fixing pr42337
[official-gcc.git] / gcc / ada / exp_util.adb
blobc450b677faf240f597e92c068e63d3568c03ec59
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ U T I L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Exp_Aggr; use Exp_Aggr;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Ch7; use Exp_Ch7;
35 with Inline; use Inline;
36 with Itypes; use Itypes;
37 with Lib; use Lib;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Sem; use Sem;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Ch8; use Sem_Ch8;
46 with Sem_SCIL; use Sem_SCIL;
47 with Sem_Eval; use Sem_Eval;
48 with Sem_Res; use Sem_Res;
49 with Sem_Type; use Sem_Type;
50 with Sem_Util; use Sem_Util;
51 with Snames; use Snames;
52 with Stand; use Stand;
53 with Stringt; use Stringt;
54 with Targparm; use Targparm;
55 with Tbuild; use Tbuild;
56 with Ttypes; use Ttypes;
57 with Uintp; use Uintp;
58 with Urealp; use Urealp;
59 with Validsw; use Validsw;
61 package body Exp_Util is
63 -----------------------
64 -- Local Subprograms --
65 -----------------------
67 function Build_Task_Array_Image
68 (Loc : Source_Ptr;
69 Id_Ref : Node_Id;
70 A_Type : Entity_Id;
71 Dyn : Boolean := False) return Node_Id;
72 -- Build function to generate the image string for a task that is an
73 -- array component, concatenating the images of each index. To avoid
74 -- storage leaks, the string is built with successive slice assignments.
75 -- The flag Dyn indicates whether this is called for the initialization
76 -- procedure of an array of tasks, or for the name of a dynamically
77 -- created task that is assigned to an indexed component.
79 function Build_Task_Image_Function
80 (Loc : Source_Ptr;
81 Decls : List_Id;
82 Stats : List_Id;
83 Res : Entity_Id) return Node_Id;
84 -- Common processing for Task_Array_Image and Task_Record_Image.
85 -- Build function body that computes image.
87 procedure Build_Task_Image_Prefix
88 (Loc : Source_Ptr;
89 Len : out Entity_Id;
90 Res : out Entity_Id;
91 Pos : out Entity_Id;
92 Prefix : Entity_Id;
93 Sum : Node_Id;
94 Decls : List_Id;
95 Stats : List_Id);
96 -- Common processing for Task_Array_Image and Task_Record_Image.
97 -- Create local variables and assign prefix of name to result string.
99 function Build_Task_Record_Image
100 (Loc : Source_Ptr;
101 Id_Ref : Node_Id;
102 Dyn : Boolean := False) return Node_Id;
103 -- Build function to generate the image string for a task that is a
104 -- record component. Concatenate name of variable with that of selector.
105 -- The flag Dyn indicates whether this is called for the initialization
106 -- procedure of record with task components, or for a dynamically
107 -- created task that is assigned to a selected component.
109 function Make_CW_Equivalent_Type
110 (T : Entity_Id;
111 E : Node_Id) return Entity_Id;
112 -- T is a class-wide type entity, E is the initial expression node that
113 -- constrains T in case such as: " X: T := E" or "new T'(E)"
114 -- This function returns the entity of the Equivalent type and inserts
115 -- on the fly the necessary declaration such as:
117 -- type anon is record
118 -- _parent : Root_Type (T); constrained with E discriminants (if any)
119 -- Extension : String (1 .. expr to match size of E);
120 -- end record;
122 -- This record is compatible with any object of the class of T thanks
123 -- to the first field and has the same size as E thanks to the second.
125 function Make_Literal_Range
126 (Loc : Source_Ptr;
127 Literal_Typ : Entity_Id) return Node_Id;
128 -- Produce a Range node whose bounds are:
129 -- Low_Bound (Literal_Type) ..
130 -- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
131 -- this is used for expanding declarations like X : String := "sdfgdfg";
133 -- If the index type of the target array is not integer, we generate:
134 -- Low_Bound (Literal_Type) ..
135 -- Literal_Type'Val
136 -- (Literal_Type'Pos (Low_Bound (Literal_Type))
137 -- + (Length (Literal_Typ) -1))
139 function Make_Non_Empty_Check
140 (Loc : Source_Ptr;
141 N : Node_Id) return Node_Id;
142 -- Produce a boolean expression checking that the unidimensional array
143 -- node N is not empty.
145 function New_Class_Wide_Subtype
146 (CW_Typ : Entity_Id;
147 N : Node_Id) return Entity_Id;
148 -- Create an implicit subtype of CW_Typ attached to node N
150 ----------------------
151 -- Adjust_Condition --
152 ----------------------
154 procedure Adjust_Condition (N : Node_Id) is
155 begin
156 if No (N) then
157 return;
158 end if;
160 declare
161 Loc : constant Source_Ptr := Sloc (N);
162 T : constant Entity_Id := Etype (N);
163 Ti : Entity_Id;
165 begin
166 -- For now, we simply ignore a call where the argument has no
167 -- type (probably case of unanalyzed condition), or has a type
168 -- that is not Boolean. This is because this is a pretty marginal
169 -- piece of functionality, and violations of these rules are
170 -- likely to be truly marginal (how much code uses Fortran Logical
171 -- as the barrier to a protected entry?) and we do not want to
172 -- blow up existing programs. We can change this to an assertion
173 -- after 3.12a is released ???
175 if No (T) or else not Is_Boolean_Type (T) then
176 return;
177 end if;
179 -- Apply validity checking if needed
181 if Validity_Checks_On and Validity_Check_Tests then
182 Ensure_Valid (N);
183 end if;
185 -- Immediate return if standard boolean, the most common case,
186 -- where nothing needs to be done.
188 if Base_Type (T) = Standard_Boolean then
189 return;
190 end if;
192 -- Case of zero/non-zero semantics or non-standard enumeration
193 -- representation. In each case, we rewrite the node as:
195 -- ityp!(N) /= False'Enum_Rep
197 -- where ityp is an integer type with large enough size to hold
198 -- any value of type T.
200 if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
201 if Esize (T) <= Esize (Standard_Integer) then
202 Ti := Standard_Integer;
203 else
204 Ti := Standard_Long_Long_Integer;
205 end if;
207 Rewrite (N,
208 Make_Op_Ne (Loc,
209 Left_Opnd => Unchecked_Convert_To (Ti, N),
210 Right_Opnd =>
211 Make_Attribute_Reference (Loc,
212 Attribute_Name => Name_Enum_Rep,
213 Prefix =>
214 New_Occurrence_Of (First_Literal (T), Loc))));
215 Analyze_And_Resolve (N, Standard_Boolean);
217 else
218 Rewrite (N, Convert_To (Standard_Boolean, N));
219 Analyze_And_Resolve (N, Standard_Boolean);
220 end if;
221 end;
222 end Adjust_Condition;
224 ------------------------
225 -- Adjust_Result_Type --
226 ------------------------
228 procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
229 begin
230 -- Ignore call if current type is not Standard.Boolean
232 if Etype (N) /= Standard_Boolean then
233 return;
234 end if;
236 -- If result is already of correct type, nothing to do. Note that
237 -- this will get the most common case where everything has a type
238 -- of Standard.Boolean.
240 if Base_Type (T) = Standard_Boolean then
241 return;
243 else
244 declare
245 KP : constant Node_Kind := Nkind (Parent (N));
247 begin
248 -- If result is to be used as a Condition in the syntax, no need
249 -- to convert it back, since if it was changed to Standard.Boolean
250 -- using Adjust_Condition, that is just fine for this usage.
252 if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
253 return;
255 -- If result is an operand of another logical operation, no need
256 -- to reset its type, since Standard.Boolean is just fine, and
257 -- such operations always do Adjust_Condition on their operands.
259 elsif KP in N_Op_Boolean
260 or else KP in N_Short_Circuit
261 or else KP = N_Op_Not
262 then
263 return;
265 -- Otherwise we perform a conversion from the current type,
266 -- which must be Standard.Boolean, to the desired type.
268 else
269 Set_Analyzed (N);
270 Rewrite (N, Convert_To (T, N));
271 Analyze_And_Resolve (N, T);
272 end if;
273 end;
274 end if;
275 end Adjust_Result_Type;
277 --------------------------
278 -- Append_Freeze_Action --
279 --------------------------
281 procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
282 Fnode : Node_Id;
284 begin
285 Ensure_Freeze_Node (T);
286 Fnode := Freeze_Node (T);
288 if No (Actions (Fnode)) then
289 Set_Actions (Fnode, New_List);
290 end if;
292 Append (N, Actions (Fnode));
293 end Append_Freeze_Action;
295 ---------------------------
296 -- Append_Freeze_Actions --
297 ---------------------------
299 procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
300 Fnode : constant Node_Id := Freeze_Node (T);
302 begin
303 if No (L) then
304 return;
306 else
307 if No (Actions (Fnode)) then
308 Set_Actions (Fnode, L);
310 else
311 Append_List (L, Actions (Fnode));
312 end if;
314 end if;
315 end Append_Freeze_Actions;
317 ------------------------
318 -- Build_Runtime_Call --
319 ------------------------
321 function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
322 begin
323 -- If entity is not available, we can skip making the call (this avoids
324 -- junk duplicated error messages in a number of cases).
326 if not RTE_Available (RE) then
327 return Make_Null_Statement (Loc);
328 else
329 return
330 Make_Procedure_Call_Statement (Loc,
331 Name => New_Reference_To (RTE (RE), Loc));
332 end if;
333 end Build_Runtime_Call;
335 ----------------------------
336 -- Build_Task_Array_Image --
337 ----------------------------
339 -- This function generates the body for a function that constructs the
340 -- image string for a task that is an array component. The function is
341 -- local to the init proc for the array type, and is called for each one
342 -- of the components. The constructed image has the form of an indexed
343 -- component, whose prefix is the outer variable of the array type.
344 -- The n-dimensional array type has known indices Index, Index2...
345 -- Id_Ref is an indexed component form created by the enclosing init proc.
346 -- Its successive indices are Val1, Val2, ... which are the loop variables
347 -- in the loops that call the individual task init proc on each component.
349 -- The generated function has the following structure:
351 -- function F return String is
352 -- Pref : string renames Task_Name;
353 -- T1 : String := Index1'Image (Val1);
354 -- ...
355 -- Tn : String := indexn'image (Valn);
356 -- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
357 -- -- Len includes commas and the end parentheses.
358 -- Res : String (1..Len);
359 -- Pos : Integer := Pref'Length;
361 -- begin
362 -- Res (1 .. Pos) := Pref;
363 -- Pos := Pos + 1;
364 -- Res (Pos) := '(';
365 -- Pos := Pos + 1;
366 -- Res (Pos .. Pos + T1'Length - 1) := T1;
367 -- Pos := Pos + T1'Length;
368 -- Res (Pos) := '.';
369 -- Pos := Pos + 1;
370 -- ...
371 -- Res (Pos .. Pos + Tn'Length - 1) := Tn;
372 -- Res (Len) := ')';
374 -- return Res;
375 -- end F;
377 -- Needless to say, multidimensional arrays of tasks are rare enough
378 -- that the bulkiness of this code is not really a concern.
380 function Build_Task_Array_Image
381 (Loc : Source_Ptr;
382 Id_Ref : Node_Id;
383 A_Type : Entity_Id;
384 Dyn : Boolean := False) return Node_Id
386 Dims : constant Nat := Number_Dimensions (A_Type);
387 -- Number of dimensions for array of tasks
389 Temps : array (1 .. Dims) of Entity_Id;
390 -- Array of temporaries to hold string for each index
392 Indx : Node_Id;
393 -- Index expression
395 Len : Entity_Id;
396 -- Total length of generated name
398 Pos : Entity_Id;
399 -- Running index for substring assignments
401 Pref : Entity_Id;
402 -- Name of enclosing variable, prefix of resulting name
404 Res : Entity_Id;
405 -- String to hold result
407 Val : Node_Id;
408 -- Value of successive indices
410 Sum : Node_Id;
411 -- Expression to compute total size of string
413 T : Entity_Id;
414 -- Entity for name at one index position
416 Decls : constant List_Id := New_List;
417 Stats : constant List_Id := New_List;
419 begin
420 Pref := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
422 -- For a dynamic task, the name comes from the target variable.
423 -- For a static one it is a formal of the enclosing init proc.
425 if Dyn then
426 Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
427 Append_To (Decls,
428 Make_Object_Declaration (Loc,
429 Defining_Identifier => Pref,
430 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
431 Expression =>
432 Make_String_Literal (Loc,
433 Strval => String_From_Name_Buffer)));
435 else
436 Append_To (Decls,
437 Make_Object_Renaming_Declaration (Loc,
438 Defining_Identifier => Pref,
439 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
440 Name => Make_Identifier (Loc, Name_uTask_Name)));
441 end if;
443 Indx := First_Index (A_Type);
444 Val := First (Expressions (Id_Ref));
446 for J in 1 .. Dims loop
447 T := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
448 Temps (J) := T;
450 Append_To (Decls,
451 Make_Object_Declaration (Loc,
452 Defining_Identifier => T,
453 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
454 Expression =>
455 Make_Attribute_Reference (Loc,
456 Attribute_Name => Name_Image,
457 Prefix =>
458 New_Occurrence_Of (Etype (Indx), Loc),
459 Expressions => New_List (
460 New_Copy_Tree (Val)))));
462 Next_Index (Indx);
463 Next (Val);
464 end loop;
466 Sum := Make_Integer_Literal (Loc, Dims + 1);
468 Sum :=
469 Make_Op_Add (Loc,
470 Left_Opnd => Sum,
471 Right_Opnd =>
472 Make_Attribute_Reference (Loc,
473 Attribute_Name => Name_Length,
474 Prefix =>
475 New_Occurrence_Of (Pref, Loc),
476 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
478 for J in 1 .. Dims loop
479 Sum :=
480 Make_Op_Add (Loc,
481 Left_Opnd => Sum,
482 Right_Opnd =>
483 Make_Attribute_Reference (Loc,
484 Attribute_Name => Name_Length,
485 Prefix =>
486 New_Occurrence_Of (Temps (J), Loc),
487 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
488 end loop;
490 Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
492 Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
494 Append_To (Stats,
495 Make_Assignment_Statement (Loc,
496 Name => Make_Indexed_Component (Loc,
497 Prefix => New_Occurrence_Of (Res, Loc),
498 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
499 Expression =>
500 Make_Character_Literal (Loc,
501 Chars => Name_Find,
502 Char_Literal_Value =>
503 UI_From_Int (Character'Pos ('(')))));
505 Append_To (Stats,
506 Make_Assignment_Statement (Loc,
507 Name => New_Occurrence_Of (Pos, Loc),
508 Expression =>
509 Make_Op_Add (Loc,
510 Left_Opnd => New_Occurrence_Of (Pos, Loc),
511 Right_Opnd => Make_Integer_Literal (Loc, 1))));
513 for J in 1 .. Dims loop
515 Append_To (Stats,
516 Make_Assignment_Statement (Loc,
517 Name => Make_Slice (Loc,
518 Prefix => New_Occurrence_Of (Res, Loc),
519 Discrete_Range =>
520 Make_Range (Loc,
521 Low_Bound => New_Occurrence_Of (Pos, Loc),
522 High_Bound => Make_Op_Subtract (Loc,
523 Left_Opnd =>
524 Make_Op_Add (Loc,
525 Left_Opnd => New_Occurrence_Of (Pos, Loc),
526 Right_Opnd =>
527 Make_Attribute_Reference (Loc,
528 Attribute_Name => Name_Length,
529 Prefix =>
530 New_Occurrence_Of (Temps (J), Loc),
531 Expressions =>
532 New_List (Make_Integer_Literal (Loc, 1)))),
533 Right_Opnd => Make_Integer_Literal (Loc, 1)))),
535 Expression => New_Occurrence_Of (Temps (J), Loc)));
537 if J < Dims then
538 Append_To (Stats,
539 Make_Assignment_Statement (Loc,
540 Name => New_Occurrence_Of (Pos, Loc),
541 Expression =>
542 Make_Op_Add (Loc,
543 Left_Opnd => New_Occurrence_Of (Pos, Loc),
544 Right_Opnd =>
545 Make_Attribute_Reference (Loc,
546 Attribute_Name => Name_Length,
547 Prefix => New_Occurrence_Of (Temps (J), Loc),
548 Expressions =>
549 New_List (Make_Integer_Literal (Loc, 1))))));
551 Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
553 Append_To (Stats,
554 Make_Assignment_Statement (Loc,
555 Name => Make_Indexed_Component (Loc,
556 Prefix => New_Occurrence_Of (Res, Loc),
557 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
558 Expression =>
559 Make_Character_Literal (Loc,
560 Chars => Name_Find,
561 Char_Literal_Value =>
562 UI_From_Int (Character'Pos (',')))));
564 Append_To (Stats,
565 Make_Assignment_Statement (Loc,
566 Name => New_Occurrence_Of (Pos, Loc),
567 Expression =>
568 Make_Op_Add (Loc,
569 Left_Opnd => New_Occurrence_Of (Pos, Loc),
570 Right_Opnd => Make_Integer_Literal (Loc, 1))));
571 end if;
572 end loop;
574 Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
576 Append_To (Stats,
577 Make_Assignment_Statement (Loc,
578 Name => Make_Indexed_Component (Loc,
579 Prefix => New_Occurrence_Of (Res, Loc),
580 Expressions => New_List (New_Occurrence_Of (Len, Loc))),
581 Expression =>
582 Make_Character_Literal (Loc,
583 Chars => Name_Find,
584 Char_Literal_Value =>
585 UI_From_Int (Character'Pos (')')))));
586 return Build_Task_Image_Function (Loc, Decls, Stats, Res);
587 end Build_Task_Array_Image;
589 ----------------------------
590 -- Build_Task_Image_Decls --
591 ----------------------------
593 function Build_Task_Image_Decls
594 (Loc : Source_Ptr;
595 Id_Ref : Node_Id;
596 A_Type : Entity_Id;
597 In_Init_Proc : Boolean := False) return List_Id
599 Decls : constant List_Id := New_List;
600 T_Id : Entity_Id := Empty;
601 Decl : Node_Id;
602 Expr : Node_Id := Empty;
603 Fun : Node_Id := Empty;
604 Is_Dyn : constant Boolean :=
605 Nkind (Parent (Id_Ref)) = N_Assignment_Statement
606 and then
607 Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
609 begin
610 -- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
611 -- generate a dummy declaration only.
613 if Restriction_Active (No_Implicit_Heap_Allocations)
614 or else Global_Discard_Names
615 then
616 T_Id := Make_Defining_Identifier (Loc, New_Internal_Name ('J'));
617 Name_Len := 0;
619 return
620 New_List (
621 Make_Object_Declaration (Loc,
622 Defining_Identifier => T_Id,
623 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
624 Expression =>
625 Make_String_Literal (Loc,
626 Strval => String_From_Name_Buffer)));
628 else
629 if Nkind (Id_Ref) = N_Identifier
630 or else Nkind (Id_Ref) = N_Defining_Identifier
631 then
632 -- For a simple variable, the image of the task is built from
633 -- the name of the variable. To avoid possible conflict with
634 -- the anonymous type created for a single protected object,
635 -- add a numeric suffix.
637 T_Id :=
638 Make_Defining_Identifier (Loc,
639 New_External_Name (Chars (Id_Ref), 'T', 1));
641 Get_Name_String (Chars (Id_Ref));
643 Expr :=
644 Make_String_Literal (Loc,
645 Strval => String_From_Name_Buffer);
647 elsif Nkind (Id_Ref) = N_Selected_Component then
648 T_Id :=
649 Make_Defining_Identifier (Loc,
650 New_External_Name (Chars (Selector_Name (Id_Ref)), 'T'));
651 Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
653 elsif Nkind (Id_Ref) = N_Indexed_Component then
654 T_Id :=
655 Make_Defining_Identifier (Loc,
656 New_External_Name (Chars (A_Type), 'N'));
658 Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
659 end if;
660 end if;
662 if Present (Fun) then
663 Append (Fun, Decls);
664 Expr := Make_Function_Call (Loc,
665 Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
667 if not In_Init_Proc and then VM_Target = No_VM then
668 Set_Uses_Sec_Stack (Defining_Entity (Fun));
669 end if;
670 end if;
672 Decl := Make_Object_Declaration (Loc,
673 Defining_Identifier => T_Id,
674 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
675 Constant_Present => True,
676 Expression => Expr);
678 Append (Decl, Decls);
679 return Decls;
680 end Build_Task_Image_Decls;
682 -------------------------------
683 -- Build_Task_Image_Function --
684 -------------------------------
686 function Build_Task_Image_Function
687 (Loc : Source_Ptr;
688 Decls : List_Id;
689 Stats : List_Id;
690 Res : Entity_Id) return Node_Id
692 Spec : Node_Id;
694 begin
695 Append_To (Stats,
696 Make_Simple_Return_Statement (Loc,
697 Expression => New_Occurrence_Of (Res, Loc)));
699 Spec := Make_Function_Specification (Loc,
700 Defining_Unit_Name =>
701 Make_Defining_Identifier (Loc, New_Internal_Name ('F')),
702 Result_Definition => New_Occurrence_Of (Standard_String, Loc));
704 -- Calls to 'Image use the secondary stack, which must be cleaned
705 -- up after the task name is built.
707 return Make_Subprogram_Body (Loc,
708 Specification => Spec,
709 Declarations => Decls,
710 Handled_Statement_Sequence =>
711 Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
712 end Build_Task_Image_Function;
714 -----------------------------
715 -- Build_Task_Image_Prefix --
716 -----------------------------
718 procedure Build_Task_Image_Prefix
719 (Loc : Source_Ptr;
720 Len : out Entity_Id;
721 Res : out Entity_Id;
722 Pos : out Entity_Id;
723 Prefix : Entity_Id;
724 Sum : Node_Id;
725 Decls : List_Id;
726 Stats : List_Id)
728 begin
729 Len := Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
731 Append_To (Decls,
732 Make_Object_Declaration (Loc,
733 Defining_Identifier => Len,
734 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
735 Expression => Sum));
737 Res := Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
739 Append_To (Decls,
740 Make_Object_Declaration (Loc,
741 Defining_Identifier => Res,
742 Object_Definition =>
743 Make_Subtype_Indication (Loc,
744 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
745 Constraint =>
746 Make_Index_Or_Discriminant_Constraint (Loc,
747 Constraints =>
748 New_List (
749 Make_Range (Loc,
750 Low_Bound => Make_Integer_Literal (Loc, 1),
751 High_Bound => New_Occurrence_Of (Len, Loc)))))));
753 Pos := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
755 Append_To (Decls,
756 Make_Object_Declaration (Loc,
757 Defining_Identifier => Pos,
758 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
760 -- Pos := Prefix'Length;
762 Append_To (Stats,
763 Make_Assignment_Statement (Loc,
764 Name => New_Occurrence_Of (Pos, Loc),
765 Expression =>
766 Make_Attribute_Reference (Loc,
767 Attribute_Name => Name_Length,
768 Prefix => New_Occurrence_Of (Prefix, Loc),
769 Expressions =>
770 New_List (Make_Integer_Literal (Loc, 1)))));
772 -- Res (1 .. Pos) := Prefix;
774 Append_To (Stats,
775 Make_Assignment_Statement (Loc,
776 Name => Make_Slice (Loc,
777 Prefix => New_Occurrence_Of (Res, Loc),
778 Discrete_Range =>
779 Make_Range (Loc,
780 Low_Bound => Make_Integer_Literal (Loc, 1),
781 High_Bound => New_Occurrence_Of (Pos, Loc))),
783 Expression => New_Occurrence_Of (Prefix, Loc)));
785 Append_To (Stats,
786 Make_Assignment_Statement (Loc,
787 Name => New_Occurrence_Of (Pos, Loc),
788 Expression =>
789 Make_Op_Add (Loc,
790 Left_Opnd => New_Occurrence_Of (Pos, Loc),
791 Right_Opnd => Make_Integer_Literal (Loc, 1))));
792 end Build_Task_Image_Prefix;
794 -----------------------------
795 -- Build_Task_Record_Image --
796 -----------------------------
798 function Build_Task_Record_Image
799 (Loc : Source_Ptr;
800 Id_Ref : Node_Id;
801 Dyn : Boolean := False) return Node_Id
803 Len : Entity_Id;
804 -- Total length of generated name
806 Pos : Entity_Id;
807 -- Index into result
809 Res : Entity_Id;
810 -- String to hold result
812 Pref : Entity_Id;
813 -- Name of enclosing variable, prefix of resulting name
815 Sum : Node_Id;
816 -- Expression to compute total size of string
818 Sel : Entity_Id;
819 -- Entity for selector name
821 Decls : constant List_Id := New_List;
822 Stats : constant List_Id := New_List;
824 begin
825 Pref := Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
827 -- For a dynamic task, the name comes from the target variable.
828 -- For a static one it is a formal of the enclosing init proc.
830 if Dyn then
831 Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
832 Append_To (Decls,
833 Make_Object_Declaration (Loc,
834 Defining_Identifier => Pref,
835 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
836 Expression =>
837 Make_String_Literal (Loc,
838 Strval => String_From_Name_Buffer)));
840 else
841 Append_To (Decls,
842 Make_Object_Renaming_Declaration (Loc,
843 Defining_Identifier => Pref,
844 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
845 Name => Make_Identifier (Loc, Name_uTask_Name)));
846 end if;
848 Sel := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
850 Get_Name_String (Chars (Selector_Name (Id_Ref)));
852 Append_To (Decls,
853 Make_Object_Declaration (Loc,
854 Defining_Identifier => Sel,
855 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
856 Expression =>
857 Make_String_Literal (Loc,
858 Strval => String_From_Name_Buffer)));
860 Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
862 Sum :=
863 Make_Op_Add (Loc,
864 Left_Opnd => Sum,
865 Right_Opnd =>
866 Make_Attribute_Reference (Loc,
867 Attribute_Name => Name_Length,
868 Prefix =>
869 New_Occurrence_Of (Pref, Loc),
870 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
872 Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
874 Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
876 -- Res (Pos) := '.';
878 Append_To (Stats,
879 Make_Assignment_Statement (Loc,
880 Name => Make_Indexed_Component (Loc,
881 Prefix => New_Occurrence_Of (Res, Loc),
882 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
883 Expression =>
884 Make_Character_Literal (Loc,
885 Chars => Name_Find,
886 Char_Literal_Value =>
887 UI_From_Int (Character'Pos ('.')))));
889 Append_To (Stats,
890 Make_Assignment_Statement (Loc,
891 Name => New_Occurrence_Of (Pos, Loc),
892 Expression =>
893 Make_Op_Add (Loc,
894 Left_Opnd => New_Occurrence_Of (Pos, Loc),
895 Right_Opnd => Make_Integer_Literal (Loc, 1))));
897 -- Res (Pos .. Len) := Selector;
899 Append_To (Stats,
900 Make_Assignment_Statement (Loc,
901 Name => Make_Slice (Loc,
902 Prefix => New_Occurrence_Of (Res, Loc),
903 Discrete_Range =>
904 Make_Range (Loc,
905 Low_Bound => New_Occurrence_Of (Pos, Loc),
906 High_Bound => New_Occurrence_Of (Len, Loc))),
907 Expression => New_Occurrence_Of (Sel, Loc)));
909 return Build_Task_Image_Function (Loc, Decls, Stats, Res);
910 end Build_Task_Record_Image;
912 ----------------------------------
913 -- Component_May_Be_Bit_Aligned --
914 ----------------------------------
916 function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is
917 UT : constant Entity_Id := Underlying_Type (Etype (Comp));
919 begin
920 -- If no component clause, then everything is fine, since the back end
921 -- never bit-misaligns by default, even if there is a pragma Packed for
922 -- the record.
924 if No (Component_Clause (Comp)) then
925 return False;
926 end if;
928 -- It is only array and record types that cause trouble
930 if not Is_Record_Type (UT)
931 and then not Is_Array_Type (UT)
932 then
933 return False;
935 -- If we know that we have a small (64 bits or less) record or small
936 -- bit-packed array, then everything is fine, since the back end can
937 -- handle these cases correctly.
939 elsif Esize (Comp) <= 64
940 and then (Is_Record_Type (UT)
941 or else Is_Bit_Packed_Array (UT))
942 then
943 return False;
945 -- Otherwise if the component is not byte aligned, we know we have the
946 -- nasty unaligned case.
948 elsif Normalized_First_Bit (Comp) /= Uint_0
949 or else Esize (Comp) mod System_Storage_Unit /= Uint_0
950 then
951 return True;
953 -- If we are large and byte aligned, then OK at this level
955 else
956 return False;
957 end if;
958 end Component_May_Be_Bit_Aligned;
960 -----------------------------------
961 -- Corresponding_Runtime_Package --
962 -----------------------------------
964 function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is
965 Pkg_Id : RTU_Id := RTU_Null;
967 begin
968 pragma Assert (Is_Concurrent_Type (Typ));
970 if Ekind (Typ) in Protected_Kind then
971 if Has_Entries (Typ)
972 or else Has_Interrupt_Handler (Typ)
973 or else (Has_Attach_Handler (Typ)
974 and then not Restricted_Profile)
976 -- A protected type without entries that covers an interface and
977 -- overrides the abstract routines with protected procedures is
978 -- considered equivalent to a protected type with entries in the
979 -- context of dispatching select statements. It is sufficient to
980 -- check for the presence of an interface list in the declaration
981 -- node to recognize this case.
983 or else Present (Interface_List (Parent (Typ)))
984 then
985 if Abort_Allowed
986 or else Restriction_Active (No_Entry_Queue) = False
987 or else Number_Entries (Typ) > 1
988 or else (Has_Attach_Handler (Typ)
989 and then not Restricted_Profile)
990 then
991 Pkg_Id := System_Tasking_Protected_Objects_Entries;
992 else
993 Pkg_Id := System_Tasking_Protected_Objects_Single_Entry;
994 end if;
996 else
997 Pkg_Id := System_Tasking_Protected_Objects;
998 end if;
999 end if;
1001 return Pkg_Id;
1002 end Corresponding_Runtime_Package;
1004 -------------------------------
1005 -- Convert_To_Actual_Subtype --
1006 -------------------------------
1008 procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
1009 Act_ST : Entity_Id;
1011 begin
1012 Act_ST := Get_Actual_Subtype (Exp);
1014 if Act_ST = Etype (Exp) then
1015 return;
1017 else
1018 Rewrite (Exp,
1019 Convert_To (Act_ST, Relocate_Node (Exp)));
1020 Analyze_And_Resolve (Exp, Act_ST);
1021 end if;
1022 end Convert_To_Actual_Subtype;
1024 -----------------------------------
1025 -- Current_Sem_Unit_Declarations --
1026 -----------------------------------
1028 function Current_Sem_Unit_Declarations return List_Id is
1029 U : Node_Id := Unit (Cunit (Current_Sem_Unit));
1030 Decls : List_Id;
1032 begin
1033 -- If the current unit is a package body, locate the visible
1034 -- declarations of the package spec.
1036 if Nkind (U) = N_Package_Body then
1037 U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
1038 end if;
1040 if Nkind (U) = N_Package_Declaration then
1041 U := Specification (U);
1042 Decls := Visible_Declarations (U);
1044 if No (Decls) then
1045 Decls := New_List;
1046 Set_Visible_Declarations (U, Decls);
1047 end if;
1049 else
1050 Decls := Declarations (U);
1052 if No (Decls) then
1053 Decls := New_List;
1054 Set_Declarations (U, Decls);
1055 end if;
1056 end if;
1058 return Decls;
1059 end Current_Sem_Unit_Declarations;
1061 -----------------------
1062 -- Duplicate_Subexpr --
1063 -----------------------
1065 function Duplicate_Subexpr
1066 (Exp : Node_Id;
1067 Name_Req : Boolean := False) return Node_Id
1069 begin
1070 Remove_Side_Effects (Exp, Name_Req);
1071 return New_Copy_Tree (Exp);
1072 end Duplicate_Subexpr;
1074 ---------------------------------
1075 -- Duplicate_Subexpr_No_Checks --
1076 ---------------------------------
1078 function Duplicate_Subexpr_No_Checks
1079 (Exp : Node_Id;
1080 Name_Req : Boolean := False) return Node_Id
1082 New_Exp : Node_Id;
1084 begin
1085 Remove_Side_Effects (Exp, Name_Req);
1086 New_Exp := New_Copy_Tree (Exp);
1087 Remove_Checks (New_Exp);
1088 return New_Exp;
1089 end Duplicate_Subexpr_No_Checks;
1091 -----------------------------------
1092 -- Duplicate_Subexpr_Move_Checks --
1093 -----------------------------------
1095 function Duplicate_Subexpr_Move_Checks
1096 (Exp : Node_Id;
1097 Name_Req : Boolean := False) return Node_Id
1099 New_Exp : Node_Id;
1101 begin
1102 Remove_Side_Effects (Exp, Name_Req);
1103 New_Exp := New_Copy_Tree (Exp);
1104 Remove_Checks (Exp);
1105 return New_Exp;
1106 end Duplicate_Subexpr_Move_Checks;
1108 --------------------
1109 -- Ensure_Defined --
1110 --------------------
1112 procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
1113 IR : Node_Id;
1115 begin
1116 -- An itype reference must only be created if this is a local
1117 -- itype, so that gigi can elaborate it on the proper objstack.
1119 if Is_Itype (Typ)
1120 and then Scope (Typ) = Current_Scope
1121 then
1122 IR := Make_Itype_Reference (Sloc (N));
1123 Set_Itype (IR, Typ);
1124 Insert_Action (N, IR);
1125 end if;
1126 end Ensure_Defined;
1128 --------------------
1129 -- Entry_Names_OK --
1130 --------------------
1132 function Entry_Names_OK return Boolean is
1133 begin
1134 return
1135 not Restricted_Profile
1136 and then not Global_Discard_Names
1137 and then not Restriction_Active (No_Implicit_Heap_Allocations)
1138 and then not Restriction_Active (No_Local_Allocators);
1139 end Entry_Names_OK;
1141 ---------------------
1142 -- Evolve_And_Then --
1143 ---------------------
1145 procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
1146 begin
1147 if No (Cond) then
1148 Cond := Cond1;
1149 else
1150 Cond :=
1151 Make_And_Then (Sloc (Cond1),
1152 Left_Opnd => Cond,
1153 Right_Opnd => Cond1);
1154 end if;
1155 end Evolve_And_Then;
1157 --------------------
1158 -- Evolve_Or_Else --
1159 --------------------
1161 procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
1162 begin
1163 if No (Cond) then
1164 Cond := Cond1;
1165 else
1166 Cond :=
1167 Make_Or_Else (Sloc (Cond1),
1168 Left_Opnd => Cond,
1169 Right_Opnd => Cond1);
1170 end if;
1171 end Evolve_Or_Else;
1173 ------------------------------
1174 -- Expand_Subtype_From_Expr --
1175 ------------------------------
1177 -- This function is applicable for both static and dynamic allocation of
1178 -- objects which are constrained by an initial expression. Basically it
1179 -- transforms an unconstrained subtype indication into a constrained one.
1180 -- The expression may also be transformed in certain cases in order to
1181 -- avoid multiple evaluation. In the static allocation case, the general
1182 -- scheme is:
1184 -- Val : T := Expr;
1186 -- is transformed into
1188 -- Val : Constrained_Subtype_of_T := Maybe_Modified_Expr;
1190 -- Here are the main cases :
1192 -- <if Expr is a Slice>
1193 -- Val : T ([Index_Subtype (Expr)]) := Expr;
1195 -- <elsif Expr is a String Literal>
1196 -- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
1198 -- <elsif Expr is Constrained>
1199 -- subtype T is Type_Of_Expr
1200 -- Val : T := Expr;
1202 -- <elsif Expr is an entity_name>
1203 -- Val : T (constraints taken from Expr) := Expr;
1205 -- <else>
1206 -- type Axxx is access all T;
1207 -- Rval : Axxx := Expr'ref;
1208 -- Val : T (constraints taken from Rval) := Rval.all;
1210 -- ??? note: when the Expression is allocated in the secondary stack
1211 -- we could use it directly instead of copying it by declaring
1212 -- Val : T (...) renames Rval.all
1214 procedure Expand_Subtype_From_Expr
1215 (N : Node_Id;
1216 Unc_Type : Entity_Id;
1217 Subtype_Indic : Node_Id;
1218 Exp : Node_Id)
1220 Loc : constant Source_Ptr := Sloc (N);
1221 Exp_Typ : constant Entity_Id := Etype (Exp);
1222 T : Entity_Id;
1224 begin
1225 -- In general we cannot build the subtype if expansion is disabled,
1226 -- because internal entities may not have been defined. However, to
1227 -- avoid some cascaded errors, we try to continue when the expression
1228 -- is an array (or string), because it is safe to compute the bounds.
1229 -- It is in fact required to do so even in a generic context, because
1230 -- there may be constants that depend on bounds of string literal.
1232 if not Expander_Active
1233 and then (No (Etype (Exp))
1234 or else Base_Type (Etype (Exp)) /= Standard_String)
1235 then
1236 return;
1237 end if;
1239 if Nkind (Exp) = N_Slice then
1240 declare
1241 Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
1243 begin
1244 Rewrite (Subtype_Indic,
1245 Make_Subtype_Indication (Loc,
1246 Subtype_Mark => New_Reference_To (Unc_Type, Loc),
1247 Constraint =>
1248 Make_Index_Or_Discriminant_Constraint (Loc,
1249 Constraints => New_List
1250 (New_Reference_To (Slice_Type, Loc)))));
1252 -- This subtype indication may be used later for constraint checks
1253 -- we better make sure that if a variable was used as a bound of
1254 -- of the original slice, its value is frozen.
1256 Force_Evaluation (Low_Bound (Scalar_Range (Slice_Type)));
1257 Force_Evaluation (High_Bound (Scalar_Range (Slice_Type)));
1258 end;
1260 elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
1261 Rewrite (Subtype_Indic,
1262 Make_Subtype_Indication (Loc,
1263 Subtype_Mark => New_Reference_To (Unc_Type, Loc),
1264 Constraint =>
1265 Make_Index_Or_Discriminant_Constraint (Loc,
1266 Constraints => New_List (
1267 Make_Literal_Range (Loc,
1268 Literal_Typ => Exp_Typ)))));
1270 elsif Is_Constrained (Exp_Typ)
1271 and then not Is_Class_Wide_Type (Unc_Type)
1272 then
1273 if Is_Itype (Exp_Typ) then
1275 -- Within an initialization procedure, a selected component
1276 -- denotes a component of the enclosing record, and it appears
1277 -- as an actual in a call to its own initialization procedure.
1278 -- If this component depends on the outer discriminant, we must
1279 -- generate the proper actual subtype for it.
1281 if Nkind (Exp) = N_Selected_Component
1282 and then Within_Init_Proc
1283 then
1284 declare
1285 Decl : constant Node_Id :=
1286 Build_Actual_Subtype_Of_Component (Exp_Typ, Exp);
1287 begin
1288 if Present (Decl) then
1289 Insert_Action (N, Decl);
1290 T := Defining_Identifier (Decl);
1291 else
1292 T := Exp_Typ;
1293 end if;
1294 end;
1296 -- No need to generate a new one (new what???)
1298 else
1299 T := Exp_Typ;
1300 end if;
1302 else
1303 T :=
1304 Make_Defining_Identifier (Loc,
1305 Chars => New_Internal_Name ('T'));
1307 Insert_Action (N,
1308 Make_Subtype_Declaration (Loc,
1309 Defining_Identifier => T,
1310 Subtype_Indication => New_Reference_To (Exp_Typ, Loc)));
1312 -- This type is marked as an itype even though it has an
1313 -- explicit declaration because otherwise it can be marked
1314 -- with Is_Generic_Actual_Type and generate spurious errors.
1315 -- (see sem_ch8.Analyze_Package_Renaming and sem_type.covers)
1317 Set_Is_Itype (T);
1318 Set_Associated_Node_For_Itype (T, Exp);
1319 end if;
1321 Rewrite (Subtype_Indic, New_Reference_To (T, Loc));
1323 -- Nothing needs to be done for private types with unknown discriminants
1324 -- if the underlying type is not an unconstrained composite type or it
1325 -- is an unchecked union.
1327 elsif Is_Private_Type (Unc_Type)
1328 and then Has_Unknown_Discriminants (Unc_Type)
1329 and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
1330 or else Is_Constrained (Underlying_Type (Unc_Type))
1331 or else Is_Unchecked_Union (Underlying_Type (Unc_Type)))
1332 then
1333 null;
1335 -- Case of derived type with unknown discriminants where the parent type
1336 -- also has unknown discriminants.
1338 elsif Is_Record_Type (Unc_Type)
1339 and then not Is_Class_Wide_Type (Unc_Type)
1340 and then Has_Unknown_Discriminants (Unc_Type)
1341 and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type))
1342 then
1343 -- Nothing to be done if no underlying record view available
1345 if No (Underlying_Record_View (Unc_Type)) then
1346 null;
1348 -- Otherwise use the Underlying_Record_View to create the proper
1349 -- constrained subtype for an object of a derived type with unknown
1350 -- discriminants.
1352 else
1353 Remove_Side_Effects (Exp);
1354 Rewrite (Subtype_Indic,
1355 Make_Subtype_From_Expr (Exp, Underlying_Record_View (Unc_Type)));
1356 end if;
1358 -- Renamings of class-wide interface types require no equivalent
1359 -- constrained type declarations because we only need to reference
1360 -- the tag component associated with the interface.
1362 elsif Present (N)
1363 and then Nkind (N) = N_Object_Renaming_Declaration
1364 and then Is_Interface (Unc_Type)
1365 then
1366 pragma Assert (Is_Class_Wide_Type (Unc_Type));
1367 null;
1369 -- In Ada95, nothing to be done if the type of the expression is
1370 -- limited, because in this case the expression cannot be copied,
1371 -- and its use can only be by reference.
1373 -- In Ada2005, the context can be an object declaration whose expression
1374 -- is a function that returns in place. If the nominal subtype has
1375 -- unknown discriminants, the call still provides constraints on the
1376 -- object, and we have to create an actual subtype from it.
1378 -- If the type is class-wide, the expression is dynamically tagged and
1379 -- we do not create an actual subtype either. Ditto for an interface.
1381 elsif Is_Limited_Type (Exp_Typ)
1382 and then
1383 (Is_Class_Wide_Type (Exp_Typ)
1384 or else Is_Interface (Exp_Typ)
1385 or else not Has_Unknown_Discriminants (Exp_Typ)
1386 or else not Is_Composite_Type (Unc_Type))
1387 then
1388 null;
1390 -- For limited objects initialized with build in place function calls,
1391 -- nothing to be done; otherwise we prematurely introduce an N_Reference
1392 -- node in the expression initializing the object, which breaks the
1393 -- circuitry that detects and adds the additional arguments to the
1394 -- called function.
1396 elsif Is_Build_In_Place_Function_Call (Exp) then
1397 null;
1399 else
1400 Remove_Side_Effects (Exp);
1401 Rewrite (Subtype_Indic,
1402 Make_Subtype_From_Expr (Exp, Unc_Type));
1403 end if;
1404 end Expand_Subtype_From_Expr;
1406 --------------------
1407 -- Find_Init_Call --
1408 --------------------
1410 function Find_Init_Call
1411 (Var : Entity_Id;
1412 Rep_Clause : Node_Id) return Node_Id
1414 Typ : constant Entity_Id := Etype (Var);
1416 Init_Proc : Entity_Id;
1417 -- Initialization procedure for Typ
1419 function Find_Init_Call_In_List (From : Node_Id) return Node_Id;
1420 -- Look for init call for Var starting at From and scanning the
1421 -- enclosing list until Rep_Clause or the end of the list is reached.
1423 ----------------------------
1424 -- Find_Init_Call_In_List --
1425 ----------------------------
1427 function Find_Init_Call_In_List (From : Node_Id) return Node_Id is
1428 Init_Call : Node_Id;
1429 begin
1430 Init_Call := From;
1432 while Present (Init_Call) and then Init_Call /= Rep_Clause loop
1433 if Nkind (Init_Call) = N_Procedure_Call_Statement
1434 and then Is_Entity_Name (Name (Init_Call))
1435 and then Entity (Name (Init_Call)) = Init_Proc
1436 then
1437 return Init_Call;
1438 end if;
1439 Next (Init_Call);
1440 end loop;
1442 return Empty;
1443 end Find_Init_Call_In_List;
1445 Init_Call : Node_Id;
1447 -- Start of processing for Find_Init_Call
1449 begin
1450 if not Has_Non_Null_Base_Init_Proc (Typ) then
1451 -- No init proc for the type, so obviously no call to be found
1453 return Empty;
1454 end if;
1456 Init_Proc := Base_Init_Proc (Typ);
1458 -- First scan the list containing the declaration of Var
1460 Init_Call := Find_Init_Call_In_List (From => Next (Parent (Var)));
1462 -- If not found, also look on Var's freeze actions list, if any, since
1463 -- the init call may have been moved there (case of an address clause
1464 -- applying to Var).
1466 if No (Init_Call) and then Present (Freeze_Node (Var)) then
1467 Init_Call := Find_Init_Call_In_List
1468 (First (Actions (Freeze_Node (Var))));
1469 end if;
1471 return Init_Call;
1472 end Find_Init_Call;
1474 ------------------------
1475 -- Find_Interface_ADT --
1476 ------------------------
1478 function Find_Interface_ADT
1479 (T : Entity_Id;
1480 Iface : Entity_Id) return Elmt_Id
1482 ADT : Elmt_Id;
1483 Typ : Entity_Id := T;
1485 begin
1486 pragma Assert (Is_Interface (Iface));
1488 -- Handle private types
1490 if Has_Private_Declaration (Typ)
1491 and then Present (Full_View (Typ))
1492 then
1493 Typ := Full_View (Typ);
1494 end if;
1496 -- Handle access types
1498 if Is_Access_Type (Typ) then
1499 Typ := Directly_Designated_Type (Typ);
1500 end if;
1502 -- Handle task and protected types implementing interfaces
1504 if Is_Concurrent_Type (Typ) then
1505 Typ := Corresponding_Record_Type (Typ);
1506 end if;
1508 pragma Assert
1509 (not Is_Class_Wide_Type (Typ)
1510 and then Ekind (Typ) /= E_Incomplete_Type);
1512 if Is_Ancestor (Iface, Typ) then
1513 return First_Elmt (Access_Disp_Table (Typ));
1515 else
1516 ADT :=
1517 Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ))));
1518 while Present (ADT)
1519 and then Present (Related_Type (Node (ADT)))
1520 and then Related_Type (Node (ADT)) /= Iface
1521 and then not Is_Ancestor (Iface, Related_Type (Node (ADT)))
1522 loop
1523 Next_Elmt (ADT);
1524 end loop;
1526 pragma Assert (Present (Related_Type (Node (ADT))));
1527 return ADT;
1528 end if;
1529 end Find_Interface_ADT;
1531 ------------------------
1532 -- Find_Interface_Tag --
1533 ------------------------
1535 function Find_Interface_Tag
1536 (T : Entity_Id;
1537 Iface : Entity_Id) return Entity_Id
1539 AI_Tag : Entity_Id;
1540 Found : Boolean := False;
1541 Typ : Entity_Id := T;
1543 procedure Find_Tag (Typ : Entity_Id);
1544 -- Internal subprogram used to recursively climb to the ancestors
1546 --------------
1547 -- Find_Tag --
1548 --------------
1550 procedure Find_Tag (Typ : Entity_Id) is
1551 AI_Elmt : Elmt_Id;
1552 AI : Node_Id;
1554 begin
1555 -- This routine does not handle the case in which the interface is an
1556 -- ancestor of Typ. That case is handled by the enclosing subprogram.
1558 pragma Assert (Typ /= Iface);
1560 -- Climb to the root type handling private types
1562 if Present (Full_View (Etype (Typ))) then
1563 if Full_View (Etype (Typ)) /= Typ then
1564 Find_Tag (Full_View (Etype (Typ)));
1565 end if;
1567 elsif Etype (Typ) /= Typ then
1568 Find_Tag (Etype (Typ));
1569 end if;
1571 -- Traverse the list of interfaces implemented by the type
1573 if not Found
1574 and then Present (Interfaces (Typ))
1575 and then not (Is_Empty_Elmt_List (Interfaces (Typ)))
1576 then
1577 -- Skip the tag associated with the primary table
1579 pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
1580 AI_Tag := Next_Tag_Component (First_Tag_Component (Typ));
1581 pragma Assert (Present (AI_Tag));
1583 AI_Elmt := First_Elmt (Interfaces (Typ));
1584 while Present (AI_Elmt) loop
1585 AI := Node (AI_Elmt);
1587 if AI = Iface or else Is_Ancestor (Iface, AI) then
1588 Found := True;
1589 return;
1590 end if;
1592 AI_Tag := Next_Tag_Component (AI_Tag);
1593 Next_Elmt (AI_Elmt);
1594 end loop;
1595 end if;
1596 end Find_Tag;
1598 -- Start of processing for Find_Interface_Tag
1600 begin
1601 pragma Assert (Is_Interface (Iface));
1603 -- Handle access types
1605 if Is_Access_Type (Typ) then
1606 Typ := Directly_Designated_Type (Typ);
1607 end if;
1609 -- Handle class-wide types
1611 if Is_Class_Wide_Type (Typ) then
1612 Typ := Root_Type (Typ);
1613 end if;
1615 -- Handle private types
1617 if Has_Private_Declaration (Typ)
1618 and then Present (Full_View (Typ))
1619 then
1620 Typ := Full_View (Typ);
1621 end if;
1623 -- Handle entities from the limited view
1625 if Ekind (Typ) = E_Incomplete_Type then
1626 pragma Assert (Present (Non_Limited_View (Typ)));
1627 Typ := Non_Limited_View (Typ);
1628 end if;
1630 -- Handle task and protected types implementing interfaces
1632 if Is_Concurrent_Type (Typ) then
1633 Typ := Corresponding_Record_Type (Typ);
1634 end if;
1636 -- If the interface is an ancestor of the type, then it shared the
1637 -- primary dispatch table.
1639 if Is_Ancestor (Iface, Typ) then
1640 pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
1641 return First_Tag_Component (Typ);
1643 -- Otherwise we need to search for its associated tag component
1645 else
1646 Find_Tag (Typ);
1647 pragma Assert (Found);
1648 return AI_Tag;
1649 end if;
1650 end Find_Interface_Tag;
1652 ------------------
1653 -- Find_Prim_Op --
1654 ------------------
1656 function Find_Prim_Op (T : Entity_Id; Name : Name_Id) return Entity_Id is
1657 Prim : Elmt_Id;
1658 Typ : Entity_Id := T;
1659 Op : Entity_Id;
1661 begin
1662 if Is_Class_Wide_Type (Typ) then
1663 Typ := Root_Type (Typ);
1664 end if;
1666 Typ := Underlying_Type (Typ);
1668 -- Loop through primitive operations
1670 Prim := First_Elmt (Primitive_Operations (Typ));
1671 while Present (Prim) loop
1672 Op := Node (Prim);
1674 -- We can retrieve primitive operations by name if it is an internal
1675 -- name. For equality we must check that both of its operands have
1676 -- the same type, to avoid confusion with user-defined equalities
1677 -- than may have a non-symmetric signature.
1679 exit when Chars (Op) = Name
1680 and then
1681 (Name /= Name_Op_Eq
1682 or else Etype (First_Entity (Op)) = Etype (Last_Entity (Op)));
1684 Next_Elmt (Prim);
1686 -- Raise Program_Error if no primitive found
1688 if No (Prim) then
1689 raise Program_Error;
1690 end if;
1691 end loop;
1693 return Node (Prim);
1694 end Find_Prim_Op;
1696 ------------------
1697 -- Find_Prim_Op --
1698 ------------------
1700 function Find_Prim_Op
1701 (T : Entity_Id;
1702 Name : TSS_Name_Type) return Entity_Id
1704 Prim : Elmt_Id;
1705 Typ : Entity_Id := T;
1707 begin
1708 if Is_Class_Wide_Type (Typ) then
1709 Typ := Root_Type (Typ);
1710 end if;
1712 Typ := Underlying_Type (Typ);
1714 Prim := First_Elmt (Primitive_Operations (Typ));
1715 while not Is_TSS (Node (Prim), Name) loop
1716 Next_Elmt (Prim);
1718 -- Raise program error if no primitive found
1720 if No (Prim) then
1721 raise Program_Error;
1722 end if;
1723 end loop;
1725 return Node (Prim);
1726 end Find_Prim_Op;
1728 ----------------------------
1729 -- Find_Protection_Object --
1730 ----------------------------
1732 function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is
1733 S : Entity_Id;
1735 begin
1736 S := Scop;
1737 while Present (S) loop
1738 if (Ekind (S) = E_Entry
1739 or else Ekind (S) = E_Entry_Family
1740 or else Ekind (S) = E_Function
1741 or else Ekind (S) = E_Procedure)
1742 and then Present (Protection_Object (S))
1743 then
1744 return Protection_Object (S);
1745 end if;
1747 S := Scope (S);
1748 end loop;
1750 -- If we do not find a Protection object in the scope chain, then
1751 -- something has gone wrong, most likely the object was never created.
1753 raise Program_Error;
1754 end Find_Protection_Object;
1756 ----------------------
1757 -- Force_Evaluation --
1758 ----------------------
1760 procedure Force_Evaluation (Exp : Node_Id; Name_Req : Boolean := False) is
1761 begin
1762 Remove_Side_Effects (Exp, Name_Req, Variable_Ref => True);
1763 end Force_Evaluation;
1765 ------------------------
1766 -- Generate_Poll_Call --
1767 ------------------------
1769 procedure Generate_Poll_Call (N : Node_Id) is
1770 begin
1771 -- No poll call if polling not active
1773 if not Polling_Required then
1774 return;
1776 -- Otherwise generate require poll call
1778 else
1779 Insert_Before_And_Analyze (N,
1780 Make_Procedure_Call_Statement (Sloc (N),
1781 Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
1782 end if;
1783 end Generate_Poll_Call;
1785 ---------------------------------
1786 -- Get_Current_Value_Condition --
1787 ---------------------------------
1789 -- Note: the implementation of this procedure is very closely tied to the
1790 -- implementation of Set_Current_Value_Condition. In the Get procedure, we
1791 -- interpret Current_Value fields set by the Set procedure, so the two
1792 -- procedures need to be closely coordinated.
1794 procedure Get_Current_Value_Condition
1795 (Var : Node_Id;
1796 Op : out Node_Kind;
1797 Val : out Node_Id)
1799 Loc : constant Source_Ptr := Sloc (Var);
1800 Ent : constant Entity_Id := Entity (Var);
1802 procedure Process_Current_Value_Condition
1803 (N : Node_Id;
1804 S : Boolean);
1805 -- N is an expression which holds either True (S = True) or False (S =
1806 -- False) in the condition. This procedure digs out the expression and
1807 -- if it refers to Ent, sets Op and Val appropriately.
1809 -------------------------------------
1810 -- Process_Current_Value_Condition --
1811 -------------------------------------
1813 procedure Process_Current_Value_Condition
1814 (N : Node_Id;
1815 S : Boolean)
1817 Cond : Node_Id;
1818 Sens : Boolean;
1820 begin
1821 Cond := N;
1822 Sens := S;
1824 -- Deal with NOT operators, inverting sense
1826 while Nkind (Cond) = N_Op_Not loop
1827 Cond := Right_Opnd (Cond);
1828 Sens := not Sens;
1829 end loop;
1831 -- Deal with AND THEN and AND cases
1833 if Nkind (Cond) = N_And_Then
1834 or else Nkind (Cond) = N_Op_And
1835 then
1836 -- Don't ever try to invert a condition that is of the form
1837 -- of an AND or AND THEN (since we are not doing sufficiently
1838 -- general processing to allow this).
1840 if Sens = False then
1841 Op := N_Empty;
1842 Val := Empty;
1843 return;
1844 end if;
1846 -- Recursively process AND and AND THEN branches
1848 Process_Current_Value_Condition (Left_Opnd (Cond), True);
1850 if Op /= N_Empty then
1851 return;
1852 end if;
1854 Process_Current_Value_Condition (Right_Opnd (Cond), True);
1855 return;
1857 -- Case of relational operator
1859 elsif Nkind (Cond) in N_Op_Compare then
1860 Op := Nkind (Cond);
1862 -- Invert sense of test if inverted test
1864 if Sens = False then
1865 case Op is
1866 when N_Op_Eq => Op := N_Op_Ne;
1867 when N_Op_Ne => Op := N_Op_Eq;
1868 when N_Op_Lt => Op := N_Op_Ge;
1869 when N_Op_Gt => Op := N_Op_Le;
1870 when N_Op_Le => Op := N_Op_Gt;
1871 when N_Op_Ge => Op := N_Op_Lt;
1872 when others => raise Program_Error;
1873 end case;
1874 end if;
1876 -- Case of entity op value
1878 if Is_Entity_Name (Left_Opnd (Cond))
1879 and then Ent = Entity (Left_Opnd (Cond))
1880 and then Compile_Time_Known_Value (Right_Opnd (Cond))
1881 then
1882 Val := Right_Opnd (Cond);
1884 -- Case of value op entity
1886 elsif Is_Entity_Name (Right_Opnd (Cond))
1887 and then Ent = Entity (Right_Opnd (Cond))
1888 and then Compile_Time_Known_Value (Left_Opnd (Cond))
1889 then
1890 Val := Left_Opnd (Cond);
1892 -- We are effectively swapping operands
1894 case Op is
1895 when N_Op_Eq => null;
1896 when N_Op_Ne => null;
1897 when N_Op_Lt => Op := N_Op_Gt;
1898 when N_Op_Gt => Op := N_Op_Lt;
1899 when N_Op_Le => Op := N_Op_Ge;
1900 when N_Op_Ge => Op := N_Op_Le;
1901 when others => raise Program_Error;
1902 end case;
1904 else
1905 Op := N_Empty;
1906 end if;
1908 return;
1910 -- Case of Boolean variable reference, return as though the
1911 -- reference had said var = True.
1913 else
1914 if Is_Entity_Name (Cond)
1915 and then Ent = Entity (Cond)
1916 then
1917 Val := New_Occurrence_Of (Standard_True, Sloc (Cond));
1919 if Sens = False then
1920 Op := N_Op_Ne;
1921 else
1922 Op := N_Op_Eq;
1923 end if;
1924 end if;
1925 end if;
1926 end Process_Current_Value_Condition;
1928 -- Start of processing for Get_Current_Value_Condition
1930 begin
1931 Op := N_Empty;
1932 Val := Empty;
1934 -- Immediate return, nothing doing, if this is not an object
1936 if Ekind (Ent) not in Object_Kind then
1937 return;
1938 end if;
1940 -- Otherwise examine current value
1942 declare
1943 CV : constant Node_Id := Current_Value (Ent);
1944 Sens : Boolean;
1945 Stm : Node_Id;
1947 begin
1948 -- If statement. Condition is known true in THEN section, known False
1949 -- in any ELSIF or ELSE part, and unknown outside the IF statement.
1951 if Nkind (CV) = N_If_Statement then
1953 -- Before start of IF statement
1955 if Loc < Sloc (CV) then
1956 return;
1958 -- After end of IF statement
1960 elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
1961 return;
1962 end if;
1964 -- At this stage we know that we are within the IF statement, but
1965 -- unfortunately, the tree does not record the SLOC of the ELSE so
1966 -- we cannot use a simple SLOC comparison to distinguish between
1967 -- the then/else statements, so we have to climb the tree.
1969 declare
1970 N : Node_Id;
1972 begin
1973 N := Parent (Var);
1974 while Parent (N) /= CV loop
1975 N := Parent (N);
1977 -- If we fall off the top of the tree, then that's odd, but
1978 -- perhaps it could occur in some error situation, and the
1979 -- safest response is simply to assume that the outcome of
1980 -- the condition is unknown. No point in bombing during an
1981 -- attempt to optimize things.
1983 if No (N) then
1984 return;
1985 end if;
1986 end loop;
1988 -- Now we have N pointing to a node whose parent is the IF
1989 -- statement in question, so now we can tell if we are within
1990 -- the THEN statements.
1992 if Is_List_Member (N)
1993 and then List_Containing (N) = Then_Statements (CV)
1994 then
1995 Sens := True;
1997 -- If the variable reference does not come from source, we
1998 -- cannot reliably tell whether it appears in the else part.
1999 -- In particular, if it appears in generated code for a node
2000 -- that requires finalization, it may be attached to a list
2001 -- that has not been yet inserted into the code. For now,
2002 -- treat it as unknown.
2004 elsif not Comes_From_Source (N) then
2005 return;
2007 -- Otherwise we must be in ELSIF or ELSE part
2009 else
2010 Sens := False;
2011 end if;
2012 end;
2014 -- ELSIF part. Condition is known true within the referenced
2015 -- ELSIF, known False in any subsequent ELSIF or ELSE part, and
2016 -- unknown before the ELSE part or after the IF statement.
2018 elsif Nkind (CV) = N_Elsif_Part then
2019 Stm := Parent (CV);
2021 -- Before start of ELSIF part
2023 if Loc < Sloc (CV) then
2024 return;
2026 -- After end of IF statement
2028 elsif Loc >= Sloc (Stm) +
2029 Text_Ptr (UI_To_Int (End_Span (Stm)))
2030 then
2031 return;
2032 end if;
2034 -- Again we lack the SLOC of the ELSE, so we need to climb the
2035 -- tree to see if we are within the ELSIF part in question.
2037 declare
2038 N : Node_Id;
2040 begin
2041 N := Parent (Var);
2042 while Parent (N) /= Stm loop
2043 N := Parent (N);
2045 -- If we fall off the top of the tree, then that's odd, but
2046 -- perhaps it could occur in some error situation, and the
2047 -- safest response is simply to assume that the outcome of
2048 -- the condition is unknown. No point in bombing during an
2049 -- attempt to optimize things.
2051 if No (N) then
2052 return;
2053 end if;
2054 end loop;
2056 -- Now we have N pointing to a node whose parent is the IF
2057 -- statement in question, so see if is the ELSIF part we want.
2058 -- the THEN statements.
2060 if N = CV then
2061 Sens := True;
2063 -- Otherwise we must be in subsequent ELSIF or ELSE part
2065 else
2066 Sens := False;
2067 end if;
2068 end;
2070 -- Iteration scheme of while loop. The condition is known to be
2071 -- true within the body of the loop.
2073 elsif Nkind (CV) = N_Iteration_Scheme then
2074 declare
2075 Loop_Stmt : constant Node_Id := Parent (CV);
2077 begin
2078 -- Before start of body of loop
2080 if Loc < Sloc (Loop_Stmt) then
2081 return;
2083 -- After end of LOOP statement
2085 elsif Loc >= Sloc (End_Label (Loop_Stmt)) then
2086 return;
2088 -- We are within the body of the loop
2090 else
2091 Sens := True;
2092 end if;
2093 end;
2095 -- All other cases of Current_Value settings
2097 else
2098 return;
2099 end if;
2101 -- If we fall through here, then we have a reportable condition, Sens
2102 -- is True if the condition is true and False if it needs inverting.
2104 Process_Current_Value_Condition (Condition (CV), Sens);
2105 end;
2106 end Get_Current_Value_Condition;
2108 ---------------------------------
2109 -- Has_Controlled_Coextensions --
2110 ---------------------------------
2112 function Has_Controlled_Coextensions (Typ : Entity_Id) return Boolean is
2113 D_Typ : Entity_Id;
2114 Discr : Entity_Id;
2116 begin
2117 -- Only consider record types
2119 if Ekind (Typ) /= E_Record_Type
2120 and then Ekind (Typ) /= E_Record_Subtype
2121 then
2122 return False;
2123 end if;
2125 if Has_Discriminants (Typ) then
2126 Discr := First_Discriminant (Typ);
2127 while Present (Discr) loop
2128 D_Typ := Etype (Discr);
2130 if Ekind (D_Typ) = E_Anonymous_Access_Type
2131 and then
2132 (Is_Controlled (Directly_Designated_Type (D_Typ))
2133 or else
2134 Is_Concurrent_Type (Directly_Designated_Type (D_Typ)))
2135 then
2136 return True;
2137 end if;
2139 Next_Discriminant (Discr);
2140 end loop;
2141 end if;
2143 return False;
2144 end Has_Controlled_Coextensions;
2146 --------------------
2147 -- Homonym_Number --
2148 --------------------
2150 function Homonym_Number (Subp : Entity_Id) return Nat is
2151 Count : Nat;
2152 Hom : Entity_Id;
2154 begin
2155 Count := 1;
2156 Hom := Homonym (Subp);
2157 while Present (Hom) loop
2158 if Scope (Hom) = Scope (Subp) then
2159 Count := Count + 1;
2160 end if;
2162 Hom := Homonym (Hom);
2163 end loop;
2165 return Count;
2166 end Homonym_Number;
2168 ------------------------------
2169 -- In_Unconditional_Context --
2170 ------------------------------
2172 function In_Unconditional_Context (Node : Node_Id) return Boolean is
2173 P : Node_Id;
2175 begin
2176 P := Node;
2177 while Present (P) loop
2178 case Nkind (P) is
2179 when N_Subprogram_Body =>
2180 return True;
2182 when N_If_Statement =>
2183 return False;
2185 when N_Loop_Statement =>
2186 return False;
2188 when N_Case_Statement =>
2189 return False;
2191 when others =>
2192 P := Parent (P);
2193 end case;
2194 end loop;
2196 return False;
2197 end In_Unconditional_Context;
2199 -------------------
2200 -- Insert_Action --
2201 -------------------
2203 procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
2204 begin
2205 if Present (Ins_Action) then
2206 Insert_Actions (Assoc_Node, New_List (Ins_Action));
2207 end if;
2208 end Insert_Action;
2210 -- Version with check(s) suppressed
2212 procedure Insert_Action
2213 (Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
2215 begin
2216 Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
2217 end Insert_Action;
2219 --------------------
2220 -- Insert_Actions --
2221 --------------------
2223 procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
2224 N : Node_Id;
2225 P : Node_Id;
2227 Wrapped_Node : Node_Id := Empty;
2229 begin
2230 if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
2231 return;
2232 end if;
2234 -- Ignore insert of actions from inside default expression (or other
2235 -- similar "spec expression") in the special spec-expression analyze
2236 -- mode. Any insertions at this point have no relevance, since we are
2237 -- only doing the analyze to freeze the types of any static expressions.
2238 -- See section "Handling of Default Expressions" in the spec of package
2239 -- Sem for further details.
2241 if In_Spec_Expression then
2242 return;
2243 end if;
2245 -- If the action derives from stuff inside a record, then the actions
2246 -- are attached to the current scope, to be inserted and analyzed on
2247 -- exit from the scope. The reason for this is that we may also
2248 -- be generating freeze actions at the same time, and they must
2249 -- eventually be elaborated in the correct order.
2251 if Is_Record_Type (Current_Scope)
2252 and then not Is_Frozen (Current_Scope)
2253 then
2254 if No (Scope_Stack.Table
2255 (Scope_Stack.Last).Pending_Freeze_Actions)
2256 then
2257 Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
2258 Ins_Actions;
2259 else
2260 Append_List
2261 (Ins_Actions,
2262 Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
2263 end if;
2265 return;
2266 end if;
2268 -- We now intend to climb up the tree to find the right point to
2269 -- insert the actions. We start at Assoc_Node, unless this node is
2270 -- a subexpression in which case we start with its parent. We do this
2271 -- for two reasons. First it speeds things up. Second, if Assoc_Node
2272 -- is itself one of the special nodes like N_And_Then, then we assume
2273 -- that an initial request to insert actions for such a node does not
2274 -- expect the actions to get deposited in the node for later handling
2275 -- when the node is expanded, since clearly the node is being dealt
2276 -- with by the caller. Note that in the subexpression case, N is
2277 -- always the child we came from.
2279 -- N_Raise_xxx_Error is an annoying special case, it is a statement
2280 -- if it has type Standard_Void_Type, and a subexpression otherwise.
2281 -- otherwise. Procedure attribute references are also statements.
2283 if Nkind (Assoc_Node) in N_Subexpr
2284 and then (Nkind (Assoc_Node) in N_Raise_xxx_Error
2285 or else Etype (Assoc_Node) /= Standard_Void_Type)
2286 and then (Nkind (Assoc_Node) /= N_Attribute_Reference
2287 or else
2288 not Is_Procedure_Attribute_Name
2289 (Attribute_Name (Assoc_Node)))
2290 then
2291 P := Assoc_Node; -- ??? does not agree with above!
2292 N := Parent (Assoc_Node);
2294 -- Non-subexpression case. Note that N is initially Empty in this
2295 -- case (N is only guaranteed Non-Empty in the subexpr case).
2297 else
2298 P := Assoc_Node;
2299 N := Empty;
2300 end if;
2302 -- Capture root of the transient scope
2304 if Scope_Is_Transient then
2305 Wrapped_Node := Node_To_Be_Wrapped;
2306 end if;
2308 loop
2309 pragma Assert (Present (P));
2311 case Nkind (P) is
2313 -- Case of right operand of AND THEN or OR ELSE. Put the actions
2314 -- in the Actions field of the right operand. They will be moved
2315 -- out further when the AND THEN or OR ELSE operator is expanded.
2316 -- Nothing special needs to be done for the left operand since
2317 -- in that case the actions are executed unconditionally.
2319 when N_Short_Circuit =>
2320 if N = Right_Opnd (P) then
2322 -- We are now going to either append the actions to the
2323 -- actions field of the short-circuit operation. We will
2324 -- also analyze the actions now.
2326 -- This analysis is really too early, the proper thing would
2327 -- be to just park them there now, and only analyze them if
2328 -- we find we really need them, and to it at the proper
2329 -- final insertion point. However attempting to this proved
2330 -- tricky, so for now we just kill current values before and
2331 -- after the analyze call to make sure we avoid peculiar
2332 -- optimizations from this out of order insertion.
2334 Kill_Current_Values;
2336 if Present (Actions (P)) then
2337 Insert_List_After_And_Analyze
2338 (Last (Actions (P)), Ins_Actions);
2339 else
2340 Set_Actions (P, Ins_Actions);
2341 Analyze_List (Actions (P));
2342 end if;
2344 Kill_Current_Values;
2346 return;
2347 end if;
2349 -- Then or Else operand of conditional expression. Add actions to
2350 -- Then_Actions or Else_Actions field as appropriate. The actions
2351 -- will be moved further out when the conditional is expanded.
2353 when N_Conditional_Expression =>
2354 declare
2355 ThenX : constant Node_Id := Next (First (Expressions (P)));
2356 ElseX : constant Node_Id := Next (ThenX);
2358 begin
2359 -- Actions belong to the then expression, temporarily
2360 -- place them as Then_Actions of the conditional expr.
2361 -- They will be moved to the proper place later when
2362 -- the conditional expression is expanded.
2364 if N = ThenX then
2365 if Present (Then_Actions (P)) then
2366 Insert_List_After_And_Analyze
2367 (Last (Then_Actions (P)), Ins_Actions);
2368 else
2369 Set_Then_Actions (P, Ins_Actions);
2370 Analyze_List (Then_Actions (P));
2371 end if;
2373 return;
2375 -- Actions belong to the else expression, temporarily
2376 -- place them as Else_Actions of the conditional expr.
2377 -- They will be moved to the proper place later when
2378 -- the conditional expression is expanded.
2380 elsif N = ElseX then
2381 if Present (Else_Actions (P)) then
2382 Insert_List_After_And_Analyze
2383 (Last (Else_Actions (P)), Ins_Actions);
2384 else
2385 Set_Else_Actions (P, Ins_Actions);
2386 Analyze_List (Else_Actions (P));
2387 end if;
2389 return;
2391 -- Actions belong to the condition. In this case they are
2392 -- unconditionally executed, and so we can continue the
2393 -- search for the proper insert point.
2395 else
2396 null;
2397 end if;
2398 end;
2400 -- Case of appearing in the condition of a while expression or
2401 -- elsif. We insert the actions into the Condition_Actions field.
2402 -- They will be moved further out when the while loop or elsif
2403 -- is analyzed.
2405 when N_Iteration_Scheme |
2406 N_Elsif_Part
2408 if N = Condition (P) then
2409 if Present (Condition_Actions (P)) then
2410 Insert_List_After_And_Analyze
2411 (Last (Condition_Actions (P)), Ins_Actions);
2412 else
2413 Set_Condition_Actions (P, Ins_Actions);
2415 -- Set the parent of the insert actions explicitly.
2416 -- This is not a syntactic field, but we need the
2417 -- parent field set, in particular so that freeze
2418 -- can understand that it is dealing with condition
2419 -- actions, and properly insert the freezing actions.
2421 Set_Parent (Ins_Actions, P);
2422 Analyze_List (Condition_Actions (P));
2423 end if;
2425 return;
2426 end if;
2428 -- Statements, declarations, pragmas, representation clauses
2430 when
2431 -- Statements
2433 N_Procedure_Call_Statement |
2434 N_Statement_Other_Than_Procedure_Call |
2436 -- Pragmas
2438 N_Pragma |
2440 -- Representation_Clause
2442 N_At_Clause |
2443 N_Attribute_Definition_Clause |
2444 N_Enumeration_Representation_Clause |
2445 N_Record_Representation_Clause |
2447 -- Declarations
2449 N_Abstract_Subprogram_Declaration |
2450 N_Entry_Body |
2451 N_Exception_Declaration |
2452 N_Exception_Renaming_Declaration |
2453 N_Formal_Abstract_Subprogram_Declaration |
2454 N_Formal_Concrete_Subprogram_Declaration |
2455 N_Formal_Object_Declaration |
2456 N_Formal_Type_Declaration |
2457 N_Full_Type_Declaration |
2458 N_Function_Instantiation |
2459 N_Generic_Function_Renaming_Declaration |
2460 N_Generic_Package_Declaration |
2461 N_Generic_Package_Renaming_Declaration |
2462 N_Generic_Procedure_Renaming_Declaration |
2463 N_Generic_Subprogram_Declaration |
2464 N_Implicit_Label_Declaration |
2465 N_Incomplete_Type_Declaration |
2466 N_Number_Declaration |
2467 N_Object_Declaration |
2468 N_Object_Renaming_Declaration |
2469 N_Package_Body |
2470 N_Package_Body_Stub |
2471 N_Package_Declaration |
2472 N_Package_Instantiation |
2473 N_Package_Renaming_Declaration |
2474 N_Private_Extension_Declaration |
2475 N_Private_Type_Declaration |
2476 N_Procedure_Instantiation |
2477 N_Protected_Body |
2478 N_Protected_Body_Stub |
2479 N_Protected_Type_Declaration |
2480 N_Single_Task_Declaration |
2481 N_Subprogram_Body |
2482 N_Subprogram_Body_Stub |
2483 N_Subprogram_Declaration |
2484 N_Subprogram_Renaming_Declaration |
2485 N_Subtype_Declaration |
2486 N_Task_Body |
2487 N_Task_Body_Stub |
2488 N_Task_Type_Declaration |
2490 -- Freeze entity behaves like a declaration or statement
2492 N_Freeze_Entity
2494 -- Do not insert here if the item is not a list member (this
2495 -- happens for example with a triggering statement, and the
2496 -- proper approach is to insert before the entire select).
2498 if not Is_List_Member (P) then
2499 null;
2501 -- Do not insert if parent of P is an N_Component_Association
2502 -- node (i.e. we are in the context of an N_Aggregate or
2503 -- N_Extension_Aggregate node. In this case we want to insert
2504 -- before the entire aggregate.
2506 elsif Nkind (Parent (P)) = N_Component_Association then
2507 null;
2509 -- Do not insert if the parent of P is either an N_Variant
2510 -- node or an N_Record_Definition node, meaning in either
2511 -- case that P is a member of a component list, and that
2512 -- therefore the actions should be inserted outside the
2513 -- complete record declaration.
2515 elsif Nkind (Parent (P)) = N_Variant
2516 or else Nkind (Parent (P)) = N_Record_Definition
2517 then
2518 null;
2520 -- Do not insert freeze nodes within the loop generated for
2521 -- an aggregate, because they may be elaborated too late for
2522 -- subsequent use in the back end: within a package spec the
2523 -- loop is part of the elaboration procedure and is only
2524 -- elaborated during the second pass.
2525 -- If the loop comes from source, or the entity is local to
2526 -- the loop itself it must remain within.
2528 elsif Nkind (Parent (P)) = N_Loop_Statement
2529 and then not Comes_From_Source (Parent (P))
2530 and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
2531 and then
2532 Scope (Entity (First (Ins_Actions))) /= Current_Scope
2533 then
2534 null;
2536 -- Otherwise we can go ahead and do the insertion
2538 elsif P = Wrapped_Node then
2539 Store_Before_Actions_In_Scope (Ins_Actions);
2540 return;
2542 else
2543 Insert_List_Before_And_Analyze (P, Ins_Actions);
2544 return;
2545 end if;
2547 -- A special case, N_Raise_xxx_Error can act either as a
2548 -- statement or a subexpression. We tell the difference
2549 -- by looking at the Etype. It is set to Standard_Void_Type
2550 -- in the statement case.
2552 when
2553 N_Raise_xxx_Error =>
2554 if Etype (P) = Standard_Void_Type then
2555 if P = Wrapped_Node then
2556 Store_Before_Actions_In_Scope (Ins_Actions);
2557 else
2558 Insert_List_Before_And_Analyze (P, Ins_Actions);
2559 end if;
2561 return;
2563 -- In the subexpression case, keep climbing
2565 else
2566 null;
2567 end if;
2569 -- If a component association appears within a loop created for
2570 -- an array aggregate, attach the actions to the association so
2571 -- they can be subsequently inserted within the loop. For other
2572 -- component associations insert outside of the aggregate. For
2573 -- an association that will generate a loop, its Loop_Actions
2574 -- attribute is already initialized (see exp_aggr.adb).
2576 -- The list of loop_actions can in turn generate additional ones,
2577 -- that are inserted before the associated node. If the associated
2578 -- node is outside the aggregate, the new actions are collected
2579 -- at the end of the loop actions, to respect the order in which
2580 -- they are to be elaborated.
2582 when
2583 N_Component_Association =>
2584 if Nkind (Parent (P)) = N_Aggregate
2585 and then Present (Loop_Actions (P))
2586 then
2587 if Is_Empty_List (Loop_Actions (P)) then
2588 Set_Loop_Actions (P, Ins_Actions);
2589 Analyze_List (Ins_Actions);
2591 else
2592 declare
2593 Decl : Node_Id;
2595 begin
2596 -- Check whether these actions were generated
2597 -- by a declaration that is part of the loop_
2598 -- actions for the component_association.
2600 Decl := Assoc_Node;
2601 while Present (Decl) loop
2602 exit when Parent (Decl) = P
2603 and then Is_List_Member (Decl)
2604 and then
2605 List_Containing (Decl) = Loop_Actions (P);
2606 Decl := Parent (Decl);
2607 end loop;
2609 if Present (Decl) then
2610 Insert_List_Before_And_Analyze
2611 (Decl, Ins_Actions);
2612 else
2613 Insert_List_After_And_Analyze
2614 (Last (Loop_Actions (P)), Ins_Actions);
2615 end if;
2616 end;
2617 end if;
2619 return;
2621 else
2622 null;
2623 end if;
2625 -- Another special case, an attribute denoting a procedure call
2627 when
2628 N_Attribute_Reference =>
2629 if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
2630 if P = Wrapped_Node then
2631 Store_Before_Actions_In_Scope (Ins_Actions);
2632 else
2633 Insert_List_Before_And_Analyze (P, Ins_Actions);
2634 end if;
2636 return;
2638 -- In the subexpression case, keep climbing
2640 else
2641 null;
2642 end if;
2644 -- For all other node types, keep climbing tree
2646 when
2647 N_Abortable_Part |
2648 N_Accept_Alternative |
2649 N_Access_Definition |
2650 N_Access_Function_Definition |
2651 N_Access_Procedure_Definition |
2652 N_Access_To_Object_Definition |
2653 N_Aggregate |
2654 N_Allocator |
2655 N_Case_Statement_Alternative |
2656 N_Character_Literal |
2657 N_Compilation_Unit |
2658 N_Compilation_Unit_Aux |
2659 N_Component_Clause |
2660 N_Component_Declaration |
2661 N_Component_Definition |
2662 N_Component_List |
2663 N_Constrained_Array_Definition |
2664 N_Decimal_Fixed_Point_Definition |
2665 N_Defining_Character_Literal |
2666 N_Defining_Identifier |
2667 N_Defining_Operator_Symbol |
2668 N_Defining_Program_Unit_Name |
2669 N_Delay_Alternative |
2670 N_Delta_Constraint |
2671 N_Derived_Type_Definition |
2672 N_Designator |
2673 N_Digits_Constraint |
2674 N_Discriminant_Association |
2675 N_Discriminant_Specification |
2676 N_Empty |
2677 N_Entry_Body_Formal_Part |
2678 N_Entry_Call_Alternative |
2679 N_Entry_Declaration |
2680 N_Entry_Index_Specification |
2681 N_Enumeration_Type_Definition |
2682 N_Error |
2683 N_Exception_Handler |
2684 N_Expanded_Name |
2685 N_Explicit_Dereference |
2686 N_Extension_Aggregate |
2687 N_Floating_Point_Definition |
2688 N_Formal_Decimal_Fixed_Point_Definition |
2689 N_Formal_Derived_Type_Definition |
2690 N_Formal_Discrete_Type_Definition |
2691 N_Formal_Floating_Point_Definition |
2692 N_Formal_Modular_Type_Definition |
2693 N_Formal_Ordinary_Fixed_Point_Definition |
2694 N_Formal_Package_Declaration |
2695 N_Formal_Private_Type_Definition |
2696 N_Formal_Signed_Integer_Type_Definition |
2697 N_Function_Call |
2698 N_Function_Specification |
2699 N_Generic_Association |
2700 N_Handled_Sequence_Of_Statements |
2701 N_Identifier |
2702 N_In |
2703 N_Index_Or_Discriminant_Constraint |
2704 N_Indexed_Component |
2705 N_Integer_Literal |
2706 N_Itype_Reference |
2707 N_Label |
2708 N_Loop_Parameter_Specification |
2709 N_Mod_Clause |
2710 N_Modular_Type_Definition |
2711 N_Not_In |
2712 N_Null |
2713 N_Op_Abs |
2714 N_Op_Add |
2715 N_Op_And |
2716 N_Op_Concat |
2717 N_Op_Divide |
2718 N_Op_Eq |
2719 N_Op_Expon |
2720 N_Op_Ge |
2721 N_Op_Gt |
2722 N_Op_Le |
2723 N_Op_Lt |
2724 N_Op_Minus |
2725 N_Op_Mod |
2726 N_Op_Multiply |
2727 N_Op_Ne |
2728 N_Op_Not |
2729 N_Op_Or |
2730 N_Op_Plus |
2731 N_Op_Rem |
2732 N_Op_Rotate_Left |
2733 N_Op_Rotate_Right |
2734 N_Op_Shift_Left |
2735 N_Op_Shift_Right |
2736 N_Op_Shift_Right_Arithmetic |
2737 N_Op_Subtract |
2738 N_Op_Xor |
2739 N_Operator_Symbol |
2740 N_Ordinary_Fixed_Point_Definition |
2741 N_Others_Choice |
2742 N_Package_Specification |
2743 N_Parameter_Association |
2744 N_Parameter_Specification |
2745 N_Pop_Constraint_Error_Label |
2746 N_Pop_Program_Error_Label |
2747 N_Pop_Storage_Error_Label |
2748 N_Pragma_Argument_Association |
2749 N_Procedure_Specification |
2750 N_Protected_Definition |
2751 N_Push_Constraint_Error_Label |
2752 N_Push_Program_Error_Label |
2753 N_Push_Storage_Error_Label |
2754 N_Qualified_Expression |
2755 N_Range |
2756 N_Range_Constraint |
2757 N_Real_Literal |
2758 N_Real_Range_Specification |
2759 N_Record_Definition |
2760 N_Reference |
2761 N_SCIL_Dispatch_Table_Object_Init |
2762 N_SCIL_Dispatch_Table_Tag_Init |
2763 N_SCIL_Dispatching_Call |
2764 N_SCIL_Membership_Test |
2765 N_SCIL_Tag_Init |
2766 N_Selected_Component |
2767 N_Signed_Integer_Type_Definition |
2768 N_Single_Protected_Declaration |
2769 N_Slice |
2770 N_String_Literal |
2771 N_Subprogram_Info |
2772 N_Subtype_Indication |
2773 N_Subunit |
2774 N_Task_Definition |
2775 N_Terminate_Alternative |
2776 N_Triggering_Alternative |
2777 N_Type_Conversion |
2778 N_Unchecked_Expression |
2779 N_Unchecked_Type_Conversion |
2780 N_Unconstrained_Array_Definition |
2781 N_Unused_At_End |
2782 N_Unused_At_Start |
2783 N_Use_Package_Clause |
2784 N_Use_Type_Clause |
2785 N_Variant |
2786 N_Variant_Part |
2787 N_Validate_Unchecked_Conversion |
2788 N_With_Clause
2790 null;
2792 end case;
2794 -- Make sure that inserted actions stay in the transient scope
2796 if P = Wrapped_Node then
2797 Store_Before_Actions_In_Scope (Ins_Actions);
2798 return;
2799 end if;
2801 -- If we fall through above tests, keep climbing tree
2803 N := P;
2805 if Nkind (Parent (N)) = N_Subunit then
2807 -- This is the proper body corresponding to a stub. Insertion
2808 -- must be done at the point of the stub, which is in the decla-
2809 -- rative part of the parent unit.
2811 P := Corresponding_Stub (Parent (N));
2813 else
2814 P := Parent (N);
2815 end if;
2816 end loop;
2817 end Insert_Actions;
2819 -- Version with check(s) suppressed
2821 procedure Insert_Actions
2822 (Assoc_Node : Node_Id;
2823 Ins_Actions : List_Id;
2824 Suppress : Check_Id)
2826 begin
2827 if Suppress = All_Checks then
2828 declare
2829 Svg : constant Suppress_Array := Scope_Suppress;
2830 begin
2831 Scope_Suppress := (others => True);
2832 Insert_Actions (Assoc_Node, Ins_Actions);
2833 Scope_Suppress := Svg;
2834 end;
2836 else
2837 declare
2838 Svg : constant Boolean := Scope_Suppress (Suppress);
2839 begin
2840 Scope_Suppress (Suppress) := True;
2841 Insert_Actions (Assoc_Node, Ins_Actions);
2842 Scope_Suppress (Suppress) := Svg;
2843 end;
2844 end if;
2845 end Insert_Actions;
2847 --------------------------
2848 -- Insert_Actions_After --
2849 --------------------------
2851 procedure Insert_Actions_After
2852 (Assoc_Node : Node_Id;
2853 Ins_Actions : List_Id)
2855 begin
2856 if Scope_Is_Transient
2857 and then Assoc_Node = Node_To_Be_Wrapped
2858 then
2859 Store_After_Actions_In_Scope (Ins_Actions);
2860 else
2861 Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
2862 end if;
2863 end Insert_Actions_After;
2865 ---------------------------------
2866 -- Insert_Library_Level_Action --
2867 ---------------------------------
2869 procedure Insert_Library_Level_Action (N : Node_Id) is
2870 Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
2872 begin
2873 Push_Scope (Cunit_Entity (Main_Unit));
2874 -- ??? should this be Current_Sem_Unit instead of Main_Unit?
2876 if No (Actions (Aux)) then
2877 Set_Actions (Aux, New_List (N));
2878 else
2879 Append (N, Actions (Aux));
2880 end if;
2882 Analyze (N);
2883 Pop_Scope;
2884 end Insert_Library_Level_Action;
2886 ----------------------------------
2887 -- Insert_Library_Level_Actions --
2888 ----------------------------------
2890 procedure Insert_Library_Level_Actions (L : List_Id) is
2891 Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
2893 begin
2894 if Is_Non_Empty_List (L) then
2895 Push_Scope (Cunit_Entity (Main_Unit));
2896 -- ??? should this be Current_Sem_Unit instead of Main_Unit?
2898 if No (Actions (Aux)) then
2899 Set_Actions (Aux, L);
2900 Analyze_List (L);
2901 else
2902 Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
2903 end if;
2905 Pop_Scope;
2906 end if;
2907 end Insert_Library_Level_Actions;
2909 ----------------------
2910 -- Inside_Init_Proc --
2911 ----------------------
2913 function Inside_Init_Proc return Boolean is
2914 S : Entity_Id;
2916 begin
2917 S := Current_Scope;
2918 while Present (S)
2919 and then S /= Standard_Standard
2920 loop
2921 if Is_Init_Proc (S) then
2922 return True;
2923 else
2924 S := Scope (S);
2925 end if;
2926 end loop;
2928 return False;
2929 end Inside_Init_Proc;
2931 ----------------------------
2932 -- Is_All_Null_Statements --
2933 ----------------------------
2935 function Is_All_Null_Statements (L : List_Id) return Boolean is
2936 Stm : Node_Id;
2938 begin
2939 Stm := First (L);
2940 while Present (Stm) loop
2941 if Nkind (Stm) /= N_Null_Statement then
2942 return False;
2943 end if;
2945 Next (Stm);
2946 end loop;
2948 return True;
2949 end Is_All_Null_Statements;
2951 ---------------------------------
2952 -- Is_Fully_Repped_Tagged_Type --
2953 ---------------------------------
2955 function Is_Fully_Repped_Tagged_Type (T : Entity_Id) return Boolean is
2956 U : constant Entity_Id := Underlying_Type (T);
2957 Comp : Entity_Id;
2959 begin
2960 if No (U) or else not Is_Tagged_Type (U) then
2961 return False;
2962 elsif Has_Discriminants (U) then
2963 return False;
2964 elsif not Has_Specified_Layout (U) then
2965 return False;
2966 end if;
2968 -- Here we have a tagged type, see if it has any unlayed out fields
2969 -- other than a possible tag and parent fields. If so, we return False.
2971 Comp := First_Component (U);
2972 while Present (Comp) loop
2973 if not Is_Tag (Comp)
2974 and then Chars (Comp) /= Name_uParent
2975 and then No (Component_Clause (Comp))
2976 then
2977 return False;
2978 else
2979 Next_Component (Comp);
2980 end if;
2981 end loop;
2983 -- All components are layed out
2985 return True;
2986 end Is_Fully_Repped_Tagged_Type;
2988 ----------------------------------
2989 -- Is_Library_Level_Tagged_Type --
2990 ----------------------------------
2992 function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is
2993 begin
2994 return Is_Tagged_Type (Typ)
2995 and then Is_Library_Level_Entity (Typ);
2996 end Is_Library_Level_Tagged_Type;
2998 ----------------------------------
2999 -- Is_Possibly_Unaligned_Object --
3000 ----------------------------------
3002 function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is
3003 T : constant Entity_Id := Etype (N);
3005 begin
3006 -- If renamed object, apply test to underlying object
3008 if Is_Entity_Name (N)
3009 and then Is_Object (Entity (N))
3010 and then Present (Renamed_Object (Entity (N)))
3011 then
3012 return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N)));
3013 end if;
3015 -- Tagged and controlled types and aliased types are always aligned,
3016 -- as are concurrent types.
3018 if Is_Aliased (T)
3019 or else Has_Controlled_Component (T)
3020 or else Is_Concurrent_Type (T)
3021 or else Is_Tagged_Type (T)
3022 or else Is_Controlled (T)
3023 then
3024 return False;
3025 end if;
3027 -- If this is an element of a packed array, may be unaligned
3029 if Is_Ref_To_Bit_Packed_Array (N) then
3030 return True;
3031 end if;
3033 -- Case of component reference
3035 if Nkind (N) = N_Selected_Component then
3036 declare
3037 P : constant Node_Id := Prefix (N);
3038 C : constant Entity_Id := Entity (Selector_Name (N));
3039 M : Nat;
3040 S : Nat;
3042 begin
3043 -- If component reference is for an array with non-static bounds,
3044 -- then it is always aligned: we can only process unaligned
3045 -- arrays with static bounds (more accurately bounds known at
3046 -- compile time).
3048 if Is_Array_Type (T)
3049 and then not Compile_Time_Known_Bounds (T)
3050 then
3051 return False;
3052 end if;
3054 -- If component is aliased, it is definitely properly aligned
3056 if Is_Aliased (C) then
3057 return False;
3058 end if;
3060 -- If component is for a type implemented as a scalar, and the
3061 -- record is packed, and the component is other than the first
3062 -- component of the record, then the component may be unaligned.
3064 if Is_Packed (Etype (P))
3065 and then Represented_As_Scalar (Etype (C))
3066 and then First_Entity (Scope (C)) /= C
3067 then
3068 return True;
3069 end if;
3071 -- Compute maximum possible alignment for T
3073 -- If alignment is known, then that settles things
3075 if Known_Alignment (T) then
3076 M := UI_To_Int (Alignment (T));
3078 -- If alignment is not known, tentatively set max alignment
3080 else
3081 M := Ttypes.Maximum_Alignment;
3083 -- We can reduce this if the Esize is known since the default
3084 -- alignment will never be more than the smallest power of 2
3085 -- that does not exceed this Esize value.
3087 if Known_Esize (T) then
3088 S := UI_To_Int (Esize (T));
3090 while (M / 2) >= S loop
3091 M := M / 2;
3092 end loop;
3093 end if;
3094 end if;
3096 -- If the component reference is for a record that has a specified
3097 -- alignment, and we either know it is too small, or cannot tell,
3098 -- then the component may be unaligned
3100 if Known_Alignment (Etype (P))
3101 and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
3102 and then M > Alignment (Etype (P))
3103 then
3104 return True;
3105 end if;
3107 -- Case of component clause present which may specify an
3108 -- unaligned position.
3110 if Present (Component_Clause (C)) then
3112 -- Otherwise we can do a test to make sure that the actual
3113 -- start position in the record, and the length, are both
3114 -- consistent with the required alignment. If not, we know
3115 -- that we are unaligned.
3117 declare
3118 Align_In_Bits : constant Nat := M * System_Storage_Unit;
3119 begin
3120 if Component_Bit_Offset (C) mod Align_In_Bits /= 0
3121 or else Esize (C) mod Align_In_Bits /= 0
3122 then
3123 return True;
3124 end if;
3125 end;
3126 end if;
3128 -- Otherwise, for a component reference, test prefix
3130 return Is_Possibly_Unaligned_Object (P);
3131 end;
3133 -- If not a component reference, must be aligned
3135 else
3136 return False;
3137 end if;
3138 end Is_Possibly_Unaligned_Object;
3140 ---------------------------------
3141 -- Is_Possibly_Unaligned_Slice --
3142 ---------------------------------
3144 function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is
3145 begin
3146 -- Go to renamed object
3148 if Is_Entity_Name (N)
3149 and then Is_Object (Entity (N))
3150 and then Present (Renamed_Object (Entity (N)))
3151 then
3152 return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N)));
3153 end if;
3155 -- The reference must be a slice
3157 if Nkind (N) /= N_Slice then
3158 return False;
3159 end if;
3161 -- Always assume the worst for a nested record component with a
3162 -- component clause, which gigi/gcc does not appear to handle well.
3163 -- It is not clear why this special test is needed at all ???
3165 if Nkind (Prefix (N)) = N_Selected_Component
3166 and then Nkind (Prefix (Prefix (N))) = N_Selected_Component
3167 and then
3168 Present (Component_Clause (Entity (Selector_Name (Prefix (N)))))
3169 then
3170 return True;
3171 end if;
3173 -- We only need to worry if the target has strict alignment
3175 if not Target_Strict_Alignment then
3176 return False;
3177 end if;
3179 -- If it is a slice, then look at the array type being sliced
3181 declare
3182 Sarr : constant Node_Id := Prefix (N);
3183 -- Prefix of the slice, i.e. the array being sliced
3185 Styp : constant Entity_Id := Etype (Prefix (N));
3186 -- Type of the array being sliced
3188 Pref : Node_Id;
3189 Ptyp : Entity_Id;
3191 begin
3192 -- The problems arise if the array object that is being sliced
3193 -- is a component of a record or array, and we cannot guarantee
3194 -- the alignment of the array within its containing object.
3196 -- To investigate this, we look at successive prefixes to see
3197 -- if we have a worrisome indexed or selected component.
3199 Pref := Sarr;
3200 loop
3201 -- Case of array is part of an indexed component reference
3203 if Nkind (Pref) = N_Indexed_Component then
3204 Ptyp := Etype (Prefix (Pref));
3206 -- The only problematic case is when the array is packed,
3207 -- in which case we really know nothing about the alignment
3208 -- of individual components.
3210 if Is_Bit_Packed_Array (Ptyp) then
3211 return True;
3212 end if;
3214 -- Case of array is part of a selected component reference
3216 elsif Nkind (Pref) = N_Selected_Component then
3217 Ptyp := Etype (Prefix (Pref));
3219 -- We are definitely in trouble if the record in question
3220 -- has an alignment, and either we know this alignment is
3221 -- inconsistent with the alignment of the slice, or we
3222 -- don't know what the alignment of the slice should be.
3224 if Known_Alignment (Ptyp)
3225 and then (Unknown_Alignment (Styp)
3226 or else Alignment (Styp) > Alignment (Ptyp))
3227 then
3228 return True;
3229 end if;
3231 -- We are in potential trouble if the record type is packed.
3232 -- We could special case when we know that the array is the
3233 -- first component, but that's not such a simple case ???
3235 if Is_Packed (Ptyp) then
3236 return True;
3237 end if;
3239 -- We are in trouble if there is a component clause, and
3240 -- either we do not know the alignment of the slice, or
3241 -- the alignment of the slice is inconsistent with the
3242 -- bit position specified by the component clause.
3244 declare
3245 Field : constant Entity_Id := Entity (Selector_Name (Pref));
3246 begin
3247 if Present (Component_Clause (Field))
3248 and then
3249 (Unknown_Alignment (Styp)
3250 or else
3251 (Component_Bit_Offset (Field) mod
3252 (System_Storage_Unit * Alignment (Styp))) /= 0)
3253 then
3254 return True;
3255 end if;
3256 end;
3258 -- For cases other than selected or indexed components we
3259 -- know we are OK, since no issues arise over alignment.
3261 else
3262 return False;
3263 end if;
3265 -- We processed an indexed component or selected component
3266 -- reference that looked safe, so keep checking prefixes.
3268 Pref := Prefix (Pref);
3269 end loop;
3270 end;
3271 end Is_Possibly_Unaligned_Slice;
3273 --------------------------------
3274 -- Is_Ref_To_Bit_Packed_Array --
3275 --------------------------------
3277 function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is
3278 Result : Boolean;
3279 Expr : Node_Id;
3281 begin
3282 if Is_Entity_Name (N)
3283 and then Is_Object (Entity (N))
3284 and then Present (Renamed_Object (Entity (N)))
3285 then
3286 return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N)));
3287 end if;
3289 if Nkind (N) = N_Indexed_Component
3290 or else
3291 Nkind (N) = N_Selected_Component
3292 then
3293 if Is_Bit_Packed_Array (Etype (Prefix (N))) then
3294 Result := True;
3295 else
3296 Result := Is_Ref_To_Bit_Packed_Array (Prefix (N));
3297 end if;
3299 if Result and then Nkind (N) = N_Indexed_Component then
3300 Expr := First (Expressions (N));
3301 while Present (Expr) loop
3302 Force_Evaluation (Expr);
3303 Next (Expr);
3304 end loop;
3305 end if;
3307 return Result;
3309 else
3310 return False;
3311 end if;
3312 end Is_Ref_To_Bit_Packed_Array;
3314 --------------------------------
3315 -- Is_Ref_To_Bit_Packed_Slice --
3316 --------------------------------
3318 function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is
3319 begin
3320 if Nkind (N) = N_Type_Conversion then
3321 return Is_Ref_To_Bit_Packed_Slice (Expression (N));
3323 elsif Is_Entity_Name (N)
3324 and then Is_Object (Entity (N))
3325 and then Present (Renamed_Object (Entity (N)))
3326 then
3327 return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N)));
3329 elsif Nkind (N) = N_Slice
3330 and then Is_Bit_Packed_Array (Etype (Prefix (N)))
3331 then
3332 return True;
3334 elsif Nkind (N) = N_Indexed_Component
3335 or else
3336 Nkind (N) = N_Selected_Component
3337 then
3338 return Is_Ref_To_Bit_Packed_Slice (Prefix (N));
3340 else
3341 return False;
3342 end if;
3343 end Is_Ref_To_Bit_Packed_Slice;
3345 -----------------------
3346 -- Is_Renamed_Object --
3347 -----------------------
3349 function Is_Renamed_Object (N : Node_Id) return Boolean is
3350 Pnod : constant Node_Id := Parent (N);
3351 Kind : constant Node_Kind := Nkind (Pnod);
3352 begin
3353 if Kind = N_Object_Renaming_Declaration then
3354 return True;
3355 elsif Nkind_In (Kind, N_Indexed_Component, N_Selected_Component) then
3356 return Is_Renamed_Object (Pnod);
3357 else
3358 return False;
3359 end if;
3360 end Is_Renamed_Object;
3362 ----------------------------
3363 -- Is_Untagged_Derivation --
3364 ----------------------------
3366 function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
3367 begin
3368 return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
3369 or else
3370 (Is_Private_Type (T) and then Present (Full_View (T))
3371 and then not Is_Tagged_Type (Full_View (T))
3372 and then Is_Derived_Type (Full_View (T))
3373 and then Etype (Full_View (T)) /= T);
3374 end Is_Untagged_Derivation;
3376 ---------------------------
3377 -- Is_Volatile_Reference --
3378 ---------------------------
3380 function Is_Volatile_Reference (N : Node_Id) return Boolean is
3381 begin
3382 if Nkind (N) in N_Has_Etype
3383 and then Present (Etype (N))
3384 and then Treat_As_Volatile (Etype (N))
3385 then
3386 return True;
3388 elsif Is_Entity_Name (N) then
3389 return Treat_As_Volatile (Entity (N));
3391 elsif Nkind (N) = N_Slice then
3392 return Is_Volatile_Reference (Prefix (N));
3394 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
3395 if (Is_Entity_Name (Prefix (N))
3396 and then Has_Volatile_Components (Entity (Prefix (N))))
3397 or else (Present (Etype (Prefix (N)))
3398 and then Has_Volatile_Components (Etype (Prefix (N))))
3399 then
3400 return True;
3401 else
3402 return Is_Volatile_Reference (Prefix (N));
3403 end if;
3405 else
3406 return False;
3407 end if;
3408 end Is_Volatile_Reference;
3410 --------------------
3411 -- Kill_Dead_Code --
3412 --------------------
3414 procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is
3415 W : Boolean := Warn;
3416 -- Set False if warnings suppressed
3418 begin
3419 if Present (N) then
3420 Remove_Warning_Messages (N);
3422 -- Generate warning if appropriate
3424 if W then
3426 -- We suppress the warning if this code is under control of an
3427 -- if statement, whose condition is a simple identifier, and
3428 -- either we are in an instance, or warnings off is set for this
3429 -- identifier. The reason for killing it in the instance case is
3430 -- that it is common and reasonable for code to be deleted in
3431 -- instances for various reasons.
3433 if Nkind (Parent (N)) = N_If_Statement then
3434 declare
3435 C : constant Node_Id := Condition (Parent (N));
3436 begin
3437 if Nkind (C) = N_Identifier
3438 and then
3439 (In_Instance
3440 or else (Present (Entity (C))
3441 and then Has_Warnings_Off (Entity (C))))
3442 then
3443 W := False;
3444 end if;
3445 end;
3446 end if;
3448 -- Generate warning if not suppressed
3450 if W then
3451 Error_Msg_F
3452 ("?this code can never be executed and has been deleted!", N);
3453 end if;
3454 end if;
3456 -- Recurse into block statements and bodies to process declarations
3457 -- and statements.
3459 if Nkind (N) = N_Block_Statement
3460 or else Nkind (N) = N_Subprogram_Body
3461 or else Nkind (N) = N_Package_Body
3462 then
3463 Kill_Dead_Code (Declarations (N), False);
3464 Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
3466 if Nkind (N) = N_Subprogram_Body then
3467 Set_Is_Eliminated (Defining_Entity (N));
3468 end if;
3470 elsif Nkind (N) = N_Package_Declaration then
3471 Kill_Dead_Code (Visible_Declarations (Specification (N)));
3472 Kill_Dead_Code (Private_Declarations (Specification (N)));
3474 -- ??? After this point, Delete_Tree has been called on all
3475 -- declarations in Specification (N), so references to
3476 -- entities therein look suspicious.
3478 declare
3479 E : Entity_Id := First_Entity (Defining_Entity (N));
3480 begin
3481 while Present (E) loop
3482 if Ekind (E) = E_Operator then
3483 Set_Is_Eliminated (E);
3484 end if;
3486 Next_Entity (E);
3487 end loop;
3488 end;
3490 -- Recurse into composite statement to kill individual statements,
3491 -- in particular instantiations.
3493 elsif Nkind (N) = N_If_Statement then
3494 Kill_Dead_Code (Then_Statements (N));
3495 Kill_Dead_Code (Elsif_Parts (N));
3496 Kill_Dead_Code (Else_Statements (N));
3498 elsif Nkind (N) = N_Loop_Statement then
3499 Kill_Dead_Code (Statements (N));
3501 elsif Nkind (N) = N_Case_Statement then
3502 declare
3503 Alt : Node_Id;
3504 begin
3505 Alt := First (Alternatives (N));
3506 while Present (Alt) loop
3507 Kill_Dead_Code (Statements (Alt));
3508 Next (Alt);
3509 end loop;
3510 end;
3512 elsif Nkind (N) = N_Case_Statement_Alternative then
3513 Kill_Dead_Code (Statements (N));
3515 -- Deal with dead instances caused by deleting instantiations
3517 elsif Nkind (N) in N_Generic_Instantiation then
3518 Remove_Dead_Instance (N);
3519 end if;
3520 end if;
3521 end Kill_Dead_Code;
3523 -- Case where argument is a list of nodes to be killed
3525 procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is
3526 N : Node_Id;
3527 W : Boolean;
3528 begin
3529 W := Warn;
3530 if Is_Non_Empty_List (L) then
3531 N := First (L);
3532 while Present (N) loop
3533 Kill_Dead_Code (N, W);
3534 W := False;
3535 Next (N);
3536 end loop;
3537 end if;
3538 end Kill_Dead_Code;
3540 ------------------------
3541 -- Known_Non_Negative --
3542 ------------------------
3544 function Known_Non_Negative (Opnd : Node_Id) return Boolean is
3545 begin
3546 if Is_OK_Static_Expression (Opnd)
3547 and then Expr_Value (Opnd) >= 0
3548 then
3549 return True;
3551 else
3552 declare
3553 Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
3555 begin
3556 return
3557 Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
3558 end;
3559 end if;
3560 end Known_Non_Negative;
3562 --------------------
3563 -- Known_Non_Null --
3564 --------------------
3566 function Known_Non_Null (N : Node_Id) return Boolean is
3567 begin
3568 -- Checks for case where N is an entity reference
3570 if Is_Entity_Name (N) and then Present (Entity (N)) then
3571 declare
3572 E : constant Entity_Id := Entity (N);
3573 Op : Node_Kind;
3574 Val : Node_Id;
3576 begin
3577 -- First check if we are in decisive conditional
3579 Get_Current_Value_Condition (N, Op, Val);
3581 if Known_Null (Val) then
3582 if Op = N_Op_Eq then
3583 return False;
3584 elsif Op = N_Op_Ne then
3585 return True;
3586 end if;
3587 end if;
3589 -- If OK to do replacement, test Is_Known_Non_Null flag
3591 if OK_To_Do_Constant_Replacement (E) then
3592 return Is_Known_Non_Null (E);
3594 -- Otherwise if not safe to do replacement, then say so
3596 else
3597 return False;
3598 end if;
3599 end;
3601 -- True if access attribute
3603 elsif Nkind (N) = N_Attribute_Reference
3604 and then (Attribute_Name (N) = Name_Access
3605 or else
3606 Attribute_Name (N) = Name_Unchecked_Access
3607 or else
3608 Attribute_Name (N) = Name_Unrestricted_Access)
3609 then
3610 return True;
3612 -- True if allocator
3614 elsif Nkind (N) = N_Allocator then
3615 return True;
3617 -- For a conversion, true if expression is known non-null
3619 elsif Nkind (N) = N_Type_Conversion then
3620 return Known_Non_Null (Expression (N));
3622 -- Above are all cases where the value could be determined to be
3623 -- non-null. In all other cases, we don't know, so return False.
3625 else
3626 return False;
3627 end if;
3628 end Known_Non_Null;
3630 ----------------
3631 -- Known_Null --
3632 ----------------
3634 function Known_Null (N : Node_Id) return Boolean is
3635 begin
3636 -- Checks for case where N is an entity reference
3638 if Is_Entity_Name (N) and then Present (Entity (N)) then
3639 declare
3640 E : constant Entity_Id := Entity (N);
3641 Op : Node_Kind;
3642 Val : Node_Id;
3644 begin
3645 -- Constant null value is for sure null
3647 if Ekind (E) = E_Constant
3648 and then Known_Null (Constant_Value (E))
3649 then
3650 return True;
3651 end if;
3653 -- First check if we are in decisive conditional
3655 Get_Current_Value_Condition (N, Op, Val);
3657 if Known_Null (Val) then
3658 if Op = N_Op_Eq then
3659 return True;
3660 elsif Op = N_Op_Ne then
3661 return False;
3662 end if;
3663 end if;
3665 -- If OK to do replacement, test Is_Known_Null flag
3667 if OK_To_Do_Constant_Replacement (E) then
3668 return Is_Known_Null (E);
3670 -- Otherwise if not safe to do replacement, then say so
3672 else
3673 return False;
3674 end if;
3675 end;
3677 -- True if explicit reference to null
3679 elsif Nkind (N) = N_Null then
3680 return True;
3682 -- For a conversion, true if expression is known null
3684 elsif Nkind (N) = N_Type_Conversion then
3685 return Known_Null (Expression (N));
3687 -- Above are all cases where the value could be determined to be null.
3688 -- In all other cases, we don't know, so return False.
3690 else
3691 return False;
3692 end if;
3693 end Known_Null;
3695 -----------------------------
3696 -- Make_CW_Equivalent_Type --
3697 -----------------------------
3699 -- Create a record type used as an equivalent of any member of the class
3700 -- which takes its size from exp.
3702 -- Generate the following code:
3704 -- type Equiv_T is record
3705 -- _parent : T (List of discriminant constraints taken from Exp);
3706 -- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
3707 -- end Equiv_T;
3709 -- ??? Note that this type does not guarantee same alignment as all
3710 -- derived types
3712 function Make_CW_Equivalent_Type
3713 (T : Entity_Id;
3714 E : Node_Id) return Entity_Id
3716 Loc : constant Source_Ptr := Sloc (E);
3717 Root_Typ : constant Entity_Id := Root_Type (T);
3718 List_Def : constant List_Id := Empty_List;
3719 Comp_List : constant List_Id := New_List;
3720 Equiv_Type : Entity_Id;
3721 Range_Type : Entity_Id;
3722 Str_Type : Entity_Id;
3723 Constr_Root : Entity_Id;
3724 Sizexpr : Node_Id;
3726 begin
3727 if not Has_Discriminants (Root_Typ) then
3728 Constr_Root := Root_Typ;
3729 else
3730 Constr_Root :=
3731 Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
3733 -- subtype cstr__n is T (List of discr constraints taken from Exp)
3735 Append_To (List_Def,
3736 Make_Subtype_Declaration (Loc,
3737 Defining_Identifier => Constr_Root,
3738 Subtype_Indication =>
3739 Make_Subtype_From_Expr (E, Root_Typ)));
3740 end if;
3742 -- Generate the range subtype declaration
3744 Range_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('G'));
3746 if not Is_Interface (Root_Typ) then
3748 -- subtype rg__xx is
3749 -- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
3751 Sizexpr :=
3752 Make_Op_Subtract (Loc,
3753 Left_Opnd =>
3754 Make_Attribute_Reference (Loc,
3755 Prefix =>
3756 OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
3757 Attribute_Name => Name_Size),
3758 Right_Opnd =>
3759 Make_Attribute_Reference (Loc,
3760 Prefix => New_Reference_To (Constr_Root, Loc),
3761 Attribute_Name => Name_Object_Size));
3762 else
3763 -- subtype rg__xx is
3764 -- Storage_Offset range 1 .. Expr'size / Storage_Unit
3766 Sizexpr :=
3767 Make_Attribute_Reference (Loc,
3768 Prefix =>
3769 OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
3770 Attribute_Name => Name_Size);
3771 end if;
3773 Set_Paren_Count (Sizexpr, 1);
3775 Append_To (List_Def,
3776 Make_Subtype_Declaration (Loc,
3777 Defining_Identifier => Range_Type,
3778 Subtype_Indication =>
3779 Make_Subtype_Indication (Loc,
3780 Subtype_Mark => New_Reference_To (RTE (RE_Storage_Offset), Loc),
3781 Constraint => Make_Range_Constraint (Loc,
3782 Range_Expression =>
3783 Make_Range (Loc,
3784 Low_Bound => Make_Integer_Literal (Loc, 1),
3785 High_Bound =>
3786 Make_Op_Divide (Loc,
3787 Left_Opnd => Sizexpr,
3788 Right_Opnd => Make_Integer_Literal (Loc,
3789 Intval => System_Storage_Unit)))))));
3791 -- subtype str__nn is Storage_Array (rg__x);
3793 Str_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
3794 Append_To (List_Def,
3795 Make_Subtype_Declaration (Loc,
3796 Defining_Identifier => Str_Type,
3797 Subtype_Indication =>
3798 Make_Subtype_Indication (Loc,
3799 Subtype_Mark => New_Reference_To (RTE (RE_Storage_Array), Loc),
3800 Constraint =>
3801 Make_Index_Or_Discriminant_Constraint (Loc,
3802 Constraints =>
3803 New_List (New_Reference_To (Range_Type, Loc))))));
3805 -- type Equiv_T is record
3806 -- [ _parent : Tnn; ]
3807 -- E : Str_Type;
3808 -- end Equiv_T;
3810 Equiv_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
3811 Set_Ekind (Equiv_Type, E_Record_Type);
3812 Set_Parent_Subtype (Equiv_Type, Constr_Root);
3814 -- Set Is_Class_Wide_Equivalent_Type very early to trigger the special
3815 -- treatment for this type. In particular, even though _parent's type
3816 -- is a controlled type or contains controlled components, we do not
3817 -- want to set Has_Controlled_Component on it to avoid making it gain
3818 -- an unwanted _controller component.
3820 Set_Is_Class_Wide_Equivalent_Type (Equiv_Type);
3822 if not Is_Interface (Root_Typ) then
3823 Append_To (Comp_List,
3824 Make_Component_Declaration (Loc,
3825 Defining_Identifier =>
3826 Make_Defining_Identifier (Loc, Name_uParent),
3827 Component_Definition =>
3828 Make_Component_Definition (Loc,
3829 Aliased_Present => False,
3830 Subtype_Indication => New_Reference_To (Constr_Root, Loc))));
3831 end if;
3833 Append_To (Comp_List,
3834 Make_Component_Declaration (Loc,
3835 Defining_Identifier =>
3836 Make_Defining_Identifier (Loc,
3837 Chars => New_Internal_Name ('C')),
3838 Component_Definition =>
3839 Make_Component_Definition (Loc,
3840 Aliased_Present => False,
3841 Subtype_Indication => New_Reference_To (Str_Type, Loc))));
3843 Append_To (List_Def,
3844 Make_Full_Type_Declaration (Loc,
3845 Defining_Identifier => Equiv_Type,
3846 Type_Definition =>
3847 Make_Record_Definition (Loc,
3848 Component_List =>
3849 Make_Component_List (Loc,
3850 Component_Items => Comp_List,
3851 Variant_Part => Empty))));
3853 -- Suppress all checks during the analysis of the expanded code
3854 -- to avoid the generation of spurious warnings under ZFP run-time.
3856 Insert_Actions (E, List_Def, Suppress => All_Checks);
3857 return Equiv_Type;
3858 end Make_CW_Equivalent_Type;
3860 ------------------------
3861 -- Make_Literal_Range --
3862 ------------------------
3864 function Make_Literal_Range
3865 (Loc : Source_Ptr;
3866 Literal_Typ : Entity_Id) return Node_Id
3868 Lo : constant Node_Id :=
3869 New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
3870 Index : constant Entity_Id := Etype (Lo);
3872 Hi : Node_Id;
3873 Length_Expr : constant Node_Id :=
3874 Make_Op_Subtract (Loc,
3875 Left_Opnd =>
3876 Make_Integer_Literal (Loc,
3877 Intval => String_Literal_Length (Literal_Typ)),
3878 Right_Opnd =>
3879 Make_Integer_Literal (Loc, 1));
3881 begin
3882 Set_Analyzed (Lo, False);
3884 if Is_Integer_Type (Index) then
3885 Hi :=
3886 Make_Op_Add (Loc,
3887 Left_Opnd => New_Copy_Tree (Lo),
3888 Right_Opnd => Length_Expr);
3889 else
3890 Hi :=
3891 Make_Attribute_Reference (Loc,
3892 Attribute_Name => Name_Val,
3893 Prefix => New_Occurrence_Of (Index, Loc),
3894 Expressions => New_List (
3895 Make_Op_Add (Loc,
3896 Left_Opnd =>
3897 Make_Attribute_Reference (Loc,
3898 Attribute_Name => Name_Pos,
3899 Prefix => New_Occurrence_Of (Index, Loc),
3900 Expressions => New_List (New_Copy_Tree (Lo))),
3901 Right_Opnd => Length_Expr)));
3902 end if;
3904 return
3905 Make_Range (Loc,
3906 Low_Bound => Lo,
3907 High_Bound => Hi);
3908 end Make_Literal_Range;
3910 --------------------------
3911 -- Make_Non_Empty_Check --
3912 --------------------------
3914 function Make_Non_Empty_Check
3915 (Loc : Source_Ptr;
3916 N : Node_Id) return Node_Id
3918 begin
3919 return
3920 Make_Op_Ne (Loc,
3921 Left_Opnd =>
3922 Make_Attribute_Reference (Loc,
3923 Attribute_Name => Name_Length,
3924 Prefix => Duplicate_Subexpr_No_Checks (N, Name_Req => True)),
3925 Right_Opnd =>
3926 Make_Integer_Literal (Loc, 0));
3927 end Make_Non_Empty_Check;
3929 ----------------------------
3930 -- Make_Subtype_From_Expr --
3931 ----------------------------
3933 -- 1. If Expr is an unconstrained array expression, creates
3934 -- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
3936 -- 2. If Expr is a unconstrained discriminated type expression, creates
3937 -- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
3939 -- 3. If Expr is class-wide, creates an implicit class wide subtype
3941 function Make_Subtype_From_Expr
3942 (E : Node_Id;
3943 Unc_Typ : Entity_Id) return Node_Id
3945 Loc : constant Source_Ptr := Sloc (E);
3946 List_Constr : constant List_Id := New_List;
3947 D : Entity_Id;
3949 Full_Subtyp : Entity_Id;
3950 Priv_Subtyp : Entity_Id;
3951 Utyp : Entity_Id;
3952 Full_Exp : Node_Id;
3954 begin
3955 if Is_Private_Type (Unc_Typ)
3956 and then Has_Unknown_Discriminants (Unc_Typ)
3957 then
3958 -- Prepare the subtype completion, Go to base type to
3959 -- find underlying type, because the type may be a generic
3960 -- actual or an explicit subtype.
3962 Utyp := Underlying_Type (Base_Type (Unc_Typ));
3963 Full_Subtyp := Make_Defining_Identifier (Loc,
3964 New_Internal_Name ('C'));
3965 Full_Exp :=
3966 Unchecked_Convert_To
3967 (Utyp, Duplicate_Subexpr_No_Checks (E));
3968 Set_Parent (Full_Exp, Parent (E));
3970 Priv_Subtyp :=
3971 Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
3973 Insert_Action (E,
3974 Make_Subtype_Declaration (Loc,
3975 Defining_Identifier => Full_Subtyp,
3976 Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
3978 -- Define the dummy private subtype
3980 Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
3981 Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ));
3982 Set_Scope (Priv_Subtyp, Full_Subtyp);
3983 Set_Is_Constrained (Priv_Subtyp);
3984 Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
3985 Set_Is_Itype (Priv_Subtyp);
3986 Set_Associated_Node_For_Itype (Priv_Subtyp, E);
3988 if Is_Tagged_Type (Priv_Subtyp) then
3989 Set_Class_Wide_Type
3990 (Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
3991 Set_Primitive_Operations (Priv_Subtyp,
3992 Primitive_Operations (Unc_Typ));
3993 end if;
3995 Set_Full_View (Priv_Subtyp, Full_Subtyp);
3997 return New_Reference_To (Priv_Subtyp, Loc);
3999 elsif Is_Array_Type (Unc_Typ) then
4000 for J in 1 .. Number_Dimensions (Unc_Typ) loop
4001 Append_To (List_Constr,
4002 Make_Range (Loc,
4003 Low_Bound =>
4004 Make_Attribute_Reference (Loc,
4005 Prefix => Duplicate_Subexpr_No_Checks (E),
4006 Attribute_Name => Name_First,
4007 Expressions => New_List (
4008 Make_Integer_Literal (Loc, J))),
4010 High_Bound =>
4011 Make_Attribute_Reference (Loc,
4012 Prefix => Duplicate_Subexpr_No_Checks (E),
4013 Attribute_Name => Name_Last,
4014 Expressions => New_List (
4015 Make_Integer_Literal (Loc, J)))));
4016 end loop;
4018 elsif Is_Class_Wide_Type (Unc_Typ) then
4019 declare
4020 CW_Subtype : Entity_Id;
4021 EQ_Typ : Entity_Id := Empty;
4023 begin
4024 -- A class-wide equivalent type is not needed when VM_Target
4025 -- because the VM back-ends handle the class-wide object
4026 -- initialization itself (and doesn't need or want the
4027 -- additional intermediate type to handle the assignment).
4029 if Expander_Active and then Tagged_Type_Expansion then
4030 EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
4031 end if;
4033 CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
4034 Set_Equivalent_Type (CW_Subtype, EQ_Typ);
4035 Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
4037 return New_Occurrence_Of (CW_Subtype, Loc);
4038 end;
4040 -- Indefinite record type with discriminants
4042 else
4043 D := First_Discriminant (Unc_Typ);
4044 while Present (D) loop
4045 Append_To (List_Constr,
4046 Make_Selected_Component (Loc,
4047 Prefix => Duplicate_Subexpr_No_Checks (E),
4048 Selector_Name => New_Reference_To (D, Loc)));
4050 Next_Discriminant (D);
4051 end loop;
4052 end if;
4054 return
4055 Make_Subtype_Indication (Loc,
4056 Subtype_Mark => New_Reference_To (Unc_Typ, Loc),
4057 Constraint =>
4058 Make_Index_Or_Discriminant_Constraint (Loc,
4059 Constraints => List_Constr));
4060 end Make_Subtype_From_Expr;
4062 -----------------------------
4063 -- May_Generate_Large_Temp --
4064 -----------------------------
4066 -- At the current time, the only types that we return False for (i.e.
4067 -- where we decide we know they cannot generate large temps) are ones
4068 -- where we know the size is 256 bits or less at compile time, and we
4069 -- are still not doing a thorough job on arrays and records ???
4071 function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
4072 begin
4073 if not Size_Known_At_Compile_Time (Typ) then
4074 return False;
4076 elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
4077 return False;
4079 elsif Is_Array_Type (Typ)
4080 and then Present (Packed_Array_Type (Typ))
4081 then
4082 return May_Generate_Large_Temp (Packed_Array_Type (Typ));
4084 -- We could do more here to find other small types ???
4086 else
4087 return True;
4088 end if;
4089 end May_Generate_Large_Temp;
4091 ----------------------------
4092 -- New_Class_Wide_Subtype --
4093 ----------------------------
4095 function New_Class_Wide_Subtype
4096 (CW_Typ : Entity_Id;
4097 N : Node_Id) return Entity_Id
4099 Res : constant Entity_Id := Create_Itype (E_Void, N);
4100 Res_Name : constant Name_Id := Chars (Res);
4101 Res_Scope : constant Entity_Id := Scope (Res);
4103 begin
4104 Copy_Node (CW_Typ, Res);
4105 Set_Comes_From_Source (Res, False);
4106 Set_Sloc (Res, Sloc (N));
4107 Set_Is_Itype (Res);
4108 Set_Associated_Node_For_Itype (Res, N);
4109 Set_Is_Public (Res, False); -- By default, may be changed below.
4110 Set_Public_Status (Res);
4111 Set_Chars (Res, Res_Name);
4112 Set_Scope (Res, Res_Scope);
4113 Set_Ekind (Res, E_Class_Wide_Subtype);
4114 Set_Next_Entity (Res, Empty);
4115 Set_Etype (Res, Base_Type (CW_Typ));
4116 Set_Is_Frozen (Res, False);
4117 Set_Freeze_Node (Res, Empty);
4118 return (Res);
4119 end New_Class_Wide_Subtype;
4121 --------------------------------
4122 -- Non_Limited_Designated_Type --
4123 ---------------------------------
4125 function Non_Limited_Designated_Type (T : Entity_Id) return Entity_Id is
4126 Desig : constant Entity_Id := Designated_Type (T);
4127 begin
4128 if Ekind (Desig) = E_Incomplete_Type
4129 and then Present (Non_Limited_View (Desig))
4130 then
4131 return Non_Limited_View (Desig);
4132 else
4133 return Desig;
4134 end if;
4135 end Non_Limited_Designated_Type;
4137 -----------------------------------
4138 -- OK_To_Do_Constant_Replacement --
4139 -----------------------------------
4141 function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is
4142 ES : constant Entity_Id := Scope (E);
4143 CS : Entity_Id;
4145 begin
4146 -- Do not replace statically allocated objects, because they may be
4147 -- modified outside the current scope.
4149 if Is_Statically_Allocated (E) then
4150 return False;
4152 -- Do not replace aliased or volatile objects, since we don't know what
4153 -- else might change the value.
4155 elsif Is_Aliased (E) or else Treat_As_Volatile (E) then
4156 return False;
4158 -- Debug flag -gnatdM disconnects this optimization
4160 elsif Debug_Flag_MM then
4161 return False;
4163 -- Otherwise check scopes
4165 else
4166 CS := Current_Scope;
4168 loop
4169 -- If we are in right scope, replacement is safe
4171 if CS = ES then
4172 return True;
4174 -- Packages do not affect the determination of safety
4176 elsif Ekind (CS) = E_Package then
4177 exit when CS = Standard_Standard;
4178 CS := Scope (CS);
4180 -- Blocks do not affect the determination of safety
4182 elsif Ekind (CS) = E_Block then
4183 CS := Scope (CS);
4185 -- Loops do not affect the determination of safety. Note that we
4186 -- kill all current values on entry to a loop, so we are just
4187 -- talking about processing within a loop here.
4189 elsif Ekind (CS) = E_Loop then
4190 CS := Scope (CS);
4192 -- Otherwise, the reference is dubious, and we cannot be sure that
4193 -- it is safe to do the replacement.
4195 else
4196 exit;
4197 end if;
4198 end loop;
4200 return False;
4201 end if;
4202 end OK_To_Do_Constant_Replacement;
4204 ------------------------------------
4205 -- Possible_Bit_Aligned_Component --
4206 ------------------------------------
4208 function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
4209 begin
4210 case Nkind (N) is
4212 -- Case of indexed component
4214 when N_Indexed_Component =>
4215 declare
4216 P : constant Node_Id := Prefix (N);
4217 Ptyp : constant Entity_Id := Etype (P);
4219 begin
4220 -- If we know the component size and it is less than 64, then
4221 -- we are definitely OK. The back end always does assignment of
4222 -- misaligned small objects correctly.
4224 if Known_Static_Component_Size (Ptyp)
4225 and then Component_Size (Ptyp) <= 64
4226 then
4227 return False;
4229 -- Otherwise, we need to test the prefix, to see if we are
4230 -- indexing from a possibly unaligned component.
4232 else
4233 return Possible_Bit_Aligned_Component (P);
4234 end if;
4235 end;
4237 -- Case of selected component
4239 when N_Selected_Component =>
4240 declare
4241 P : constant Node_Id := Prefix (N);
4242 Comp : constant Entity_Id := Entity (Selector_Name (N));
4244 begin
4245 -- If there is no component clause, then we are in the clear
4246 -- since the back end will never misalign a large component
4247 -- unless it is forced to do so. In the clear means we need
4248 -- only the recursive test on the prefix.
4250 if Component_May_Be_Bit_Aligned (Comp) then
4251 return True;
4252 else
4253 return Possible_Bit_Aligned_Component (P);
4254 end if;
4255 end;
4257 -- For a slice, test the prefix, if that is possibly misaligned,
4258 -- then for sure the slice is!
4260 when N_Slice =>
4261 return Possible_Bit_Aligned_Component (Prefix (N));
4263 -- If we have none of the above, it means that we have fallen off the
4264 -- top testing prefixes recursively, and we now have a stand alone
4265 -- object, where we don't have a problem.
4267 when others =>
4268 return False;
4270 end case;
4271 end Possible_Bit_Aligned_Component;
4273 -------------------------
4274 -- Remove_Side_Effects --
4275 -------------------------
4277 procedure Remove_Side_Effects
4278 (Exp : Node_Id;
4279 Name_Req : Boolean := False;
4280 Variable_Ref : Boolean := False)
4282 Loc : constant Source_Ptr := Sloc (Exp);
4283 Exp_Type : constant Entity_Id := Etype (Exp);
4284 Svg_Suppress : constant Suppress_Array := Scope_Suppress;
4285 Def_Id : Entity_Id;
4286 Ref_Type : Entity_Id;
4287 Res : Node_Id;
4288 Ptr_Typ_Decl : Node_Id;
4289 New_Exp : Node_Id;
4290 E : Node_Id;
4292 function Side_Effect_Free (N : Node_Id) return Boolean;
4293 -- Determines if the tree N represents an expression that is known not
4294 -- to have side effects, and for which no processing is required.
4296 function Side_Effect_Free (L : List_Id) return Boolean;
4297 -- Determines if all elements of the list L are side effect free
4299 function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
4300 -- The argument N is a construct where the Prefix is dereferenced if it
4301 -- is an access type and the result is a variable. The call returns True
4302 -- if the construct is side effect free (not considering side effects in
4303 -- other than the prefix which are to be tested by the caller).
4305 function Within_In_Parameter (N : Node_Id) return Boolean;
4306 -- Determines if N is a subcomponent of a composite in-parameter. If so,
4307 -- N is not side-effect free when the actual is global and modifiable
4308 -- indirectly from within a subprogram, because it may be passed by
4309 -- reference. The front-end must be conservative here and assume that
4310 -- this may happen with any array or record type. On the other hand, we
4311 -- cannot create temporaries for all expressions for which this
4312 -- condition is true, for various reasons that might require clearing up
4313 -- ??? For example, discriminant references that appear out of place, or
4314 -- spurious type errors with class-wide expressions. As a result, we
4315 -- limit the transformation to loop bounds, which is so far the only
4316 -- case that requires it.
4318 -----------------------------
4319 -- Safe_Prefixed_Reference --
4320 -----------------------------
4322 function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
4323 begin
4324 -- If prefix is not side effect free, definitely not safe
4326 if not Side_Effect_Free (Prefix (N)) then
4327 return False;
4329 -- If the prefix is of an access type that is not access-to-constant,
4330 -- then this construct is a variable reference, which means it is to
4331 -- be considered to have side effects if Variable_Ref is set True
4332 -- Exception is an access to an entity that is a constant or an
4333 -- in-parameter which does not come from source, and is the result
4334 -- of a previous removal of side-effects.
4336 elsif Is_Access_Type (Etype (Prefix (N)))
4337 and then not Is_Access_Constant (Etype (Prefix (N)))
4338 and then Variable_Ref
4339 then
4340 if not Is_Entity_Name (Prefix (N)) then
4341 return False;
4342 else
4343 return Ekind (Entity (Prefix (N))) = E_Constant
4344 or else Ekind (Entity (Prefix (N))) = E_In_Parameter;
4345 end if;
4347 -- The following test is the simplest way of solving a complex
4348 -- problem uncovered by BB08-010: Side effect on loop bound that
4349 -- is a subcomponent of a global variable:
4350 -- If a loop bound is a subcomponent of a global variable, a
4351 -- modification of that variable within the loop may incorrectly
4352 -- affect the execution of the loop.
4354 elsif not
4355 (Nkind (Parent (Parent (N))) /= N_Loop_Parameter_Specification
4356 or else not Within_In_Parameter (Prefix (N)))
4357 then
4358 return False;
4360 -- All other cases are side effect free
4362 else
4363 return True;
4364 end if;
4365 end Safe_Prefixed_Reference;
4367 ----------------------
4368 -- Side_Effect_Free --
4369 ----------------------
4371 function Side_Effect_Free (N : Node_Id) return Boolean is
4372 begin
4373 -- Note on checks that could raise Constraint_Error. Strictly, if
4374 -- we take advantage of 11.6, these checks do not count as side
4375 -- effects. However, we would just as soon consider that they are
4376 -- side effects, since the backend CSE does not work very well on
4377 -- expressions which can raise Constraint_Error. On the other
4378 -- hand, if we do not consider them to be side effect free, then
4379 -- we get some awkward expansions in -gnato mode, resulting in
4380 -- code insertions at a point where we do not have a clear model
4381 -- for performing the insertions.
4383 -- Special handling for entity names
4385 if Is_Entity_Name (N) then
4387 -- If the entity is a constant, it is definitely side effect
4388 -- free. Note that the test of Is_Variable (N) below might
4389 -- be expected to catch this case, but it does not, because
4390 -- this test goes to the original tree, and we may have
4391 -- already rewritten a variable node with a constant as
4392 -- a result of an earlier Force_Evaluation call.
4394 if Ekind (Entity (N)) = E_Constant
4395 or else Ekind (Entity (N)) = E_In_Parameter
4396 then
4397 return True;
4399 -- Functions are not side effect free
4401 elsif Ekind (Entity (N)) = E_Function then
4402 return False;
4404 -- Variables are considered to be a side effect if Variable_Ref
4405 -- is set or if we have a volatile reference and Name_Req is off.
4406 -- If Name_Req is True then we can't help returning a name which
4407 -- effectively allows multiple references in any case.
4409 elsif Is_Variable (N) then
4410 return not Variable_Ref
4411 and then (not Is_Volatile_Reference (N) or else Name_Req);
4413 -- Any other entity (e.g. a subtype name) is definitely side
4414 -- effect free.
4416 else
4417 return True;
4418 end if;
4420 -- A value known at compile time is always side effect free
4422 elsif Compile_Time_Known_Value (N) then
4423 return True;
4425 -- A variable renaming is not side-effect free, because the
4426 -- renaming will function like a macro in the front-end in
4427 -- some cases, and an assignment can modify the component
4428 -- designated by N, so we need to create a temporary for it.
4430 elsif Is_Entity_Name (Original_Node (N))
4431 and then Is_Renaming_Of_Object (Entity (Original_Node (N)))
4432 and then Ekind (Entity (Original_Node (N))) /= E_Constant
4433 then
4434 return False;
4435 end if;
4437 -- For other than entity names and compile time known values,
4438 -- check the node kind for special processing.
4440 case Nkind (N) is
4442 -- An attribute reference is side effect free if its expressions
4443 -- are side effect free and its prefix is side effect free or
4444 -- is an entity reference.
4446 -- Is this right? what about x'first where x is a variable???
4448 when N_Attribute_Reference =>
4449 return Side_Effect_Free (Expressions (N))
4450 and then Attribute_Name (N) /= Name_Input
4451 and then (Is_Entity_Name (Prefix (N))
4452 or else Side_Effect_Free (Prefix (N)));
4454 -- A binary operator is side effect free if and both operands
4455 -- are side effect free. For this purpose binary operators
4456 -- include membership tests and short circuit forms
4458 when N_Binary_Op | N_Membership_Test | N_Short_Circuit =>
4459 return Side_Effect_Free (Left_Opnd (N))
4460 and then
4461 Side_Effect_Free (Right_Opnd (N));
4463 -- An explicit dereference is side effect free only if it is
4464 -- a side effect free prefixed reference.
4466 when N_Explicit_Dereference =>
4467 return Safe_Prefixed_Reference (N);
4469 -- A call to _rep_to_pos is side effect free, since we generate
4470 -- this pure function call ourselves. Moreover it is critically
4471 -- important to make this exception, since otherwise we can
4472 -- have discriminants in array components which don't look
4473 -- side effect free in the case of an array whose index type
4474 -- is an enumeration type with an enumeration rep clause.
4476 -- All other function calls are not side effect free
4478 when N_Function_Call =>
4479 return Nkind (Name (N)) = N_Identifier
4480 and then Is_TSS (Name (N), TSS_Rep_To_Pos)
4481 and then
4482 Side_Effect_Free (First (Parameter_Associations (N)));
4484 -- An indexed component is side effect free if it is a side
4485 -- effect free prefixed reference and all the indexing
4486 -- expressions are side effect free.
4488 when N_Indexed_Component =>
4489 return Side_Effect_Free (Expressions (N))
4490 and then Safe_Prefixed_Reference (N);
4492 -- A type qualification is side effect free if the expression
4493 -- is side effect free.
4495 when N_Qualified_Expression =>
4496 return Side_Effect_Free (Expression (N));
4498 -- A selected component is side effect free only if it is a
4499 -- side effect free prefixed reference. If it designates a
4500 -- component with a rep. clause it must be treated has having
4501 -- a potential side effect, because it may be modified through
4502 -- a renaming, and a subsequent use of the renaming as a macro
4503 -- will yield the wrong value. This complex interaction between
4504 -- renaming and removing side effects is a reminder that the
4505 -- latter has become a headache to maintain, and that it should
4506 -- be removed in favor of the gcc mechanism to capture values ???
4508 when N_Selected_Component =>
4509 if Nkind (Parent (N)) = N_Explicit_Dereference
4510 and then Has_Non_Standard_Rep (Designated_Type (Etype (N)))
4511 then
4512 return False;
4513 else
4514 return Safe_Prefixed_Reference (N);
4515 end if;
4517 -- A range is side effect free if the bounds are side effect free
4519 when N_Range =>
4520 return Side_Effect_Free (Low_Bound (N))
4521 and then Side_Effect_Free (High_Bound (N));
4523 -- A slice is side effect free if it is a side effect free
4524 -- prefixed reference and the bounds are side effect free.
4526 when N_Slice =>
4527 return Side_Effect_Free (Discrete_Range (N))
4528 and then Safe_Prefixed_Reference (N);
4530 -- A type conversion is side effect free if the expression to be
4531 -- converted is side effect free.
4533 when N_Type_Conversion =>
4534 return Side_Effect_Free (Expression (N));
4536 -- A unary operator is side effect free if the operand
4537 -- is side effect free.
4539 when N_Unary_Op =>
4540 return Side_Effect_Free (Right_Opnd (N));
4542 -- An unchecked type conversion is side effect free only if it
4543 -- is safe and its argument is side effect free.
4545 when N_Unchecked_Type_Conversion =>
4546 return Safe_Unchecked_Type_Conversion (N)
4547 and then Side_Effect_Free (Expression (N));
4549 -- An unchecked expression is side effect free if its expression
4550 -- is side effect free.
4552 when N_Unchecked_Expression =>
4553 return Side_Effect_Free (Expression (N));
4555 -- A literal is side effect free
4557 when N_Character_Literal |
4558 N_Integer_Literal |
4559 N_Real_Literal |
4560 N_String_Literal =>
4561 return True;
4563 -- We consider that anything else has side effects. This is a bit
4564 -- crude, but we are pretty close for most common cases, and we
4565 -- are certainly correct (i.e. we never return True when the
4566 -- answer should be False).
4568 when others =>
4569 return False;
4570 end case;
4571 end Side_Effect_Free;
4573 -- A list is side effect free if all elements of the list are
4574 -- side effect free.
4576 function Side_Effect_Free (L : List_Id) return Boolean is
4577 N : Node_Id;
4579 begin
4580 if L = No_List or else L = Error_List then
4581 return True;
4583 else
4584 N := First (L);
4585 while Present (N) loop
4586 if not Side_Effect_Free (N) then
4587 return False;
4588 else
4589 Next (N);
4590 end if;
4591 end loop;
4593 return True;
4594 end if;
4595 end Side_Effect_Free;
4597 -------------------------
4598 -- Within_In_Parameter --
4599 -------------------------
4601 function Within_In_Parameter (N : Node_Id) return Boolean is
4602 begin
4603 if not Comes_From_Source (N) then
4604 return False;
4606 elsif Is_Entity_Name (N) then
4607 return Ekind (Entity (N)) = E_In_Parameter;
4609 elsif Nkind (N) = N_Indexed_Component
4610 or else Nkind (N) = N_Selected_Component
4611 then
4612 return Within_In_Parameter (Prefix (N));
4613 else
4615 return False;
4616 end if;
4617 end Within_In_Parameter;
4619 -- Start of processing for Remove_Side_Effects
4621 begin
4622 -- If we are side effect free already or expansion is disabled,
4623 -- there is nothing to do.
4625 if Side_Effect_Free (Exp) or else not Expander_Active then
4626 return;
4627 end if;
4629 -- All this must not have any checks
4631 Scope_Suppress := (others => True);
4633 -- If it is a scalar type and we need to capture the value, just make
4634 -- a copy. Likewise for a function call, an attribute reference or an
4635 -- operator. And if we have a volatile reference and Name_Req is not
4636 -- set (see comments above for Side_Effect_Free).
4638 if Is_Elementary_Type (Exp_Type)
4639 and then (Variable_Ref
4640 or else Nkind (Exp) = N_Function_Call
4641 or else Nkind (Exp) = N_Attribute_Reference
4642 or else Nkind (Exp) in N_Op
4643 or else (not Name_Req and then Is_Volatile_Reference (Exp)))
4644 then
4645 Def_Id := Make_Temporary (Loc, 'R', Exp);
4646 Set_Etype (Def_Id, Exp_Type);
4647 Res := New_Reference_To (Def_Id, Loc);
4649 E :=
4650 Make_Object_Declaration (Loc,
4651 Defining_Identifier => Def_Id,
4652 Object_Definition => New_Reference_To (Exp_Type, Loc),
4653 Constant_Present => True,
4654 Expression => Relocate_Node (Exp));
4656 -- Check if the previous node relocation requires readjustment of
4657 -- some SCIL Dispatching node.
4659 if Generate_SCIL
4660 and then Nkind (Exp) = N_Function_Call
4661 then
4662 Adjust_SCIL_Node (Exp, Expression (E));
4663 end if;
4665 Set_Assignment_OK (E);
4666 Insert_Action (Exp, E);
4668 -- If the expression has the form v.all then we can just capture
4669 -- the pointer, and then do an explicit dereference on the result.
4671 elsif Nkind (Exp) = N_Explicit_Dereference then
4672 Def_Id := Make_Temporary (Loc, 'R', Exp);
4673 Res :=
4674 Make_Explicit_Dereference (Loc, New_Reference_To (Def_Id, Loc));
4676 Insert_Action (Exp,
4677 Make_Object_Declaration (Loc,
4678 Defining_Identifier => Def_Id,
4679 Object_Definition =>
4680 New_Reference_To (Etype (Prefix (Exp)), Loc),
4681 Constant_Present => True,
4682 Expression => Relocate_Node (Prefix (Exp))));
4684 -- Similar processing for an unchecked conversion of an expression
4685 -- of the form v.all, where we want the same kind of treatment.
4687 elsif Nkind (Exp) = N_Unchecked_Type_Conversion
4688 and then Nkind (Expression (Exp)) = N_Explicit_Dereference
4689 then
4690 Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
4691 Scope_Suppress := Svg_Suppress;
4692 return;
4694 -- If this is a type conversion, leave the type conversion and remove
4695 -- the side effects in the expression. This is important in several
4696 -- circumstances: for change of representations, and also when this is
4697 -- a view conversion to a smaller object, where gigi can end up creating
4698 -- its own temporary of the wrong size.
4700 elsif Nkind (Exp) = N_Type_Conversion then
4701 Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
4702 Scope_Suppress := Svg_Suppress;
4703 return;
4705 -- If this is an unchecked conversion that Gigi can't handle, make
4706 -- a copy or a use a renaming to capture the value.
4708 elsif Nkind (Exp) = N_Unchecked_Type_Conversion
4709 and then not Safe_Unchecked_Type_Conversion (Exp)
4710 then
4711 if CW_Or_Has_Controlled_Part (Exp_Type) then
4713 -- Use a renaming to capture the expression, rather than create
4714 -- a controlled temporary.
4716 Def_Id := Make_Temporary (Loc, 'R', Exp);
4717 Res := New_Reference_To (Def_Id, Loc);
4719 Insert_Action (Exp,
4720 Make_Object_Renaming_Declaration (Loc,
4721 Defining_Identifier => Def_Id,
4722 Subtype_Mark => New_Reference_To (Exp_Type, Loc),
4723 Name => Relocate_Node (Exp)));
4725 else
4726 Def_Id := Make_Temporary (Loc, 'R', Exp);
4727 Set_Etype (Def_Id, Exp_Type);
4728 Res := New_Reference_To (Def_Id, Loc);
4730 E :=
4731 Make_Object_Declaration (Loc,
4732 Defining_Identifier => Def_Id,
4733 Object_Definition => New_Reference_To (Exp_Type, Loc),
4734 Constant_Present => not Is_Variable (Exp),
4735 Expression => Relocate_Node (Exp));
4737 Set_Assignment_OK (E);
4738 Insert_Action (Exp, E);
4739 end if;
4741 -- For expressions that denote objects, we can use a renaming scheme.
4742 -- We skip using this if we have a volatile reference and we do not
4743 -- have Name_Req set true (see comments above for Side_Effect_Free).
4745 elsif Is_Object_Reference (Exp)
4746 and then Nkind (Exp) /= N_Function_Call
4747 and then (Name_Req or else not Is_Volatile_Reference (Exp))
4748 then
4749 Def_Id := Make_Temporary (Loc, 'R', Exp);
4751 if Nkind (Exp) = N_Selected_Component
4752 and then Nkind (Prefix (Exp)) = N_Function_Call
4753 and then Is_Array_Type (Exp_Type)
4754 then
4755 -- Avoid generating a variable-sized temporary, by generating
4756 -- the renaming declaration just for the function call. The
4757 -- transformation could be refined to apply only when the array
4758 -- component is constrained by a discriminant???
4760 Res :=
4761 Make_Selected_Component (Loc,
4762 Prefix => New_Occurrence_Of (Def_Id, Loc),
4763 Selector_Name => Selector_Name (Exp));
4765 Insert_Action (Exp,
4766 Make_Object_Renaming_Declaration (Loc,
4767 Defining_Identifier => Def_Id,
4768 Subtype_Mark =>
4769 New_Reference_To (Base_Type (Etype (Prefix (Exp))), Loc),
4770 Name => Relocate_Node (Prefix (Exp))));
4772 else
4773 Res := New_Reference_To (Def_Id, Loc);
4775 Insert_Action (Exp,
4776 Make_Object_Renaming_Declaration (Loc,
4777 Defining_Identifier => Def_Id,
4778 Subtype_Mark => New_Reference_To (Exp_Type, Loc),
4779 Name => Relocate_Node (Exp)));
4780 end if;
4782 -- If this is a packed reference, or a selected component with a
4783 -- non-standard representation, a reference to the temporary will
4784 -- be replaced by a copy of the original expression (see
4785 -- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be
4786 -- elaborated by gigi, and is of course not to be replaced in-line
4787 -- by the expression it renames, which would defeat the purpose of
4788 -- removing the side-effect.
4790 if (Nkind (Exp) = N_Selected_Component
4791 or else Nkind (Exp) = N_Indexed_Component)
4792 and then Has_Non_Standard_Rep (Etype (Prefix (Exp)))
4793 then
4794 null;
4795 else
4796 Set_Is_Renaming_Of_Object (Def_Id, False);
4797 end if;
4799 -- Otherwise we generate a reference to the value
4801 else
4802 -- Special processing for function calls that return a limited type.
4803 -- We need to build a declaration that will enable build-in-place
4804 -- expansion of the call. This is not done if the context is already
4805 -- an object declaration, to prevent infinite recursion.
4807 -- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
4808 -- to accommodate functions returning limited objects by reference.
4810 if Nkind (Exp) = N_Function_Call
4811 and then Is_Inherently_Limited_Type (Etype (Exp))
4812 and then Nkind (Parent (Exp)) /= N_Object_Declaration
4813 and then Ada_Version >= Ada_05
4814 then
4815 declare
4816 Obj : constant Entity_Id := Make_Temporary (Loc, 'F', Exp);
4817 Decl : Node_Id;
4819 begin
4820 Decl :=
4821 Make_Object_Declaration (Loc,
4822 Defining_Identifier => Obj,
4823 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
4824 Expression => Relocate_Node (Exp));
4826 -- Check if the previous node relocation requires readjustment
4827 -- of some SCIL Dispatching node.
4829 if Generate_SCIL
4830 and then Nkind (Exp) = N_Function_Call
4831 then
4832 Adjust_SCIL_Node (Exp, Expression (Decl));
4833 end if;
4835 Insert_Action (Exp, Decl);
4836 Set_Etype (Obj, Exp_Type);
4837 Rewrite (Exp, New_Occurrence_Of (Obj, Loc));
4838 return;
4839 end;
4840 end if;
4842 Ref_Type := Make_Defining_Identifier (Loc, New_Internal_Name ('A'));
4844 Ptr_Typ_Decl :=
4845 Make_Full_Type_Declaration (Loc,
4846 Defining_Identifier => Ref_Type,
4847 Type_Definition =>
4848 Make_Access_To_Object_Definition (Loc,
4849 All_Present => True,
4850 Subtype_Indication =>
4851 New_Reference_To (Exp_Type, Loc)));
4853 E := Exp;
4854 Insert_Action (Exp, Ptr_Typ_Decl);
4856 Def_Id := Make_Temporary (Loc, 'R', Exp);
4857 Set_Etype (Def_Id, Exp_Type);
4859 Res :=
4860 Make_Explicit_Dereference (Loc,
4861 Prefix => New_Reference_To (Def_Id, Loc));
4863 if Nkind (E) = N_Explicit_Dereference then
4864 New_Exp := Relocate_Node (Prefix (E));
4865 else
4866 E := Relocate_Node (E);
4867 New_Exp := Make_Reference (Loc, E);
4868 end if;
4870 if Is_Delayed_Aggregate (E) then
4872 -- The expansion of nested aggregates is delayed until the
4873 -- enclosing aggregate is expanded. As aggregates are often
4874 -- qualified, the predicate applies to qualified expressions
4875 -- as well, indicating that the enclosing aggregate has not
4876 -- been expanded yet. At this point the aggregate is part of
4877 -- a stand-alone declaration, and must be fully expanded.
4879 if Nkind (E) = N_Qualified_Expression then
4880 Set_Expansion_Delayed (Expression (E), False);
4881 Set_Analyzed (Expression (E), False);
4882 else
4883 Set_Expansion_Delayed (E, False);
4884 end if;
4886 Set_Analyzed (E, False);
4887 end if;
4889 Insert_Action (Exp,
4890 Make_Object_Declaration (Loc,
4891 Defining_Identifier => Def_Id,
4892 Object_Definition => New_Reference_To (Ref_Type, Loc),
4893 Expression => New_Exp));
4895 -- Check if the previous node relocation requires readjustment
4896 -- of some SCIL Dispatching node.
4898 if Generate_SCIL
4899 and then Nkind (Exp) = N_Function_Call
4900 then
4901 Adjust_SCIL_Node (Exp, Prefix (New_Exp));
4902 end if;
4903 end if;
4905 -- Preserve the Assignment_OK flag in all copies, since at least
4906 -- one copy may be used in a context where this flag must be set
4907 -- (otherwise why would the flag be set in the first place).
4909 Set_Assignment_OK (Res, Assignment_OK (Exp));
4911 -- Finally rewrite the original expression and we are done
4913 Rewrite (Exp, Res);
4914 Analyze_And_Resolve (Exp, Exp_Type);
4915 Scope_Suppress := Svg_Suppress;
4916 end Remove_Side_Effects;
4918 ---------------------------
4919 -- Represented_As_Scalar --
4920 ---------------------------
4922 function Represented_As_Scalar (T : Entity_Id) return Boolean is
4923 UT : constant Entity_Id := Underlying_Type (T);
4924 begin
4925 return Is_Scalar_Type (UT)
4926 or else (Is_Bit_Packed_Array (UT)
4927 and then Is_Scalar_Type (Packed_Array_Type (UT)));
4928 end Represented_As_Scalar;
4930 ------------------------------------
4931 -- Safe_Unchecked_Type_Conversion --
4932 ------------------------------------
4934 -- Note: this function knows quite a bit about the exact requirements
4935 -- of Gigi with respect to unchecked type conversions, and its code
4936 -- must be coordinated with any changes in Gigi in this area.
4938 -- The above requirements should be documented in Sinfo ???
4940 function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
4941 Otyp : Entity_Id;
4942 Ityp : Entity_Id;
4943 Oalign : Uint;
4944 Ialign : Uint;
4945 Pexp : constant Node_Id := Parent (Exp);
4947 begin
4948 -- If the expression is the RHS of an assignment or object declaration
4949 -- we are always OK because there will always be a target.
4951 -- Object renaming declarations, (generated for view conversions of
4952 -- actuals in inlined calls), like object declarations, provide an
4953 -- explicit type, and are safe as well.
4955 if (Nkind (Pexp) = N_Assignment_Statement
4956 and then Expression (Pexp) = Exp)
4957 or else Nkind (Pexp) = N_Object_Declaration
4958 or else Nkind (Pexp) = N_Object_Renaming_Declaration
4959 then
4960 return True;
4962 -- If the expression is the prefix of an N_Selected_Component
4963 -- we should also be OK because GCC knows to look inside the
4964 -- conversion except if the type is discriminated. We assume
4965 -- that we are OK anyway if the type is not set yet or if it is
4966 -- controlled since we can't afford to introduce a temporary in
4967 -- this case.
4969 elsif Nkind (Pexp) = N_Selected_Component
4970 and then Prefix (Pexp) = Exp
4971 then
4972 if No (Etype (Pexp)) then
4973 return True;
4974 else
4975 return
4976 not Has_Discriminants (Etype (Pexp))
4977 or else Is_Constrained (Etype (Pexp));
4978 end if;
4979 end if;
4981 -- Set the output type, this comes from Etype if it is set, otherwise
4982 -- we take it from the subtype mark, which we assume was already
4983 -- fully analyzed.
4985 if Present (Etype (Exp)) then
4986 Otyp := Etype (Exp);
4987 else
4988 Otyp := Entity (Subtype_Mark (Exp));
4989 end if;
4991 -- The input type always comes from the expression, and we assume
4992 -- this is indeed always analyzed, so we can simply get the Etype.
4994 Ityp := Etype (Expression (Exp));
4996 -- Initialize alignments to unknown so far
4998 Oalign := No_Uint;
4999 Ialign := No_Uint;
5001 -- Replace a concurrent type by its corresponding record type
5002 -- and each type by its underlying type and do the tests on those.
5003 -- The original type may be a private type whose completion is a
5004 -- concurrent type, so find the underlying type first.
5006 if Present (Underlying_Type (Otyp)) then
5007 Otyp := Underlying_Type (Otyp);
5008 end if;
5010 if Present (Underlying_Type (Ityp)) then
5011 Ityp := Underlying_Type (Ityp);
5012 end if;
5014 if Is_Concurrent_Type (Otyp) then
5015 Otyp := Corresponding_Record_Type (Otyp);
5016 end if;
5018 if Is_Concurrent_Type (Ityp) then
5019 Ityp := Corresponding_Record_Type (Ityp);
5020 end if;
5022 -- If the base types are the same, we know there is no problem since
5023 -- this conversion will be a noop.
5025 if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
5026 return True;
5028 -- Same if this is an upwards conversion of an untagged type, and there
5029 -- are no constraints involved (could be more general???)
5031 elsif Etype (Ityp) = Otyp
5032 and then not Is_Tagged_Type (Ityp)
5033 and then not Has_Discriminants (Ityp)
5034 and then No (First_Rep_Item (Base_Type (Ityp)))
5035 then
5036 return True;
5038 -- If the expression has an access type (object or subprogram) we
5039 -- assume that the conversion is safe, because the size of the target
5040 -- is safe, even if it is a record (which might be treated as having
5041 -- unknown size at this point).
5043 elsif Is_Access_Type (Ityp) then
5044 return True;
5046 -- If the size of output type is known at compile time, there is
5047 -- never a problem. Note that unconstrained records are considered
5048 -- to be of known size, but we can't consider them that way here,
5049 -- because we are talking about the actual size of the object.
5051 -- We also make sure that in addition to the size being known, we do
5052 -- not have a case which might generate an embarrassingly large temp
5053 -- in stack checking mode.
5055 elsif Size_Known_At_Compile_Time (Otyp)
5056 and then
5057 (not Stack_Checking_Enabled
5058 or else not May_Generate_Large_Temp (Otyp))
5059 and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
5060 then
5061 return True;
5063 -- If either type is tagged, then we know the alignment is OK so
5064 -- Gigi will be able to use pointer punning.
5066 elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
5067 return True;
5069 -- If either type is a limited record type, we cannot do a copy, so
5070 -- say safe since there's nothing else we can do.
5072 elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
5073 return True;
5075 -- Conversions to and from packed array types are always ignored and
5076 -- hence are safe.
5078 elsif Is_Packed_Array_Type (Otyp)
5079 or else Is_Packed_Array_Type (Ityp)
5080 then
5081 return True;
5082 end if;
5084 -- The only other cases known to be safe is if the input type's
5085 -- alignment is known to be at least the maximum alignment for the
5086 -- target or if both alignments are known and the output type's
5087 -- alignment is no stricter than the input's. We can use the alignment
5088 -- of the component type of an array if a type is an unpacked
5089 -- array type.
5091 if Present (Alignment_Clause (Otyp)) then
5092 Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
5094 elsif Is_Array_Type (Otyp)
5095 and then Present (Alignment_Clause (Component_Type (Otyp)))
5096 then
5097 Oalign := Expr_Value (Expression (Alignment_Clause
5098 (Component_Type (Otyp))));
5099 end if;
5101 if Present (Alignment_Clause (Ityp)) then
5102 Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
5104 elsif Is_Array_Type (Ityp)
5105 and then Present (Alignment_Clause (Component_Type (Ityp)))
5106 then
5107 Ialign := Expr_Value (Expression (Alignment_Clause
5108 (Component_Type (Ityp))));
5109 end if;
5111 if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
5112 return True;
5114 elsif Ialign /= No_Uint and then Oalign /= No_Uint
5115 and then Ialign <= Oalign
5116 then
5117 return True;
5119 -- Otherwise, Gigi cannot handle this and we must make a temporary
5121 else
5122 return False;
5123 end if;
5124 end Safe_Unchecked_Type_Conversion;
5126 ---------------------------------
5127 -- Set_Current_Value_Condition --
5128 ---------------------------------
5130 -- Note: the implementation of this procedure is very closely tied to the
5131 -- implementation of Get_Current_Value_Condition. Here we set required
5132 -- Current_Value fields, and in Get_Current_Value_Condition, we interpret
5133 -- them, so they must have a consistent view.
5135 procedure Set_Current_Value_Condition (Cnode : Node_Id) is
5137 procedure Set_Entity_Current_Value (N : Node_Id);
5138 -- If N is an entity reference, where the entity is of an appropriate
5139 -- kind, then set the current value of this entity to Cnode, unless
5140 -- there is already a definite value set there.
5142 procedure Set_Expression_Current_Value (N : Node_Id);
5143 -- If N is of an appropriate form, sets an appropriate entry in current
5144 -- value fields of relevant entities. Multiple entities can be affected
5145 -- in the case of an AND or AND THEN.
5147 ------------------------------
5148 -- Set_Entity_Current_Value --
5149 ------------------------------
5151 procedure Set_Entity_Current_Value (N : Node_Id) is
5152 begin
5153 if Is_Entity_Name (N) then
5154 declare
5155 Ent : constant Entity_Id := Entity (N);
5157 begin
5158 -- Don't capture if not safe to do so
5160 if not Safe_To_Capture_Value (N, Ent, Cond => True) then
5161 return;
5162 end if;
5164 -- Here we have a case where the Current_Value field may
5165 -- need to be set. We set it if it is not already set to a
5166 -- compile time expression value.
5168 -- Note that this represents a decision that one condition
5169 -- blots out another previous one. That's certainly right
5170 -- if they occur at the same level. If the second one is
5171 -- nested, then the decision is neither right nor wrong (it
5172 -- would be equally OK to leave the outer one in place, or
5173 -- take the new inner one. Really we should record both, but
5174 -- our data structures are not that elaborate.
5176 if Nkind (Current_Value (Ent)) not in N_Subexpr then
5177 Set_Current_Value (Ent, Cnode);
5178 end if;
5179 end;
5180 end if;
5181 end Set_Entity_Current_Value;
5183 ----------------------------------
5184 -- Set_Expression_Current_Value --
5185 ----------------------------------
5187 procedure Set_Expression_Current_Value (N : Node_Id) is
5188 Cond : Node_Id;
5190 begin
5191 Cond := N;
5193 -- Loop to deal with (ignore for now) any NOT operators present. The
5194 -- presence of NOT operators will be handled properly when we call
5195 -- Get_Current_Value_Condition.
5197 while Nkind (Cond) = N_Op_Not loop
5198 Cond := Right_Opnd (Cond);
5199 end loop;
5201 -- For an AND or AND THEN, recursively process operands
5203 if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then
5204 Set_Expression_Current_Value (Left_Opnd (Cond));
5205 Set_Expression_Current_Value (Right_Opnd (Cond));
5206 return;
5207 end if;
5209 -- Check possible relational operator
5211 if Nkind (Cond) in N_Op_Compare then
5212 if Compile_Time_Known_Value (Right_Opnd (Cond)) then
5213 Set_Entity_Current_Value (Left_Opnd (Cond));
5214 elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then
5215 Set_Entity_Current_Value (Right_Opnd (Cond));
5216 end if;
5218 -- Check possible boolean variable reference
5220 else
5221 Set_Entity_Current_Value (Cond);
5222 end if;
5223 end Set_Expression_Current_Value;
5225 -- Start of processing for Set_Current_Value_Condition
5227 begin
5228 Set_Expression_Current_Value (Condition (Cnode));
5229 end Set_Current_Value_Condition;
5231 --------------------------
5232 -- Set_Elaboration_Flag --
5233 --------------------------
5235 procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
5236 Loc : constant Source_Ptr := Sloc (N);
5237 Ent : constant Entity_Id := Elaboration_Entity (Spec_Id);
5238 Asn : Node_Id;
5240 begin
5241 if Present (Ent) then
5243 -- Nothing to do if at the compilation unit level, because in this
5244 -- case the flag is set by the binder generated elaboration routine.
5246 if Nkind (Parent (N)) = N_Compilation_Unit then
5247 null;
5249 -- Here we do need to generate an assignment statement
5251 else
5252 Check_Restriction (No_Elaboration_Code, N);
5253 Asn :=
5254 Make_Assignment_Statement (Loc,
5255 Name => New_Occurrence_Of (Ent, Loc),
5256 Expression => New_Occurrence_Of (Standard_True, Loc));
5258 if Nkind (Parent (N)) = N_Subunit then
5259 Insert_After (Corresponding_Stub (Parent (N)), Asn);
5260 else
5261 Insert_After (N, Asn);
5262 end if;
5264 Analyze (Asn);
5266 -- Kill current value indication. This is necessary because the
5267 -- tests of this flag are inserted out of sequence and must not
5268 -- pick up bogus indications of the wrong constant value.
5270 Set_Current_Value (Ent, Empty);
5271 end if;
5272 end if;
5273 end Set_Elaboration_Flag;
5275 ----------------------------
5276 -- Set_Renamed_Subprogram --
5277 ----------------------------
5279 procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is
5280 begin
5281 -- If input node is an identifier, we can just reset it
5283 if Nkind (N) = N_Identifier then
5284 Set_Chars (N, Chars (E));
5285 Set_Entity (N, E);
5287 -- Otherwise we have to do a rewrite, preserving Comes_From_Source
5289 else
5290 declare
5291 CS : constant Boolean := Comes_From_Source (N);
5292 begin
5293 Rewrite (N, Make_Identifier (Sloc (N), Chars => Chars (E)));
5294 Set_Entity (N, E);
5295 Set_Comes_From_Source (N, CS);
5296 Set_Analyzed (N, True);
5297 end;
5298 end if;
5299 end Set_Renamed_Subprogram;
5301 ----------------------------------
5302 -- Silly_Boolean_Array_Not_Test --
5303 ----------------------------------
5305 -- This procedure implements an odd and silly test. We explicitly check
5306 -- for the case where the 'First of the component type is equal to the
5307 -- 'Last of this component type, and if this is the case, we make sure
5308 -- that constraint error is raised. The reason is that the NOT is bound
5309 -- to cause CE in this case, and we will not otherwise catch it.
5311 -- No such check is required for AND and OR, since for both these cases
5312 -- False op False = False, and True op True = True. For the XOR case,
5313 -- see Silly_Boolean_Array_Xor_Test.
5315 -- Believe it or not, this was reported as a bug. Note that nearly
5316 -- always, the test will evaluate statically to False, so the code will
5317 -- be statically removed, and no extra overhead caused.
5319 procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is
5320 Loc : constant Source_Ptr := Sloc (N);
5321 CT : constant Entity_Id := Component_Type (T);
5323 begin
5324 -- The check we install is
5326 -- constraint_error when
5327 -- component_type'first = component_type'last
5328 -- and then array_type'Length /= 0)
5330 -- We need the last guard because we don't want to raise CE for empty
5331 -- arrays since no out of range values result. (Empty arrays with a
5332 -- component type of True .. True -- very useful -- even the ACATS
5333 -- does not test that marginal case!)
5335 Insert_Action (N,
5336 Make_Raise_Constraint_Error (Loc,
5337 Condition =>
5338 Make_And_Then (Loc,
5339 Left_Opnd =>
5340 Make_Op_Eq (Loc,
5341 Left_Opnd =>
5342 Make_Attribute_Reference (Loc,
5343 Prefix => New_Occurrence_Of (CT, Loc),
5344 Attribute_Name => Name_First),
5346 Right_Opnd =>
5347 Make_Attribute_Reference (Loc,
5348 Prefix => New_Occurrence_Of (CT, Loc),
5349 Attribute_Name => Name_Last)),
5351 Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
5352 Reason => CE_Range_Check_Failed));
5353 end Silly_Boolean_Array_Not_Test;
5355 ----------------------------------
5356 -- Silly_Boolean_Array_Xor_Test --
5357 ----------------------------------
5359 -- This procedure implements an odd and silly test. We explicitly check
5360 -- for the XOR case where the component type is True .. True, since this
5361 -- will raise constraint error. A special check is required since CE
5362 -- will not be generated otherwise (cf Expand_Packed_Not).
5364 -- No such check is required for AND and OR, since for both these cases
5365 -- False op False = False, and True op True = True, and no check is
5366 -- required for the case of False .. False, since False xor False = False.
5367 -- See also Silly_Boolean_Array_Not_Test
5369 procedure Silly_Boolean_Array_Xor_Test (N : Node_Id; T : Entity_Id) is
5370 Loc : constant Source_Ptr := Sloc (N);
5371 CT : constant Entity_Id := Component_Type (T);
5373 begin
5374 -- The check we install is
5376 -- constraint_error when
5377 -- Boolean (component_type'First)
5378 -- and then Boolean (component_type'Last)
5379 -- and then array_type'Length /= 0)
5381 -- We need the last guard because we don't want to raise CE for empty
5382 -- arrays since no out of range values result (Empty arrays with a
5383 -- component type of True .. True -- very useful -- even the ACATS
5384 -- does not test that marginal case!).
5386 Insert_Action (N,
5387 Make_Raise_Constraint_Error (Loc,
5388 Condition =>
5389 Make_And_Then (Loc,
5390 Left_Opnd =>
5391 Make_And_Then (Loc,
5392 Left_Opnd =>
5393 Convert_To (Standard_Boolean,
5394 Make_Attribute_Reference (Loc,
5395 Prefix => New_Occurrence_Of (CT, Loc),
5396 Attribute_Name => Name_First)),
5398 Right_Opnd =>
5399 Convert_To (Standard_Boolean,
5400 Make_Attribute_Reference (Loc,
5401 Prefix => New_Occurrence_Of (CT, Loc),
5402 Attribute_Name => Name_Last))),
5404 Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
5405 Reason => CE_Range_Check_Failed));
5406 end Silly_Boolean_Array_Xor_Test;
5408 --------------------------
5409 -- Target_Has_Fixed_Ops --
5410 --------------------------
5412 Integer_Sized_Small : Ureal;
5413 -- Set to 2.0 ** -(Integer'Size - 1) the first time that this
5414 -- function is called (we don't want to compute it more than once!)
5416 Long_Integer_Sized_Small : Ureal;
5417 -- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this
5418 -- function is called (we don't want to compute it more than once)
5420 First_Time_For_THFO : Boolean := True;
5421 -- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
5423 function Target_Has_Fixed_Ops
5424 (Left_Typ : Entity_Id;
5425 Right_Typ : Entity_Id;
5426 Result_Typ : Entity_Id) return Boolean
5428 function Is_Fractional_Type (Typ : Entity_Id) return Boolean;
5429 -- Return True if the given type is a fixed-point type with a small
5430 -- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
5431 -- an absolute value less than 1.0. This is currently limited
5432 -- to fixed-point types that map to Integer or Long_Integer.
5434 ------------------------
5435 -- Is_Fractional_Type --
5436 ------------------------
5438 function Is_Fractional_Type (Typ : Entity_Id) return Boolean is
5439 begin
5440 if Esize (Typ) = Standard_Integer_Size then
5441 return Small_Value (Typ) = Integer_Sized_Small;
5443 elsif Esize (Typ) = Standard_Long_Integer_Size then
5444 return Small_Value (Typ) = Long_Integer_Sized_Small;
5446 else
5447 return False;
5448 end if;
5449 end Is_Fractional_Type;
5451 -- Start of processing for Target_Has_Fixed_Ops
5453 begin
5454 -- Return False if Fractional_Fixed_Ops_On_Target is false
5456 if not Fractional_Fixed_Ops_On_Target then
5457 return False;
5458 end if;
5460 -- Here the target has Fractional_Fixed_Ops, if first time, compute
5461 -- standard constants used by Is_Fractional_Type.
5463 if First_Time_For_THFO then
5464 First_Time_For_THFO := False;
5466 Integer_Sized_Small :=
5467 UR_From_Components
5468 (Num => Uint_1,
5469 Den => UI_From_Int (Standard_Integer_Size - 1),
5470 Rbase => 2);
5472 Long_Integer_Sized_Small :=
5473 UR_From_Components
5474 (Num => Uint_1,
5475 Den => UI_From_Int (Standard_Long_Integer_Size - 1),
5476 Rbase => 2);
5477 end if;
5479 -- Return True if target supports fixed-by-fixed multiply/divide
5480 -- for fractional fixed-point types (see Is_Fractional_Type) and
5481 -- the operand and result types are equivalent fractional types.
5483 return Is_Fractional_Type (Base_Type (Left_Typ))
5484 and then Is_Fractional_Type (Base_Type (Right_Typ))
5485 and then Is_Fractional_Type (Base_Type (Result_Typ))
5486 and then Esize (Left_Typ) = Esize (Right_Typ)
5487 and then Esize (Left_Typ) = Esize (Result_Typ);
5488 end Target_Has_Fixed_Ops;
5490 ------------------------------------------
5491 -- Type_May_Have_Bit_Aligned_Components --
5492 ------------------------------------------
5494 function Type_May_Have_Bit_Aligned_Components
5495 (Typ : Entity_Id) return Boolean
5497 begin
5498 -- Array type, check component type
5500 if Is_Array_Type (Typ) then
5501 return
5502 Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
5504 -- Record type, check components
5506 elsif Is_Record_Type (Typ) then
5507 declare
5508 E : Entity_Id;
5510 begin
5511 E := First_Component_Or_Discriminant (Typ);
5512 while Present (E) loop
5513 if Component_May_Be_Bit_Aligned (E)
5514 or else Type_May_Have_Bit_Aligned_Components (Etype (E))
5515 then
5516 return True;
5517 end if;
5519 Next_Component_Or_Discriminant (E);
5520 end loop;
5522 return False;
5523 end;
5525 -- Type other than array or record is always OK
5527 else
5528 return False;
5529 end if;
5530 end Type_May_Have_Bit_Aligned_Components;
5532 ----------------------------
5533 -- Wrap_Cleanup_Procedure --
5534 ----------------------------
5536 procedure Wrap_Cleanup_Procedure (N : Node_Id) is
5537 Loc : constant Source_Ptr := Sloc (N);
5538 Stseq : constant Node_Id := Handled_Statement_Sequence (N);
5539 Stmts : constant List_Id := Statements (Stseq);
5541 begin
5542 if Abort_Allowed then
5543 Prepend_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
5544 Append_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Undefer));
5545 end if;
5546 end Wrap_Cleanup_Procedure;
5548 end Exp_Util;