1 /* Control flow functions for trees.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "tree-pass.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
40 #include "gimple-fold.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
65 /* This file contains functions for building the Control Flow Graph (CFG)
66 for a function tree. */
68 /* Local declarations. */
70 /* Initial capacity for the basic block array. */
71 static const int initial_cfg_capacity
= 20;
73 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
74 which use a particular edge. The CASE_LABEL_EXPRs are chained together
75 via their CASE_CHAIN field, which we clear after we're done with the
76 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
78 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
79 update the case vector in response to edge redirections.
81 Right now this table is set up and torn down at key points in the
82 compilation process. It would be nice if we could make the table
83 more persistent. The key is getting notification of changes to
84 the CFG (particularly edge removal, creation and redirection). */
86 static hash_map
<edge
, tree
> *edge_to_cases
;
88 /* If we record edge_to_cases, this bitmap will hold indexes
89 of basic blocks that end in a GIMPLE_SWITCH which we touched
90 due to edge manipulations. */
92 static bitmap touched_switch_bbs
;
97 long num_merged_labels
;
100 static struct cfg_stats_d cfg_stats
;
102 /* Data to pass to replace_block_vars_by_duplicates_1. */
103 struct replace_decls_d
105 hash_map
<tree
, tree
> *vars_map
;
109 /* Hash table to store last discriminator assigned for each locus. */
110 struct locus_discrim_map
116 /* Hashtable helpers. */
118 struct locus_discrim_hasher
: free_ptr_hash
<locus_discrim_map
>
120 static inline hashval_t
hash (const locus_discrim_map
*);
121 static inline bool equal (const locus_discrim_map
*,
122 const locus_discrim_map
*);
125 /* Trivial hash function for a location_t. ITEM is a pointer to
126 a hash table entry that maps a location_t to a discriminator. */
129 locus_discrim_hasher::hash (const locus_discrim_map
*item
)
131 return LOCATION_LINE (item
->locus
);
134 /* Equality function for the locus-to-discriminator map. A and B
135 point to the two hash table entries to compare. */
138 locus_discrim_hasher::equal (const locus_discrim_map
*a
,
139 const locus_discrim_map
*b
)
141 return LOCATION_LINE (a
->locus
) == LOCATION_LINE (b
->locus
);
144 static hash_table
<locus_discrim_hasher
> *discriminator_per_locus
;
146 /* Basic blocks and flowgraphs. */
147 static void make_blocks (gimple_seq
);
150 static void make_edges (void);
151 static void assign_discriminators (void);
152 static void make_cond_expr_edges (basic_block
);
153 static void make_gimple_switch_edges (gswitch
*, basic_block
);
154 static bool make_goto_expr_edges (basic_block
);
155 static void make_gimple_asm_edges (basic_block
);
156 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
157 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
159 /* Various helpers. */
160 static inline bool stmt_starts_bb_p (gimple
*, gimple
*);
161 static int gimple_verify_flow_info (void);
162 static void gimple_make_forwarder_block (edge
);
163 static gimple
*first_non_label_stmt (basic_block
);
164 static bool verify_gimple_transaction (gtransaction
*);
165 static bool call_can_make_abnormal_goto (gimple
*);
167 /* Flowgraph optimization and cleanup. */
168 static void gimple_merge_blocks (basic_block
, basic_block
);
169 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
170 static void remove_bb (basic_block
);
171 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
172 static edge
find_taken_edge_cond_expr (basic_block
, tree
);
173 static edge
find_taken_edge_switch_expr (gswitch
*, basic_block
, tree
);
174 static tree
find_case_label_for_value (gswitch
*, tree
);
175 static void lower_phi_internal_fn ();
178 init_empty_tree_cfg_for_function (struct function
*fn
)
180 /* Initialize the basic block array. */
182 profile_status_for_fn (fn
) = PROFILE_ABSENT
;
183 n_basic_blocks_for_fn (fn
) = NUM_FIXED_BLOCKS
;
184 last_basic_block_for_fn (fn
) = NUM_FIXED_BLOCKS
;
185 vec_alloc (basic_block_info_for_fn (fn
), initial_cfg_capacity
);
186 vec_safe_grow_cleared (basic_block_info_for_fn (fn
),
187 initial_cfg_capacity
);
189 /* Build a mapping of labels to their associated blocks. */
190 vec_alloc (label_to_block_map_for_fn (fn
), initial_cfg_capacity
);
191 vec_safe_grow_cleared (label_to_block_map_for_fn (fn
),
192 initial_cfg_capacity
);
194 SET_BASIC_BLOCK_FOR_FN (fn
, ENTRY_BLOCK
, ENTRY_BLOCK_PTR_FOR_FN (fn
));
195 SET_BASIC_BLOCK_FOR_FN (fn
, EXIT_BLOCK
, EXIT_BLOCK_PTR_FOR_FN (fn
));
197 ENTRY_BLOCK_PTR_FOR_FN (fn
)->next_bb
198 = EXIT_BLOCK_PTR_FOR_FN (fn
);
199 EXIT_BLOCK_PTR_FOR_FN (fn
)->prev_bb
200 = ENTRY_BLOCK_PTR_FOR_FN (fn
);
204 init_empty_tree_cfg (void)
206 init_empty_tree_cfg_for_function (cfun
);
209 /*---------------------------------------------------------------------------
211 ---------------------------------------------------------------------------*/
213 /* Entry point to the CFG builder for trees. SEQ is the sequence of
214 statements to be added to the flowgraph. */
217 build_gimple_cfg (gimple_seq seq
)
219 /* Register specific gimple functions. */
220 gimple_register_cfg_hooks ();
222 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
224 init_empty_tree_cfg ();
228 /* Make sure there is always at least one block, even if it's empty. */
229 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
230 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
232 /* Adjust the size of the array. */
233 if (basic_block_info_for_fn (cfun
)->length ()
234 < (size_t) n_basic_blocks_for_fn (cfun
))
235 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
),
236 n_basic_blocks_for_fn (cfun
));
238 /* To speed up statement iterator walks, we first purge dead labels. */
239 cleanup_dead_labels ();
241 /* Group case nodes to reduce the number of edges.
242 We do this after cleaning up dead labels because otherwise we miss
243 a lot of obvious case merging opportunities. */
244 group_case_labels ();
246 /* Create the edges of the flowgraph. */
247 discriminator_per_locus
= new hash_table
<locus_discrim_hasher
> (13);
249 assign_discriminators ();
250 lower_phi_internal_fn ();
251 cleanup_dead_labels ();
252 delete discriminator_per_locus
;
253 discriminator_per_locus
= NULL
;
256 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
257 them and propagate the information to LOOP. We assume that the annotations
258 come immediately before the condition in BB, if any. */
261 replace_loop_annotate_in_block (basic_block bb
, struct loop
*loop
)
263 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
264 gimple
*stmt
= gsi_stmt (gsi
);
266 if (!(stmt
&& gimple_code (stmt
) == GIMPLE_COND
))
269 for (gsi_prev_nondebug (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
271 stmt
= gsi_stmt (gsi
);
272 if (gimple_code (stmt
) != GIMPLE_CALL
)
274 if (!gimple_call_internal_p (stmt
)
275 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
278 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
280 case annot_expr_ivdep_kind
:
281 loop
->safelen
= INT_MAX
;
283 case annot_expr_no_vector_kind
:
284 loop
->dont_vectorize
= true;
286 case annot_expr_vector_kind
:
287 loop
->force_vectorize
= true;
288 cfun
->has_force_vectorize_loops
= true;
294 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
295 gimple_call_arg (stmt
, 0));
296 gsi_replace (&gsi
, stmt
, true);
300 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
301 them and propagate the information to the loop. We assume that the
302 annotations come immediately before the condition of the loop. */
305 replace_loop_annotate (void)
309 gimple_stmt_iterator gsi
;
312 FOR_EACH_LOOP (loop
, 0)
314 /* First look into the header. */
315 replace_loop_annotate_in_block (loop
->header
, loop
);
317 /* Then look into the latch, if any. */
319 replace_loop_annotate_in_block (loop
->latch
, loop
);
322 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
323 FOR_EACH_BB_FN (bb
, cfun
)
325 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
327 stmt
= gsi_stmt (gsi
);
328 if (gimple_code (stmt
) != GIMPLE_CALL
)
330 if (!gimple_call_internal_p (stmt
)
331 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
334 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
336 case annot_expr_ivdep_kind
:
337 case annot_expr_no_vector_kind
:
338 case annot_expr_vector_kind
:
344 warning_at (gimple_location (stmt
), 0, "ignoring loop annotation");
345 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
346 gimple_call_arg (stmt
, 0));
347 gsi_replace (&gsi
, stmt
, true);
352 /* Lower internal PHI function from GIMPLE FE. */
355 lower_phi_internal_fn ()
357 basic_block bb
, pred
= NULL
;
358 gimple_stmt_iterator gsi
;
363 /* After edge creation, handle __PHI function from GIMPLE FE. */
364 FOR_EACH_BB_FN (bb
, cfun
)
366 for (gsi
= gsi_after_labels (bb
); !gsi_end_p (gsi
);)
368 stmt
= gsi_stmt (gsi
);
369 if (! gimple_call_internal_p (stmt
, IFN_PHI
))
372 lhs
= gimple_call_lhs (stmt
);
373 phi_node
= create_phi_node (lhs
, bb
);
375 /* Add arguments to the PHI node. */
376 for (unsigned i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
378 tree arg
= gimple_call_arg (stmt
, i
);
379 if (TREE_CODE (arg
) == LABEL_DECL
)
380 pred
= label_to_block (arg
);
383 edge e
= find_edge (pred
, bb
);
384 add_phi_arg (phi_node
, arg
, e
, UNKNOWN_LOCATION
);
388 gsi_remove (&gsi
, true);
394 execute_build_cfg (void)
396 gimple_seq body
= gimple_body (current_function_decl
);
398 build_gimple_cfg (body
);
399 gimple_set_body (current_function_decl
, NULL
);
400 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
402 fprintf (dump_file
, "Scope blocks:\n");
403 dump_scope_blocks (dump_file
, dump_flags
);
406 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
407 replace_loop_annotate ();
413 const pass_data pass_data_build_cfg
=
415 GIMPLE_PASS
, /* type */
417 OPTGROUP_NONE
, /* optinfo_flags */
418 TV_TREE_CFG
, /* tv_id */
419 PROP_gimple_leh
, /* properties_required */
420 ( PROP_cfg
| PROP_loops
), /* properties_provided */
421 0, /* properties_destroyed */
422 0, /* todo_flags_start */
423 0, /* todo_flags_finish */
426 class pass_build_cfg
: public gimple_opt_pass
429 pass_build_cfg (gcc::context
*ctxt
)
430 : gimple_opt_pass (pass_data_build_cfg
, ctxt
)
433 /* opt_pass methods: */
434 virtual unsigned int execute (function
*) { return execute_build_cfg (); }
436 }; // class pass_build_cfg
441 make_pass_build_cfg (gcc::context
*ctxt
)
443 return new pass_build_cfg (ctxt
);
447 /* Return true if T is a computed goto. */
450 computed_goto_p (gimple
*t
)
452 return (gimple_code (t
) == GIMPLE_GOTO
453 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
456 /* Returns true if the sequence of statements STMTS only contains
457 a call to __builtin_unreachable (). */
460 gimple_seq_unreachable_p (gimple_seq stmts
)
465 gimple_stmt_iterator gsi
= gsi_last (stmts
);
467 if (!gimple_call_builtin_p (gsi_stmt (gsi
), BUILT_IN_UNREACHABLE
))
470 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
472 gimple
*stmt
= gsi_stmt (gsi
);
473 if (gimple_code (stmt
) != GIMPLE_LABEL
474 && !is_gimple_debug (stmt
)
475 && !gimple_clobber_p (stmt
))
481 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
482 the other edge points to a bb with just __builtin_unreachable ().
483 I.e. return true for C->M edge in:
491 __builtin_unreachable ();
495 assert_unreachable_fallthru_edge_p (edge e
)
497 basic_block pred_bb
= e
->src
;
498 gimple
*last
= last_stmt (pred_bb
);
499 if (last
&& gimple_code (last
) == GIMPLE_COND
)
501 basic_block other_bb
= EDGE_SUCC (pred_bb
, 0)->dest
;
502 if (other_bb
== e
->dest
)
503 other_bb
= EDGE_SUCC (pred_bb
, 1)->dest
;
504 if (EDGE_COUNT (other_bb
->succs
) == 0)
505 return gimple_seq_unreachable_p (bb_seq (other_bb
));
511 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
512 could alter control flow except via eh. We initialize the flag at
513 CFG build time and only ever clear it later. */
516 gimple_call_initialize_ctrl_altering (gimple
*stmt
)
518 int flags
= gimple_call_flags (stmt
);
520 /* A call alters control flow if it can make an abnormal goto. */
521 if (call_can_make_abnormal_goto (stmt
)
522 /* A call also alters control flow if it does not return. */
523 || flags
& ECF_NORETURN
524 /* TM ending statements have backedges out of the transaction.
525 Return true so we split the basic block containing them.
526 Note that the TM_BUILTIN test is merely an optimization. */
527 || ((flags
& ECF_TM_BUILTIN
)
528 && is_tm_ending_fndecl (gimple_call_fndecl (stmt
)))
529 /* BUILT_IN_RETURN call is same as return statement. */
530 || gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
)
531 /* IFN_UNIQUE should be the last insn, to make checking for it
532 as cheap as possible. */
533 || (gimple_call_internal_p (stmt
)
534 && gimple_call_internal_unique_p (stmt
)))
535 gimple_call_set_ctrl_altering (stmt
, true);
537 gimple_call_set_ctrl_altering (stmt
, false);
541 /* Insert SEQ after BB and build a flowgraph. */
544 make_blocks_1 (gimple_seq seq
, basic_block bb
)
546 gimple_stmt_iterator i
= gsi_start (seq
);
548 bool start_new_block
= true;
549 bool first_stmt_of_seq
= true;
551 while (!gsi_end_p (i
))
558 if (stmt
&& is_gimple_call (stmt
))
559 gimple_call_initialize_ctrl_altering (stmt
);
561 /* If the statement starts a new basic block or if we have determined
562 in a previous pass that we need to create a new block for STMT, do
564 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
566 if (!first_stmt_of_seq
)
567 gsi_split_seq_before (&i
, &seq
);
568 bb
= create_basic_block (seq
, bb
);
569 start_new_block
= false;
572 /* Now add STMT to BB and create the subgraphs for special statement
574 gimple_set_bb (stmt
, bb
);
576 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
578 if (stmt_ends_bb_p (stmt
))
580 /* If the stmt can make abnormal goto use a new temporary
581 for the assignment to the LHS. This makes sure the old value
582 of the LHS is available on the abnormal edge. Otherwise
583 we will end up with overlapping life-ranges for abnormal
585 if (gimple_has_lhs (stmt
)
586 && stmt_can_make_abnormal_goto (stmt
)
587 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
589 tree lhs
= gimple_get_lhs (stmt
);
590 tree tmp
= create_tmp_var (TREE_TYPE (lhs
));
591 gimple
*s
= gimple_build_assign (lhs
, tmp
);
592 gimple_set_location (s
, gimple_location (stmt
));
593 gimple_set_block (s
, gimple_block (stmt
));
594 gimple_set_lhs (stmt
, tmp
);
595 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
596 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
597 DECL_GIMPLE_REG_P (tmp
) = 1;
598 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
600 start_new_block
= true;
604 first_stmt_of_seq
= false;
609 /* Build a flowgraph for the sequence of stmts SEQ. */
612 make_blocks (gimple_seq seq
)
614 make_blocks_1 (seq
, ENTRY_BLOCK_PTR_FOR_FN (cfun
));
617 /* Create and return a new empty basic block after bb AFTER. */
620 create_bb (void *h
, void *e
, basic_block after
)
626 /* Create and initialize a new basic block. Since alloc_block uses
627 GC allocation that clears memory to allocate a basic block, we do
628 not have to clear the newly allocated basic block here. */
631 bb
->index
= last_basic_block_for_fn (cfun
);
633 set_bb_seq (bb
, h
? (gimple_seq
) h
: NULL
);
635 /* Add the new block to the linked list of blocks. */
636 link_block (bb
, after
);
638 /* Grow the basic block array if needed. */
639 if ((size_t) last_basic_block_for_fn (cfun
)
640 == basic_block_info_for_fn (cfun
)->length ())
643 (last_basic_block_for_fn (cfun
)
644 + (last_basic_block_for_fn (cfun
) + 3) / 4);
645 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
), new_size
);
648 /* Add the newly created block to the array. */
649 SET_BASIC_BLOCK_FOR_FN (cfun
, last_basic_block_for_fn (cfun
), bb
);
651 n_basic_blocks_for_fn (cfun
)++;
652 last_basic_block_for_fn (cfun
)++;
658 /*---------------------------------------------------------------------------
660 ---------------------------------------------------------------------------*/
662 /* If basic block BB has an abnormal edge to a basic block
663 containing IFN_ABNORMAL_DISPATCHER internal call, return
664 that the dispatcher's basic block, otherwise return NULL. */
667 get_abnormal_succ_dispatcher (basic_block bb
)
672 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
673 if ((e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
)) == EDGE_ABNORMAL
)
675 gimple_stmt_iterator gsi
676 = gsi_start_nondebug_after_labels_bb (e
->dest
);
677 gimple
*g
= gsi_stmt (gsi
);
678 if (g
&& gimple_call_internal_p (g
, IFN_ABNORMAL_DISPATCHER
))
684 /* Helper function for make_edges. Create a basic block with
685 with ABNORMAL_DISPATCHER internal call in it if needed, and
686 create abnormal edges from BBS to it and from it to FOR_BB
687 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
690 handle_abnormal_edges (basic_block
*dispatcher_bbs
,
691 basic_block for_bb
, int *bb_to_omp_idx
,
692 auto_vec
<basic_block
> *bbs
, bool computed_goto
)
694 basic_block
*dispatcher
= dispatcher_bbs
+ (computed_goto
? 1 : 0);
695 unsigned int idx
= 0;
701 dispatcher
= dispatcher_bbs
+ 2 * bb_to_omp_idx
[for_bb
->index
];
702 if (bb_to_omp_idx
[for_bb
->index
] != 0)
706 /* If the dispatcher has been created already, then there are basic
707 blocks with abnormal edges to it, so just make a new edge to
709 if (*dispatcher
== NULL
)
711 /* Check if there are any basic blocks that need to have
712 abnormal edges to this dispatcher. If there are none, return
714 if (bb_to_omp_idx
== NULL
)
716 if (bbs
->is_empty ())
721 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
722 if (bb_to_omp_idx
[bb
->index
] == bb_to_omp_idx
[for_bb
->index
])
728 /* Create the dispatcher bb. */
729 *dispatcher
= create_basic_block (NULL
, for_bb
);
732 /* Factor computed gotos into a common computed goto site. Also
733 record the location of that site so that we can un-factor the
734 gotos after we have converted back to normal form. */
735 gimple_stmt_iterator gsi
= gsi_start_bb (*dispatcher
);
737 /* Create the destination of the factored goto. Each original
738 computed goto will put its desired destination into this
739 variable and jump to the label we create immediately below. */
740 tree var
= create_tmp_var (ptr_type_node
, "gotovar");
742 /* Build a label for the new block which will contain the
743 factored computed goto. */
744 tree factored_label_decl
745 = create_artificial_label (UNKNOWN_LOCATION
);
746 gimple
*factored_computed_goto_label
747 = gimple_build_label (factored_label_decl
);
748 gsi_insert_after (&gsi
, factored_computed_goto_label
, GSI_NEW_STMT
);
750 /* Build our new computed goto. */
751 gimple
*factored_computed_goto
= gimple_build_goto (var
);
752 gsi_insert_after (&gsi
, factored_computed_goto
, GSI_NEW_STMT
);
754 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
757 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
760 gsi
= gsi_last_bb (bb
);
761 gimple
*last
= gsi_stmt (gsi
);
763 gcc_assert (computed_goto_p (last
));
765 /* Copy the original computed goto's destination into VAR. */
767 = gimple_build_assign (var
, gimple_goto_dest (last
));
768 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
770 edge e
= make_edge (bb
, *dispatcher
, EDGE_FALLTHRU
);
771 e
->goto_locus
= gimple_location (last
);
772 gsi_remove (&gsi
, true);
777 tree arg
= inner
? boolean_true_node
: boolean_false_node
;
778 gimple
*g
= gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER
,
780 gimple_stmt_iterator gsi
= gsi_after_labels (*dispatcher
);
781 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
783 /* Create predecessor edges of the dispatcher. */
784 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
787 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
789 make_edge (bb
, *dispatcher
, EDGE_ABNORMAL
);
794 make_edge (*dispatcher
, for_bb
, EDGE_ABNORMAL
);
797 /* Creates outgoing edges for BB. Returns 1 when it ends with an
798 computed goto, returns 2 when it ends with a statement that
799 might return to this function via an nonlocal goto, otherwise
800 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
803 make_edges_bb (basic_block bb
, struct omp_region
**pcur_region
, int *pomp_index
)
805 gimple
*last
= last_stmt (bb
);
806 bool fallthru
= false;
812 switch (gimple_code (last
))
815 if (make_goto_expr_edges (bb
))
821 edge e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
822 e
->goto_locus
= gimple_location (last
);
827 make_cond_expr_edges (bb
);
831 make_gimple_switch_edges (as_a
<gswitch
*> (last
), bb
);
835 make_eh_edges (last
);
838 case GIMPLE_EH_DISPATCH
:
839 fallthru
= make_eh_dispatch_edges (as_a
<geh_dispatch
*> (last
));
843 /* If this function receives a nonlocal goto, then we need to
844 make edges from this call site to all the nonlocal goto
846 if (stmt_can_make_abnormal_goto (last
))
849 /* If this statement has reachable exception handlers, then
850 create abnormal edges to them. */
851 make_eh_edges (last
);
853 /* BUILTIN_RETURN is really a return statement. */
854 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
856 make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
859 /* Some calls are known not to return. */
861 fallthru
= !gimple_call_noreturn_p (last
);
865 /* A GIMPLE_ASSIGN may throw internally and thus be considered
867 if (is_ctrl_altering_stmt (last
))
868 make_eh_edges (last
);
873 make_gimple_asm_edges (bb
);
878 fallthru
= omp_make_gimple_edges (bb
, pcur_region
, pomp_index
);
881 case GIMPLE_TRANSACTION
:
883 gtransaction
*txn
= as_a
<gtransaction
*> (last
);
884 tree label1
= gimple_transaction_label_norm (txn
);
885 tree label2
= gimple_transaction_label_uninst (txn
);
888 make_edge (bb
, label_to_block (label1
), EDGE_FALLTHRU
);
890 make_edge (bb
, label_to_block (label2
),
891 EDGE_TM_UNINSTRUMENTED
| (label1
? 0 : EDGE_FALLTHRU
));
893 tree label3
= gimple_transaction_label_over (txn
);
894 if (gimple_transaction_subcode (txn
)
895 & (GTMA_HAVE_ABORT
| GTMA_IS_OUTER
))
896 make_edge (bb
, label_to_block (label3
), EDGE_TM_ABORT
);
903 gcc_assert (!stmt_ends_bb_p (last
));
909 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
914 /* Join all the blocks in the flowgraph. */
920 struct omp_region
*cur_region
= NULL
;
921 auto_vec
<basic_block
> ab_edge_goto
;
922 auto_vec
<basic_block
> ab_edge_call
;
923 int *bb_to_omp_idx
= NULL
;
924 int cur_omp_region_idx
= 0;
926 /* Create an edge from entry to the first block with executable
928 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
),
929 BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
),
932 /* Traverse the basic block array placing edges. */
933 FOR_EACH_BB_FN (bb
, cfun
)
938 bb_to_omp_idx
[bb
->index
] = cur_omp_region_idx
;
940 mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
942 ab_edge_goto
.safe_push (bb
);
944 ab_edge_call
.safe_push (bb
);
946 if (cur_region
&& bb_to_omp_idx
== NULL
)
947 bb_to_omp_idx
= XCNEWVEC (int, n_basic_blocks_for_fn (cfun
));
950 /* Computed gotos are hell to deal with, especially if there are
951 lots of them with a large number of destinations. So we factor
952 them to a common computed goto location before we build the
953 edge list. After we convert back to normal form, we will un-factor
954 the computed gotos since factoring introduces an unwanted jump.
955 For non-local gotos and abnormal edges from calls to calls that return
956 twice or forced labels, factor the abnormal edges too, by having all
957 abnormal edges from the calls go to a common artificial basic block
958 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
959 basic block to all forced labels and calls returning twice.
960 We do this per-OpenMP structured block, because those regions
961 are guaranteed to be single entry single exit by the standard,
962 so it is not allowed to enter or exit such regions abnormally this way,
963 thus all computed gotos, non-local gotos and setjmp/longjmp calls
964 must not transfer control across SESE region boundaries. */
965 if (!ab_edge_goto
.is_empty () || !ab_edge_call
.is_empty ())
967 gimple_stmt_iterator gsi
;
968 basic_block dispatcher_bb_array
[2] = { NULL
, NULL
};
969 basic_block
*dispatcher_bbs
= dispatcher_bb_array
;
970 int count
= n_basic_blocks_for_fn (cfun
);
973 dispatcher_bbs
= XCNEWVEC (basic_block
, 2 * count
);
975 FOR_EACH_BB_FN (bb
, cfun
)
977 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
979 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
985 target
= gimple_label_label (label_stmt
);
987 /* Make an edge to every label block that has been marked as a
988 potential target for a computed goto or a non-local goto. */
989 if (FORCED_LABEL (target
))
990 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
991 &ab_edge_goto
, true);
992 if (DECL_NONLOCAL (target
))
994 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
995 &ab_edge_call
, false);
1000 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
1001 gsi_next_nondebug (&gsi
);
1002 if (!gsi_end_p (gsi
))
1004 /* Make an edge to every setjmp-like call. */
1005 gimple
*call_stmt
= gsi_stmt (gsi
);
1006 if (is_gimple_call (call_stmt
)
1007 && ((gimple_call_flags (call_stmt
) & ECF_RETURNS_TWICE
)
1008 || gimple_call_builtin_p (call_stmt
,
1009 BUILT_IN_SETJMP_RECEIVER
)))
1010 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1011 &ab_edge_call
, false);
1016 XDELETE (dispatcher_bbs
);
1019 XDELETE (bb_to_omp_idx
);
1021 omp_free_regions ();
1024 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1025 needed. Returns true if new bbs were created.
1026 Note: This is transitional code, and should not be used for new code. We
1027 should be able to get rid of this by rewriting all target va-arg
1028 gimplification hooks to use an interface gimple_build_cond_value as described
1029 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1032 gimple_find_sub_bbs (gimple_seq seq
, gimple_stmt_iterator
*gsi
)
1034 gimple
*stmt
= gsi_stmt (*gsi
);
1035 basic_block bb
= gimple_bb (stmt
);
1036 basic_block lastbb
, afterbb
;
1037 int old_num_bbs
= n_basic_blocks_for_fn (cfun
);
1039 lastbb
= make_blocks_1 (seq
, bb
);
1040 if (old_num_bbs
== n_basic_blocks_for_fn (cfun
))
1042 e
= split_block (bb
, stmt
);
1043 /* Move e->dest to come after the new basic blocks. */
1045 unlink_block (afterbb
);
1046 link_block (afterbb
, lastbb
);
1047 redirect_edge_succ (e
, bb
->next_bb
);
1049 while (bb
!= afterbb
)
1051 struct omp_region
*cur_region
= NULL
;
1052 profile_count cnt
= profile_count::zero ();
1056 int cur_omp_region_idx
= 0;
1057 int mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
1058 gcc_assert (!mer
&& !cur_region
);
1059 add_bb_to_loop (bb
, afterbb
->loop_father
);
1063 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1065 if (e
->count
.initialized_p ())
1069 freq
+= EDGE_FREQUENCY (e
);
1071 tree_guess_outgoing_edge_probabilities (bb
);
1072 if (all
|| profile_status_for_fn (cfun
) == PROFILE_READ
)
1074 bb
->frequency
= freq
;
1075 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1076 e
->count
= bb
->count
.apply_probability (e
->probability
);
1083 /* Find the next available discriminator value for LOCUS. The
1084 discriminator distinguishes among several basic blocks that
1085 share a common locus, allowing for more accurate sample-based
1089 next_discriminator_for_locus (location_t locus
)
1091 struct locus_discrim_map item
;
1092 struct locus_discrim_map
**slot
;
1095 item
.discriminator
= 0;
1096 slot
= discriminator_per_locus
->find_slot_with_hash (
1097 &item
, LOCATION_LINE (locus
), INSERT
);
1099 if (*slot
== HTAB_EMPTY_ENTRY
)
1101 *slot
= XNEW (struct locus_discrim_map
);
1103 (*slot
)->locus
= locus
;
1104 (*slot
)->discriminator
= 0;
1106 (*slot
)->discriminator
++;
1107 return (*slot
)->discriminator
;
1110 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1113 same_line_p (location_t locus1
, location_t locus2
)
1115 expanded_location from
, to
;
1117 if (locus1
== locus2
)
1120 from
= expand_location (locus1
);
1121 to
= expand_location (locus2
);
1123 if (from
.line
!= to
.line
)
1125 if (from
.file
== to
.file
)
1127 return (from
.file
!= NULL
1129 && filename_cmp (from
.file
, to
.file
) == 0);
1132 /* Assign discriminators to each basic block. */
1135 assign_discriminators (void)
1139 FOR_EACH_BB_FN (bb
, cfun
)
1143 gimple
*last
= last_stmt (bb
);
1144 location_t locus
= last
? gimple_location (last
) : UNKNOWN_LOCATION
;
1146 if (locus
== UNKNOWN_LOCATION
)
1149 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1151 gimple
*first
= first_non_label_stmt (e
->dest
);
1152 gimple
*last
= last_stmt (e
->dest
);
1153 if ((first
&& same_line_p (locus
, gimple_location (first
)))
1154 || (last
&& same_line_p (locus
, gimple_location (last
))))
1156 if (e
->dest
->discriminator
!= 0 && bb
->discriminator
== 0)
1157 bb
->discriminator
= next_discriminator_for_locus (locus
);
1159 e
->dest
->discriminator
= next_discriminator_for_locus (locus
);
1165 /* Create the edges for a GIMPLE_COND starting at block BB. */
1168 make_cond_expr_edges (basic_block bb
)
1170 gcond
*entry
= as_a
<gcond
*> (last_stmt (bb
));
1171 gimple
*then_stmt
, *else_stmt
;
1172 basic_block then_bb
, else_bb
;
1173 tree then_label
, else_label
;
1177 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
1179 /* Entry basic blocks for each component. */
1180 then_label
= gimple_cond_true_label (entry
);
1181 else_label
= gimple_cond_false_label (entry
);
1182 then_bb
= label_to_block (then_label
);
1183 else_bb
= label_to_block (else_label
);
1184 then_stmt
= first_stmt (then_bb
);
1185 else_stmt
= first_stmt (else_bb
);
1187 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
1188 e
->goto_locus
= gimple_location (then_stmt
);
1189 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
1191 e
->goto_locus
= gimple_location (else_stmt
);
1193 /* We do not need the labels anymore. */
1194 gimple_cond_set_true_label (entry
, NULL_TREE
);
1195 gimple_cond_set_false_label (entry
, NULL_TREE
);
1199 /* Called for each element in the hash table (P) as we delete the
1200 edge to cases hash table.
1202 Clear all the CASE_CHAINs to prevent problems with copying of
1203 SWITCH_EXPRs and structure sharing rules, then free the hash table
1207 edge_to_cases_cleanup (edge
const &, tree
const &value
, void *)
1211 for (t
= value
; t
; t
= next
)
1213 next
= CASE_CHAIN (t
);
1214 CASE_CHAIN (t
) = NULL
;
1220 /* Start recording information mapping edges to case labels. */
1223 start_recording_case_labels (void)
1225 gcc_assert (edge_to_cases
== NULL
);
1226 edge_to_cases
= new hash_map
<edge
, tree
>;
1227 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
1230 /* Return nonzero if we are recording information for case labels. */
1233 recording_case_labels_p (void)
1235 return (edge_to_cases
!= NULL
);
1238 /* Stop recording information mapping edges to case labels and
1239 remove any information we have recorded. */
1241 end_recording_case_labels (void)
1245 edge_to_cases
->traverse
<void *, edge_to_cases_cleanup
> (NULL
);
1246 delete edge_to_cases
;
1247 edge_to_cases
= NULL
;
1248 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
1250 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1253 gimple
*stmt
= last_stmt (bb
);
1254 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1255 group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1258 BITMAP_FREE (touched_switch_bbs
);
1261 /* If we are inside a {start,end}_recording_cases block, then return
1262 a chain of CASE_LABEL_EXPRs from T which reference E.
1264 Otherwise return NULL. */
1267 get_cases_for_edge (edge e
, gswitch
*t
)
1272 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1273 chains available. Return NULL so the caller can detect this case. */
1274 if (!recording_case_labels_p ())
1277 slot
= edge_to_cases
->get (e
);
1281 /* If we did not find E in the hash table, then this must be the first
1282 time we have been queried for information about E & T. Add all the
1283 elements from T to the hash table then perform the query again. */
1285 n
= gimple_switch_num_labels (t
);
1286 for (i
= 0; i
< n
; i
++)
1288 tree elt
= gimple_switch_label (t
, i
);
1289 tree lab
= CASE_LABEL (elt
);
1290 basic_block label_bb
= label_to_block (lab
);
1291 edge this_edge
= find_edge (e
->src
, label_bb
);
1293 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1295 tree
&s
= edge_to_cases
->get_or_insert (this_edge
);
1296 CASE_CHAIN (elt
) = s
;
1300 return *edge_to_cases
->get (e
);
1303 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1306 make_gimple_switch_edges (gswitch
*entry
, basic_block bb
)
1310 n
= gimple_switch_num_labels (entry
);
1312 for (i
= 0; i
< n
; ++i
)
1314 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
1315 basic_block label_bb
= label_to_block (lab
);
1316 make_edge (bb
, label_bb
, 0);
1321 /* Return the basic block holding label DEST. */
1324 label_to_block_fn (struct function
*ifun
, tree dest
)
1326 int uid
= LABEL_DECL_UID (dest
);
1328 /* We would die hard when faced by an undefined label. Emit a label to
1329 the very first basic block. This will hopefully make even the dataflow
1330 and undefined variable warnings quite right. */
1331 if (seen_error () && uid
< 0)
1333 gimple_stmt_iterator gsi
=
1334 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
));
1337 stmt
= gimple_build_label (dest
);
1338 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
1339 uid
= LABEL_DECL_UID (dest
);
1341 if (vec_safe_length (ifun
->cfg
->x_label_to_block_map
) <= (unsigned int) uid
)
1343 return (*ifun
->cfg
->x_label_to_block_map
)[uid
];
1346 /* Create edges for a goto statement at block BB. Returns true
1347 if abnormal edges should be created. */
1350 make_goto_expr_edges (basic_block bb
)
1352 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1353 gimple
*goto_t
= gsi_stmt (last
);
1355 /* A simple GOTO creates normal edges. */
1356 if (simple_goto_p (goto_t
))
1358 tree dest
= gimple_goto_dest (goto_t
);
1359 basic_block label_bb
= label_to_block (dest
);
1360 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1361 e
->goto_locus
= gimple_location (goto_t
);
1362 gsi_remove (&last
, true);
1366 /* A computed GOTO creates abnormal edges. */
1370 /* Create edges for an asm statement with labels at block BB. */
1373 make_gimple_asm_edges (basic_block bb
)
1375 gasm
*stmt
= as_a
<gasm
*> (last_stmt (bb
));
1376 int i
, n
= gimple_asm_nlabels (stmt
);
1378 for (i
= 0; i
< n
; ++i
)
1380 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1381 basic_block label_bb
= label_to_block (label
);
1382 make_edge (bb
, label_bb
, 0);
1386 /*---------------------------------------------------------------------------
1388 ---------------------------------------------------------------------------*/
1390 /* Cleanup useless labels in basic blocks. This is something we wish
1391 to do early because it allows us to group case labels before creating
1392 the edges for the CFG, and it speeds up block statement iterators in
1393 all passes later on.
1394 We rerun this pass after CFG is created, to get rid of the labels that
1395 are no longer referenced. After then we do not run it any more, since
1396 (almost) no new labels should be created. */
1398 /* A map from basic block index to the leading label of that block. */
1399 static struct label_record
1404 /* True if the label is referenced from somewhere. */
1408 /* Given LABEL return the first label in the same basic block. */
1411 main_block_label (tree label
)
1413 basic_block bb
= label_to_block (label
);
1414 tree main_label
= label_for_bb
[bb
->index
].label
;
1416 /* label_to_block possibly inserted undefined label into the chain. */
1419 label_for_bb
[bb
->index
].label
= label
;
1423 label_for_bb
[bb
->index
].used
= true;
1427 /* Clean up redundant labels within the exception tree. */
1430 cleanup_dead_labels_eh (void)
1437 if (cfun
->eh
== NULL
)
1440 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
1441 if (lp
&& lp
->post_landing_pad
)
1443 lab
= main_block_label (lp
->post_landing_pad
);
1444 if (lab
!= lp
->post_landing_pad
)
1446 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1447 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1451 FOR_ALL_EH_REGION (r
)
1455 case ERT_MUST_NOT_THROW
:
1461 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1465 c
->label
= main_block_label (lab
);
1470 case ERT_ALLOWED_EXCEPTIONS
:
1471 lab
= r
->u
.allowed
.label
;
1473 r
->u
.allowed
.label
= main_block_label (lab
);
1479 /* Cleanup redundant labels. This is a three-step process:
1480 1) Find the leading label for each block.
1481 2) Redirect all references to labels to the leading labels.
1482 3) Cleanup all useless labels. */
1485 cleanup_dead_labels (void)
1488 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block_for_fn (cfun
));
1490 /* Find a suitable label for each block. We use the first user-defined
1491 label if there is one, or otherwise just the first label we see. */
1492 FOR_EACH_BB_FN (bb
, cfun
)
1494 gimple_stmt_iterator i
;
1496 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1499 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1504 label
= gimple_label_label (label_stmt
);
1506 /* If we have not yet seen a label for the current block,
1507 remember this one and see if there are more labels. */
1508 if (!label_for_bb
[bb
->index
].label
)
1510 label_for_bb
[bb
->index
].label
= label
;
1514 /* If we did see a label for the current block already, but it
1515 is an artificially created label, replace it if the current
1516 label is a user defined label. */
1517 if (!DECL_ARTIFICIAL (label
)
1518 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1520 label_for_bb
[bb
->index
].label
= label
;
1526 /* Now redirect all jumps/branches to the selected label.
1527 First do so for each block ending in a control statement. */
1528 FOR_EACH_BB_FN (bb
, cfun
)
1530 gimple
*stmt
= last_stmt (bb
);
1531 tree label
, new_label
;
1536 switch (gimple_code (stmt
))
1540 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1541 label
= gimple_cond_true_label (cond_stmt
);
1544 new_label
= main_block_label (label
);
1545 if (new_label
!= label
)
1546 gimple_cond_set_true_label (cond_stmt
, new_label
);
1549 label
= gimple_cond_false_label (cond_stmt
);
1552 new_label
= main_block_label (label
);
1553 if (new_label
!= label
)
1554 gimple_cond_set_false_label (cond_stmt
, new_label
);
1561 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
1562 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
1564 /* Replace all destination labels. */
1565 for (i
= 0; i
< n
; ++i
)
1567 tree case_label
= gimple_switch_label (switch_stmt
, i
);
1568 label
= CASE_LABEL (case_label
);
1569 new_label
= main_block_label (label
);
1570 if (new_label
!= label
)
1571 CASE_LABEL (case_label
) = new_label
;
1578 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
1579 int i
, n
= gimple_asm_nlabels (asm_stmt
);
1581 for (i
= 0; i
< n
; ++i
)
1583 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
1584 tree label
= main_block_label (TREE_VALUE (cons
));
1585 TREE_VALUE (cons
) = label
;
1590 /* We have to handle gotos until they're removed, and we don't
1591 remove them until after we've created the CFG edges. */
1593 if (!computed_goto_p (stmt
))
1595 ggoto
*goto_stmt
= as_a
<ggoto
*> (stmt
);
1596 label
= gimple_goto_dest (goto_stmt
);
1597 new_label
= main_block_label (label
);
1598 if (new_label
!= label
)
1599 gimple_goto_set_dest (goto_stmt
, new_label
);
1603 case GIMPLE_TRANSACTION
:
1605 gtransaction
*txn
= as_a
<gtransaction
*> (stmt
);
1607 label
= gimple_transaction_label_norm (txn
);
1610 new_label
= main_block_label (label
);
1611 if (new_label
!= label
)
1612 gimple_transaction_set_label_norm (txn
, new_label
);
1615 label
= gimple_transaction_label_uninst (txn
);
1618 new_label
= main_block_label (label
);
1619 if (new_label
!= label
)
1620 gimple_transaction_set_label_uninst (txn
, new_label
);
1623 label
= gimple_transaction_label_over (txn
);
1626 new_label
= main_block_label (label
);
1627 if (new_label
!= label
)
1628 gimple_transaction_set_label_over (txn
, new_label
);
1638 /* Do the same for the exception region tree labels. */
1639 cleanup_dead_labels_eh ();
1641 /* Finally, purge dead labels. All user-defined labels and labels that
1642 can be the target of non-local gotos and labels which have their
1643 address taken are preserved. */
1644 FOR_EACH_BB_FN (bb
, cfun
)
1646 gimple_stmt_iterator i
;
1647 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1649 if (!label_for_this_bb
)
1652 /* If the main label of the block is unused, we may still remove it. */
1653 if (!label_for_bb
[bb
->index
].used
)
1654 label_for_this_bb
= NULL
;
1656 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1659 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1664 label
= gimple_label_label (label_stmt
);
1666 if (label
== label_for_this_bb
1667 || !DECL_ARTIFICIAL (label
)
1668 || DECL_NONLOCAL (label
)
1669 || FORCED_LABEL (label
))
1672 gsi_remove (&i
, true);
1676 free (label_for_bb
);
1679 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1680 the ones jumping to the same label.
1681 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1684 group_case_labels_stmt (gswitch
*stmt
)
1686 int old_size
= gimple_switch_num_labels (stmt
);
1687 int i
, next_index
, new_size
;
1688 basic_block default_bb
= NULL
;
1690 default_bb
= label_to_block (CASE_LABEL (gimple_switch_default_label (stmt
)));
1692 /* Look for possible opportunities to merge cases. */
1694 while (i
< old_size
)
1696 tree base_case
, base_high
;
1697 basic_block base_bb
;
1699 base_case
= gimple_switch_label (stmt
, i
);
1701 gcc_assert (base_case
);
1702 base_bb
= label_to_block (CASE_LABEL (base_case
));
1704 /* Discard cases that have the same destination as the default case or
1705 whose destiniation blocks have already been removed as unreachable. */
1706 if (base_bb
== NULL
|| base_bb
== default_bb
)
1712 base_high
= CASE_HIGH (base_case
)
1713 ? CASE_HIGH (base_case
)
1714 : CASE_LOW (base_case
);
1717 /* Try to merge case labels. Break out when we reach the end
1718 of the label vector or when we cannot merge the next case
1719 label with the current one. */
1720 while (next_index
< old_size
)
1722 tree merge_case
= gimple_switch_label (stmt
, next_index
);
1723 basic_block merge_bb
= label_to_block (CASE_LABEL (merge_case
));
1724 wide_int bhp1
= wi::add (base_high
, 1);
1726 /* Merge the cases if they jump to the same place,
1727 and their ranges are consecutive. */
1728 if (merge_bb
== base_bb
1729 && wi::eq_p (CASE_LOW (merge_case
), bhp1
))
1731 base_high
= CASE_HIGH (merge_case
) ?
1732 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1733 CASE_HIGH (base_case
) = base_high
;
1740 /* Discard cases that have an unreachable destination block. */
1741 if (EDGE_COUNT (base_bb
->succs
) == 0
1742 && gimple_seq_unreachable_p (bb_seq (base_bb
)))
1744 edge base_edge
= find_edge (gimple_bb (stmt
), base_bb
);
1745 if (base_edge
!= NULL
)
1746 remove_edge_and_dominated_blocks (base_edge
);
1752 gimple_switch_set_label (stmt
, new_size
,
1753 gimple_switch_label (stmt
, i
));
1758 gcc_assert (new_size
<= old_size
);
1760 if (new_size
< old_size
)
1761 gimple_switch_set_num_labels (stmt
, new_size
);
1763 return new_size
< old_size
;
1766 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1767 and scan the sorted vector of cases. Combine the ones jumping to the
1771 group_case_labels (void)
1774 bool changed
= false;
1776 FOR_EACH_BB_FN (bb
, cfun
)
1778 gimple
*stmt
= last_stmt (bb
);
1779 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1780 changed
|= group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1786 /* Checks whether we can merge block B into block A. */
1789 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1793 if (!single_succ_p (a
))
1796 if (single_succ_edge (a
)->flags
& EDGE_COMPLEX
)
1799 if (single_succ (a
) != b
)
1802 if (!single_pred_p (b
))
1805 if (a
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1806 || b
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1809 /* If A ends by a statement causing exceptions or something similar, we
1810 cannot merge the blocks. */
1811 stmt
= last_stmt (a
);
1812 if (stmt
&& stmt_ends_bb_p (stmt
))
1815 /* Do not allow a block with only a non-local label to be merged. */
1817 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
1818 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
1821 /* Examine the labels at the beginning of B. */
1822 for (gimple_stmt_iterator gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);
1826 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1829 lab
= gimple_label_label (label_stmt
);
1831 /* Do not remove user forced labels or for -O0 any user labels. */
1832 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1836 /* Protect simple loop latches. We only want to avoid merging
1837 the latch with the loop header or with a block in another
1838 loop in this case. */
1840 && b
->loop_father
->latch
== b
1841 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES
)
1842 && (b
->loop_father
->header
== a
1843 || b
->loop_father
!= a
->loop_father
))
1846 /* It must be possible to eliminate all phi nodes in B. If ssa form
1847 is not up-to-date and a name-mapping is registered, we cannot eliminate
1848 any phis. Symbols marked for renaming are never a problem though. */
1849 for (gphi_iterator gsi
= gsi_start_phis (b
); !gsi_end_p (gsi
);
1852 gphi
*phi
= gsi
.phi ();
1853 /* Technically only new names matter. */
1854 if (name_registered_for_update_p (PHI_RESULT (phi
)))
1858 /* When not optimizing, don't merge if we'd lose goto_locus. */
1860 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1862 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1863 gimple_stmt_iterator prev
, next
;
1864 prev
= gsi_last_nondebug_bb (a
);
1865 next
= gsi_after_labels (b
);
1866 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1867 gsi_next_nondebug (&next
);
1868 if ((gsi_end_p (prev
)
1869 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1870 && (gsi_end_p (next
)
1871 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1878 /* Replaces all uses of NAME by VAL. */
1881 replace_uses_by (tree name
, tree val
)
1883 imm_use_iterator imm_iter
;
1888 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1890 /* Mark the block if we change the last stmt in it. */
1891 if (cfgcleanup_altered_bbs
1892 && stmt_ends_bb_p (stmt
))
1893 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1895 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1897 replace_exp (use
, val
);
1899 if (gimple_code (stmt
) == GIMPLE_PHI
)
1901 e
= gimple_phi_arg_edge (as_a
<gphi
*> (stmt
),
1902 PHI_ARG_INDEX_FROM_USE (use
));
1903 if (e
->flags
& EDGE_ABNORMAL
1904 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
))
1906 /* This can only occur for virtual operands, since
1907 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1908 would prevent replacement. */
1909 gcc_checking_assert (virtual_operand_p (name
));
1910 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1915 if (gimple_code (stmt
) != GIMPLE_PHI
)
1917 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
1918 gimple
*orig_stmt
= stmt
;
1921 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1922 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1923 only change sth from non-invariant to invariant, and only
1924 when propagating constants. */
1925 if (is_gimple_min_invariant (val
))
1926 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1928 tree op
= gimple_op (stmt
, i
);
1929 /* Operands may be empty here. For example, the labels
1930 of a GIMPLE_COND are nulled out following the creation
1931 of the corresponding CFG edges. */
1932 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
1933 recompute_tree_invariant_for_addr_expr (op
);
1936 if (fold_stmt (&gsi
))
1937 stmt
= gsi_stmt (gsi
);
1939 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
1940 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
1946 gcc_checking_assert (has_zero_uses (name
));
1948 /* Also update the trees stored in loop structures. */
1953 FOR_EACH_LOOP (loop
, 0)
1955 substitute_in_loop_info (loop
, name
, val
);
1960 /* Merge block B into block A. */
1963 gimple_merge_blocks (basic_block a
, basic_block b
)
1965 gimple_stmt_iterator last
, gsi
;
1969 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
1971 /* Remove all single-valued PHI nodes from block B of the form
1972 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1973 gsi
= gsi_last_bb (a
);
1974 for (psi
= gsi_start_phis (b
); !gsi_end_p (psi
); )
1976 gimple
*phi
= gsi_stmt (psi
);
1977 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
1979 bool may_replace_uses
= (virtual_operand_p (def
)
1980 || may_propagate_copy (def
, use
));
1982 /* In case we maintain loop closed ssa form, do not propagate arguments
1983 of loop exit phi nodes. */
1985 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
1986 && !virtual_operand_p (def
)
1987 && TREE_CODE (use
) == SSA_NAME
1988 && a
->loop_father
!= b
->loop_father
)
1989 may_replace_uses
= false;
1991 if (!may_replace_uses
)
1993 gcc_assert (!virtual_operand_p (def
));
1995 /* Note that just emitting the copies is fine -- there is no problem
1996 with ordering of phi nodes. This is because A is the single
1997 predecessor of B, therefore results of the phi nodes cannot
1998 appear as arguments of the phi nodes. */
1999 copy
= gimple_build_assign (def
, use
);
2000 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
2001 remove_phi_node (&psi
, false);
2005 /* If we deal with a PHI for virtual operands, we can simply
2006 propagate these without fussing with folding or updating
2008 if (virtual_operand_p (def
))
2010 imm_use_iterator iter
;
2011 use_operand_p use_p
;
2014 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
2015 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
2016 SET_USE (use_p
, use
);
2018 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
2019 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
2022 replace_uses_by (def
, use
);
2024 remove_phi_node (&psi
, true);
2028 /* Ensure that B follows A. */
2029 move_block_after (b
, a
);
2031 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
2032 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
2034 /* Remove labels from B and set gimple_bb to A for other statements. */
2035 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
2037 gimple
*stmt
= gsi_stmt (gsi
);
2038 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2040 tree label
= gimple_label_label (label_stmt
);
2043 gsi_remove (&gsi
, false);
2045 /* Now that we can thread computed gotos, we might have
2046 a situation where we have a forced label in block B
2047 However, the label at the start of block B might still be
2048 used in other ways (think about the runtime checking for
2049 Fortran assigned gotos). So we can not just delete the
2050 label. Instead we move the label to the start of block A. */
2051 if (FORCED_LABEL (label
))
2053 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
2054 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
2056 /* Other user labels keep around in a form of a debug stmt. */
2057 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_STMTS
)
2059 gimple
*dbg
= gimple_build_debug_bind (label
,
2062 gimple_debug_bind_reset_value (dbg
);
2063 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
2066 lp_nr
= EH_LANDING_PAD_NR (label
);
2069 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
2070 lp
->post_landing_pad
= NULL
;
2075 gimple_set_bb (stmt
, a
);
2080 /* When merging two BBs, if their counts are different, the larger count
2081 is selected as the new bb count. This is to handle inconsistent
2083 if (a
->loop_father
== b
->loop_father
)
2085 a
->count
= a
->count
.merge (b
->count
);
2086 a
->frequency
= MAX (a
->frequency
, b
->frequency
);
2089 /* Merge the sequences. */
2090 last
= gsi_last_bb (a
);
2091 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
2092 set_bb_seq (b
, NULL
);
2094 if (cfgcleanup_altered_bbs
)
2095 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
2099 /* Return the one of two successors of BB that is not reachable by a
2100 complex edge, if there is one. Else, return BB. We use
2101 this in optimizations that use post-dominators for their heuristics,
2102 to catch the cases in C++ where function calls are involved. */
2105 single_noncomplex_succ (basic_block bb
)
2108 if (EDGE_COUNT (bb
->succs
) != 2)
2111 e0
= EDGE_SUCC (bb
, 0);
2112 e1
= EDGE_SUCC (bb
, 1);
2113 if (e0
->flags
& EDGE_COMPLEX
)
2115 if (e1
->flags
& EDGE_COMPLEX
)
2121 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2124 notice_special_calls (gcall
*call
)
2126 int flags
= gimple_call_flags (call
);
2128 if (flags
& ECF_MAY_BE_ALLOCA
)
2129 cfun
->calls_alloca
= true;
2130 if (flags
& ECF_RETURNS_TWICE
)
2131 cfun
->calls_setjmp
= true;
2135 /* Clear flags set by notice_special_calls. Used by dead code removal
2136 to update the flags. */
2139 clear_special_calls (void)
2141 cfun
->calls_alloca
= false;
2142 cfun
->calls_setjmp
= false;
2145 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2148 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
2150 /* Since this block is no longer reachable, we can just delete all
2151 of its PHI nodes. */
2152 remove_phi_nodes (bb
);
2154 /* Remove edges to BB's successors. */
2155 while (EDGE_COUNT (bb
->succs
) > 0)
2156 remove_edge (EDGE_SUCC (bb
, 0));
2160 /* Remove statements of basic block BB. */
2163 remove_bb (basic_block bb
)
2165 gimple_stmt_iterator i
;
2169 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
2170 if (dump_flags
& TDF_DETAILS
)
2172 dump_bb (dump_file
, bb
, 0, TDF_BLOCKS
);
2173 fprintf (dump_file
, "\n");
2179 struct loop
*loop
= bb
->loop_father
;
2181 /* If a loop gets removed, clean up the information associated
2183 if (loop
->latch
== bb
2184 || loop
->header
== bb
)
2185 free_numbers_of_iterations_estimates (loop
);
2188 /* Remove all the instructions in the block. */
2189 if (bb_seq (bb
) != NULL
)
2191 /* Walk backwards so as to get a chance to substitute all
2192 released DEFs into debug stmts. See
2193 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2195 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
2197 gimple
*stmt
= gsi_stmt (i
);
2198 glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
);
2200 && (FORCED_LABEL (gimple_label_label (label_stmt
))
2201 || DECL_NONLOCAL (gimple_label_label (label_stmt
))))
2204 gimple_stmt_iterator new_gsi
;
2206 /* A non-reachable non-local label may still be referenced.
2207 But it no longer needs to carry the extra semantics of
2209 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
2211 DECL_NONLOCAL (gimple_label_label (label_stmt
)) = 0;
2212 FORCED_LABEL (gimple_label_label (label_stmt
)) = 1;
2215 new_bb
= bb
->prev_bb
;
2216 new_gsi
= gsi_start_bb (new_bb
);
2217 gsi_remove (&i
, false);
2218 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
2222 /* Release SSA definitions. */
2223 release_defs (stmt
);
2224 gsi_remove (&i
, true);
2228 i
= gsi_last_bb (bb
);
2234 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
2235 bb
->il
.gimple
.seq
= NULL
;
2236 bb
->il
.gimple
.phi_nodes
= NULL
;
2240 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2241 predicate VAL, return the edge that will be taken out of the block.
2242 If VAL does not match a unique edge, NULL is returned. */
2245 find_taken_edge (basic_block bb
, tree val
)
2249 stmt
= last_stmt (bb
);
2251 gcc_assert (is_ctrl_stmt (stmt
));
2253 if (gimple_code (stmt
) == GIMPLE_COND
)
2254 return find_taken_edge_cond_expr (bb
, val
);
2256 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2257 return find_taken_edge_switch_expr (as_a
<gswitch
*> (stmt
), bb
, val
);
2259 if (computed_goto_p (stmt
))
2261 /* Only optimize if the argument is a label, if the argument is
2262 not a label then we can not construct a proper CFG.
2264 It may be the case that we only need to allow the LABEL_REF to
2265 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2266 appear inside a LABEL_EXPR just to be safe. */
2268 && (TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
2269 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
2270 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
2277 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2278 statement, determine which of the outgoing edges will be taken out of the
2279 block. Return NULL if either edge may be taken. */
2282 find_taken_edge_computed_goto (basic_block bb
, tree val
)
2287 dest
= label_to_block (val
);
2290 e
= find_edge (bb
, dest
);
2291 gcc_assert (e
!= NULL
);
2297 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2298 statement, determine which of the two edges will be taken out of the
2299 block. Return NULL if either edge may be taken. */
2302 find_taken_edge_cond_expr (basic_block bb
, tree val
)
2304 edge true_edge
, false_edge
;
2307 || TREE_CODE (val
) != INTEGER_CST
)
2310 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
2312 return (integer_zerop (val
) ? false_edge
: true_edge
);
2315 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2316 statement, determine which edge will be taken out of the block. Return
2317 NULL if any edge may be taken. */
2320 find_taken_edge_switch_expr (gswitch
*switch_stmt
, basic_block bb
,
2323 basic_block dest_bb
;
2327 if (gimple_switch_num_labels (switch_stmt
) == 1)
2328 taken_case
= gimple_switch_default_label (switch_stmt
);
2329 else if (! val
|| TREE_CODE (val
) != INTEGER_CST
)
2332 taken_case
= find_case_label_for_value (switch_stmt
, val
);
2333 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
2335 e
= find_edge (bb
, dest_bb
);
2341 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2342 We can make optimal use here of the fact that the case labels are
2343 sorted: We can do a binary search for a case matching VAL. */
2346 find_case_label_for_value (gswitch
*switch_stmt
, tree val
)
2348 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2349 tree default_case
= gimple_switch_default_label (switch_stmt
);
2351 for (low
= 0, high
= n
; high
- low
> 1; )
2353 size_t i
= (high
+ low
) / 2;
2354 tree t
= gimple_switch_label (switch_stmt
, i
);
2357 /* Cache the result of comparing CASE_LOW and val. */
2358 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2365 if (CASE_HIGH (t
) == NULL
)
2367 /* A singe-valued case label. */
2373 /* A case range. We can only handle integer ranges. */
2374 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2379 return default_case
;
2383 /* Dump a basic block on stderr. */
2386 gimple_debug_bb (basic_block bb
)
2388 dump_bb (stderr
, bb
, 0, TDF_VOPS
|TDF_MEMSYMS
|TDF_BLOCKS
);
2392 /* Dump basic block with index N on stderr. */
2395 gimple_debug_bb_n (int n
)
2397 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun
, n
));
2398 return BASIC_BLOCK_FOR_FN (cfun
, n
);
2402 /* Dump the CFG on stderr.
2404 FLAGS are the same used by the tree dumping functions
2405 (see TDF_* in dumpfile.h). */
2408 gimple_debug_cfg (dump_flags_t flags
)
2410 gimple_dump_cfg (stderr
, flags
);
2414 /* Dump the program showing basic block boundaries on the given FILE.
2416 FLAGS are the same used by the tree dumping functions (see TDF_* in
2420 gimple_dump_cfg (FILE *file
, dump_flags_t flags
)
2422 if (flags
& TDF_DETAILS
)
2424 dump_function_header (file
, current_function_decl
, flags
);
2425 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2426 n_basic_blocks_for_fn (cfun
), n_edges_for_fn (cfun
),
2427 last_basic_block_for_fn (cfun
));
2429 brief_dump_cfg (file
, flags
);
2430 fprintf (file
, "\n");
2433 if (flags
& TDF_STATS
)
2434 dump_cfg_stats (file
);
2436 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2440 /* Dump CFG statistics on FILE. */
2443 dump_cfg_stats (FILE *file
)
2445 static long max_num_merged_labels
= 0;
2446 unsigned long size
, total
= 0;
2449 const char * const fmt_str
= "%-30s%-13s%12s\n";
2450 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2451 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2452 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2453 const char *funcname
= current_function_name ();
2455 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2457 fprintf (file
, "---------------------------------------------------------\n");
2458 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2459 fprintf (file
, fmt_str
, "", " instances ", "used ");
2460 fprintf (file
, "---------------------------------------------------------\n");
2462 size
= n_basic_blocks_for_fn (cfun
) * sizeof (struct basic_block_def
);
2464 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks_for_fn (cfun
),
2465 SCALE (size
), LABEL (size
));
2468 FOR_EACH_BB_FN (bb
, cfun
)
2469 num_edges
+= EDGE_COUNT (bb
->succs
);
2470 size
= num_edges
* sizeof (struct edge_def
);
2472 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2474 fprintf (file
, "---------------------------------------------------------\n");
2475 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2477 fprintf (file
, "---------------------------------------------------------\n");
2478 fprintf (file
, "\n");
2480 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2481 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2483 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2484 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2486 fprintf (file
, "\n");
2490 /* Dump CFG statistics on stderr. Keep extern so that it's always
2491 linked in the final executable. */
2494 debug_cfg_stats (void)
2496 dump_cfg_stats (stderr
);
2499 /*---------------------------------------------------------------------------
2500 Miscellaneous helpers
2501 ---------------------------------------------------------------------------*/
2503 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2504 flow. Transfers of control flow associated with EH are excluded. */
2507 call_can_make_abnormal_goto (gimple
*t
)
2509 /* If the function has no non-local labels, then a call cannot make an
2510 abnormal transfer of control. */
2511 if (!cfun
->has_nonlocal_label
2512 && !cfun
->calls_setjmp
)
2515 /* Likewise if the call has no side effects. */
2516 if (!gimple_has_side_effects (t
))
2519 /* Likewise if the called function is leaf. */
2520 if (gimple_call_flags (t
) & ECF_LEAF
)
2527 /* Return true if T can make an abnormal transfer of control flow.
2528 Transfers of control flow associated with EH are excluded. */
2531 stmt_can_make_abnormal_goto (gimple
*t
)
2533 if (computed_goto_p (t
))
2535 if (is_gimple_call (t
))
2536 return call_can_make_abnormal_goto (t
);
2541 /* Return true if T represents a stmt that always transfers control. */
2544 is_ctrl_stmt (gimple
*t
)
2546 switch (gimple_code (t
))
2560 /* Return true if T is a statement that may alter the flow of control
2561 (e.g., a call to a non-returning function). */
2564 is_ctrl_altering_stmt (gimple
*t
)
2568 switch (gimple_code (t
))
2571 /* Per stmt call flag indicates whether the call could alter
2573 if (gimple_call_ctrl_altering_p (t
))
2577 case GIMPLE_EH_DISPATCH
:
2578 /* EH_DISPATCH branches to the individual catch handlers at
2579 this level of a try or allowed-exceptions region. It can
2580 fallthru to the next statement as well. */
2584 if (gimple_asm_nlabels (as_a
<gasm
*> (t
)) > 0)
2589 /* OpenMP directives alter control flow. */
2592 case GIMPLE_TRANSACTION
:
2593 /* A transaction start alters control flow. */
2600 /* If a statement can throw, it alters control flow. */
2601 return stmt_can_throw_internal (t
);
2605 /* Return true if T is a simple local goto. */
2608 simple_goto_p (gimple
*t
)
2610 return (gimple_code (t
) == GIMPLE_GOTO
2611 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2615 /* Return true if STMT should start a new basic block. PREV_STMT is
2616 the statement preceding STMT. It is used when STMT is a label or a
2617 case label. Labels should only start a new basic block if their
2618 previous statement wasn't a label. Otherwise, sequence of labels
2619 would generate unnecessary basic blocks that only contain a single
2623 stmt_starts_bb_p (gimple
*stmt
, gimple
*prev_stmt
)
2628 /* Labels start a new basic block only if the preceding statement
2629 wasn't a label of the same type. This prevents the creation of
2630 consecutive blocks that have nothing but a single label. */
2631 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2633 /* Nonlocal and computed GOTO targets always start a new block. */
2634 if (DECL_NONLOCAL (gimple_label_label (label_stmt
))
2635 || FORCED_LABEL (gimple_label_label (label_stmt
)))
2638 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2640 if (DECL_NONLOCAL (gimple_label_label (
2641 as_a
<glabel
*> (prev_stmt
))))
2644 cfg_stats
.num_merged_labels
++;
2650 else if (gimple_code (stmt
) == GIMPLE_CALL
)
2652 if (gimple_call_flags (stmt
) & ECF_RETURNS_TWICE
)
2653 /* setjmp acts similar to a nonlocal GOTO target and thus should
2654 start a new block. */
2656 if (gimple_call_internal_p (stmt
, IFN_PHI
)
2658 && gimple_code (prev_stmt
) != GIMPLE_LABEL
2659 && (gimple_code (prev_stmt
) != GIMPLE_CALL
2660 || ! gimple_call_internal_p (prev_stmt
, IFN_PHI
)))
2661 /* PHI nodes start a new block unless preceeded by a label
2670 /* Return true if T should end a basic block. */
2673 stmt_ends_bb_p (gimple
*t
)
2675 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2678 /* Remove block annotations and other data structures. */
2681 delete_tree_cfg_annotations (struct function
*fn
)
2683 vec_free (label_to_block_map_for_fn (fn
));
2686 /* Return the virtual phi in BB. */
2689 get_virtual_phi (basic_block bb
)
2691 for (gphi_iterator gsi
= gsi_start_phis (bb
);
2695 gphi
*phi
= gsi
.phi ();
2697 if (virtual_operand_p (PHI_RESULT (phi
)))
2704 /* Return the first statement in basic block BB. */
2707 first_stmt (basic_block bb
)
2709 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2710 gimple
*stmt
= NULL
;
2712 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2720 /* Return the first non-label statement in basic block BB. */
2723 first_non_label_stmt (basic_block bb
)
2725 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2726 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2728 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2731 /* Return the last statement in basic block BB. */
2734 last_stmt (basic_block bb
)
2736 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2737 gimple
*stmt
= NULL
;
2739 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2747 /* Return the last statement of an otherwise empty block. Return NULL
2748 if the block is totally empty, or if it contains more than one
2752 last_and_only_stmt (basic_block bb
)
2754 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2755 gimple
*last
, *prev
;
2760 last
= gsi_stmt (i
);
2761 gsi_prev_nondebug (&i
);
2765 /* Empty statements should no longer appear in the instruction stream.
2766 Everything that might have appeared before should be deleted by
2767 remove_useless_stmts, and the optimizers should just gsi_remove
2768 instead of smashing with build_empty_stmt.
2770 Thus the only thing that should appear here in a block containing
2771 one executable statement is a label. */
2772 prev
= gsi_stmt (i
);
2773 if (gimple_code (prev
) == GIMPLE_LABEL
)
2779 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2782 reinstall_phi_args (edge new_edge
, edge old_edge
)
2788 vec
<edge_var_map
> *v
= redirect_edge_var_map_vector (old_edge
);
2792 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2793 v
->iterate (i
, &vm
) && !gsi_end_p (phis
);
2794 i
++, gsi_next (&phis
))
2796 gphi
*phi
= phis
.phi ();
2797 tree result
= redirect_edge_var_map_result (vm
);
2798 tree arg
= redirect_edge_var_map_def (vm
);
2800 gcc_assert (result
== gimple_phi_result (phi
));
2802 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2805 redirect_edge_var_map_clear (old_edge
);
2808 /* Returns the basic block after which the new basic block created
2809 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2810 near its "logical" location. This is of most help to humans looking
2811 at debugging dumps. */
2814 split_edge_bb_loc (edge edge_in
)
2816 basic_block dest
= edge_in
->dest
;
2817 basic_block dest_prev
= dest
->prev_bb
;
2821 edge e
= find_edge (dest_prev
, dest
);
2822 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2823 return edge_in
->src
;
2828 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2829 Abort on abnormal edges. */
2832 gimple_split_edge (edge edge_in
)
2834 basic_block new_bb
, after_bb
, dest
;
2837 /* Abnormal edges cannot be split. */
2838 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2840 dest
= edge_in
->dest
;
2842 after_bb
= split_edge_bb_loc (edge_in
);
2844 new_bb
= create_empty_bb (after_bb
);
2845 new_bb
->frequency
= EDGE_FREQUENCY (edge_in
);
2846 new_bb
->count
= edge_in
->count
;
2847 new_edge
= make_single_succ_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2849 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2850 gcc_assert (e
== edge_in
);
2851 reinstall_phi_args (new_edge
, e
);
2857 /* Verify properties of the address expression T with base object BASE. */
2860 verify_address (tree t
, tree base
)
2863 bool old_side_effects
;
2865 bool new_side_effects
;
2867 old_constant
= TREE_CONSTANT (t
);
2868 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2870 recompute_tree_invariant_for_addr_expr (t
);
2871 new_side_effects
= TREE_SIDE_EFFECTS (t
);
2872 new_constant
= TREE_CONSTANT (t
);
2874 if (old_constant
!= new_constant
)
2876 error ("constant not recomputed when ADDR_EXPR changed");
2879 if (old_side_effects
!= new_side_effects
)
2881 error ("side effects not recomputed when ADDR_EXPR changed");
2886 || TREE_CODE (base
) == PARM_DECL
2887 || TREE_CODE (base
) == RESULT_DECL
))
2890 if (DECL_GIMPLE_REG_P (base
))
2892 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2899 /* Callback for walk_tree, check that all elements with address taken are
2900 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2901 inside a PHI node. */
2904 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
2911 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2912 #define CHECK_OP(N, MSG) \
2913 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2914 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2916 switch (TREE_CODE (t
))
2919 if (SSA_NAME_IN_FREE_LIST (t
))
2921 error ("SSA name in freelist but still referenced");
2930 tree context
= decl_function_context (t
);
2931 if (context
!= cfun
->decl
2932 && !SCOPE_FILE_SCOPE_P (context
)
2934 && !DECL_EXTERNAL (t
))
2936 error ("Local declaration from a different function");
2943 error ("INDIRECT_REF in gimple IL");
2947 x
= TREE_OPERAND (t
, 0);
2948 if (!POINTER_TYPE_P (TREE_TYPE (x
))
2949 || !is_gimple_mem_ref_addr (x
))
2951 error ("invalid first operand of MEM_REF");
2954 if (TREE_CODE (TREE_OPERAND (t
, 1)) != INTEGER_CST
2955 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
2957 error ("invalid offset operand of MEM_REF");
2958 return TREE_OPERAND (t
, 1);
2960 if (TREE_CODE (x
) == ADDR_EXPR
)
2962 tree va
= verify_address (x
, TREE_OPERAND (x
, 0));
2965 x
= TREE_OPERAND (x
, 0);
2967 walk_tree (&x
, verify_expr
, data
, NULL
);
2972 x
= fold (ASSERT_EXPR_COND (t
));
2973 if (x
== boolean_false_node
)
2975 error ("ASSERT_EXPR with an always-false condition");
2981 error ("MODIFY_EXPR not expected while having tuples");
2988 gcc_assert (is_gimple_address (t
));
2990 /* Skip any references (they will be checked when we recurse down the
2991 tree) and ensure that any variable used as a prefix is marked
2993 for (x
= TREE_OPERAND (t
, 0);
2994 handled_component_p (x
);
2995 x
= TREE_OPERAND (x
, 0))
2998 if ((tem
= verify_address (t
, x
)))
3002 || TREE_CODE (x
) == PARM_DECL
3003 || TREE_CODE (x
) == RESULT_DECL
))
3006 if (!TREE_ADDRESSABLE (x
))
3008 error ("address taken, but ADDRESSABLE bit not set");
3016 x
= COND_EXPR_COND (t
);
3017 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
3019 error ("non-integral used in condition");
3022 if (!is_gimple_condexpr (x
))
3024 error ("invalid conditional operand");
3029 case NON_LVALUE_EXPR
:
3030 case TRUTH_NOT_EXPR
:
3034 case FIX_TRUNC_EXPR
:
3039 CHECK_OP (0, "invalid operand to unary operator");
3045 if (!is_gimple_reg_type (TREE_TYPE (t
)))
3047 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3051 if (TREE_CODE (t
) == BIT_FIELD_REF
)
3053 tree t0
= TREE_OPERAND (t
, 0);
3054 tree t1
= TREE_OPERAND (t
, 1);
3055 tree t2
= TREE_OPERAND (t
, 2);
3056 if (!tree_fits_uhwi_p (t1
)
3057 || !tree_fits_uhwi_p (t2
)
3058 || !types_compatible_p (bitsizetype
, TREE_TYPE (t1
))
3059 || !types_compatible_p (bitsizetype
, TREE_TYPE (t2
)))
3061 error ("invalid position or size operand to BIT_FIELD_REF");
3064 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
3065 && (TYPE_PRECISION (TREE_TYPE (t
))
3066 != tree_to_uhwi (t1
)))
3068 error ("integral result type precision does not match "
3069 "field size of BIT_FIELD_REF");
3072 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
3073 && TYPE_MODE (TREE_TYPE (t
)) != BLKmode
3074 && (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t
)))
3075 != tree_to_uhwi (t1
)))
3077 error ("mode size of non-integral result does not "
3078 "match field size of BIT_FIELD_REF");
3081 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0
))
3082 && (tree_to_uhwi (t1
) + tree_to_uhwi (t2
)
3083 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0
)))))
3085 error ("position plus size exceeds size of referenced object in "
3090 t
= TREE_OPERAND (t
, 0);
3095 case ARRAY_RANGE_REF
:
3096 case VIEW_CONVERT_EXPR
:
3097 /* We have a nest of references. Verify that each of the operands
3098 that determine where to reference is either a constant or a variable,
3099 verify that the base is valid, and then show we've already checked
3101 while (handled_component_p (t
))
3103 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
3104 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3105 else if (TREE_CODE (t
) == ARRAY_REF
3106 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
3108 CHECK_OP (1, "invalid array index");
3109 if (TREE_OPERAND (t
, 2))
3110 CHECK_OP (2, "invalid array lower bound");
3111 if (TREE_OPERAND (t
, 3))
3112 CHECK_OP (3, "invalid array stride");
3114 else if (TREE_CODE (t
) == BIT_FIELD_REF
3115 || TREE_CODE (t
) == REALPART_EXPR
3116 || TREE_CODE (t
) == IMAGPART_EXPR
)
3118 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3123 t
= TREE_OPERAND (t
, 0);
3126 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
3128 error ("invalid reference prefix");
3131 walk_tree (&t
, verify_expr
, data
, NULL
);
3136 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3137 POINTER_PLUS_EXPR. */
3138 if (POINTER_TYPE_P (TREE_TYPE (t
)))
3140 error ("invalid operand to plus/minus, type is a pointer");
3143 CHECK_OP (0, "invalid operand to binary operator");
3144 CHECK_OP (1, "invalid operand to binary operator");
3147 case POINTER_PLUS_EXPR
:
3148 /* Check to make sure the first operand is a pointer or reference type. */
3149 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
3151 error ("invalid operand to pointer plus, first operand is not a pointer");
3154 /* Check to make sure the second operand is a ptrofftype. */
3155 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t
, 1))))
3157 error ("invalid operand to pointer plus, second operand is not an "
3158 "integer type of appropriate width");
3168 case UNORDERED_EXPR
:
3177 case TRUNC_DIV_EXPR
:
3179 case FLOOR_DIV_EXPR
:
3180 case ROUND_DIV_EXPR
:
3181 case TRUNC_MOD_EXPR
:
3183 case FLOOR_MOD_EXPR
:
3184 case ROUND_MOD_EXPR
:
3186 case EXACT_DIV_EXPR
:
3196 CHECK_OP (0, "invalid operand to binary operator");
3197 CHECK_OP (1, "invalid operand to binary operator");
3201 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
3205 case CASE_LABEL_EXPR
:
3208 error ("invalid CASE_CHAIN");
3222 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3223 Returns true if there is an error, otherwise false. */
3226 verify_types_in_gimple_min_lval (tree expr
)
3230 if (is_gimple_id (expr
))
3233 if (TREE_CODE (expr
) != TARGET_MEM_REF
3234 && TREE_CODE (expr
) != MEM_REF
)
3236 error ("invalid expression for min lvalue");
3240 /* TARGET_MEM_REFs are strange beasts. */
3241 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3244 op
= TREE_OPERAND (expr
, 0);
3245 if (!is_gimple_val (op
))
3247 error ("invalid operand in indirect reference");
3248 debug_generic_stmt (op
);
3251 /* Memory references now generally can involve a value conversion. */
3256 /* Verify if EXPR is a valid GIMPLE reference expression. If
3257 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3258 if there is an error, otherwise false. */
3261 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
3263 while (handled_component_p (expr
))
3265 tree op
= TREE_OPERAND (expr
, 0);
3267 if (TREE_CODE (expr
) == ARRAY_REF
3268 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
3270 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
3271 || (TREE_OPERAND (expr
, 2)
3272 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3273 || (TREE_OPERAND (expr
, 3)
3274 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
3276 error ("invalid operands to array reference");
3277 debug_generic_stmt (expr
);
3282 /* Verify if the reference array element types are compatible. */
3283 if (TREE_CODE (expr
) == ARRAY_REF
3284 && !useless_type_conversion_p (TREE_TYPE (expr
),
3285 TREE_TYPE (TREE_TYPE (op
))))
3287 error ("type mismatch in array reference");
3288 debug_generic_stmt (TREE_TYPE (expr
));
3289 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3292 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
3293 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
3294 TREE_TYPE (TREE_TYPE (op
))))
3296 error ("type mismatch in array range reference");
3297 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
3298 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3302 if ((TREE_CODE (expr
) == REALPART_EXPR
3303 || TREE_CODE (expr
) == IMAGPART_EXPR
)
3304 && !useless_type_conversion_p (TREE_TYPE (expr
),
3305 TREE_TYPE (TREE_TYPE (op
))))
3307 error ("type mismatch in real/imagpart reference");
3308 debug_generic_stmt (TREE_TYPE (expr
));
3309 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3313 if (TREE_CODE (expr
) == COMPONENT_REF
3314 && !useless_type_conversion_p (TREE_TYPE (expr
),
3315 TREE_TYPE (TREE_OPERAND (expr
, 1))))
3317 error ("type mismatch in component reference");
3318 debug_generic_stmt (TREE_TYPE (expr
));
3319 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
3323 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
3325 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3326 that their operand is not an SSA name or an invariant when
3327 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3328 bug). Otherwise there is nothing to verify, gross mismatches at
3329 most invoke undefined behavior. */
3331 && (TREE_CODE (op
) == SSA_NAME
3332 || is_gimple_min_invariant (op
)))
3334 error ("conversion of an SSA_NAME on the left hand side");
3335 debug_generic_stmt (expr
);
3338 else if (TREE_CODE (op
) == SSA_NAME
3339 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
3341 error ("conversion of register to a different size");
3342 debug_generic_stmt (expr
);
3345 else if (!handled_component_p (op
))
3352 if (TREE_CODE (expr
) == MEM_REF
)
3354 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0)))
3356 error ("invalid address operand in MEM_REF");
3357 debug_generic_stmt (expr
);
3360 if (TREE_CODE (TREE_OPERAND (expr
, 1)) != INTEGER_CST
3361 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
3363 error ("invalid offset operand in MEM_REF");
3364 debug_generic_stmt (expr
);
3368 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3370 if (!TMR_BASE (expr
)
3371 || !is_gimple_mem_ref_addr (TMR_BASE (expr
)))
3373 error ("invalid address operand in TARGET_MEM_REF");
3376 if (!TMR_OFFSET (expr
)
3377 || TREE_CODE (TMR_OFFSET (expr
)) != INTEGER_CST
3378 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
3380 error ("invalid offset operand in TARGET_MEM_REF");
3381 debug_generic_stmt (expr
);
3386 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3387 && verify_types_in_gimple_min_lval (expr
));
3390 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3391 list of pointer-to types that is trivially convertible to DEST. */
3394 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3398 if (!TYPE_POINTER_TO (src_obj
))
3401 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3402 if (useless_type_conversion_p (dest
, src
))
3408 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3409 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3412 valid_fixed_convert_types_p (tree type1
, tree type2
)
3414 return (FIXED_POINT_TYPE_P (type1
)
3415 && (INTEGRAL_TYPE_P (type2
)
3416 || SCALAR_FLOAT_TYPE_P (type2
)
3417 || FIXED_POINT_TYPE_P (type2
)));
3420 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3421 is a problem, otherwise false. */
3424 verify_gimple_call (gcall
*stmt
)
3426 tree fn
= gimple_call_fn (stmt
);
3427 tree fntype
, fndecl
;
3430 if (gimple_call_internal_p (stmt
))
3434 error ("gimple call has two targets");
3435 debug_generic_stmt (fn
);
3438 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3439 else if (gimple_call_internal_fn (stmt
) == IFN_PHI
)
3448 error ("gimple call has no target");
3453 if (fn
&& !is_gimple_call_addr (fn
))
3455 error ("invalid function in gimple call");
3456 debug_generic_stmt (fn
);
3461 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3462 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3463 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3465 error ("non-function in gimple call");
3469 fndecl
= gimple_call_fndecl (stmt
);
3471 && TREE_CODE (fndecl
) == FUNCTION_DECL
3472 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3473 && !DECL_PURE_P (fndecl
)
3474 && !TREE_READONLY (fndecl
))
3476 error ("invalid pure const state for function");
3480 tree lhs
= gimple_call_lhs (stmt
);
3482 && (!is_gimple_lvalue (lhs
)
3483 || verify_types_in_gimple_reference (lhs
, true)))
3485 error ("invalid LHS in gimple call");
3489 if (gimple_call_ctrl_altering_p (stmt
)
3490 && gimple_call_noreturn_p (stmt
)
3491 && should_remove_lhs_p (lhs
))
3493 error ("LHS in noreturn call");
3497 fntype
= gimple_call_fntype (stmt
);
3500 && !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (fntype
))
3501 /* ??? At least C++ misses conversions at assignments from
3502 void * call results.
3503 For now simply allow arbitrary pointer type conversions. */
3504 && !(POINTER_TYPE_P (TREE_TYPE (lhs
))
3505 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3507 error ("invalid conversion in gimple call");
3508 debug_generic_stmt (TREE_TYPE (lhs
));
3509 debug_generic_stmt (TREE_TYPE (fntype
));
3513 if (gimple_call_chain (stmt
)
3514 && !is_gimple_val (gimple_call_chain (stmt
)))
3516 error ("invalid static chain in gimple call");
3517 debug_generic_stmt (gimple_call_chain (stmt
));
3521 /* If there is a static chain argument, the call should either be
3522 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3523 if (gimple_call_chain (stmt
)
3525 && !DECL_STATIC_CHAIN (fndecl
))
3527 error ("static chain with function that doesn%'t use one");
3531 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
3533 switch (DECL_FUNCTION_CODE (fndecl
))
3535 case BUILT_IN_UNREACHABLE
:
3537 if (gimple_call_num_args (stmt
) > 0)
3539 /* Built-in unreachable with parameters might not be caught by
3540 undefined behavior sanitizer. Front-ends do check users do not
3541 call them that way but we also produce calls to
3542 __builtin_unreachable internally, for example when IPA figures
3543 out a call cannot happen in a legal program. In such cases,
3544 we must make sure arguments are stripped off. */
3545 error ("__builtin_unreachable or __builtin_trap call with "
3555 /* ??? The C frontend passes unpromoted arguments in case it
3556 didn't see a function declaration before the call. So for now
3557 leave the call arguments mostly unverified. Once we gimplify
3558 unit-at-a-time we have a chance to fix this. */
3560 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3562 tree arg
= gimple_call_arg (stmt
, i
);
3563 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3564 && !is_gimple_val (arg
))
3565 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3566 && !is_gimple_lvalue (arg
)))
3568 error ("invalid argument to gimple call");
3569 debug_generic_expr (arg
);
3577 /* Verifies the gimple comparison with the result type TYPE and
3578 the operands OP0 and OP1, comparison code is CODE. */
3581 verify_gimple_comparison (tree type
, tree op0
, tree op1
, enum tree_code code
)
3583 tree op0_type
= TREE_TYPE (op0
);
3584 tree op1_type
= TREE_TYPE (op1
);
3586 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3588 error ("invalid operands in gimple comparison");
3592 /* For comparisons we do not have the operations type as the
3593 effective type the comparison is carried out in. Instead
3594 we require that either the first operand is trivially
3595 convertible into the second, or the other way around.
3596 Because we special-case pointers to void we allow
3597 comparisons of pointers with the same mode as well. */
3598 if (!useless_type_conversion_p (op0_type
, op1_type
)
3599 && !useless_type_conversion_p (op1_type
, op0_type
)
3600 && (!POINTER_TYPE_P (op0_type
)
3601 || !POINTER_TYPE_P (op1_type
)
3602 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3604 error ("mismatching comparison operand types");
3605 debug_generic_expr (op0_type
);
3606 debug_generic_expr (op1_type
);
3610 /* The resulting type of a comparison may be an effective boolean type. */
3611 if (INTEGRAL_TYPE_P (type
)
3612 && (TREE_CODE (type
) == BOOLEAN_TYPE
3613 || TYPE_PRECISION (type
) == 1))
3615 if ((TREE_CODE (op0_type
) == VECTOR_TYPE
3616 || TREE_CODE (op1_type
) == VECTOR_TYPE
)
3617 && code
!= EQ_EXPR
&& code
!= NE_EXPR
3618 && !VECTOR_BOOLEAN_TYPE_P (op0_type
)
3619 && !VECTOR_INTEGER_TYPE_P (op0_type
))
3621 error ("unsupported operation or type for vector comparison"
3622 " returning a boolean");
3623 debug_generic_expr (op0_type
);
3624 debug_generic_expr (op1_type
);
3628 /* Or a boolean vector type with the same element count
3629 as the comparison operand types. */
3630 else if (TREE_CODE (type
) == VECTOR_TYPE
3631 && TREE_CODE (TREE_TYPE (type
)) == BOOLEAN_TYPE
)
3633 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3634 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3636 error ("non-vector operands in vector comparison");
3637 debug_generic_expr (op0_type
);
3638 debug_generic_expr (op1_type
);
3642 if (TYPE_VECTOR_SUBPARTS (type
) != TYPE_VECTOR_SUBPARTS (op0_type
))
3644 error ("invalid vector comparison resulting type");
3645 debug_generic_expr (type
);
3651 error ("bogus comparison result type");
3652 debug_generic_expr (type
);
3659 /* Verify a gimple assignment statement STMT with an unary rhs.
3660 Returns true if anything is wrong. */
3663 verify_gimple_assign_unary (gassign
*stmt
)
3665 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3666 tree lhs
= gimple_assign_lhs (stmt
);
3667 tree lhs_type
= TREE_TYPE (lhs
);
3668 tree rhs1
= gimple_assign_rhs1 (stmt
);
3669 tree rhs1_type
= TREE_TYPE (rhs1
);
3671 if (!is_gimple_reg (lhs
))
3673 error ("non-register as LHS of unary operation");
3677 if (!is_gimple_val (rhs1
))
3679 error ("invalid operand in unary operation");
3683 /* First handle conversions. */
3688 /* Allow conversions from pointer type to integral type only if
3689 there is no sign or zero extension involved.
3690 For targets were the precision of ptrofftype doesn't match that
3691 of pointers we need to allow arbitrary conversions to ptrofftype. */
3692 if ((POINTER_TYPE_P (lhs_type
)
3693 && INTEGRAL_TYPE_P (rhs1_type
))
3694 || (POINTER_TYPE_P (rhs1_type
)
3695 && INTEGRAL_TYPE_P (lhs_type
)
3696 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3697 || ptrofftype_p (sizetype
))))
3700 /* Allow conversion from integral to offset type and vice versa. */
3701 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3702 && INTEGRAL_TYPE_P (rhs1_type
))
3703 || (INTEGRAL_TYPE_P (lhs_type
)
3704 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3707 /* Otherwise assert we are converting between types of the
3709 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3711 error ("invalid types in nop conversion");
3712 debug_generic_expr (lhs_type
);
3713 debug_generic_expr (rhs1_type
);
3720 case ADDR_SPACE_CONVERT_EXPR
:
3722 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3723 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3724 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3726 error ("invalid types in address space conversion");
3727 debug_generic_expr (lhs_type
);
3728 debug_generic_expr (rhs1_type
);
3735 case FIXED_CONVERT_EXPR
:
3737 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3738 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3740 error ("invalid types in fixed-point conversion");
3741 debug_generic_expr (lhs_type
);
3742 debug_generic_expr (rhs1_type
);
3751 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3752 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3753 || !VECTOR_FLOAT_TYPE_P (lhs_type
)))
3755 error ("invalid types in conversion to floating point");
3756 debug_generic_expr (lhs_type
);
3757 debug_generic_expr (rhs1_type
);
3764 case FIX_TRUNC_EXPR
:
3766 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3767 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3768 || !VECTOR_FLOAT_TYPE_P (rhs1_type
)))
3770 error ("invalid types in conversion to integer");
3771 debug_generic_expr (lhs_type
);
3772 debug_generic_expr (rhs1_type
);
3778 case REDUC_MAX_EXPR
:
3779 case REDUC_MIN_EXPR
:
3780 case REDUC_PLUS_EXPR
:
3781 if (!VECTOR_TYPE_P (rhs1_type
)
3782 || !useless_type_conversion_p (lhs_type
, TREE_TYPE (rhs1_type
)))
3784 error ("reduction should convert from vector to element type");
3785 debug_generic_expr (lhs_type
);
3786 debug_generic_expr (rhs1_type
);
3791 case VEC_UNPACK_HI_EXPR
:
3792 case VEC_UNPACK_LO_EXPR
:
3793 case VEC_UNPACK_FLOAT_HI_EXPR
:
3794 case VEC_UNPACK_FLOAT_LO_EXPR
:
3809 /* For the remaining codes assert there is no conversion involved. */
3810 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3812 error ("non-trivial conversion in unary operation");
3813 debug_generic_expr (lhs_type
);
3814 debug_generic_expr (rhs1_type
);
3821 /* Verify a gimple assignment statement STMT with a binary rhs.
3822 Returns true if anything is wrong. */
3825 verify_gimple_assign_binary (gassign
*stmt
)
3827 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3828 tree lhs
= gimple_assign_lhs (stmt
);
3829 tree lhs_type
= TREE_TYPE (lhs
);
3830 tree rhs1
= gimple_assign_rhs1 (stmt
);
3831 tree rhs1_type
= TREE_TYPE (rhs1
);
3832 tree rhs2
= gimple_assign_rhs2 (stmt
);
3833 tree rhs2_type
= TREE_TYPE (rhs2
);
3835 if (!is_gimple_reg (lhs
))
3837 error ("non-register as LHS of binary operation");
3841 if (!is_gimple_val (rhs1
)
3842 || !is_gimple_val (rhs2
))
3844 error ("invalid operands in binary operation");
3848 /* First handle operations that involve different types. */
3853 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3854 || !(INTEGRAL_TYPE_P (rhs1_type
)
3855 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3856 || !(INTEGRAL_TYPE_P (rhs2_type
)
3857 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3859 error ("type mismatch in complex expression");
3860 debug_generic_expr (lhs_type
);
3861 debug_generic_expr (rhs1_type
);
3862 debug_generic_expr (rhs2_type
);
3874 /* Shifts and rotates are ok on integral types, fixed point
3875 types and integer vector types. */
3876 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3877 && !FIXED_POINT_TYPE_P (rhs1_type
)
3878 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3879 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3880 || (!INTEGRAL_TYPE_P (rhs2_type
)
3881 /* Vector shifts of vectors are also ok. */
3882 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3883 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3884 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3885 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3886 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3888 error ("type mismatch in shift expression");
3889 debug_generic_expr (lhs_type
);
3890 debug_generic_expr (rhs1_type
);
3891 debug_generic_expr (rhs2_type
);
3898 case WIDEN_LSHIFT_EXPR
:
3900 if (!INTEGRAL_TYPE_P (lhs_type
)
3901 || !INTEGRAL_TYPE_P (rhs1_type
)
3902 || TREE_CODE (rhs2
) != INTEGER_CST
3903 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
3905 error ("type mismatch in widening vector shift expression");
3906 debug_generic_expr (lhs_type
);
3907 debug_generic_expr (rhs1_type
);
3908 debug_generic_expr (rhs2_type
);
3915 case VEC_WIDEN_LSHIFT_HI_EXPR
:
3916 case VEC_WIDEN_LSHIFT_LO_EXPR
:
3918 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3919 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3920 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3921 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3922 || TREE_CODE (rhs2
) != INTEGER_CST
3923 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
3924 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
3926 error ("type mismatch in widening vector shift expression");
3927 debug_generic_expr (lhs_type
);
3928 debug_generic_expr (rhs1_type
);
3929 debug_generic_expr (rhs2_type
);
3939 tree lhs_etype
= lhs_type
;
3940 tree rhs1_etype
= rhs1_type
;
3941 tree rhs2_etype
= rhs2_type
;
3942 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
)
3944 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3945 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3947 error ("invalid non-vector operands to vector valued plus");
3950 lhs_etype
= TREE_TYPE (lhs_type
);
3951 rhs1_etype
= TREE_TYPE (rhs1_type
);
3952 rhs2_etype
= TREE_TYPE (rhs2_type
);
3954 if (POINTER_TYPE_P (lhs_etype
)
3955 || POINTER_TYPE_P (rhs1_etype
)
3956 || POINTER_TYPE_P (rhs2_etype
))
3958 error ("invalid (pointer) operands to plus/minus");
3962 /* Continue with generic binary expression handling. */
3966 case POINTER_PLUS_EXPR
:
3968 if (!POINTER_TYPE_P (rhs1_type
)
3969 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3970 || !ptrofftype_p (rhs2_type
))
3972 error ("type mismatch in pointer plus expression");
3973 debug_generic_stmt (lhs_type
);
3974 debug_generic_stmt (rhs1_type
);
3975 debug_generic_stmt (rhs2_type
);
3982 case TRUTH_ANDIF_EXPR
:
3983 case TRUTH_ORIF_EXPR
:
3984 case TRUTH_AND_EXPR
:
3986 case TRUTH_XOR_EXPR
:
3996 case UNORDERED_EXPR
:
4004 /* Comparisons are also binary, but the result type is not
4005 connected to the operand types. */
4006 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
, rhs_code
);
4008 case WIDEN_MULT_EXPR
:
4009 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
4011 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
4012 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
4014 case WIDEN_SUM_EXPR
:
4015 case VEC_WIDEN_MULT_HI_EXPR
:
4016 case VEC_WIDEN_MULT_LO_EXPR
:
4017 case VEC_WIDEN_MULT_EVEN_EXPR
:
4018 case VEC_WIDEN_MULT_ODD_EXPR
:
4019 case VEC_PACK_TRUNC_EXPR
:
4020 case VEC_PACK_SAT_EXPR
:
4021 case VEC_PACK_FIX_TRUNC_EXPR
:
4026 case MULT_HIGHPART_EXPR
:
4027 case TRUNC_DIV_EXPR
:
4029 case FLOOR_DIV_EXPR
:
4030 case ROUND_DIV_EXPR
:
4031 case TRUNC_MOD_EXPR
:
4033 case FLOOR_MOD_EXPR
:
4034 case ROUND_MOD_EXPR
:
4036 case EXACT_DIV_EXPR
:
4042 /* Continue with generic binary expression handling. */
4049 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4050 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4052 error ("type mismatch in binary expression");
4053 debug_generic_stmt (lhs_type
);
4054 debug_generic_stmt (rhs1_type
);
4055 debug_generic_stmt (rhs2_type
);
4062 /* Verify a gimple assignment statement STMT with a ternary rhs.
4063 Returns true if anything is wrong. */
4066 verify_gimple_assign_ternary (gassign
*stmt
)
4068 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4069 tree lhs
= gimple_assign_lhs (stmt
);
4070 tree lhs_type
= TREE_TYPE (lhs
);
4071 tree rhs1
= gimple_assign_rhs1 (stmt
);
4072 tree rhs1_type
= TREE_TYPE (rhs1
);
4073 tree rhs2
= gimple_assign_rhs2 (stmt
);
4074 tree rhs2_type
= TREE_TYPE (rhs2
);
4075 tree rhs3
= gimple_assign_rhs3 (stmt
);
4076 tree rhs3_type
= TREE_TYPE (rhs3
);
4078 if (!is_gimple_reg (lhs
))
4080 error ("non-register as LHS of ternary operation");
4084 if (((rhs_code
== VEC_COND_EXPR
|| rhs_code
== COND_EXPR
)
4085 ? !is_gimple_condexpr (rhs1
) : !is_gimple_val (rhs1
))
4086 || !is_gimple_val (rhs2
)
4087 || !is_gimple_val (rhs3
))
4089 error ("invalid operands in ternary operation");
4093 /* First handle operations that involve different types. */
4096 case WIDEN_MULT_PLUS_EXPR
:
4097 case WIDEN_MULT_MINUS_EXPR
:
4098 if ((!INTEGRAL_TYPE_P (rhs1_type
)
4099 && !FIXED_POINT_TYPE_P (rhs1_type
))
4100 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
4101 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4102 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
4103 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
4105 error ("type mismatch in widening multiply-accumulate expression");
4106 debug_generic_expr (lhs_type
);
4107 debug_generic_expr (rhs1_type
);
4108 debug_generic_expr (rhs2_type
);
4109 debug_generic_expr (rhs3_type
);
4115 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4116 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
4117 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
4119 error ("type mismatch in fused multiply-add expression");
4120 debug_generic_expr (lhs_type
);
4121 debug_generic_expr (rhs1_type
);
4122 debug_generic_expr (rhs2_type
);
4123 debug_generic_expr (rhs3_type
);
4129 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
4130 || TYPE_VECTOR_SUBPARTS (rhs1_type
)
4131 != TYPE_VECTOR_SUBPARTS (lhs_type
))
4133 error ("the first argument of a VEC_COND_EXPR must be of a "
4134 "boolean vector type of the same number of elements "
4136 debug_generic_expr (lhs_type
);
4137 debug_generic_expr (rhs1_type
);
4142 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
4143 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
4145 error ("type mismatch in conditional expression");
4146 debug_generic_expr (lhs_type
);
4147 debug_generic_expr (rhs2_type
);
4148 debug_generic_expr (rhs3_type
);
4154 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4155 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4157 error ("type mismatch in vector permute expression");
4158 debug_generic_expr (lhs_type
);
4159 debug_generic_expr (rhs1_type
);
4160 debug_generic_expr (rhs2_type
);
4161 debug_generic_expr (rhs3_type
);
4165 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4166 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4167 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4169 error ("vector types expected in vector permute expression");
4170 debug_generic_expr (lhs_type
);
4171 debug_generic_expr (rhs1_type
);
4172 debug_generic_expr (rhs2_type
);
4173 debug_generic_expr (rhs3_type
);
4177 if (TYPE_VECTOR_SUBPARTS (rhs1_type
) != TYPE_VECTOR_SUBPARTS (rhs2_type
)
4178 || TYPE_VECTOR_SUBPARTS (rhs2_type
)
4179 != TYPE_VECTOR_SUBPARTS (rhs3_type
)
4180 || TYPE_VECTOR_SUBPARTS (rhs3_type
)
4181 != TYPE_VECTOR_SUBPARTS (lhs_type
))
4183 error ("vectors with different element number found "
4184 "in vector permute expression");
4185 debug_generic_expr (lhs_type
);
4186 debug_generic_expr (rhs1_type
);
4187 debug_generic_expr (rhs2_type
);
4188 debug_generic_expr (rhs3_type
);
4192 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
4193 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type
)))
4194 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
))))
4196 error ("invalid mask type in vector permute expression");
4197 debug_generic_expr (lhs_type
);
4198 debug_generic_expr (rhs1_type
);
4199 debug_generic_expr (rhs2_type
);
4200 debug_generic_expr (rhs3_type
);
4207 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
)
4208 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4209 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
)))
4210 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type
))))
4212 error ("type mismatch in sad expression");
4213 debug_generic_expr (lhs_type
);
4214 debug_generic_expr (rhs1_type
);
4215 debug_generic_expr (rhs2_type
);
4216 debug_generic_expr (rhs3_type
);
4220 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4221 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4222 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4224 error ("vector types expected in sad expression");
4225 debug_generic_expr (lhs_type
);
4226 debug_generic_expr (rhs1_type
);
4227 debug_generic_expr (rhs2_type
);
4228 debug_generic_expr (rhs3_type
);
4234 case BIT_INSERT_EXPR
:
4235 if (! useless_type_conversion_p (lhs_type
, rhs1_type
))
4237 error ("type mismatch in BIT_INSERT_EXPR");
4238 debug_generic_expr (lhs_type
);
4239 debug_generic_expr (rhs1_type
);
4242 if (! ((INTEGRAL_TYPE_P (rhs1_type
)
4243 && INTEGRAL_TYPE_P (rhs2_type
))
4244 || (VECTOR_TYPE_P (rhs1_type
)
4245 && types_compatible_p (TREE_TYPE (rhs1_type
), rhs2_type
))))
4247 error ("not allowed type combination in BIT_INSERT_EXPR");
4248 debug_generic_expr (rhs1_type
);
4249 debug_generic_expr (rhs2_type
);
4252 if (! tree_fits_uhwi_p (rhs3
)
4253 || ! types_compatible_p (bitsizetype
, TREE_TYPE (rhs3
))
4254 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type
)))
4256 error ("invalid position or size in BIT_INSERT_EXPR");
4259 if (INTEGRAL_TYPE_P (rhs1_type
))
4261 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4262 if (bitpos
>= TYPE_PRECISION (rhs1_type
)
4263 || (bitpos
+ TYPE_PRECISION (rhs2_type
)
4264 > TYPE_PRECISION (rhs1_type
)))
4266 error ("insertion out of range in BIT_INSERT_EXPR");
4270 else if (VECTOR_TYPE_P (rhs1_type
))
4272 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4273 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (TYPE_SIZE (rhs2_type
));
4274 if (bitpos
% bitsize
!= 0)
4276 error ("vector insertion not at element boundary");
4283 case REALIGN_LOAD_EXPR
:
4293 /* Verify a gimple assignment statement STMT with a single rhs.
4294 Returns true if anything is wrong. */
4297 verify_gimple_assign_single (gassign
*stmt
)
4299 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4300 tree lhs
= gimple_assign_lhs (stmt
);
4301 tree lhs_type
= TREE_TYPE (lhs
);
4302 tree rhs1
= gimple_assign_rhs1 (stmt
);
4303 tree rhs1_type
= TREE_TYPE (rhs1
);
4306 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
4308 error ("non-trivial conversion at assignment");
4309 debug_generic_expr (lhs_type
);
4310 debug_generic_expr (rhs1_type
);
4314 if (gimple_clobber_p (stmt
)
4315 && !(DECL_P (lhs
) || TREE_CODE (lhs
) == MEM_REF
))
4317 error ("non-decl/MEM_REF LHS in clobber statement");
4318 debug_generic_expr (lhs
);
4322 if (handled_component_p (lhs
)
4323 || TREE_CODE (lhs
) == MEM_REF
4324 || TREE_CODE (lhs
) == TARGET_MEM_REF
)
4325 res
|= verify_types_in_gimple_reference (lhs
, true);
4327 /* Special codes we cannot handle via their class. */
4332 tree op
= TREE_OPERAND (rhs1
, 0);
4333 if (!is_gimple_addressable (op
))
4335 error ("invalid operand in unary expression");
4339 /* Technically there is no longer a need for matching types, but
4340 gimple hygiene asks for this check. In LTO we can end up
4341 combining incompatible units and thus end up with addresses
4342 of globals that change their type to a common one. */
4344 && !types_compatible_p (TREE_TYPE (op
),
4345 TREE_TYPE (TREE_TYPE (rhs1
)))
4346 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
4349 error ("type mismatch in address expression");
4350 debug_generic_stmt (TREE_TYPE (rhs1
));
4351 debug_generic_stmt (TREE_TYPE (op
));
4355 return verify_types_in_gimple_reference (op
, true);
4360 error ("INDIRECT_REF in gimple IL");
4366 case ARRAY_RANGE_REF
:
4367 case VIEW_CONVERT_EXPR
:
4370 case TARGET_MEM_REF
:
4372 if (!is_gimple_reg (lhs
)
4373 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4375 error ("invalid rhs for gimple memory store");
4376 debug_generic_stmt (lhs
);
4377 debug_generic_stmt (rhs1
);
4380 return res
|| verify_types_in_gimple_reference (rhs1
, false);
4392 /* tcc_declaration */
4397 if (!is_gimple_reg (lhs
)
4398 && !is_gimple_reg (rhs1
)
4399 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4401 error ("invalid rhs for gimple memory store");
4402 debug_generic_stmt (lhs
);
4403 debug_generic_stmt (rhs1
);
4409 if (TREE_CODE (rhs1_type
) == VECTOR_TYPE
)
4412 tree elt_i
, elt_v
, elt_t
= NULL_TREE
;
4414 if (CONSTRUCTOR_NELTS (rhs1
) == 0)
4416 /* For vector CONSTRUCTORs we require that either it is empty
4417 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4418 (then the element count must be correct to cover the whole
4419 outer vector and index must be NULL on all elements, or it is
4420 a CONSTRUCTOR of scalar elements, where we as an exception allow
4421 smaller number of elements (assuming zero filling) and
4422 consecutive indexes as compared to NULL indexes (such
4423 CONSTRUCTORs can appear in the IL from FEs). */
4424 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1
), i
, elt_i
, elt_v
)
4426 if (elt_t
== NULL_TREE
)
4428 elt_t
= TREE_TYPE (elt_v
);
4429 if (TREE_CODE (elt_t
) == VECTOR_TYPE
)
4431 tree elt_t
= TREE_TYPE (elt_v
);
4432 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4435 error ("incorrect type of vector CONSTRUCTOR"
4437 debug_generic_stmt (rhs1
);
4440 else if (CONSTRUCTOR_NELTS (rhs1
)
4441 * TYPE_VECTOR_SUBPARTS (elt_t
)
4442 != TYPE_VECTOR_SUBPARTS (rhs1_type
))
4444 error ("incorrect number of vector CONSTRUCTOR"
4446 debug_generic_stmt (rhs1
);
4450 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4453 error ("incorrect type of vector CONSTRUCTOR elements");
4454 debug_generic_stmt (rhs1
);
4457 else if (CONSTRUCTOR_NELTS (rhs1
)
4458 > TYPE_VECTOR_SUBPARTS (rhs1_type
))
4460 error ("incorrect number of vector CONSTRUCTOR elements");
4461 debug_generic_stmt (rhs1
);
4465 else if (!useless_type_conversion_p (elt_t
, TREE_TYPE (elt_v
)))
4467 error ("incorrect type of vector CONSTRUCTOR elements");
4468 debug_generic_stmt (rhs1
);
4471 if (elt_i
!= NULL_TREE
4472 && (TREE_CODE (elt_t
) == VECTOR_TYPE
4473 || TREE_CODE (elt_i
) != INTEGER_CST
4474 || compare_tree_int (elt_i
, i
) != 0))
4476 error ("vector CONSTRUCTOR with non-NULL element index");
4477 debug_generic_stmt (rhs1
);
4480 if (!is_gimple_val (elt_v
))
4482 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4483 debug_generic_stmt (rhs1
);
4488 else if (CONSTRUCTOR_NELTS (rhs1
) != 0)
4490 error ("non-vector CONSTRUCTOR with elements");
4491 debug_generic_stmt (rhs1
);
4497 case WITH_SIZE_EXPR
:
4507 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4508 is a problem, otherwise false. */
4511 verify_gimple_assign (gassign
*stmt
)
4513 switch (gimple_assign_rhs_class (stmt
))
4515 case GIMPLE_SINGLE_RHS
:
4516 return verify_gimple_assign_single (stmt
);
4518 case GIMPLE_UNARY_RHS
:
4519 return verify_gimple_assign_unary (stmt
);
4521 case GIMPLE_BINARY_RHS
:
4522 return verify_gimple_assign_binary (stmt
);
4524 case GIMPLE_TERNARY_RHS
:
4525 return verify_gimple_assign_ternary (stmt
);
4532 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4533 is a problem, otherwise false. */
4536 verify_gimple_return (greturn
*stmt
)
4538 tree op
= gimple_return_retval (stmt
);
4539 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4541 /* We cannot test for present return values as we do not fix up missing
4542 return values from the original source. */
4546 if (!is_gimple_val (op
)
4547 && TREE_CODE (op
) != RESULT_DECL
)
4549 error ("invalid operand in return statement");
4550 debug_generic_stmt (op
);
4554 if ((TREE_CODE (op
) == RESULT_DECL
4555 && DECL_BY_REFERENCE (op
))
4556 || (TREE_CODE (op
) == SSA_NAME
4557 && SSA_NAME_VAR (op
)
4558 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4559 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4560 op
= TREE_TYPE (op
);
4562 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4564 error ("invalid conversion in return statement");
4565 debug_generic_stmt (restype
);
4566 debug_generic_stmt (TREE_TYPE (op
));
4574 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4575 is a problem, otherwise false. */
4578 verify_gimple_goto (ggoto
*stmt
)
4580 tree dest
= gimple_goto_dest (stmt
);
4582 /* ??? We have two canonical forms of direct goto destinations, a
4583 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4584 if (TREE_CODE (dest
) != LABEL_DECL
4585 && (!is_gimple_val (dest
)
4586 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4588 error ("goto destination is neither a label nor a pointer");
4595 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4596 is a problem, otherwise false. */
4599 verify_gimple_switch (gswitch
*stmt
)
4602 tree elt
, prev_upper_bound
= NULL_TREE
;
4603 tree index_type
, elt_type
= NULL_TREE
;
4605 if (!is_gimple_val (gimple_switch_index (stmt
)))
4607 error ("invalid operand to switch statement");
4608 debug_generic_stmt (gimple_switch_index (stmt
));
4612 index_type
= TREE_TYPE (gimple_switch_index (stmt
));
4613 if (! INTEGRAL_TYPE_P (index_type
))
4615 error ("non-integral type switch statement");
4616 debug_generic_expr (index_type
);
4620 elt
= gimple_switch_label (stmt
, 0);
4621 if (CASE_LOW (elt
) != NULL_TREE
|| CASE_HIGH (elt
) != NULL_TREE
)
4623 error ("invalid default case label in switch statement");
4624 debug_generic_expr (elt
);
4628 n
= gimple_switch_num_labels (stmt
);
4629 for (i
= 1; i
< n
; i
++)
4631 elt
= gimple_switch_label (stmt
, i
);
4633 if (! CASE_LOW (elt
))
4635 error ("invalid case label in switch statement");
4636 debug_generic_expr (elt
);
4640 && ! tree_int_cst_lt (CASE_LOW (elt
), CASE_HIGH (elt
)))
4642 error ("invalid case range in switch statement");
4643 debug_generic_expr (elt
);
4649 if (TREE_TYPE (CASE_LOW (elt
)) != elt_type
4650 || (CASE_HIGH (elt
) && TREE_TYPE (CASE_HIGH (elt
)) != elt_type
))
4652 error ("type mismatch for case label in switch statement");
4653 debug_generic_expr (elt
);
4659 elt_type
= TREE_TYPE (CASE_LOW (elt
));
4660 if (TYPE_PRECISION (index_type
) < TYPE_PRECISION (elt_type
))
4662 error ("type precision mismatch in switch statement");
4667 if (prev_upper_bound
)
4669 if (! tree_int_cst_lt (prev_upper_bound
, CASE_LOW (elt
)))
4671 error ("case labels not sorted in switch statement");
4676 prev_upper_bound
= CASE_HIGH (elt
);
4677 if (! prev_upper_bound
)
4678 prev_upper_bound
= CASE_LOW (elt
);
4684 /* Verify a gimple debug statement STMT.
4685 Returns true if anything is wrong. */
4688 verify_gimple_debug (gimple
*stmt ATTRIBUTE_UNUSED
)
4690 /* There isn't much that could be wrong in a gimple debug stmt. A
4691 gimple debug bind stmt, for example, maps a tree, that's usually
4692 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4693 component or member of an aggregate type, to another tree, that
4694 can be an arbitrary expression. These stmts expand into debug
4695 insns, and are converted to debug notes by var-tracking.c. */
4699 /* Verify a gimple label statement STMT.
4700 Returns true if anything is wrong. */
4703 verify_gimple_label (glabel
*stmt
)
4705 tree decl
= gimple_label_label (stmt
);
4709 if (TREE_CODE (decl
) != LABEL_DECL
)
4711 if (!DECL_NONLOCAL (decl
) && !FORCED_LABEL (decl
)
4712 && DECL_CONTEXT (decl
) != current_function_decl
)
4714 error ("label's context is not the current function decl");
4718 uid
= LABEL_DECL_UID (decl
);
4721 || (*label_to_block_map_for_fn (cfun
))[uid
] != gimple_bb (stmt
)))
4723 error ("incorrect entry in label_to_block_map");
4727 uid
= EH_LANDING_PAD_NR (decl
);
4730 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4731 if (decl
!= lp
->post_landing_pad
)
4733 error ("incorrect setting of landing pad number");
4741 /* Verify a gimple cond statement STMT.
4742 Returns true if anything is wrong. */
4745 verify_gimple_cond (gcond
*stmt
)
4747 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
4749 error ("invalid comparison code in gimple cond");
4752 if (!(!gimple_cond_true_label (stmt
)
4753 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4754 || !(!gimple_cond_false_label (stmt
)
4755 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4757 error ("invalid labels in gimple cond");
4761 return verify_gimple_comparison (boolean_type_node
,
4762 gimple_cond_lhs (stmt
),
4763 gimple_cond_rhs (stmt
),
4764 gimple_cond_code (stmt
));
4767 /* Verify the GIMPLE statement STMT. Returns true if there is an
4768 error, otherwise false. */
4771 verify_gimple_stmt (gimple
*stmt
)
4773 switch (gimple_code (stmt
))
4776 return verify_gimple_assign (as_a
<gassign
*> (stmt
));
4779 return verify_gimple_label (as_a
<glabel
*> (stmt
));
4782 return verify_gimple_call (as_a
<gcall
*> (stmt
));
4785 return verify_gimple_cond (as_a
<gcond
*> (stmt
));
4788 return verify_gimple_goto (as_a
<ggoto
*> (stmt
));
4791 return verify_gimple_switch (as_a
<gswitch
*> (stmt
));
4794 return verify_gimple_return (as_a
<greturn
*> (stmt
));
4799 case GIMPLE_TRANSACTION
:
4800 return verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
4802 /* Tuples that do not have tree operands. */
4804 case GIMPLE_PREDICT
:
4806 case GIMPLE_EH_DISPATCH
:
4807 case GIMPLE_EH_MUST_NOT_THROW
:
4811 /* OpenMP directives are validated by the FE and never operated
4812 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4813 non-gimple expressions when the main index variable has had
4814 its address taken. This does not affect the loop itself
4815 because the header of an GIMPLE_OMP_FOR is merely used to determine
4816 how to setup the parallel iteration. */
4820 return verify_gimple_debug (stmt
);
4827 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4828 and false otherwise. */
4831 verify_gimple_phi (gimple
*phi
)
4835 tree phi_result
= gimple_phi_result (phi
);
4840 error ("invalid PHI result");
4844 virtual_p
= virtual_operand_p (phi_result
);
4845 if (TREE_CODE (phi_result
) != SSA_NAME
4847 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
4849 error ("invalid PHI result");
4853 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4855 tree t
= gimple_phi_arg_def (phi
, i
);
4859 error ("missing PHI def");
4863 /* Addressable variables do have SSA_NAMEs but they
4864 are not considered gimple values. */
4865 else if ((TREE_CODE (t
) == SSA_NAME
4866 && virtual_p
!= virtual_operand_p (t
))
4868 && (TREE_CODE (t
) != SSA_NAME
4869 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
4871 && !is_gimple_val (t
)))
4873 error ("invalid PHI argument");
4874 debug_generic_expr (t
);
4877 #ifdef ENABLE_TYPES_CHECKING
4878 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
4880 error ("incompatible types in PHI argument %u", i
);
4881 debug_generic_stmt (TREE_TYPE (phi_result
));
4882 debug_generic_stmt (TREE_TYPE (t
));
4891 /* Verify the GIMPLE statements inside the sequence STMTS. */
4894 verify_gimple_in_seq_2 (gimple_seq stmts
)
4896 gimple_stmt_iterator ittr
;
4899 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
4901 gimple
*stmt
= gsi_stmt (ittr
);
4903 switch (gimple_code (stmt
))
4906 err
|= verify_gimple_in_seq_2 (
4907 gimple_bind_body (as_a
<gbind
*> (stmt
)));
4911 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
4912 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
4915 case GIMPLE_EH_FILTER
:
4916 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
4919 case GIMPLE_EH_ELSE
:
4921 geh_else
*eh_else
= as_a
<geh_else
*> (stmt
);
4922 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else
));
4923 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else
));
4928 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (
4929 as_a
<gcatch
*> (stmt
)));
4932 case GIMPLE_TRANSACTION
:
4933 err
|= verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
4938 bool err2
= verify_gimple_stmt (stmt
);
4940 debug_gimple_stmt (stmt
);
4949 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4950 is a problem, otherwise false. */
4953 verify_gimple_transaction (gtransaction
*stmt
)
4957 lab
= gimple_transaction_label_norm (stmt
);
4958 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4960 lab
= gimple_transaction_label_uninst (stmt
);
4961 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4963 lab
= gimple_transaction_label_over (stmt
);
4964 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4967 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
4971 /* Verify the GIMPLE statements inside the statement list STMTS. */
4974 verify_gimple_in_seq (gimple_seq stmts
)
4976 timevar_push (TV_TREE_STMT_VERIFY
);
4977 if (verify_gimple_in_seq_2 (stmts
))
4978 internal_error ("verify_gimple failed");
4979 timevar_pop (TV_TREE_STMT_VERIFY
);
4982 /* Return true when the T can be shared. */
4985 tree_node_can_be_shared (tree t
)
4987 if (IS_TYPE_OR_DECL_P (t
)
4988 || is_gimple_min_invariant (t
)
4989 || TREE_CODE (t
) == SSA_NAME
4990 || t
== error_mark_node
4991 || TREE_CODE (t
) == IDENTIFIER_NODE
)
4994 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
5003 /* Called via walk_tree. Verify tree sharing. */
5006 verify_node_sharing_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5008 hash_set
<void *> *visited
= (hash_set
<void *> *) data
;
5010 if (tree_node_can_be_shared (*tp
))
5012 *walk_subtrees
= false;
5016 if (visited
->add (*tp
))
5022 /* Called via walk_gimple_stmt. Verify tree sharing. */
5025 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
5027 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5028 return verify_node_sharing_1 (tp
, walk_subtrees
, wi
->info
);
5031 static bool eh_error_found
;
5033 verify_eh_throw_stmt_node (gimple
*const &stmt
, const int &,
5034 hash_set
<gimple
*> *visited
)
5036 if (!visited
->contains (stmt
))
5038 error ("dead STMT in EH table");
5039 debug_gimple_stmt (stmt
);
5040 eh_error_found
= true;
5045 /* Verify if the location LOCs block is in BLOCKS. */
5048 verify_location (hash_set
<tree
> *blocks
, location_t loc
)
5050 tree block
= LOCATION_BLOCK (loc
);
5051 if (block
!= NULL_TREE
5052 && !blocks
->contains (block
))
5054 error ("location references block not in block tree");
5057 if (block
!= NULL_TREE
)
5058 return verify_location (blocks
, BLOCK_SOURCE_LOCATION (block
));
5062 /* Called via walk_tree. Verify that expressions have no blocks. */
5065 verify_expr_no_block (tree
*tp
, int *walk_subtrees
, void *)
5069 *walk_subtrees
= false;
5073 location_t loc
= EXPR_LOCATION (*tp
);
5074 if (LOCATION_BLOCK (loc
) != NULL
)
5080 /* Called via walk_tree. Verify locations of expressions. */
5083 verify_expr_location_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5085 hash_set
<tree
> *blocks
= (hash_set
<tree
> *) data
;
5087 if (VAR_P (*tp
) && DECL_HAS_DEBUG_EXPR_P (*tp
))
5089 tree t
= DECL_DEBUG_EXPR (*tp
);
5090 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
5095 || TREE_CODE (*tp
) == PARM_DECL
5096 || TREE_CODE (*tp
) == RESULT_DECL
)
5097 && DECL_HAS_VALUE_EXPR_P (*tp
))
5099 tree t
= DECL_VALUE_EXPR (*tp
);
5100 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
5107 *walk_subtrees
= false;
5111 location_t loc
= EXPR_LOCATION (*tp
);
5112 if (verify_location (blocks
, loc
))
5118 /* Called via walk_gimple_op. Verify locations of expressions. */
5121 verify_expr_location (tree
*tp
, int *walk_subtrees
, void *data
)
5123 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5124 return verify_expr_location_1 (tp
, walk_subtrees
, wi
->info
);
5127 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5130 collect_subblocks (hash_set
<tree
> *blocks
, tree block
)
5133 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= BLOCK_CHAIN (t
))
5136 collect_subblocks (blocks
, t
);
5140 /* Verify the GIMPLE statements in the CFG of FN. */
5143 verify_gimple_in_cfg (struct function
*fn
, bool verify_nothrow
)
5148 timevar_push (TV_TREE_STMT_VERIFY
);
5149 hash_set
<void *> visited
;
5150 hash_set
<gimple
*> visited_stmts
;
5152 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5153 hash_set
<tree
> blocks
;
5154 if (DECL_INITIAL (fn
->decl
))
5156 blocks
.add (DECL_INITIAL (fn
->decl
));
5157 collect_subblocks (&blocks
, DECL_INITIAL (fn
->decl
));
5160 FOR_EACH_BB_FN (bb
, fn
)
5162 gimple_stmt_iterator gsi
;
5164 for (gphi_iterator gpi
= gsi_start_phis (bb
);
5168 gphi
*phi
= gpi
.phi ();
5172 visited_stmts
.add (phi
);
5174 if (gimple_bb (phi
) != bb
)
5176 error ("gimple_bb (phi) is set to a wrong basic block");
5180 err2
|= verify_gimple_phi (phi
);
5182 /* Only PHI arguments have locations. */
5183 if (gimple_location (phi
) != UNKNOWN_LOCATION
)
5185 error ("PHI node with location");
5189 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
5191 tree arg
= gimple_phi_arg_def (phi
, i
);
5192 tree addr
= walk_tree (&arg
, verify_node_sharing_1
,
5196 error ("incorrect sharing of tree nodes");
5197 debug_generic_expr (addr
);
5200 location_t loc
= gimple_phi_arg_location (phi
, i
);
5201 if (virtual_operand_p (gimple_phi_result (phi
))
5202 && loc
!= UNKNOWN_LOCATION
)
5204 error ("virtual PHI with argument locations");
5207 addr
= walk_tree (&arg
, verify_expr_location_1
, &blocks
, NULL
);
5210 debug_generic_expr (addr
);
5213 err2
|= verify_location (&blocks
, loc
);
5217 debug_gimple_stmt (phi
);
5221 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5223 gimple
*stmt
= gsi_stmt (gsi
);
5225 struct walk_stmt_info wi
;
5229 visited_stmts
.add (stmt
);
5231 if (gimple_bb (stmt
) != bb
)
5233 error ("gimple_bb (stmt) is set to a wrong basic block");
5237 err2
|= verify_gimple_stmt (stmt
);
5238 err2
|= verify_location (&blocks
, gimple_location (stmt
));
5240 memset (&wi
, 0, sizeof (wi
));
5241 wi
.info
= (void *) &visited
;
5242 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
5245 error ("incorrect sharing of tree nodes");
5246 debug_generic_expr (addr
);
5250 memset (&wi
, 0, sizeof (wi
));
5251 wi
.info
= (void *) &blocks
;
5252 addr
= walk_gimple_op (stmt
, verify_expr_location
, &wi
);
5255 debug_generic_expr (addr
);
5259 /* ??? Instead of not checking these stmts at all the walker
5260 should know its context via wi. */
5261 if (!is_gimple_debug (stmt
)
5262 && !is_gimple_omp (stmt
))
5264 memset (&wi
, 0, sizeof (wi
));
5265 addr
= walk_gimple_op (stmt
, verify_expr
, &wi
);
5268 debug_generic_expr (addr
);
5269 inform (gimple_location (stmt
), "in statement");
5274 /* If the statement is marked as part of an EH region, then it is
5275 expected that the statement could throw. Verify that when we
5276 have optimizations that simplify statements such that we prove
5277 that they cannot throw, that we update other data structures
5279 lp_nr
= lookup_stmt_eh_lp (stmt
);
5282 if (!stmt_could_throw_p (stmt
))
5286 error ("statement marked for throw, but doesn%'t");
5290 else if (!gsi_one_before_end_p (gsi
))
5292 error ("statement marked for throw in middle of block");
5298 debug_gimple_stmt (stmt
);
5303 eh_error_found
= false;
5304 hash_map
<gimple
*, int> *eh_table
= get_eh_throw_stmt_table (cfun
);
5306 eh_table
->traverse
<hash_set
<gimple
*> *, verify_eh_throw_stmt_node
>
5309 if (err
|| eh_error_found
)
5310 internal_error ("verify_gimple failed");
5312 verify_histograms ();
5313 timevar_pop (TV_TREE_STMT_VERIFY
);
5317 /* Verifies that the flow information is OK. */
5320 gimple_verify_flow_info (void)
5324 gimple_stmt_iterator gsi
;
5329 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5330 || ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5332 error ("ENTRY_BLOCK has IL associated with it");
5336 if (EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5337 || EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5339 error ("EXIT_BLOCK has IL associated with it");
5343 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
5344 if (e
->flags
& EDGE_FALLTHRU
)
5346 error ("fallthru to exit from bb %d", e
->src
->index
);
5350 FOR_EACH_BB_FN (bb
, cfun
)
5352 bool found_ctrl_stmt
= false;
5356 /* Skip labels on the start of basic block. */
5357 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5360 gimple
*prev_stmt
= stmt
;
5362 stmt
= gsi_stmt (gsi
);
5364 if (gimple_code (stmt
) != GIMPLE_LABEL
)
5367 label
= gimple_label_label (as_a
<glabel
*> (stmt
));
5368 if (prev_stmt
&& DECL_NONLOCAL (label
))
5370 error ("nonlocal label ");
5371 print_generic_expr (stderr
, label
);
5372 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5377 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
5379 error ("EH landing pad label ");
5380 print_generic_expr (stderr
, label
);
5381 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5386 if (label_to_block (label
) != bb
)
5389 print_generic_expr (stderr
, label
);
5390 fprintf (stderr
, " to block does not match in bb %d",
5395 if (decl_function_context (label
) != current_function_decl
)
5398 print_generic_expr (stderr
, label
);
5399 fprintf (stderr
, " has incorrect context in bb %d",
5405 /* Verify that body of basic block BB is free of control flow. */
5406 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
5408 gimple
*stmt
= gsi_stmt (gsi
);
5410 if (found_ctrl_stmt
)
5412 error ("control flow in the middle of basic block %d",
5417 if (stmt_ends_bb_p (stmt
))
5418 found_ctrl_stmt
= true;
5420 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
5423 print_generic_expr (stderr
, gimple_label_label (label_stmt
));
5424 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
5429 gsi
= gsi_last_bb (bb
);
5430 if (gsi_end_p (gsi
))
5433 stmt
= gsi_stmt (gsi
);
5435 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5438 err
|= verify_eh_edges (stmt
);
5440 if (is_ctrl_stmt (stmt
))
5442 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5443 if (e
->flags
& EDGE_FALLTHRU
)
5445 error ("fallthru edge after a control statement in bb %d",
5451 if (gimple_code (stmt
) != GIMPLE_COND
)
5453 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5454 after anything else but if statement. */
5455 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5456 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
5458 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5464 switch (gimple_code (stmt
))
5471 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
5475 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
5476 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
5477 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5478 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5479 || EDGE_COUNT (bb
->succs
) >= 3)
5481 error ("wrong outgoing edge flags at end of bb %d",
5489 if (simple_goto_p (stmt
))
5491 error ("explicit goto at end of bb %d", bb
->index
);
5496 /* FIXME. We should double check that the labels in the
5497 destination blocks have their address taken. */
5498 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5499 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
5500 | EDGE_FALSE_VALUE
))
5501 || !(e
->flags
& EDGE_ABNORMAL
))
5503 error ("wrong outgoing edge flags at end of bb %d",
5511 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
5515 if (!single_succ_p (bb
)
5516 || (single_succ_edge (bb
)->flags
5517 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
5518 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5520 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
5523 if (single_succ (bb
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
5525 error ("return edge does not point to exit in bb %d",
5533 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5538 n
= gimple_switch_num_labels (switch_stmt
);
5540 /* Mark all the destination basic blocks. */
5541 for (i
= 0; i
< n
; ++i
)
5543 tree lab
= CASE_LABEL (gimple_switch_label (switch_stmt
, i
));
5544 basic_block label_bb
= label_to_block (lab
);
5545 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
5546 label_bb
->aux
= (void *)1;
5549 /* Verify that the case labels are sorted. */
5550 prev
= gimple_switch_label (switch_stmt
, 0);
5551 for (i
= 1; i
< n
; ++i
)
5553 tree c
= gimple_switch_label (switch_stmt
, i
);
5556 error ("found default case not at the start of "
5562 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
5564 error ("case labels not sorted: ");
5565 print_generic_expr (stderr
, prev
);
5566 fprintf (stderr
," is greater than ");
5567 print_generic_expr (stderr
, c
);
5568 fprintf (stderr
," but comes before it.\n");
5573 /* VRP will remove the default case if it can prove it will
5574 never be executed. So do not verify there always exists
5575 a default case here. */
5577 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5581 error ("extra outgoing edge %d->%d",
5582 bb
->index
, e
->dest
->index
);
5586 e
->dest
->aux
= (void *)2;
5587 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
5588 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5590 error ("wrong outgoing edge flags at end of bb %d",
5596 /* Check that we have all of them. */
5597 for (i
= 0; i
< n
; ++i
)
5599 tree lab
= CASE_LABEL (gimple_switch_label (switch_stmt
, i
));
5600 basic_block label_bb
= label_to_block (lab
);
5602 if (label_bb
->aux
!= (void *)2)
5604 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
5609 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5610 e
->dest
->aux
= (void *)0;
5614 case GIMPLE_EH_DISPATCH
:
5615 err
|= verify_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
));
5623 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
5624 verify_dominators (CDI_DOMINATORS
);
5630 /* Updates phi nodes after creating a forwarder block joined
5631 by edge FALLTHRU. */
5634 gimple_make_forwarder_block (edge fallthru
)
5638 basic_block dummy
, bb
;
5642 dummy
= fallthru
->src
;
5643 bb
= fallthru
->dest
;
5645 if (single_pred_p (bb
))
5648 /* If we redirected a branch we must create new PHI nodes at the
5650 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5652 gphi
*phi
, *new_phi
;
5655 var
= gimple_phi_result (phi
);
5656 new_phi
= create_phi_node (var
, bb
);
5657 gimple_phi_set_result (phi
, copy_ssa_name (var
, phi
));
5658 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
5662 /* Add the arguments we have stored on edges. */
5663 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5668 flush_pending_stmts (e
);
5673 /* Return a non-special label in the head of basic block BLOCK.
5674 Create one if it doesn't exist. */
5677 gimple_block_label (basic_block bb
)
5679 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
5684 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
5686 stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
5689 label
= gimple_label_label (stmt
);
5690 if (!DECL_NONLOCAL (label
))
5693 gsi_move_before (&i
, &s
);
5698 label
= create_artificial_label (UNKNOWN_LOCATION
);
5699 stmt
= gimple_build_label (label
);
5700 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
5705 /* Attempt to perform edge redirection by replacing a possibly complex
5706 jump instruction by a goto or by removing the jump completely.
5707 This can apply only if all edges now point to the same block. The
5708 parameters and return values are equivalent to
5709 redirect_edge_and_branch. */
5712 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
5714 basic_block src
= e
->src
;
5715 gimple_stmt_iterator i
;
5718 /* We can replace or remove a complex jump only when we have exactly
5720 if (EDGE_COUNT (src
->succs
) != 2
5721 /* Verify that all targets will be TARGET. Specifically, the
5722 edge that is not E must also go to TARGET. */
5723 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
5726 i
= gsi_last_bb (src
);
5730 stmt
= gsi_stmt (i
);
5732 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
5734 gsi_remove (&i
, true);
5735 e
= ssa_redirect_edge (e
, target
);
5736 e
->flags
= EDGE_FALLTHRU
;
5744 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5745 edge representing the redirected branch. */
5748 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
5750 basic_block bb
= e
->src
;
5751 gimple_stmt_iterator gsi
;
5755 if (e
->flags
& EDGE_ABNORMAL
)
5758 if (e
->dest
== dest
)
5761 if (e
->flags
& EDGE_EH
)
5762 return redirect_eh_edge (e
, dest
);
5764 if (e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
5766 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
5771 gsi
= gsi_last_bb (bb
);
5772 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
5774 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
5777 /* For COND_EXPR, we only need to redirect the edge. */
5781 /* No non-abnormal edges should lead from a non-simple goto, and
5782 simple ones should be represented implicitly. */
5787 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5788 tree label
= gimple_block_label (dest
);
5789 tree cases
= get_cases_for_edge (e
, switch_stmt
);
5791 /* If we have a list of cases associated with E, then use it
5792 as it's a lot faster than walking the entire case vector. */
5795 edge e2
= find_edge (e
->src
, dest
);
5802 CASE_LABEL (cases
) = label
;
5803 cases
= CASE_CHAIN (cases
);
5806 /* If there was already an edge in the CFG, then we need
5807 to move all the cases associated with E to E2. */
5810 tree cases2
= get_cases_for_edge (e2
, switch_stmt
);
5812 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
5813 CASE_CHAIN (cases2
) = first
;
5815 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
5819 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
5821 for (i
= 0; i
< n
; i
++)
5823 tree elt
= gimple_switch_label (switch_stmt
, i
);
5824 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
5825 CASE_LABEL (elt
) = label
;
5833 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
5834 int i
, n
= gimple_asm_nlabels (asm_stmt
);
5837 for (i
= 0; i
< n
; ++i
)
5839 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
5840 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
5843 label
= gimple_block_label (dest
);
5844 TREE_VALUE (cons
) = label
;
5848 /* If we didn't find any label matching the former edge in the
5849 asm labels, we must be redirecting the fallthrough
5851 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
5856 gsi_remove (&gsi
, true);
5857 e
->flags
|= EDGE_FALLTHRU
;
5860 case GIMPLE_OMP_RETURN
:
5861 case GIMPLE_OMP_CONTINUE
:
5862 case GIMPLE_OMP_SECTIONS_SWITCH
:
5863 case GIMPLE_OMP_FOR
:
5864 /* The edges from OMP constructs can be simply redirected. */
5867 case GIMPLE_EH_DISPATCH
:
5868 if (!(e
->flags
& EDGE_FALLTHRU
))
5869 redirect_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
), e
, dest
);
5872 case GIMPLE_TRANSACTION
:
5873 if (e
->flags
& EDGE_TM_ABORT
)
5874 gimple_transaction_set_label_over (as_a
<gtransaction
*> (stmt
),
5875 gimple_block_label (dest
));
5876 else if (e
->flags
& EDGE_TM_UNINSTRUMENTED
)
5877 gimple_transaction_set_label_uninst (as_a
<gtransaction
*> (stmt
),
5878 gimple_block_label (dest
));
5880 gimple_transaction_set_label_norm (as_a
<gtransaction
*> (stmt
),
5881 gimple_block_label (dest
));
5885 /* Otherwise it must be a fallthru edge, and we don't need to
5886 do anything besides redirecting it. */
5887 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
5891 /* Update/insert PHI nodes as necessary. */
5893 /* Now update the edges in the CFG. */
5894 e
= ssa_redirect_edge (e
, dest
);
5899 /* Returns true if it is possible to remove edge E by redirecting
5900 it to the destination of the other edge from E->src. */
5903 gimple_can_remove_branch_p (const_edge e
)
5905 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
5911 /* Simple wrapper, as we can always redirect fallthru edges. */
5914 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
5916 e
= gimple_redirect_edge_and_branch (e
, dest
);
5923 /* Splits basic block BB after statement STMT (but at least after the
5924 labels). If STMT is NULL, BB is split just after the labels. */
5927 gimple_split_block (basic_block bb
, void *stmt
)
5929 gimple_stmt_iterator gsi
;
5930 gimple_stmt_iterator gsi_tgt
;
5936 new_bb
= create_empty_bb (bb
);
5938 /* Redirect the outgoing edges. */
5939 new_bb
->succs
= bb
->succs
;
5941 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
5944 /* Get a stmt iterator pointing to the first stmt to move. */
5945 if (!stmt
|| gimple_code ((gimple
*) stmt
) == GIMPLE_LABEL
)
5946 gsi
= gsi_after_labels (bb
);
5949 gsi
= gsi_for_stmt ((gimple
*) stmt
);
5953 /* Move everything from GSI to the new basic block. */
5954 if (gsi_end_p (gsi
))
5957 /* Split the statement list - avoid re-creating new containers as this
5958 brings ugly quadratic memory consumption in the inliner.
5959 (We are still quadratic since we need to update stmt BB pointers,
5961 gsi_split_seq_before (&gsi
, &list
);
5962 set_bb_seq (new_bb
, list
);
5963 for (gsi_tgt
= gsi_start (list
);
5964 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
5965 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
5971 /* Moves basic block BB after block AFTER. */
5974 gimple_move_block_after (basic_block bb
, basic_block after
)
5976 if (bb
->prev_bb
== after
)
5980 link_block (bb
, after
);
5986 /* Return TRUE if block BB has no executable statements, otherwise return
5990 gimple_empty_block_p (basic_block bb
)
5992 /* BB must have no executable statements. */
5993 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
5996 if (gsi_end_p (gsi
))
5998 if (is_gimple_debug (gsi_stmt (gsi
)))
5999 gsi_next_nondebug (&gsi
);
6000 return gsi_end_p (gsi
);
6004 /* Split a basic block if it ends with a conditional branch and if the
6005 other part of the block is not empty. */
6008 gimple_split_block_before_cond_jump (basic_block bb
)
6010 gimple
*last
, *split_point
;
6011 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6012 if (gsi_end_p (gsi
))
6014 last
= gsi_stmt (gsi
);
6015 if (gimple_code (last
) != GIMPLE_COND
6016 && gimple_code (last
) != GIMPLE_SWITCH
)
6019 split_point
= gsi_stmt (gsi
);
6020 return split_block (bb
, split_point
)->dest
;
6024 /* Return true if basic_block can be duplicated. */
6027 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
6032 /* Create a duplicate of the basic block BB. NOTE: This does not
6033 preserve SSA form. */
6036 gimple_duplicate_bb (basic_block bb
)
6039 gimple_stmt_iterator gsi_tgt
;
6041 new_bb
= create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
);
6043 /* Copy the PHI nodes. We ignore PHI node arguments here because
6044 the incoming edges have not been setup yet. */
6045 for (gphi_iterator gpi
= gsi_start_phis (bb
);
6051 copy
= create_phi_node (NULL_TREE
, new_bb
);
6052 create_new_def_for (gimple_phi_result (phi
), copy
,
6053 gimple_phi_result_ptr (copy
));
6054 gimple_set_uid (copy
, gimple_uid (phi
));
6057 gsi_tgt
= gsi_start_bb (new_bb
);
6058 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
6062 def_operand_p def_p
;
6063 ssa_op_iter op_iter
;
6065 gimple
*stmt
, *copy
;
6067 stmt
= gsi_stmt (gsi
);
6068 if (gimple_code (stmt
) == GIMPLE_LABEL
)
6071 /* Don't duplicate label debug stmts. */
6072 if (gimple_debug_bind_p (stmt
)
6073 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
6077 /* Create a new copy of STMT and duplicate STMT's virtual
6079 copy
= gimple_copy (stmt
);
6080 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
6082 maybe_duplicate_eh_stmt (copy
, stmt
);
6083 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
6085 /* When copying around a stmt writing into a local non-user
6086 aggregate, make sure it won't share stack slot with other
6088 lhs
= gimple_get_lhs (stmt
);
6089 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
6091 tree base
= get_base_address (lhs
);
6093 && (VAR_P (base
) || TREE_CODE (base
) == RESULT_DECL
)
6094 && DECL_IGNORED_P (base
)
6095 && !TREE_STATIC (base
)
6096 && !DECL_EXTERNAL (base
)
6097 && (!VAR_P (base
) || !DECL_HAS_VALUE_EXPR_P (base
)))
6098 DECL_NONSHAREABLE (base
) = 1;
6101 /* Create new names for all the definitions created by COPY and
6102 add replacement mappings for each new name. */
6103 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
6104 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
6110 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6113 add_phi_args_after_copy_edge (edge e_copy
)
6115 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
6118 gphi
*phi
, *phi_copy
;
6120 gphi_iterator psi
, psi_copy
;
6122 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
6125 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
6127 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
6128 dest
= get_bb_original (e_copy
->dest
);
6130 dest
= e_copy
->dest
;
6132 e
= find_edge (bb
, dest
);
6135 /* During loop unrolling the target of the latch edge is copied.
6136 In this case we are not looking for edge to dest, but to
6137 duplicated block whose original was dest. */
6138 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6140 if ((e
->dest
->flags
& BB_DUPLICATED
)
6141 && get_bb_original (e
->dest
) == dest
)
6145 gcc_assert (e
!= NULL
);
6148 for (psi
= gsi_start_phis (e
->dest
),
6149 psi_copy
= gsi_start_phis (e_copy
->dest
);
6151 gsi_next (&psi
), gsi_next (&psi_copy
))
6154 phi_copy
= psi_copy
.phi ();
6155 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
6156 add_phi_arg (phi_copy
, def
, e_copy
,
6157 gimple_phi_arg_location_from_edge (phi
, e
));
6162 /* Basic block BB_COPY was created by code duplication. Add phi node
6163 arguments for edges going out of BB_COPY. The blocks that were
6164 duplicated have BB_DUPLICATED set. */
6167 add_phi_args_after_copy_bb (basic_block bb_copy
)
6172 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
6174 add_phi_args_after_copy_edge (e_copy
);
6178 /* Blocks in REGION_COPY array of length N_REGION were created by
6179 duplication of basic blocks. Add phi node arguments for edges
6180 going from these blocks. If E_COPY is not NULL, also add
6181 phi node arguments for its destination.*/
6184 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
6189 for (i
= 0; i
< n_region
; i
++)
6190 region_copy
[i
]->flags
|= BB_DUPLICATED
;
6192 for (i
= 0; i
< n_region
; i
++)
6193 add_phi_args_after_copy_bb (region_copy
[i
]);
6195 add_phi_args_after_copy_edge (e_copy
);
6197 for (i
= 0; i
< n_region
; i
++)
6198 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
6201 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6202 important exit edge EXIT. By important we mean that no SSA name defined
6203 inside region is live over the other exit edges of the region. All entry
6204 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6205 to the duplicate of the region. Dominance and loop information is
6206 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6207 UPDATE_DOMINANCE is false then we assume that the caller will update the
6208 dominance information after calling this function. The new basic
6209 blocks are stored to REGION_COPY in the same order as they had in REGION,
6210 provided that REGION_COPY is not NULL.
6211 The function returns false if it is unable to copy the region,
6215 gimple_duplicate_sese_region (edge entry
, edge exit
,
6216 basic_block
*region
, unsigned n_region
,
6217 basic_block
*region_copy
,
6218 bool update_dominance
)
6221 bool free_region_copy
= false, copying_header
= false;
6222 struct loop
*loop
= entry
->dest
->loop_father
;
6224 vec
<basic_block
> doms
;
6226 int total_freq
= 0, entry_freq
= 0;
6227 profile_count total_count
= profile_count::uninitialized ();
6228 profile_count entry_count
= profile_count::uninitialized ();
6230 if (!can_copy_bbs_p (region
, n_region
))
6233 /* Some sanity checking. Note that we do not check for all possible
6234 missuses of the functions. I.e. if you ask to copy something weird,
6235 it will work, but the state of structures probably will not be
6237 for (i
= 0; i
< n_region
; i
++)
6239 /* We do not handle subloops, i.e. all the blocks must belong to the
6241 if (region
[i
]->loop_father
!= loop
)
6244 if (region
[i
] != entry
->dest
6245 && region
[i
] == loop
->header
)
6249 /* In case the function is used for loop header copying (which is the primary
6250 use), ensure that EXIT and its copy will be new latch and entry edges. */
6251 if (loop
->header
== entry
->dest
)
6253 copying_header
= true;
6255 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
6258 for (i
= 0; i
< n_region
; i
++)
6259 if (region
[i
] != exit
->src
6260 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
6264 initialize_original_copy_tables ();
6267 set_loop_copy (loop
, loop_outer (loop
));
6269 set_loop_copy (loop
, loop
);
6273 region_copy
= XNEWVEC (basic_block
, n_region
);
6274 free_region_copy
= true;
6277 /* Record blocks outside the region that are dominated by something
6279 if (update_dominance
)
6282 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6285 if (entry
->dest
->count
.initialized_p ())
6287 total_count
= entry
->dest
->count
;
6288 entry_count
= entry
->count
;
6289 /* Fix up corner cases, to avoid division by zero or creation of negative
6291 if (entry_count
> total_count
)
6292 entry_count
= total_count
;
6294 if (!(total_count
> 0) || !(entry_count
> 0))
6296 total_freq
= entry
->dest
->frequency
;
6297 entry_freq
= EDGE_FREQUENCY (entry
);
6298 /* Fix up corner cases, to avoid division by zero or creation of negative
6300 if (total_freq
== 0)
6302 else if (entry_freq
> total_freq
)
6303 entry_freq
= total_freq
;
6306 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
6307 split_edge_bb_loc (entry
), update_dominance
);
6308 if (total_count
> 0 && entry_count
> 0)
6310 scale_bbs_frequencies_profile_count (region
, n_region
,
6311 total_count
- entry_count
,
6313 scale_bbs_frequencies_profile_count (region_copy
, n_region
, entry_count
,
6318 scale_bbs_frequencies_int (region
, n_region
, total_freq
- entry_freq
,
6320 scale_bbs_frequencies_int (region_copy
, n_region
, entry_freq
, total_freq
);
6325 loop
->header
= exit
->dest
;
6326 loop
->latch
= exit
->src
;
6329 /* Redirect the entry and add the phi node arguments. */
6330 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
6331 gcc_assert (redirected
!= NULL
);
6332 flush_pending_stmts (entry
);
6334 /* Concerning updating of dominators: We must recount dominators
6335 for entry block and its copy. Anything that is outside of the
6336 region, but was dominated by something inside needs recounting as
6338 if (update_dominance
)
6340 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
6341 doms
.safe_push (get_bb_original (entry
->dest
));
6342 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6346 /* Add the other PHI node arguments. */
6347 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
6349 if (free_region_copy
)
6352 free_original_copy_tables ();
6356 /* Checks if BB is part of the region defined by N_REGION BBS. */
6358 bb_part_of_region_p (basic_block bb
, basic_block
* bbs
, unsigned n_region
)
6362 for (n
= 0; n
< n_region
; n
++)
6370 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6371 are stored to REGION_COPY in the same order in that they appear
6372 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6373 the region, EXIT an exit from it. The condition guarding EXIT
6374 is moved to ENTRY. Returns true if duplication succeeds, false
6400 gimple_duplicate_sese_tail (edge entry
, edge exit
,
6401 basic_block
*region
, unsigned n_region
,
6402 basic_block
*region_copy
)
6405 bool free_region_copy
= false;
6406 struct loop
*loop
= exit
->dest
->loop_father
;
6407 struct loop
*orig_loop
= entry
->dest
->loop_father
;
6408 basic_block switch_bb
, entry_bb
, nentry_bb
;
6409 vec
<basic_block
> doms
;
6410 int total_freq
= 0, exit_freq
= 0;
6411 profile_count total_count
= profile_count::uninitialized (),
6412 exit_count
= profile_count::uninitialized ();
6413 edge exits
[2], nexits
[2], e
;
6414 gimple_stmt_iterator gsi
;
6417 basic_block exit_bb
;
6421 struct loop
*target
, *aloop
, *cloop
;
6423 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
6425 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
6427 if (!can_copy_bbs_p (region
, n_region
))
6430 initialize_original_copy_tables ();
6431 set_loop_copy (orig_loop
, loop
);
6434 for (aloop
= orig_loop
->inner
; aloop
; aloop
= aloop
->next
)
6436 if (bb_part_of_region_p (aloop
->header
, region
, n_region
))
6438 cloop
= duplicate_loop (aloop
, target
);
6439 duplicate_subloops (aloop
, cloop
);
6445 region_copy
= XNEWVEC (basic_block
, n_region
);
6446 free_region_copy
= true;
6449 gcc_assert (!need_ssa_update_p (cfun
));
6451 /* Record blocks outside the region that are dominated by something
6453 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6455 if (exit
->src
->count
> 0)
6457 total_count
= exit
->src
->count
;
6458 exit_count
= exit
->count
;
6459 /* Fix up corner cases, to avoid division by zero or creation of negative
6461 if (exit_count
> total_count
)
6462 exit_count
= total_count
;
6466 total_freq
= exit
->src
->frequency
;
6467 exit_freq
= EDGE_FREQUENCY (exit
);
6468 /* Fix up corner cases, to avoid division by zero or creation of negative
6470 if (total_freq
== 0)
6472 if (exit_freq
> total_freq
)
6473 exit_freq
= total_freq
;
6476 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
6477 split_edge_bb_loc (exit
), true);
6478 if (total_count
.initialized_p ())
6480 scale_bbs_frequencies_profile_count (region
, n_region
,
6481 total_count
- exit_count
,
6483 scale_bbs_frequencies_profile_count (region_copy
, n_region
, exit_count
,
6488 scale_bbs_frequencies_int (region
, n_region
, total_freq
- exit_freq
,
6490 scale_bbs_frequencies_int (region_copy
, n_region
, exit_freq
, total_freq
);
6493 /* Create the switch block, and put the exit condition to it. */
6494 entry_bb
= entry
->dest
;
6495 nentry_bb
= get_bb_copy (entry_bb
);
6496 if (!last_stmt (entry
->src
)
6497 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
6498 switch_bb
= entry
->src
;
6500 switch_bb
= split_edge (entry
);
6501 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
6503 gsi
= gsi_last_bb (switch_bb
);
6504 cond_stmt
= last_stmt (exit
->src
);
6505 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
6506 cond_stmt
= gimple_copy (cond_stmt
);
6508 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
6510 sorig
= single_succ_edge (switch_bb
);
6511 sorig
->flags
= exits
[1]->flags
;
6512 sorig
->probability
= exits
[1]->probability
;
6513 sorig
->count
= exits
[1]->count
;
6514 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
6515 snew
->probability
= exits
[0]->probability
;
6516 snew
->count
= exits
[1]->count
;
6519 /* Register the new edge from SWITCH_BB in loop exit lists. */
6520 rescan_loop_exit (snew
, true, false);
6522 /* Add the PHI node arguments. */
6523 add_phi_args_after_copy (region_copy
, n_region
, snew
);
6525 /* Get rid of now superfluous conditions and associated edges (and phi node
6527 exit_bb
= exit
->dest
;
6529 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
6530 PENDING_STMT (e
) = NULL
;
6532 /* The latch of ORIG_LOOP was copied, and so was the backedge
6533 to the original header. We redirect this backedge to EXIT_BB. */
6534 for (i
= 0; i
< n_region
; i
++)
6535 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
6537 gcc_assert (single_succ_edge (region_copy
[i
]));
6538 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
6539 PENDING_STMT (e
) = NULL
;
6540 for (psi
= gsi_start_phis (exit_bb
);
6545 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
6546 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
6549 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
6550 PENDING_STMT (e
) = NULL
;
6552 /* Anything that is outside of the region, but was dominated by something
6553 inside needs to update dominance info. */
6554 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6556 /* Update the SSA web. */
6557 update_ssa (TODO_update_ssa
);
6559 if (free_region_copy
)
6562 free_original_copy_tables ();
6566 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6567 adding blocks when the dominator traversal reaches EXIT. This
6568 function silently assumes that ENTRY strictly dominates EXIT. */
6571 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
6572 vec
<basic_block
> *bbs_p
)
6576 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
6578 son
= next_dom_son (CDI_DOMINATORS
, son
))
6580 bbs_p
->safe_push (son
);
6582 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
6586 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6587 The duplicates are recorded in VARS_MAP. */
6590 replace_by_duplicate_decl (tree
*tp
, hash_map
<tree
, tree
> *vars_map
,
6593 tree t
= *tp
, new_t
;
6594 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
6596 if (DECL_CONTEXT (t
) == to_context
)
6600 tree
&loc
= vars_map
->get_or_insert (t
, &existed
);
6606 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
6607 add_local_decl (f
, new_t
);
6611 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
6612 new_t
= copy_node (t
);
6614 DECL_CONTEXT (new_t
) = to_context
;
6625 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6626 VARS_MAP maps old ssa names and var_decls to the new ones. */
6629 replace_ssa_name (tree name
, hash_map
<tree
, tree
> *vars_map
,
6634 gcc_assert (!virtual_operand_p (name
));
6636 tree
*loc
= vars_map
->get (name
);
6640 tree decl
= SSA_NAME_VAR (name
);
6643 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name
));
6644 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
6645 new_name
= make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6646 decl
, SSA_NAME_DEF_STMT (name
));
6649 new_name
= copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6650 name
, SSA_NAME_DEF_STMT (name
));
6652 /* Now that we've used the def stmt to define new_name, make sure it
6653 doesn't define name anymore. */
6654 SSA_NAME_DEF_STMT (name
) = NULL
;
6656 vars_map
->put (name
, new_name
);
6670 hash_map
<tree
, tree
> *vars_map
;
6671 htab_t new_label_map
;
6672 hash_map
<void *, void *> *eh_map
;
6676 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6677 contained in *TP if it has been ORIG_BLOCK previously and change the
6678 DECL_CONTEXT of every local variable referenced in *TP. */
6681 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
6683 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6684 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6689 tree block
= TREE_BLOCK (t
);
6690 if (block
== NULL_TREE
)
6692 else if (block
== p
->orig_block
6693 || p
->orig_block
== NULL_TREE
)
6694 TREE_SET_BLOCK (t
, p
->new_block
);
6695 else if (flag_checking
)
6697 while (block
&& TREE_CODE (block
) == BLOCK
&& block
!= p
->orig_block
)
6698 block
= BLOCK_SUPERCONTEXT (block
);
6699 gcc_assert (block
== p
->orig_block
);
6702 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
6704 if (TREE_CODE (t
) == SSA_NAME
)
6705 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
6706 else if (TREE_CODE (t
) == PARM_DECL
6707 && gimple_in_ssa_p (cfun
))
6708 *tp
= *(p
->vars_map
->get (t
));
6709 else if (TREE_CODE (t
) == LABEL_DECL
)
6711 if (p
->new_label_map
)
6713 struct tree_map in
, *out
;
6715 out
= (struct tree_map
*)
6716 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
6721 DECL_CONTEXT (t
) = p
->to_context
;
6723 else if (p
->remap_decls_p
)
6725 /* Replace T with its duplicate. T should no longer appear in the
6726 parent function, so this looks wasteful; however, it may appear
6727 in referenced_vars, and more importantly, as virtual operands of
6728 statements, and in alias lists of other variables. It would be
6729 quite difficult to expunge it from all those places. ??? It might
6730 suffice to do this for addressable variables. */
6731 if ((VAR_P (t
) && !is_global_var (t
))
6732 || TREE_CODE (t
) == CONST_DECL
)
6733 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
6737 else if (TYPE_P (t
))
6743 /* Helper for move_stmt_r. Given an EH region number for the source
6744 function, map that to the duplicate EH regio number in the dest. */
6747 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
6749 eh_region old_r
, new_r
;
6751 old_r
= get_eh_region_from_number (old_nr
);
6752 new_r
= static_cast<eh_region
> (*p
->eh_map
->get (old_r
));
6754 return new_r
->index
;
6757 /* Similar, but operate on INTEGER_CSTs. */
6760 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
6764 old_nr
= tree_to_shwi (old_t_nr
);
6765 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
6767 return build_int_cst (integer_type_node
, new_nr
);
6770 /* Like move_stmt_op, but for gimple statements.
6772 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6773 contained in the current statement in *GSI_P and change the
6774 DECL_CONTEXT of every local variable referenced in the current
6778 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
6779 struct walk_stmt_info
*wi
)
6781 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6782 gimple
*stmt
= gsi_stmt (*gsi_p
);
6783 tree block
= gimple_block (stmt
);
6785 if (block
== p
->orig_block
6786 || (p
->orig_block
== NULL_TREE
6787 && block
!= NULL_TREE
))
6788 gimple_set_block (stmt
, p
->new_block
);
6790 switch (gimple_code (stmt
))
6793 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6795 tree r
, fndecl
= gimple_call_fndecl (stmt
);
6796 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
6797 switch (DECL_FUNCTION_CODE (fndecl
))
6799 case BUILT_IN_EH_COPY_VALUES
:
6800 r
= gimple_call_arg (stmt
, 1);
6801 r
= move_stmt_eh_region_tree_nr (r
, p
);
6802 gimple_call_set_arg (stmt
, 1, r
);
6805 case BUILT_IN_EH_POINTER
:
6806 case BUILT_IN_EH_FILTER
:
6807 r
= gimple_call_arg (stmt
, 0);
6808 r
= move_stmt_eh_region_tree_nr (r
, p
);
6809 gimple_call_set_arg (stmt
, 0, r
);
6820 gresx
*resx_stmt
= as_a
<gresx
*> (stmt
);
6821 int r
= gimple_resx_region (resx_stmt
);
6822 r
= move_stmt_eh_region_nr (r
, p
);
6823 gimple_resx_set_region (resx_stmt
, r
);
6827 case GIMPLE_EH_DISPATCH
:
6829 geh_dispatch
*eh_dispatch_stmt
= as_a
<geh_dispatch
*> (stmt
);
6830 int r
= gimple_eh_dispatch_region (eh_dispatch_stmt
);
6831 r
= move_stmt_eh_region_nr (r
, p
);
6832 gimple_eh_dispatch_set_region (eh_dispatch_stmt
, r
);
6836 case GIMPLE_OMP_RETURN
:
6837 case GIMPLE_OMP_CONTINUE
:
6840 if (is_gimple_omp (stmt
))
6842 /* Do not remap variables inside OMP directives. Variables
6843 referenced in clauses and directive header belong to the
6844 parent function and should not be moved into the child
6846 bool save_remap_decls_p
= p
->remap_decls_p
;
6847 p
->remap_decls_p
= false;
6848 *handled_ops_p
= true;
6850 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt
), move_stmt_r
,
6853 p
->remap_decls_p
= save_remap_decls_p
;
6861 /* Move basic block BB from function CFUN to function DEST_FN. The
6862 block is moved out of the original linked list and placed after
6863 block AFTER in the new list. Also, the block is removed from the
6864 original array of blocks and placed in DEST_FN's array of blocks.
6865 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6866 updated to reflect the moved edges.
6868 The local variables are remapped to new instances, VARS_MAP is used
6869 to record the mapping. */
6872 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
6873 basic_block after
, bool update_edge_count_p
,
6874 struct move_stmt_d
*d
)
6876 struct control_flow_graph
*cfg
;
6879 gimple_stmt_iterator si
;
6880 unsigned old_len
, new_len
;
6882 /* Remove BB from dominance structures. */
6883 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
6885 /* Move BB from its current loop to the copy in the new function. */
6888 struct loop
*new_loop
= (struct loop
*)bb
->loop_father
->aux
;
6890 bb
->loop_father
= new_loop
;
6893 /* Link BB to the new linked list. */
6894 move_block_after (bb
, after
);
6896 /* Update the edge count in the corresponding flowgraphs. */
6897 if (update_edge_count_p
)
6898 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6900 cfun
->cfg
->x_n_edges
--;
6901 dest_cfun
->cfg
->x_n_edges
++;
6904 /* Remove BB from the original basic block array. */
6905 (*cfun
->cfg
->x_basic_block_info
)[bb
->index
] = NULL
;
6906 cfun
->cfg
->x_n_basic_blocks
--;
6908 /* Grow DEST_CFUN's basic block array if needed. */
6909 cfg
= dest_cfun
->cfg
;
6910 cfg
->x_n_basic_blocks
++;
6911 if (bb
->index
>= cfg
->x_last_basic_block
)
6912 cfg
->x_last_basic_block
= bb
->index
+ 1;
6914 old_len
= vec_safe_length (cfg
->x_basic_block_info
);
6915 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
6917 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
6918 vec_safe_grow_cleared (cfg
->x_basic_block_info
, new_len
);
6921 (*cfg
->x_basic_block_info
)[bb
->index
] = bb
;
6923 /* Remap the variables in phi nodes. */
6924 for (gphi_iterator psi
= gsi_start_phis (bb
);
6927 gphi
*phi
= psi
.phi ();
6929 tree op
= PHI_RESULT (phi
);
6933 if (virtual_operand_p (op
))
6935 /* Remove the phi nodes for virtual operands (alias analysis will be
6936 run for the new function, anyway). */
6937 remove_phi_node (&psi
, true);
6941 SET_PHI_RESULT (phi
,
6942 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6943 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
6945 op
= USE_FROM_PTR (use
);
6946 if (TREE_CODE (op
) == SSA_NAME
)
6947 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6950 for (i
= 0; i
< EDGE_COUNT (bb
->preds
); i
++)
6952 location_t locus
= gimple_phi_arg_location (phi
, i
);
6953 tree block
= LOCATION_BLOCK (locus
);
6955 if (locus
== UNKNOWN_LOCATION
)
6957 if (d
->orig_block
== NULL_TREE
|| block
== d
->orig_block
)
6959 locus
= set_block (locus
, d
->new_block
);
6960 gimple_phi_arg_set_location (phi
, i
, locus
);
6967 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6969 gimple
*stmt
= gsi_stmt (si
);
6970 struct walk_stmt_info wi
;
6972 memset (&wi
, 0, sizeof (wi
));
6974 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
6976 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
6978 tree label
= gimple_label_label (label_stmt
);
6979 int uid
= LABEL_DECL_UID (label
);
6981 gcc_assert (uid
> -1);
6983 old_len
= vec_safe_length (cfg
->x_label_to_block_map
);
6984 if (old_len
<= (unsigned) uid
)
6986 new_len
= 3 * uid
/ 2 + 1;
6987 vec_safe_grow_cleared (cfg
->x_label_to_block_map
, new_len
);
6990 (*cfg
->x_label_to_block_map
)[uid
] = bb
;
6991 (*cfun
->cfg
->x_label_to_block_map
)[uid
] = NULL
;
6993 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
6995 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
6996 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
6999 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
7000 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
7002 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
7003 gimple_remove_stmt_histograms (cfun
, stmt
);
7005 /* We cannot leave any operands allocated from the operand caches of
7006 the current function. */
7007 free_stmt_operands (cfun
, stmt
);
7008 push_cfun (dest_cfun
);
7013 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7014 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
7016 tree block
= LOCATION_BLOCK (e
->goto_locus
);
7017 if (d
->orig_block
== NULL_TREE
7018 || block
== d
->orig_block
)
7019 e
->goto_locus
= set_block (e
->goto_locus
, d
->new_block
);
7023 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7024 the outermost EH region. Use REGION as the incoming base EH region. */
7027 find_outermost_region_in_block (struct function
*src_cfun
,
7028 basic_block bb
, eh_region region
)
7030 gimple_stmt_iterator si
;
7032 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
7034 gimple
*stmt
= gsi_stmt (si
);
7035 eh_region stmt_region
;
7038 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
7039 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
7043 region
= stmt_region
;
7044 else if (stmt_region
!= region
)
7046 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
7047 gcc_assert (region
!= NULL
);
7056 new_label_mapper (tree decl
, void *data
)
7058 htab_t hash
= (htab_t
) data
;
7062 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
7064 m
= XNEW (struct tree_map
);
7065 m
->hash
= DECL_UID (decl
);
7066 m
->base
.from
= decl
;
7067 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
7068 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
7069 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
7070 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
7072 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
7073 gcc_assert (*slot
== NULL
);
7080 /* Tree walker to replace the decls used inside value expressions by
7084 replace_block_vars_by_duplicates_1 (tree
*tp
, int *walk_subtrees
, void *data
)
7086 struct replace_decls_d
*rd
= (struct replace_decls_d
*)data
;
7088 switch (TREE_CODE (*tp
))
7093 replace_by_duplicate_decl (tp
, rd
->vars_map
, rd
->to_context
);
7099 if (IS_TYPE_OR_DECL_P (*tp
))
7100 *walk_subtrees
= false;
7105 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7109 replace_block_vars_by_duplicates (tree block
, hash_map
<tree
, tree
> *vars_map
,
7114 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
7117 if (!VAR_P (t
) && TREE_CODE (t
) != CONST_DECL
)
7119 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
7122 if (VAR_P (*tp
) && DECL_HAS_VALUE_EXPR_P (*tp
))
7124 tree x
= DECL_VALUE_EXPR (*tp
);
7125 struct replace_decls_d rd
= { vars_map
, to_context
};
7127 walk_tree (&x
, replace_block_vars_by_duplicates_1
, &rd
, NULL
);
7128 SET_DECL_VALUE_EXPR (t
, x
);
7129 DECL_HAS_VALUE_EXPR_P (t
) = 1;
7131 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
7136 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
7137 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
7140 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7144 fixup_loop_arrays_after_move (struct function
*fn1
, struct function
*fn2
,
7147 /* Discard it from the old loop array. */
7148 (*get_loops (fn1
))[loop
->num
] = NULL
;
7150 /* Place it in the new loop array, assigning it a new number. */
7151 loop
->num
= number_of_loops (fn2
);
7152 vec_safe_push (loops_for_fn (fn2
)->larray
, loop
);
7154 /* Recurse to children. */
7155 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
7156 fixup_loop_arrays_after_move (fn1
, fn2
, loop
);
7159 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7160 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7163 verify_sese (basic_block entry
, basic_block exit
, vec
<basic_block
> *bbs_p
)
7168 bitmap bbs
= BITMAP_ALLOC (NULL
);
7171 gcc_assert (entry
!= NULL
);
7172 gcc_assert (entry
!= exit
);
7173 gcc_assert (bbs_p
!= NULL
);
7175 gcc_assert (bbs_p
->length () > 0);
7177 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7178 bitmap_set_bit (bbs
, bb
->index
);
7180 gcc_assert (bitmap_bit_p (bbs
, entry
->index
));
7181 gcc_assert (exit
== NULL
|| bitmap_bit_p (bbs
, exit
->index
));
7183 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7187 gcc_assert (single_pred_p (entry
));
7188 gcc_assert (!bitmap_bit_p (bbs
, single_pred (entry
)->index
));
7191 for (ei
= ei_start (bb
->preds
); !ei_end_p (ei
); ei_next (&ei
))
7194 gcc_assert (bitmap_bit_p (bbs
, e
->src
->index
));
7199 gcc_assert (single_succ_p (exit
));
7200 gcc_assert (!bitmap_bit_p (bbs
, single_succ (exit
)->index
));
7203 for (ei
= ei_start (bb
->succs
); !ei_end_p (ei
); ei_next (&ei
))
7206 gcc_assert (bitmap_bit_p (bbs
, e
->dest
->index
));
7213 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7216 gather_ssa_name_hash_map_from (tree
const &from
, tree
const &, void *data
)
7218 bitmap release_names
= (bitmap
)data
;
7220 if (TREE_CODE (from
) != SSA_NAME
)
7223 bitmap_set_bit (release_names
, SSA_NAME_VERSION (from
));
7227 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7228 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7229 single basic block in the original CFG and the new basic block is
7230 returned. DEST_CFUN must not have a CFG yet.
7232 Note that the region need not be a pure SESE region. Blocks inside
7233 the region may contain calls to abort/exit. The only restriction
7234 is that ENTRY_BB should be the only entry point and it must
7237 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7238 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7239 to the new function.
7241 All local variables referenced in the region are assumed to be in
7242 the corresponding BLOCK_VARS and unexpanded variable lists
7243 associated with DEST_CFUN.
7245 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7246 reimplement move_sese_region_to_fn by duplicating the region rather than
7250 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
7251 basic_block exit_bb
, tree orig_block
)
7253 vec
<basic_block
> bbs
, dom_bbs
;
7254 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
7255 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
7256 struct function
*saved_cfun
= cfun
;
7257 int *entry_flag
, *exit_flag
;
7258 profile_probability
*entry_prob
, *exit_prob
;
7259 unsigned i
, num_entry_edges
, num_exit_edges
, num_nodes
;
7262 htab_t new_label_map
;
7263 hash_map
<void *, void *> *eh_map
;
7264 struct loop
*loop
= entry_bb
->loop_father
;
7265 struct loop
*loop0
= get_loop (saved_cfun
, 0);
7266 struct move_stmt_d d
;
7268 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7270 gcc_assert (entry_bb
!= exit_bb
7272 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
7274 /* Collect all the blocks in the region. Manually add ENTRY_BB
7275 because it won't be added by dfs_enumerate_from. */
7277 bbs
.safe_push (entry_bb
);
7278 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
7281 verify_sese (entry_bb
, exit_bb
, &bbs
);
7283 /* The blocks that used to be dominated by something in BBS will now be
7284 dominated by the new block. */
7285 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
7289 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7290 the predecessor edges to ENTRY_BB and the successor edges to
7291 EXIT_BB so that we can re-attach them to the new basic block that
7292 will replace the region. */
7293 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
7294 entry_pred
= XNEWVEC (basic_block
, num_entry_edges
);
7295 entry_flag
= XNEWVEC (int, num_entry_edges
);
7296 entry_prob
= XNEWVEC (profile_probability
, num_entry_edges
);
7298 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
7300 entry_prob
[i
] = e
->probability
;
7301 entry_flag
[i
] = e
->flags
;
7302 entry_pred
[i
++] = e
->src
;
7308 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
7309 exit_succ
= XNEWVEC (basic_block
, num_exit_edges
);
7310 exit_flag
= XNEWVEC (int, num_exit_edges
);
7311 exit_prob
= XNEWVEC (profile_probability
, num_exit_edges
);
7313 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
7315 exit_prob
[i
] = e
->probability
;
7316 exit_flag
[i
] = e
->flags
;
7317 exit_succ
[i
++] = e
->dest
;
7329 /* Switch context to the child function to initialize DEST_FN's CFG. */
7330 gcc_assert (dest_cfun
->cfg
== NULL
);
7331 push_cfun (dest_cfun
);
7333 init_empty_tree_cfg ();
7335 /* Initialize EH information for the new function. */
7337 new_label_map
= NULL
;
7340 eh_region region
= NULL
;
7342 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7343 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
7345 init_eh_for_function ();
7348 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
7349 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
7350 new_label_mapper
, new_label_map
);
7354 /* Initialize an empty loop tree. */
7355 struct loops
*loops
= ggc_cleared_alloc
<struct loops
> ();
7356 init_loops_structure (dest_cfun
, loops
, 1);
7357 loops
->state
= LOOPS_MAY_HAVE_MULTIPLE_LATCHES
;
7358 set_loops_for_fn (dest_cfun
, loops
);
7360 /* Move the outlined loop tree part. */
7361 num_nodes
= bbs
.length ();
7362 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7364 if (bb
->loop_father
->header
== bb
)
7366 struct loop
*this_loop
= bb
->loop_father
;
7367 struct loop
*outer
= loop_outer (this_loop
);
7369 /* If the SESE region contains some bbs ending with
7370 a noreturn call, those are considered to belong
7371 to the outermost loop in saved_cfun, rather than
7372 the entry_bb's loop_father. */
7376 num_nodes
-= this_loop
->num_nodes
;
7377 flow_loop_tree_node_remove (bb
->loop_father
);
7378 flow_loop_tree_node_add (get_loop (dest_cfun
, 0), this_loop
);
7379 fixup_loop_arrays_after_move (saved_cfun
, cfun
, this_loop
);
7382 else if (bb
->loop_father
== loop0
&& loop0
!= loop
)
7385 /* Remove loop exits from the outlined region. */
7386 if (loops_for_fn (saved_cfun
)->exits
)
7387 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7389 struct loops
*l
= loops_for_fn (saved_cfun
);
7391 = l
->exits
->find_slot_with_hash (e
, htab_hash_pointer (e
),
7394 l
->exits
->clear_slot (slot
);
7399 /* Adjust the number of blocks in the tree root of the outlined part. */
7400 get_loop (dest_cfun
, 0)->num_nodes
= bbs
.length () + 2;
7402 /* Setup a mapping to be used by move_block_to_fn. */
7403 loop
->aux
= current_loops
->tree_root
;
7404 loop0
->aux
= current_loops
->tree_root
;
7408 /* Move blocks from BBS into DEST_CFUN. */
7409 gcc_assert (bbs
.length () >= 2);
7410 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
7411 hash_map
<tree
, tree
> vars_map
;
7413 memset (&d
, 0, sizeof (d
));
7414 d
.orig_block
= orig_block
;
7415 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
7416 d
.from_context
= cfun
->decl
;
7417 d
.to_context
= dest_cfun
->decl
;
7418 d
.vars_map
= &vars_map
;
7419 d
.new_label_map
= new_label_map
;
7421 d
.remap_decls_p
= true;
7423 if (gimple_in_ssa_p (cfun
))
7424 for (tree arg
= DECL_ARGUMENTS (d
.to_context
); arg
; arg
= DECL_CHAIN (arg
))
7426 tree narg
= make_ssa_name_fn (dest_cfun
, arg
, gimple_build_nop ());
7427 set_ssa_default_def (dest_cfun
, arg
, narg
);
7428 vars_map
.put (arg
, narg
);
7431 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7433 /* No need to update edge counts on the last block. It has
7434 already been updated earlier when we detached the region from
7435 the original CFG. */
7436 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
7442 /* Loop sizes are no longer correct, fix them up. */
7443 loop
->num_nodes
-= num_nodes
;
7444 for (struct loop
*outer
= loop_outer (loop
);
7445 outer
; outer
= loop_outer (outer
))
7446 outer
->num_nodes
-= num_nodes
;
7447 loop0
->num_nodes
-= bbs
.length () - num_nodes
;
7449 if (saved_cfun
->has_simduid_loops
|| saved_cfun
->has_force_vectorize_loops
)
7452 for (i
= 0; vec_safe_iterate (loops
->larray
, i
, &aloop
); i
++)
7457 replace_by_duplicate_decl (&aloop
->simduid
, d
.vars_map
,
7459 dest_cfun
->has_simduid_loops
= true;
7461 if (aloop
->force_vectorize
)
7462 dest_cfun
->has_force_vectorize_loops
= true;
7466 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7470 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7472 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7473 = BLOCK_SUBBLOCKS (orig_block
);
7474 for (block
= BLOCK_SUBBLOCKS (orig_block
);
7475 block
; block
= BLOCK_CHAIN (block
))
7476 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
7477 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
7480 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
7481 &vars_map
, dest_cfun
->decl
);
7484 htab_delete (new_label_map
);
7488 if (gimple_in_ssa_p (cfun
))
7490 /* We need to release ssa-names in a defined order, so first find them,
7491 and then iterate in ascending version order. */
7492 bitmap release_names
= BITMAP_ALLOC (NULL
);
7493 vars_map
.traverse
<void *, gather_ssa_name_hash_map_from
> (release_names
);
7496 EXECUTE_IF_SET_IN_BITMAP (release_names
, 0, i
, bi
)
7497 release_ssa_name (ssa_name (i
));
7498 BITMAP_FREE (release_names
);
7501 /* Rewire the entry and exit blocks. The successor to the entry
7502 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7503 the child function. Similarly, the predecessor of DEST_FN's
7504 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7505 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7506 various CFG manipulation function get to the right CFG.
7508 FIXME, this is silly. The CFG ought to become a parameter to
7510 push_cfun (dest_cfun
);
7511 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
), entry_bb
, EDGE_FALLTHRU
);
7513 make_edge (exit_bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
7516 /* Back in the original function, the SESE region has disappeared,
7517 create a new basic block in its place. */
7518 bb
= create_empty_bb (entry_pred
[0]);
7520 add_bb_to_loop (bb
, loop
);
7521 for (i
= 0; i
< num_entry_edges
; i
++)
7523 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
7524 e
->probability
= entry_prob
[i
];
7527 for (i
= 0; i
< num_exit_edges
; i
++)
7529 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
7530 e
->probability
= exit_prob
[i
];
7533 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
7534 FOR_EACH_VEC_ELT (dom_bbs
, i
, abb
)
7535 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
7552 /* Dump default def DEF to file FILE using FLAGS and indentation
7556 dump_default_def (FILE *file
, tree def
, int spc
, dump_flags_t flags
)
7558 for (int i
= 0; i
< spc
; ++i
)
7559 fprintf (file
, " ");
7560 dump_ssaname_info_to_file (file
, def
, spc
);
7562 print_generic_expr (file
, TREE_TYPE (def
), flags
);
7563 fprintf (file
, " ");
7564 print_generic_expr (file
, def
, flags
);
7565 fprintf (file
, " = ");
7566 print_generic_expr (file
, SSA_NAME_VAR (def
), flags
);
7567 fprintf (file
, ";\n");
7570 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7573 print_no_sanitize_attr_value (FILE *file
, tree value
)
7575 unsigned int flags
= tree_to_uhwi (value
);
7577 for (int i
= 0; sanitizer_opts
[i
].name
!= NULL
; ++i
)
7579 if ((sanitizer_opts
[i
].flag
& flags
) == sanitizer_opts
[i
].flag
)
7582 fprintf (file
, " | ");
7583 fprintf (file
, "%s", sanitizer_opts
[i
].name
);
7589 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7593 dump_function_to_file (tree fndecl
, FILE *file
, dump_flags_t flags
)
7595 tree arg
, var
, old_current_fndecl
= current_function_decl
;
7596 struct function
*dsf
;
7597 bool ignore_topmost_bind
= false, any_var
= false;
7600 bool tmclone
= (TREE_CODE (fndecl
) == FUNCTION_DECL
7601 && decl_is_tm_clone (fndecl
));
7602 struct function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
7604 if (DECL_ATTRIBUTES (fndecl
) != NULL_TREE
)
7606 fprintf (file
, "__attribute__((");
7610 for (chain
= DECL_ATTRIBUTES (fndecl
); chain
;
7611 first
= false, chain
= TREE_CHAIN (chain
))
7614 fprintf (file
, ", ");
7616 tree name
= get_attribute_name (chain
);
7617 print_generic_expr (file
, name
, dump_flags
);
7618 if (TREE_VALUE (chain
) != NULL_TREE
)
7620 fprintf (file
, " (");
7622 if (strstr (IDENTIFIER_POINTER (name
), "no_sanitize"))
7623 print_no_sanitize_attr_value (file
, TREE_VALUE (chain
));
7625 print_generic_expr (file
, TREE_VALUE (chain
), dump_flags
);
7626 fprintf (file
, ")");
7630 fprintf (file
, "))\n");
7633 current_function_decl
= fndecl
;
7634 if (flags
& TDF_GIMPLE
)
7636 print_generic_expr (file
, TREE_TYPE (TREE_TYPE (fndecl
)),
7637 dump_flags
| TDF_SLIM
);
7638 fprintf (file
, " __GIMPLE ()\n%s (", function_name (fun
));
7641 fprintf (file
, "%s %s(", function_name (fun
), tmclone
? "[tm-clone] " : "");
7643 arg
= DECL_ARGUMENTS (fndecl
);
7646 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
7647 fprintf (file
, " ");
7648 print_generic_expr (file
, arg
, dump_flags
);
7649 if (DECL_CHAIN (arg
))
7650 fprintf (file
, ", ");
7651 arg
= DECL_CHAIN (arg
);
7653 fprintf (file
, ")\n");
7655 dsf
= DECL_STRUCT_FUNCTION (fndecl
);
7656 if (dsf
&& (flags
& TDF_EH
))
7657 dump_eh_tree (file
, dsf
);
7659 if (flags
& TDF_RAW
&& !gimple_has_body_p (fndecl
))
7661 dump_node (fndecl
, TDF_SLIM
| flags
, file
);
7662 current_function_decl
= old_current_fndecl
;
7666 /* When GIMPLE is lowered, the variables are no longer available in
7667 BIND_EXPRs, so display them separately. */
7668 if (fun
&& fun
->decl
== fndecl
&& (fun
->curr_properties
& PROP_gimple_lcf
))
7671 ignore_topmost_bind
= true;
7673 fprintf (file
, "{\n");
7674 if (gimple_in_ssa_p (fun
)
7675 && (flags
& TDF_ALIAS
))
7677 for (arg
= DECL_ARGUMENTS (fndecl
); arg
!= NULL
;
7678 arg
= DECL_CHAIN (arg
))
7680 tree def
= ssa_default_def (fun
, arg
);
7682 dump_default_def (file
, def
, 2, flags
);
7685 tree res
= DECL_RESULT (fun
->decl
);
7686 if (res
!= NULL_TREE
7687 && DECL_BY_REFERENCE (res
))
7689 tree def
= ssa_default_def (fun
, res
);
7691 dump_default_def (file
, def
, 2, flags
);
7694 tree static_chain
= fun
->static_chain_decl
;
7695 if (static_chain
!= NULL_TREE
)
7697 tree def
= ssa_default_def (fun
, static_chain
);
7699 dump_default_def (file
, def
, 2, flags
);
7703 if (!vec_safe_is_empty (fun
->local_decls
))
7704 FOR_EACH_LOCAL_DECL (fun
, ix
, var
)
7706 print_generic_decl (file
, var
, flags
);
7707 fprintf (file
, "\n");
7714 if (gimple_in_ssa_p (cfun
))
7715 FOR_EACH_SSA_NAME (ix
, name
, cfun
)
7717 if (!SSA_NAME_VAR (name
))
7719 fprintf (file
, " ");
7720 print_generic_expr (file
, TREE_TYPE (name
), flags
);
7721 fprintf (file
, " ");
7722 print_generic_expr (file
, name
, flags
);
7723 fprintf (file
, ";\n");
7730 if (fun
&& fun
->decl
== fndecl
7732 && basic_block_info_for_fn (fun
))
7734 /* If the CFG has been built, emit a CFG-based dump. */
7735 if (!ignore_topmost_bind
)
7736 fprintf (file
, "{\n");
7738 if (any_var
&& n_basic_blocks_for_fn (fun
))
7739 fprintf (file
, "\n");
7741 FOR_EACH_BB_FN (bb
, fun
)
7742 dump_bb (file
, bb
, 2, flags
);
7744 fprintf (file
, "}\n");
7746 else if (fun
->curr_properties
& PROP_gimple_any
)
7748 /* The function is now in GIMPLE form but the CFG has not been
7749 built yet. Emit the single sequence of GIMPLE statements
7750 that make up its body. */
7751 gimple_seq body
= gimple_body (fndecl
);
7753 if (gimple_seq_first_stmt (body
)
7754 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
7755 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
7756 print_gimple_seq (file
, body
, 0, flags
);
7759 if (!ignore_topmost_bind
)
7760 fprintf (file
, "{\n");
7763 fprintf (file
, "\n");
7765 print_gimple_seq (file
, body
, 2, flags
);
7766 fprintf (file
, "}\n");
7773 /* Make a tree based dump. */
7774 chain
= DECL_SAVED_TREE (fndecl
);
7775 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
7777 if (ignore_topmost_bind
)
7779 chain
= BIND_EXPR_BODY (chain
);
7787 if (!ignore_topmost_bind
)
7789 fprintf (file
, "{\n");
7790 /* No topmost bind, pretend it's ignored for later. */
7791 ignore_topmost_bind
= true;
7797 fprintf (file
, "\n");
7799 print_generic_stmt_indented (file
, chain
, flags
, indent
);
7800 if (ignore_topmost_bind
)
7801 fprintf (file
, "}\n");
7804 if (flags
& TDF_ENUMERATE_LOCALS
)
7805 dump_enumerated_decls (file
, flags
);
7806 fprintf (file
, "\n\n");
7808 current_function_decl
= old_current_fndecl
;
7811 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7814 debug_function (tree fn
, dump_flags_t flags
)
7816 dump_function_to_file (fn
, stderr
, flags
);
7820 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7823 print_pred_bbs (FILE *file
, basic_block bb
)
7828 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7829 fprintf (file
, "bb_%d ", e
->src
->index
);
7833 /* Print on FILE the indexes for the successors of basic_block BB. */
7836 print_succ_bbs (FILE *file
, basic_block bb
)
7841 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7842 fprintf (file
, "bb_%d ", e
->dest
->index
);
7845 /* Print to FILE the basic block BB following the VERBOSITY level. */
7848 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
7850 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
7851 memset ((void *) s_indent
, ' ', (size_t) indent
);
7852 s_indent
[indent
] = '\0';
7854 /* Print basic_block's header. */
7857 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
7858 print_pred_bbs (file
, bb
);
7859 fprintf (file
, "}, succs = {");
7860 print_succ_bbs (file
, bb
);
7861 fprintf (file
, "})\n");
7864 /* Print basic_block's body. */
7867 fprintf (file
, "%s {\n", s_indent
);
7868 dump_bb (file
, bb
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
7869 fprintf (file
, "%s }\n", s_indent
);
7873 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
7875 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7876 VERBOSITY level this outputs the contents of the loop, or just its
7880 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
7888 s_indent
= (char *) alloca ((size_t) indent
+ 1);
7889 memset ((void *) s_indent
, ' ', (size_t) indent
);
7890 s_indent
[indent
] = '\0';
7892 /* Print loop's header. */
7893 fprintf (file
, "%sloop_%d (", s_indent
, loop
->num
);
7895 fprintf (file
, "header = %d", loop
->header
->index
);
7898 fprintf (file
, "deleted)\n");
7902 fprintf (file
, ", latch = %d", loop
->latch
->index
);
7904 fprintf (file
, ", multiple latches");
7905 fprintf (file
, ", niter = ");
7906 print_generic_expr (file
, loop
->nb_iterations
);
7908 if (loop
->any_upper_bound
)
7910 fprintf (file
, ", upper_bound = ");
7911 print_decu (loop
->nb_iterations_upper_bound
, file
);
7913 if (loop
->any_likely_upper_bound
)
7915 fprintf (file
, ", likely_upper_bound = ");
7916 print_decu (loop
->nb_iterations_likely_upper_bound
, file
);
7919 if (loop
->any_estimate
)
7921 fprintf (file
, ", estimate = ");
7922 print_decu (loop
->nb_iterations_estimate
, file
);
7924 fprintf (file
, ")\n");
7926 /* Print loop's body. */
7929 fprintf (file
, "%s{\n", s_indent
);
7930 FOR_EACH_BB_FN (bb
, cfun
)
7931 if (bb
->loop_father
== loop
)
7932 print_loops_bb (file
, bb
, indent
, verbosity
);
7934 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
7935 fprintf (file
, "%s}\n", s_indent
);
7939 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7940 spaces. Following VERBOSITY level this outputs the contents of the
7941 loop, or just its structure. */
7944 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
,
7950 print_loop (file
, loop
, indent
, verbosity
);
7951 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
7954 /* Follow a CFG edge from the entry point of the program, and on entry
7955 of a loop, pretty print the loop structure on FILE. */
7958 print_loops (FILE *file
, int verbosity
)
7962 bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
7963 fprintf (file
, "\nLoops in function: %s\n", current_function_name ());
7964 if (bb
&& bb
->loop_father
)
7965 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
7971 debug (struct loop
&ref
)
7973 print_loop (stderr
, &ref
, 0, /*verbosity*/0);
7977 debug (struct loop
*ptr
)
7982 fprintf (stderr
, "<nil>\n");
7985 /* Dump a loop verbosely. */
7988 debug_verbose (struct loop
&ref
)
7990 print_loop (stderr
, &ref
, 0, /*verbosity*/3);
7994 debug_verbose (struct loop
*ptr
)
7999 fprintf (stderr
, "<nil>\n");
8003 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8006 debug_loops (int verbosity
)
8008 print_loops (stderr
, verbosity
);
8011 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8014 debug_loop (struct loop
*loop
, int verbosity
)
8016 print_loop (stderr
, loop
, 0, verbosity
);
8019 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8023 debug_loop_num (unsigned num
, int verbosity
)
8025 debug_loop (get_loop (cfun
, num
), verbosity
);
8028 /* Return true if BB ends with a call, possibly followed by some
8029 instructions that must stay with the call. Return false,
8033 gimple_block_ends_with_call_p (basic_block bb
)
8035 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8036 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
8040 /* Return true if BB ends with a conditional branch. Return false,
8044 gimple_block_ends_with_condjump_p (const_basic_block bb
)
8046 gimple
*stmt
= last_stmt (CONST_CAST_BB (bb
));
8047 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
8051 /* Return true if statement T may terminate execution of BB in ways not
8052 explicitly represtented in the CFG. */
8055 stmt_can_terminate_bb_p (gimple
*t
)
8057 tree fndecl
= NULL_TREE
;
8060 /* Eh exception not handled internally terminates execution of the whole
8062 if (stmt_can_throw_external (t
))
8065 /* NORETURN and LONGJMP calls already have an edge to exit.
8066 CONST and PURE calls do not need one.
8067 We don't currently check for CONST and PURE here, although
8068 it would be a good idea, because those attributes are
8069 figured out from the RTL in mark_constant_function, and
8070 the counter incrementation code from -fprofile-arcs
8071 leads to different results from -fbranch-probabilities. */
8072 if (is_gimple_call (t
))
8074 fndecl
= gimple_call_fndecl (t
);
8075 call_flags
= gimple_call_flags (t
);
8078 if (is_gimple_call (t
)
8080 && DECL_BUILT_IN (fndecl
)
8081 && (call_flags
& ECF_NOTHROW
)
8082 && !(call_flags
& ECF_RETURNS_TWICE
)
8083 /* fork() doesn't really return twice, but the effect of
8084 wrapping it in __gcov_fork() which calls __gcov_flush()
8085 and clears the counters before forking has the same
8086 effect as returning twice. Force a fake edge. */
8087 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
8088 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
8091 if (is_gimple_call (t
))
8097 if (call_flags
& (ECF_PURE
| ECF_CONST
)
8098 && !(call_flags
& ECF_LOOPING_CONST_OR_PURE
))
8101 /* Function call may do longjmp, terminate program or do other things.
8102 Special case noreturn that have non-abnormal edges out as in this case
8103 the fact is sufficiently represented by lack of edges out of T. */
8104 if (!(call_flags
& ECF_NORETURN
))
8108 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8109 if ((e
->flags
& EDGE_FAKE
) == 0)
8113 if (gasm
*asm_stmt
= dyn_cast
<gasm
*> (t
))
8114 if (gimple_asm_volatile_p (asm_stmt
) || gimple_asm_input_p (asm_stmt
))
8121 /* Add fake edges to the function exit for any non constant and non
8122 noreturn calls (or noreturn calls with EH/abnormal edges),
8123 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8124 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8127 The goal is to expose cases in which entering a basic block does
8128 not imply that all subsequent instructions must be executed. */
8131 gimple_flow_call_edges_add (sbitmap blocks
)
8134 int blocks_split
= 0;
8135 int last_bb
= last_basic_block_for_fn (cfun
);
8136 bool check_last_block
= false;
8138 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
8142 check_last_block
= true;
8144 check_last_block
= bitmap_bit_p (blocks
,
8145 EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
->index
);
8147 /* In the last basic block, before epilogue generation, there will be
8148 a fallthru edge to EXIT. Special care is required if the last insn
8149 of the last basic block is a call because make_edge folds duplicate
8150 edges, which would result in the fallthru edge also being marked
8151 fake, which would result in the fallthru edge being removed by
8152 remove_fake_edges, which would result in an invalid CFG.
8154 Moreover, we can't elide the outgoing fake edge, since the block
8155 profiler needs to take this into account in order to solve the minimal
8156 spanning tree in the case that the call doesn't return.
8158 Handle this by adding a dummy instruction in a new last basic block. */
8159 if (check_last_block
)
8161 basic_block bb
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
8162 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8165 if (!gsi_end_p (gsi
))
8168 if (t
&& stmt_can_terminate_bb_p (t
))
8172 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8175 gsi_insert_on_edge (e
, gimple_build_nop ());
8176 gsi_commit_edge_inserts ();
8181 /* Now add fake edges to the function exit for any non constant
8182 calls since there is no way that we can determine if they will
8184 for (i
= 0; i
< last_bb
; i
++)
8186 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8187 gimple_stmt_iterator gsi
;
8188 gimple
*stmt
, *last_stmt
;
8193 if (blocks
&& !bitmap_bit_p (blocks
, i
))
8196 gsi
= gsi_last_nondebug_bb (bb
);
8197 if (!gsi_end_p (gsi
))
8199 last_stmt
= gsi_stmt (gsi
);
8202 stmt
= gsi_stmt (gsi
);
8203 if (stmt_can_terminate_bb_p (stmt
))
8207 /* The handling above of the final block before the
8208 epilogue should be enough to verify that there is
8209 no edge to the exit block in CFG already.
8210 Calling make_edge in such case would cause us to
8211 mark that edge as fake and remove it later. */
8212 if (flag_checking
&& stmt
== last_stmt
)
8214 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8215 gcc_assert (e
== NULL
);
8218 /* Note that the following may create a new basic block
8219 and renumber the existing basic blocks. */
8220 if (stmt
!= last_stmt
)
8222 e
= split_block (bb
, stmt
);
8226 e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), EDGE_FAKE
);
8227 e
->probability
= profile_probability::guessed_never ();
8228 e
->count
= profile_count::guessed_zero ();
8232 while (!gsi_end_p (gsi
));
8237 checking_verify_flow_info ();
8239 return blocks_split
;
8242 /* Removes edge E and all the blocks dominated by it, and updates dominance
8243 information. The IL in E->src needs to be updated separately.
8244 If dominance info is not available, only the edge E is removed.*/
8247 remove_edge_and_dominated_blocks (edge e
)
8249 vec
<basic_block
> bbs_to_remove
= vNULL
;
8250 vec
<basic_block
> bbs_to_fix_dom
= vNULL
;
8253 bool none_removed
= false;
8255 basic_block bb
, dbb
;
8258 /* If we are removing a path inside a non-root loop that may change
8259 loop ownership of blocks or remove loops. Mark loops for fixup. */
8261 && loop_outer (e
->src
->loop_father
) != NULL
8262 && e
->src
->loop_father
== e
->dest
->loop_father
)
8263 loops_state_set (LOOPS_NEED_FIXUP
);
8265 if (!dom_info_available_p (CDI_DOMINATORS
))
8271 /* No updating is needed for edges to exit. */
8272 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8274 if (cfgcleanup_altered_bbs
)
8275 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8280 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8281 that is not dominated by E->dest, then this set is empty. Otherwise,
8282 all the basic blocks dominated by E->dest are removed.
8284 Also, to DF_IDOM we store the immediate dominators of the blocks in
8285 the dominance frontier of E (i.e., of the successors of the
8286 removed blocks, if there are any, and of E->dest otherwise). */
8287 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
8292 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
8294 none_removed
= true;
8299 auto_bitmap df
, df_idom
;
8301 bitmap_set_bit (df_idom
,
8302 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
8305 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
8306 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8308 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
8310 if (f
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
8311 bitmap_set_bit (df
, f
->dest
->index
);
8314 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8315 bitmap_clear_bit (df
, bb
->index
);
8317 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
8319 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8320 bitmap_set_bit (df_idom
,
8321 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
8325 if (cfgcleanup_altered_bbs
)
8327 /* Record the set of the altered basic blocks. */
8328 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8329 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
8332 /* Remove E and the cancelled blocks. */
8337 /* Walk backwards so as to get a chance to substitute all
8338 released DEFs into debug stmts. See
8339 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8341 for (i
= bbs_to_remove
.length (); i
-- > 0; )
8342 delete_basic_block (bbs_to_remove
[i
]);
8345 /* Update the dominance information. The immediate dominator may change only
8346 for blocks whose immediate dominator belongs to DF_IDOM:
8348 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8349 removal. Let Z the arbitrary block such that idom(Z) = Y and
8350 Z dominates X after the removal. Before removal, there exists a path P
8351 from Y to X that avoids Z. Let F be the last edge on P that is
8352 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8353 dominates W, and because of P, Z does not dominate W), and W belongs to
8354 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8355 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
8357 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8358 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
8360 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
8361 bbs_to_fix_dom
.safe_push (dbb
);
8364 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
8366 bbs_to_remove
.release ();
8367 bbs_to_fix_dom
.release ();
8370 /* Purge dead EH edges from basic block BB. */
8373 gimple_purge_dead_eh_edges (basic_block bb
)
8375 bool changed
= false;
8378 gimple
*stmt
= last_stmt (bb
);
8380 if (stmt
&& stmt_can_throw_internal (stmt
))
8383 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8385 if (e
->flags
& EDGE_EH
)
8387 remove_edge_and_dominated_blocks (e
);
8397 /* Purge dead EH edges from basic block listed in BLOCKS. */
8400 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
8402 bool changed
= false;
8406 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8408 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8410 /* Earlier gimple_purge_dead_eh_edges could have removed
8411 this basic block already. */
8412 gcc_assert (bb
|| changed
);
8414 changed
|= gimple_purge_dead_eh_edges (bb
);
8420 /* Purge dead abnormal call edges from basic block BB. */
8423 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
8425 bool changed
= false;
8428 gimple
*stmt
= last_stmt (bb
);
8430 if (!cfun
->has_nonlocal_label
8431 && !cfun
->calls_setjmp
)
8434 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
8437 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8439 if (e
->flags
& EDGE_ABNORMAL
)
8441 if (e
->flags
& EDGE_FALLTHRU
)
8442 e
->flags
&= ~EDGE_ABNORMAL
;
8444 remove_edge_and_dominated_blocks (e
);
8454 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8457 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
8459 bool changed
= false;
8463 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8465 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8467 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8468 this basic block already. */
8469 gcc_assert (bb
|| changed
);
8471 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
8477 /* This function is called whenever a new edge is created or
8481 gimple_execute_on_growing_pred (edge e
)
8483 basic_block bb
= e
->dest
;
8485 if (!gimple_seq_empty_p (phi_nodes (bb
)))
8486 reserve_phi_args_for_new_edge (bb
);
8489 /* This function is called immediately before edge E is removed from
8490 the edge vector E->dest->preds. */
8493 gimple_execute_on_shrinking_pred (edge e
)
8495 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
8496 remove_phi_args (e
);
8499 /*---------------------------------------------------------------------------
8500 Helper functions for Loop versioning
8501 ---------------------------------------------------------------------------*/
8503 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8504 of 'first'. Both of them are dominated by 'new_head' basic block. When
8505 'new_head' was created by 'second's incoming edge it received phi arguments
8506 on the edge by split_edge(). Later, additional edge 'e' was created to
8507 connect 'new_head' and 'first'. Now this routine adds phi args on this
8508 additional edge 'e' that new_head to second edge received as part of edge
8512 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
8513 basic_block new_head
, edge e
)
8516 gphi_iterator psi1
, psi2
;
8518 edge e2
= find_edge (new_head
, second
);
8520 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8521 edge, we should always have an edge from NEW_HEAD to SECOND. */
8522 gcc_assert (e2
!= NULL
);
8524 /* Browse all 'second' basic block phi nodes and add phi args to
8525 edge 'e' for 'first' head. PHI args are always in correct order. */
8527 for (psi2
= gsi_start_phis (second
),
8528 psi1
= gsi_start_phis (first
);
8529 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
8530 gsi_next (&psi2
), gsi_next (&psi1
))
8534 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
8535 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
8540 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8541 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8542 the destination of the ELSE part. */
8545 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
8546 basic_block second_head ATTRIBUTE_UNUSED
,
8547 basic_block cond_bb
, void *cond_e
)
8549 gimple_stmt_iterator gsi
;
8550 gimple
*new_cond_expr
;
8551 tree cond_expr
= (tree
) cond_e
;
8554 /* Build new conditional expr */
8555 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
8556 NULL_TREE
, NULL_TREE
);
8558 /* Add new cond in cond_bb. */
8559 gsi
= gsi_last_bb (cond_bb
);
8560 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
8562 /* Adjust edges appropriately to connect new head with first head
8563 as well as second head. */
8564 e0
= single_succ_edge (cond_bb
);
8565 e0
->flags
&= ~EDGE_FALLTHRU
;
8566 e0
->flags
|= EDGE_FALSE_VALUE
;
8570 /* Do book-keeping of basic block BB for the profile consistency checker.
8571 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8572 then do post-pass accounting. Store the counting in RECORD. */
8574 gimple_account_profile_record (basic_block bb
, int after_pass
,
8575 struct profile_record
*record
)
8577 gimple_stmt_iterator i
;
8578 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
8580 record
->size
[after_pass
]
8581 += estimate_num_insns (gsi_stmt (i
), &eni_size_weights
);
8582 if (bb
->count
.initialized_p ())
8583 record
->time
[after_pass
]
8584 += estimate_num_insns (gsi_stmt (i
),
8585 &eni_time_weights
) * bb
->count
.to_gcov_type ();
8586 else if (profile_status_for_fn (cfun
) == PROFILE_GUESSED
)
8587 record
->time
[after_pass
]
8588 += estimate_num_insns (gsi_stmt (i
),
8589 &eni_time_weights
) * bb
->frequency
;
8593 struct cfg_hooks gimple_cfg_hooks
= {
8595 gimple_verify_flow_info
,
8596 gimple_dump_bb
, /* dump_bb */
8597 gimple_dump_bb_for_graph
, /* dump_bb_for_graph */
8598 create_bb
, /* create_basic_block */
8599 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
8600 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
8601 gimple_can_remove_branch_p
, /* can_remove_branch_p */
8602 remove_bb
, /* delete_basic_block */
8603 gimple_split_block
, /* split_block */
8604 gimple_move_block_after
, /* move_block_after */
8605 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
8606 gimple_merge_blocks
, /* merge_blocks */
8607 gimple_predict_edge
, /* predict_edge */
8608 gimple_predicted_by_p
, /* predicted_by_p */
8609 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
8610 gimple_duplicate_bb
, /* duplicate_block */
8611 gimple_split_edge
, /* split_edge */
8612 gimple_make_forwarder_block
, /* make_forward_block */
8613 NULL
, /* tidy_fallthru_edge */
8614 NULL
, /* force_nonfallthru */
8615 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
8616 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
8617 gimple_flow_call_edges_add
, /* flow_call_edges_add */
8618 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
8619 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
8620 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
8621 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
8622 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
8623 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
8624 flush_pending_stmts
, /* flush_pending_stmts */
8625 gimple_empty_block_p
, /* block_empty_p */
8626 gimple_split_block_before_cond_jump
, /* split_block_before_cond_jump */
8627 gimple_account_profile_record
,
8631 /* Split all critical edges. */
8634 split_critical_edges (void)
8640 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8641 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8642 mappings around the calls to split_edge. */
8643 start_recording_case_labels ();
8644 FOR_ALL_BB_FN (bb
, cfun
)
8646 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8648 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
8650 /* PRE inserts statements to edges and expects that
8651 since split_critical_edges was done beforehand, committing edge
8652 insertions will not split more edges. In addition to critical
8653 edges we must split edges that have multiple successors and
8654 end by control flow statements, such as RESX.
8655 Go ahead and split them too. This matches the logic in
8656 gimple_find_edge_insert_loc. */
8657 else if ((!single_pred_p (e
->dest
)
8658 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
8659 || e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8660 && e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
8661 && !(e
->flags
& EDGE_ABNORMAL
))
8663 gimple_stmt_iterator gsi
;
8665 gsi
= gsi_last_bb (e
->src
);
8666 if (!gsi_end_p (gsi
)
8667 && stmt_ends_bb_p (gsi_stmt (gsi
))
8668 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
8669 && !gimple_call_builtin_p (gsi_stmt (gsi
),
8675 end_recording_case_labels ();
8681 const pass_data pass_data_split_crit_edges
=
8683 GIMPLE_PASS
, /* type */
8684 "crited", /* name */
8685 OPTGROUP_NONE
, /* optinfo_flags */
8686 TV_TREE_SPLIT_EDGES
, /* tv_id */
8687 PROP_cfg
, /* properties_required */
8688 PROP_no_crit_edges
, /* properties_provided */
8689 0, /* properties_destroyed */
8690 0, /* todo_flags_start */
8691 0, /* todo_flags_finish */
8694 class pass_split_crit_edges
: public gimple_opt_pass
8697 pass_split_crit_edges (gcc::context
*ctxt
)
8698 : gimple_opt_pass (pass_data_split_crit_edges
, ctxt
)
8701 /* opt_pass methods: */
8702 virtual unsigned int execute (function
*) { return split_critical_edges (); }
8704 opt_pass
* clone () { return new pass_split_crit_edges (m_ctxt
); }
8705 }; // class pass_split_crit_edges
8710 make_pass_split_crit_edges (gcc::context
*ctxt
)
8712 return new pass_split_crit_edges (ctxt
);
8716 /* Insert COND expression which is GIMPLE_COND after STMT
8717 in basic block BB with appropriate basic block split
8718 and creation of a new conditionally executed basic block.
8719 Update profile so the new bb is visited with probability PROB.
8720 Return created basic block. */
8722 insert_cond_bb (basic_block bb
, gimple
*stmt
, gimple
*cond
,
8723 profile_probability prob
)
8725 edge fall
= split_block (bb
, stmt
);
8726 gimple_stmt_iterator iter
= gsi_last_bb (bb
);
8729 /* Insert cond statement. */
8730 gcc_assert (gimple_code (cond
) == GIMPLE_COND
);
8731 if (gsi_end_p (iter
))
8732 gsi_insert_before (&iter
, cond
, GSI_CONTINUE_LINKING
);
8734 gsi_insert_after (&iter
, cond
, GSI_CONTINUE_LINKING
);
8736 /* Create conditionally executed block. */
8737 new_bb
= create_empty_bb (bb
);
8738 edge e
= make_edge (bb
, new_bb
, EDGE_TRUE_VALUE
);
8739 e
->probability
= prob
;
8740 e
->count
= bb
->count
.apply_probability (prob
);
8741 new_bb
->count
= e
->count
;
8742 new_bb
->frequency
= prob
.apply (bb
->frequency
);
8743 make_single_succ_edge (new_bb
, fall
->dest
, EDGE_FALLTHRU
);
8745 /* Fix edge for split bb. */
8746 fall
->flags
= EDGE_FALSE_VALUE
;
8747 fall
->count
-= e
->count
;
8748 fall
->probability
-= e
->probability
;
8750 /* Update dominance info. */
8751 if (dom_info_available_p (CDI_DOMINATORS
))
8753 set_immediate_dominator (CDI_DOMINATORS
, new_bb
, bb
);
8754 set_immediate_dominator (CDI_DOMINATORS
, fall
->dest
, bb
);
8757 /* Update loop info. */
8759 add_bb_to_loop (new_bb
, bb
->loop_father
);
8764 /* Build a ternary operation and gimplify it. Emit code before GSI.
8765 Return the gimple_val holding the result. */
8768 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
8769 tree type
, tree a
, tree b
, tree c
)
8772 location_t loc
= gimple_location (gsi_stmt (*gsi
));
8774 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
8777 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8781 /* Build a binary operation and gimplify it. Emit code before GSI.
8782 Return the gimple_val holding the result. */
8785 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
8786 tree type
, tree a
, tree b
)
8790 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
8793 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8797 /* Build a unary operation and gimplify it. Emit code before GSI.
8798 Return the gimple_val holding the result. */
8801 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
8806 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
8809 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
8815 /* Given a basic block B which ends with a conditional and has
8816 precisely two successors, determine which of the edges is taken if
8817 the conditional is true and which is taken if the conditional is
8818 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8821 extract_true_false_edges_from_block (basic_block b
,
8825 edge e
= EDGE_SUCC (b
, 0);
8827 if (e
->flags
& EDGE_TRUE_VALUE
)
8830 *false_edge
= EDGE_SUCC (b
, 1);
8835 *true_edge
= EDGE_SUCC (b
, 1);
8840 /* From a controlling predicate in the immediate dominator DOM of
8841 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
8842 predicate evaluates to true and false and store them to
8843 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
8844 they are non-NULL. Returns true if the edges can be determined,
8845 else return false. */
8848 extract_true_false_controlled_edges (basic_block dom
, basic_block phiblock
,
8849 edge
*true_controlled_edge
,
8850 edge
*false_controlled_edge
)
8852 basic_block bb
= phiblock
;
8853 edge true_edge
, false_edge
, tem
;
8854 edge e0
= NULL
, e1
= NULL
;
8856 /* We have to verify that one edge into the PHI node is dominated
8857 by the true edge of the predicate block and the other edge
8858 dominated by the false edge. This ensures that the PHI argument
8859 we are going to take is completely determined by the path we
8860 take from the predicate block.
8861 We can only use BB dominance checks below if the destination of
8862 the true/false edges are dominated by their edge, thus only
8863 have a single predecessor. */
8864 extract_true_false_edges_from_block (dom
, &true_edge
, &false_edge
);
8865 tem
= EDGE_PRED (bb
, 0);
8866 if (tem
== true_edge
8867 || (single_pred_p (true_edge
->dest
)
8868 && (tem
->src
== true_edge
->dest
8869 || dominated_by_p (CDI_DOMINATORS
,
8870 tem
->src
, true_edge
->dest
))))
8872 else if (tem
== false_edge
8873 || (single_pred_p (false_edge
->dest
)
8874 && (tem
->src
== false_edge
->dest
8875 || dominated_by_p (CDI_DOMINATORS
,
8876 tem
->src
, false_edge
->dest
))))
8880 tem
= EDGE_PRED (bb
, 1);
8881 if (tem
== true_edge
8882 || (single_pred_p (true_edge
->dest
)
8883 && (tem
->src
== true_edge
->dest
8884 || dominated_by_p (CDI_DOMINATORS
,
8885 tem
->src
, true_edge
->dest
))))
8887 else if (tem
== false_edge
8888 || (single_pred_p (false_edge
->dest
)
8889 && (tem
->src
== false_edge
->dest
8890 || dominated_by_p (CDI_DOMINATORS
,
8891 tem
->src
, false_edge
->dest
))))
8898 if (true_controlled_edge
)
8899 *true_controlled_edge
= e0
;
8900 if (false_controlled_edge
)
8901 *false_controlled_edge
= e1
;
8908 /* Emit return warnings. */
8912 const pass_data pass_data_warn_function_return
=
8914 GIMPLE_PASS
, /* type */
8915 "*warn_function_return", /* name */
8916 OPTGROUP_NONE
, /* optinfo_flags */
8917 TV_NONE
, /* tv_id */
8918 PROP_cfg
, /* properties_required */
8919 0, /* properties_provided */
8920 0, /* properties_destroyed */
8921 0, /* todo_flags_start */
8922 0, /* todo_flags_finish */
8925 class pass_warn_function_return
: public gimple_opt_pass
8928 pass_warn_function_return (gcc::context
*ctxt
)
8929 : gimple_opt_pass (pass_data_warn_function_return
, ctxt
)
8932 /* opt_pass methods: */
8933 virtual unsigned int execute (function
*);
8935 }; // class pass_warn_function_return
8938 pass_warn_function_return::execute (function
*fun
)
8940 source_location location
;
8945 if (!targetm
.warn_func_return (fun
->decl
))
8948 /* If we have a path to EXIT, then we do return. */
8949 if (TREE_THIS_VOLATILE (fun
->decl
)
8950 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
) > 0)
8952 location
= UNKNOWN_LOCATION
;
8953 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
)
8955 last
= last_stmt (e
->src
);
8956 if ((gimple_code (last
) == GIMPLE_RETURN
8957 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
8958 && (location
= gimple_location (last
)) != UNKNOWN_LOCATION
)
8961 if (location
== UNKNOWN_LOCATION
)
8962 location
= cfun
->function_end_locus
;
8963 warning_at (location
, 0, "%<noreturn%> function does return");
8966 /* If we see "return;" in some basic block, then we do reach the end
8967 without returning a value. */
8968 else if (warn_return_type
8969 && !TREE_NO_WARNING (fun
->decl
)
8970 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
) > 0
8971 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun
->decl
))))
8973 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
)
8975 gimple
*last
= last_stmt (e
->src
);
8976 greturn
*return_stmt
= dyn_cast
<greturn
*> (last
);
8978 && gimple_return_retval (return_stmt
) == NULL
8979 && !gimple_no_warning_p (last
))
8981 location
= gimple_location (last
);
8982 if (location
== UNKNOWN_LOCATION
)
8983 location
= fun
->function_end_locus
;
8984 warning_at (location
, OPT_Wreturn_type
, "control reaches end of non-void function");
8985 TREE_NO_WARNING (fun
->decl
) = 1;
8996 make_pass_warn_function_return (gcc::context
*ctxt
)
8998 return new pass_warn_function_return (ctxt
);
9001 /* Walk a gimplified function and warn for functions whose return value is
9002 ignored and attribute((warn_unused_result)) is set. This is done before
9003 inlining, so we don't have to worry about that. */
9006 do_warn_unused_result (gimple_seq seq
)
9009 gimple_stmt_iterator i
;
9011 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
9013 gimple
*g
= gsi_stmt (i
);
9015 switch (gimple_code (g
))
9018 do_warn_unused_result (gimple_bind_body (as_a
<gbind
*>(g
)));
9021 do_warn_unused_result (gimple_try_eval (g
));
9022 do_warn_unused_result (gimple_try_cleanup (g
));
9025 do_warn_unused_result (gimple_catch_handler (
9026 as_a
<gcatch
*> (g
)));
9028 case GIMPLE_EH_FILTER
:
9029 do_warn_unused_result (gimple_eh_filter_failure (g
));
9033 if (gimple_call_lhs (g
))
9035 if (gimple_call_internal_p (g
))
9038 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9039 LHS. All calls whose value is ignored should be
9040 represented like this. Look for the attribute. */
9041 fdecl
= gimple_call_fndecl (g
);
9042 ftype
= gimple_call_fntype (g
);
9044 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
9046 location_t loc
= gimple_location (g
);
9049 warning_at (loc
, OPT_Wunused_result
,
9050 "ignoring return value of %qD, "
9051 "declared with attribute warn_unused_result",
9054 warning_at (loc
, OPT_Wunused_result
,
9055 "ignoring return value of function "
9056 "declared with attribute warn_unused_result");
9061 /* Not a container, not a call, or a call whose value is used. */
9069 const pass_data pass_data_warn_unused_result
=
9071 GIMPLE_PASS
, /* type */
9072 "*warn_unused_result", /* name */
9073 OPTGROUP_NONE
, /* optinfo_flags */
9074 TV_NONE
, /* tv_id */
9075 PROP_gimple_any
, /* properties_required */
9076 0, /* properties_provided */
9077 0, /* properties_destroyed */
9078 0, /* todo_flags_start */
9079 0, /* todo_flags_finish */
9082 class pass_warn_unused_result
: public gimple_opt_pass
9085 pass_warn_unused_result (gcc::context
*ctxt
)
9086 : gimple_opt_pass (pass_data_warn_unused_result
, ctxt
)
9089 /* opt_pass methods: */
9090 virtual bool gate (function
*) { return flag_warn_unused_result
; }
9091 virtual unsigned int execute (function
*)
9093 do_warn_unused_result (gimple_body (current_function_decl
));
9097 }; // class pass_warn_unused_result
9102 make_pass_warn_unused_result (gcc::context
*ctxt
)
9104 return new pass_warn_unused_result (ctxt
);
9107 /* IPA passes, compilation of earlier functions or inlining
9108 might have changed some properties, such as marked functions nothrow,
9109 pure, const or noreturn.
9110 Remove redundant edges and basic blocks, and create new ones if necessary.
9112 This pass can't be executed as stand alone pass from pass manager, because
9113 in between inlining and this fixup the verify_flow_info would fail. */
9116 execute_fixup_cfg (void)
9119 gimple_stmt_iterator gsi
;
9123 cgraph_node
*node
= cgraph_node::get (current_function_decl
);
9124 profile_count num
= node
->count
;
9125 profile_count den
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
;
9126 bool scale
= num
.initialized_p ()
9127 && (den
> 0 || num
== profile_count::zero ())
9132 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= node
->count
;
9133 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
9134 = EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
.apply_scale (num
, den
);
9136 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
)
9137 e
->count
= e
->count
.apply_scale (num
, den
);
9140 FOR_EACH_BB_FN (bb
, cfun
)
9143 bb
->count
= bb
->count
.apply_scale (num
, den
);
9144 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);)
9146 gimple
*stmt
= gsi_stmt (gsi
);
9147 tree decl
= is_gimple_call (stmt
)
9148 ? gimple_call_fndecl (stmt
)
9152 int flags
= gimple_call_flags (stmt
);
9153 if (flags
& (ECF_CONST
| ECF_PURE
| ECF_LOOPING_CONST_OR_PURE
))
9155 if (gimple_purge_dead_abnormal_call_edges (bb
))
9156 todo
|= TODO_cleanup_cfg
;
9158 if (gimple_in_ssa_p (cfun
))
9160 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9165 if (flags
& ECF_NORETURN
9166 && fixup_noreturn_call (stmt
))
9167 todo
|= TODO_cleanup_cfg
;
9170 /* Remove stores to variables we marked write-only.
9171 Keep access when store has side effect, i.e. in case when source
9173 if (gimple_store_p (stmt
)
9174 && !gimple_has_side_effects (stmt
))
9176 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9179 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9180 && varpool_node::get (lhs
)->writeonly
)
9182 unlink_stmt_vdef (stmt
);
9183 gsi_remove (&gsi
, true);
9184 release_defs (stmt
);
9185 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9189 /* For calls we can simply remove LHS when it is known
9190 to be write-only. */
9191 if (is_gimple_call (stmt
)
9192 && gimple_get_lhs (stmt
))
9194 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9197 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9198 && varpool_node::get (lhs
)->writeonly
)
9200 gimple_call_set_lhs (stmt
, NULL
);
9202 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9206 if (maybe_clean_eh_stmt (stmt
)
9207 && gimple_purge_dead_eh_edges (bb
))
9208 todo
|= TODO_cleanup_cfg
;
9213 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
9214 e
->count
= e
->count
.apply_scale (num
, den
);
9216 /* If we have a basic block with no successors that does not
9217 end with a control statement or a noreturn call end it with
9218 a call to __builtin_unreachable. This situation can occur
9219 when inlining a noreturn call that does in fact return. */
9220 if (EDGE_COUNT (bb
->succs
) == 0)
9222 gimple
*stmt
= last_stmt (bb
);
9224 || (!is_ctrl_stmt (stmt
)
9225 && (!is_gimple_call (stmt
)
9226 || !gimple_call_noreturn_p (stmt
))))
9228 if (stmt
&& is_gimple_call (stmt
))
9229 gimple_call_set_ctrl_altering (stmt
, false);
9230 tree fndecl
= builtin_decl_implicit (BUILT_IN_UNREACHABLE
);
9231 stmt
= gimple_build_call (fndecl
, 0);
9232 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
9233 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
9234 if (!cfun
->after_inlining
)
9236 gcall
*call_stmt
= dyn_cast
<gcall
*> (stmt
);
9238 = compute_call_stmt_bb_frequency (current_function_decl
,
9240 node
->create_edge (cgraph_node::get_create (fndecl
),
9241 call_stmt
, bb
->count
, freq
);
9247 compute_function_frequency ();
9250 && (todo
& TODO_cleanup_cfg
))
9251 loops_state_set (LOOPS_NEED_FIXUP
);
9258 const pass_data pass_data_fixup_cfg
=
9260 GIMPLE_PASS
, /* type */
9261 "fixup_cfg", /* name */
9262 OPTGROUP_NONE
, /* optinfo_flags */
9263 TV_NONE
, /* tv_id */
9264 PROP_cfg
, /* properties_required */
9265 0, /* properties_provided */
9266 0, /* properties_destroyed */
9267 0, /* todo_flags_start */
9268 0, /* todo_flags_finish */
9271 class pass_fixup_cfg
: public gimple_opt_pass
9274 pass_fixup_cfg (gcc::context
*ctxt
)
9275 : gimple_opt_pass (pass_data_fixup_cfg
, ctxt
)
9278 /* opt_pass methods: */
9279 opt_pass
* clone () { return new pass_fixup_cfg (m_ctxt
); }
9280 virtual unsigned int execute (function
*) { return execute_fixup_cfg (); }
9282 }; // class pass_fixup_cfg
9287 make_pass_fixup_cfg (gcc::context
*ctxt
)
9289 return new pass_fixup_cfg (ctxt
);
9292 /* Garbage collection support for edge_def. */
9294 extern void gt_ggc_mx (tree
&);
9295 extern void gt_ggc_mx (gimple
*&);
9296 extern void gt_ggc_mx (rtx
&);
9297 extern void gt_ggc_mx (basic_block
&);
9300 gt_ggc_mx (rtx_insn
*& x
)
9303 gt_ggc_mx_rtx_def ((void *) x
);
9307 gt_ggc_mx (edge_def
*e
)
9309 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9311 gt_ggc_mx (e
->dest
);
9312 if (current_ir_type () == IR_GIMPLE
)
9313 gt_ggc_mx (e
->insns
.g
);
9315 gt_ggc_mx (e
->insns
.r
);
9319 /* PCH support for edge_def. */
9321 extern void gt_pch_nx (tree
&);
9322 extern void gt_pch_nx (gimple
*&);
9323 extern void gt_pch_nx (rtx
&);
9324 extern void gt_pch_nx (basic_block
&);
9327 gt_pch_nx (rtx_insn
*& x
)
9330 gt_pch_nx_rtx_def ((void *) x
);
9334 gt_pch_nx (edge_def
*e
)
9336 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9338 gt_pch_nx (e
->dest
);
9339 if (current_ir_type () == IR_GIMPLE
)
9340 gt_pch_nx (e
->insns
.g
);
9342 gt_pch_nx (e
->insns
.r
);
9347 gt_pch_nx (edge_def
*e
, gt_pointer_operator op
, void *cookie
)
9349 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9350 op (&(e
->src
), cookie
);
9351 op (&(e
->dest
), cookie
);
9352 if (current_ir_type () == IR_GIMPLE
)
9353 op (&(e
->insns
.g
), cookie
);
9355 op (&(e
->insns
.r
), cookie
);
9356 op (&(block
), cookie
);
9361 namespace selftest
{
9363 /* Helper function for CFG selftests: create a dummy function decl
9364 and push it as cfun. */
9367 push_fndecl (const char *name
)
9369 tree fn_type
= build_function_type_array (integer_type_node
, 0, NULL
);
9370 /* FIXME: this uses input_location: */
9371 tree fndecl
= build_fn_decl (name
, fn_type
);
9372 tree retval
= build_decl (UNKNOWN_LOCATION
, RESULT_DECL
,
9373 NULL_TREE
, integer_type_node
);
9374 DECL_RESULT (fndecl
) = retval
;
9375 push_struct_function (fndecl
);
9376 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9377 ASSERT_TRUE (fun
!= NULL
);
9378 init_empty_tree_cfg_for_function (fun
);
9379 ASSERT_EQ (2, n_basic_blocks_for_fn (fun
));
9380 ASSERT_EQ (0, n_edges_for_fn (fun
));
9384 /* These tests directly create CFGs.
9385 Compare with the static fns within tree-cfg.c:
9387 - make_blocks: calls create_basic_block (seq, bb);
9390 /* Verify a simple cfg of the form:
9391 ENTRY -> A -> B -> C -> EXIT. */
9394 test_linear_chain ()
9396 gimple_register_cfg_hooks ();
9398 tree fndecl
= push_fndecl ("cfg_test_linear_chain");
9399 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9401 /* Create some empty blocks. */
9402 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9403 basic_block bb_b
= create_empty_bb (bb_a
);
9404 basic_block bb_c
= create_empty_bb (bb_b
);
9406 ASSERT_EQ (5, n_basic_blocks_for_fn (fun
));
9407 ASSERT_EQ (0, n_edges_for_fn (fun
));
9409 /* Create some edges: a simple linear chain of BBs. */
9410 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9411 make_edge (bb_a
, bb_b
, 0);
9412 make_edge (bb_b
, bb_c
, 0);
9413 make_edge (bb_c
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9415 /* Verify the edges. */
9416 ASSERT_EQ (4, n_edges_for_fn (fun
));
9417 ASSERT_EQ (NULL
, ENTRY_BLOCK_PTR_FOR_FN (fun
)->preds
);
9418 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun
)->succs
->length ());
9419 ASSERT_EQ (1, bb_a
->preds
->length ());
9420 ASSERT_EQ (1, bb_a
->succs
->length ());
9421 ASSERT_EQ (1, bb_b
->preds
->length ());
9422 ASSERT_EQ (1, bb_b
->succs
->length ());
9423 ASSERT_EQ (1, bb_c
->preds
->length ());
9424 ASSERT_EQ (1, bb_c
->succs
->length ());
9425 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
->length ());
9426 ASSERT_EQ (NULL
, EXIT_BLOCK_PTR_FOR_FN (fun
)->succs
);
9428 /* Verify the dominance information
9429 Each BB in our simple chain should be dominated by the one before
9431 calculate_dominance_info (CDI_DOMINATORS
);
9432 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9433 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9434 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9435 ASSERT_EQ (1, dom_by_b
.length ());
9436 ASSERT_EQ (bb_c
, dom_by_b
[0]);
9437 free_dominance_info (CDI_DOMINATORS
);
9438 dom_by_b
.release ();
9440 /* Similarly for post-dominance: each BB in our chain is post-dominated
9441 by the one after it. */
9442 calculate_dominance_info (CDI_POST_DOMINATORS
);
9443 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9444 ASSERT_EQ (bb_c
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9445 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9446 ASSERT_EQ (1, postdom_by_b
.length ());
9447 ASSERT_EQ (bb_a
, postdom_by_b
[0]);
9448 free_dominance_info (CDI_POST_DOMINATORS
);
9449 postdom_by_b
.release ();
9454 /* Verify a simple CFG of the form:
9470 gimple_register_cfg_hooks ();
9472 tree fndecl
= push_fndecl ("cfg_test_diamond");
9473 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9475 /* Create some empty blocks. */
9476 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9477 basic_block bb_b
= create_empty_bb (bb_a
);
9478 basic_block bb_c
= create_empty_bb (bb_a
);
9479 basic_block bb_d
= create_empty_bb (bb_b
);
9481 ASSERT_EQ (6, n_basic_blocks_for_fn (fun
));
9482 ASSERT_EQ (0, n_edges_for_fn (fun
));
9484 /* Create the edges. */
9485 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9486 make_edge (bb_a
, bb_b
, EDGE_TRUE_VALUE
);
9487 make_edge (bb_a
, bb_c
, EDGE_FALSE_VALUE
);
9488 make_edge (bb_b
, bb_d
, 0);
9489 make_edge (bb_c
, bb_d
, 0);
9490 make_edge (bb_d
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9492 /* Verify the edges. */
9493 ASSERT_EQ (6, n_edges_for_fn (fun
));
9494 ASSERT_EQ (1, bb_a
->preds
->length ());
9495 ASSERT_EQ (2, bb_a
->succs
->length ());
9496 ASSERT_EQ (1, bb_b
->preds
->length ());
9497 ASSERT_EQ (1, bb_b
->succs
->length ());
9498 ASSERT_EQ (1, bb_c
->preds
->length ());
9499 ASSERT_EQ (1, bb_c
->succs
->length ());
9500 ASSERT_EQ (2, bb_d
->preds
->length ());
9501 ASSERT_EQ (1, bb_d
->succs
->length ());
9503 /* Verify the dominance information. */
9504 calculate_dominance_info (CDI_DOMINATORS
);
9505 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9506 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9507 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_d
));
9508 vec
<basic_block
> dom_by_a
= get_dominated_by (CDI_DOMINATORS
, bb_a
);
9509 ASSERT_EQ (3, dom_by_a
.length ()); /* B, C, D, in some order. */
9510 dom_by_a
.release ();
9511 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9512 ASSERT_EQ (0, dom_by_b
.length ());
9513 dom_by_b
.release ();
9514 free_dominance_info (CDI_DOMINATORS
);
9516 /* Similarly for post-dominance. */
9517 calculate_dominance_info (CDI_POST_DOMINATORS
);
9518 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9519 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9520 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_c
));
9521 vec
<basic_block
> postdom_by_d
= get_dominated_by (CDI_POST_DOMINATORS
, bb_d
);
9522 ASSERT_EQ (3, postdom_by_d
.length ()); /* A, B, C in some order. */
9523 postdom_by_d
.release ();
9524 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9525 ASSERT_EQ (0, postdom_by_b
.length ());
9526 postdom_by_b
.release ();
9527 free_dominance_info (CDI_POST_DOMINATORS
);
9532 /* Verify that we can handle a CFG containing a "complete" aka
9533 fully-connected subgraph (where A B C D below all have edges
9534 pointing to each other node, also to themselves).
9552 test_fully_connected ()
9554 gimple_register_cfg_hooks ();
9556 tree fndecl
= push_fndecl ("cfg_fully_connected");
9557 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9561 /* Create some empty blocks. */
9562 auto_vec
<basic_block
> subgraph_nodes
;
9563 for (int i
= 0; i
< n
; i
++)
9564 subgraph_nodes
.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
)));
9566 ASSERT_EQ (n
+ 2, n_basic_blocks_for_fn (fun
));
9567 ASSERT_EQ (0, n_edges_for_fn (fun
));
9569 /* Create the edges. */
9570 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), subgraph_nodes
[0], EDGE_FALLTHRU
);
9571 make_edge (subgraph_nodes
[0], EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9572 for (int i
= 0; i
< n
; i
++)
9573 for (int j
= 0; j
< n
; j
++)
9574 make_edge (subgraph_nodes
[i
], subgraph_nodes
[j
], 0);
9576 /* Verify the edges. */
9577 ASSERT_EQ (2 + (n
* n
), n_edges_for_fn (fun
));
9578 /* The first one is linked to ENTRY/EXIT as well as itself and
9580 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->preds
->length ());
9581 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->succs
->length ());
9582 /* The other ones in the subgraph are linked to everything in
9583 the subgraph (including themselves). */
9584 for (int i
= 1; i
< n
; i
++)
9586 ASSERT_EQ (n
, subgraph_nodes
[i
]->preds
->length ());
9587 ASSERT_EQ (n
, subgraph_nodes
[i
]->succs
->length ());
9590 /* Verify the dominance information. */
9591 calculate_dominance_info (CDI_DOMINATORS
);
9592 /* The initial block in the subgraph should be dominated by ENTRY. */
9593 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun
),
9594 get_immediate_dominator (CDI_DOMINATORS
,
9595 subgraph_nodes
[0]));
9596 /* Every other block in the subgraph should be dominated by the
9598 for (int i
= 1; i
< n
; i
++)
9599 ASSERT_EQ (subgraph_nodes
[0],
9600 get_immediate_dominator (CDI_DOMINATORS
,
9601 subgraph_nodes
[i
]));
9602 free_dominance_info (CDI_DOMINATORS
);
9604 /* Similarly for post-dominance. */
9605 calculate_dominance_info (CDI_POST_DOMINATORS
);
9606 /* The initial block in the subgraph should be postdominated by EXIT. */
9607 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun
),
9608 get_immediate_dominator (CDI_POST_DOMINATORS
,
9609 subgraph_nodes
[0]));
9610 /* Every other block in the subgraph should be postdominated by the
9611 initial block, since that leads to EXIT. */
9612 for (int i
= 1; i
< n
; i
++)
9613 ASSERT_EQ (subgraph_nodes
[0],
9614 get_immediate_dominator (CDI_POST_DOMINATORS
,
9615 subgraph_nodes
[i
]));
9616 free_dominance_info (CDI_POST_DOMINATORS
);
9621 /* Run all of the selftests within this file. */
9626 test_linear_chain ();
9628 test_fully_connected ();
9631 } // namespace selftest
9633 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
9636 - switch statement (a block with many out-edges)
9637 - something that jumps to itself
9640 #endif /* CHECKING_P */