fixing pr42337
[official-gcc.git] / gcc / ada / s-bitops.adb
blobc49b829763db405c8802dfa4b961e8cf40aa50a5
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . B I T _ O P S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1996-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 pragma Compiler_Unit;
34 with System; use System;
35 with System.Unsigned_Types; use System.Unsigned_Types;
37 with Ada.Unchecked_Conversion;
39 package body System.Bit_Ops is
41 subtype Bits_Array is System.Unsigned_Types.Packed_Bytes1 (Positive);
42 -- Dummy array type used to interpret the address values. We use the
43 -- unaligned version always, since this will handle both the aligned and
44 -- unaligned cases, and we always do these operations by bytes anyway.
45 -- Note: we use a ones origin array here so that the computations of the
46 -- length in bytes work correctly (give a non-negative value) for the
47 -- case of zero length bit strings). Note that we never allocate any
48 -- objects of this type (we can't because they would be absurdly big).
50 type Bits is access Bits_Array;
51 -- This is the actual type into which address values are converted
53 function To_Bits is new Ada.Unchecked_Conversion (Address, Bits);
55 LE : constant := Standard'Default_Bit_Order;
56 -- Static constant set to 0 for big-endian, 1 for little-endian
58 -- The following is an array of masks used to mask the final byte, either
59 -- at the high end (big-endian case) or the low end (little-endian case).
61 Masks : constant array (1 .. 7) of Packed_Byte := (
62 (1 - LE) * 2#1000_0000# + LE * 2#0000_0001#,
63 (1 - LE) * 2#1100_0000# + LE * 2#0000_0011#,
64 (1 - LE) * 2#1110_0000# + LE * 2#0000_0111#,
65 (1 - LE) * 2#1111_0000# + LE * 2#0000_1111#,
66 (1 - LE) * 2#1111_1000# + LE * 2#0001_1111#,
67 (1 - LE) * 2#1111_1100# + LE * 2#0011_1111#,
68 (1 - LE) * 2#1111_1110# + LE * 2#0111_1111#);
70 -----------------------
71 -- Local Subprograms --
72 -----------------------
74 procedure Raise_Error;
75 -- Raise Constraint_Error, complaining about unequal lengths
77 -------------
78 -- Bit_And --
79 -------------
81 procedure Bit_And
82 (Left : Address;
83 Llen : Natural;
84 Right : Address;
85 Rlen : Natural;
86 Result : Address)
88 LeftB : constant Bits := To_Bits (Left);
89 RightB : constant Bits := To_Bits (Right);
90 ResultB : constant Bits := To_Bits (Result);
92 begin
93 if Llen /= Rlen then
94 Raise_Error;
95 end if;
97 for J in 1 .. (Rlen + 7) / 8 loop
98 ResultB (J) := LeftB (J) and RightB (J);
99 end loop;
100 end Bit_And;
102 ------------
103 -- Bit_Eq --
104 ------------
106 function Bit_Eq
107 (Left : Address;
108 Llen : Natural;
109 Right : Address;
110 Rlen : Natural) return Boolean
112 LeftB : constant Bits := To_Bits (Left);
113 RightB : constant Bits := To_Bits (Right);
115 begin
116 if Llen /= Rlen then
117 return False;
119 else
120 declare
121 BLen : constant Natural := Llen / 8;
122 Bitc : constant Natural := Llen mod 8;
124 begin
125 if LeftB (1 .. BLen) /= RightB (1 .. BLen) then
126 return False;
128 elsif Bitc /= 0 then
129 return
130 ((LeftB (BLen + 1) xor RightB (BLen + 1))
131 and Masks (Bitc)) = 0;
133 else -- Bitc = 0
134 return True;
135 end if;
136 end;
137 end if;
138 end Bit_Eq;
140 -------------
141 -- Bit_Not --
142 -------------
144 procedure Bit_Not
145 (Opnd : System.Address;
146 Len : Natural;
147 Result : System.Address)
149 OpndB : constant Bits := To_Bits (Opnd);
150 ResultB : constant Bits := To_Bits (Result);
152 begin
153 for J in 1 .. (Len + 7) / 8 loop
154 ResultB (J) := not OpndB (J);
155 end loop;
156 end Bit_Not;
158 ------------
159 -- Bit_Or --
160 ------------
162 procedure Bit_Or
163 (Left : Address;
164 Llen : Natural;
165 Right : Address;
166 Rlen : Natural;
167 Result : Address)
169 LeftB : constant Bits := To_Bits (Left);
170 RightB : constant Bits := To_Bits (Right);
171 ResultB : constant Bits := To_Bits (Result);
173 begin
174 if Llen /= Rlen then
175 Raise_Error;
176 end if;
178 for J in 1 .. (Rlen + 7) / 8 loop
179 ResultB (J) := LeftB (J) or RightB (J);
180 end loop;
181 end Bit_Or;
183 -------------
184 -- Bit_Xor --
185 -------------
187 procedure Bit_Xor
188 (Left : Address;
189 Llen : Natural;
190 Right : Address;
191 Rlen : Natural;
192 Result : Address)
194 LeftB : constant Bits := To_Bits (Left);
195 RightB : constant Bits := To_Bits (Right);
196 ResultB : constant Bits := To_Bits (Result);
198 begin
199 if Llen /= Rlen then
200 Raise_Error;
201 end if;
203 for J in 1 .. (Rlen + 7) / 8 loop
204 ResultB (J) := LeftB (J) xor RightB (J);
205 end loop;
206 end Bit_Xor;
208 -----------------
209 -- Raise_Error --
210 -----------------
212 procedure Raise_Error is
213 begin
214 raise Constraint_Error;
215 end Raise_Error;
217 end System.Bit_Ops;