 -- a time; it is used to execute in mutual exclusion from all other tasks.
78 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
80 ATCB_Key : aliased pthread_key_t;
81 -- Key used to find the Ada Task_Id associated with a thread
83 Environment_Task_Id : Task_Id;
84 -- A variable to hold Task_Id for the environment task
86 Unblocked_Signal_Mask : aliased sigset_t;
87 -- The set of signals that should unblocked in all tasks
89 Time_Slice_Val : Integer;
90 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
92 Locking_Policy : Character;
93 pragma Import (C, Locking_Policy, "__gl_locking_policy");
95 Dispatching_Policy : Character;
96 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
98 Curpid : pid_t;
100 Foreign_Task_Elaborated : aliased Boolean := True;
101 -- Used to identified fake tasks (i.e., non-Ada Threads)
103 Abort_Handler_Installed : Boolean := False;
104 -- True if a handler for the abort signal is installed
106 --------------------
107 -- Local Packages --
108 --------------------
110 package Specific is
112 procedure Initialize (Environment_Task : Task_Id);
113 pragma Inline (Initialize);
114 -- Initialize various data needed by this package
116 function Is_Valid_Task return Boolean;
117 pragma Inline (Is_Valid_Task);
118 -- Does executing thread have a TCB?
120 procedure Set (Self_Id : Task_Id);
121 pragma Inline (Set);
122 -- Set the self id for the current task
124 function Self return Task_Id;
125 pragma Inline (Self);
126 -- Return a pointer to the Ada Task Control Block of the calling task
128 end Specific;
130 package body Specific is separate;
131 -- The body of this package is target specific
133 ---------------------------------
134 -- Support for foreign threads --
135 ---------------------------------
137 function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
138 -- Allocate and initialize a new ATCB for the current Thread
140 function Register_Foreign_Thread
141 (Thread : Thread_Id) return Task_Id is separate;
143 -----------------------
144 -- Local Subprograms --
145 -----------------------
147 procedure Abort_Handler (Sig : Signal);
148 -- Signal handler used to implement asynchronous abort
150 function Get_Policy (Prio : System.Any_Priority) return Character;
151 pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
152 -- Get priority specific dispatching policy
154 -------------------
155 -- Abort_Handler --
156 -------------------
158 procedure Abort_Handler (Sig : Signal) is
159 pragma Unreferenced (Sig);
161 T : constant Task_Id := Self;
162 Old_Set : aliased sigset_t;
164 Result : Interfaces.C.int;
165 pragma Warnings (Off, Result);
167 begin
168 -- It's not safe to raise an exception when using GCC ZCX mechanism.
169 -- Note that we still need to install a signal handler, since in some
170 -- cases (e.g. shutdown of the Server_Task in System.Interrupts) we
171 -- need to send the Abort signal to a task.
173 if ZCX_By_Default and then GCC_ZCX_Support then
174 return;
175 end if;
177 if T.Deferral_Level = 0
178 and then T.Pending_ATC_Level < T.ATC_Nesting_Level
179 and then not T.Aborting
180 then
181 T.Aborting := True;
183 -- Make sure signals used for RTS internal purpose are unmasked
185 Result :=
186 pthread_sigmask
187 (SIG_UNBLOCK,
188 Unblocked_Signal_Mask'Access,
189 Old_Set'Access);
190 pragma Assert (Result = 0);
192 raise Standard'Abort_Signal;
193 end if;
194 end Abort_Handler;
196 ------------------
197 -- Stack_Guard --
198 ------------------
200 -- The underlying thread system sets a guard page at the bottom of a thread
201 -- stack, so nothing is needed.
203 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
204 pragma Unreferenced (T);
205 pragma Unreferenced (On);
206 begin
207 null;
208 end Stack_Guard;
210 --------------------
211 -- Get_Thread_Id --
212 --------------------
214 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
215 begin
216 return T.Common.LL.Thread;
217 end Get_Thread_Id;
219 ----------
220 -- Self --
221 ----------
223 function Self return Task_Id renames Specific.Self;
225 ---------------------
226 -- Initialize_Lock --
227 ---------------------
229 -- Note: mutexes and cond_variables needed per-task basis are initialized
230 -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
231 -- as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
232 -- status change of RTS. Therefore raising Storage_Error in the following
233 -- routines should be able to be handled safely.
235 procedure Initialize_Lock
236 (Prio : System.Any_Priority;
237 L : not null access Lock)
239 Attributes : aliased pthread_mutexattr_t;
240 Result : Interfaces.C.int;
242 begin
243 Result := pthread_mutexattr_init (Attributes'Access);
244 pragma Assert (Result = 0 or else Result = ENOMEM);
246 if Result = ENOMEM then
247 raise Storage_Error;
248 end if;
250 if Locking_Policy = 'C' then
251 L.Ceiling := Interfaces.C.int (Prio);
252 end if;
254 Result := pthread_mutex_init (L.L'Access, Attributes'Access);
255 pragma Assert (Result = 0 or else Result = ENOMEM);
257 if Result = ENOMEM then
258 Result := pthread_mutexattr_destroy (Attributes'Access);
259 raise Storage_Error;
260 end if;
262 Result := pthread_mutexattr_destroy (Attributes'Access);
263 pragma Assert (Result = 0);
264 end Initialize_Lock;
266 procedure Initialize_Lock
267 (L : not null access RTS_Lock;
268 Level : Lock_Level)
270 pragma Unreferenced (Level);
272 Attributes : aliased pthread_mutexattr_t;
273 Result : Interfaces.C.int;
275 begin
276 Result := pthread_mutexattr_init (Attributes'Access);
277 pragma Assert (Result = 0 or else Result = ENOMEM);
279 if Result = ENOMEM then
280 raise Storage_Error;
281 end if;
283 Result := pthread_mutex_init (L, Attributes'Access);
284 pragma Assert (Result = 0 or else Result = ENOMEM);
286 if Result = ENOMEM then
287 Result := pthread_mutexattr_destroy (Attributes'Access);
288 raise Storage_Error;
289 end if;
291 Result := pthread_mutexattr_destroy (Attributes'Access);
292 pragma Assert (Result = 0);
293 end Initialize_Lock;
295 -------------------
296 -- Finalize_Lock --
297 -------------------
299 procedure Finalize_Lock (L : not null access Lock) is
300 Result : Interfaces.C.int;
301 begin
302 Result := pthread_mutex_destroy (L.L'Access);
303 pragma Assert (Result = 0);
304 end Finalize_Lock;
306 procedure Finalize_Lock (L : not null access RTS_Lock) is
307 Result : Interfaces.C.int;
308 begin
309 Result := pthread_mutex_destroy (L);
310 pragma Assert (Result = 0);
311 end Finalize_Lock;
313 ----------------
314 -- Write_Lock --
315 ----------------
317 procedure Write_Lock
318 (L : not null access Lock;
319 Ceiling_Violation : out Boolean)
321 Result : Interfaces.C.int;
322 Self_ID : Task_Id;
323 All_Tasks_Link : Task_Id;
324 Current_Prio : System.Any_Priority;
326 begin
327 -- Perform ceiling checks only when this is the locking policy in use
329 if Locking_Policy = 'C' then
330 Self_ID := Self;
331 All_Tasks_Link := Self_ID.Common.All_Tasks_Link;
332 Current_Prio := Get_Priority (Self_ID);
334 -- If there is no other task, no need to check priorities
336 if All_Tasks_Link /= Null_Task
337 and then L.Ceiling < Interfaces.C.int (Current_Prio)
338 then
339 Ceiling_Violation := True;
340 return;
341 end if;
342 end if;
344 Result := pthread_mutex_lock (L.L'Access);
345 pragma Assert (Result = 0);
347 Ceiling_Violation := False;
348 end Write_Lock;
350 procedure Write_Lock
351 (L : not null access RTS_Lock;
352 Global_Lock : Boolean := False)
354 Result : Interfaces.C.int;
355 begin
356 if not Single_Lock or else Global_Lock then
357 Result := pthread_mutex_lock (L);
358 pragma Assert (Result = 0);
359 end if;
360 end Write_Lock;
362 procedure Write_Lock (T : Task_Id) is
363 Result : Interfaces.C.int;
364 begin
365 if not Single_Lock then
366 Result := pthread_mutex_lock (T.Common.LL.L'Access);
367 pragma Assert (Result = 0);
368 end if;
369 end Write_Lock;
371 ---------------
372 -- Read_Lock --
373 ---------------
375 procedure Read_Lock
376 (L : not null access Lock;
377 Ceiling_Violation : out Boolean)
379 begin
380 Write_Lock (L, Ceiling_Violation);
381 end Read_Lock;
383 ------------
384 -- Unlock --
385 ------------
387 procedure Unlock (L : not null access Lock) is
388 Result : Interfaces.C.int;
389 begin
390 Result := pthread_mutex_unlock (L.L'Access);
391 pragma Assert (Result = 0);
392 end Unlock;
394 procedure Unlock
395 (L : not null access RTS_Lock;
396 Global_Lock : Boolean := False)
398 Result : Interfaces.C.int;
399 begin
400 if not Single_Lock or else Global_Lock then
401 Result := pthread_mutex_unlock (L);
402 pragma Assert (Result = 0);
403 end if;
404 end Unlock;
406 procedure Unlock (T : Task_Id) is
407 Result : Interfaces.C.int;
408 begin
409 if not Single_Lock then
410 Result := pthread_mutex_unlock (T.Common.LL.L'Access);
411 pragma Assert (Result = 0);
412 end if;
413 end Unlock;
415 -----------------
416 -- Set_Ceiling --
417 -----------------
419 -- Dynamic priority ceilings are not supported by the underlying system
421 procedure Set_Ceiling
422 (L : not null access Lock;
423 Prio : System.Any_Priority)
425 pragma Unreferenced (L, Prio);
426 begin
427 null;
428 end Set_Ceiling;
430 -----------
431 -- Sleep --
432 -----------
434 procedure Sleep
435 (Self_ID : Task_Id;
436 Reason : System.Tasking.Task_States)
438 pragma Unreferenced (Reason);
440 Result : Interfaces.C.int;
442 begin
443 Result :=
444 pthread_cond_wait
445 (cond => Self_ID.Common.LL.CV'Access,
446 mutex => (if Single_Lock
447 then Single_RTS_Lock'Access
448 else Self_ID.Common.LL.L'Access));
450 -- EINTR is not considered a failure
452 pragma Assert (Result = 0 or else Result = EINTR);
453 end Sleep;
455 -----------------
456 -- Timed_Sleep --
457 -----------------
459 -- This is for use within the run-time system, so abort is assumed to be
460 -- already deferred, and the caller should be holding its own ATCB lock.
462 procedure Timed_Sleep
463 (Self_ID : Task_Id;
464 Time : Duration;
465 Mode : ST.Delay_Modes;
466 Reason : System.Tasking.Task_States;
467 Timedout : out Boolean;
468 Yielded : out Boolean)
470 pragma Unreferenced (Reason);
472 Base_Time : constant Duration := Monotonic_Clock;
473 Check_Time : Duration := Base_Time;
474 Abs_Time : Duration;
475 Request : aliased timespec;
476 Result : Interfaces.C.int;
478 begin
479 Timedout := True;
480 Yielded := False;
482 Abs_Time :=
483 (if Mode = Relative
484 then Duration'Min (Time, Max_Sensible_Delay) + Check_Time
485 else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
487 if Abs_Time > Check_Time then
488 Request := To_Timespec (Abs_Time);
490 loop
491 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
493 Result :=
494 pthread_cond_timedwait
495 (cond => Self_ID.Common.LL.CV'Access,
496 mutex => (if Single_Lock
497 then Single_RTS_Lock'Access
498 else Self_ID.Common.LL.L'Access),
499 abstime => Request'Access);
501 Check_Time := Monotonic_Clock;
502 exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
504 if Result = 0 or Result = EINTR then
506 -- Somebody may have called Wakeup for us
508 Timedout := False;
509 exit;
510 end if;
512 pragma Assert (Result = ETIMEDOUT);
513 end loop;
514 end if;
515 end Timed_Sleep;
517 -----------------
518 -- Timed_Delay --
519 -----------------
521 -- This is for use in implementing delay statements, so we assume the
522 -- caller is abort-deferred but is holding no locks.
524 procedure Timed_Delay
525 (Self_ID : Task_Id;
526 Time : Duration;
527 Mode : ST.Delay_Modes)
529 Base_Time : constant Duration := Monotonic_Clock;
530 Check_Time : Duration := Base_Time;
531 Abs_Time : Duration;
532 Request : aliased timespec;
533 Result : Interfaces.C.int;
535 begin
536 if Single_Lock then
537 Lock_RTS;
538 end if;
540 Write_Lock (Self_ID);
542 Abs_Time :=
543 (if Mode = Relative
544 then Time + Check_Time
545 else Duration'Min (Check_Time + Max_Sensible_Delay, Time));
547 if Abs_Time > Check_Time then
548 Request := To_Timespec (Abs_Time);
549 Self_ID.Common.State := Delay_Sleep;
551 loop
552 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
554 Result :=
555 pthread_cond_timedwait
556 (cond => Self_ID.Common.LL.CV'Access,
557 mutex => (if Single_Lock
558 then Single_RTS_Lock'Access
559 else Self_ID.Common.LL.L'Access),
560 abstime => Request'Access);
562 Check_Time := Monotonic_Clock;
563 exit when Abs_Time <= Check_Time or else Check_Time < Base_Time;
565 pragma Assert (Result = 0 or else
566 Result = ETIMEDOUT or else
567 Result = EINTR);
568 end loop;
570 Self_ID.Common.State := Runnable;
571 end if;
573 Unlock (Self_ID);
575 if Single_Lock then
576 Unlock_RTS;
577 end if;
579 Yield;
580 end Timed_Delay;
582 ---------------------
583 -- Monotonic_Clock --
584 ---------------------
586 function Monotonic_Clock return Duration is
587 TS : aliased timespec;
588 Result : Interfaces.C.int;
589 begin
590 Result := clock_gettime (CLOCK_REALTIME, TS'Unchecked_Access);
591 pragma Assert (Result = 0);
592 return To_Duration (TS);
593 end Monotonic_Clock;
595 -------------------
596 -- RT_Resolution --
597 -------------------
599 function RT_Resolution return Duration is
600 begin
601 -- Returned value must be an integral multiple of Duration'Small (1 ns)
602 -- The following is the best approximation of 1/1024. The clock on the
603 -- DEC Alpha ticks at 1024 Hz.
605 return 0.000_976_563;
606 end RT_Resolution;
608 ------------
609 -- Wakeup --
610 ------------
612 procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
613 pragma Unreferenced (Reason);
614 Result : Interfaces.C.int;
615 begin
616 Result := pthread_cond_signal (T.Common.LL.CV'Access);
617 pragma Assert (Result = 0);
618 end Wakeup;
620 -----------
621 -- Yield --
622 -----------
624 procedure Yield (Do_Yield : Boolean := True) is
625 Result : Interfaces.C.int;
626 pragma Unreferenced (Result);
627 begin
628 if Do_Yield then
629 Result := sched_yield;
630 end if;
631 end Yield;
633 ------------------
634 -- Set_Priority --
635 ------------------
637 procedure Set_Priority
638 (T : Task_Id;
639 Prio : System.Any_Priority;
640 Loss_Of_Inheritance : Boolean := False)
642 pragma Unreferenced (Loss_Of_Inheritance);
644 Result : Interfaces.C.int;
645 Param : aliased struct_sched_param;
647 Priority_Specific_Policy : constant Character := Get_Policy (Prio);
648 -- Upper case first character of the policy name corresponding to the
649 -- task as set by a Priority_Specific_Dispatching pragma.
651 begin
652 T.Common.Current_Priority := Prio;
653 Param.sched_priority := Interfaces.C.int (Underlying_Priorities (Prio));
655 if Dispatching_Policy = 'R'
656 or else Priority_Specific_Policy = 'R'
657 or else Time_Slice_Val > 0
658 then
659 Result :=
660 pthread_setschedparam
661 (T.Common.LL.Thread, SCHED_RR, Param'Access);
663 elsif Dispatching_Policy = 'F'
664 or else Priority_Specific_Policy = 'F'
665 or else Time_Slice_Val = 0
666 then
667 Result :=
668 pthread_setschedparam
669 (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
671 else
672 Result :=
673 pthread_setschedparam
674 (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
675 end if;
677 pragma Assert (Result = 0);
678 end Set_Priority;
680 ------------------
681 -- Get_Priority --
682 ------------------
684 function Get_Priority (T : Task_Id) return System.Any_Priority is
685 begin
686 return T.Common.Current_Priority;
687 end Get_Priority;
689 ----------------
690 -- Enter_Task --
691 ----------------
693 procedure Enter_Task (Self_ID : Task_Id) is
694 begin
695 Hide_Unhide_Yellow_Zone (Hide => True);
696 Self_ID.Common.LL.Thread := pthread_self;
698 Specific.Set (Self_ID);
699 end Enter_Task;
701 --------------
702 -- New_ATCB --
703 --------------
705 function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
706 begin
707 return new Ada_Task_Control_Block (Entry_Num);
708 end New_ATCB;
710 -------------------
711 -- Is_Valid_Task --
712 -------------------
714 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
716 -----------------------------
717 -- Register_Foreign_Thread --
718 -----------------------------
720 function Register_Foreign_Thread return Task_Id is
721 begin
722 if Is_Valid_Task then
723 return Self;
724 else
725 return Register_Foreign_Thread (pthread_self);
726 end if;
727 end Register_Foreign_Thread;
729 --------------------
730 -- Initialize_TCB --
731 --------------------
733 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
734 Mutex_Attr : aliased pthread_mutexattr_t;
735 Result : Interfaces.C.int;
736 Cond_Attr : aliased pthread_condattr_t;
738 begin
739 if not Single_Lock then
740 Result := pthread_mutexattr_init (Mutex_Attr'Access);
741 pragma Assert (Result = 0 or else Result = ENOMEM);
743 if Result = 0 then
744 Result :=
745 pthread_mutex_init
746 (Self_ID.Common.LL.L'Access, Mutex_Attr'Access);
747 pragma Assert (Result = 0 or else Result = ENOMEM);
748 end if;
750 if Result /= 0 then
751 Succeeded := False;
752 return;
753 end if;
755 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
756 pragma Assert (Result = 0);
757 end if;
759 Result := pthread_condattr_init (Cond_Attr'Access);
760 pragma Assert (Result = 0 or else Result = ENOMEM);
762 if Result = 0 then
763 Result :=
764 pthread_cond_init
765 (Self_ID.Common.LL.CV'Access, Cond_Attr'Access);
766 pragma Assert (Result = 0 or else Result = ENOMEM);
767 end if;
769 if Result = 0 then
770 Succeeded := True;
771 else
772 if not Single_Lock then
773 Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
774 pragma Assert (Result = 0);
775 end if;
777 Succeeded := False;
778 end if;
780 Result := pthread_condattr_destroy (Cond_Attr'Access);
781 pragma Assert (Result = 0);
782 end Initialize_TCB;
784 -----------------
785 -- Create_Task --
786 -----------------
788 procedure Create_Task
789 (T : Task_Id;
790 Wrapper : System.Address;
791 Stack_Size : System.Parameters.Size_Type;
792 Priority : System.Any_Priority;
793 Succeeded : out Boolean)
795 Attributes : aliased pthread_attr_t;
796 Adjusted_Stack_Size : Interfaces.C.size_t;
797 Result : Interfaces.C.int;
798 Param : aliased System.OS_Interface.struct_sched_param;
800 Priority_Specific_Policy : constant Character := Get_Policy (Priority);
801 -- Upper case first character of the policy name corresponding to the
802 -- task as set by a Priority_Specific_Dispatching pragma.
804 use System.Task_Info;
806 begin
807 -- Account for the Yellow Zone (2 pages) and the guard page right above.
808 -- See Hide_Unhide_Yellow_Zone for the rationale.
810 Adjusted_Stack_Size :=
811 Interfaces.C.size_t (Stack_Size) + 3 * Get_Page_Size;
813 Result := pthread_attr_init (Attributes'Access);
814 pragma Assert (Result = 0 or else Result = ENOMEM);
816 if Result /= 0 then
817 Succeeded := False;
818 return;
819 end if;
821 Result :=
822 pthread_attr_setdetachstate
823 (Attributes'Access, PTHREAD_CREATE_DETACHED);
824 pragma Assert (Result = 0);
826 Result :=
827 pthread_attr_setstacksize
828 (Attributes'Access, Adjusted_Stack_Size);
829 pragma Assert (Result = 0);
831 Param.sched_priority :=
832 Interfaces.C.int (Underlying_Priorities (Priority));
833 Result :=
834 pthread_attr_setschedparam
835 (Attributes'Access, Param'Access);
836 pragma Assert (Result = 0);
838 if Dispatching_Policy = 'R'
839 or else Priority_Specific_Policy = 'R'
840 or else Time_Slice_Val > 0
841 then
842 Result :=
843 pthread_attr_setschedpolicy
844 (Attributes'Access, System.OS_Interface.SCHED_RR);
846 elsif Dispatching_Policy = 'F'
847 or else Priority_Specific_Policy = 'F'
848 or else Time_Slice_Val = 0
849 then
850 Result :=
851 pthread_attr_setschedpolicy
852 (Attributes'Access, System.OS_Interface.SCHED_FIFO);
854 else
855 Result :=
856 pthread_attr_setschedpolicy
857 (Attributes'Access, System.OS_Interface.SCHED_OTHER);
858 end if;
860 pragma Assert (Result = 0);
862 -- Set the scheduling parameters explicitly, since this is the only way
863 -- to force the OS to take e.g. the sched policy and scope attributes
864 -- into account.
866 Result :=
867 pthread_attr_setinheritsched
868 (Attributes'Access, PTHREAD_EXPLICIT_SCHED);
869 pragma Assert (Result = 0);
871 T.Common.Current_Priority := Priority;
873 if T.Common.Task_Info /= null then
874 case T.Common.Task_Info.Contention_Scope is
875 when System.Task_Info.Process_Scope =>
876 Result :=
877 pthread_attr_setscope
878 (Attributes'Access, PTHREAD_SCOPE_PROCESS);
880 when System.Task_Info.System_Scope =>
881 Result :=
882 pthread_attr_setscope
883 (Attributes'Access, PTHREAD_SCOPE_SYSTEM);
885 when System.Task_Info.Default_Scope =>
886 Result := 0;
887 end case;
889 pragma Assert (Result = 0);
890 end if;
892 -- Since the initial signal mask of a thread is inherited from the
893 -- creator, and the Environment task has all its signals masked, we
894 -- do not need to manipulate caller's signal mask at this point.
895 -- All tasks in RTS will have All_Tasks_Mask initially.
897 Result :=
898 pthread_create
899 (T.Common.LL.Thread'Access,
900 Attributes'Access,
901 Thread_Body_Access (Wrapper),
902 To_Address (T));
903 pragma Assert (Result = 0 or else Result = EAGAIN);
905 Succeeded := Result = 0;
907 Result := pthread_attr_destroy (Attributes'Access);
908 pragma Assert (Result = 0);
910 if Succeeded and then T.Common.Task_Info /= null then
912 -- ??? We're using a process-wide function to implement a task
913 -- specific characteristic.
915 if T.Common.Task_Info.Bind_To_Cpu_Number = 0 then
916 Result := bind_to_cpu (Curpid, 0);
918 elsif T.Common.Task_Info.Bind_To_Cpu_Number > 0 then
919 Result :=
920 bind_to_cpu
921 (Curpid,
922 Interfaces.C.unsigned_long (
923 Interfaces.Shift_Left
924 (Interfaces.Unsigned_64'(1),
925 T.Common.Task_Info.Bind_To_Cpu_Number - 1)));
926 pragma Assert (Result = 0);
927 end if;
928 end if;
929 end Create_Task;
931 ------------------
932 -- Finalize_TCB --
933 ------------------
935 procedure Finalize_TCB (T : Task_Id) is
936 Result : Interfaces.C.int;
937 Tmp : Task_Id := T;
938 Is_Self : constant Boolean := T = Self;
940 procedure Free is new
941 Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
943 begin
944 if not Single_Lock then
945 Result := pthread_mutex_destroy (T.Common.LL.L'Access);
946 pragma Assert (Result = 0);
947 end if;
949 Result := pthread_cond_destroy (T.Common.LL.CV'Access);
950 pragma Assert (Result = 0);
952 if T.Known_Tasks_Index /= -1 then
953 Known_Tasks (T.Known_Tasks_Index) := null;
954 end if;
956 Free (Tmp);
958 if Is_Self then
959 Specific.Set (null);
960 end if;
961 end Finalize_TCB;
963 ---------------
964 -- Exit_Task --
965 ---------------
967 procedure Exit_Task is
968 begin
969 Specific.Set (null);
970 Hide_Unhide_Yellow_Zone (Hide => False);
971 end Exit_Task;
973 ----------------
974 -- Abort_Task --
975 ----------------
977 procedure Abort_Task (T : Task_Id) is
978 Result : Interfaces.C.int;
979 begin
980 if Abort_Handler_Installed then
981 Result := pthread_kill (T.Common.LL.Thread,
982 Signal (System.Interrupt_Management.Abort_Task_Interrupt));
983 pragma Assert (Result = 0);
984 end if;
985 end Abort_Task;
987 ----------------
988 -- Initialize --
989 ----------------
991 procedure Initialize (S : in out Suspension_Object) is
992 Mutex_Attr : aliased pthread_mutexattr_t;
993 Cond_Attr : aliased pthread_condattr_t;
994 Result : Interfaces.C.int;
996 begin
997 -- Initialize internal state (always to False (RM D.10(6)))
999 S.State := False;
1000 S.Waiting := False;
1002 -- Initialize internal mutex
1004 Result := pthread_mutexattr_init (Mutex_Attr'Access);
1005 pragma Assert (Result = 0 or else Result = ENOMEM);
1007 if Result = ENOMEM then
1008 raise Storage_Error;
1009 end if;
1011 Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access);
1012 pragma Assert (Result = 0 or else Result = ENOMEM);
1014 if Result = ENOMEM then
1015 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
1016 raise Storage_Error;
1017 end if;
1019 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
1020 pragma Assert (Result = 0);
1022 -- Initialize internal condition variable
1024 Result := pthread_condattr_init (Cond_Attr'Access);
1025 pragma Assert (Result = 0 or else Result = ENOMEM);
1027 Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access);
1029 pragma Assert (Result = 0 or else Result = ENOMEM);
1031 if Result /= 0 then
1032 Result := pthread_mutex_destroy (S.L'Access);
1033 pragma Assert (Result = 0);
1035 if Result = ENOMEM then
1036 raise Storage_Error;
1037 end if;
1038 end if;
1039 end Initialize;
1041 --------------
1042 -- Finalize --
1043 --------------
1045 procedure Finalize (S : in out Suspension_Object) is
1046 Result : Interfaces.C.int;
1048 begin
1049 -- Destroy internal mutex
1051 Result := pthread_mutex_destroy (S.L'Access);
1052 pragma Assert (Result = 0);
1054 -- Destroy internal condition variable
1056 Result := pthread_cond_destroy (S.CV'Access);
1057 pragma Assert (Result = 0);
1058 end Finalize;
1060 -------------------
1061 -- Current_State --
1062 -------------------
1064 function Current_State (S : Suspension_Object) return Boolean is
1065 begin
1066 -- We do not want to use lock on this read operation. State is marked
1067 -- as Atomic so that we ensure that the value retrieved is correct.
1069 return S.State;
1070 end Current_State;
1072 ---------------
1073 -- Set_False --
1074 ---------------
1076 procedure Set_False (S : in out Suspension_Object) is
1077 Result : Interfaces.C.int;
1079 begin
1080 SSL.Abort_Defer.all;
1082 Result := pthread_mutex_lock (S.L'Access);
1083 pragma Assert (Result = 0);
1085 S.State := False;
1087 Result := pthread_mutex_unlock (S.L'Access);
1088 pragma Assert (Result = 0);
1090 SSL.Abort_Undefer.all;
1091 end Set_False;
1093 --------------
1094 -- Set_True --
1095 --------------
1097 procedure Set_True (S : in out Suspension_Object) is
1098 Result : Interfaces.C.int;
1100 begin
1101 SSL.Abort_Defer.all;
1103 Result := pthread_mutex_lock (S.L'Access);
1104 pragma Assert (Result = 0);
1106 -- If there is already a task waiting on this suspension object then we
1107 -- resume it, leaving the state of the suspension object to False, as
1108 -- specified in (RM D.10(9)). Otherwise, leave the state set to True.
1110 if S.Waiting then
1111 S.Waiting := False;
1112 S.State := False;
1114 Result := pthread_cond_signal (S.CV'Access);
1115 pragma Assert (Result = 0);
1117 else
1118 S.State := True;
1119 end if;
1121 Result := pthread_mutex_unlock (S.L'Access);
1122 pragma Assert (Result = 0);
1124 SSL.Abort_Undefer.all;
1125 end Set_True;
1127 ------------------------
1128 -- Suspend_Until_True --
1129 ------------------------
1131 procedure Suspend_Until_True (S : in out Suspension_Object) is
1132 Result : Interfaces.C.int;
1134 begin
1135 SSL.Abort_Defer.all;
1137 Result := pthread_mutex_lock (S.L'Access);
1138 pragma Assert (Result = 0);
1140 if S.Waiting then
1142 -- Program_Error must be raised upon calling Suspend_Until_True
1143 -- if another task is already waiting on that suspension object
1144 -- (AM D.10(10)).
1146 Result := pthread_mutex_unlock (S.L'Access);
1147 pragma Assert (Result = 0);
1149 SSL.Abort_Undefer.all;
1151 raise Program_Error;
1153 else
1154 -- Suspend the task if the state is False. Otherwise, the task
1155 -- continues its execution, and the state of the suspension object
1156 -- is set to False (RM D.10(9)).
1158 if S.State then
1159 S.State := False;
1160 else
1161 S.Waiting := True;
1163 loop
1164 -- Loop in case pthread_cond_wait returns earlier than expected
1165 -- (e.g. in case of EINTR caused by a signal).
1167 Result := pthread_cond_wait (S.CV'Access, S.L'Access);
1168 pragma Assert (Result = 0 or else Result = EINTR);
1170 exit when not S.Waiting;
1171 end loop;
1172 end if;
1174 Result := pthread_mutex_unlock (S.L'Access);
1175 pragma Assert (Result = 0);
1177 SSL.Abort_Undefer.all;
1178 end if;
1179 end Suspend_Until_True;
1181 ----------------
1182 -- Check_Exit --
1183 ----------------
1185 -- Dummy version
1187 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1188 pragma Unreferenced (Self_ID);
1189 begin
1190 return True;
1191 end Check_Exit;
1193 --------------------
1194 -- Check_No_Locks --
1195 --------------------
1197 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1198 pragma Unreferenced (Self_ID);
1199 begin
1200 return True;
1201 end Check_No_Locks;
1203 ----------------------
1204 -- Environment_Task --
1205 ----------------------
1207 function Environment_Task return Task_Id is
1208 begin
1209 return Environment_Task_Id;
1210 end Environment_Task;
1212 --------------
1213 -- Lock_RTS --
1214 --------------
1216 procedure Lock_RTS is
1217 begin
1218 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1219 end Lock_RTS;
1221 ----------------
1222 -- Unlock_RTS --
1223 ----------------
1225 procedure Unlock_RTS is
1226 begin
1227 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1228 end Unlock_RTS;
1230 ------------------
1231 -- Suspend_Task --
1232 ------------------
1234 function Suspend_Task
1235 (T : ST.Task_Id;
1236 Thread_Self : Thread_Id) return Boolean
1238 pragma Unreferenced (T, Thread_Self);
1239 begin
1240 return False;
1241 end Suspend_Task;
1243 -----------------
1244 -- Resume_Task --
1245 -----------------
1247 function Resume_Task
1248 (T : ST.Task_Id;
1249 Thread_Self : Thread_Id) return Boolean
1251 pragma Unreferenced (T, Thread_Self);
1252 begin
1253 return False;
1254 end Resume_Task;
1256 --------------------
1257 -- Stop_All_Tasks --
1258 --------------------
1260 procedure Stop_All_Tasks is
1261 begin
1262 null;
1263 end Stop_All_Tasks;
1265 ---------------
1266 -- Stop_Task --
1267 ---------------
1269 function Stop_Task (T : ST.Task_Id) return Boolean is
1270 pragma Unreferenced (T);
1271 begin
1272 return False;
1273 end Stop_Task;
1275 -------------------
1276 -- Continue_Task --
1277 -------------------
1279 function Continue_Task (T : ST.Task_Id) return Boolean is
1280 pragma Unreferenced (T);
1281 begin
1282 return False;
1283 end Continue_Task;
1285 ----------------
1286 -- Initialize --
1287 ----------------
1289 procedure Initialize (Environment_Task : Task_Id) is
1290 act : aliased struct_sigaction;
1291 old_act : aliased struct_sigaction;
1292 Tmp_Set : aliased sigset_t;
1293 Result : Interfaces.C.int;
1295 function State
1296 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
1297 pragma Import (C, State, "__gnat_get_interrupt_state");
1298 -- Get interrupt state. Defined in a-init.c. The input argument is
1299 -- the interrupt number, and the result is one of the following:
1301 Default : constant Character := 's';
1302 -- 'n' this interrupt not set by any Interrupt_State pragma
1303 -- 'u' Interrupt_State pragma set state to User
1304 -- 'r' Interrupt_State pragma set state to Runtime
1305 -- 's' Interrupt_State pragma set state to System (use "default"
1306 -- system handler)
1308 begin
1309 Environment_Task_Id := Environment_Task;
1311 Interrupt_Management.Initialize;
1313 -- Prepare the set of signals that should unblocked in all tasks
1315 Result := sigemptyset (Unblocked_Signal_Mask'Access);
1316 pragma Assert (Result = 0);
1318 for J in Interrupt_Management.Interrupt_ID loop
1319 if System.Interrupt_Management.Keep_Unmasked (J) then
1320 Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
1321 pragma Assert (Result = 0);
1322 end if;
1323 end loop;
1325 Curpid := getpid;
1327 -- Initialize the lock used to synchronize chain of all ATCBs
1329 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1331 Specific.Initialize (Environment_Task);
1333 -- Make environment task known here because it doesn't go through
1334 -- Activate_Tasks, which does it for all other tasks.
1336 Known_Tasks (Known_Tasks'First) := Environment_Task;
1337 Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1339 Enter_Task (Environment_Task);
1341 if State
1342 (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
1343 then
1344 act.sa_flags := 0;
1345 act.sa_handler := Abort_Handler'Address;
1347 Result := sigemptyset (Tmp_Set'Access);
1348 pragma Assert (Result = 0);
1349 act.sa_mask := Tmp_Set;
1351 Result :=
1352 sigaction
1353 (Signal (System.Interrupt_Management.Abort_Task_Interrupt),
1354 act'Unchecked_Access,
1355 old_act'Unchecked_Access);
1356 pragma Assert (Result = 0);
1357 Abort_Handler_Installed := True;
1358 end if;
1359 end Initialize;
1361 end System.Task_Primitives.Operations;