cfgrtl.c (commit_one_edge_insertion): Fix warning.
[official-gcc.git] / gcc / gcse.c
blob01d57efa903d8dda407bf79ae7d24ded58ae347a
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "toplev.h"
150 #include "rtl.h"
151 #include "tm_p.h"
152 #include "regs.h"
153 #include "hard-reg-set.h"
154 #include "flags.h"
155 #include "real.h"
156 #include "insn-config.h"
157 #include "recog.h"
158 #include "basic-block.h"
159 #include "output.h"
160 #include "function.h"
161 #include "expr.h"
162 #include "except.h"
163 #include "ggc.h"
164 #include "params.h"
166 #include "obstack.h"
167 #define obstack_chunk_alloc gmalloc
168 #define obstack_chunk_free free
170 /* Propagate flow information through back edges and thus enable PRE's
171 moving loop invariant calculations out of loops.
173 Originally this tended to create worse overall code, but several
174 improvements during the development of PRE seem to have made following
175 back edges generally a win.
177 Note much of the loop invariant code motion done here would normally
178 be done by loop.c, which has more heuristics for when to move invariants
179 out of loops. At some point we might need to move some of those
180 heuristics into gcse.c. */
181 #define FOLLOW_BACK_EDGES 1
183 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
184 are a superset of those done by GCSE.
186 We perform the following steps:
188 1) Compute basic block information.
190 2) Compute table of places where registers are set.
192 3) Perform copy/constant propagation.
194 4) Perform global cse.
196 5) Perform another pass of copy/constant propagation.
198 Two passes of copy/constant propagation are done because the first one
199 enables more GCSE and the second one helps to clean up the copies that
200 GCSE creates. This is needed more for PRE than for Classic because Classic
201 GCSE will try to use an existing register containing the common
202 subexpression rather than create a new one. This is harder to do for PRE
203 because of the code motion (which Classic GCSE doesn't do).
205 Expressions we are interested in GCSE-ing are of the form
206 (set (pseudo-reg) (expression)).
207 Function want_to_gcse_p says what these are.
209 PRE handles moving invariant expressions out of loops (by treating them as
210 partially redundant).
212 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
213 assignment) based GVN (global value numbering). L. T. Simpson's paper
214 (Rice University) on value numbering is a useful reference for this.
216 **********************
218 We used to support multiple passes but there are diminishing returns in
219 doing so. The first pass usually makes 90% of the changes that are doable.
220 A second pass can make a few more changes made possible by the first pass.
221 Experiments show any further passes don't make enough changes to justify
222 the expense.
224 A study of spec92 using an unlimited number of passes:
225 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
226 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
227 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
229 It was found doing copy propagation between each pass enables further
230 substitutions.
232 PRE is quite expensive in complicated functions because the DFA can take
233 awhile to converge. Hence we only perform one pass. The parameter max-gcse-passes can
234 be modified if one wants to experiment.
236 **********************
238 The steps for PRE are:
240 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
242 2) Perform the data flow analysis for PRE.
244 3) Delete the redundant instructions
246 4) Insert the required copies [if any] that make the partially
247 redundant instructions fully redundant.
249 5) For other reaching expressions, insert an instruction to copy the value
250 to a newly created pseudo that will reach the redundant instruction.
252 The deletion is done first so that when we do insertions we
253 know which pseudo reg to use.
255 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
256 argue it is not. The number of iterations for the algorithm to converge
257 is typically 2-4 so I don't view it as that expensive (relatively speaking).
259 PRE GCSE depends heavily on the second CSE pass to clean up the copies
260 we create. To make an expression reach the place where it's redundant,
261 the result of the expression is copied to a new register, and the redundant
262 expression is deleted by replacing it with this new register. Classic GCSE
263 doesn't have this problem as much as it computes the reaching defs of
264 each register in each block and thus can try to use an existing register.
266 **********************
268 A fair bit of simplicity is created by creating small functions for simple
269 tasks, even when the function is only called in one place. This may
270 measurably slow things down [or may not] by creating more function call
271 overhead than is necessary. The source is laid out so that it's trivial
272 to make the affected functions inline so that one can measure what speed
273 up, if any, can be achieved, and maybe later when things settle things can
274 be rearranged.
276 Help stamp out big monolithic functions! */
278 /* GCSE global vars. */
280 /* -dG dump file. */
281 static FILE *gcse_file;
283 /* Note whether or not we should run jump optimization after gcse. We
284 want to do this for two cases.
286 * If we changed any jumps via cprop.
288 * If we added any labels via edge splitting. */
290 static int run_jump_opt_after_gcse;
292 /* Bitmaps are normally not included in debugging dumps.
293 However it's useful to be able to print them from GDB.
294 We could create special functions for this, but it's simpler to
295 just allow passing stderr to the dump_foo fns. Since stderr can
296 be a macro, we store a copy here. */
297 static FILE *debug_stderr;
299 /* An obstack for our working variables. */
300 static struct obstack gcse_obstack;
302 /* Non-zero for each mode that supports (set (reg) (reg)).
303 This is trivially true for integer and floating point values.
304 It may or may not be true for condition codes. */
305 static char can_copy_p[(int) NUM_MACHINE_MODES];
307 /* Non-zero if can_copy_p has been initialized. */
308 static int can_copy_init_p;
310 struct reg_use {rtx reg_rtx; };
312 /* Hash table of expressions. */
314 struct expr
316 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
317 rtx expr;
318 /* Index in the available expression bitmaps. */
319 int bitmap_index;
320 /* Next entry with the same hash. */
321 struct expr *next_same_hash;
322 /* List of anticipatable occurrences in basic blocks in the function.
323 An "anticipatable occurrence" is one that is the first occurrence in the
324 basic block, the operands are not modified in the basic block prior
325 to the occurrence and the output is not used between the start of
326 the block and the occurrence. */
327 struct occr *antic_occr;
328 /* List of available occurrence in basic blocks in the function.
329 An "available occurrence" is one that is the last occurrence in the
330 basic block and the operands are not modified by following statements in
331 the basic block [including this insn]. */
332 struct occr *avail_occr;
333 /* Non-null if the computation is PRE redundant.
334 The value is the newly created pseudo-reg to record a copy of the
335 expression in all the places that reach the redundant copy. */
336 rtx reaching_reg;
339 /* Occurrence of an expression.
340 There is one per basic block. If a pattern appears more than once the
341 last appearance is used [or first for anticipatable expressions]. */
343 struct occr
345 /* Next occurrence of this expression. */
346 struct occr *next;
347 /* The insn that computes the expression. */
348 rtx insn;
349 /* Non-zero if this [anticipatable] occurrence has been deleted. */
350 char deleted_p;
351 /* Non-zero if this [available] occurrence has been copied to
352 reaching_reg. */
353 /* ??? This is mutually exclusive with deleted_p, so they could share
354 the same byte. */
355 char copied_p;
358 /* Expression and copy propagation hash tables.
359 Each hash table is an array of buckets.
360 ??? It is known that if it were an array of entries, structure elements
361 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
362 not clear whether in the final analysis a sufficient amount of memory would
363 be saved as the size of the available expression bitmaps would be larger
364 [one could build a mapping table without holes afterwards though].
365 Someday I'll perform the computation and figure it out. */
367 /* Total size of the expression hash table, in elements. */
368 static unsigned int expr_hash_table_size;
370 /* The table itself.
371 This is an array of `expr_hash_table_size' elements. */
372 static struct expr **expr_hash_table;
374 /* Total size of the copy propagation hash table, in elements. */
375 static unsigned int set_hash_table_size;
377 /* The table itself.
378 This is an array of `set_hash_table_size' elements. */
379 static struct expr **set_hash_table;
381 /* Mapping of uids to cuids.
382 Only real insns get cuids. */
383 static int *uid_cuid;
385 /* Highest UID in UID_CUID. */
386 static int max_uid;
388 /* Get the cuid of an insn. */
389 #ifdef ENABLE_CHECKING
390 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
391 #else
392 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
393 #endif
395 /* Number of cuids. */
396 static int max_cuid;
398 /* Mapping of cuids to insns. */
399 static rtx *cuid_insn;
401 /* Get insn from cuid. */
402 #define CUID_INSN(CUID) (cuid_insn[CUID])
404 /* Maximum register number in function prior to doing gcse + 1.
405 Registers created during this pass have regno >= max_gcse_regno.
406 This is named with "gcse" to not collide with global of same name. */
407 static unsigned int max_gcse_regno;
409 /* Maximum number of cse-able expressions found. */
410 static int n_exprs;
412 /* Maximum number of assignments for copy propagation found. */
413 static int n_sets;
415 /* Table of registers that are modified.
417 For each register, each element is a list of places where the pseudo-reg
418 is set.
420 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
421 requires knowledge of which blocks kill which regs [and thus could use
422 a bitmap instead of the lists `reg_set_table' uses].
424 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
425 num-regs) [however perhaps it may be useful to keep the data as is]. One
426 advantage of recording things this way is that `reg_set_table' is fairly
427 sparse with respect to pseudo regs but for hard regs could be fairly dense
428 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
429 up functions like compute_transp since in the case of pseudo-regs we only
430 need to iterate over the number of times a pseudo-reg is set, not over the
431 number of basic blocks [clearly there is a bit of a slow down in the cases
432 where a pseudo is set more than once in a block, however it is believed
433 that the net effect is to speed things up]. This isn't done for hard-regs
434 because recording call-clobbered hard-regs in `reg_set_table' at each
435 function call can consume a fair bit of memory, and iterating over
436 hard-regs stored this way in compute_transp will be more expensive. */
438 typedef struct reg_set
440 /* The next setting of this register. */
441 struct reg_set *next;
442 /* The insn where it was set. */
443 rtx insn;
444 } reg_set;
446 static reg_set **reg_set_table;
448 /* Size of `reg_set_table'.
449 The table starts out at max_gcse_regno + slop, and is enlarged as
450 necessary. */
451 static int reg_set_table_size;
453 /* Amount to grow `reg_set_table' by when it's full. */
454 #define REG_SET_TABLE_SLOP 100
456 /* This is a list of expressions which are MEMs and will be used by load
457 or store motion.
458 Load motion tracks MEMs which aren't killed by
459 anything except itself. (ie, loads and stores to a single location).
460 We can then allow movement of these MEM refs with a little special
461 allowance. (all stores copy the same value to the reaching reg used
462 for the loads). This means all values used to store into memory must have
463 no side effects so we can re-issue the setter value.
464 Store Motion uses this structure as an expression table to track stores
465 which look interesting, and might be moveable towards the exit block. */
467 struct ls_expr
469 struct expr * expr; /* Gcse expression reference for LM. */
470 rtx pattern; /* Pattern of this mem. */
471 rtx loads; /* INSN list of loads seen. */
472 rtx stores; /* INSN list of stores seen. */
473 struct ls_expr * next; /* Next in the list. */
474 int invalid; /* Invalid for some reason. */
475 int index; /* If it maps to a bitmap index. */
476 int hash_index; /* Index when in a hash table. */
477 rtx reaching_reg; /* Register to use when re-writing. */
480 /* Head of the list of load/store memory refs. */
481 static struct ls_expr * pre_ldst_mems = NULL;
483 /* Bitmap containing one bit for each register in the program.
484 Used when performing GCSE to track which registers have been set since
485 the start of the basic block. */
486 static regset reg_set_bitmap;
488 /* For each block, a bitmap of registers set in the block.
489 This is used by expr_killed_p and compute_transp.
490 It is computed during hash table computation and not by compute_sets
491 as it includes registers added since the last pass (or between cprop and
492 gcse) and it's currently not easy to realloc sbitmap vectors. */
493 static sbitmap *reg_set_in_block;
495 /* Array, indexed by basic block number for a list of insns which modify
496 memory within that block. */
497 static rtx * modify_mem_list;
498 bitmap modify_mem_list_set;
500 /* This array parallels modify_mem_list, but is kept canonicalized. */
501 static rtx * canon_modify_mem_list;
502 bitmap canon_modify_mem_list_set;
503 /* Various variables for statistics gathering. */
505 /* Memory used in a pass.
506 This isn't intended to be absolutely precise. Its intent is only
507 to keep an eye on memory usage. */
508 static int bytes_used;
510 /* GCSE substitutions made. */
511 static int gcse_subst_count;
512 /* Number of copy instructions created. */
513 static int gcse_create_count;
514 /* Number of constants propagated. */
515 static int const_prop_count;
516 /* Number of copys propagated. */
517 static int copy_prop_count;
519 /* These variables are used by classic GCSE.
520 Normally they'd be defined a bit later, but `rd_gen' needs to
521 be declared sooner. */
523 /* Each block has a bitmap of each type.
524 The length of each blocks bitmap is:
526 max_cuid - for reaching definitions
527 n_exprs - for available expressions
529 Thus we view the bitmaps as 2 dimensional arrays. i.e.
530 rd_kill[block_num][cuid_num]
531 ae_kill[block_num][expr_num] */
533 /* For reaching defs */
534 static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
536 /* for available exprs */
537 static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
539 /* Objects of this type are passed around by the null-pointer check
540 removal routines. */
541 struct null_pointer_info
543 /* The basic block being processed. */
544 basic_block current_block;
545 /* The first register to be handled in this pass. */
546 unsigned int min_reg;
547 /* One greater than the last register to be handled in this pass. */
548 unsigned int max_reg;
549 sbitmap *nonnull_local;
550 sbitmap *nonnull_killed;
553 static void compute_can_copy PARAMS ((void));
554 static char *gmalloc PARAMS ((unsigned int));
555 static char *grealloc PARAMS ((char *, unsigned int));
556 static char *gcse_alloc PARAMS ((unsigned long));
557 static void alloc_gcse_mem PARAMS ((rtx));
558 static void free_gcse_mem PARAMS ((void));
559 static void alloc_reg_set_mem PARAMS ((int));
560 static void free_reg_set_mem PARAMS ((void));
561 static int get_bitmap_width PARAMS ((int, int, int));
562 static void record_one_set PARAMS ((int, rtx));
563 static void record_set_info PARAMS ((rtx, rtx, void *));
564 static void compute_sets PARAMS ((rtx));
565 static void hash_scan_insn PARAMS ((rtx, int, int));
566 static void hash_scan_set PARAMS ((rtx, rtx, int));
567 static void hash_scan_clobber PARAMS ((rtx, rtx));
568 static void hash_scan_call PARAMS ((rtx, rtx));
569 static int want_to_gcse_p PARAMS ((rtx));
570 static int oprs_unchanged_p PARAMS ((rtx, rtx, int));
571 static int oprs_anticipatable_p PARAMS ((rtx, rtx));
572 static int oprs_available_p PARAMS ((rtx, rtx));
573 static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx,
574 int, int));
575 static void insert_set_in_table PARAMS ((rtx, rtx));
576 static unsigned int hash_expr PARAMS ((rtx, enum machine_mode, int *, int));
577 static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *));
578 static unsigned int hash_string_1 PARAMS ((const char *));
579 static unsigned int hash_set PARAMS ((int, int));
580 static int expr_equiv_p PARAMS ((rtx, rtx));
581 static void record_last_reg_set_info PARAMS ((rtx, int));
582 static void record_last_mem_set_info PARAMS ((rtx));
583 static void record_last_set_info PARAMS ((rtx, rtx, void *));
584 static void compute_hash_table PARAMS ((int));
585 static void alloc_set_hash_table PARAMS ((int));
586 static void free_set_hash_table PARAMS ((void));
587 static void compute_set_hash_table PARAMS ((void));
588 static void alloc_expr_hash_table PARAMS ((unsigned int));
589 static void free_expr_hash_table PARAMS ((void));
590 static void compute_expr_hash_table PARAMS ((void));
591 static void dump_hash_table PARAMS ((FILE *, const char *, struct expr **,
592 int, int));
593 static struct expr *lookup_expr PARAMS ((rtx));
594 static struct expr *lookup_set PARAMS ((unsigned int, rtx));
595 static struct expr *next_set PARAMS ((unsigned int, struct expr *));
596 static void reset_opr_set_tables PARAMS ((void));
597 static int oprs_not_set_p PARAMS ((rtx, rtx));
598 static void mark_call PARAMS ((rtx));
599 static void mark_set PARAMS ((rtx, rtx));
600 static void mark_clobber PARAMS ((rtx, rtx));
601 static void mark_oprs_set PARAMS ((rtx));
602 static void alloc_cprop_mem PARAMS ((int, int));
603 static void free_cprop_mem PARAMS ((void));
604 static void compute_transp PARAMS ((rtx, int, sbitmap *, int));
605 static void compute_transpout PARAMS ((void));
606 static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *,
607 int));
608 static void compute_cprop_data PARAMS ((void));
609 static void find_used_regs PARAMS ((rtx *, void *));
610 static int try_replace_reg PARAMS ((rtx, rtx, rtx));
611 static struct expr *find_avail_set PARAMS ((int, rtx));
612 static int cprop_jump PARAMS ((basic_block, rtx, rtx, rtx, rtx));
613 static void mems_conflict_for_gcse_p PARAMS ((rtx, rtx, void *));
614 static int load_killed_in_block_p PARAMS ((basic_block, int, rtx, int));
615 static void canon_list_insert PARAMS ((rtx, rtx, void *));
616 static int cprop_insn PARAMS ((basic_block, rtx, int));
617 static int cprop PARAMS ((int));
618 static int one_cprop_pass PARAMS ((int, int));
619 static struct expr *find_bypass_set PARAMS ((int, int));
620 static int bypass_block PARAMS ((basic_block, rtx, rtx));
621 static int bypass_conditional_jumps PARAMS ((void));
622 static void alloc_pre_mem PARAMS ((int, int));
623 static void free_pre_mem PARAMS ((void));
624 static void compute_pre_data PARAMS ((void));
625 static int pre_expr_reaches_here_p PARAMS ((basic_block, struct expr *,
626 basic_block));
627 static void insert_insn_end_bb PARAMS ((struct expr *, basic_block, int));
628 static void pre_insert_copy_insn PARAMS ((struct expr *, rtx));
629 static void pre_insert_copies PARAMS ((void));
630 static int pre_delete PARAMS ((void));
631 static int pre_gcse PARAMS ((void));
632 static int one_pre_gcse_pass PARAMS ((int));
633 static void add_label_notes PARAMS ((rtx, rtx));
634 static void alloc_code_hoist_mem PARAMS ((int, int));
635 static void free_code_hoist_mem PARAMS ((void));
636 static void compute_code_hoist_vbeinout PARAMS ((void));
637 static void compute_code_hoist_data PARAMS ((void));
638 static int hoist_expr_reaches_here_p PARAMS ((basic_block, int, basic_block,
639 char *));
640 static void hoist_code PARAMS ((void));
641 static int one_code_hoisting_pass PARAMS ((void));
642 static void alloc_rd_mem PARAMS ((int, int));
643 static void free_rd_mem PARAMS ((void));
644 static void handle_rd_kill_set PARAMS ((rtx, int, basic_block));
645 static void compute_kill_rd PARAMS ((void));
646 static void compute_rd PARAMS ((void));
647 static void alloc_avail_expr_mem PARAMS ((int, int));
648 static void free_avail_expr_mem PARAMS ((void));
649 static void compute_ae_gen PARAMS ((void));
650 static int expr_killed_p PARAMS ((rtx, basic_block));
651 static void compute_ae_kill PARAMS ((sbitmap *, sbitmap *));
652 static int expr_reaches_here_p PARAMS ((struct occr *, struct expr *,
653 basic_block, int));
654 static rtx computing_insn PARAMS ((struct expr *, rtx));
655 static int def_reaches_here_p PARAMS ((rtx, rtx));
656 static int can_disregard_other_sets PARAMS ((struct reg_set **, rtx, int));
657 static int handle_avail_expr PARAMS ((rtx, struct expr *));
658 static int classic_gcse PARAMS ((void));
659 static int one_classic_gcse_pass PARAMS ((int));
660 static void invalidate_nonnull_info PARAMS ((rtx, rtx, void *));
661 static void delete_null_pointer_checks_1 PARAMS ((unsigned int *,
662 sbitmap *, sbitmap *,
663 struct null_pointer_info *));
664 static rtx process_insert_insn PARAMS ((struct expr *));
665 static int pre_edge_insert PARAMS ((struct edge_list *, struct expr **));
666 static int expr_reaches_here_p_work PARAMS ((struct occr *, struct expr *,
667 basic_block, int, char *));
668 static int pre_expr_reaches_here_p_work PARAMS ((basic_block, struct expr *,
669 basic_block, char *));
670 static struct ls_expr * ldst_entry PARAMS ((rtx));
671 static void free_ldst_entry PARAMS ((struct ls_expr *));
672 static void free_ldst_mems PARAMS ((void));
673 static void print_ldst_list PARAMS ((FILE *));
674 static struct ls_expr * find_rtx_in_ldst PARAMS ((rtx));
675 static int enumerate_ldsts PARAMS ((void));
676 static inline struct ls_expr * first_ls_expr PARAMS ((void));
677 static inline struct ls_expr * next_ls_expr PARAMS ((struct ls_expr *));
678 static int simple_mem PARAMS ((rtx));
679 static void invalidate_any_buried_refs PARAMS ((rtx));
680 static void compute_ld_motion_mems PARAMS ((void));
681 static void trim_ld_motion_mems PARAMS ((void));
682 static void update_ld_motion_stores PARAMS ((struct expr *));
683 static void reg_set_info PARAMS ((rtx, rtx, void *));
684 static int store_ops_ok PARAMS ((rtx, basic_block));
685 static void find_moveable_store PARAMS ((rtx));
686 static int compute_store_table PARAMS ((void));
687 static int load_kills_store PARAMS ((rtx, rtx));
688 static int find_loads PARAMS ((rtx, rtx));
689 static int store_killed_in_insn PARAMS ((rtx, rtx));
690 static int store_killed_after PARAMS ((rtx, rtx, basic_block));
691 static int store_killed_before PARAMS ((rtx, rtx, basic_block));
692 static void build_store_vectors PARAMS ((void));
693 static void insert_insn_start_bb PARAMS ((rtx, basic_block));
694 static int insert_store PARAMS ((struct ls_expr *, edge));
695 static void replace_store_insn PARAMS ((rtx, rtx, basic_block));
696 static void delete_store PARAMS ((struct ls_expr *,
697 basic_block));
698 static void free_store_memory PARAMS ((void));
699 static void store_motion PARAMS ((void));
700 static void free_insn_expr_list_list PARAMS ((rtx *));
701 static void clear_modify_mem_tables PARAMS ((void));
702 static void free_modify_mem_tables PARAMS ((void));
703 static rtx gcse_emit_move_after PARAMS ((rtx, rtx, rtx));
705 /* Entry point for global common subexpression elimination.
706 F is the first instruction in the function. */
709 gcse_main (f, file)
710 rtx f;
711 FILE *file;
713 int changed, pass;
714 /* Bytes used at start of pass. */
715 int initial_bytes_used;
716 /* Maximum number of bytes used by a pass. */
717 int max_pass_bytes;
718 /* Point to release obstack data from for each pass. */
719 char *gcse_obstack_bottom;
721 /* Insertion of instructions on edges can create new basic blocks; we
722 need the original basic block count so that we can properly deallocate
723 arrays sized on the number of basic blocks originally in the cfg. */
724 int orig_bb_count;
725 /* We do not construct an accurate cfg in functions which call
726 setjmp, so just punt to be safe. */
727 if (current_function_calls_setjmp)
728 return 0;
730 /* Assume that we do not need to run jump optimizations after gcse. */
731 run_jump_opt_after_gcse = 0;
733 /* For calling dump_foo fns from gdb. */
734 debug_stderr = stderr;
735 gcse_file = file;
737 /* Identify the basic block information for this function, including
738 successors and predecessors. */
739 max_gcse_regno = max_reg_num ();
741 if (file)
742 dump_flow_info (file);
744 orig_bb_count = n_basic_blocks;
745 /* Return if there's nothing to do. */
746 if (n_basic_blocks <= 1)
747 return 0;
749 /* Trying to perform global optimizations on flow graphs which have
750 a high connectivity will take a long time and is unlikely to be
751 particularly useful.
753 In normal circumstances a cfg should have about twice as many edges
754 as blocks. But we do not want to punish small functions which have
755 a couple switch statements. So we require a relatively large number
756 of basic blocks and the ratio of edges to blocks to be high. */
757 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
759 if (warn_disabled_optimization)
760 warning ("GCSE disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
761 n_basic_blocks, n_edges / n_basic_blocks);
762 return 0;
765 /* If allocating memory for the cprop bitmap would take up too much
766 storage it's better just to disable the optimization. */
767 if ((n_basic_blocks
768 * SBITMAP_SET_SIZE (max_gcse_regno)
769 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
771 if (warn_disabled_optimization)
772 warning ("GCSE disabled: %d basic blocks and %d registers",
773 n_basic_blocks, max_gcse_regno);
775 return 0;
778 /* See what modes support reg/reg copy operations. */
779 if (! can_copy_init_p)
781 compute_can_copy ();
782 can_copy_init_p = 1;
785 gcc_obstack_init (&gcse_obstack);
786 bytes_used = 0;
788 /* We need alias. */
789 init_alias_analysis ();
790 /* Record where pseudo-registers are set. This data is kept accurate
791 during each pass. ??? We could also record hard-reg information here
792 [since it's unchanging], however it is currently done during hash table
793 computation.
795 It may be tempting to compute MEM set information here too, but MEM sets
796 will be subject to code motion one day and thus we need to compute
797 information about memory sets when we build the hash tables. */
799 alloc_reg_set_mem (max_gcse_regno);
800 compute_sets (f);
802 pass = 0;
803 initial_bytes_used = bytes_used;
804 max_pass_bytes = 0;
805 gcse_obstack_bottom = gcse_alloc (1);
806 changed = 1;
807 while (changed && pass < MAX_GCSE_PASSES)
809 changed = 0;
810 if (file)
811 fprintf (file, "GCSE pass %d\n\n", pass + 1);
813 /* Initialize bytes_used to the space for the pred/succ lists,
814 and the reg_set_table data. */
815 bytes_used = initial_bytes_used;
817 /* Each pass may create new registers, so recalculate each time. */
818 max_gcse_regno = max_reg_num ();
820 alloc_gcse_mem (f);
822 /* Don't allow constant propagation to modify jumps
823 during this pass. */
824 changed = one_cprop_pass (pass + 1, 0);
826 if (optimize_size)
827 changed |= one_classic_gcse_pass (pass + 1);
828 else
830 changed |= one_pre_gcse_pass (pass + 1);
831 /* We may have just created new basic blocks. Release and
832 recompute various things which are sized on the number of
833 basic blocks. */
834 if (changed)
836 free_modify_mem_tables ();
837 modify_mem_list
838 = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
839 canon_modify_mem_list
840 = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
841 memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx));
842 memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx));
843 orig_bb_count = n_basic_blocks;
845 free_reg_set_mem ();
846 alloc_reg_set_mem (max_reg_num ());
847 compute_sets (f);
848 run_jump_opt_after_gcse = 1;
851 if (max_pass_bytes < bytes_used)
852 max_pass_bytes = bytes_used;
854 /* Free up memory, then reallocate for code hoisting. We can
855 not re-use the existing allocated memory because the tables
856 will not have info for the insns or registers created by
857 partial redundancy elimination. */
858 free_gcse_mem ();
860 /* It does not make sense to run code hoisting unless we optimizing
861 for code size -- it rarely makes programs faster, and can make
862 them bigger if we did partial redundancy elimination (when optimizing
863 for space, we use a classic gcse algorithm instead of partial
864 redundancy algorithms). */
865 if (optimize_size)
867 max_gcse_regno = max_reg_num ();
868 alloc_gcse_mem (f);
869 changed |= one_code_hoisting_pass ();
870 free_gcse_mem ();
872 if (max_pass_bytes < bytes_used)
873 max_pass_bytes = bytes_used;
876 if (file)
878 fprintf (file, "\n");
879 fflush (file);
882 obstack_free (&gcse_obstack, gcse_obstack_bottom);
883 pass++;
886 /* Do one last pass of copy propagation, including cprop into
887 conditional jumps. */
889 max_gcse_regno = max_reg_num ();
890 alloc_gcse_mem (f);
891 /* This time, go ahead and allow cprop to alter jumps. */
892 one_cprop_pass (pass + 1, 1);
893 free_gcse_mem ();
895 if (file)
897 fprintf (file, "GCSE of %s: %d basic blocks, ",
898 current_function_name, n_basic_blocks);
899 fprintf (file, "%d pass%s, %d bytes\n\n",
900 pass, pass > 1 ? "es" : "", max_pass_bytes);
903 obstack_free (&gcse_obstack, NULL);
904 free_reg_set_mem ();
905 /* We are finished with alias. */
906 end_alias_analysis ();
907 allocate_reg_info (max_reg_num (), FALSE, FALSE);
909 /* Store motion disabled until it is fixed. */
910 if (0 && !optimize_size && flag_gcse_sm)
911 store_motion ();
912 /* Record where pseudo-registers are set. */
913 return run_jump_opt_after_gcse;
916 /* Misc. utilities. */
918 /* Compute which modes support reg/reg copy operations. */
920 static void
921 compute_can_copy ()
923 int i;
924 #ifndef AVOID_CCMODE_COPIES
925 rtx reg, insn;
926 #endif
927 memset (can_copy_p, 0, NUM_MACHINE_MODES);
929 start_sequence ();
930 for (i = 0; i < NUM_MACHINE_MODES; i++)
931 if (GET_MODE_CLASS (i) == MODE_CC)
933 #ifdef AVOID_CCMODE_COPIES
934 can_copy_p[i] = 0;
935 #else
936 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
937 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
938 if (recog (PATTERN (insn), insn, NULL) >= 0)
939 can_copy_p[i] = 1;
940 #endif
942 else
943 can_copy_p[i] = 1;
945 end_sequence ();
948 /* Cover function to xmalloc to record bytes allocated. */
950 static char *
951 gmalloc (size)
952 unsigned int size;
954 bytes_used += size;
955 return xmalloc (size);
958 /* Cover function to xrealloc.
959 We don't record the additional size since we don't know it.
960 It won't affect memory usage stats much anyway. */
962 static char *
963 grealloc (ptr, size)
964 char *ptr;
965 unsigned int size;
967 return xrealloc (ptr, size);
970 /* Cover function to obstack_alloc.
971 We don't need to record the bytes allocated here since
972 obstack_chunk_alloc is set to gmalloc. */
974 static char *
975 gcse_alloc (size)
976 unsigned long size;
978 return (char *) obstack_alloc (&gcse_obstack, size);
981 /* Allocate memory for the cuid mapping array,
982 and reg/memory set tracking tables.
984 This is called at the start of each pass. */
986 static void
987 alloc_gcse_mem (f)
988 rtx f;
990 int i, n;
991 rtx insn;
993 /* Find the largest UID and create a mapping from UIDs to CUIDs.
994 CUIDs are like UIDs except they increase monotonically, have no gaps,
995 and only apply to real insns. */
997 max_uid = get_max_uid ();
998 n = (max_uid + 1) * sizeof (int);
999 uid_cuid = (int *) gmalloc (n);
1000 memset ((char *) uid_cuid, 0, n);
1001 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1003 if (INSN_P (insn))
1004 uid_cuid[INSN_UID (insn)] = i++;
1005 else
1006 uid_cuid[INSN_UID (insn)] = i;
1009 /* Create a table mapping cuids to insns. */
1011 max_cuid = i;
1012 n = (max_cuid + 1) * sizeof (rtx);
1013 cuid_insn = (rtx *) gmalloc (n);
1014 memset ((char *) cuid_insn, 0, n);
1015 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1016 if (INSN_P (insn))
1017 CUID_INSN (i++) = insn;
1019 /* Allocate vars to track sets of regs. */
1020 reg_set_bitmap = BITMAP_XMALLOC ();
1022 /* Allocate vars to track sets of regs, memory per block. */
1023 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block,
1024 max_gcse_regno);
1025 /* Allocate array to keep a list of insns which modify memory in each
1026 basic block. */
1027 modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
1028 canon_modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
1029 memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx));
1030 memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx));
1031 modify_mem_list_set = BITMAP_XMALLOC ();
1032 canon_modify_mem_list_set = BITMAP_XMALLOC ();
1035 /* Free memory allocated by alloc_gcse_mem. */
1037 static void
1038 free_gcse_mem ()
1040 free (uid_cuid);
1041 free (cuid_insn);
1043 BITMAP_XFREE (reg_set_bitmap);
1045 sbitmap_vector_free (reg_set_in_block);
1046 free_modify_mem_tables ();
1047 BITMAP_XFREE (modify_mem_list_set);
1048 BITMAP_XFREE (canon_modify_mem_list_set);
1051 /* Many of the global optimization algorithms work by solving dataflow
1052 equations for various expressions. Initially, some local value is
1053 computed for each expression in each block. Then, the values across the
1054 various blocks are combined (by following flow graph edges) to arrive at
1055 global values. Conceptually, each set of equations is independent. We
1056 may therefore solve all the equations in parallel, solve them one at a
1057 time, or pick any intermediate approach.
1059 When you're going to need N two-dimensional bitmaps, each X (say, the
1060 number of blocks) by Y (say, the number of expressions), call this
1061 function. It's not important what X and Y represent; only that Y
1062 correspond to the things that can be done in parallel. This function will
1063 return an appropriate chunking factor C; you should solve C sets of
1064 equations in parallel. By going through this function, we can easily
1065 trade space against time; by solving fewer equations in parallel we use
1066 less space. */
1068 static int
1069 get_bitmap_width (n, x, y)
1070 int n;
1071 int x;
1072 int y;
1074 /* It's not really worth figuring out *exactly* how much memory will
1075 be used by a particular choice. The important thing is to get
1076 something approximately right. */
1077 size_t max_bitmap_memory = 10 * 1024 * 1024;
1079 /* The number of bytes we'd use for a single column of minimum
1080 width. */
1081 size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE);
1083 /* Often, it's reasonable just to solve all the equations in
1084 parallel. */
1085 if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory)
1086 return y;
1088 /* Otherwise, pick the largest width we can, without going over the
1089 limit. */
1090 return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1)
1091 / column_size);
1094 /* Compute the local properties of each recorded expression.
1096 Local properties are those that are defined by the block, irrespective of
1097 other blocks.
1099 An expression is transparent in a block if its operands are not modified
1100 in the block.
1102 An expression is computed (locally available) in a block if it is computed
1103 at least once and expression would contain the same value if the
1104 computation was moved to the end of the block.
1106 An expression is locally anticipatable in a block if it is computed at
1107 least once and expression would contain the same value if the computation
1108 was moved to the beginning of the block.
1110 We call this routine for cprop, pre and code hoisting. They all compute
1111 basically the same information and thus can easily share this code.
1113 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1114 properties. If NULL, then it is not necessary to compute or record that
1115 particular property.
1117 SETP controls which hash table to look at. If zero, this routine looks at
1118 the expr hash table; if nonzero this routine looks at the set hash table.
1119 Additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1120 ABSALTERED. */
1122 static void
1123 compute_local_properties (transp, comp, antloc, setp)
1124 sbitmap *transp;
1125 sbitmap *comp;
1126 sbitmap *antloc;
1127 int setp;
1129 unsigned int i, hash_table_size;
1130 struct expr **hash_table;
1132 /* Initialize any bitmaps that were passed in. */
1133 if (transp)
1135 if (setp)
1136 sbitmap_vector_zero (transp, last_basic_block);
1137 else
1138 sbitmap_vector_ones (transp, last_basic_block);
1141 if (comp)
1142 sbitmap_vector_zero (comp, last_basic_block);
1143 if (antloc)
1144 sbitmap_vector_zero (antloc, last_basic_block);
1146 /* We use the same code for cprop, pre and hoisting. For cprop
1147 we care about the set hash table, for pre and hoisting we
1148 care about the expr hash table. */
1149 hash_table_size = setp ? set_hash_table_size : expr_hash_table_size;
1150 hash_table = setp ? set_hash_table : expr_hash_table;
1152 for (i = 0; i < hash_table_size; i++)
1154 struct expr *expr;
1156 for (expr = hash_table[i]; expr != NULL; expr = expr->next_same_hash)
1158 int indx = expr->bitmap_index;
1159 struct occr *occr;
1161 /* The expression is transparent in this block if it is not killed.
1162 We start by assuming all are transparent [none are killed], and
1163 then reset the bits for those that are. */
1164 if (transp)
1165 compute_transp (expr->expr, indx, transp, setp);
1167 /* The occurrences recorded in antic_occr are exactly those that
1168 we want to set to non-zero in ANTLOC. */
1169 if (antloc)
1170 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1172 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1174 /* While we're scanning the table, this is a good place to
1175 initialize this. */
1176 occr->deleted_p = 0;
1179 /* The occurrences recorded in avail_occr are exactly those that
1180 we want to set to non-zero in COMP. */
1181 if (comp)
1182 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1184 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1186 /* While we're scanning the table, this is a good place to
1187 initialize this. */
1188 occr->copied_p = 0;
1191 /* While we're scanning the table, this is a good place to
1192 initialize this. */
1193 expr->reaching_reg = 0;
1198 /* Register set information.
1200 `reg_set_table' records where each register is set or otherwise
1201 modified. */
1203 static struct obstack reg_set_obstack;
1205 static void
1206 alloc_reg_set_mem (n_regs)
1207 int n_regs;
1209 unsigned int n;
1211 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1212 n = reg_set_table_size * sizeof (struct reg_set *);
1213 reg_set_table = (struct reg_set **) gmalloc (n);
1214 memset ((char *) reg_set_table, 0, n);
1216 gcc_obstack_init (&reg_set_obstack);
1219 static void
1220 free_reg_set_mem ()
1222 free (reg_set_table);
1223 obstack_free (&reg_set_obstack, NULL);
1226 /* Record REGNO in the reg_set table. */
1228 static void
1229 record_one_set (regno, insn)
1230 int regno;
1231 rtx insn;
1233 /* Allocate a new reg_set element and link it onto the list. */
1234 struct reg_set *new_reg_info;
1236 /* If the table isn't big enough, enlarge it. */
1237 if (regno >= reg_set_table_size)
1239 int new_size = regno + REG_SET_TABLE_SLOP;
1241 reg_set_table
1242 = (struct reg_set **) grealloc ((char *) reg_set_table,
1243 new_size * sizeof (struct reg_set *));
1244 memset ((char *) (reg_set_table + reg_set_table_size), 0,
1245 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1246 reg_set_table_size = new_size;
1249 new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
1250 sizeof (struct reg_set));
1251 bytes_used += sizeof (struct reg_set);
1252 new_reg_info->insn = insn;
1253 new_reg_info->next = reg_set_table[regno];
1254 reg_set_table[regno] = new_reg_info;
1257 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1258 an insn. The DATA is really the instruction in which the SET is
1259 occurring. */
1261 static void
1262 record_set_info (dest, setter, data)
1263 rtx dest, setter ATTRIBUTE_UNUSED;
1264 void *data;
1266 rtx record_set_insn = (rtx) data;
1268 if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1269 record_one_set (REGNO (dest), record_set_insn);
1272 /* Scan the function and record each set of each pseudo-register.
1274 This is called once, at the start of the gcse pass. See the comments for
1275 `reg_set_table' for further documenation. */
1277 static void
1278 compute_sets (f)
1279 rtx f;
1281 rtx insn;
1283 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1284 if (INSN_P (insn))
1285 note_stores (PATTERN (insn), record_set_info, insn);
1288 /* Hash table support. */
1290 /* For each register, the cuid of the first/last insn in the block
1291 that set it, or -1 if not set. */
1292 #define NEVER_SET -1
1294 struct reg_avail_info
1296 basic_block last_bb;
1297 int first_set;
1298 int last_set;
1301 static struct reg_avail_info *reg_avail_info;
1302 static basic_block current_bb;
1305 /* See whether X, the source of a set, is something we want to consider for
1306 GCSE. */
1308 static int
1309 want_to_gcse_p (x)
1310 rtx x;
1312 static rtx test_insn = 0;
1313 int num_clobbers = 0;
1314 int icode;
1316 switch (GET_CODE (x))
1318 case REG:
1319 case SUBREG:
1320 case CONST_INT:
1321 case CONST_DOUBLE:
1322 case CONST_VECTOR:
1323 case CALL:
1324 return 0;
1326 default:
1327 break;
1330 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1331 if (general_operand (x, GET_MODE (x)))
1332 return 1;
1333 else if (GET_MODE (x) == VOIDmode)
1334 return 0;
1336 /* Otherwise, check if we can make a valid insn from it. First initialize
1337 our test insn if we haven't already. */
1338 if (test_insn == 0)
1340 test_insn
1341 = make_insn_raw (gen_rtx_SET (VOIDmode,
1342 gen_rtx_REG (word_mode,
1343 FIRST_PSEUDO_REGISTER * 2),
1344 const0_rtx));
1345 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1346 ggc_add_rtx_root (&test_insn, 1);
1349 /* Now make an insn like the one we would make when GCSE'ing and see if
1350 valid. */
1351 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1352 SET_SRC (PATTERN (test_insn)) = x;
1353 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1354 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1357 /* Return non-zero if the operands of expression X are unchanged from the
1358 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1359 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1361 static int
1362 oprs_unchanged_p (x, insn, avail_p)
1363 rtx x, insn;
1364 int avail_p;
1366 int i, j;
1367 enum rtx_code code;
1368 const char *fmt;
1370 if (x == 0)
1371 return 1;
1373 code = GET_CODE (x);
1374 switch (code)
1376 case REG:
1378 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1380 if (info->last_bb != current_bb)
1381 return 1;
1382 if (avail_p)
1383 return info->last_set < INSN_CUID (insn);
1384 else
1385 return info->first_set >= INSN_CUID (insn);
1388 case MEM:
1389 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1390 x, avail_p))
1391 return 0;
1392 else
1393 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1395 case PRE_DEC:
1396 case PRE_INC:
1397 case POST_DEC:
1398 case POST_INC:
1399 case PRE_MODIFY:
1400 case POST_MODIFY:
1401 return 0;
1403 case PC:
1404 case CC0: /*FIXME*/
1405 case CONST:
1406 case CONST_INT:
1407 case CONST_DOUBLE:
1408 case CONST_VECTOR:
1409 case SYMBOL_REF:
1410 case LABEL_REF:
1411 case ADDR_VEC:
1412 case ADDR_DIFF_VEC:
1413 return 1;
1415 default:
1416 break;
1419 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1421 if (fmt[i] == 'e')
1423 /* If we are about to do the last recursive call needed at this
1424 level, change it into iteration. This function is called enough
1425 to be worth it. */
1426 if (i == 0)
1427 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1429 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1430 return 0;
1432 else if (fmt[i] == 'E')
1433 for (j = 0; j < XVECLEN (x, i); j++)
1434 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1435 return 0;
1438 return 1;
1441 /* Used for communication between mems_conflict_for_gcse_p and
1442 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1443 conflict between two memory references. */
1444 static int gcse_mems_conflict_p;
1446 /* Used for communication between mems_conflict_for_gcse_p and
1447 load_killed_in_block_p. A memory reference for a load instruction,
1448 mems_conflict_for_gcse_p will see if a memory store conflicts with
1449 this memory load. */
1450 static rtx gcse_mem_operand;
1452 /* DEST is the output of an instruction. If it is a memory reference, and
1453 possibly conflicts with the load found in gcse_mem_operand, then set
1454 gcse_mems_conflict_p to a nonzero value. */
1456 static void
1457 mems_conflict_for_gcse_p (dest, setter, data)
1458 rtx dest, setter ATTRIBUTE_UNUSED;
1459 void *data ATTRIBUTE_UNUSED;
1461 while (GET_CODE (dest) == SUBREG
1462 || GET_CODE (dest) == ZERO_EXTRACT
1463 || GET_CODE (dest) == SIGN_EXTRACT
1464 || GET_CODE (dest) == STRICT_LOW_PART)
1465 dest = XEXP (dest, 0);
1467 /* If DEST is not a MEM, then it will not conflict with the load. Note
1468 that function calls are assumed to clobber memory, but are handled
1469 elsewhere. */
1470 if (GET_CODE (dest) != MEM)
1471 return;
1473 /* If we are setting a MEM in our list of specially recognized MEMs,
1474 don't mark as killed this time. */
1476 if (dest == gcse_mem_operand && pre_ldst_mems != NULL)
1478 if (!find_rtx_in_ldst (dest))
1479 gcse_mems_conflict_p = 1;
1480 return;
1483 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1484 rtx_addr_varies_p))
1485 gcse_mems_conflict_p = 1;
1488 /* Return nonzero if the expression in X (a memory reference) is killed
1489 in block BB before or after the insn with the CUID in UID_LIMIT.
1490 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1491 before UID_LIMIT.
1493 To check the entire block, set UID_LIMIT to max_uid + 1 and
1494 AVAIL_P to 0. */
1496 static int
1497 load_killed_in_block_p (bb, uid_limit, x, avail_p)
1498 basic_block bb;
1499 int uid_limit;
1500 rtx x;
1501 int avail_p;
1503 rtx list_entry = modify_mem_list[bb->index];
1504 while (list_entry)
1506 rtx setter;
1507 /* Ignore entries in the list that do not apply. */
1508 if ((avail_p
1509 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1510 || (! avail_p
1511 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1513 list_entry = XEXP (list_entry, 1);
1514 continue;
1517 setter = XEXP (list_entry, 0);
1519 /* If SETTER is a call everything is clobbered. Note that calls
1520 to pure functions are never put on the list, so we need not
1521 worry about them. */
1522 if (GET_CODE (setter) == CALL_INSN)
1523 return 1;
1525 /* SETTER must be an INSN of some kind that sets memory. Call
1526 note_stores to examine each hunk of memory that is modified.
1528 The note_stores interface is pretty limited, so we have to
1529 communicate via global variables. Yuk. */
1530 gcse_mem_operand = x;
1531 gcse_mems_conflict_p = 0;
1532 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1533 if (gcse_mems_conflict_p)
1534 return 1;
1535 list_entry = XEXP (list_entry, 1);
1537 return 0;
1540 /* Return non-zero if the operands of expression X are unchanged from
1541 the start of INSN's basic block up to but not including INSN. */
1543 static int
1544 oprs_anticipatable_p (x, insn)
1545 rtx x, insn;
1547 return oprs_unchanged_p (x, insn, 0);
1550 /* Return non-zero if the operands of expression X are unchanged from
1551 INSN to the end of INSN's basic block. */
1553 static int
1554 oprs_available_p (x, insn)
1555 rtx x, insn;
1557 return oprs_unchanged_p (x, insn, 1);
1560 /* Hash expression X.
1562 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1563 indicating if a volatile operand is found or if the expression contains
1564 something we don't want to insert in the table.
1566 ??? One might want to merge this with canon_hash. Later. */
1568 static unsigned int
1569 hash_expr (x, mode, do_not_record_p, hash_table_size)
1570 rtx x;
1571 enum machine_mode mode;
1572 int *do_not_record_p;
1573 int hash_table_size;
1575 unsigned int hash;
1577 *do_not_record_p = 0;
1579 hash = hash_expr_1 (x, mode, do_not_record_p);
1580 return hash % hash_table_size;
1583 /* Hash a string. Just add its bytes up. */
1585 static inline unsigned
1586 hash_string_1 (ps)
1587 const char *ps;
1589 unsigned hash = 0;
1590 const unsigned char *p = (const unsigned char *) ps;
1592 if (p)
1593 while (*p)
1594 hash += *p++;
1596 return hash;
1599 /* Subroutine of hash_expr to do the actual work. */
1601 static unsigned int
1602 hash_expr_1 (x, mode, do_not_record_p)
1603 rtx x;
1604 enum machine_mode mode;
1605 int *do_not_record_p;
1607 int i, j;
1608 unsigned hash = 0;
1609 enum rtx_code code;
1610 const char *fmt;
1612 /* Used to turn recursion into iteration. We can't rely on GCC's
1613 tail-recursion eliminatio since we need to keep accumulating values
1614 in HASH. */
1616 if (x == 0)
1617 return hash;
1619 repeat:
1620 code = GET_CODE (x);
1621 switch (code)
1623 case REG:
1624 hash += ((unsigned int) REG << 7) + REGNO (x);
1625 return hash;
1627 case CONST_INT:
1628 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
1629 + (unsigned int) INTVAL (x));
1630 return hash;
1632 case CONST_DOUBLE:
1633 /* This is like the general case, except that it only counts
1634 the integers representing the constant. */
1635 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1636 if (GET_MODE (x) != VOIDmode)
1637 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
1638 hash += (unsigned int) XWINT (x, i);
1639 else
1640 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
1641 + (unsigned int) CONST_DOUBLE_HIGH (x));
1642 return hash;
1644 case CONST_VECTOR:
1646 int units;
1647 rtx elt;
1649 units = CONST_VECTOR_NUNITS (x);
1651 for (i = 0; i < units; ++i)
1653 elt = CONST_VECTOR_ELT (x, i);
1654 hash += hash_expr_1 (elt, GET_MODE (elt), do_not_record_p);
1657 return hash;
1660 /* Assume there is only one rtx object for any given label. */
1661 case LABEL_REF:
1662 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1663 differences and differences between each stage's debugging dumps. */
1664 hash += (((unsigned int) LABEL_REF << 7)
1665 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1666 return hash;
1668 case SYMBOL_REF:
1670 /* Don't hash on the symbol's address to avoid bootstrap differences.
1671 Different hash values may cause expressions to be recorded in
1672 different orders and thus different registers to be used in the
1673 final assembler. This also avoids differences in the dump files
1674 between various stages. */
1675 unsigned int h = 0;
1676 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1678 while (*p)
1679 h += (h << 7) + *p++; /* ??? revisit */
1681 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1682 return hash;
1685 case MEM:
1686 if (MEM_VOLATILE_P (x))
1688 *do_not_record_p = 1;
1689 return 0;
1692 hash += (unsigned int) MEM;
1693 /* We used alias set for hashing, but this is not good, since the alias
1694 set may differ in -fprofile-arcs and -fbranch-probabilities compilation
1695 causing the profiles to fail to match. */
1696 x = XEXP (x, 0);
1697 goto repeat;
1699 case PRE_DEC:
1700 case PRE_INC:
1701 case POST_DEC:
1702 case POST_INC:
1703 case PC:
1704 case CC0:
1705 case CALL:
1706 case UNSPEC_VOLATILE:
1707 *do_not_record_p = 1;
1708 return 0;
1710 case ASM_OPERANDS:
1711 if (MEM_VOLATILE_P (x))
1713 *do_not_record_p = 1;
1714 return 0;
1716 else
1718 /* We don't want to take the filename and line into account. */
1719 hash += (unsigned) code + (unsigned) GET_MODE (x)
1720 + hash_string_1 (ASM_OPERANDS_TEMPLATE (x))
1721 + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
1722 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
1724 if (ASM_OPERANDS_INPUT_LENGTH (x))
1726 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
1728 hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i),
1729 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
1730 do_not_record_p)
1731 + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
1732 (x, i)));
1735 hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
1736 x = ASM_OPERANDS_INPUT (x, 0);
1737 mode = GET_MODE (x);
1738 goto repeat;
1740 return hash;
1743 default:
1744 break;
1747 hash += (unsigned) code + (unsigned) GET_MODE (x);
1748 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1750 if (fmt[i] == 'e')
1752 /* If we are about to do the last recursive call
1753 needed at this level, change it into iteration.
1754 This function is called enough to be worth it. */
1755 if (i == 0)
1757 x = XEXP (x, i);
1758 goto repeat;
1761 hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
1762 if (*do_not_record_p)
1763 return 0;
1766 else if (fmt[i] == 'E')
1767 for (j = 0; j < XVECLEN (x, i); j++)
1769 hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
1770 if (*do_not_record_p)
1771 return 0;
1774 else if (fmt[i] == 's')
1775 hash += hash_string_1 (XSTR (x, i));
1776 else if (fmt[i] == 'i')
1777 hash += (unsigned int) XINT (x, i);
1778 else
1779 abort ();
1782 return hash;
1785 /* Hash a set of register REGNO.
1787 Sets are hashed on the register that is set. This simplifies the PRE copy
1788 propagation code.
1790 ??? May need to make things more elaborate. Later, as necessary. */
1792 static unsigned int
1793 hash_set (regno, hash_table_size)
1794 int regno;
1795 int hash_table_size;
1797 unsigned int hash;
1799 hash = regno;
1800 return hash % hash_table_size;
1803 /* Return non-zero if exp1 is equivalent to exp2.
1804 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1806 static int
1807 expr_equiv_p (x, y)
1808 rtx x, y;
1810 int i, j;
1811 enum rtx_code code;
1812 const char *fmt;
1814 if (x == y)
1815 return 1;
1817 if (x == 0 || y == 0)
1818 return x == y;
1820 code = GET_CODE (x);
1821 if (code != GET_CODE (y))
1822 return 0;
1824 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1825 if (GET_MODE (x) != GET_MODE (y))
1826 return 0;
1828 switch (code)
1830 case PC:
1831 case CC0:
1832 return x == y;
1834 case CONST_INT:
1835 return INTVAL (x) == INTVAL (y);
1837 case LABEL_REF:
1838 return XEXP (x, 0) == XEXP (y, 0);
1840 case SYMBOL_REF:
1841 return XSTR (x, 0) == XSTR (y, 0);
1843 case REG:
1844 return REGNO (x) == REGNO (y);
1846 case MEM:
1847 /* Can't merge two expressions in different alias sets, since we can
1848 decide that the expression is transparent in a block when it isn't,
1849 due to it being set with the different alias set. */
1850 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
1851 return 0;
1852 break;
1854 /* For commutative operations, check both orders. */
1855 case PLUS:
1856 case MULT:
1857 case AND:
1858 case IOR:
1859 case XOR:
1860 case NE:
1861 case EQ:
1862 return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
1863 && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
1864 || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
1865 && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
1867 case ASM_OPERANDS:
1868 /* We don't use the generic code below because we want to
1869 disregard filename and line numbers. */
1871 /* A volatile asm isn't equivalent to any other. */
1872 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
1873 return 0;
1875 if (GET_MODE (x) != GET_MODE (y)
1876 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
1877 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
1878 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
1879 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
1880 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
1881 return 0;
1883 if (ASM_OPERANDS_INPUT_LENGTH (x))
1885 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
1886 if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i),
1887 ASM_OPERANDS_INPUT (y, i))
1888 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
1889 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
1890 return 0;
1893 return 1;
1895 default:
1896 break;
1899 /* Compare the elements. If any pair of corresponding elements
1900 fail to match, return 0 for the whole thing. */
1902 fmt = GET_RTX_FORMAT (code);
1903 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1905 switch (fmt[i])
1907 case 'e':
1908 if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
1909 return 0;
1910 break;
1912 case 'E':
1913 if (XVECLEN (x, i) != XVECLEN (y, i))
1914 return 0;
1915 for (j = 0; j < XVECLEN (x, i); j++)
1916 if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1917 return 0;
1918 break;
1920 case 's':
1921 if (strcmp (XSTR (x, i), XSTR (y, i)))
1922 return 0;
1923 break;
1925 case 'i':
1926 if (XINT (x, i) != XINT (y, i))
1927 return 0;
1928 break;
1930 case 'w':
1931 if (XWINT (x, i) != XWINT (y, i))
1932 return 0;
1933 break;
1935 case '0':
1936 break;
1938 default:
1939 abort ();
1943 return 1;
1946 /* Insert expression X in INSN in the hash table.
1947 If it is already present, record it as the last occurrence in INSN's
1948 basic block.
1950 MODE is the mode of the value X is being stored into.
1951 It is only used if X is a CONST_INT.
1953 ANTIC_P is non-zero if X is an anticipatable expression.
1954 AVAIL_P is non-zero if X is an available expression. */
1956 static void
1957 insert_expr_in_table (x, mode, insn, antic_p, avail_p)
1958 rtx x;
1959 enum machine_mode mode;
1960 rtx insn;
1961 int antic_p, avail_p;
1963 int found, do_not_record_p;
1964 unsigned int hash;
1965 struct expr *cur_expr, *last_expr = NULL;
1966 struct occr *antic_occr, *avail_occr;
1967 struct occr *last_occr = NULL;
1969 hash = hash_expr (x, mode, &do_not_record_p, expr_hash_table_size);
1971 /* Do not insert expression in table if it contains volatile operands,
1972 or if hash_expr determines the expression is something we don't want
1973 to or can't handle. */
1974 if (do_not_record_p)
1975 return;
1977 cur_expr = expr_hash_table[hash];
1978 found = 0;
1980 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1982 /* If the expression isn't found, save a pointer to the end of
1983 the list. */
1984 last_expr = cur_expr;
1985 cur_expr = cur_expr->next_same_hash;
1988 if (! found)
1990 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
1991 bytes_used += sizeof (struct expr);
1992 if (expr_hash_table[hash] == NULL)
1993 /* This is the first pattern that hashed to this index. */
1994 expr_hash_table[hash] = cur_expr;
1995 else
1996 /* Add EXPR to end of this hash chain. */
1997 last_expr->next_same_hash = cur_expr;
1999 /* Set the fields of the expr element. */
2000 cur_expr->expr = x;
2001 cur_expr->bitmap_index = n_exprs++;
2002 cur_expr->next_same_hash = NULL;
2003 cur_expr->antic_occr = NULL;
2004 cur_expr->avail_occr = NULL;
2007 /* Now record the occurrence(s). */
2008 if (antic_p)
2010 antic_occr = cur_expr->antic_occr;
2012 /* Search for another occurrence in the same basic block. */
2013 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
2015 /* If an occurrence isn't found, save a pointer to the end of
2016 the list. */
2017 last_occr = antic_occr;
2018 antic_occr = antic_occr->next;
2021 if (antic_occr)
2022 /* Found another instance of the expression in the same basic block.
2023 Prefer the currently recorded one. We want the first one in the
2024 block and the block is scanned from start to end. */
2025 ; /* nothing to do */
2026 else
2028 /* First occurrence of this expression in this basic block. */
2029 antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2030 bytes_used += sizeof (struct occr);
2031 /* First occurrence of this expression in any block? */
2032 if (cur_expr->antic_occr == NULL)
2033 cur_expr->antic_occr = antic_occr;
2034 else
2035 last_occr->next = antic_occr;
2037 antic_occr->insn = insn;
2038 antic_occr->next = NULL;
2042 if (avail_p)
2044 avail_occr = cur_expr->avail_occr;
2046 /* Search for another occurrence in the same basic block. */
2047 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
2049 /* If an occurrence isn't found, save a pointer to the end of
2050 the list. */
2051 last_occr = avail_occr;
2052 avail_occr = avail_occr->next;
2055 if (avail_occr)
2056 /* Found another instance of the expression in the same basic block.
2057 Prefer this occurrence to the currently recorded one. We want
2058 the last one in the block and the block is scanned from start
2059 to end. */
2060 avail_occr->insn = insn;
2061 else
2063 /* First occurrence of this expression in this basic block. */
2064 avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2065 bytes_used += sizeof (struct occr);
2067 /* First occurrence of this expression in any block? */
2068 if (cur_expr->avail_occr == NULL)
2069 cur_expr->avail_occr = avail_occr;
2070 else
2071 last_occr->next = avail_occr;
2073 avail_occr->insn = insn;
2074 avail_occr->next = NULL;
2079 /* Insert pattern X in INSN in the hash table.
2080 X is a SET of a reg to either another reg or a constant.
2081 If it is already present, record it as the last occurrence in INSN's
2082 basic block. */
2084 static void
2085 insert_set_in_table (x, insn)
2086 rtx x;
2087 rtx insn;
2089 int found;
2090 unsigned int hash;
2091 struct expr *cur_expr, *last_expr = NULL;
2092 struct occr *cur_occr, *last_occr = NULL;
2094 if (GET_CODE (x) != SET
2095 || GET_CODE (SET_DEST (x)) != REG)
2096 abort ();
2098 hash = hash_set (REGNO (SET_DEST (x)), set_hash_table_size);
2100 cur_expr = set_hash_table[hash];
2101 found = 0;
2103 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
2105 /* If the expression isn't found, save a pointer to the end of
2106 the list. */
2107 last_expr = cur_expr;
2108 cur_expr = cur_expr->next_same_hash;
2111 if (! found)
2113 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
2114 bytes_used += sizeof (struct expr);
2115 if (set_hash_table[hash] == NULL)
2116 /* This is the first pattern that hashed to this index. */
2117 set_hash_table[hash] = cur_expr;
2118 else
2119 /* Add EXPR to end of this hash chain. */
2120 last_expr->next_same_hash = cur_expr;
2122 /* Set the fields of the expr element.
2123 We must copy X because it can be modified when copy propagation is
2124 performed on its operands. */
2125 cur_expr->expr = copy_rtx (x);
2126 cur_expr->bitmap_index = n_sets++;
2127 cur_expr->next_same_hash = NULL;
2128 cur_expr->antic_occr = NULL;
2129 cur_expr->avail_occr = NULL;
2132 /* Now record the occurrence. */
2133 cur_occr = cur_expr->avail_occr;
2135 /* Search for another occurrence in the same basic block. */
2136 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
2138 /* If an occurrence isn't found, save a pointer to the end of
2139 the list. */
2140 last_occr = cur_occr;
2141 cur_occr = cur_occr->next;
2144 if (cur_occr)
2145 /* Found another instance of the expression in the same basic block.
2146 Prefer this occurrence to the currently recorded one. We want the
2147 last one in the block and the block is scanned from start to end. */
2148 cur_occr->insn = insn;
2149 else
2151 /* First occurrence of this expression in this basic block. */
2152 cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2153 bytes_used += sizeof (struct occr);
2155 /* First occurrence of this expression in any block? */
2156 if (cur_expr->avail_occr == NULL)
2157 cur_expr->avail_occr = cur_occr;
2158 else
2159 last_occr->next = cur_occr;
2161 cur_occr->insn = insn;
2162 cur_occr->next = NULL;
2166 /* Scan pattern PAT of INSN and add an entry to the hash table. If SET_P is
2167 non-zero, this is for the assignment hash table, otherwise it is for the
2168 expression hash table. */
2170 static void
2171 hash_scan_set (pat, insn, set_p)
2172 rtx pat, insn;
2173 int set_p;
2175 rtx src = SET_SRC (pat);
2176 rtx dest = SET_DEST (pat);
2177 rtx note;
2179 if (GET_CODE (src) == CALL)
2180 hash_scan_call (src, insn);
2182 else if (GET_CODE (dest) == REG)
2184 unsigned int regno = REGNO (dest);
2185 rtx tmp;
2187 /* If this is a single set and we are doing constant propagation,
2188 see if a REG_NOTE shows this equivalent to a constant. */
2189 if (set_p && (note = find_reg_equal_equiv_note (insn)) != 0
2190 && CONSTANT_P (XEXP (note, 0)))
2191 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
2193 /* Only record sets of pseudo-regs in the hash table. */
2194 if (! set_p
2195 && regno >= FIRST_PSEUDO_REGISTER
2196 /* Don't GCSE something if we can't do a reg/reg copy. */
2197 && can_copy_p [GET_MODE (dest)]
2198 /* GCSE commonly inserts instruction after the insn. We can't
2199 do that easily for EH_REGION notes so disable GCSE on these
2200 for now. */
2201 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
2202 /* Is SET_SRC something we want to gcse? */
2203 && want_to_gcse_p (src)
2204 /* Don't CSE a nop. */
2205 && ! set_noop_p (pat)
2206 /* Don't GCSE if it has attached REG_EQUIV note.
2207 At this point this only function parameters should have
2208 REG_EQUIV notes and if the argument slot is used somewhere
2209 explicitly, it means address of parameter has been taken,
2210 so we should not extend the lifetime of the pseudo. */
2211 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
2212 || GET_CODE (XEXP (note, 0)) != MEM))
2214 /* An expression is not anticipatable if its operands are
2215 modified before this insn or if this is not the only SET in
2216 this insn. */
2217 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
2218 /* An expression is not available if its operands are
2219 subsequently modified, including this insn. It's also not
2220 available if this is a branch, because we can't insert
2221 a set after the branch. */
2222 int avail_p = (oprs_available_p (src, insn)
2223 && ! JUMP_P (insn));
2225 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p);
2228 /* Record sets for constant/copy propagation. */
2229 else if (set_p
2230 && regno >= FIRST_PSEUDO_REGISTER
2231 && ((GET_CODE (src) == REG
2232 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2233 && can_copy_p [GET_MODE (dest)]
2234 && REGNO (src) != regno)
2235 || CONSTANT_P (src))
2236 /* A copy is not available if its src or dest is subsequently
2237 modified. Here we want to search from INSN+1 on, but
2238 oprs_available_p searches from INSN on. */
2239 && (insn == BLOCK_END (BLOCK_NUM (insn))
2240 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
2241 && oprs_available_p (pat, tmp))))
2242 insert_set_in_table (pat, insn);
2246 static void
2247 hash_scan_clobber (x, insn)
2248 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2250 /* Currently nothing to do. */
2253 static void
2254 hash_scan_call (x, insn)
2255 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2257 /* Currently nothing to do. */
2260 /* Process INSN and add hash table entries as appropriate.
2262 Only available expressions that set a single pseudo-reg are recorded.
2264 Single sets in a PARALLEL could be handled, but it's an extra complication
2265 that isn't dealt with right now. The trick is handling the CLOBBERs that
2266 are also in the PARALLEL. Later.
2268 If SET_P is non-zero, this is for the assignment hash table,
2269 otherwise it is for the expression hash table.
2270 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
2271 not record any expressions. */
2273 static void
2274 hash_scan_insn (insn, set_p, in_libcall_block)
2275 rtx insn;
2276 int set_p;
2277 int in_libcall_block;
2279 rtx pat = PATTERN (insn);
2280 int i;
2282 if (in_libcall_block)
2283 return;
2285 /* Pick out the sets of INSN and for other forms of instructions record
2286 what's been modified. */
2288 if (GET_CODE (pat) == SET)
2289 hash_scan_set (pat, insn, set_p);
2290 else if (GET_CODE (pat) == PARALLEL)
2291 for (i = 0; i < XVECLEN (pat, 0); i++)
2293 rtx x = XVECEXP (pat, 0, i);
2295 if (GET_CODE (x) == SET)
2296 hash_scan_set (x, insn, set_p);
2297 else if (GET_CODE (x) == CLOBBER)
2298 hash_scan_clobber (x, insn);
2299 else if (GET_CODE (x) == CALL)
2300 hash_scan_call (x, insn);
2303 else if (GET_CODE (pat) == CLOBBER)
2304 hash_scan_clobber (pat, insn);
2305 else if (GET_CODE (pat) == CALL)
2306 hash_scan_call (pat, insn);
2309 static void
2310 dump_hash_table (file, name, table, table_size, total_size)
2311 FILE *file;
2312 const char *name;
2313 struct expr **table;
2314 int table_size, total_size;
2316 int i;
2317 /* Flattened out table, so it's printed in proper order. */
2318 struct expr **flat_table;
2319 unsigned int *hash_val;
2320 struct expr *expr;
2322 flat_table
2323 = (struct expr **) xcalloc (total_size, sizeof (struct expr *));
2324 hash_val = (unsigned int *) xmalloc (total_size * sizeof (unsigned int));
2326 for (i = 0; i < table_size; i++)
2327 for (expr = table[i]; expr != NULL; expr = expr->next_same_hash)
2329 flat_table[expr->bitmap_index] = expr;
2330 hash_val[expr->bitmap_index] = i;
2333 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
2334 name, table_size, total_size);
2336 for (i = 0; i < total_size; i++)
2337 if (flat_table[i] != 0)
2339 expr = flat_table[i];
2340 fprintf (file, "Index %d (hash value %d)\n ",
2341 expr->bitmap_index, hash_val[i]);
2342 print_rtl (file, expr->expr);
2343 fprintf (file, "\n");
2346 fprintf (file, "\n");
2348 free (flat_table);
2349 free (hash_val);
2352 /* Record register first/last/block set information for REGNO in INSN.
2354 first_set records the first place in the block where the register
2355 is set and is used to compute "anticipatability".
2357 last_set records the last place in the block where the register
2358 is set and is used to compute "availability".
2360 last_bb records the block for which first_set and last_set are
2361 valid, as a quick test to invalidate them.
2363 reg_set_in_block records whether the register is set in the block
2364 and is used to compute "transparency". */
2366 static void
2367 record_last_reg_set_info (insn, regno)
2368 rtx insn;
2369 int regno;
2371 struct reg_avail_info *info = &reg_avail_info[regno];
2372 int cuid = INSN_CUID (insn);
2374 info->last_set = cuid;
2375 if (info->last_bb != current_bb)
2377 info->last_bb = current_bb;
2378 info->first_set = cuid;
2379 SET_BIT (reg_set_in_block[current_bb->index], regno);
2384 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
2385 Note we store a pair of elements in the list, so they have to be
2386 taken off pairwise. */
2388 static void
2389 canon_list_insert (dest, unused1, v_insn)
2390 rtx dest ATTRIBUTE_UNUSED;
2391 rtx unused1 ATTRIBUTE_UNUSED;
2392 void * v_insn;
2394 rtx dest_addr, insn;
2395 int bb;
2397 while (GET_CODE (dest) == SUBREG
2398 || GET_CODE (dest) == ZERO_EXTRACT
2399 || GET_CODE (dest) == SIGN_EXTRACT
2400 || GET_CODE (dest) == STRICT_LOW_PART)
2401 dest = XEXP (dest, 0);
2403 /* If DEST is not a MEM, then it will not conflict with a load. Note
2404 that function calls are assumed to clobber memory, but are handled
2405 elsewhere. */
2407 if (GET_CODE (dest) != MEM)
2408 return;
2410 dest_addr = get_addr (XEXP (dest, 0));
2411 dest_addr = canon_rtx (dest_addr);
2412 insn = (rtx) v_insn;
2413 bb = BLOCK_NUM (insn);
2415 canon_modify_mem_list[bb] =
2416 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
2417 canon_modify_mem_list[bb] =
2418 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
2419 bitmap_set_bit (canon_modify_mem_list_set, bb);
2422 /* Record memory modification information for INSN. We do not actually care
2423 about the memory location(s) that are set, or even how they are set (consider
2424 a CALL_INSN). We merely need to record which insns modify memory. */
2426 static void
2427 record_last_mem_set_info (insn)
2428 rtx insn;
2430 int bb = BLOCK_NUM (insn);
2432 /* load_killed_in_block_p will handle the case of calls clobbering
2433 everything. */
2434 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
2435 bitmap_set_bit (modify_mem_list_set, bb);
2437 if (GET_CODE (insn) == CALL_INSN)
2439 /* Note that traversals of this loop (other than for free-ing)
2440 will break after encountering a CALL_INSN. So, there's no
2441 need to insert a pair of items, as canon_list_insert does. */
2442 canon_modify_mem_list[bb] =
2443 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
2444 bitmap_set_bit (canon_modify_mem_list_set, bb);
2446 else
2447 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2450 /* Called from compute_hash_table via note_stores to handle one
2451 SET or CLOBBER in an insn. DATA is really the instruction in which
2452 the SET is taking place. */
2454 static void
2455 record_last_set_info (dest, setter, data)
2456 rtx dest, setter ATTRIBUTE_UNUSED;
2457 void *data;
2459 rtx last_set_insn = (rtx) data;
2461 if (GET_CODE (dest) == SUBREG)
2462 dest = SUBREG_REG (dest);
2464 if (GET_CODE (dest) == REG)
2465 record_last_reg_set_info (last_set_insn, REGNO (dest));
2466 else if (GET_CODE (dest) == MEM
2467 /* Ignore pushes, they clobber nothing. */
2468 && ! push_operand (dest, GET_MODE (dest)))
2469 record_last_mem_set_info (last_set_insn);
2472 /* Top level function to create an expression or assignment hash table.
2474 Expression entries are placed in the hash table if
2475 - they are of the form (set (pseudo-reg) src),
2476 - src is something we want to perform GCSE on,
2477 - none of the operands are subsequently modified in the block
2479 Assignment entries are placed in the hash table if
2480 - they are of the form (set (pseudo-reg) src),
2481 - src is something we want to perform const/copy propagation on,
2482 - none of the operands or target are subsequently modified in the block
2484 Currently src must be a pseudo-reg or a const_int.
2486 F is the first insn.
2487 SET_P is non-zero for computing the assignment hash table. */
2489 static void
2490 compute_hash_table (set_p)
2491 int set_p;
2493 unsigned int i;
2495 /* While we compute the hash table we also compute a bit array of which
2496 registers are set in which blocks.
2497 ??? This isn't needed during const/copy propagation, but it's cheap to
2498 compute. Later. */
2499 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2501 /* re-Cache any INSN_LIST nodes we have allocated. */
2502 clear_modify_mem_tables ();
2503 /* Some working arrays used to track first and last set in each block. */
2504 reg_avail_info = (struct reg_avail_info*)
2505 gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2507 for (i = 0; i < max_gcse_regno; ++i)
2508 reg_avail_info[i].last_bb = NULL;
2510 FOR_EACH_BB (current_bb)
2512 rtx insn;
2513 unsigned int regno;
2514 int in_libcall_block;
2516 /* First pass over the instructions records information used to
2517 determine when registers and memory are first and last set.
2518 ??? hard-reg reg_set_in_block computation
2519 could be moved to compute_sets since they currently don't change. */
2521 for (insn = current_bb->head;
2522 insn && insn != NEXT_INSN (current_bb->end);
2523 insn = NEXT_INSN (insn))
2525 if (! INSN_P (insn))
2526 continue;
2528 if (GET_CODE (insn) == CALL_INSN)
2530 bool clobbers_all = false;
2531 #ifdef NON_SAVING_SETJMP
2532 if (NON_SAVING_SETJMP
2533 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
2534 clobbers_all = true;
2535 #endif
2537 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2538 if (clobbers_all
2539 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2540 record_last_reg_set_info (insn, regno);
2542 mark_call (insn);
2545 note_stores (PATTERN (insn), record_last_set_info, insn);
2548 /* The next pass builds the hash table. */
2550 for (insn = current_bb->head, in_libcall_block = 0;
2551 insn && insn != NEXT_INSN (current_bb->end);
2552 insn = NEXT_INSN (insn))
2553 if (INSN_P (insn))
2555 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2556 in_libcall_block = 1;
2557 else if (set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2558 in_libcall_block = 0;
2559 hash_scan_insn (insn, set_p, in_libcall_block);
2560 if (!set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2561 in_libcall_block = 0;
2565 free (reg_avail_info);
2566 reg_avail_info = NULL;
2569 /* Allocate space for the set hash table.
2570 N_INSNS is the number of instructions in the function.
2571 It is used to determine the number of buckets to use. */
2573 static void
2574 alloc_set_hash_table (n_insns)
2575 int n_insns;
2577 int n;
2579 set_hash_table_size = n_insns / 4;
2580 if (set_hash_table_size < 11)
2581 set_hash_table_size = 11;
2583 /* Attempt to maintain efficient use of hash table.
2584 Making it an odd number is simplest for now.
2585 ??? Later take some measurements. */
2586 set_hash_table_size |= 1;
2587 n = set_hash_table_size * sizeof (struct expr *);
2588 set_hash_table = (struct expr **) gmalloc (n);
2591 /* Free things allocated by alloc_set_hash_table. */
2593 static void
2594 free_set_hash_table ()
2596 free (set_hash_table);
2599 /* Compute the hash table for doing copy/const propagation. */
2601 static void
2602 compute_set_hash_table ()
2604 /* Initialize count of number of entries in hash table. */
2605 n_sets = 0;
2606 memset ((char *) set_hash_table, 0,
2607 set_hash_table_size * sizeof (struct expr *));
2609 compute_hash_table (1);
2612 /* Allocate space for the expression hash table.
2613 N_INSNS is the number of instructions in the function.
2614 It is used to determine the number of buckets to use. */
2616 static void
2617 alloc_expr_hash_table (n_insns)
2618 unsigned int n_insns;
2620 int n;
2622 expr_hash_table_size = n_insns / 2;
2623 /* Make sure the amount is usable. */
2624 if (expr_hash_table_size < 11)
2625 expr_hash_table_size = 11;
2627 /* Attempt to maintain efficient use of hash table.
2628 Making it an odd number is simplest for now.
2629 ??? Later take some measurements. */
2630 expr_hash_table_size |= 1;
2631 n = expr_hash_table_size * sizeof (struct expr *);
2632 expr_hash_table = (struct expr **) gmalloc (n);
2635 /* Free things allocated by alloc_expr_hash_table. */
2637 static void
2638 free_expr_hash_table ()
2640 free (expr_hash_table);
2643 /* Compute the hash table for doing GCSE. */
2645 static void
2646 compute_expr_hash_table ()
2648 /* Initialize count of number of entries in hash table. */
2649 n_exprs = 0;
2650 memset ((char *) expr_hash_table, 0,
2651 expr_hash_table_size * sizeof (struct expr *));
2653 compute_hash_table (0);
2656 /* Expression tracking support. */
2658 /* Lookup pattern PAT in the expression table.
2659 The result is a pointer to the table entry, or NULL if not found. */
2661 static struct expr *
2662 lookup_expr (pat)
2663 rtx pat;
2665 int do_not_record_p;
2666 unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
2667 expr_hash_table_size);
2668 struct expr *expr;
2670 if (do_not_record_p)
2671 return NULL;
2673 expr = expr_hash_table[hash];
2675 while (expr && ! expr_equiv_p (expr->expr, pat))
2676 expr = expr->next_same_hash;
2678 return expr;
2681 /* Lookup REGNO in the set table. If PAT is non-NULL look for the entry that
2682 matches it, otherwise return the first entry for REGNO. The result is a
2683 pointer to the table entry, or NULL if not found. */
2685 static struct expr *
2686 lookup_set (regno, pat)
2687 unsigned int regno;
2688 rtx pat;
2690 unsigned int hash = hash_set (regno, set_hash_table_size);
2691 struct expr *expr;
2693 expr = set_hash_table[hash];
2695 if (pat)
2697 while (expr && ! expr_equiv_p (expr->expr, pat))
2698 expr = expr->next_same_hash;
2700 else
2702 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2703 expr = expr->next_same_hash;
2706 return expr;
2709 /* Return the next entry for REGNO in list EXPR. */
2711 static struct expr *
2712 next_set (regno, expr)
2713 unsigned int regno;
2714 struct expr *expr;
2717 expr = expr->next_same_hash;
2718 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2720 return expr;
2723 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2724 types may be mixed. */
2726 static void
2727 free_insn_expr_list_list (listp)
2728 rtx *listp;
2730 rtx list, next;
2732 for (list = *listp; list ; list = next)
2734 next = XEXP (list, 1);
2735 if (GET_CODE (list) == EXPR_LIST)
2736 free_EXPR_LIST_node (list);
2737 else
2738 free_INSN_LIST_node (list);
2741 *listp = NULL;
2744 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2745 static void
2746 clear_modify_mem_tables ()
2748 int i;
2750 EXECUTE_IF_SET_IN_BITMAP
2751 (modify_mem_list_set, 0, i, free_INSN_LIST_list (modify_mem_list + i));
2752 bitmap_clear (modify_mem_list_set);
2754 EXECUTE_IF_SET_IN_BITMAP
2755 (canon_modify_mem_list_set, 0, i,
2756 free_insn_expr_list_list (canon_modify_mem_list + i));
2757 bitmap_clear (canon_modify_mem_list_set);
2760 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2762 static void
2763 free_modify_mem_tables ()
2765 clear_modify_mem_tables ();
2766 free (modify_mem_list);
2767 free (canon_modify_mem_list);
2768 modify_mem_list = 0;
2769 canon_modify_mem_list = 0;
2772 /* Reset tables used to keep track of what's still available [since the
2773 start of the block]. */
2775 static void
2776 reset_opr_set_tables ()
2778 /* Maintain a bitmap of which regs have been set since beginning of
2779 the block. */
2780 CLEAR_REG_SET (reg_set_bitmap);
2782 /* Also keep a record of the last instruction to modify memory.
2783 For now this is very trivial, we only record whether any memory
2784 location has been modified. */
2785 clear_modify_mem_tables ();
2788 /* Return non-zero if the operands of X are not set before INSN in
2789 INSN's basic block. */
2791 static int
2792 oprs_not_set_p (x, insn)
2793 rtx x, insn;
2795 int i, j;
2796 enum rtx_code code;
2797 const char *fmt;
2799 if (x == 0)
2800 return 1;
2802 code = GET_CODE (x);
2803 switch (code)
2805 case PC:
2806 case CC0:
2807 case CONST:
2808 case CONST_INT:
2809 case CONST_DOUBLE:
2810 case CONST_VECTOR:
2811 case SYMBOL_REF:
2812 case LABEL_REF:
2813 case ADDR_VEC:
2814 case ADDR_DIFF_VEC:
2815 return 1;
2817 case MEM:
2818 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2819 INSN_CUID (insn), x, 0))
2820 return 0;
2821 else
2822 return oprs_not_set_p (XEXP (x, 0), insn);
2824 case REG:
2825 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2827 default:
2828 break;
2831 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2833 if (fmt[i] == 'e')
2835 /* If we are about to do the last recursive call
2836 needed at this level, change it into iteration.
2837 This function is called enough to be worth it. */
2838 if (i == 0)
2839 return oprs_not_set_p (XEXP (x, i), insn);
2841 if (! oprs_not_set_p (XEXP (x, i), insn))
2842 return 0;
2844 else if (fmt[i] == 'E')
2845 for (j = 0; j < XVECLEN (x, i); j++)
2846 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2847 return 0;
2850 return 1;
2853 /* Mark things set by a CALL. */
2855 static void
2856 mark_call (insn)
2857 rtx insn;
2859 if (! CONST_OR_PURE_CALL_P (insn))
2860 record_last_mem_set_info (insn);
2863 /* Mark things set by a SET. */
2865 static void
2866 mark_set (pat, insn)
2867 rtx pat, insn;
2869 rtx dest = SET_DEST (pat);
2871 while (GET_CODE (dest) == SUBREG
2872 || GET_CODE (dest) == ZERO_EXTRACT
2873 || GET_CODE (dest) == SIGN_EXTRACT
2874 || GET_CODE (dest) == STRICT_LOW_PART)
2875 dest = XEXP (dest, 0);
2877 if (GET_CODE (dest) == REG)
2878 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2879 else if (GET_CODE (dest) == MEM)
2880 record_last_mem_set_info (insn);
2882 if (GET_CODE (SET_SRC (pat)) == CALL)
2883 mark_call (insn);
2886 /* Record things set by a CLOBBER. */
2888 static void
2889 mark_clobber (pat, insn)
2890 rtx pat, insn;
2892 rtx clob = XEXP (pat, 0);
2894 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2895 clob = XEXP (clob, 0);
2897 if (GET_CODE (clob) == REG)
2898 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2899 else
2900 record_last_mem_set_info (insn);
2903 /* Record things set by INSN.
2904 This data is used by oprs_not_set_p. */
2906 static void
2907 mark_oprs_set (insn)
2908 rtx insn;
2910 rtx pat = PATTERN (insn);
2911 int i;
2913 if (GET_CODE (pat) == SET)
2914 mark_set (pat, insn);
2915 else if (GET_CODE (pat) == PARALLEL)
2916 for (i = 0; i < XVECLEN (pat, 0); i++)
2918 rtx x = XVECEXP (pat, 0, i);
2920 if (GET_CODE (x) == SET)
2921 mark_set (x, insn);
2922 else if (GET_CODE (x) == CLOBBER)
2923 mark_clobber (x, insn);
2924 else if (GET_CODE (x) == CALL)
2925 mark_call (insn);
2928 else if (GET_CODE (pat) == CLOBBER)
2929 mark_clobber (pat, insn);
2930 else if (GET_CODE (pat) == CALL)
2931 mark_call (insn);
2935 /* Classic GCSE reaching definition support. */
2937 /* Allocate reaching def variables. */
2939 static void
2940 alloc_rd_mem (n_blocks, n_insns)
2941 int n_blocks, n_insns;
2943 rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2944 sbitmap_vector_zero (rd_kill, n_blocks);
2946 rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2947 sbitmap_vector_zero (rd_gen, n_blocks);
2949 reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2950 sbitmap_vector_zero (reaching_defs, n_blocks);
2952 rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2953 sbitmap_vector_zero (rd_out, n_blocks);
2956 /* Free reaching def variables. */
2958 static void
2959 free_rd_mem ()
2961 sbitmap_vector_free (rd_kill);
2962 sbitmap_vector_free (rd_gen);
2963 sbitmap_vector_free (reaching_defs);
2964 sbitmap_vector_free (rd_out);
2967 /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
2969 static void
2970 handle_rd_kill_set (insn, regno, bb)
2971 rtx insn;
2972 int regno;
2973 basic_block bb;
2975 struct reg_set *this_reg;
2977 for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
2978 if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
2979 SET_BIT (rd_kill[bb->index], INSN_CUID (this_reg->insn));
2982 /* Compute the set of kill's for reaching definitions. */
2984 static void
2985 compute_kill_rd ()
2987 int cuid;
2988 unsigned int regno;
2989 int i;
2990 basic_block bb;
2992 /* For each block
2993 For each set bit in `gen' of the block (i.e each insn which
2994 generates a definition in the block)
2995 Call the reg set by the insn corresponding to that bit regx
2996 Look at the linked list starting at reg_set_table[regx]
2997 For each setting of regx in the linked list, which is not in
2998 this block
2999 Set the bit in `kill' corresponding to that insn. */
3000 FOR_EACH_BB (bb)
3001 for (cuid = 0; cuid < max_cuid; cuid++)
3002 if (TEST_BIT (rd_gen[bb->index], cuid))
3004 rtx insn = CUID_INSN (cuid);
3005 rtx pat = PATTERN (insn);
3007 if (GET_CODE (insn) == CALL_INSN)
3009 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
3010 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
3011 handle_rd_kill_set (insn, regno, bb);
3014 if (GET_CODE (pat) == PARALLEL)
3016 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
3018 enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
3020 if ((code == SET || code == CLOBBER)
3021 && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
3022 handle_rd_kill_set (insn,
3023 REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
3024 bb);
3027 else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
3028 /* Each setting of this register outside of this block
3029 must be marked in the set of kills in this block. */
3030 handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
3034 /* Compute the reaching definitions as in
3035 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
3036 Chapter 10. It is the same algorithm as used for computing available
3037 expressions but applied to the gens and kills of reaching definitions. */
3039 static void
3040 compute_rd ()
3042 int changed, passes;
3043 basic_block bb;
3045 FOR_EACH_BB (bb)
3046 sbitmap_copy (rd_out[bb->index] /*dst*/, rd_gen[bb->index] /*src*/);
3048 passes = 0;
3049 changed = 1;
3050 while (changed)
3052 changed = 0;
3053 FOR_EACH_BB (bb)
3055 sbitmap_union_of_preds (reaching_defs[bb->index], rd_out, bb->index);
3056 changed |= sbitmap_union_of_diff_cg (rd_out[bb->index], rd_gen[bb->index],
3057 reaching_defs[bb->index], rd_kill[bb->index]);
3059 passes++;
3062 if (gcse_file)
3063 fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
3066 /* Classic GCSE available expression support. */
3068 /* Allocate memory for available expression computation. */
3070 static void
3071 alloc_avail_expr_mem (n_blocks, n_exprs)
3072 int n_blocks, n_exprs;
3074 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3075 sbitmap_vector_zero (ae_kill, n_blocks);
3077 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3078 sbitmap_vector_zero (ae_gen, n_blocks);
3080 ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3081 sbitmap_vector_zero (ae_in, n_blocks);
3083 ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3084 sbitmap_vector_zero (ae_out, n_blocks);
3087 static void
3088 free_avail_expr_mem ()
3090 sbitmap_vector_free (ae_kill);
3091 sbitmap_vector_free (ae_gen);
3092 sbitmap_vector_free (ae_in);
3093 sbitmap_vector_free (ae_out);
3096 /* Compute the set of available expressions generated in each basic block. */
3098 static void
3099 compute_ae_gen ()
3101 unsigned int i;
3102 struct expr *expr;
3103 struct occr *occr;
3105 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
3106 This is all we have to do because an expression is not recorded if it
3107 is not available, and the only expressions we want to work with are the
3108 ones that are recorded. */
3109 for (i = 0; i < expr_hash_table_size; i++)
3110 for (expr = expr_hash_table[i]; expr != 0; expr = expr->next_same_hash)
3111 for (occr = expr->avail_occr; occr != 0; occr = occr->next)
3112 SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
3115 /* Return non-zero if expression X is killed in BB. */
3117 static int
3118 expr_killed_p (x, bb)
3119 rtx x;
3120 basic_block bb;
3122 int i, j;
3123 enum rtx_code code;
3124 const char *fmt;
3126 if (x == 0)
3127 return 1;
3129 code = GET_CODE (x);
3130 switch (code)
3132 case REG:
3133 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
3135 case MEM:
3136 if (load_killed_in_block_p (bb, get_max_uid () + 1, x, 0))
3137 return 1;
3138 else
3139 return expr_killed_p (XEXP (x, 0), bb);
3141 case PC:
3142 case CC0: /*FIXME*/
3143 case CONST:
3144 case CONST_INT:
3145 case CONST_DOUBLE:
3146 case CONST_VECTOR:
3147 case SYMBOL_REF:
3148 case LABEL_REF:
3149 case ADDR_VEC:
3150 case ADDR_DIFF_VEC:
3151 return 0;
3153 default:
3154 break;
3157 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3159 if (fmt[i] == 'e')
3161 /* If we are about to do the last recursive call
3162 needed at this level, change it into iteration.
3163 This function is called enough to be worth it. */
3164 if (i == 0)
3165 return expr_killed_p (XEXP (x, i), bb);
3166 else if (expr_killed_p (XEXP (x, i), bb))
3167 return 1;
3169 else if (fmt[i] == 'E')
3170 for (j = 0; j < XVECLEN (x, i); j++)
3171 if (expr_killed_p (XVECEXP (x, i, j), bb))
3172 return 1;
3175 return 0;
3178 /* Compute the set of available expressions killed in each basic block. */
3180 static void
3181 compute_ae_kill (ae_gen, ae_kill)
3182 sbitmap *ae_gen, *ae_kill;
3184 basic_block bb;
3185 unsigned int i;
3186 struct expr *expr;
3188 FOR_EACH_BB (bb)
3189 for (i = 0; i < expr_hash_table_size; i++)
3190 for (expr = expr_hash_table[i]; expr; expr = expr->next_same_hash)
3192 /* Skip EXPR if generated in this block. */
3193 if (TEST_BIT (ae_gen[bb->index], expr->bitmap_index))
3194 continue;
3196 if (expr_killed_p (expr->expr, bb))
3197 SET_BIT (ae_kill[bb->index], expr->bitmap_index);
3201 /* Actually perform the Classic GCSE optimizations. */
3203 /* Return non-zero if occurrence OCCR of expression EXPR reaches block BB.
3205 CHECK_SELF_LOOP is non-zero if we should consider a block reaching itself
3206 as a positive reach. We want to do this when there are two computations
3207 of the expression in the block.
3209 VISITED is a pointer to a working buffer for tracking which BB's have
3210 been visited. It is NULL for the top-level call.
3212 We treat reaching expressions that go through blocks containing the same
3213 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3214 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3215 2 as not reaching. The intent is to improve the probability of finding
3216 only one reaching expression and to reduce register lifetimes by picking
3217 the closest such expression. */
3219 static int
3220 expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
3221 struct occr *occr;
3222 struct expr *expr;
3223 basic_block bb;
3224 int check_self_loop;
3225 char *visited;
3227 edge pred;
3229 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
3231 basic_block pred_bb = pred->src;
3233 if (visited[pred_bb->index])
3234 /* This predecessor has already been visited. Nothing to do. */
3236 else if (pred_bb == bb)
3238 /* BB loops on itself. */
3239 if (check_self_loop
3240 && TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index)
3241 && BLOCK_NUM (occr->insn) == pred_bb->index)
3242 return 1;
3244 visited[pred_bb->index] = 1;
3247 /* Ignore this predecessor if it kills the expression. */
3248 else if (TEST_BIT (ae_kill[pred_bb->index], expr->bitmap_index))
3249 visited[pred_bb->index] = 1;
3251 /* Does this predecessor generate this expression? */
3252 else if (TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index))
3254 /* Is this the occurrence we're looking for?
3255 Note that there's only one generating occurrence per block
3256 so we just need to check the block number. */
3257 if (BLOCK_NUM (occr->insn) == pred_bb->index)
3258 return 1;
3260 visited[pred_bb->index] = 1;
3263 /* Neither gen nor kill. */
3264 else
3266 visited[pred_bb->index] = 1;
3267 if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop,
3268 visited))
3270 return 1;
3274 /* All paths have been checked. */
3275 return 0;
3278 /* This wrapper for expr_reaches_here_p_work() is to ensure that any
3279 memory allocated for that function is returned. */
3281 static int
3282 expr_reaches_here_p (occr, expr, bb, check_self_loop)
3283 struct occr *occr;
3284 struct expr *expr;
3285 basic_block bb;
3286 int check_self_loop;
3288 int rval;
3289 char *visited = (char *) xcalloc (last_basic_block, 1);
3291 rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);
3293 free (visited);
3294 return rval;
3297 /* Return the instruction that computes EXPR that reaches INSN's basic block.
3298 If there is more than one such instruction, return NULL.
3300 Called only by handle_avail_expr. */
3302 static rtx
3303 computing_insn (expr, insn)
3304 struct expr *expr;
3305 rtx insn;
3307 basic_block bb = BLOCK_FOR_INSN (insn);
3309 if (expr->avail_occr->next == NULL)
3311 if (BLOCK_FOR_INSN (expr->avail_occr->insn) == bb)
3312 /* The available expression is actually itself
3313 (i.e. a loop in the flow graph) so do nothing. */
3314 return NULL;
3316 /* (FIXME) Case that we found a pattern that was created by
3317 a substitution that took place. */
3318 return expr->avail_occr->insn;
3320 else
3322 /* Pattern is computed more than once.
3323 Search backwards from this insn to see how many of these
3324 computations actually reach this insn. */
3325 struct occr *occr;
3326 rtx insn_computes_expr = NULL;
3327 int can_reach = 0;
3329 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
3331 if (BLOCK_FOR_INSN (occr->insn) == bb)
3333 /* The expression is generated in this block.
3334 The only time we care about this is when the expression
3335 is generated later in the block [and thus there's a loop].
3336 We let the normal cse pass handle the other cases. */
3337 if (INSN_CUID (insn) < INSN_CUID (occr->insn)
3338 && expr_reaches_here_p (occr, expr, bb, 1))
3340 can_reach++;
3341 if (can_reach > 1)
3342 return NULL;
3344 insn_computes_expr = occr->insn;
3347 else if (expr_reaches_here_p (occr, expr, bb, 0))
3349 can_reach++;
3350 if (can_reach > 1)
3351 return NULL;
3353 insn_computes_expr = occr->insn;
3357 if (insn_computes_expr == NULL)
3358 abort ();
3360 return insn_computes_expr;
3364 /* Return non-zero if the definition in DEF_INSN can reach INSN.
3365 Only called by can_disregard_other_sets. */
3367 static int
3368 def_reaches_here_p (insn, def_insn)
3369 rtx insn, def_insn;
3371 rtx reg;
3373 if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
3374 return 1;
3376 if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
3378 if (INSN_CUID (def_insn) < INSN_CUID (insn))
3380 if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
3381 return 1;
3382 else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
3383 reg = XEXP (PATTERN (def_insn), 0);
3384 else if (GET_CODE (PATTERN (def_insn)) == SET)
3385 reg = SET_DEST (PATTERN (def_insn));
3386 else
3387 abort ();
3389 return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
3391 else
3392 return 0;
3395 return 0;
3398 /* Return non-zero if *ADDR_THIS_REG can only have one value at INSN. The
3399 value returned is the number of definitions that reach INSN. Returning a
3400 value of zero means that [maybe] more than one definition reaches INSN and
3401 the caller can't perform whatever optimization it is trying. i.e. it is
3402 always safe to return zero. */
3404 static int
3405 can_disregard_other_sets (addr_this_reg, insn, for_combine)
3406 struct reg_set **addr_this_reg;
3407 rtx insn;
3408 int for_combine;
3410 int number_of_reaching_defs = 0;
3411 struct reg_set *this_reg;
3413 for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
3414 if (def_reaches_here_p (insn, this_reg->insn))
3416 number_of_reaching_defs++;
3417 /* Ignore parallels for now. */
3418 if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
3419 return 0;
3421 if (!for_combine
3422 && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
3423 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3424 SET_SRC (PATTERN (insn)))))
3425 /* A setting of the reg to a different value reaches INSN. */
3426 return 0;
3428 if (number_of_reaching_defs > 1)
3430 /* If in this setting the value the register is being set to is
3431 equal to the previous value the register was set to and this
3432 setting reaches the insn we are trying to do the substitution
3433 on then we are ok. */
3434 if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
3435 return 0;
3436 else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3437 SET_SRC (PATTERN (insn))))
3438 return 0;
3441 *addr_this_reg = this_reg;
3444 return number_of_reaching_defs;
3447 /* Expression computed by insn is available and the substitution is legal,
3448 so try to perform the substitution.
3450 The result is non-zero if any changes were made. */
3452 static int
3453 handle_avail_expr (insn, expr)
3454 rtx insn;
3455 struct expr *expr;
3457 rtx pat, insn_computes_expr, expr_set;
3458 rtx to;
3459 struct reg_set *this_reg;
3460 int found_setting, use_src;
3461 int changed = 0;
3463 /* We only handle the case where one computation of the expression
3464 reaches this instruction. */
3465 insn_computes_expr = computing_insn (expr, insn);
3466 if (insn_computes_expr == NULL)
3467 return 0;
3468 expr_set = single_set (insn_computes_expr);
3469 if (!expr_set)
3470 abort ();
3472 found_setting = 0;
3473 use_src = 0;
3475 /* At this point we know only one computation of EXPR outside of this
3476 block reaches this insn. Now try to find a register that the
3477 expression is computed into. */
3478 if (GET_CODE (SET_SRC (expr_set)) == REG)
3480 /* This is the case when the available expression that reaches
3481 here has already been handled as an available expression. */
3482 unsigned int regnum_for_replacing
3483 = REGNO (SET_SRC (expr_set));
3485 /* If the register was created by GCSE we can't use `reg_set_table',
3486 however we know it's set only once. */
3487 if (regnum_for_replacing >= max_gcse_regno
3488 /* If the register the expression is computed into is set only once,
3489 or only one set reaches this insn, we can use it. */
3490 || (((this_reg = reg_set_table[regnum_for_replacing]),
3491 this_reg->next == NULL)
3492 || can_disregard_other_sets (&this_reg, insn, 0)))
3494 use_src = 1;
3495 found_setting = 1;
3499 if (!found_setting)
3501 unsigned int regnum_for_replacing
3502 = REGNO (SET_DEST (expr_set));
3504 /* This shouldn't happen. */
3505 if (regnum_for_replacing >= max_gcse_regno)
3506 abort ();
3508 this_reg = reg_set_table[regnum_for_replacing];
3510 /* If the register the expression is computed into is set only once,
3511 or only one set reaches this insn, use it. */
3512 if (this_reg->next == NULL
3513 || can_disregard_other_sets (&this_reg, insn, 0))
3514 found_setting = 1;
3517 if (found_setting)
3519 pat = PATTERN (insn);
3520 if (use_src)
3521 to = SET_SRC (expr_set);
3522 else
3523 to = SET_DEST (expr_set);
3524 changed = validate_change (insn, &SET_SRC (pat), to, 0);
3526 /* We should be able to ignore the return code from validate_change but
3527 to play it safe we check. */
3528 if (changed)
3530 gcse_subst_count++;
3531 if (gcse_file != NULL)
3533 fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
3534 INSN_UID (insn));
3535 fprintf (gcse_file, " reg %d %s insn %d\n",
3536 REGNO (to), use_src ? "from" : "set in",
3537 INSN_UID (insn_computes_expr));
3542 /* The register that the expr is computed into is set more than once. */
3543 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3545 /* Insert an insn after insnx that copies the reg set in insnx
3546 into a new pseudo register call this new register REGN.
3547 From insnb until end of basic block or until REGB is set
3548 replace all uses of REGB with REGN. */
3549 rtx new_insn;
3551 to = gen_reg_rtx (GET_MODE (SET_DEST (expr_set)));
3553 /* Generate the new insn. */
3554 /* ??? If the change fails, we return 0, even though we created
3555 an insn. I think this is ok. */
3556 new_insn
3557 = emit_insn_after (gen_rtx_SET (VOIDmode, to,
3558 SET_DEST (expr_set)),
3559 insn_computes_expr);
3561 /* Keep register set table up to date. */
3562 record_one_set (REGNO (to), new_insn);
3564 gcse_create_count++;
3565 if (gcse_file != NULL)
3567 fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
3568 INSN_UID (NEXT_INSN (insn_computes_expr)),
3569 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
3570 fprintf (gcse_file, ", computed in insn %d,\n",
3571 INSN_UID (insn_computes_expr));
3572 fprintf (gcse_file, " into newly allocated reg %d\n",
3573 REGNO (to));
3576 pat = PATTERN (insn);
3578 /* Do register replacement for INSN. */
3579 changed = validate_change (insn, &SET_SRC (pat),
3580 SET_DEST (PATTERN
3581 (NEXT_INSN (insn_computes_expr))),
3584 /* We should be able to ignore the return code from validate_change but
3585 to play it safe we check. */
3586 if (changed)
3588 gcse_subst_count++;
3589 if (gcse_file != NULL)
3591 fprintf (gcse_file,
3592 "GCSE: Replacing the source in insn %d with reg %d ",
3593 INSN_UID (insn),
3594 REGNO (SET_DEST (PATTERN (NEXT_INSN
3595 (insn_computes_expr)))));
3596 fprintf (gcse_file, "set in insn %d\n",
3597 INSN_UID (insn_computes_expr));
3602 return changed;
3605 /* Perform classic GCSE. This is called by one_classic_gcse_pass after all
3606 the dataflow analysis has been done.
3608 The result is non-zero if a change was made. */
3610 static int
3611 classic_gcse ()
3613 int changed;
3614 rtx insn;
3615 basic_block bb;
3617 /* Note we start at block 1. */
3619 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3620 return 0;
3622 changed = 0;
3623 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3625 /* Reset tables used to keep track of what's still valid [since the
3626 start of the block]. */
3627 reset_opr_set_tables ();
3629 for (insn = bb->head;
3630 insn != NULL && insn != NEXT_INSN (bb->end);
3631 insn = NEXT_INSN (insn))
3633 /* Is insn of form (set (pseudo-reg) ...)? */
3634 if (GET_CODE (insn) == INSN
3635 && GET_CODE (PATTERN (insn)) == SET
3636 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
3637 && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
3639 rtx pat = PATTERN (insn);
3640 rtx src = SET_SRC (pat);
3641 struct expr *expr;
3643 if (want_to_gcse_p (src)
3644 /* Is the expression recorded? */
3645 && ((expr = lookup_expr (src)) != NULL)
3646 /* Is the expression available [at the start of the
3647 block]? */
3648 && TEST_BIT (ae_in[bb->index], expr->bitmap_index)
3649 /* Are the operands unchanged since the start of the
3650 block? */
3651 && oprs_not_set_p (src, insn))
3652 changed |= handle_avail_expr (insn, expr);
3655 /* Keep track of everything modified by this insn. */
3656 /* ??? Need to be careful w.r.t. mods done to INSN. */
3657 if (INSN_P (insn))
3658 mark_oprs_set (insn);
3662 return changed;
3665 /* Top level routine to perform one classic GCSE pass.
3667 Return non-zero if a change was made. */
3669 static int
3670 one_classic_gcse_pass (pass)
3671 int pass;
3673 int changed = 0;
3675 gcse_subst_count = 0;
3676 gcse_create_count = 0;
3678 alloc_expr_hash_table (max_cuid);
3679 alloc_rd_mem (last_basic_block, max_cuid);
3680 compute_expr_hash_table ();
3681 if (gcse_file)
3682 dump_hash_table (gcse_file, "Expression", expr_hash_table,
3683 expr_hash_table_size, n_exprs);
3685 if (n_exprs > 0)
3687 compute_kill_rd ();
3688 compute_rd ();
3689 alloc_avail_expr_mem (last_basic_block, n_exprs);
3690 compute_ae_gen ();
3691 compute_ae_kill (ae_gen, ae_kill);
3692 compute_available (ae_gen, ae_kill, ae_out, ae_in);
3693 changed = classic_gcse ();
3694 free_avail_expr_mem ();
3697 free_rd_mem ();
3698 free_expr_hash_table ();
3700 if (gcse_file)
3702 fprintf (gcse_file, "\n");
3703 fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
3704 current_function_name, pass, bytes_used, gcse_subst_count);
3705 fprintf (gcse_file, "%d insns created\n", gcse_create_count);
3708 return changed;
3711 /* Compute copy/constant propagation working variables. */
3713 /* Local properties of assignments. */
3714 static sbitmap *cprop_pavloc;
3715 static sbitmap *cprop_absaltered;
3717 /* Global properties of assignments (computed from the local properties). */
3718 static sbitmap *cprop_avin;
3719 static sbitmap *cprop_avout;
3721 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
3722 basic blocks. N_SETS is the number of sets. */
3724 static void
3725 alloc_cprop_mem (n_blocks, n_sets)
3726 int n_blocks, n_sets;
3728 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
3729 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
3731 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
3732 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
3735 /* Free vars used by copy/const propagation. */
3737 static void
3738 free_cprop_mem ()
3740 sbitmap_vector_free (cprop_pavloc);
3741 sbitmap_vector_free (cprop_absaltered);
3742 sbitmap_vector_free (cprop_avin);
3743 sbitmap_vector_free (cprop_avout);
3746 /* For each block, compute whether X is transparent. X is either an
3747 expression or an assignment [though we don't care which, for this context
3748 an assignment is treated as an expression]. For each block where an
3749 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
3750 bit in BMAP. */
3752 static void
3753 compute_transp (x, indx, bmap, set_p)
3754 rtx x;
3755 int indx;
3756 sbitmap *bmap;
3757 int set_p;
3759 int i, j;
3760 basic_block bb;
3761 enum rtx_code code;
3762 reg_set *r;
3763 const char *fmt;
3765 /* repeat is used to turn tail-recursion into iteration since GCC
3766 can't do it when there's no return value. */
3767 repeat:
3769 if (x == 0)
3770 return;
3772 code = GET_CODE (x);
3773 switch (code)
3775 case REG:
3776 if (set_p)
3778 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3780 FOR_EACH_BB (bb)
3781 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
3782 SET_BIT (bmap[bb->index], indx);
3784 else
3786 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3787 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3790 else
3792 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3794 FOR_EACH_BB (bb)
3795 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
3796 RESET_BIT (bmap[bb->index], indx);
3798 else
3800 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3801 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3805 return;
3807 case MEM:
3808 FOR_EACH_BB (bb)
3810 rtx list_entry = canon_modify_mem_list[bb->index];
3812 while (list_entry)
3814 rtx dest, dest_addr;
3816 if (GET_CODE (XEXP (list_entry, 0)) == CALL_INSN)
3818 if (set_p)
3819 SET_BIT (bmap[bb->index], indx);
3820 else
3821 RESET_BIT (bmap[bb->index], indx);
3822 break;
3824 /* LIST_ENTRY must be an INSN of some kind that sets memory.
3825 Examine each hunk of memory that is modified. */
3827 dest = XEXP (list_entry, 0);
3828 list_entry = XEXP (list_entry, 1);
3829 dest_addr = XEXP (list_entry, 0);
3831 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
3832 x, rtx_addr_varies_p))
3834 if (set_p)
3835 SET_BIT (bmap[bb->index], indx);
3836 else
3837 RESET_BIT (bmap[bb->index], indx);
3838 break;
3840 list_entry = XEXP (list_entry, 1);
3844 x = XEXP (x, 0);
3845 goto repeat;
3847 case PC:
3848 case CC0: /*FIXME*/
3849 case CONST:
3850 case CONST_INT:
3851 case CONST_DOUBLE:
3852 case CONST_VECTOR:
3853 case SYMBOL_REF:
3854 case LABEL_REF:
3855 case ADDR_VEC:
3856 case ADDR_DIFF_VEC:
3857 return;
3859 default:
3860 break;
3863 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3865 if (fmt[i] == 'e')
3867 /* If we are about to do the last recursive call
3868 needed at this level, change it into iteration.
3869 This function is called enough to be worth it. */
3870 if (i == 0)
3872 x = XEXP (x, i);
3873 goto repeat;
3876 compute_transp (XEXP (x, i), indx, bmap, set_p);
3878 else if (fmt[i] == 'E')
3879 for (j = 0; j < XVECLEN (x, i); j++)
3880 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
3884 /* Top level routine to do the dataflow analysis needed by copy/const
3885 propagation. */
3887 static void
3888 compute_cprop_data ()
3890 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, 1);
3891 compute_available (cprop_pavloc, cprop_absaltered,
3892 cprop_avout, cprop_avin);
3895 /* Copy/constant propagation. */
3897 /* Maximum number of register uses in an insn that we handle. */
3898 #define MAX_USES 8
3900 /* Table of uses found in an insn.
3901 Allocated statically to avoid alloc/free complexity and overhead. */
3902 static struct reg_use reg_use_table[MAX_USES];
3904 /* Index into `reg_use_table' while building it. */
3905 static int reg_use_count;
3907 /* Set up a list of register numbers used in INSN. The found uses are stored
3908 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
3909 and contains the number of uses in the table upon exit.
3911 ??? If a register appears multiple times we will record it multiple times.
3912 This doesn't hurt anything but it will slow things down. */
3914 static void
3915 find_used_regs (xptr, data)
3916 rtx *xptr;
3917 void *data ATTRIBUTE_UNUSED;
3919 int i, j;
3920 enum rtx_code code;
3921 const char *fmt;
3922 rtx x = *xptr;
3924 /* repeat is used to turn tail-recursion into iteration since GCC
3925 can't do it when there's no return value. */
3926 repeat:
3927 if (x == 0)
3928 return;
3930 code = GET_CODE (x);
3931 if (REG_P (x))
3933 if (reg_use_count == MAX_USES)
3934 return;
3936 reg_use_table[reg_use_count].reg_rtx = x;
3937 reg_use_count++;
3940 /* Recursively scan the operands of this expression. */
3942 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3944 if (fmt[i] == 'e')
3946 /* If we are about to do the last recursive call
3947 needed at this level, change it into iteration.
3948 This function is called enough to be worth it. */
3949 if (i == 0)
3951 x = XEXP (x, 0);
3952 goto repeat;
3955 find_used_regs (&XEXP (x, i), data);
3957 else if (fmt[i] == 'E')
3958 for (j = 0; j < XVECLEN (x, i); j++)
3959 find_used_regs (&XVECEXP (x, i, j), data);
3963 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3964 Returns non-zero is successful. */
3966 static int
3967 try_replace_reg (from, to, insn)
3968 rtx from, to, insn;
3970 rtx note = find_reg_equal_equiv_note (insn);
3971 rtx src = 0;
3972 int success = 0;
3973 rtx set = single_set (insn);
3975 success = validate_replace_src (from, to, insn);
3977 /* If above failed and this is a single set, try to simplify the source of
3978 the set given our substitution. We could perhaps try this for multiple
3979 SETs, but it probably won't buy us anything. */
3980 if (!success && set != 0)
3982 src = simplify_replace_rtx (SET_SRC (set), from, to);
3984 if (!rtx_equal_p (src, SET_SRC (set))
3985 && validate_change (insn, &SET_SRC (set), src, 0))
3986 success = 1;
3989 /* If we've failed to do replacement, have a single SET, and don't already
3990 have a note, add a REG_EQUAL note to not lose information. */
3991 if (!success && note == 0 && set != 0)
3992 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3994 /* If there is already a NOTE, update the expression in it with our
3995 replacement. */
3996 else if (note != 0)
3997 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
3999 /* REG_EQUAL may get simplified into register.
4000 We don't allow that. Remove that note. This code ought
4001 not to hapen, because previous code ought to syntetize
4002 reg-reg move, but be on the safe side. */
4003 if (note && REG_P (XEXP (note, 0)))
4004 remove_note (insn, note);
4006 return success;
4009 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
4010 NULL no such set is found. */
4012 static struct expr *
4013 find_avail_set (regno, insn)
4014 int regno;
4015 rtx insn;
4017 /* SET1 contains the last set found that can be returned to the caller for
4018 use in a substitution. */
4019 struct expr *set1 = 0;
4021 /* Loops are not possible here. To get a loop we would need two sets
4022 available at the start of the block containing INSN. ie we would
4023 need two sets like this available at the start of the block:
4025 (set (reg X) (reg Y))
4026 (set (reg Y) (reg X))
4028 This can not happen since the set of (reg Y) would have killed the
4029 set of (reg X) making it unavailable at the start of this block. */
4030 while (1)
4032 rtx src;
4033 struct expr *set = lookup_set (regno, NULL_RTX);
4035 /* Find a set that is available at the start of the block
4036 which contains INSN. */
4037 while (set)
4039 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
4040 break;
4041 set = next_set (regno, set);
4044 /* If no available set was found we've reached the end of the
4045 (possibly empty) copy chain. */
4046 if (set == 0)
4047 break;
4049 if (GET_CODE (set->expr) != SET)
4050 abort ();
4052 src = SET_SRC (set->expr);
4054 /* We know the set is available.
4055 Now check that SRC is ANTLOC (i.e. none of the source operands
4056 have changed since the start of the block).
4058 If the source operand changed, we may still use it for the next
4059 iteration of this loop, but we may not use it for substitutions. */
4061 if (CONSTANT_P (src) || oprs_not_set_p (src, insn))
4062 set1 = set;
4064 /* If the source of the set is anything except a register, then
4065 we have reached the end of the copy chain. */
4066 if (GET_CODE (src) != REG)
4067 break;
4069 /* Follow the copy chain, ie start another iteration of the loop
4070 and see if we have an available copy into SRC. */
4071 regno = REGNO (src);
4074 /* SET1 holds the last set that was available and anticipatable at
4075 INSN. */
4076 return set1;
4079 /* Subroutine of cprop_insn that tries to propagate constants into
4080 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
4081 it is the instruction that immediately preceeds JUMP, and must be a
4082 single SET of a CC_MODE register. FROM is what we will try to replace,
4083 SRC is the constant we will try to substitute for it. Returns nonzero
4084 if a change was made. */
4086 static int
4087 cprop_jump (bb, setcc, jump, from, src)
4088 basic_block bb;
4089 rtx setcc;
4090 rtx jump;
4091 rtx from;
4092 rtx src;
4094 rtx new, new_set;
4095 rtx set = pc_set (jump);
4097 /* First substitute in the INSN condition as the SET_SRC of the JUMP,
4098 then substitute that given values in this expanded JUMP. */
4099 if (setcc != NULL)
4100 new_set = simplify_replace_rtx (SET_SRC (set),
4101 SET_DEST (PATTERN (setcc)),
4102 SET_SRC (PATTERN (setcc)));
4103 else
4104 new_set = set;
4106 new = simplify_replace_rtx (new_set, from, src);
4108 /* If no simplification can be made, then try the next
4109 register. */
4110 if (rtx_equal_p (new, new_set))
4111 return 0;
4113 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
4114 if (new == pc_rtx)
4115 delete_insn (jump);
4116 else
4118 if (! validate_change (jump, &SET_SRC (set), new, 0))
4119 return 0;
4121 /* If this has turned into an unconditional jump,
4122 then put a barrier after it so that the unreachable
4123 code will be deleted. */
4124 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
4125 emit_barrier_after (jump);
4128 #ifdef HAVE_cc0
4129 /* Delete the cc0 setter. */
4130 if (setcc != NULL && SET_DEST (PATTERN (setcc)) == cc0_rtx)
4131 delete_insn (setcc);
4132 #endif
4134 run_jump_opt_after_gcse = 1;
4136 const_prop_count++;
4137 if (gcse_file != NULL)
4139 fprintf (gcse_file,
4140 "CONST-PROP: Replacing reg %d in insn %d with constant ",
4141 REGNO (from), INSN_UID (jump));
4142 print_rtl (gcse_file, src);
4143 fprintf (gcse_file, "\n");
4145 purge_dead_edges (bb);
4147 return 1;
4150 /* Perform constant and copy propagation on INSN.
4151 The result is non-zero if a change was made. */
4153 static int
4154 cprop_insn (bb, insn, alter_jumps)
4155 basic_block bb;
4156 rtx insn;
4157 int alter_jumps;
4159 struct reg_use *reg_used;
4160 int changed = 0;
4161 rtx note;
4163 if (!INSN_P (insn))
4164 return 0;
4166 reg_use_count = 0;
4167 note_uses (&PATTERN (insn), find_used_regs, NULL);
4169 note = find_reg_equal_equiv_note (insn);
4171 /* We may win even when propagating constants into notes. */
4172 if (note)
4173 find_used_regs (&XEXP (note, 0), NULL);
4175 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
4176 reg_used++, reg_use_count--)
4178 unsigned int regno = REGNO (reg_used->reg_rtx);
4179 rtx pat, src;
4180 struct expr *set;
4182 /* Ignore registers created by GCSE.
4183 We do this because ... */
4184 if (regno >= max_gcse_regno)
4185 continue;
4187 /* If the register has already been set in this block, there's
4188 nothing we can do. */
4189 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
4190 continue;
4192 /* Find an assignment that sets reg_used and is available
4193 at the start of the block. */
4194 set = find_avail_set (regno, insn);
4195 if (! set)
4196 continue;
4198 pat = set->expr;
4199 /* ??? We might be able to handle PARALLELs. Later. */
4200 if (GET_CODE (pat) != SET)
4201 abort ();
4203 src = SET_SRC (pat);
4205 /* Constant propagation. */
4206 if (CONSTANT_P (src))
4208 /* Check for MODE_CC setting instructions followed by
4209 conditional branch instructions first. */
4210 if (alter_jumps
4211 && single_set (insn)
4212 && any_condjump_p (NEXT_INSN (insn))
4213 && onlyjump_p (NEXT_INSN (insn)))
4215 rtx dest = SET_DEST (PATTERN (insn));
4216 if ((GET_MODE_CLASS (GET_MODE (dest)) == MODE_CC
4217 #ifdef HAVE_cc0
4218 || dest == cc0_rtx
4219 #endif
4220 ) && cprop_jump (bb, insn, NEXT_INSN (insn),
4221 reg_used->reg_rtx, src))
4223 changed = 1;
4224 break;
4228 /* Handle normal insns next. */
4229 if (GET_CODE (insn) == INSN
4230 && try_replace_reg (reg_used->reg_rtx, src, insn))
4232 changed = 1;
4233 const_prop_count++;
4234 if (gcse_file != NULL)
4236 fprintf (gcse_file, "CONST-PROP: Replacing reg %d in ",
4237 regno);
4238 fprintf (gcse_file, "insn %d with constant ",
4239 INSN_UID (insn));
4240 print_rtl (gcse_file, src);
4241 fprintf (gcse_file, "\n");
4244 /* The original insn setting reg_used may or may not now be
4245 deletable. We leave the deletion to flow. */
4248 /* Try to propagate a CONST_INT into a conditional jump.
4249 We're pretty specific about what we will handle in this
4250 code, we can extend this as necessary over time.
4252 Right now the insn in question must look like
4253 (set (pc) (if_then_else ...)) */
4254 else if (alter_jumps
4255 && any_condjump_p (insn)
4256 && onlyjump_p (insn))
4257 changed |= cprop_jump (bb, NULL, insn, reg_used->reg_rtx, src);
4260 else if (GET_CODE (src) == REG
4261 && REGNO (src) >= FIRST_PSEUDO_REGISTER
4262 && REGNO (src) != regno)
4264 if (try_replace_reg (reg_used->reg_rtx, src, insn))
4266 changed = 1;
4267 copy_prop_count++;
4268 if (gcse_file != NULL)
4270 fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d",
4271 regno, INSN_UID (insn));
4272 fprintf (gcse_file, " with reg %d\n", REGNO (src));
4275 /* The original insn setting reg_used may or may not now be
4276 deletable. We leave the deletion to flow. */
4277 /* FIXME: If it turns out that the insn isn't deletable,
4278 then we may have unnecessarily extended register lifetimes
4279 and made things worse. */
4284 return changed;
4287 /* Forward propagate copies. This includes copies and constants. Return
4288 non-zero if a change was made. */
4290 static int
4291 cprop (alter_jumps)
4292 int alter_jumps;
4294 int changed;
4295 basic_block bb;
4296 rtx insn;
4298 /* Note we start at block 1. */
4299 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
4301 if (gcse_file != NULL)
4302 fprintf (gcse_file, "\n");
4303 return 0;
4306 changed = 0;
4307 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
4309 /* Reset tables used to keep track of what's still valid [since the
4310 start of the block]. */
4311 reset_opr_set_tables ();
4313 for (insn = bb->head;
4314 insn != NULL && insn != NEXT_INSN (bb->end);
4315 insn = NEXT_INSN (insn))
4316 if (INSN_P (insn))
4318 changed |= cprop_insn (bb, insn, alter_jumps);
4320 /* Keep track of everything modified by this insn. */
4321 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
4322 call mark_oprs_set if we turned the insn into a NOTE. */
4323 if (GET_CODE (insn) != NOTE)
4324 mark_oprs_set (insn);
4328 if (gcse_file != NULL)
4329 fprintf (gcse_file, "\n");
4331 return changed;
4334 /* Perform one copy/constant propagation pass.
4335 F is the first insn in the function.
4336 PASS is the pass count. */
4338 static int
4339 one_cprop_pass (pass, alter_jumps)
4340 int pass;
4341 int alter_jumps;
4343 int changed = 0;
4345 const_prop_count = 0;
4346 copy_prop_count = 0;
4348 alloc_set_hash_table (max_cuid);
4349 compute_set_hash_table ();
4350 if (gcse_file)
4351 dump_hash_table (gcse_file, "SET", set_hash_table, set_hash_table_size,
4352 n_sets);
4353 if (n_sets > 0)
4355 alloc_cprop_mem (last_basic_block, n_sets);
4356 compute_cprop_data ();
4357 changed = cprop (alter_jumps);
4358 if (alter_jumps)
4359 changed |= bypass_conditional_jumps ();
4360 free_cprop_mem ();
4363 free_set_hash_table ();
4365 if (gcse_file)
4367 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
4368 current_function_name, pass, bytes_used);
4369 fprintf (gcse_file, "%d const props, %d copy props\n\n",
4370 const_prop_count, copy_prop_count);
4373 return changed;
4376 /* Bypass conditional jumps. */
4378 /* Find a set of REGNO to a constant that is available at the end of basic
4379 block BB. Returns NULL if no such set is found. Based heavily upon
4380 find_avail_set. */
4382 static struct expr *
4383 find_bypass_set (regno, bb)
4384 int regno;
4385 int bb;
4387 struct expr *result = 0;
4389 for (;;)
4391 rtx src;
4392 struct expr *set = lookup_set (regno, NULL_RTX);
4394 while (set)
4396 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
4397 break;
4398 set = next_set (regno, set);
4401 if (set == 0)
4402 break;
4404 if (GET_CODE (set->expr) != SET)
4405 abort ();
4407 src = SET_SRC (set->expr);
4408 if (CONSTANT_P (src))
4409 result = set;
4411 if (GET_CODE (src) != REG)
4412 break;
4414 regno = REGNO (src);
4416 return result;
4420 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
4421 basic block BB which has more than one predecessor. If not NULL, SETCC
4422 is the first instruction of BB, which is immediately followed by JUMP_INSN
4423 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
4424 Returns nonzero if a change was made. */
4426 static int
4427 bypass_block (bb, setcc, jump)
4428 basic_block bb;
4429 rtx setcc, jump;
4431 rtx insn, note;
4432 edge e, enext;
4433 int i,change;
4435 insn = (setcc != NULL) ? setcc : jump;
4437 /* Determine set of register uses in INSN. */
4438 reg_use_count = 0;
4439 note_uses (&PATTERN (insn), find_used_regs, NULL);
4440 note = find_reg_equal_equiv_note (insn);
4441 if (note)
4442 find_used_regs (&XEXP (note, 0), NULL);
4444 change = 0;
4445 for (e = bb->pred; e; e = enext)
4447 enext = e->pred_next;
4448 for (i = 0; i < reg_use_count; i++)
4450 struct reg_use *reg_used = &reg_use_table[i];
4451 unsigned int regno = REGNO (reg_used->reg_rtx);
4452 basic_block dest;
4453 struct expr *set;
4454 rtx src, new;
4456 if (regno >= max_gcse_regno)
4457 continue;
4459 set = find_bypass_set (regno, e->src->index);
4461 if (! set)
4462 continue;
4464 src = SET_SRC (pc_set (jump));
4466 if (setcc != NULL)
4467 src = simplify_replace_rtx (src,
4468 SET_DEST (PATTERN (setcc)),
4469 SET_SRC (PATTERN (setcc)));
4471 new = simplify_replace_rtx (src, reg_used->reg_rtx,
4472 SET_SRC (set->expr));
4474 if (new == pc_rtx)
4475 dest = FALLTHRU_EDGE (bb)->dest;
4476 else if (GET_CODE (new) == LABEL_REF)
4477 dest = BRANCH_EDGE (bb)->dest;
4478 else
4479 dest = NULL;
4481 /* Once basic block indices are stable, we should be able
4482 to use redirect_edge_and_branch_force instead. */
4483 if ((dest != NULL) && (dest != e->dest)
4484 && redirect_edge_and_branch (e, dest))
4486 /* Copy the MODE_CC setter to the redirected edge.
4487 Don't copy CC0 setters, as CC0 is dead after jump. */
4488 if (setcc)
4490 rtx pat = PATTERN (setcc);
4491 if (GET_MODE_CLASS (GET_MODE (SET_DEST (pat))) == MODE_CC)
4492 insert_insn_on_edge (copy_insn (pat), e);
4495 if (gcse_file != NULL)
4497 fprintf (gcse_file, "JUMP-BYPASS: Replacing reg %d in ",
4498 regno);
4499 fprintf (gcse_file, "insn %d with constant ",
4500 INSN_UID (jump));
4501 print_rtl (gcse_file, SET_SRC (set->expr));
4502 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
4503 e->src->index, e->dest->index, dest->index);
4505 change = 1;
4506 break;
4510 return change;
4513 /* Find basic blocks with more than one predecessor that only contain a
4514 single conditional jump. If the result of the comparison is known at
4515 compile-time from any incoming edge, redirect that edge to the
4516 appropriate target. Returns nonzero if a change was made. */
4518 static int
4519 bypass_conditional_jumps ()
4521 basic_block bb;
4522 int changed;
4523 rtx setcc;
4524 rtx insn;
4525 rtx dest;
4527 /* Note we start at block 1. */
4528 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
4529 return 0;
4531 changed = 0;
4532 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
4533 EXIT_BLOCK_PTR, next_bb)
4535 /* Check for more than one predecessor. */
4536 if (bb->pred && bb->pred->pred_next)
4538 setcc = NULL_RTX;
4539 for (insn = bb->head;
4540 insn != NULL && insn != NEXT_INSN (bb->end);
4541 insn = NEXT_INSN (insn))
4542 if (GET_CODE (insn) == INSN)
4544 rtx set = single_set (insn);
4545 if (setcc)
4546 break;
4547 if (!set)
4548 break;
4550 dest = SET_DEST (set);
4551 if (GET_MODE_CLASS (GET_MODE (dest)) == MODE_CC)
4552 setcc = insn;
4553 #ifdef HAVE_cc0
4554 else if (dest == cc0_rtx)
4555 setcc = insn;
4556 #endif
4557 else
4558 break;
4560 else if (GET_CODE (insn) == JUMP_INSN)
4562 if (any_condjump_p (insn) && onlyjump_p (insn))
4563 changed |= bypass_block (bb, setcc, insn);
4564 break;
4566 else if (INSN_P (insn))
4567 break;
4571 /* If we bypassed any MODE_CC setting insns, we inserted a
4572 copy on the redirected edge. These need to be commited. */
4573 if (changed)
4574 commit_edge_insertions();
4576 return changed;
4579 /* Compute PRE+LCM working variables. */
4581 /* Local properties of expressions. */
4582 /* Nonzero for expressions that are transparent in the block. */
4583 static sbitmap *transp;
4585 /* Nonzero for expressions that are transparent at the end of the block.
4586 This is only zero for expressions killed by abnormal critical edge
4587 created by a calls. */
4588 static sbitmap *transpout;
4590 /* Nonzero for expressions that are computed (available) in the block. */
4591 static sbitmap *comp;
4593 /* Nonzero for expressions that are locally anticipatable in the block. */
4594 static sbitmap *antloc;
4596 /* Nonzero for expressions where this block is an optimal computation
4597 point. */
4598 static sbitmap *pre_optimal;
4600 /* Nonzero for expressions which are redundant in a particular block. */
4601 static sbitmap *pre_redundant;
4603 /* Nonzero for expressions which should be inserted on a specific edge. */
4604 static sbitmap *pre_insert_map;
4606 /* Nonzero for expressions which should be deleted in a specific block. */
4607 static sbitmap *pre_delete_map;
4609 /* Contains the edge_list returned by pre_edge_lcm. */
4610 static struct edge_list *edge_list;
4612 /* Redundant insns. */
4613 static sbitmap pre_redundant_insns;
4615 /* Allocate vars used for PRE analysis. */
4617 static void
4618 alloc_pre_mem (n_blocks, n_exprs)
4619 int n_blocks, n_exprs;
4621 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4622 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4623 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4625 pre_optimal = NULL;
4626 pre_redundant = NULL;
4627 pre_insert_map = NULL;
4628 pre_delete_map = NULL;
4629 ae_in = NULL;
4630 ae_out = NULL;
4631 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
4633 /* pre_insert and pre_delete are allocated later. */
4636 /* Free vars used for PRE analysis. */
4638 static void
4639 free_pre_mem ()
4641 sbitmap_vector_free (transp);
4642 sbitmap_vector_free (comp);
4644 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
4646 if (pre_optimal)
4647 sbitmap_vector_free (pre_optimal);
4648 if (pre_redundant)
4649 sbitmap_vector_free (pre_redundant);
4650 if (pre_insert_map)
4651 sbitmap_vector_free (pre_insert_map);
4652 if (pre_delete_map)
4653 sbitmap_vector_free (pre_delete_map);
4654 if (ae_in)
4655 sbitmap_vector_free (ae_in);
4656 if (ae_out)
4657 sbitmap_vector_free (ae_out);
4659 transp = comp = NULL;
4660 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
4661 ae_in = ae_out = NULL;
4664 /* Top level routine to do the dataflow analysis needed by PRE. */
4666 static void
4667 compute_pre_data ()
4669 sbitmap trapping_expr;
4670 basic_block bb;
4671 unsigned int ui;
4673 compute_local_properties (transp, comp, antloc, 0);
4674 sbitmap_vector_zero (ae_kill, last_basic_block);
4676 /* Collect expressions which might trap. */
4677 trapping_expr = sbitmap_alloc (n_exprs);
4678 sbitmap_zero (trapping_expr);
4679 for (ui = 0; ui < expr_hash_table_size; ui++)
4681 struct expr *e;
4682 for (e = expr_hash_table[ui]; e != NULL; e = e->next_same_hash)
4683 if (may_trap_p (e->expr))
4684 SET_BIT (trapping_expr, e->bitmap_index);
4687 /* Compute ae_kill for each basic block using:
4689 ~(TRANSP | COMP)
4691 This is significantly faster than compute_ae_kill. */
4693 FOR_EACH_BB (bb)
4695 edge e;
4697 /* If the current block is the destination of an abnormal edge, we
4698 kill all trapping expressions because we won't be able to properly
4699 place the instruction on the edge. So make them neither
4700 anticipatable nor transparent. This is fairly conservative. */
4701 for (e = bb->pred; e ; e = e->pred_next)
4702 if (e->flags & EDGE_ABNORMAL)
4704 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
4705 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
4706 break;
4709 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
4710 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
4713 edge_list = pre_edge_lcm (gcse_file, n_exprs, transp, comp, antloc,
4714 ae_kill, &pre_insert_map, &pre_delete_map);
4715 sbitmap_vector_free (antloc);
4716 antloc = NULL;
4717 sbitmap_vector_free (ae_kill);
4718 ae_kill = NULL;
4719 sbitmap_free (trapping_expr);
4722 /* PRE utilities */
4724 /* Return non-zero if an occurrence of expression EXPR in OCCR_BB would reach
4725 block BB.
4727 VISITED is a pointer to a working buffer for tracking which BB's have
4728 been visited. It is NULL for the top-level call.
4730 We treat reaching expressions that go through blocks containing the same
4731 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
4732 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
4733 2 as not reaching. The intent is to improve the probability of finding
4734 only one reaching expression and to reduce register lifetimes by picking
4735 the closest such expression. */
4737 static int
4738 pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
4739 basic_block occr_bb;
4740 struct expr *expr;
4741 basic_block bb;
4742 char *visited;
4744 edge pred;
4746 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
4748 basic_block pred_bb = pred->src;
4750 if (pred->src == ENTRY_BLOCK_PTR
4751 /* Has predecessor has already been visited? */
4752 || visited[pred_bb->index])
4753 ;/* Nothing to do. */
4755 /* Does this predecessor generate this expression? */
4756 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
4758 /* Is this the occurrence we're looking for?
4759 Note that there's only one generating occurrence per block
4760 so we just need to check the block number. */
4761 if (occr_bb == pred_bb)
4762 return 1;
4764 visited[pred_bb->index] = 1;
4766 /* Ignore this predecessor if it kills the expression. */
4767 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
4768 visited[pred_bb->index] = 1;
4770 /* Neither gen nor kill. */
4771 else
4773 visited[pred_bb->index] = 1;
4774 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
4775 return 1;
4779 /* All paths have been checked. */
4780 return 0;
4783 /* The wrapper for pre_expr_reaches_here_work that ensures that any
4784 memory allocated for that function is returned. */
4786 static int
4787 pre_expr_reaches_here_p (occr_bb, expr, bb)
4788 basic_block occr_bb;
4789 struct expr *expr;
4790 basic_block bb;
4792 int rval;
4793 char *visited = (char *) xcalloc (last_basic_block, 1);
4795 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
4797 free (visited);
4798 return rval;
4802 /* Given an expr, generate RTL which we can insert at the end of a BB,
4803 or on an edge. Set the block number of any insns generated to
4804 the value of BB. */
4806 static rtx
4807 process_insert_insn (expr)
4808 struct expr *expr;
4810 rtx reg = expr->reaching_reg;
4811 rtx exp = copy_rtx (expr->expr);
4812 rtx pat;
4814 start_sequence ();
4816 /* If the expression is something that's an operand, like a constant,
4817 just copy it to a register. */
4818 if (general_operand (exp, GET_MODE (reg)))
4819 emit_move_insn (reg, exp);
4821 /* Otherwise, make a new insn to compute this expression and make sure the
4822 insn will be recognized (this also adds any needed CLOBBERs). Copy the
4823 expression to make sure we don't have any sharing issues. */
4824 else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode, reg, exp))))
4825 abort ();
4827 pat = gen_sequence ();
4828 end_sequence ();
4830 return pat;
4833 /* Add EXPR to the end of basic block BB.
4835 This is used by both the PRE and code hoisting.
4837 For PRE, we want to verify that the expr is either transparent
4838 or locally anticipatable in the target block. This check makes
4839 no sense for code hoisting. */
4841 static void
4842 insert_insn_end_bb (expr, bb, pre)
4843 struct expr *expr;
4844 basic_block bb;
4845 int pre;
4847 rtx insn = bb->end;
4848 rtx new_insn;
4849 rtx reg = expr->reaching_reg;
4850 int regno = REGNO (reg);
4851 rtx pat;
4852 int i;
4854 pat = process_insert_insn (expr);
4856 /* If the last insn is a jump, insert EXPR in front [taking care to
4857 handle cc0, etc. properly]. Similary we need to care trapping
4858 instructions in presence of non-call exceptions. */
4860 if (GET_CODE (insn) == JUMP_INSN
4861 || (GET_CODE (insn) == INSN
4862 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL))))
4864 #ifdef HAVE_cc0
4865 rtx note;
4866 #endif
4867 /* It should always be the case that we can put these instructions
4868 anywhere in the basic block with performing PRE optimizations.
4869 Check this. */
4870 if (GET_CODE (insn) == INSN && pre
4871 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
4872 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
4873 abort ();
4875 /* If this is a jump table, then we can't insert stuff here. Since
4876 we know the previous real insn must be the tablejump, we insert
4877 the new instruction just before the tablejump. */
4878 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4879 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4880 insn = prev_real_insn (insn);
4882 #ifdef HAVE_cc0
4883 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4884 if cc0 isn't set. */
4885 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4886 if (note)
4887 insn = XEXP (note, 0);
4888 else
4890 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4891 if (maybe_cc0_setter
4892 && INSN_P (maybe_cc0_setter)
4893 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4894 insn = maybe_cc0_setter;
4896 #endif
4897 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4898 new_insn = emit_insn_before (pat, insn);
4901 /* Likewise if the last insn is a call, as will happen in the presence
4902 of exception handling. */
4903 else if (GET_CODE (insn) == CALL_INSN
4904 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL)))
4906 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4907 we search backward and place the instructions before the first
4908 parameter is loaded. Do this for everyone for consistency and a
4909 presumtion that we'll get better code elsewhere as well.
4911 It should always be the case that we can put these instructions
4912 anywhere in the basic block with performing PRE optimizations.
4913 Check this. */
4915 if (pre
4916 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
4917 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
4918 abort ();
4920 /* Since different machines initialize their parameter registers
4921 in different orders, assume nothing. Collect the set of all
4922 parameter registers. */
4923 insn = find_first_parameter_load (insn, bb->head);
4925 /* If we found all the parameter loads, then we want to insert
4926 before the first parameter load.
4928 If we did not find all the parameter loads, then we might have
4929 stopped on the head of the block, which could be a CODE_LABEL.
4930 If we inserted before the CODE_LABEL, then we would be putting
4931 the insn in the wrong basic block. In that case, put the insn
4932 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4933 while (GET_CODE (insn) == CODE_LABEL
4934 || NOTE_INSN_BASIC_BLOCK_P (insn))
4935 insn = NEXT_INSN (insn);
4937 new_insn = emit_insn_before (pat, insn);
4939 else
4940 new_insn = emit_insn_after (pat, insn);
4942 /* Keep block number table up to date.
4943 Note, PAT could be a multiple insn sequence, we have to make
4944 sure that each insn in the sequence is handled. */
4945 if (GET_CODE (pat) == SEQUENCE)
4947 for (i = 0; i < XVECLEN (pat, 0); i++)
4949 rtx insn = XVECEXP (pat, 0, i);
4950 if (INSN_P (insn))
4951 add_label_notes (PATTERN (insn), new_insn);
4953 note_stores (PATTERN (insn), record_set_info, insn);
4956 else
4958 add_label_notes (pat, new_insn);
4960 /* Keep register set table up to date. */
4961 record_one_set (regno, new_insn);
4964 gcse_create_count++;
4966 if (gcse_file)
4968 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4969 bb->index, INSN_UID (new_insn));
4970 fprintf (gcse_file, "copying expression %d to reg %d\n",
4971 expr->bitmap_index, regno);
4975 /* Insert partially redundant expressions on edges in the CFG to make
4976 the expressions fully redundant. */
4978 static int
4979 pre_edge_insert (edge_list, index_map)
4980 struct edge_list *edge_list;
4981 struct expr **index_map;
4983 int e, i, j, num_edges, set_size, did_insert = 0;
4984 sbitmap *inserted;
4986 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4987 if it reaches any of the deleted expressions. */
4989 set_size = pre_insert_map[0]->size;
4990 num_edges = NUM_EDGES (edge_list);
4991 inserted = sbitmap_vector_alloc (num_edges, n_exprs);
4992 sbitmap_vector_zero (inserted, num_edges);
4994 for (e = 0; e < num_edges; e++)
4996 int indx;
4997 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4999 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
5001 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
5003 for (j = indx; insert && j < n_exprs; j++, insert >>= 1)
5004 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
5006 struct expr *expr = index_map[j];
5007 struct occr *occr;
5009 /* Now look at each deleted occurrence of this expression. */
5010 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5012 if (! occr->deleted_p)
5013 continue;
5015 /* Insert this expression on this edge if if it would
5016 reach the deleted occurrence in BB. */
5017 if (!TEST_BIT (inserted[e], j))
5019 rtx insn;
5020 edge eg = INDEX_EDGE (edge_list, e);
5022 /* We can't insert anything on an abnormal and
5023 critical edge, so we insert the insn at the end of
5024 the previous block. There are several alternatives
5025 detailed in Morgans book P277 (sec 10.5) for
5026 handling this situation. This one is easiest for
5027 now. */
5029 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
5030 insert_insn_end_bb (index_map[j], bb, 0);
5031 else
5033 insn = process_insert_insn (index_map[j]);
5034 insert_insn_on_edge (insn, eg);
5037 if (gcse_file)
5039 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
5040 bb->index,
5041 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
5042 fprintf (gcse_file, "copy expression %d\n",
5043 expr->bitmap_index);
5046 update_ld_motion_stores (expr);
5047 SET_BIT (inserted[e], j);
5048 did_insert = 1;
5049 gcse_create_count++;
5056 sbitmap_vector_free (inserted);
5057 return did_insert;
5060 /* Copy the result of INSN to REG. INDX is the expression number. */
5062 static void
5063 pre_insert_copy_insn (expr, insn)
5064 struct expr *expr;
5065 rtx insn;
5067 rtx reg = expr->reaching_reg;
5068 int regno = REGNO (reg);
5069 int indx = expr->bitmap_index;
5070 rtx set = single_set (insn);
5071 rtx new_insn;
5073 if (!set)
5074 abort ();
5076 new_insn = emit_insn_after (gen_move_insn (reg, SET_DEST (set)), insn);
5078 /* Keep register set table up to date. */
5079 record_one_set (regno, new_insn);
5081 gcse_create_count++;
5083 if (gcse_file)
5084 fprintf (gcse_file,
5085 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
5086 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
5087 INSN_UID (insn), regno);
5088 update_ld_motion_stores (expr);
5091 /* Copy available expressions that reach the redundant expression
5092 to `reaching_reg'. */
5094 static void
5095 pre_insert_copies ()
5097 unsigned int i;
5098 struct expr *expr;
5099 struct occr *occr;
5100 struct occr *avail;
5102 /* For each available expression in the table, copy the result to
5103 `reaching_reg' if the expression reaches a deleted one.
5105 ??? The current algorithm is rather brute force.
5106 Need to do some profiling. */
5108 for (i = 0; i < expr_hash_table_size; i++)
5109 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5111 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
5112 we don't want to insert a copy here because the expression may not
5113 really be redundant. So only insert an insn if the expression was
5114 deleted. This test also avoids further processing if the
5115 expression wasn't deleted anywhere. */
5116 if (expr->reaching_reg == NULL)
5117 continue;
5119 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5121 if (! occr->deleted_p)
5122 continue;
5124 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
5126 rtx insn = avail->insn;
5128 /* No need to handle this one if handled already. */
5129 if (avail->copied_p)
5130 continue;
5132 /* Don't handle this one if it's a redundant one. */
5133 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
5134 continue;
5136 /* Or if the expression doesn't reach the deleted one. */
5137 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
5138 expr,
5139 BLOCK_FOR_INSN (occr->insn)))
5140 continue;
5142 /* Copy the result of avail to reaching_reg. */
5143 pre_insert_copy_insn (expr, insn);
5144 avail->copied_p = 1;
5150 /* Emit move from SRC to DEST noting the equivalence with expression computed
5151 in INSN. */
5152 static rtx
5153 gcse_emit_move_after (src, dest, insn)
5154 rtx src, dest, insn;
5156 rtx new;
5157 rtx set = single_set (insn);
5158 rtx note;
5159 rtx eqv;
5161 /* This should never fail since we're creating a reg->reg copy
5162 we've verified to be valid. */
5164 new = emit_insn_after (gen_rtx_SET (VOIDmode, dest, src), insn);
5166 /* Note the equivalence for local CSE pass. */
5167 if ((note = find_reg_equal_equiv_note (insn)))
5168 eqv = XEXP (note, 0);
5169 else
5170 eqv = SET_SRC (set);
5172 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (src));
5174 return new;
5177 /* Delete redundant computations.
5178 Deletion is done by changing the insn to copy the `reaching_reg' of
5179 the expression into the result of the SET. It is left to later passes
5180 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
5182 Returns non-zero if a change is made. */
5184 static int
5185 pre_delete ()
5187 unsigned int i;
5188 int changed;
5189 struct expr *expr;
5190 struct occr *occr;
5192 changed = 0;
5193 for (i = 0; i < expr_hash_table_size; i++)
5194 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5196 int indx = expr->bitmap_index;
5198 /* We only need to search antic_occr since we require
5199 ANTLOC != 0. */
5201 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5203 rtx insn = occr->insn;
5204 rtx set;
5205 basic_block bb = BLOCK_FOR_INSN (insn);
5207 if (TEST_BIT (pre_delete_map[bb->index], indx))
5209 set = single_set (insn);
5210 if (! set)
5211 abort ();
5213 /* Create a pseudo-reg to store the result of reaching
5214 expressions into. Get the mode for the new pseudo from
5215 the mode of the original destination pseudo. */
5216 if (expr->reaching_reg == NULL)
5217 expr->reaching_reg
5218 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5220 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
5221 delete_insn (insn);
5222 occr->deleted_p = 1;
5223 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
5224 changed = 1;
5225 gcse_subst_count++;
5227 if (gcse_file)
5229 fprintf (gcse_file,
5230 "PRE: redundant insn %d (expression %d) in ",
5231 INSN_UID (insn), indx);
5232 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
5233 bb->index, REGNO (expr->reaching_reg));
5239 return changed;
5242 /* Perform GCSE optimizations using PRE.
5243 This is called by one_pre_gcse_pass after all the dataflow analysis
5244 has been done.
5246 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
5247 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
5248 Compiler Design and Implementation.
5250 ??? A new pseudo reg is created to hold the reaching expression. The nice
5251 thing about the classical approach is that it would try to use an existing
5252 reg. If the register can't be adequately optimized [i.e. we introduce
5253 reload problems], one could add a pass here to propagate the new register
5254 through the block.
5256 ??? We don't handle single sets in PARALLELs because we're [currently] not
5257 able to copy the rest of the parallel when we insert copies to create full
5258 redundancies from partial redundancies. However, there's no reason why we
5259 can't handle PARALLELs in the cases where there are no partial
5260 redundancies. */
5262 static int
5263 pre_gcse ()
5265 unsigned int i;
5266 int did_insert, changed;
5267 struct expr **index_map;
5268 struct expr *expr;
5270 /* Compute a mapping from expression number (`bitmap_index') to
5271 hash table entry. */
5273 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
5274 for (i = 0; i < expr_hash_table_size; i++)
5275 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5276 index_map[expr->bitmap_index] = expr;
5278 /* Reset bitmap used to track which insns are redundant. */
5279 pre_redundant_insns = sbitmap_alloc (max_cuid);
5280 sbitmap_zero (pre_redundant_insns);
5282 /* Delete the redundant insns first so that
5283 - we know what register to use for the new insns and for the other
5284 ones with reaching expressions
5285 - we know which insns are redundant when we go to create copies */
5287 changed = pre_delete ();
5289 did_insert = pre_edge_insert (edge_list, index_map);
5291 /* In other places with reaching expressions, copy the expression to the
5292 specially allocated pseudo-reg that reaches the redundant expr. */
5293 pre_insert_copies ();
5294 if (did_insert)
5296 commit_edge_insertions ();
5297 changed = 1;
5300 free (index_map);
5301 sbitmap_free (pre_redundant_insns);
5302 return changed;
5305 /* Top level routine to perform one PRE GCSE pass.
5307 Return non-zero if a change was made. */
5309 static int
5310 one_pre_gcse_pass (pass)
5311 int pass;
5313 int changed = 0;
5315 gcse_subst_count = 0;
5316 gcse_create_count = 0;
5318 alloc_expr_hash_table (max_cuid);
5319 add_noreturn_fake_exit_edges ();
5320 if (flag_gcse_lm)
5321 compute_ld_motion_mems ();
5323 compute_expr_hash_table ();
5324 trim_ld_motion_mems ();
5325 if (gcse_file)
5326 dump_hash_table (gcse_file, "Expression", expr_hash_table,
5327 expr_hash_table_size, n_exprs);
5329 if (n_exprs > 0)
5331 alloc_pre_mem (last_basic_block, n_exprs);
5332 compute_pre_data ();
5333 changed |= pre_gcse ();
5334 free_edge_list (edge_list);
5335 free_pre_mem ();
5338 free_ldst_mems ();
5339 remove_fake_edges ();
5340 free_expr_hash_table ();
5342 if (gcse_file)
5344 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
5345 current_function_name, pass, bytes_used);
5346 fprintf (gcse_file, "%d substs, %d insns created\n",
5347 gcse_subst_count, gcse_create_count);
5350 return changed;
5353 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
5354 If notes are added to an insn which references a CODE_LABEL, the
5355 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
5356 because the following loop optimization pass requires them. */
5358 /* ??? This is very similar to the loop.c add_label_notes function. We
5359 could probably share code here. */
5361 /* ??? If there was a jump optimization pass after gcse and before loop,
5362 then we would not need to do this here, because jump would add the
5363 necessary REG_LABEL notes. */
5365 static void
5366 add_label_notes (x, insn)
5367 rtx x;
5368 rtx insn;
5370 enum rtx_code code = GET_CODE (x);
5371 int i, j;
5372 const char *fmt;
5374 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
5376 /* This code used to ignore labels that referred to dispatch tables to
5377 avoid flow generating (slighly) worse code.
5379 We no longer ignore such label references (see LABEL_REF handling in
5380 mark_jump_label for additional information). */
5382 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
5383 REG_NOTES (insn));
5384 if (LABEL_P (XEXP (x, 0)))
5385 LABEL_NUSES (XEXP (x, 0))++;
5386 return;
5389 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
5391 if (fmt[i] == 'e')
5392 add_label_notes (XEXP (x, i), insn);
5393 else if (fmt[i] == 'E')
5394 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5395 add_label_notes (XVECEXP (x, i, j), insn);
5399 /* Compute transparent outgoing information for each block.
5401 An expression is transparent to an edge unless it is killed by
5402 the edge itself. This can only happen with abnormal control flow,
5403 when the edge is traversed through a call. This happens with
5404 non-local labels and exceptions.
5406 This would not be necessary if we split the edge. While this is
5407 normally impossible for abnormal critical edges, with some effort
5408 it should be possible with exception handling, since we still have
5409 control over which handler should be invoked. But due to increased
5410 EH table sizes, this may not be worthwhile. */
5412 static void
5413 compute_transpout ()
5415 basic_block bb;
5416 unsigned int i;
5417 struct expr *expr;
5419 sbitmap_vector_ones (transpout, last_basic_block);
5421 FOR_EACH_BB (bb)
5423 /* Note that flow inserted a nop a the end of basic blocks that
5424 end in call instructions for reasons other than abnormal
5425 control flow. */
5426 if (GET_CODE (bb->end) != CALL_INSN)
5427 continue;
5429 for (i = 0; i < expr_hash_table_size; i++)
5430 for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash)
5431 if (GET_CODE (expr->expr) == MEM)
5433 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
5434 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
5435 continue;
5437 /* ??? Optimally, we would use interprocedural alias
5438 analysis to determine if this mem is actually killed
5439 by this call. */
5440 RESET_BIT (transpout[bb->index], expr->bitmap_index);
5445 /* Removal of useless null pointer checks */
5447 /* Called via note_stores. X is set by SETTER. If X is a register we must
5448 invalidate nonnull_local and set nonnull_killed. DATA is really a
5449 `null_pointer_info *'.
5451 We ignore hard registers. */
5453 static void
5454 invalidate_nonnull_info (x, setter, data)
5455 rtx x;
5456 rtx setter ATTRIBUTE_UNUSED;
5457 void *data;
5459 unsigned int regno;
5460 struct null_pointer_info *npi = (struct null_pointer_info *) data;
5462 while (GET_CODE (x) == SUBREG)
5463 x = SUBREG_REG (x);
5465 /* Ignore anything that is not a register or is a hard register. */
5466 if (GET_CODE (x) != REG
5467 || REGNO (x) < npi->min_reg
5468 || REGNO (x) >= npi->max_reg)
5469 return;
5471 regno = REGNO (x) - npi->min_reg;
5473 RESET_BIT (npi->nonnull_local[npi->current_block->index], regno);
5474 SET_BIT (npi->nonnull_killed[npi->current_block->index], regno);
5477 /* Do null-pointer check elimination for the registers indicated in
5478 NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
5479 they are not our responsibility to free. */
5481 static void
5482 delete_null_pointer_checks_1 (block_reg, nonnull_avin,
5483 nonnull_avout, npi)
5484 unsigned int *block_reg;
5485 sbitmap *nonnull_avin;
5486 sbitmap *nonnull_avout;
5487 struct null_pointer_info *npi;
5489 basic_block bb, current_block;
5490 sbitmap *nonnull_local = npi->nonnull_local;
5491 sbitmap *nonnull_killed = npi->nonnull_killed;
5493 /* Compute local properties, nonnull and killed. A register will have
5494 the nonnull property if at the end of the current block its value is
5495 known to be nonnull. The killed property indicates that somewhere in
5496 the block any information we had about the register is killed.
5498 Note that a register can have both properties in a single block. That
5499 indicates that it's killed, then later in the block a new value is
5500 computed. */
5501 sbitmap_vector_zero (nonnull_local, last_basic_block);
5502 sbitmap_vector_zero (nonnull_killed, last_basic_block);
5504 FOR_EACH_BB (current_block)
5506 rtx insn, stop_insn;
5508 /* Set the current block for invalidate_nonnull_info. */
5509 npi->current_block = current_block;
5511 /* Scan each insn in the basic block looking for memory references and
5512 register sets. */
5513 stop_insn = NEXT_INSN (current_block->end);
5514 for (insn = current_block->head;
5515 insn != stop_insn;
5516 insn = NEXT_INSN (insn))
5518 rtx set;
5519 rtx reg;
5521 /* Ignore anything that is not a normal insn. */
5522 if (! INSN_P (insn))
5523 continue;
5525 /* Basically ignore anything that is not a simple SET. We do have
5526 to make sure to invalidate nonnull_local and set nonnull_killed
5527 for such insns though. */
5528 set = single_set (insn);
5529 if (!set)
5531 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5532 continue;
5535 /* See if we've got a usable memory load. We handle it first
5536 in case it uses its address register as a dest (which kills
5537 the nonnull property). */
5538 if (GET_CODE (SET_SRC (set)) == MEM
5539 && GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG
5540 && REGNO (reg) >= npi->min_reg
5541 && REGNO (reg) < npi->max_reg)
5542 SET_BIT (nonnull_local[current_block->index],
5543 REGNO (reg) - npi->min_reg);
5545 /* Now invalidate stuff clobbered by this insn. */
5546 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5548 /* And handle stores, we do these last since any sets in INSN can
5549 not kill the nonnull property if it is derived from a MEM
5550 appearing in a SET_DEST. */
5551 if (GET_CODE (SET_DEST (set)) == MEM
5552 && GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG
5553 && REGNO (reg) >= npi->min_reg
5554 && REGNO (reg) < npi->max_reg)
5555 SET_BIT (nonnull_local[current_block->index],
5556 REGNO (reg) - npi->min_reg);
5560 /* Now compute global properties based on the local properties. This
5561 is a classic global availablity algorithm. */
5562 compute_available (nonnull_local, nonnull_killed,
5563 nonnull_avout, nonnull_avin);
5565 /* Now look at each bb and see if it ends with a compare of a value
5566 against zero. */
5567 FOR_EACH_BB (bb)
5569 rtx last_insn = bb->end;
5570 rtx condition, earliest;
5571 int compare_and_branch;
5573 /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
5574 since BLOCK_REG[BB] is zero if this block did not end with a
5575 comparison against zero, this condition works. */
5576 if (block_reg[bb->index] < npi->min_reg
5577 || block_reg[bb->index] >= npi->max_reg)
5578 continue;
5580 /* LAST_INSN is a conditional jump. Get its condition. */
5581 condition = get_condition (last_insn, &earliest);
5583 /* If we can't determine the condition then skip. */
5584 if (! condition)
5585 continue;
5587 /* Is the register known to have a nonzero value? */
5588 if (!TEST_BIT (nonnull_avout[bb->index], block_reg[bb->index] - npi->min_reg))
5589 continue;
5591 /* Try to compute whether the compare/branch at the loop end is one or
5592 two instructions. */
5593 if (earliest == last_insn)
5594 compare_and_branch = 1;
5595 else if (earliest == prev_nonnote_insn (last_insn))
5596 compare_and_branch = 2;
5597 else
5598 continue;
5600 /* We know the register in this comparison is nonnull at exit from
5601 this block. We can optimize this comparison. */
5602 if (GET_CODE (condition) == NE)
5604 rtx new_jump;
5606 new_jump = emit_jump_insn_after (gen_jump (JUMP_LABEL (last_insn)),
5607 last_insn);
5608 JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
5609 LABEL_NUSES (JUMP_LABEL (new_jump))++;
5610 emit_barrier_after (new_jump);
5613 delete_insn (last_insn);
5614 if (compare_and_branch == 2)
5615 delete_insn (earliest);
5616 purge_dead_edges (bb);
5618 /* Don't check this block again. (Note that BLOCK_END is
5619 invalid here; we deleted the last instruction in the
5620 block.) */
5621 block_reg[bb->index] = 0;
5625 /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
5626 at compile time.
5628 This is conceptually similar to global constant/copy propagation and
5629 classic global CSE (it even uses the same dataflow equations as cprop).
5631 If a register is used as memory address with the form (mem (reg)), then we
5632 know that REG can not be zero at that point in the program. Any instruction
5633 which sets REG "kills" this property.
5635 So, if every path leading to a conditional branch has an available memory
5636 reference of that form, then we know the register can not have the value
5637 zero at the conditional branch.
5639 So we merely need to compute the local properies and propagate that data
5640 around the cfg, then optimize where possible.
5642 We run this pass two times. Once before CSE, then again after CSE. This
5643 has proven to be the most profitable approach. It is rare for new
5644 optimization opportunities of this nature to appear after the first CSE
5645 pass.
5647 This could probably be integrated with global cprop with a little work. */
5649 void
5650 delete_null_pointer_checks (f)
5651 rtx f ATTRIBUTE_UNUSED;
5653 sbitmap *nonnull_avin, *nonnull_avout;
5654 unsigned int *block_reg;
5655 basic_block bb;
5656 int reg;
5657 int regs_per_pass;
5658 int max_reg;
5659 struct null_pointer_info npi;
5661 /* If we have only a single block, then there's nothing to do. */
5662 if (n_basic_blocks <= 1)
5663 return;
5665 /* Trying to perform global optimizations on flow graphs which have
5666 a high connectivity will take a long time and is unlikely to be
5667 particularly useful.
5669 In normal circumstances a cfg should have about twice as many edges
5670 as blocks. But we do not want to punish small functions which have
5671 a couple switch statements. So we require a relatively large number
5672 of basic blocks and the ratio of edges to blocks to be high. */
5673 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
5674 return;
5676 /* We need four bitmaps, each with a bit for each register in each
5677 basic block. */
5678 max_reg = max_reg_num ();
5679 regs_per_pass = get_bitmap_width (4, last_basic_block, max_reg);
5681 /* Allocate bitmaps to hold local and global properties. */
5682 npi.nonnull_local = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5683 npi.nonnull_killed = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5684 nonnull_avin = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5685 nonnull_avout = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5687 /* Go through the basic blocks, seeing whether or not each block
5688 ends with a conditional branch whose condition is a comparison
5689 against zero. Record the register compared in BLOCK_REG. */
5690 block_reg = (unsigned int *) xcalloc (last_basic_block, sizeof (int));
5691 FOR_EACH_BB (bb)
5693 rtx last_insn = bb->end;
5694 rtx condition, earliest, reg;
5696 /* We only want conditional branches. */
5697 if (GET_CODE (last_insn) != JUMP_INSN
5698 || !any_condjump_p (last_insn)
5699 || !onlyjump_p (last_insn))
5700 continue;
5702 /* LAST_INSN is a conditional jump. Get its condition. */
5703 condition = get_condition (last_insn, &earliest);
5705 /* If we were unable to get the condition, or it is not an equality
5706 comparison against zero then there's nothing we can do. */
5707 if (!condition
5708 || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
5709 || GET_CODE (XEXP (condition, 1)) != CONST_INT
5710 || (XEXP (condition, 1)
5711 != CONST0_RTX (GET_MODE (XEXP (condition, 0)))))
5712 continue;
5714 /* We must be checking a register against zero. */
5715 reg = XEXP (condition, 0);
5716 if (GET_CODE (reg) != REG)
5717 continue;
5719 block_reg[bb->index] = REGNO (reg);
5722 /* Go through the algorithm for each block of registers. */
5723 for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass)
5725 npi.min_reg = reg;
5726 npi.max_reg = MIN (reg + regs_per_pass, max_reg);
5727 delete_null_pointer_checks_1 (block_reg, nonnull_avin,
5728 nonnull_avout, &npi);
5731 /* Free the table of registers compared at the end of every block. */
5732 free (block_reg);
5734 /* Free bitmaps. */
5735 sbitmap_vector_free (npi.nonnull_local);
5736 sbitmap_vector_free (npi.nonnull_killed);
5737 sbitmap_vector_free (nonnull_avin);
5738 sbitmap_vector_free (nonnull_avout);
5741 /* Code Hoisting variables and subroutines. */
5743 /* Very busy expressions. */
5744 static sbitmap *hoist_vbein;
5745 static sbitmap *hoist_vbeout;
5747 /* Hoistable expressions. */
5748 static sbitmap *hoist_exprs;
5750 /* Dominator bitmaps. */
5751 static sbitmap *dominators;
5753 /* ??? We could compute post dominators and run this algorithm in
5754 reverse to to perform tail merging, doing so would probably be
5755 more effective than the tail merging code in jump.c.
5757 It's unclear if tail merging could be run in parallel with
5758 code hoisting. It would be nice. */
5760 /* Allocate vars used for code hoisting analysis. */
5762 static void
5763 alloc_code_hoist_mem (n_blocks, n_exprs)
5764 int n_blocks, n_exprs;
5766 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5767 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
5768 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
5770 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
5771 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
5772 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
5773 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
5775 dominators = sbitmap_vector_alloc (n_blocks, n_blocks);
5778 /* Free vars used for code hoisting analysis. */
5780 static void
5781 free_code_hoist_mem ()
5783 sbitmap_vector_free (antloc);
5784 sbitmap_vector_free (transp);
5785 sbitmap_vector_free (comp);
5787 sbitmap_vector_free (hoist_vbein);
5788 sbitmap_vector_free (hoist_vbeout);
5789 sbitmap_vector_free (hoist_exprs);
5790 sbitmap_vector_free (transpout);
5792 sbitmap_vector_free (dominators);
5795 /* Compute the very busy expressions at entry/exit from each block.
5797 An expression is very busy if all paths from a given point
5798 compute the expression. */
5800 static void
5801 compute_code_hoist_vbeinout ()
5803 int changed, passes;
5804 basic_block bb;
5806 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
5807 sbitmap_vector_zero (hoist_vbein, last_basic_block);
5809 passes = 0;
5810 changed = 1;
5812 while (changed)
5814 changed = 0;
5816 /* We scan the blocks in the reverse order to speed up
5817 the convergence. */
5818 FOR_EACH_BB_REVERSE (bb)
5820 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
5821 hoist_vbeout[bb->index], transp[bb->index]);
5822 if (bb->next_bb != EXIT_BLOCK_PTR)
5823 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
5826 passes++;
5829 if (gcse_file)
5830 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
5833 /* Top level routine to do the dataflow analysis needed by code hoisting. */
5835 static void
5836 compute_code_hoist_data ()
5838 compute_local_properties (transp, comp, antloc, 0);
5839 compute_transpout ();
5840 compute_code_hoist_vbeinout ();
5841 calculate_dominance_info (NULL, dominators, CDI_DOMINATORS);
5842 if (gcse_file)
5843 fprintf (gcse_file, "\n");
5846 /* Determine if the expression identified by EXPR_INDEX would
5847 reach BB unimpared if it was placed at the end of EXPR_BB.
5849 It's unclear exactly what Muchnick meant by "unimpared". It seems
5850 to me that the expression must either be computed or transparent in
5851 *every* block in the path(s) from EXPR_BB to BB. Any other definition
5852 would allow the expression to be hoisted out of loops, even if
5853 the expression wasn't a loop invariant.
5855 Contrast this to reachability for PRE where an expression is
5856 considered reachable if *any* path reaches instead of *all*
5857 paths. */
5859 static int
5860 hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
5861 basic_block expr_bb;
5862 int expr_index;
5863 basic_block bb;
5864 char *visited;
5866 edge pred;
5867 int visited_allocated_locally = 0;
5870 if (visited == NULL)
5872 visited_allocated_locally = 1;
5873 visited = xcalloc (last_basic_block, 1);
5876 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
5878 basic_block pred_bb = pred->src;
5880 if (pred->src == ENTRY_BLOCK_PTR)
5881 break;
5882 else if (visited[pred_bb->index])
5883 continue;
5885 /* Does this predecessor generate this expression? */
5886 else if (TEST_BIT (comp[pred_bb->index], expr_index))
5887 break;
5888 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
5889 break;
5891 /* Not killed. */
5892 else
5894 visited[pred_bb->index] = 1;
5895 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
5896 pred_bb, visited))
5897 break;
5900 if (visited_allocated_locally)
5901 free (visited);
5903 return (pred == NULL);
5906 /* Actually perform code hoisting. */
5908 static void
5909 hoist_code ()
5911 basic_block bb, dominated;
5912 unsigned int i;
5913 struct expr **index_map;
5914 struct expr *expr;
5916 sbitmap_vector_zero (hoist_exprs, last_basic_block);
5918 /* Compute a mapping from expression number (`bitmap_index') to
5919 hash table entry. */
5921 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
5922 for (i = 0; i < expr_hash_table_size; i++)
5923 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5924 index_map[expr->bitmap_index] = expr;
5926 /* Walk over each basic block looking for potentially hoistable
5927 expressions, nothing gets hoisted from the entry block. */
5928 FOR_EACH_BB (bb)
5930 int found = 0;
5931 int insn_inserted_p;
5933 /* Examine each expression that is very busy at the exit of this
5934 block. These are the potentially hoistable expressions. */
5935 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
5937 int hoistable = 0;
5939 if (TEST_BIT (hoist_vbeout[bb->index], i) && TEST_BIT (transpout[bb->index], i))
5941 /* We've found a potentially hoistable expression, now
5942 we look at every block BB dominates to see if it
5943 computes the expression. */
5944 FOR_EACH_BB (dominated)
5946 /* Ignore self dominance. */
5947 if (bb == dominated
5948 || ! TEST_BIT (dominators[dominated->index], bb->index))
5949 continue;
5951 /* We've found a dominated block, now see if it computes
5952 the busy expression and whether or not moving that
5953 expression to the "beginning" of that block is safe. */
5954 if (!TEST_BIT (antloc[dominated->index], i))
5955 continue;
5957 /* Note if the expression would reach the dominated block
5958 unimpared if it was placed at the end of BB.
5960 Keep track of how many times this expression is hoistable
5961 from a dominated block into BB. */
5962 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
5963 hoistable++;
5966 /* If we found more than one hoistable occurrence of this
5967 expression, then note it in the bitmap of expressions to
5968 hoist. It makes no sense to hoist things which are computed
5969 in only one BB, and doing so tends to pessimize register
5970 allocation. One could increase this value to try harder
5971 to avoid any possible code expansion due to register
5972 allocation issues; however experiments have shown that
5973 the vast majority of hoistable expressions are only movable
5974 from two successors, so raising this threshhold is likely
5975 to nullify any benefit we get from code hoisting. */
5976 if (hoistable > 1)
5978 SET_BIT (hoist_exprs[bb->index], i);
5979 found = 1;
5984 /* If we found nothing to hoist, then quit now. */
5985 if (! found)
5986 continue;
5988 /* Loop over all the hoistable expressions. */
5989 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
5991 /* We want to insert the expression into BB only once, so
5992 note when we've inserted it. */
5993 insn_inserted_p = 0;
5995 /* These tests should be the same as the tests above. */
5996 if (TEST_BIT (hoist_vbeout[bb->index], i))
5998 /* We've found a potentially hoistable expression, now
5999 we look at every block BB dominates to see if it
6000 computes the expression. */
6001 FOR_EACH_BB (dominated)
6003 /* Ignore self dominance. */
6004 if (bb == dominated
6005 || ! TEST_BIT (dominators[dominated->index], bb->index))
6006 continue;
6008 /* We've found a dominated block, now see if it computes
6009 the busy expression and whether or not moving that
6010 expression to the "beginning" of that block is safe. */
6011 if (!TEST_BIT (antloc[dominated->index], i))
6012 continue;
6014 /* The expression is computed in the dominated block and
6015 it would be safe to compute it at the start of the
6016 dominated block. Now we have to determine if the
6017 expression would reach the dominated block if it was
6018 placed at the end of BB. */
6019 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
6021 struct expr *expr = index_map[i];
6022 struct occr *occr = expr->antic_occr;
6023 rtx insn;
6024 rtx set;
6026 /* Find the right occurrence of this expression. */
6027 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
6028 occr = occr->next;
6030 /* Should never happen. */
6031 if (!occr)
6032 abort ();
6034 insn = occr->insn;
6036 set = single_set (insn);
6037 if (! set)
6038 abort ();
6040 /* Create a pseudo-reg to store the result of reaching
6041 expressions into. Get the mode for the new pseudo
6042 from the mode of the original destination pseudo. */
6043 if (expr->reaching_reg == NULL)
6044 expr->reaching_reg
6045 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
6047 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
6048 delete_insn (insn);
6049 occr->deleted_p = 1;
6050 if (!insn_inserted_p)
6052 insert_insn_end_bb (index_map[i], bb, 0);
6053 insn_inserted_p = 1;
6061 free (index_map);
6064 /* Top level routine to perform one code hoisting (aka unification) pass
6066 Return non-zero if a change was made. */
6068 static int
6069 one_code_hoisting_pass ()
6071 int changed = 0;
6073 alloc_expr_hash_table (max_cuid);
6074 compute_expr_hash_table ();
6075 if (gcse_file)
6076 dump_hash_table (gcse_file, "Code Hosting Expressions", expr_hash_table,
6077 expr_hash_table_size, n_exprs);
6079 if (n_exprs > 0)
6081 alloc_code_hoist_mem (last_basic_block, n_exprs);
6082 compute_code_hoist_data ();
6083 hoist_code ();
6084 free_code_hoist_mem ();
6087 free_expr_hash_table ();
6089 return changed;
6092 /* Here we provide the things required to do store motion towards
6093 the exit. In order for this to be effective, gcse also needed to
6094 be taught how to move a load when it is kill only by a store to itself.
6096 int i;
6097 float a[10];
6099 void foo(float scale)
6101 for (i=0; i<10; i++)
6102 a[i] *= scale;
6105 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
6106 the load out since its live around the loop, and stored at the bottom
6107 of the loop.
6109 The 'Load Motion' referred to and implemented in this file is
6110 an enhancement to gcse which when using edge based lcm, recognizes
6111 this situation and allows gcse to move the load out of the loop.
6113 Once gcse has hoisted the load, store motion can then push this
6114 load towards the exit, and we end up with no loads or stores of 'i'
6115 in the loop. */
6117 /* This will search the ldst list for a matching expression. If it
6118 doesn't find one, we create one and initialize it. */
6120 static struct ls_expr *
6121 ldst_entry (x)
6122 rtx x;
6124 struct ls_expr * ptr;
6126 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
6127 if (expr_equiv_p (ptr->pattern, x))
6128 break;
6130 if (!ptr)
6132 ptr = (struct ls_expr *) xmalloc (sizeof (struct ls_expr));
6134 ptr->next = pre_ldst_mems;
6135 ptr->expr = NULL;
6136 ptr->pattern = x;
6137 ptr->loads = NULL_RTX;
6138 ptr->stores = NULL_RTX;
6139 ptr->reaching_reg = NULL_RTX;
6140 ptr->invalid = 0;
6141 ptr->index = 0;
6142 ptr->hash_index = 0;
6143 pre_ldst_mems = ptr;
6146 return ptr;
6149 /* Free up an individual ldst entry. */
6151 static void
6152 free_ldst_entry (ptr)
6153 struct ls_expr * ptr;
6155 free_INSN_LIST_list (& ptr->loads);
6156 free_INSN_LIST_list (& ptr->stores);
6158 free (ptr);
6161 /* Free up all memory associated with the ldst list. */
6163 static void
6164 free_ldst_mems ()
6166 while (pre_ldst_mems)
6168 struct ls_expr * tmp = pre_ldst_mems;
6170 pre_ldst_mems = pre_ldst_mems->next;
6172 free_ldst_entry (tmp);
6175 pre_ldst_mems = NULL;
6178 /* Dump debugging info about the ldst list. */
6180 static void
6181 print_ldst_list (file)
6182 FILE * file;
6184 struct ls_expr * ptr;
6186 fprintf (file, "LDST list: \n");
6188 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
6190 fprintf (file, " Pattern (%3d): ", ptr->index);
6192 print_rtl (file, ptr->pattern);
6194 fprintf (file, "\n Loads : ");
6196 if (ptr->loads)
6197 print_rtl (file, ptr->loads);
6198 else
6199 fprintf (file, "(nil)");
6201 fprintf (file, "\n Stores : ");
6203 if (ptr->stores)
6204 print_rtl (file, ptr->stores);
6205 else
6206 fprintf (file, "(nil)");
6208 fprintf (file, "\n\n");
6211 fprintf (file, "\n");
6214 /* Returns 1 if X is in the list of ldst only expressions. */
6216 static struct ls_expr *
6217 find_rtx_in_ldst (x)
6218 rtx x;
6220 struct ls_expr * ptr;
6222 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6223 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
6224 return ptr;
6226 return NULL;
6229 /* Assign each element of the list of mems a monotonically increasing value. */
6231 static int
6232 enumerate_ldsts ()
6234 struct ls_expr * ptr;
6235 int n = 0;
6237 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6238 ptr->index = n++;
6240 return n;
6243 /* Return first item in the list. */
6245 static inline struct ls_expr *
6246 first_ls_expr ()
6248 return pre_ldst_mems;
6251 /* Return the next item in ther list after the specified one. */
6253 static inline struct ls_expr *
6254 next_ls_expr (ptr)
6255 struct ls_expr * ptr;
6257 return ptr->next;
6260 /* Load Motion for loads which only kill themselves. */
6262 /* Return true if x is a simple MEM operation, with no registers or
6263 side effects. These are the types of loads we consider for the
6264 ld_motion list, otherwise we let the usual aliasing take care of it. */
6266 static int
6267 simple_mem (x)
6268 rtx x;
6270 if (GET_CODE (x) != MEM)
6271 return 0;
6273 if (MEM_VOLATILE_P (x))
6274 return 0;
6276 if (GET_MODE (x) == BLKmode)
6277 return 0;
6279 if (!rtx_varies_p (XEXP (x, 0), 0))
6280 return 1;
6282 return 0;
6285 /* Make sure there isn't a buried reference in this pattern anywhere.
6286 If there is, invalidate the entry for it since we're not capable
6287 of fixing it up just yet.. We have to be sure we know about ALL
6288 loads since the aliasing code will allow all entries in the
6289 ld_motion list to not-alias itself. If we miss a load, we will get
6290 the wrong value since gcse might common it and we won't know to
6291 fix it up. */
6293 static void
6294 invalidate_any_buried_refs (x)
6295 rtx x;
6297 const char * fmt;
6298 int i, j;
6299 struct ls_expr * ptr;
6301 /* Invalidate it in the list. */
6302 if (GET_CODE (x) == MEM && simple_mem (x))
6304 ptr = ldst_entry (x);
6305 ptr->invalid = 1;
6308 /* Recursively process the insn. */
6309 fmt = GET_RTX_FORMAT (GET_CODE (x));
6311 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6313 if (fmt[i] == 'e')
6314 invalidate_any_buried_refs (XEXP (x, i));
6315 else if (fmt[i] == 'E')
6316 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6317 invalidate_any_buried_refs (XVECEXP (x, i, j));
6321 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
6322 being defined as MEM loads and stores to symbols, with no
6323 side effects and no registers in the expression. If there are any
6324 uses/defs which don't match this criteria, it is invalidated and
6325 trimmed out later. */
6327 static void
6328 compute_ld_motion_mems ()
6330 struct ls_expr * ptr;
6331 basic_block bb;
6332 rtx insn;
6334 pre_ldst_mems = NULL;
6336 FOR_EACH_BB (bb)
6338 for (insn = bb->head;
6339 insn && insn != NEXT_INSN (bb->end);
6340 insn = NEXT_INSN (insn))
6342 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
6344 if (GET_CODE (PATTERN (insn)) == SET)
6346 rtx src = SET_SRC (PATTERN (insn));
6347 rtx dest = SET_DEST (PATTERN (insn));
6349 /* Check for a simple LOAD... */
6350 if (GET_CODE (src) == MEM && simple_mem (src))
6352 ptr = ldst_entry (src);
6353 if (GET_CODE (dest) == REG)
6354 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
6355 else
6356 ptr->invalid = 1;
6358 else
6360 /* Make sure there isn't a buried load somewhere. */
6361 invalidate_any_buried_refs (src);
6364 /* Check for stores. Don't worry about aliased ones, they
6365 will block any movement we might do later. We only care
6366 about this exact pattern since those are the only
6367 circumstance that we will ignore the aliasing info. */
6368 if (GET_CODE (dest) == MEM && simple_mem (dest))
6370 ptr = ldst_entry (dest);
6372 if (GET_CODE (src) != MEM
6373 && GET_CODE (src) != ASM_OPERANDS)
6374 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6375 else
6376 ptr->invalid = 1;
6379 else
6380 invalidate_any_buried_refs (PATTERN (insn));
6386 /* Remove any references that have been either invalidated or are not in the
6387 expression list for pre gcse. */
6389 static void
6390 trim_ld_motion_mems ()
6392 struct ls_expr * last = NULL;
6393 struct ls_expr * ptr = first_ls_expr ();
6395 while (ptr != NULL)
6397 int del = ptr->invalid;
6398 struct expr * expr = NULL;
6400 /* Delete if entry has been made invalid. */
6401 if (!del)
6403 unsigned int i;
6405 del = 1;
6406 /* Delete if we cannot find this mem in the expression list. */
6407 for (i = 0; i < expr_hash_table_size && del; i++)
6409 for (expr = expr_hash_table[i];
6410 expr != NULL;
6411 expr = expr->next_same_hash)
6412 if (expr_equiv_p (expr->expr, ptr->pattern))
6414 del = 0;
6415 break;
6420 if (del)
6422 if (last != NULL)
6424 last->next = ptr->next;
6425 free_ldst_entry (ptr);
6426 ptr = last->next;
6428 else
6430 pre_ldst_mems = pre_ldst_mems->next;
6431 free_ldst_entry (ptr);
6432 ptr = pre_ldst_mems;
6435 else
6437 /* Set the expression field if we are keeping it. */
6438 last = ptr;
6439 ptr->expr = expr;
6440 ptr = ptr->next;
6444 /* Show the world what we've found. */
6445 if (gcse_file && pre_ldst_mems != NULL)
6446 print_ldst_list (gcse_file);
6449 /* This routine will take an expression which we are replacing with
6450 a reaching register, and update any stores that are needed if
6451 that expression is in the ld_motion list. Stores are updated by
6452 copying their SRC to the reaching register, and then storeing
6453 the reaching register into the store location. These keeps the
6454 correct value in the reaching register for the loads. */
6456 static void
6457 update_ld_motion_stores (expr)
6458 struct expr * expr;
6460 struct ls_expr * mem_ptr;
6462 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
6464 /* We can try to find just the REACHED stores, but is shouldn't
6465 matter to set the reaching reg everywhere... some might be
6466 dead and should be eliminated later. */
6468 /* We replace SET mem = expr with
6469 SET reg = expr
6470 SET mem = reg , where reg is the
6471 reaching reg used in the load. */
6472 rtx list = mem_ptr->stores;
6474 for ( ; list != NULL_RTX; list = XEXP (list, 1))
6476 rtx insn = XEXP (list, 0);
6477 rtx pat = PATTERN (insn);
6478 rtx src = SET_SRC (pat);
6479 rtx reg = expr->reaching_reg;
6480 rtx copy, new;
6482 /* If we've already copied it, continue. */
6483 if (expr->reaching_reg == src)
6484 continue;
6486 if (gcse_file)
6488 fprintf (gcse_file, "PRE: store updated with reaching reg ");
6489 print_rtl (gcse_file, expr->reaching_reg);
6490 fprintf (gcse_file, ":\n ");
6491 print_inline_rtx (gcse_file, insn, 8);
6492 fprintf (gcse_file, "\n");
6495 copy = gen_move_insn ( reg, SET_SRC (pat));
6496 new = emit_insn_before (copy, insn);
6497 record_one_set (REGNO (reg), new);
6498 SET_SRC (pat) = reg;
6500 /* un-recognize this pattern since it's probably different now. */
6501 INSN_CODE (insn) = -1;
6502 gcse_create_count++;
6507 /* Store motion code. */
6509 /* This is used to communicate the target bitvector we want to use in the
6510 reg_set_info routine when called via the note_stores mechanism. */
6511 static sbitmap * regvec;
6513 /* Used in computing the reverse edge graph bit vectors. */
6514 static sbitmap * st_antloc;
6516 /* Global holding the number of store expressions we are dealing with. */
6517 static int num_stores;
6519 /* Checks to set if we need to mark a register set. Called from note_stores. */
6521 static void
6522 reg_set_info (dest, setter, data)
6523 rtx dest, setter ATTRIBUTE_UNUSED;
6524 void * data ATTRIBUTE_UNUSED;
6526 if (GET_CODE (dest) == SUBREG)
6527 dest = SUBREG_REG (dest);
6529 if (GET_CODE (dest) == REG)
6530 SET_BIT (*regvec, REGNO (dest));
6533 /* Return non-zero if the register operands of expression X are killed
6534 anywhere in basic block BB. */
6536 static int
6537 store_ops_ok (x, bb)
6538 rtx x;
6539 basic_block bb;
6541 int i;
6542 enum rtx_code code;
6543 const char * fmt;
6545 /* Repeat is used to turn tail-recursion into iteration. */
6546 repeat:
6548 if (x == 0)
6549 return 1;
6551 code = GET_CODE (x);
6552 switch (code)
6554 case REG:
6555 /* If a reg has changed after us in this
6556 block, the operand has been killed. */
6557 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
6559 case MEM:
6560 x = XEXP (x, 0);
6561 goto repeat;
6563 case PRE_DEC:
6564 case PRE_INC:
6565 case POST_DEC:
6566 case POST_INC:
6567 return 0;
6569 case PC:
6570 case CC0: /*FIXME*/
6571 case CONST:
6572 case CONST_INT:
6573 case CONST_DOUBLE:
6574 case CONST_VECTOR:
6575 case SYMBOL_REF:
6576 case LABEL_REF:
6577 case ADDR_VEC:
6578 case ADDR_DIFF_VEC:
6579 return 1;
6581 default:
6582 break;
6585 i = GET_RTX_LENGTH (code) - 1;
6586 fmt = GET_RTX_FORMAT (code);
6588 for (; i >= 0; i--)
6590 if (fmt[i] == 'e')
6592 rtx tem = XEXP (x, i);
6594 /* If we are about to do the last recursive call
6595 needed at this level, change it into iteration.
6596 This function is called enough to be worth it. */
6597 if (i == 0)
6599 x = tem;
6600 goto repeat;
6603 if (! store_ops_ok (tem, bb))
6604 return 0;
6606 else if (fmt[i] == 'E')
6608 int j;
6610 for (j = 0; j < XVECLEN (x, i); j++)
6612 if (! store_ops_ok (XVECEXP (x, i, j), bb))
6613 return 0;
6618 return 1;
6621 /* Determine whether insn is MEM store pattern that we will consider moving. */
6623 static void
6624 find_moveable_store (insn)
6625 rtx insn;
6627 struct ls_expr * ptr;
6628 rtx dest = PATTERN (insn);
6630 if (GET_CODE (dest) != SET
6631 || GET_CODE (SET_SRC (dest)) == ASM_OPERANDS)
6632 return;
6634 dest = SET_DEST (dest);
6636 if (GET_CODE (dest) != MEM || MEM_VOLATILE_P (dest)
6637 || GET_MODE (dest) == BLKmode)
6638 return;
6640 if (GET_CODE (XEXP (dest, 0)) != SYMBOL_REF)
6641 return;
6643 if (rtx_varies_p (XEXP (dest, 0), 0))
6644 return;
6646 ptr = ldst_entry (dest);
6647 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6650 /* Perform store motion. Much like gcse, except we move expressions the
6651 other way by looking at the flowgraph in reverse. */
6653 static int
6654 compute_store_table ()
6656 int ret;
6657 basic_block bb;
6658 unsigned regno;
6659 rtx insn, pat;
6661 max_gcse_regno = max_reg_num ();
6663 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block,
6664 max_gcse_regno);
6665 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
6666 pre_ldst_mems = 0;
6668 /* Find all the stores we care about. */
6669 FOR_EACH_BB (bb)
6671 regvec = & (reg_set_in_block[bb->index]);
6672 for (insn = bb->end;
6673 insn && insn != PREV_INSN (bb->end);
6674 insn = PREV_INSN (insn))
6676 /* Ignore anything that is not a normal insn. */
6677 if (! INSN_P (insn))
6678 continue;
6680 if (GET_CODE (insn) == CALL_INSN)
6682 bool clobbers_all = false;
6683 #ifdef NON_SAVING_SETJMP
6684 if (NON_SAVING_SETJMP
6685 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
6686 clobbers_all = true;
6687 #endif
6689 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
6690 if (clobbers_all
6691 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
6692 SET_BIT (reg_set_in_block[bb->index], regno);
6695 pat = PATTERN (insn);
6696 note_stores (pat, reg_set_info, NULL);
6698 /* Now that we've marked regs, look for stores. */
6699 if (GET_CODE (pat) == SET)
6700 find_moveable_store (insn);
6704 ret = enumerate_ldsts ();
6706 if (gcse_file)
6708 fprintf (gcse_file, "Store Motion Expressions.\n");
6709 print_ldst_list (gcse_file);
6712 return ret;
6715 /* Check to see if the load X is aliased with STORE_PATTERN. */
6717 static int
6718 load_kills_store (x, store_pattern)
6719 rtx x, store_pattern;
6721 if (true_dependence (x, GET_MODE (x), store_pattern, rtx_addr_varies_p))
6722 return 1;
6723 return 0;
6726 /* Go through the entire insn X, looking for any loads which might alias
6727 STORE_PATTERN. Return 1 if found. */
6729 static int
6730 find_loads (x, store_pattern)
6731 rtx x, store_pattern;
6733 const char * fmt;
6734 int i, j;
6735 int ret = 0;
6737 if (!x)
6738 return 0;
6740 if (GET_CODE (x) == SET)
6741 x = SET_SRC (x);
6743 if (GET_CODE (x) == MEM)
6745 if (load_kills_store (x, store_pattern))
6746 return 1;
6749 /* Recursively process the insn. */
6750 fmt = GET_RTX_FORMAT (GET_CODE (x));
6752 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
6754 if (fmt[i] == 'e')
6755 ret |= find_loads (XEXP (x, i), store_pattern);
6756 else if (fmt[i] == 'E')
6757 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6758 ret |= find_loads (XVECEXP (x, i, j), store_pattern);
6760 return ret;
6763 /* Check if INSN kills the store pattern X (is aliased with it).
6764 Return 1 if it it does. */
6766 static int
6767 store_killed_in_insn (x, insn)
6768 rtx x, insn;
6770 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6771 return 0;
6773 if (GET_CODE (insn) == CALL_INSN)
6775 /* A normal or pure call might read from pattern,
6776 but a const call will not. */
6777 return ! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn);
6780 if (GET_CODE (PATTERN (insn)) == SET)
6782 rtx pat = PATTERN (insn);
6783 /* Check for memory stores to aliased objects. */
6784 if (GET_CODE (SET_DEST (pat)) == MEM && !expr_equiv_p (SET_DEST (pat), x))
6785 /* pretend its a load and check for aliasing. */
6786 if (find_loads (SET_DEST (pat), x))
6787 return 1;
6788 return find_loads (SET_SRC (pat), x);
6790 else
6791 return find_loads (PATTERN (insn), x);
6794 /* Returns 1 if the expression X is loaded or clobbered on or after INSN
6795 within basic block BB. */
6797 static int
6798 store_killed_after (x, insn, bb)
6799 rtx x, insn;
6800 basic_block bb;
6802 rtx last = bb->end;
6804 if (insn == last)
6805 return 0;
6807 /* Check if the register operands of the store are OK in this block.
6808 Note that if registers are changed ANYWHERE in the block, we'll
6809 decide we can't move it, regardless of whether it changed above
6810 or below the store. This could be improved by checking the register
6811 operands while lookinng for aliasing in each insn. */
6812 if (!store_ops_ok (XEXP (x, 0), bb))
6813 return 1;
6815 for ( ; insn && insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
6816 if (store_killed_in_insn (x, insn))
6817 return 1;
6819 return 0;
6822 /* Returns 1 if the expression X is loaded or clobbered on or before INSN
6823 within basic block BB. */
6824 static int
6825 store_killed_before (x, insn, bb)
6826 rtx x, insn;
6827 basic_block bb;
6829 rtx first = bb->head;
6831 if (insn == first)
6832 return store_killed_in_insn (x, insn);
6834 /* Check if the register operands of the store are OK in this block.
6835 Note that if registers are changed ANYWHERE in the block, we'll
6836 decide we can't move it, regardless of whether it changed above
6837 or below the store. This could be improved by checking the register
6838 operands while lookinng for aliasing in each insn. */
6839 if (!store_ops_ok (XEXP (x, 0), bb))
6840 return 1;
6842 for ( ; insn && insn != PREV_INSN (first); insn = PREV_INSN (insn))
6843 if (store_killed_in_insn (x, insn))
6844 return 1;
6846 return 0;
6849 #define ANTIC_STORE_LIST(x) ((x)->loads)
6850 #define AVAIL_STORE_LIST(x) ((x)->stores)
6852 /* Given the table of available store insns at the end of blocks,
6853 determine which ones are not killed by aliasing, and generate
6854 the appropriate vectors for gen and killed. */
6855 static void
6856 build_store_vectors ()
6858 basic_block bb, b;
6859 rtx insn, st;
6860 struct ls_expr * ptr;
6862 /* Build the gen_vector. This is any store in the table which is not killed
6863 by aliasing later in its block. */
6864 ae_gen = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
6865 sbitmap_vector_zero (ae_gen, last_basic_block);
6867 st_antloc = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
6868 sbitmap_vector_zero (st_antloc, last_basic_block);
6870 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6872 /* Put all the stores into either the antic list, or the avail list,
6873 or both. */
6874 rtx store_list = ptr->stores;
6875 ptr->stores = NULL_RTX;
6877 for (st = store_list; st != NULL; st = XEXP (st, 1))
6879 insn = XEXP (st, 0);
6880 bb = BLOCK_FOR_INSN (insn);
6882 if (!store_killed_after (ptr->pattern, insn, bb))
6884 /* If we've already seen an availale expression in this block,
6885 we can delete the one we saw already (It occurs earlier in
6886 the block), and replace it with this one). We'll copy the
6887 old SRC expression to an unused register in case there
6888 are any side effects. */
6889 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6891 /* Find previous store. */
6892 rtx st;
6893 for (st = AVAIL_STORE_LIST (ptr); st ; st = XEXP (st, 1))
6894 if (BLOCK_FOR_INSN (XEXP (st, 0)) == bb)
6895 break;
6896 if (st)
6898 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6899 if (gcse_file)
6900 fprintf (gcse_file, "Removing redundant store:\n");
6901 replace_store_insn (r, XEXP (st, 0), bb);
6902 XEXP (st, 0) = insn;
6903 continue;
6906 SET_BIT (ae_gen[bb->index], ptr->index);
6907 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
6908 AVAIL_STORE_LIST (ptr));
6911 if (!store_killed_before (ptr->pattern, insn, bb))
6913 SET_BIT (st_antloc[BLOCK_NUM (insn)], ptr->index);
6914 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
6915 ANTIC_STORE_LIST (ptr));
6919 /* Free the original list of store insns. */
6920 free_INSN_LIST_list (&store_list);
6923 ae_kill = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
6924 sbitmap_vector_zero (ae_kill, last_basic_block);
6926 transp = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
6927 sbitmap_vector_zero (transp, last_basic_block);
6929 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6930 FOR_EACH_BB (b)
6932 if (store_killed_after (ptr->pattern, b->head, b))
6934 /* The anticipatable expression is not killed if it's gen'd. */
6936 We leave this check out for now. If we have a code sequence
6937 in a block which looks like:
6938 ST MEMa = x
6939 L y = MEMa
6940 ST MEMa = z
6941 We should flag this as having an ANTIC expression, NOT
6942 transparent, NOT killed, and AVAIL.
6943 Unfortunately, since we haven't re-written all loads to
6944 use the reaching reg, we'll end up doing an incorrect
6945 Load in the middle here if we push the store down. It happens in
6946 gcc.c-torture/execute/960311-1.c with -O3
6947 If we always kill it in this case, we'll sometimes do
6948 uneccessary work, but it shouldn't actually hurt anything.
6949 if (!TEST_BIT (ae_gen[b], ptr->index)). */
6950 SET_BIT (ae_kill[b->index], ptr->index);
6952 else
6953 SET_BIT (transp[b->index], ptr->index);
6956 /* Any block with no exits calls some non-returning function, so
6957 we better mark the store killed here, or we might not store to
6958 it at all. If we knew it was abort, we wouldn't have to store,
6959 but we don't know that for sure. */
6960 if (gcse_file)
6962 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
6963 print_ldst_list (gcse_file);
6964 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
6965 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
6966 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
6967 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
6971 /* Insert an instruction at the begining of a basic block, and update
6972 the BLOCK_HEAD if needed. */
6974 static void
6975 insert_insn_start_bb (insn, bb)
6976 rtx insn;
6977 basic_block bb;
6979 /* Insert at start of successor block. */
6980 rtx prev = PREV_INSN (bb->head);
6981 rtx before = bb->head;
6982 while (before != 0)
6984 if (GET_CODE (before) != CODE_LABEL
6985 && (GET_CODE (before) != NOTE
6986 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6987 break;
6988 prev = before;
6989 if (prev == bb->end)
6990 break;
6991 before = NEXT_INSN (before);
6994 insn = emit_insn_after (insn, prev);
6996 if (gcse_file)
6998 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
6999 bb->index);
7000 print_inline_rtx (gcse_file, insn, 6);
7001 fprintf (gcse_file, "\n");
7005 /* This routine will insert a store on an edge. EXPR is the ldst entry for
7006 the memory reference, and E is the edge to insert it on. Returns non-zero
7007 if an edge insertion was performed. */
7009 static int
7010 insert_store (expr, e)
7011 struct ls_expr * expr;
7012 edge e;
7014 rtx reg, insn;
7015 basic_block bb;
7016 edge tmp;
7018 /* We did all the deleted before this insert, so if we didn't delete a
7019 store, then we haven't set the reaching reg yet either. */
7020 if (expr->reaching_reg == NULL_RTX)
7021 return 0;
7023 reg = expr->reaching_reg;
7024 insn = gen_move_insn (expr->pattern, reg);
7026 /* If we are inserting this expression on ALL predecessor edges of a BB,
7027 insert it at the start of the BB, and reset the insert bits on the other
7028 edges so we don't try to insert it on the other edges. */
7029 bb = e->dest;
7030 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
7032 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
7033 if (index == EDGE_INDEX_NO_EDGE)
7034 abort ();
7035 if (! TEST_BIT (pre_insert_map[index], expr->index))
7036 break;
7039 /* If tmp is NULL, we found an insertion on every edge, blank the
7040 insertion vector for these edges, and insert at the start of the BB. */
7041 if (!tmp && bb != EXIT_BLOCK_PTR)
7043 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
7045 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
7046 RESET_BIT (pre_insert_map[index], expr->index);
7048 insert_insn_start_bb (insn, bb);
7049 return 0;
7052 /* We can't insert on this edge, so we'll insert at the head of the
7053 successors block. See Morgan, sec 10.5. */
7054 if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
7056 insert_insn_start_bb (insn, bb);
7057 return 0;
7060 insert_insn_on_edge (insn, e);
7062 if (gcse_file)
7064 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
7065 e->src->index, e->dest->index);
7066 print_inline_rtx (gcse_file, insn, 6);
7067 fprintf (gcse_file, "\n");
7070 return 1;
7073 /* This routine will replace a store with a SET to a specified register. */
7075 static void
7076 replace_store_insn (reg, del, bb)
7077 rtx reg, del;
7078 basic_block bb;
7080 rtx insn;
7082 insn = gen_move_insn (reg, SET_SRC (PATTERN (del)));
7083 insn = emit_insn_after (insn, del);
7085 if (gcse_file)
7087 fprintf (gcse_file,
7088 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
7089 print_inline_rtx (gcse_file, del, 6);
7090 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
7091 print_inline_rtx (gcse_file, insn, 6);
7092 fprintf (gcse_file, "\n");
7095 delete_insn (del);
7099 /* Delete a store, but copy the value that would have been stored into
7100 the reaching_reg for later storing. */
7102 static void
7103 delete_store (expr, bb)
7104 struct ls_expr * expr;
7105 basic_block bb;
7107 rtx reg, i, del;
7109 if (expr->reaching_reg == NULL_RTX)
7110 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
7113 /* If there is more than 1 store, the earlier ones will be dead,
7114 but it doesn't hurt to replace them here. */
7115 reg = expr->reaching_reg;
7117 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
7119 del = XEXP (i, 0);
7120 if (BLOCK_FOR_INSN (del) == bb)
7122 /* We know there is only one since we deleted redundant
7123 ones during the available computation. */
7124 replace_store_insn (reg, del, bb);
7125 break;
7130 /* Free memory used by store motion. */
7132 static void
7133 free_store_memory ()
7135 free_ldst_mems ();
7137 if (ae_gen)
7138 sbitmap_vector_free (ae_gen);
7139 if (ae_kill)
7140 sbitmap_vector_free (ae_kill);
7141 if (transp)
7142 sbitmap_vector_free (transp);
7143 if (st_antloc)
7144 sbitmap_vector_free (st_antloc);
7145 if (pre_insert_map)
7146 sbitmap_vector_free (pre_insert_map);
7147 if (pre_delete_map)
7148 sbitmap_vector_free (pre_delete_map);
7149 if (reg_set_in_block)
7150 sbitmap_vector_free (reg_set_in_block);
7152 ae_gen = ae_kill = transp = st_antloc = NULL;
7153 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
7156 /* Perform store motion. Much like gcse, except we move expressions the
7157 other way by looking at the flowgraph in reverse. */
7159 static void
7160 store_motion ()
7162 basic_block bb;
7163 int x;
7164 struct ls_expr * ptr;
7165 int update_flow = 0;
7167 if (gcse_file)
7169 fprintf (gcse_file, "before store motion\n");
7170 print_rtl (gcse_file, get_insns ());
7174 init_alias_analysis ();
7176 /* Find all the stores that are live to the end of their block. */
7177 num_stores = compute_store_table ();
7178 if (num_stores == 0)
7180 sbitmap_vector_free (reg_set_in_block);
7181 end_alias_analysis ();
7182 return;
7185 /* Now compute whats actually available to move. */
7186 add_noreturn_fake_exit_edges ();
7187 build_store_vectors ();
7189 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
7190 st_antloc, ae_kill, &pre_insert_map,
7191 &pre_delete_map);
7193 /* Now we want to insert the new stores which are going to be needed. */
7194 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7196 FOR_EACH_BB (bb)
7197 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
7198 delete_store (ptr, bb);
7200 for (x = 0; x < NUM_EDGES (edge_list); x++)
7201 if (TEST_BIT (pre_insert_map[x], ptr->index))
7202 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
7205 if (update_flow)
7206 commit_edge_insertions ();
7208 free_store_memory ();
7209 free_edge_list (edge_list);
7210 remove_fake_edges ();
7211 end_alias_analysis ();