1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2017 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
31 #include "alloc-pool.h"
32 #include "tree-pass.h"
36 #include "stringpool.h"
37 #include "tree-ssanames.h"
41 #include "gimple-pretty-print.h"
43 #include "fold-const.h"
46 #include "gimple-iterator.h"
48 #include "stor-layout.h"
49 #include "tree-iterator.h"
50 #include "stringpool.h"
57 #include "langhooks.h"
59 #include "gimple-builder.h"
60 #include "gimple-fold.h"
65 #include "tree-inline.h"
67 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
68 with <2x slowdown on average.
70 The tool consists of two parts:
71 instrumentation module (this file) and a run-time library.
72 The instrumentation module adds a run-time check before every memory insn.
73 For a 8- or 16- byte load accessing address X:
74 ShadowAddr = (X >> 3) + Offset
75 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
77 __asan_report_load8(X);
78 For a load of N bytes (N=1, 2 or 4) from address X:
79 ShadowAddr = (X >> 3) + Offset
80 ShadowValue = *(char*)ShadowAddr;
82 if ((X & 7) + N - 1 > ShadowValue)
83 __asan_report_loadN(X);
84 Stores are instrumented similarly, but using __asan_report_storeN functions.
85 A call too __asan_init_vN() is inserted to the list of module CTORs.
86 N is the version number of the AddressSanitizer API. The changes between the
87 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
89 The run-time library redefines malloc (so that redzone are inserted around
90 the allocated memory) and free (so that reuse of free-ed memory is delayed),
91 provides __asan_report* and __asan_init_vN functions.
94 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
96 The current implementation supports detection of out-of-bounds and
97 use-after-free in the heap, on the stack and for global variables.
99 [Protection of stack variables]
101 To understand how detection of out-of-bounds and use-after-free works
102 for stack variables, lets look at this example on x86_64 where the
103 stack grows downward:
117 For this function, the stack protected by asan will be organized as
118 follows, from the top of the stack to the bottom:
120 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
122 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
123 the next slot be 32 bytes aligned; this one is called Partial
124 Redzone; this 32 bytes alignment is an asan constraint]
126 Slot 3/ [24 bytes for variable 'a']
128 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
130 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
132 Slot 6/ [8 bytes for variable 'b']
134 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
137 The 32 bytes of LEFT red zone at the bottom of the stack can be
140 1/ The first 8 bytes contain a magical asan number that is always
143 2/ The following 8 bytes contains a pointer to a string (to be
144 parsed at runtime by the runtime asan library), which format is
147 "<function-name> <space> <num-of-variables-on-the-stack>
148 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
149 <length-of-var-in-bytes> ){n} "
151 where '(...){n}' means the content inside the parenthesis occurs 'n'
152 times, with 'n' being the number of variables on the stack.
154 3/ The following 8 bytes contain the PC of the current function which
155 will be used by the run-time library to print an error message.
157 4/ The following 8 bytes are reserved for internal use by the run-time.
159 The shadow memory for that stack layout is going to look like this:
161 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
162 The F1 byte pattern is a magic number called
163 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
164 the memory for that shadow byte is part of a the LEFT red zone
165 intended to seat at the bottom of the variables on the stack.
167 - content of shadow memory 8 bytes for slots 6 and 5:
168 0xF4F4F400. The F4 byte pattern is a magic number
169 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
170 memory region for this shadow byte is a PARTIAL red zone
171 intended to pad a variable A, so that the slot following
172 {A,padding} is 32 bytes aligned.
174 Note that the fact that the least significant byte of this
175 shadow memory content is 00 means that 8 bytes of its
176 corresponding memory (which corresponds to the memory of
177 variable 'b') is addressable.
179 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
180 The F2 byte pattern is a magic number called
181 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
182 region for this shadow byte is a MIDDLE red zone intended to
183 seat between two 32 aligned slots of {variable,padding}.
185 - content of shadow memory 8 bytes for slot 3 and 2:
186 0xF4000000. This represents is the concatenation of
187 variable 'a' and the partial red zone following it, like what we
188 had for variable 'b'. The least significant 3 bytes being 00
189 means that the 3 bytes of variable 'a' are addressable.
191 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
192 The F3 byte pattern is a magic number called
193 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
194 region for this shadow byte is a RIGHT red zone intended to seat
195 at the top of the variables of the stack.
197 Note that the real variable layout is done in expand_used_vars in
198 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
199 stack variables as well as the different red zones, emits some
200 prologue code to populate the shadow memory as to poison (mark as
201 non-accessible) the regions of the red zones and mark the regions of
202 stack variables as accessible, and emit some epilogue code to
203 un-poison (mark as accessible) the regions of red zones right before
206 [Protection of global variables]
208 The basic idea is to insert a red zone between two global variables
209 and install a constructor function that calls the asan runtime to do
210 the populating of the relevant shadow memory regions at load time.
212 So the global variables are laid out as to insert a red zone between
213 them. The size of the red zones is so that each variable starts on a
216 Then a constructor function is installed so that, for each global
217 variable, it calls the runtime asan library function
218 __asan_register_globals_with an instance of this type:
222 // Address of the beginning of the global variable.
225 // Initial size of the global variable.
228 // Size of the global variable + size of the red zone. This
229 // size is 32 bytes aligned.
230 uptr __size_with_redzone;
232 // Name of the global variable.
235 // Name of the module where the global variable is declared.
236 const void *__module_name;
238 // 1 if it has dynamic initialization, 0 otherwise.
239 uptr __has_dynamic_init;
241 // A pointer to struct that contains source location, could be NULL.
242 __asan_global_source_location *__location;
245 A destructor function that calls the runtime asan library function
246 _asan_unregister_globals is also installed. */
248 static unsigned HOST_WIDE_INT asan_shadow_offset_value
;
249 static bool asan_shadow_offset_computed
;
250 static vec
<char *> sanitized_sections
;
251 static tree last_alloca_addr
;
253 /* Set of variable declarations that are going to be guarded by
254 use-after-scope sanitizer. */
256 static hash_set
<tree
> *asan_handled_variables
= NULL
;
258 hash_set
<tree
> *asan_used_labels
= NULL
;
260 /* Sets shadow offset to value in string VAL. */
263 set_asan_shadow_offset (const char *val
)
268 #ifdef HAVE_LONG_LONG
269 asan_shadow_offset_value
= strtoull (val
, &endp
, 0);
271 asan_shadow_offset_value
= strtoul (val
, &endp
, 0);
273 if (!(*val
!= '\0' && *endp
== '\0' && errno
== 0))
276 asan_shadow_offset_computed
= true;
281 /* Set list of user-defined sections that need to be sanitized. */
284 set_sanitized_sections (const char *sections
)
288 FOR_EACH_VEC_ELT (sanitized_sections
, i
, pat
)
290 sanitized_sections
.truncate (0);
292 for (const char *s
= sections
; *s
; )
295 for (end
= s
; *end
&& *end
!= ','; ++end
);
296 size_t len
= end
- s
;
297 sanitized_sections
.safe_push (xstrndup (s
, len
));
298 s
= *end
? end
+ 1 : end
;
303 asan_mark_p (gimple
*stmt
, enum asan_mark_flags flag
)
305 return (gimple_call_internal_p (stmt
, IFN_ASAN_MARK
)
306 && tree_to_uhwi (gimple_call_arg (stmt
, 0)) == flag
);
310 asan_sanitize_stack_p (void)
312 return (sanitize_flags_p (SANITIZE_ADDRESS
) && ASAN_STACK
);
316 asan_sanitize_allocas_p (void)
318 return (asan_sanitize_stack_p () && ASAN_PROTECT_ALLOCAS
);
321 /* Checks whether section SEC should be sanitized. */
324 section_sanitized_p (const char *sec
)
328 FOR_EACH_VEC_ELT (sanitized_sections
, i
, pat
)
329 if (fnmatch (pat
, sec
, FNM_PERIOD
) == 0)
334 /* Returns Asan shadow offset. */
336 static unsigned HOST_WIDE_INT
337 asan_shadow_offset ()
339 if (!asan_shadow_offset_computed
)
341 asan_shadow_offset_computed
= true;
342 asan_shadow_offset_value
= targetm
.asan_shadow_offset ();
344 return asan_shadow_offset_value
;
347 alias_set_type asan_shadow_set
= -1;
349 /* Pointer types to 1, 2 or 4 byte integers in shadow memory. A separate
350 alias set is used for all shadow memory accesses. */
351 static GTY(()) tree shadow_ptr_types
[3];
353 /* Decl for __asan_option_detect_stack_use_after_return. */
354 static GTY(()) tree asan_detect_stack_use_after_return
;
356 /* Hashtable support for memory references used by gimple
359 /* This type represents a reference to a memory region. */
362 /* The expression of the beginning of the memory region. */
365 /* The size of the access. */
366 HOST_WIDE_INT access_size
;
369 object_allocator
<asan_mem_ref
> asan_mem_ref_pool ("asan_mem_ref");
371 /* Initializes an instance of asan_mem_ref. */
374 asan_mem_ref_init (asan_mem_ref
*ref
, tree start
, HOST_WIDE_INT access_size
)
377 ref
->access_size
= access_size
;
380 /* Allocates memory for an instance of asan_mem_ref into the memory
381 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
382 START is the address of (or the expression pointing to) the
383 beginning of memory reference. ACCESS_SIZE is the size of the
384 access to the referenced memory. */
387 asan_mem_ref_new (tree start
, HOST_WIDE_INT access_size
)
389 asan_mem_ref
*ref
= asan_mem_ref_pool
.allocate ();
391 asan_mem_ref_init (ref
, start
, access_size
);
395 /* This builds and returns a pointer to the end of the memory region
396 that starts at START and of length LEN. */
399 asan_mem_ref_get_end (tree start
, tree len
)
401 if (len
== NULL_TREE
|| integer_zerop (len
))
404 if (!ptrofftype_p (len
))
405 len
= convert_to_ptrofftype (len
);
407 return fold_build2 (POINTER_PLUS_EXPR
, TREE_TYPE (start
), start
, len
);
410 /* Return a tree expression that represents the end of the referenced
411 memory region. Beware that this function can actually build a new
415 asan_mem_ref_get_end (const asan_mem_ref
*ref
, tree len
)
417 return asan_mem_ref_get_end (ref
->start
, len
);
420 struct asan_mem_ref_hasher
: nofree_ptr_hash
<asan_mem_ref
>
422 static inline hashval_t
hash (const asan_mem_ref
*);
423 static inline bool equal (const asan_mem_ref
*, const asan_mem_ref
*);
426 /* Hash a memory reference. */
429 asan_mem_ref_hasher::hash (const asan_mem_ref
*mem_ref
)
431 return iterative_hash_expr (mem_ref
->start
, 0);
434 /* Compare two memory references. We accept the length of either
435 memory references to be NULL_TREE. */
438 asan_mem_ref_hasher::equal (const asan_mem_ref
*m1
,
439 const asan_mem_ref
*m2
)
441 return operand_equal_p (m1
->start
, m2
->start
, 0);
444 static hash_table
<asan_mem_ref_hasher
> *asan_mem_ref_ht
;
446 /* Returns a reference to the hash table containing memory references.
447 This function ensures that the hash table is created. Note that
448 this hash table is updated by the function
449 update_mem_ref_hash_table. */
451 static hash_table
<asan_mem_ref_hasher
> *
452 get_mem_ref_hash_table ()
454 if (!asan_mem_ref_ht
)
455 asan_mem_ref_ht
= new hash_table
<asan_mem_ref_hasher
> (10);
457 return asan_mem_ref_ht
;
460 /* Clear all entries from the memory references hash table. */
463 empty_mem_ref_hash_table ()
466 asan_mem_ref_ht
->empty ();
469 /* Free the memory references hash table. */
472 free_mem_ref_resources ()
474 delete asan_mem_ref_ht
;
475 asan_mem_ref_ht
= NULL
;
477 asan_mem_ref_pool
.release ();
480 /* Return true iff the memory reference REF has been instrumented. */
483 has_mem_ref_been_instrumented (tree ref
, HOST_WIDE_INT access_size
)
486 asan_mem_ref_init (&r
, ref
, access_size
);
488 asan_mem_ref
*saved_ref
= get_mem_ref_hash_table ()->find (&r
);
489 return saved_ref
&& saved_ref
->access_size
>= access_size
;
492 /* Return true iff the memory reference REF has been instrumented. */
495 has_mem_ref_been_instrumented (const asan_mem_ref
*ref
)
497 return has_mem_ref_been_instrumented (ref
->start
, ref
->access_size
);
500 /* Return true iff access to memory region starting at REF and of
501 length LEN has been instrumented. */
504 has_mem_ref_been_instrumented (const asan_mem_ref
*ref
, tree len
)
506 HOST_WIDE_INT size_in_bytes
507 = tree_fits_shwi_p (len
) ? tree_to_shwi (len
) : -1;
509 return size_in_bytes
!= -1
510 && has_mem_ref_been_instrumented (ref
->start
, size_in_bytes
);
513 /* Set REF to the memory reference present in a gimple assignment
514 ASSIGNMENT. Return true upon successful completion, false
518 get_mem_ref_of_assignment (const gassign
*assignment
,
522 gcc_assert (gimple_assign_single_p (assignment
));
524 if (gimple_store_p (assignment
)
525 && !gimple_clobber_p (assignment
))
527 ref
->start
= gimple_assign_lhs (assignment
);
528 *ref_is_store
= true;
530 else if (gimple_assign_load_p (assignment
))
532 ref
->start
= gimple_assign_rhs1 (assignment
);
533 *ref_is_store
= false;
538 ref
->access_size
= int_size_in_bytes (TREE_TYPE (ref
->start
));
542 /* Return address of last allocated dynamic alloca. */
545 get_last_alloca_addr ()
547 if (last_alloca_addr
)
548 return last_alloca_addr
;
550 last_alloca_addr
= create_tmp_reg (ptr_type_node
, "last_alloca_addr");
551 gassign
*g
= gimple_build_assign (last_alloca_addr
, null_pointer_node
);
552 edge e
= single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
553 gsi_insert_on_edge_immediate (e
, g
);
554 return last_alloca_addr
;
557 /* Insert __asan_allocas_unpoison (top, bottom) call after
558 __builtin_stack_restore (new_sp) call.
559 The pseudocode of this routine should look like this:
560 __builtin_stack_restore (new_sp);
561 top = last_alloca_addr;
563 __asan_allocas_unpoison (top, bot);
564 last_alloca_addr = new_sp;
565 In general, we can't use new_sp as bot parameter because on some
566 architectures SP has non zero offset from dynamic stack area. Moreover, on
567 some architectures this offset (STACK_DYNAMIC_OFFSET) becomes known for each
568 particular function only after all callees were expanded to rtl.
569 The most noticeable example is PowerPC{,64}, see
570 http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html#DYNAM-STACK.
571 To overcome the issue we use following trick: pass new_sp as a second
572 parameter to __asan_allocas_unpoison and rewrite it during expansion with
573 virtual_dynamic_stack_rtx later in expand_asan_emit_allocas_unpoison
578 handle_builtin_stack_restore (gcall
*call
, gimple_stmt_iterator
*iter
)
580 if (!iter
|| !asan_sanitize_allocas_p ())
583 tree last_alloca
= get_last_alloca_addr ();
584 tree restored_stack
= gimple_call_arg (call
, 0);
585 tree fn
= builtin_decl_implicit (BUILT_IN_ASAN_ALLOCAS_UNPOISON
);
586 gimple
*g
= gimple_build_call (fn
, 2, last_alloca
, restored_stack
);
587 gsi_insert_after (iter
, g
, GSI_NEW_STMT
);
588 g
= gimple_build_assign (last_alloca
, restored_stack
);
589 gsi_insert_after (iter
, g
, GSI_NEW_STMT
);
592 /* Deploy and poison redzones around __builtin_alloca call. To do this, we
593 should replace this call with another one with changed parameters and
594 replace all its uses with new address, so
595 addr = __builtin_alloca (old_size, align);
597 left_redzone_size = max (align, ASAN_RED_ZONE_SIZE);
598 Following two statements are optimized out if we know that
599 old_size & (ASAN_RED_ZONE_SIZE - 1) == 0, i.e. alloca doesn't need partial
601 misalign = old_size & (ASAN_RED_ZONE_SIZE - 1);
602 partial_redzone_size = ASAN_RED_ZONE_SIZE - misalign;
603 right_redzone_size = ASAN_RED_ZONE_SIZE;
604 additional_size = left_redzone_size + partial_redzone_size +
606 new_size = old_size + additional_size;
607 new_alloca = __builtin_alloca (new_size, max (align, 32))
608 __asan_alloca_poison (new_alloca, old_size)
609 addr = new_alloca + max (align, ASAN_RED_ZONE_SIZE);
610 last_alloca_addr = new_alloca;
611 ADDITIONAL_SIZE is added to make new memory allocation contain not only
612 requested memory, but also left, partial and right redzones as well as some
613 additional space, required by alignment. */
616 handle_builtin_alloca (gcall
*call
, gimple_stmt_iterator
*iter
)
618 if (!iter
|| !asan_sanitize_allocas_p ())
623 const HOST_WIDE_INT redzone_mask
= ASAN_RED_ZONE_SIZE
- 1;
625 tree last_alloca
= get_last_alloca_addr ();
626 tree callee
= gimple_call_fndecl (call
);
627 tree old_size
= gimple_call_arg (call
, 0);
628 tree ptr_type
= gimple_call_lhs (call
) ? TREE_TYPE (gimple_call_lhs (call
))
630 tree partial_size
= NULL_TREE
;
632 = DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA
633 ? 0 : tree_to_uhwi (gimple_call_arg (call
, 1));
635 /* If ALIGN > ASAN_RED_ZONE_SIZE, we embed left redzone into first ALIGN
636 bytes of allocated space. Otherwise, align alloca to ASAN_RED_ZONE_SIZE
638 align
= MAX (align
, ASAN_RED_ZONE_SIZE
* BITS_PER_UNIT
);
640 tree alloca_rz_mask
= build_int_cst (size_type_node
, redzone_mask
);
641 tree redzone_size
= build_int_cst (size_type_node
, ASAN_RED_ZONE_SIZE
);
643 /* Extract lower bits from old_size. */
644 wide_int size_nonzero_bits
= get_nonzero_bits (old_size
);
646 = wi::uhwi (redzone_mask
, wi::get_precision (size_nonzero_bits
));
647 wide_int old_size_lower_bits
= wi::bit_and (size_nonzero_bits
, rz_mask
);
649 /* If alloca size is aligned to ASAN_RED_ZONE_SIZE, we don't need partial
650 redzone. Otherwise, compute its size here. */
651 if (wi::ne_p (old_size_lower_bits
, 0))
653 /* misalign = size & (ASAN_RED_ZONE_SIZE - 1)
654 partial_size = ASAN_RED_ZONE_SIZE - misalign. */
655 g
= gimple_build_assign (make_ssa_name (size_type_node
, NULL
),
656 BIT_AND_EXPR
, old_size
, alloca_rz_mask
);
657 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
658 tree misalign
= gimple_assign_lhs (g
);
659 g
= gimple_build_assign (make_ssa_name (size_type_node
, NULL
), MINUS_EXPR
,
660 redzone_size
, misalign
);
661 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
662 partial_size
= gimple_assign_lhs (g
);
665 /* additional_size = align + ASAN_RED_ZONE_SIZE. */
666 tree additional_size
= build_int_cst (size_type_node
, align
/ BITS_PER_UNIT
667 + ASAN_RED_ZONE_SIZE
);
668 /* If alloca has partial redzone, include it to additional_size too. */
671 /* additional_size += partial_size. */
672 g
= gimple_build_assign (make_ssa_name (size_type_node
), PLUS_EXPR
,
673 partial_size
, additional_size
);
674 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
675 additional_size
= gimple_assign_lhs (g
);
678 /* new_size = old_size + additional_size. */
679 g
= gimple_build_assign (make_ssa_name (size_type_node
), PLUS_EXPR
, old_size
,
681 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
682 tree new_size
= gimple_assign_lhs (g
);
684 /* Build new __builtin_alloca call:
685 new_alloca_with_rz = __builtin_alloca (new_size, align). */
686 tree fn
= builtin_decl_implicit (BUILT_IN_ALLOCA_WITH_ALIGN
);
687 gg
= gimple_build_call (fn
, 2, new_size
,
688 build_int_cst (size_type_node
, align
));
689 tree new_alloca_with_rz
= make_ssa_name (ptr_type
, gg
);
690 gimple_call_set_lhs (gg
, new_alloca_with_rz
);
691 gsi_insert_before (iter
, gg
, GSI_SAME_STMT
);
693 /* new_alloca = new_alloca_with_rz + align. */
694 g
= gimple_build_assign (make_ssa_name (ptr_type
), POINTER_PLUS_EXPR
,
696 build_int_cst (size_type_node
,
697 align
/ BITS_PER_UNIT
));
698 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
699 tree new_alloca
= gimple_assign_lhs (g
);
701 /* Poison newly created alloca redzones:
702 __asan_alloca_poison (new_alloca, old_size). */
703 fn
= builtin_decl_implicit (BUILT_IN_ASAN_ALLOCA_POISON
);
704 gg
= gimple_build_call (fn
, 2, new_alloca
, old_size
);
705 gsi_insert_before (iter
, gg
, GSI_SAME_STMT
);
707 /* Save new_alloca_with_rz value into last_alloca to use it during
708 allocas unpoisoning. */
709 g
= gimple_build_assign (last_alloca
, new_alloca_with_rz
);
710 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
712 /* Finally, replace old alloca ptr with NEW_ALLOCA. */
713 replace_call_with_value (iter
, new_alloca
);
716 /* Return the memory references contained in a gimple statement
717 representing a builtin call that has to do with memory access. */
720 get_mem_refs_of_builtin_call (gcall
*call
,
732 gimple_stmt_iterator
*iter
= NULL
)
734 gcc_checking_assert (gimple_call_builtin_p (call
, BUILT_IN_NORMAL
));
736 tree callee
= gimple_call_fndecl (call
);
737 tree source0
= NULL_TREE
, source1
= NULL_TREE
,
738 dest
= NULL_TREE
, len
= NULL_TREE
;
739 bool is_store
= true, got_reference_p
= false;
740 HOST_WIDE_INT access_size
= 1;
742 *intercepted_p
= asan_intercepted_p ((DECL_FUNCTION_CODE (callee
)));
744 switch (DECL_FUNCTION_CODE (callee
))
746 /* (s, s, n) style memops. */
748 case BUILT_IN_MEMCMP
:
749 source0
= gimple_call_arg (call
, 0);
750 source1
= gimple_call_arg (call
, 1);
751 len
= gimple_call_arg (call
, 2);
754 /* (src, dest, n) style memops. */
756 source0
= gimple_call_arg (call
, 0);
757 dest
= gimple_call_arg (call
, 1);
758 len
= gimple_call_arg (call
, 2);
761 /* (dest, src, n) style memops. */
762 case BUILT_IN_MEMCPY
:
763 case BUILT_IN_MEMCPY_CHK
:
764 case BUILT_IN_MEMMOVE
:
765 case BUILT_IN_MEMMOVE_CHK
:
766 case BUILT_IN_MEMPCPY
:
767 case BUILT_IN_MEMPCPY_CHK
:
768 dest
= gimple_call_arg (call
, 0);
769 source0
= gimple_call_arg (call
, 1);
770 len
= gimple_call_arg (call
, 2);
773 /* (dest, n) style memops. */
775 dest
= gimple_call_arg (call
, 0);
776 len
= gimple_call_arg (call
, 1);
779 /* (dest, x, n) style memops*/
780 case BUILT_IN_MEMSET
:
781 case BUILT_IN_MEMSET_CHK
:
782 dest
= gimple_call_arg (call
, 0);
783 len
= gimple_call_arg (call
, 2);
786 case BUILT_IN_STRLEN
:
787 source0
= gimple_call_arg (call
, 0);
788 len
= gimple_call_lhs (call
);
791 case BUILT_IN_STACK_RESTORE
:
792 handle_builtin_stack_restore (call
, iter
);
795 CASE_BUILT_IN_ALLOCA
:
796 handle_builtin_alloca (call
, iter
);
798 /* And now the __atomic* and __sync builtins.
799 These are handled differently from the classical memory memory
800 access builtins above. */
802 case BUILT_IN_ATOMIC_LOAD_1
:
805 case BUILT_IN_SYNC_FETCH_AND_ADD_1
:
806 case BUILT_IN_SYNC_FETCH_AND_SUB_1
:
807 case BUILT_IN_SYNC_FETCH_AND_OR_1
:
808 case BUILT_IN_SYNC_FETCH_AND_AND_1
:
809 case BUILT_IN_SYNC_FETCH_AND_XOR_1
:
810 case BUILT_IN_SYNC_FETCH_AND_NAND_1
:
811 case BUILT_IN_SYNC_ADD_AND_FETCH_1
:
812 case BUILT_IN_SYNC_SUB_AND_FETCH_1
:
813 case BUILT_IN_SYNC_OR_AND_FETCH_1
:
814 case BUILT_IN_SYNC_AND_AND_FETCH_1
:
815 case BUILT_IN_SYNC_XOR_AND_FETCH_1
:
816 case BUILT_IN_SYNC_NAND_AND_FETCH_1
:
817 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1
:
818 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1
:
819 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1
:
820 case BUILT_IN_SYNC_LOCK_RELEASE_1
:
821 case BUILT_IN_ATOMIC_EXCHANGE_1
:
822 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1
:
823 case BUILT_IN_ATOMIC_STORE_1
:
824 case BUILT_IN_ATOMIC_ADD_FETCH_1
:
825 case BUILT_IN_ATOMIC_SUB_FETCH_1
:
826 case BUILT_IN_ATOMIC_AND_FETCH_1
:
827 case BUILT_IN_ATOMIC_NAND_FETCH_1
:
828 case BUILT_IN_ATOMIC_XOR_FETCH_1
:
829 case BUILT_IN_ATOMIC_OR_FETCH_1
:
830 case BUILT_IN_ATOMIC_FETCH_ADD_1
:
831 case BUILT_IN_ATOMIC_FETCH_SUB_1
:
832 case BUILT_IN_ATOMIC_FETCH_AND_1
:
833 case BUILT_IN_ATOMIC_FETCH_NAND_1
:
834 case BUILT_IN_ATOMIC_FETCH_XOR_1
:
835 case BUILT_IN_ATOMIC_FETCH_OR_1
:
839 case BUILT_IN_ATOMIC_LOAD_2
:
842 case BUILT_IN_SYNC_FETCH_AND_ADD_2
:
843 case BUILT_IN_SYNC_FETCH_AND_SUB_2
:
844 case BUILT_IN_SYNC_FETCH_AND_OR_2
:
845 case BUILT_IN_SYNC_FETCH_AND_AND_2
:
846 case BUILT_IN_SYNC_FETCH_AND_XOR_2
:
847 case BUILT_IN_SYNC_FETCH_AND_NAND_2
:
848 case BUILT_IN_SYNC_ADD_AND_FETCH_2
:
849 case BUILT_IN_SYNC_SUB_AND_FETCH_2
:
850 case BUILT_IN_SYNC_OR_AND_FETCH_2
:
851 case BUILT_IN_SYNC_AND_AND_FETCH_2
:
852 case BUILT_IN_SYNC_XOR_AND_FETCH_2
:
853 case BUILT_IN_SYNC_NAND_AND_FETCH_2
:
854 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2
:
855 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2
:
856 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2
:
857 case BUILT_IN_SYNC_LOCK_RELEASE_2
:
858 case BUILT_IN_ATOMIC_EXCHANGE_2
:
859 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2
:
860 case BUILT_IN_ATOMIC_STORE_2
:
861 case BUILT_IN_ATOMIC_ADD_FETCH_2
:
862 case BUILT_IN_ATOMIC_SUB_FETCH_2
:
863 case BUILT_IN_ATOMIC_AND_FETCH_2
:
864 case BUILT_IN_ATOMIC_NAND_FETCH_2
:
865 case BUILT_IN_ATOMIC_XOR_FETCH_2
:
866 case BUILT_IN_ATOMIC_OR_FETCH_2
:
867 case BUILT_IN_ATOMIC_FETCH_ADD_2
:
868 case BUILT_IN_ATOMIC_FETCH_SUB_2
:
869 case BUILT_IN_ATOMIC_FETCH_AND_2
:
870 case BUILT_IN_ATOMIC_FETCH_NAND_2
:
871 case BUILT_IN_ATOMIC_FETCH_XOR_2
:
872 case BUILT_IN_ATOMIC_FETCH_OR_2
:
876 case BUILT_IN_ATOMIC_LOAD_4
:
879 case BUILT_IN_SYNC_FETCH_AND_ADD_4
:
880 case BUILT_IN_SYNC_FETCH_AND_SUB_4
:
881 case BUILT_IN_SYNC_FETCH_AND_OR_4
:
882 case BUILT_IN_SYNC_FETCH_AND_AND_4
:
883 case BUILT_IN_SYNC_FETCH_AND_XOR_4
:
884 case BUILT_IN_SYNC_FETCH_AND_NAND_4
:
885 case BUILT_IN_SYNC_ADD_AND_FETCH_4
:
886 case BUILT_IN_SYNC_SUB_AND_FETCH_4
:
887 case BUILT_IN_SYNC_OR_AND_FETCH_4
:
888 case BUILT_IN_SYNC_AND_AND_FETCH_4
:
889 case BUILT_IN_SYNC_XOR_AND_FETCH_4
:
890 case BUILT_IN_SYNC_NAND_AND_FETCH_4
:
891 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4
:
892 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4
:
893 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4
:
894 case BUILT_IN_SYNC_LOCK_RELEASE_4
:
895 case BUILT_IN_ATOMIC_EXCHANGE_4
:
896 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4
:
897 case BUILT_IN_ATOMIC_STORE_4
:
898 case BUILT_IN_ATOMIC_ADD_FETCH_4
:
899 case BUILT_IN_ATOMIC_SUB_FETCH_4
:
900 case BUILT_IN_ATOMIC_AND_FETCH_4
:
901 case BUILT_IN_ATOMIC_NAND_FETCH_4
:
902 case BUILT_IN_ATOMIC_XOR_FETCH_4
:
903 case BUILT_IN_ATOMIC_OR_FETCH_4
:
904 case BUILT_IN_ATOMIC_FETCH_ADD_4
:
905 case BUILT_IN_ATOMIC_FETCH_SUB_4
:
906 case BUILT_IN_ATOMIC_FETCH_AND_4
:
907 case BUILT_IN_ATOMIC_FETCH_NAND_4
:
908 case BUILT_IN_ATOMIC_FETCH_XOR_4
:
909 case BUILT_IN_ATOMIC_FETCH_OR_4
:
913 case BUILT_IN_ATOMIC_LOAD_8
:
916 case BUILT_IN_SYNC_FETCH_AND_ADD_8
:
917 case BUILT_IN_SYNC_FETCH_AND_SUB_8
:
918 case BUILT_IN_SYNC_FETCH_AND_OR_8
:
919 case BUILT_IN_SYNC_FETCH_AND_AND_8
:
920 case BUILT_IN_SYNC_FETCH_AND_XOR_8
:
921 case BUILT_IN_SYNC_FETCH_AND_NAND_8
:
922 case BUILT_IN_SYNC_ADD_AND_FETCH_8
:
923 case BUILT_IN_SYNC_SUB_AND_FETCH_8
:
924 case BUILT_IN_SYNC_OR_AND_FETCH_8
:
925 case BUILT_IN_SYNC_AND_AND_FETCH_8
:
926 case BUILT_IN_SYNC_XOR_AND_FETCH_8
:
927 case BUILT_IN_SYNC_NAND_AND_FETCH_8
:
928 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8
:
929 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8
:
930 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8
:
931 case BUILT_IN_SYNC_LOCK_RELEASE_8
:
932 case BUILT_IN_ATOMIC_EXCHANGE_8
:
933 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8
:
934 case BUILT_IN_ATOMIC_STORE_8
:
935 case BUILT_IN_ATOMIC_ADD_FETCH_8
:
936 case BUILT_IN_ATOMIC_SUB_FETCH_8
:
937 case BUILT_IN_ATOMIC_AND_FETCH_8
:
938 case BUILT_IN_ATOMIC_NAND_FETCH_8
:
939 case BUILT_IN_ATOMIC_XOR_FETCH_8
:
940 case BUILT_IN_ATOMIC_OR_FETCH_8
:
941 case BUILT_IN_ATOMIC_FETCH_ADD_8
:
942 case BUILT_IN_ATOMIC_FETCH_SUB_8
:
943 case BUILT_IN_ATOMIC_FETCH_AND_8
:
944 case BUILT_IN_ATOMIC_FETCH_NAND_8
:
945 case BUILT_IN_ATOMIC_FETCH_XOR_8
:
946 case BUILT_IN_ATOMIC_FETCH_OR_8
:
950 case BUILT_IN_ATOMIC_LOAD_16
:
953 case BUILT_IN_SYNC_FETCH_AND_ADD_16
:
954 case BUILT_IN_SYNC_FETCH_AND_SUB_16
:
955 case BUILT_IN_SYNC_FETCH_AND_OR_16
:
956 case BUILT_IN_SYNC_FETCH_AND_AND_16
:
957 case BUILT_IN_SYNC_FETCH_AND_XOR_16
:
958 case BUILT_IN_SYNC_FETCH_AND_NAND_16
:
959 case BUILT_IN_SYNC_ADD_AND_FETCH_16
:
960 case BUILT_IN_SYNC_SUB_AND_FETCH_16
:
961 case BUILT_IN_SYNC_OR_AND_FETCH_16
:
962 case BUILT_IN_SYNC_AND_AND_FETCH_16
:
963 case BUILT_IN_SYNC_XOR_AND_FETCH_16
:
964 case BUILT_IN_SYNC_NAND_AND_FETCH_16
:
965 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16
:
966 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16
:
967 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16
:
968 case BUILT_IN_SYNC_LOCK_RELEASE_16
:
969 case BUILT_IN_ATOMIC_EXCHANGE_16
:
970 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16
:
971 case BUILT_IN_ATOMIC_STORE_16
:
972 case BUILT_IN_ATOMIC_ADD_FETCH_16
:
973 case BUILT_IN_ATOMIC_SUB_FETCH_16
:
974 case BUILT_IN_ATOMIC_AND_FETCH_16
:
975 case BUILT_IN_ATOMIC_NAND_FETCH_16
:
976 case BUILT_IN_ATOMIC_XOR_FETCH_16
:
977 case BUILT_IN_ATOMIC_OR_FETCH_16
:
978 case BUILT_IN_ATOMIC_FETCH_ADD_16
:
979 case BUILT_IN_ATOMIC_FETCH_SUB_16
:
980 case BUILT_IN_ATOMIC_FETCH_AND_16
:
981 case BUILT_IN_ATOMIC_FETCH_NAND_16
:
982 case BUILT_IN_ATOMIC_FETCH_XOR_16
:
983 case BUILT_IN_ATOMIC_FETCH_OR_16
:
988 dest
= gimple_call_arg (call
, 0);
989 /* DEST represents the address of a memory location.
990 instrument_derefs wants the memory location, so lets
991 dereference the address DEST before handing it to
992 instrument_derefs. */
993 tree type
= build_nonstandard_integer_type (access_size
995 dest
= build2 (MEM_REF
, type
, dest
,
996 build_int_cst (build_pointer_type (char_type_node
), 0));
1001 /* The other builtins memory access are not instrumented in this
1002 function because they either don't have any length parameter,
1003 or their length parameter is just a limit. */
1007 if (len
!= NULL_TREE
)
1009 if (source0
!= NULL_TREE
)
1011 src0
->start
= source0
;
1012 src0
->access_size
= access_size
;
1014 *src0_is_store
= false;
1017 if (source1
!= NULL_TREE
)
1019 src1
->start
= source1
;
1020 src1
->access_size
= access_size
;
1022 *src1_is_store
= false;
1025 if (dest
!= NULL_TREE
)
1028 dst
->access_size
= access_size
;
1030 *dst_is_store
= true;
1033 got_reference_p
= true;
1038 dst
->access_size
= access_size
;
1039 *dst_len
= NULL_TREE
;
1040 *dst_is_store
= is_store
;
1041 *dest_is_deref
= true;
1042 got_reference_p
= true;
1045 return got_reference_p
;
1048 /* Return true iff a given gimple statement has been instrumented.
1049 Note that the statement is "defined" by the memory references it
1053 has_stmt_been_instrumented_p (gimple
*stmt
)
1055 if (gimple_assign_single_p (stmt
))
1059 asan_mem_ref_init (&r
, NULL
, 1);
1061 if (get_mem_ref_of_assignment (as_a
<gassign
*> (stmt
), &r
,
1063 return has_mem_ref_been_instrumented (&r
);
1065 else if (gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
))
1067 asan_mem_ref src0
, src1
, dest
;
1068 asan_mem_ref_init (&src0
, NULL
, 1);
1069 asan_mem_ref_init (&src1
, NULL
, 1);
1070 asan_mem_ref_init (&dest
, NULL
, 1);
1072 tree src0_len
= NULL_TREE
, src1_len
= NULL_TREE
, dest_len
= NULL_TREE
;
1073 bool src0_is_store
= false, src1_is_store
= false,
1074 dest_is_store
= false, dest_is_deref
= false, intercepted_p
= true;
1075 if (get_mem_refs_of_builtin_call (as_a
<gcall
*> (stmt
),
1076 &src0
, &src0_len
, &src0_is_store
,
1077 &src1
, &src1_len
, &src1_is_store
,
1078 &dest
, &dest_len
, &dest_is_store
,
1079 &dest_is_deref
, &intercepted_p
))
1081 if (src0
.start
!= NULL_TREE
1082 && !has_mem_ref_been_instrumented (&src0
, src0_len
))
1085 if (src1
.start
!= NULL_TREE
1086 && !has_mem_ref_been_instrumented (&src1
, src1_len
))
1089 if (dest
.start
!= NULL_TREE
1090 && !has_mem_ref_been_instrumented (&dest
, dest_len
))
1096 else if (is_gimple_call (stmt
) && gimple_store_p (stmt
))
1099 asan_mem_ref_init (&r
, NULL
, 1);
1101 r
.start
= gimple_call_lhs (stmt
);
1102 r
.access_size
= int_size_in_bytes (TREE_TYPE (r
.start
));
1103 return has_mem_ref_been_instrumented (&r
);
1109 /* Insert a memory reference into the hash table. */
1112 update_mem_ref_hash_table (tree ref
, HOST_WIDE_INT access_size
)
1114 hash_table
<asan_mem_ref_hasher
> *ht
= get_mem_ref_hash_table ();
1117 asan_mem_ref_init (&r
, ref
, access_size
);
1119 asan_mem_ref
**slot
= ht
->find_slot (&r
, INSERT
);
1120 if (*slot
== NULL
|| (*slot
)->access_size
< access_size
)
1121 *slot
= asan_mem_ref_new (ref
, access_size
);
1124 /* Initialize shadow_ptr_types array. */
1127 asan_init_shadow_ptr_types (void)
1129 asan_shadow_set
= new_alias_set ();
1130 tree types
[3] = { signed_char_type_node
, short_integer_type_node
,
1131 integer_type_node
};
1133 for (unsigned i
= 0; i
< 3; i
++)
1135 shadow_ptr_types
[i
] = build_distinct_type_copy (types
[i
]);
1136 TYPE_ALIAS_SET (shadow_ptr_types
[i
]) = asan_shadow_set
;
1137 shadow_ptr_types
[i
] = build_pointer_type (shadow_ptr_types
[i
]);
1140 initialize_sanitizer_builtins ();
1143 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
1146 asan_pp_string (pretty_printer
*pp
)
1148 const char *buf
= pp_formatted_text (pp
);
1149 size_t len
= strlen (buf
);
1150 tree ret
= build_string (len
+ 1, buf
);
1152 = build_array_type (TREE_TYPE (shadow_ptr_types
[0]),
1153 build_index_type (size_int (len
)));
1154 TREE_READONLY (ret
) = 1;
1155 TREE_STATIC (ret
) = 1;
1156 return build1 (ADDR_EXPR
, shadow_ptr_types
[0], ret
);
1159 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
1162 asan_shadow_cst (unsigned char shadow_bytes
[4])
1165 unsigned HOST_WIDE_INT val
= 0;
1166 gcc_assert (WORDS_BIG_ENDIAN
== BYTES_BIG_ENDIAN
);
1167 for (i
= 0; i
< 4; i
++)
1168 val
|= (unsigned HOST_WIDE_INT
) shadow_bytes
[BYTES_BIG_ENDIAN
? 3 - i
: i
]
1169 << (BITS_PER_UNIT
* i
);
1170 return gen_int_mode (val
, SImode
);
1173 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
1177 asan_clear_shadow (rtx shadow_mem
, HOST_WIDE_INT len
)
1179 rtx_insn
*insn
, *insns
, *jump
;
1180 rtx_code_label
*top_label
;
1184 clear_storage (shadow_mem
, GEN_INT (len
), BLOCK_OP_NORMAL
);
1185 insns
= get_insns ();
1187 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
1190 if (insn
== NULL_RTX
)
1196 gcc_assert ((len
& 3) == 0);
1197 top_label
= gen_label_rtx ();
1198 addr
= copy_to_mode_reg (Pmode
, XEXP (shadow_mem
, 0));
1199 shadow_mem
= adjust_automodify_address (shadow_mem
, SImode
, addr
, 0);
1200 end
= force_reg (Pmode
, plus_constant (Pmode
, addr
, len
));
1201 emit_label (top_label
);
1203 emit_move_insn (shadow_mem
, const0_rtx
);
1204 tmp
= expand_simple_binop (Pmode
, PLUS
, addr
, gen_int_mode (4, Pmode
), addr
,
1205 true, OPTAB_LIB_WIDEN
);
1207 emit_move_insn (addr
, tmp
);
1208 emit_cmp_and_jump_insns (addr
, end
, LT
, NULL_RTX
, Pmode
, true, top_label
);
1209 jump
= get_last_insn ();
1210 gcc_assert (JUMP_P (jump
));
1211 add_reg_br_prob_note (jump
,
1212 profile_probability::guessed_always ()
1213 .apply_scale (80, 100));
1217 asan_function_start (void)
1219 section
*fnsec
= function_section (current_function_decl
);
1220 switch_to_section (fnsec
);
1221 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LASANPC",
1222 current_function_funcdef_no
);
1225 /* Return number of shadow bytes that are occupied by a local variable
1228 static unsigned HOST_WIDE_INT
1229 shadow_mem_size (unsigned HOST_WIDE_INT size
)
1231 return ROUND_UP (size
, ASAN_SHADOW_GRANULARITY
) / ASAN_SHADOW_GRANULARITY
;
1234 /* Insert code to protect stack vars. The prologue sequence should be emitted
1235 directly, epilogue sequence returned. BASE is the register holding the
1236 stack base, against which OFFSETS array offsets are relative to, OFFSETS
1237 array contains pairs of offsets in reverse order, always the end offset
1238 of some gap that needs protection followed by starting offset,
1239 and DECLS is an array of representative decls for each var partition.
1240 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
1241 elements long (OFFSETS include gap before the first variable as well
1242 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
1243 register which stack vars DECL_RTLs are based on. Either BASE should be
1244 assigned to PBASE, when not doing use after return protection, or
1245 corresponding address based on __asan_stack_malloc* return value. */
1248 asan_emit_stack_protection (rtx base
, rtx pbase
, unsigned int alignb
,
1249 HOST_WIDE_INT
*offsets
, tree
*decls
, int length
)
1251 rtx shadow_base
, shadow_mem
, ret
, mem
, orig_base
;
1252 rtx_code_label
*lab
;
1255 unsigned char shadow_bytes
[4];
1256 HOST_WIDE_INT base_offset
= offsets
[length
- 1];
1257 HOST_WIDE_INT base_align_bias
= 0, offset
, prev_offset
;
1258 HOST_WIDE_INT asan_frame_size
= offsets
[0] - base_offset
;
1259 HOST_WIDE_INT last_offset
, last_size
;
1261 unsigned char cur_shadow_byte
= ASAN_STACK_MAGIC_LEFT
;
1262 tree str_cst
, decl
, id
;
1263 int use_after_return_class
= -1;
1265 if (shadow_ptr_types
[0] == NULL_TREE
)
1266 asan_init_shadow_ptr_types ();
1268 /* First of all, prepare the description string. */
1269 pretty_printer asan_pp
;
1271 pp_decimal_int (&asan_pp
, length
/ 2 - 1);
1272 pp_space (&asan_pp
);
1273 for (l
= length
- 2; l
; l
-= 2)
1275 tree decl
= decls
[l
/ 2 - 1];
1276 pp_wide_integer (&asan_pp
, offsets
[l
] - base_offset
);
1277 pp_space (&asan_pp
);
1278 pp_wide_integer (&asan_pp
, offsets
[l
- 1] - offsets
[l
]);
1279 pp_space (&asan_pp
);
1280 if (DECL_P (decl
) && DECL_NAME (decl
))
1282 pp_decimal_int (&asan_pp
, IDENTIFIER_LENGTH (DECL_NAME (decl
)));
1283 pp_space (&asan_pp
);
1284 pp_tree_identifier (&asan_pp
, DECL_NAME (decl
));
1287 pp_string (&asan_pp
, "9 <unknown>");
1288 pp_space (&asan_pp
);
1290 str_cst
= asan_pp_string (&asan_pp
);
1292 /* Emit the prologue sequence. */
1293 if (asan_frame_size
> 32 && asan_frame_size
<= 65536 && pbase
1294 && ASAN_USE_AFTER_RETURN
)
1296 use_after_return_class
= floor_log2 (asan_frame_size
- 1) - 5;
1297 /* __asan_stack_malloc_N guarantees alignment
1298 N < 6 ? (64 << N) : 4096 bytes. */
1299 if (alignb
> (use_after_return_class
< 6
1300 ? (64U << use_after_return_class
) : 4096U))
1301 use_after_return_class
= -1;
1302 else if (alignb
> ASAN_RED_ZONE_SIZE
&& (asan_frame_size
& (alignb
- 1)))
1303 base_align_bias
= ((asan_frame_size
+ alignb
- 1)
1304 & ~(alignb
- HOST_WIDE_INT_1
)) - asan_frame_size
;
1306 /* Align base if target is STRICT_ALIGNMENT. */
1307 if (STRICT_ALIGNMENT
)
1308 base
= expand_binop (Pmode
, and_optab
, base
,
1309 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode
)
1310 << ASAN_SHADOW_SHIFT
)
1311 / BITS_PER_UNIT
), Pmode
), NULL_RTX
,
1314 if (use_after_return_class
== -1 && pbase
)
1315 emit_move_insn (pbase
, base
);
1317 base
= expand_binop (Pmode
, add_optab
, base
,
1318 gen_int_mode (base_offset
- base_align_bias
, Pmode
),
1319 NULL_RTX
, 1, OPTAB_DIRECT
);
1320 orig_base
= NULL_RTX
;
1321 if (use_after_return_class
!= -1)
1323 if (asan_detect_stack_use_after_return
== NULL_TREE
)
1325 id
= get_identifier ("__asan_option_detect_stack_use_after_return");
1326 decl
= build_decl (BUILTINS_LOCATION
, VAR_DECL
, id
,
1328 SET_DECL_ASSEMBLER_NAME (decl
, id
);
1329 TREE_ADDRESSABLE (decl
) = 1;
1330 DECL_ARTIFICIAL (decl
) = 1;
1331 DECL_IGNORED_P (decl
) = 1;
1332 DECL_EXTERNAL (decl
) = 1;
1333 TREE_STATIC (decl
) = 1;
1334 TREE_PUBLIC (decl
) = 1;
1335 TREE_USED (decl
) = 1;
1336 asan_detect_stack_use_after_return
= decl
;
1338 orig_base
= gen_reg_rtx (Pmode
);
1339 emit_move_insn (orig_base
, base
);
1340 ret
= expand_normal (asan_detect_stack_use_after_return
);
1341 lab
= gen_label_rtx ();
1342 emit_cmp_and_jump_insns (ret
, const0_rtx
, EQ
, NULL_RTX
,
1344 profile_probability::very_likely ());
1345 snprintf (buf
, sizeof buf
, "__asan_stack_malloc_%d",
1346 use_after_return_class
);
1347 ret
= init_one_libfunc (buf
);
1348 ret
= emit_library_call_value (ret
, NULL_RTX
, LCT_NORMAL
, ptr_mode
,
1349 GEN_INT (asan_frame_size
1351 TYPE_MODE (pointer_sized_int_node
));
1352 /* __asan_stack_malloc_[n] returns a pointer to fake stack if succeeded
1353 and NULL otherwise. Check RET value is NULL here and jump over the
1354 BASE reassignment in this case. Otherwise, reassign BASE to RET. */
1355 emit_cmp_and_jump_insns (ret
, const0_rtx
, EQ
, NULL_RTX
,
1357 profile_probability:: very_unlikely ());
1358 ret
= convert_memory_address (Pmode
, ret
);
1359 emit_move_insn (base
, ret
);
1361 emit_move_insn (pbase
, expand_binop (Pmode
, add_optab
, base
,
1362 gen_int_mode (base_align_bias
1363 - base_offset
, Pmode
),
1364 NULL_RTX
, 1, OPTAB_DIRECT
));
1366 mem
= gen_rtx_MEM (ptr_mode
, base
);
1367 mem
= adjust_address (mem
, VOIDmode
, base_align_bias
);
1368 emit_move_insn (mem
, gen_int_mode (ASAN_STACK_FRAME_MAGIC
, ptr_mode
));
1369 mem
= adjust_address (mem
, VOIDmode
, GET_MODE_SIZE (ptr_mode
));
1370 emit_move_insn (mem
, expand_normal (str_cst
));
1371 mem
= adjust_address (mem
, VOIDmode
, GET_MODE_SIZE (ptr_mode
));
1372 ASM_GENERATE_INTERNAL_LABEL (buf
, "LASANPC", current_function_funcdef_no
);
1373 id
= get_identifier (buf
);
1374 decl
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
1375 VAR_DECL
, id
, char_type_node
);
1376 SET_DECL_ASSEMBLER_NAME (decl
, id
);
1377 TREE_ADDRESSABLE (decl
) = 1;
1378 TREE_READONLY (decl
) = 1;
1379 DECL_ARTIFICIAL (decl
) = 1;
1380 DECL_IGNORED_P (decl
) = 1;
1381 TREE_STATIC (decl
) = 1;
1382 TREE_PUBLIC (decl
) = 0;
1383 TREE_USED (decl
) = 1;
1384 DECL_INITIAL (decl
) = decl
;
1385 TREE_ASM_WRITTEN (decl
) = 1;
1386 TREE_ASM_WRITTEN (id
) = 1;
1387 emit_move_insn (mem
, expand_normal (build_fold_addr_expr (decl
)));
1388 shadow_base
= expand_binop (Pmode
, lshr_optab
, base
,
1389 gen_int_shift_amount (Pmode
, ASAN_SHADOW_SHIFT
),
1390 NULL_RTX
, 1, OPTAB_DIRECT
);
1392 = plus_constant (Pmode
, shadow_base
,
1393 asan_shadow_offset ()
1394 + (base_align_bias
>> ASAN_SHADOW_SHIFT
));
1395 gcc_assert (asan_shadow_set
!= -1
1396 && (ASAN_RED_ZONE_SIZE
>> ASAN_SHADOW_SHIFT
) == 4);
1397 shadow_mem
= gen_rtx_MEM (SImode
, shadow_base
);
1398 set_mem_alias_set (shadow_mem
, asan_shadow_set
);
1399 if (STRICT_ALIGNMENT
)
1400 set_mem_align (shadow_mem
, (GET_MODE_ALIGNMENT (SImode
)));
1401 prev_offset
= base_offset
;
1402 for (l
= length
; l
; l
-= 2)
1405 cur_shadow_byte
= ASAN_STACK_MAGIC_RIGHT
;
1406 offset
= offsets
[l
- 1];
1407 if ((offset
- base_offset
) & (ASAN_RED_ZONE_SIZE
- 1))
1411 = base_offset
+ ((offset
- base_offset
)
1412 & ~(ASAN_RED_ZONE_SIZE
- HOST_WIDE_INT_1
));
1413 shadow_mem
= adjust_address (shadow_mem
, VOIDmode
,
1414 (aoff
- prev_offset
)
1415 >> ASAN_SHADOW_SHIFT
);
1417 for (i
= 0; i
< 4; i
++, aoff
+= ASAN_SHADOW_GRANULARITY
)
1420 if (aoff
< offset
- (HOST_WIDE_INT
)ASAN_SHADOW_GRANULARITY
+ 1)
1421 shadow_bytes
[i
] = 0;
1423 shadow_bytes
[i
] = offset
- aoff
;
1426 shadow_bytes
[i
] = ASAN_STACK_MAGIC_MIDDLE
;
1427 emit_move_insn (shadow_mem
, asan_shadow_cst (shadow_bytes
));
1430 while (offset
<= offsets
[l
- 2] - ASAN_RED_ZONE_SIZE
)
1432 shadow_mem
= adjust_address (shadow_mem
, VOIDmode
,
1433 (offset
- prev_offset
)
1434 >> ASAN_SHADOW_SHIFT
);
1435 prev_offset
= offset
;
1436 memset (shadow_bytes
, cur_shadow_byte
, 4);
1437 emit_move_insn (shadow_mem
, asan_shadow_cst (shadow_bytes
));
1438 offset
+= ASAN_RED_ZONE_SIZE
;
1440 cur_shadow_byte
= ASAN_STACK_MAGIC_MIDDLE
;
1442 do_pending_stack_adjust ();
1444 /* Construct epilogue sequence. */
1448 if (use_after_return_class
!= -1)
1450 rtx_code_label
*lab2
= gen_label_rtx ();
1451 char c
= (char) ASAN_STACK_MAGIC_USE_AFTER_RET
;
1452 emit_cmp_and_jump_insns (orig_base
, base
, EQ
, NULL_RTX
,
1454 profile_probability::very_likely ());
1455 shadow_mem
= gen_rtx_MEM (BLKmode
, shadow_base
);
1456 set_mem_alias_set (shadow_mem
, asan_shadow_set
);
1457 mem
= gen_rtx_MEM (ptr_mode
, base
);
1458 mem
= adjust_address (mem
, VOIDmode
, base_align_bias
);
1459 emit_move_insn (mem
, gen_int_mode (ASAN_STACK_RETIRED_MAGIC
, ptr_mode
));
1460 unsigned HOST_WIDE_INT sz
= asan_frame_size
>> ASAN_SHADOW_SHIFT
;
1461 if (use_after_return_class
< 5
1462 && can_store_by_pieces (sz
, builtin_memset_read_str
, &c
,
1463 BITS_PER_UNIT
, true))
1464 store_by_pieces (shadow_mem
, sz
, builtin_memset_read_str
, &c
,
1465 BITS_PER_UNIT
, true, 0);
1466 else if (use_after_return_class
>= 5
1467 || !set_storage_via_setmem (shadow_mem
,
1469 gen_int_mode (c
, QImode
),
1470 BITS_PER_UNIT
, BITS_PER_UNIT
,
1473 snprintf (buf
, sizeof buf
, "__asan_stack_free_%d",
1474 use_after_return_class
);
1475 ret
= init_one_libfunc (buf
);
1476 rtx addr
= convert_memory_address (ptr_mode
, base
);
1477 rtx orig_addr
= convert_memory_address (ptr_mode
, orig_base
);
1478 emit_library_call (ret
, LCT_NORMAL
, ptr_mode
, addr
, ptr_mode
,
1479 GEN_INT (asan_frame_size
+ base_align_bias
),
1480 TYPE_MODE (pointer_sized_int_node
),
1481 orig_addr
, ptr_mode
);
1483 lab
= gen_label_rtx ();
1488 shadow_mem
= gen_rtx_MEM (BLKmode
, shadow_base
);
1489 set_mem_alias_set (shadow_mem
, asan_shadow_set
);
1491 if (STRICT_ALIGNMENT
)
1492 set_mem_align (shadow_mem
, (GET_MODE_ALIGNMENT (SImode
)));
1494 prev_offset
= base_offset
;
1495 last_offset
= base_offset
;
1497 for (l
= length
; l
; l
-= 2)
1499 offset
= base_offset
+ ((offsets
[l
- 1] - base_offset
)
1500 & ~(ASAN_RED_ZONE_SIZE
- HOST_WIDE_INT_1
));
1501 if (last_offset
+ last_size
!= offset
)
1503 shadow_mem
= adjust_address (shadow_mem
, VOIDmode
,
1504 (last_offset
- prev_offset
)
1505 >> ASAN_SHADOW_SHIFT
);
1506 prev_offset
= last_offset
;
1507 asan_clear_shadow (shadow_mem
, last_size
>> ASAN_SHADOW_SHIFT
);
1508 last_offset
= offset
;
1511 last_size
+= base_offset
+ ((offsets
[l
- 2] - base_offset
)
1512 & ~(ASAN_RED_ZONE_SIZE
- HOST_WIDE_INT_1
))
1515 /* Unpoison shadow memory that corresponds to a variable that is
1516 is subject of use-after-return sanitization. */
1519 decl
= decls
[l
/ 2 - 2];
1520 if (asan_handled_variables
!= NULL
1521 && asan_handled_variables
->contains (decl
))
1523 HOST_WIDE_INT size
= offsets
[l
- 3] - offsets
[l
- 2];
1524 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1526 const char *n
= (DECL_NAME (decl
)
1527 ? IDENTIFIER_POINTER (DECL_NAME (decl
))
1529 fprintf (dump_file
, "Unpoisoning shadow stack for variable: "
1530 "%s (%" PRId64
" B)\n", n
, size
);
1533 last_size
+= size
& ~(ASAN_RED_ZONE_SIZE
- HOST_WIDE_INT_1
);
1539 shadow_mem
= adjust_address (shadow_mem
, VOIDmode
,
1540 (last_offset
- prev_offset
)
1541 >> ASAN_SHADOW_SHIFT
);
1542 asan_clear_shadow (shadow_mem
, last_size
>> ASAN_SHADOW_SHIFT
);
1545 /* Clean-up set with instrumented stack variables. */
1546 delete asan_handled_variables
;
1547 asan_handled_variables
= NULL
;
1548 delete asan_used_labels
;
1549 asan_used_labels
= NULL
;
1551 do_pending_stack_adjust ();
1555 insns
= get_insns ();
1560 /* Emit __asan_allocas_unpoison (top, bot) call. The BASE parameter corresponds
1561 to BOT argument, for TOP virtual_stack_dynamic_rtx is used. NEW_SEQUENCE
1562 indicates whether we're emitting new instructions sequence or not. */
1565 asan_emit_allocas_unpoison (rtx top
, rtx bot
, rtx_insn
*before
)
1568 push_to_sequence (before
);
1571 rtx ret
= init_one_libfunc ("__asan_allocas_unpoison");
1572 top
= convert_memory_address (ptr_mode
, top
);
1573 bot
= convert_memory_address (ptr_mode
, bot
);
1574 ret
= emit_library_call_value (ret
, NULL_RTX
, LCT_NORMAL
, ptr_mode
,
1575 top
, ptr_mode
, bot
, ptr_mode
);
1577 do_pending_stack_adjust ();
1578 rtx_insn
*insns
= get_insns ();
1583 /* Return true if DECL, a global var, might be overridden and needs
1584 therefore a local alias. */
1587 asan_needs_local_alias (tree decl
)
1589 return DECL_WEAK (decl
) || !targetm
.binds_local_p (decl
);
1592 /* Return true if DECL, a global var, is an artificial ODR indicator symbol
1593 therefore doesn't need protection. */
1596 is_odr_indicator (tree decl
)
1598 return (DECL_ARTIFICIAL (decl
)
1599 && lookup_attribute ("asan odr indicator", DECL_ATTRIBUTES (decl
)));
1602 /* Return true if DECL is a VAR_DECL that should be protected
1603 by Address Sanitizer, by appending a red zone with protected
1604 shadow memory after it and aligning it to at least
1605 ASAN_RED_ZONE_SIZE bytes. */
1608 asan_protect_global (tree decl
, bool ignore_decl_rtl_set_p
)
1615 if (TREE_CODE (decl
) == STRING_CST
)
1617 /* Instrument all STRING_CSTs except those created
1618 by asan_pp_string here. */
1619 if (shadow_ptr_types
[0] != NULL_TREE
1620 && TREE_CODE (TREE_TYPE (decl
)) == ARRAY_TYPE
1621 && TREE_TYPE (TREE_TYPE (decl
)) == TREE_TYPE (shadow_ptr_types
[0]))
1626 /* TLS vars aren't statically protectable. */
1627 || DECL_THREAD_LOCAL_P (decl
)
1628 /* Externs will be protected elsewhere. */
1629 || DECL_EXTERNAL (decl
)
1630 /* PR sanitizer/81697: For architectures that use section anchors first
1631 call to asan_protect_global may occur before DECL_RTL (decl) is set.
1632 We should ignore DECL_RTL_SET_P then, because otherwise the first call
1633 to asan_protect_global will return FALSE and the following calls on the
1634 same decl after setting DECL_RTL (decl) will return TRUE and we'll end
1635 up with inconsistency at runtime. */
1636 || (!DECL_RTL_SET_P (decl
) && !ignore_decl_rtl_set_p
)
1637 /* Comdat vars pose an ABI problem, we can't know if
1638 the var that is selected by the linker will have
1640 || DECL_ONE_ONLY (decl
)
1641 /* Similarly for common vars. People can use -fno-common.
1642 Note: Linux kernel is built with -fno-common, so we do instrument
1643 globals there even if it is C. */
1644 || (DECL_COMMON (decl
) && TREE_PUBLIC (decl
))
1645 /* Don't protect if using user section, often vars placed
1646 into user section from multiple TUs are then assumed
1647 to be an array of such vars, putting padding in there
1648 breaks this assumption. */
1649 || (DECL_SECTION_NAME (decl
) != NULL
1650 && !symtab_node::get (decl
)->implicit_section
1651 && !section_sanitized_p (DECL_SECTION_NAME (decl
)))
1652 || DECL_SIZE (decl
) == 0
1653 || ASAN_RED_ZONE_SIZE
* BITS_PER_UNIT
> MAX_OFILE_ALIGNMENT
1654 || TREE_CODE (DECL_SIZE_UNIT (decl
)) != INTEGER_CST
1655 || !valid_constant_size_p (DECL_SIZE_UNIT (decl
))
1656 || DECL_ALIGN_UNIT (decl
) > 2 * ASAN_RED_ZONE_SIZE
1657 || TREE_TYPE (decl
) == ubsan_get_source_location_type ()
1658 || is_odr_indicator (decl
))
1661 if (!ignore_decl_rtl_set_p
|| DECL_RTL_SET_P (decl
))
1664 rtl
= DECL_RTL (decl
);
1665 if (!MEM_P (rtl
) || GET_CODE (XEXP (rtl
, 0)) != SYMBOL_REF
)
1667 symbol
= XEXP (rtl
, 0);
1669 if (CONSTANT_POOL_ADDRESS_P (symbol
)
1670 || TREE_CONSTANT_POOL_ADDRESS_P (symbol
))
1674 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl
)))
1677 if (!TARGET_SUPPORTS_ALIASES
&& asan_needs_local_alias (decl
))
1683 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1684 IS_STORE is either 1 (for a store) or 0 (for a load). */
1687 report_error_func (bool is_store
, bool recover_p
, HOST_WIDE_INT size_in_bytes
,
1690 static enum built_in_function report
[2][2][6]
1691 = { { { BUILT_IN_ASAN_REPORT_LOAD1
, BUILT_IN_ASAN_REPORT_LOAD2
,
1692 BUILT_IN_ASAN_REPORT_LOAD4
, BUILT_IN_ASAN_REPORT_LOAD8
,
1693 BUILT_IN_ASAN_REPORT_LOAD16
, BUILT_IN_ASAN_REPORT_LOAD_N
},
1694 { BUILT_IN_ASAN_REPORT_STORE1
, BUILT_IN_ASAN_REPORT_STORE2
,
1695 BUILT_IN_ASAN_REPORT_STORE4
, BUILT_IN_ASAN_REPORT_STORE8
,
1696 BUILT_IN_ASAN_REPORT_STORE16
, BUILT_IN_ASAN_REPORT_STORE_N
} },
1697 { { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT
,
1698 BUILT_IN_ASAN_REPORT_LOAD2_NOABORT
,
1699 BUILT_IN_ASAN_REPORT_LOAD4_NOABORT
,
1700 BUILT_IN_ASAN_REPORT_LOAD8_NOABORT
,
1701 BUILT_IN_ASAN_REPORT_LOAD16_NOABORT
,
1702 BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT
},
1703 { BUILT_IN_ASAN_REPORT_STORE1_NOABORT
,
1704 BUILT_IN_ASAN_REPORT_STORE2_NOABORT
,
1705 BUILT_IN_ASAN_REPORT_STORE4_NOABORT
,
1706 BUILT_IN_ASAN_REPORT_STORE8_NOABORT
,
1707 BUILT_IN_ASAN_REPORT_STORE16_NOABORT
,
1708 BUILT_IN_ASAN_REPORT_STORE_N_NOABORT
} } };
1709 if (size_in_bytes
== -1)
1712 return builtin_decl_implicit (report
[recover_p
][is_store
][5]);
1715 int size_log2
= exact_log2 (size_in_bytes
);
1716 return builtin_decl_implicit (report
[recover_p
][is_store
][size_log2
]);
1719 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1720 IS_STORE is either 1 (for a store) or 0 (for a load). */
1723 check_func (bool is_store
, bool recover_p
, HOST_WIDE_INT size_in_bytes
,
1726 static enum built_in_function check
[2][2][6]
1727 = { { { BUILT_IN_ASAN_LOAD1
, BUILT_IN_ASAN_LOAD2
,
1728 BUILT_IN_ASAN_LOAD4
, BUILT_IN_ASAN_LOAD8
,
1729 BUILT_IN_ASAN_LOAD16
, BUILT_IN_ASAN_LOADN
},
1730 { BUILT_IN_ASAN_STORE1
, BUILT_IN_ASAN_STORE2
,
1731 BUILT_IN_ASAN_STORE4
, BUILT_IN_ASAN_STORE8
,
1732 BUILT_IN_ASAN_STORE16
, BUILT_IN_ASAN_STOREN
} },
1733 { { BUILT_IN_ASAN_LOAD1_NOABORT
,
1734 BUILT_IN_ASAN_LOAD2_NOABORT
,
1735 BUILT_IN_ASAN_LOAD4_NOABORT
,
1736 BUILT_IN_ASAN_LOAD8_NOABORT
,
1737 BUILT_IN_ASAN_LOAD16_NOABORT
,
1738 BUILT_IN_ASAN_LOADN_NOABORT
},
1739 { BUILT_IN_ASAN_STORE1_NOABORT
,
1740 BUILT_IN_ASAN_STORE2_NOABORT
,
1741 BUILT_IN_ASAN_STORE4_NOABORT
,
1742 BUILT_IN_ASAN_STORE8_NOABORT
,
1743 BUILT_IN_ASAN_STORE16_NOABORT
,
1744 BUILT_IN_ASAN_STOREN_NOABORT
} } };
1745 if (size_in_bytes
== -1)
1748 return builtin_decl_implicit (check
[recover_p
][is_store
][5]);
1751 int size_log2
= exact_log2 (size_in_bytes
);
1752 return builtin_decl_implicit (check
[recover_p
][is_store
][size_log2
]);
1755 /* Split the current basic block and create a condition statement
1756 insertion point right before or after the statement pointed to by
1757 ITER. Return an iterator to the point at which the caller might
1758 safely insert the condition statement.
1760 THEN_BLOCK must be set to the address of an uninitialized instance
1761 of basic_block. The function will then set *THEN_BLOCK to the
1762 'then block' of the condition statement to be inserted by the
1765 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1766 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1768 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1769 block' of the condition statement to be inserted by the caller.
1771 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1772 statements starting from *ITER, and *THEN_BLOCK is a new empty
1775 *ITER is adjusted to point to always point to the first statement
1776 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1777 same as what ITER was pointing to prior to calling this function,
1778 if BEFORE_P is true; otherwise, it is its following statement. */
1780 gimple_stmt_iterator
1781 create_cond_insert_point (gimple_stmt_iterator
*iter
,
1783 bool then_more_likely_p
,
1784 bool create_then_fallthru_edge
,
1785 basic_block
*then_block
,
1786 basic_block
*fallthrough_block
)
1788 gimple_stmt_iterator gsi
= *iter
;
1790 if (!gsi_end_p (gsi
) && before_p
)
1793 basic_block cur_bb
= gsi_bb (*iter
);
1795 edge e
= split_block (cur_bb
, gsi_stmt (gsi
));
1797 /* Get a hold on the 'condition block', the 'then block' and the
1799 basic_block cond_bb
= e
->src
;
1800 basic_block fallthru_bb
= e
->dest
;
1801 basic_block then_bb
= create_empty_bb (cond_bb
);
1804 add_bb_to_loop (then_bb
, cond_bb
->loop_father
);
1805 loops_state_set (LOOPS_NEED_FIXUP
);
1808 /* Set up the newly created 'then block'. */
1809 e
= make_edge (cond_bb
, then_bb
, EDGE_TRUE_VALUE
);
1810 profile_probability fallthrough_probability
1811 = then_more_likely_p
1812 ? profile_probability::very_unlikely ()
1813 : profile_probability::very_likely ();
1814 e
->probability
= fallthrough_probability
.invert ();
1815 then_bb
->count
= e
->count ();
1816 if (create_then_fallthru_edge
)
1817 make_single_succ_edge (then_bb
, fallthru_bb
, EDGE_FALLTHRU
);
1819 /* Set up the fallthrough basic block. */
1820 e
= find_edge (cond_bb
, fallthru_bb
);
1821 e
->flags
= EDGE_FALSE_VALUE
;
1822 e
->probability
= fallthrough_probability
;
1824 /* Update dominance info for the newly created then_bb; note that
1825 fallthru_bb's dominance info has already been updated by
1827 if (dom_info_available_p (CDI_DOMINATORS
))
1828 set_immediate_dominator (CDI_DOMINATORS
, then_bb
, cond_bb
);
1830 *then_block
= then_bb
;
1831 *fallthrough_block
= fallthru_bb
;
1832 *iter
= gsi_start_bb (fallthru_bb
);
1834 return gsi_last_bb (cond_bb
);
1837 /* Insert an if condition followed by a 'then block' right before the
1838 statement pointed to by ITER. The fallthrough block -- which is the
1839 else block of the condition as well as the destination of the
1840 outcoming edge of the 'then block' -- starts with the statement
1843 COND is the condition of the if.
1845 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1846 'then block' is higher than the probability of the edge to the
1849 Upon completion of the function, *THEN_BB is set to the newly
1850 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1853 *ITER is adjusted to still point to the same statement it was
1854 pointing to initially. */
1857 insert_if_then_before_iter (gcond
*cond
,
1858 gimple_stmt_iterator
*iter
,
1859 bool then_more_likely_p
,
1860 basic_block
*then_bb
,
1861 basic_block
*fallthrough_bb
)
1863 gimple_stmt_iterator cond_insert_point
=
1864 create_cond_insert_point (iter
,
1867 /*create_then_fallthru_edge=*/true,
1870 gsi_insert_after (&cond_insert_point
, cond
, GSI_NEW_STMT
);
1873 /* Build (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset ().
1874 If RETURN_ADDRESS is set to true, return memory location instread
1875 of a value in the shadow memory. */
1878 build_shadow_mem_access (gimple_stmt_iterator
*gsi
, location_t location
,
1879 tree base_addr
, tree shadow_ptr_type
,
1880 bool return_address
= false)
1882 tree t
, uintptr_type
= TREE_TYPE (base_addr
);
1883 tree shadow_type
= TREE_TYPE (shadow_ptr_type
);
1886 t
= build_int_cst (uintptr_type
, ASAN_SHADOW_SHIFT
);
1887 g
= gimple_build_assign (make_ssa_name (uintptr_type
), RSHIFT_EXPR
,
1889 gimple_set_location (g
, location
);
1890 gsi_insert_after (gsi
, g
, GSI_NEW_STMT
);
1892 t
= build_int_cst (uintptr_type
, asan_shadow_offset ());
1893 g
= gimple_build_assign (make_ssa_name (uintptr_type
), PLUS_EXPR
,
1894 gimple_assign_lhs (g
), t
);
1895 gimple_set_location (g
, location
);
1896 gsi_insert_after (gsi
, g
, GSI_NEW_STMT
);
1898 g
= gimple_build_assign (make_ssa_name (shadow_ptr_type
), NOP_EXPR
,
1899 gimple_assign_lhs (g
));
1900 gimple_set_location (g
, location
);
1901 gsi_insert_after (gsi
, g
, GSI_NEW_STMT
);
1903 if (!return_address
)
1905 t
= build2 (MEM_REF
, shadow_type
, gimple_assign_lhs (g
),
1906 build_int_cst (shadow_ptr_type
, 0));
1907 g
= gimple_build_assign (make_ssa_name (shadow_type
), MEM_REF
, t
);
1908 gimple_set_location (g
, location
);
1909 gsi_insert_after (gsi
, g
, GSI_NEW_STMT
);
1912 return gimple_assign_lhs (g
);
1915 /* BASE can already be an SSA_NAME; in that case, do not create a
1916 new SSA_NAME for it. */
1919 maybe_create_ssa_name (location_t loc
, tree base
, gimple_stmt_iterator
*iter
,
1922 if (TREE_CODE (base
) == SSA_NAME
)
1924 gimple
*g
= gimple_build_assign (make_ssa_name (TREE_TYPE (base
)),
1925 TREE_CODE (base
), base
);
1926 gimple_set_location (g
, loc
);
1928 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
1930 gsi_insert_after (iter
, g
, GSI_NEW_STMT
);
1931 return gimple_assign_lhs (g
);
1934 /* LEN can already have necessary size and precision;
1935 in that case, do not create a new variable. */
1938 maybe_cast_to_ptrmode (location_t loc
, tree len
, gimple_stmt_iterator
*iter
,
1941 if (ptrofftype_p (len
))
1943 gimple
*g
= gimple_build_assign (make_ssa_name (pointer_sized_int_node
),
1945 gimple_set_location (g
, loc
);
1947 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
1949 gsi_insert_after (iter
, g
, GSI_NEW_STMT
);
1950 return gimple_assign_lhs (g
);
1953 /* Instrument the memory access instruction BASE. Insert new
1954 statements before or after ITER.
1956 Note that the memory access represented by BASE can be either an
1957 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1958 location. IS_STORE is TRUE for a store, FALSE for a load.
1959 BEFORE_P is TRUE for inserting the instrumentation code before
1960 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1961 for a scalar memory access and FALSE for memory region access.
1962 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1963 length. ALIGN tells alignment of accessed memory object.
1965 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1966 memory region have already been instrumented.
1968 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1969 statement it was pointing to prior to calling this function,
1970 otherwise, it points to the statement logically following it. */
1973 build_check_stmt (location_t loc
, tree base
, tree len
,
1974 HOST_WIDE_INT size_in_bytes
, gimple_stmt_iterator
*iter
,
1975 bool is_non_zero_len
, bool before_p
, bool is_store
,
1976 bool is_scalar_access
, unsigned int align
= 0)
1978 gimple_stmt_iterator gsi
= *iter
;
1981 gcc_assert (!(size_in_bytes
> 0 && !is_non_zero_len
));
1985 base
= unshare_expr (base
);
1986 base
= maybe_create_ssa_name (loc
, base
, &gsi
, before_p
);
1990 len
= unshare_expr (len
);
1991 len
= maybe_cast_to_ptrmode (loc
, len
, iter
, before_p
);
1995 gcc_assert (size_in_bytes
!= -1);
1996 len
= build_int_cst (pointer_sized_int_node
, size_in_bytes
);
1999 if (size_in_bytes
> 1)
2001 if ((size_in_bytes
& (size_in_bytes
- 1)) != 0
2002 || size_in_bytes
> 16)
2003 is_scalar_access
= false;
2004 else if (align
&& align
< size_in_bytes
* BITS_PER_UNIT
)
2006 /* On non-strict alignment targets, if
2007 16-byte access is just 8-byte aligned,
2008 this will result in misaligned shadow
2009 memory 2 byte load, but otherwise can
2010 be handled using one read. */
2011 if (size_in_bytes
!= 16
2013 || align
< 8 * BITS_PER_UNIT
)
2014 is_scalar_access
= false;
2018 HOST_WIDE_INT flags
= 0;
2020 flags
|= ASAN_CHECK_STORE
;
2021 if (is_non_zero_len
)
2022 flags
|= ASAN_CHECK_NON_ZERO_LEN
;
2023 if (is_scalar_access
)
2024 flags
|= ASAN_CHECK_SCALAR_ACCESS
;
2026 g
= gimple_build_call_internal (IFN_ASAN_CHECK
, 4,
2027 build_int_cst (integer_type_node
, flags
),
2029 build_int_cst (integer_type_node
,
2030 align
/ BITS_PER_UNIT
));
2031 gimple_set_location (g
, loc
);
2033 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
2036 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
2042 /* If T represents a memory access, add instrumentation code before ITER.
2043 LOCATION is source code location.
2044 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
2047 instrument_derefs (gimple_stmt_iterator
*iter
, tree t
,
2048 location_t location
, bool is_store
)
2050 if (is_store
&& !ASAN_INSTRUMENT_WRITES
)
2052 if (!is_store
&& !ASAN_INSTRUMENT_READS
)
2056 HOST_WIDE_INT size_in_bytes
;
2057 if (location
== UNKNOWN_LOCATION
)
2058 location
= EXPR_LOCATION (t
);
2060 type
= TREE_TYPE (t
);
2061 switch (TREE_CODE (t
))
2075 size_in_bytes
= int_size_in_bytes (type
);
2076 if (size_in_bytes
<= 0)
2079 HOST_WIDE_INT bitsize
, bitpos
;
2082 int unsignedp
, reversep
, volatilep
= 0;
2083 tree inner
= get_inner_reference (t
, &bitsize
, &bitpos
, &offset
, &mode
,
2084 &unsignedp
, &reversep
, &volatilep
);
2086 if (TREE_CODE (t
) == COMPONENT_REF
2087 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t
, 1)) != NULL_TREE
)
2089 tree repr
= DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t
, 1));
2090 instrument_derefs (iter
, build3 (COMPONENT_REF
, TREE_TYPE (repr
),
2091 TREE_OPERAND (t
, 0), repr
,
2092 TREE_OPERAND (t
, 2)),
2093 location
, is_store
);
2097 if (bitpos
% BITS_PER_UNIT
2098 || bitsize
!= size_in_bytes
* BITS_PER_UNIT
)
2101 if (VAR_P (inner
) && DECL_HARD_REGISTER (inner
))
2105 && offset
== NULL_TREE
2107 && DECL_SIZE (inner
)
2108 && tree_fits_shwi_p (DECL_SIZE (inner
))
2109 && bitpos
+ bitsize
<= tree_to_shwi (DECL_SIZE (inner
)))
2111 if (DECL_THREAD_LOCAL_P (inner
))
2113 if (!ASAN_GLOBALS
&& is_global_var (inner
))
2115 if (!TREE_STATIC (inner
))
2117 /* Automatic vars in the current function will be always
2119 if (decl_function_context (inner
) == current_function_decl
2120 && (!asan_sanitize_use_after_scope ()
2121 || !TREE_ADDRESSABLE (inner
)))
2124 /* Always instrument external vars, they might be dynamically
2126 else if (!DECL_EXTERNAL (inner
))
2128 /* For static vars if they are known not to be dynamically
2129 initialized, they will be always accessible. */
2130 varpool_node
*vnode
= varpool_node::get (inner
);
2131 if (vnode
&& !vnode
->dynamically_initialized
)
2136 base
= build_fold_addr_expr (t
);
2137 if (!has_mem_ref_been_instrumented (base
, size_in_bytes
))
2139 unsigned int align
= get_object_alignment (t
);
2140 build_check_stmt (location
, base
, NULL_TREE
, size_in_bytes
, iter
,
2141 /*is_non_zero_len*/size_in_bytes
> 0, /*before_p=*/true,
2142 is_store
, /*is_scalar_access*/true, align
);
2143 update_mem_ref_hash_table (base
, size_in_bytes
);
2144 update_mem_ref_hash_table (t
, size_in_bytes
);
2149 /* Insert a memory reference into the hash table if access length
2150 can be determined in compile time. */
2153 maybe_update_mem_ref_hash_table (tree base
, tree len
)
2155 if (!POINTER_TYPE_P (TREE_TYPE (base
))
2156 || !INTEGRAL_TYPE_P (TREE_TYPE (len
)))
2159 HOST_WIDE_INT size_in_bytes
= tree_fits_shwi_p (len
) ? tree_to_shwi (len
) : -1;
2161 if (size_in_bytes
!= -1)
2162 update_mem_ref_hash_table (base
, size_in_bytes
);
2165 /* Instrument an access to a contiguous memory region that starts at
2166 the address pointed to by BASE, over a length of LEN (expressed in
2167 the sizeof (*BASE) bytes). ITER points to the instruction before
2168 which the instrumentation instructions must be inserted. LOCATION
2169 is the source location that the instrumentation instructions must
2170 have. If IS_STORE is true, then the memory access is a store;
2171 otherwise, it's a load. */
2174 instrument_mem_region_access (tree base
, tree len
,
2175 gimple_stmt_iterator
*iter
,
2176 location_t location
, bool is_store
)
2178 if (!POINTER_TYPE_P (TREE_TYPE (base
))
2179 || !INTEGRAL_TYPE_P (TREE_TYPE (len
))
2180 || integer_zerop (len
))
2183 HOST_WIDE_INT size_in_bytes
= tree_fits_shwi_p (len
) ? tree_to_shwi (len
) : -1;
2185 if ((size_in_bytes
== -1)
2186 || !has_mem_ref_been_instrumented (base
, size_in_bytes
))
2188 build_check_stmt (location
, base
, len
, size_in_bytes
, iter
,
2189 /*is_non_zero_len*/size_in_bytes
> 0, /*before_p*/true,
2190 is_store
, /*is_scalar_access*/false, /*align*/0);
2193 maybe_update_mem_ref_hash_table (base
, len
);
2194 *iter
= gsi_for_stmt (gsi_stmt (*iter
));
2197 /* Instrument the call to a built-in memory access function that is
2198 pointed to by the iterator ITER.
2200 Upon completion, return TRUE iff *ITER has been advanced to the
2201 statement following the one it was originally pointing to. */
2204 instrument_builtin_call (gimple_stmt_iterator
*iter
)
2206 if (!ASAN_MEMINTRIN
)
2209 bool iter_advanced_p
= false;
2210 gcall
*call
= as_a
<gcall
*> (gsi_stmt (*iter
));
2212 gcc_checking_assert (gimple_call_builtin_p (call
, BUILT_IN_NORMAL
));
2214 location_t loc
= gimple_location (call
);
2216 asan_mem_ref src0
, src1
, dest
;
2217 asan_mem_ref_init (&src0
, NULL
, 1);
2218 asan_mem_ref_init (&src1
, NULL
, 1);
2219 asan_mem_ref_init (&dest
, NULL
, 1);
2221 tree src0_len
= NULL_TREE
, src1_len
= NULL_TREE
, dest_len
= NULL_TREE
;
2222 bool src0_is_store
= false, src1_is_store
= false, dest_is_store
= false,
2223 dest_is_deref
= false, intercepted_p
= true;
2225 if (get_mem_refs_of_builtin_call (call
,
2226 &src0
, &src0_len
, &src0_is_store
,
2227 &src1
, &src1_len
, &src1_is_store
,
2228 &dest
, &dest_len
, &dest_is_store
,
2229 &dest_is_deref
, &intercepted_p
, iter
))
2233 instrument_derefs (iter
, dest
.start
, loc
, dest_is_store
);
2235 iter_advanced_p
= true;
2237 else if (!intercepted_p
2238 && (src0_len
|| src1_len
|| dest_len
))
2240 if (src0
.start
!= NULL_TREE
)
2241 instrument_mem_region_access (src0
.start
, src0_len
,
2242 iter
, loc
, /*is_store=*/false);
2243 if (src1
.start
!= NULL_TREE
)
2244 instrument_mem_region_access (src1
.start
, src1_len
,
2245 iter
, loc
, /*is_store=*/false);
2246 if (dest
.start
!= NULL_TREE
)
2247 instrument_mem_region_access (dest
.start
, dest_len
,
2248 iter
, loc
, /*is_store=*/true);
2250 *iter
= gsi_for_stmt (call
);
2252 iter_advanced_p
= true;
2256 if (src0
.start
!= NULL_TREE
)
2257 maybe_update_mem_ref_hash_table (src0
.start
, src0_len
);
2258 if (src1
.start
!= NULL_TREE
)
2259 maybe_update_mem_ref_hash_table (src1
.start
, src1_len
);
2260 if (dest
.start
!= NULL_TREE
)
2261 maybe_update_mem_ref_hash_table (dest
.start
, dest_len
);
2264 return iter_advanced_p
;
2267 /* Instrument the assignment statement ITER if it is subject to
2268 instrumentation. Return TRUE iff instrumentation actually
2269 happened. In that case, the iterator ITER is advanced to the next
2270 logical expression following the one initially pointed to by ITER,
2271 and the relevant memory reference that which access has been
2272 instrumented is added to the memory references hash table. */
2275 maybe_instrument_assignment (gimple_stmt_iterator
*iter
)
2277 gimple
*s
= gsi_stmt (*iter
);
2279 gcc_assert (gimple_assign_single_p (s
));
2281 tree ref_expr
= NULL_TREE
;
2282 bool is_store
, is_instrumented
= false;
2284 if (gimple_store_p (s
))
2286 ref_expr
= gimple_assign_lhs (s
);
2288 instrument_derefs (iter
, ref_expr
,
2289 gimple_location (s
),
2291 is_instrumented
= true;
2294 if (gimple_assign_load_p (s
))
2296 ref_expr
= gimple_assign_rhs1 (s
);
2298 instrument_derefs (iter
, ref_expr
,
2299 gimple_location (s
),
2301 is_instrumented
= true;
2304 if (is_instrumented
)
2307 return is_instrumented
;
2310 /* Instrument the function call pointed to by the iterator ITER, if it
2311 is subject to instrumentation. At the moment, the only function
2312 calls that are instrumented are some built-in functions that access
2313 memory. Look at instrument_builtin_call to learn more.
2315 Upon completion return TRUE iff *ITER was advanced to the statement
2316 following the one it was originally pointing to. */
2319 maybe_instrument_call (gimple_stmt_iterator
*iter
)
2321 gimple
*stmt
= gsi_stmt (*iter
);
2322 bool is_builtin
= gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
);
2324 if (is_builtin
&& instrument_builtin_call (iter
))
2327 if (gimple_call_noreturn_p (stmt
))
2331 tree callee
= gimple_call_fndecl (stmt
);
2332 switch (DECL_FUNCTION_CODE (callee
))
2334 case BUILT_IN_UNREACHABLE
:
2336 /* Don't instrument these. */
2342 tree decl
= builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN
);
2343 gimple
*g
= gimple_build_call (decl
, 0);
2344 gimple_set_location (g
, gimple_location (stmt
));
2345 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
2348 bool instrumented
= false;
2349 if (gimple_store_p (stmt
))
2351 tree ref_expr
= gimple_call_lhs (stmt
);
2352 instrument_derefs (iter
, ref_expr
,
2353 gimple_location (stmt
),
2356 instrumented
= true;
2359 /* Walk through gimple_call arguments and check them id needed. */
2360 unsigned args_num
= gimple_call_num_args (stmt
);
2361 for (unsigned i
= 0; i
< args_num
; ++i
)
2363 tree arg
= gimple_call_arg (stmt
, i
);
2364 /* If ARG is not a non-aggregate register variable, compiler in general
2365 creates temporary for it and pass it as argument to gimple call.
2366 But in some cases, e.g. when we pass by value a small structure that
2367 fits to register, compiler can avoid extra overhead by pulling out
2368 these temporaries. In this case, we should check the argument. */
2369 if (!is_gimple_reg (arg
) && !is_gimple_min_invariant (arg
))
2371 instrument_derefs (iter
, arg
,
2372 gimple_location (stmt
),
2373 /*is_store=*/false);
2374 instrumented
= true;
2379 return instrumented
;
2382 /* Walk each instruction of all basic block and instrument those that
2383 represent memory references: loads, stores, or function calls.
2384 In a given basic block, this function avoids instrumenting memory
2385 references that have already been instrumented. */
2388 transform_statements (void)
2390 basic_block bb
, last_bb
= NULL
;
2391 gimple_stmt_iterator i
;
2392 int saved_last_basic_block
= last_basic_block_for_fn (cfun
);
2394 FOR_EACH_BB_FN (bb
, cfun
)
2396 basic_block prev_bb
= bb
;
2398 if (bb
->index
>= saved_last_basic_block
) continue;
2400 /* Flush the mem ref hash table, if current bb doesn't have
2401 exactly one predecessor, or if that predecessor (skipping
2402 over asan created basic blocks) isn't the last processed
2403 basic block. Thus we effectively flush on extended basic
2404 block boundaries. */
2405 while (single_pred_p (prev_bb
))
2407 prev_bb
= single_pred (prev_bb
);
2408 if (prev_bb
->index
< saved_last_basic_block
)
2411 if (prev_bb
!= last_bb
)
2412 empty_mem_ref_hash_table ();
2415 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
);)
2417 gimple
*s
= gsi_stmt (i
);
2419 if (has_stmt_been_instrumented_p (s
))
2421 else if (gimple_assign_single_p (s
)
2422 && !gimple_clobber_p (s
)
2423 && maybe_instrument_assignment (&i
))
2424 /* Nothing to do as maybe_instrument_assignment advanced
2426 else if (is_gimple_call (s
) && maybe_instrument_call (&i
))
2427 /* Nothing to do as maybe_instrument_call
2428 advanced the iterator I. */;
2431 /* No instrumentation happened.
2433 If the current instruction is a function call that
2434 might free something, let's forget about the memory
2435 references that got instrumented. Otherwise we might
2436 miss some instrumentation opportunities. Do the same
2437 for a ASAN_MARK poisoning internal function. */
2438 if (is_gimple_call (s
)
2439 && (!nonfreeing_call_p (s
)
2440 || asan_mark_p (s
, ASAN_MARK_POISON
)))
2441 empty_mem_ref_hash_table ();
2447 free_mem_ref_resources ();
2451 __asan_before_dynamic_init (module_name)
2453 __asan_after_dynamic_init ()
2457 asan_dynamic_init_call (bool after_p
)
2459 if (shadow_ptr_types
[0] == NULL_TREE
)
2460 asan_init_shadow_ptr_types ();
2462 tree fn
= builtin_decl_implicit (after_p
2463 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2464 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT
);
2465 tree module_name_cst
= NULL_TREE
;
2468 pretty_printer module_name_pp
;
2469 pp_string (&module_name_pp
, main_input_filename
);
2471 module_name_cst
= asan_pp_string (&module_name_pp
);
2472 module_name_cst
= fold_convert (const_ptr_type_node
,
2476 return build_call_expr (fn
, after_p
? 0 : 1, module_name_cst
);
2480 struct __asan_global
2484 uptr __size_with_redzone;
2486 const void *__module_name;
2487 uptr __has_dynamic_init;
2488 __asan_global_source_location *__location;
2489 char *__odr_indicator;
2493 asan_global_struct (void)
2495 static const char *field_names
[]
2496 = { "__beg", "__size", "__size_with_redzone",
2497 "__name", "__module_name", "__has_dynamic_init", "__location",
2498 "__odr_indicator" };
2499 tree fields
[ARRAY_SIZE (field_names
)], ret
;
2502 ret
= make_node (RECORD_TYPE
);
2503 for (i
= 0; i
< ARRAY_SIZE (field_names
); i
++)
2506 = build_decl (UNKNOWN_LOCATION
, FIELD_DECL
,
2507 get_identifier (field_names
[i
]),
2508 (i
== 0 || i
== 3) ? const_ptr_type_node
2509 : pointer_sized_int_node
);
2510 DECL_CONTEXT (fields
[i
]) = ret
;
2512 DECL_CHAIN (fields
[i
- 1]) = fields
[i
];
2514 tree type_decl
= build_decl (input_location
, TYPE_DECL
,
2515 get_identifier ("__asan_global"), ret
);
2516 DECL_IGNORED_P (type_decl
) = 1;
2517 DECL_ARTIFICIAL (type_decl
) = 1;
2518 TYPE_FIELDS (ret
) = fields
[0];
2519 TYPE_NAME (ret
) = type_decl
;
2520 TYPE_STUB_DECL (ret
) = type_decl
;
2525 /* Create and return odr indicator symbol for DECL.
2526 TYPE is __asan_global struct type as returned by asan_global_struct. */
2529 create_odr_indicator (tree decl
, tree type
)
2532 tree uptr
= TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type
)));
2534 = (HAS_DECL_ASSEMBLER_NAME_P (decl
) ? DECL_ASSEMBLER_NAME (decl
)
2535 : DECL_NAME (decl
));
2536 /* DECL_NAME theoretically might be NULL. Bail out with 0 in this case. */
2537 if (decl_name
== NULL_TREE
)
2538 return build_int_cst (uptr
, 0);
2539 const char *dname
= IDENTIFIER_POINTER (decl_name
);
2540 if (HAS_DECL_ASSEMBLER_NAME_P (decl
))
2541 dname
= targetm
.strip_name_encoding (dname
);
2542 size_t len
= strlen (dname
) + sizeof ("__odr_asan_");
2543 name
= XALLOCAVEC (char, len
);
2544 snprintf (name
, len
, "__odr_asan_%s", dname
);
2545 #ifndef NO_DOT_IN_LABEL
2546 name
[sizeof ("__odr_asan") - 1] = '.';
2547 #elif !defined(NO_DOLLAR_IN_LABEL)
2548 name
[sizeof ("__odr_asan") - 1] = '$';
2550 tree var
= build_decl (UNKNOWN_LOCATION
, VAR_DECL
, get_identifier (name
),
2552 TREE_ADDRESSABLE (var
) = 1;
2553 TREE_READONLY (var
) = 0;
2554 TREE_THIS_VOLATILE (var
) = 1;
2555 DECL_GIMPLE_REG_P (var
) = 0;
2556 DECL_ARTIFICIAL (var
) = 1;
2557 DECL_IGNORED_P (var
) = 1;
2558 TREE_STATIC (var
) = 1;
2559 TREE_PUBLIC (var
) = 1;
2560 DECL_VISIBILITY (var
) = DECL_VISIBILITY (decl
);
2561 DECL_VISIBILITY_SPECIFIED (var
) = DECL_VISIBILITY_SPECIFIED (decl
);
2563 TREE_USED (var
) = 1;
2564 tree ctor
= build_constructor_va (TREE_TYPE (var
), 1, NULL_TREE
,
2565 build_int_cst (unsigned_type_node
, 0));
2566 TREE_CONSTANT (ctor
) = 1;
2567 TREE_STATIC (ctor
) = 1;
2568 DECL_INITIAL (var
) = ctor
;
2569 DECL_ATTRIBUTES (var
) = tree_cons (get_identifier ("asan odr indicator"),
2570 NULL
, DECL_ATTRIBUTES (var
));
2571 make_decl_rtl (var
);
2572 varpool_node::finalize_decl (var
);
2573 return fold_convert (uptr
, build_fold_addr_expr (var
));
2576 /* Return true if DECL, a global var, might be overridden and needs
2577 an additional odr indicator symbol. */
2580 asan_needs_odr_indicator_p (tree decl
)
2582 /* Don't emit ODR indicators for kernel because:
2583 a) Kernel is written in C thus doesn't need ODR indicators.
2584 b) Some kernel code may have assumptions about symbols containing specific
2585 patterns in their names. Since ODR indicators contain original names
2586 of symbols they are emitted for, these assumptions would be broken for
2587 ODR indicator symbols. */
2588 return (!(flag_sanitize
& SANITIZE_KERNEL_ADDRESS
)
2589 && !DECL_ARTIFICIAL (decl
)
2590 && !DECL_WEAK (decl
)
2591 && TREE_PUBLIC (decl
));
2594 /* Append description of a single global DECL into vector V.
2595 TYPE is __asan_global struct type as returned by asan_global_struct. */
2598 asan_add_global (tree decl
, tree type
, vec
<constructor_elt
, va_gc
> *v
)
2600 tree init
, uptr
= TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type
)));
2601 unsigned HOST_WIDE_INT size
;
2602 tree str_cst
, module_name_cst
, refdecl
= decl
;
2603 vec
<constructor_elt
, va_gc
> *vinner
= NULL
;
2605 pretty_printer asan_pp
, module_name_pp
;
2607 if (DECL_NAME (decl
))
2608 pp_tree_identifier (&asan_pp
, DECL_NAME (decl
));
2610 pp_string (&asan_pp
, "<unknown>");
2611 str_cst
= asan_pp_string (&asan_pp
);
2613 pp_string (&module_name_pp
, main_input_filename
);
2614 module_name_cst
= asan_pp_string (&module_name_pp
);
2616 if (asan_needs_local_alias (decl
))
2619 ASM_GENERATE_INTERNAL_LABEL (buf
, "LASAN", vec_safe_length (v
) + 1);
2620 refdecl
= build_decl (DECL_SOURCE_LOCATION (decl
),
2621 VAR_DECL
, get_identifier (buf
), TREE_TYPE (decl
));
2622 TREE_ADDRESSABLE (refdecl
) = TREE_ADDRESSABLE (decl
);
2623 TREE_READONLY (refdecl
) = TREE_READONLY (decl
);
2624 TREE_THIS_VOLATILE (refdecl
) = TREE_THIS_VOLATILE (decl
);
2625 DECL_GIMPLE_REG_P (refdecl
) = DECL_GIMPLE_REG_P (decl
);
2626 DECL_ARTIFICIAL (refdecl
) = DECL_ARTIFICIAL (decl
);
2627 DECL_IGNORED_P (refdecl
) = DECL_IGNORED_P (decl
);
2628 TREE_STATIC (refdecl
) = 1;
2629 TREE_PUBLIC (refdecl
) = 0;
2630 TREE_USED (refdecl
) = 1;
2631 assemble_alias (refdecl
, DECL_ASSEMBLER_NAME (decl
));
2634 tree odr_indicator_ptr
2635 = (asan_needs_odr_indicator_p (decl
) ? create_odr_indicator (decl
, type
)
2636 : build_int_cst (uptr
, 0));
2637 CONSTRUCTOR_APPEND_ELT (vinner
, NULL_TREE
,
2638 fold_convert (const_ptr_type_node
,
2639 build_fold_addr_expr (refdecl
)));
2640 size
= tree_to_uhwi (DECL_SIZE_UNIT (decl
));
2641 CONSTRUCTOR_APPEND_ELT (vinner
, NULL_TREE
, build_int_cst (uptr
, size
));
2642 size
+= asan_red_zone_size (size
);
2643 CONSTRUCTOR_APPEND_ELT (vinner
, NULL_TREE
, build_int_cst (uptr
, size
));
2644 CONSTRUCTOR_APPEND_ELT (vinner
, NULL_TREE
,
2645 fold_convert (const_ptr_type_node
, str_cst
));
2646 CONSTRUCTOR_APPEND_ELT (vinner
, NULL_TREE
,
2647 fold_convert (const_ptr_type_node
, module_name_cst
));
2648 varpool_node
*vnode
= varpool_node::get (decl
);
2649 int has_dynamic_init
= 0;
2650 /* FIXME: Enable initialization order fiasco detection in LTO mode once
2651 proper fix for PR 79061 will be applied. */
2653 has_dynamic_init
= vnode
? vnode
->dynamically_initialized
: 0;
2654 CONSTRUCTOR_APPEND_ELT (vinner
, NULL_TREE
,
2655 build_int_cst (uptr
, has_dynamic_init
));
2656 tree locptr
= NULL_TREE
;
2657 location_t loc
= DECL_SOURCE_LOCATION (decl
);
2658 expanded_location xloc
= expand_location (loc
);
2659 if (xloc
.file
!= NULL
)
2661 static int lasanloccnt
= 0;
2663 ASM_GENERATE_INTERNAL_LABEL (buf
, "LASANLOC", ++lasanloccnt
);
2664 tree var
= build_decl (UNKNOWN_LOCATION
, VAR_DECL
, get_identifier (buf
),
2665 ubsan_get_source_location_type ());
2666 TREE_STATIC (var
) = 1;
2667 TREE_PUBLIC (var
) = 0;
2668 DECL_ARTIFICIAL (var
) = 1;
2669 DECL_IGNORED_P (var
) = 1;
2670 pretty_printer filename_pp
;
2671 pp_string (&filename_pp
, xloc
.file
);
2672 tree str
= asan_pp_string (&filename_pp
);
2673 tree ctor
= build_constructor_va (TREE_TYPE (var
), 3,
2674 NULL_TREE
, str
, NULL_TREE
,
2675 build_int_cst (unsigned_type_node
,
2676 xloc
.line
), NULL_TREE
,
2677 build_int_cst (unsigned_type_node
,
2679 TREE_CONSTANT (ctor
) = 1;
2680 TREE_STATIC (ctor
) = 1;
2681 DECL_INITIAL (var
) = ctor
;
2682 varpool_node::finalize_decl (var
);
2683 locptr
= fold_convert (uptr
, build_fold_addr_expr (var
));
2686 locptr
= build_int_cst (uptr
, 0);
2687 CONSTRUCTOR_APPEND_ELT (vinner
, NULL_TREE
, locptr
);
2688 CONSTRUCTOR_APPEND_ELT (vinner
, NULL_TREE
, odr_indicator_ptr
);
2689 init
= build_constructor (type
, vinner
);
2690 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, init
);
2693 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2695 initialize_sanitizer_builtins (void)
2699 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT
))
2702 tree BT_FN_VOID
= build_function_type_list (void_type_node
, NULL_TREE
);
2704 = build_function_type_list (void_type_node
, ptr_type_node
, NULL_TREE
);
2705 tree BT_FN_VOID_CONST_PTR
2706 = build_function_type_list (void_type_node
, const_ptr_type_node
, NULL_TREE
);
2707 tree BT_FN_VOID_PTR_PTR
2708 = build_function_type_list (void_type_node
, ptr_type_node
,
2709 ptr_type_node
, NULL_TREE
);
2710 tree BT_FN_VOID_PTR_PTR_PTR
2711 = build_function_type_list (void_type_node
, ptr_type_node
,
2712 ptr_type_node
, ptr_type_node
, NULL_TREE
);
2713 tree BT_FN_VOID_PTR_PTRMODE
2714 = build_function_type_list (void_type_node
, ptr_type_node
,
2715 pointer_sized_int_node
, NULL_TREE
);
2717 = build_function_type_list (void_type_node
, integer_type_node
, NULL_TREE
);
2718 tree BT_FN_SIZE_CONST_PTR_INT
2719 = build_function_type_list (size_type_node
, const_ptr_type_node
,
2720 integer_type_node
, NULL_TREE
);
2722 tree BT_FN_VOID_UINT8_UINT8
2723 = build_function_type_list (void_type_node
, unsigned_char_type_node
,
2724 unsigned_char_type_node
, NULL_TREE
);
2725 tree BT_FN_VOID_UINT16_UINT16
2726 = build_function_type_list (void_type_node
, uint16_type_node
,
2727 uint16_type_node
, NULL_TREE
);
2728 tree BT_FN_VOID_UINT32_UINT32
2729 = build_function_type_list (void_type_node
, uint32_type_node
,
2730 uint32_type_node
, NULL_TREE
);
2731 tree BT_FN_VOID_UINT64_UINT64
2732 = build_function_type_list (void_type_node
, uint64_type_node
,
2733 uint64_type_node
, NULL_TREE
);
2734 tree BT_FN_VOID_FLOAT_FLOAT
2735 = build_function_type_list (void_type_node
, float_type_node
,
2736 float_type_node
, NULL_TREE
);
2737 tree BT_FN_VOID_DOUBLE_DOUBLE
2738 = build_function_type_list (void_type_node
, double_type_node
,
2739 double_type_node
, NULL_TREE
);
2740 tree BT_FN_VOID_UINT64_PTR
2741 = build_function_type_list (void_type_node
, uint64_type_node
,
2742 ptr_type_node
, NULL_TREE
);
2744 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT
[5];
2745 tree BT_FN_IX_CONST_VPTR_INT
[5];
2746 tree BT_FN_IX_VPTR_IX_INT
[5];
2747 tree BT_FN_VOID_VPTR_IX_INT
[5];
2749 = build_pointer_type (build_qualified_type (void_type_node
,
2750 TYPE_QUAL_VOLATILE
));
2752 = build_pointer_type (build_qualified_type (void_type_node
,
2756 = lang_hooks
.types
.type_for_size (BOOL_TYPE_SIZE
, 1);
2758 for (i
= 0; i
< 5; i
++)
2760 tree ix
= build_nonstandard_integer_type (BITS_PER_UNIT
* (1 << i
), 1);
2761 BT_FN_BOOL_VPTR_PTR_IX_INT_INT
[i
]
2762 = build_function_type_list (boolt
, vptr
, ptr_type_node
, ix
,
2763 integer_type_node
, integer_type_node
,
2765 BT_FN_IX_CONST_VPTR_INT
[i
]
2766 = build_function_type_list (ix
, cvptr
, integer_type_node
, NULL_TREE
);
2767 BT_FN_IX_VPTR_IX_INT
[i
]
2768 = build_function_type_list (ix
, vptr
, ix
, integer_type_node
,
2770 BT_FN_VOID_VPTR_IX_INT
[i
]
2771 = build_function_type_list (void_type_node
, vptr
, ix
,
2772 integer_type_node
, NULL_TREE
);
2774 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2775 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2776 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2777 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2778 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2779 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2780 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2781 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2782 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2783 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2784 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2785 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2786 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2787 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2788 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2789 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2790 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2791 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2792 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2793 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2794 #undef ATTR_NOTHROW_LEAF_LIST
2795 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2796 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2797 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2798 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2799 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2800 #undef ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2801 #define ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST \
2802 ECF_CONST | ATTR_NORETURN_NOTHROW_LEAF_LIST
2803 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2804 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2805 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2806 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2807 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2808 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2809 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2810 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2811 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2812 #undef ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST
2813 #define ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST \
2814 /* ECF_COLD missing */ ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2815 #undef ATTR_PURE_NOTHROW_LEAF_LIST
2816 #define ATTR_PURE_NOTHROW_LEAF_LIST ECF_PURE | ATTR_NOTHROW_LEAF_LIST
2817 #undef DEF_BUILTIN_STUB
2818 #define DEF_BUILTIN_STUB(ENUM, NAME)
2819 #undef DEF_SANITIZER_BUILTIN_1
2820 #define DEF_SANITIZER_BUILTIN_1(ENUM, NAME, TYPE, ATTRS) \
2822 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2823 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2824 set_call_expr_flags (decl, ATTRS); \
2825 set_builtin_decl (ENUM, decl, true); \
2827 #undef DEF_SANITIZER_BUILTIN
2828 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2829 DEF_SANITIZER_BUILTIN_1 (ENUM, NAME, TYPE, ATTRS);
2831 #include "sanitizer.def"
2833 /* -fsanitize=object-size uses __builtin_object_size, but that might
2834 not be available for e.g. Fortran at this point. We use
2835 DEF_SANITIZER_BUILTIN here only as a convenience macro. */
2836 if ((flag_sanitize
& SANITIZE_OBJECT_SIZE
)
2837 && !builtin_decl_implicit_p (BUILT_IN_OBJECT_SIZE
))
2838 DEF_SANITIZER_BUILTIN_1 (BUILT_IN_OBJECT_SIZE
, "object_size",
2839 BT_FN_SIZE_CONST_PTR_INT
,
2840 ATTR_PURE_NOTHROW_LEAF_LIST
);
2842 #undef DEF_SANITIZER_BUILTIN_1
2843 #undef DEF_SANITIZER_BUILTIN
2844 #undef DEF_BUILTIN_STUB
2847 /* Called via htab_traverse. Count number of emitted
2848 STRING_CSTs in the constant hash table. */
2851 count_string_csts (constant_descriptor_tree
**slot
,
2852 unsigned HOST_WIDE_INT
*data
)
2854 struct constant_descriptor_tree
*desc
= *slot
;
2855 if (TREE_CODE (desc
->value
) == STRING_CST
2856 && TREE_ASM_WRITTEN (desc
->value
)
2857 && asan_protect_global (desc
->value
))
2862 /* Helper structure to pass two parameters to
2865 struct asan_add_string_csts_data
2868 vec
<constructor_elt
, va_gc
> *v
;
2871 /* Called via hash_table::traverse. Call asan_add_global
2872 on emitted STRING_CSTs from the constant hash table. */
2875 add_string_csts (constant_descriptor_tree
**slot
,
2876 asan_add_string_csts_data
*aascd
)
2878 struct constant_descriptor_tree
*desc
= *slot
;
2879 if (TREE_CODE (desc
->value
) == STRING_CST
2880 && TREE_ASM_WRITTEN (desc
->value
)
2881 && asan_protect_global (desc
->value
))
2883 asan_add_global (SYMBOL_REF_DECL (XEXP (desc
->rtl
, 0)),
2884 aascd
->type
, aascd
->v
);
2889 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2890 invoke ggc_collect. */
2891 static GTY(()) tree asan_ctor_statements
;
2893 /* Module-level instrumentation.
2894 - Insert __asan_init_vN() into the list of CTORs.
2895 - TODO: insert redzones around globals.
2899 asan_finish_file (void)
2901 varpool_node
*vnode
;
2902 unsigned HOST_WIDE_INT gcount
= 0;
2904 if (shadow_ptr_types
[0] == NULL_TREE
)
2905 asan_init_shadow_ptr_types ();
2906 /* Avoid instrumenting code in the asan ctors/dtors.
2907 We don't need to insert padding after the description strings,
2908 nor after .LASAN* array. */
2909 flag_sanitize
&= ~SANITIZE_ADDRESS
;
2911 /* For user-space we want asan constructors to run first.
2912 Linux kernel does not support priorities other than default, and the only
2913 other user of constructors is coverage. So we run with the default
2915 int priority
= flag_sanitize
& SANITIZE_USER_ADDRESS
2916 ? MAX_RESERVED_INIT_PRIORITY
- 1 : DEFAULT_INIT_PRIORITY
;
2918 if (flag_sanitize
& SANITIZE_USER_ADDRESS
)
2920 tree fn
= builtin_decl_implicit (BUILT_IN_ASAN_INIT
);
2921 append_to_statement_list (build_call_expr (fn
, 0), &asan_ctor_statements
);
2922 fn
= builtin_decl_implicit (BUILT_IN_ASAN_VERSION_MISMATCH_CHECK
);
2923 append_to_statement_list (build_call_expr (fn
, 0), &asan_ctor_statements
);
2925 FOR_EACH_DEFINED_VARIABLE (vnode
)
2926 if (TREE_ASM_WRITTEN (vnode
->decl
)
2927 && asan_protect_global (vnode
->decl
))
2929 hash_table
<tree_descriptor_hasher
> *const_desc_htab
= constant_pool_htab ();
2930 const_desc_htab
->traverse
<unsigned HOST_WIDE_INT
*, count_string_csts
>
2934 tree type
= asan_global_struct (), var
, ctor
;
2935 tree dtor_statements
= NULL_TREE
;
2936 vec
<constructor_elt
, va_gc
> *v
;
2939 type
= build_array_type_nelts (type
, gcount
);
2940 ASM_GENERATE_INTERNAL_LABEL (buf
, "LASAN", 0);
2941 var
= build_decl (UNKNOWN_LOCATION
, VAR_DECL
, get_identifier (buf
),
2943 TREE_STATIC (var
) = 1;
2944 TREE_PUBLIC (var
) = 0;
2945 DECL_ARTIFICIAL (var
) = 1;
2946 DECL_IGNORED_P (var
) = 1;
2947 vec_alloc (v
, gcount
);
2948 FOR_EACH_DEFINED_VARIABLE (vnode
)
2949 if (TREE_ASM_WRITTEN (vnode
->decl
)
2950 && asan_protect_global (vnode
->decl
))
2951 asan_add_global (vnode
->decl
, TREE_TYPE (type
), v
);
2952 struct asan_add_string_csts_data aascd
;
2953 aascd
.type
= TREE_TYPE (type
);
2955 const_desc_htab
->traverse
<asan_add_string_csts_data
*, add_string_csts
>
2957 ctor
= build_constructor (type
, v
);
2958 TREE_CONSTANT (ctor
) = 1;
2959 TREE_STATIC (ctor
) = 1;
2960 DECL_INITIAL (var
) = ctor
;
2961 SET_DECL_ALIGN (var
, MAX (DECL_ALIGN (var
),
2962 ASAN_SHADOW_GRANULARITY
* BITS_PER_UNIT
));
2964 varpool_node::finalize_decl (var
);
2966 tree fn
= builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS
);
2967 tree gcount_tree
= build_int_cst (pointer_sized_int_node
, gcount
);
2968 append_to_statement_list (build_call_expr (fn
, 2,
2969 build_fold_addr_expr (var
),
2971 &asan_ctor_statements
);
2973 fn
= builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS
);
2974 append_to_statement_list (build_call_expr (fn
, 2,
2975 build_fold_addr_expr (var
),
2978 cgraph_build_static_cdtor ('D', dtor_statements
, priority
);
2980 if (asan_ctor_statements
)
2981 cgraph_build_static_cdtor ('I', asan_ctor_statements
, priority
);
2982 flag_sanitize
|= SANITIZE_ADDRESS
;
2985 /* Poison or unpoison (depending on IS_CLOBBER variable) shadow memory based
2986 on SHADOW address. Newly added statements will be added to ITER with
2987 given location LOC. We mark SIZE bytes in shadow memory, where
2988 LAST_CHUNK_SIZE is greater than zero in situation where we are at the
2989 end of a variable. */
2992 asan_store_shadow_bytes (gimple_stmt_iterator
*iter
, location_t loc
,
2994 unsigned HOST_WIDE_INT base_addr_offset
,
2995 bool is_clobber
, unsigned size
,
2996 unsigned last_chunk_size
)
2998 tree shadow_ptr_type
;
3003 shadow_ptr_type
= shadow_ptr_types
[0];
3006 shadow_ptr_type
= shadow_ptr_types
[1];
3009 shadow_ptr_type
= shadow_ptr_types
[2];
3015 unsigned char c
= (char) is_clobber
? ASAN_STACK_MAGIC_USE_AFTER_SCOPE
: 0;
3016 unsigned HOST_WIDE_INT val
= 0;
3017 unsigned last_pos
= size
;
3018 if (last_chunk_size
&& !is_clobber
)
3019 last_pos
= BYTES_BIG_ENDIAN
? 0 : size
- 1;
3020 for (unsigned i
= 0; i
< size
; ++i
)
3022 unsigned char shadow_c
= c
;
3024 shadow_c
= last_chunk_size
;
3025 val
|= (unsigned HOST_WIDE_INT
) shadow_c
<< (BITS_PER_UNIT
* i
);
3028 /* Handle last chunk in unpoisoning. */
3029 tree magic
= build_int_cst (TREE_TYPE (shadow_ptr_type
), val
);
3031 tree dest
= build2 (MEM_REF
, TREE_TYPE (shadow_ptr_type
), shadow
,
3032 build_int_cst (shadow_ptr_type
, base_addr_offset
));
3034 gimple
*g
= gimple_build_assign (dest
, magic
);
3035 gimple_set_location (g
, loc
);
3036 gsi_insert_after (iter
, g
, GSI_NEW_STMT
);
3039 /* Expand the ASAN_MARK builtins. */
3042 asan_expand_mark_ifn (gimple_stmt_iterator
*iter
)
3044 gimple
*g
= gsi_stmt (*iter
);
3045 location_t loc
= gimple_location (g
);
3046 HOST_WIDE_INT flag
= tree_to_shwi (gimple_call_arg (g
, 0));
3047 bool is_poison
= ((asan_mark_flags
)flag
) == ASAN_MARK_POISON
;
3049 tree base
= gimple_call_arg (g
, 1);
3050 gcc_checking_assert (TREE_CODE (base
) == ADDR_EXPR
);
3051 tree decl
= TREE_OPERAND (base
, 0);
3053 /* For a nested function, we can have: ASAN_MARK (2, &FRAME.2.fp_input, 4) */
3054 if (TREE_CODE (decl
) == COMPONENT_REF
3055 && DECL_NONLOCAL_FRAME (TREE_OPERAND (decl
, 0)))
3056 decl
= TREE_OPERAND (decl
, 0);
3058 gcc_checking_assert (TREE_CODE (decl
) == VAR_DECL
);
3062 if (asan_handled_variables
== NULL
)
3063 asan_handled_variables
= new hash_set
<tree
> (16);
3064 asan_handled_variables
->add (decl
);
3066 tree len
= gimple_call_arg (g
, 2);
3068 gcc_assert (tree_fits_shwi_p (len
));
3069 unsigned HOST_WIDE_INT size_in_bytes
= tree_to_shwi (len
);
3070 gcc_assert (size_in_bytes
);
3072 g
= gimple_build_assign (make_ssa_name (pointer_sized_int_node
),
3074 gimple_set_location (g
, loc
);
3075 gsi_replace (iter
, g
, false);
3076 tree base_addr
= gimple_assign_lhs (g
);
3078 /* Generate direct emission if size_in_bytes is small. */
3079 if (size_in_bytes
<= ASAN_PARAM_USE_AFTER_SCOPE_DIRECT_EMISSION_THRESHOLD
)
3081 unsigned HOST_WIDE_INT shadow_size
= shadow_mem_size (size_in_bytes
);
3083 tree shadow
= build_shadow_mem_access (iter
, loc
, base_addr
,
3084 shadow_ptr_types
[0], true);
3086 for (unsigned HOST_WIDE_INT offset
= 0; offset
< shadow_size
;)
3089 if (shadow_size
- offset
>= 4)
3091 else if (shadow_size
- offset
>= 2)
3094 unsigned HOST_WIDE_INT last_chunk_size
= 0;
3095 unsigned HOST_WIDE_INT s
= (offset
+ size
) * ASAN_SHADOW_GRANULARITY
;
3096 if (s
> size_in_bytes
)
3097 last_chunk_size
= ASAN_SHADOW_GRANULARITY
- (s
- size_in_bytes
);
3099 asan_store_shadow_bytes (iter
, loc
, shadow
, offset
, is_poison
,
3100 size
, last_chunk_size
);
3106 g
= gimple_build_assign (make_ssa_name (pointer_sized_int_node
),
3108 gimple_set_location (g
, loc
);
3109 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
3110 tree sz_arg
= gimple_assign_lhs (g
);
3113 = builtin_decl_implicit (is_poison
? BUILT_IN_ASAN_POISON_STACK_MEMORY
3114 : BUILT_IN_ASAN_UNPOISON_STACK_MEMORY
);
3115 g
= gimple_build_call (fun
, 2, base_addr
, sz_arg
);
3116 gimple_set_location (g
, loc
);
3117 gsi_insert_after (iter
, g
, GSI_NEW_STMT
);
3123 /* Expand the ASAN_{LOAD,STORE} builtins. */
3126 asan_expand_check_ifn (gimple_stmt_iterator
*iter
, bool use_calls
)
3128 gimple
*g
= gsi_stmt (*iter
);
3129 location_t loc
= gimple_location (g
);
3131 if (flag_sanitize
& SANITIZE_USER_ADDRESS
)
3132 recover_p
= (flag_sanitize_recover
& SANITIZE_USER_ADDRESS
) != 0;
3134 recover_p
= (flag_sanitize_recover
& SANITIZE_KERNEL_ADDRESS
) != 0;
3136 HOST_WIDE_INT flags
= tree_to_shwi (gimple_call_arg (g
, 0));
3137 gcc_assert (flags
< ASAN_CHECK_LAST
);
3138 bool is_scalar_access
= (flags
& ASAN_CHECK_SCALAR_ACCESS
) != 0;
3139 bool is_store
= (flags
& ASAN_CHECK_STORE
) != 0;
3140 bool is_non_zero_len
= (flags
& ASAN_CHECK_NON_ZERO_LEN
) != 0;
3142 tree base
= gimple_call_arg (g
, 1);
3143 tree len
= gimple_call_arg (g
, 2);
3144 HOST_WIDE_INT align
= tree_to_shwi (gimple_call_arg (g
, 3));
3146 HOST_WIDE_INT size_in_bytes
3147 = is_scalar_access
&& tree_fits_shwi_p (len
) ? tree_to_shwi (len
) : -1;
3151 /* Instrument using callbacks. */
3152 gimple
*g
= gimple_build_assign (make_ssa_name (pointer_sized_int_node
),
3154 gimple_set_location (g
, loc
);
3155 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
3156 tree base_addr
= gimple_assign_lhs (g
);
3159 tree fun
= check_func (is_store
, recover_p
, size_in_bytes
, &nargs
);
3161 g
= gimple_build_call (fun
, 1, base_addr
);
3164 gcc_assert (nargs
== 2);
3165 g
= gimple_build_assign (make_ssa_name (pointer_sized_int_node
),
3167 gimple_set_location (g
, loc
);
3168 gsi_insert_before (iter
, g
, GSI_SAME_STMT
);
3169 tree sz_arg
= gimple_assign_lhs (g
);
3170 g
= gimple_build_call (fun
, nargs
, base_addr
, sz_arg
);
3172 gimple_set_location (g
, loc
);
3173 gsi_replace (iter
, g
, false);
3177 HOST_WIDE_INT real_size_in_bytes
= size_in_bytes
== -1 ? 1 : size_in_bytes
;
3179 tree shadow_ptr_type
= shadow_ptr_types
[real_size_in_bytes
== 16 ? 1 : 0];
3180 tree shadow_type
= TREE_TYPE (shadow_ptr_type
);
3182 gimple_stmt_iterator gsi
= *iter
;
3184 if (!is_non_zero_len
)
3186 /* So, the length of the memory area to asan-protect is
3187 non-constant. Let's guard the generated instrumentation code
3192 //asan instrumentation code goes here.
3194 // falltrough instructions, starting with *ITER. */
3196 g
= gimple_build_cond (NE_EXPR
,
3198 build_int_cst (TREE_TYPE (len
), 0),
3199 NULL_TREE
, NULL_TREE
);
3200 gimple_set_location (g
, loc
);
3202 basic_block then_bb
, fallthrough_bb
;
3203 insert_if_then_before_iter (as_a
<gcond
*> (g
), iter
,
3204 /*then_more_likely_p=*/true,
3205 &then_bb
, &fallthrough_bb
);
3206 /* Note that fallthrough_bb starts with the statement that was
3207 pointed to by ITER. */
3209 /* The 'then block' of the 'if (len != 0) condition is where
3210 we'll generate the asan instrumentation code now. */
3211 gsi
= gsi_last_bb (then_bb
);
3214 /* Get an iterator on the point where we can add the condition
3215 statement for the instrumentation. */
3216 basic_block then_bb
, else_bb
;
3217 gsi
= create_cond_insert_point (&gsi
, /*before_p*/false,
3218 /*then_more_likely_p=*/false,
3219 /*create_then_fallthru_edge*/recover_p
,
3223 g
= gimple_build_assign (make_ssa_name (pointer_sized_int_node
),
3225 gimple_set_location (g
, loc
);
3226 gsi_insert_before (&gsi
, g
, GSI_NEW_STMT
);
3227 tree base_addr
= gimple_assign_lhs (g
);
3230 if (real_size_in_bytes
>= 8)
3232 tree shadow
= build_shadow_mem_access (&gsi
, loc
, base_addr
,
3238 /* Slow path for 1, 2 and 4 byte accesses. */
3239 /* Test (shadow != 0)
3240 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
3241 tree shadow
= build_shadow_mem_access (&gsi
, loc
, base_addr
,
3243 gimple
*shadow_test
= build_assign (NE_EXPR
, shadow
, 0);
3244 gimple_seq seq
= NULL
;
3245 gimple_seq_add_stmt (&seq
, shadow_test
);
3246 /* Aligned (>= 8 bytes) can test just
3247 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
3251 gimple_seq_add_stmt (&seq
, build_assign (BIT_AND_EXPR
,
3253 gimple_seq_add_stmt (&seq
,
3254 build_type_cast (shadow_type
,
3255 gimple_seq_last (seq
)));
3256 if (real_size_in_bytes
> 1)
3257 gimple_seq_add_stmt (&seq
,
3258 build_assign (PLUS_EXPR
,
3259 gimple_seq_last (seq
),
3260 real_size_in_bytes
- 1));
3261 t
= gimple_assign_lhs (gimple_seq_last_stmt (seq
));
3264 t
= build_int_cst (shadow_type
, real_size_in_bytes
- 1);
3265 gimple_seq_add_stmt (&seq
, build_assign (GE_EXPR
, t
, shadow
));
3266 gimple_seq_add_stmt (&seq
, build_assign (BIT_AND_EXPR
, shadow_test
,
3267 gimple_seq_last (seq
)));
3268 t
= gimple_assign_lhs (gimple_seq_last (seq
));
3269 gimple_seq_set_location (seq
, loc
);
3270 gsi_insert_seq_after (&gsi
, seq
, GSI_CONTINUE_LINKING
);
3272 /* For non-constant, misaligned or otherwise weird access sizes,
3273 check first and last byte. */
3274 if (size_in_bytes
== -1)
3276 g
= gimple_build_assign (make_ssa_name (pointer_sized_int_node
),
3278 build_int_cst (pointer_sized_int_node
, 1));
3279 gimple_set_location (g
, loc
);
3280 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
3281 tree last
= gimple_assign_lhs (g
);
3282 g
= gimple_build_assign (make_ssa_name (pointer_sized_int_node
),
3283 PLUS_EXPR
, base_addr
, last
);
3284 gimple_set_location (g
, loc
);
3285 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
3286 tree base_end_addr
= gimple_assign_lhs (g
);
3288 tree shadow
= build_shadow_mem_access (&gsi
, loc
, base_end_addr
,
3290 gimple
*shadow_test
= build_assign (NE_EXPR
, shadow
, 0);
3291 gimple_seq seq
= NULL
;
3292 gimple_seq_add_stmt (&seq
, shadow_test
);
3293 gimple_seq_add_stmt (&seq
, build_assign (BIT_AND_EXPR
,
3295 gimple_seq_add_stmt (&seq
, build_type_cast (shadow_type
,
3296 gimple_seq_last (seq
)));
3297 gimple_seq_add_stmt (&seq
, build_assign (GE_EXPR
,
3298 gimple_seq_last (seq
),
3300 gimple_seq_add_stmt (&seq
, build_assign (BIT_AND_EXPR
, shadow_test
,
3301 gimple_seq_last (seq
)));
3302 gimple_seq_add_stmt (&seq
, build_assign (BIT_IOR_EXPR
, t
,
3303 gimple_seq_last (seq
)));
3304 t
= gimple_assign_lhs (gimple_seq_last (seq
));
3305 gimple_seq_set_location (seq
, loc
);
3306 gsi_insert_seq_after (&gsi
, seq
, GSI_CONTINUE_LINKING
);
3310 g
= gimple_build_cond (NE_EXPR
, t
, build_int_cst (TREE_TYPE (t
), 0),
3311 NULL_TREE
, NULL_TREE
);
3312 gimple_set_location (g
, loc
);
3313 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
3315 /* Generate call to the run-time library (e.g. __asan_report_load8). */
3316 gsi
= gsi_start_bb (then_bb
);
3318 tree fun
= report_error_func (is_store
, recover_p
, size_in_bytes
, &nargs
);
3319 g
= gimple_build_call (fun
, nargs
, base_addr
, len
);
3320 gimple_set_location (g
, loc
);
3321 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
3323 gsi_remove (iter
, true);
3324 *iter
= gsi_start_bb (else_bb
);
3329 /* Create ASAN shadow variable for a VAR_DECL which has been rewritten
3330 into SSA. Already seen VAR_DECLs are stored in SHADOW_VARS_MAPPING. */
3333 create_asan_shadow_var (tree var_decl
,
3334 hash_map
<tree
, tree
> &shadow_vars_mapping
)
3336 tree
*slot
= shadow_vars_mapping
.get (var_decl
);
3339 tree shadow_var
= copy_node (var_decl
);
3342 memset (&id
, 0, sizeof (copy_body_data
));
3343 id
.src_fn
= id
.dst_fn
= current_function_decl
;
3344 copy_decl_for_dup_finish (&id
, var_decl
, shadow_var
);
3346 DECL_ARTIFICIAL (shadow_var
) = 1;
3347 DECL_IGNORED_P (shadow_var
) = 1;
3348 DECL_SEEN_IN_BIND_EXPR_P (shadow_var
) = 0;
3349 gimple_add_tmp_var (shadow_var
);
3351 shadow_vars_mapping
.put (var_decl
, shadow_var
);
3358 /* Expand ASAN_POISON ifn. */
3361 asan_expand_poison_ifn (gimple_stmt_iterator
*iter
,
3362 bool *need_commit_edge_insert
,
3363 hash_map
<tree
, tree
> &shadow_vars_mapping
)
3365 gimple
*g
= gsi_stmt (*iter
);
3366 tree poisoned_var
= gimple_call_lhs (g
);
3367 if (!poisoned_var
|| has_zero_uses (poisoned_var
))
3369 gsi_remove (iter
, true);
3373 if (SSA_NAME_VAR (poisoned_var
) == NULL_TREE
)
3374 SET_SSA_NAME_VAR_OR_IDENTIFIER (poisoned_var
,
3375 create_tmp_var (TREE_TYPE (poisoned_var
)));
3377 tree shadow_var
= create_asan_shadow_var (SSA_NAME_VAR (poisoned_var
),
3378 shadow_vars_mapping
);
3381 if (flag_sanitize
& SANITIZE_USER_ADDRESS
)
3382 recover_p
= (flag_sanitize_recover
& SANITIZE_USER_ADDRESS
) != 0;
3384 recover_p
= (flag_sanitize_recover
& SANITIZE_KERNEL_ADDRESS
) != 0;
3385 tree size
= DECL_SIZE_UNIT (shadow_var
);
3387 = gimple_build_call_internal (IFN_ASAN_MARK
, 3,
3388 build_int_cst (integer_type_node
,
3390 build_fold_addr_expr (shadow_var
), size
);
3393 imm_use_iterator imm_iter
;
3394 FOR_EACH_IMM_USE_STMT (use
, imm_iter
, poisoned_var
)
3396 if (is_gimple_debug (use
))
3400 bool store_p
= gimple_call_internal_p (use
, IFN_ASAN_POISON_USE
);
3401 tree fun
= report_error_func (store_p
, recover_p
, tree_to_uhwi (size
),
3404 gcall
*call
= gimple_build_call (fun
, 1,
3405 build_fold_addr_expr (shadow_var
));
3406 gimple_set_location (call
, gimple_location (use
));
3407 gimple
*call_to_insert
= call
;
3409 /* The USE can be a gimple PHI node. If so, insert the call on
3410 all edges leading to the PHI node. */
3411 if (is_a
<gphi
*> (use
))
3413 gphi
*phi
= dyn_cast
<gphi
*> (use
);
3414 for (unsigned i
= 0; i
< gimple_phi_num_args (phi
); ++i
)
3415 if (gimple_phi_arg_def (phi
, i
) == poisoned_var
)
3417 edge e
= gimple_phi_arg_edge (phi
, i
);
3419 /* Do not insert on an edge we can't split. */
3420 if (e
->flags
& EDGE_ABNORMAL
)
3423 if (call_to_insert
== NULL
)
3424 call_to_insert
= gimple_copy (call
);
3426 gsi_insert_seq_on_edge (e
, call_to_insert
);
3427 *need_commit_edge_insert
= true;
3428 call_to_insert
= NULL
;
3433 gimple_stmt_iterator gsi
= gsi_for_stmt (use
);
3435 gsi_replace (&gsi
, call
, true);
3437 gsi_insert_before (&gsi
, call
, GSI_NEW_STMT
);
3441 SSA_NAME_IS_DEFAULT_DEF (poisoned_var
) = true;
3442 SSA_NAME_DEF_STMT (poisoned_var
) = gimple_build_nop ();
3443 gsi_replace (iter
, poison_call
, false);
3448 /* Instrument the current function. */
3451 asan_instrument (void)
3453 if (shadow_ptr_types
[0] == NULL_TREE
)
3454 asan_init_shadow_ptr_types ();
3455 transform_statements ();
3456 last_alloca_addr
= NULL_TREE
;
3463 return sanitize_flags_p (SANITIZE_ADDRESS
);
3468 const pass_data pass_data_asan
=
3470 GIMPLE_PASS
, /* type */
3472 OPTGROUP_NONE
, /* optinfo_flags */
3473 TV_NONE
, /* tv_id */
3474 ( PROP_ssa
| PROP_cfg
| PROP_gimple_leh
), /* properties_required */
3475 0, /* properties_provided */
3476 0, /* properties_destroyed */
3477 0, /* todo_flags_start */
3478 TODO_update_ssa
, /* todo_flags_finish */
3481 class pass_asan
: public gimple_opt_pass
3484 pass_asan (gcc::context
*ctxt
)
3485 : gimple_opt_pass (pass_data_asan
, ctxt
)
3488 /* opt_pass methods: */
3489 opt_pass
* clone () { return new pass_asan (m_ctxt
); }
3490 virtual bool gate (function
*) { return gate_asan (); }
3491 virtual unsigned int execute (function
*) { return asan_instrument (); }
3493 }; // class pass_asan
3498 make_pass_asan (gcc::context
*ctxt
)
3500 return new pass_asan (ctxt
);
3505 const pass_data pass_data_asan_O0
=
3507 GIMPLE_PASS
, /* type */
3509 OPTGROUP_NONE
, /* optinfo_flags */
3510 TV_NONE
, /* tv_id */
3511 ( PROP_ssa
| PROP_cfg
| PROP_gimple_leh
), /* properties_required */
3512 0, /* properties_provided */
3513 0, /* properties_destroyed */
3514 0, /* todo_flags_start */
3515 TODO_update_ssa
, /* todo_flags_finish */
3518 class pass_asan_O0
: public gimple_opt_pass
3521 pass_asan_O0 (gcc::context
*ctxt
)
3522 : gimple_opt_pass (pass_data_asan_O0
, ctxt
)
3525 /* opt_pass methods: */
3526 virtual bool gate (function
*) { return !optimize
&& gate_asan (); }
3527 virtual unsigned int execute (function
*) { return asan_instrument (); }
3529 }; // class pass_asan_O0
3534 make_pass_asan_O0 (gcc::context
*ctxt
)
3536 return new pass_asan_O0 (ctxt
);
3539 #include "gt-asan.h"