fixing pr42337
[official-gcc.git] / gcc / ada / a-crbtgo.adb
blobc8ddcff02a58b83a390a083569a05da8313854a4
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- ADA.CONTAINERS.RED_BLACK_TREES.GENERIC_OPERATIONS --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2004-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
30 -- The references below to "CLR" refer to the following book, from which
31 -- several of the algorithms here were adapted:
32 -- Introduction to Algorithms
33 -- by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
34 -- Publisher: The MIT Press (June 18, 1990)
35 -- ISBN: 0262031418
37 with System; use type System.Address;
39 package body Ada.Containers.Red_Black_Trees.Generic_Operations is
41 -----------------------
42 -- Local Subprograms --
43 -----------------------
45 procedure Delete_Fixup (Tree : in out Tree_Type; Node : Node_Access);
47 procedure Delete_Swap (Tree : in out Tree_Type; Z, Y : Node_Access);
49 procedure Left_Rotate (Tree : in out Tree_Type; X : Node_Access);
50 procedure Right_Rotate (Tree : in out Tree_Type; Y : Node_Access);
52 -- Why is all the following code commented out ???
54 -- ---------------------
55 -- -- Check_Invariant --
56 -- ---------------------
58 -- procedure Check_Invariant (Tree : Tree_Type) is
59 -- Root : constant Node_Access := Tree.Root;
61 -- function Check (Node : Node_Access) return Natural;
63 -- -----------
64 -- -- Check --
65 -- -----------
67 -- function Check (Node : Node_Access) return Natural is
68 -- begin
69 -- if Node = null then
70 -- return 0;
71 -- end if;
73 -- if Color (Node) = Red then
74 -- declare
75 -- L : constant Node_Access := Left (Node);
76 -- begin
77 -- pragma Assert (L = null or else Color (L) = Black);
78 -- null;
79 -- end;
81 -- declare
82 -- R : constant Node_Access := Right (Node);
83 -- begin
84 -- pragma Assert (R = null or else Color (R) = Black);
85 -- null;
86 -- end;
88 -- declare
89 -- NL : constant Natural := Check (Left (Node));
90 -- NR : constant Natural := Check (Right (Node));
91 -- begin
92 -- pragma Assert (NL = NR);
93 -- return NL;
94 -- end;
95 -- end if;
97 -- declare
98 -- NL : constant Natural := Check (Left (Node));
99 -- NR : constant Natural := Check (Right (Node));
100 -- begin
101 -- pragma Assert (NL = NR);
102 -- return NL + 1;
103 -- end;
104 -- end Check;
106 -- -- Start of processing for Check_Invariant
108 -- begin
109 -- if Root = null then
110 -- pragma Assert (Tree.First = null);
111 -- pragma Assert (Tree.Last = null);
112 -- pragma Assert (Tree.Length = 0);
113 -- null;
115 -- else
116 -- pragma Assert (Color (Root) = Black);
117 -- pragma Assert (Tree.Length > 0);
118 -- pragma Assert (Tree.Root /= null);
119 -- pragma Assert (Tree.First /= null);
120 -- pragma Assert (Tree.Last /= null);
121 -- pragma Assert (Parent (Tree.Root) = null);
122 -- pragma Assert ((Tree.Length > 1)
123 -- or else (Tree.First = Tree.Last
124 -- and Tree.First = Tree.Root));
125 -- pragma Assert (Left (Tree.First) = null);
126 -- pragma Assert (Right (Tree.Last) = null);
128 -- declare
129 -- L : constant Node_Access := Left (Root);
130 -- R : constant Node_Access := Right (Root);
131 -- NL : constant Natural := Check (L);
132 -- NR : constant Natural := Check (R);
133 -- begin
134 -- pragma Assert (NL = NR);
135 -- null;
136 -- end;
137 -- end if;
138 -- end Check_Invariant;
140 ------------------
141 -- Delete_Fixup --
142 ------------------
144 procedure Delete_Fixup (Tree : in out Tree_Type; Node : Node_Access) is
146 -- CLR p274
148 X : Node_Access := Node;
149 W : Node_Access;
151 begin
152 while X /= Tree.Root
153 and then Color (X) = Black
154 loop
155 if X = Left (Parent (X)) then
156 W := Right (Parent (X));
158 if Color (W) = Red then
159 Set_Color (W, Black);
160 Set_Color (Parent (X), Red);
161 Left_Rotate (Tree, Parent (X));
162 W := Right (Parent (X));
163 end if;
165 if (Left (W) = null or else Color (Left (W)) = Black)
166 and then
167 (Right (W) = null or else Color (Right (W)) = Black)
168 then
169 Set_Color (W, Red);
170 X := Parent (X);
172 else
173 if Right (W) = null
174 or else Color (Right (W)) = Black
175 then
176 -- As a condition for setting the color of the left child to
177 -- black, the left child access value must be non-null. A
178 -- truth table analysis shows that if we arrive here, that
179 -- condition holds, so there's no need for an explicit test.
180 -- The assertion is here to document what we know is true.
182 pragma Assert (Left (W) /= null);
183 Set_Color (Left (W), Black);
185 Set_Color (W, Red);
186 Right_Rotate (Tree, W);
187 W := Right (Parent (X));
188 end if;
190 Set_Color (W, Color (Parent (X)));
191 Set_Color (Parent (X), Black);
192 Set_Color (Right (W), Black);
193 Left_Rotate (Tree, Parent (X));
194 X := Tree.Root;
195 end if;
197 else
198 pragma Assert (X = Right (Parent (X)));
200 W := Left (Parent (X));
202 if Color (W) = Red then
203 Set_Color (W, Black);
204 Set_Color (Parent (X), Red);
205 Right_Rotate (Tree, Parent (X));
206 W := Left (Parent (X));
207 end if;
209 if (Left (W) = null or else Color (Left (W)) = Black)
210 and then
211 (Right (W) = null or else Color (Right (W)) = Black)
212 then
213 Set_Color (W, Red);
214 X := Parent (X);
216 else
217 if Left (W) = null or else Color (Left (W)) = Black then
219 -- As a condition for setting the color of the right child
220 -- to black, the right child access value must be non-null.
221 -- A truth table analysis shows that if we arrive here, that
222 -- condition holds, so there's no need for an explicit test.
223 -- The assertion is here to document what we know is true.
225 pragma Assert (Right (W) /= null);
226 Set_Color (Right (W), Black);
228 Set_Color (W, Red);
229 Left_Rotate (Tree, W);
230 W := Left (Parent (X));
231 end if;
233 Set_Color (W, Color (Parent (X)));
234 Set_Color (Parent (X), Black);
235 Set_Color (Left (W), Black);
236 Right_Rotate (Tree, Parent (X));
237 X := Tree.Root;
238 end if;
239 end if;
240 end loop;
242 Set_Color (X, Black);
243 end Delete_Fixup;
245 ---------------------------
246 -- Delete_Node_Sans_Free --
247 ---------------------------
249 procedure Delete_Node_Sans_Free
250 (Tree : in out Tree_Type;
251 Node : Node_Access)
253 -- CLR p273
255 X, Y : Node_Access;
257 Z : constant Node_Access := Node;
258 pragma Assert (Z /= null);
260 begin
261 if Tree.Busy > 0 then
262 raise Program_Error with
263 "attempt to tamper with cursors (container is busy)";
264 end if;
266 -- Why are these all commented out ???
268 -- pragma Assert (Tree.Length > 0);
269 -- pragma Assert (Tree.Root /= null);
270 -- pragma Assert (Tree.First /= null);
271 -- pragma Assert (Tree.Last /= null);
272 -- pragma Assert (Parent (Tree.Root) = null);
273 -- pragma Assert ((Tree.Length > 1)
274 -- or else (Tree.First = Tree.Last
275 -- and then Tree.First = Tree.Root));
276 -- pragma Assert ((Left (Node) = null)
277 -- or else (Parent (Left (Node)) = Node));
278 -- pragma Assert ((Right (Node) = null)
279 -- or else (Parent (Right (Node)) = Node));
280 -- pragma Assert (((Parent (Node) = null) and then (Tree.Root = Node))
281 -- or else ((Parent (Node) /= null) and then
282 -- ((Left (Parent (Node)) = Node)
283 -- or else (Right (Parent (Node)) = Node))));
285 if Left (Z) = null then
286 if Right (Z) = null then
287 if Z = Tree.First then
288 Tree.First := Parent (Z);
289 end if;
291 if Z = Tree.Last then
292 Tree.Last := Parent (Z);
293 end if;
295 if Color (Z) = Black then
296 Delete_Fixup (Tree, Z);
297 end if;
299 pragma Assert (Left (Z) = null);
300 pragma Assert (Right (Z) = null);
302 if Z = Tree.Root then
303 pragma Assert (Tree.Length = 1);
304 pragma Assert (Parent (Z) = null);
305 Tree.Root := null;
306 elsif Z = Left (Parent (Z)) then
307 Set_Left (Parent (Z), null);
308 else
309 pragma Assert (Z = Right (Parent (Z)));
310 Set_Right (Parent (Z), null);
311 end if;
313 else
314 pragma Assert (Z /= Tree.Last);
316 X := Right (Z);
318 if Z = Tree.First then
319 Tree.First := Min (X);
320 end if;
322 if Z = Tree.Root then
323 Tree.Root := X;
324 elsif Z = Left (Parent (Z)) then
325 Set_Left (Parent (Z), X);
326 else
327 pragma Assert (Z = Right (Parent (Z)));
328 Set_Right (Parent (Z), X);
329 end if;
331 Set_Parent (X, Parent (Z));
333 if Color (Z) = Black then
334 Delete_Fixup (Tree, X);
335 end if;
336 end if;
338 elsif Right (Z) = null then
339 pragma Assert (Z /= Tree.First);
341 X := Left (Z);
343 if Z = Tree.Last then
344 Tree.Last := Max (X);
345 end if;
347 if Z = Tree.Root then
348 Tree.Root := X;
349 elsif Z = Left (Parent (Z)) then
350 Set_Left (Parent (Z), X);
351 else
352 pragma Assert (Z = Right (Parent (Z)));
353 Set_Right (Parent (Z), X);
354 end if;
356 Set_Parent (X, Parent (Z));
358 if Color (Z) = Black then
359 Delete_Fixup (Tree, X);
360 end if;
362 else
363 pragma Assert (Z /= Tree.First);
364 pragma Assert (Z /= Tree.Last);
366 Y := Next (Z);
367 pragma Assert (Left (Y) = null);
369 X := Right (Y);
371 if X = null then
372 if Y = Left (Parent (Y)) then
373 pragma Assert (Parent (Y) /= Z);
374 Delete_Swap (Tree, Z, Y);
375 Set_Left (Parent (Z), Z);
377 else
378 pragma Assert (Y = Right (Parent (Y)));
379 pragma Assert (Parent (Y) = Z);
380 Set_Parent (Y, Parent (Z));
382 if Z = Tree.Root then
383 Tree.Root := Y;
384 elsif Z = Left (Parent (Z)) then
385 Set_Left (Parent (Z), Y);
386 else
387 pragma Assert (Z = Right (Parent (Z)));
388 Set_Right (Parent (Z), Y);
389 end if;
391 Set_Left (Y, Left (Z));
392 Set_Parent (Left (Y), Y);
393 Set_Right (Y, Z);
394 Set_Parent (Z, Y);
395 Set_Left (Z, null);
396 Set_Right (Z, null);
398 declare
399 Y_Color : constant Color_Type := Color (Y);
400 begin
401 Set_Color (Y, Color (Z));
402 Set_Color (Z, Y_Color);
403 end;
404 end if;
406 if Color (Z) = Black then
407 Delete_Fixup (Tree, Z);
408 end if;
410 pragma Assert (Left (Z) = null);
411 pragma Assert (Right (Z) = null);
413 if Z = Right (Parent (Z)) then
414 Set_Right (Parent (Z), null);
415 else
416 pragma Assert (Z = Left (Parent (Z)));
417 Set_Left (Parent (Z), null);
418 end if;
420 else
421 if Y = Left (Parent (Y)) then
422 pragma Assert (Parent (Y) /= Z);
424 Delete_Swap (Tree, Z, Y);
426 Set_Left (Parent (Z), X);
427 Set_Parent (X, Parent (Z));
429 else
430 pragma Assert (Y = Right (Parent (Y)));
431 pragma Assert (Parent (Y) = Z);
433 Set_Parent (Y, Parent (Z));
435 if Z = Tree.Root then
436 Tree.Root := Y;
437 elsif Z = Left (Parent (Z)) then
438 Set_Left (Parent (Z), Y);
439 else
440 pragma Assert (Z = Right (Parent (Z)));
441 Set_Right (Parent (Z), Y);
442 end if;
444 Set_Left (Y, Left (Z));
445 Set_Parent (Left (Y), Y);
447 declare
448 Y_Color : constant Color_Type := Color (Y);
449 begin
450 Set_Color (Y, Color (Z));
451 Set_Color (Z, Y_Color);
452 end;
453 end if;
455 if Color (Z) = Black then
456 Delete_Fixup (Tree, X);
457 end if;
458 end if;
459 end if;
461 Tree.Length := Tree.Length - 1;
462 end Delete_Node_Sans_Free;
464 -----------------
465 -- Delete_Swap --
466 -----------------
468 procedure Delete_Swap
469 (Tree : in out Tree_Type;
470 Z, Y : Node_Access)
472 pragma Assert (Z /= Y);
473 pragma Assert (Parent (Y) /= Z);
475 Y_Parent : constant Node_Access := Parent (Y);
476 Y_Color : constant Color_Type := Color (Y);
478 begin
479 Set_Parent (Y, Parent (Z));
480 Set_Left (Y, Left (Z));
481 Set_Right (Y, Right (Z));
482 Set_Color (Y, Color (Z));
484 if Tree.Root = Z then
485 Tree.Root := Y;
486 elsif Right (Parent (Y)) = Z then
487 Set_Right (Parent (Y), Y);
488 else
489 pragma Assert (Left (Parent (Y)) = Z);
490 Set_Left (Parent (Y), Y);
491 end if;
493 if Right (Y) /= null then
494 Set_Parent (Right (Y), Y);
495 end if;
497 if Left (Y) /= null then
498 Set_Parent (Left (Y), Y);
499 end if;
501 Set_Parent (Z, Y_Parent);
502 Set_Color (Z, Y_Color);
503 Set_Left (Z, null);
504 Set_Right (Z, null);
505 end Delete_Swap;
507 --------------------
508 -- Generic_Adjust --
509 --------------------
511 procedure Generic_Adjust (Tree : in out Tree_Type) is
512 N : constant Count_Type := Tree.Length;
513 Root : constant Node_Access := Tree.Root;
515 begin
516 if N = 0 then
517 pragma Assert (Root = null);
518 pragma Assert (Tree.Busy = 0);
519 pragma Assert (Tree.Lock = 0);
520 return;
521 end if;
523 Tree.Root := null;
524 Tree.First := null;
525 Tree.Last := null;
526 Tree.Length := 0;
528 Tree.Root := Copy_Tree (Root);
529 Tree.First := Min (Tree.Root);
530 Tree.Last := Max (Tree.Root);
531 Tree.Length := N;
532 end Generic_Adjust;
534 -------------------
535 -- Generic_Clear --
536 -------------------
538 procedure Generic_Clear (Tree : in out Tree_Type) is
539 Root : Node_Access := Tree.Root;
540 begin
541 if Tree.Busy > 0 then
542 raise Program_Error with
543 "attempt to tamper with cursors (container is busy)";
544 end if;
546 Tree := (First => null,
547 Last => null,
548 Root => null,
549 Length => 0,
550 Busy => 0,
551 Lock => 0);
553 Delete_Tree (Root);
554 end Generic_Clear;
556 -----------------------
557 -- Generic_Copy_Tree --
558 -----------------------
560 function Generic_Copy_Tree (Source_Root : Node_Access) return Node_Access is
561 Target_Root : Node_Access := Copy_Node (Source_Root);
562 P, X : Node_Access;
564 begin
565 if Right (Source_Root) /= null then
566 Set_Right
567 (Node => Target_Root,
568 Right => Generic_Copy_Tree (Right (Source_Root)));
570 Set_Parent
571 (Node => Right (Target_Root),
572 Parent => Target_Root);
573 end if;
575 P := Target_Root;
577 X := Left (Source_Root);
578 while X /= null loop
579 declare
580 Y : constant Node_Access := Copy_Node (X);
581 begin
582 Set_Left (Node => P, Left => Y);
583 Set_Parent (Node => Y, Parent => P);
585 if Right (X) /= null then
586 Set_Right
587 (Node => Y,
588 Right => Generic_Copy_Tree (Right (X)));
590 Set_Parent
591 (Node => Right (Y),
592 Parent => Y);
593 end if;
595 P := Y;
596 X := Left (X);
597 end;
598 end loop;
600 return Target_Root;
601 exception
602 when others =>
603 Delete_Tree (Target_Root);
604 raise;
605 end Generic_Copy_Tree;
607 -------------------------
608 -- Generic_Delete_Tree --
609 -------------------------
611 procedure Generic_Delete_Tree (X : in out Node_Access) is
612 Y : Node_Access;
613 pragma Warnings (Off, Y);
614 begin
615 while X /= null loop
616 Y := Right (X);
617 Generic_Delete_Tree (Y);
618 Y := Left (X);
619 Free (X);
620 X := Y;
621 end loop;
622 end Generic_Delete_Tree;
624 -------------------
625 -- Generic_Equal --
626 -------------------
628 function Generic_Equal (Left, Right : Tree_Type) return Boolean is
629 L_Node : Node_Access;
630 R_Node : Node_Access;
632 begin
633 if Left'Address = Right'Address then
634 return True;
635 end if;
637 if Left.Length /= Right.Length then
638 return False;
639 end if;
641 L_Node := Left.First;
642 R_Node := Right.First;
643 while L_Node /= null loop
644 if not Is_Equal (L_Node, R_Node) then
645 return False;
646 end if;
648 L_Node := Next (L_Node);
649 R_Node := Next (R_Node);
650 end loop;
652 return True;
653 end Generic_Equal;
655 -----------------------
656 -- Generic_Iteration --
657 -----------------------
659 procedure Generic_Iteration (Tree : Tree_Type) is
660 procedure Iterate (P : Node_Access);
662 -------------
663 -- Iterate --
664 -------------
666 procedure Iterate (P : Node_Access) is
667 X : Node_Access := P;
668 begin
669 while X /= null loop
670 Iterate (Left (X));
671 Process (X);
672 X := Right (X);
673 end loop;
674 end Iterate;
676 -- Start of processing for Generic_Iteration
678 begin
679 Iterate (Tree.Root);
680 end Generic_Iteration;
682 ------------------
683 -- Generic_Move --
684 ------------------
686 procedure Generic_Move (Target, Source : in out Tree_Type) is
687 begin
688 if Target'Address = Source'Address then
689 return;
690 end if;
692 if Source.Busy > 0 then
693 raise Program_Error with
694 "attempt to tamper with cursors (container is busy)";
695 end if;
697 Clear (Target);
699 Target := Source;
701 Source := (First => null,
702 Last => null,
703 Root => null,
704 Length => 0,
705 Busy => 0,
706 Lock => 0);
707 end Generic_Move;
709 ------------------
710 -- Generic_Read --
711 ------------------
713 procedure Generic_Read
714 (Stream : not null access Root_Stream_Type'Class;
715 Tree : in out Tree_Type)
717 N : Count_Type'Base;
719 Node, Last_Node : Node_Access;
721 begin
722 Clear (Tree);
724 Count_Type'Base'Read (Stream, N);
725 pragma Assert (N >= 0);
727 if N = 0 then
728 return;
729 end if;
731 Node := Read_Node (Stream);
732 pragma Assert (Node /= null);
733 pragma Assert (Color (Node) = Red);
735 Set_Color (Node, Black);
737 Tree.Root := Node;
738 Tree.First := Node;
739 Tree.Last := Node;
741 Tree.Length := 1;
743 for J in Count_Type range 2 .. N loop
744 Last_Node := Node;
745 pragma Assert (Last_Node = Tree.Last);
747 Node := Read_Node (Stream);
748 pragma Assert (Node /= null);
749 pragma Assert (Color (Node) = Red);
751 Set_Right (Node => Last_Node, Right => Node);
752 Tree.Last := Node;
753 Set_Parent (Node => Node, Parent => Last_Node);
754 Rebalance_For_Insert (Tree, Node);
755 Tree.Length := Tree.Length + 1;
756 end loop;
757 end Generic_Read;
759 -------------------------------
760 -- Generic_Reverse_Iteration --
761 -------------------------------
763 procedure Generic_Reverse_Iteration (Tree : Tree_Type)
765 procedure Iterate (P : Node_Access);
767 -------------
768 -- Iterate --
769 -------------
771 procedure Iterate (P : Node_Access) is
772 X : Node_Access := P;
773 begin
774 while X /= null loop
775 Iterate (Right (X));
776 Process (X);
777 X := Left (X);
778 end loop;
779 end Iterate;
781 -- Start of processing for Generic_Reverse_Iteration
783 begin
784 Iterate (Tree.Root);
785 end Generic_Reverse_Iteration;
787 -------------------
788 -- Generic_Write --
789 -------------------
791 procedure Generic_Write
792 (Stream : not null access Root_Stream_Type'Class;
793 Tree : Tree_Type)
795 procedure Process (Node : Node_Access);
796 pragma Inline (Process);
798 procedure Iterate is
799 new Generic_Iteration (Process);
801 -------------
802 -- Process --
803 -------------
805 procedure Process (Node : Node_Access) is
806 begin
807 Write_Node (Stream, Node);
808 end Process;
810 -- Start of processing for Generic_Write
812 begin
813 Count_Type'Base'Write (Stream, Tree.Length);
814 Iterate (Tree);
815 end Generic_Write;
817 -----------------
818 -- Left_Rotate --
819 -----------------
821 procedure Left_Rotate (Tree : in out Tree_Type; X : Node_Access) is
823 -- CLR p266
825 Y : constant Node_Access := Right (X);
826 pragma Assert (Y /= null);
828 begin
829 Set_Right (X, Left (Y));
831 if Left (Y) /= null then
832 Set_Parent (Left (Y), X);
833 end if;
835 Set_Parent (Y, Parent (X));
837 if X = Tree.Root then
838 Tree.Root := Y;
839 elsif X = Left (Parent (X)) then
840 Set_Left (Parent (X), Y);
841 else
842 pragma Assert (X = Right (Parent (X)));
843 Set_Right (Parent (X), Y);
844 end if;
846 Set_Left (Y, X);
847 Set_Parent (X, Y);
848 end Left_Rotate;
850 ---------
851 -- Max --
852 ---------
854 function Max (Node : Node_Access) return Node_Access is
856 -- CLR p248
858 X : Node_Access := Node;
859 Y : Node_Access;
861 begin
862 loop
863 Y := Right (X);
865 if Y = null then
866 return X;
867 end if;
869 X := Y;
870 end loop;
871 end Max;
873 ---------
874 -- Min --
875 ---------
877 function Min (Node : Node_Access) return Node_Access is
879 -- CLR p248
881 X : Node_Access := Node;
882 Y : Node_Access;
884 begin
885 loop
886 Y := Left (X);
888 if Y = null then
889 return X;
890 end if;
892 X := Y;
893 end loop;
894 end Min;
896 ----------
897 -- Next --
898 ----------
900 function Next (Node : Node_Access) return Node_Access is
901 begin
902 -- CLR p249
904 if Node = null then
905 return null;
906 end if;
908 if Right (Node) /= null then
909 return Min (Right (Node));
910 end if;
912 declare
913 X : Node_Access := Node;
914 Y : Node_Access := Parent (Node);
916 begin
917 while Y /= null
918 and then X = Right (Y)
919 loop
920 X := Y;
921 Y := Parent (Y);
922 end loop;
924 return Y;
925 end;
926 end Next;
928 --------------
929 -- Previous --
930 --------------
932 function Previous (Node : Node_Access) return Node_Access is
933 begin
934 if Node = null then
935 return null;
936 end if;
938 if Left (Node) /= null then
939 return Max (Left (Node));
940 end if;
942 declare
943 X : Node_Access := Node;
944 Y : Node_Access := Parent (Node);
946 begin
947 while Y /= null
948 and then X = Left (Y)
949 loop
950 X := Y;
951 Y := Parent (Y);
952 end loop;
954 return Y;
955 end;
956 end Previous;
958 --------------------------
959 -- Rebalance_For_Insert --
960 --------------------------
962 procedure Rebalance_For_Insert
963 (Tree : in out Tree_Type;
964 Node : Node_Access)
966 -- CLR p.268
968 X : Node_Access := Node;
969 pragma Assert (X /= null);
970 pragma Assert (Color (X) = Red);
972 Y : Node_Access;
974 begin
975 while X /= Tree.Root and then Color (Parent (X)) = Red loop
976 if Parent (X) = Left (Parent (Parent (X))) then
977 Y := Right (Parent (Parent (X)));
979 if Y /= null and then Color (Y) = Red then
980 Set_Color (Parent (X), Black);
981 Set_Color (Y, Black);
982 Set_Color (Parent (Parent (X)), Red);
983 X := Parent (Parent (X));
985 else
986 if X = Right (Parent (X)) then
987 X := Parent (X);
988 Left_Rotate (Tree, X);
989 end if;
991 Set_Color (Parent (X), Black);
992 Set_Color (Parent (Parent (X)), Red);
993 Right_Rotate (Tree, Parent (Parent (X)));
994 end if;
996 else
997 pragma Assert (Parent (X) = Right (Parent (Parent (X))));
999 Y := Left (Parent (Parent (X)));
1001 if Y /= null and then Color (Y) = Red then
1002 Set_Color (Parent (X), Black);
1003 Set_Color (Y, Black);
1004 Set_Color (Parent (Parent (X)), Red);
1005 X := Parent (Parent (X));
1007 else
1008 if X = Left (Parent (X)) then
1009 X := Parent (X);
1010 Right_Rotate (Tree, X);
1011 end if;
1013 Set_Color (Parent (X), Black);
1014 Set_Color (Parent (Parent (X)), Red);
1015 Left_Rotate (Tree, Parent (Parent (X)));
1016 end if;
1017 end if;
1018 end loop;
1020 Set_Color (Tree.Root, Black);
1021 end Rebalance_For_Insert;
1023 ------------------
1024 -- Right_Rotate --
1025 ------------------
1027 procedure Right_Rotate (Tree : in out Tree_Type; Y : Node_Access) is
1028 X : constant Node_Access := Left (Y);
1029 pragma Assert (X /= null);
1031 begin
1032 Set_Left (Y, Right (X));
1034 if Right (X) /= null then
1035 Set_Parent (Right (X), Y);
1036 end if;
1038 Set_Parent (X, Parent (Y));
1040 if Y = Tree.Root then
1041 Tree.Root := X;
1042 elsif Y = Left (Parent (Y)) then
1043 Set_Left (Parent (Y), X);
1044 else
1045 pragma Assert (Y = Right (Parent (Y)));
1046 Set_Right (Parent (Y), X);
1047 end if;
1049 Set_Right (X, Y);
1050 Set_Parent (Y, X);
1051 end Right_Rotate;
1053 ---------
1054 -- Vet --
1055 ---------
1057 function Vet (Tree : Tree_Type; Node : Node_Access) return Boolean is
1058 begin
1059 if Node = null then
1060 return True;
1061 end if;
1063 if Parent (Node) = Node
1064 or else Left (Node) = Node
1065 or else Right (Node) = Node
1066 then
1067 return False;
1068 end if;
1070 if Tree.Length = 0
1071 or else Tree.Root = null
1072 or else Tree.First = null
1073 or else Tree.Last = null
1074 then
1075 return False;
1076 end if;
1078 if Parent (Tree.Root) /= null then
1079 return False;
1080 end if;
1082 if Left (Tree.First) /= null then
1083 return False;
1084 end if;
1086 if Right (Tree.Last) /= null then
1087 return False;
1088 end if;
1090 if Tree.Length = 1 then
1091 if Tree.First /= Tree.Last
1092 or else Tree.First /= Tree.Root
1093 then
1094 return False;
1095 end if;
1097 if Node /= Tree.First then
1098 return False;
1099 end if;
1101 if Parent (Node) /= null
1102 or else Left (Node) /= null
1103 or else Right (Node) /= null
1104 then
1105 return False;
1106 end if;
1108 return True;
1109 end if;
1111 if Tree.First = Tree.Last then
1112 return False;
1113 end if;
1115 if Tree.Length = 2 then
1116 if Tree.First /= Tree.Root
1117 and then Tree.Last /= Tree.Root
1118 then
1119 return False;
1120 end if;
1122 if Tree.First /= Node
1123 and then Tree.Last /= Node
1124 then
1125 return False;
1126 end if;
1127 end if;
1129 if Left (Node) /= null
1130 and then Parent (Left (Node)) /= Node
1131 then
1132 return False;
1133 end if;
1135 if Right (Node) /= null
1136 and then Parent (Right (Node)) /= Node
1137 then
1138 return False;
1139 end if;
1141 if Parent (Node) = null then
1142 if Tree.Root /= Node then
1143 return False;
1144 end if;
1146 elsif Left (Parent (Node)) /= Node
1147 and then Right (Parent (Node)) /= Node
1148 then
1149 return False;
1150 end if;
1152 return True;
1153 end Vet;
1155 end Ada.Containers.Red_Black_Trees.Generic_Operations;