Fix dg-warning on hppa*64*-*-*
[official-gcc.git] / gcc / splay-tree-utils.tcc
blob5c36bb55f78b82425932fb069376fe455875300f
1 // Splay tree utilities                                             -*- C++ -*-
2 // Copyright (C) 2020-2024 Free Software Foundation, Inc.
3 //
4 // This file is part of GCC.
5 //
6 // GCC is free software; you can redistribute it and/or modify it under
7 // the terms of the GNU General Public License as published by the Free
8 // Software Foundation; either version 3, or (at your option) any later
9 // version.
11 // GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 // WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 // for more details.
16 // You should have received a copy of the GNU General Public License
17 // along with GCC; see the file COPYING3.  If not see
18 // <http://www.gnu.org/licenses/>.
20 // INDEX is either 0 or 1.  If it is 0, return NODE's left child,
21 // otherwise return NODE's right child.
22 template<typename Accessors>
23 inline typename base_splay_tree<Accessors>::node_type
24 base_splay_tree<Accessors>::get_child (node_type node, unsigned int index)
26   return Accessors::child (node, index);
29 // INDEX is either 0 or 1.  If it is 0, change NODE's left child to CHILD,
30 // otherwise change NODE's right child to CHILD.  If CHILD has a parent
31 // field, record that its parent is now NODE.
32 template<typename Accessors>
33 inline void
34 base_splay_tree<Accessors>::set_child (node_type node, unsigned int index,
35                                        node_type child)
37   Accessors::child (node, index) = child;
38   if (child)
39     set_parent (child, node);
42 // Rotate the tree to promote child number INDEX of NODE, so that that
43 // child becomes a parent of NODE.  Return the promoted node.
45 // The caller has the responsibility of assigning a correct parent
46 // to the returned node.
47 template<typename Accessors>
48 inline typename base_splay_tree<Accessors>::node_type
49 base_splay_tree<Accessors>::promote_child (node_type node, unsigned int index)
51   node_type promoted = get_child (node, index);
52   set_child (node, index, get_child (promoted, 1 - index));
53   set_child (promoted, 1 - index, node);
54   return promoted;
57 // Treat child number INDEX of NODE as being CHILD and rotate the tree
58 // so that CHILD becomes a parent of NODE.
60 // The caller has the responsibility of assigning a correct parent to CHILD.
61 template<typename Accessors>
62 inline void
63 base_splay_tree<Accessors>::promote_child (node_type node, unsigned int index,
64                                            node_type child)
66   set_child (node, index, get_child (child, 1 - index));
67   set_child (child, 1 - index, node);
70 // Print NODE to PP, using PRINTER (PP, N) to print the contents of node N.
71 // Prefix each new line with INDENT_STRING.  CODE is 'T' if NODE is the root
72 // node, 'L' if NODE is the left child of its parent, or 'R' if NODE is the
73 // right child of its parent.
74 template<typename Accessors>
75 template<typename Printer>
76 void
77 base_splay_tree<Accessors>::print (pretty_printer *pp, node_type node,
78                                    Printer printer, char code,
79                                    vec<char> &indent_string)
81   // In the comments below, PREFIX refers to the incoming contents
82   // of INDENT_STRING.
83   node_type left = get_child (node, 0);
84   node_type right = get_child (node, 1);
86   auto orig_indent_len = indent_string.length ();
87   indent_string.safe_grow (orig_indent_len + 3);
88   char *extra_indent = indent_string.address () + orig_indent_len;
90   // Print [T], [L], or [R].
91   extra_indent[0] = '[';
92   extra_indent[1] = code;
93   extra_indent[2] = ']';
94   pp_append_text (pp, extra_indent, indent_string.end ());
95   pp_space (pp);
97   // Print the node itself, using PREFIX + " | " or PREFIX + "   " to indent
98   // new lines under the "[_]" that we just printed.
99   extra_indent[0] = ' ';
100   extra_indent[1] = (left || right ? '|' : ' ');
101   extra_indent[2] = ' ';
102   {
103     pretty_printer sub_pp;
104     printer (&sub_pp, node);
105     const char *text = pp_formatted_text (&sub_pp);
106     while (const char *end = strchr (text, '\n'))
107       {
108         pp_append_text (pp, text, end);
109         pp_newline_and_indent (pp, 0);
110         pp_append_text (pp, indent_string.begin (), indent_string.end ());
111         text = end + 1;
112       }
113     pp_string (pp, text);
114   }
116   if (left)
117     {
118       // Print PREFIX + " +-" for the first line of the left subtree,
119       // to be followed by "[L]".
120       extra_indent[1] = '+';
121       extra_indent[2] = '-';
122       pp_newline_and_indent (pp, 0);
123       pp_append_text (pp, indent_string.begin (), indent_string.end ());
125       // Print the left subtree, using PREFIX + " | " or PREFIX + "   "
126       // to indent under the PREFIX + " +-" that we just printed.
127       extra_indent[1] = right ? '|' : ' ';
128       extra_indent[2] = ' ';
129       print (pp, left, printer, 'L', indent_string);
130       extra_indent = indent_string.address () + orig_indent_len;
132       // If LEFT is not a leaf and we also have a right subtree, use a
133       // PREFIX + " |" line to separate them.
134       if (right && (get_child (left, 0) || get_child (left, 1)))
135         {
136           pp_newline_and_indent (pp, 0);
137           pp_append_text (pp, indent_string.begin (), &extra_indent[2]);
138         }
139     }
140   if (right)
141     {
142       // Print PREFIX + " +-" for the first line of the right subtree,
143       // to be followed by "[R]".
144       extra_indent[1] = '+';
145       extra_indent[2] = '-';
146       pp_newline_and_indent (pp, 0);
147       pp_append_text (pp, indent_string.begin (), indent_string.end ());
149       // Print the right subtree, using PREFIX + "   " to indent under the
150       // PREFIX + " +-" that we just printed.
151       extra_indent[1] = ' ';
152       extra_indent[2] = ' ';
153       print (pp, right, printer, 'R', indent_string);
154     }
155   indent_string.truncate (orig_indent_len);
158 // See the comment above the declaration.
159 template<typename Accessors>
160 template<typename Printer>
161 void
162 base_splay_tree<Accessors>::print (pretty_printer *pp, node_type node,
163                                    Printer printer)
165   if (!node)
166     {
167       pp_string (pp, "null");
168       return;
169     }
170   auto_vec<char, 64> indent_string;
171   print (pp, node, printer, 'T', indent_string);
174 // If N is 1, splay the last (rightmost) node reachable from START
175 // to the position that START current holds and return the splayed node.
176 // START is not itself the last node.
178 // If N is 0, splay the first (leftmost) node reachable from START
179 // to the position that START current holds and return the splayed node.
180 // START is not itself the first node.
182 // The caller has the responsibility of updating the parent of the
183 // returned node.
184 template<typename Accessors>
185 template<unsigned int N>
186 typename base_splay_tree<Accessors>::node_type
187 base_splay_tree<Accessors>::splay_limit (node_type start)
189   // This essentially follows the simpilfied top-down method described
190   // in Sleator and Tarjan's "Self-adjusting Binary Search Trees", but
191   // specialized for the case in which the comparison result is fixed.
192   // The first iteration is peeled to avoid the need for stack temporaries.
193   //
194   // The comments and names reflect the behavior for N == 1, but the
195   // N == 0 case behaves analogously.
197   // Rotate the tree to promote the right child of START to the root.
198   node_type node = promote_child (start, N);
199   if (node_type right = get_child (node, N))
200     {
201       // Perform the link left step, which for this first iteration
202       // means making NODE the root of the left tree.
203       //
204       // NODE will become left child of the final node.  For a right
205       // spine starting at NODE of the form:
206       //
207       //  1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> ... -> N
208       //  |    |    |    |    |    |    |           |
209       //  V    V    V    V    V    V    V           V
210       //  A    B    C    D    E    F    G           NL
211       //
212       // the next step is to create a subtree of N whose right spine contains
213       // the odd-numbered nodes, as follows:
214       //
215       //  N
216       //  |
217       //  V
218       //  1 ------> 3 ------> 5 ------> 7 -> .... -> NL
219       //  |         |         |         |
220       //  V         V         V         V
221       //  A         2 -> C    4 -> E    6 -> G
222       //            |         |         |
223       //            V         V         V
224       //            B         D         F
225       //
226       // First record 1 as the left child of the final root (N) and move
227       // on to node 2.
228       node_type final_child = node;
229       node_type new_spine_end = node;
230       node = right;
231       while (node_type right = get_child (node, N))
232         {
233           // Perform another rotate left step.
234           //
235           // We've built the tree rooted at 1 in the diagram above up to,
236           // but not including, an even-numbered node NODE on the original
237           // right spine.  Rotate the tree at NODE to promote the following
238           // odd-numbered node.
239           promote_child (node, N, right);
240           node = right;
241           if (node_type right = get_child (node, N))
242             {
243               // Perform another link left step.
244               //
245               // Add the promoted odd-numbered node to the right spine of the
246               // tree rooted at 1 and move on to the next even-numbered node.
247               set_child (new_spine_end, N, node);
248               new_spine_end = node;
249               node = right;
250             }
251         }
252       // Perform the assembly step.
253       //
254       // Add NL to the new spine and make N the new root.
255       set_child (new_spine_end, N, get_child (node, 1 - N));
256       set_child (node, 1 - N, final_child);
257     }
258   return node;
261 // Remove NODE from its position in the splay tree.  If NODE has at least
262 // one child node, return the node that should now hold NODE's position in
263 // the splay tree.  If NODE has no children, return null.
265 // The caller has the responsibility of updating the parent of the
266 // returned node.
267 template<typename Accessors>
268 inline typename base_splay_tree<Accessors>::node_type
269 base_splay_tree<Accessors>::remove_node_internal (node_type node)
271   node_type left = get_child (node, 0);
272   node_type right = get_child (node, 1);
273   if (!left)
274     return right;
276   if (!right)
277     return left;
279   if (get_child (left, 1))
280     {
281       left = splay_limit<1> (left);
282       gcc_checking_assert (!get_child (left, 1));
283     }
284   set_child (left, 1, right);
285   return left;
288 // See the comment above the declaration.
289 template<typename Accessors>
290 inline void
291 base_splay_tree<Accessors>::insert_child (node_type node, unsigned int index,
292                                           node_type child)
294   gcc_checking_assert (!get_child (child, 0) && !get_child (child, 1));
295   set_child (child, index, get_child (node, index));
296   set_child (node, index, child);
299 // Implement splay_next_node if N == 1 and splay_prev_node if N == 0.
300 template<typename Accessors>
301 template<unsigned int N>
302 bool
303 rooted_splay_tree<Accessors>::splay_neighbor ()
305   node_type node = m_root;
306   node_type new_root = get_child (node, N);
307   if (!new_root)
308     return false;
310   if (get_child (new_root, 1 - N))
311     {
312       // NEW_ROOT is not itself the required node, so splay the required
313       // node into its place.
314       new_root = parent::template splay_limit<1 - N> (new_root);
315       gcc_checking_assert (!get_child (new_root, 1 - N));
316       set_child (node, N, node_type ());
317       set_child (new_root, 1 - N, node);
318     }
319   else
320     promote_child (node, N, new_root);
321   set_parent (new_root, node_type ());
322   m_root = new_root;
323   return true;
326 // See the comment above the declaration.
327 template<typename Accessors>
328 template<typename Comparator>
329 bool
330 rooted_splay_tree<Accessors>::insert (node_type new_node, Comparator compare)
332   gcc_checking_assert (!get_child (new_node, 0) && !get_child (new_node, 1));
333   if (!m_root)
334     {
335       m_root = new_node;
336       return true;
337     }
339   int comparison = lookup (compare);
340   if (comparison == 0)
341     return false;
343   // Insert NEW_NODE before M_ROOT if COMPARISON < 0 and after M_ROOT
344   // otherwise.
345   set_child (new_node, comparison < 0, m_root);
346   set_child (new_node, comparison > 0, get_child (m_root, comparison > 0));
347   set_child (m_root, comparison > 0, nullptr);
348   m_root = new_node;
349   return true;
352 // See the comment above the declaration.
353 template<typename Accessors>
354 inline void
355 rooted_splay_tree<Accessors>::insert_max_node (node_type new_node)
357   gcc_checking_assert (!get_child (new_node, 0) && !get_child (new_node, 1));
358   set_child (new_node, 0, m_root);
359   m_root = new_node;
362 // See the comment above the declaration.
363 template<typename Accessors>
364 inline void
365 rooted_splay_tree<Accessors>::splice_next_tree (rooted_splay_tree next_tree)
367   splay_max_node ();
368   set_child (m_root, 1, next_tree.m_root);
371 // See the comment above the declaration.
372 template<typename Accessors>
373 inline void
374 rooted_splay_tree<Accessors>::replace_max_node_at_root (node_type new_node)
376   node_type old_node = m_root;
377   gcc_checking_assert (!get_child (new_node, 0)
378                        && !get_child (new_node, 1)
379                        && !get_child (old_node, 1));
380   set_child (new_node, 0, get_child (old_node, 0));
381   // Clear the links from OLD_NODE.  Its parent and right child are
382   // already node_type ().
383   set_child (old_node, 0, node_type ());
384   m_root = new_node;
387 // See the comment above the declaration.
388 template<typename Accessors>
389 inline void
390 rooted_splay_tree<Accessors>::remove_root ()
392   node_type node = m_root;
393   m_root = parent::remove_node_internal (node);
394   if (m_root)
395     set_parent (m_root, node_type ());
396   // Clear the links from NODE.  Its parent is already node_type ().
397   set_child (node, 0, node_type ());
398   set_child (node, 1, node_type ());
401 // See the comment above the declaration.
402 template<typename Accessors>
403 inline rooted_splay_tree<Accessors>
404 rooted_splay_tree<Accessors>::split_before_root ()
406   node_type new_root = get_child (m_root, 0);
407   set_child (m_root, 0, node_type ());
408   set_parent (new_root, node_type ());
409   return new_root;
412 // See the comment above the declaration.
413 template<typename Accessors>
414 inline rooted_splay_tree<Accessors>
415 rooted_splay_tree<Accessors>::split_after_root ()
417   node_type new_root = get_child (m_root, 1);
418   set_child (m_root, 1, node_type ());
419   set_parent (new_root, node_type ());
420   return new_root;
423 // See the comment above the declaration.
424 template<typename Accessors>
425 inline bool
426 rooted_splay_tree<Accessors>::splay_prev_node ()
428   return splay_neighbor<0> ();
431 // See the comment above the declaration.
432 template<typename Accessors>
433 inline bool
434 rooted_splay_tree<Accessors>::splay_next_node ()
436   return splay_neighbor<1> ();
439 // See the comment above the declaration.
440 template<typename Accessors>
441 inline void
442 rooted_splay_tree<Accessors>::splay_min_node ()
444   if (m_root && get_child (m_root, 0))
445     {
446       m_root = parent::template splay_limit<0> (m_root);
447       set_parent (m_root, node_type ());
448     }
451 // See the comment above the declaration.
452 template<typename Accessors>
453 inline void
454 rooted_splay_tree<Accessors>::splay_max_node ()
456   if (m_root && get_child (m_root, 1))
457     {
458       m_root = parent::template splay_limit<1> (m_root);
459       set_parent (m_root, node_type ());
460     }
463 // See the comment above the declaration.
464 template<typename Accessors>
465 inline typename rooted_splay_tree<Accessors>::node_type
466 rooted_splay_tree<Accessors>::min_node ()
468   splay_min_node ();
469   return m_root;
472 // See the comment above the declaration.
473 template<typename Accessors>
474 inline typename rooted_splay_tree<Accessors>::node_type
475 rooted_splay_tree<Accessors>::max_node ()
477   splay_max_node ();
478   return m_root;
481 // See the comment above the declaration.
482 template<typename Accessors>
483 template<typename Comparator>
484 auto
485 rooted_splay_tree<Accessors>::lookup (Comparator compare)
486   -> decltype (compare (m_root))
488   // This essentially follows the simpilfied top-down method described
489   // in Sleator and Tarjan's "Self-adjusting Binary Search Trees", but
490   // with the complication that the comparisons are done only once.
491   using result_type = decltype (compare (m_root));
493   // The roots of the left and right trees.
494   node_type link_left_root = node_type ();
495   node_type link_right_root = node_type ();
497   // Where to add new nodes to the left and right trees.
498   node_type *link_left_ptr = &link_left_root;
499   node_type *link_right_ptr = &link_right_root;
501   // The nodes that contain *LINK_LEFT_PTR and *LINK_RIGHT_PTR,
502   // once they no longer point to the roots above.
503   node_type link_left_parent = node_type ();
504   node_type link_right_parent = node_type ();
506   auto link_left = [&](node_type node)
507     {
508       *link_left_ptr = node;
509       link_left_ptr = &Accessors::child (node, 1);
510       set_parent (node, link_left_parent);
511       link_left_parent = node;
512     };
514   auto link_right = [&](node_type node)
515     {
516       *link_right_ptr = node;
517       link_right_ptr = &Accessors::child (node, 0);
518       set_parent (node, link_right_parent);
519       link_right_parent = node;
520     };
522   node_type node = m_root;
523   node_type parent = node_type ();
524   result_type result;
525   result_type old_result = 0;
526   while (1)
527     {
528       // OLD_RESULT is 0 if NODE is the root of the middle tree.
529       // Otherwise, PARENT is the root of the middle tree and OLD_RESULT
530       // is how it compared.
531       //
532       // Results are:
533       // < 0 if we want something smaller.
534       // = 0 if we found the right node.
535       // > 0 if we want something bigger.
536       result = compare (node);
537       if (old_result < 0)
538         {
539           if (result < 0)
540             {
541               // SEARCH < NODE < PARENT
542               //
543               // Promote NODE (rotate right).
544               promote_child (parent, 0, node);
545               node_type next = get_child (node, 0);
546               if (!next)
547                 break;
549               link_right (node);
551               // NEXT is now the root of the middle tree.
552               node = next;
553               old_result = 0;
554               continue;
555             }
557           // SEARCH >= NODE, NODE < PARENT
558           link_right (parent);
559         }
560       else if (old_result > 0)
561         {
562           if (result > 0)
563             {
564               // SEARCH > NODE > PARENT
565               //
566               // Promote NODE (rotate left).
567               promote_child (parent, 1, node);
568               node_type next = get_child (node, 1);
569               if (!next)
570                 break;
572               link_left (node);
574               // NEXT is now the root of the middle tree.
575               node = next;
576               old_result = 0;
577               continue;
578             }
580           // SEARCH <= NODE, NODE > PARENT
581           link_left (parent);
582         }
584       // Microoptimization to allow NODE to be read even if RESULT == 0.
585       node_type next = get_child (node, result >= 0);
586       if (result == 0 || !next)
587         break;
589       // NODE is now the root of the tree.
590       parent = node;
591       node = next;
592       old_result = result;
593     }
595   node_type new_left = link_left_root;
596   node_type new_right = link_right_root;
598   if (new_left)
599     {
600       node_type old_left = get_child (node, 0);
601       *link_left_ptr = old_left;
602       if (old_left)
603         set_parent (old_left, link_left_parent);
604       set_child (node, 0, new_left);
605     }
607   if (new_right)
608     {
609       node_type old_right = get_child (node, 1);
610       *link_right_ptr = old_right;
611       if (old_right)
612         set_parent (old_right, link_right_parent);
613       set_child (node, 1, new_right);
614     }
616   set_parent (node, node_type ());
617   m_root = node;
618   return result;
621 // See the comment above the declaration.
622 template<typename Accessors>
623 template<typename LeftPredicate, typename RightPredicate>
625 rooted_splay_tree<Accessors>::lookup (LeftPredicate want_something_smaller,
626                                       RightPredicate want_something_bigger)
628   // This essentially follows the simpilfied top-down method described
629   // in Sleator and Tarjan's "Self-adjusting Binary Search Trees"
630   // (and follows it more closely than the single-comparator version above).
632   // The roots of the left and right trees.
633   node_type link_left_root = node_type ();
634   node_type link_right_root = node_type ();
636   // Where to add new nodes to the left and right trees.
637   node_type *link_left_ptr = &link_left_root;
638   node_type *link_right_ptr = &link_right_root;
640   // The nodes that contain *LINK_LEFT_PTR and *LINK_RIGHT_PTR,
641   // once they no longer point to the roots above.
642   node_type link_left_parent = node_type ();
643   node_type link_right_parent = node_type ();
645   node_type node = m_root;
646   int result;
647   for (;;)
648     {
649       // NODE is the root of the middle tree.
650       if (want_something_smaller (node))
651         {
652           result = -1;
653           node_type next = get_child (node, 0);
654           if (!next)
655             break;
657           if (want_something_smaller (next))
658             {
659               // Promote NODE (rotate right).
660               promote_child (node, 0, next);
661               node = next;
662               next = get_child (node, 0);
663               if (!next)
664                 break;
665             }
667           // Add NODE to the right tree (link right).
668           *link_right_ptr = node;
669           link_right_ptr = &Accessors::child (node, 0);
670           set_parent (node, link_right_parent);
671           link_right_parent = node;
673           node = next;
674         }
675       else if (want_something_bigger (node))
676         {
677           result = 1;
678           node_type next = get_child (node, 1);
679           if (!next)
680             break;
682           if (want_something_bigger (next))
683             {
684               // Promote NODE (rotate left).
685               promote_child (node, 1, next);
686               node = next;
687               next = get_child (node, 1);
688               if (!next)
689                 break;
690             }
692           // Add NODE to the left tree (link left).
693           *link_left_ptr = node;
694           link_left_ptr = &Accessors::child (node, 1);
695           set_parent (node, link_left_parent);
696           link_left_parent = node;
698           node = next;
699         }
700       else
701         {
702           result = 0;
703           break;
704         }
705     }
707   node_type new_left = link_left_root;
708   node_type new_right = link_right_root;
710   if (new_left)
711     {
712       node_type old_left = get_child (node, 0);
713       *link_left_ptr = old_left;
714       if (old_left)
715         set_parent (old_left, link_left_parent);
716       set_child (node, 0, new_left);
717     }
719   if (new_right)
720     {
721       node_type old_right = get_child (node, 1);
722       *link_right_ptr = old_right;
723       if (old_right)
724         set_parent (old_right, link_right_parent);
725       set_child (node, 1, new_right);
726     }
728   set_parent (node, node_type ());
729   m_root = node;
730   return result;
733 // See the comment above the declaration.
734 template<typename Accessors>
735 template<typename Printer>
736 inline void
737 rooted_splay_tree<Accessors>::print (pretty_printer *pp, Printer printer) const
739   print (pp, m_root, printer);
742 // Return NODE's current parent.
743 template<typename Accessors>
744 inline typename rootless_splay_tree<Accessors>::node_type
745 rootless_splay_tree<Accessors>::get_parent (node_type node)
747   return Accessors::parent (node);
750 // CHILD is known to be a child of PARENT.  Return which index it has.
751 template<typename Accessors>
752 inline unsigned int
753 rootless_splay_tree<Accessors>::child_index (node_type parent, node_type child)
755   return get_child (parent, 1) == child;
758 // If N == 1, implement splay_known_max_node, otherwise implement
759 // splay_known_min_node.
760 template<typename Accessors>
761 template<unsigned int N>
762 inline void
763 rootless_splay_tree<Accessors>::splay_known_limit (node_type node)
765   node_type child = node;
766   node_type parent = get_parent (child);
767   if (!parent)
768     return;
770   do
771     // At this point, NODE conceptually replaces CHILD as a child of
772     // PARENT, but we haven't yet updated PARENT accordingly.
773     if (node_type grandparent = get_parent (parent))
774       {
775         node_type greatgrandparent = get_parent (grandparent);
776         promote_child (grandparent, N, parent);
777         promote_child (parent, N, node);
778         child = grandparent;
779         parent = greatgrandparent;
780       }
781     else
782       {
783         promote_child (parent, N, node);
784         break;
785       }
786   while (parent);
787   set_parent (node, node_type ());
790 // See the comment above the declaration.
791 template<typename Accessors>
792 typename rootless_splay_tree<Accessors>::node_type
793 rootless_splay_tree<Accessors>::remove_node (node_type node)
795   node_type replacement = parent::remove_node_internal (node);
796   if (node_type parent = get_parent (node))
797     set_child (parent, child_index (parent, node), replacement);
798   else if (replacement)
799     set_parent (replacement, node_type ());
800   // Clear the links from NODE.
801   set_parent (node, node_type ());
802   set_child (node, 0, node_type ());
803   set_child (node, 1, node_type ());
804   return replacement;
807 // See the comment above the declaration.
808 template<typename Accessors>
809 void
810 rootless_splay_tree<Accessors>::splay (node_type node)
812   node_type child = node;
813   node_type parent = get_parent (child);
814   if (!parent)
815     return;
817   do
818     {
819       // At this point, NODE conceptually replaces CHILD as a child of
820       // PARENT, but we haven't yet updated PARENT accordingly.
821       unsigned int index = child_index (parent, child);
822       if (node_type grandparent = get_parent (parent))
823         {
824           node_type greatgrandparent = get_parent (grandparent);
825           unsigned int parent_index = child_index (grandparent, parent);
826           if (index == parent_index)
827             {
828               promote_child (grandparent, parent_index, parent);
829               promote_child (parent, index, node);
830             }
831           else
832             {
833               promote_child (parent, index, node);
834               promote_child (grandparent, parent_index, node);
835             }
836           child = grandparent;
837           parent = greatgrandparent;
838         }
839       else
840         {
841           promote_child (parent, index, node);
842           break;
843         }
844     }
845   while (parent);
846   set_parent (node, node_type ());
849 // See the comment above the declaration.
850 template<typename Accessors>
851 inline void
852 rootless_splay_tree<Accessors>::splay_known_min_node (node_type node)
854   splay_known_limit<0> (node);
857 // See the comment above the declaration.
858 template<typename Accessors>
859 inline void
860 rootless_splay_tree<Accessors>::splay_known_max_node (node_type node)
862   splay_known_limit<1> (node);
865 // See the comment above the declaration.
866 template<typename Accessors>
867 template<typename DefaultResult, typename Predicate>
868 auto
869 rootless_splay_tree<Accessors>::
870 splay_and_search (node_type node, DefaultResult default_result,
871                   Predicate predicate)
872   -> decltype (predicate (node, 0))
874   using Result = decltype (predicate (node, 0));
876   node_type child = node;
877   node_type parent = get_parent (child);
878   if (!parent)
879     return default_result;
881   do
882     {
883       // At this point, NODE conceptually replaces CHILD as a child of
884       // PARENT, but we haven't yet updated PARENT accordingly.
885       unsigned int index = child_index (parent, child);
886       if (Result result = predicate (parent, index))
887         {
888           set_child (parent, index, node);
889           return result;
890         }
891       if (node_type grandparent = get_parent (parent))
892         {
893           node_type greatgrandparent = get_parent (grandparent);
894           unsigned int parent_index = child_index (grandparent, parent);
895           if (Result result = predicate (grandparent, parent_index))
896             {
897               set_child (parent, index, node);
898               return result;
899             }
900           if (index == parent_index)
901             {
902               promote_child (grandparent, parent_index, parent);
903               promote_child (parent, index, node);
904             }
905           else
906             {
907               promote_child (parent, index, node);
908               promote_child (grandparent, parent_index, node);
909             }
910           child = grandparent;
911           parent = greatgrandparent;
912         }
913       else
914         {
915           promote_child (parent, index, node);
916           break;
917         }
918     }
919   while (parent);
920   set_parent (node, node_type ());
921   return default_result;
924 // Splay NODE1 looking to see if one of its ancestors is NODE2.  If it is,
925 // return -1 if NODE1 comes before NODE2 or 1 if NODE1 comes after NODE2.
926 // Return 0 if NODE2 is not an ancestor of NODE1.
927 template<typename Accessors>
929 rootless_splay_tree<Accessors>::compare_nodes_one_way (node_type node1,
930                                                        node_type node2)
932   auto compare = [&](node_type parent, unsigned int index) -> int
933     {
934       if (parent == node2)
935         return index ? 1 : -1;
936       return 0;
937     };
938   return splay_and_search (node1, 0, compare);
941 // See the comment above the declaration.
942 template<typename Accessors>
944 rootless_splay_tree<Accessors>::compare_nodes (node_type node1,
945                                                node_type node2)
947   if (node1 == node2)
948     return 0;
950   // Splay NODE1 looking for NODE2.
951   int cmp = compare_nodes_one_way (node1, node2);
952   if (cmp)
953     return cmp;
955   // That failed, but NODE1 is now the root of the tree.  Splay NODE2
956   // to see on which side of NODE1 it falls.
957   cmp = compare_nodes_one_way (node2, node1);
958   gcc_checking_assert (cmp);
959   return -cmp;