* config/mips/mips.md (length): Don't use mips_fetch_insns for indexed
[official-gcc.git] / gcc / var-tracking.c
blob6e95e502941f8ff9fd17aa4aec5864c746f1449d
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
25 these notes.
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
29 How does the variable tracking pass work?
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
34 operations.
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
54 register.
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
60 register in CODE:
62 if (cond)
63 set A;
64 else
65 set B;
66 CODE;
67 if (cond)
68 use A;
69 else
70 use B;
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "hard-reg-set.h"
96 #include "basic-block.h"
97 #include "flags.h"
98 #include "output.h"
99 #include "insn-config.h"
100 #include "reload.h"
101 #include "sbitmap.h"
102 #include "alloc-pool.h"
103 #include "fibheap.h"
104 #include "hashtab.h"
106 /* Type of micro operation. */
107 enum micro_operation_type
109 MO_USE, /* Use location (REG or MEM). */
110 MO_USE_NO_VAR,/* Use location which is not associated with a variable
111 or the variable is not trackable. */
112 MO_SET, /* Set location. */
113 MO_CLOBBER, /* Clobber location. */
114 MO_CALL, /* Call insn. */
115 MO_ADJUST /* Adjust stack pointer. */
118 /* Where shall the note be emitted? BEFORE or AFTER the instruction. */
119 enum emit_note_where
121 EMIT_NOTE_BEFORE_INSN,
122 EMIT_NOTE_AFTER_INSN
125 /* Structure holding information about micro operation. */
126 typedef struct micro_operation_def
128 /* Type of micro operation. */
129 enum micro_operation_type type;
131 union {
132 /* Location. */
133 rtx loc;
135 /* Stack adjustment. */
136 HOST_WIDE_INT adjust;
137 } u;
139 /* The instruction which the micro operation is in. */
140 rtx insn;
141 } micro_operation;
143 /* Structure for passing some other parameters to function
144 emit_note_insn_var_location. */
145 typedef struct emit_note_data_def
147 /* The instruction which the note will be emitted before/after. */
148 rtx insn;
150 /* Where the note will be emitted (before/after insn)? */
151 enum emit_note_where where;
152 } emit_note_data;
154 /* Description of location of a part of a variable. The content of a physical
155 register is described by a chain of these structures.
156 The chains are pretty short (usually 1 or 2 elements) and thus
157 chain is the best data structure. */
158 typedef struct attrs_def
160 /* Pointer to next member of the list. */
161 struct attrs_def *next;
163 /* The rtx of register. */
164 rtx loc;
166 /* The declaration corresponding to LOC. */
167 tree decl;
169 /* Offset from start of DECL. */
170 HOST_WIDE_INT offset;
171 } *attrs;
173 /* Structure holding the IN or OUT set for a basic block. */
174 typedef struct dataflow_set_def
176 /* Adjustment of stack offset. */
177 HOST_WIDE_INT stack_adjust;
179 /* Attributes for registers (lists of attrs). */
180 attrs regs[FIRST_PSEUDO_REGISTER];
182 /* Variable locations. */
183 htab_t vars;
184 } dataflow_set;
186 /* The structure (one for each basic block) containing the information
187 needed for variable tracking. */
188 typedef struct variable_tracking_info_def
190 /* Number of micro operations stored in the MOS array. */
191 int n_mos;
193 /* The array of micro operations. */
194 micro_operation *mos;
196 /* The IN and OUT set for dataflow analysis. */
197 dataflow_set in;
198 dataflow_set out;
200 /* Has the block been visited in DFS? */
201 bool visited;
202 } *variable_tracking_info;
204 /* Structure for chaining the locations. */
205 typedef struct location_chain_def
207 /* Next element in the chain. */
208 struct location_chain_def *next;
210 /* The location (REG or MEM). */
211 rtx loc;
212 } *location_chain;
214 /* Structure describing one part of variable. */
215 typedef struct variable_part_def
217 /* Chain of locations of the part. */
218 location_chain loc_chain;
220 /* Location which was last emitted to location list. */
221 rtx cur_loc;
223 /* The offset in the variable. */
224 HOST_WIDE_INT offset;
225 } variable_part;
227 /* Maximum number of location parts. */
228 #define MAX_VAR_PARTS 16
230 /* Structure describing where the variable is located. */
231 typedef struct variable_def
233 /* The declaration of the variable. */
234 tree decl;
236 /* Reference count. */
237 int refcount;
239 /* Number of variable parts. */
240 int n_var_parts;
242 /* The variable parts. */
243 variable_part var_part[MAX_VAR_PARTS];
244 } *variable;
246 /* Hash function for DECL for VARIABLE_HTAB. */
247 #define VARIABLE_HASH_VAL(decl) ((size_t) (decl))
249 /* Pointer to the BB's information specific to variable tracking pass. */
250 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
252 /* Alloc pool for struct attrs_def. */
253 static alloc_pool attrs_pool;
255 /* Alloc pool for struct variable_def. */
256 static alloc_pool var_pool;
258 /* Alloc pool for struct location_chain_def. */
259 static alloc_pool loc_chain_pool;
261 /* Changed variables, notes will be emitted for them. */
262 static htab_t changed_variables;
264 /* Shall notes be emitted? */
265 static bool emit_notes;
267 /* Fake variable for stack pointer. */
268 tree frame_base_decl;
270 /* Stack adjust caused by function prologue. */
271 static HOST_WIDE_INT frame_stack_adjust;
273 /* Local function prototypes. */
274 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
275 HOST_WIDE_INT *);
276 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
277 HOST_WIDE_INT *);
278 static void bb_stack_adjust_offset (basic_block);
279 static HOST_WIDE_INT prologue_stack_adjust (void);
280 static bool vt_stack_adjustments (void);
281 static rtx adjust_stack_reference (rtx, HOST_WIDE_INT);
282 static hashval_t variable_htab_hash (const void *);
283 static int variable_htab_eq (const void *, const void *);
284 static void variable_htab_free (void *);
286 static void init_attrs_list_set (attrs *);
287 static void attrs_list_clear (attrs *);
288 static attrs attrs_list_member (attrs, tree, HOST_WIDE_INT);
289 static void attrs_list_insert (attrs *, tree, HOST_WIDE_INT, rtx);
290 static void attrs_list_copy (attrs *, attrs);
291 static void attrs_list_union (attrs *, attrs);
293 static void vars_clear (htab_t);
294 static variable unshare_variable (dataflow_set *set, variable var);
295 static int vars_copy_1 (void **, void *);
296 static void vars_copy (htab_t, htab_t);
297 static void var_reg_delete_and_set (dataflow_set *, rtx);
298 static void var_reg_delete (dataflow_set *, rtx);
299 static void var_regno_delete (dataflow_set *, int);
300 static void var_mem_delete_and_set (dataflow_set *, rtx);
301 static void var_mem_delete (dataflow_set *, rtx);
303 static void dataflow_set_init (dataflow_set *, int);
304 static void dataflow_set_clear (dataflow_set *);
305 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
306 static int variable_union_info_cmp_pos (const void *, const void *);
307 static int variable_union (void **, void *);
308 static void dataflow_set_union (dataflow_set *, dataflow_set *);
309 static bool variable_part_different_p (variable_part *, variable_part *);
310 static bool variable_different_p (variable, variable, bool);
311 static int dataflow_set_different_1 (void **, void *);
312 static int dataflow_set_different_2 (void **, void *);
313 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
314 static void dataflow_set_destroy (dataflow_set *);
316 static bool contains_symbol_ref (rtx);
317 static bool track_expr_p (tree);
318 static int count_uses (rtx *, void *);
319 static void count_uses_1 (rtx *, void *);
320 static void count_stores (rtx, rtx, void *);
321 static int add_uses (rtx *, void *);
322 static void add_uses_1 (rtx *, void *);
323 static void add_stores (rtx, rtx, void *);
324 static bool compute_bb_dataflow (basic_block);
325 static void vt_find_locations (void);
327 static void dump_attrs_list (attrs);
328 static int dump_variable (void **, void *);
329 static void dump_vars (htab_t);
330 static void dump_dataflow_set (dataflow_set *);
331 static void dump_dataflow_sets (void);
333 static void variable_was_changed (variable, htab_t);
334 static void set_frame_base_location (dataflow_set *, rtx);
335 static void set_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT);
336 static void delete_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT);
337 static int emit_note_insn_var_location (void **, void *);
338 static void emit_notes_for_changes (rtx, enum emit_note_where);
339 static int emit_notes_for_differences_1 (void **, void *);
340 static int emit_notes_for_differences_2 (void **, void *);
341 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
342 static void emit_notes_in_bb (basic_block);
343 static void vt_emit_notes (void);
345 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
346 static void vt_add_function_parameters (void);
347 static void vt_initialize (void);
348 static void vt_finalize (void);
350 /* Given a SET, calculate the amount of stack adjustment it contains
351 PRE- and POST-modifying stack pointer.
352 This function is similar to stack_adjust_offset. */
354 static void
355 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
356 HOST_WIDE_INT *post)
358 rtx src = SET_SRC (pattern);
359 rtx dest = SET_DEST (pattern);
360 enum rtx_code code;
362 if (dest == stack_pointer_rtx)
364 /* (set (reg sp) (plus (reg sp) (const_int))) */
365 code = GET_CODE (src);
366 if (! (code == PLUS || code == MINUS)
367 || XEXP (src, 0) != stack_pointer_rtx
368 || GET_CODE (XEXP (src, 1)) != CONST_INT)
369 return;
371 if (code == MINUS)
372 *post += INTVAL (XEXP (src, 1));
373 else
374 *post -= INTVAL (XEXP (src, 1));
376 else if (MEM_P (dest))
378 /* (set (mem (pre_dec (reg sp))) (foo)) */
379 src = XEXP (dest, 0);
380 code = GET_CODE (src);
382 switch (code)
384 case PRE_MODIFY:
385 case POST_MODIFY:
386 if (XEXP (src, 0) == stack_pointer_rtx)
388 rtx val = XEXP (XEXP (src, 1), 1);
389 /* We handle only adjustments by constant amount. */
390 if (GET_CODE (XEXP (src, 1)) != PLUS ||
391 GET_CODE (val) != CONST_INT)
392 abort ();
393 if (code == PRE_MODIFY)
394 *pre -= INTVAL (val);
395 else
396 *post -= INTVAL (val);
397 break;
399 return;
401 case PRE_DEC:
402 if (XEXP (src, 0) == stack_pointer_rtx)
404 *pre += GET_MODE_SIZE (GET_MODE (dest));
405 break;
407 return;
409 case POST_DEC:
410 if (XEXP (src, 0) == stack_pointer_rtx)
412 *post += GET_MODE_SIZE (GET_MODE (dest));
413 break;
415 return;
417 case PRE_INC:
418 if (XEXP (src, 0) == stack_pointer_rtx)
420 *pre -= GET_MODE_SIZE (GET_MODE (dest));
421 break;
423 return;
425 case POST_INC:
426 if (XEXP (src, 0) == stack_pointer_rtx)
428 *post -= GET_MODE_SIZE (GET_MODE (dest));
429 break;
431 return;
433 default:
434 return;
439 /* Given an INSN, calculate the amount of stack adjustment it contains
440 PRE- and POST-modifying stack pointer. */
442 static void
443 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
444 HOST_WIDE_INT *post)
446 *pre = 0;
447 *post = 0;
449 if (GET_CODE (PATTERN (insn)) == SET)
450 stack_adjust_offset_pre_post (PATTERN (insn), pre, post);
451 else if (GET_CODE (PATTERN (insn)) == PARALLEL
452 || GET_CODE (PATTERN (insn)) == SEQUENCE)
454 int i;
456 /* There may be stack adjustments inside compound insns. Search
457 for them. */
458 for ( i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
459 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
460 stack_adjust_offset_pre_post (XVECEXP (PATTERN (insn), 0, i),
461 pre, post);
465 /* Compute stack adjustment in basic block BB. */
467 static void
468 bb_stack_adjust_offset (basic_block bb)
470 HOST_WIDE_INT offset;
471 int i;
473 offset = VTI (bb)->in.stack_adjust;
474 for (i = 0; i < VTI (bb)->n_mos; i++)
476 if (VTI (bb)->mos[i].type == MO_ADJUST)
477 offset += VTI (bb)->mos[i].u.adjust;
478 else if (VTI (bb)->mos[i].type != MO_CALL)
480 if (MEM_P (VTI (bb)->mos[i].u.loc))
482 VTI (bb)->mos[i].u.loc
483 = adjust_stack_reference (VTI (bb)->mos[i].u.loc, -offset);
487 VTI (bb)->out.stack_adjust = offset;
490 /* Compute stack adjustment caused by function prologue. */
492 static HOST_WIDE_INT
493 prologue_stack_adjust (void)
495 HOST_WIDE_INT offset = 0;
496 basic_block bb = ENTRY_BLOCK_PTR->next_bb;
497 rtx insn;
498 rtx end;
500 if (!BB_END (bb))
501 return 0;
503 end = NEXT_INSN (BB_END (bb));
504 for (insn = BB_HEAD (bb); insn != end; insn = NEXT_INSN (insn))
506 if (NOTE_P (insn)
507 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
508 break;
510 if (INSN_P (insn))
512 HOST_WIDE_INT tmp;
514 insn_stack_adjust_offset_pre_post (insn, &tmp, &tmp);
515 offset += tmp;
519 return offset;
522 /* Compute stack adjustments for all blocks by traversing DFS tree.
523 Return true when the adjustments on all incoming edges are consistent.
524 Heavily borrowed from flow_depth_first_order_compute. */
526 static bool
527 vt_stack_adjustments (void)
529 edge *stack;
530 int sp;
532 /* Initialize entry block. */
533 VTI (ENTRY_BLOCK_PTR)->visited = true;
534 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = frame_stack_adjust;
536 /* Allocate stack for back-tracking up CFG. */
537 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge));
538 sp = 0;
540 /* Push the first edge on to the stack. */
541 stack[sp++] = ENTRY_BLOCK_PTR->succ;
543 while (sp)
545 edge e;
546 basic_block src;
547 basic_block dest;
549 /* Look at the edge on the top of the stack. */
550 e = stack[sp - 1];
551 src = e->src;
552 dest = e->dest;
554 /* Check if the edge destination has been visited yet. */
555 if (!VTI (dest)->visited)
557 VTI (dest)->visited = true;
558 VTI (dest)->in.stack_adjust = VTI (src)->out.stack_adjust;
559 bb_stack_adjust_offset (dest);
561 if (dest->succ)
562 /* Since the DEST node has been visited for the first
563 time, check its successors. */
564 stack[sp++] = dest->succ;
566 else
568 /* Check whether the adjustments on the edges are the same. */
569 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
571 free (stack);
572 return false;
575 if (e->succ_next)
576 /* Go to the next edge. */
577 stack[sp - 1] = e->succ_next;
578 else
579 /* Return to previous level if there are no more edges. */
580 sp--;
584 free (stack);
585 return true;
588 /* Adjust stack reference MEM by ADJUSTMENT bytes and return the new rtx. */
590 static rtx
591 adjust_stack_reference (rtx mem, HOST_WIDE_INT adjustment)
593 rtx adjusted_mem;
594 rtx tmp;
596 if (adjustment == 0)
597 return mem;
599 adjusted_mem = copy_rtx (mem);
600 XEXP (adjusted_mem, 0) = replace_rtx (XEXP (adjusted_mem, 0),
601 stack_pointer_rtx,
602 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
603 GEN_INT (adjustment)));
604 tmp = simplify_rtx (XEXP (adjusted_mem, 0));
605 if (tmp)
606 XEXP (adjusted_mem, 0) = tmp;
608 return adjusted_mem;
611 /* The hash function for variable_htab, computes the hash value
612 from the declaration of variable X. */
614 static hashval_t
615 variable_htab_hash (const void *x)
617 const variable v = (const variable) x;
619 return (VARIABLE_HASH_VAL (v->decl));
622 /* Compare the declaration of variable X with declaration Y. */
624 static int
625 variable_htab_eq (const void *x, const void *y)
627 const variable v = (const variable) x;
628 const tree decl = (const tree) y;
630 return (VARIABLE_HASH_VAL (v->decl) == VARIABLE_HASH_VAL (decl));
633 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
635 static void
636 variable_htab_free (void *elem)
638 int i;
639 variable var = (variable) elem;
640 location_chain node, next;
642 #ifdef ENABLE_CHECKING
643 if (var->refcount <= 0)
644 abort ();
645 #endif
647 var->refcount--;
648 if (var->refcount > 0)
649 return;
651 for (i = 0; i < var->n_var_parts; i++)
653 for (node = var->var_part[i].loc_chain; node; node = next)
655 next = node->next;
656 pool_free (loc_chain_pool, node);
658 var->var_part[i].loc_chain = NULL;
660 pool_free (var_pool, var);
663 /* Initialize the set (array) SET of attrs to empty lists. */
665 static void
666 init_attrs_list_set (attrs *set)
668 int i;
670 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
671 set[i] = NULL;
674 /* Make the list *LISTP empty. */
676 static void
677 attrs_list_clear (attrs *listp)
679 attrs list, next;
681 for (list = *listp; list; list = next)
683 next = list->next;
684 pool_free (attrs_pool, list);
686 *listp = NULL;
689 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
691 static attrs
692 attrs_list_member (attrs list, tree decl, HOST_WIDE_INT offset)
694 for (; list; list = list->next)
695 if (list->decl == decl && list->offset == offset)
696 return list;
697 return NULL;
700 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
702 static void
703 attrs_list_insert (attrs *listp, tree decl, HOST_WIDE_INT offset, rtx loc)
705 attrs list;
707 list = pool_alloc (attrs_pool);
708 list->loc = loc;
709 list->decl = decl;
710 list->offset = offset;
711 list->next = *listp;
712 *listp = list;
715 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
717 static void
718 attrs_list_copy (attrs *dstp, attrs src)
720 attrs n;
722 attrs_list_clear (dstp);
723 for (; src; src = src->next)
725 n = pool_alloc (attrs_pool);
726 n->loc = src->loc;
727 n->decl = src->decl;
728 n->offset = src->offset;
729 n->next = *dstp;
730 *dstp = n;
734 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
736 static void
737 attrs_list_union (attrs *dstp, attrs src)
739 for (; src; src = src->next)
741 if (!attrs_list_member (*dstp, src->decl, src->offset))
742 attrs_list_insert (dstp, src->decl, src->offset, src->loc);
746 /* Delete all variables from hash table VARS. */
748 static void
749 vars_clear (htab_t vars)
751 htab_empty (vars);
754 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
756 static variable
757 unshare_variable (dataflow_set *set, variable var)
759 void **slot;
760 variable new_var;
761 int i;
763 new_var = pool_alloc (var_pool);
764 new_var->decl = var->decl;
765 new_var->refcount = 1;
766 var->refcount--;
767 new_var->n_var_parts = var->n_var_parts;
769 for (i = 0; i < var->n_var_parts; i++)
771 location_chain node;
772 location_chain *nextp;
774 new_var->var_part[i].offset = var->var_part[i].offset;
775 nextp = &new_var->var_part[i].loc_chain;
776 for (node = var->var_part[i].loc_chain; node; node = node->next)
778 location_chain new_lc;
780 new_lc = pool_alloc (loc_chain_pool);
781 new_lc->next = NULL;
782 new_lc->loc = node->loc;
784 *nextp = new_lc;
785 nextp = &new_lc->next;
788 /* We are at the basic block boundary when copying variable description
789 so set the CUR_LOC to be the first element of the chain. */
790 if (new_var->var_part[i].loc_chain)
791 new_var->var_part[i].cur_loc = new_var->var_part[i].loc_chain->loc;
792 else
793 new_var->var_part[i].cur_loc = NULL;
796 slot = htab_find_slot_with_hash (set->vars, new_var->decl,
797 VARIABLE_HASH_VAL (new_var->decl),
798 INSERT);
799 *slot = new_var;
800 return new_var;
803 /* Add a variable from *SLOT to hash table DATA and increase its reference
804 count. */
806 static int
807 vars_copy_1 (void **slot, void *data)
809 htab_t dst = (htab_t) data;
810 variable src, *dstp;
812 src = *(variable *) slot;
813 src->refcount++;
815 dstp = (variable *) htab_find_slot_with_hash (dst, src->decl,
816 VARIABLE_HASH_VAL (src->decl),
817 INSERT);
818 *dstp = src;
820 /* Continue traversing the hash table. */
821 return 1;
824 /* Copy all variables from hash table SRC to hash table DST. */
826 static void
827 vars_copy (htab_t dst, htab_t src)
829 vars_clear (dst);
830 htab_traverse (src, vars_copy_1, dst);
833 /* Delete current content of register LOC in dataflow set SET
834 and set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
836 static void
837 var_reg_delete_and_set (dataflow_set *set, rtx loc)
839 tree decl = REG_EXPR (loc);
840 HOST_WIDE_INT offset = REG_OFFSET (loc);
841 attrs node, next;
842 attrs *nextp;
844 nextp = &set->regs[REGNO (loc)];
845 for (node = *nextp; node; node = next)
847 next = node->next;
848 if (node->decl != decl || node->offset != offset)
850 delete_variable_part (set, node->loc, node->decl, node->offset);
851 pool_free (attrs_pool, node);
852 *nextp = next;
854 else
856 node->loc = loc;
857 nextp = &node->next;
860 if (set->regs[REGNO (loc)] == NULL)
861 attrs_list_insert (&set->regs[REGNO (loc)], decl, offset, loc);
862 set_variable_part (set, loc, decl, offset);
865 /* Delete current content of register LOC in dataflow set SET. */
867 static void
868 var_reg_delete (dataflow_set *set, rtx loc)
870 attrs *reg = &set->regs[REGNO (loc)];
871 attrs node, next;
873 for (node = *reg; node; node = next)
875 next = node->next;
876 delete_variable_part (set, node->loc, node->decl, node->offset);
877 pool_free (attrs_pool, node);
879 *reg = NULL;
882 /* Delete content of register with number REGNO in dataflow set SET. */
884 static void
885 var_regno_delete (dataflow_set *set, int regno)
887 attrs *reg = &set->regs[regno];
888 attrs node, next;
890 for (node = *reg; node; node = next)
892 next = node->next;
893 delete_variable_part (set, node->loc, node->decl, node->offset);
894 pool_free (attrs_pool, node);
896 *reg = NULL;
899 /* Delete and set the location part of variable MEM_EXPR (LOC)
900 in dataflow set SET to LOC.
901 Adjust the address first if it is stack pointer based. */
903 static void
904 var_mem_delete_and_set (dataflow_set *set, rtx loc)
906 tree decl = MEM_EXPR (loc);
907 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
909 set_variable_part (set, loc, decl, offset);
912 /* Delete the location part LOC from dataflow set SET.
913 Adjust the address first if it is stack pointer based. */
915 static void
916 var_mem_delete (dataflow_set *set, rtx loc)
918 tree decl = MEM_EXPR (loc);
919 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
921 delete_variable_part (set, loc, decl, offset);
924 /* Initialize dataflow set SET to be empty.
925 VARS_SIZE is the initial size of hash table VARS. */
927 static void
928 dataflow_set_init (dataflow_set *set, int vars_size)
930 init_attrs_list_set (set->regs);
931 set->vars = htab_create (vars_size, variable_htab_hash, variable_htab_eq,
932 variable_htab_free);
933 set->stack_adjust = 0;
936 /* Delete the contents of dataflow set SET. */
938 static void
939 dataflow_set_clear (dataflow_set *set)
941 int i;
943 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
944 attrs_list_clear (&set->regs[i]);
946 vars_clear (set->vars);
949 /* Copy the contents of dataflow set SRC to DST. */
951 static void
952 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
954 int i;
956 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
957 attrs_list_copy (&dst->regs[i], src->regs[i]);
959 vars_copy (dst->vars, src->vars);
960 dst->stack_adjust = src->stack_adjust;
963 /* Information for merging lists of locations for a given offset of variable.
965 struct variable_union_info
967 /* Node of the location chain. */
968 location_chain lc;
970 /* The sum of positions in the input chains. */
971 int pos;
973 /* The position in the chains of SRC and DST dataflow sets. */
974 int pos_src;
975 int pos_dst;
978 /* Compare function for qsort, order the structures by POS element. */
980 static int
981 variable_union_info_cmp_pos (const void *n1, const void *n2)
983 const struct variable_union_info *i1 = n1;
984 const struct variable_union_info *i2 = n2;
986 if (i1->pos != i2->pos)
987 return i1->pos - i2->pos;
989 return (i1->pos_dst - i2->pos_dst);
992 /* Compute union of location parts of variable *SLOT and the same variable
993 from hash table DATA. Compute "sorted" union of the location chains
994 for common offsets, i.e. the locations of a variable part are sorted by
995 a priority where the priority is the sum of the positions in the 2 chains
996 (if a location is only in one list the position in the second list is
997 defined to be larger than the length of the chains).
998 When we are updating the location parts the newest location is in the
999 beginning of the chain, so when we do the described "sorted" union
1000 we keep the newest locations in the beginning. */
1002 static int
1003 variable_union (void **slot, void *data)
1005 variable src, dst, *dstp;
1006 dataflow_set *set = (dataflow_set *) data;
1007 int i, j, k;
1009 src = *(variable *) slot;
1010 dstp = (variable *) htab_find_slot_with_hash (set->vars, src->decl,
1011 VARIABLE_HASH_VAL (src->decl),
1012 INSERT);
1013 if (!*dstp)
1015 src->refcount++;
1017 /* If CUR_LOC of some variable part is not the first element of
1018 the location chain we are going to change it so we have to make
1019 a copy of the variable. */
1020 for (k = 0; k < src->n_var_parts; k++)
1022 if (src->var_part[k].loc_chain)
1024 #ifdef ENABLE_CHECKING
1025 if (src->var_part[k].cur_loc == NULL)
1026 abort ();
1027 #endif
1028 if (src->var_part[k].cur_loc != src->var_part[k].loc_chain->loc)
1029 break;
1031 #ifdef ENABLE_CHECKING
1032 else
1034 if (src->var_part[k].cur_loc != NULL)
1035 abort ();
1037 #endif
1039 if (k < src->n_var_parts)
1040 unshare_variable (set, src);
1041 else
1042 *dstp = src;
1044 /* Continue traversing the hash table. */
1045 return 1;
1047 else
1048 dst = *dstp;
1050 #ifdef ENABLE_CHECKING
1051 if (src->n_var_parts == 0)
1052 abort ();
1053 #endif
1055 /* Count the number of location parts, result is K. */
1056 for (i = 0, j = 0, k = 0;
1057 i < src->n_var_parts && j < dst->n_var_parts; k++)
1059 if (src->var_part[i].offset == dst->var_part[j].offset)
1061 i++;
1062 j++;
1064 else if (src->var_part[i].offset < dst->var_part[j].offset)
1065 i++;
1066 else
1067 j++;
1069 k += src->n_var_parts - i;
1070 k += dst->n_var_parts - j;
1071 #ifdef ENABLE_CHECKING
1072 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
1073 thus there are at most MAX_VAR_PARTS different offsets. */
1074 if (k > MAX_VAR_PARTS)
1075 abort ();
1076 #endif
1078 if (dst->refcount > 1 && dst->n_var_parts != k)
1079 dst = unshare_variable (set, dst);
1081 i = src->n_var_parts - 1;
1082 j = dst->n_var_parts - 1;
1083 dst->n_var_parts = k;
1085 for (k--; k >= 0; k--)
1087 location_chain node, node2;
1089 if (i >= 0 && j >= 0
1090 && src->var_part[i].offset == dst->var_part[j].offset)
1092 /* Compute the "sorted" union of the chains, i.e. the locations which
1093 are in both chains go first, they are sorted by the sum of
1094 positions in the chains. */
1095 int dst_l, src_l;
1096 int ii, jj, n;
1097 struct variable_union_info *vui;
1099 /* If DST is shared compare the location chains.
1100 If they are different we will modify the chain in DST with
1101 high probability so make a copy of DST. */
1102 if (dst->refcount > 1)
1104 for (node = src->var_part[i].loc_chain,
1105 node2 = dst->var_part[j].loc_chain; node && node2;
1106 node = node->next, node2 = node2->next)
1108 if (!((REG_P (node2->loc)
1109 && REG_P (node->loc)
1110 && REGNO (node2->loc) == REGNO (node->loc))
1111 || rtx_equal_p (node2->loc, node->loc)))
1112 break;
1114 if (node || node2)
1115 dst = unshare_variable (set, dst);
1118 src_l = 0;
1119 for (node = src->var_part[i].loc_chain; node; node = node->next)
1120 src_l++;
1121 dst_l = 0;
1122 for (node = dst->var_part[j].loc_chain; node; node = node->next)
1123 dst_l++;
1124 vui = xcalloc (src_l + dst_l, sizeof (struct variable_union_info));
1126 /* Fill in the locations from DST. */
1127 for (node = dst->var_part[j].loc_chain, jj = 0; node;
1128 node = node->next, jj++)
1130 vui[jj].lc = node;
1131 vui[jj].pos_dst = jj;
1133 /* Value larger than a sum of 2 valid positions. */
1134 vui[jj].pos_src = src_l + dst_l;
1137 /* Fill in the locations from SRC. */
1138 n = dst_l;
1139 for (node = src->var_part[i].loc_chain, ii = 0; node;
1140 node = node->next, ii++)
1142 /* Find location from NODE. */
1143 for (jj = 0; jj < dst_l; jj++)
1145 if ((REG_P (vui[jj].lc->loc)
1146 && REG_P (node->loc)
1147 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
1148 || rtx_equal_p (vui[jj].lc->loc, node->loc))
1150 vui[jj].pos_src = ii;
1151 break;
1154 if (jj >= dst_l) /* The location has not been found. */
1156 location_chain new_node;
1158 /* Copy the location from SRC. */
1159 new_node = pool_alloc (loc_chain_pool);
1160 new_node->loc = node->loc;
1161 vui[n].lc = new_node;
1162 vui[n].pos_src = ii;
1163 vui[n].pos_dst = src_l + dst_l;
1164 n++;
1168 for (ii = 0; ii < src_l + dst_l; ii++)
1169 vui[ii].pos = vui[ii].pos_src + vui[ii].pos_dst;
1171 qsort (vui, n, sizeof (struct variable_union_info),
1172 variable_union_info_cmp_pos);
1174 /* Reconnect the nodes in sorted order. */
1175 for (ii = 1; ii < n; ii++)
1176 vui[ii - 1].lc->next = vui[ii].lc;
1177 vui[n - 1].lc->next = NULL;
1179 dst->var_part[k].loc_chain = vui[0].lc;
1180 dst->var_part[k].offset = dst->var_part[j].offset;
1182 free (vui);
1183 i--;
1184 j--;
1186 else if ((i >= 0 && j >= 0
1187 && src->var_part[i].offset < dst->var_part[j].offset)
1188 || i < 0)
1190 dst->var_part[k] = dst->var_part[j];
1191 j--;
1193 else if ((i >= 0 && j >= 0
1194 && src->var_part[i].offset > dst->var_part[j].offset)
1195 || j < 0)
1197 location_chain *nextp;
1199 /* Copy the chain from SRC. */
1200 nextp = &dst->var_part[k].loc_chain;
1201 for (node = src->var_part[i].loc_chain; node; node = node->next)
1203 location_chain new_lc;
1205 new_lc = pool_alloc (loc_chain_pool);
1206 new_lc->next = NULL;
1207 new_lc->loc = node->loc;
1209 *nextp = new_lc;
1210 nextp = &new_lc->next;
1213 dst->var_part[k].offset = src->var_part[i].offset;
1214 i--;
1217 /* We are at the basic block boundary when computing union
1218 so set the CUR_LOC to be the first element of the chain. */
1219 if (dst->var_part[k].loc_chain)
1220 dst->var_part[k].cur_loc = dst->var_part[k].loc_chain->loc;
1221 else
1222 dst->var_part[k].cur_loc = NULL;
1225 /* Continue traversing the hash table. */
1226 return 1;
1229 /* Compute union of dataflow sets SRC and DST and store it to DST. */
1231 static void
1232 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
1234 int i;
1236 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1237 attrs_list_union (&dst->regs[i], src->regs[i]);
1239 htab_traverse (src->vars, variable_union, dst);
1242 /* Flag whether two dataflow sets being compared contain different data. */
1243 static bool
1244 dataflow_set_different_value;
1246 static bool
1247 variable_part_different_p (variable_part *vp1, variable_part *vp2)
1249 location_chain lc1, lc2;
1251 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
1253 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
1255 if (REG_P (lc1->loc) && REG_P (lc2->loc))
1257 if (REGNO (lc1->loc) == REGNO (lc2->loc))
1258 break;
1260 if (rtx_equal_p (lc1->loc, lc2->loc))
1261 break;
1263 if (!lc2)
1264 return true;
1266 return false;
1269 /* Return true if variables VAR1 and VAR2 are different.
1270 If COMPARE_CURRENT_LOCATION is true compare also the cur_loc of each
1271 variable part. */
1273 static bool
1274 variable_different_p (variable var1, variable var2,
1275 bool compare_current_location)
1277 int i;
1279 if (var1 == var2)
1280 return false;
1282 if (var1->n_var_parts != var2->n_var_parts)
1283 return true;
1285 for (i = 0; i < var1->n_var_parts; i++)
1287 if (var1->var_part[i].offset != var2->var_part[i].offset)
1288 return true;
1289 if (compare_current_location)
1291 if (!((REG_P (var1->var_part[i].cur_loc)
1292 && REG_P (var2->var_part[i].cur_loc)
1293 && (REGNO (var1->var_part[i].cur_loc)
1294 == REGNO (var2->var_part[i].cur_loc)))
1295 || rtx_equal_p (var1->var_part[i].cur_loc,
1296 var2->var_part[i].cur_loc)))
1297 return true;
1299 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
1300 return true;
1301 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
1302 return true;
1304 return false;
1307 /* Compare variable *SLOT with the same variable in hash table DATA
1308 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1310 static int
1311 dataflow_set_different_1 (void **slot, void *data)
1313 htab_t htab = (htab_t) data;
1314 variable var1, var2;
1316 var1 = *(variable *) slot;
1317 var2 = htab_find_with_hash (htab, var1->decl,
1318 VARIABLE_HASH_VAL (var1->decl));
1319 if (!var2)
1321 dataflow_set_different_value = true;
1323 /* Stop traversing the hash table. */
1324 return 0;
1327 if (variable_different_p (var1, var2, false))
1329 dataflow_set_different_value = true;
1331 /* Stop traversing the hash table. */
1332 return 0;
1335 /* Continue traversing the hash table. */
1336 return 1;
1339 /* Compare variable *SLOT with the same variable in hash table DATA
1340 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1342 static int
1343 dataflow_set_different_2 (void **slot, void *data)
1345 htab_t htab = (htab_t) data;
1346 variable var1, var2;
1348 var1 = *(variable *) slot;
1349 var2 = htab_find_with_hash (htab, var1->decl,
1350 VARIABLE_HASH_VAL (var1->decl));
1351 if (!var2)
1353 dataflow_set_different_value = true;
1355 /* Stop traversing the hash table. */
1356 return 0;
1359 #ifdef ENABLE_CHECKING
1360 /* If both variables are defined they have been already checked for
1361 equivalence. */
1362 if (variable_different_p (var1, var2, false))
1363 abort ();
1364 #endif
1366 /* Continue traversing the hash table. */
1367 return 1;
1370 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
1372 static bool
1373 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
1375 dataflow_set_different_value = false;
1377 htab_traverse (old_set->vars, dataflow_set_different_1, new_set->vars);
1378 if (!dataflow_set_different_value)
1380 /* We have compared the variables which are in both hash tables
1381 so now only check whether there are some variables in NEW_SET->VARS
1382 which are not in OLD_SET->VARS. */
1383 htab_traverse (new_set->vars, dataflow_set_different_2, old_set->vars);
1385 return dataflow_set_different_value;
1388 /* Free the contents of dataflow set SET. */
1390 static void
1391 dataflow_set_destroy (dataflow_set *set)
1393 int i;
1395 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1396 attrs_list_clear (&set->regs[i]);
1398 htab_delete (set->vars);
1399 set->vars = NULL;
1402 /* Return true if RTL X contains a SYMBOL_REF. */
1404 static bool
1405 contains_symbol_ref (rtx x)
1407 const char *fmt;
1408 RTX_CODE code;
1409 int i;
1411 if (!x)
1412 return false;
1414 code = GET_CODE (x);
1415 if (code == SYMBOL_REF)
1416 return true;
1418 fmt = GET_RTX_FORMAT (code);
1419 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1421 if (fmt[i] == 'e')
1423 if (contains_symbol_ref (XEXP (x, i)))
1424 return true;
1426 else if (fmt[i] == 'E')
1428 int j;
1429 for (j = 0; j < XVECLEN (x, i); j++)
1430 if (contains_symbol_ref (XVECEXP (x, i, j)))
1431 return true;
1435 return false;
1438 /* Shall EXPR be tracked? */
1440 static bool
1441 track_expr_p (tree expr)
1443 rtx decl_rtl;
1445 /* If EXPR is not a parameter or a variable do not track it. */
1446 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
1447 return 0;
1449 /* It also must have a name... */
1450 if (!DECL_NAME (expr))
1451 return 0;
1453 /* ... and a RTL assigned to it. */
1454 decl_rtl = DECL_RTL_IF_SET (expr);
1455 if (!decl_rtl)
1456 return 0;
1458 /* Do not track EXPR if it should be ignored for debugging purposes. */
1459 if (DECL_IGNORED_P (expr))
1460 return 0;
1462 /* Do not track global variables until we are able to emit correct location
1463 list for them. */
1464 if (TREE_STATIC (expr))
1465 return 0;
1467 /* When the EXPR is a DECL for alias of some variable (see example)
1468 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
1469 DECL_RTL contains SYMBOL_REF.
1471 Example:
1472 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
1473 char **_dl_argv;
1475 if (MEM_P (decl_rtl)
1476 && contains_symbol_ref (XEXP (decl_rtl, 0)))
1477 return 0;
1479 /* If RTX is a memory it should not be very large (because it would be
1480 an array or struct). */
1481 if (MEM_P (decl_rtl))
1483 /* Do not track structures and arrays. */
1484 if (GET_MODE (decl_rtl) == BLKmode)
1485 return 0;
1486 if (MEM_SIZE (decl_rtl)
1487 && INTVAL (MEM_SIZE (decl_rtl)) > MAX_VAR_PARTS)
1488 return 0;
1491 return 1;
1494 /* Count uses (register and memory references) LOC which will be tracked.
1495 INSN is instruction which the LOC is part of. */
1497 static int
1498 count_uses (rtx *loc, void *insn)
1500 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1502 if (REG_P (*loc))
1504 #ifdef ENABLE_CHECKING
1505 if (REGNO (*loc) >= FIRST_PSEUDO_REGISTER)
1506 abort ();
1507 #endif
1508 VTI (bb)->n_mos++;
1510 else if (MEM_P (*loc)
1511 && MEM_EXPR (*loc)
1512 && track_expr_p (MEM_EXPR (*loc)))
1514 VTI (bb)->n_mos++;
1517 return 0;
1520 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1522 static void
1523 count_uses_1 (rtx *x, void *insn)
1525 for_each_rtx (x, count_uses, insn);
1528 /* Count stores (register and memory references) LOC which will be tracked.
1529 INSN is instruction which the LOC is part of. */
1531 static void
1532 count_stores (rtx loc, rtx expr ATTRIBUTE_UNUSED, void *insn)
1534 count_uses (&loc, insn);
1537 /* Add uses (register and memory references) LOC which will be tracked
1538 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
1540 static int
1541 add_uses (rtx *loc, void *insn)
1543 if (REG_P (*loc))
1545 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1546 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1548 mo->type = ((REG_EXPR (*loc) && track_expr_p (REG_EXPR (*loc)))
1549 ? MO_USE : MO_USE_NO_VAR);
1550 mo->u.loc = *loc;
1551 mo->insn = (rtx) insn;
1553 else if (MEM_P (*loc)
1554 && MEM_EXPR (*loc)
1555 && track_expr_p (MEM_EXPR (*loc)))
1557 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1558 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1560 mo->type = MO_USE;
1561 mo->u.loc = *loc;
1562 mo->insn = (rtx) insn;
1565 return 0;
1568 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1570 static void
1571 add_uses_1 (rtx *x, void *insn)
1573 for_each_rtx (x, add_uses, insn);
1576 /* Add stores (register and memory references) LOC which will be tracked
1577 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
1578 INSN is instruction which the LOC is part of. */
1580 static void
1581 add_stores (rtx loc, rtx expr, void *insn)
1583 if (REG_P (loc))
1585 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1586 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1588 mo->type = ((GET_CODE (expr) != CLOBBER && REG_EXPR (loc)
1589 && track_expr_p (REG_EXPR (loc)))
1590 ? MO_SET : MO_CLOBBER);
1591 mo->u.loc = loc;
1592 mo->insn = (rtx) insn;
1594 else if (MEM_P (loc)
1595 && MEM_EXPR (loc)
1596 && track_expr_p (MEM_EXPR (loc)))
1598 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1599 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1601 mo->type = GET_CODE (expr) == CLOBBER ? MO_CLOBBER : MO_SET;
1602 mo->u.loc = loc;
1603 mo->insn = (rtx) insn;
1607 /* Compute the changes of variable locations in the basic block BB. */
1609 static bool
1610 compute_bb_dataflow (basic_block bb)
1612 int i, n, r;
1613 bool changed;
1614 dataflow_set old_out;
1615 dataflow_set *in = &VTI (bb)->in;
1616 dataflow_set *out = &VTI (bb)->out;
1618 dataflow_set_init (&old_out, htab_elements (VTI (bb)->out.vars) + 3);
1619 dataflow_set_copy (&old_out, out);
1620 dataflow_set_copy (out, in);
1622 n = VTI (bb)->n_mos;
1623 for (i = 0; i < n; i++)
1625 switch (VTI (bb)->mos[i].type)
1627 case MO_CALL:
1628 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1629 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
1630 var_regno_delete (out, r);
1631 break;
1633 case MO_USE:
1634 case MO_SET:
1636 rtx loc = VTI (bb)->mos[i].u.loc;
1638 if (REG_P (loc))
1639 var_reg_delete_and_set (out, loc);
1640 else if (MEM_P (loc))
1641 var_mem_delete_and_set (out, loc);
1643 break;
1645 case MO_USE_NO_VAR:
1646 case MO_CLOBBER:
1648 rtx loc = VTI (bb)->mos[i].u.loc;
1650 if (REG_P (loc))
1651 var_reg_delete (out, loc);
1652 else if (MEM_P (loc))
1653 var_mem_delete (out, loc);
1655 break;
1657 case MO_ADJUST:
1659 rtx base;
1661 out->stack_adjust += VTI (bb)->mos[i].u.adjust;
1662 base = gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx,
1663 out->stack_adjust));
1664 set_frame_base_location (out, base);
1666 break;
1670 changed = dataflow_set_different (&old_out, out);
1671 dataflow_set_destroy (&old_out);
1672 return changed;
1675 /* Find the locations of variables in the whole function. */
1677 static void
1678 vt_find_locations (void)
1680 fibheap_t worklist, pending, fibheap_swap;
1681 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
1682 basic_block bb;
1683 edge e;
1684 int *bb_order;
1685 int *rc_order;
1686 int i;
1688 /* Compute reverse completion order of depth first search of the CFG
1689 so that the data-flow runs faster. */
1690 rc_order = xmalloc (n_basic_blocks * sizeof (int));
1691 bb_order = xmalloc (last_basic_block * sizeof (int));
1692 flow_depth_first_order_compute (NULL, rc_order);
1693 for (i = 0; i < n_basic_blocks; i++)
1694 bb_order[rc_order[i]] = i;
1695 free (rc_order);
1697 worklist = fibheap_new ();
1698 pending = fibheap_new ();
1699 visited = sbitmap_alloc (last_basic_block);
1700 in_worklist = sbitmap_alloc (last_basic_block);
1701 in_pending = sbitmap_alloc (last_basic_block);
1702 sbitmap_zero (in_worklist);
1704 FOR_EACH_BB (bb)
1705 fibheap_insert (pending, bb_order[bb->index], bb);
1706 sbitmap_ones (in_pending);
1708 while (!fibheap_empty (pending))
1710 fibheap_swap = pending;
1711 pending = worklist;
1712 worklist = fibheap_swap;
1713 sbitmap_swap = in_pending;
1714 in_pending = in_worklist;
1715 in_worklist = sbitmap_swap;
1717 sbitmap_zero (visited);
1719 while (!fibheap_empty (worklist))
1721 bb = fibheap_extract_min (worklist);
1722 RESET_BIT (in_worklist, bb->index);
1723 if (!TEST_BIT (visited, bb->index))
1725 bool changed;
1727 SET_BIT (visited, bb->index);
1729 /* Calculate the IN set as union of predecessor OUT sets. */
1730 dataflow_set_clear (&VTI (bb)->in);
1731 for (e = bb->pred; e; e = e->pred_next)
1733 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
1736 changed = compute_bb_dataflow (bb);
1737 if (changed)
1739 for (e = bb->succ; e; e = e->succ_next)
1741 if (e->dest == EXIT_BLOCK_PTR)
1742 continue;
1744 if (e->dest == bb)
1745 continue;
1747 if (TEST_BIT (visited, e->dest->index))
1749 if (!TEST_BIT (in_pending, e->dest->index))
1751 /* Send E->DEST to next round. */
1752 SET_BIT (in_pending, e->dest->index);
1753 fibheap_insert (pending,
1754 bb_order[e->dest->index],
1755 e->dest);
1758 else if (!TEST_BIT (in_worklist, e->dest->index))
1760 /* Add E->DEST to current round. */
1761 SET_BIT (in_worklist, e->dest->index);
1762 fibheap_insert (worklist, bb_order[e->dest->index],
1763 e->dest);
1771 free (bb_order);
1772 fibheap_delete (worklist);
1773 fibheap_delete (pending);
1774 sbitmap_free (visited);
1775 sbitmap_free (in_worklist);
1776 sbitmap_free (in_pending);
1779 /* Print the content of the LIST to dump file. */
1781 static void
1782 dump_attrs_list (attrs list)
1784 for (; list; list = list->next)
1786 print_mem_expr (dump_file, list->decl);
1787 fprintf (dump_file, "+");
1788 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC, list->offset);
1790 fprintf (dump_file, "\n");
1793 /* Print the information about variable *SLOT to dump file. */
1795 static int
1796 dump_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1798 variable var = *(variable *) slot;
1799 int i;
1800 location_chain node;
1802 fprintf (dump_file, " name: %s\n",
1803 IDENTIFIER_POINTER (DECL_NAME (var->decl)));
1804 for (i = 0; i < var->n_var_parts; i++)
1806 fprintf (dump_file, " offset %ld\n",
1807 (long) var->var_part[i].offset);
1808 for (node = var->var_part[i].loc_chain; node; node = node->next)
1810 fprintf (dump_file, " ");
1811 print_rtl_single (dump_file, node->loc);
1815 /* Continue traversing the hash table. */
1816 return 1;
1819 /* Print the information about variables from hash table VARS to dump file. */
1821 static void
1822 dump_vars (htab_t vars)
1824 if (htab_elements (vars) > 0)
1826 fprintf (dump_file, "Variables:\n");
1827 htab_traverse (vars, dump_variable, NULL);
1831 /* Print the dataflow set SET to dump file. */
1833 static void
1834 dump_dataflow_set (dataflow_set *set)
1836 int i;
1838 fprintf (dump_file, "Stack adjustment: ");
1839 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC, set->stack_adjust);
1840 fprintf (dump_file, "\n");
1841 for (i = 1; i < FIRST_PSEUDO_REGISTER; i++)
1843 if (set->regs[i])
1845 fprintf (dump_file, "Reg %d:", i);
1846 dump_attrs_list (set->regs[i]);
1849 dump_vars (set->vars);
1850 fprintf (dump_file, "\n");
1853 /* Print the IN and OUT sets for each basic block to dump file. */
1855 static void
1856 dump_dataflow_sets (void)
1858 basic_block bb;
1860 FOR_EACH_BB (bb)
1862 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
1863 fprintf (dump_file, "IN:\n");
1864 dump_dataflow_set (&VTI (bb)->in);
1865 fprintf (dump_file, "OUT:\n");
1866 dump_dataflow_set (&VTI (bb)->out);
1870 /* Add variable VAR to the hash table of changed variables and
1871 if it has no locations delete it from hash table HTAB. */
1873 static void
1874 variable_was_changed (variable var, htab_t htab)
1876 hashval_t hash = VARIABLE_HASH_VAL (var->decl);
1878 if (emit_notes)
1880 variable *slot;
1882 slot = (variable *) htab_find_slot_with_hash (changed_variables,
1883 var->decl, hash, INSERT);
1885 if (htab && var->n_var_parts == 0)
1887 variable empty_var;
1888 void **old;
1890 empty_var = pool_alloc (var_pool);
1891 empty_var->decl = var->decl;
1892 empty_var->refcount = 1;
1893 empty_var->n_var_parts = 0;
1894 *slot = empty_var;
1896 old = htab_find_slot_with_hash (htab, var->decl, hash,
1897 NO_INSERT);
1898 if (old)
1899 htab_clear_slot (htab, old);
1901 else
1903 *slot = var;
1906 else
1908 #ifdef ENABLE_CHECKING
1909 if (!htab)
1910 abort ();
1911 #endif
1912 if (var->n_var_parts == 0)
1914 void **slot = htab_find_slot_with_hash (htab, var->decl, hash,
1915 NO_INSERT);
1916 if (slot)
1917 htab_clear_slot (htab, slot);
1922 /* Set the location of frame_base_decl to LOC in dataflow set SET. This
1923 function expects that frame_base_decl has already one location for offset 0
1924 in the variable table. */
1926 static void
1927 set_frame_base_location (dataflow_set *set, rtx loc)
1929 variable var;
1931 var = htab_find_with_hash (set->vars, frame_base_decl,
1932 VARIABLE_HASH_VAL (frame_base_decl));
1933 #ifdef ENABLE_CHECKING
1934 if (!var)
1935 abort ();
1936 if (var->n_var_parts != 1)
1937 abort ();
1938 if (var->var_part[0].offset != 0)
1939 abort ();
1940 if (!var->var_part[0].loc_chain)
1941 abort ();
1942 #endif
1944 /* If frame_base_decl is shared unshare it first. */
1945 if (var->refcount > 1)
1946 var = unshare_variable (set, var);
1948 var->var_part[0].loc_chain->loc = loc;
1949 var->var_part[0].cur_loc = loc;
1950 variable_was_changed (var, set->vars);
1953 /* Set the part of variable's location in the dataflow set SET. The variable
1954 part is specified by variable's declaration DECL and offset OFFSET and the
1955 part's location by LOC. */
1957 static void
1958 set_variable_part (dataflow_set *set, rtx loc, tree decl, HOST_WIDE_INT offset)
1960 int pos, low, high;
1961 location_chain node, next;
1962 location_chain *nextp;
1963 variable var;
1964 void **slot;
1966 slot = htab_find_slot_with_hash (set->vars, decl,
1967 VARIABLE_HASH_VAL (decl), INSERT);
1968 if (!*slot)
1970 /* Create new variable information. */
1971 var = pool_alloc (var_pool);
1972 var->decl = decl;
1973 var->refcount = 1;
1974 var->n_var_parts = 1;
1975 var->var_part[0].offset = offset;
1976 var->var_part[0].loc_chain = NULL;
1977 var->var_part[0].cur_loc = NULL;
1978 *slot = var;
1979 pos = 0;
1981 else
1983 var = (variable) *slot;
1985 /* Find the location part. */
1986 low = 0;
1987 high = var->n_var_parts;
1988 while (low != high)
1990 pos = (low + high) / 2;
1991 if (var->var_part[pos].offset < offset)
1992 low = pos + 1;
1993 else
1994 high = pos;
1996 pos = low;
1998 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
2000 node = var->var_part[pos].loc_chain;
2002 if (node
2003 && ((REG_P (node->loc) && REG_P (loc)
2004 && REGNO (node->loc) == REGNO (loc))
2005 || rtx_equal_p (node->loc, loc)))
2007 /* LOC is in the beginning of the chain so we have nothing
2008 to do. */
2009 return;
2011 else
2013 /* We have to make a copy of a shared variable. */
2014 if (var->refcount > 1)
2015 var = unshare_variable (set, var);
2018 else
2020 /* We have not found the location part, new one will be created. */
2022 /* We have to make a copy of the shared variable. */
2023 if (var->refcount > 1)
2024 var = unshare_variable (set, var);
2026 #ifdef ENABLE_CHECKING
2027 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2028 thus there are at most MAX_VAR_PARTS different offsets. */
2029 if (var->n_var_parts >= MAX_VAR_PARTS)
2030 abort ();
2031 #endif
2033 /* We have to move the elements of array starting at index low to the
2034 next position. */
2035 for (high = var->n_var_parts; high > low; high--)
2036 var->var_part[high] = var->var_part[high - 1];
2038 var->n_var_parts++;
2039 var->var_part[pos].offset = offset;
2040 var->var_part[pos].loc_chain = NULL;
2041 var->var_part[pos].cur_loc = NULL;
2045 /* Delete the location from the list. */
2046 nextp = &var->var_part[pos].loc_chain;
2047 for (node = var->var_part[pos].loc_chain; node; node = next)
2049 next = node->next;
2050 if ((REG_P (node->loc) && REG_P (loc)
2051 && REGNO (node->loc) == REGNO (loc))
2052 || rtx_equal_p (node->loc, loc))
2054 pool_free (loc_chain_pool, node);
2055 *nextp = next;
2056 break;
2058 else
2059 nextp = &node->next;
2062 /* Add the location to the beginning. */
2063 node = pool_alloc (loc_chain_pool);
2064 node->loc = loc;
2065 node->next = var->var_part[pos].loc_chain;
2066 var->var_part[pos].loc_chain = node;
2068 /* If no location was emitted do so. */
2069 if (var->var_part[pos].cur_loc == NULL)
2071 var->var_part[pos].cur_loc = loc;
2072 variable_was_changed (var, set->vars);
2076 /* Delete the part of variable's location from dataflow set SET. The variable
2077 part is specified by variable's declaration DECL and offset OFFSET and the
2078 part's location by LOC. */
2080 static void
2081 delete_variable_part (dataflow_set *set, rtx loc, tree decl,
2082 HOST_WIDE_INT offset)
2084 int pos, low, high;
2085 void **slot;
2087 slot = htab_find_slot_with_hash (set->vars, decl, VARIABLE_HASH_VAL (decl),
2088 NO_INSERT);
2089 if (slot)
2091 variable var = (variable) *slot;
2093 /* Find the location part. */
2094 low = 0;
2095 high = var->n_var_parts;
2096 while (low != high)
2098 pos = (low + high) / 2;
2099 if (var->var_part[pos].offset < offset)
2100 low = pos + 1;
2101 else
2102 high = pos;
2104 pos = low;
2106 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
2108 location_chain node, next;
2109 location_chain *nextp;
2110 bool changed;
2112 if (var->refcount > 1)
2114 /* If the variable contains the location part we have to
2115 make a copy of the variable. */
2116 for (node = var->var_part[pos].loc_chain; node;
2117 node = node->next)
2119 if ((REG_P (node->loc) && REG_P (loc)
2120 && REGNO (node->loc) == REGNO (loc))
2121 || rtx_equal_p (node->loc, loc))
2123 var = unshare_variable (set, var);
2124 break;
2129 /* Delete the location part. */
2130 nextp = &var->var_part[pos].loc_chain;
2131 for (node = *nextp; node; node = next)
2133 next = node->next;
2134 if ((REG_P (node->loc) && REG_P (loc)
2135 && REGNO (node->loc) == REGNO (loc))
2136 || rtx_equal_p (node->loc, loc))
2138 pool_free (loc_chain_pool, node);
2139 *nextp = next;
2140 break;
2142 else
2143 nextp = &node->next;
2146 /* If we have deleted the location which was last emitted
2147 we have to emit new location so add the variable to set
2148 of changed variables. */
2149 if (var->var_part[pos].cur_loc
2150 && ((REG_P (loc)
2151 && REG_P (var->var_part[pos].cur_loc)
2152 && REGNO (loc) == REGNO (var->var_part[pos].cur_loc))
2153 || rtx_equal_p (loc, var->var_part[pos].cur_loc)))
2155 changed = true;
2156 if (var->var_part[pos].loc_chain)
2157 var->var_part[pos].cur_loc = var->var_part[pos].loc_chain->loc;
2159 else
2160 changed = false;
2162 if (var->var_part[pos].loc_chain == NULL)
2164 var->n_var_parts--;
2165 while (pos < var->n_var_parts)
2167 var->var_part[pos] = var->var_part[pos + 1];
2168 pos++;
2171 if (changed)
2172 variable_was_changed (var, set->vars);
2177 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
2178 additional parameters: WHERE specifies whether the note shall be emitted
2179 before of after instruction INSN. */
2181 static int
2182 emit_note_insn_var_location (void **varp, void *data)
2184 variable var = *(variable *) varp;
2185 rtx insn = ((emit_note_data *)data)->insn;
2186 enum emit_note_where where = ((emit_note_data *)data)->where;
2187 rtx note;
2188 int i;
2189 bool complete;
2190 HOST_WIDE_INT last_limit;
2191 tree type_size_unit;
2193 #ifdef ENABLE_CHECKING
2194 if (!var->decl)
2195 abort ();
2196 #endif
2198 complete = true;
2199 last_limit = 0;
2200 for (i = 0; i < var->n_var_parts; i++)
2202 if (last_limit < var->var_part[i].offset)
2204 complete = false;
2205 break;
2207 last_limit
2208 = (var->var_part[i].offset
2209 + GET_MODE_SIZE (GET_MODE (var->var_part[i].loc_chain->loc)));
2211 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (var->decl));
2212 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
2213 complete = false;
2215 if (where == EMIT_NOTE_AFTER_INSN)
2216 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
2217 else
2218 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
2220 if (!complete)
2222 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2223 NULL_RTX);
2225 else if (var->n_var_parts == 1)
2227 rtx expr_list
2228 = gen_rtx_EXPR_LIST (VOIDmode,
2229 var->var_part[0].loc_chain->loc,
2230 GEN_INT (var->var_part[0].offset));
2232 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2233 expr_list);
2235 else if (var->n_var_parts)
2237 rtx argp[MAX_VAR_PARTS];
2238 rtx parallel;
2240 for (i = 0; i < var->n_var_parts; i++)
2241 argp[i] = gen_rtx_EXPR_LIST (VOIDmode, var->var_part[i].loc_chain->loc,
2242 GEN_INT (var->var_part[i].offset));
2243 parallel = gen_rtx_PARALLEL (VOIDmode,
2244 gen_rtvec_v (var->n_var_parts, argp));
2245 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2246 parallel);
2249 htab_clear_slot (changed_variables, varp);
2251 /* When there are no location parts the variable has been already
2252 removed from hash table and a new empty variable was created.
2253 Free the empty variable. */
2254 if (var->n_var_parts == 0)
2256 pool_free (var_pool, var);
2259 /* Continue traversing the hash table. */
2260 return 1;
2263 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
2264 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
2265 shall be emitted before of after instruction INSN. */
2267 static void
2268 emit_notes_for_changes (rtx insn, enum emit_note_where where)
2270 emit_note_data data;
2272 data.insn = insn;
2273 data.where = where;
2274 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
2277 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
2278 same variable in hash table DATA or is not there at all. */
2280 static int
2281 emit_notes_for_differences_1 (void **slot, void *data)
2283 htab_t new_vars = (htab_t) data;
2284 variable old_var, new_var;
2286 old_var = *(variable *) slot;
2287 new_var = htab_find_with_hash (new_vars, old_var->decl,
2288 VARIABLE_HASH_VAL (old_var->decl));
2290 if (!new_var)
2292 /* Variable has disappeared. */
2293 variable empty_var;
2295 empty_var = pool_alloc (var_pool);
2296 empty_var->decl = old_var->decl;
2297 empty_var->refcount = 1;
2298 empty_var->n_var_parts = 0;
2299 variable_was_changed (empty_var, NULL);
2301 else if (variable_different_p (old_var, new_var, true))
2303 variable_was_changed (new_var, NULL);
2306 /* Continue traversing the hash table. */
2307 return 1;
2310 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
2311 table DATA. */
2313 static int
2314 emit_notes_for_differences_2 (void **slot, void *data)
2316 htab_t old_vars = (htab_t) data;
2317 variable old_var, new_var;
2319 new_var = *(variable *) slot;
2320 old_var = htab_find_with_hash (old_vars, new_var->decl,
2321 VARIABLE_HASH_VAL (new_var->decl));
2322 if (!old_var)
2324 /* Variable has appeared. */
2325 variable_was_changed (new_var, NULL);
2328 /* Continue traversing the hash table. */
2329 return 1;
2332 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
2333 NEW_SET. */
2335 static void
2336 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
2337 dataflow_set *new_set)
2339 htab_traverse (old_set->vars, emit_notes_for_differences_1, new_set->vars);
2340 htab_traverse (new_set->vars, emit_notes_for_differences_2, old_set->vars);
2341 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2344 /* Emit the notes for changes of location parts in the basic block BB. */
2346 static void
2347 emit_notes_in_bb (basic_block bb)
2349 int i;
2350 dataflow_set set;
2352 dataflow_set_init (&set, htab_elements (VTI (bb)->in.vars) + 3);
2353 dataflow_set_copy (&set, &VTI (bb)->in);
2355 for (i = 0; i < VTI (bb)->n_mos; i++)
2357 rtx insn = VTI (bb)->mos[i].insn;
2359 switch (VTI (bb)->mos[i].type)
2361 case MO_CALL:
2363 int r;
2365 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
2366 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
2368 var_regno_delete (&set, r);
2370 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2372 break;
2374 case MO_USE:
2375 case MO_SET:
2377 rtx loc = VTI (bb)->mos[i].u.loc;
2379 if (REG_P (loc))
2380 var_reg_delete_and_set (&set, loc);
2381 else
2382 var_mem_delete_and_set (&set, loc);
2384 if (VTI (bb)->mos[i].type == MO_USE)
2385 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2386 else
2387 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2389 break;
2391 case MO_USE_NO_VAR:
2392 case MO_CLOBBER:
2394 rtx loc = VTI (bb)->mos[i].u.loc;
2396 if (REG_P (loc))
2397 var_reg_delete (&set, loc);
2398 else
2399 var_mem_delete (&set, loc);
2401 if (VTI (bb)->mos[i].type == MO_USE_NO_VAR)
2402 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2403 else
2404 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2406 break;
2408 case MO_ADJUST:
2410 rtx base;
2412 set.stack_adjust += VTI (bb)->mos[i].u.adjust;
2413 base = gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx,
2414 set.stack_adjust));
2415 set_frame_base_location (&set, base);
2416 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2418 break;
2421 dataflow_set_destroy (&set);
2424 /* Emit notes for the whole function. */
2426 static void
2427 vt_emit_notes (void)
2429 basic_block bb;
2430 dataflow_set *last_out;
2431 dataflow_set empty;
2433 #ifdef ENABLE_CHECKING
2434 if (htab_elements (changed_variables))
2435 abort ();
2436 #endif
2438 /* Enable emitting notes by functions (mainly by set_variable_part and
2439 delete_variable_part). */
2440 emit_notes = true;
2442 dataflow_set_init (&empty, 7);
2443 last_out = &empty;
2445 FOR_EACH_BB (bb)
2447 /* Emit the notes for changes of variable locations between two
2448 subsequent basic blocks. */
2449 emit_notes_for_differences (BB_HEAD (bb), last_out, &VTI (bb)->in);
2451 /* Emit the notes for the changes in the basic block itself. */
2452 emit_notes_in_bb (bb);
2454 last_out = &VTI (bb)->out;
2456 dataflow_set_destroy (&empty);
2457 emit_notes = false;
2460 /* If there is a declaration and offset associated with register/memory RTL
2461 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
2463 static bool
2464 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
2466 if (REG_P (rtl))
2468 if (REG_ATTRS (rtl))
2470 *declp = REG_EXPR (rtl);
2471 *offsetp = REG_OFFSET (rtl);
2472 return true;
2475 else if (MEM_P (rtl))
2477 if (MEM_ATTRS (rtl))
2479 *declp = MEM_EXPR (rtl);
2480 *offsetp = MEM_OFFSET (rtl) ? INTVAL (MEM_OFFSET (rtl)) : 0;
2481 return true;
2484 return false;
2487 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
2489 static void
2490 vt_add_function_parameters (void)
2492 tree parm;
2494 for (parm = DECL_ARGUMENTS (current_function_decl);
2495 parm; parm = TREE_CHAIN (parm))
2497 rtx decl_rtl = DECL_RTL_IF_SET (parm);
2498 rtx incoming = DECL_INCOMING_RTL (parm);
2499 tree decl;
2500 HOST_WIDE_INT offset;
2501 dataflow_set *out;
2503 if (TREE_CODE (parm) != PARM_DECL)
2504 continue;
2506 if (!DECL_NAME (parm))
2507 continue;
2509 if (!decl_rtl || !incoming)
2510 continue;
2512 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
2513 continue;
2515 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
2516 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
2517 continue;
2519 if (!decl)
2520 continue;
2522 #ifdef ENABLE_CHECKING
2523 if (parm != decl)
2524 abort ();
2525 #endif
2527 incoming = eliminate_regs (incoming, 0, NULL_RTX);
2528 out = &VTI (ENTRY_BLOCK_PTR)->out;
2530 if (REG_P (incoming))
2532 #ifdef ENABLE_CHECKING
2533 if (REGNO (incoming) >= FIRST_PSEUDO_REGISTER)
2534 abort ();
2535 #endif
2536 attrs_list_insert (&out->regs[REGNO (incoming)],
2537 parm, offset, incoming);
2538 set_variable_part (out, incoming, parm, offset);
2540 else if (MEM_P (incoming))
2542 set_variable_part (out, incoming, parm, offset);
2547 /* Allocate and initialize the data structures for variable tracking
2548 and parse the RTL to get the micro operations. */
2550 static void
2551 vt_initialize (void)
2553 basic_block bb;
2555 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
2557 FOR_EACH_BB (bb)
2559 rtx insn;
2560 HOST_WIDE_INT pre, post;
2562 /* Count the number of micro operations. */
2563 VTI (bb)->n_mos = 0;
2564 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2565 insn = NEXT_INSN (insn))
2567 if (INSN_P (insn))
2569 if (!frame_pointer_needed)
2571 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
2572 if (pre)
2573 VTI (bb)->n_mos++;
2574 if (post)
2575 VTI (bb)->n_mos++;
2577 note_uses (&PATTERN (insn), count_uses_1, insn);
2578 note_stores (PATTERN (insn), count_stores, insn);
2579 if (CALL_P (insn))
2580 VTI (bb)->n_mos++;
2584 /* Add the micro-operations to the array. */
2585 VTI (bb)->mos = xmalloc (VTI (bb)->n_mos
2586 * sizeof (struct micro_operation_def));
2587 VTI (bb)->n_mos = 0;
2588 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2589 insn = NEXT_INSN (insn))
2591 if (INSN_P (insn))
2593 int n1, n2;
2595 if (!frame_pointer_needed)
2597 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
2598 if (pre)
2600 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2602 mo->type = MO_ADJUST;
2603 mo->u.adjust = pre;
2604 mo->insn = insn;
2608 n1 = VTI (bb)->n_mos;
2609 note_uses (&PATTERN (insn), add_uses_1, insn);
2610 n2 = VTI (bb)->n_mos - 1;
2612 /* Order the MO_USEs to be before MO_USE_NO_VARs. */
2613 while (n1 < n2)
2615 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_USE)
2616 n1++;
2617 while (n1 < n2 && VTI (bb)->mos[n2].type == MO_USE_NO_VAR)
2618 n2--;
2619 if (n1 < n2)
2621 micro_operation sw;
2623 sw = VTI (bb)->mos[n1];
2624 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
2625 VTI (bb)->mos[n2] = sw;
2629 if (CALL_P (insn))
2631 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2633 mo->type = MO_CALL;
2634 mo->insn = insn;
2637 n1 = VTI (bb)->n_mos;
2638 note_stores (PATTERN (insn), add_stores, insn);
2639 n2 = VTI (bb)->n_mos - 1;
2641 /* Order the MO_SETs to be before MO_CLOBBERs. */
2642 while (n1 < n2)
2644 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_SET)
2645 n1++;
2646 while (n1 < n2 && VTI (bb)->mos[n2].type == MO_CLOBBER)
2647 n2--;
2648 if (n1 < n2)
2650 micro_operation sw;
2652 sw = VTI (bb)->mos[n1];
2653 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
2654 VTI (bb)->mos[n2] = sw;
2658 if (!frame_pointer_needed && post)
2660 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2662 mo->type = MO_ADJUST;
2663 mo->u.adjust = post;
2664 mo->insn = insn;
2670 /* Init the IN and OUT sets. */
2671 FOR_ALL_BB (bb)
2673 VTI (bb)->visited = false;
2674 dataflow_set_init (&VTI (bb)->in, 7);
2675 dataflow_set_init (&VTI (bb)->out, 7);
2678 attrs_pool = create_alloc_pool ("attrs_def pool",
2679 sizeof (struct attrs_def), 1024);
2680 var_pool = create_alloc_pool ("variable_def pool",
2681 sizeof (struct variable_def), 64);
2682 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
2683 sizeof (struct location_chain_def),
2684 1024);
2685 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
2686 NULL);
2687 vt_add_function_parameters ();
2689 if (!frame_pointer_needed)
2691 rtx base;
2693 /* Create fake variable for tracking stack pointer changes. */
2694 frame_base_decl = make_node (VAR_DECL);
2695 DECL_NAME (frame_base_decl) = get_identifier ("___frame_base_decl");
2696 TREE_TYPE (frame_base_decl) = char_type_node;
2697 DECL_ARTIFICIAL (frame_base_decl) = 1;
2699 /* Set its initial "location". */
2700 frame_stack_adjust = -prologue_stack_adjust ();
2701 base = gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx,
2702 frame_stack_adjust));
2703 set_variable_part (&VTI (ENTRY_BLOCK_PTR)->out, base, frame_base_decl, 0);
2705 else
2707 frame_base_decl = NULL;
2711 /* Free the data structures needed for variable tracking. */
2713 static void
2714 vt_finalize (void)
2716 basic_block bb;
2718 FOR_EACH_BB (bb)
2720 free (VTI (bb)->mos);
2723 FOR_ALL_BB (bb)
2725 dataflow_set_destroy (&VTI (bb)->in);
2726 dataflow_set_destroy (&VTI (bb)->out);
2728 free_aux_for_blocks ();
2729 free_alloc_pool (attrs_pool);
2730 free_alloc_pool (var_pool);
2731 free_alloc_pool (loc_chain_pool);
2732 htab_delete (changed_variables);
2735 /* The entry point to variable tracking pass. */
2737 void
2738 variable_tracking_main (void)
2740 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
2741 return;
2743 mark_dfs_back_edges ();
2744 vt_initialize ();
2745 if (!frame_pointer_needed)
2747 if (!vt_stack_adjustments ())
2749 vt_finalize ();
2750 return;
2754 vt_find_locations ();
2755 vt_emit_notes ();
2757 if (dump_file)
2759 dump_dataflow_sets ();
2760 dump_flow_info (dump_file);
2763 vt_finalize ();