1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
50 the new rtl is returned in a SEQUENCE, and LAST_INSN will point
51 to the last recognized insn in the old sequence. */
57 #include "gensupport.h"
60 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
61 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
63 /* Holds an array of names indexed by insn_code_number. */
64 static char **insn_name_ptr
= 0;
65 static int insn_name_ptr_size
= 0;
67 /* A listhead of decision trees. The alternatives to a node are kept
68 in a doublely-linked list so we can easily add nodes to the proper
69 place when merging. */
73 struct decision
*first
;
74 struct decision
*last
;
77 /* A single test. The two accept types aren't tests per-se, but
78 their equality (or lack thereof) does affect tree merging so
79 it is convenient to keep them here. */
83 /* A linked list through the tests attached to a node. */
84 struct decision_test
*next
;
86 /* These types are roughly in the order in which we'd like to test them. */
89 DT_mode
, DT_code
, DT_veclen
,
90 DT_elt_zero_int
, DT_elt_one_int
, DT_elt_zero_wide
, DT_elt_zero_wide_safe
,
91 DT_veclen_ge
, DT_dup
, DT_pred
, DT_c_test
,
92 DT_accept_op
, DT_accept_insn
97 enum machine_mode mode
; /* Machine mode of node. */
98 RTX_CODE code
; /* Code to test. */
102 const char *name
; /* Predicate to call. */
103 int index
; /* Index into `preds' or -1. */
104 enum machine_mode mode
; /* Machine mode for node. */
107 const char *c_test
; /* Additional test to perform. */
108 int veclen
; /* Length of vector. */
109 int dup
; /* Number of operand to compare against. */
110 HOST_WIDE_INT intval
; /* Value for XINT for XWINT. */
111 int opno
; /* Operand number matched. */
114 int code_number
; /* Insn number matched. */
115 int lineno
; /* Line number of the insn. */
116 int num_clobbers_to_add
; /* Number of CLOBBERs to be added. */
121 /* Data structure for decision tree for recognizing legitimate insns. */
125 struct decision_head success
; /* Nodes to test on success. */
126 struct decision
*next
; /* Node to test on failure. */
127 struct decision
*prev
; /* Node whose failure tests us. */
128 struct decision
*afterward
; /* Node to test on success,
129 but failure of successor nodes. */
131 const char *position
; /* String denoting position in pattern. */
133 struct decision_test
*tests
; /* The tests for this node. */
135 int number
; /* Node number, used for labels */
136 int subroutine_number
; /* Number of subroutine this node starts */
137 int need_label
; /* Label needs to be output. */
140 #define SUBROUTINE_THRESHOLD 100
142 static int next_subroutine_number
;
144 /* We can write three types of subroutines: One for insn recognition,
145 one to split insns, and one for peephole-type optimizations. This
146 defines which type is being written. */
149 RECOG
, SPLIT
, PEEPHOLE2
152 #define IS_SPLIT(X) ((X) != RECOG)
154 /* Next available node number for tree nodes. */
156 static int next_number
;
158 /* Next number to use as an insn_code. */
160 static int next_insn_code
;
162 /* Similar, but counts all expressions in the MD file; used for
165 static int next_index
;
167 /* Record the highest depth we ever have so we know how many variables to
168 allocate in each subroutine we make. */
170 static int max_depth
;
172 /* The line number of the start of the pattern currently being processed. */
173 static int pattern_lineno
;
175 /* Count of errors. */
176 static int error_count
;
178 /* This table contains a list of the rtl codes that can possibly match a
179 predicate defined in recog.c. The function `maybe_both_true' uses it to
180 deduce that there are no expressions that can be matches by certain pairs
181 of tree nodes. Also, if a predicate can match only one code, we can
182 hardwire that code into the node testing the predicate. */
184 static const struct pred_table
186 const char *const name
;
187 const RTX_CODE codes
[NUM_RTX_CODE
];
189 {"general_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
190 LABEL_REF
, SUBREG
, REG
, MEM
}},
191 #ifdef PREDICATE_CODES
194 {"address_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
195 LABEL_REF
, SUBREG
, REG
, MEM
, PLUS
, MINUS
, MULT
}},
196 {"register_operand", {SUBREG
, REG
}},
197 {"pmode_register_operand", {SUBREG
, REG
}},
198 {"scratch_operand", {SCRATCH
, REG
}},
199 {"immediate_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
201 {"const_int_operand", {CONST_INT
}},
202 {"const_double_operand", {CONST_INT
, CONST_DOUBLE
}},
203 {"nonimmediate_operand", {SUBREG
, REG
, MEM
}},
204 {"nonmemory_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
205 LABEL_REF
, SUBREG
, REG
}},
206 {"push_operand", {MEM
}},
207 {"pop_operand", {MEM
}},
208 {"memory_operand", {SUBREG
, MEM
}},
209 {"indirect_operand", {SUBREG
, MEM
}},
210 {"comparison_operator", {EQ
, NE
, LE
, LT
, GE
, GT
, LEU
, LTU
, GEU
, GTU
,
211 UNORDERED
, ORDERED
, UNEQ
, UNGE
, UNGT
, UNLE
,
213 {"mode_independent_operand", {CONST_INT
, CONST_DOUBLE
, CONST
, SYMBOL_REF
,
214 LABEL_REF
, SUBREG
, REG
, MEM
}}
217 #define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
219 static const char *const special_mode_pred_table
[] = {
220 #ifdef SPECIAL_MODE_PREDICATES
221 SPECIAL_MODE_PREDICATES
223 "pmode_register_operand"
226 #define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
228 static struct decision
*new_decision
229 PARAMS ((const char *, struct decision_head
*));
230 static struct decision_test
*new_decision_test
231 PARAMS ((enum decision_type
, struct decision_test
***));
232 static rtx find_operand
234 static rtx find_matching_operand
236 static void validate_pattern
237 PARAMS ((rtx
, rtx
, rtx
, int));
238 static struct decision
*add_to_sequence
239 PARAMS ((rtx
, struct decision_head
*, const char *, enum routine_type
, int));
241 static int maybe_both_true_2
242 PARAMS ((struct decision_test
*, struct decision_test
*));
243 static int maybe_both_true_1
244 PARAMS ((struct decision_test
*, struct decision_test
*));
245 static int maybe_both_true
246 PARAMS ((struct decision
*, struct decision
*, int));
248 static int nodes_identical_1
249 PARAMS ((struct decision_test
*, struct decision_test
*));
250 static int nodes_identical
251 PARAMS ((struct decision
*, struct decision
*));
252 static void merge_accept_insn
253 PARAMS ((struct decision
*, struct decision
*));
254 static void merge_trees
255 PARAMS ((struct decision_head
*, struct decision_head
*));
257 static void factor_tests
258 PARAMS ((struct decision_head
*));
259 static void simplify_tests
260 PARAMS ((struct decision_head
*));
261 static int break_out_subroutines
262 PARAMS ((struct decision_head
*, int));
263 static void find_afterward
264 PARAMS ((struct decision_head
*, struct decision
*));
266 static void change_state
267 PARAMS ((const char *, const char *, struct decision
*, const char *));
268 static void print_code
269 PARAMS ((enum rtx_code
));
270 static void write_afterward
271 PARAMS ((struct decision
*, struct decision
*, const char *));
272 static struct decision
*write_switch
273 PARAMS ((struct decision
*, int));
274 static void write_cond
275 PARAMS ((struct decision_test
*, int, enum routine_type
));
276 static void write_action
277 PARAMS ((struct decision
*, struct decision_test
*, int, int,
278 struct decision
*, enum routine_type
));
279 static int is_unconditional
280 PARAMS ((struct decision_test
*, enum routine_type
));
281 static int write_node
282 PARAMS ((struct decision
*, int, enum routine_type
));
283 static void write_tree_1
284 PARAMS ((struct decision_head
*, int, enum routine_type
));
285 static void write_tree
286 PARAMS ((struct decision_head
*, const char *, enum routine_type
, int));
287 static void write_subroutine
288 PARAMS ((struct decision_head
*, enum routine_type
));
289 static void write_subroutines
290 PARAMS ((struct decision_head
*, enum routine_type
));
291 static void write_header
294 static struct decision_head make_insn_sequence
295 PARAMS ((rtx
, enum routine_type
));
296 static void process_tree
297 PARAMS ((struct decision_head
*, enum routine_type
));
299 static void record_insn_name
300 PARAMS ((int, const char *));
302 static void debug_decision_0
303 PARAMS ((struct decision
*, int, int));
304 static void debug_decision_1
305 PARAMS ((struct decision
*, int));
306 static void debug_decision_2
307 PARAMS ((struct decision_test
*));
308 extern void debug_decision
309 PARAMS ((struct decision
*));
310 extern void debug_decision_list
311 PARAMS ((struct decision
*));
313 /* Create a new node in sequence after LAST. */
315 static struct decision
*
316 new_decision (position
, last
)
317 const char *position
;
318 struct decision_head
*last
;
321 = (struct decision
*) xmalloc (sizeof (struct decision
));
323 memset (new, 0, sizeof (*new));
324 new->success
= *last
;
325 new->position
= xstrdup (position
);
326 new->number
= next_number
++;
328 last
->first
= last
->last
= new;
332 /* Create a new test and link it in at PLACE. */
334 static struct decision_test
*
335 new_decision_test (type
, pplace
)
336 enum decision_type type
;
337 struct decision_test
***pplace
;
339 struct decision_test
**place
= *pplace
;
340 struct decision_test
*test
;
342 test
= (struct decision_test
*) xmalloc (sizeof (*test
));
353 /* Search for and return operand N. */
356 find_operand (pattern
, n
)
365 code
= GET_CODE (pattern
);
366 if ((code
== MATCH_SCRATCH
367 || code
== MATCH_INSN
368 || code
== MATCH_OPERAND
369 || code
== MATCH_OPERATOR
370 || code
== MATCH_PARALLEL
)
371 && XINT (pattern
, 0) == n
)
374 fmt
= GET_RTX_FORMAT (code
);
375 len
= GET_RTX_LENGTH (code
);
376 for (i
= 0; i
< len
; i
++)
381 if ((r
= find_operand (XEXP (pattern
, i
), n
)) != NULL_RTX
)
386 if (! XVEC (pattern
, i
))
391 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
392 if ((r
= find_operand (XVECEXP (pattern
, i
, j
), n
)) != NULL_RTX
)
396 case 'i': case 'w': case '0': case 's':
407 /* Search for and return operand M, such that it has a matching
408 constraint for operand N. */
411 find_matching_operand (pattern
, n
)
420 code
= GET_CODE (pattern
);
421 if (code
== MATCH_OPERAND
422 && (XSTR (pattern
, 2)[0] == '0' + n
423 || (XSTR (pattern
, 2)[0] == '%'
424 && XSTR (pattern
, 2)[1] == '0' + n
)))
427 fmt
= GET_RTX_FORMAT (code
);
428 len
= GET_RTX_LENGTH (code
);
429 for (i
= 0; i
< len
; i
++)
434 if ((r
= find_matching_operand (XEXP (pattern
, i
), n
)))
439 if (! XVEC (pattern
, i
))
444 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
445 if ((r
= find_matching_operand (XVECEXP (pattern
, i
, j
), n
)))
449 case 'i': case 'w': case '0': case 's':
461 /* Check for various errors in patterns. SET is nonnull for a destination,
462 and is the complete set pattern. SET_CODE is '=' for normal sets, and
463 '+' within a context that requires in-out constraints. */
466 validate_pattern (pattern
, insn
, set
, set_code
)
477 code
= GET_CODE (pattern
);
487 const char *pred_name
= XSTR (pattern
, 1);
488 int allows_non_lvalue
= 1, allows_non_const
= 1;
489 int special_mode_pred
= 0;
492 if (GET_CODE (insn
) == DEFINE_INSN
)
493 c_test
= XSTR (insn
, 2);
495 c_test
= XSTR (insn
, 1);
497 if (pred_name
[0] != 0)
499 for (i
= 0; i
< NUM_KNOWN_PREDS
; i
++)
500 if (! strcmp (preds
[i
].name
, pred_name
))
503 if (i
< NUM_KNOWN_PREDS
)
507 allows_non_lvalue
= allows_non_const
= 0;
508 for (j
= 0; preds
[i
].codes
[j
] != 0; j
++)
510 RTX_CODE c
= preds
[i
].codes
[j
];
517 && c
!= CONSTANT_P_RTX
)
518 allows_non_const
= 1;
525 && c
!= STRICT_LOW_PART
)
526 allows_non_lvalue
= 1;
531 #ifdef PREDICATE_CODES
532 /* If the port has a list of the predicates it uses but
534 message_with_line (pattern_lineno
,
535 "warning: `%s' not in PREDICATE_CODES",
540 for (i
= 0; i
< NUM_SPECIAL_MODE_PREDS
; ++i
)
541 if (strcmp (pred_name
, special_mode_pred_table
[i
]) == 0)
543 special_mode_pred
= 1;
548 if (code
== MATCH_OPERAND
)
550 const char constraints0
= XSTR (pattern
, 2)[0];
552 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
553 don't use the MATCH_OPERAND constraint, only the predicate.
554 This is confusing to folks doing new ports, so help them
555 not make the mistake. */
556 if (GET_CODE (insn
) == DEFINE_EXPAND
557 || GET_CODE (insn
) == DEFINE_SPLIT
558 || GET_CODE (insn
) == DEFINE_PEEPHOLE2
)
561 message_with_line (pattern_lineno
,
562 "warning: constraints not supported in %s",
563 rtx_name
[GET_CODE (insn
)]);
566 /* A MATCH_OPERAND that is a SET should have an output reload. */
567 else if (set
&& constraints0
)
571 if (constraints0
== '+')
573 /* If we've only got an output reload for this operand,
574 we'd better have a matching input operand. */
575 else if (constraints0
== '='
576 && find_matching_operand (insn
, XINT (pattern
, 0)))
580 message_with_line (pattern_lineno
,
581 "operand %d missing in-out reload",
586 else if (constraints0
!= '=' && constraints0
!= '+')
588 message_with_line (pattern_lineno
,
589 "operand %d missing output reload",
596 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
597 while not likely to occur at runtime, results in less efficient
598 code from insn-recog.c. */
600 && pred_name
[0] != '\0'
601 && allows_non_lvalue
)
603 message_with_line (pattern_lineno
,
604 "warning: destination operand %d allows non-lvalue",
608 /* A modeless MATCH_OPERAND can be handy when we can
609 check for multiple modes in the c_test. In most other cases,
610 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
611 and PEEP2 can FAIL within the output pattern. Exclude
612 address_operand, since its mode is related to the mode of
613 the memory not the operand. Exclude the SET_DEST of a call
614 instruction, as that is a common idiom. */
616 if (GET_MODE (pattern
) == VOIDmode
617 && code
== MATCH_OPERAND
618 && GET_CODE (insn
) == DEFINE_INSN
620 && ! special_mode_pred
621 && pred_name
[0] != '\0'
622 && strcmp (pred_name
, "address_operand") != 0
623 && strstr (c_test
, "operands") == NULL
625 && GET_CODE (set
) == SET
626 && GET_CODE (SET_SRC (set
)) == CALL
))
628 message_with_line (pattern_lineno
,
629 "warning: operand %d missing mode?",
637 enum machine_mode dmode
, smode
;
640 dest
= SET_DEST (pattern
);
641 src
= SET_SRC (pattern
);
643 /* STRICT_LOW_PART is a wrapper. Its argument is the real
644 destination, and it's mode should match the source. */
645 if (GET_CODE (dest
) == STRICT_LOW_PART
)
646 dest
= XEXP (dest
, 0);
648 /* Find the referant for a DUP. */
650 if (GET_CODE (dest
) == MATCH_DUP
651 || GET_CODE (dest
) == MATCH_OP_DUP
652 || GET_CODE (dest
) == MATCH_PAR_DUP
)
653 dest
= find_operand (insn
, XINT (dest
, 0));
655 if (GET_CODE (src
) == MATCH_DUP
656 || GET_CODE (src
) == MATCH_OP_DUP
657 || GET_CODE (src
) == MATCH_PAR_DUP
)
658 src
= find_operand (insn
, XINT (src
, 0));
660 dmode
= GET_MODE (dest
);
661 smode
= GET_MODE (src
);
663 /* The mode of an ADDRESS_OPERAND is the mode of the memory
664 reference, not the mode of the address. */
665 if (GET_CODE (src
) == MATCH_OPERAND
666 && ! strcmp (XSTR (src
, 1), "address_operand"))
669 /* The operands of a SET must have the same mode unless one
671 else if (dmode
!= VOIDmode
&& smode
!= VOIDmode
&& dmode
!= smode
)
673 message_with_line (pattern_lineno
,
674 "mode mismatch in set: %smode vs %smode",
675 GET_MODE_NAME (dmode
), GET_MODE_NAME (smode
));
679 /* If only one of the operands is VOIDmode, and PC or CC0 is
680 not involved, it's probably a mistake. */
681 else if (dmode
!= smode
682 && GET_CODE (dest
) != PC
683 && GET_CODE (dest
) != CC0
684 && GET_CODE (src
) != PC
685 && GET_CODE (src
) != CC0
686 && GET_CODE (src
) != CONST_INT
)
689 which
= (dmode
== VOIDmode
? "destination" : "source");
690 message_with_line (pattern_lineno
,
691 "warning: %s missing a mode?", which
);
694 if (dest
!= SET_DEST (pattern
))
695 validate_pattern (dest
, insn
, pattern
, '=');
696 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
697 validate_pattern (SET_SRC (pattern
), insn
, NULL_RTX
, 0);
702 validate_pattern (SET_DEST (pattern
), insn
, pattern
, '=');
706 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
707 validate_pattern (XEXP (pattern
, 1), insn
, NULL_RTX
, 0);
708 validate_pattern (XEXP (pattern
, 2), insn
, NULL_RTX
, 0);
711 case STRICT_LOW_PART
:
712 validate_pattern (XEXP (pattern
, 0), insn
, set
, set
? '+' : 0);
716 if (GET_MODE (XEXP (pattern
, 0)) != VOIDmode
)
718 message_with_line (pattern_lineno
,
719 "operand to label_ref %smode not VOIDmode",
720 GET_MODE_NAME (GET_MODE (XEXP (pattern
, 0))));
729 fmt
= GET_RTX_FORMAT (code
);
730 len
= GET_RTX_LENGTH (code
);
731 for (i
= 0; i
< len
; i
++)
736 validate_pattern (XEXP (pattern
, i
), insn
, NULL_RTX
, 0);
740 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
741 validate_pattern (XVECEXP (pattern
, i
, j
), insn
, NULL_RTX
, 0);
744 case 'i': case 'w': case '0': case 's':
753 /* Create a chain of nodes to verify that an rtl expression matches
756 LAST is a pointer to the listhead in the previous node in the chain (or
757 in the calling function, for the first node).
759 POSITION is the string representing the current position in the insn.
761 INSN_TYPE is the type of insn for which we are emitting code.
763 A pointer to the final node in the chain is returned. */
765 static struct decision
*
766 add_to_sequence (pattern
, last
, position
, insn_type
, top
)
768 struct decision_head
*last
;
769 const char *position
;
770 enum routine_type insn_type
;
774 struct decision
*this, *sub
;
775 struct decision_test
*test
;
776 struct decision_test
**place
;
780 int depth
= strlen (position
);
782 enum machine_mode mode
;
784 if (depth
> max_depth
)
787 subpos
= (char *) xmalloc (depth
+ 2);
788 strcpy (subpos
, position
);
789 subpos
[depth
+ 1] = 0;
791 sub
= this = new_decision (position
, last
);
792 place
= &this->tests
;
795 mode
= GET_MODE (pattern
);
796 code
= GET_CODE (pattern
);
801 /* Toplevel peephole pattern. */
802 if (insn_type
== PEEPHOLE2
&& top
)
804 /* We don't need the node we just created -- unlink it. */
805 last
->first
= last
->last
= NULL
;
807 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 0); i
++)
809 /* Which insn we're looking at is represented by A-Z. We don't
810 ever use 'A', however; it is always implied. */
812 subpos
[depth
] = (i
> 0 ? 'A' + i
: 0);
813 sub
= add_to_sequence (XVECEXP (pattern
, 0, i
),
814 last
, subpos
, insn_type
, 0);
815 last
= &sub
->success
;
820 /* Else nothing special. */
824 /* The explicit patterns within a match_parallel enforce a minimum
825 length on the vector. The match_parallel predicate may allow
826 for more elements. We do need to check for this minimum here
827 or the code generated to match the internals may reference data
828 beyond the end of the vector. */
829 test
= new_decision_test (DT_veclen_ge
, &place
);
830 test
->u
.veclen
= XVECLEN (pattern
, 2);
838 const char *pred_name
;
839 RTX_CODE was_code
= code
;
840 int allows_const_int
= 1;
842 if (code
== MATCH_SCRATCH
)
844 pred_name
= "scratch_operand";
849 pred_name
= XSTR (pattern
, 1);
850 if (code
== MATCH_PARALLEL
)
856 if (pred_name
[0] != 0)
858 test
= new_decision_test (DT_pred
, &place
);
859 test
->u
.pred
.name
= pred_name
;
860 test
->u
.pred
.mode
= mode
;
862 /* See if we know about this predicate and save its number.
863 If we do, and it only accepts one code, note that fact.
865 If we know that the predicate does not allow CONST_INT,
866 we know that the only way the predicate can match is if
867 the modes match (here we use the kludge of relying on the
868 fact that "address_operand" accepts CONST_INT; otherwise,
869 it would have to be a special case), so we can test the
870 mode (but we need not). This fact should considerably
871 simplify the generated code. */
873 for (i
= 0; i
< NUM_KNOWN_PREDS
; i
++)
874 if (! strcmp (preds
[i
].name
, pred_name
))
877 if (i
< NUM_KNOWN_PREDS
)
881 test
->u
.pred
.index
= i
;
883 if (preds
[i
].codes
[1] == 0 && code
== UNKNOWN
)
884 code
= preds
[i
].codes
[0];
886 allows_const_int
= 0;
887 for (j
= 0; preds
[i
].codes
[j
] != 0; j
++)
888 if (preds
[i
].codes
[j
] == CONST_INT
)
890 allows_const_int
= 1;
895 test
->u
.pred
.index
= -1;
898 /* Can't enforce a mode if we allow const_int. */
899 if (allows_const_int
)
902 /* Accept the operand, ie. record it in `operands'. */
903 test
= new_decision_test (DT_accept_op
, &place
);
904 test
->u
.opno
= XINT (pattern
, 0);
906 if (was_code
== MATCH_OPERATOR
|| was_code
== MATCH_PARALLEL
)
908 char base
= (was_code
== MATCH_OPERATOR
? '0' : 'a');
909 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 2); i
++)
911 subpos
[depth
] = i
+ base
;
912 sub
= add_to_sequence (XVECEXP (pattern
, 2, i
),
913 &sub
->success
, subpos
, insn_type
, 0);
922 test
= new_decision_test (DT_dup
, &place
);
923 test
->u
.dup
= XINT (pattern
, 0);
925 test
= new_decision_test (DT_accept_op
, &place
);
926 test
->u
.opno
= XINT (pattern
, 0);
928 for (i
= 0; i
< (size_t) XVECLEN (pattern
, 1); i
++)
930 subpos
[depth
] = i
+ '0';
931 sub
= add_to_sequence (XVECEXP (pattern
, 1, i
),
932 &sub
->success
, subpos
, insn_type
, 0);
940 test
= new_decision_test (DT_dup
, &place
);
941 test
->u
.dup
= XINT (pattern
, 0);
945 pattern
= XEXP (pattern
, 0);
952 fmt
= GET_RTX_FORMAT (code
);
953 len
= GET_RTX_LENGTH (code
);
955 /* Do tests against the current node first. */
956 for (i
= 0; i
< (size_t) len
; i
++)
962 test
= new_decision_test (DT_elt_zero_int
, &place
);
963 test
->u
.intval
= XINT (pattern
, i
);
967 test
= new_decision_test (DT_elt_one_int
, &place
);
968 test
->u
.intval
= XINT (pattern
, i
);
973 else if (fmt
[i
] == 'w')
975 /* If this value actually fits in an int, we can use a switch
976 statement here, so indicate that. */
977 enum decision_type type
978 = ((int) XWINT (pattern
, i
) == XWINT (pattern
, i
))
979 ? DT_elt_zero_wide_safe
: DT_elt_zero_wide
;
984 test
= new_decision_test (type
, &place
);
985 test
->u
.intval
= XWINT (pattern
, i
);
987 else if (fmt
[i
] == 'E')
992 test
= new_decision_test (DT_veclen
, &place
);
993 test
->u
.veclen
= XVECLEN (pattern
, i
);
997 /* Now test our sub-patterns. */
998 for (i
= 0; i
< (size_t) len
; i
++)
1003 subpos
[depth
] = '0' + i
;
1004 sub
= add_to_sequence (XEXP (pattern
, i
), &sub
->success
,
1005 subpos
, insn_type
, 0);
1011 for (j
= 0; j
< XVECLEN (pattern
, i
); j
++)
1013 subpos
[depth
] = 'a' + j
;
1014 sub
= add_to_sequence (XVECEXP (pattern
, i
, j
),
1015 &sub
->success
, subpos
, insn_type
, 0);
1021 /* Handled above. */
1032 /* Insert nodes testing mode and code, if they're still relevant,
1033 before any of the nodes we may have added above. */
1034 if (code
!= UNKNOWN
)
1036 place
= &this->tests
;
1037 test
= new_decision_test (DT_code
, &place
);
1038 test
->u
.code
= code
;
1041 if (mode
!= VOIDmode
)
1043 place
= &this->tests
;
1044 test
= new_decision_test (DT_mode
, &place
);
1045 test
->u
.mode
= mode
;
1048 /* If we didn't insert any tests or accept nodes, hork. */
1049 if (this->tests
== NULL
)
1057 /* A subroutine of maybe_both_true; examines only one test.
1058 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1061 maybe_both_true_2 (d1
, d2
)
1062 struct decision_test
*d1
, *d2
;
1064 if (d1
->type
== d2
->type
)
1069 return d1
->u
.mode
== d2
->u
.mode
;
1072 return d1
->u
.code
== d2
->u
.code
;
1075 return d1
->u
.veclen
== d2
->u
.veclen
;
1077 case DT_elt_zero_int
:
1078 case DT_elt_one_int
:
1079 case DT_elt_zero_wide
:
1080 case DT_elt_zero_wide_safe
:
1081 return d1
->u
.intval
== d2
->u
.intval
;
1088 /* If either has a predicate that we know something about, set
1089 things up so that D1 is the one that always has a known
1090 predicate. Then see if they have any codes in common. */
1092 if (d1
->type
== DT_pred
|| d2
->type
== DT_pred
)
1094 if (d2
->type
== DT_pred
)
1096 struct decision_test
*tmp
;
1097 tmp
= d1
, d1
= d2
, d2
= tmp
;
1100 /* If D2 tests a mode, see if it matches D1. */
1101 if (d1
->u
.pred
.mode
!= VOIDmode
)
1103 if (d2
->type
== DT_mode
)
1105 if (d1
->u
.pred
.mode
!= d2
->u
.mode
1106 /* The mode of an address_operand predicate is the
1107 mode of the memory, not the operand. It can only
1108 be used for testing the predicate, so we must
1110 && strcmp (d1
->u
.pred
.name
, "address_operand") != 0)
1113 /* Don't check two predicate modes here, because if both predicates
1114 accept CONST_INT, then both can still be true even if the modes
1115 are different. If they don't accept CONST_INT, there will be a
1116 separate DT_mode that will make maybe_both_true_1 return 0. */
1119 if (d1
->u
.pred
.index
>= 0)
1121 /* If D2 tests a code, see if it is in the list of valid
1122 codes for D1's predicate. */
1123 if (d2
->type
== DT_code
)
1125 const RTX_CODE
*c
= &preds
[d1
->u
.pred
.index
].codes
[0];
1128 if (*c
== d2
->u
.code
)
1136 /* Otherwise see if the predicates have any codes in common. */
1137 else if (d2
->type
== DT_pred
&& d2
->u
.pred
.index
>= 0)
1139 const RTX_CODE
*c1
= &preds
[d1
->u
.pred
.index
].codes
[0];
1142 while (*c1
!= 0 && !common
)
1144 const RTX_CODE
*c2
= &preds
[d2
->u
.pred
.index
].codes
[0];
1145 while (*c2
!= 0 && !common
)
1147 common
= (*c1
== *c2
);
1159 /* Tests vs veclen may be known when strict equality is involved. */
1160 if (d1
->type
== DT_veclen
&& d2
->type
== DT_veclen_ge
)
1161 return d1
->u
.veclen
>= d2
->u
.veclen
;
1162 if (d1
->type
== DT_veclen_ge
&& d2
->type
== DT_veclen
)
1163 return d2
->u
.veclen
>= d1
->u
.veclen
;
1168 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1169 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1172 maybe_both_true_1 (d1
, d2
)
1173 struct decision_test
*d1
, *d2
;
1175 struct decision_test
*t1
, *t2
;
1177 /* A match_operand with no predicate can match anything. Recognize
1178 this by the existence of a lone DT_accept_op test. */
1179 if (d1
->type
== DT_accept_op
|| d2
->type
== DT_accept_op
)
1182 /* Eliminate pairs of tests while they can exactly match. */
1183 while (d1
&& d2
&& d1
->type
== d2
->type
)
1185 if (maybe_both_true_2 (d1
, d2
) == 0)
1187 d1
= d1
->next
, d2
= d2
->next
;
1190 /* After that, consider all pairs. */
1191 for (t1
= d1
; t1
; t1
= t1
->next
)
1192 for (t2
= d2
; t2
; t2
= t2
->next
)
1193 if (maybe_both_true_2 (t1
, t2
) == 0)
1199 /* Return 0 if we can prove that there is no RTL that can match both
1200 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1201 can match both or just that we couldn't prove there wasn't such an RTL).
1203 TOPLEVEL is non-zero if we are to only look at the top level and not
1204 recursively descend. */
1207 maybe_both_true (d1
, d2
, toplevel
)
1208 struct decision
*d1
, *d2
;
1211 struct decision
*p1
, *p2
;
1214 /* Don't compare strings on the different positions in insn. Doing so
1215 is incorrect and results in false matches from constructs like
1217 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1218 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1220 [(set (match_operand:HI "register_operand" "r")
1221 (match_operand:HI "register_operand" "r"))]
1223 If we are presented with such, we are recursing through the remainder
1224 of a node's success nodes (from the loop at the end of this function).
1225 Skip forward until we come to a position that matches.
1227 Due to the way position strings are constructed, we know that iterating
1228 forward from the lexically lower position (e.g. "00") will run into
1229 the lexically higher position (e.g. "1") and not the other way around.
1230 This saves a bit of effort. */
1232 cmp
= strcmp (d1
->position
, d2
->position
);
1238 /* If the d2->position was lexically lower, swap. */
1240 p1
= d1
, d1
= d2
, d2
= p1
;
1242 if (d1
->success
.first
== 0)
1244 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1245 if (maybe_both_true (p1
, d2
, 0))
1251 /* Test the current level. */
1252 cmp
= maybe_both_true_1 (d1
->tests
, d2
->tests
);
1256 /* We can't prove that D1 and D2 cannot both be true. If we are only
1257 to check the top level, return 1. Otherwise, see if we can prove
1258 that all choices in both successors are mutually exclusive. If
1259 either does not have any successors, we can't prove they can't both
1262 if (toplevel
|| d1
->success
.first
== 0 || d2
->success
.first
== 0)
1265 for (p1
= d1
->success
.first
; p1
; p1
= p1
->next
)
1266 for (p2
= d2
->success
.first
; p2
; p2
= p2
->next
)
1267 if (maybe_both_true (p1
, p2
, 0))
1273 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1276 nodes_identical_1 (d1
, d2
)
1277 struct decision_test
*d1
, *d2
;
1282 return d1
->u
.mode
== d2
->u
.mode
;
1285 return d1
->u
.code
== d2
->u
.code
;
1288 return (d1
->u
.pred
.mode
== d2
->u
.pred
.mode
1289 && strcmp (d1
->u
.pred
.name
, d2
->u
.pred
.name
) == 0);
1292 return strcmp (d1
->u
.c_test
, d2
->u
.c_test
) == 0;
1296 return d1
->u
.veclen
== d2
->u
.veclen
;
1299 return d1
->u
.dup
== d2
->u
.dup
;
1301 case DT_elt_zero_int
:
1302 case DT_elt_one_int
:
1303 case DT_elt_zero_wide
:
1304 case DT_elt_zero_wide_safe
:
1305 return d1
->u
.intval
== d2
->u
.intval
;
1308 return d1
->u
.opno
== d2
->u
.opno
;
1310 case DT_accept_insn
:
1311 /* Differences will be handled in merge_accept_insn. */
1319 /* True iff the two nodes are identical (on one level only). Due
1320 to the way these lists are constructed, we shouldn't have to
1321 consider different orderings on the tests. */
1324 nodes_identical (d1
, d2
)
1325 struct decision
*d1
, *d2
;
1327 struct decision_test
*t1
, *t2
;
1329 for (t1
= d1
->tests
, t2
= d2
->tests
; t1
&& t2
; t1
= t1
->next
, t2
= t2
->next
)
1331 if (t1
->type
!= t2
->type
)
1333 if (! nodes_identical_1 (t1
, t2
))
1337 /* For success, they should now both be null. */
1341 /* Check that their subnodes are at the same position, as any one set
1342 of sibling decisions must be at the same position. Allowing this
1343 requires complications to find_afterward and when change_state is
1345 if (d1
->success
.first
1346 && d2
->success
.first
1347 && strcmp (d1
->success
.first
->position
, d2
->success
.first
->position
))
1353 /* A subroutine of merge_trees; given two nodes that have been declared
1354 identical, cope with two insn accept states. If they differ in the
1355 number of clobbers, then the conflict was created by make_insn_sequence
1356 and we can drop the with-clobbers version on the floor. If both
1357 nodes have no additional clobbers, we have found an ambiguity in the
1358 source machine description. */
1361 merge_accept_insn (oldd
, addd
)
1362 struct decision
*oldd
, *addd
;
1364 struct decision_test
*old
, *add
;
1366 for (old
= oldd
->tests
; old
; old
= old
->next
)
1367 if (old
->type
== DT_accept_insn
)
1372 for (add
= addd
->tests
; add
; add
= add
->next
)
1373 if (add
->type
== DT_accept_insn
)
1378 /* If one node is for a normal insn and the second is for the base
1379 insn with clobbers stripped off, the second node should be ignored. */
1381 if (old
->u
.insn
.num_clobbers_to_add
== 0
1382 && add
->u
.insn
.num_clobbers_to_add
> 0)
1384 /* Nothing to do here. */
1386 else if (old
->u
.insn
.num_clobbers_to_add
> 0
1387 && add
->u
.insn
.num_clobbers_to_add
== 0)
1389 /* In this case, replace OLD with ADD. */
1390 old
->u
.insn
= add
->u
.insn
;
1394 message_with_line (add
->u
.insn
.lineno
, "`%s' matches `%s'",
1395 get_insn_name (add
->u
.insn
.code_number
),
1396 get_insn_name (old
->u
.insn
.code_number
));
1397 message_with_line (old
->u
.insn
.lineno
, "previous definition of `%s'",
1398 get_insn_name (old
->u
.insn
.code_number
));
1403 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1406 merge_trees (oldh
, addh
)
1407 struct decision_head
*oldh
, *addh
;
1409 struct decision
*next
, *add
;
1411 if (addh
->first
== 0)
1413 if (oldh
->first
== 0)
1419 /* Trying to merge bits at different positions isn't possible. */
1420 if (strcmp (oldh
->first
->position
, addh
->first
->position
))
1423 for (add
= addh
->first
; add
; add
= next
)
1425 struct decision
*old
, *insert_before
= NULL
;
1429 /* The semantics of pattern matching state that the tests are
1430 done in the order given in the MD file so that if an insn
1431 matches two patterns, the first one will be used. However,
1432 in practice, most, if not all, patterns are unambiguous so
1433 that their order is independent. In that case, we can merge
1434 identical tests and group all similar modes and codes together.
1436 Scan starting from the end of OLDH until we reach a point
1437 where we reach the head of the list or where we pass a
1438 pattern that could also be true if NEW is true. If we find
1439 an identical pattern, we can merge them. Also, record the
1440 last node that tests the same code and mode and the last one
1441 that tests just the same mode.
1443 If we have no match, place NEW after the closest match we found. */
1445 for (old
= oldh
->last
; old
; old
= old
->prev
)
1447 if (nodes_identical (old
, add
))
1449 merge_accept_insn (old
, add
);
1450 merge_trees (&old
->success
, &add
->success
);
1454 if (maybe_both_true (old
, add
, 0))
1457 /* Insert the nodes in DT test type order, which is roughly
1458 how expensive/important the test is. Given that the tests
1459 are also ordered within the list, examining the first is
1461 if ((int) add
->tests
->type
< (int) old
->tests
->type
)
1462 insert_before
= old
;
1465 if (insert_before
== NULL
)
1468 add
->prev
= oldh
->last
;
1469 oldh
->last
->next
= add
;
1474 if ((add
->prev
= insert_before
->prev
) != NULL
)
1475 add
->prev
->next
= add
;
1478 add
->next
= insert_before
;
1479 insert_before
->prev
= add
;
1486 /* Walk the tree looking for sub-nodes that perform common tests.
1487 Factor out the common test into a new node. This enables us
1488 (depending on the test type) to emit switch statements later. */
1492 struct decision_head
*head
;
1494 struct decision
*first
, *next
;
1496 for (first
= head
->first
; first
&& first
->next
; first
= next
)
1498 enum decision_type type
;
1499 struct decision
*new, *old_last
;
1501 type
= first
->tests
->type
;
1504 /* Want at least two compatible sequential nodes. */
1505 if (next
->tests
->type
!= type
)
1508 /* Don't want all node types, just those we can turn into
1509 switch statements. */
1512 && type
!= DT_veclen
1513 && type
!= DT_elt_zero_int
1514 && type
!= DT_elt_one_int
1515 && type
!= DT_elt_zero_wide_safe
)
1518 /* If we'd been performing more than one test, create a new node
1519 below our first test. */
1520 if (first
->tests
->next
!= NULL
)
1522 new = new_decision (first
->position
, &first
->success
);
1523 new->tests
= first
->tests
->next
;
1524 first
->tests
->next
= NULL
;
1527 /* Crop the node tree off after our first test. */
1529 old_last
= head
->last
;
1532 /* For each compatible test, adjust to perform only one test in
1533 the top level node, then merge the node back into the tree. */
1536 struct decision_head h
;
1538 if (next
->tests
->next
!= NULL
)
1540 new = new_decision (next
->position
, &next
->success
);
1541 new->tests
= next
->tests
->next
;
1542 next
->tests
->next
= NULL
;
1547 h
.first
= h
.last
= new;
1549 merge_trees (head
, &h
);
1551 while (next
&& next
->tests
->type
== type
);
1553 /* After we run out of compatible tests, graft the remaining nodes
1554 back onto the tree. */
1557 next
->prev
= head
->last
;
1558 head
->last
->next
= next
;
1559 head
->last
= old_last
;
1564 for (first
= head
->first
; first
; first
= first
->next
)
1565 factor_tests (&first
->success
);
1568 /* After factoring, try to simplify the tests on any one node.
1569 Tests that are useful for switch statements are recognizable
1570 by having only a single test on a node -- we'll be manipulating
1571 nodes with multiple tests:
1573 If we have mode tests or code tests that are redundant with
1574 predicates, remove them. */
1577 simplify_tests (head
)
1578 struct decision_head
*head
;
1580 struct decision
*tree
;
1582 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1584 struct decision_test
*a
, *b
;
1591 /* Find a predicate node. */
1592 while (b
&& b
->type
!= DT_pred
)
1596 /* Due to how these tests are constructed, we don't even need
1597 to check that the mode and code are compatible -- they were
1598 generated from the predicate in the first place. */
1599 while (a
->type
== DT_mode
|| a
->type
== DT_code
)
1606 for (tree
= head
->first
; tree
; tree
= tree
->next
)
1607 simplify_tests (&tree
->success
);
1610 /* Count the number of subnodes of HEAD. If the number is high enough,
1611 make the first node in HEAD start a separate subroutine in the C code
1612 that is generated. */
1615 break_out_subroutines (head
, initial
)
1616 struct decision_head
*head
;
1620 struct decision
*sub
;
1622 for (sub
= head
->first
; sub
; sub
= sub
->next
)
1623 size
+= 1 + break_out_subroutines (&sub
->success
, 0);
1625 if (size
> SUBROUTINE_THRESHOLD
&& ! initial
)
1627 head
->first
->subroutine_number
= ++next_subroutine_number
;
1633 /* For each node p, find the next alternative that might be true
1637 find_afterward (head
, real_afterward
)
1638 struct decision_head
*head
;
1639 struct decision
*real_afterward
;
1641 struct decision
*p
, *q
, *afterward
;
1643 /* We can't propagate alternatives across subroutine boundaries.
1644 This is not incorrect, merely a minor optimization loss. */
1647 afterward
= (p
->subroutine_number
> 0 ? NULL
: real_afterward
);
1649 for ( ; p
; p
= p
->next
)
1651 /* Find the next node that might be true if this one fails. */
1652 for (q
= p
->next
; q
; q
= q
->next
)
1653 if (maybe_both_true (p
, q
, 1))
1656 /* If we reached the end of the list without finding one,
1657 use the incoming afterward position. */
1666 for (p
= head
->first
; p
; p
= p
->next
)
1667 if (p
->success
.first
)
1668 find_afterward (&p
->success
, p
->afterward
);
1670 /* When we are generating a subroutine, record the real afterward
1671 position in the first node where write_tree can find it, and we
1672 can do the right thing at the subroutine call site. */
1674 if (p
->subroutine_number
> 0)
1675 p
->afterward
= real_afterward
;
1678 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1679 actions are necessary to move to NEWPOS. If we fail to move to the
1680 new state, branch to node AFTERWARD if non-zero, otherwise return.
1682 Failure to move to the new state can only occur if we are trying to
1683 match multiple insns and we try to step past the end of the stream. */
1686 change_state (oldpos
, newpos
, afterward
, indent
)
1689 struct decision
*afterward
;
1692 int odepth
= strlen (oldpos
);
1693 int ndepth
= strlen (newpos
);
1695 int old_has_insn
, new_has_insn
;
1697 /* Pop up as many levels as necessary. */
1698 for (depth
= odepth
; strncmp (oldpos
, newpos
, depth
) != 0; --depth
)
1701 /* Hunt for the last [A-Z] in both strings. */
1702 for (old_has_insn
= odepth
- 1; old_has_insn
>= 0; --old_has_insn
)
1703 if (ISUPPER (oldpos
[old_has_insn
]))
1705 for (new_has_insn
= ndepth
- 1; new_has_insn
>= 0; --new_has_insn
)
1706 if (ISUPPER (newpos
[new_has_insn
]))
1709 /* Go down to desired level. */
1710 while (depth
< ndepth
)
1712 /* It's a different insn from the first one. */
1713 if (ISUPPER (newpos
[depth
]))
1715 /* We can only fail if we're moving down the tree. */
1716 if (old_has_insn
>= 0 && oldpos
[old_has_insn
] >= newpos
[depth
])
1718 printf ("%stem = peep2_next_insn (%d);\n",
1719 indent
, newpos
[depth
] - 'A');
1723 printf ("%stem = peep2_next_insn (%d);\n",
1724 indent
, newpos
[depth
] - 'A');
1725 printf ("%sif (tem == NULL_RTX)\n", indent
);
1727 printf ("%s goto L%d;\n", indent
, afterward
->number
);
1729 printf ("%s goto ret0;\n", indent
);
1731 printf ("%sx%d = PATTERN (tem);\n", indent
, depth
+ 1);
1733 else if (ISLOWER (newpos
[depth
]))
1734 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1735 indent
, depth
+ 1, depth
, newpos
[depth
] - 'a');
1737 printf ("%sx%d = XEXP (x%d, %c);\n",
1738 indent
, depth
+ 1, depth
, newpos
[depth
]);
1743 /* Print the enumerator constant for CODE -- the upcase version of
1751 for (p
= GET_RTX_NAME (code
); *p
; p
++)
1752 putchar (TOUPPER (*p
));
1755 /* Emit code to cross an afterward link -- change state and branch. */
1758 write_afterward (start
, afterward
, indent
)
1759 struct decision
*start
;
1760 struct decision
*afterward
;
1763 if (!afterward
|| start
->subroutine_number
> 0)
1764 printf("%sgoto ret0;\n", indent
);
1767 change_state (start
->position
, afterward
->position
, NULL
, indent
);
1768 printf ("%sgoto L%d;\n", indent
, afterward
->number
);
1772 /* Emit a switch statement, if possible, for an initial sequence of
1773 nodes at START. Return the first node yet untested. */
1775 static struct decision
*
1776 write_switch (start
, depth
)
1777 struct decision
*start
;
1780 struct decision
*p
= start
;
1781 enum decision_type type
= p
->tests
->type
;
1782 struct decision
*needs_label
= NULL
;
1784 /* If we have two or more nodes in sequence that test the same one
1785 thing, we may be able to use a switch statement. */
1789 || p
->next
->tests
->type
!= type
1790 || p
->next
->tests
->next
1791 || nodes_identical_1 (p
->tests
, p
->next
->tests
))
1794 /* DT_code is special in that we can do interesting things with
1795 known predicates at the same time. */
1796 if (type
== DT_code
)
1798 char codemap
[NUM_RTX_CODE
];
1799 struct decision
*ret
;
1802 memset (codemap
, 0, sizeof(codemap
));
1804 printf (" switch (GET_CODE (x%d))\n {\n", depth
);
1805 code
= p
->tests
->u
.code
;
1808 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
1813 printf (":\n goto L%d;\n", p
->success
.first
->number
);
1814 p
->success
.first
->need_label
= 1;
1821 && p
->tests
->type
== DT_code
1822 && ! codemap
[code
= p
->tests
->u
.code
]);
1824 /* If P is testing a predicate that we know about and we haven't
1825 seen any of the codes that are valid for the predicate, we can
1826 write a series of "case" statement, one for each possible code.
1827 Since we are already in a switch, these redundant tests are very
1828 cheap and will reduce the number of predicates called. */
1830 /* Note that while we write out cases for these predicates here,
1831 we don't actually write the test here, as it gets kinda messy.
1832 It is trivial to leave this to later by telling our caller that
1833 we only processed the CODE tests. */
1834 if (needs_label
!= NULL
)
1839 while (p
&& p
->tests
->type
== DT_pred
1840 && p
->tests
->u
.pred
.index
>= 0)
1844 for (c
= &preds
[p
->tests
->u
.pred
.index
].codes
[0]; *c
; ++c
)
1845 if (codemap
[(int) *c
] != 0)
1848 for (c
= &preds
[p
->tests
->u
.pred
.index
].codes
[0]; *c
; ++c
)
1853 codemap
[(int) *c
] = 1;
1856 printf (" goto L%d;\n", p
->number
);
1862 /* Make the default case skip the predicates we managed to match. */
1864 printf (" default:\n");
1869 printf (" goto L%d;\n", p
->number
);
1873 write_afterward (start
, start
->afterward
, " ");
1876 printf (" break;\n");
1881 else if (type
== DT_mode
1882 || type
== DT_veclen
1883 || type
== DT_elt_zero_int
1884 || type
== DT_elt_one_int
1885 || type
== DT_elt_zero_wide_safe
)
1887 const char *indent
= "";
1889 /* We cast switch parameter to integer, so we must ensure that the value
1891 if (type
== DT_elt_zero_wide_safe
)
1894 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth
, depth
);
1896 printf ("%s switch (", indent
);
1900 printf ("GET_MODE (x%d)", depth
);
1903 printf ("XVECLEN (x%d, 0)", depth
);
1905 case DT_elt_zero_int
:
1906 printf ("XINT (x%d, 0)", depth
);
1908 case DT_elt_one_int
:
1909 printf ("XINT (x%d, 1)", depth
);
1911 case DT_elt_zero_wide_safe
:
1912 /* Convert result of XWINT to int for portability since some C
1913 compilers won't do it and some will. */
1914 printf ("(int) XWINT (x%d, 0)", depth
);
1919 printf (")\n%s {\n", indent
);
1923 /* Merge trees will not unify identical nodes if their
1924 sub-nodes are at different levels. Thus we must check
1925 for duplicate cases. */
1927 for (q
= start
; q
!= p
; q
= q
->next
)
1928 if (nodes_identical_1 (p
->tests
, q
->tests
))
1931 if (p
!= start
&& p
->need_label
&& needs_label
== NULL
)
1934 printf ("%s case ", indent
);
1938 printf ("%smode", GET_MODE_NAME (p
->tests
->u
.mode
));
1941 printf ("%d", p
->tests
->u
.veclen
);
1943 case DT_elt_zero_int
:
1944 case DT_elt_one_int
:
1945 case DT_elt_zero_wide
:
1946 case DT_elt_zero_wide_safe
:
1947 printf (HOST_WIDE_INT_PRINT_DEC
, p
->tests
->u
.intval
);
1952 printf (":\n%s goto L%d;\n", indent
, p
->success
.first
->number
);
1953 p
->success
.first
->need_label
= 1;
1957 while (p
&& p
->tests
->type
== type
&& !p
->tests
->next
);
1960 printf ("%s default:\n%s break;\n%s }\n",
1961 indent
, indent
, indent
);
1963 return needs_label
!= NULL
? needs_label
: p
;
1967 /* None of the other tests are ameanable. */
1972 /* Emit code for one test. */
1975 write_cond (p
, depth
, subroutine_type
)
1976 struct decision_test
*p
;
1978 enum routine_type subroutine_type
;
1983 printf ("GET_MODE (x%d) == %smode", depth
, GET_MODE_NAME (p
->u
.mode
));
1987 printf ("GET_CODE (x%d) == ", depth
);
1988 print_code (p
->u
.code
);
1992 printf ("XVECLEN (x%d, 0) == %d", depth
, p
->u
.veclen
);
1995 case DT_elt_zero_int
:
1996 printf ("XINT (x%d, 0) == %d", depth
, (int) p
->u
.intval
);
1999 case DT_elt_one_int
:
2000 printf ("XINT (x%d, 1) == %d", depth
, (int) p
->u
.intval
);
2003 case DT_elt_zero_wide
:
2004 case DT_elt_zero_wide_safe
:
2005 printf ("XWINT (x%d, 0) == ", depth
);
2006 printf (HOST_WIDE_INT_PRINT_DEC
, p
->u
.intval
);
2010 printf ("XVECLEN (x%d, 0) >= %d", depth
, p
->u
.veclen
);
2014 printf ("rtx_equal_p (x%d, operands[%d])", depth
, p
->u
.dup
);
2018 printf ("%s (x%d, %smode)", p
->u
.pred
.name
, depth
,
2019 GET_MODE_NAME (p
->u
.pred
.mode
));
2023 printf ("(%s)", p
->u
.c_test
);
2026 case DT_accept_insn
:
2027 switch (subroutine_type
)
2030 if (p
->u
.insn
.num_clobbers_to_add
== 0)
2032 printf ("pnum_clobbers != NULL");
2045 /* Emit code for one action. The previous tests have succeeded;
2046 TEST is the last of the chain. In the normal case we simply
2047 perform a state change. For the `accept' tests we must do more work. */
2050 write_action (p
, test
, depth
, uncond
, success
, subroutine_type
)
2052 struct decision_test
*test
;
2054 struct decision
*success
;
2055 enum routine_type subroutine_type
;
2062 else if (test
->type
== DT_accept_op
|| test
->type
== DT_accept_insn
)
2064 fputs (" {\n", stdout
);
2071 if (test
->type
== DT_accept_op
)
2073 printf("%soperands[%d] = x%d;\n", indent
, test
->u
.opno
, depth
);
2075 /* Only allow DT_accept_insn to follow. */
2079 if (test
->type
!= DT_accept_insn
)
2084 /* Sanity check that we're now at the end of the list of tests. */
2088 if (test
->type
== DT_accept_insn
)
2090 switch (subroutine_type
)
2093 if (test
->u
.insn
.num_clobbers_to_add
!= 0)
2094 printf ("%s*pnum_clobbers = %d;\n",
2095 indent
, test
->u
.insn
.num_clobbers_to_add
);
2096 printf ("%sreturn %d;\n", indent
, test
->u
.insn
.code_number
);
2100 printf ("%sreturn gen_split_%d (operands);\n",
2101 indent
, test
->u
.insn
.code_number
);
2106 int match_len
= 0, i
;
2108 for (i
= strlen (p
->position
) - 1; i
>= 0; --i
)
2109 if (ISUPPER (p
->position
[i
]))
2111 match_len
= p
->position
[i
] - 'A';
2114 printf ("%s*_pmatch_len = %d;\n", indent
, match_len
);
2115 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2116 indent
, test
->u
.insn
.code_number
);
2117 printf ("%sif (tem != 0)\n%s return tem;\n", indent
, indent
);
2127 printf("%sgoto L%d;\n", indent
, success
->number
);
2128 success
->need_label
= 1;
2132 fputs (" }\n", stdout
);
2135 /* Return 1 if the test is always true and has no fallthru path. Return -1
2136 if the test does have a fallthru path, but requires that the condition be
2137 terminated. Otherwise return 0 for a normal test. */
2138 /* ??? is_unconditional is a stupid name for a tri-state function. */
2141 is_unconditional (t
, subroutine_type
)
2142 struct decision_test
*t
;
2143 enum routine_type subroutine_type
;
2145 if (t
->type
== DT_accept_op
)
2148 if (t
->type
== DT_accept_insn
)
2150 switch (subroutine_type
)
2153 return (t
->u
.insn
.num_clobbers_to_add
== 0);
2166 /* Emit code for one node -- the conditional and the accompanying action.
2167 Return true if there is no fallthru path. */
2170 write_node (p
, depth
, subroutine_type
)
2173 enum routine_type subroutine_type
;
2175 struct decision_test
*test
, *last_test
;
2178 last_test
= test
= p
->tests
;
2179 uncond
= is_unconditional (test
, subroutine_type
);
2183 write_cond (test
, depth
, subroutine_type
);
2185 while ((test
= test
->next
) != NULL
)
2190 uncond2
= is_unconditional (test
, subroutine_type
);
2195 write_cond (test
, depth
, subroutine_type
);
2201 write_action (p
, last_test
, depth
, uncond
, p
->success
.first
, subroutine_type
);
2206 /* Emit code for all of the sibling nodes of HEAD. */
2209 write_tree_1 (head
, depth
, subroutine_type
)
2210 struct decision_head
*head
;
2212 enum routine_type subroutine_type
;
2214 struct decision
*p
, *next
;
2217 for (p
= head
->first
; p
; p
= next
)
2219 /* The label for the first element was printed in write_tree. */
2220 if (p
!= head
->first
&& p
->need_label
)
2221 OUTPUT_LABEL (" ", p
->number
);
2223 /* Attempt to write a switch statement for a whole sequence. */
2224 next
= write_switch (p
, depth
);
2229 /* Failed -- fall back and write one node. */
2230 uncond
= write_node (p
, depth
, subroutine_type
);
2235 /* Finished with this chain. Close a fallthru path by branching
2236 to the afterward node. */
2238 write_afterward (head
->last
, head
->last
->afterward
, " ");
2241 /* Write out the decision tree starting at HEAD. PREVPOS is the
2242 position at the node that branched to this node. */
2245 write_tree (head
, prevpos
, type
, initial
)
2246 struct decision_head
*head
;
2247 const char *prevpos
;
2248 enum routine_type type
;
2251 struct decision
*p
= head
->first
;
2255 OUTPUT_LABEL (" ", p
->number
);
2257 if (! initial
&& p
->subroutine_number
> 0)
2259 static const char * const name_prefix
[] = {
2260 "recog", "split", "peephole2"
2263 static const char * const call_suffix
[] = {
2264 ", pnum_clobbers", "", ", _pmatch_len"
2267 /* This node has been broken out into a separate subroutine.
2268 Call it, test the result, and branch accordingly. */
2272 printf (" tem = %s_%d (x0, insn%s);\n",
2273 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2274 if (IS_SPLIT (type
))
2275 printf (" if (tem != 0)\n return tem;\n");
2277 printf (" if (tem >= 0)\n return tem;\n");
2279 change_state (p
->position
, p
->afterward
->position
, NULL
, " ");
2280 printf (" goto L%d;\n", p
->afterward
->number
);
2284 printf (" return %s_%d (x0, insn%s);\n",
2285 name_prefix
[type
], p
->subroutine_number
, call_suffix
[type
]);
2290 int depth
= strlen (p
->position
);
2292 change_state (prevpos
, p
->position
, head
->last
->afterward
, " ");
2293 write_tree_1 (head
, depth
, type
);
2295 for (p
= head
->first
; p
; p
= p
->next
)
2296 if (p
->success
.first
)
2297 write_tree (&p
->success
, p
->position
, type
, 0);
2301 /* Write out a subroutine of type TYPE to do comparisons starting at
2305 write_subroutine (head
, type
)
2306 struct decision_head
*head
;
2307 enum routine_type type
;
2309 int subfunction
= head
->first
? head
->first
->subroutine_number
: 0;
2314 s_or_e
= subfunction
? "static " : "";
2317 sprintf (extension
, "_%d", subfunction
);
2318 else if (type
== RECOG
)
2319 extension
[0] = '\0';
2321 strcpy (extension
, "_insns");
2326 printf ("%sint recog%s PARAMS ((rtx, rtx, int *));\n", s_or_e
, extension
);
2328 recog%s (x0, insn, pnum_clobbers)\n\
2329 rtx x0 ATTRIBUTE_UNUSED;\n\
2330 rtx insn ATTRIBUTE_UNUSED;\n\
2331 int *pnum_clobbers ATTRIBUTE_UNUSED;\n", s_or_e
, extension
);
2334 printf ("%srtx split%s PARAMS ((rtx, rtx));\n", s_or_e
, extension
);
2336 split%s (x0, insn)\n\
2337 rtx x0 ATTRIBUTE_UNUSED;\n\
2338 rtx insn ATTRIBUTE_UNUSED;\n", s_or_e
, extension
);
2341 printf ("%srtx peephole2%s PARAMS ((rtx, rtx, int *));\n",
2344 peephole2%s (x0, insn, _pmatch_len)\n\
2345 rtx x0 ATTRIBUTE_UNUSED;\n\
2346 rtx insn ATTRIBUTE_UNUSED;\n\
2347 int *_pmatch_len ATTRIBUTE_UNUSED;\n", s_or_e
, extension
);
2351 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
2352 for (i
= 1; i
<= max_depth
; i
++)
2353 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i
);
2355 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type
) ? "rtx" : "int");
2358 printf (" recog_data.insn = NULL_RTX;\n");
2361 write_tree (head
, "", type
, 1);
2363 printf (" goto ret0;\n");
2365 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type
) ? 0 : -1);
2368 /* In break_out_subroutines, we discovered the boundaries for the
2369 subroutines, but did not write them out. Do so now. */
2372 write_subroutines (head
, type
)
2373 struct decision_head
*head
;
2374 enum routine_type type
;
2378 for (p
= head
->first
; p
; p
= p
->next
)
2379 if (p
->success
.first
)
2380 write_subroutines (&p
->success
, type
);
2382 if (head
->first
->subroutine_number
> 0)
2383 write_subroutine (head
, type
);
2386 /* Begin the output file. */
2392 /* Generated automatically by the program `genrecog' from the target\n\
2393 machine description file. */\n\
2395 #include \"config.h\"\n\
2396 #include \"system.h\"\n\
2397 #include \"rtl.h\"\n\
2398 #include \"tm_p.h\"\n\
2399 #include \"function.h\"\n\
2400 #include \"insn-config.h\"\n\
2401 #include \"recog.h\"\n\
2402 #include \"real.h\"\n\
2403 #include \"output.h\"\n\
2404 #include \"flags.h\"\n\
2405 #include \"hard-reg-set.h\"\n\
2406 #include \"resource.h\"\n\
2407 #include \"toplev.h\"\n\
2408 #include \"reload.h\"\n\
2412 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2413 X0 is a valid instruction.\n\
2415 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2416 returns a nonnegative number which is the insn code number for the\n\
2417 pattern that matched. This is the same as the order in the machine\n\
2418 description of the entry that matched. This number can be used as an\n\
2419 index into `insn_data' and other tables.\n");
2421 The third argument to recog is an optional pointer to an int. If\n\
2422 present, recog will accept a pattern if it matches except for missing\n\
2423 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2424 the optional pointer will be set to the number of CLOBBERs that need\n\
2425 to be added (it should be initialized to zero by the caller). If it");
2427 is set nonzero, the caller should allocate a PARALLEL of the\n\
2428 appropriate size, copy the initial entries, and call add_clobbers\n\
2429 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2433 The function split_insns returns 0 if the rtl could not\n\
2434 be split or the split rtl in a SEQUENCE if it can be.\n\
2436 The function peephole2_insns returns 0 if the rtl could not\n\
2437 be matched. If there was a match, the new rtl is returned in a SEQUENCE,\n\
2438 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2443 /* Construct and return a sequence of decisions
2444 that will recognize INSN.
2446 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2448 static struct decision_head
2449 make_insn_sequence (insn
, type
)
2451 enum routine_type type
;
2454 const char *c_test
= XSTR (insn
, type
== RECOG
? 2 : 1);
2455 struct decision
*last
;
2456 struct decision_test
*test
, **place
;
2457 struct decision_head head
;
2460 record_insn_name (next_insn_code
, (type
== RECOG
? XSTR (insn
, 0) : NULL
));
2462 c_test_pos
[0] = '\0';
2463 if (type
== PEEPHOLE2
)
2467 /* peephole2 gets special treatment:
2468 - X always gets an outer parallel even if it's only one entry
2469 - we remove all traces of outer-level match_scratch and match_dup
2470 expressions here. */
2471 x
= rtx_alloc (PARALLEL
);
2472 PUT_MODE (x
, VOIDmode
);
2473 XVEC (x
, 0) = rtvec_alloc (XVECLEN (insn
, 0));
2474 for (i
= j
= 0; i
< XVECLEN (insn
, 0); i
++)
2476 rtx tmp
= XVECEXP (insn
, 0, i
);
2477 if (GET_CODE (tmp
) != MATCH_SCRATCH
&& GET_CODE (tmp
) != MATCH_DUP
)
2479 XVECEXP (x
, 0, j
) = tmp
;
2485 c_test_pos
[0] = 'A' + j
- 1;
2486 c_test_pos
[1] = '\0';
2488 else if (XVECLEN (insn
, type
== RECOG
) == 1)
2489 x
= XVECEXP (insn
, type
== RECOG
, 0);
2492 x
= rtx_alloc (PARALLEL
);
2493 XVEC (x
, 0) = XVEC (insn
, type
== RECOG
);
2494 PUT_MODE (x
, VOIDmode
);
2497 validate_pattern (x
, insn
, NULL_RTX
, 0);
2499 memset(&head
, 0, sizeof(head
));
2500 last
= add_to_sequence (x
, &head
, "", type
, 1);
2502 /* Find the end of the test chain on the last node. */
2503 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2505 place
= &test
->next
;
2509 /* Need a new node if we have another test to add. */
2510 if (test
->type
== DT_accept_op
)
2512 last
= new_decision (c_test_pos
, &last
->success
);
2513 place
= &last
->tests
;
2515 test
= new_decision_test (DT_c_test
, &place
);
2516 test
->u
.c_test
= c_test
;
2519 test
= new_decision_test (DT_accept_insn
, &place
);
2520 test
->u
.insn
.code_number
= next_insn_code
;
2521 test
->u
.insn
.lineno
= pattern_lineno
;
2522 test
->u
.insn
.num_clobbers_to_add
= 0;
2527 /* If this is an DEFINE_INSN and X is a PARALLEL, see if it ends
2528 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2529 If so, set up to recognize the pattern without these CLOBBERs. */
2531 if (GET_CODE (x
) == PARALLEL
)
2535 /* Find the last non-clobber in the parallel. */
2536 for (i
= XVECLEN (x
, 0); i
> 0; i
--)
2538 rtx y
= XVECEXP (x
, 0, i
- 1);
2539 if (GET_CODE (y
) != CLOBBER
2540 || (GET_CODE (XEXP (y
, 0)) != REG
2541 && GET_CODE (XEXP (y
, 0)) != MATCH_SCRATCH
))
2545 if (i
!= XVECLEN (x
, 0))
2548 struct decision_head clobber_head
;
2550 /* Build a similar insn without the clobbers. */
2552 new = XVECEXP (x
, 0, 0);
2557 new = rtx_alloc (PARALLEL
);
2558 XVEC (new, 0) = rtvec_alloc (i
);
2559 for (j
= i
- 1; j
>= 0; j
--)
2560 XVECEXP (new, 0, j
) = XVECEXP (x
, 0, j
);
2564 memset (&clobber_head
, 0, sizeof(clobber_head
));
2565 last
= add_to_sequence (new, &clobber_head
, "", type
, 1);
2567 /* Find the end of the test chain on the last node. */
2568 for (test
= last
->tests
; test
->next
; test
= test
->next
)
2571 /* We definitely have a new test to add -- create a new
2573 place
= &test
->next
;
2574 if (test
->type
== DT_accept_op
)
2576 last
= new_decision ("", &last
->success
);
2577 place
= &last
->tests
;
2582 test
= new_decision_test (DT_c_test
, &place
);
2583 test
->u
.c_test
= c_test
;
2586 test
= new_decision_test (DT_accept_insn
, &place
);
2587 test
->u
.insn
.code_number
= next_insn_code
;
2588 test
->u
.insn
.lineno
= pattern_lineno
;
2589 test
->u
.insn
.num_clobbers_to_add
= XVECLEN (x
, 0) - i
;
2591 merge_trees (&head
, &clobber_head
);
2597 /* Define the subroutine we will call below and emit in genemit. */
2598 printf ("extern rtx gen_split_%d PARAMS ((rtx *));\n", next_insn_code
);
2602 /* Define the subroutine we will call below and emit in genemit. */
2603 printf ("extern rtx gen_peephole2_%d PARAMS ((rtx, rtx *));\n",
2612 process_tree (head
, subroutine_type
)
2613 struct decision_head
*head
;
2614 enum routine_type subroutine_type
;
2616 if (head
->first
== NULL
)
2618 /* We can elide peephole2_insns, but not recog or split_insns. */
2619 if (subroutine_type
== PEEPHOLE2
)
2624 factor_tests (head
);
2626 next_subroutine_number
= 0;
2627 break_out_subroutines (head
, 1);
2628 find_afterward (head
, NULL
);
2630 /* We run this after find_afterward, because find_afterward needs
2631 the redundant DT_mode tests on predicates to determine whether
2632 two tests can both be true or not. */
2633 simplify_tests(head
);
2635 write_subroutines (head
, subroutine_type
);
2638 write_subroutine (head
, subroutine_type
);
2641 extern int main
PARAMS ((int, char **));
2649 struct decision_head recog_tree
, split_tree
, peephole2_tree
, h
;
2651 progname
= "genrecog";
2653 memset (&recog_tree
, 0, sizeof recog_tree
);
2654 memset (&split_tree
, 0, sizeof split_tree
);
2655 memset (&peephole2_tree
, 0, sizeof peephole2_tree
);
2658 fatal ("no input file name");
2660 if (init_md_reader_args (argc
, argv
) != SUCCESS_EXIT_CODE
)
2661 return (FATAL_EXIT_CODE
);
2668 /* Read the machine description. */
2672 desc
= read_md_rtx (&pattern_lineno
, &next_insn_code
);
2676 if (GET_CODE (desc
) == DEFINE_INSN
)
2678 h
= make_insn_sequence (desc
, RECOG
);
2679 merge_trees (&recog_tree
, &h
);
2681 else if (GET_CODE (desc
) == DEFINE_SPLIT
)
2683 h
= make_insn_sequence (desc
, SPLIT
);
2684 merge_trees (&split_tree
, &h
);
2686 else if (GET_CODE (desc
) == DEFINE_PEEPHOLE2
)
2688 h
= make_insn_sequence (desc
, PEEPHOLE2
);
2689 merge_trees (&peephole2_tree
, &h
);
2696 return FATAL_EXIT_CODE
;
2700 process_tree (&recog_tree
, RECOG
);
2701 process_tree (&split_tree
, SPLIT
);
2702 process_tree (&peephole2_tree
, PEEPHOLE2
);
2705 return (ferror (stdout
) != 0 ? FATAL_EXIT_CODE
: SUCCESS_EXIT_CODE
);
2708 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2710 get_insn_name (code
)
2713 if (code
< insn_name_ptr_size
)
2714 return insn_name_ptr
[code
];
2720 record_insn_name (code
, name
)
2724 static const char *last_real_name
= "insn";
2725 static int last_real_code
= 0;
2728 if (insn_name_ptr_size
<= code
)
2731 new_size
= (insn_name_ptr_size
? insn_name_ptr_size
* 2 : 512);
2733 (char **) xrealloc (insn_name_ptr
, sizeof(char *) * new_size
);
2734 memset (insn_name_ptr
+ insn_name_ptr_size
, 0,
2735 sizeof(char *) * (new_size
- insn_name_ptr_size
));
2736 insn_name_ptr_size
= new_size
;
2739 if (!name
|| name
[0] == '\0')
2741 new = xmalloc (strlen (last_real_name
) + 10);
2742 sprintf (new, "%s+%d", last_real_name
, code
- last_real_code
);
2746 last_real_name
= new = xstrdup (name
);
2747 last_real_code
= code
;
2750 insn_name_ptr
[code
] = new;
2754 debug_decision_2 (test
)
2755 struct decision_test
*test
;
2760 fprintf (stderr
, "mode=%s", GET_MODE_NAME (test
->u
.mode
));
2763 fprintf (stderr
, "code=%s", GET_RTX_NAME (test
->u
.code
));
2766 fprintf (stderr
, "veclen=%d", test
->u
.veclen
);
2768 case DT_elt_zero_int
:
2769 fprintf (stderr
, "elt0_i=%d", (int) test
->u
.intval
);
2771 case DT_elt_one_int
:
2772 fprintf (stderr
, "elt1_i=%d", (int) test
->u
.intval
);
2774 case DT_elt_zero_wide
:
2775 fprintf (stderr
, "elt0_w=");
2776 fprintf (stderr
, HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2778 case DT_elt_zero_wide_safe
:
2779 fprintf (stderr
, "elt0_ws=");
2780 fprintf (stderr
, HOST_WIDE_INT_PRINT_DEC
, test
->u
.intval
);
2783 fprintf (stderr
, "veclen>=%d", test
->u
.veclen
);
2786 fprintf (stderr
, "dup=%d", test
->u
.dup
);
2789 fprintf (stderr
, "pred=(%s,%s)",
2790 test
->u
.pred
.name
, GET_MODE_NAME(test
->u
.pred
.mode
));
2795 strncpy (sub
, test
->u
.c_test
, sizeof(sub
));
2796 memcpy (sub
+16, "...", 4);
2797 fprintf (stderr
, "c_test=\"%s\"", sub
);
2801 fprintf (stderr
, "A_op=%d", test
->u
.opno
);
2803 case DT_accept_insn
:
2804 fprintf (stderr
, "A_insn=(%d,%d)",
2805 test
->u
.insn
.code_number
, test
->u
.insn
.num_clobbers_to_add
);
2814 debug_decision_1 (d
, indent
)
2819 struct decision_test
*test
;
2823 for (i
= 0; i
< indent
; ++i
)
2825 fputs ("(nil)\n", stderr
);
2829 for (i
= 0; i
< indent
; ++i
)
2836 debug_decision_2 (test
);
2837 while ((test
= test
->next
) != NULL
)
2839 fputs (" + ", stderr
);
2840 debug_decision_2 (test
);
2843 fprintf (stderr
, "} %d n %d a %d\n", d
->number
,
2844 (d
->next
? d
->next
->number
: -1),
2845 (d
->afterward
? d
->afterward
->number
: -1));
2849 debug_decision_0 (d
, indent
, maxdepth
)
2851 int indent
, maxdepth
;
2860 for (i
= 0; i
< indent
; ++i
)
2862 fputs ("(nil)\n", stderr
);
2866 debug_decision_1 (d
, indent
);
2867 for (n
= d
->success
.first
; n
; n
= n
->next
)
2868 debug_decision_0 (n
, indent
+ 2, maxdepth
- 1);
2875 debug_decision_0 (d
, 0, 1000000);
2879 debug_decision_list (d
)
2884 debug_decision_0 (d
, 0, 0);