1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 #include "coretypes.h"
28 #include "hard-reg-set.h"
32 #include "insn-config.h"
38 #include "basic-block.h"
48 static int reload_cse_noop_set_p (rtx
);
49 static void reload_cse_simplify (rtx
, rtx
);
50 static void reload_cse_regs_1 (rtx
);
51 static int reload_cse_simplify_set (rtx
, rtx
);
52 static int reload_cse_simplify_operands (rtx
, rtx
);
54 static void reload_combine (void);
55 static void reload_combine_note_use (rtx
*, rtx
);
56 static void reload_combine_note_store (rtx
, rtx
, void *);
58 static void reload_cse_move2add (rtx
);
59 static void move2add_note_store (rtx
, rtx
, void *);
61 /* Call cse / combine like post-reload optimization phases.
62 FIRST is the first instruction. */
64 reload_cse_regs (rtx first ATTRIBUTE_UNUSED
)
66 reload_cse_regs_1 (first
);
68 reload_cse_move2add (first
);
69 if (flag_expensive_optimizations
)
70 reload_cse_regs_1 (first
);
73 /* See whether a single set SET is a noop. */
75 reload_cse_noop_set_p (rtx set
)
77 if (cselib_reg_set_mode (SET_DEST (set
)) != GET_MODE (SET_DEST (set
)))
80 return rtx_equal_for_cselib_p (SET_DEST (set
), SET_SRC (set
));
83 /* Try to simplify INSN. */
85 reload_cse_simplify (rtx insn
, rtx testreg
)
87 rtx body
= PATTERN (insn
);
89 if (GET_CODE (body
) == SET
)
93 /* Simplify even if we may think it is a no-op.
94 We may think a memory load of a value smaller than WORD_SIZE
95 is redundant because we haven't taken into account possible
96 implicit extension. reload_cse_simplify_set() will bring
97 this out, so it's safer to simplify before we delete. */
98 count
+= reload_cse_simplify_set (body
, insn
);
100 if (!count
&& reload_cse_noop_set_p (body
))
102 rtx value
= SET_DEST (body
);
104 && ! REG_FUNCTION_VALUE_P (value
))
106 delete_insn_and_edges (insn
);
111 apply_change_group ();
113 reload_cse_simplify_operands (insn
, testreg
);
115 else if (GET_CODE (body
) == PARALLEL
)
119 rtx value
= NULL_RTX
;
121 /* If every action in a PARALLEL is a noop, we can delete
122 the entire PARALLEL. */
123 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
125 rtx part
= XVECEXP (body
, 0, i
);
126 if (GET_CODE (part
) == SET
)
128 if (! reload_cse_noop_set_p (part
))
130 if (REG_P (SET_DEST (part
))
131 && REG_FUNCTION_VALUE_P (SET_DEST (part
)))
135 value
= SET_DEST (part
);
138 else if (GET_CODE (part
) != CLOBBER
)
144 delete_insn_and_edges (insn
);
145 /* We're done with this insn. */
149 /* It's not a no-op, but we can try to simplify it. */
150 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
151 if (GET_CODE (XVECEXP (body
, 0, i
)) == SET
)
152 count
+= reload_cse_simplify_set (XVECEXP (body
, 0, i
), insn
);
155 apply_change_group ();
157 reload_cse_simplify_operands (insn
, testreg
);
161 /* Do a very simple CSE pass over the hard registers.
163 This function detects no-op moves where we happened to assign two
164 different pseudo-registers to the same hard register, and then
165 copied one to the other. Reload will generate a useless
166 instruction copying a register to itself.
168 This function also detects cases where we load a value from memory
169 into two different registers, and (if memory is more expensive than
170 registers) changes it to simply copy the first register into the
173 Another optimization is performed that scans the operands of each
174 instruction to see whether the value is already available in a
175 hard register. It then replaces the operand with the hard register
176 if possible, much like an optional reload would. */
179 reload_cse_regs_1 (rtx first
)
182 rtx testreg
= gen_rtx_REG (VOIDmode
, -1);
185 init_alias_analysis ();
187 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
190 reload_cse_simplify (insn
, testreg
);
192 cselib_process_insn (insn
);
196 end_alias_analysis ();
200 /* Try to simplify a single SET instruction. SET is the set pattern.
201 INSN is the instruction it came from.
202 This function only handles one case: if we set a register to a value
203 which is not a register, we try to find that value in some other register
204 and change the set into a register copy. */
207 reload_cse_simplify_set (rtx set
, rtx insn
)
212 enum reg_class dclass
;
215 struct elt_loc_list
*l
;
216 #ifdef LOAD_EXTEND_OP
217 enum rtx_code extend_op
= UNKNOWN
;
220 dreg
= true_regnum (SET_DEST (set
));
225 if (side_effects_p (src
) || true_regnum (src
) >= 0)
228 dclass
= REGNO_REG_CLASS (dreg
);
230 #ifdef LOAD_EXTEND_OP
231 /* When replacing a memory with a register, we need to honor assumptions
232 that combine made wrt the contents of sign bits. We'll do this by
233 generating an extend instruction instead of a reg->reg copy. Thus
234 the destination must be a register that we can widen. */
236 && GET_MODE_BITSIZE (GET_MODE (src
)) < BITS_PER_WORD
237 && (extend_op
= LOAD_EXTEND_OP (GET_MODE (src
))) != UNKNOWN
238 && !REG_P (SET_DEST (set
)))
242 val
= cselib_lookup (src
, GET_MODE (SET_DEST (set
)), 0);
246 /* If memory loads are cheaper than register copies, don't change them. */
248 old_cost
= MEMORY_MOVE_COST (GET_MODE (src
), dclass
, 1);
249 else if (REG_P (src
))
250 old_cost
= REGISTER_MOVE_COST (GET_MODE (src
),
251 REGNO_REG_CLASS (REGNO (src
)), dclass
);
253 old_cost
= rtx_cost (src
, SET
);
255 for (l
= val
->locs
; l
; l
= l
->next
)
257 rtx this_rtx
= l
->loc
;
260 if (CONSTANT_P (this_rtx
) && ! references_value_p (this_rtx
, 0))
262 #ifdef LOAD_EXTEND_OP
263 if (extend_op
!= UNKNOWN
)
265 HOST_WIDE_INT this_val
;
267 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
268 constants, such as SYMBOL_REF, cannot be extended. */
269 if (GET_CODE (this_rtx
) != CONST_INT
)
272 this_val
= INTVAL (this_rtx
);
276 this_val
&= GET_MODE_MASK (GET_MODE (src
));
279 /* ??? In theory we're already extended. */
280 if (this_val
== trunc_int_for_mode (this_val
, GET_MODE (src
)))
285 this_rtx
= GEN_INT (this_val
);
288 this_cost
= rtx_cost (this_rtx
, SET
);
290 else if (REG_P (this_rtx
))
292 #ifdef LOAD_EXTEND_OP
293 if (extend_op
!= UNKNOWN
)
295 this_rtx
= gen_rtx_fmt_e (extend_op
, word_mode
, this_rtx
);
296 this_cost
= rtx_cost (this_rtx
, SET
);
300 this_cost
= REGISTER_MOVE_COST (GET_MODE (this_rtx
),
301 REGNO_REG_CLASS (REGNO (this_rtx
)),
307 /* If equal costs, prefer registers over anything else. That
308 tends to lead to smaller instructions on some machines. */
309 if (this_cost
< old_cost
310 || (this_cost
== old_cost
312 && !REG_P (SET_SRC (set
))))
314 #ifdef LOAD_EXTEND_OP
315 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set
))) < BITS_PER_WORD
316 && extend_op
!= UNKNOWN
317 #ifdef CANNOT_CHANGE_MODE_CLASS
318 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set
)),
320 REGNO_REG_CLASS (REGNO (SET_DEST (set
))))
324 rtx wide_dest
= gen_rtx_REG (word_mode
, REGNO (SET_DEST (set
)));
325 ORIGINAL_REGNO (wide_dest
) = ORIGINAL_REGNO (SET_DEST (set
));
326 validate_change (insn
, &SET_DEST (set
), wide_dest
, 1);
330 validate_change (insn
, &SET_SRC (set
), copy_rtx (this_rtx
), 1);
331 old_cost
= this_cost
, did_change
= 1;
338 /* Try to replace operands in INSN with equivalent values that are already
339 in registers. This can be viewed as optional reloading.
341 For each non-register operand in the insn, see if any hard regs are
342 known to be equivalent to that operand. Record the alternatives which
343 can accept these hard registers. Among all alternatives, select the
344 ones which are better or equal to the one currently matching, where
345 "better" is in terms of '?' and '!' constraints. Among the remaining
346 alternatives, select the one which replaces most operands with
350 reload_cse_simplify_operands (rtx insn
, rtx testreg
)
354 /* For each operand, all registers that are equivalent to it. */
355 HARD_REG_SET equiv_regs
[MAX_RECOG_OPERANDS
];
357 const char *constraints
[MAX_RECOG_OPERANDS
];
359 /* Vector recording how bad an alternative is. */
360 int *alternative_reject
;
361 /* Vector recording how many registers can be introduced by choosing
363 int *alternative_nregs
;
364 /* Array of vectors recording, for each operand and each alternative,
365 which hard register to substitute, or -1 if the operand should be
367 int *op_alt_regno
[MAX_RECOG_OPERANDS
];
368 /* Array of alternatives, sorted in order of decreasing desirability. */
369 int *alternative_order
;
373 if (recog_data
.n_alternatives
== 0 || recog_data
.n_operands
== 0)
376 /* Figure out which alternative currently matches. */
377 if (! constrain_operands (1))
378 fatal_insn_not_found (insn
);
380 alternative_reject
= alloca (recog_data
.n_alternatives
* sizeof (int));
381 alternative_nregs
= alloca (recog_data
.n_alternatives
* sizeof (int));
382 alternative_order
= alloca (recog_data
.n_alternatives
* sizeof (int));
383 memset (alternative_reject
, 0, recog_data
.n_alternatives
* sizeof (int));
384 memset (alternative_nregs
, 0, recog_data
.n_alternatives
* sizeof (int));
386 /* For each operand, find out which regs are equivalent. */
387 for (i
= 0; i
< recog_data
.n_operands
; i
++)
390 struct elt_loc_list
*l
;
392 enum machine_mode mode
;
394 CLEAR_HARD_REG_SET (equiv_regs
[i
]);
396 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
397 right, so avoid the problem here. Likewise if we have a constant
398 and the insn pattern doesn't tell us the mode we need. */
399 if (LABEL_P (recog_data
.operand
[i
])
400 || (CONSTANT_P (recog_data
.operand
[i
])
401 && recog_data
.operand_mode
[i
] == VOIDmode
))
404 op
= recog_data
.operand
[i
];
405 mode
= GET_MODE (op
);
406 #ifdef LOAD_EXTEND_OP
408 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
409 && LOAD_EXTEND_OP (mode
) != UNKNOWN
)
411 rtx set
= single_set (insn
);
413 /* We might have multiple sets, some of which do implicit
414 extension. Punt on this for now. */
417 /* If the destination is a also MEM or a STRICT_LOW_PART, no
419 Also, if there is an explicit extension, we don't have to
420 worry about an implicit one. */
421 else if (MEM_P (SET_DEST (set
))
422 || GET_CODE (SET_DEST (set
)) == STRICT_LOW_PART
423 || GET_CODE (SET_SRC (set
)) == ZERO_EXTEND
424 || GET_CODE (SET_SRC (set
)) == SIGN_EXTEND
)
425 ; /* Continue ordinary processing. */
426 #ifdef CANNOT_CHANGE_MODE_CLASS
427 /* If the register cannot change mode to word_mode, it follows that
428 it cannot have been used in word_mode. */
429 else if (REG_P (SET_DEST (set
))
430 && CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set
)),
432 REGNO_REG_CLASS (REGNO (SET_DEST (set
)))))
433 ; /* Continue ordinary processing. */
435 /* If this is a straight load, make the extension explicit. */
436 else if (REG_P (SET_DEST (set
))
437 && recog_data
.n_operands
== 2
438 && SET_SRC (set
) == op
439 && SET_DEST (set
) == recog_data
.operand
[1-i
])
441 validate_change (insn
, recog_data
.operand_loc
[i
],
442 gen_rtx_fmt_e (LOAD_EXTEND_OP (mode
),
445 validate_change (insn
, recog_data
.operand_loc
[1-i
],
446 gen_rtx_REG (word_mode
, REGNO (SET_DEST (set
))),
448 if (! apply_change_group ())
450 return reload_cse_simplify_operands (insn
, testreg
);
453 /* ??? There might be arithmetic operations with memory that are
454 safe to optimize, but is it worth the trouble? */
457 #endif /* LOAD_EXTEND_OP */
458 v
= cselib_lookup (op
, recog_data
.operand_mode
[i
], 0);
462 for (l
= v
->locs
; l
; l
= l
->next
)
464 SET_HARD_REG_BIT (equiv_regs
[i
], REGNO (l
->loc
));
467 for (i
= 0; i
< recog_data
.n_operands
; i
++)
469 enum machine_mode mode
;
473 op_alt_regno
[i
] = alloca (recog_data
.n_alternatives
* sizeof (int));
474 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
475 op_alt_regno
[i
][j
] = -1;
477 p
= constraints
[i
] = recog_data
.constraints
[i
];
478 mode
= recog_data
.operand_mode
[i
];
480 /* Add the reject values for each alternative given by the constraints
489 alternative_reject
[j
] += 3;
491 alternative_reject
[j
] += 300;
494 /* We won't change operands which are already registers. We
495 also don't want to modify output operands. */
496 regno
= true_regnum (recog_data
.operand
[i
]);
498 || constraints
[i
][0] == '='
499 || constraints
[i
][0] == '+')
502 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
504 int class = (int) NO_REGS
;
506 if (! TEST_HARD_REG_BIT (equiv_regs
[i
], regno
))
509 REGNO (testreg
) = regno
;
510 PUT_MODE (testreg
, mode
);
512 /* We found a register equal to this operand. Now look for all
513 alternatives that can accept this register and have not been
514 assigned a register they can use yet. */
523 case '=': case '+': case '?':
524 case '#': case '&': case '!':
526 case '0': case '1': case '2': case '3': case '4':
527 case '5': case '6': case '7': case '8': case '9':
528 case 'm': case '<': case '>': case 'V': case 'o':
529 case 'E': case 'F': case 'G': case 'H':
530 case 's': case 'i': case 'n':
531 case 'I': case 'J': case 'K': case 'L':
532 case 'M': case 'N': case 'O': case 'P':
534 /* These don't say anything we care about. */
538 class = reg_class_subunion
[(int) class][(int) GENERAL_REGS
];
543 = (reg_class_subunion
545 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c
, p
)]);
549 /* See if REGNO fits this alternative, and set it up as the
550 replacement register if we don't have one for this
551 alternative yet and the operand being replaced is not
552 a cheap CONST_INT. */
553 if (op_alt_regno
[i
][j
] == -1
554 && reg_fits_class_p (testreg
, class, 0, mode
)
555 && (GET_CODE (recog_data
.operand
[i
]) != CONST_INT
556 || (rtx_cost (recog_data
.operand
[i
], SET
)
557 > rtx_cost (testreg
, SET
))))
559 alternative_nregs
[j
]++;
560 op_alt_regno
[i
][j
] = regno
;
565 p
+= CONSTRAINT_LEN (c
, p
);
573 /* Record all alternatives which are better or equal to the currently
574 matching one in the alternative_order array. */
575 for (i
= j
= 0; i
< recog_data
.n_alternatives
; i
++)
576 if (alternative_reject
[i
] <= alternative_reject
[which_alternative
])
577 alternative_order
[j
++] = i
;
578 recog_data
.n_alternatives
= j
;
580 /* Sort it. Given a small number of alternatives, a dumb algorithm
581 won't hurt too much. */
582 for (i
= 0; i
< recog_data
.n_alternatives
- 1; i
++)
585 int best_reject
= alternative_reject
[alternative_order
[i
]];
586 int best_nregs
= alternative_nregs
[alternative_order
[i
]];
589 for (j
= i
+ 1; j
< recog_data
.n_alternatives
; j
++)
591 int this_reject
= alternative_reject
[alternative_order
[j
]];
592 int this_nregs
= alternative_nregs
[alternative_order
[j
]];
594 if (this_reject
< best_reject
595 || (this_reject
== best_reject
&& this_nregs
< best_nregs
))
598 best_reject
= this_reject
;
599 best_nregs
= this_nregs
;
603 tmp
= alternative_order
[best
];
604 alternative_order
[best
] = alternative_order
[i
];
605 alternative_order
[i
] = tmp
;
608 /* Substitute the operands as determined by op_alt_regno for the best
610 j
= alternative_order
[0];
612 for (i
= 0; i
< recog_data
.n_operands
; i
++)
614 enum machine_mode mode
= recog_data
.operand_mode
[i
];
615 if (op_alt_regno
[i
][j
] == -1)
618 validate_change (insn
, recog_data
.operand_loc
[i
],
619 gen_rtx_REG (mode
, op_alt_regno
[i
][j
]), 1);
622 for (i
= recog_data
.n_dups
- 1; i
>= 0; i
--)
624 int op
= recog_data
.dup_num
[i
];
625 enum machine_mode mode
= recog_data
.operand_mode
[op
];
627 if (op_alt_regno
[op
][j
] == -1)
630 validate_change (insn
, recog_data
.dup_loc
[i
],
631 gen_rtx_REG (mode
, op_alt_regno
[op
][j
]), 1);
634 return apply_change_group ();
637 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
639 This code might also be useful when reload gave up on reg+reg addressing
640 because of clashes between the return register and INDEX_REG_CLASS. */
642 /* The maximum number of uses of a register we can keep track of to
643 replace them with reg+reg addressing. */
644 #define RELOAD_COMBINE_MAX_USES 6
646 /* INSN is the insn where a register has ben used, and USEP points to the
647 location of the register within the rtl. */
648 struct reg_use
{ rtx insn
, *usep
; };
650 /* If the register is used in some unknown fashion, USE_INDEX is negative.
651 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
652 indicates where it becomes live again.
653 Otherwise, USE_INDEX is the index of the last encountered use of the
654 register (which is first among these we have seen since we scan backwards),
655 OFFSET contains the constant offset that is added to the register in
656 all encountered uses, and USE_RUID indicates the first encountered, i.e.
658 STORE_RUID is always meaningful if we only want to use a value in a
659 register in a different place: it denotes the next insn in the insn
660 stream (i.e. the last encountered) that sets or clobbers the register. */
663 struct reg_use reg_use
[RELOAD_COMBINE_MAX_USES
];
668 } reg_state
[FIRST_PSEUDO_REGISTER
];
670 /* Reverse linear uid. This is increased in reload_combine while scanning
671 the instructions from last to first. It is used to set last_label_ruid
672 and the store_ruid / use_ruid fields in reg_state. */
673 static int reload_combine_ruid
;
675 #define LABEL_LIVE(LABEL) \
676 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
679 reload_combine (void)
682 int first_index_reg
= -1;
683 int last_index_reg
= 0;
688 int min_labelno
, n_labels
;
689 HARD_REG_SET ever_live_at_start
, *label_live
;
691 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
692 reload has already used it where appropriate, so there is no use in
693 trying to generate it now. */
694 if (double_reg_address_ok
&& INDEX_REG_CLASS
!= NO_REGS
)
697 /* To avoid wasting too much time later searching for an index register,
698 determine the minimum and maximum index register numbers. */
699 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
700 if (TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
], r
))
702 if (first_index_reg
== -1)
708 /* If no index register is available, we can quit now. */
709 if (first_index_reg
== -1)
712 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
713 information is a bit fuzzy immediately after reload, but it's
714 still good enough to determine which registers are live at a jump
716 min_labelno
= get_first_label_num ();
717 n_labels
= max_label_num () - min_labelno
;
718 label_live
= xmalloc (n_labels
* sizeof (HARD_REG_SET
));
719 CLEAR_HARD_REG_SET (ever_live_at_start
);
721 FOR_EACH_BB_REVERSE (bb
)
728 REG_SET_TO_HARD_REG_SET (live
,
729 bb
->global_live_at_start
);
730 compute_use_by_pseudos (&live
,
731 bb
->global_live_at_start
);
732 COPY_HARD_REG_SET (LABEL_LIVE (insn
), live
);
733 IOR_HARD_REG_SET (ever_live_at_start
, live
);
737 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
738 last_label_ruid
= reload_combine_ruid
= 0;
739 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
741 reg_state
[r
].store_ruid
= reload_combine_ruid
;
743 reg_state
[r
].use_index
= -1;
745 reg_state
[r
].use_index
= RELOAD_COMBINE_MAX_USES
;
748 for (insn
= get_last_insn (); insn
; insn
= PREV_INSN (insn
))
752 /* We cannot do our optimization across labels. Invalidating all the use
753 information we have would be costly, so we just note where the label
754 is and then later disable any optimization that would cross it. */
756 last_label_ruid
= reload_combine_ruid
;
757 else if (BARRIER_P (insn
))
758 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
760 reg_state
[r
].use_index
= RELOAD_COMBINE_MAX_USES
;
765 reload_combine_ruid
++;
767 /* Look for (set (REGX) (CONST_INT))
768 (set (REGX) (PLUS (REGX) (REGY)))
772 (set (REGZ) (CONST_INT))
774 ... (MEM (PLUS (REGZ) (REGY)))... .
776 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
777 and that we know all uses of REGX before it dies.
778 Also, explicitly check that REGX != REGY; our life information
779 does not yet show whether REGY changes in this insn. */
780 set
= single_set (insn
);
782 && REG_P (SET_DEST (set
))
783 && (hard_regno_nregs
[REGNO (SET_DEST (set
))]
784 [GET_MODE (SET_DEST (set
))]
786 && GET_CODE (SET_SRC (set
)) == PLUS
787 && REG_P (XEXP (SET_SRC (set
), 1))
788 && rtx_equal_p (XEXP (SET_SRC (set
), 0), SET_DEST (set
))
789 && !rtx_equal_p (XEXP (SET_SRC (set
), 1), SET_DEST (set
))
790 && last_label_ruid
< reg_state
[REGNO (SET_DEST (set
))].use_ruid
)
792 rtx reg
= SET_DEST (set
);
793 rtx plus
= SET_SRC (set
);
794 rtx base
= XEXP (plus
, 1);
795 rtx prev
= prev_nonnote_insn (insn
);
796 rtx prev_set
= prev
? single_set (prev
) : NULL_RTX
;
797 unsigned int regno
= REGNO (reg
);
798 rtx const_reg
= NULL_RTX
;
799 rtx reg_sum
= NULL_RTX
;
801 /* Now, we need an index register.
802 We'll set index_reg to this index register, const_reg to the
803 register that is to be loaded with the constant
804 (denoted as REGZ in the substitution illustration above),
805 and reg_sum to the register-register that we want to use to
806 substitute uses of REG (typically in MEMs) with.
807 First check REG and BASE for being index registers;
808 we can use them even if they are not dead. */
809 if (TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
], regno
)
810 || TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
],
818 /* Otherwise, look for a free index register. Since we have
819 checked above that neither REG nor BASE are index registers,
820 if we find anything at all, it will be different from these
822 for (i
= first_index_reg
; i
<= last_index_reg
; i
++)
824 if (TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
],
826 && reg_state
[i
].use_index
== RELOAD_COMBINE_MAX_USES
827 && reg_state
[i
].store_ruid
<= reg_state
[regno
].use_ruid
828 && hard_regno_nregs
[i
][GET_MODE (reg
)] == 1)
830 rtx index_reg
= gen_rtx_REG (GET_MODE (reg
), i
);
832 const_reg
= index_reg
;
833 reg_sum
= gen_rtx_PLUS (GET_MODE (reg
), index_reg
, base
);
839 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
840 (REGY), i.e. BASE, is not clobbered before the last use we'll
843 && GET_CODE (SET_SRC (prev_set
)) == CONST_INT
844 && rtx_equal_p (SET_DEST (prev_set
), reg
)
845 && reg_state
[regno
].use_index
>= 0
846 && (reg_state
[REGNO (base
)].store_ruid
847 <= reg_state
[regno
].use_ruid
)
852 /* Change destination register and, if necessary, the
853 constant value in PREV, the constant loading instruction. */
854 validate_change (prev
, &SET_DEST (prev_set
), const_reg
, 1);
855 if (reg_state
[regno
].offset
!= const0_rtx
)
856 validate_change (prev
,
858 GEN_INT (INTVAL (SET_SRC (prev_set
))
859 + INTVAL (reg_state
[regno
].offset
)),
862 /* Now for every use of REG that we have recorded, replace REG
864 for (i
= reg_state
[regno
].use_index
;
865 i
< RELOAD_COMBINE_MAX_USES
; i
++)
866 validate_change (reg_state
[regno
].reg_use
[i
].insn
,
867 reg_state
[regno
].reg_use
[i
].usep
,
868 /* Each change must have its own
870 copy_rtx (reg_sum
), 1);
872 if (apply_change_group ())
876 /* Delete the reg-reg addition. */
879 if (reg_state
[regno
].offset
!= const0_rtx
)
880 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
882 for (np
= ®_NOTES (prev
); *np
;)
884 if (REG_NOTE_KIND (*np
) == REG_EQUAL
885 || REG_NOTE_KIND (*np
) == REG_EQUIV
)
891 reg_state
[regno
].use_index
= RELOAD_COMBINE_MAX_USES
;
892 reg_state
[REGNO (const_reg
)].store_ruid
893 = reload_combine_ruid
;
899 note_stores (PATTERN (insn
), reload_combine_note_store
, NULL
);
905 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
906 if (call_used_regs
[r
])
908 reg_state
[r
].use_index
= RELOAD_COMBINE_MAX_USES
;
909 reg_state
[r
].store_ruid
= reload_combine_ruid
;
912 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
;
913 link
= XEXP (link
, 1))
915 rtx usage_rtx
= XEXP (XEXP (link
, 0), 0);
916 if (REG_P (usage_rtx
))
919 unsigned int start_reg
= REGNO (usage_rtx
);
920 unsigned int num_regs
=
921 hard_regno_nregs
[start_reg
][GET_MODE (usage_rtx
)];
922 unsigned int end_reg
= start_reg
+ num_regs
- 1;
923 for (i
= start_reg
; i
<= end_reg
; i
++)
924 if (GET_CODE (XEXP (link
, 0)) == CLOBBER
)
926 reg_state
[i
].use_index
= RELOAD_COMBINE_MAX_USES
;
927 reg_state
[i
].store_ruid
= reload_combine_ruid
;
930 reg_state
[i
].use_index
= -1;
935 else if (JUMP_P (insn
)
936 && GET_CODE (PATTERN (insn
)) != RETURN
)
938 /* Non-spill registers might be used at the call destination in
939 some unknown fashion, so we have to mark the unknown use. */
942 if ((condjump_p (insn
) || condjump_in_parallel_p (insn
))
943 && JUMP_LABEL (insn
))
944 live
= &LABEL_LIVE (JUMP_LABEL (insn
));
946 live
= &ever_live_at_start
;
948 for (i
= FIRST_PSEUDO_REGISTER
- 1; i
>= 0; --i
)
949 if (TEST_HARD_REG_BIT (*live
, i
))
950 reg_state
[i
].use_index
= -1;
953 reload_combine_note_use (&PATTERN (insn
), insn
);
954 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
956 if (REG_NOTE_KIND (note
) == REG_INC
957 && REG_P (XEXP (note
, 0)))
959 int regno
= REGNO (XEXP (note
, 0));
961 reg_state
[regno
].store_ruid
= reload_combine_ruid
;
962 reg_state
[regno
].use_index
= -1;
970 /* Check if DST is a register or a subreg of a register; if it is,
971 update reg_state[regno].store_ruid and reg_state[regno].use_index
972 accordingly. Called via note_stores from reload_combine. */
975 reload_combine_note_store (rtx dst
, rtx set
, void *data ATTRIBUTE_UNUSED
)
979 enum machine_mode mode
= GET_MODE (dst
);
981 if (GET_CODE (dst
) == SUBREG
)
983 regno
= subreg_regno_offset (REGNO (SUBREG_REG (dst
)),
984 GET_MODE (SUBREG_REG (dst
)),
987 dst
= SUBREG_REG (dst
);
991 regno
+= REGNO (dst
);
993 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
994 careful with registers / register parts that are not full words.
996 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
997 if (GET_CODE (set
) != SET
998 || GET_CODE (SET_DEST (set
)) == ZERO_EXTRACT
999 || GET_CODE (SET_DEST (set
)) == SIGN_EXTRACT
1000 || GET_CODE (SET_DEST (set
)) == STRICT_LOW_PART
)
1002 for (i
= hard_regno_nregs
[regno
][mode
] - 1 + regno
; i
>= regno
; i
--)
1004 reg_state
[i
].use_index
= -1;
1005 reg_state
[i
].store_ruid
= reload_combine_ruid
;
1010 for (i
= hard_regno_nregs
[regno
][mode
] - 1 + regno
; i
>= regno
; i
--)
1012 reg_state
[i
].store_ruid
= reload_combine_ruid
;
1013 reg_state
[i
].use_index
= RELOAD_COMBINE_MAX_USES
;
1018 /* XP points to a piece of rtl that has to be checked for any uses of
1020 *XP is the pattern of INSN, or a part of it.
1021 Called from reload_combine, and recursively by itself. */
1023 reload_combine_note_use (rtx
*xp
, rtx insn
)
1026 enum rtx_code code
= x
->code
;
1029 rtx offset
= const0_rtx
; /* For the REG case below. */
1034 if (REG_P (SET_DEST (x
)))
1036 reload_combine_note_use (&SET_SRC (x
), insn
);
1042 /* If this is the USE of a return value, we can't change it. */
1043 if (REG_P (XEXP (x
, 0)) && REG_FUNCTION_VALUE_P (XEXP (x
, 0)))
1045 /* Mark the return register as used in an unknown fashion. */
1046 rtx reg
= XEXP (x
, 0);
1047 int regno
= REGNO (reg
);
1048 int nregs
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
1050 while (--nregs
>= 0)
1051 reg_state
[regno
+ nregs
].use_index
= -1;
1057 if (REG_P (SET_DEST (x
)))
1059 /* No spurious CLOBBERs of pseudo registers may remain. */
1060 if (REGNO (SET_DEST (x
)) >= FIRST_PSEUDO_REGISTER
)
1067 /* We are interested in (plus (reg) (const_int)) . */
1068 if (!REG_P (XEXP (x
, 0))
1069 || GET_CODE (XEXP (x
, 1)) != CONST_INT
)
1071 offset
= XEXP (x
, 1);
1076 int regno
= REGNO (x
);
1080 /* No spurious USEs of pseudo registers may remain. */
1081 if (regno
>= FIRST_PSEUDO_REGISTER
)
1084 nregs
= hard_regno_nregs
[regno
][GET_MODE (x
)];
1086 /* We can't substitute into multi-hard-reg uses. */
1089 while (--nregs
>= 0)
1090 reg_state
[regno
+ nregs
].use_index
= -1;
1094 /* If this register is already used in some unknown fashion, we
1096 If we decrement the index from zero to -1, we can't store more
1097 uses, so this register becomes used in an unknown fashion. */
1098 use_index
= --reg_state
[regno
].use_index
;
1102 if (use_index
!= RELOAD_COMBINE_MAX_USES
- 1)
1104 /* We have found another use for a register that is already
1105 used later. Check if the offsets match; if not, mark the
1106 register as used in an unknown fashion. */
1107 if (! rtx_equal_p (offset
, reg_state
[regno
].offset
))
1109 reg_state
[regno
].use_index
= -1;
1115 /* This is the first use of this register we have seen since we
1116 marked it as dead. */
1117 reg_state
[regno
].offset
= offset
;
1118 reg_state
[regno
].use_ruid
= reload_combine_ruid
;
1120 reg_state
[regno
].reg_use
[use_index
].insn
= insn
;
1121 reg_state
[regno
].reg_use
[use_index
].usep
= xp
;
1129 /* Recursively process the components of X. */
1130 fmt
= GET_RTX_FORMAT (code
);
1131 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1134 reload_combine_note_use (&XEXP (x
, i
), insn
);
1135 else if (fmt
[i
] == 'E')
1137 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1138 reload_combine_note_use (&XVECEXP (x
, i
, j
), insn
);
1143 /* See if we can reduce the cost of a constant by replacing a move
1144 with an add. We track situations in which a register is set to a
1145 constant or to a register plus a constant. */
1146 /* We cannot do our optimization across labels. Invalidating all the
1147 information about register contents we have would be costly, so we
1148 use move2add_last_label_luid to note where the label is and then
1149 later disable any optimization that would cross it.
1150 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
1151 reg_set_luid[n] is greater than move2add_last_label_luid. */
1152 static int reg_set_luid
[FIRST_PSEUDO_REGISTER
];
1154 /* If reg_base_reg[n] is negative, register n has been set to
1155 reg_offset[n] in mode reg_mode[n] .
1156 If reg_base_reg[n] is non-negative, register n has been set to the
1157 sum of reg_offset[n] and the value of register reg_base_reg[n]
1158 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1159 static HOST_WIDE_INT reg_offset
[FIRST_PSEUDO_REGISTER
];
1160 static int reg_base_reg
[FIRST_PSEUDO_REGISTER
];
1161 static enum machine_mode reg_mode
[FIRST_PSEUDO_REGISTER
];
1163 /* move2add_luid is linearly increased while scanning the instructions
1164 from first to last. It is used to set reg_set_luid in
1165 reload_cse_move2add and move2add_note_store. */
1166 static int move2add_luid
;
1168 /* move2add_last_label_luid is set whenever a label is found. Labels
1169 invalidate all previously collected reg_offset data. */
1170 static int move2add_last_label_luid
;
1172 /* ??? We don't know how zero / sign extension is handled, hence we
1173 can't go from a narrower to a wider mode. */
1174 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1175 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1176 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1177 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
1178 GET_MODE_BITSIZE (INMODE))))
1181 reload_cse_move2add (rtx first
)
1186 for (i
= FIRST_PSEUDO_REGISTER
- 1; i
>= 0; i
--)
1187 reg_set_luid
[i
] = 0;
1189 move2add_last_label_luid
= 0;
1191 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
), move2add_luid
++)
1197 move2add_last_label_luid
= move2add_luid
;
1198 /* We're going to increment move2add_luid twice after a
1199 label, so that we can use move2add_last_label_luid + 1 as
1200 the luid for constants. */
1204 if (! INSN_P (insn
))
1206 pat
= PATTERN (insn
);
1207 /* For simplicity, we only perform this optimization on
1208 straightforward SETs. */
1209 if (GET_CODE (pat
) == SET
1210 && REG_P (SET_DEST (pat
)))
1212 rtx reg
= SET_DEST (pat
);
1213 int regno
= REGNO (reg
);
1214 rtx src
= SET_SRC (pat
);
1216 /* Check if we have valid information on the contents of this
1217 register in the mode of REG. */
1218 if (reg_set_luid
[regno
] > move2add_last_label_luid
1219 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg
), reg_mode
[regno
]))
1221 /* Try to transform (set (REGX) (CONST_INT A))
1223 (set (REGX) (CONST_INT B))
1225 (set (REGX) (CONST_INT A))
1227 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1229 (set (REGX) (CONST_INT A))
1231 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1234 if (GET_CODE (src
) == CONST_INT
&& reg_base_reg
[regno
] < 0)
1237 GEN_INT (trunc_int_for_mode (INTVAL (src
)
1238 - reg_offset
[regno
],
1240 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1241 use (set (reg) (reg)) instead.
1242 We don't delete this insn, nor do we convert it into a
1243 note, to avoid losing register notes or the return
1244 value flag. jump2 already knows how to get rid of
1246 if (new_src
== const0_rtx
)
1248 /* If the constants are different, this is a
1249 truncation, that, if turned into (set (reg)
1250 (reg)), would be discarded. Maybe we should
1251 try a truncMN pattern? */
1252 if (INTVAL (src
) == reg_offset
[regno
])
1253 validate_change (insn
, &SET_SRC (pat
), reg
, 0);
1255 else if (rtx_cost (new_src
, PLUS
) < rtx_cost (src
, SET
)
1256 && have_add2_insn (reg
, new_src
))
1258 rtx tem
= gen_rtx_PLUS (GET_MODE (reg
), reg
, new_src
);
1259 validate_change (insn
, &SET_SRC (pat
), tem
, 0);
1263 enum machine_mode narrow_mode
;
1264 for (narrow_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1265 narrow_mode
!= GET_MODE (reg
);
1266 narrow_mode
= GET_MODE_WIDER_MODE (narrow_mode
))
1268 if (have_insn_for (STRICT_LOW_PART
, narrow_mode
)
1269 && ((reg_offset
[regno
]
1270 & ~GET_MODE_MASK (narrow_mode
))
1272 & ~GET_MODE_MASK (narrow_mode
))))
1274 rtx narrow_reg
= gen_rtx_REG (narrow_mode
,
1277 GEN_INT (trunc_int_for_mode (INTVAL (src
),
1280 gen_rtx_SET (VOIDmode
,
1281 gen_rtx_STRICT_LOW_PART (VOIDmode
,
1284 if (validate_change (insn
, &PATTERN (insn
),
1290 reg_set_luid
[regno
] = move2add_luid
;
1291 reg_mode
[regno
] = GET_MODE (reg
);
1292 reg_offset
[regno
] = INTVAL (src
);
1296 /* Try to transform (set (REGX) (REGY))
1297 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1300 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1303 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1305 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1306 else if (REG_P (src
)
1307 && reg_set_luid
[regno
] == reg_set_luid
[REGNO (src
)]
1308 && reg_base_reg
[regno
] == reg_base_reg
[REGNO (src
)]
1309 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg
),
1310 reg_mode
[REGNO (src
)]))
1312 rtx next
= next_nonnote_insn (insn
);
1315 set
= single_set (next
);
1317 && SET_DEST (set
) == reg
1318 && GET_CODE (SET_SRC (set
)) == PLUS
1319 && XEXP (SET_SRC (set
), 0) == reg
1320 && GET_CODE (XEXP (SET_SRC (set
), 1)) == CONST_INT
)
1322 rtx src3
= XEXP (SET_SRC (set
), 1);
1323 HOST_WIDE_INT added_offset
= INTVAL (src3
);
1324 HOST_WIDE_INT base_offset
= reg_offset
[REGNO (src
)];
1325 HOST_WIDE_INT regno_offset
= reg_offset
[regno
];
1327 GEN_INT (trunc_int_for_mode (added_offset
1333 if (new_src
== const0_rtx
)
1334 /* See above why we create (set (reg) (reg)) here. */
1336 = validate_change (next
, &SET_SRC (set
), reg
, 0);
1337 else if ((rtx_cost (new_src
, PLUS
)
1338 < COSTS_N_INSNS (1) + rtx_cost (src3
, SET
))
1339 && have_add2_insn (reg
, new_src
))
1341 rtx newpat
= gen_rtx_SET (VOIDmode
,
1343 gen_rtx_PLUS (GET_MODE (reg
),
1347 = validate_change (next
, &PATTERN (next
),
1353 reg_mode
[regno
] = GET_MODE (reg
);
1355 trunc_int_for_mode (added_offset
+ base_offset
,
1363 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1365 if (REG_NOTE_KIND (note
) == REG_INC
1366 && REG_P (XEXP (note
, 0)))
1368 /* Reset the information about this register. */
1369 int regno
= REGNO (XEXP (note
, 0));
1370 if (regno
< FIRST_PSEUDO_REGISTER
)
1371 reg_set_luid
[regno
] = 0;
1374 note_stores (PATTERN (insn
), move2add_note_store
, NULL
);
1376 /* If INSN is a conditional branch, we try to extract an
1377 implicit set out of it. */
1378 if (any_condjump_p (insn
))
1380 rtx cnd
= fis_get_condition (insn
);
1383 && GET_CODE (cnd
) == NE
1384 && REG_P (XEXP (cnd
, 0))
1385 && !reg_set_p (XEXP (cnd
, 0), insn
)
1386 /* The following two checks, which are also in
1387 move2add_note_store, are intended to reduce the
1388 number of calls to gen_rtx_SET to avoid memory
1389 allocation if possible. */
1390 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd
, 0)))
1391 && hard_regno_nregs
[REGNO (XEXP (cnd
, 0))][GET_MODE (XEXP (cnd
, 0))] == 1
1392 && GET_CODE (XEXP (cnd
, 1)) == CONST_INT
)
1395 gen_rtx_SET (VOIDmode
, XEXP (cnd
, 0), XEXP (cnd
, 1));
1396 move2add_note_store (SET_DEST (implicit_set
), implicit_set
, 0);
1400 /* If this is a CALL_INSN, all call used registers are stored with
1404 for (i
= FIRST_PSEUDO_REGISTER
- 1; i
>= 0; i
--)
1406 if (call_used_regs
[i
])
1407 /* Reset the information about this register. */
1408 reg_set_luid
[i
] = 0;
1414 /* SET is a SET or CLOBBER that sets DST.
1415 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
1416 Called from reload_cse_move2add via note_stores. */
1419 move2add_note_store (rtx dst
, rtx set
, void *data ATTRIBUTE_UNUSED
)
1421 unsigned int regno
= 0;
1423 enum machine_mode mode
= GET_MODE (dst
);
1425 if (GET_CODE (dst
) == SUBREG
)
1427 regno
= subreg_regno_offset (REGNO (SUBREG_REG (dst
)),
1428 GET_MODE (SUBREG_REG (dst
)),
1431 dst
= SUBREG_REG (dst
);
1434 /* Some targets do argument pushes without adding REG_INC notes. */
1438 dst
= XEXP (dst
, 0);
1439 if (GET_CODE (dst
) == PRE_INC
|| GET_CODE (dst
) == POST_INC
1440 || GET_CODE (dst
) == PRE_DEC
|| GET_CODE (dst
) == POST_DEC
)
1441 reg_set_luid
[REGNO (XEXP (dst
, 0))] = 0;
1447 regno
+= REGNO (dst
);
1449 if (SCALAR_INT_MODE_P (mode
)
1450 && hard_regno_nregs
[regno
][mode
] == 1 && GET_CODE (set
) == SET
1451 && GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
1452 && GET_CODE (SET_DEST (set
)) != SIGN_EXTRACT
1453 && GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
)
1455 rtx src
= SET_SRC (set
);
1457 HOST_WIDE_INT offset
;
1459 /* This may be different from mode, if SET_DEST (set) is a
1461 enum machine_mode dst_mode
= GET_MODE (dst
);
1463 switch (GET_CODE (src
))
1466 if (REG_P (XEXP (src
, 0)))
1468 base_reg
= XEXP (src
, 0);
1470 if (GET_CODE (XEXP (src
, 1)) == CONST_INT
)
1471 offset
= INTVAL (XEXP (src
, 1));
1472 else if (REG_P (XEXP (src
, 1))
1473 && (reg_set_luid
[REGNO (XEXP (src
, 1))]
1474 > move2add_last_label_luid
)
1475 && (MODES_OK_FOR_MOVE2ADD
1476 (dst_mode
, reg_mode
[REGNO (XEXP (src
, 1))])))
1478 if (reg_base_reg
[REGNO (XEXP (src
, 1))] < 0)
1479 offset
= reg_offset
[REGNO (XEXP (src
, 1))];
1480 /* Maybe the first register is known to be a
1482 else if (reg_set_luid
[REGNO (base_reg
)]
1483 > move2add_last_label_luid
1484 && (MODES_OK_FOR_MOVE2ADD
1485 (dst_mode
, reg_mode
[REGNO (XEXP (src
, 1))]))
1486 && reg_base_reg
[REGNO (base_reg
)] < 0)
1488 offset
= reg_offset
[REGNO (base_reg
)];
1489 base_reg
= XEXP (src
, 1);
1508 /* Start tracking the register as a constant. */
1509 reg_base_reg
[regno
] = -1;
1510 reg_offset
[regno
] = INTVAL (SET_SRC (set
));
1511 /* We assign the same luid to all registers set to constants. */
1512 reg_set_luid
[regno
] = move2add_last_label_luid
+ 1;
1513 reg_mode
[regno
] = mode
;
1518 /* Invalidate the contents of the register. */
1519 reg_set_luid
[regno
] = 0;
1523 base_regno
= REGNO (base_reg
);
1524 /* If information about the base register is not valid, set it
1525 up as a new base register, pretending its value is known
1526 starting from the current insn. */
1527 if (reg_set_luid
[base_regno
] <= move2add_last_label_luid
)
1529 reg_base_reg
[base_regno
] = base_regno
;
1530 reg_offset
[base_regno
] = 0;
1531 reg_set_luid
[base_regno
] = move2add_luid
;
1532 reg_mode
[base_regno
] = mode
;
1534 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode
,
1535 reg_mode
[base_regno
]))
1538 reg_mode
[regno
] = mode
;
1540 /* Copy base information from our base register. */
1541 reg_set_luid
[regno
] = reg_set_luid
[base_regno
];
1542 reg_base_reg
[regno
] = reg_base_reg
[base_regno
];
1544 /* Compute the sum of the offsets or constants. */
1545 reg_offset
[regno
] = trunc_int_for_mode (offset
1546 + reg_offset
[base_regno
],
1551 unsigned int endregno
= regno
+ hard_regno_nregs
[regno
][mode
];
1553 for (i
= regno
; i
< endregno
; i
++)
1554 /* Reset the information about this register. */
1555 reg_set_luid
[i
] = 0;