* config/mips/mips.md (length): Don't use mips_fetch_insns for indexed
[official-gcc.git] / gcc / global.c
blobab508444de45aba6acc595d26a9910f6e3f33851
1 /* Allocate registers for pseudo-registers that span basic blocks.
2 Copyright (C) 1987, 1988, 1991, 1994, 1996, 1997, 1998,
3 1999, 2000, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
28 #include "machmode.h"
29 #include "hard-reg-set.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "basic-block.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "insn-config.h"
37 #include "recog.h"
38 #include "reload.h"
39 #include "output.h"
40 #include "toplev.h"
42 /* This pass of the compiler performs global register allocation.
43 It assigns hard register numbers to all the pseudo registers
44 that were not handled in local_alloc. Assignments are recorded
45 in the vector reg_renumber, not by changing the rtl code.
46 (Such changes are made by final). The entry point is
47 the function global_alloc.
49 After allocation is complete, the reload pass is run as a subroutine
50 of this pass, so that when a pseudo reg loses its hard reg due to
51 spilling it is possible to make a second attempt to find a hard
52 reg for it. The reload pass is independent in other respects
53 and it is run even when stupid register allocation is in use.
55 1. Assign allocation-numbers (allocnos) to the pseudo-registers
56 still needing allocations and to the pseudo-registers currently
57 allocated by local-alloc which may be spilled by reload.
58 Set up tables reg_allocno and allocno_reg to map
59 reg numbers to allocnos and vice versa.
60 max_allocno gets the number of allocnos in use.
62 2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it.
63 Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix
64 for conflicts between allocnos and explicit hard register use
65 (which includes use of pseudo-registers allocated by local_alloc).
67 3. For each basic block
68 walk forward through the block, recording which
69 pseudo-registers and which hardware registers are live.
70 Build the conflict matrix between the pseudo-registers
71 and another of pseudo-registers versus hardware registers.
72 Also record the preferred hardware registers
73 for each pseudo-register.
75 4. Sort a table of the allocnos into order of
76 desirability of the variables.
78 5. Allocate the variables in that order; each if possible into
79 a preferred register, else into another register. */
81 /* Number of pseudo-registers which are candidates for allocation. */
83 static int max_allocno;
85 /* Indexed by (pseudo) reg number, gives the allocno, or -1
86 for pseudo registers which are not to be allocated. */
88 static int *reg_allocno;
90 struct allocno
92 int reg;
93 /* Gives the number of consecutive hard registers needed by that
94 pseudo reg. */
95 int size;
97 /* Number of calls crossed by each allocno. */
98 int calls_crossed;
100 /* Number of refs to each allocno. */
101 int n_refs;
103 /* Frequency of uses of each allocno. */
104 int freq;
106 /* Guess at live length of each allocno.
107 This is actually the max of the live lengths of the regs. */
108 int live_length;
110 /* Set of hard regs conflicting with allocno N. */
112 HARD_REG_SET hard_reg_conflicts;
114 /* Set of hard regs preferred by allocno N.
115 This is used to make allocnos go into regs that are copied to or from them,
116 when possible, to reduce register shuffling. */
118 HARD_REG_SET hard_reg_preferences;
120 /* Similar, but just counts register preferences made in simple copy
121 operations, rather than arithmetic. These are given priority because
122 we can always eliminate an insn by using these, but using a register
123 in the above list won't always eliminate an insn. */
125 HARD_REG_SET hard_reg_copy_preferences;
127 /* Similar to hard_reg_preferences, but includes bits for subsequent
128 registers when an allocno is multi-word. The above variable is used for
129 allocation while this is used to build reg_someone_prefers, below. */
131 HARD_REG_SET hard_reg_full_preferences;
133 /* Set of hard registers that some later allocno has a preference for. */
135 HARD_REG_SET regs_someone_prefers;
137 #ifdef STACK_REGS
138 /* Set to true if allocno can't be allocated in the stack register. */
139 bool no_stack_reg;
140 #endif
143 static struct allocno *allocno;
145 /* A vector of the integers from 0 to max_allocno-1,
146 sorted in the order of first-to-be-allocated first. */
148 static int *allocno_order;
150 /* Indexed by (pseudo) reg number, gives the number of another
151 lower-numbered pseudo reg which can share a hard reg with this pseudo
152 *even if the two pseudos would otherwise appear to conflict*. */
154 static int *reg_may_share;
156 /* Define the number of bits in each element of `conflicts' and what
157 type that element has. We use the largest integer format on the
158 host machine. */
160 #define INT_BITS HOST_BITS_PER_WIDE_INT
161 #define INT_TYPE HOST_WIDE_INT
163 /* max_allocno by max_allocno array of bits,
164 recording whether two allocno's conflict (can't go in the same
165 hardware register).
167 `conflicts' is symmetric after the call to mirror_conflicts. */
169 static INT_TYPE *conflicts;
171 /* Number of ints require to hold max_allocno bits.
172 This is the length of a row in `conflicts'. */
174 static int allocno_row_words;
176 /* Two macros to test or store 1 in an element of `conflicts'. */
178 #define CONFLICTP(I, J) \
179 (conflicts[(I) * allocno_row_words + (unsigned) (J) / INT_BITS] \
180 & ((INT_TYPE) 1 << ((unsigned) (J) % INT_BITS)))
182 /* For any allocno set in ALLOCNO_SET, set ALLOCNO to that allocno,
183 and execute CODE. */
184 #define EXECUTE_IF_SET_IN_ALLOCNO_SET(ALLOCNO_SET, ALLOCNO, CODE) \
185 do { \
186 int i_; \
187 int allocno_; \
188 INT_TYPE *p_ = (ALLOCNO_SET); \
190 for (i_ = allocno_row_words - 1, allocno_ = 0; i_ >= 0; \
191 i_--, allocno_ += INT_BITS) \
193 unsigned INT_TYPE word_ = (unsigned INT_TYPE) *p_++; \
195 for ((ALLOCNO) = allocno_; word_; word_ >>= 1, (ALLOCNO)++) \
197 if (word_ & 1) \
198 {CODE;} \
201 } while (0)
203 /* This doesn't work for non-GNU C due to the way CODE is macro expanded. */
204 #if 0
205 /* For any allocno that conflicts with IN_ALLOCNO, set OUT_ALLOCNO to
206 the conflicting allocno, and execute CODE. This macro assumes that
207 mirror_conflicts has been run. */
208 #define EXECUTE_IF_CONFLICT(IN_ALLOCNO, OUT_ALLOCNO, CODE)\
209 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + (IN_ALLOCNO) * allocno_row_words,\
210 OUT_ALLOCNO, (CODE))
211 #endif
213 /* Set of hard regs currently live (during scan of all insns). */
215 static HARD_REG_SET hard_regs_live;
217 /* Set of registers that global-alloc isn't supposed to use. */
219 static HARD_REG_SET no_global_alloc_regs;
221 /* Set of registers used so far. */
223 static HARD_REG_SET regs_used_so_far;
225 /* Number of refs to each hard reg, as used by local alloc.
226 It is zero for a reg that contains global pseudos or is explicitly used. */
228 static int local_reg_n_refs[FIRST_PSEUDO_REGISTER];
230 /* Frequency of uses of given hard reg. */
231 static int local_reg_freq[FIRST_PSEUDO_REGISTER];
233 /* Guess at live length of each hard reg, as used by local alloc.
234 This is actually the sum of the live lengths of the specific regs. */
236 static int local_reg_live_length[FIRST_PSEUDO_REGISTER];
238 /* Set to 1 a bit in a vector TABLE of HARD_REG_SETs, for vector
239 element I, and hard register number J. */
241 #define SET_REGBIT(TABLE, I, J) SET_HARD_REG_BIT (allocno[I].TABLE, J)
243 /* Bit mask for allocnos live at current point in the scan. */
245 static INT_TYPE *allocnos_live;
247 /* Test, set or clear bit number I in allocnos_live,
248 a bit vector indexed by allocno. */
250 #define SET_ALLOCNO_LIVE(I) \
251 (allocnos_live[(unsigned) (I) / INT_BITS] \
252 |= ((INT_TYPE) 1 << ((unsigned) (I) % INT_BITS)))
254 #define CLEAR_ALLOCNO_LIVE(I) \
255 (allocnos_live[(unsigned) (I) / INT_BITS] \
256 &= ~((INT_TYPE) 1 << ((unsigned) (I) % INT_BITS)))
258 /* This is turned off because it doesn't work right for DImode.
259 (And it is only used for DImode, so the other cases are worthless.)
260 The problem is that it isn't true that there is NO possibility of conflict;
261 only that there is no conflict if the two pseudos get the exact same regs.
262 If they were allocated with a partial overlap, there would be a conflict.
263 We can't safely turn off the conflict unless we have another way to
264 prevent the partial overlap.
266 Idea: change hard_reg_conflicts so that instead of recording which
267 hard regs the allocno may not overlap, it records where the allocno
268 may not start. Change both where it is used and where it is updated.
269 Then there is a way to record that (reg:DI 108) may start at 10
270 but not at 9 or 11. There is still the question of how to record
271 this semi-conflict between two pseudos. */
272 #if 0
273 /* Reg pairs for which conflict after the current insn
274 is inhibited by a REG_NO_CONFLICT note.
275 If the table gets full, we ignore any other notes--that is conservative. */
276 #define NUM_NO_CONFLICT_PAIRS 4
277 /* Number of pairs in use in this insn. */
278 int n_no_conflict_pairs;
279 static struct { int allocno1, allocno2;}
280 no_conflict_pairs[NUM_NO_CONFLICT_PAIRS];
281 #endif /* 0 */
283 /* Record all regs that are set in any one insn.
284 Communication from mark_reg_{store,clobber} and global_conflicts. */
286 static rtx *regs_set;
287 static int n_regs_set;
289 /* All registers that can be eliminated. */
291 static HARD_REG_SET eliminable_regset;
293 static int allocno_compare (const void *, const void *);
294 static void global_conflicts (void);
295 static void mirror_conflicts (void);
296 static void expand_preferences (void);
297 static void prune_preferences (void);
298 static void find_reg (int, HARD_REG_SET, int, int, int);
299 static void record_one_conflict (int);
300 static void record_conflicts (int *, int);
301 static void mark_reg_store (rtx, rtx, void *);
302 static void mark_reg_clobber (rtx, rtx, void *);
303 static void mark_reg_conflicts (rtx);
304 static void mark_reg_death (rtx);
305 static void mark_reg_live_nc (int, enum machine_mode);
306 static void set_preference (rtx, rtx);
307 static void dump_conflicts (FILE *);
308 static void reg_becomes_live (rtx, rtx, void *);
309 static void reg_dies (int, enum machine_mode, struct insn_chain *);
311 static void allocate_bb_info (void);
312 static void free_bb_info (void);
313 static void check_earlyclobber (rtx);
314 static bool regclass_intersect (enum reg_class, enum reg_class);
315 static void mark_reg_use_for_earlyclobber_1 (rtx *, void *);
316 static int mark_reg_use_for_earlyclobber (rtx *, void *);
317 static void calculate_local_reg_bb_info (void);
318 static void set_up_bb_rts_numbers (void);
319 static int rpost_cmp (const void *, const void *);
320 static bool modify_bb_reg_pav (basic_block, basic_block, bool);
321 static void calculate_reg_pav (void);
322 static void make_accurate_live_analysis (void);
326 /* Perform allocation of pseudo-registers not allocated by local_alloc.
327 FILE is a file to output debugging information on,
328 or zero if such output is not desired.
330 Return value is nonzero if reload failed
331 and we must not do any more for this function. */
334 global_alloc (FILE *file)
336 int retval;
337 #ifdef ELIMINABLE_REGS
338 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
339 #endif
340 int need_fp
341 = (! flag_omit_frame_pointer
342 || (current_function_calls_alloca && EXIT_IGNORE_STACK)
343 || FRAME_POINTER_REQUIRED);
345 size_t i;
346 rtx x;
348 make_accurate_live_analysis ();
350 max_allocno = 0;
352 /* A machine may have certain hard registers that
353 are safe to use only within a basic block. */
355 CLEAR_HARD_REG_SET (no_global_alloc_regs);
357 /* Build the regset of all eliminable registers and show we can't use those
358 that we already know won't be eliminated. */
359 #ifdef ELIMINABLE_REGS
360 for (i = 0; i < ARRAY_SIZE (eliminables); i++)
362 bool cannot_elim
363 = (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
364 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
366 if (!regs_asm_clobbered[eliminables[i].from])
368 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
370 if (cannot_elim)
371 SET_HARD_REG_BIT (no_global_alloc_regs, eliminables[i].from);
373 else if (cannot_elim)
374 error ("%s cannot be used in asm here",
375 reg_names[eliminables[i].from]);
376 else
377 regs_ever_live[eliminables[i].from] = 1;
379 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
380 if (!regs_asm_clobbered[HARD_FRAME_POINTER_REGNUM])
382 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
383 if (need_fp)
384 SET_HARD_REG_BIT (no_global_alloc_regs, HARD_FRAME_POINTER_REGNUM);
386 else if (need_fp)
387 error ("%s cannot be used in asm here",
388 reg_names[HARD_FRAME_POINTER_REGNUM]);
389 else
390 regs_ever_live[HARD_FRAME_POINTER_REGNUM] = 1;
391 #endif
393 #else
394 if (!regs_asm_clobbered[FRAME_POINTER_REGNUM])
396 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
397 if (need_fp)
398 SET_HARD_REG_BIT (no_global_alloc_regs, FRAME_POINTER_REGNUM);
400 else if (need_fp)
401 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
402 else
403 regs_ever_live[FRAME_POINTER_REGNUM] = 1;
404 #endif
406 /* Track which registers have already been used. Start with registers
407 explicitly in the rtl, then registers allocated by local register
408 allocation. */
410 CLEAR_HARD_REG_SET (regs_used_so_far);
411 #ifdef LEAF_REGISTERS
412 /* If we are doing the leaf function optimization, and this is a leaf
413 function, it means that the registers that take work to save are those
414 that need a register window. So prefer the ones that can be used in
415 a leaf function. */
417 const char *cheap_regs;
418 const char *const leaf_regs = LEAF_REGISTERS;
420 if (only_leaf_regs_used () && leaf_function_p ())
421 cheap_regs = leaf_regs;
422 else
423 cheap_regs = call_used_regs;
424 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
425 if (regs_ever_live[i] || cheap_regs[i])
426 SET_HARD_REG_BIT (regs_used_so_far, i);
428 #else
429 /* We consider registers that do not have to be saved over calls as if
430 they were already used since there is no cost in using them. */
431 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
432 if (regs_ever_live[i] || call_used_regs[i])
433 SET_HARD_REG_BIT (regs_used_so_far, i);
434 #endif
436 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
437 if (reg_renumber[i] >= 0)
438 SET_HARD_REG_BIT (regs_used_so_far, reg_renumber[i]);
440 /* Establish mappings from register number to allocation number
441 and vice versa. In the process, count the allocnos. */
443 reg_allocno = xmalloc (max_regno * sizeof (int));
445 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
446 reg_allocno[i] = -1;
448 /* Initialize the shared-hard-reg mapping
449 from the list of pairs that may share. */
450 reg_may_share = xcalloc (max_regno, sizeof (int));
451 for (x = regs_may_share; x; x = XEXP (XEXP (x, 1), 1))
453 int r1 = REGNO (XEXP (x, 0));
454 int r2 = REGNO (XEXP (XEXP (x, 1), 0));
455 if (r1 > r2)
456 reg_may_share[r1] = r2;
457 else
458 reg_may_share[r2] = r1;
461 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
462 /* Note that reg_live_length[i] < 0 indicates a "constant" reg
463 that we are supposed to refrain from putting in a hard reg.
464 -2 means do make an allocno but don't allocate it. */
465 if (REG_N_REFS (i) != 0 && REG_LIVE_LENGTH (i) != -1
466 /* Don't allocate pseudos that cross calls,
467 if this function receives a nonlocal goto. */
468 && (! current_function_has_nonlocal_label
469 || REG_N_CALLS_CROSSED (i) == 0))
471 if (reg_renumber[i] < 0 && reg_may_share[i] && reg_allocno[reg_may_share[i]] >= 0)
472 reg_allocno[i] = reg_allocno[reg_may_share[i]];
473 else
474 reg_allocno[i] = max_allocno++;
475 if (REG_LIVE_LENGTH (i) == 0)
476 abort ();
478 else
479 reg_allocno[i] = -1;
481 allocno = xcalloc (max_allocno, sizeof (struct allocno));
483 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
484 if (reg_allocno[i] >= 0)
486 int num = reg_allocno[i];
487 allocno[num].reg = i;
488 allocno[num].size = PSEUDO_REGNO_SIZE (i);
489 allocno[num].calls_crossed += REG_N_CALLS_CROSSED (i);
490 allocno[num].n_refs += REG_N_REFS (i);
491 allocno[num].freq += REG_FREQ (i);
492 if (allocno[num].live_length < REG_LIVE_LENGTH (i))
493 allocno[num].live_length = REG_LIVE_LENGTH (i);
496 /* Calculate amount of usage of each hard reg by pseudos
497 allocated by local-alloc. This is to see if we want to
498 override it. */
499 memset (local_reg_live_length, 0, sizeof local_reg_live_length);
500 memset (local_reg_n_refs, 0, sizeof local_reg_n_refs);
501 memset (local_reg_freq, 0, sizeof local_reg_freq);
502 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
503 if (reg_renumber[i] >= 0)
505 int regno = reg_renumber[i];
506 int endregno = regno + hard_regno_nregs[regno][PSEUDO_REGNO_MODE (i)];
507 int j;
509 for (j = regno; j < endregno; j++)
511 local_reg_n_refs[j] += REG_N_REFS (i);
512 local_reg_freq[j] += REG_FREQ (i);
513 local_reg_live_length[j] += REG_LIVE_LENGTH (i);
517 /* We can't override local-alloc for a reg used not just by local-alloc. */
518 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
519 if (regs_ever_live[i])
520 local_reg_n_refs[i] = 0, local_reg_freq[i] = 0;
522 allocno_row_words = (max_allocno + INT_BITS - 1) / INT_BITS;
524 /* We used to use alloca here, but the size of what it would try to
525 allocate would occasionally cause it to exceed the stack limit and
526 cause unpredictable core dumps. Some examples were > 2Mb in size. */
527 conflicts = xcalloc (max_allocno * allocno_row_words, sizeof (INT_TYPE));
529 allocnos_live = xmalloc (allocno_row_words * sizeof (INT_TYPE));
531 /* If there is work to be done (at least one reg to allocate),
532 perform global conflict analysis and allocate the regs. */
534 if (max_allocno > 0)
536 /* Scan all the insns and compute the conflicts among allocnos
537 and between allocnos and hard regs. */
539 global_conflicts ();
541 mirror_conflicts ();
543 /* Eliminate conflicts between pseudos and eliminable registers. If
544 the register is not eliminated, the pseudo won't really be able to
545 live in the eliminable register, so the conflict doesn't matter.
546 If we do eliminate the register, the conflict will no longer exist.
547 So in either case, we can ignore the conflict. Likewise for
548 preferences. */
550 for (i = 0; i < (size_t) max_allocno; i++)
552 AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_conflicts,
553 eliminable_regset);
554 AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_copy_preferences,
555 eliminable_regset);
556 AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_preferences,
557 eliminable_regset);
560 /* Try to expand the preferences by merging them between allocnos. */
562 expand_preferences ();
564 /* Determine the order to allocate the remaining pseudo registers. */
566 allocno_order = xmalloc (max_allocno * sizeof (int));
567 for (i = 0; i < (size_t) max_allocno; i++)
568 allocno_order[i] = i;
570 /* Default the size to 1, since allocno_compare uses it to divide by.
571 Also convert allocno_live_length of zero to -1. A length of zero
572 can occur when all the registers for that allocno have reg_live_length
573 equal to -2. In this case, we want to make an allocno, but not
574 allocate it. So avoid the divide-by-zero and set it to a low
575 priority. */
577 for (i = 0; i < (size_t) max_allocno; i++)
579 if (allocno[i].size == 0)
580 allocno[i].size = 1;
581 if (allocno[i].live_length == 0)
582 allocno[i].live_length = -1;
585 qsort (allocno_order, max_allocno, sizeof (int), allocno_compare);
587 prune_preferences ();
589 if (file)
590 dump_conflicts (file);
592 /* Try allocating them, one by one, in that order,
593 except for parameters marked with reg_live_length[regno] == -2. */
595 for (i = 0; i < (size_t) max_allocno; i++)
596 if (reg_renumber[allocno[allocno_order[i]].reg] < 0
597 && REG_LIVE_LENGTH (allocno[allocno_order[i]].reg) >= 0)
599 /* If we have more than one register class,
600 first try allocating in the class that is cheapest
601 for this pseudo-reg. If that fails, try any reg. */
602 if (N_REG_CLASSES > 1)
604 find_reg (allocno_order[i], 0, 0, 0, 0);
605 if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
606 continue;
608 if (reg_alternate_class (allocno[allocno_order[i]].reg) != NO_REGS)
609 find_reg (allocno_order[i], 0, 1, 0, 0);
612 free (allocno_order);
615 /* Do the reloads now while the allocno data still exist, so that we can
616 try to assign new hard regs to any pseudo regs that are spilled. */
618 #if 0 /* We need to eliminate regs even if there is no rtl code,
619 for the sake of debugging information. */
620 if (n_basic_blocks > 0)
621 #endif
623 build_insn_chain (get_insns ());
624 retval = reload (get_insns (), 1);
627 /* Clean up. */
628 free (reg_allocno);
629 free (reg_may_share);
630 free (allocno);
631 free (conflicts);
632 free (allocnos_live);
634 return retval;
637 /* Sort predicate for ordering the allocnos.
638 Returns -1 (1) if *v1 should be allocated before (after) *v2. */
640 static int
641 allocno_compare (const void *v1p, const void *v2p)
643 int v1 = *(const int *)v1p, v2 = *(const int *)v2p;
644 /* Note that the quotient will never be bigger than
645 the value of floor_log2 times the maximum number of
646 times a register can occur in one insn (surely less than 100)
647 weighted by the frequency (maximally REG_FREQ_MAX).
648 Multiplying this by 10000/REG_FREQ_MAX can't overflow. */
649 int pri1
650 = (((double) (floor_log2 (allocno[v1].n_refs) * allocno[v1].freq)
651 / allocno[v1].live_length)
652 * (10000 / REG_FREQ_MAX) * allocno[v1].size);
653 int pri2
654 = (((double) (floor_log2 (allocno[v2].n_refs) * allocno[v2].freq)
655 / allocno[v2].live_length)
656 * (10000 / REG_FREQ_MAX) * allocno[v2].size);
657 if (pri2 - pri1)
658 return pri2 - pri1;
660 /* If regs are equally good, sort by allocno,
661 so that the results of qsort leave nothing to chance. */
662 return v1 - v2;
665 /* Scan the rtl code and record all conflicts and register preferences in the
666 conflict matrices and preference tables. */
668 static void
669 global_conflicts (void)
671 int i;
672 basic_block b;
673 rtx insn;
674 int *block_start_allocnos;
676 /* Make a vector that mark_reg_{store,clobber} will store in. */
677 regs_set = xmalloc (max_parallel * sizeof (rtx) * 2);
679 block_start_allocnos = xmalloc (max_allocno * sizeof (int));
681 FOR_EACH_BB (b)
683 memset (allocnos_live, 0, allocno_row_words * sizeof (INT_TYPE));
685 /* Initialize table of registers currently live
686 to the state at the beginning of this basic block.
687 This also marks the conflicts among hard registers
688 and any allocnos that are live.
690 For pseudo-regs, there is only one bit for each one
691 no matter how many hard regs it occupies.
692 This is ok; we know the size from PSEUDO_REGNO_SIZE.
693 For explicit hard regs, we cannot know the size that way
694 since one hard reg can be used with various sizes.
695 Therefore, we must require that all the hard regs
696 implicitly live as part of a multi-word hard reg
697 are explicitly marked in basic_block_live_at_start. */
700 regset old = b->global_live_at_start;
701 int ax = 0;
703 REG_SET_TO_HARD_REG_SET (hard_regs_live, old);
704 EXECUTE_IF_SET_IN_REG_SET (old, FIRST_PSEUDO_REGISTER, i,
706 int a = reg_allocno[i];
707 if (a >= 0)
709 SET_ALLOCNO_LIVE (a);
710 block_start_allocnos[ax++] = a;
712 else if ((a = reg_renumber[i]) >= 0)
713 mark_reg_live_nc
714 (a, PSEUDO_REGNO_MODE (i));
717 /* Record that each allocno now live conflicts with each hard reg
718 now live.
720 It is not necessary to mark any conflicts between pseudos as
721 this point, even for pseudos which are live at the start of
722 the basic block.
724 Given two pseudos X and Y and any point in the CFG P.
726 On any path to point P where X and Y are live one of the
727 following conditions must be true:
729 1. X is live at some instruction on the path that
730 evaluates Y.
732 2. Y is live at some instruction on the path that
733 evaluates X.
735 3. Either X or Y is not evaluated on the path to P
736 (ie it is used uninitialized) and thus the
737 conflict can be ignored.
739 In cases #1 and #2 the conflict will be recorded when we
740 scan the instruction that makes either X or Y become live. */
741 record_conflicts (block_start_allocnos, ax);
743 /* Pseudos can't go in stack regs at the start of a basic block that
744 is reached by an abnormal edge. Likewise for call clobbered regs,
745 because because caller-save, fixup_abnormal_edges, and possibly
746 the table driven EH machinery are not quite ready to handle such
747 regs live across such edges. */
749 edge e;
751 for (e = b->pred; e ; e = e->pred_next)
752 if (e->flags & EDGE_ABNORMAL)
753 break;
755 if (e != NULL)
757 #ifdef STACK_REGS
758 EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live, ax,
760 allocno[ax].no_stack_reg = 1;
762 for (ax = FIRST_STACK_REG; ax <= LAST_STACK_REG; ax++)
763 record_one_conflict (ax);
764 #endif
766 /* No need to record conflicts for call clobbered regs if we have
767 nonlocal labels around, as we don't ever try to allocate such
768 regs in this case. */
769 if (! current_function_has_nonlocal_label)
770 for (ax = 0; ax < FIRST_PSEUDO_REGISTER; ax++)
771 if (call_used_regs [ax])
772 record_one_conflict (ax);
777 insn = BB_HEAD (b);
779 /* Scan the code of this basic block, noting which allocnos
780 and hard regs are born or die. When one is born,
781 record a conflict with all others currently live. */
783 while (1)
785 RTX_CODE code = GET_CODE (insn);
786 rtx link;
788 /* Make regs_set an empty set. */
790 n_regs_set = 0;
792 if (code == INSN || code == CALL_INSN || code == JUMP_INSN)
795 #if 0
796 int i = 0;
797 for (link = REG_NOTES (insn);
798 link && i < NUM_NO_CONFLICT_PAIRS;
799 link = XEXP (link, 1))
800 if (REG_NOTE_KIND (link) == REG_NO_CONFLICT)
802 no_conflict_pairs[i].allocno1
803 = reg_allocno[REGNO (SET_DEST (PATTERN (insn)))];
804 no_conflict_pairs[i].allocno2
805 = reg_allocno[REGNO (XEXP (link, 0))];
806 i++;
808 #endif /* 0 */
810 /* Mark any registers clobbered by INSN as live,
811 so they conflict with the inputs. */
813 note_stores (PATTERN (insn), mark_reg_clobber, NULL);
815 /* Mark any registers dead after INSN as dead now. */
817 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
818 if (REG_NOTE_KIND (link) == REG_DEAD)
819 mark_reg_death (XEXP (link, 0));
821 /* Mark any registers set in INSN as live,
822 and mark them as conflicting with all other live regs.
823 Clobbers are processed again, so they conflict with
824 the registers that are set. */
826 note_stores (PATTERN (insn), mark_reg_store, NULL);
828 #ifdef AUTO_INC_DEC
829 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
830 if (REG_NOTE_KIND (link) == REG_INC)
831 mark_reg_store (XEXP (link, 0), NULL_RTX, NULL);
832 #endif
834 /* If INSN has multiple outputs, then any reg that dies here
835 and is used inside of an output
836 must conflict with the other outputs.
838 It is unsafe to use !single_set here since it will ignore an
839 unused output. Just because an output is unused does not mean
840 the compiler can assume the side effect will not occur.
841 Consider if REG appears in the address of an output and we
842 reload the output. If we allocate REG to the same hard
843 register as an unused output we could set the hard register
844 before the output reload insn. */
845 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
846 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
847 if (REG_NOTE_KIND (link) == REG_DEAD)
849 int used_in_output = 0;
850 int i;
851 rtx reg = XEXP (link, 0);
853 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
855 rtx set = XVECEXP (PATTERN (insn), 0, i);
856 if (GET_CODE (set) == SET
857 && !REG_P (SET_DEST (set))
858 && !rtx_equal_p (reg, SET_DEST (set))
859 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
860 used_in_output = 1;
862 if (used_in_output)
863 mark_reg_conflicts (reg);
866 /* Mark any registers set in INSN and then never used. */
868 while (n_regs_set-- > 0)
870 rtx note = find_regno_note (insn, REG_UNUSED,
871 REGNO (regs_set[n_regs_set]));
872 if (note)
873 mark_reg_death (XEXP (note, 0));
877 if (insn == BB_END (b))
878 break;
879 insn = NEXT_INSN (insn);
883 /* Clean up. */
884 free (block_start_allocnos);
885 free (regs_set);
887 /* Expand the preference information by looking for cases where one allocno
888 dies in an insn that sets an allocno. If those two allocnos don't conflict,
889 merge any preferences between those allocnos. */
891 static void
892 expand_preferences (void)
894 rtx insn;
895 rtx link;
896 rtx set;
898 /* We only try to handle the most common cases here. Most of the cases
899 where this wins are reg-reg copies. */
901 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
902 if (INSN_P (insn)
903 && (set = single_set (insn)) != 0
904 && REG_P (SET_DEST (set))
905 && reg_allocno[REGNO (SET_DEST (set))] >= 0)
906 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
907 if (REG_NOTE_KIND (link) == REG_DEAD
908 && REG_P (XEXP (link, 0))
909 && reg_allocno[REGNO (XEXP (link, 0))] >= 0
910 && ! CONFLICTP (reg_allocno[REGNO (SET_DEST (set))],
911 reg_allocno[REGNO (XEXP (link, 0))]))
913 int a1 = reg_allocno[REGNO (SET_DEST (set))];
914 int a2 = reg_allocno[REGNO (XEXP (link, 0))];
916 if (XEXP (link, 0) == SET_SRC (set))
918 IOR_HARD_REG_SET (allocno[a1].hard_reg_copy_preferences,
919 allocno[a2].hard_reg_copy_preferences);
920 IOR_HARD_REG_SET (allocno[a2].hard_reg_copy_preferences,
921 allocno[a1].hard_reg_copy_preferences);
924 IOR_HARD_REG_SET (allocno[a1].hard_reg_preferences,
925 allocno[a2].hard_reg_preferences);
926 IOR_HARD_REG_SET (allocno[a2].hard_reg_preferences,
927 allocno[a1].hard_reg_preferences);
928 IOR_HARD_REG_SET (allocno[a1].hard_reg_full_preferences,
929 allocno[a2].hard_reg_full_preferences);
930 IOR_HARD_REG_SET (allocno[a2].hard_reg_full_preferences,
931 allocno[a1].hard_reg_full_preferences);
935 /* Prune the preferences for global registers to exclude registers that cannot
936 be used.
938 Compute `regs_someone_prefers', which is a bitmask of the hard registers
939 that are preferred by conflicting registers of lower priority. If possible,
940 we will avoid using these registers. */
942 static void
943 prune_preferences (void)
945 int i;
946 int num;
947 int *allocno_to_order = xmalloc (max_allocno * sizeof (int));
949 /* Scan least most important to most important.
950 For each allocno, remove from preferences registers that cannot be used,
951 either because of conflicts or register type. Then compute all registers
952 preferred by each lower-priority register that conflicts. */
954 for (i = max_allocno - 1; i >= 0; i--)
956 HARD_REG_SET temp;
958 num = allocno_order[i];
959 allocno_to_order[num] = i;
960 COPY_HARD_REG_SET (temp, allocno[num].hard_reg_conflicts);
962 if (allocno[num].calls_crossed == 0)
963 IOR_HARD_REG_SET (temp, fixed_reg_set);
964 else
965 IOR_HARD_REG_SET (temp, call_used_reg_set);
967 IOR_COMPL_HARD_REG_SET
968 (temp,
969 reg_class_contents[(int) reg_preferred_class (allocno[num].reg)]);
971 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, temp);
972 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, temp);
973 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_full_preferences, temp);
976 for (i = max_allocno - 1; i >= 0; i--)
978 /* Merge in the preferences of lower-priority registers (they have
979 already been pruned). If we also prefer some of those registers,
980 don't exclude them unless we are of a smaller size (in which case
981 we want to give the lower-priority allocno the first chance for
982 these registers). */
983 HARD_REG_SET temp, temp2;
984 int allocno2;
986 num = allocno_order[i];
988 CLEAR_HARD_REG_SET (temp);
989 CLEAR_HARD_REG_SET (temp2);
991 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + num * allocno_row_words,
992 allocno2,
994 if (allocno_to_order[allocno2] > i)
996 if (allocno[allocno2].size <= allocno[num].size)
997 IOR_HARD_REG_SET (temp,
998 allocno[allocno2].hard_reg_full_preferences);
999 else
1000 IOR_HARD_REG_SET (temp2,
1001 allocno[allocno2].hard_reg_full_preferences);
1005 AND_COMPL_HARD_REG_SET (temp, allocno[num].hard_reg_full_preferences);
1006 IOR_HARD_REG_SET (temp, temp2);
1007 COPY_HARD_REG_SET (allocno[num].regs_someone_prefers, temp);
1009 free (allocno_to_order);
1012 /* Assign a hard register to allocno NUM; look for one that is the beginning
1013 of a long enough stretch of hard regs none of which conflicts with ALLOCNO.
1014 The registers marked in PREFREGS are tried first.
1016 LOSERS, if nonzero, is a HARD_REG_SET indicating registers that cannot
1017 be used for this allocation.
1019 If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg.
1020 Otherwise ignore that preferred class and use the alternate class.
1022 If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that
1023 will have to be saved and restored at calls.
1025 RETRYING is nonzero if this is called from retry_global_alloc.
1027 If we find one, record it in reg_renumber.
1028 If not, do nothing. */
1030 static void
1031 find_reg (int num, HARD_REG_SET losers, int alt_regs_p, int accept_call_clobbered, int retrying)
1033 int i, best_reg, pass;
1034 HARD_REG_SET used, used1, used2;
1036 enum reg_class class = (alt_regs_p
1037 ? reg_alternate_class (allocno[num].reg)
1038 : reg_preferred_class (allocno[num].reg));
1039 enum machine_mode mode = PSEUDO_REGNO_MODE (allocno[num].reg);
1041 if (accept_call_clobbered)
1042 COPY_HARD_REG_SET (used1, call_fixed_reg_set);
1043 else if (allocno[num].calls_crossed == 0)
1044 COPY_HARD_REG_SET (used1, fixed_reg_set);
1045 else
1046 COPY_HARD_REG_SET (used1, call_used_reg_set);
1048 /* Some registers should not be allocated in global-alloc. */
1049 IOR_HARD_REG_SET (used1, no_global_alloc_regs);
1050 if (losers)
1051 IOR_HARD_REG_SET (used1, losers);
1053 IOR_COMPL_HARD_REG_SET (used1, reg_class_contents[(int) class]);
1054 COPY_HARD_REG_SET (used2, used1);
1056 IOR_HARD_REG_SET (used1, allocno[num].hard_reg_conflicts);
1058 #ifdef CANNOT_CHANGE_MODE_CLASS
1059 cannot_change_mode_set_regs (&used1, mode, allocno[num].reg);
1060 #endif
1062 /* Try each hard reg to see if it fits. Do this in two passes.
1063 In the first pass, skip registers that are preferred by some other pseudo
1064 to give it a better chance of getting one of those registers. Only if
1065 we can't get a register when excluding those do we take one of them.
1066 However, we never allocate a register for the first time in pass 0. */
1068 COPY_HARD_REG_SET (used, used1);
1069 IOR_COMPL_HARD_REG_SET (used, regs_used_so_far);
1070 IOR_HARD_REG_SET (used, allocno[num].regs_someone_prefers);
1072 best_reg = -1;
1073 for (i = FIRST_PSEUDO_REGISTER, pass = 0;
1074 pass <= 1 && i >= FIRST_PSEUDO_REGISTER;
1075 pass++)
1077 if (pass == 1)
1078 COPY_HARD_REG_SET (used, used1);
1079 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1081 #ifdef REG_ALLOC_ORDER
1082 int regno = reg_alloc_order[i];
1083 #else
1084 int regno = i;
1085 #endif
1086 if (! TEST_HARD_REG_BIT (used, regno)
1087 && HARD_REGNO_MODE_OK (regno, mode)
1088 && (allocno[num].calls_crossed == 0
1089 || accept_call_clobbered
1090 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
1092 int j;
1093 int lim = regno + hard_regno_nregs[regno][mode];
1094 for (j = regno + 1;
1095 (j < lim
1096 && ! TEST_HARD_REG_BIT (used, j));
1097 j++);
1098 if (j == lim)
1100 best_reg = regno;
1101 break;
1103 #ifndef REG_ALLOC_ORDER
1104 i = j; /* Skip starting points we know will lose */
1105 #endif
1110 /* See if there is a preferred register with the same class as the register
1111 we allocated above. Making this restriction prevents register
1112 preferencing from creating worse register allocation.
1114 Remove from the preferred registers and conflicting registers. Note that
1115 additional conflicts may have been added after `prune_preferences' was
1116 called.
1118 First do this for those register with copy preferences, then all
1119 preferred registers. */
1121 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, used);
1122 GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_copy_preferences,
1123 reg_class_contents[(int) NO_REGS], no_copy_prefs);
1125 if (best_reg >= 0)
1127 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1128 if (TEST_HARD_REG_BIT (allocno[num].hard_reg_copy_preferences, i)
1129 && HARD_REGNO_MODE_OK (i, mode)
1130 && (allocno[num].calls_crossed == 0
1131 || accept_call_clobbered
1132 || ! HARD_REGNO_CALL_PART_CLOBBERED (i, mode))
1133 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1134 || reg_class_subset_p (REGNO_REG_CLASS (i),
1135 REGNO_REG_CLASS (best_reg))
1136 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1137 REGNO_REG_CLASS (i))))
1139 int j;
1140 int lim = i + hard_regno_nregs[i][mode];
1141 for (j = i + 1;
1142 (j < lim
1143 && ! TEST_HARD_REG_BIT (used, j)
1144 && (REGNO_REG_CLASS (j)
1145 == REGNO_REG_CLASS (best_reg + (j - i))
1146 || reg_class_subset_p (REGNO_REG_CLASS (j),
1147 REGNO_REG_CLASS (best_reg + (j - i)))
1148 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1149 REGNO_REG_CLASS (j))));
1150 j++);
1151 if (j == lim)
1153 best_reg = i;
1154 goto no_prefs;
1158 no_copy_prefs:
1160 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, used);
1161 GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_preferences,
1162 reg_class_contents[(int) NO_REGS], no_prefs);
1164 if (best_reg >= 0)
1166 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1167 if (TEST_HARD_REG_BIT (allocno[num].hard_reg_preferences, i)
1168 && HARD_REGNO_MODE_OK (i, mode)
1169 && (allocno[num].calls_crossed == 0
1170 || accept_call_clobbered
1171 || ! HARD_REGNO_CALL_PART_CLOBBERED (i, mode))
1172 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1173 || reg_class_subset_p (REGNO_REG_CLASS (i),
1174 REGNO_REG_CLASS (best_reg))
1175 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1176 REGNO_REG_CLASS (i))))
1178 int j;
1179 int lim = i + hard_regno_nregs[i][mode];
1180 for (j = i + 1;
1181 (j < lim
1182 && ! TEST_HARD_REG_BIT (used, j)
1183 && (REGNO_REG_CLASS (j)
1184 == REGNO_REG_CLASS (best_reg + (j - i))
1185 || reg_class_subset_p (REGNO_REG_CLASS (j),
1186 REGNO_REG_CLASS (best_reg + (j - i)))
1187 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1188 REGNO_REG_CLASS (j))));
1189 j++);
1190 if (j == lim)
1192 best_reg = i;
1193 break;
1197 no_prefs:
1199 /* If we haven't succeeded yet, try with caller-saves.
1200 We need not check to see if the current function has nonlocal
1201 labels because we don't put any pseudos that are live over calls in
1202 registers in that case. */
1204 if (flag_caller_saves && best_reg < 0)
1206 /* Did not find a register. If it would be profitable to
1207 allocate a call-clobbered register and save and restore it
1208 around calls, do that. */
1209 if (! accept_call_clobbered
1210 && allocno[num].calls_crossed != 0
1211 && CALLER_SAVE_PROFITABLE (allocno[num].n_refs,
1212 allocno[num].calls_crossed))
1214 HARD_REG_SET new_losers;
1215 if (! losers)
1216 CLEAR_HARD_REG_SET (new_losers);
1217 else
1218 COPY_HARD_REG_SET (new_losers, losers);
1220 IOR_HARD_REG_SET(new_losers, losing_caller_save_reg_set);
1221 find_reg (num, new_losers, alt_regs_p, 1, retrying);
1222 if (reg_renumber[allocno[num].reg] >= 0)
1224 caller_save_needed = 1;
1225 return;
1230 /* If we haven't succeeded yet,
1231 see if some hard reg that conflicts with us
1232 was utilized poorly by local-alloc.
1233 If so, kick out the regs that were put there by local-alloc
1234 so we can use it instead. */
1235 if (best_reg < 0 && !retrying
1236 /* Let's not bother with multi-reg allocnos. */
1237 && allocno[num].size == 1)
1239 /* Count from the end, to find the least-used ones first. */
1240 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1242 #ifdef REG_ALLOC_ORDER
1243 int regno = reg_alloc_order[i];
1244 #else
1245 int regno = i;
1246 #endif
1248 if (local_reg_n_refs[regno] != 0
1249 /* Don't use a reg no good for this pseudo. */
1250 && ! TEST_HARD_REG_BIT (used2, regno)
1251 && HARD_REGNO_MODE_OK (regno, mode)
1252 /* The code below assumes that we need only a single
1253 register, but the check of allocno[num].size above
1254 was not enough. Sometimes we need more than one
1255 register for a single-word value. */
1256 && hard_regno_nregs[regno][mode] == 1
1257 && (allocno[num].calls_crossed == 0
1258 || accept_call_clobbered
1259 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1260 #ifdef CANNOT_CHANGE_MODE_CLASS
1261 && ! invalid_mode_change_p (regno, REGNO_REG_CLASS (regno),
1262 mode)
1263 #endif
1264 #ifdef STACK_REGS
1265 && (!allocno[num].no_stack_reg
1266 || regno < FIRST_STACK_REG || regno > LAST_STACK_REG)
1267 #endif
1270 /* We explicitly evaluate the divide results into temporary
1271 variables so as to avoid excess precision problems that occur
1272 on an i386-unknown-sysv4.2 (unixware) host. */
1274 double tmp1 = ((double) local_reg_freq[regno]
1275 / local_reg_live_length[regno]);
1276 double tmp2 = ((double) allocno[num].freq
1277 / allocno[num].live_length);
1279 if (tmp1 < tmp2)
1281 /* Hard reg REGNO was used less in total by local regs
1282 than it would be used by this one allocno! */
1283 int k;
1284 for (k = 0; k < max_regno; k++)
1285 if (reg_renumber[k] >= 0)
1287 int r = reg_renumber[k];
1288 int endregno
1289 = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (k)];
1291 if (regno >= r && regno < endregno)
1292 reg_renumber[k] = -1;
1295 best_reg = regno;
1296 break;
1302 /* Did we find a register? */
1304 if (best_reg >= 0)
1306 int lim, j;
1307 HARD_REG_SET this_reg;
1309 /* Yes. Record it as the hard register of this pseudo-reg. */
1310 reg_renumber[allocno[num].reg] = best_reg;
1311 /* Also of any pseudo-regs that share with it. */
1312 if (reg_may_share[allocno[num].reg])
1313 for (j = FIRST_PSEUDO_REGISTER; j < max_regno; j++)
1314 if (reg_allocno[j] == num)
1315 reg_renumber[j] = best_reg;
1317 /* Make a set of the hard regs being allocated. */
1318 CLEAR_HARD_REG_SET (this_reg);
1319 lim = best_reg + hard_regno_nregs[best_reg][mode];
1320 for (j = best_reg; j < lim; j++)
1322 SET_HARD_REG_BIT (this_reg, j);
1323 SET_HARD_REG_BIT (regs_used_so_far, j);
1324 /* This is no longer a reg used just by local regs. */
1325 local_reg_n_refs[j] = 0;
1326 local_reg_freq[j] = 0;
1328 /* For each other pseudo-reg conflicting with this one,
1329 mark it as conflicting with the hard regs this one occupies. */
1330 lim = num;
1331 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + lim * allocno_row_words, j,
1333 IOR_HARD_REG_SET (allocno[j].hard_reg_conflicts, this_reg);
1338 /* Called from `reload' to look for a hard reg to put pseudo reg REGNO in.
1339 Perhaps it had previously seemed not worth a hard reg,
1340 or perhaps its old hard reg has been commandeered for reloads.
1341 FORBIDDEN_REGS indicates certain hard regs that may not be used, even if
1342 they do not appear to be allocated.
1343 If FORBIDDEN_REGS is zero, no regs are forbidden. */
1345 void
1346 retry_global_alloc (int regno, HARD_REG_SET forbidden_regs)
1348 int alloc_no = reg_allocno[regno];
1349 if (alloc_no >= 0)
1351 /* If we have more than one register class,
1352 first try allocating in the class that is cheapest
1353 for this pseudo-reg. If that fails, try any reg. */
1354 if (N_REG_CLASSES > 1)
1355 find_reg (alloc_no, forbidden_regs, 0, 0, 1);
1356 if (reg_renumber[regno] < 0
1357 && reg_alternate_class (regno) != NO_REGS)
1358 find_reg (alloc_no, forbidden_regs, 1, 0, 1);
1360 /* If we found a register, modify the RTL for the register to
1361 show the hard register, and mark that register live. */
1362 if (reg_renumber[regno] >= 0)
1364 REGNO (regno_reg_rtx[regno]) = reg_renumber[regno];
1365 mark_home_live (regno);
1370 /* Record a conflict between register REGNO
1371 and everything currently live.
1372 REGNO must not be a pseudo reg that was allocated
1373 by local_alloc; such numbers must be translated through
1374 reg_renumber before calling here. */
1376 static void
1377 record_one_conflict (int regno)
1379 int j;
1381 if (regno < FIRST_PSEUDO_REGISTER)
1382 /* When a hard register becomes live,
1383 record conflicts with live pseudo regs. */
1384 EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live, j,
1386 SET_HARD_REG_BIT (allocno[j].hard_reg_conflicts, regno);
1388 else
1389 /* When a pseudo-register becomes live,
1390 record conflicts first with hard regs,
1391 then with other pseudo regs. */
1393 int ialloc = reg_allocno[regno];
1394 int ialloc_prod = ialloc * allocno_row_words;
1396 IOR_HARD_REG_SET (allocno[ialloc].hard_reg_conflicts, hard_regs_live);
1397 for (j = allocno_row_words - 1; j >= 0; j--)
1398 conflicts[ialloc_prod + j] |= allocnos_live[j];
1402 /* Record all allocnos currently live as conflicting
1403 with all hard regs currently live.
1405 ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that
1406 are currently live. Their bits are also flagged in allocnos_live. */
1408 static void
1409 record_conflicts (int *allocno_vec, int len)
1411 while (--len >= 0)
1412 IOR_HARD_REG_SET (allocno[allocno_vec[len]].hard_reg_conflicts,
1413 hard_regs_live);
1416 /* If CONFLICTP (i, j) is true, make sure CONFLICTP (j, i) is also true. */
1417 static void
1418 mirror_conflicts (void)
1420 int i, j;
1421 int rw = allocno_row_words;
1422 int rwb = rw * INT_BITS;
1423 INT_TYPE *p = conflicts;
1424 INT_TYPE *q0 = conflicts, *q1, *q2;
1425 unsigned INT_TYPE mask;
1427 for (i = max_allocno - 1, mask = 1; i >= 0; i--, mask <<= 1)
1429 if (! mask)
1431 mask = 1;
1432 q0++;
1434 for (j = allocno_row_words - 1, q1 = q0; j >= 0; j--, q1 += rwb)
1436 unsigned INT_TYPE word;
1438 for (word = (unsigned INT_TYPE) *p++, q2 = q1; word;
1439 word >>= 1, q2 += rw)
1441 if (word & 1)
1442 *q2 |= mask;
1448 /* Handle the case where REG is set by the insn being scanned,
1449 during the forward scan to accumulate conflicts.
1450 Store a 1 in regs_live or allocnos_live for this register, record how many
1451 consecutive hardware registers it actually needs,
1452 and record a conflict with all other registers already live.
1454 Note that even if REG does not remain alive after this insn,
1455 we must mark it here as live, to ensure a conflict between
1456 REG and any other regs set in this insn that really do live.
1457 This is because those other regs could be considered after this.
1459 REG might actually be something other than a register;
1460 if so, we do nothing.
1462 SETTER is 0 if this register was modified by an auto-increment (i.e.,
1463 a REG_INC note was found for it). */
1465 static void
1466 mark_reg_store (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
1468 int regno;
1470 if (GET_CODE (reg) == SUBREG)
1471 reg = SUBREG_REG (reg);
1473 if (!REG_P (reg))
1474 return;
1476 regs_set[n_regs_set++] = reg;
1478 if (setter && GET_CODE (setter) != CLOBBER)
1479 set_preference (reg, SET_SRC (setter));
1481 regno = REGNO (reg);
1483 /* Either this is one of the max_allocno pseudo regs not allocated,
1484 or it is or has a hardware reg. First handle the pseudo-regs. */
1485 if (regno >= FIRST_PSEUDO_REGISTER)
1487 if (reg_allocno[regno] >= 0)
1489 SET_ALLOCNO_LIVE (reg_allocno[regno]);
1490 record_one_conflict (regno);
1494 if (reg_renumber[regno] >= 0)
1495 regno = reg_renumber[regno];
1497 /* Handle hardware regs (and pseudos allocated to hard regs). */
1498 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
1500 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
1501 while (regno < last)
1503 record_one_conflict (regno);
1504 SET_HARD_REG_BIT (hard_regs_live, regno);
1505 regno++;
1510 /* Like mark_reg_set except notice just CLOBBERs; ignore SETs. */
1512 static void
1513 mark_reg_clobber (rtx reg, rtx setter, void *data)
1515 if (GET_CODE (setter) == CLOBBER)
1516 mark_reg_store (reg, setter, data);
1519 /* Record that REG has conflicts with all the regs currently live.
1520 Do not mark REG itself as live. */
1522 static void
1523 mark_reg_conflicts (rtx reg)
1525 int regno;
1527 if (GET_CODE (reg) == SUBREG)
1528 reg = SUBREG_REG (reg);
1530 if (!REG_P (reg))
1531 return;
1533 regno = REGNO (reg);
1535 /* Either this is one of the max_allocno pseudo regs not allocated,
1536 or it is or has a hardware reg. First handle the pseudo-regs. */
1537 if (regno >= FIRST_PSEUDO_REGISTER)
1539 if (reg_allocno[regno] >= 0)
1540 record_one_conflict (regno);
1543 if (reg_renumber[regno] >= 0)
1544 regno = reg_renumber[regno];
1546 /* Handle hardware regs (and pseudos allocated to hard regs). */
1547 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
1549 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
1550 while (regno < last)
1552 record_one_conflict (regno);
1553 regno++;
1558 /* Mark REG as being dead (following the insn being scanned now).
1559 Store a 0 in regs_live or allocnos_live for this register. */
1561 static void
1562 mark_reg_death (rtx reg)
1564 int regno = REGNO (reg);
1566 /* Either this is one of the max_allocno pseudo regs not allocated,
1567 or it is a hardware reg. First handle the pseudo-regs. */
1568 if (regno >= FIRST_PSEUDO_REGISTER)
1570 if (reg_allocno[regno] >= 0)
1571 CLEAR_ALLOCNO_LIVE (reg_allocno[regno]);
1574 /* For pseudo reg, see if it has been assigned a hardware reg. */
1575 if (reg_renumber[regno] >= 0)
1576 regno = reg_renumber[regno];
1578 /* Handle hardware regs (and pseudos allocated to hard regs). */
1579 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
1581 /* Pseudo regs already assigned hardware regs are treated
1582 almost the same as explicit hardware regs. */
1583 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
1584 while (regno < last)
1586 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
1587 regno++;
1592 /* Mark hard reg REGNO as currently live, assuming machine mode MODE
1593 for the value stored in it. MODE determines how many consecutive
1594 registers are actually in use. Do not record conflicts;
1595 it is assumed that the caller will do that. */
1597 static void
1598 mark_reg_live_nc (int regno, enum machine_mode mode)
1600 int last = regno + hard_regno_nregs[regno][mode];
1601 while (regno < last)
1603 SET_HARD_REG_BIT (hard_regs_live, regno);
1604 regno++;
1608 /* Try to set a preference for an allocno to a hard register.
1609 We are passed DEST and SRC which are the operands of a SET. It is known
1610 that SRC is a register. If SRC or the first operand of SRC is a register,
1611 try to set a preference. If one of the two is a hard register and the other
1612 is a pseudo-register, mark the preference.
1614 Note that we are not as aggressive as local-alloc in trying to tie a
1615 pseudo-register to a hard register. */
1617 static void
1618 set_preference (rtx dest, rtx src)
1620 unsigned int src_regno, dest_regno;
1621 /* Amount to add to the hard regno for SRC, or subtract from that for DEST,
1622 to compensate for subregs in SRC or DEST. */
1623 int offset = 0;
1624 unsigned int i;
1625 int copy = 1;
1627 if (GET_RTX_FORMAT (GET_CODE (src))[0] == 'e')
1628 src = XEXP (src, 0), copy = 0;
1630 /* Get the reg number for both SRC and DEST.
1631 If neither is a reg, give up. */
1633 if (REG_P (src))
1634 src_regno = REGNO (src);
1635 else if (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src)))
1637 src_regno = REGNO (SUBREG_REG (src));
1639 if (REGNO (SUBREG_REG (src)) < FIRST_PSEUDO_REGISTER)
1640 offset += subreg_regno_offset (REGNO (SUBREG_REG (src)),
1641 GET_MODE (SUBREG_REG (src)),
1642 SUBREG_BYTE (src),
1643 GET_MODE (src));
1644 else
1645 offset += (SUBREG_BYTE (src)
1646 / REGMODE_NATURAL_SIZE (GET_MODE (src)));
1648 else
1649 return;
1651 if (REG_P (dest))
1652 dest_regno = REGNO (dest);
1653 else if (GET_CODE (dest) == SUBREG && REG_P (SUBREG_REG (dest)))
1655 dest_regno = REGNO (SUBREG_REG (dest));
1657 if (REGNO (SUBREG_REG (dest)) < FIRST_PSEUDO_REGISTER)
1658 offset -= subreg_regno_offset (REGNO (SUBREG_REG (dest)),
1659 GET_MODE (SUBREG_REG (dest)),
1660 SUBREG_BYTE (dest),
1661 GET_MODE (dest));
1662 else
1663 offset -= (SUBREG_BYTE (dest)
1664 / REGMODE_NATURAL_SIZE (GET_MODE (dest)));
1666 else
1667 return;
1669 /* Convert either or both to hard reg numbers. */
1671 if (reg_renumber[src_regno] >= 0)
1672 src_regno = reg_renumber[src_regno];
1674 if (reg_renumber[dest_regno] >= 0)
1675 dest_regno = reg_renumber[dest_regno];
1677 /* Now if one is a hard reg and the other is a global pseudo
1678 then give the other a preference. */
1680 if (dest_regno < FIRST_PSEUDO_REGISTER && src_regno >= FIRST_PSEUDO_REGISTER
1681 && reg_allocno[src_regno] >= 0)
1683 dest_regno -= offset;
1684 if (dest_regno < FIRST_PSEUDO_REGISTER)
1686 if (copy)
1687 SET_REGBIT (hard_reg_copy_preferences,
1688 reg_allocno[src_regno], dest_regno);
1690 SET_REGBIT (hard_reg_preferences,
1691 reg_allocno[src_regno], dest_regno);
1692 for (i = dest_regno;
1693 i < dest_regno + hard_regno_nregs[dest_regno][GET_MODE (dest)];
1694 i++)
1695 SET_REGBIT (hard_reg_full_preferences, reg_allocno[src_regno], i);
1699 if (src_regno < FIRST_PSEUDO_REGISTER && dest_regno >= FIRST_PSEUDO_REGISTER
1700 && reg_allocno[dest_regno] >= 0)
1702 src_regno += offset;
1703 if (src_regno < FIRST_PSEUDO_REGISTER)
1705 if (copy)
1706 SET_REGBIT (hard_reg_copy_preferences,
1707 reg_allocno[dest_regno], src_regno);
1709 SET_REGBIT (hard_reg_preferences,
1710 reg_allocno[dest_regno], src_regno);
1711 for (i = src_regno;
1712 i < src_regno + hard_regno_nregs[src_regno][GET_MODE (src)];
1713 i++)
1714 SET_REGBIT (hard_reg_full_preferences, reg_allocno[dest_regno], i);
1719 /* Indicate that hard register number FROM was eliminated and replaced with
1720 an offset from hard register number TO. The status of hard registers live
1721 at the start of a basic block is updated by replacing a use of FROM with
1722 a use of TO. */
1724 void
1725 mark_elimination (int from, int to)
1727 basic_block bb;
1729 FOR_EACH_BB (bb)
1731 regset r = bb->global_live_at_start;
1732 if (REGNO_REG_SET_P (r, from))
1734 CLEAR_REGNO_REG_SET (r, from);
1735 SET_REGNO_REG_SET (r, to);
1740 /* Used for communication between the following functions. Holds the
1741 current life information. */
1742 static regset live_relevant_regs;
1744 /* Record in live_relevant_regs and REGS_SET that register REG became live.
1745 This is called via note_stores. */
1746 static void
1747 reg_becomes_live (rtx reg, rtx setter ATTRIBUTE_UNUSED, void *regs_set)
1749 int regno;
1751 if (GET_CODE (reg) == SUBREG)
1752 reg = SUBREG_REG (reg);
1754 if (!REG_P (reg))
1755 return;
1757 regno = REGNO (reg);
1758 if (regno < FIRST_PSEUDO_REGISTER)
1760 int nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1761 while (nregs-- > 0)
1763 SET_REGNO_REG_SET (live_relevant_regs, regno);
1764 if (! fixed_regs[regno])
1765 SET_REGNO_REG_SET ((regset) regs_set, regno);
1766 regno++;
1769 else if (reg_renumber[regno] >= 0)
1771 SET_REGNO_REG_SET (live_relevant_regs, regno);
1772 SET_REGNO_REG_SET ((regset) regs_set, regno);
1776 /* Record in live_relevant_regs that register REGNO died. */
1777 static void
1778 reg_dies (int regno, enum machine_mode mode, struct insn_chain *chain)
1780 if (regno < FIRST_PSEUDO_REGISTER)
1782 int nregs = hard_regno_nregs[regno][mode];
1783 while (nregs-- > 0)
1785 CLEAR_REGNO_REG_SET (live_relevant_regs, regno);
1786 if (! fixed_regs[regno])
1787 SET_REGNO_REG_SET (&chain->dead_or_set, regno);
1788 regno++;
1791 else
1793 CLEAR_REGNO_REG_SET (live_relevant_regs, regno);
1794 if (reg_renumber[regno] >= 0)
1795 SET_REGNO_REG_SET (&chain->dead_or_set, regno);
1799 /* Walk the insns of the current function and build reload_insn_chain,
1800 and record register life information. */
1801 void
1802 build_insn_chain (rtx first)
1804 struct insn_chain **p = &reload_insn_chain;
1805 struct insn_chain *prev = 0;
1806 basic_block b = ENTRY_BLOCK_PTR->next_bb;
1807 regset_head live_relevant_regs_head;
1809 live_relevant_regs = INITIALIZE_REG_SET (live_relevant_regs_head);
1811 for (; first; first = NEXT_INSN (first))
1813 struct insn_chain *c;
1815 if (first == BB_HEAD (b))
1817 int i;
1819 CLEAR_REG_SET (live_relevant_regs);
1821 EXECUTE_IF_SET_IN_BITMAP
1822 (b->global_live_at_start, 0, i,
1824 if (i < FIRST_PSEUDO_REGISTER
1825 ? ! TEST_HARD_REG_BIT (eliminable_regset, i)
1826 : reg_renumber[i] >= 0)
1827 SET_REGNO_REG_SET (live_relevant_regs, i);
1831 if (!NOTE_P (first) && !BARRIER_P (first))
1833 c = new_insn_chain ();
1834 c->prev = prev;
1835 prev = c;
1836 *p = c;
1837 p = &c->next;
1838 c->insn = first;
1839 c->block = b->index;
1841 if (INSN_P (first))
1843 rtx link;
1845 /* Mark the death of everything that dies in this instruction. */
1847 for (link = REG_NOTES (first); link; link = XEXP (link, 1))
1848 if (REG_NOTE_KIND (link) == REG_DEAD
1849 && REG_P (XEXP (link, 0)))
1850 reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)),
1853 COPY_REG_SET (&c->live_throughout, live_relevant_regs);
1855 /* Mark everything born in this instruction as live. */
1857 note_stores (PATTERN (first), reg_becomes_live,
1858 &c->dead_or_set);
1860 else
1861 COPY_REG_SET (&c->live_throughout, live_relevant_regs);
1863 if (INSN_P (first))
1865 rtx link;
1867 /* Mark anything that is set in this insn and then unused as dying. */
1869 for (link = REG_NOTES (first); link; link = XEXP (link, 1))
1870 if (REG_NOTE_KIND (link) == REG_UNUSED
1871 && REG_P (XEXP (link, 0)))
1872 reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)),
1877 if (first == BB_END (b))
1878 b = b->next_bb;
1880 /* Stop after we pass the end of the last basic block. Verify that
1881 no real insns are after the end of the last basic block.
1883 We may want to reorganize the loop somewhat since this test should
1884 always be the right exit test. Allow an ADDR_VEC or ADDR_DIF_VEC if
1885 the previous real insn is a JUMP_INSN. */
1886 if (b == EXIT_BLOCK_PTR)
1888 for (first = NEXT_INSN (first) ; first; first = NEXT_INSN (first))
1889 if (INSN_P (first)
1890 && GET_CODE (PATTERN (first)) != USE
1891 && ! ((GET_CODE (PATTERN (first)) == ADDR_VEC
1892 || GET_CODE (PATTERN (first)) == ADDR_DIFF_VEC)
1893 && prev_real_insn (first) != 0
1894 && JUMP_P (prev_real_insn (first))))
1895 abort ();
1896 break;
1899 FREE_REG_SET (live_relevant_regs);
1900 *p = 0;
1903 /* Print debugging trace information if -dg switch is given,
1904 showing the information on which the allocation decisions are based. */
1906 static void
1907 dump_conflicts (FILE *file)
1909 int i;
1910 int has_preferences;
1911 int nregs;
1912 nregs = 0;
1913 for (i = 0; i < max_allocno; i++)
1915 if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
1916 continue;
1917 nregs++;
1919 fprintf (file, ";; %d regs to allocate:", nregs);
1920 for (i = 0; i < max_allocno; i++)
1922 int j;
1923 if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
1924 continue;
1925 fprintf (file, " %d", allocno[allocno_order[i]].reg);
1926 for (j = 0; j < max_regno; j++)
1927 if (reg_allocno[j] == allocno_order[i]
1928 && j != allocno[allocno_order[i]].reg)
1929 fprintf (file, "+%d", j);
1930 if (allocno[allocno_order[i]].size != 1)
1931 fprintf (file, " (%d)", allocno[allocno_order[i]].size);
1933 fprintf (file, "\n");
1935 for (i = 0; i < max_allocno; i++)
1937 int j;
1938 fprintf (file, ";; %d conflicts:", allocno[i].reg);
1939 for (j = 0; j < max_allocno; j++)
1940 if (CONFLICTP (j, i))
1941 fprintf (file, " %d", allocno[j].reg);
1942 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1943 if (TEST_HARD_REG_BIT (allocno[i].hard_reg_conflicts, j))
1944 fprintf (file, " %d", j);
1945 fprintf (file, "\n");
1947 has_preferences = 0;
1948 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1949 if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j))
1950 has_preferences = 1;
1952 if (! has_preferences)
1953 continue;
1954 fprintf (file, ";; %d preferences:", allocno[i].reg);
1955 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1956 if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j))
1957 fprintf (file, " %d", j);
1958 fprintf (file, "\n");
1960 fprintf (file, "\n");
1963 void
1964 dump_global_regs (FILE *file)
1966 int i, j;
1968 fprintf (file, ";; Register dispositions:\n");
1969 for (i = FIRST_PSEUDO_REGISTER, j = 0; i < max_regno; i++)
1970 if (reg_renumber[i] >= 0)
1972 fprintf (file, "%d in %d ", i, reg_renumber[i]);
1973 if (++j % 6 == 0)
1974 fprintf (file, "\n");
1977 fprintf (file, "\n\n;; Hard regs used: ");
1978 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1979 if (regs_ever_live[i])
1980 fprintf (file, " %d", i);
1981 fprintf (file, "\n\n");
1986 /* This page contains code to make live information more accurate.
1987 The accurate register liveness at program point P means:
1988 o there is a path from P to usage of the register and the
1989 register is not redefined or killed on the path.
1990 o register at P is partially available, i.e. there is a path from
1991 a register definition to the point P and the register is not
1992 killed (clobbered) on the path
1994 The standard GCC live information means only the first condition.
1995 Without the partial availability, there will be more register
1996 conflicts and as a consequence worse register allocation. The
1997 typical example where the information can be different is a
1998 register initialized in the loop at the basic block preceding the
1999 loop in CFG. */
2001 /* The following structure contains basic block data flow information
2002 used to calculate partial availability of registers. */
2004 struct bb_info
2006 /* The basic block reverse post-order number. */
2007 int rts_number;
2008 /* Registers used uninitialized in an insn in which there is an
2009 early clobbered register might get the same hard register. */
2010 bitmap earlyclobber;
2011 /* Registers correspondingly killed (clobbered) and defined but not
2012 killed afterward in the basic block. */
2013 bitmap killed, avloc;
2014 /* Registers partially available correspondingly at the start and
2015 end of the basic block. */
2016 bitmap pavin, pavout;
2019 /* Macros for accessing data flow information of basic blocks. */
2021 #define BB_INFO(BB) ((struct bb_info *) (BB)->aux)
2022 #define BB_INFO_BY_INDEX(N) BB_INFO (BASIC_BLOCK(N))
2024 /* The function allocates the info structures of each basic block. It
2025 also initialized PAVIN and PAVOUT as if all hard registers were
2026 partially available. */
2028 static void
2029 allocate_bb_info (void)
2031 int i;
2032 basic_block bb;
2033 struct bb_info *bb_info;
2034 bitmap init;
2036 alloc_aux_for_blocks (sizeof (struct bb_info));
2037 init = BITMAP_XMALLOC ();
2038 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2039 bitmap_set_bit (init, i);
2040 FOR_EACH_BB (bb)
2042 bb_info = bb->aux;
2043 bb_info->earlyclobber = BITMAP_XMALLOC ();
2044 bb_info->avloc = BITMAP_XMALLOC ();
2045 bb_info->killed = BITMAP_XMALLOC ();
2046 bb_info->pavin = BITMAP_XMALLOC ();
2047 bb_info->pavout = BITMAP_XMALLOC ();
2048 bitmap_copy (bb_info->pavin, init);
2049 bitmap_copy (bb_info->pavout, init);
2051 BITMAP_XFREE (init);
2054 /* The function frees the allocated info of all basic blocks. */
2056 static void
2057 free_bb_info (void)
2059 basic_block bb;
2060 struct bb_info *bb_info;
2062 FOR_EACH_BB (bb)
2064 bb_info = BB_INFO (bb);
2065 BITMAP_XFREE (bb_info->pavout);
2066 BITMAP_XFREE (bb_info->pavin);
2067 BITMAP_XFREE (bb_info->killed);
2068 BITMAP_XFREE (bb_info->avloc);
2069 BITMAP_XFREE (bb_info->earlyclobber);
2071 free_aux_for_blocks ();
2074 /* The function modifies local info for register REG being changed in
2075 SETTER. DATA is used to pass the current basic block info. */
2077 static void
2078 mark_reg_change (rtx reg, rtx setter, void *data)
2080 int regno;
2081 basic_block bb = data;
2082 struct bb_info *bb_info = BB_INFO (bb);
2084 if (GET_CODE (reg) == SUBREG)
2085 reg = SUBREG_REG (reg);
2087 if (!REG_P (reg))
2088 return;
2090 regno = REGNO (reg);
2091 bitmap_set_bit (bb_info->killed, regno);
2093 if (GET_CODE (setter) != CLOBBER)
2094 bitmap_set_bit (bb_info->avloc, regno);
2095 else
2096 bitmap_clear_bit (bb_info->avloc, regno);
2099 /* Classes of registers which could be early clobbered in the current
2100 insn. */
2102 static varray_type earlyclobber_regclass;
2104 /* The function stores classes of registers which could be early
2105 clobbered in INSN. */
2107 static void
2108 check_earlyclobber (rtx insn)
2110 int opno;
2112 extract_insn (insn);
2114 VARRAY_POP_ALL (earlyclobber_regclass);
2115 for (opno = 0; opno < recog_data.n_operands; opno++)
2117 char c;
2118 bool amp_p;
2119 int i;
2120 enum reg_class class;
2121 const char *p = recog_data.constraints[opno];
2123 class = NO_REGS;
2124 amp_p = false;
2125 for (;;)
2127 c = *p;
2128 switch (c)
2130 case '=': case '+': case '?':
2131 case '#': case '!':
2132 case '*': case '%':
2133 case 'm': case '<': case '>': case 'V': case 'o':
2134 case 'E': case 'F': case 'G': case 'H':
2135 case 's': case 'i': case 'n':
2136 case 'I': case 'J': case 'K': case 'L':
2137 case 'M': case 'N': case 'O': case 'P':
2138 case 'X':
2139 case '0': case '1': case '2': case '3': case '4':
2140 case '5': case '6': case '7': case '8': case '9':
2141 /* These don't say anything we care about. */
2142 break;
2144 case '&':
2145 amp_p = true;
2146 break;
2147 case '\0':
2148 case ',':
2149 if (amp_p && class != NO_REGS)
2151 for (i = VARRAY_ACTIVE_SIZE (earlyclobber_regclass) - 1;
2152 i >= 0; i--)
2153 if (VARRAY_INT (earlyclobber_regclass, i) == (int) class)
2154 break;
2155 if (i < 0)
2156 VARRAY_PUSH_INT (earlyclobber_regclass, (int) class);
2159 amp_p = false;
2160 class = NO_REGS;
2161 break;
2163 case 'r':
2164 class = GENERAL_REGS;
2165 break;
2167 default:
2168 class = REG_CLASS_FROM_CONSTRAINT (c, p);
2169 break;
2171 if (c == '\0')
2172 break;
2173 p += CONSTRAINT_LEN (c, p);
2178 /* The function returns true if register classes C1 and C2 inetrsect. */
2180 static bool
2181 regclass_intersect (enum reg_class c1, enum reg_class c2)
2183 HARD_REG_SET rs, zero;
2185 CLEAR_HARD_REG_SET (zero);
2186 COPY_HARD_REG_SET(rs, reg_class_contents [c1]);
2187 AND_HARD_REG_SET (rs, reg_class_contents [c2]);
2188 GO_IF_HARD_REG_EQUAL (zero, rs, yes);
2189 return true;
2190 yes:
2191 return false;
2194 /* The function checks that pseudo-register *X has a class
2195 intersecting with the class of pseudo-register could be early
2196 clobbered in the same insn. */
2198 static int
2199 mark_reg_use_for_earlyclobber (rtx *x, void *data ATTRIBUTE_UNUSED)
2201 enum reg_class pref_class, alt_class;
2202 int i, regno;
2203 basic_block bb = data;
2204 struct bb_info *bb_info = BB_INFO (bb);
2206 if (GET_CODE (*x) == REG && REGNO (*x) >= FIRST_PSEUDO_REGISTER)
2208 regno = REGNO (*x);
2209 if (bitmap_bit_p (bb_info->killed, regno)
2210 || bitmap_bit_p (bb_info->avloc, regno))
2211 return 0;
2212 pref_class = reg_preferred_class (regno);
2213 alt_class = reg_alternate_class (regno);
2214 for (i = VARRAY_ACTIVE_SIZE (earlyclobber_regclass) - 1; i >= 0; i--)
2215 if (regclass_intersect (VARRAY_INT (earlyclobber_regclass, i),
2216 pref_class)
2217 || (VARRAY_INT (earlyclobber_regclass, i) != NO_REGS
2218 && regclass_intersect (VARRAY_INT (earlyclobber_regclass, i),
2219 alt_class)))
2221 bitmap_set_bit (bb_info->earlyclobber, regno);
2222 break;
2225 return 0;
2228 /* The function processes all pseudo-registers in *X with the aid of
2229 previous function. */
2231 static void
2232 mark_reg_use_for_earlyclobber_1 (rtx *x, void *data)
2234 for_each_rtx (x, mark_reg_use_for_earlyclobber, data);
2237 /* The function calculates local info for each basic block. */
2239 static void
2240 calculate_local_reg_bb_info (void)
2242 basic_block bb;
2243 rtx insn, bound;
2245 VARRAY_INT_INIT (earlyclobber_regclass, 20,
2246 "classes of registers early clobbered in an insn");
2247 FOR_EACH_BB (bb)
2249 bound = NEXT_INSN (BB_END (bb));
2250 for (insn = BB_HEAD (bb); insn != bound; insn = NEXT_INSN (insn))
2251 if (INSN_P (insn))
2253 note_stores (PATTERN (insn), mark_reg_change, bb);
2254 check_earlyclobber (insn);
2255 note_uses (&PATTERN (insn), mark_reg_use_for_earlyclobber_1, bb);
2260 /* The function sets up reverse post-order number of each basic
2261 block. */
2263 static void
2264 set_up_bb_rts_numbers (void)
2266 int i;
2267 int *rts_order;
2269 rts_order = xmalloc (sizeof (int) * n_basic_blocks);
2270 flow_reverse_top_sort_order_compute (rts_order);
2271 for (i = 0; i < n_basic_blocks; i++)
2272 BB_INFO_BY_INDEX (rts_order [i])->rts_number = i;
2273 free (rts_order);
2276 /* Compare function for sorting blocks in reverse postorder. */
2278 static int
2279 rpost_cmp (const void *bb1, const void *bb2)
2281 basic_block b1 = *(basic_block *) bb1, b2 = *(basic_block *) bb2;
2283 return BB_INFO (b2)->rts_number - BB_INFO (b1)->rts_number;
2286 /* The function calculates partial availability of registers. The
2287 function calculates partial availability at the end of basic block
2288 BB by propagating partial availability at end of predecessor basic
2289 block PRED. The function returns true if the partial availability
2290 at the end of BB has been changed or if CHANGED_P. We have the
2291 following equations:
2293 bb.pavin = empty for entry block | union (pavout of predecessors)
2294 bb.pavout = union (bb.pavin - b.killed, bb.avloc) */
2296 static bool
2297 modify_bb_reg_pav (basic_block bb, basic_block pred, bool changed_p)
2299 struct bb_info *bb_info;
2300 bitmap bb_pavin, bb_pavout;
2302 bb_info = BB_INFO (bb);
2303 bb_pavin = bb_info->pavin;
2304 bb_pavout = bb_info->pavout;
2305 if (pred->index != ENTRY_BLOCK)
2306 bitmap_a_or_b (bb_pavin, bb_pavin, BB_INFO (pred)->pavout);
2307 changed_p |= bitmap_union_of_diff (bb_pavout, bb_info->avloc,
2308 bb_pavin, bb_info->killed);
2309 return changed_p;
2312 /* The function calculates partial register availability. */
2314 static void
2315 calculate_reg_pav (void)
2317 basic_block bb, succ;
2318 edge e;
2319 bool changed_p;
2320 int i, nel;
2321 varray_type bbs, new_bbs, temp;
2322 basic_block *bb_array;
2323 sbitmap wset;
2325 VARRAY_BB_INIT (bbs, n_basic_blocks, "basic blocks");
2326 VARRAY_BB_INIT (new_bbs, n_basic_blocks, "basic blocks for the next iter.");
2327 FOR_EACH_BB (bb)
2329 VARRAY_PUSH_BB (bbs, bb);
2331 wset = sbitmap_alloc (n_basic_blocks + 1);
2332 while (VARRAY_ACTIVE_SIZE (bbs))
2334 bb_array = &VARRAY_BB (bbs, 0);
2335 nel = VARRAY_ACTIVE_SIZE (bbs);
2336 qsort (bb_array, nel, sizeof (basic_block), rpost_cmp);
2337 sbitmap_zero (wset);
2338 for (i = 0; i < nel; i++)
2340 bb = bb_array [i];
2341 changed_p = 0;
2342 for (e = bb->pred; e; e = e->pred_next)
2343 changed_p = modify_bb_reg_pav (bb, e->src, changed_p);
2344 if (changed_p)
2345 for (e = bb->succ; e; e = e->succ_next)
2347 succ = e->dest;
2348 if (succ->index != EXIT_BLOCK && !TEST_BIT (wset, succ->index))
2350 SET_BIT (wset, succ->index);
2351 VARRAY_PUSH_BB (new_bbs, succ);
2355 temp = bbs;
2356 bbs = new_bbs;
2357 new_bbs = temp;
2358 VARRAY_POP_ALL (new_bbs);
2360 sbitmap_free (wset);
2363 /* The following function makes live information more accurate by
2364 modifying global_live_at_start and global_live_at_end of basic
2365 blocks. After the function call a register lives at a program
2366 point only if it is initialized on a path from CFG entry to the
2367 program point. The standard GCC life analysis permits registers to
2368 live uninitialized. */
2370 static void
2371 make_accurate_live_analysis (void)
2373 basic_block bb;
2374 struct bb_info *bb_info;
2376 max_regno = max_reg_num ();
2377 compact_blocks ();
2378 allocate_bb_info ();
2379 calculate_local_reg_bb_info ();
2380 set_up_bb_rts_numbers ();
2381 calculate_reg_pav ();
2382 FOR_EACH_BB (bb)
2384 bb_info = BB_INFO (bb);
2386 /* Reload can assign the same hard register to uninitialized
2387 pseudo-register and early clobbered pseudo-register in an
2388 insn if the pseudo-register is used first time in given BB
2389 and not lived at the BB start. To prevent this we don't
2390 change life information for such pseudo-registers. */
2391 bitmap_a_or_b (bb_info->pavin, bb_info->pavin, bb_info->earlyclobber);
2392 bitmap_a_and_b (bb->global_live_at_start, bb->global_live_at_start,
2393 bb_info->pavin);
2394 bitmap_a_and_b (bb->global_live_at_end, bb->global_live_at_end,
2395 bb_info->pavout);
2397 free_bb_info ();