[Ada] Complete support for prefixed call on subtypes/derived types
[official-gcc.git] / gcc / ada / sem_ch3.adb
blobe24ca8c6ce8d7b6ab916c63fe61bbe4018f01a85
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2021, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Einfo.Entities; use Einfo.Entities;
34 with Einfo.Utils; use Einfo.Utils;
35 with Errout; use Errout;
36 with Eval_Fat; use Eval_Fat;
37 with Exp_Ch3; use Exp_Ch3;
38 with Exp_Ch9; use Exp_Ch9;
39 with Exp_Disp; use Exp_Disp;
40 with Exp_Dist; use Exp_Dist;
41 with Exp_Tss; use Exp_Tss;
42 with Exp_Util; use Exp_Util;
43 with Freeze; use Freeze;
44 with Ghost; use Ghost;
45 with Itypes; use Itypes;
46 with Layout; use Layout;
47 with Lib; use Lib;
48 with Lib.Xref; use Lib.Xref;
49 with Namet; use Namet;
50 with Nlists; use Nlists;
51 with Nmake; use Nmake;
52 with Opt; use Opt;
53 with Restrict; use Restrict;
54 with Rident; use Rident;
55 with Rtsfind; use Rtsfind;
56 with Sem; use Sem;
57 with Sem_Aux; use Sem_Aux;
58 with Sem_Case; use Sem_Case;
59 with Sem_Cat; use Sem_Cat;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch7; use Sem_Ch7;
62 with Sem_Ch8; use Sem_Ch8;
63 with Sem_Ch13; use Sem_Ch13;
64 with Sem_Dim; use Sem_Dim;
65 with Sem_Disp; use Sem_Disp;
66 with Sem_Dist; use Sem_Dist;
67 with Sem_Elab; use Sem_Elab;
68 with Sem_Elim; use Sem_Elim;
69 with Sem_Eval; use Sem_Eval;
70 with Sem_Mech; use Sem_Mech;
71 with Sem_Res; use Sem_Res;
72 with Sem_Smem; use Sem_Smem;
73 with Sem_Type; use Sem_Type;
74 with Sem_Util; use Sem_Util;
75 with Sem_Warn; use Sem_Warn;
76 with Stand; use Stand;
77 with Sinfo; use Sinfo;
78 with Sinfo.Nodes; use Sinfo.Nodes;
79 with Sinfo.Utils; use Sinfo.Utils;
80 with Sinput; use Sinput;
81 with Snames; use Snames;
82 with Targparm; use Targparm;
83 with Tbuild; use Tbuild;
84 with Ttypes; use Ttypes;
85 with Uintp; use Uintp;
86 with Urealp; use Urealp;
88 package body Sem_Ch3 is
90 -----------------------
91 -- Local Subprograms --
92 -----------------------
94 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
95 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
96 -- abstract interface types implemented by a record type or a derived
97 -- record type.
99 procedure Build_Access_Subprogram_Wrapper (Decl : Node_Id);
100 -- When an access-to-subprogram type has pre/postconditions, we build a
101 -- subprogram that includes these contracts and is invoked by an indirect
102 -- call through the corresponding access type.
104 procedure Build_Derived_Type
105 (N : Node_Id;
106 Parent_Type : Entity_Id;
107 Derived_Type : Entity_Id;
108 Is_Completion : Boolean;
109 Derive_Subps : Boolean := True);
110 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
111 -- the N_Full_Type_Declaration node containing the derived type definition.
112 -- Parent_Type is the entity for the parent type in the derived type
113 -- definition and Derived_Type the actual derived type. Is_Completion must
114 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
115 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
116 -- completion of a private type declaration. If Is_Completion is set to
117 -- True, N is the completion of a private type declaration and Derived_Type
118 -- is different from the defining identifier inside N (i.e. Derived_Type /=
119 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
120 -- subprograms should be derived. The only case where this parameter is
121 -- False is when Build_Derived_Type is recursively called to process an
122 -- implicit derived full type for a type derived from a private type (in
123 -- that case the subprograms must only be derived for the private view of
124 -- the type).
126 -- ??? These flags need a bit of re-examination and re-documentation:
127 -- ??? are they both necessary (both seem related to the recursion)?
129 procedure Build_Derived_Access_Type
130 (N : Node_Id;
131 Parent_Type : Entity_Id;
132 Derived_Type : Entity_Id);
133 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
134 -- create an implicit base if the parent type is constrained or if the
135 -- subtype indication has a constraint.
137 procedure Build_Derived_Array_Type
138 (N : Node_Id;
139 Parent_Type : Entity_Id;
140 Derived_Type : Entity_Id);
141 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
142 -- create an implicit base if the parent type is constrained or if the
143 -- subtype indication has a constraint.
145 procedure Build_Derived_Concurrent_Type
146 (N : Node_Id;
147 Parent_Type : Entity_Id;
148 Derived_Type : Entity_Id);
149 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
150 -- protected type, inherit entries and protected subprograms, check
151 -- legality of discriminant constraints if any.
153 procedure Build_Derived_Enumeration_Type
154 (N : Node_Id;
155 Parent_Type : Entity_Id;
156 Derived_Type : Entity_Id);
157 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
158 -- type, we must create a new list of literals. Types derived from
159 -- Character and [Wide_]Wide_Character are special-cased.
161 procedure Build_Derived_Numeric_Type
162 (N : Node_Id;
163 Parent_Type : Entity_Id;
164 Derived_Type : Entity_Id);
165 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
166 -- an anonymous base type, and propagate constraint to subtype if needed.
168 procedure Build_Derived_Private_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Is_Completion : Boolean;
173 Derive_Subps : Boolean := True);
174 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
175 -- because the parent may or may not have a completion, and the derivation
176 -- may itself be a completion.
178 procedure Build_Derived_Record_Type
179 (N : Node_Id;
180 Parent_Type : Entity_Id;
181 Derived_Type : Entity_Id;
182 Derive_Subps : Boolean := True);
183 -- Subsidiary procedure used for tagged and untagged record types
184 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
185 -- All parameters are as in Build_Derived_Type except that N, in
186 -- addition to being an N_Full_Type_Declaration node, can also be an
187 -- N_Private_Extension_Declaration node. See the definition of this routine
188 -- for much more info. Derive_Subps indicates whether subprograms should be
189 -- derived from the parent type. The only case where Derive_Subps is False
190 -- is for an implicit derived full type for a type derived from a private
191 -- type (see Build_Derived_Type).
193 procedure Build_Discriminal (Discrim : Entity_Id);
194 -- Create the discriminal corresponding to discriminant Discrim, that is
195 -- the parameter corresponding to Discrim to be used in initialization
196 -- procedures for the type where Discrim is a discriminant. Discriminals
197 -- are not used during semantic analysis, and are not fully defined
198 -- entities until expansion. Thus they are not given a scope until
199 -- initialization procedures are built.
201 function Build_Discriminant_Constraints
202 (T : Entity_Id;
203 Def : Node_Id;
204 Derived_Def : Boolean := False) return Elist_Id;
205 -- Validate discriminant constraints and return the list of the constraints
206 -- in order of discriminant declarations, where T is the discriminated
207 -- unconstrained type. Def is the N_Subtype_Indication node where the
208 -- discriminants constraints for T are specified. Derived_Def is True
209 -- when building the discriminant constraints in a derived type definition
210 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
211 -- type and Def is the constraint "(xxx)" on T and this routine sets the
212 -- Corresponding_Discriminant field of the discriminants in the derived
213 -- type D to point to the corresponding discriminants in the parent type T.
215 procedure Build_Discriminated_Subtype
216 (T : Entity_Id;
217 Def_Id : Entity_Id;
218 Elist : Elist_Id;
219 Related_Nod : Node_Id;
220 For_Access : Boolean := False);
221 -- Subsidiary procedure to Constrain_Discriminated_Type and to
222 -- Process_Incomplete_Dependents. Given
224 -- T (a possibly discriminated base type)
225 -- Def_Id (a very partially built subtype for T),
227 -- the call completes Def_Id to be the appropriate E_*_Subtype.
229 -- The Elist is the list of discriminant constraints if any (it is set
230 -- to No_Elist if T is not a discriminated type, and to an empty list if
231 -- T has discriminants but there are no discriminant constraints). The
232 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
233 -- The For_Access says whether or not this subtype is really constraining
234 -- an access type.
236 function Build_Scalar_Bound
237 (Bound : Node_Id;
238 Par_T : Entity_Id;
239 Der_T : Entity_Id) return Node_Id;
240 -- The bounds of a derived scalar type are conversions of the bounds of
241 -- the parent type. Optimize the representation if the bounds are literals.
242 -- Needs a more complete spec--what are the parameters exactly, and what
243 -- exactly is the returned value, and how is Bound affected???
245 procedure Check_Access_Discriminant_Requires_Limited
246 (D : Node_Id;
247 Loc : Node_Id);
248 -- Check the restriction that the type to which an access discriminant
249 -- belongs must be a concurrent type or a descendant of a type with
250 -- the reserved word 'limited' in its declaration.
252 procedure Check_Anonymous_Access_Component
253 (Typ_Decl : Node_Id;
254 Typ : Entity_Id;
255 Prev : Entity_Id;
256 Comp_Def : Node_Id;
257 Access_Def : Node_Id);
258 -- Ada 2005 AI-382: an access component in a record definition can refer to
259 -- the enclosing record, in which case it denotes the type itself, and not
260 -- the current instance of the type. We create an anonymous access type for
261 -- the component, and flag it as an access to a component, so accessibility
262 -- checks are properly performed on it. The declaration of the access type
263 -- is placed ahead of that of the record to prevent order-of-elaboration
264 -- circularity issues in Gigi. We create an incomplete type for the record
265 -- declaration, which is the designated type of the anonymous access.
267 procedure Check_Anonymous_Access_Components
268 (Typ_Decl : Node_Id;
269 Typ : Entity_Id;
270 Prev : Entity_Id;
271 Comp_List : Node_Id);
272 -- Call Check_Anonymous_Access_Component on Comp_List
274 procedure Check_Constraining_Discriminant (New_Disc, Old_Disc : Entity_Id);
275 -- Check that, if a new discriminant is used in a constraint defining the
276 -- parent subtype of a derivation, its subtype is statically compatible
277 -- with the subtype of the corresponding parent discriminant (RM 3.7(15)).
279 procedure Check_Delta_Expression (E : Node_Id);
280 -- Check that the expression represented by E is suitable for use as a
281 -- delta expression, i.e. it is of real type and is static.
283 procedure Check_Digits_Expression (E : Node_Id);
284 -- Check that the expression represented by E is suitable for use as a
285 -- digits expression, i.e. it is of integer type, positive and static.
287 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
288 -- Validate the initialization of an object declaration. T is the required
289 -- type, and Exp is the initialization expression.
291 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
292 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
294 procedure Check_Or_Process_Discriminants
295 (N : Node_Id;
296 T : Entity_Id;
297 Prev : Entity_Id := Empty);
298 -- If N is the full declaration of the completion T of an incomplete or
299 -- private type, check its discriminants (which are already known to be
300 -- conformant with those of the partial view, see Find_Type_Name),
301 -- otherwise process them. Prev is the entity of the partial declaration,
302 -- if any.
304 procedure Check_Real_Bound (Bound : Node_Id);
305 -- Check given bound for being of real type and static. If not, post an
306 -- appropriate message, and rewrite the bound with the real literal zero.
308 procedure Constant_Redeclaration
309 (Id : Entity_Id;
310 N : Node_Id;
311 T : out Entity_Id);
312 -- Various checks on legality of full declaration of deferred constant.
313 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
314 -- node. The caller has not yet set any attributes of this entity.
316 function Contain_Interface
317 (Iface : Entity_Id;
318 Ifaces : Elist_Id) return Boolean;
319 -- Ada 2005: Determine whether Iface is present in the list Ifaces
321 procedure Convert_Scalar_Bounds
322 (N : Node_Id;
323 Parent_Type : Entity_Id;
324 Derived_Type : Entity_Id;
325 Loc : Source_Ptr);
326 -- For derived scalar types, convert the bounds in the type definition to
327 -- the derived type, and complete their analysis. Given a constraint of the
328 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
329 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
330 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
331 -- subtype are conversions of those bounds to the derived_type, so that
332 -- their typing is consistent.
334 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
335 -- Copies attributes from array base type T2 to array base type T1. Copies
336 -- only attributes that apply to base types, but not subtypes.
338 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
339 -- Copies attributes from array subtype T2 to array subtype T1. Copies
340 -- attributes that apply to both subtypes and base types.
342 procedure Create_Constrained_Components
343 (Subt : Entity_Id;
344 Decl_Node : Node_Id;
345 Typ : Entity_Id;
346 Constraints : Elist_Id);
347 -- Build the list of entities for a constrained discriminated record
348 -- subtype. If a component depends on a discriminant, replace its subtype
349 -- using the discriminant values in the discriminant constraint. Subt
350 -- is the defining identifier for the subtype whose list of constrained
351 -- entities we will create. Decl_Node is the type declaration node where
352 -- we will attach all the itypes created. Typ is the base discriminated
353 -- type for the subtype Subt. Constraints is the list of discriminant
354 -- constraints for Typ.
356 function Constrain_Component_Type
357 (Comp : Entity_Id;
358 Constrained_Typ : Entity_Id;
359 Related_Node : Node_Id;
360 Typ : Entity_Id;
361 Constraints : Elist_Id) return Entity_Id;
362 -- Given a discriminated base type Typ, a list of discriminant constraints,
363 -- Constraints, for Typ and a component Comp of Typ, create and return the
364 -- type corresponding to Etype (Comp) where all discriminant references
365 -- are replaced with the corresponding constraint. If Etype (Comp) contains
366 -- no discriminant references then it is returned as-is. Constrained_Typ
367 -- is the final constrained subtype to which the constrained component
368 -- belongs. Related_Node is the node where we attach all created itypes.
370 procedure Constrain_Access
371 (Def_Id : in out Entity_Id;
372 S : Node_Id;
373 Related_Nod : Node_Id);
374 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
375 -- an anonymous type created for a subtype indication. In that case it is
376 -- created in the procedure and attached to Related_Nod.
378 procedure Constrain_Array
379 (Def_Id : in out Entity_Id;
380 SI : Node_Id;
381 Related_Nod : Node_Id;
382 Related_Id : Entity_Id;
383 Suffix : Character);
384 -- Apply a list of index constraints to an unconstrained array type. The
385 -- first parameter is the entity for the resulting subtype. A value of
386 -- Empty for Def_Id indicates that an implicit type must be created, but
387 -- creation is delayed (and must be done by this procedure) because other
388 -- subsidiary implicit types must be created first (which is why Def_Id
389 -- is an in/out parameter). The second parameter is a subtype indication
390 -- node for the constrained array to be created (e.g. something of the
391 -- form string (1 .. 10)). Related_Nod gives the place where this type
392 -- has to be inserted in the tree. The Related_Id and Suffix parameters
393 -- are used to build the associated Implicit type name.
395 procedure Constrain_Concurrent
396 (Def_Id : in out Entity_Id;
397 SI : Node_Id;
398 Related_Nod : Node_Id;
399 Related_Id : Entity_Id;
400 Suffix : Character);
401 -- Apply list of discriminant constraints to an unconstrained concurrent
402 -- type.
404 -- SI is the N_Subtype_Indication node containing the constraint and
405 -- the unconstrained type to constrain.
407 -- Def_Id is the entity for the resulting constrained subtype. A value
408 -- of Empty for Def_Id indicates that an implicit type must be created,
409 -- but creation is delayed (and must be done by this procedure) because
410 -- other subsidiary implicit types must be created first (which is why
411 -- Def_Id is an in/out parameter).
413 -- Related_Nod gives the place where this type has to be inserted
414 -- in the tree.
416 -- The last two arguments are used to create its external name if needed.
418 function Constrain_Corresponding_Record
419 (Prot_Subt : Entity_Id;
420 Corr_Rec : Entity_Id;
421 Related_Nod : Node_Id) return Entity_Id;
422 -- When constraining a protected type or task type with discriminants,
423 -- constrain the corresponding record with the same discriminant values.
425 procedure Constrain_Decimal (Def_Id : Entity_Id; S : Node_Id);
426 -- Constrain a decimal fixed point type with a digits constraint and/or a
427 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
429 procedure Constrain_Discriminated_Type
430 (Def_Id : Entity_Id;
431 S : Node_Id;
432 Related_Nod : Node_Id;
433 For_Access : Boolean := False);
434 -- Process discriminant constraints of composite type. Verify that values
435 -- have been provided for all discriminants, that the original type is
436 -- unconstrained, and that the types of the supplied expressions match
437 -- the discriminant types. The first three parameters are like in routine
438 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
439 -- of For_Access.
441 procedure Constrain_Enumeration (Def_Id : Entity_Id; S : Node_Id);
442 -- Constrain an enumeration type with a range constraint. This is identical
443 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
445 procedure Constrain_Float (Def_Id : Entity_Id; S : Node_Id);
446 -- Constrain a floating point type with either a digits constraint
447 -- and/or a range constraint, building a E_Floating_Point_Subtype.
449 procedure Constrain_Index
450 (Index : Node_Id;
451 S : Node_Id;
452 Related_Nod : Node_Id;
453 Related_Id : Entity_Id;
454 Suffix : Character;
455 Suffix_Index : Pos);
456 -- Process an index constraint S in a constrained array declaration. The
457 -- constraint can be a subtype name, or a range with or without an explicit
458 -- subtype mark. The index is the corresponding index of the unconstrained
459 -- array. The Related_Id and Suffix parameters are used to build the
460 -- associated Implicit type name.
462 procedure Constrain_Integer (Def_Id : Entity_Id; S : Node_Id);
463 -- Build subtype of a signed or modular integer type
465 procedure Constrain_Ordinary_Fixed (Def_Id : Entity_Id; S : Node_Id);
466 -- Constrain an ordinary fixed point type with a range constraint, and
467 -- build an E_Ordinary_Fixed_Point_Subtype entity.
469 procedure Copy_And_Swap (Priv, Full : Entity_Id);
470 -- Copy the Priv entity into the entity of its full declaration then swap
471 -- the two entities in such a manner that the former private type is now
472 -- seen as a full type.
474 procedure Decimal_Fixed_Point_Type_Declaration
475 (T : Entity_Id;
476 Def : Node_Id);
477 -- Create a new decimal fixed point type, and apply the constraint to
478 -- obtain a subtype of this new type.
480 procedure Complete_Private_Subtype
481 (Priv : Entity_Id;
482 Full : Entity_Id;
483 Full_Base : Entity_Id;
484 Related_Nod : Node_Id);
485 -- Complete the implicit full view of a private subtype by setting the
486 -- appropriate semantic fields. If the full view of the parent is a record
487 -- type, build constrained components of subtype.
489 procedure Derive_Progenitor_Subprograms
490 (Parent_Type : Entity_Id;
491 Tagged_Type : Entity_Id);
492 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
493 -- operations of progenitors of Tagged_Type, and replace the subsidiary
494 -- subtypes with Tagged_Type, to build the specs of the inherited interface
495 -- primitives. The derived primitives are aliased to those of the
496 -- interface. This routine takes care also of transferring to the full view
497 -- subprograms associated with the partial view of Tagged_Type that cover
498 -- interface primitives.
500 procedure Derived_Standard_Character
501 (N : Node_Id;
502 Parent_Type : Entity_Id;
503 Derived_Type : Entity_Id);
504 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
505 -- derivations from types Standard.Character and Standard.Wide_Character.
507 procedure Derived_Type_Declaration
508 (T : Entity_Id;
509 N : Node_Id;
510 Is_Completion : Boolean);
511 -- Process a derived type declaration. Build_Derived_Type is invoked
512 -- to process the actual derived type definition. Parameters N and
513 -- Is_Completion have the same meaning as in Build_Derived_Type.
514 -- T is the N_Defining_Identifier for the entity defined in the
515 -- N_Full_Type_Declaration node N, that is T is the derived type.
517 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
518 -- Insert each literal in symbol table, as an overloadable identifier. Each
519 -- enumeration type is mapped into a sequence of integers, and each literal
520 -- is defined as a constant with integer value. If any of the literals are
521 -- character literals, the type is a character type, which means that
522 -- strings are legal aggregates for arrays of components of the type.
524 function Expand_To_Stored_Constraint
525 (Typ : Entity_Id;
526 Constraint : Elist_Id) return Elist_Id;
527 -- Given a constraint (i.e. a list of expressions) on the discriminants of
528 -- Typ, expand it into a constraint on the stored discriminants and return
529 -- the new list of expressions constraining the stored discriminants.
531 function Find_Type_Of_Object
532 (Obj_Def : Node_Id;
533 Related_Nod : Node_Id) return Entity_Id;
534 -- Get type entity for object referenced by Obj_Def, attaching the implicit
535 -- types generated to Related_Nod.
537 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
538 -- Create a new float and apply the constraint to obtain subtype of it
540 function Has_Range_Constraint (N : Node_Id) return Boolean;
541 -- Given an N_Subtype_Indication node N, return True if a range constraint
542 -- is present, either directly, or as part of a digits or delta constraint.
543 -- In addition, a digits constraint in the decimal case returns True, since
544 -- it establishes a default range if no explicit range is present.
546 function Inherit_Components
547 (N : Node_Id;
548 Parent_Base : Entity_Id;
549 Derived_Base : Entity_Id;
550 Is_Tagged : Boolean;
551 Inherit_Discr : Boolean;
552 Discs : Elist_Id) return Elist_Id;
553 -- Called from Build_Derived_Record_Type to inherit the components of
554 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
555 -- For more information on derived types and component inheritance please
556 -- consult the comment above the body of Build_Derived_Record_Type.
558 -- N is the original derived type declaration
560 -- Is_Tagged is set if we are dealing with tagged types
562 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
563 -- Parent_Base, otherwise no discriminants are inherited.
565 -- Discs gives the list of constraints that apply to Parent_Base in the
566 -- derived type declaration. If Discs is set to No_Elist, then we have
567 -- the following situation:
569 -- type Parent (D1..Dn : ..) is [tagged] record ...;
570 -- type Derived is new Parent [with ...];
572 -- which gets treated as
574 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
576 -- For untagged types the returned value is an association list. The list
577 -- starts from the association (Parent_Base => Derived_Base), and then it
578 -- contains a sequence of the associations of the form
580 -- (Old_Component => New_Component),
582 -- where Old_Component is the Entity_Id of a component in Parent_Base and
583 -- New_Component is the Entity_Id of the corresponding component in
584 -- Derived_Base. For untagged records, this association list is needed when
585 -- copying the record declaration for the derived base. In the tagged case
586 -- the value returned is irrelevant.
588 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
589 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
590 -- Determine whether subprogram Subp is a procedure subject to pragma
591 -- Extensions_Visible with value False and has at least one controlling
592 -- parameter of mode OUT.
594 function Is_Private_Primitive (Prim : Entity_Id) return Boolean;
595 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
596 -- When applied to a primitive subprogram Prim, returns True if Prim is
597 -- declared as a private operation within a package or generic package,
598 -- and returns False otherwise.
600 function Is_Valid_Constraint_Kind
601 (T_Kind : Type_Kind;
602 Constraint_Kind : Node_Kind) return Boolean;
603 -- Returns True if it is legal to apply the given kind of constraint to the
604 -- given kind of type (index constraint to an array type, for example).
606 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
607 -- Create new modular type. Verify that modulus is in bounds
609 procedure New_Concatenation_Op (Typ : Entity_Id);
610 -- Create an abbreviated declaration for an operator in order to
611 -- materialize concatenation on array types.
613 procedure Ordinary_Fixed_Point_Type_Declaration
614 (T : Entity_Id;
615 Def : Node_Id);
616 -- Create a new ordinary fixed point type, and apply the constraint to
617 -- obtain subtype of it.
619 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id);
620 -- Wrapper on Preanalyze_Spec_Expression for default expressions, so that
621 -- In_Default_Expr can be properly adjusted.
623 procedure Prepare_Private_Subtype_Completion
624 (Id : Entity_Id;
625 Related_Nod : Node_Id);
626 -- Id is a subtype of some private type. Creates the full declaration
627 -- associated with Id whenever possible, i.e. when the full declaration
628 -- of the base type is already known. Records each subtype into
629 -- Private_Dependents of the base type.
631 procedure Process_Incomplete_Dependents
632 (N : Node_Id;
633 Full_T : Entity_Id;
634 Inc_T : Entity_Id);
635 -- Process all entities that depend on an incomplete type. There include
636 -- subtypes, subprogram types that mention the incomplete type in their
637 -- profiles, and subprogram with access parameters that designate the
638 -- incomplete type.
640 -- Inc_T is the defining identifier of an incomplete type declaration, its
641 -- Ekind is E_Incomplete_Type.
643 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
645 -- Full_T is N's defining identifier.
647 -- Subtypes of incomplete types with discriminants are completed when the
648 -- parent type is. This is simpler than private subtypes, because they can
649 -- only appear in the same scope, and there is no need to exchange views.
650 -- Similarly, access_to_subprogram types may have a parameter or a return
651 -- type that is an incomplete type, and that must be replaced with the
652 -- full type.
654 -- If the full type is tagged, subprogram with access parameters that
655 -- designated the incomplete may be primitive operations of the full type,
656 -- and have to be processed accordingly.
658 procedure Process_Real_Range_Specification (Def : Node_Id);
659 -- Given the type definition for a real type, this procedure processes and
660 -- checks the real range specification of this type definition if one is
661 -- present. If errors are found, error messages are posted, and the
662 -- Real_Range_Specification of Def is reset to Empty.
664 procedure Record_Type_Declaration
665 (T : Entity_Id;
666 N : Node_Id;
667 Prev : Entity_Id);
668 -- Process a record type declaration (for both untagged and tagged
669 -- records). Parameters T and N are exactly like in procedure
670 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
671 -- for this routine. If this is the completion of an incomplete type
672 -- declaration, Prev is the entity of the incomplete declaration, used for
673 -- cross-referencing. Otherwise Prev = T.
675 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
676 -- This routine is used to process the actual record type definition (both
677 -- for untagged and tagged records). Def is a record type definition node.
678 -- This procedure analyzes the components in this record type definition.
679 -- Prev_T is the entity for the enclosing record type. It is provided so
680 -- that its Has_Task flag can be set if any of the component have Has_Task
681 -- set. If the declaration is the completion of an incomplete type
682 -- declaration, Prev_T is the original incomplete type, whose full view is
683 -- the record type.
685 procedure Replace_Discriminants (Typ : Entity_Id; Decl : Node_Id);
686 -- Subsidiary to Build_Derived_Record_Type. For untagged record types, we
687 -- first create the list of components for the derived type from that of
688 -- the parent by means of Inherit_Components and then build a copy of the
689 -- declaration tree of the parent with the help of the mapping returned by
690 -- Inherit_Components, which will for example be used to validate record
691 -- representation clauses given for the derived type. If the parent type
692 -- is private and has discriminants, the ancestor discriminants used in the
693 -- inheritance are that of the private declaration, whereas the ancestor
694 -- discriminants present in the declaration tree of the parent are that of
695 -- the full declaration; as a consequence, the remapping done during the
696 -- copy will leave the references to the ancestor discriminants unchanged
697 -- in the declaration tree and they need to be fixed up. If the derived
698 -- type has a known discriminant part, then the remapping done during the
699 -- copy will only create references to the stored discriminants and they
700 -- need to be replaced with references to the non-stored discriminants.
702 procedure Set_Fixed_Range
703 (E : Entity_Id;
704 Loc : Source_Ptr;
705 Lo : Ureal;
706 Hi : Ureal);
707 -- Build a range node with the given bounds and set it as the Scalar_Range
708 -- of the given fixed-point type entity. Loc is the source location used
709 -- for the constructed range. See body for further details.
711 procedure Set_Scalar_Range_For_Subtype
712 (Def_Id : Entity_Id;
713 R : Node_Id;
714 Subt : Entity_Id);
715 -- This routine is used to set the scalar range field for a subtype given
716 -- Def_Id, the entity for the subtype, and R, the range expression for the
717 -- scalar range. Subt provides the parent subtype to be used to analyze,
718 -- resolve, and check the given range.
720 procedure Set_Default_SSO (T : Entity_Id);
721 -- T is the entity for an array or record being declared. This procedure
722 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
723 -- to the setting of Opt.Default_SSO.
725 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
726 -- Create a new signed integer entity, and apply the constraint to obtain
727 -- the required first named subtype of this type.
729 procedure Set_Stored_Constraint_From_Discriminant_Constraint
730 (E : Entity_Id);
731 -- E is some record type. This routine computes E's Stored_Constraint
732 -- from its Discriminant_Constraint.
734 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
735 -- Check that an entity in a list of progenitors is an interface,
736 -- emit error otherwise.
738 -----------------------
739 -- Access_Definition --
740 -----------------------
742 function Access_Definition
743 (Related_Nod : Node_Id;
744 N : Node_Id) return Entity_Id
746 Anon_Type : Entity_Id;
747 Anon_Scope : Entity_Id;
748 Desig_Type : Entity_Id;
749 Enclosing_Prot_Type : Entity_Id := Empty;
751 begin
752 if Is_Entry (Current_Scope)
753 and then Is_Task_Type (Etype (Scope (Current_Scope)))
754 then
755 Error_Msg_N ("task entries cannot have access parameters", N);
756 return Empty;
757 end if;
759 -- Ada 2005: For an object declaration the corresponding anonymous
760 -- type is declared in the current scope.
762 -- If the access definition is the return type of another access to
763 -- function, scope is the current one, because it is the one of the
764 -- current type declaration, except for the pathological case below.
766 if Nkind (Related_Nod) in
767 N_Object_Declaration | N_Access_Function_Definition
768 then
769 Anon_Scope := Current_Scope;
771 -- A pathological case: function returning access functions that
772 -- return access functions, etc. Each anonymous access type created
773 -- is in the enclosing scope of the outermost function.
775 declare
776 Par : Node_Id;
778 begin
779 Par := Related_Nod;
780 while Nkind (Par) in
781 N_Access_Function_Definition | N_Access_Definition
782 loop
783 Par := Parent (Par);
784 end loop;
786 if Nkind (Par) = N_Function_Specification then
787 Anon_Scope := Scope (Defining_Entity (Par));
788 end if;
789 end;
791 -- For the anonymous function result case, retrieve the scope of the
792 -- function specification's associated entity rather than using the
793 -- current scope. The current scope will be the function itself if the
794 -- formal part is currently being analyzed, but will be the parent scope
795 -- in the case of a parameterless function, and we always want to use
796 -- the function's parent scope. Finally, if the function is a child
797 -- unit, we must traverse the tree to retrieve the proper entity.
799 elsif Nkind (Related_Nod) = N_Function_Specification
800 and then Nkind (Parent (N)) /= N_Parameter_Specification
801 then
802 -- If the current scope is a protected type, the anonymous access
803 -- is associated with one of the protected operations, and must
804 -- be available in the scope that encloses the protected declaration.
805 -- Otherwise the type is in the scope enclosing the subprogram.
807 -- If the function has formals, the return type of a subprogram
808 -- declaration is analyzed in the scope of the subprogram (see
809 -- Process_Formals) and thus the protected type, if present, is
810 -- the scope of the current function scope.
812 if Ekind (Current_Scope) = E_Protected_Type then
813 Enclosing_Prot_Type := Current_Scope;
815 elsif Ekind (Current_Scope) = E_Function
816 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
817 then
818 Enclosing_Prot_Type := Scope (Current_Scope);
819 end if;
821 if Present (Enclosing_Prot_Type) then
822 Anon_Scope := Scope (Enclosing_Prot_Type);
824 else
825 Anon_Scope := Scope (Defining_Entity (Related_Nod));
826 end if;
828 -- For an access type definition, if the current scope is a child
829 -- unit it is the scope of the type.
831 elsif Is_Compilation_Unit (Current_Scope) then
832 Anon_Scope := Current_Scope;
834 -- For access formals, access components, and access discriminants, the
835 -- scope is that of the enclosing declaration,
837 else
838 Anon_Scope := Scope (Current_Scope);
839 end if;
841 Anon_Type :=
842 Create_Itype
843 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
845 if All_Present (N)
846 and then Ada_Version >= Ada_2005
847 then
848 Error_Msg_N ("ALL not permitted for anonymous access types", N);
849 end if;
851 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
852 -- the corresponding semantic routine
854 if Present (Access_To_Subprogram_Definition (N)) then
855 Access_Subprogram_Declaration
856 (T_Name => Anon_Type,
857 T_Def => Access_To_Subprogram_Definition (N));
859 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
860 Mutate_Ekind
861 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
862 else
863 Mutate_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
864 end if;
866 Set_Can_Use_Internal_Rep
867 (Anon_Type, not Always_Compatible_Rep_On_Target);
869 -- If the anonymous access is associated with a protected operation,
870 -- create a reference to it after the enclosing protected definition
871 -- because the itype will be used in the subsequent bodies.
873 -- If the anonymous access itself is protected, a full type
874 -- declaratiton will be created for it, so that the equivalent
875 -- record type can be constructed. For further details, see
876 -- Replace_Anonymous_Access_To_Protected-Subprogram.
878 if Ekind (Current_Scope) = E_Protected_Type
879 and then not Protected_Present (Access_To_Subprogram_Definition (N))
880 then
881 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
882 end if;
884 return Anon_Type;
885 end if;
887 Find_Type (Subtype_Mark (N));
888 Desig_Type := Entity (Subtype_Mark (N));
890 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
891 Set_Etype (Anon_Type, Anon_Type);
893 -- Make sure the anonymous access type has size and alignment fields
894 -- set, as required by gigi. This is necessary in the case of the
895 -- Task_Body_Procedure.
897 if not Has_Private_Component (Desig_Type) then
898 Layout_Type (Anon_Type);
899 end if;
901 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
902 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
903 -- the null value is allowed. In Ada 95 the null value is never allowed.
905 if Ada_Version >= Ada_2005 then
906 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
907 else
908 Set_Can_Never_Be_Null (Anon_Type, True);
909 end if;
911 -- The anonymous access type is as public as the discriminated type or
912 -- subprogram that defines it. It is imported (for back-end purposes)
913 -- if the designated type is.
915 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
917 -- Ada 2005 (AI-231): Propagate the access-constant attribute
919 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
921 -- The context is either a subprogram declaration, object declaration,
922 -- or an access discriminant, in a private or a full type declaration.
923 -- In the case of a subprogram, if the designated type is incomplete,
924 -- the operation will be a primitive operation of the full type, to be
925 -- updated subsequently. If the type is imported through a limited_with
926 -- clause, the subprogram is not a primitive operation of the type
927 -- (which is declared elsewhere in some other scope).
929 if Ekind (Desig_Type) = E_Incomplete_Type
930 and then not From_Limited_With (Desig_Type)
931 and then Is_Overloadable (Current_Scope)
932 then
933 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
934 Set_Has_Delayed_Freeze (Current_Scope);
935 end if;
937 -- If the designated type is limited and class-wide, the object might
938 -- contain tasks, so we create a Master entity for the declaration. This
939 -- must be done before expansion of the full declaration, because the
940 -- declaration may include an expression that is an allocator, whose
941 -- expansion needs the proper Master for the created tasks.
943 if Expander_Active
944 and then Nkind (Related_Nod) = N_Object_Declaration
945 then
946 if Is_Limited_Record (Desig_Type)
947 and then Is_Class_Wide_Type (Desig_Type)
948 then
949 Build_Class_Wide_Master (Anon_Type);
951 -- Similarly, if the type is an anonymous access that designates
952 -- tasks, create a master entity for it in the current context.
954 elsif Has_Task (Desig_Type)
955 and then Comes_From_Source (Related_Nod)
956 then
957 Build_Master_Entity (Defining_Identifier (Related_Nod));
958 Build_Master_Renaming (Anon_Type);
959 end if;
960 end if;
962 -- For a private component of a protected type, it is imperative that
963 -- the back-end elaborate the type immediately after the protected
964 -- declaration, because this type will be used in the declarations
965 -- created for the component within each protected body, so we must
966 -- create an itype reference for it now.
968 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
969 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
971 -- Similarly, if the access definition is the return result of a
972 -- function, create an itype reference for it because it will be used
973 -- within the function body. For a regular function that is not a
974 -- compilation unit, insert reference after the declaration. For a
975 -- protected operation, insert it after the enclosing protected type
976 -- declaration. In either case, do not create a reference for a type
977 -- obtained through a limited_with clause, because this would introduce
978 -- semantic dependencies.
980 -- Similarly, do not create a reference if the designated type is a
981 -- generic formal, because no use of it will reach the backend.
983 elsif Nkind (Related_Nod) = N_Function_Specification
984 and then not From_Limited_With (Desig_Type)
985 and then not Is_Generic_Type (Desig_Type)
986 then
987 if Present (Enclosing_Prot_Type) then
988 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
990 elsif Is_List_Member (Parent (Related_Nod))
991 and then Nkind (Parent (N)) /= N_Parameter_Specification
992 then
993 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
994 end if;
996 -- Finally, create an itype reference for an object declaration of an
997 -- anonymous access type. This is strictly necessary only for deferred
998 -- constants, but in any case will avoid out-of-scope problems in the
999 -- back-end.
1001 elsif Nkind (Related_Nod) = N_Object_Declaration then
1002 Build_Itype_Reference (Anon_Type, Related_Nod);
1003 end if;
1005 return Anon_Type;
1006 end Access_Definition;
1008 -----------------------------------
1009 -- Access_Subprogram_Declaration --
1010 -----------------------------------
1012 procedure Access_Subprogram_Declaration
1013 (T_Name : Entity_Id;
1014 T_Def : Node_Id)
1016 procedure Check_For_Premature_Usage (Def : Node_Id);
1017 -- Check that type T_Name is not used, directly or recursively, as a
1018 -- parameter or a return type in Def. Def is either a subtype, an
1019 -- access_definition, or an access_to_subprogram_definition.
1021 -------------------------------
1022 -- Check_For_Premature_Usage --
1023 -------------------------------
1025 procedure Check_For_Premature_Usage (Def : Node_Id) is
1026 Param : Node_Id;
1028 begin
1029 -- Check for a subtype mark
1031 if Nkind (Def) in N_Has_Etype then
1032 if Etype (Def) = T_Name then
1033 Error_Msg_N
1034 ("type& cannot be used before the end of its declaration",
1035 Def);
1036 end if;
1038 -- If this is not a subtype, then this is an access_definition
1040 elsif Nkind (Def) = N_Access_Definition then
1041 if Present (Access_To_Subprogram_Definition (Def)) then
1042 Check_For_Premature_Usage
1043 (Access_To_Subprogram_Definition (Def));
1044 else
1045 Check_For_Premature_Usage (Subtype_Mark (Def));
1046 end if;
1048 -- The only cases left are N_Access_Function_Definition and
1049 -- N_Access_Procedure_Definition.
1051 else
1052 if Present (Parameter_Specifications (Def)) then
1053 Param := First (Parameter_Specifications (Def));
1054 while Present (Param) loop
1055 Check_For_Premature_Usage (Parameter_Type (Param));
1056 Next (Param);
1057 end loop;
1058 end if;
1060 if Nkind (Def) = N_Access_Function_Definition then
1061 Check_For_Premature_Usage (Result_Definition (Def));
1062 end if;
1063 end if;
1064 end Check_For_Premature_Usage;
1066 -- Local variables
1068 Formals : constant List_Id := Parameter_Specifications (T_Def);
1069 Formal : Entity_Id;
1070 D_Ityp : Node_Id;
1071 Desig_Type : constant Entity_Id :=
1072 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1074 -- Start of processing for Access_Subprogram_Declaration
1076 begin
1077 -- Associate the Itype node with the inner full-type declaration or
1078 -- subprogram spec or entry body. This is required to handle nested
1079 -- anonymous declarations. For example:
1081 -- procedure P
1082 -- (X : access procedure
1083 -- (Y : access procedure
1084 -- (Z : access T)))
1086 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1087 while Nkind (D_Ityp) not in N_Full_Type_Declaration
1088 | N_Private_Type_Declaration
1089 | N_Private_Extension_Declaration
1090 | N_Procedure_Specification
1091 | N_Function_Specification
1092 | N_Entry_Body
1093 | N_Object_Declaration
1094 | N_Object_Renaming_Declaration
1095 | N_Formal_Object_Declaration
1096 | N_Formal_Type_Declaration
1097 | N_Task_Type_Declaration
1098 | N_Protected_Type_Declaration
1099 loop
1100 D_Ityp := Parent (D_Ityp);
1101 pragma Assert (D_Ityp /= Empty);
1102 end loop;
1104 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1106 if Nkind (D_Ityp) in N_Procedure_Specification | N_Function_Specification
1107 then
1108 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1110 elsif Nkind (D_Ityp) in N_Full_Type_Declaration
1111 | N_Object_Declaration
1112 | N_Object_Renaming_Declaration
1113 | N_Formal_Type_Declaration
1114 then
1115 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1116 end if;
1118 if Nkind (T_Def) = N_Access_Function_Definition then
1119 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1120 declare
1121 Acc : constant Node_Id := Result_Definition (T_Def);
1123 begin
1124 if Present (Access_To_Subprogram_Definition (Acc))
1125 and then
1126 Protected_Present (Access_To_Subprogram_Definition (Acc))
1127 then
1128 Set_Etype
1129 (Desig_Type,
1130 Replace_Anonymous_Access_To_Protected_Subprogram
1131 (T_Def));
1133 else
1134 Set_Etype
1135 (Desig_Type,
1136 Access_Definition (T_Def, Result_Definition (T_Def)));
1137 end if;
1138 end;
1140 else
1141 Analyze (Result_Definition (T_Def));
1143 declare
1144 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1146 begin
1147 -- If a null exclusion is imposed on the result type, then
1148 -- create a null-excluding itype (an access subtype) and use
1149 -- it as the function's Etype.
1151 if Is_Access_Type (Typ)
1152 and then Null_Exclusion_In_Return_Present (T_Def)
1153 then
1154 Set_Etype (Desig_Type,
1155 Create_Null_Excluding_Itype
1156 (T => Typ,
1157 Related_Nod => T_Def,
1158 Scope_Id => Current_Scope));
1160 else
1161 if From_Limited_With (Typ) then
1163 -- AI05-151: Incomplete types are allowed in all basic
1164 -- declarations, including access to subprograms.
1166 if Ada_Version >= Ada_2012 then
1167 null;
1169 else
1170 Error_Msg_NE
1171 ("illegal use of incomplete type&",
1172 Result_Definition (T_Def), Typ);
1173 end if;
1175 elsif Ekind (Current_Scope) = E_Package
1176 and then In_Private_Part (Current_Scope)
1177 then
1178 if Ekind (Typ) = E_Incomplete_Type then
1179 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1181 elsif Is_Class_Wide_Type (Typ)
1182 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1183 then
1184 Append_Elmt
1185 (Desig_Type, Private_Dependents (Etype (Typ)));
1186 end if;
1187 end if;
1189 Set_Etype (Desig_Type, Typ);
1190 end if;
1191 end;
1192 end if;
1194 if not Is_Type (Etype (Desig_Type)) then
1195 Error_Msg_N
1196 ("expect type in function specification",
1197 Result_Definition (T_Def));
1198 end if;
1200 else
1201 Set_Etype (Desig_Type, Standard_Void_Type);
1202 end if;
1204 if Present (Formals) then
1205 Push_Scope (Desig_Type);
1207 -- Some special tests here. These special tests can be removed
1208 -- if and when Itypes always have proper parent pointers to their
1209 -- declarations???
1211 -- Special test 1) Link defining_identifier of formals. Required by
1212 -- First_Formal to provide its functionality.
1214 declare
1215 F : Node_Id;
1217 begin
1218 F := First (Formals);
1220 while Present (F) loop
1221 if No (Parent (Defining_Identifier (F))) then
1222 Set_Parent (Defining_Identifier (F), F);
1223 end if;
1225 Next (F);
1226 end loop;
1227 end;
1229 Process_Formals (Formals, Parent (T_Def));
1231 -- Special test 2) End_Scope requires that the parent pointer be set
1232 -- to something reasonable, but Itypes don't have parent pointers. So
1233 -- we set it and then unset it ???
1235 Set_Parent (Desig_Type, T_Name);
1236 End_Scope;
1237 Set_Parent (Desig_Type, Empty);
1238 end if;
1240 -- Check for premature usage of the type being defined
1242 Check_For_Premature_Usage (T_Def);
1244 -- The return type and/or any parameter type may be incomplete. Mark the
1245 -- subprogram_type as depending on the incomplete type, so that it can
1246 -- be updated when the full type declaration is seen. This only applies
1247 -- to incomplete types declared in some enclosing scope, not to limited
1248 -- views from other packages.
1250 -- Prior to Ada 2012, access to functions can only have in_parameters.
1252 if Present (Formals) then
1253 Formal := First_Formal (Desig_Type);
1254 while Present (Formal) loop
1255 if Ekind (Formal) /= E_In_Parameter
1256 and then Nkind (T_Def) = N_Access_Function_Definition
1257 and then Ada_Version < Ada_2012
1258 then
1259 Error_Msg_N ("functions can only have IN parameters", Formal);
1260 end if;
1262 if Ekind (Etype (Formal)) = E_Incomplete_Type
1263 and then In_Open_Scopes (Scope (Etype (Formal)))
1264 then
1265 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1266 Set_Has_Delayed_Freeze (Desig_Type);
1267 end if;
1269 Next_Formal (Formal);
1270 end loop;
1271 end if;
1273 -- Check whether an indirect call without actuals may be possible. This
1274 -- is used when resolving calls whose result is then indexed.
1276 May_Need_Actuals (Desig_Type);
1278 -- If the return type is incomplete, this is legal as long as the type
1279 -- is declared in the current scope and will be completed in it (rather
1280 -- than being part of limited view).
1282 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1283 and then not Has_Delayed_Freeze (Desig_Type)
1284 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1285 then
1286 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1287 Set_Has_Delayed_Freeze (Desig_Type);
1288 end if;
1290 Check_Delayed_Subprogram (Desig_Type);
1292 if Protected_Present (T_Def) then
1293 Mutate_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1294 Set_Convention (Desig_Type, Convention_Protected);
1295 else
1296 Mutate_Ekind (T_Name, E_Access_Subprogram_Type);
1297 end if;
1299 Set_Can_Use_Internal_Rep (T_Name,
1300 not Always_Compatible_Rep_On_Target);
1301 Set_Etype (T_Name, T_Name);
1302 Reinit_Size_Align (T_Name);
1303 Set_Directly_Designated_Type (T_Name, Desig_Type);
1305 -- If the access_to_subprogram is not declared at the library level,
1306 -- it can only point to subprograms that are at the same or deeper
1307 -- accessibility level. The corresponding subprogram type might
1308 -- require an activation record when compiling for C.
1310 Set_Needs_Activation_Record (Desig_Type,
1311 not Is_Library_Level_Entity (T_Name));
1313 Generate_Reference_To_Formals (T_Name);
1315 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1317 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1319 Check_Restriction (No_Access_Subprograms, T_Def);
1321 Create_Extra_Formals (Desig_Type);
1322 end Access_Subprogram_Declaration;
1324 ----------------------------
1325 -- Access_Type_Declaration --
1326 ----------------------------
1328 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1330 procedure Setup_Access_Type (Desig_Typ : Entity_Id);
1331 -- After type declaration is analysed with T being an incomplete type,
1332 -- this routine will mutate the kind of T to the appropriate access type
1333 -- and set its directly designated type to Desig_Typ.
1335 -----------------------
1336 -- Setup_Access_Type --
1337 -----------------------
1339 procedure Setup_Access_Type (Desig_Typ : Entity_Id) is
1340 begin
1341 if All_Present (Def) or else Constant_Present (Def) then
1342 Mutate_Ekind (T, E_General_Access_Type);
1343 else
1344 Mutate_Ekind (T, E_Access_Type);
1345 end if;
1347 Set_Directly_Designated_Type (T, Desig_Typ);
1348 end Setup_Access_Type;
1350 -- Local variables
1352 P : constant Node_Id := Parent (Def);
1353 S : constant Node_Id := Subtype_Indication (Def);
1355 Full_Desig : Entity_Id;
1357 -- Start of processing for Access_Type_Declaration
1359 begin
1360 -- Check for permissible use of incomplete type
1362 if Nkind (S) /= N_Subtype_Indication then
1364 Analyze (S);
1366 if Nkind (S) in N_Has_Entity
1367 and then Present (Entity (S))
1368 and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type
1369 then
1370 Setup_Access_Type (Desig_Typ => Entity (S));
1372 -- If the designated type is a limited view, we cannot tell if
1373 -- the full view contains tasks, and there is no way to handle
1374 -- that full view in a client. We create a master entity for the
1375 -- scope, which will be used when a client determines that one
1376 -- is needed.
1378 if From_Limited_With (Entity (S))
1379 and then not Is_Class_Wide_Type (Entity (S))
1380 then
1381 Build_Master_Entity (T);
1382 Build_Master_Renaming (T);
1383 end if;
1385 else
1386 Setup_Access_Type (Desig_Typ => Process_Subtype (S, P, T, 'P'));
1387 end if;
1389 -- If the access definition is of the form: ACCESS NOT NULL ..
1390 -- the subtype indication must be of an access type. Create
1391 -- a null-excluding subtype of it.
1393 if Null_Excluding_Subtype (Def) then
1394 if not Is_Access_Type (Entity (S)) then
1395 Error_Msg_N ("null exclusion must apply to access type", Def);
1397 else
1398 declare
1399 Loc : constant Source_Ptr := Sloc (S);
1400 Decl : Node_Id;
1401 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1403 begin
1404 Decl :=
1405 Make_Subtype_Declaration (Loc,
1406 Defining_Identifier => Nam,
1407 Subtype_Indication =>
1408 New_Occurrence_Of (Entity (S), Loc));
1409 Set_Null_Exclusion_Present (Decl);
1410 Insert_Before (Parent (Def), Decl);
1411 Analyze (Decl);
1412 Set_Entity (S, Nam);
1413 end;
1414 end if;
1415 end if;
1417 else
1418 Setup_Access_Type (Desig_Typ => Process_Subtype (S, P, T, 'P'));
1419 end if;
1421 if not Error_Posted (T) then
1422 Full_Desig := Designated_Type (T);
1424 if Base_Type (Full_Desig) = T then
1425 Error_Msg_N ("access type cannot designate itself", S);
1427 -- In Ada 2005, the type may have a limited view through some unit in
1428 -- its own context, allowing the following circularity that cannot be
1429 -- detected earlier.
1431 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1432 then
1433 Error_Msg_N
1434 ("access type cannot designate its own class-wide type", S);
1436 -- Clean up indication of tagged status to prevent cascaded errors
1438 Set_Is_Tagged_Type (T, False);
1439 end if;
1441 Set_Etype (T, T);
1443 -- For SPARK, check that the designated type is compatible with
1444 -- respect to volatility with the access type.
1446 if SPARK_Mode /= Off
1447 and then Comes_From_Source (T)
1448 then
1449 -- ??? UNIMPLEMENTED
1450 -- In the case where the designated type is incomplete at this
1451 -- point, performing this check here is harmless but the check
1452 -- will need to be repeated when the designated type is complete.
1454 -- The preceding call to Comes_From_Source is needed because the
1455 -- FE sometimes introduces implicitly declared access types. See,
1456 -- for example, the expansion of nested_po.ads in OA28-015.
1458 Check_Volatility_Compatibility
1459 (Full_Desig, T, "designated type", "access type",
1460 Srcpos_Bearer => T);
1461 end if;
1462 end if;
1464 -- If the type has appeared already in a with_type clause, it is frozen
1465 -- and the pointer size is already set. Else, initialize.
1467 if not From_Limited_With (T) then
1468 Reinit_Size_Align (T);
1469 end if;
1471 -- Note that Has_Task is always false, since the access type itself
1472 -- is not a task type. See Einfo for more description on this point.
1473 -- Exactly the same consideration applies to Has_Controlled_Component
1474 -- and to Has_Protected.
1476 Set_Has_Task (T, False);
1477 Set_Has_Protected (T, False);
1478 Set_Has_Timing_Event (T, False);
1479 Set_Has_Controlled_Component (T, False);
1481 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1482 -- problems where an incomplete view of this entity has been previously
1483 -- established by a limited with and an overlaid version of this field
1484 -- (Stored_Constraint) was initialized for the incomplete view.
1486 -- This reset is performed in most cases except where the access type
1487 -- has been created for the purposes of allocating or deallocating a
1488 -- build-in-place object. Such access types have explicitly set pools
1489 -- and finalization masters.
1491 if No (Associated_Storage_Pool (T)) then
1492 Set_Finalization_Master (T, Empty);
1493 end if;
1495 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1496 -- attributes
1498 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1499 Set_Is_Access_Constant (T, Constant_Present (Def));
1500 end Access_Type_Declaration;
1502 ----------------------------------
1503 -- Add_Interface_Tag_Components --
1504 ----------------------------------
1506 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1507 Loc : constant Source_Ptr := Sloc (N);
1508 L : List_Id;
1509 Last_Tag : Node_Id;
1511 procedure Add_Tag (Iface : Entity_Id);
1512 -- Add tag for one of the progenitor interfaces
1514 -------------
1515 -- Add_Tag --
1516 -------------
1518 procedure Add_Tag (Iface : Entity_Id) is
1519 Decl : Node_Id;
1520 Def : Node_Id;
1521 Tag : Entity_Id;
1522 Offset : Entity_Id;
1524 begin
1525 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1527 -- This is a reasonable place to propagate predicates
1529 if Has_Predicates (Iface) then
1530 Set_Has_Predicates (Typ);
1531 end if;
1533 Def :=
1534 Make_Component_Definition (Loc,
1535 Aliased_Present => True,
1536 Subtype_Indication =>
1537 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1539 Tag := Make_Temporary (Loc, 'V');
1541 Decl :=
1542 Make_Component_Declaration (Loc,
1543 Defining_Identifier => Tag,
1544 Component_Definition => Def);
1546 Analyze_Component_Declaration (Decl);
1548 Set_Analyzed (Decl);
1549 Mutate_Ekind (Tag, E_Component);
1550 Set_Is_Tag (Tag);
1551 Set_Is_Aliased (Tag);
1552 Set_Is_Independent (Tag);
1553 Set_Related_Type (Tag, Iface);
1554 Reinit_Component_Location (Tag);
1556 pragma Assert (Is_Frozen (Iface));
1558 Set_DT_Entry_Count (Tag,
1559 DT_Entry_Count (First_Entity (Iface)));
1561 if No (Last_Tag) then
1562 Prepend (Decl, L);
1563 else
1564 Insert_After (Last_Tag, Decl);
1565 end if;
1567 Last_Tag := Decl;
1569 -- If the ancestor has discriminants we need to give special support
1570 -- to store the offset_to_top value of the secondary dispatch tables.
1571 -- For this purpose we add a supplementary component just after the
1572 -- field that contains the tag associated with each secondary DT.
1574 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1575 Def :=
1576 Make_Component_Definition (Loc,
1577 Subtype_Indication =>
1578 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1580 Offset := Make_Temporary (Loc, 'V');
1582 Decl :=
1583 Make_Component_Declaration (Loc,
1584 Defining_Identifier => Offset,
1585 Component_Definition => Def);
1587 Analyze_Component_Declaration (Decl);
1589 Set_Analyzed (Decl);
1590 Mutate_Ekind (Offset, E_Component);
1591 Set_Is_Aliased (Offset);
1592 Set_Is_Independent (Offset);
1593 Set_Related_Type (Offset, Iface);
1594 Reinit_Component_Location (Offset);
1595 Insert_After (Last_Tag, Decl);
1596 Last_Tag := Decl;
1597 end if;
1598 end Add_Tag;
1600 -- Local variables
1602 Elmt : Elmt_Id;
1603 Ext : Node_Id;
1604 Comp : Node_Id;
1606 -- Start of processing for Add_Interface_Tag_Components
1608 begin
1609 if not RTE_Available (RE_Interface_Tag) then
1610 Error_Msg_N
1611 ("(Ada 2005) interface types not supported by this run-time!", N);
1612 return;
1613 end if;
1615 if Ekind (Typ) /= E_Record_Type
1616 or else (Is_Concurrent_Record_Type (Typ)
1617 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1618 or else (not Is_Concurrent_Record_Type (Typ)
1619 and then No (Interfaces (Typ))
1620 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1621 then
1622 return;
1623 end if;
1625 -- Find the current last tag
1627 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1628 Ext := Record_Extension_Part (Type_Definition (N));
1629 else
1630 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1631 Ext := Type_Definition (N);
1632 end if;
1634 Last_Tag := Empty;
1636 if not (Present (Component_List (Ext))) then
1637 Set_Null_Present (Ext, False);
1638 L := New_List;
1639 Set_Component_List (Ext,
1640 Make_Component_List (Loc,
1641 Component_Items => L,
1642 Null_Present => False));
1643 else
1644 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1645 L := Component_Items
1646 (Component_List
1647 (Record_Extension_Part
1648 (Type_Definition (N))));
1649 else
1650 L := Component_Items
1651 (Component_List
1652 (Type_Definition (N)));
1653 end if;
1655 -- Find the last tag component
1657 Comp := First (L);
1658 while Present (Comp) loop
1659 if Nkind (Comp) = N_Component_Declaration
1660 and then Is_Tag (Defining_Identifier (Comp))
1661 then
1662 Last_Tag := Comp;
1663 end if;
1665 Next (Comp);
1666 end loop;
1667 end if;
1669 -- At this point L references the list of components and Last_Tag
1670 -- references the current last tag (if any). Now we add the tag
1671 -- corresponding with all the interfaces that are not implemented
1672 -- by the parent.
1674 if Present (Interfaces (Typ)) then
1675 Elmt := First_Elmt (Interfaces (Typ));
1676 while Present (Elmt) loop
1677 Add_Tag (Node (Elmt));
1678 Next_Elmt (Elmt);
1679 end loop;
1680 end if;
1681 end Add_Interface_Tag_Components;
1683 -------------------------------------
1684 -- Add_Internal_Interface_Entities --
1685 -------------------------------------
1687 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1688 Elmt : Elmt_Id;
1689 Iface : Entity_Id;
1690 Iface_Elmt : Elmt_Id;
1691 Iface_Prim : Entity_Id;
1692 Ifaces_List : Elist_Id;
1693 New_Subp : Entity_Id := Empty;
1694 Prim : Entity_Id;
1695 Restore_Scope : Boolean := False;
1697 begin
1698 pragma Assert (Ada_Version >= Ada_2005
1699 and then Is_Record_Type (Tagged_Type)
1700 and then Is_Tagged_Type (Tagged_Type)
1701 and then Has_Interfaces (Tagged_Type)
1702 and then not Is_Interface (Tagged_Type));
1704 -- Ensure that the internal entities are added to the scope of the type
1706 if Scope (Tagged_Type) /= Current_Scope then
1707 Push_Scope (Scope (Tagged_Type));
1708 Restore_Scope := True;
1709 end if;
1711 Collect_Interfaces (Tagged_Type, Ifaces_List);
1713 Iface_Elmt := First_Elmt (Ifaces_List);
1714 while Present (Iface_Elmt) loop
1715 Iface := Node (Iface_Elmt);
1717 -- Originally we excluded here from this processing interfaces that
1718 -- are parents of Tagged_Type because their primitives are located
1719 -- in the primary dispatch table (and hence no auxiliary internal
1720 -- entities are required to handle secondary dispatch tables in such
1721 -- case). However, these auxiliary entities are also required to
1722 -- handle derivations of interfaces in formals of generics (see
1723 -- Derive_Subprograms).
1725 Elmt := First_Elmt (Primitive_Operations (Iface));
1726 while Present (Elmt) loop
1727 Iface_Prim := Node (Elmt);
1729 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1730 Prim :=
1731 Find_Primitive_Covering_Interface
1732 (Tagged_Type => Tagged_Type,
1733 Iface_Prim => Iface_Prim);
1735 if No (Prim) and then Serious_Errors_Detected > 0 then
1736 goto Continue;
1737 end if;
1739 pragma Assert (Present (Prim));
1741 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1742 -- differs from the name of the interface primitive then it is
1743 -- a private primitive inherited from a parent type. In such
1744 -- case, given that Tagged_Type covers the interface, the
1745 -- inherited private primitive becomes visible. For such
1746 -- purpose we add a new entity that renames the inherited
1747 -- private primitive.
1749 if Chars (Prim) /= Chars (Iface_Prim) then
1750 pragma Assert (Has_Suffix (Prim, 'P'));
1751 Derive_Subprogram
1752 (New_Subp => New_Subp,
1753 Parent_Subp => Iface_Prim,
1754 Derived_Type => Tagged_Type,
1755 Parent_Type => Iface);
1756 Set_Alias (New_Subp, Prim);
1757 Set_Is_Abstract_Subprogram
1758 (New_Subp, Is_Abstract_Subprogram (Prim));
1759 end if;
1761 Derive_Subprogram
1762 (New_Subp => New_Subp,
1763 Parent_Subp => Iface_Prim,
1764 Derived_Type => Tagged_Type,
1765 Parent_Type => Iface);
1767 declare
1768 Anc : Entity_Id;
1769 begin
1770 if Is_Inherited_Operation (Prim)
1771 and then Present (Alias (Prim))
1772 then
1773 Anc := Alias (Prim);
1774 else
1775 Anc := Overridden_Operation (Prim);
1776 end if;
1778 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1779 -- nonconforming preconditions in both an ancestor and
1780 -- a progenitor operation.
1782 -- If the operation is a primitive wrapper it is an explicit
1783 -- (overriding) operqtion and all is fine.
1785 if Present (Anc)
1786 and then Has_Non_Trivial_Precondition (Anc)
1787 and then Has_Non_Trivial_Precondition (Iface_Prim)
1788 then
1789 if Is_Abstract_Subprogram (Prim)
1790 or else
1791 (Ekind (Prim) = E_Procedure
1792 and then Nkind (Parent (Prim)) =
1793 N_Procedure_Specification
1794 and then Null_Present (Parent (Prim)))
1795 or else Is_Primitive_Wrapper (Prim)
1796 then
1797 null;
1799 -- The operation is inherited and must be overridden
1801 elsif not Comes_From_Source (Prim) then
1802 Error_Msg_NE
1803 ("&inherits non-conforming preconditions and must "
1804 & "be overridden (RM 6.1.1 (10-16))",
1805 Parent (Tagged_Type), Prim);
1806 end if;
1807 end if;
1808 end;
1810 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1811 -- associated with interface types. These entities are
1812 -- only registered in the list of primitives of its
1813 -- corresponding tagged type because they are only used
1814 -- to fill the contents of the secondary dispatch tables.
1815 -- Therefore they are removed from the homonym chains.
1817 Set_Is_Hidden (New_Subp);
1818 Set_Is_Internal (New_Subp);
1819 Set_Alias (New_Subp, Prim);
1820 Set_Is_Abstract_Subprogram
1821 (New_Subp, Is_Abstract_Subprogram (Prim));
1822 Set_Interface_Alias (New_Subp, Iface_Prim);
1824 -- If the returned type is an interface then propagate it to
1825 -- the returned type. Needed by the thunk to generate the code
1826 -- which displaces "this" to reference the corresponding
1827 -- secondary dispatch table in the returned object.
1829 if Is_Interface (Etype (Iface_Prim)) then
1830 Set_Etype (New_Subp, Etype (Iface_Prim));
1831 end if;
1833 -- Internal entities associated with interface types are only
1834 -- registered in the list of primitives of the tagged type.
1835 -- They are only used to fill the contents of the secondary
1836 -- dispatch tables. Therefore they are not needed in the
1837 -- homonym chains.
1839 Remove_Homonym (New_Subp);
1841 -- Hidden entities associated with interfaces must have set
1842 -- the Has_Delay_Freeze attribute to ensure that, in case
1843 -- of locally defined tagged types (or compiling with static
1844 -- dispatch tables generation disabled) the corresponding
1845 -- entry of the secondary dispatch table is filled when such
1846 -- an entity is frozen.
1848 Set_Has_Delayed_Freeze (New_Subp);
1849 end if;
1851 <<Continue>>
1852 Next_Elmt (Elmt);
1853 end loop;
1855 Next_Elmt (Iface_Elmt);
1856 end loop;
1858 if Restore_Scope then
1859 Pop_Scope;
1860 end if;
1861 end Add_Internal_Interface_Entities;
1863 -----------------------------------
1864 -- Analyze_Component_Declaration --
1865 -----------------------------------
1867 procedure Analyze_Component_Declaration (N : Node_Id) is
1868 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1869 Id : constant Entity_Id := Defining_Identifier (N);
1870 E : constant Node_Id := Expression (N);
1871 Typ : constant Node_Id :=
1872 Subtype_Indication (Component_Definition (N));
1873 T : Entity_Id;
1874 P : Entity_Id;
1876 function Contains_POC (Constr : Node_Id) return Boolean;
1877 -- Determines whether a constraint uses the discriminant of a record
1878 -- type thus becoming a per-object constraint (POC).
1880 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1881 -- Typ is the type of the current component, check whether this type is
1882 -- a limited type. Used to validate declaration against that of
1883 -- enclosing record.
1885 ------------------
1886 -- Contains_POC --
1887 ------------------
1889 function Contains_POC (Constr : Node_Id) return Boolean is
1890 begin
1891 -- Prevent cascaded errors
1893 if Error_Posted (Constr) then
1894 return False;
1895 end if;
1897 case Nkind (Constr) is
1898 when N_Attribute_Reference =>
1899 return Attribute_Name (Constr) = Name_Access
1900 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1902 when N_Discriminant_Association =>
1903 return Denotes_Discriminant (Expression (Constr));
1905 when N_Identifier =>
1906 return Denotes_Discriminant (Constr);
1908 when N_Index_Or_Discriminant_Constraint =>
1909 declare
1910 IDC : Node_Id;
1912 begin
1913 IDC := First (Constraints (Constr));
1914 while Present (IDC) loop
1916 -- One per-object constraint is sufficient
1918 if Contains_POC (IDC) then
1919 return True;
1920 end if;
1922 Next (IDC);
1923 end loop;
1925 return False;
1926 end;
1928 when N_Range =>
1929 return Denotes_Discriminant (Low_Bound (Constr))
1930 or else
1931 Denotes_Discriminant (High_Bound (Constr));
1933 when N_Range_Constraint =>
1934 return Denotes_Discriminant (Range_Expression (Constr));
1936 when others =>
1937 return False;
1938 end case;
1939 end Contains_POC;
1941 ----------------------
1942 -- Is_Known_Limited --
1943 ----------------------
1945 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1946 P : constant Entity_Id := Etype (Typ);
1947 R : constant Entity_Id := Root_Type (Typ);
1949 begin
1950 if Is_Limited_Record (Typ) then
1951 return True;
1953 -- If the root type is limited (and not a limited interface) so is
1954 -- the current type.
1956 elsif Is_Limited_Record (R)
1957 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1958 then
1959 return True;
1961 -- Else the type may have a limited interface progenitor, but a
1962 -- limited record parent that is not an interface.
1964 elsif R /= P
1965 and then Is_Limited_Record (P)
1966 and then not Is_Interface (P)
1967 then
1968 return True;
1970 else
1971 return False;
1972 end if;
1973 end Is_Known_Limited;
1975 -- Start of processing for Analyze_Component_Declaration
1977 begin
1978 Generate_Definition (Id);
1979 Enter_Name (Id);
1981 if Present (Typ) then
1982 T := Find_Type_Of_Object
1983 (Subtype_Indication (Component_Definition (N)), N);
1985 -- Ada 2005 (AI-230): Access Definition case
1987 else
1988 pragma Assert (Present
1989 (Access_Definition (Component_Definition (N))));
1991 T := Access_Definition
1992 (Related_Nod => N,
1993 N => Access_Definition (Component_Definition (N)));
1994 Set_Is_Local_Anonymous_Access (T);
1996 -- Ada 2005 (AI-254)
1998 if Present (Access_To_Subprogram_Definition
1999 (Access_Definition (Component_Definition (N))))
2000 and then Protected_Present (Access_To_Subprogram_Definition
2001 (Access_Definition
2002 (Component_Definition (N))))
2003 then
2004 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2005 end if;
2006 end if;
2008 -- If the subtype is a constrained subtype of the enclosing record,
2009 -- (which must have a partial view) the back-end does not properly
2010 -- handle the recursion. Rewrite the component declaration with an
2011 -- explicit subtype indication, which is acceptable to Gigi. We can copy
2012 -- the tree directly because side effects have already been removed from
2013 -- discriminant constraints.
2015 if Ekind (T) = E_Access_Subtype
2016 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
2017 and then Comes_From_Source (T)
2018 and then Nkind (Parent (T)) = N_Subtype_Declaration
2019 and then Etype (Directly_Designated_Type (T)) = Current_Scope
2020 then
2021 Rewrite
2022 (Subtype_Indication (Component_Definition (N)),
2023 New_Copy_Tree (Subtype_Indication (Parent (T))));
2024 T := Find_Type_Of_Object
2025 (Subtype_Indication (Component_Definition (N)), N);
2026 end if;
2028 -- If the component declaration includes a default expression, then we
2029 -- check that the component is not of a limited type (RM 3.7(5)),
2030 -- and do the special preanalysis of the expression (see section on
2031 -- "Handling of Default and Per-Object Expressions" in the spec of
2032 -- package Sem).
2034 if Present (E) then
2035 Preanalyze_Default_Expression (E, T);
2036 Check_Initialization (T, E);
2038 if Ada_Version >= Ada_2005
2039 and then Ekind (T) = E_Anonymous_Access_Type
2040 and then Etype (E) /= Any_Type
2041 then
2042 -- Check RM 3.9.2(9): "if the expected type for an expression is
2043 -- an anonymous access-to-specific tagged type, then the object
2044 -- designated by the expression shall not be dynamically tagged
2045 -- unless it is a controlling operand in a call on a dispatching
2046 -- operation"
2048 if Is_Tagged_Type (Directly_Designated_Type (T))
2049 and then
2050 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
2051 and then
2052 Ekind (Directly_Designated_Type (Etype (E))) =
2053 E_Class_Wide_Type
2054 then
2055 Error_Msg_N
2056 ("access to specific tagged type required (RM 3.9.2(9))", E);
2057 end if;
2059 -- (Ada 2005: AI-230): Accessibility check for anonymous
2060 -- components
2062 if Type_Access_Level (Etype (E)) >
2063 Deepest_Type_Access_Level (T)
2064 then
2065 Error_Msg_N
2066 ("expression has deeper access level than component " &
2067 "(RM 3.10.2 (12.2))", E);
2068 end if;
2070 -- The initialization expression is a reference to an access
2071 -- discriminant. The type of the discriminant is always deeper
2072 -- than any access type.
2074 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2075 and then Is_Entity_Name (E)
2076 and then Ekind (Entity (E)) = E_In_Parameter
2077 and then Present (Discriminal_Link (Entity (E)))
2078 then
2079 Error_Msg_N
2080 ("discriminant has deeper accessibility level than target",
2082 end if;
2083 end if;
2084 end if;
2086 -- The parent type may be a private view with unknown discriminants,
2087 -- and thus unconstrained. Regular components must be constrained.
2089 if not Is_Definite_Subtype (T)
2090 and then Chars (Id) /= Name_uParent
2091 then
2092 if Is_Class_Wide_Type (T) then
2093 Error_Msg_N
2094 ("class-wide subtype with unknown discriminants" &
2095 " in component declaration",
2096 Subtype_Indication (Component_Definition (N)));
2097 else
2098 Error_Msg_N
2099 ("unconstrained subtype in component declaration",
2100 Subtype_Indication (Component_Definition (N)));
2101 end if;
2103 -- Components cannot be abstract, except for the special case of
2104 -- the _Parent field (case of extending an abstract tagged type)
2106 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2107 Error_Msg_N ("type of a component cannot be abstract", N);
2108 end if;
2110 Set_Etype (Id, T);
2112 if Aliased_Present (Component_Definition (N)) then
2113 Set_Is_Aliased (Id);
2115 -- AI12-001: All aliased objects are considered to be specified as
2116 -- independently addressable (RM C.6(8.1/4)).
2118 Set_Is_Independent (Id);
2119 end if;
2121 -- The component declaration may have a per-object constraint, set
2122 -- the appropriate flag in the defining identifier of the subtype.
2124 if Present (Subtype_Indication (Component_Definition (N))) then
2125 declare
2126 Sindic : constant Node_Id :=
2127 Subtype_Indication (Component_Definition (N));
2128 begin
2129 if Nkind (Sindic) = N_Subtype_Indication
2130 and then Present (Constraint (Sindic))
2131 and then Contains_POC (Constraint (Sindic))
2132 then
2133 Set_Has_Per_Object_Constraint (Id);
2134 end if;
2135 end;
2136 end if;
2138 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2139 -- out some static checks.
2141 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2142 Null_Exclusion_Static_Checks (N);
2143 end if;
2145 -- If this component is private (or depends on a private type), flag the
2146 -- record type to indicate that some operations are not available.
2148 P := Private_Component (T);
2150 if Present (P) then
2152 -- Check for circular definitions
2154 if P = Any_Type then
2155 Set_Etype (Id, Any_Type);
2157 -- There is a gap in the visibility of operations only if the
2158 -- component type is not defined in the scope of the record type.
2160 elsif Scope (P) = Scope (Current_Scope) then
2161 null;
2163 elsif Is_Limited_Type (P) then
2164 Set_Is_Limited_Composite (Current_Scope);
2166 else
2167 Set_Is_Private_Composite (Current_Scope);
2168 end if;
2169 end if;
2171 if P /= Any_Type
2172 and then Is_Limited_Type (T)
2173 and then Chars (Id) /= Name_uParent
2174 and then Is_Tagged_Type (Current_Scope)
2175 then
2176 if Is_Derived_Type (Current_Scope)
2177 and then not Is_Known_Limited (Current_Scope)
2178 then
2179 Error_Msg_N
2180 ("extension of nonlimited type cannot have limited components",
2183 if Is_Interface (Root_Type (Current_Scope)) then
2184 Error_Msg_N
2185 ("\limitedness is not inherited from limited interface", N);
2186 Error_Msg_N ("\add LIMITED to type indication", N);
2187 end if;
2189 Explain_Limited_Type (T, N);
2190 Set_Etype (Id, Any_Type);
2191 Set_Is_Limited_Composite (Current_Scope, False);
2193 elsif not Is_Derived_Type (Current_Scope)
2194 and then not Is_Limited_Record (Current_Scope)
2195 and then not Is_Concurrent_Type (Current_Scope)
2196 then
2197 Error_Msg_N
2198 ("nonlimited tagged type cannot have limited components", N);
2199 Explain_Limited_Type (T, N);
2200 Set_Etype (Id, Any_Type);
2201 Set_Is_Limited_Composite (Current_Scope, False);
2202 end if;
2203 end if;
2205 -- If the component is an unconstrained task or protected type with
2206 -- discriminants, the component and the enclosing record are limited
2207 -- and the component is constrained by its default values. Compute
2208 -- its actual subtype, else it may be allocated the maximum size by
2209 -- the backend, and possibly overflow.
2211 if Is_Concurrent_Type (T)
2212 and then not Is_Constrained (T)
2213 and then Has_Discriminants (T)
2214 and then not Has_Discriminants (Current_Scope)
2215 then
2216 declare
2217 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2219 begin
2220 Set_Etype (Id, Act_T);
2222 -- Rewrite component definition to use the constrained subtype
2224 Rewrite (Component_Definition (N),
2225 Make_Component_Definition (Loc,
2226 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2227 end;
2228 end if;
2230 Set_Original_Record_Component (Id, Id);
2232 if Has_Aspects (N) then
2233 Analyze_Aspect_Specifications (N, Id);
2234 end if;
2236 Analyze_Dimension (N);
2237 end Analyze_Component_Declaration;
2239 --------------------------
2240 -- Analyze_Declarations --
2241 --------------------------
2243 procedure Analyze_Declarations (L : List_Id) is
2244 Decl : Node_Id;
2246 procedure Adjust_Decl;
2247 -- Adjust Decl not to include implicit label declarations, since these
2248 -- have strange Sloc values that result in elaboration check problems.
2249 -- (They have the sloc of the label as found in the source, and that
2250 -- is ahead of the current declarative part).
2252 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id);
2253 -- Create the subprogram bodies which verify the run-time semantics of
2254 -- the pragmas listed below for each elibigle type found in declarative
2255 -- list Decls. The pragmas are:
2257 -- Default_Initial_Condition
2258 -- Invariant
2259 -- Type_Invariant
2261 -- Context denotes the owner of the declarative list.
2263 procedure Check_Entry_Contracts;
2264 -- Perform a preanalysis of the pre- and postconditions of an entry
2265 -- declaration. This must be done before full resolution and creation
2266 -- of the parameter block, etc. to catch illegal uses within the
2267 -- contract expression. Full analysis of the expression is done when
2268 -- the contract is processed.
2270 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean;
2271 -- Check if a nested package has entities within it that rely on library
2272 -- level private types where the full view has not been completed for
2273 -- the purposes of checking if it is acceptable to freeze an expression
2274 -- function at the point of declaration.
2276 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2277 -- Determine whether Body_Decl denotes the body of a late controlled
2278 -- primitive (either Initialize, Adjust or Finalize). If this is the
2279 -- case, add a proper spec if the body lacks one. The spec is inserted
2280 -- before Body_Decl and immediately analyzed.
2282 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id);
2283 -- Spec_Id is the entity of a package that may define abstract states,
2284 -- and in the case of a child unit, whose ancestors may define abstract
2285 -- states. If the states have partial visible refinement, remove the
2286 -- partial visibility of each constituent at the end of the package
2287 -- spec and body declarations.
2289 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2290 -- Spec_Id is the entity of a package that may define abstract states.
2291 -- If the states have visible refinement, remove the visibility of each
2292 -- constituent at the end of the package body declaration.
2294 procedure Resolve_Aspects;
2295 -- Utility to resolve the expressions of aspects at the end of a list of
2296 -- declarations, or before a declaration that freezes previous entities,
2297 -- such as in a subprogram body.
2299 -----------------
2300 -- Adjust_Decl --
2301 -----------------
2303 procedure Adjust_Decl is
2304 begin
2305 while Present (Prev (Decl))
2306 and then Nkind (Decl) = N_Implicit_Label_Declaration
2307 loop
2308 Prev (Decl);
2309 end loop;
2310 end Adjust_Decl;
2312 ----------------------------
2313 -- Build_Assertion_Bodies --
2314 ----------------------------
2316 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is
2317 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id);
2318 -- Create the subprogram bodies which verify the run-time semantics
2319 -- of the pragmas listed below for type Typ. The pragmas are:
2321 -- Default_Initial_Condition
2322 -- Invariant
2323 -- Type_Invariant
2325 -------------------------------------
2326 -- Build_Assertion_Bodies_For_Type --
2327 -------------------------------------
2329 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is
2330 begin
2331 if Nkind (Context) = N_Package_Specification then
2333 -- Preanalyze and resolve the class-wide invariants of an
2334 -- interface at the end of whichever declarative part has the
2335 -- interface type. Note that an interface may be declared in
2336 -- any non-package declarative part, but reaching the end of
2337 -- such a declarative part will always freeze the type and
2338 -- generate the invariant procedure (see Freeze_Type).
2340 if Is_Interface (Typ) then
2342 -- Interfaces are treated as the partial view of a private
2343 -- type, in order to achieve uniformity with the general
2344 -- case. As a result, an interface receives only a "partial"
2345 -- invariant procedure, which is never called.
2347 if Has_Own_Invariants (Typ) then
2348 Build_Invariant_Procedure_Body
2349 (Typ => Typ,
2350 Partial_Invariant => True);
2351 end if;
2353 elsif Decls = Visible_Declarations (Context) then
2354 -- Preanalyze and resolve the invariants of a private type
2355 -- at the end of the visible declarations to catch potential
2356 -- errors. Inherited class-wide invariants are not included
2357 -- because they have already been resolved.
2359 if Ekind (Typ) in E_Limited_Private_Type
2360 | E_Private_Type
2361 | E_Record_Type_With_Private
2362 and then Has_Own_Invariants (Typ)
2363 then
2364 Build_Invariant_Procedure_Body
2365 (Typ => Typ,
2366 Partial_Invariant => True);
2367 end if;
2369 -- Preanalyze and resolve the Default_Initial_Condition
2370 -- assertion expression at the end of the declarations to
2371 -- catch any errors.
2373 if Ekind (Typ) in E_Limited_Private_Type
2374 | E_Private_Type
2375 | E_Record_Type_With_Private
2376 and then Has_Own_DIC (Typ)
2377 then
2378 Build_DIC_Procedure_Body
2379 (Typ => Typ,
2380 Partial_DIC => True);
2381 end if;
2383 elsif Decls = Private_Declarations (Context) then
2385 -- Preanalyze and resolve the invariants of a private type's
2386 -- full view at the end of the private declarations to catch
2387 -- potential errors.
2389 if (not Is_Private_Type (Typ)
2390 or else Present (Underlying_Full_View (Typ)))
2391 and then Has_Private_Declaration (Typ)
2392 and then Has_Invariants (Typ)
2393 then
2394 Build_Invariant_Procedure_Body (Typ);
2395 end if;
2397 if (not Is_Private_Type (Typ)
2398 or else Present (Underlying_Full_View (Typ)))
2399 and then Has_Private_Declaration (Typ)
2400 and then Has_DIC (Typ)
2401 then
2402 Build_DIC_Procedure_Body (Typ);
2403 end if;
2404 end if;
2405 end if;
2406 end Build_Assertion_Bodies_For_Type;
2408 -- Local variables
2410 Decl : Node_Id;
2411 Decl_Id : Entity_Id;
2413 -- Start of processing for Build_Assertion_Bodies
2415 begin
2416 Decl := First (Decls);
2417 while Present (Decl) loop
2418 if Is_Declaration (Decl) then
2419 Decl_Id := Defining_Entity (Decl);
2421 if Is_Type (Decl_Id) then
2422 Build_Assertion_Bodies_For_Type (Decl_Id);
2423 end if;
2424 end if;
2426 Next (Decl);
2427 end loop;
2428 end Build_Assertion_Bodies;
2430 ---------------------------
2431 -- Check_Entry_Contracts --
2432 ---------------------------
2434 procedure Check_Entry_Contracts is
2435 ASN : Node_Id;
2436 Ent : Entity_Id;
2437 Exp : Node_Id;
2439 begin
2440 Ent := First_Entity (Current_Scope);
2441 while Present (Ent) loop
2443 -- This only concerns entries with pre/postconditions
2445 if Ekind (Ent) = E_Entry
2446 and then Present (Contract (Ent))
2447 and then Present (Pre_Post_Conditions (Contract (Ent)))
2448 then
2449 ASN := Pre_Post_Conditions (Contract (Ent));
2450 Push_Scope (Ent);
2451 Install_Formals (Ent);
2453 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2454 -- is performed on a copy of the pragma expression, to prevent
2455 -- modifying the original expression.
2457 while Present (ASN) loop
2458 if Nkind (ASN) = N_Pragma then
2459 Exp :=
2460 New_Copy_Tree
2461 (Expression
2462 (First (Pragma_Argument_Associations (ASN))));
2463 Set_Parent (Exp, ASN);
2465 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
2466 end if;
2468 ASN := Next_Pragma (ASN);
2469 end loop;
2471 End_Scope;
2472 end if;
2474 Next_Entity (Ent);
2475 end loop;
2476 end Check_Entry_Contracts;
2478 ----------------------------------
2479 -- Contains_Lib_Incomplete_Type --
2480 ----------------------------------
2482 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean is
2483 Curr : Entity_Id;
2485 begin
2486 -- Avoid looking through scopes that do not meet the precondition of
2487 -- Pkg not being within a library unit spec.
2489 if not Is_Compilation_Unit (Pkg)
2490 and then not Is_Generic_Instance (Pkg)
2491 and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg))
2492 then
2493 -- Loop through all entities in the current scope to identify
2494 -- an entity that depends on a private type.
2496 Curr := First_Entity (Pkg);
2497 loop
2498 if Nkind (Curr) in N_Entity
2499 and then Depends_On_Private (Curr)
2500 then
2501 return True;
2502 end if;
2504 exit when Last_Entity (Current_Scope) = Curr;
2505 Next_Entity (Curr);
2506 end loop;
2507 end if;
2509 return False;
2510 end Contains_Lib_Incomplete_Type;
2512 --------------------------------------
2513 -- Handle_Late_Controlled_Primitive --
2514 --------------------------------------
2516 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2517 Body_Spec : constant Node_Id := Specification (Body_Decl);
2518 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2519 Loc : constant Source_Ptr := Sloc (Body_Id);
2520 Params : constant List_Id :=
2521 Parameter_Specifications (Body_Spec);
2522 Spec : Node_Id;
2523 Spec_Id : Entity_Id;
2524 Typ : Node_Id;
2526 begin
2527 -- Consider only procedure bodies whose name matches one of the three
2528 -- controlled primitives.
2530 if Nkind (Body_Spec) /= N_Procedure_Specification
2531 or else Chars (Body_Id) not in Name_Adjust
2532 | Name_Finalize
2533 | Name_Initialize
2534 then
2535 return;
2537 -- A controlled primitive must have exactly one formal which is not
2538 -- an anonymous access type.
2540 elsif List_Length (Params) /= 1 then
2541 return;
2542 end if;
2544 Typ := Parameter_Type (First (Params));
2546 if Nkind (Typ) = N_Access_Definition then
2547 return;
2548 end if;
2550 Find_Type (Typ);
2552 -- The type of the formal must be derived from [Limited_]Controlled
2554 if not Is_Controlled (Entity (Typ)) then
2555 return;
2556 end if;
2558 -- Check whether a specification exists for this body. We do not
2559 -- analyze the spec of the body in full, because it will be analyzed
2560 -- again when the body is properly analyzed, and we cannot create
2561 -- duplicate entries in the formals chain. We look for an explicit
2562 -- specification because the body may be an overriding operation and
2563 -- an inherited spec may be present.
2565 Spec_Id := Current_Entity (Body_Id);
2567 while Present (Spec_Id) loop
2568 if Ekind (Spec_Id) in E_Procedure | E_Generic_Procedure
2569 and then Scope (Spec_Id) = Current_Scope
2570 and then Present (First_Formal (Spec_Id))
2571 and then No (Next_Formal (First_Formal (Spec_Id)))
2572 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2573 and then Comes_From_Source (Spec_Id)
2574 then
2575 return;
2576 end if;
2578 Spec_Id := Homonym (Spec_Id);
2579 end loop;
2581 -- At this point the body is known to be a late controlled primitive.
2582 -- Generate a matching spec and insert it before the body. Note the
2583 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2584 -- tree in this case.
2586 Spec := Copy_Separate_Tree (Body_Spec);
2588 -- Ensure that the subprogram declaration does not inherit the null
2589 -- indicator from the body as we now have a proper spec/body pair.
2591 Set_Null_Present (Spec, False);
2593 -- Ensure that the freeze node is inserted after the declaration of
2594 -- the primitive since its expansion will freeze the primitive.
2596 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2598 Insert_Before_And_Analyze (Body_Decl, Decl);
2599 end Handle_Late_Controlled_Primitive;
2601 ----------------------------------------
2602 -- Remove_Partial_Visible_Refinements --
2603 ----------------------------------------
2605 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is
2606 State_Elmt : Elmt_Id;
2607 begin
2608 if Present (Abstract_States (Spec_Id)) then
2609 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2610 while Present (State_Elmt) loop
2611 Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False);
2612 Next_Elmt (State_Elmt);
2613 end loop;
2614 end if;
2616 -- For a child unit, also hide the partial state refinement from
2617 -- ancestor packages.
2619 if Is_Child_Unit (Spec_Id) then
2620 Remove_Partial_Visible_Refinements (Scope (Spec_Id));
2621 end if;
2622 end Remove_Partial_Visible_Refinements;
2624 --------------------------------
2625 -- Remove_Visible_Refinements --
2626 --------------------------------
2628 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2629 State_Elmt : Elmt_Id;
2630 begin
2631 if Present (Abstract_States (Spec_Id)) then
2632 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2633 while Present (State_Elmt) loop
2634 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2635 Next_Elmt (State_Elmt);
2636 end loop;
2637 end if;
2638 end Remove_Visible_Refinements;
2640 ---------------------
2641 -- Resolve_Aspects --
2642 ---------------------
2644 procedure Resolve_Aspects is
2645 E : Entity_Id;
2647 begin
2648 E := First_Entity (Current_Scope);
2649 while Present (E) loop
2650 Resolve_Aspect_Expressions (E);
2652 -- Now that the aspect expressions have been resolved, if this is
2653 -- at the end of the visible declarations, we can set the flag
2654 -- Known_To_Have_Preelab_Init properly on types declared in the
2655 -- visible part, which is needed for checking whether full types
2656 -- in the private part satisfy the Preelaborable_Initialization
2657 -- aspect of the partial view. We can't wait for the creation of
2658 -- the pragma by Analyze_Aspects_At_Freeze_Point, because the
2659 -- freeze point may occur after the end of the package declaration
2660 -- (in the case of nested packages).
2662 if Is_Type (E)
2663 and then L = Visible_Declarations (Parent (L))
2664 and then Has_Aspect (E, Aspect_Preelaborable_Initialization)
2665 then
2666 declare
2667 ASN : constant Node_Id :=
2668 Find_Aspect (E, Aspect_Preelaborable_Initialization);
2669 Expr : constant Node_Id := Expression (ASN);
2670 begin
2671 -- Set Known_To_Have_Preelab_Init to True if aspect has no
2672 -- expression, or if the expression is True (or was folded
2673 -- to True), or if the expression is a conjunction of one or
2674 -- more Preelaborable_Initialization attributes applied to
2675 -- formal types and wasn't folded to False. (Note that
2676 -- Is_Conjunction_Of_Formal_Preelab_Init_Attributes goes to
2677 -- Original_Node if needed, hence test for Standard_False.)
2679 if not Present (Expr)
2680 or else (Is_Entity_Name (Expr)
2681 and then Entity (Expr) = Standard_True)
2682 or else
2683 (Is_Conjunction_Of_Formal_Preelab_Init_Attributes (Expr)
2684 and then
2685 not (Is_Entity_Name (Expr)
2686 and then Entity (Expr) = Standard_False))
2687 then
2688 Set_Known_To_Have_Preelab_Init (E);
2689 end if;
2690 end;
2691 end if;
2693 Next_Entity (E);
2694 end loop;
2695 end Resolve_Aspects;
2697 -- Local variables
2699 Context : Node_Id := Empty;
2700 Ctrl_Typ : Entity_Id := Empty;
2701 Freeze_From : Entity_Id := Empty;
2702 Next_Decl : Node_Id;
2704 -- Start of processing for Analyze_Declarations
2706 begin
2707 Decl := First (L);
2708 while Present (Decl) loop
2710 -- Complete analysis of declaration
2712 Analyze (Decl);
2713 Next_Decl := Next (Decl);
2715 if No (Freeze_From) then
2716 Freeze_From := First_Entity (Current_Scope);
2717 end if;
2719 -- Remember if the declaration we just processed is the full type
2720 -- declaration of a controlled type (to handle late overriding of
2721 -- initialize, adjust or finalize).
2723 if Nkind (Decl) = N_Full_Type_Declaration
2724 and then Is_Controlled (Defining_Identifier (Decl))
2725 then
2726 Ctrl_Typ := Defining_Identifier (Decl);
2727 end if;
2729 -- At the end of a declarative part, freeze remaining entities
2730 -- declared in it. The end of the visible declarations of package
2731 -- specification is not the end of a declarative part if private
2732 -- declarations are present. The end of a package declaration is a
2733 -- freezing point only if it a library package. A task definition or
2734 -- protected type definition is not a freeze point either. Finally,
2735 -- we do not freeze entities in generic scopes, because there is no
2736 -- code generated for them and freeze nodes will be generated for
2737 -- the instance.
2739 -- The end of a package instantiation is not a freeze point, but
2740 -- for now we make it one, because the generic body is inserted
2741 -- (currently) immediately after. Generic instantiations will not
2742 -- be a freeze point once delayed freezing of bodies is implemented.
2743 -- (This is needed in any case for early instantiations ???).
2745 if No (Next_Decl) then
2746 if Nkind (Parent (L)) = N_Component_List then
2747 null;
2749 elsif Nkind (Parent (L)) in
2750 N_Protected_Definition | N_Task_Definition
2751 then
2752 Check_Entry_Contracts;
2754 elsif Nkind (Parent (L)) /= N_Package_Specification then
2755 if Nkind (Parent (L)) = N_Package_Body then
2756 Freeze_From := First_Entity (Current_Scope);
2757 end if;
2759 -- There may have been several freezing points previously,
2760 -- for example object declarations or subprogram bodies, but
2761 -- at the end of a declarative part we check freezing from
2762 -- the beginning, even though entities may already be frozen,
2763 -- in order to perform visibility checks on delayed aspects.
2765 Adjust_Decl;
2767 -- If the current scope is a generic subprogram body. Skip the
2768 -- generic formal parameters that are not frozen here.
2770 if Is_Subprogram (Current_Scope)
2771 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
2772 N_Generic_Subprogram_Declaration
2773 and then Present (First_Entity (Current_Scope))
2774 then
2775 while Is_Generic_Formal (Freeze_From) loop
2776 Next_Entity (Freeze_From);
2777 end loop;
2779 Freeze_All (Freeze_From, Decl);
2780 Freeze_From := Last_Entity (Current_Scope);
2782 else
2783 -- For declarations in a subprogram body there is no issue
2784 -- with name resolution in aspect specifications.
2786 Freeze_All (First_Entity (Current_Scope), Decl);
2787 Freeze_From := Last_Entity (Current_Scope);
2788 end if;
2790 -- Current scope is a package specification
2792 elsif Scope (Current_Scope) /= Standard_Standard
2793 and then not Is_Child_Unit (Current_Scope)
2794 and then No (Generic_Parent (Parent (L)))
2795 then
2796 -- ARM rule 13.1.1(11/3): usage names in aspect definitions are
2797 -- resolved at the end of the immediately enclosing declaration
2798 -- list (AI05-0183-1).
2800 Resolve_Aspects;
2802 elsif L /= Visible_Declarations (Parent (L))
2803 or else Is_Empty_List (Private_Declarations (Parent (L)))
2804 then
2805 Adjust_Decl;
2807 -- End of a package declaration
2809 -- This is a freeze point because it is the end of a
2810 -- compilation unit.
2812 Freeze_All (First_Entity (Current_Scope), Decl);
2813 Freeze_From := Last_Entity (Current_Scope);
2815 -- At the end of the visible declarations the expressions in
2816 -- aspects of all entities declared so far must be resolved.
2817 -- The entities themselves might be frozen later, and the
2818 -- generated pragmas and attribute definition clauses analyzed
2819 -- in full at that point, but name resolution must take place
2820 -- now.
2821 -- In addition to being the proper semantics, this is mandatory
2822 -- within generic units, because global name capture requires
2823 -- those expressions to be analyzed, given that the generated
2824 -- pragmas do not appear in the original generic tree.
2826 elsif Serious_Errors_Detected = 0 then
2827 Resolve_Aspects;
2828 end if;
2830 -- If next node is a body then freeze all types before the body.
2831 -- An exception occurs for some expander-generated bodies. If these
2832 -- are generated at places where in general language rules would not
2833 -- allow a freeze point, then we assume that the expander has
2834 -- explicitly checked that all required types are properly frozen,
2835 -- and we do not cause general freezing here. This special circuit
2836 -- is used when the encountered body is marked as having already
2837 -- been analyzed.
2839 -- In all other cases (bodies that come from source, and expander
2840 -- generated bodies that have not been analyzed yet), freeze all
2841 -- types now. Note that in the latter case, the expander must take
2842 -- care to attach the bodies at a proper place in the tree so as to
2843 -- not cause unwanted freezing at that point.
2845 -- It is also necessary to check for a case where both an expression
2846 -- function is used and the current scope depends on an incomplete
2847 -- private type from a library unit, otherwise premature freezing of
2848 -- the private type will occur.
2850 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl)
2851 and then ((Nkind (Next_Decl) /= N_Subprogram_Body
2852 or else not Was_Expression_Function (Next_Decl))
2853 or else (not Is_Ignored_Ghost_Entity (Current_Scope)
2854 and then not Contains_Lib_Incomplete_Type
2855 (Current_Scope)))
2856 then
2857 -- When a controlled type is frozen, the expander generates stream
2858 -- and controlled-type support routines. If the freeze is caused
2859 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2860 -- expander will end up using the wrong version of these routines,
2861 -- as the body has not been processed yet. To remedy this, detect
2862 -- a late controlled primitive and create a proper spec for it.
2863 -- This ensures that the primitive will override its inherited
2864 -- counterpart before the freeze takes place.
2866 -- If the declaration we just processed is a body, do not attempt
2867 -- to examine Next_Decl as the late primitive idiom can only apply
2868 -- to the first encountered body.
2870 -- ??? A cleaner approach may be possible and/or this solution
2871 -- could be extended to general-purpose late primitives.
2873 if Present (Ctrl_Typ) then
2875 -- No need to continue searching for late body overriding if
2876 -- the controlled type is already frozen.
2878 if Is_Frozen (Ctrl_Typ) then
2879 Ctrl_Typ := Empty;
2881 elsif Nkind (Next_Decl) = N_Subprogram_Body then
2882 Handle_Late_Controlled_Primitive (Next_Decl);
2883 end if;
2884 end if;
2886 Adjust_Decl;
2888 -- The generated body of an expression function does not freeze,
2889 -- unless it is a completion, in which case only the expression
2890 -- itself freezes. This is handled when the body itself is
2891 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2893 Freeze_All (Freeze_From, Decl);
2894 Freeze_From := Last_Entity (Current_Scope);
2895 end if;
2897 Decl := Next_Decl;
2898 end loop;
2900 -- Post-freezing actions
2902 if Present (L) then
2903 Context := Parent (L);
2905 -- Certain contract annotations have forward visibility semantics and
2906 -- must be analyzed after all declarative items have been processed.
2907 -- This timing ensures that entities referenced by such contracts are
2908 -- visible.
2910 -- Analyze the contract of an immediately enclosing package spec or
2911 -- body first because other contracts may depend on its information.
2913 if Nkind (Context) = N_Package_Body then
2914 Analyze_Package_Body_Contract (Defining_Entity (Context));
2916 elsif Nkind (Context) = N_Package_Specification then
2917 Analyze_Package_Contract (Defining_Entity (Context));
2918 end if;
2920 -- Analyze the contracts of various constructs in the declarative
2921 -- list.
2923 Analyze_Contracts (L);
2925 if Nkind (Context) = N_Package_Body then
2927 -- Ensure that all abstract states and objects declared in the
2928 -- state space of a package body are utilized as constituents.
2930 Check_Unused_Body_States (Defining_Entity (Context));
2932 -- State refinements are visible up to the end of the package body
2933 -- declarations. Hide the state refinements from visibility to
2934 -- restore the original state conditions.
2936 Remove_Visible_Refinements (Corresponding_Spec (Context));
2937 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2939 elsif Nkind (Context) = N_Package_Specification then
2941 -- Partial state refinements are visible up to the end of the
2942 -- package spec declarations. Hide the partial state refinements
2943 -- from visibility to restore the original state conditions.
2945 Remove_Partial_Visible_Refinements (Defining_Entity (Context));
2946 end if;
2948 -- Verify that all abstract states found in any package declared in
2949 -- the input declarative list have proper refinements. The check is
2950 -- performed only when the context denotes a block, entry, package,
2951 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2953 Check_State_Refinements (Context);
2955 -- Create the subprogram bodies which verify the run-time semantics
2956 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2957 -- types within the current declarative list. This ensures that all
2958 -- assertion expressions are preanalyzed and resolved at the end of
2959 -- the declarative part. Note that the resolution happens even when
2960 -- freezing does not take place.
2962 Build_Assertion_Bodies (L, Context);
2963 end if;
2964 end Analyze_Declarations;
2966 -----------------------------------
2967 -- Analyze_Full_Type_Declaration --
2968 -----------------------------------
2970 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2971 Def : constant Node_Id := Type_Definition (N);
2972 Def_Id : constant Entity_Id := Defining_Identifier (N);
2973 T : Entity_Id;
2974 Prev : Entity_Id;
2976 Is_Remote : constant Boolean :=
2977 (Is_Remote_Types (Current_Scope)
2978 or else Is_Remote_Call_Interface (Current_Scope))
2979 and then not (In_Private_Part (Current_Scope)
2980 or else In_Package_Body (Current_Scope));
2982 procedure Check_Nonoverridable_Aspects;
2983 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2984 -- be overridden, and can only be confirmed on derivation.
2986 procedure Check_Ops_From_Incomplete_Type;
2987 -- If there is a tagged incomplete partial view of the type, traverse
2988 -- the primitives of the incomplete view and change the type of any
2989 -- controlling formals and result to indicate the full view. The
2990 -- primitives will be added to the full type's primitive operations
2991 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2992 -- is called from Process_Incomplete_Dependents).
2994 ----------------------------------
2995 -- Check_Nonoverridable_Aspects --
2996 ----------------------------------
2998 procedure Check_Nonoverridable_Aspects is
2999 function Get_Aspect_Spec
3000 (Specs : List_Id;
3001 Aspect_Name : Name_Id) return Node_Id;
3002 -- Check whether a list of aspect specifications includes an entry
3003 -- for a specific aspect. The list is either that of a partial or
3004 -- a full view.
3006 ---------------------
3007 -- Get_Aspect_Spec --
3008 ---------------------
3010 function Get_Aspect_Spec
3011 (Specs : List_Id;
3012 Aspect_Name : Name_Id) return Node_Id
3014 Spec : Node_Id;
3016 begin
3017 Spec := First (Specs);
3018 while Present (Spec) loop
3019 if Chars (Identifier (Spec)) = Aspect_Name then
3020 return Spec;
3021 end if;
3022 Next (Spec);
3023 end loop;
3025 return Empty;
3026 end Get_Aspect_Spec;
3028 -- Local variables
3030 Prev_Aspects : constant List_Id :=
3031 Aspect_Specifications (Parent (Def_Id));
3032 Par_Type : Entity_Id;
3033 Prev_Aspect : Node_Id;
3035 -- Start of processing for Check_Nonoverridable_Aspects
3037 begin
3038 -- Get parent type of derived type. Note that Prev is the entity in
3039 -- the partial declaration, but its contents are now those of full
3040 -- view, while Def_Id reflects the partial view.
3042 if Is_Private_Type (Def_Id) then
3043 Par_Type := Etype (Full_View (Def_Id));
3044 else
3045 Par_Type := Etype (Def_Id);
3046 end if;
3048 -- If there is an inherited Implicit_Dereference, verify that it is
3049 -- made explicit in the partial view.
3051 if Has_Discriminants (Base_Type (Par_Type))
3052 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
3053 and then Present (Discriminant_Specifications (Parent (Prev)))
3054 and then Present (Get_Reference_Discriminant (Par_Type))
3055 then
3056 Prev_Aspect :=
3057 Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference);
3059 if No (Prev_Aspect)
3060 and then Present
3061 (Discriminant_Specifications
3062 (Original_Node (Parent (Prev))))
3063 then
3064 Error_Msg_N
3065 ("type does not inherit implicit dereference", Prev);
3067 else
3068 -- If one of the views has the aspect specified, verify that it
3069 -- is consistent with that of the parent.
3071 declare
3072 Cur_Discr : constant Entity_Id :=
3073 Get_Reference_Discriminant (Prev);
3074 Par_Discr : constant Entity_Id :=
3075 Get_Reference_Discriminant (Par_Type);
3077 begin
3078 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
3079 Error_Msg_N
3080 ("aspect inconsistent with that of parent", N);
3081 end if;
3083 -- Check that specification in partial view matches the
3084 -- inherited aspect. Compare names directly because aspect
3085 -- expression may not be analyzed.
3087 if Present (Prev_Aspect)
3088 and then Nkind (Expression (Prev_Aspect)) = N_Identifier
3089 and then Chars (Expression (Prev_Aspect)) /=
3090 Chars (Cur_Discr)
3091 then
3092 Error_Msg_N
3093 ("aspect inconsistent with that of parent", N);
3094 end if;
3095 end;
3096 end if;
3097 end if;
3099 -- What about other nonoverridable aspects???
3100 end Check_Nonoverridable_Aspects;
3102 ------------------------------------
3103 -- Check_Ops_From_Incomplete_Type --
3104 ------------------------------------
3106 procedure Check_Ops_From_Incomplete_Type is
3107 Elmt : Elmt_Id;
3108 Formal : Entity_Id;
3109 Op : Entity_Id;
3111 begin
3112 if Prev /= T
3113 and then Ekind (Prev) = E_Incomplete_Type
3114 and then Is_Tagged_Type (Prev)
3115 and then Is_Tagged_Type (T)
3116 and then Present (Primitive_Operations (Prev))
3117 then
3118 Elmt := First_Elmt (Primitive_Operations (Prev));
3119 while Present (Elmt) loop
3120 Op := Node (Elmt);
3122 Formal := First_Formal (Op);
3123 while Present (Formal) loop
3124 if Etype (Formal) = Prev then
3125 Set_Etype (Formal, T);
3126 end if;
3128 Next_Formal (Formal);
3129 end loop;
3131 if Etype (Op) = Prev then
3132 Set_Etype (Op, T);
3133 end if;
3135 Next_Elmt (Elmt);
3136 end loop;
3137 end if;
3138 end Check_Ops_From_Incomplete_Type;
3140 -- Start of processing for Analyze_Full_Type_Declaration
3142 begin
3143 Prev := Find_Type_Name (N);
3145 -- The full view, if present, now points to the current type. If there
3146 -- is an incomplete partial view, set a link to it, to simplify the
3147 -- retrieval of primitive operations of the type.
3149 -- Ada 2005 (AI-50217): If the type was previously decorated when
3150 -- imported through a LIMITED WITH clause, it appears as incomplete
3151 -- but has no full view.
3153 if Ekind (Prev) = E_Incomplete_Type
3154 and then Present (Full_View (Prev))
3155 then
3156 T := Full_View (Prev);
3157 Set_Incomplete_View (N, Parent (Prev));
3158 else
3159 T := Prev;
3160 end if;
3162 Set_Is_Pure (T, Is_Pure (Current_Scope));
3164 -- We set the flag Is_First_Subtype here. It is needed to set the
3165 -- corresponding flag for the Implicit class-wide-type created
3166 -- during tagged types processing.
3168 Set_Is_First_Subtype (T, True);
3170 -- Only composite types other than array types are allowed to have
3171 -- discriminants.
3173 case Nkind (Def) is
3175 -- For derived types, the rule will be checked once we've figured
3176 -- out the parent type.
3178 when N_Derived_Type_Definition =>
3179 null;
3181 -- For record types, discriminants are allowed.
3183 when N_Record_Definition =>
3184 null;
3186 when others =>
3187 if Present (Discriminant_Specifications (N)) then
3188 Error_Msg_N
3189 ("elementary or array type cannot have discriminants",
3190 Defining_Identifier
3191 (First (Discriminant_Specifications (N))));
3192 end if;
3193 end case;
3195 -- Elaborate the type definition according to kind, and generate
3196 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3197 -- already done (this happens during the reanalysis that follows a call
3198 -- to the high level optimizer).
3200 if not Analyzed (T) then
3201 Set_Analyzed (T);
3203 -- Set the SPARK mode from the current context
3205 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3206 Set_SPARK_Pragma_Inherited (T);
3208 case Nkind (Def) is
3209 when N_Access_To_Subprogram_Definition =>
3210 Access_Subprogram_Declaration (T, Def);
3212 -- If this is a remote access to subprogram, we must create the
3213 -- equivalent fat pointer type, and related subprograms.
3215 if Is_Remote then
3216 Process_Remote_AST_Declaration (N);
3217 end if;
3219 -- Validate categorization rule against access type declaration
3220 -- usually a violation in Pure unit, Shared_Passive unit.
3222 Validate_Access_Type_Declaration (T, N);
3224 -- If the type has contracts, we create the corresponding
3225 -- wrapper at once, before analyzing the aspect specifications,
3226 -- so that pre/postconditions can be handled directly on the
3227 -- generated wrapper.
3229 if Ada_Version >= Ada_2022
3230 and then Present (Aspect_Specifications (N))
3231 then
3232 Build_Access_Subprogram_Wrapper (N);
3233 end if;
3235 when N_Access_To_Object_Definition =>
3236 Access_Type_Declaration (T, Def);
3238 -- Validate categorization rule against access type declaration
3239 -- usually a violation in Pure unit, Shared_Passive unit.
3241 Validate_Access_Type_Declaration (T, N);
3243 -- If we are in a Remote_Call_Interface package and define a
3244 -- RACW, then calling stubs and specific stream attributes
3245 -- must be added.
3247 if Is_Remote
3248 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3249 then
3250 Add_RACW_Features (Def_Id);
3251 end if;
3253 when N_Array_Type_Definition =>
3254 Array_Type_Declaration (T, Def);
3256 when N_Derived_Type_Definition =>
3257 Derived_Type_Declaration (T, N, T /= Def_Id);
3259 -- Inherit predicates from parent, and protect against illegal
3260 -- derivations.
3262 if Is_Type (T) and then Has_Predicates (T) then
3263 Set_Has_Predicates (Def_Id);
3264 end if;
3266 -- Save the scenario for examination by the ABE Processing
3267 -- phase.
3269 Record_Elaboration_Scenario (N);
3271 when N_Enumeration_Type_Definition =>
3272 Enumeration_Type_Declaration (T, Def);
3274 when N_Floating_Point_Definition =>
3275 Floating_Point_Type_Declaration (T, Def);
3277 when N_Decimal_Fixed_Point_Definition =>
3278 Decimal_Fixed_Point_Type_Declaration (T, Def);
3280 when N_Ordinary_Fixed_Point_Definition =>
3281 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3283 when N_Signed_Integer_Type_Definition =>
3284 Signed_Integer_Type_Declaration (T, Def);
3286 when N_Modular_Type_Definition =>
3287 Modular_Type_Declaration (T, Def);
3289 when N_Record_Definition =>
3290 Record_Type_Declaration (T, N, Prev);
3292 -- If declaration has a parse error, nothing to elaborate.
3294 when N_Error =>
3295 null;
3297 when others =>
3298 raise Program_Error;
3299 end case;
3300 end if;
3302 if Etype (T) = Any_Type then
3303 return;
3304 end if;
3306 -- Set the primitives list of the full type and its base type when
3307 -- needed. T may be E_Void in cases of earlier errors, and in that
3308 -- case we bypass this.
3310 if Ekind (T) /= E_Void
3311 and then not Present (Direct_Primitive_Operations (T))
3312 then
3313 if Etype (T) = T then
3314 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3316 -- If Etype of T is the base type (as opposed to a parent type) and
3317 -- already has an associated list of primitive operations, then set
3318 -- T's primitive list to the base type's list. Otherwise, create a
3319 -- new empty primitives list and share the list between T and its
3320 -- base type. The lists need to be shared in common between the two.
3322 elsif Etype (T) = Base_Type (T) then
3324 if not Present (Direct_Primitive_Operations (Base_Type (T))) then
3325 Set_Direct_Primitive_Operations
3326 (Base_Type (T), New_Elmt_List);
3327 end if;
3329 Set_Direct_Primitive_Operations
3330 (T, Direct_Primitive_Operations (Base_Type (T)));
3332 -- Case where the Etype is a parent type, so we need a new primitives
3333 -- list for T.
3335 else
3336 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3337 end if;
3338 end if;
3340 -- Some common processing for all types
3342 Set_Depends_On_Private (T, Has_Private_Component (T));
3343 Check_Ops_From_Incomplete_Type;
3345 -- Both the declared entity, and its anonymous base type if one was
3346 -- created, need freeze nodes allocated.
3348 declare
3349 B : constant Entity_Id := Base_Type (T);
3351 begin
3352 -- In the case where the base type differs from the first subtype, we
3353 -- pre-allocate a freeze node, and set the proper link to the first
3354 -- subtype. Freeze_Entity will use this preallocated freeze node when
3355 -- it freezes the entity.
3357 -- This does not apply if the base type is a generic type, whose
3358 -- declaration is independent of the current derived definition.
3360 if B /= T and then not Is_Generic_Type (B) then
3361 Ensure_Freeze_Node (B);
3362 Set_First_Subtype_Link (Freeze_Node (B), T);
3363 end if;
3365 -- A type that is imported through a limited_with clause cannot
3366 -- generate any code, and thus need not be frozen. However, an access
3367 -- type with an imported designated type needs a finalization list,
3368 -- which may be referenced in some other package that has non-limited
3369 -- visibility on the designated type. Thus we must create the
3370 -- finalization list at the point the access type is frozen, to
3371 -- prevent unsatisfied references at link time.
3373 if not From_Limited_With (T) or else Is_Access_Type (T) then
3374 Set_Has_Delayed_Freeze (T);
3375 end if;
3376 end;
3378 -- Case where T is the full declaration of some private type which has
3379 -- been swapped in Defining_Identifier (N).
3381 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3382 Process_Full_View (N, T, Def_Id);
3384 -- Record the reference. The form of this is a little strange, since
3385 -- the full declaration has been swapped in. So the first parameter
3386 -- here represents the entity to which a reference is made which is
3387 -- the "real" entity, i.e. the one swapped in, and the second
3388 -- parameter provides the reference location.
3390 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3391 -- since we don't want a complaint about the full type being an
3392 -- unwanted reference to the private type
3394 declare
3395 B : constant Boolean := Has_Pragma_Unreferenced (T);
3396 begin
3397 Set_Has_Pragma_Unreferenced (T, False);
3398 Generate_Reference (T, T, 'c');
3399 Set_Has_Pragma_Unreferenced (T, B);
3400 end;
3402 Set_Completion_Referenced (Def_Id);
3404 -- For completion of incomplete type, process incomplete dependents
3405 -- and always mark the full type as referenced (it is the incomplete
3406 -- type that we get for any real reference).
3408 elsif Ekind (Prev) = E_Incomplete_Type then
3409 Process_Incomplete_Dependents (N, T, Prev);
3410 Generate_Reference (Prev, Def_Id, 'c');
3411 Set_Completion_Referenced (Def_Id);
3413 -- If not private type or incomplete type completion, this is a real
3414 -- definition of a new entity, so record it.
3416 else
3417 Generate_Definition (Def_Id);
3418 end if;
3420 -- Propagate any pending access types whose finalization masters need to
3421 -- be fully initialized from the partial to the full view. Guard against
3422 -- an illegal full view that remains unanalyzed.
3424 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
3425 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
3426 end if;
3428 if Chars (Scope (Def_Id)) = Name_System
3429 and then Chars (Def_Id) = Name_Address
3430 and then In_Predefined_Unit (N)
3431 then
3432 Set_Is_Descendant_Of_Address (Def_Id);
3433 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
3434 Set_Is_Descendant_Of_Address (Prev);
3435 end if;
3437 Set_Optimize_Alignment_Flags (Def_Id);
3438 Check_Eliminated (Def_Id);
3440 -- If the declaration is a completion and aspects are present, apply
3441 -- them to the entity for the type which is currently the partial
3442 -- view, but which is the one that will be frozen.
3444 if Has_Aspects (N) then
3446 -- In most cases the partial view is a private type, and both views
3447 -- appear in different declarative parts. In the unusual case where
3448 -- the partial view is incomplete, perform the analysis on the
3449 -- full view, to prevent freezing anomalies with the corresponding
3450 -- class-wide type, which otherwise might be frozen before the
3451 -- dispatch table is built.
3453 if Prev /= Def_Id
3454 and then Ekind (Prev) /= E_Incomplete_Type
3455 then
3456 Analyze_Aspect_Specifications (N, Prev);
3458 -- Normal case
3460 else
3461 Analyze_Aspect_Specifications (N, Def_Id);
3462 end if;
3463 end if;
3465 if Is_Derived_Type (Prev)
3466 and then Def_Id /= Prev
3467 then
3468 Check_Nonoverridable_Aspects;
3469 end if;
3470 end Analyze_Full_Type_Declaration;
3472 ----------------------------------
3473 -- Analyze_Incomplete_Type_Decl --
3474 ----------------------------------
3476 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3477 F : constant Boolean := Is_Pure (Current_Scope);
3478 T : Entity_Id;
3480 begin
3481 Generate_Definition (Defining_Identifier (N));
3483 -- Process an incomplete declaration. The identifier must not have been
3484 -- declared already in the scope. However, an incomplete declaration may
3485 -- appear in the private part of a package, for a private type that has
3486 -- already been declared.
3488 -- In this case, the discriminants (if any) must match
3490 T := Find_Type_Name (N);
3492 Mutate_Ekind (T, E_Incomplete_Type);
3493 Set_Etype (T, T);
3494 Set_Is_First_Subtype (T);
3495 Reinit_Size_Align (T);
3497 -- Set the SPARK mode from the current context
3499 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3500 Set_SPARK_Pragma_Inherited (T);
3502 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3503 -- incomplete types.
3505 if Tagged_Present (N) then
3506 Set_Is_Tagged_Type (T, True);
3507 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3508 Make_Class_Wide_Type (T);
3509 end if;
3511 -- For tagged types, or when prefixed-call syntax is allowed for
3512 -- untagged types, initialize the list of primitive operations to
3513 -- an empty list.
3515 if Tagged_Present (N)
3516 or else Extensions_Allowed
3517 then
3518 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3519 end if;
3521 Set_Stored_Constraint (T, No_Elist);
3523 if Present (Discriminant_Specifications (N)) then
3524 Push_Scope (T);
3525 Process_Discriminants (N);
3526 End_Scope;
3527 end if;
3529 -- If the type has discriminants, nontrivial subtypes may be declared
3530 -- before the full view of the type. The full views of those subtypes
3531 -- will be built after the full view of the type.
3533 Set_Private_Dependents (T, New_Elmt_List);
3534 Set_Is_Pure (T, F);
3535 end Analyze_Incomplete_Type_Decl;
3537 -----------------------------------
3538 -- Analyze_Interface_Declaration --
3539 -----------------------------------
3541 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3542 CW : constant Entity_Id := Class_Wide_Type (T);
3544 begin
3545 Set_Is_Tagged_Type (T);
3546 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3548 Set_Is_Limited_Record (T, Limited_Present (Def)
3549 or else Task_Present (Def)
3550 or else Protected_Present (Def)
3551 or else Synchronized_Present (Def));
3553 -- Type is abstract if full declaration carries keyword, or if previous
3554 -- partial view did.
3556 Set_Is_Abstract_Type (T);
3557 Set_Is_Interface (T);
3559 -- Type is a limited interface if it includes the keyword limited, task,
3560 -- protected, or synchronized.
3562 Set_Is_Limited_Interface
3563 (T, Limited_Present (Def)
3564 or else Protected_Present (Def)
3565 or else Synchronized_Present (Def)
3566 or else Task_Present (Def));
3568 Set_Interfaces (T, New_Elmt_List);
3569 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3571 -- Complete the decoration of the class-wide entity if it was already
3572 -- built (i.e. during the creation of the limited view)
3574 if Present (CW) then
3575 Set_Is_Interface (CW);
3576 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3577 end if;
3579 -- Check runtime support for synchronized interfaces
3581 if Is_Concurrent_Interface (T)
3582 and then not RTE_Available (RE_Select_Specific_Data)
3583 then
3584 Error_Msg_CRT ("synchronized interfaces", T);
3585 end if;
3586 end Analyze_Interface_Declaration;
3588 -----------------------------
3589 -- Analyze_Itype_Reference --
3590 -----------------------------
3592 -- Nothing to do. This node is placed in the tree only for the benefit of
3593 -- back end processing, and has no effect on the semantic processing.
3595 procedure Analyze_Itype_Reference (N : Node_Id) is
3596 begin
3597 pragma Assert (Is_Itype (Itype (N)));
3598 null;
3599 end Analyze_Itype_Reference;
3601 --------------------------------
3602 -- Analyze_Number_Declaration --
3603 --------------------------------
3605 procedure Analyze_Number_Declaration (N : Node_Id) is
3606 E : constant Node_Id := Expression (N);
3607 Id : constant Entity_Id := Defining_Identifier (N);
3608 Index : Interp_Index;
3609 It : Interp;
3610 T : Entity_Id;
3612 begin
3613 Generate_Definition (Id);
3614 Enter_Name (Id);
3616 -- This is an optimization of a common case of an integer literal
3618 if Nkind (E) = N_Integer_Literal then
3619 Set_Is_Static_Expression (E, True);
3620 Set_Etype (E, Universal_Integer);
3622 Set_Etype (Id, Universal_Integer);
3623 Mutate_Ekind (Id, E_Named_Integer);
3624 Set_Is_Frozen (Id, True);
3626 Set_Debug_Info_Needed (Id);
3627 return;
3628 end if;
3630 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3632 -- Process expression, replacing error by integer zero, to avoid
3633 -- cascaded errors or aborts further along in the processing
3635 -- Replace Error by integer zero, which seems least likely to cause
3636 -- cascaded errors.
3638 if E = Error then
3639 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3640 Set_Error_Posted (E);
3641 end if;
3643 Analyze (E);
3645 -- Verify that the expression is static and numeric. If
3646 -- the expression is overloaded, we apply the preference
3647 -- rule that favors root numeric types.
3649 if not Is_Overloaded (E) then
3650 T := Etype (E);
3651 if Has_Dynamic_Predicate_Aspect (T) then
3652 Error_Msg_N
3653 ("subtype has dynamic predicate, "
3654 & "not allowed in number declaration", N);
3655 end if;
3657 else
3658 T := Any_Type;
3660 Get_First_Interp (E, Index, It);
3661 while Present (It.Typ) loop
3662 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3663 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3664 then
3665 if T = Any_Type then
3666 T := It.Typ;
3668 elsif Is_Universal_Numeric_Type (It.Typ) then
3669 -- Choose universal interpretation over any other
3671 T := It.Typ;
3672 exit;
3673 end if;
3674 end if;
3676 Get_Next_Interp (Index, It);
3677 end loop;
3678 end if;
3680 if Is_Integer_Type (T) then
3681 Resolve (E, T);
3682 Set_Etype (Id, Universal_Integer);
3683 Mutate_Ekind (Id, E_Named_Integer);
3685 elsif Is_Real_Type (T) then
3687 -- Because the real value is converted to universal_real, this is a
3688 -- legal context for a universal fixed expression.
3690 if T = Universal_Fixed then
3691 declare
3692 Loc : constant Source_Ptr := Sloc (N);
3693 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3694 Subtype_Mark =>
3695 New_Occurrence_Of (Universal_Real, Loc),
3696 Expression => Relocate_Node (E));
3698 begin
3699 Rewrite (E, Conv);
3700 Analyze (E);
3701 end;
3703 elsif T = Any_Fixed then
3704 Error_Msg_N ("illegal context for mixed mode operation", E);
3706 -- Expression is of the form : universal_fixed * integer. Try to
3707 -- resolve as universal_real.
3709 T := Universal_Real;
3710 Set_Etype (E, T);
3711 end if;
3713 Resolve (E, T);
3714 Set_Etype (Id, Universal_Real);
3715 Mutate_Ekind (Id, E_Named_Real);
3717 else
3718 Wrong_Type (E, Any_Numeric);
3719 Resolve (E, T);
3721 Set_Etype (Id, T);
3722 Mutate_Ekind (Id, E_Constant);
3723 Set_Never_Set_In_Source (Id, True);
3724 Set_Is_True_Constant (Id, True);
3725 return;
3726 end if;
3728 if Nkind (E) in N_Integer_Literal | N_Real_Literal then
3729 Set_Etype (E, Etype (Id));
3730 end if;
3732 if not Is_OK_Static_Expression (E) then
3733 Flag_Non_Static_Expr
3734 ("non-static expression used in number declaration!", E);
3735 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3736 Set_Etype (E, Any_Type);
3737 end if;
3739 Analyze_Dimension (N);
3740 end Analyze_Number_Declaration;
3742 --------------------------------
3743 -- Analyze_Object_Declaration --
3744 --------------------------------
3746 -- WARNING: This routine manages Ghost regions. Return statements must be
3747 -- replaced by gotos which jump to the end of the routine and restore the
3748 -- Ghost mode.
3750 procedure Analyze_Object_Declaration (N : Node_Id) is
3751 Loc : constant Source_Ptr := Sloc (N);
3752 Id : constant Entity_Id := Defining_Identifier (N);
3753 Next_Decl : constant Node_Id := Next (N);
3755 Act_T : Entity_Id;
3756 T : Entity_Id;
3758 E : Node_Id := Expression (N);
3759 -- E is set to Expression (N) throughout this routine. When Expression
3760 -- (N) is modified, E is changed accordingly.
3762 procedure Check_Dynamic_Object (Typ : Entity_Id);
3763 -- A library-level object with nonstatic discriminant constraints may
3764 -- require dynamic allocation. The declaration is illegal if the
3765 -- profile includes the restriction No_Implicit_Heap_Allocations.
3767 procedure Check_For_Null_Excluding_Components
3768 (Obj_Typ : Entity_Id;
3769 Obj_Decl : Node_Id);
3770 -- Verify that each null-excluding component of object declaration
3771 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3772 -- a compile-time warning if this is not the case.
3774 function Count_Tasks (T : Entity_Id) return Uint;
3775 -- This function is called when a non-generic library level object of a
3776 -- task type is declared. Its function is to count the static number of
3777 -- tasks declared within the type (it is only called if Has_Task is set
3778 -- for T). As a side effect, if an array of tasks with nonstatic bounds
3779 -- or a variant record type is encountered, Check_Restriction is called
3780 -- indicating the count is unknown.
3782 function Delayed_Aspect_Present return Boolean;
3783 -- If the declaration has an expression that is an aggregate, and it
3784 -- has aspects that require delayed analysis, the resolution of the
3785 -- aggregate must be deferred to the freeze point of the object. This
3786 -- special processing was created for address clauses, but it must
3787 -- also apply to address aspects. This must be done before the aspect
3788 -- specifications are analyzed because we must handle the aggregate
3789 -- before the analysis of the object declaration is complete.
3791 -- Any other relevant delayed aspects on object declarations ???
3793 --------------------------
3794 -- Check_Dynamic_Object --
3795 --------------------------
3797 procedure Check_Dynamic_Object (Typ : Entity_Id) is
3798 Comp : Entity_Id;
3799 Obj_Type : Entity_Id;
3801 begin
3802 Obj_Type := Typ;
3804 if Is_Private_Type (Obj_Type)
3805 and then Present (Full_View (Obj_Type))
3806 then
3807 Obj_Type := Full_View (Obj_Type);
3808 end if;
3810 if Known_Static_Esize (Obj_Type) then
3811 return;
3812 end if;
3814 if Restriction_Active (No_Implicit_Heap_Allocations)
3815 and then Expander_Active
3816 and then Has_Discriminants (Obj_Type)
3817 then
3818 Comp := First_Component (Obj_Type);
3819 while Present (Comp) loop
3820 if Known_Static_Esize (Etype (Comp))
3821 or else Size_Known_At_Compile_Time (Etype (Comp))
3822 then
3823 null;
3825 elsif not Discriminated_Size (Comp)
3826 and then Comes_From_Source (Comp)
3827 then
3828 Error_Msg_NE
3829 ("component& of non-static size will violate restriction "
3830 & "No_Implicit_Heap_Allocation?", N, Comp);
3832 elsif Is_Record_Type (Etype (Comp)) then
3833 Check_Dynamic_Object (Etype (Comp));
3834 end if;
3836 Next_Component (Comp);
3837 end loop;
3838 end if;
3839 end Check_Dynamic_Object;
3841 -----------------------------------------
3842 -- Check_For_Null_Excluding_Components --
3843 -----------------------------------------
3845 procedure Check_For_Null_Excluding_Components
3846 (Obj_Typ : Entity_Id;
3847 Obj_Decl : Node_Id)
3849 procedure Check_Component
3850 (Comp_Typ : Entity_Id;
3851 Comp_Decl : Node_Id := Empty;
3852 Array_Comp : Boolean := False);
3853 -- Apply a compile-time null-exclusion check on a component denoted
3854 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3855 -- subcomponents (if any).
3857 ---------------------
3858 -- Check_Component --
3859 ---------------------
3861 procedure Check_Component
3862 (Comp_Typ : Entity_Id;
3863 Comp_Decl : Node_Id := Empty;
3864 Array_Comp : Boolean := False)
3866 Comp : Entity_Id;
3867 T : Entity_Id;
3869 begin
3870 -- Do not consider internally-generated components or those that
3871 -- are already initialized.
3873 if Present (Comp_Decl)
3874 and then (not Comes_From_Source (Comp_Decl)
3875 or else Present (Expression (Comp_Decl)))
3876 then
3877 return;
3878 end if;
3880 if Is_Incomplete_Or_Private_Type (Comp_Typ)
3881 and then Present (Full_View (Comp_Typ))
3882 then
3883 T := Full_View (Comp_Typ);
3884 else
3885 T := Comp_Typ;
3886 end if;
3888 -- Verify a component of a null-excluding access type
3890 if Is_Access_Type (T)
3891 and then Can_Never_Be_Null (T)
3892 then
3893 if Comp_Decl = Obj_Decl then
3894 Null_Exclusion_Static_Checks
3895 (N => Obj_Decl,
3896 Comp => Empty,
3897 Array_Comp => Array_Comp);
3899 else
3900 Null_Exclusion_Static_Checks
3901 (N => Obj_Decl,
3902 Comp => Comp_Decl,
3903 Array_Comp => Array_Comp);
3904 end if;
3906 -- Check array components
3908 elsif Is_Array_Type (T) then
3910 -- There is no suitable component when the object is of an
3911 -- array type. However, a namable component may appear at some
3912 -- point during the recursive inspection, but not at the top
3913 -- level. At the top level just indicate array component case.
3915 if Comp_Decl = Obj_Decl then
3916 Check_Component (Component_Type (T), Array_Comp => True);
3917 else
3918 Check_Component (Component_Type (T), Comp_Decl);
3919 end if;
3921 -- Verify all components of type T
3923 -- Note: No checks are performed on types with discriminants due
3924 -- to complexities involving variants. ???
3926 elsif (Is_Concurrent_Type (T)
3927 or else Is_Incomplete_Or_Private_Type (T)
3928 or else Is_Record_Type (T))
3929 and then not Has_Discriminants (T)
3930 then
3931 Comp := First_Component (T);
3932 while Present (Comp) loop
3933 Check_Component (Etype (Comp), Parent (Comp));
3935 Next_Component (Comp);
3936 end loop;
3937 end if;
3938 end Check_Component;
3940 -- Start processing for Check_For_Null_Excluding_Components
3942 begin
3943 Check_Component (Obj_Typ, Obj_Decl);
3944 end Check_For_Null_Excluding_Components;
3946 -----------------
3947 -- Count_Tasks --
3948 -----------------
3950 function Count_Tasks (T : Entity_Id) return Uint is
3951 C : Entity_Id;
3952 X : Node_Id;
3953 V : Uint;
3955 begin
3956 if Is_Task_Type (T) then
3957 return Uint_1;
3959 elsif Is_Record_Type (T) then
3960 if Has_Discriminants (T) then
3961 Check_Restriction (Max_Tasks, N);
3962 return Uint_0;
3964 else
3965 V := Uint_0;
3966 C := First_Component (T);
3967 while Present (C) loop
3968 V := V + Count_Tasks (Etype (C));
3969 Next_Component (C);
3970 end loop;
3972 return V;
3973 end if;
3975 elsif Is_Array_Type (T) then
3976 X := First_Index (T);
3977 V := Count_Tasks (Component_Type (T));
3978 while Present (X) loop
3979 C := Etype (X);
3981 if not Is_OK_Static_Subtype (C) then
3982 Check_Restriction (Max_Tasks, N);
3983 return Uint_0;
3984 else
3985 V := V * (UI_Max (Uint_0,
3986 Expr_Value (Type_High_Bound (C)) -
3987 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3988 end if;
3990 Next_Index (X);
3991 end loop;
3993 return V;
3995 else
3996 return Uint_0;
3997 end if;
3998 end Count_Tasks;
4000 ----------------------------
4001 -- Delayed_Aspect_Present --
4002 ----------------------------
4004 function Delayed_Aspect_Present return Boolean is
4005 A : Node_Id;
4006 A_Id : Aspect_Id;
4008 begin
4009 if Present (Aspect_Specifications (N)) then
4010 A := First (Aspect_Specifications (N));
4012 while Present (A) loop
4013 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
4015 if A_Id = Aspect_Address then
4017 -- Set flag on object entity, for later processing at
4018 -- the freeze point.
4020 Set_Has_Delayed_Aspects (Id);
4021 return True;
4022 end if;
4024 Next (A);
4025 end loop;
4026 end if;
4028 return False;
4029 end Delayed_Aspect_Present;
4031 -- Local variables
4033 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
4034 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
4035 -- Save the Ghost-related attributes to restore on exit
4037 Prev_Entity : Entity_Id := Empty;
4038 Related_Id : Entity_Id;
4039 Full_View_Present : Boolean := False;
4041 -- Start of processing for Analyze_Object_Declaration
4043 begin
4044 -- There are three kinds of implicit types generated by an
4045 -- object declaration:
4047 -- 1. Those generated by the original Object Definition
4049 -- 2. Those generated by the Expression
4051 -- 3. Those used to constrain the Object Definition with the
4052 -- expression constraints when the definition is unconstrained.
4054 -- They must be generated in this order to avoid order of elaboration
4055 -- issues. Thus the first step (after entering the name) is to analyze
4056 -- the object definition.
4058 if Constant_Present (N) then
4059 Prev_Entity := Current_Entity_In_Scope (Id);
4061 if Present (Prev_Entity)
4062 and then
4063 -- If the homograph is an implicit subprogram, it is overridden
4064 -- by the current declaration.
4066 ((Is_Overloadable (Prev_Entity)
4067 and then Is_Inherited_Operation (Prev_Entity))
4069 -- The current object is a discriminal generated for an entry
4070 -- family index. Even though the index is a constant, in this
4071 -- particular context there is no true constant redeclaration.
4072 -- Enter_Name will handle the visibility.
4074 or else
4075 (Is_Discriminal (Id)
4076 and then Ekind (Discriminal_Link (Id)) =
4077 E_Entry_Index_Parameter)
4079 -- The current object is the renaming for a generic declared
4080 -- within the instance.
4082 or else
4083 (Ekind (Prev_Entity) = E_Package
4084 and then Nkind (Parent (Prev_Entity)) =
4085 N_Package_Renaming_Declaration
4086 and then not Comes_From_Source (Prev_Entity)
4087 and then
4088 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
4090 -- The entity may be a homonym of a private component of the
4091 -- enclosing protected object, for which we create a local
4092 -- renaming declaration. The declaration is legal, even if
4093 -- useless when it just captures that component.
4095 or else
4096 (Ekind (Scope (Current_Scope)) = E_Protected_Type
4097 and then Nkind (Parent (Prev_Entity)) =
4098 N_Object_Renaming_Declaration))
4099 then
4100 Prev_Entity := Empty;
4101 end if;
4102 end if;
4104 if Present (Prev_Entity) then
4106 -- The object declaration is Ghost when it completes a deferred Ghost
4107 -- constant.
4109 Mark_And_Set_Ghost_Completion (N, Prev_Entity);
4111 Constant_Redeclaration (Id, N, T);
4113 Generate_Reference (Prev_Entity, Id, 'c');
4114 Set_Completion_Referenced (Id);
4116 if Error_Posted (N) then
4118 -- Type mismatch or illegal redeclaration; do not analyze
4119 -- expression to avoid cascaded errors.
4121 T := Find_Type_Of_Object (Object_Definition (N), N);
4122 Set_Etype (Id, T);
4123 Mutate_Ekind (Id, E_Variable);
4124 goto Leave;
4125 end if;
4127 -- In the normal case, enter identifier at the start to catch premature
4128 -- usage in the initialization expression.
4130 else
4131 Generate_Definition (Id);
4132 Enter_Name (Id);
4134 Mark_Coextensions (N, Object_Definition (N));
4136 T := Find_Type_Of_Object (Object_Definition (N), N);
4138 if Nkind (Object_Definition (N)) = N_Access_Definition
4139 and then Present
4140 (Access_To_Subprogram_Definition (Object_Definition (N)))
4141 and then Protected_Present
4142 (Access_To_Subprogram_Definition (Object_Definition (N)))
4143 then
4144 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
4145 end if;
4147 if Error_Posted (Id) then
4148 Set_Etype (Id, T);
4149 Mutate_Ekind (Id, E_Variable);
4150 goto Leave;
4151 end if;
4152 end if;
4154 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
4155 -- out some static checks.
4157 if Ada_Version >= Ada_2005 then
4159 -- In case of aggregates we must also take care of the correct
4160 -- initialization of nested aggregates bug this is done at the
4161 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
4163 if Can_Never_Be_Null (T) then
4164 if Present (Expression (N))
4165 and then Nkind (Expression (N)) = N_Aggregate
4166 then
4167 null;
4169 elsif Comes_From_Source (Id) then
4170 declare
4171 Save_Typ : constant Entity_Id := Etype (Id);
4172 begin
4173 Set_Etype (Id, T); -- Temp. decoration for static checks
4174 Null_Exclusion_Static_Checks (N);
4175 Set_Etype (Id, Save_Typ);
4176 end;
4177 end if;
4179 -- We might be dealing with an object of a composite type containing
4180 -- null-excluding components without an aggregate, so we must verify
4181 -- that such components have default initialization.
4183 else
4184 Check_For_Null_Excluding_Components (T, N);
4185 end if;
4186 end if;
4188 -- Object is marked pure if it is in a pure scope
4190 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4192 -- If deferred constant, make sure context is appropriate. We detect
4193 -- a deferred constant as a constant declaration with no expression.
4194 -- A deferred constant can appear in a package body if its completion
4195 -- is by means of an interface pragma.
4197 if Constant_Present (N) and then No (E) then
4199 -- A deferred constant may appear in the declarative part of the
4200 -- following constructs:
4202 -- blocks
4203 -- entry bodies
4204 -- extended return statements
4205 -- package specs
4206 -- package bodies
4207 -- subprogram bodies
4208 -- task bodies
4210 -- When declared inside a package spec, a deferred constant must be
4211 -- completed by a full constant declaration or pragma Import. In all
4212 -- other cases, the only proper completion is pragma Import. Extended
4213 -- return statements are flagged as invalid contexts because they do
4214 -- not have a declarative part and so cannot accommodate the pragma.
4216 if Ekind (Current_Scope) = E_Return_Statement then
4217 Error_Msg_N
4218 ("invalid context for deferred constant declaration (RM 7.4)",
4220 Error_Msg_N
4221 ("\declaration requires an initialization expression",
4223 Set_Constant_Present (N, False);
4225 -- In Ada 83, deferred constant must be of private type
4227 elsif not Is_Private_Type (T) then
4228 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4229 Error_Msg_N
4230 ("(Ada 83) deferred constant must be private type", N);
4231 end if;
4232 end if;
4234 -- If not a deferred constant, then the object declaration freezes
4235 -- its type, unless the object is of an anonymous type and has delayed
4236 -- aspects. In that case the type is frozen when the object itself is.
4238 else
4239 Check_Fully_Declared (T, N);
4241 if Has_Delayed_Aspects (Id)
4242 and then Is_Array_Type (T)
4243 and then Is_Itype (T)
4244 then
4245 Set_Has_Delayed_Freeze (T);
4246 else
4247 Freeze_Before (N, T);
4248 end if;
4249 end if;
4251 -- If the object was created by a constrained array definition, then
4252 -- set the link in both the anonymous base type and anonymous subtype
4253 -- that are built to represent the array type to point to the object.
4255 if Nkind (Object_Definition (Declaration_Node (Id))) =
4256 N_Constrained_Array_Definition
4257 then
4258 Set_Related_Array_Object (T, Id);
4259 Set_Related_Array_Object (Base_Type (T), Id);
4260 end if;
4262 -- Check for protected objects not at library level
4264 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
4265 Check_Restriction (No_Local_Protected_Objects, Id);
4266 end if;
4268 -- Check for violation of No_Local_Timing_Events
4270 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
4271 Check_Restriction (No_Local_Timing_Events, Id);
4272 end if;
4274 -- The actual subtype of the object is the nominal subtype, unless
4275 -- the nominal one is unconstrained and obtained from the expression.
4277 Act_T := T;
4279 if Is_Library_Level_Entity (Id) then
4280 Check_Dynamic_Object (T);
4281 end if;
4283 -- Process initialization expression if present and not in error
4285 if Present (E) and then E /= Error then
4287 -- Generate an error in case of CPP class-wide object initialization.
4288 -- Required because otherwise the expansion of the class-wide
4289 -- assignment would try to use 'size to initialize the object
4290 -- (primitive that is not available in CPP tagged types).
4292 if Is_Class_Wide_Type (Act_T)
4293 and then
4294 (Is_CPP_Class (Root_Type (Etype (Act_T)))
4295 or else
4296 (Present (Full_View (Root_Type (Etype (Act_T))))
4297 and then
4298 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
4299 then
4300 Error_Msg_N
4301 ("predefined assignment not available for 'C'P'P tagged types",
4303 end if;
4305 Mark_Coextensions (N, E);
4306 Analyze (E);
4308 -- In case of errors detected in the analysis of the expression,
4309 -- decorate it with the expected type to avoid cascaded errors.
4311 if No (Etype (E)) then
4312 Set_Etype (E, T);
4313 end if;
4315 -- If an initialization expression is present, then we set the
4316 -- Is_True_Constant flag. It will be reset if this is a variable
4317 -- and it is indeed modified.
4319 Set_Is_True_Constant (Id, True);
4321 -- If we are analyzing a constant declaration, set its completion
4322 -- flag after analyzing and resolving the expression.
4324 if Constant_Present (N) then
4325 Set_Has_Completion (Id);
4326 end if;
4328 -- Set type and resolve (type may be overridden later on). Note:
4329 -- Ekind (Id) must still be E_Void at this point so that incorrect
4330 -- early usage within E is properly diagnosed.
4332 Set_Etype (Id, T);
4334 -- If the expression is an aggregate we must look ahead to detect
4335 -- the possible presence of an address clause, and defer resolution
4336 -- and expansion of the aggregate to the freeze point of the entity.
4338 -- This is not always legal because the aggregate may contain other
4339 -- references that need freezing, e.g. references to other entities
4340 -- with address clauses. In any case, when compiling with -gnatI the
4341 -- presence of the address clause must be ignored.
4343 if Comes_From_Source (N)
4344 and then Expander_Active
4345 and then Nkind (E) = N_Aggregate
4346 and then
4347 ((Present (Following_Address_Clause (N))
4348 and then not Ignore_Rep_Clauses)
4349 or else Delayed_Aspect_Present)
4350 then
4351 Set_Etype (E, T);
4353 -- If the aggregate is limited it will be built in place, and its
4354 -- expansion is deferred until the object declaration is expanded.
4356 -- This is also required when generating C code to ensure that an
4357 -- object with an alignment or address clause can be initialized
4358 -- by means of component by component assignments.
4360 if Is_Limited_Type (T) or else Modify_Tree_For_C then
4361 Set_Expansion_Delayed (E);
4362 end if;
4364 else
4365 -- If the expression is a formal that is a "subprogram pointer"
4366 -- this is illegal in accessibility terms (see RM 3.10.2 (13.1/2)
4367 -- and AARM 3.10.2 (13.b/2)). Add an explicit conversion to force
4368 -- the corresponding check, as is done for assignments.
4370 if Is_Entity_Name (E)
4371 and then Present (Entity (E))
4372 and then Is_Formal (Entity (E))
4373 and then
4374 Ekind (Etype (Entity (E))) = E_Anonymous_Access_Subprogram_Type
4375 and then Ekind (T) /= E_Anonymous_Access_Subprogram_Type
4376 then
4377 Rewrite (E, Convert_To (T, Relocate_Node (E)));
4378 end if;
4380 Resolve (E, T);
4381 end if;
4383 -- No further action needed if E is a call to an inlined function
4384 -- which returns an unconstrained type and it has been expanded into
4385 -- a procedure call. In that case N has been replaced by an object
4386 -- declaration without initializing expression and it has been
4387 -- analyzed (see Expand_Inlined_Call).
4389 if Back_End_Inlining
4390 and then Expander_Active
4391 and then Nkind (E) = N_Function_Call
4392 and then Nkind (Name (E)) in N_Has_Entity
4393 and then Is_Inlined (Entity (Name (E)))
4394 and then not Is_Constrained (Etype (E))
4395 and then Analyzed (N)
4396 and then No (Expression (N))
4397 then
4398 goto Leave;
4399 end if;
4401 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4402 -- node (which was marked already-analyzed), we need to set the type
4403 -- to something other than Any_Access in order to keep gigi happy.
4405 if Etype (E) = Any_Access then
4406 Set_Etype (E, T);
4407 end if;
4409 -- If the object is an access to variable, the initialization
4410 -- expression cannot be an access to constant.
4412 if Is_Access_Type (T)
4413 and then not Is_Access_Constant (T)
4414 and then Is_Access_Type (Etype (E))
4415 and then Is_Access_Constant (Etype (E))
4416 then
4417 Error_Msg_N
4418 ("access to variable cannot be initialized with an "
4419 & "access-to-constant expression", E);
4420 end if;
4422 if not Assignment_OK (N) then
4423 Check_Initialization (T, E);
4424 end if;
4426 Check_Unset_Reference (E);
4428 -- If this is a variable, then set current value. If this is a
4429 -- declared constant of a scalar type with a static expression,
4430 -- indicate that it is always valid.
4432 if not Constant_Present (N) then
4433 if Compile_Time_Known_Value (E) then
4434 Set_Current_Value (Id, E);
4435 end if;
4437 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
4438 Set_Is_Known_Valid (Id);
4440 -- If it is a constant initialized with a valid nonstatic entity,
4441 -- the constant is known valid as well, and can inherit the subtype
4442 -- of the entity if it is a subtype of the given type. This info
4443 -- is preserved on the actual subtype of the constant.
4445 elsif Is_Scalar_Type (T)
4446 and then Is_Entity_Name (E)
4447 and then Is_Known_Valid (Entity (E))
4448 and then In_Subrange_Of (Etype (Entity (E)), T)
4449 then
4450 Set_Is_Known_Valid (Id);
4451 Mutate_Ekind (Id, E_Constant);
4452 Set_Actual_Subtype (Id, Etype (Entity (E)));
4453 end if;
4455 -- Deal with setting of null flags
4457 if Is_Access_Type (T) then
4458 if Known_Non_Null (E) then
4459 Set_Is_Known_Non_Null (Id, True);
4460 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
4461 Set_Is_Known_Null (Id, True);
4462 end if;
4463 end if;
4465 -- Check incorrect use of dynamically tagged expressions
4467 if Is_Tagged_Type (T) then
4468 Check_Dynamically_Tagged_Expression
4469 (Expr => E,
4470 Typ => T,
4471 Related_Nod => N);
4472 end if;
4474 Apply_Scalar_Range_Check (E, T);
4475 Apply_Static_Length_Check (E, T);
4477 -- A formal parameter of a specific tagged type whose related
4478 -- subprogram is subject to pragma Extensions_Visible with value
4479 -- "False" cannot be implicitly converted to a class-wide type by
4480 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4481 -- not consider internally generated expressions.
4483 if Is_Class_Wide_Type (T)
4484 and then Comes_From_Source (E)
4485 and then Is_EVF_Expression (E)
4486 then
4487 Error_Msg_N
4488 ("formal parameter cannot be implicitly converted to "
4489 & "class-wide type when Extensions_Visible is False", E);
4490 end if;
4491 end if;
4493 -- If the No_Streams restriction is set, check that the type of the
4494 -- object is not, and does not contain, any subtype derived from
4495 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4496 -- Has_Stream just for efficiency reasons. There is no point in
4497 -- spending time on a Has_Stream check if the restriction is not set.
4499 if Restriction_Check_Required (No_Streams) then
4500 if Has_Stream (T) then
4501 Check_Restriction (No_Streams, N);
4502 end if;
4503 end if;
4505 -- Deal with predicate check before we start to do major rewriting. It
4506 -- is OK to initialize and then check the initialized value, since the
4507 -- object goes out of scope if we get a predicate failure. Note that we
4508 -- do this in the analyzer and not the expander because the analyzer
4509 -- does some substantial rewriting in some cases.
4511 -- We need a predicate check if the type has predicates that are not
4512 -- ignored, and if either there is an initializing expression, or for
4513 -- default initialization when we have at least one case of an explicit
4514 -- default initial value (including via a Default_Value or
4515 -- Default_Component_Value aspect, see AI12-0301) and then this is not
4516 -- an internal declaration whose initialization comes later (as for an
4517 -- aggregate expansion) or a deferred constant.
4518 -- If expression is an aggregate it may be expanded into assignments
4519 -- and the declaration itself is marked with No_Initialization, but
4520 -- the predicate still applies.
4522 if not Suppress_Assignment_Checks (N)
4523 and then (Predicate_Enabled (T) or else Has_Static_Predicate (T))
4524 and then
4525 (not No_Initialization (N)
4526 or else (Present (E) and then Nkind (E) = N_Aggregate))
4527 and then
4528 (Present (E)
4529 or else
4530 Is_Partially_Initialized_Type (T, Include_Implicit => False))
4531 and then not (Constant_Present (N) and then No (E))
4532 then
4533 -- If the type has a static predicate and the expression is known at
4534 -- compile time, see if the expression satisfies the predicate.
4535 -- In the case of a static expression, this must be done even if
4536 -- the predicate is not enabled (as per static expression rules).
4538 if Present (E) then
4539 Check_Expression_Against_Static_Predicate (E, T);
4540 end if;
4542 -- Do not perform further predicate-related checks unless
4543 -- predicates are enabled for the subtype.
4545 if not Predicate_Enabled (T) then
4546 null;
4548 -- If the type is a null record and there is no explicit initial
4549 -- expression, no predicate check applies.
4551 elsif No (E) and then Is_Null_Record_Type (T) then
4552 null;
4554 -- Do not generate a predicate check if the initialization expression
4555 -- is a type conversion because the conversion has been subjected to
4556 -- the same check. This is a small optimization which avoid redundant
4557 -- checks.
4559 elsif Present (E) and then Nkind (E) = N_Type_Conversion then
4560 null;
4562 else
4563 -- The check must be inserted after the expanded aggregate
4564 -- expansion code, if any.
4566 declare
4567 Check : constant Node_Id :=
4568 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc));
4570 begin
4571 if No (Next_Decl) then
4572 Append_To (List_Containing (N), Check);
4573 else
4574 Insert_Before (Next_Decl, Check);
4575 end if;
4576 end;
4577 end if;
4578 end if;
4580 -- Case of unconstrained type
4582 if not Is_Definite_Subtype (T) then
4584 -- Nothing to do in deferred constant case
4586 if Constant_Present (N) and then No (E) then
4587 null;
4589 -- Case of no initialization present
4591 elsif No (E) then
4592 if No_Initialization (N) then
4593 null;
4595 elsif Is_Class_Wide_Type (T) then
4596 Error_Msg_N
4597 ("initialization required in class-wide declaration", N);
4599 else
4600 Error_Msg_N
4601 ("unconstrained subtype not allowed (need initialization)",
4602 Object_Definition (N));
4604 if Is_Record_Type (T) and then Has_Discriminants (T) then
4605 Error_Msg_N
4606 ("\provide initial value or explicit discriminant values",
4607 Object_Definition (N));
4609 Error_Msg_NE
4610 ("\or give default discriminant values for type&",
4611 Object_Definition (N), T);
4613 elsif Is_Array_Type (T) then
4614 Error_Msg_N
4615 ("\provide initial value or explicit array bounds",
4616 Object_Definition (N));
4617 end if;
4618 end if;
4620 -- Case of initialization present but in error. Set initial
4621 -- expression as absent (but do not make above complaints).
4623 elsif E = Error then
4624 Set_Expression (N, Empty);
4625 E := Empty;
4627 -- Case of initialization present
4629 else
4630 -- Unconstrained variables not allowed in Ada 83
4632 if Ada_Version = Ada_83
4633 and then not Constant_Present (N)
4634 and then Comes_From_Source (Object_Definition (N))
4635 then
4636 Error_Msg_N
4637 ("(Ada 83) unconstrained variable not allowed",
4638 Object_Definition (N));
4639 end if;
4641 -- Now we constrain the variable from the initializing expression
4643 -- If the expression is an aggregate, it has been expanded into
4644 -- individual assignments. Retrieve the actual type from the
4645 -- expanded construct.
4647 if Is_Array_Type (T)
4648 and then No_Initialization (N)
4649 and then Nkind (Original_Node (E)) = N_Aggregate
4650 then
4651 Act_T := Etype (E);
4653 -- In case of class-wide interface object declarations we delay
4654 -- the generation of the equivalent record type declarations until
4655 -- its expansion because there are cases in they are not required.
4657 elsif Is_Interface (T) then
4658 null;
4660 -- If the type is an unchecked union, no subtype can be built from
4661 -- the expression. Rewrite declaration as a renaming, which the
4662 -- back-end can handle properly. This is a rather unusual case,
4663 -- because most unchecked_union declarations have default values
4664 -- for discriminants and are thus not indefinite.
4666 elsif Is_Unchecked_Union (T) then
4667 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4668 Mutate_Ekind (Id, E_Constant);
4669 else
4670 Mutate_Ekind (Id, E_Variable);
4671 end if;
4673 -- If the expression is an aggregate it contains the required
4674 -- discriminant values but it has not been resolved yet, so do
4675 -- it now, and treat it as the initial expression of an object
4676 -- declaration, rather than a renaming.
4678 if Nkind (E) = N_Aggregate then
4679 Analyze_And_Resolve (E, T);
4681 else
4682 Rewrite (N,
4683 Make_Object_Renaming_Declaration (Loc,
4684 Defining_Identifier => Id,
4685 Subtype_Mark => New_Occurrence_Of (T, Loc),
4686 Name => E));
4688 Set_Renamed_Object (Id, E);
4689 Freeze_Before (N, T);
4690 Set_Is_Frozen (Id);
4691 goto Leave;
4692 end if;
4694 else
4695 -- Ensure that the generated subtype has a unique external name
4696 -- when the related object is public. This guarantees that the
4697 -- subtype and its bounds will not be affected by switches or
4698 -- pragmas that may offset the internal counter due to extra
4699 -- generated code.
4701 if Is_Public (Id) then
4702 Related_Id := Id;
4703 else
4704 Related_Id := Empty;
4705 end if;
4707 -- If the object has an unconstrained array subtype with fixed
4708 -- lower bound, then sliding to that bound may be needed.
4710 if Is_Fixed_Lower_Bound_Array_Subtype (T) then
4711 Expand_Sliding_Conversion (E, T);
4712 end if;
4714 Expand_Subtype_From_Expr
4715 (N => N,
4716 Unc_Type => T,
4717 Subtype_Indic => Object_Definition (N),
4718 Exp => E,
4719 Related_Id => Related_Id);
4721 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4722 end if;
4724 -- Propagate attributes to full view when needed
4726 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4728 if Is_Private_Type (Act_T) and then Present (Full_View (Act_T))
4729 then
4730 Full_View_Present := True;
4731 end if;
4733 if Full_View_Present then
4734 Set_Is_Constr_Subt_For_U_Nominal (Full_View (Act_T));
4735 end if;
4737 if Aliased_Present (N) then
4738 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4740 if Full_View_Present then
4741 Set_Is_Constr_Subt_For_UN_Aliased (Full_View (Act_T));
4742 end if;
4743 end if;
4745 Freeze_Before (N, Act_T);
4746 Freeze_Before (N, T);
4747 end if;
4749 elsif Is_Array_Type (T)
4750 and then No_Initialization (N)
4751 and then (Nkind (Original_Node (E)) = N_Aggregate
4752 or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4753 and then Nkind (Original_Node (Expression
4754 (Original_Node (E)))) = N_Aggregate))
4755 then
4756 if not Is_Entity_Name (Object_Definition (N)) then
4757 Act_T := Etype (E);
4758 Check_Compile_Time_Size (Act_T);
4760 if Aliased_Present (N) then
4761 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4762 end if;
4763 end if;
4765 -- When the given object definition and the aggregate are specified
4766 -- independently, and their lengths might differ do a length check.
4767 -- This cannot happen if the aggregate is of the form (others =>...)
4769 if not Is_Constrained (T) then
4770 null;
4772 elsif Nkind (E) = N_Raise_Constraint_Error then
4774 -- Aggregate is statically illegal. Place back in declaration
4776 Set_Expression (N, E);
4777 Set_No_Initialization (N, False);
4779 elsif T = Etype (E) then
4780 null;
4782 elsif Nkind (E) = N_Aggregate
4783 and then Present (Component_Associations (E))
4784 and then Present (Choice_List (First (Component_Associations (E))))
4785 and then
4786 Nkind (First (Choice_List (First (Component_Associations (E))))) =
4787 N_Others_Choice
4788 then
4789 null;
4791 else
4792 Apply_Length_Check (E, T);
4793 end if;
4795 -- If the type is limited unconstrained with defaulted discriminants and
4796 -- there is no expression, then the object is constrained by the
4797 -- defaults, so it is worthwhile building the corresponding subtype.
4799 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4800 and then not Is_Constrained (T)
4801 and then Has_Discriminants (T)
4802 then
4803 if No (E) then
4804 Act_T := Build_Default_Subtype (T, N);
4805 else
4806 -- Ada 2005: A limited object may be initialized by means of an
4807 -- aggregate. If the type has default discriminants it has an
4808 -- unconstrained nominal type, Its actual subtype will be obtained
4809 -- from the aggregate, and not from the default discriminants.
4811 Act_T := Etype (E);
4812 end if;
4814 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4816 elsif Nkind (E) = N_Function_Call
4817 and then Constant_Present (N)
4818 and then Has_Unconstrained_Elements (Etype (E))
4819 then
4820 -- The back-end has problems with constants of a discriminated type
4821 -- with defaults, if the initial value is a function call. We
4822 -- generate an intermediate temporary that will receive a reference
4823 -- to the result of the call. The initialization expression then
4824 -- becomes a dereference of that temporary.
4826 Remove_Side_Effects (E);
4828 -- If this is a constant declaration of an unconstrained type and
4829 -- the initialization is an aggregate, we can use the subtype of the
4830 -- aggregate for the declared entity because it is immutable.
4832 elsif not Is_Constrained (T)
4833 and then Has_Discriminants (T)
4834 and then Constant_Present (N)
4835 and then not Has_Unchecked_Union (T)
4836 and then Nkind (E) = N_Aggregate
4837 then
4838 Act_T := Etype (E);
4839 end if;
4841 -- Check No_Wide_Characters restriction
4843 Check_Wide_Character_Restriction (T, Object_Definition (N));
4845 -- Indicate this is not set in source. Certainly true for constants, and
4846 -- true for variables so far (will be reset for a variable if and when
4847 -- we encounter a modification in the source).
4849 Set_Never_Set_In_Source (Id);
4851 -- Now establish the proper kind and type of the object
4853 if Ekind (Id) = E_Void then
4854 Reinit_Field_To_Zero (Id, F_Next_Inlined_Subprogram);
4855 end if;
4857 if Constant_Present (N) then
4858 Mutate_Ekind (Id, E_Constant);
4859 Set_Is_True_Constant (Id);
4861 else
4862 Mutate_Ekind (Id, E_Variable);
4864 -- A variable is set as shared passive if it appears in a shared
4865 -- passive package, and is at the outer level. This is not done for
4866 -- entities generated during expansion, because those are always
4867 -- manipulated locally.
4869 if Is_Shared_Passive (Current_Scope)
4870 and then Is_Library_Level_Entity (Id)
4871 and then Comes_From_Source (Id)
4872 then
4873 Set_Is_Shared_Passive (Id);
4874 Check_Shared_Var (Id, T, N);
4875 end if;
4877 -- Set Has_Initial_Value if initializing expression present. Note
4878 -- that if there is no initializing expression, we leave the state
4879 -- of this flag unchanged (usually it will be False, but notably in
4880 -- the case of exception choice variables, it will already be true).
4882 if Present (E) then
4883 Set_Has_Initial_Value (Id);
4884 end if;
4885 end if;
4887 -- Set the SPARK mode from the current context (may be overwritten later
4888 -- with explicit pragma).
4890 Set_SPARK_Pragma (Id, SPARK_Mode_Pragma);
4891 Set_SPARK_Pragma_Inherited (Id);
4893 -- Preserve relevant elaboration-related attributes of the context which
4894 -- are no longer available or very expensive to recompute once analysis,
4895 -- resolution, and expansion are over.
4897 Mark_Elaboration_Attributes
4898 (N_Id => Id,
4899 Checks => True,
4900 Warnings => True);
4902 -- Initialize alignment and size and capture alignment setting
4904 Reinit_Alignment (Id);
4905 Reinit_Esize (Id);
4906 Set_Optimize_Alignment_Flags (Id);
4908 -- Deal with aliased case
4910 if Aliased_Present (N) then
4911 Set_Is_Aliased (Id);
4913 -- AI12-001: All aliased objects are considered to be specified as
4914 -- independently addressable (RM C.6(8.1/4)).
4916 Set_Is_Independent (Id);
4918 -- If the object is aliased and the type is unconstrained with
4919 -- defaulted discriminants and there is no expression, then the
4920 -- object is constrained by the defaults, so it is worthwhile
4921 -- building the corresponding subtype.
4923 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4924 -- unconstrained, then only establish an actual subtype if the
4925 -- nominal subtype is indefinite. In definite cases the object is
4926 -- unconstrained in Ada 2005.
4928 if No (E)
4929 and then Is_Record_Type (T)
4930 and then not Is_Constrained (T)
4931 and then Has_Discriminants (T)
4932 and then (Ada_Version < Ada_2005
4933 or else not Is_Definite_Subtype (T))
4934 then
4935 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4936 end if;
4937 end if;
4939 -- Now we can set the type of the object
4941 Set_Etype (Id, Act_T);
4943 -- Non-constant object is marked to be treated as volatile if type is
4944 -- volatile and we clear the Current_Value setting that may have been
4945 -- set above. Doing so for constants isn't required and might interfere
4946 -- with possible uses of the object as a static expression in contexts
4947 -- incompatible with volatility (e.g. as a case-statement alternative).
4949 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4950 Set_Treat_As_Volatile (Id);
4951 Set_Current_Value (Id, Empty);
4952 end if;
4954 -- Deal with controlled types
4956 if Has_Controlled_Component (Etype (Id))
4957 or else Is_Controlled (Etype (Id))
4958 then
4959 if not Is_Library_Level_Entity (Id) then
4960 Check_Restriction (No_Nested_Finalization, N);
4961 else
4962 Validate_Controlled_Object (Id);
4963 end if;
4964 end if;
4966 if Has_Task (Etype (Id)) then
4967 Check_Restriction (No_Tasking, N);
4969 -- Deal with counting max tasks
4971 -- Nothing to do if inside a generic
4973 if Inside_A_Generic then
4974 null;
4976 -- If library level entity, then count tasks
4978 elsif Is_Library_Level_Entity (Id) then
4979 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4981 -- If not library level entity, then indicate we don't know max
4982 -- tasks and also check task hierarchy restriction and blocking
4983 -- operation (since starting a task is definitely blocking).
4985 else
4986 Check_Restriction (Max_Tasks, N);
4987 Check_Restriction (No_Task_Hierarchy, N);
4988 Check_Potentially_Blocking_Operation (N);
4989 end if;
4991 -- A rather specialized test. If we see two tasks being declared
4992 -- of the same type in the same object declaration, and the task
4993 -- has an entry with an address clause, we know that program error
4994 -- will be raised at run time since we can't have two tasks with
4995 -- entries at the same address.
4997 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4998 declare
4999 E : Entity_Id;
5001 begin
5002 E := First_Entity (Etype (Id));
5003 while Present (E) loop
5004 if Ekind (E) = E_Entry
5005 and then Present (Get_Attribute_Definition_Clause
5006 (E, Attribute_Address))
5007 then
5008 Error_Msg_Warn := SPARK_Mode /= On;
5009 Error_Msg_N
5010 ("more than one task with same entry address<<", N);
5011 Error_Msg_N ("\Program_Error [<<", N);
5012 Insert_Action (N,
5013 Make_Raise_Program_Error (Loc,
5014 Reason => PE_Duplicated_Entry_Address));
5015 exit;
5016 end if;
5018 Next_Entity (E);
5019 end loop;
5020 end;
5021 end if;
5022 end if;
5024 -- Some simple constant-propagation: if the expression is a constant
5025 -- string initialized with a literal, share the literal. This avoids
5026 -- a run-time copy.
5028 if Present (E)
5029 and then Is_Entity_Name (E)
5030 and then Ekind (Entity (E)) = E_Constant
5031 and then Base_Type (Etype (E)) = Standard_String
5032 then
5033 declare
5034 Val : constant Node_Id := Constant_Value (Entity (E));
5035 begin
5036 if Present (Val) and then Nkind (Val) = N_String_Literal then
5037 Rewrite (E, New_Copy (Val));
5038 end if;
5039 end;
5040 end if;
5042 -- Another optimization: if the nominal subtype is unconstrained and
5043 -- the expression is a function call that returns an unconstrained
5044 -- type, rewrite the declaration as a renaming of the result of the
5045 -- call. The exceptions below are cases where the copy is expected,
5046 -- either by the back end (Aliased case) or by the semantics, as for
5047 -- initializing controlled types or copying tags for class-wide types.
5049 if Present (E)
5050 and then Nkind (E) = N_Explicit_Dereference
5051 and then Nkind (Original_Node (E)) = N_Function_Call
5052 and then not Is_Library_Level_Entity (Id)
5053 and then not Is_Constrained (Underlying_Type (T))
5054 and then not Is_Aliased (Id)
5055 and then not Is_Class_Wide_Type (T)
5056 and then not Is_Controlled (T)
5057 and then not Has_Controlled_Component (Base_Type (T))
5058 and then Expander_Active
5059 then
5060 Rewrite (N,
5061 Make_Object_Renaming_Declaration (Loc,
5062 Defining_Identifier => Id,
5063 Access_Definition => Empty,
5064 Subtype_Mark => New_Occurrence_Of
5065 (Base_Type (Etype (Id)), Loc),
5066 Name => E));
5068 Set_Renamed_Object (Id, E);
5070 -- Force generation of debugging information for the constant and for
5071 -- the renamed function call.
5073 Set_Debug_Info_Needed (Id);
5074 Set_Debug_Info_Needed (Entity (Prefix (E)));
5075 end if;
5077 if Present (Prev_Entity)
5078 and then Is_Frozen (Prev_Entity)
5079 and then not Error_Posted (Id)
5080 then
5081 Error_Msg_N ("full constant declaration appears too late", N);
5082 end if;
5084 Check_Eliminated (Id);
5086 -- Deal with setting In_Private_Part flag if in private part
5088 if Ekind (Scope (Id)) = E_Package
5089 and then In_Private_Part (Scope (Id))
5090 then
5091 Set_In_Private_Part (Id);
5092 end if;
5094 <<Leave>>
5095 -- Initialize the refined state of a variable here because this is a
5096 -- common destination for legal and illegal object declarations.
5098 if Ekind (Id) = E_Variable then
5099 Set_Encapsulating_State (Id, Empty);
5100 end if;
5102 if Has_Aspects (N) then
5103 Analyze_Aspect_Specifications (N, Id);
5104 end if;
5106 Analyze_Dimension (N);
5108 -- Verify whether the object declaration introduces an illegal hidden
5109 -- state within a package subject to a null abstract state.
5111 if Ekind (Id) = E_Variable then
5112 Check_No_Hidden_State (Id);
5113 end if;
5115 Restore_Ghost_Region (Saved_GM, Saved_IGR);
5116 end Analyze_Object_Declaration;
5118 ---------------------------
5119 -- Analyze_Others_Choice --
5120 ---------------------------
5122 -- Nothing to do for the others choice node itself, the semantic analysis
5123 -- of the others choice will occur as part of the processing of the parent
5125 procedure Analyze_Others_Choice (N : Node_Id) is
5126 pragma Warnings (Off, N);
5127 begin
5128 null;
5129 end Analyze_Others_Choice;
5131 -------------------------------------------
5132 -- Analyze_Private_Extension_Declaration --
5133 -------------------------------------------
5135 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
5136 Indic : constant Node_Id := Subtype_Indication (N);
5137 T : constant Entity_Id := Defining_Identifier (N);
5138 Iface : Entity_Id;
5139 Iface_Elmt : Elmt_Id;
5140 Parent_Base : Entity_Id;
5141 Parent_Type : Entity_Id;
5143 begin
5144 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
5146 if Is_Non_Empty_List (Interface_List (N)) then
5147 declare
5148 Intf : Node_Id;
5149 T : Entity_Id;
5151 begin
5152 Intf := First (Interface_List (N));
5153 while Present (Intf) loop
5154 T := Find_Type_Of_Subtype_Indic (Intf);
5156 Diagnose_Interface (Intf, T);
5157 Next (Intf);
5158 end loop;
5159 end;
5160 end if;
5162 Generate_Definition (T);
5164 -- For other than Ada 2012, just enter the name in the current scope
5166 if Ada_Version < Ada_2012 then
5167 Enter_Name (T);
5169 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
5170 -- case of private type that completes an incomplete type.
5172 else
5173 declare
5174 Prev : Entity_Id;
5176 begin
5177 Prev := Find_Type_Name (N);
5179 pragma Assert (Prev = T
5180 or else (Ekind (Prev) = E_Incomplete_Type
5181 and then Present (Full_View (Prev))
5182 and then Full_View (Prev) = T));
5183 end;
5184 end if;
5186 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
5187 Parent_Base := Base_Type (Parent_Type);
5189 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
5190 Mutate_Ekind (T, Ekind (Parent_Type));
5191 Set_Etype (T, Any_Type);
5192 goto Leave;
5194 elsif not Is_Tagged_Type (Parent_Type) then
5195 Error_Msg_N
5196 ("parent of type extension must be a tagged type", Indic);
5197 goto Leave;
5199 elsif Ekind (Parent_Type) in E_Void | E_Incomplete_Type then
5200 Error_Msg_N ("premature derivation of incomplete type", Indic);
5201 goto Leave;
5203 elsif Is_Concurrent_Type (Parent_Type) then
5204 Error_Msg_N
5205 ("parent type of a private extension cannot be a synchronized "
5206 & "tagged type (RM 3.9.1 (3/1))", N);
5208 Set_Etype (T, Any_Type);
5209 Mutate_Ekind (T, E_Limited_Private_Type);
5210 Set_Private_Dependents (T, New_Elmt_List);
5211 Set_Error_Posted (T);
5212 goto Leave;
5213 end if;
5215 Check_Wide_Character_Restriction (Parent_Type, Indic);
5217 -- Perhaps the parent type should be changed to the class-wide type's
5218 -- specific type in this case to prevent cascading errors ???
5220 if Is_Class_Wide_Type (Parent_Type) then
5221 Error_Msg_N
5222 ("parent of type extension must not be a class-wide type", Indic);
5223 goto Leave;
5224 end if;
5226 if (not Is_Package_Or_Generic_Package (Current_Scope)
5227 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
5228 or else In_Private_Part (Current_Scope)
5229 then
5230 Error_Msg_N ("invalid context for private extension", N);
5231 end if;
5233 -- Set common attributes
5235 Set_Is_Pure (T, Is_Pure (Current_Scope));
5236 Set_Scope (T, Current_Scope);
5237 Mutate_Ekind (T, E_Record_Type_With_Private);
5238 Reinit_Size_Align (T);
5239 Set_Default_SSO (T);
5240 Set_No_Reordering (T, No_Component_Reordering);
5242 Set_Etype (T, Parent_Base);
5243 Propagate_Concurrent_Flags (T, Parent_Base);
5245 Set_Convention (T, Convention (Parent_Type));
5246 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
5247 Set_Is_First_Subtype (T);
5248 Make_Class_Wide_Type (T);
5250 -- Set the SPARK mode from the current context
5252 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
5253 Set_SPARK_Pragma_Inherited (T);
5255 if Unknown_Discriminants_Present (N) then
5256 Set_Discriminant_Constraint (T, No_Elist);
5257 end if;
5259 Build_Derived_Record_Type (N, Parent_Type, T);
5261 -- A private extension inherits the Default_Initial_Condition pragma
5262 -- coming from any parent type within the derivation chain.
5264 if Has_DIC (Parent_Type) then
5265 Set_Has_Inherited_DIC (T);
5266 end if;
5268 -- A private extension inherits any class-wide invariants coming from a
5269 -- parent type or an interface. Note that the invariant procedure of the
5270 -- parent type should not be inherited because the private extension may
5271 -- define invariants of its own.
5273 if Has_Inherited_Invariants (Parent_Type)
5274 or else Has_Inheritable_Invariants (Parent_Type)
5275 then
5276 Set_Has_Inherited_Invariants (T);
5278 elsif Present (Interfaces (T)) then
5279 Iface_Elmt := First_Elmt (Interfaces (T));
5280 while Present (Iface_Elmt) loop
5281 Iface := Node (Iface_Elmt);
5283 if Has_Inheritable_Invariants (Iface) then
5284 Set_Has_Inherited_Invariants (T);
5285 exit;
5286 end if;
5288 Next_Elmt (Iface_Elmt);
5289 end loop;
5290 end if;
5292 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5293 -- synchronized formal derived type.
5295 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
5296 Set_Is_Limited_Record (T);
5298 -- Formal derived type case
5300 if Is_Generic_Type (T) then
5302 -- The parent must be a tagged limited type or a synchronized
5303 -- interface.
5305 if (not Is_Tagged_Type (Parent_Type)
5306 or else not Is_Limited_Type (Parent_Type))
5307 and then
5308 (not Is_Interface (Parent_Type)
5309 or else not Is_Synchronized_Interface (Parent_Type))
5310 then
5311 Error_Msg_NE
5312 ("parent type of & must be tagged limited or synchronized",
5313 N, T);
5314 end if;
5316 -- The progenitors (if any) must be limited or synchronized
5317 -- interfaces.
5319 if Present (Interfaces (T)) then
5320 Iface_Elmt := First_Elmt (Interfaces (T));
5321 while Present (Iface_Elmt) loop
5322 Iface := Node (Iface_Elmt);
5324 if not Is_Limited_Interface (Iface)
5325 and then not Is_Synchronized_Interface (Iface)
5326 then
5327 Error_Msg_NE
5328 ("progenitor & must be limited or synchronized",
5329 N, Iface);
5330 end if;
5332 Next_Elmt (Iface_Elmt);
5333 end loop;
5334 end if;
5336 -- Regular derived extension, the parent must be a limited or
5337 -- synchronized interface.
5339 else
5340 if not Is_Interface (Parent_Type)
5341 or else (not Is_Limited_Interface (Parent_Type)
5342 and then not Is_Synchronized_Interface (Parent_Type))
5343 then
5344 Error_Msg_NE
5345 ("parent type of & must be limited interface", N, T);
5346 end if;
5347 end if;
5349 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5350 -- extension with a synchronized parent must be explicitly declared
5351 -- synchronized, because the full view will be a synchronized type.
5352 -- This must be checked before the check for limited types below,
5353 -- to ensure that types declared limited are not allowed to extend
5354 -- synchronized interfaces.
5356 elsif Is_Interface (Parent_Type)
5357 and then Is_Synchronized_Interface (Parent_Type)
5358 and then not Synchronized_Present (N)
5359 then
5360 Error_Msg_NE
5361 ("private extension of& must be explicitly synchronized",
5362 N, Parent_Type);
5364 elsif Limited_Present (N) then
5365 Set_Is_Limited_Record (T);
5367 if not Is_Limited_Type (Parent_Type)
5368 and then
5369 (not Is_Interface (Parent_Type)
5370 or else not Is_Limited_Interface (Parent_Type))
5371 then
5372 Error_Msg_NE ("parent type& of limited extension must be limited",
5373 N, Parent_Type);
5374 end if;
5375 end if;
5377 -- Remember that its parent type has a private extension. Used to warn
5378 -- on public primitives of the parent type defined after its private
5379 -- extensions (see Check_Dispatching_Operation).
5381 Set_Has_Private_Extension (Parent_Type);
5383 <<Leave>>
5384 if Has_Aspects (N) then
5385 Analyze_Aspect_Specifications (N, T);
5386 end if;
5387 end Analyze_Private_Extension_Declaration;
5389 ---------------------------------
5390 -- Analyze_Subtype_Declaration --
5391 ---------------------------------
5393 procedure Analyze_Subtype_Declaration
5394 (N : Node_Id;
5395 Skip : Boolean := False)
5397 Id : constant Entity_Id := Defining_Identifier (N);
5398 T : Entity_Id;
5400 begin
5401 Generate_Definition (Id);
5402 Set_Is_Pure (Id, Is_Pure (Current_Scope));
5403 Reinit_Size_Align (Id);
5405 -- The following guard condition on Enter_Name is to handle cases where
5406 -- the defining identifier has already been entered into the scope but
5407 -- the declaration as a whole needs to be analyzed.
5409 -- This case in particular happens for derived enumeration types. The
5410 -- derived enumeration type is processed as an inserted enumeration type
5411 -- declaration followed by a rewritten subtype declaration. The defining
5412 -- identifier, however, is entered into the name scope very early in the
5413 -- processing of the original type declaration and therefore needs to be
5414 -- avoided here, when the created subtype declaration is analyzed. (See
5415 -- Build_Derived_Types)
5417 -- This also happens when the full view of a private type is derived
5418 -- type with constraints. In this case the entity has been introduced
5419 -- in the private declaration.
5421 -- Finally this happens in some complex cases when validity checks are
5422 -- enabled, where the same subtype declaration may be analyzed twice.
5423 -- This can happen if the subtype is created by the preanalysis of
5424 -- an attribute tht gives the range of a loop statement, and the loop
5425 -- itself appears within an if_statement that will be rewritten during
5426 -- expansion.
5428 if Skip
5429 or else (Present (Etype (Id))
5430 and then (Is_Private_Type (Etype (Id))
5431 or else Is_Task_Type (Etype (Id))
5432 or else Is_Rewrite_Substitution (N)))
5433 then
5434 null;
5436 elsif Current_Entity (Id) = Id then
5437 null;
5439 else
5440 Enter_Name (Id);
5441 end if;
5443 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
5445 -- Class-wide equivalent types of records with unknown discriminants
5446 -- involve the generation of an itype which serves as the private view
5447 -- of a constrained record subtype. In such cases the base type of the
5448 -- current subtype we are processing is the private itype. Use the full
5449 -- of the private itype when decorating various attributes.
5451 if Is_Itype (T)
5452 and then Is_Private_Type (T)
5453 and then Present (Full_View (T))
5454 then
5455 T := Full_View (T);
5456 end if;
5458 -- Inherit common attributes
5460 Set_Is_Volatile (Id, Is_Volatile (T));
5461 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
5462 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
5463 Set_Convention (Id, Convention (T));
5465 -- If ancestor has predicates then so does the subtype, and in addition
5466 -- we must delay the freeze to properly arrange predicate inheritance.
5468 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5469 -- in which T = ID, so the above tests and assignments do nothing???
5471 if Has_Predicates (T)
5472 or else (Present (Ancestor_Subtype (T))
5473 and then Has_Predicates (Ancestor_Subtype (T)))
5474 then
5475 Set_Has_Predicates (Id);
5476 Set_Has_Delayed_Freeze (Id);
5478 -- Generated subtypes inherit the predicate function from the parent
5479 -- (no aspects to examine on the generated declaration).
5481 if not Comes_From_Source (N) then
5482 Mutate_Ekind (Id, Ekind (T));
5484 if Present (Predicate_Function (Id)) then
5485 null;
5487 elsif Present (Predicate_Function (T)) then
5488 Set_Predicate_Function (Id, Predicate_Function (T));
5490 elsif Present (Ancestor_Subtype (T))
5491 and then Present (Predicate_Function (Ancestor_Subtype (T)))
5492 then
5493 Set_Predicate_Function (Id,
5494 Predicate_Function (Ancestor_Subtype (T)));
5495 end if;
5496 end if;
5497 end if;
5499 -- In the case where there is no constraint given in the subtype
5500 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5501 -- semantic attributes must be established here.
5503 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
5504 Set_Etype (Id, Base_Type (T));
5506 case Ekind (T) is
5507 when Array_Kind =>
5508 Mutate_Ekind (Id, E_Array_Subtype);
5509 Copy_Array_Subtype_Attributes (Id, T);
5511 when Decimal_Fixed_Point_Kind =>
5512 Mutate_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
5513 Set_Digits_Value (Id, Digits_Value (T));
5514 Set_Delta_Value (Id, Delta_Value (T));
5515 Set_Scale_Value (Id, Scale_Value (T));
5516 Set_Small_Value (Id, Small_Value (T));
5517 Set_Scalar_Range (Id, Scalar_Range (T));
5518 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
5519 Set_Is_Constrained (Id, Is_Constrained (T));
5520 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5521 Copy_RM_Size (To => Id, From => T);
5523 when Enumeration_Kind =>
5524 Mutate_Ekind (Id, E_Enumeration_Subtype);
5525 Set_First_Literal (Id, First_Literal (Base_Type (T)));
5526 Set_Scalar_Range (Id, Scalar_Range (T));
5527 Set_Is_Character_Type (Id, Is_Character_Type (T));
5528 Set_Is_Constrained (Id, Is_Constrained (T));
5529 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5530 Copy_RM_Size (To => Id, From => T);
5532 when Ordinary_Fixed_Point_Kind =>
5533 Mutate_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
5534 Set_Scalar_Range (Id, Scalar_Range (T));
5535 Set_Small_Value (Id, Small_Value (T));
5536 Set_Delta_Value (Id, Delta_Value (T));
5537 Set_Is_Constrained (Id, Is_Constrained (T));
5538 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5539 Copy_RM_Size (To => Id, From => T);
5541 when Float_Kind =>
5542 Mutate_Ekind (Id, E_Floating_Point_Subtype);
5543 Set_Scalar_Range (Id, Scalar_Range (T));
5544 Set_Digits_Value (Id, Digits_Value (T));
5545 Set_Is_Constrained (Id, Is_Constrained (T));
5547 -- If the floating point type has dimensions, these will be
5548 -- inherited subsequently when Analyze_Dimensions is called.
5550 when Signed_Integer_Kind =>
5551 Mutate_Ekind (Id, E_Signed_Integer_Subtype);
5552 Set_Scalar_Range (Id, Scalar_Range (T));
5553 Set_Is_Constrained (Id, Is_Constrained (T));
5554 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5555 Copy_RM_Size (To => Id, From => T);
5557 when Modular_Integer_Kind =>
5558 Mutate_Ekind (Id, E_Modular_Integer_Subtype);
5559 Set_Scalar_Range (Id, Scalar_Range (T));
5560 Set_Is_Constrained (Id, Is_Constrained (T));
5561 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5562 Copy_RM_Size (To => Id, From => T);
5564 when Class_Wide_Kind =>
5565 Mutate_Ekind (Id, E_Class_Wide_Subtype);
5566 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5567 Set_Cloned_Subtype (Id, T);
5568 Set_Is_Tagged_Type (Id, True);
5569 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5570 Set_Has_Unknown_Discriminants
5571 (Id, True);
5572 Set_No_Tagged_Streams_Pragma
5573 (Id, No_Tagged_Streams_Pragma (T));
5575 if Ekind (T) = E_Class_Wide_Subtype then
5576 Set_Equivalent_Type (Id, Equivalent_Type (T));
5577 end if;
5579 when E_Record_Subtype
5580 | E_Record_Type
5582 Mutate_Ekind (Id, E_Record_Subtype);
5584 -- Subtype declarations introduced for formal type parameters
5585 -- in generic instantiations should inherit the Size value of
5586 -- the type they rename.
5588 if Present (Generic_Parent_Type (N)) then
5589 Copy_RM_Size (To => Id, From => T);
5590 end if;
5592 if Ekind (T) = E_Record_Subtype
5593 and then Present (Cloned_Subtype (T))
5594 then
5595 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
5596 else
5597 Set_Cloned_Subtype (Id, T);
5598 end if;
5600 Set_First_Entity (Id, First_Entity (T));
5601 Set_Last_Entity (Id, Last_Entity (T));
5602 Set_Has_Discriminants (Id, Has_Discriminants (T));
5603 Set_Is_Constrained (Id, Is_Constrained (T));
5604 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5605 Set_Has_Implicit_Dereference
5606 (Id, Has_Implicit_Dereference (T));
5607 Set_Has_Unknown_Discriminants
5608 (Id, Has_Unknown_Discriminants (T));
5610 if Has_Discriminants (T) then
5611 Set_Discriminant_Constraint
5612 (Id, Discriminant_Constraint (T));
5613 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5615 elsif Has_Unknown_Discriminants (Id) then
5616 Set_Discriminant_Constraint (Id, No_Elist);
5617 end if;
5619 if Is_Tagged_Type (T) then
5620 Set_Is_Tagged_Type (Id, True);
5621 Set_No_Tagged_Streams_Pragma
5622 (Id, No_Tagged_Streams_Pragma (T));
5623 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5624 Set_Direct_Primitive_Operations
5625 (Id, Direct_Primitive_Operations (T));
5626 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5628 if Is_Interface (T) then
5629 Set_Is_Interface (Id);
5630 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5631 end if;
5632 end if;
5634 when Private_Kind =>
5635 Mutate_Ekind (Id, Subtype_Kind (Ekind (T)));
5636 Set_Has_Discriminants (Id, Has_Discriminants (T));
5637 Set_Is_Constrained (Id, Is_Constrained (T));
5638 Set_First_Entity (Id, First_Entity (T));
5639 Set_Last_Entity (Id, Last_Entity (T));
5640 Set_Private_Dependents (Id, New_Elmt_List);
5641 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5642 Set_Has_Implicit_Dereference
5643 (Id, Has_Implicit_Dereference (T));
5644 Set_Has_Unknown_Discriminants
5645 (Id, Has_Unknown_Discriminants (T));
5646 Set_Known_To_Have_Preelab_Init
5647 (Id, Known_To_Have_Preelab_Init (T));
5649 if Is_Tagged_Type (T) then
5650 Set_Is_Tagged_Type (Id);
5651 Set_No_Tagged_Streams_Pragma (Id,
5652 No_Tagged_Streams_Pragma (T));
5653 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5654 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5655 Set_Direct_Primitive_Operations (Id,
5656 Direct_Primitive_Operations (T));
5657 end if;
5659 -- In general the attributes of the subtype of a private type
5660 -- are the attributes of the partial view of parent. However,
5661 -- the full view may be a discriminated type, and the subtype
5662 -- must share the discriminant constraint to generate correct
5663 -- calls to initialization procedures.
5665 if Has_Discriminants (T) then
5666 Set_Discriminant_Constraint
5667 (Id, Discriminant_Constraint (T));
5668 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5670 elsif Present (Full_View (T))
5671 and then Has_Discriminants (Full_View (T))
5672 then
5673 Set_Discriminant_Constraint
5674 (Id, Discriminant_Constraint (Full_View (T)));
5675 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5677 -- This would seem semantically correct, but apparently
5678 -- generates spurious errors about missing components ???
5680 -- Set_Has_Discriminants (Id);
5681 end if;
5683 Prepare_Private_Subtype_Completion (Id, N);
5685 -- If this is the subtype of a constrained private type with
5686 -- discriminants that has got a full view and we also have
5687 -- built a completion just above, show that the completion
5688 -- is a clone of the full view to the back-end.
5690 if Has_Discriminants (T)
5691 and then not Has_Unknown_Discriminants (T)
5692 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5693 and then Present (Full_View (T))
5694 and then Present (Full_View (Id))
5695 then
5696 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5697 end if;
5699 when Access_Kind =>
5700 Mutate_Ekind (Id, E_Access_Subtype);
5701 Set_Is_Constrained (Id, Is_Constrained (T));
5702 Set_Is_Access_Constant
5703 (Id, Is_Access_Constant (T));
5704 Set_Directly_Designated_Type
5705 (Id, Designated_Type (T));
5706 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5708 -- A Pure library_item must not contain the declaration of a
5709 -- named access type, except within a subprogram, generic
5710 -- subprogram, task unit, or protected unit, or if it has
5711 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5713 if Comes_From_Source (Id)
5714 and then In_Pure_Unit
5715 and then not In_Subprogram_Task_Protected_Unit
5716 and then not No_Pool_Assigned (Id)
5717 then
5718 Error_Msg_N
5719 ("named access types not allowed in pure unit", N);
5720 end if;
5722 when Concurrent_Kind =>
5723 Mutate_Ekind (Id, Subtype_Kind (Ekind (T)));
5724 Set_Corresponding_Record_Type (Id,
5725 Corresponding_Record_Type (T));
5726 Set_First_Entity (Id, First_Entity (T));
5727 Set_First_Private_Entity (Id, First_Private_Entity (T));
5728 Set_Has_Discriminants (Id, Has_Discriminants (T));
5729 Set_Is_Constrained (Id, Is_Constrained (T));
5730 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5731 Set_Last_Entity (Id, Last_Entity (T));
5733 if Is_Tagged_Type (T) then
5734 Set_No_Tagged_Streams_Pragma
5735 (Id, No_Tagged_Streams_Pragma (T));
5736 end if;
5738 if Has_Discriminants (T) then
5739 Set_Discriminant_Constraint
5740 (Id, Discriminant_Constraint (T));
5741 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5742 end if;
5744 when Incomplete_Kind =>
5745 if Ada_Version >= Ada_2005 then
5747 -- In Ada 2005 an incomplete type can be explicitly tagged:
5748 -- propagate indication. Note that we also have to include
5749 -- subtypes for Ada 2012 extended use of incomplete types.
5751 Mutate_Ekind (Id, E_Incomplete_Subtype);
5752 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5753 Set_Private_Dependents (Id, New_Elmt_List);
5755 if Is_Tagged_Type (Id) then
5756 Set_No_Tagged_Streams_Pragma
5757 (Id, No_Tagged_Streams_Pragma (T));
5758 end if;
5760 -- For tagged types, or when prefixed-call syntax is allowed
5761 -- for untagged types, initialize the list of primitive
5762 -- operations to an empty list.
5764 if Is_Tagged_Type (Id)
5765 or else Extensions_Allowed
5766 then
5767 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5768 end if;
5770 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5771 -- incomplete type visible through a limited with clause.
5773 if From_Limited_With (T)
5774 and then Present (Non_Limited_View (T))
5775 then
5776 Set_From_Limited_With (Id);
5777 Set_Non_Limited_View (Id, Non_Limited_View (T));
5779 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5780 -- to the private dependents of the original incomplete
5781 -- type for future transformation.
5783 else
5784 Append_Elmt (Id, Private_Dependents (T));
5785 end if;
5787 -- If the subtype name denotes an incomplete type an error
5788 -- was already reported by Process_Subtype.
5790 else
5791 Set_Etype (Id, Any_Type);
5792 end if;
5794 when others =>
5795 raise Program_Error;
5796 end case;
5798 -- If there is no constraint in the subtype indication, the
5799 -- declared entity inherits predicates from the parent.
5801 Inherit_Predicate_Flags (Id, T);
5802 end if;
5804 -- When prefixed calls are enabled for untagged types, the subtype
5805 -- shares the primitive operations of its base type.
5807 if Extensions_Allowed then
5808 Set_Direct_Primitive_Operations
5809 (Id, Direct_Primitive_Operations (Base_Type (T)));
5810 end if;
5812 if Etype (Id) = Any_Type then
5813 goto Leave;
5814 end if;
5816 -- Some common processing on all types
5818 Set_Size_Info (Id, T);
5819 Set_First_Rep_Item (Id, First_Rep_Item (T));
5821 -- If the parent type is a generic actual, so is the subtype. This may
5822 -- happen in a nested instance. Why Comes_From_Source test???
5824 if not Comes_From_Source (N) then
5825 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5826 end if;
5828 -- If this is a subtype declaration for an actual in an instance,
5829 -- inherit static and dynamic predicates if any.
5831 -- If declaration has no aspect specifications, inherit predicate
5832 -- info as well. Unclear how to handle the case of both specified
5833 -- and inherited predicates ??? Other inherited aspects, such as
5834 -- invariants, should be OK, but the combination with later pragmas
5835 -- may also require special merging.
5837 if Has_Predicates (T)
5838 and then Present (Predicate_Function (T))
5839 and then
5840 ((In_Instance and then not Comes_From_Source (N))
5841 or else No (Aspect_Specifications (N)))
5842 then
5843 -- Inherit Subprograms_For_Type from the full view, if present
5845 if Present (Full_View (T))
5846 and then Subprograms_For_Type (Full_View (T)) /= No_Elist
5847 then
5848 Set_Subprograms_For_Type
5849 (Id, Subprograms_For_Type (Full_View (T)));
5850 else
5851 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5852 end if;
5854 -- If the current declaration created both a private and a full view,
5855 -- then propagate Predicate_Function to the latter as well.
5857 if Present (Full_View (Id))
5858 and then No (Predicate_Function (Full_View (Id)))
5859 then
5860 Set_Subprograms_For_Type
5861 (Full_View (Id), Subprograms_For_Type (Id));
5862 end if;
5864 if Has_Static_Predicate (T) then
5865 Set_Has_Static_Predicate (Id);
5866 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5867 end if;
5868 end if;
5870 -- If the base type is a scalar type, or else if there is no
5871 -- constraint, the atomic flag is inherited by the subtype.
5872 -- Ditto for the Independent aspect.
5874 if Is_Scalar_Type (Id)
5875 or else Is_Entity_Name (Subtype_Indication (N))
5876 then
5877 Set_Is_Atomic (Id, Is_Atomic (T));
5878 Set_Is_Independent (Id, Is_Independent (T));
5879 end if;
5881 -- Remaining processing depends on characteristics of base type
5883 T := Etype (Id);
5885 Set_Is_Immediately_Visible (Id, True);
5886 Set_Depends_On_Private (Id, Has_Private_Component (T));
5887 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5889 if Is_Interface (T) then
5890 Set_Is_Interface (Id);
5891 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5892 end if;
5894 if Present (Generic_Parent_Type (N))
5895 and then
5896 (Nkind (Parent (Generic_Parent_Type (N))) /=
5897 N_Formal_Type_Declaration
5898 or else Nkind (Formal_Type_Definition
5899 (Parent (Generic_Parent_Type (N)))) /=
5900 N_Formal_Private_Type_Definition)
5901 then
5902 if Is_Tagged_Type (Id) then
5904 -- If this is a generic actual subtype for a synchronized type,
5905 -- the primitive operations are those of the corresponding record
5906 -- for which there is a separate subtype declaration.
5908 if Is_Concurrent_Type (Id) then
5909 null;
5910 elsif Is_Class_Wide_Type (Id) then
5911 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5912 else
5913 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5914 end if;
5916 elsif Scope (Etype (Id)) /= Standard_Standard then
5917 Derive_Subprograms (Generic_Parent_Type (N), Id);
5918 end if;
5919 end if;
5921 if Is_Private_Type (T) and then Present (Full_View (T)) then
5922 Conditional_Delay (Id, Full_View (T));
5924 -- The subtypes of components or subcomponents of protected types
5925 -- do not need freeze nodes, which would otherwise appear in the
5926 -- wrong scope (before the freeze node for the protected type). The
5927 -- proper subtypes are those of the subcomponents of the corresponding
5928 -- record.
5930 elsif Ekind (Scope (Id)) /= E_Protected_Type
5931 and then Present (Scope (Scope (Id))) -- error defense
5932 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5933 then
5934 Conditional_Delay (Id, T);
5935 end if;
5937 -- If we have a subtype of an incomplete type whose full type is a
5938 -- derived numeric type, we need to have a freeze node for the subtype.
5939 -- Otherwise gigi will complain while computing the (static) bounds of
5940 -- the subtype.
5942 if Is_Itype (T)
5943 and then Is_Elementary_Type (Id)
5944 and then Etype (Id) /= Id
5945 then
5946 declare
5947 Partial : constant Entity_Id :=
5948 Incomplete_Or_Partial_View (First_Subtype (Id));
5949 begin
5950 if Present (Partial)
5951 and then Ekind (Partial) = E_Incomplete_Type
5952 then
5953 Set_Has_Delayed_Freeze (Id);
5954 end if;
5955 end;
5956 end if;
5958 -- Check that Constraint_Error is raised for a scalar subtype indication
5959 -- when the lower or upper bound of a non-null range lies outside the
5960 -- range of the type mark. Likewise for an array subtype, but check the
5961 -- compatibility for each index.
5963 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5964 declare
5965 Indic_Typ : constant Entity_Id :=
5966 Etype (Subtype_Mark (Subtype_Indication (N)));
5967 Subt_Index : Node_Id;
5968 Target_Index : Node_Id;
5970 begin
5971 if Is_Scalar_Type (Etype (Id))
5972 and then Scalar_Range (Id) /= Scalar_Range (Indic_Typ)
5973 then
5974 Apply_Range_Check (Scalar_Range (Id), Indic_Typ);
5976 elsif Is_Array_Type (Etype (Id))
5977 and then Present (First_Index (Id))
5978 then
5979 Subt_Index := First_Index (Id);
5980 Target_Index := First_Index (Indic_Typ);
5982 while Present (Subt_Index) loop
5983 if ((Nkind (Subt_Index) in N_Expanded_Name | N_Identifier
5984 and then Is_Scalar_Type (Entity (Subt_Index)))
5985 or else Nkind (Subt_Index) = N_Subtype_Indication)
5986 and then
5987 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5988 then
5989 Apply_Range_Check
5990 (Scalar_Range (Etype (Subt_Index)),
5991 Etype (Target_Index),
5992 Insert_Node => N);
5993 end if;
5995 Next_Index (Subt_Index);
5996 Next_Index (Target_Index);
5997 end loop;
5998 end if;
5999 end;
6000 end if;
6002 Set_Optimize_Alignment_Flags (Id);
6003 Check_Eliminated (Id);
6005 <<Leave>>
6006 if Has_Aspects (N) then
6007 Analyze_Aspect_Specifications (N, Id);
6008 end if;
6010 Analyze_Dimension (N);
6012 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
6013 -- indications on composite types where the constraints are dynamic.
6014 -- Note that object declarations and aggregates generate implicit
6015 -- subtype declarations, which this covers. One special case is that the
6016 -- implicitly generated "=" for discriminated types includes an
6017 -- offending subtype declaration, which is harmless, so we ignore it
6018 -- here.
6020 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
6021 declare
6022 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
6023 begin
6024 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
6025 and then not (Is_Internal (Id)
6026 and then Is_TSS (Scope (Id),
6027 TSS_Composite_Equality))
6028 and then not Within_Init_Proc
6029 and then not All_Composite_Constraints_Static (Cstr)
6030 then
6031 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
6032 end if;
6033 end;
6034 end if;
6035 end Analyze_Subtype_Declaration;
6037 --------------------------------
6038 -- Analyze_Subtype_Indication --
6039 --------------------------------
6041 procedure Analyze_Subtype_Indication (N : Node_Id) is
6042 T : constant Entity_Id := Subtype_Mark (N);
6043 R : constant Node_Id := Range_Expression (Constraint (N));
6045 begin
6046 Analyze (T);
6048 if R /= Error then
6049 Analyze (R);
6050 Set_Etype (N, Etype (R));
6051 Resolve (R, Entity (T));
6052 else
6053 Set_Error_Posted (R);
6054 Set_Error_Posted (T);
6055 end if;
6056 end Analyze_Subtype_Indication;
6058 --------------------------
6059 -- Analyze_Variant_Part --
6060 --------------------------
6062 procedure Analyze_Variant_Part (N : Node_Id) is
6063 Discr_Name : Node_Id;
6064 Discr_Type : Entity_Id;
6066 procedure Process_Variant (A : Node_Id);
6067 -- Analyze declarations for a single variant
6069 package Analyze_Variant_Choices is
6070 new Generic_Analyze_Choices (Process_Variant);
6071 use Analyze_Variant_Choices;
6073 ---------------------
6074 -- Process_Variant --
6075 ---------------------
6077 procedure Process_Variant (A : Node_Id) is
6078 CL : constant Node_Id := Component_List (A);
6079 begin
6080 if not Null_Present (CL) then
6081 Analyze_Declarations (Component_Items (CL));
6083 if Present (Variant_Part (CL)) then
6084 Analyze (Variant_Part (CL));
6085 end if;
6086 end if;
6087 end Process_Variant;
6089 -- Start of processing for Analyze_Variant_Part
6091 begin
6092 Discr_Name := Name (N);
6093 Analyze (Discr_Name);
6095 -- If Discr_Name bad, get out (prevent cascaded errors)
6097 if Etype (Discr_Name) = Any_Type then
6098 return;
6099 end if;
6101 -- Check invalid discriminant in variant part
6103 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
6104 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
6105 end if;
6107 Discr_Type := Etype (Entity (Discr_Name));
6109 if not Is_Discrete_Type (Discr_Type) then
6110 Error_Msg_N
6111 ("discriminant in a variant part must be of a discrete type",
6112 Name (N));
6113 return;
6114 end if;
6116 -- Now analyze the choices, which also analyzes the declarations that
6117 -- are associated with each choice.
6119 Analyze_Choices (Variants (N), Discr_Type);
6121 -- Note: we used to instantiate and call Check_Choices here to check
6122 -- that the choices covered the discriminant, but it's too early to do
6123 -- that because of statically predicated subtypes, whose analysis may
6124 -- be deferred to their freeze point which may be as late as the freeze
6125 -- point of the containing record. So this call is now to be found in
6126 -- Freeze_Record_Declaration.
6128 end Analyze_Variant_Part;
6130 ----------------------------
6131 -- Array_Type_Declaration --
6132 ----------------------------
6134 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
6135 Component_Def : constant Node_Id := Component_Definition (Def);
6136 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
6137 P : constant Node_Id := Parent (Def);
6138 Element_Type : Entity_Id;
6139 Implicit_Base : Entity_Id;
6140 Index : Node_Id;
6141 Nb_Index : Pos;
6142 Priv : Entity_Id;
6143 Related_Id : Entity_Id;
6144 Has_FLB_Index : Boolean := False;
6146 begin
6147 if Nkind (Def) = N_Constrained_Array_Definition then
6148 Index := First (Discrete_Subtype_Definitions (Def));
6149 else
6150 Index := First (Subtype_Marks (Def));
6151 end if;
6153 -- Find proper names for the implicit types which may be public. In case
6154 -- of anonymous arrays we use the name of the first object of that type
6155 -- as prefix.
6157 if No (T) then
6158 Related_Id := Defining_Identifier (P);
6159 else
6160 Related_Id := T;
6161 end if;
6163 Nb_Index := 1;
6164 while Present (Index) loop
6165 Analyze (Index);
6167 -- Test for odd case of trying to index a type by the type itself
6169 if Is_Entity_Name (Index) and then Entity (Index) = T then
6170 Error_Msg_N ("type& cannot be indexed by itself", Index);
6171 Set_Entity (Index, Standard_Boolean);
6172 Set_Etype (Index, Standard_Boolean);
6173 end if;
6175 -- Add a subtype declaration for each index of private array type
6176 -- declaration whose type is also private. For example:
6178 -- package Pkg is
6179 -- type Index is private;
6180 -- private
6181 -- type Table is array (Index) of ...
6182 -- end;
6184 -- This is currently required by the expander for the internally
6185 -- generated equality subprogram of records with variant parts in
6186 -- which the type of some component is such a private type. And it
6187 -- also helps semantic analysis in peculiar cases where the array
6188 -- type is referenced from an instance but not the index directly.
6190 if Is_Package_Or_Generic_Package (Current_Scope)
6191 and then In_Private_Part (Current_Scope)
6192 and then Has_Private_Declaration (Etype (Index))
6193 and then Scope (Etype (Index)) = Current_Scope
6194 then
6195 declare
6196 Loc : constant Source_Ptr := Sloc (Def);
6197 Decl : Node_Id;
6198 New_E : Entity_Id;
6200 begin
6201 New_E := Make_Temporary (Loc, 'T');
6202 Set_Is_Internal (New_E);
6204 Decl :=
6205 Make_Subtype_Declaration (Loc,
6206 Defining_Identifier => New_E,
6207 Subtype_Indication =>
6208 New_Occurrence_Of (Etype (Index), Loc));
6210 Insert_Before (Parent (Def), Decl);
6211 Analyze (Decl);
6212 Set_Etype (Index, New_E);
6214 -- If the index is a range or a subtype indication it carries
6215 -- no entity. Example:
6217 -- package Pkg is
6218 -- type T is private;
6219 -- private
6220 -- type T is new Natural;
6221 -- Table : array (T(1) .. T(10)) of Boolean;
6222 -- end Pkg;
6224 -- Otherwise the type of the reference is its entity.
6226 if Is_Entity_Name (Index) then
6227 Set_Entity (Index, New_E);
6228 end if;
6229 end;
6230 end if;
6232 Make_Index (Index, P, Related_Id, Nb_Index);
6234 -- In the case where we have an unconstrained array with an index
6235 -- given by a subtype_indication, this is necessarily a "fixed lower
6236 -- bound" index. We change the upper bound of that index to the upper
6237 -- bound of the index's subtype (denoted by the subtype_mark), since
6238 -- that upper bound was originally set by the parser to be the same
6239 -- as the lower bound. In truth, that upper bound corresponds to
6240 -- a box ("<>"), and could be set to Empty, but it's convenient to
6241 -- set it to the upper bound to avoid needing to add special tests
6242 -- in various places for an Empty upper bound, and in any case that
6243 -- accurately characterizes the index's range of values.
6245 if Nkind (Def) = N_Unconstrained_Array_Definition
6246 and then Nkind (Index) = N_Subtype_Indication
6247 then
6248 declare
6249 Index_Subtype_High_Bound : constant Entity_Id :=
6250 Type_High_Bound (Entity (Subtype_Mark (Index)));
6251 begin
6252 Set_High_Bound (Range_Expression (Constraint (Index)),
6253 Index_Subtype_High_Bound);
6255 -- Record that the array type has one or more indexes with
6256 -- a fixed lower bound.
6258 Has_FLB_Index := True;
6260 -- Mark the index as belonging to an array type with a fixed
6261 -- lower bound.
6263 Set_Is_Fixed_Lower_Bound_Index_Subtype (Etype (Index));
6264 end;
6265 end if;
6267 -- Check error of subtype with predicate for index type
6269 Bad_Predicated_Subtype_Use
6270 ("subtype& has predicate, not allowed as index subtype",
6271 Index, Etype (Index));
6273 -- Move to next index
6275 Next (Index);
6276 Nb_Index := Nb_Index + 1;
6277 end loop;
6279 -- Process subtype indication if one is present
6281 if Present (Component_Typ) then
6282 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
6283 Set_Etype (Component_Typ, Element_Type);
6285 -- Ada 2005 (AI-230): Access Definition case
6287 else pragma Assert (Present (Access_Definition (Component_Def)));
6289 -- Indicate that the anonymous access type is created by the
6290 -- array type declaration.
6292 Element_Type := Access_Definition
6293 (Related_Nod => P,
6294 N => Access_Definition (Component_Def));
6295 Set_Is_Local_Anonymous_Access (Element_Type);
6297 -- Propagate the parent. This field is needed if we have to generate
6298 -- the master_id associated with an anonymous access to task type
6299 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6301 Copy_Parent (To => Element_Type, From => T);
6303 -- Ada 2005 (AI-230): In case of components that are anonymous access
6304 -- types the level of accessibility depends on the enclosing type
6305 -- declaration
6307 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
6309 -- Ada 2005 (AI-254)
6311 declare
6312 CD : constant Node_Id :=
6313 Access_To_Subprogram_Definition
6314 (Access_Definition (Component_Def));
6315 begin
6316 if Present (CD) and then Protected_Present (CD) then
6317 Element_Type :=
6318 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
6319 end if;
6320 end;
6321 end if;
6323 -- Constrained array case
6325 if No (T) then
6326 -- We might be creating more than one itype with the same Related_Id,
6327 -- e.g. for an array object definition and its initial value. Give
6328 -- them unique suffixes, because GNATprove require distinct types to
6329 -- have different names.
6331 T := Create_Itype (E_Void, P, Related_Id, 'T', Suffix_Index => -1);
6332 end if;
6334 if Nkind (Def) = N_Constrained_Array_Definition then
6336 if Ekind (T) in Incomplete_Or_Private_Kind then
6337 Reinit_Field_To_Zero (T, F_Stored_Constraint);
6338 else
6339 pragma Assert (Ekind (T) = E_Void);
6340 end if;
6342 -- Establish Implicit_Base as unconstrained base type
6344 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
6346 Set_Etype (Implicit_Base, Implicit_Base);
6347 Set_Scope (Implicit_Base, Current_Scope);
6348 Set_Has_Delayed_Freeze (Implicit_Base);
6349 Set_Default_SSO (Implicit_Base);
6351 -- The constrained array type is a subtype of the unconstrained one
6353 Mutate_Ekind (T, E_Array_Subtype);
6354 Reinit_Size_Align (T);
6355 Set_Etype (T, Implicit_Base);
6356 Set_Scope (T, Current_Scope);
6357 Set_Is_Constrained (T);
6358 Set_First_Index (T,
6359 First (Discrete_Subtype_Definitions (Def)));
6360 Set_Has_Delayed_Freeze (T);
6362 -- Complete setup of implicit base type
6364 pragma Assert (not Known_Component_Size (Implicit_Base));
6365 Set_Component_Type (Implicit_Base, Element_Type);
6366 Set_Finalize_Storage_Only
6367 (Implicit_Base,
6368 Finalize_Storage_Only (Element_Type));
6369 Set_First_Index (Implicit_Base, First_Index (T));
6370 Set_Has_Controlled_Component
6371 (Implicit_Base,
6372 Has_Controlled_Component (Element_Type)
6373 or else Is_Controlled (Element_Type));
6374 Set_Packed_Array_Impl_Type
6375 (Implicit_Base, Empty);
6377 Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
6379 -- Unconstrained array case
6381 else pragma Assert (Nkind (Def) = N_Unconstrained_Array_Definition);
6383 if Ekind (T) in Incomplete_Or_Private_Kind then
6384 Reinit_Field_To_Zero (T, F_Stored_Constraint);
6385 else
6386 pragma Assert (Ekind (T) = E_Void);
6387 end if;
6389 Mutate_Ekind (T, E_Array_Type);
6390 Reinit_Size_Align (T);
6391 Set_Etype (T, T);
6392 Set_Scope (T, Current_Scope);
6393 pragma Assert (not Known_Component_Size (T));
6394 Set_Is_Constrained (T, False);
6395 Set_Is_Fixed_Lower_Bound_Array_Subtype
6396 (T, Has_FLB_Index);
6397 Set_First_Index (T, First (Subtype_Marks (Def)));
6398 Set_Has_Delayed_Freeze (T, True);
6399 Propagate_Concurrent_Flags (T, Element_Type);
6400 Set_Has_Controlled_Component (T, Has_Controlled_Component
6401 (Element_Type)
6402 or else
6403 Is_Controlled (Element_Type));
6404 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
6405 (Element_Type));
6406 Set_Default_SSO (T);
6407 end if;
6409 -- Common attributes for both cases
6411 Set_Component_Type (Base_Type (T), Element_Type);
6412 Set_Packed_Array_Impl_Type (T, Empty);
6414 if Aliased_Present (Component_Definition (Def)) then
6415 Set_Has_Aliased_Components (Etype (T));
6417 -- AI12-001: All aliased objects are considered to be specified as
6418 -- independently addressable (RM C.6(8.1/4)).
6420 Set_Has_Independent_Components (Etype (T));
6421 end if;
6423 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6424 -- array type to ensure that objects of this type are initialized.
6426 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
6427 Set_Can_Never_Be_Null (T);
6429 if Null_Exclusion_Present (Component_Definition (Def))
6431 -- No need to check itypes because in their case this check was
6432 -- done at their point of creation
6434 and then not Is_Itype (Element_Type)
6435 then
6436 Error_Msg_N
6437 ("`NOT NULL` not allowed (null already excluded)",
6438 Subtype_Indication (Component_Definition (Def)));
6439 end if;
6440 end if;
6442 Priv := Private_Component (Element_Type);
6444 if Present (Priv) then
6446 -- Check for circular definitions
6448 if Priv = Any_Type then
6449 Set_Component_Type (Etype (T), Any_Type);
6451 -- There is a gap in the visibility of operations on the composite
6452 -- type only if the component type is defined in a different scope.
6454 elsif Scope (Priv) = Current_Scope then
6455 null;
6457 elsif Is_Limited_Type (Priv) then
6458 Set_Is_Limited_Composite (Etype (T));
6459 Set_Is_Limited_Composite (T);
6460 else
6461 Set_Is_Private_Composite (Etype (T));
6462 Set_Is_Private_Composite (T);
6463 end if;
6464 end if;
6466 -- A syntax error in the declaration itself may lead to an empty index
6467 -- list, in which case do a minimal patch.
6469 if No (First_Index (T)) then
6470 Error_Msg_N ("missing index definition in array type declaration", T);
6472 declare
6473 Indexes : constant List_Id :=
6474 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
6475 begin
6476 Set_Discrete_Subtype_Definitions (Def, Indexes);
6477 Set_First_Index (T, First (Indexes));
6478 return;
6479 end;
6480 end if;
6482 -- Create a concatenation operator for the new type. Internal array
6483 -- types created for packed entities do not need such, they are
6484 -- compatible with the user-defined type.
6486 if Number_Dimensions (T) = 1
6487 and then not Is_Packed_Array_Impl_Type (T)
6488 then
6489 New_Concatenation_Op (T);
6490 end if;
6492 -- In the case of an unconstrained array the parser has already verified
6493 -- that all the indexes are unconstrained but we still need to make sure
6494 -- that the element type is constrained.
6496 if not Is_Definite_Subtype (Element_Type) then
6497 Error_Msg_N
6498 ("unconstrained element type in array declaration",
6499 Subtype_Indication (Component_Def));
6501 elsif Is_Abstract_Type (Element_Type) then
6502 Error_Msg_N
6503 ("the type of a component cannot be abstract",
6504 Subtype_Indication (Component_Def));
6505 end if;
6507 -- There may be an invariant declared for the component type, but
6508 -- the construction of the component invariant checking procedure
6509 -- takes place during expansion.
6510 end Array_Type_Declaration;
6512 ------------------------------------------------------
6513 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6514 ------------------------------------------------------
6516 function Replace_Anonymous_Access_To_Protected_Subprogram
6517 (N : Node_Id) return Entity_Id
6519 Loc : constant Source_Ptr := Sloc (N);
6521 Curr_Scope : constant Scope_Stack_Entry :=
6522 Scope_Stack.Table (Scope_Stack.Last);
6524 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
6526 Acc : Node_Id;
6527 -- Access definition in declaration
6529 Comp : Node_Id;
6530 -- Object definition or formal definition with an access definition
6532 Decl : Node_Id;
6533 -- Declaration of anonymous access to subprogram type
6535 Spec : Node_Id;
6536 -- Original specification in access to subprogram
6538 P : Node_Id;
6540 begin
6541 Set_Is_Internal (Anon);
6543 case Nkind (N) is
6544 when N_Constrained_Array_Definition
6545 | N_Component_Declaration
6546 | N_Unconstrained_Array_Definition
6548 Comp := Component_Definition (N);
6549 Acc := Access_Definition (Comp);
6551 when N_Discriminant_Specification =>
6552 Comp := Discriminant_Type (N);
6553 Acc := Comp;
6555 when N_Parameter_Specification =>
6556 Comp := Parameter_Type (N);
6557 Acc := Comp;
6559 when N_Access_Function_Definition =>
6560 Comp := Result_Definition (N);
6561 Acc := Comp;
6563 when N_Object_Declaration =>
6564 Comp := Object_Definition (N);
6565 Acc := Comp;
6567 when N_Function_Specification =>
6568 Comp := Result_Definition (N);
6569 Acc := Comp;
6571 when others =>
6572 raise Program_Error;
6573 end case;
6575 Spec := Access_To_Subprogram_Definition (Acc);
6577 Decl :=
6578 Make_Full_Type_Declaration (Loc,
6579 Defining_Identifier => Anon,
6580 Type_Definition => Copy_Separate_Tree (Spec));
6582 Mark_Rewrite_Insertion (Decl);
6584 -- Insert the new declaration in the nearest enclosing scope. If the
6585 -- parent is a body and N is its return type, the declaration belongs
6586 -- in the enclosing scope. Likewise if N is the type of a parameter.
6588 P := Parent (N);
6590 if Nkind (N) = N_Function_Specification
6591 and then Nkind (P) = N_Subprogram_Body
6592 then
6593 P := Parent (P);
6594 elsif Nkind (N) = N_Parameter_Specification
6595 and then Nkind (P) in N_Subprogram_Specification
6596 and then Nkind (Parent (P)) = N_Subprogram_Body
6597 then
6598 P := Parent (Parent (P));
6599 end if;
6601 while Present (P) and then not Has_Declarations (P) loop
6602 P := Parent (P);
6603 end loop;
6605 pragma Assert (Present (P));
6607 if Nkind (P) = N_Package_Specification then
6608 Prepend (Decl, Visible_Declarations (P));
6609 else
6610 Prepend (Decl, Declarations (P));
6611 end if;
6613 -- Replace the anonymous type with an occurrence of the new declaration.
6614 -- In all cases the rewritten node does not have the null-exclusion
6615 -- attribute because (if present) it was already inherited by the
6616 -- anonymous entity (Anon). Thus, in case of components we do not
6617 -- inherit this attribute.
6619 if Nkind (N) = N_Parameter_Specification then
6620 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6621 Set_Etype (Defining_Identifier (N), Anon);
6622 Set_Null_Exclusion_Present (N, False);
6624 elsif Nkind (N) = N_Object_Declaration then
6625 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6626 Set_Etype (Defining_Identifier (N), Anon);
6628 elsif Nkind (N) = N_Access_Function_Definition then
6629 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6631 elsif Nkind (N) = N_Function_Specification then
6632 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6633 Set_Etype (Defining_Unit_Name (N), Anon);
6635 else
6636 Rewrite (Comp,
6637 Make_Component_Definition (Loc,
6638 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
6639 end if;
6641 Mark_Rewrite_Insertion (Comp);
6643 if Nkind (N) in N_Object_Declaration | N_Access_Function_Definition
6644 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
6645 and then not Is_Type (Current_Scope))
6646 then
6648 -- Declaration can be analyzed in the current scope.
6650 Analyze (Decl);
6652 else
6653 -- Temporarily remove the current scope (record or subprogram) from
6654 -- the stack to add the new declarations to the enclosing scope.
6655 -- The anonymous entity is an Itype with the proper attributes.
6657 Scope_Stack.Decrement_Last;
6658 Analyze (Decl);
6659 Set_Is_Itype (Anon);
6660 Set_Associated_Node_For_Itype (Anon, N);
6661 Scope_Stack.Append (Curr_Scope);
6662 end if;
6664 Mutate_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6665 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6666 return Anon;
6667 end Replace_Anonymous_Access_To_Protected_Subprogram;
6669 -------------------------------------
6670 -- Build_Access_Subprogram_Wrapper --
6671 -------------------------------------
6673 procedure Build_Access_Subprogram_Wrapper (Decl : Node_Id) is
6674 Loc : constant Source_Ptr := Sloc (Decl);
6675 Id : constant Entity_Id := Defining_Identifier (Decl);
6676 Type_Def : constant Node_Id := Type_Definition (Decl);
6677 Specs : constant List_Id :=
6678 Parameter_Specifications (Type_Def);
6679 Profile : constant List_Id := New_List;
6680 Subp : constant Entity_Id := Make_Temporary (Loc, 'A');
6682 Contracts : constant List_Id := New_List;
6683 Form_P : Node_Id;
6684 New_P : Node_Id;
6685 New_Decl : Node_Id;
6686 Spec : Node_Id;
6688 procedure Replace_Type_Name (Expr : Node_Id);
6689 -- In the expressions for contract aspects, replace occurrences of the
6690 -- access type with the name of the subprogram entity, as needed, e.g.
6691 -- for 'Result. Aspects that are not contracts, e.g. Size or Alignment)
6692 -- remain on the original access type declaration. What about expanded
6693 -- names denoting formals, whose prefix in source is the type name ???
6695 -----------------------
6696 -- Replace_Type_Name --
6697 -----------------------
6699 procedure Replace_Type_Name (Expr : Node_Id) is
6700 function Process (N : Node_Id) return Traverse_Result;
6701 function Process (N : Node_Id) return Traverse_Result is
6702 begin
6703 if Nkind (N) = N_Attribute_Reference
6704 and then Is_Entity_Name (Prefix (N))
6705 and then Chars (Prefix (N)) = Chars (Id)
6706 then
6707 Set_Prefix (N, Make_Identifier (Sloc (N), Chars (Subp)));
6708 end if;
6710 return OK;
6711 end Process;
6713 procedure Traverse is new Traverse_Proc (Process);
6714 begin
6715 Traverse (Expr);
6716 end Replace_Type_Name;
6718 begin
6719 if Ekind (Id) in E_Access_Subprogram_Type
6720 | E_Access_Protected_Subprogram_Type
6721 | E_Anonymous_Access_Protected_Subprogram_Type
6722 | E_Anonymous_Access_Subprogram_Type
6723 then
6724 null;
6726 else
6727 Error_Msg_N
6728 ("illegal pre/postcondition on access type", Decl);
6729 return;
6730 end if;
6732 declare
6733 Asp : Node_Id;
6734 A_Id : Aspect_Id;
6735 Cond : Node_Id;
6736 Expr : Node_Id;
6738 begin
6739 Asp := First (Aspect_Specifications (Decl));
6740 while Present (Asp) loop
6741 A_Id := Get_Aspect_Id (Chars (Identifier (Asp)));
6742 if A_Id = Aspect_Pre or else A_Id = Aspect_Post then
6743 Cond := Asp;
6744 Expr := Expression (Cond);
6745 Replace_Type_Name (Expr);
6746 Next (Asp);
6748 Remove (Cond);
6749 Append (Cond, Contracts);
6751 else
6752 Next (Asp);
6753 end if;
6754 end loop;
6755 end;
6757 -- If there are no contract aspects, no need for a wrapper.
6759 if Is_Empty_List (Contracts) then
6760 return;
6761 end if;
6763 Form_P := First (Specs);
6765 while Present (Form_P) loop
6766 New_P := New_Copy_Tree (Form_P);
6767 Set_Defining_Identifier (New_P,
6768 Make_Defining_Identifier
6769 (Loc, Chars (Defining_Identifier (Form_P))));
6770 Append (New_P, Profile);
6771 Next (Form_P);
6772 end loop;
6774 -- Add to parameter specifications the access parameter that is passed
6775 -- in from an indirect call.
6777 Append (
6778 Make_Parameter_Specification (Loc,
6779 Defining_Identifier => Make_Temporary (Loc, 'P'),
6780 Parameter_Type => New_Occurrence_Of (Id, Loc)),
6781 Profile);
6783 if Nkind (Type_Def) = N_Access_Procedure_Definition then
6784 Spec :=
6785 Make_Procedure_Specification (Loc,
6786 Defining_Unit_Name => Subp,
6787 Parameter_Specifications => Profile);
6788 Mutate_Ekind (Subp, E_Procedure);
6789 else
6790 Spec :=
6791 Make_Function_Specification (Loc,
6792 Defining_Unit_Name => Subp,
6793 Parameter_Specifications => Profile,
6794 Result_Definition =>
6795 New_Copy_Tree
6796 (Result_Definition (Type_Definition (Decl))));
6797 Mutate_Ekind (Subp, E_Function);
6798 end if;
6800 New_Decl :=
6801 Make_Subprogram_Declaration (Loc, Specification => Spec);
6802 Set_Aspect_Specifications (New_Decl, Contracts);
6803 Set_Is_Wrapper (Subp);
6805 -- The wrapper is declared in the freezing actions to facilitate its
6806 -- identification and thus avoid handling it as a primitive operation
6807 -- of a tagged type (see Is_Access_To_Subprogram_Wrapper); otherwise it
6808 -- may be handled as a dispatching operation and erroneously registered
6809 -- in a dispatch table.
6811 if not GNATprove_Mode then
6812 Ensure_Freeze_Node (Id);
6813 Append_Freeze_Actions (Id, New_List (New_Decl));
6815 -- Under GNATprove mode there is no such problem but we do not declare
6816 -- it in the freezing actions since they are not analyzed under this
6817 -- mode.
6819 else
6820 Insert_After (Decl, New_Decl);
6821 end if;
6823 Set_Access_Subprogram_Wrapper (Designated_Type (Id), Subp);
6824 Build_Access_Subprogram_Wrapper_Body (Decl, New_Decl);
6825 end Build_Access_Subprogram_Wrapper;
6827 -------------------------------
6828 -- Build_Derived_Access_Type --
6829 -------------------------------
6831 procedure Build_Derived_Access_Type
6832 (N : Node_Id;
6833 Parent_Type : Entity_Id;
6834 Derived_Type : Entity_Id)
6836 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6838 Desig_Type : Entity_Id;
6839 Discr : Entity_Id;
6840 Discr_Con_Elist : Elist_Id;
6841 Discr_Con_El : Elmt_Id;
6842 Subt : Entity_Id;
6844 begin
6845 -- Set the designated type so it is available in case this is an access
6846 -- to a self-referential type, e.g. a standard list type with a next
6847 -- pointer. Will be reset after subtype is built.
6849 Set_Directly_Designated_Type
6850 (Derived_Type, Designated_Type (Parent_Type));
6852 Subt := Process_Subtype (S, N);
6854 if Nkind (S) /= N_Subtype_Indication
6855 and then Subt /= Base_Type (Subt)
6856 then
6857 Mutate_Ekind (Derived_Type, E_Access_Subtype);
6858 end if;
6860 if Ekind (Derived_Type) = E_Access_Subtype then
6861 declare
6862 Pbase : constant Entity_Id := Base_Type (Parent_Type);
6863 Ibase : constant Entity_Id :=
6864 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6865 Svg_Chars : constant Name_Id := Chars (Ibase);
6866 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6867 Svg_Prev_E : constant Entity_Id := Prev_Entity (Ibase);
6869 begin
6870 Copy_Node (Pbase, Ibase);
6872 -- Restore Itype status after Copy_Node
6874 Set_Is_Itype (Ibase);
6875 Set_Associated_Node_For_Itype (Ibase, N);
6877 Set_Chars (Ibase, Svg_Chars);
6878 Set_Prev_Entity (Ibase, Svg_Prev_E);
6879 Set_Next_Entity (Ibase, Svg_Next_E);
6880 Set_Sloc (Ibase, Sloc (Derived_Type));
6881 Set_Scope (Ibase, Scope (Derived_Type));
6882 Set_Freeze_Node (Ibase, Empty);
6883 Set_Is_Frozen (Ibase, False);
6884 Set_Comes_From_Source (Ibase, False);
6885 Set_Is_First_Subtype (Ibase, False);
6887 Set_Etype (Ibase, Pbase);
6888 Set_Etype (Derived_Type, Ibase);
6889 end;
6890 end if;
6892 Set_Directly_Designated_Type
6893 (Derived_Type, Designated_Type (Subt));
6895 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
6896 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6897 Set_Size_Info (Derived_Type, Parent_Type);
6898 Copy_RM_Size (To => Derived_Type, From => Parent_Type);
6899 Set_Depends_On_Private (Derived_Type,
6900 Has_Private_Component (Derived_Type));
6901 Conditional_Delay (Derived_Type, Subt);
6903 if Is_Access_Subprogram_Type (Derived_Type)
6904 and then Is_Base_Type (Derived_Type)
6905 then
6906 Set_Can_Use_Internal_Rep
6907 (Derived_Type, Can_Use_Internal_Rep (Parent_Type));
6908 end if;
6910 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6911 -- that it is not redundant.
6913 if Null_Exclusion_Present (Type_Definition (N)) then
6914 Set_Can_Never_Be_Null (Derived_Type);
6916 elsif Can_Never_Be_Null (Parent_Type) then
6917 Set_Can_Never_Be_Null (Derived_Type);
6918 end if;
6920 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6921 -- the root type for this information.
6923 -- Apply range checks to discriminants for derived record case
6924 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6926 Desig_Type := Designated_Type (Derived_Type);
6928 if Is_Composite_Type (Desig_Type)
6929 and then (not Is_Array_Type (Desig_Type))
6930 and then Has_Discriminants (Desig_Type)
6931 and then Base_Type (Desig_Type) /= Desig_Type
6932 then
6933 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6934 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6936 Discr := First_Discriminant (Base_Type (Desig_Type));
6937 while Present (Discr_Con_El) loop
6938 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6939 Next_Elmt (Discr_Con_El);
6940 Next_Discriminant (Discr);
6941 end loop;
6942 end if;
6943 end Build_Derived_Access_Type;
6945 ------------------------------
6946 -- Build_Derived_Array_Type --
6947 ------------------------------
6949 procedure Build_Derived_Array_Type
6950 (N : Node_Id;
6951 Parent_Type : Entity_Id;
6952 Derived_Type : Entity_Id)
6954 Loc : constant Source_Ptr := Sloc (N);
6955 Tdef : constant Node_Id := Type_Definition (N);
6956 Indic : constant Node_Id := Subtype_Indication (Tdef);
6957 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6958 Implicit_Base : Entity_Id := Empty;
6959 New_Indic : Node_Id;
6961 procedure Make_Implicit_Base;
6962 -- If the parent subtype is constrained, the derived type is a subtype
6963 -- of an implicit base type derived from the parent base.
6965 ------------------------
6966 -- Make_Implicit_Base --
6967 ------------------------
6969 procedure Make_Implicit_Base is
6970 begin
6971 Implicit_Base :=
6972 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6974 Mutate_Ekind (Implicit_Base, Ekind (Parent_Base));
6975 Set_Etype (Implicit_Base, Parent_Base);
6977 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6978 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6980 Set_Has_Delayed_Freeze (Implicit_Base, True);
6981 end Make_Implicit_Base;
6983 -- Start of processing for Build_Derived_Array_Type
6985 begin
6986 if not Is_Constrained (Parent_Type) then
6987 if Nkind (Indic) /= N_Subtype_Indication then
6988 Mutate_Ekind (Derived_Type, E_Array_Type);
6990 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6991 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6993 Set_Has_Delayed_Freeze (Derived_Type, True);
6995 else
6996 Make_Implicit_Base;
6997 Set_Etype (Derived_Type, Implicit_Base);
6999 New_Indic :=
7000 Make_Subtype_Declaration (Loc,
7001 Defining_Identifier => Derived_Type,
7002 Subtype_Indication =>
7003 Make_Subtype_Indication (Loc,
7004 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7005 Constraint => Constraint (Indic)));
7007 Rewrite (N, New_Indic);
7008 Analyze (N);
7009 end if;
7011 else
7012 if Nkind (Indic) /= N_Subtype_Indication then
7013 Make_Implicit_Base;
7015 Mutate_Ekind (Derived_Type, Ekind (Parent_Type));
7016 Set_Etype (Derived_Type, Implicit_Base);
7017 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
7019 else
7020 Error_Msg_N ("illegal constraint on constrained type", Indic);
7021 end if;
7022 end if;
7024 -- If parent type is not a derived type itself, and is declared in
7025 -- closed scope (e.g. a subprogram), then we must explicitly introduce
7026 -- the new type's concatenation operator since Derive_Subprograms
7027 -- will not inherit the parent's operator. If the parent type is
7028 -- unconstrained, the operator is of the unconstrained base type.
7030 if Number_Dimensions (Parent_Type) = 1
7031 and then not Is_Limited_Type (Parent_Type)
7032 and then not Is_Derived_Type (Parent_Type)
7033 and then not Is_Package_Or_Generic_Package
7034 (Scope (Base_Type (Parent_Type)))
7035 then
7036 if not Is_Constrained (Parent_Type)
7037 and then Is_Constrained (Derived_Type)
7038 then
7039 New_Concatenation_Op (Implicit_Base);
7040 else
7041 New_Concatenation_Op (Derived_Type);
7042 end if;
7043 end if;
7044 end Build_Derived_Array_Type;
7046 -----------------------------------
7047 -- Build_Derived_Concurrent_Type --
7048 -----------------------------------
7050 procedure Build_Derived_Concurrent_Type
7051 (N : Node_Id;
7052 Parent_Type : Entity_Id;
7053 Derived_Type : Entity_Id)
7055 Loc : constant Source_Ptr := Sloc (N);
7056 Def : constant Node_Id := Type_Definition (N);
7057 Indic : constant Node_Id := Subtype_Indication (Def);
7059 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
7060 Corr_Decl : Node_Id;
7061 Corr_Decl_Needed : Boolean;
7062 -- If the derived type has fewer discriminants than its parent, the
7063 -- corresponding record is also a derived type, in order to account for
7064 -- the bound discriminants. We create a full type declaration for it in
7065 -- this case.
7067 Constraint_Present : constant Boolean :=
7068 Nkind (Indic) = N_Subtype_Indication;
7070 D_Constraint : Node_Id;
7071 New_Constraint : Elist_Id := No_Elist;
7072 Old_Disc : Entity_Id;
7073 New_Disc : Entity_Id;
7074 New_N : Node_Id;
7076 begin
7077 Set_Stored_Constraint (Derived_Type, No_Elist);
7078 Corr_Decl_Needed := False;
7079 Old_Disc := Empty;
7081 if Present (Discriminant_Specifications (N))
7082 and then Constraint_Present
7083 then
7084 Old_Disc := First_Discriminant (Parent_Type);
7085 New_Disc := First (Discriminant_Specifications (N));
7086 while Present (New_Disc) and then Present (Old_Disc) loop
7087 Next_Discriminant (Old_Disc);
7088 Next (New_Disc);
7089 end loop;
7090 end if;
7092 if Present (Old_Disc) and then Expander_Active then
7094 -- The new type has fewer discriminants, so we need to create a new
7095 -- corresponding record, which is derived from the corresponding
7096 -- record of the parent, and has a stored constraint that captures
7097 -- the values of the discriminant constraints. The corresponding
7098 -- record is needed only if expander is active and code generation is
7099 -- enabled.
7101 -- The type declaration for the derived corresponding record has the
7102 -- same discriminant part and constraints as the current declaration.
7103 -- Copy the unanalyzed tree to build declaration.
7105 Corr_Decl_Needed := True;
7106 New_N := Copy_Separate_Tree (N);
7108 Corr_Decl :=
7109 Make_Full_Type_Declaration (Loc,
7110 Defining_Identifier => Corr_Record,
7111 Discriminant_Specifications =>
7112 Discriminant_Specifications (New_N),
7113 Type_Definition =>
7114 Make_Derived_Type_Definition (Loc,
7115 Subtype_Indication =>
7116 Make_Subtype_Indication (Loc,
7117 Subtype_Mark =>
7118 New_Occurrence_Of
7119 (Corresponding_Record_Type (Parent_Type), Loc),
7120 Constraint =>
7121 Constraint
7122 (Subtype_Indication (Type_Definition (New_N))))));
7123 end if;
7125 -- Copy Storage_Size and Relative_Deadline variables if task case
7127 if Is_Task_Type (Parent_Type) then
7128 Set_Storage_Size_Variable (Derived_Type,
7129 Storage_Size_Variable (Parent_Type));
7130 Set_Relative_Deadline_Variable (Derived_Type,
7131 Relative_Deadline_Variable (Parent_Type));
7132 end if;
7134 if Present (Discriminant_Specifications (N)) then
7135 Push_Scope (Derived_Type);
7136 Check_Or_Process_Discriminants (N, Derived_Type);
7138 if Constraint_Present then
7139 New_Constraint :=
7140 Expand_To_Stored_Constraint
7141 (Parent_Type,
7142 Build_Discriminant_Constraints
7143 (Parent_Type, Indic, True));
7144 end if;
7146 End_Scope;
7148 elsif Constraint_Present then
7150 -- Build an unconstrained derived type and rewrite the derived type
7151 -- as a subtype of this new base type.
7153 declare
7154 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7155 New_Base : Entity_Id;
7156 New_Decl : Node_Id;
7157 New_Indic : Node_Id;
7159 begin
7160 New_Base :=
7161 Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
7163 New_Decl :=
7164 Make_Full_Type_Declaration (Loc,
7165 Defining_Identifier => New_Base,
7166 Type_Definition =>
7167 Make_Derived_Type_Definition (Loc,
7168 Abstract_Present => Abstract_Present (Def),
7169 Limited_Present => Limited_Present (Def),
7170 Subtype_Indication =>
7171 New_Occurrence_Of (Parent_Base, Loc)));
7173 Mark_Rewrite_Insertion (New_Decl);
7174 Insert_Before (N, New_Decl);
7175 Analyze (New_Decl);
7177 New_Indic :=
7178 Make_Subtype_Indication (Loc,
7179 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
7180 Constraint => Relocate_Node (Constraint (Indic)));
7182 Rewrite (N,
7183 Make_Subtype_Declaration (Loc,
7184 Defining_Identifier => Derived_Type,
7185 Subtype_Indication => New_Indic));
7187 Analyze (N);
7188 return;
7189 end;
7190 end if;
7192 -- By default, operations and private data are inherited from parent.
7193 -- However, in the presence of bound discriminants, a new corresponding
7194 -- record will be created, see below.
7196 Set_Has_Discriminants
7197 (Derived_Type, Has_Discriminants (Parent_Type));
7198 Set_Corresponding_Record_Type
7199 (Derived_Type, Corresponding_Record_Type (Parent_Type));
7201 -- Is_Constrained is set according the parent subtype, but is set to
7202 -- False if the derived type is declared with new discriminants.
7204 Set_Is_Constrained
7205 (Derived_Type,
7206 (Is_Constrained (Parent_Type) or else Constraint_Present)
7207 and then not Present (Discriminant_Specifications (N)));
7209 if Constraint_Present then
7210 if not Has_Discriminants (Parent_Type) then
7211 Error_Msg_N ("untagged parent must have discriminants", N);
7213 elsif Present (Discriminant_Specifications (N)) then
7215 -- Verify that new discriminants are used to constrain old ones
7217 D_Constraint := First (Constraints (Constraint (Indic)));
7219 Old_Disc := First_Discriminant (Parent_Type);
7221 while Present (D_Constraint) loop
7222 if Nkind (D_Constraint) /= N_Discriminant_Association then
7224 -- Positional constraint. If it is a reference to a new
7225 -- discriminant, it constrains the corresponding old one.
7227 if Nkind (D_Constraint) = N_Identifier then
7228 New_Disc := First_Discriminant (Derived_Type);
7229 while Present (New_Disc) loop
7230 exit when Chars (New_Disc) = Chars (D_Constraint);
7231 Next_Discriminant (New_Disc);
7232 end loop;
7234 if Present (New_Disc) then
7235 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
7236 end if;
7237 end if;
7239 Next_Discriminant (Old_Disc);
7241 -- if this is a named constraint, search by name for the old
7242 -- discriminants constrained by the new one.
7244 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
7246 -- Find new discriminant with that name
7248 New_Disc := First_Discriminant (Derived_Type);
7249 while Present (New_Disc) loop
7250 exit when
7251 Chars (New_Disc) = Chars (Expression (D_Constraint));
7252 Next_Discriminant (New_Disc);
7253 end loop;
7255 if Present (New_Disc) then
7257 -- Verify that new discriminant renames some discriminant
7258 -- of the parent type, and associate the new discriminant
7259 -- with one or more old ones that it renames.
7261 declare
7262 Selector : Node_Id;
7264 begin
7265 Selector := First (Selector_Names (D_Constraint));
7266 while Present (Selector) loop
7267 Old_Disc := First_Discriminant (Parent_Type);
7268 while Present (Old_Disc) loop
7269 exit when Chars (Old_Disc) = Chars (Selector);
7270 Next_Discriminant (Old_Disc);
7271 end loop;
7273 if Present (Old_Disc) then
7274 Set_Corresponding_Discriminant
7275 (New_Disc, Old_Disc);
7276 end if;
7278 Next (Selector);
7279 end loop;
7280 end;
7281 end if;
7282 end if;
7284 Next (D_Constraint);
7285 end loop;
7287 New_Disc := First_Discriminant (Derived_Type);
7288 while Present (New_Disc) loop
7289 if No (Corresponding_Discriminant (New_Disc)) then
7290 Error_Msg_NE
7291 ("new discriminant& must constrain old one", N, New_Disc);
7293 -- If a new discriminant is used in the constraint, then its
7294 -- subtype must be statically compatible with the subtype of
7295 -- the parent discriminant (RM 3.7(15)).
7297 else
7298 Check_Constraining_Discriminant
7299 (New_Disc, Corresponding_Discriminant (New_Disc));
7300 end if;
7302 Next_Discriminant (New_Disc);
7303 end loop;
7304 end if;
7306 elsif Present (Discriminant_Specifications (N)) then
7307 Error_Msg_N
7308 ("missing discriminant constraint in untagged derivation", N);
7309 end if;
7311 -- The entity chain of the derived type includes the new discriminants
7312 -- but shares operations with the parent.
7314 if Present (Discriminant_Specifications (N)) then
7315 Old_Disc := First_Discriminant (Parent_Type);
7316 while Present (Old_Disc) loop
7317 if No (Next_Entity (Old_Disc))
7318 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
7319 then
7320 Link_Entities
7321 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
7322 exit;
7323 end if;
7325 Next_Discriminant (Old_Disc);
7326 end loop;
7328 else
7329 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
7330 if Has_Discriminants (Parent_Type) then
7331 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7332 Set_Discriminant_Constraint (
7333 Derived_Type, Discriminant_Constraint (Parent_Type));
7334 end if;
7335 end if;
7337 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
7339 Set_Has_Completion (Derived_Type);
7341 if Corr_Decl_Needed then
7342 Set_Stored_Constraint (Derived_Type, New_Constraint);
7343 Insert_After (N, Corr_Decl);
7344 Analyze (Corr_Decl);
7345 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
7346 end if;
7347 end Build_Derived_Concurrent_Type;
7349 ------------------------------------
7350 -- Build_Derived_Enumeration_Type --
7351 ------------------------------------
7353 procedure Build_Derived_Enumeration_Type
7354 (N : Node_Id;
7355 Parent_Type : Entity_Id;
7356 Derived_Type : Entity_Id)
7358 function Bound_Belongs_To_Type (B : Node_Id) return Boolean;
7359 -- When the type declaration includes a constraint, we generate
7360 -- a subtype declaration of an anonymous base type, with the constraint
7361 -- given in the original type declaration. Conceptually, the bounds
7362 -- are converted to the new base type, and this conversion freezes
7363 -- (prematurely) that base type, when the bounds are simply literals.
7364 -- As a result, a representation clause for the derived type is then
7365 -- rejected or ignored. This procedure recognizes the simple case of
7366 -- literal bounds, which allows us to indicate that the conversions
7367 -- are not freeze points, and the subsequent representation clause
7368 -- can be accepted.
7369 -- A similar approach might be used to resolve the long-standing
7370 -- problem of premature freezing of derived numeric types ???
7372 function Bound_Belongs_To_Type (B : Node_Id) return Boolean is
7373 begin
7374 return Nkind (B) = N_Type_Conversion
7375 and then Is_Entity_Name (Expression (B))
7376 and then Ekind (Entity (Expression (B))) = E_Enumeration_Literal;
7377 end Bound_Belongs_To_Type;
7379 Loc : constant Source_Ptr := Sloc (N);
7380 Def : constant Node_Id := Type_Definition (N);
7381 Indic : constant Node_Id := Subtype_Indication (Def);
7382 Implicit_Base : Entity_Id;
7383 Literal : Entity_Id;
7384 New_Lit : Entity_Id;
7385 Literals_List : List_Id;
7386 Type_Decl : Node_Id;
7387 Hi, Lo : Node_Id;
7388 Rang_Expr : Node_Id;
7390 begin
7391 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
7392 -- not have explicit literals lists we need to process types derived
7393 -- from them specially. This is handled by Derived_Standard_Character.
7394 -- If the parent type is a generic type, there are no literals either,
7395 -- and we construct the same skeletal representation as for the generic
7396 -- parent type.
7398 if Is_Standard_Character_Type (Parent_Type) then
7399 Derived_Standard_Character (N, Parent_Type, Derived_Type);
7401 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
7402 declare
7403 Lo : Node_Id;
7404 Hi : Node_Id;
7406 begin
7407 if Nkind (Indic) /= N_Subtype_Indication then
7408 Lo :=
7409 Make_Attribute_Reference (Loc,
7410 Attribute_Name => Name_First,
7411 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7412 Set_Etype (Lo, Derived_Type);
7414 Hi :=
7415 Make_Attribute_Reference (Loc,
7416 Attribute_Name => Name_Last,
7417 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7418 Set_Etype (Hi, Derived_Type);
7420 Set_Scalar_Range (Derived_Type,
7421 Make_Range (Loc,
7422 Low_Bound => Lo,
7423 High_Bound => Hi));
7424 else
7426 -- Analyze subtype indication and verify compatibility
7427 -- with parent type.
7429 if Base_Type (Process_Subtype (Indic, N)) /=
7430 Base_Type (Parent_Type)
7431 then
7432 Error_Msg_N
7433 ("illegal constraint for formal discrete type", N);
7434 end if;
7435 end if;
7436 end;
7438 else
7439 -- If a constraint is present, analyze the bounds to catch
7440 -- premature usage of the derived literals.
7442 if Nkind (Indic) = N_Subtype_Indication
7443 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
7444 then
7445 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
7446 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
7447 end if;
7449 -- Introduce an implicit base type for the derived type even if there
7450 -- is no constraint attached to it, since this seems closer to the
7451 -- Ada semantics. Build a full type declaration tree for the derived
7452 -- type using the implicit base type as the defining identifier. Then
7453 -- build a subtype declaration tree which applies the constraint (if
7454 -- any) have it replace the derived type declaration.
7456 Literal := First_Literal (Parent_Type);
7457 Literals_List := New_List;
7458 while Present (Literal)
7459 and then Ekind (Literal) = E_Enumeration_Literal
7460 loop
7461 -- Literals of the derived type have the same representation as
7462 -- those of the parent type, but this representation can be
7463 -- overridden by an explicit representation clause. Indicate
7464 -- that there is no explicit representation given yet. These
7465 -- derived literals are implicit operations of the new type,
7466 -- and can be overridden by explicit ones.
7468 if Nkind (Literal) = N_Defining_Character_Literal then
7469 New_Lit :=
7470 Make_Defining_Character_Literal (Loc, Chars (Literal));
7471 else
7472 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
7473 end if;
7475 Mutate_Ekind (New_Lit, E_Enumeration_Literal);
7476 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
7477 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
7478 Set_Enumeration_Rep_Expr (New_Lit, Empty);
7479 Set_Alias (New_Lit, Literal);
7480 Set_Is_Known_Valid (New_Lit, True);
7482 Append (New_Lit, Literals_List);
7483 Next_Literal (Literal);
7484 end loop;
7486 Implicit_Base :=
7487 Make_Defining_Identifier (Sloc (Derived_Type),
7488 Chars => New_External_Name (Chars (Derived_Type), 'B'));
7490 -- Indicate the proper nature of the derived type. This must be done
7491 -- before analysis of the literals, to recognize cases when a literal
7492 -- may be hidden by a previous explicit function definition (cf.
7493 -- c83031a).
7495 Mutate_Ekind (Derived_Type, E_Enumeration_Subtype);
7496 Set_Etype (Derived_Type, Implicit_Base);
7498 Type_Decl :=
7499 Make_Full_Type_Declaration (Loc,
7500 Defining_Identifier => Implicit_Base,
7501 Discriminant_Specifications => No_List,
7502 Type_Definition =>
7503 Make_Enumeration_Type_Definition (Loc, Literals_List));
7505 Mark_Rewrite_Insertion (Type_Decl);
7506 Insert_Before (N, Type_Decl);
7507 Analyze (Type_Decl);
7509 -- The anonymous base now has a full declaration, but this base
7510 -- is not a first subtype.
7512 Set_Is_First_Subtype (Implicit_Base, False);
7514 -- After the implicit base is analyzed its Etype needs to be changed
7515 -- to reflect the fact that it is derived from the parent type which
7516 -- was ignored during analysis. We also set the size at this point.
7518 Set_Etype (Implicit_Base, Parent_Type);
7520 Set_Size_Info (Implicit_Base, Parent_Type);
7521 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
7522 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
7524 -- Copy other flags from parent type
7526 Set_Has_Non_Standard_Rep
7527 (Implicit_Base, Has_Non_Standard_Rep
7528 (Parent_Type));
7529 Set_Has_Pragma_Ordered
7530 (Implicit_Base, Has_Pragma_Ordered
7531 (Parent_Type));
7532 Set_Has_Delayed_Freeze (Implicit_Base);
7534 -- Process the subtype indication including a validation check on the
7535 -- constraint, if any. If a constraint is given, its bounds must be
7536 -- implicitly converted to the new type.
7538 if Nkind (Indic) = N_Subtype_Indication then
7539 declare
7540 R : constant Node_Id :=
7541 Range_Expression (Constraint (Indic));
7543 begin
7544 if Nkind (R) = N_Range then
7545 Hi := Build_Scalar_Bound
7546 (High_Bound (R), Parent_Type, Implicit_Base);
7547 Lo := Build_Scalar_Bound
7548 (Low_Bound (R), Parent_Type, Implicit_Base);
7550 else
7551 -- Constraint is a Range attribute. Replace with explicit
7552 -- mention of the bounds of the prefix, which must be a
7553 -- subtype.
7555 Analyze (Prefix (R));
7556 Hi :=
7557 Convert_To (Implicit_Base,
7558 Make_Attribute_Reference (Loc,
7559 Attribute_Name => Name_Last,
7560 Prefix =>
7561 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7563 Lo :=
7564 Convert_To (Implicit_Base,
7565 Make_Attribute_Reference (Loc,
7566 Attribute_Name => Name_First,
7567 Prefix =>
7568 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7569 end if;
7570 end;
7572 else
7573 Hi :=
7574 Build_Scalar_Bound
7575 (Type_High_Bound (Parent_Type),
7576 Parent_Type, Implicit_Base);
7577 Lo :=
7578 Build_Scalar_Bound
7579 (Type_Low_Bound (Parent_Type),
7580 Parent_Type, Implicit_Base);
7581 end if;
7583 Rang_Expr :=
7584 Make_Range (Loc,
7585 Low_Bound => Lo,
7586 High_Bound => Hi);
7588 -- If we constructed a default range for the case where no range
7589 -- was given, then the expressions in the range must not freeze
7590 -- since they do not correspond to expressions in the source.
7591 -- However, if the type inherits predicates the expressions will
7592 -- be elaborated earlier and must freeze.
7594 if (Nkind (Indic) /= N_Subtype_Indication
7595 or else
7596 (Bound_Belongs_To_Type (Lo) and then Bound_Belongs_To_Type (Hi)))
7597 and then not Has_Predicates (Derived_Type)
7598 then
7599 Set_Must_Not_Freeze (Lo);
7600 Set_Must_Not_Freeze (Hi);
7601 Set_Must_Not_Freeze (Rang_Expr);
7602 end if;
7604 Rewrite (N,
7605 Make_Subtype_Declaration (Loc,
7606 Defining_Identifier => Derived_Type,
7607 Subtype_Indication =>
7608 Make_Subtype_Indication (Loc,
7609 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7610 Constraint =>
7611 Make_Range_Constraint (Loc,
7612 Range_Expression => Rang_Expr))));
7614 Analyze (N);
7616 -- Propagate the aspects from the original type declaration to the
7617 -- declaration of the implicit base.
7619 Move_Aspects (From => Original_Node (N), To => Type_Decl);
7621 -- Apply a range check. Since this range expression doesn't have an
7622 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7623 -- this right???
7625 if Nkind (Indic) = N_Subtype_Indication then
7626 Apply_Range_Check
7627 (Range_Expression (Constraint (Indic)), Parent_Type,
7628 Source_Typ => Entity (Subtype_Mark (Indic)));
7629 end if;
7630 end if;
7631 end Build_Derived_Enumeration_Type;
7633 --------------------------------
7634 -- Build_Derived_Numeric_Type --
7635 --------------------------------
7637 procedure Build_Derived_Numeric_Type
7638 (N : Node_Id;
7639 Parent_Type : Entity_Id;
7640 Derived_Type : Entity_Id)
7642 Loc : constant Source_Ptr := Sloc (N);
7643 Tdef : constant Node_Id := Type_Definition (N);
7644 Indic : constant Node_Id := Subtype_Indication (Tdef);
7645 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7646 No_Constraint : constant Boolean := Nkind (Indic) /=
7647 N_Subtype_Indication;
7648 Implicit_Base : Entity_Id;
7650 Lo : Node_Id;
7651 Hi : Node_Id;
7653 begin
7654 -- Process the subtype indication including a validation check on
7655 -- the constraint if any.
7657 Discard_Node (Process_Subtype (Indic, N));
7659 -- Introduce an implicit base type for the derived type even if there
7660 -- is no constraint attached to it, since this seems closer to the Ada
7661 -- semantics.
7663 Implicit_Base :=
7664 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
7666 Set_Etype (Implicit_Base, Parent_Base);
7667 Mutate_Ekind (Implicit_Base, Ekind (Parent_Base));
7668 Set_Size_Info (Implicit_Base, Parent_Base);
7669 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
7670 Set_Parent (Implicit_Base, Parent (Derived_Type));
7671 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
7672 Set_Is_Volatile (Implicit_Base, Is_Volatile (Parent_Base));
7674 -- Set RM Size for discrete type or decimal fixed-point type
7675 -- Ordinary fixed-point is excluded, why???
7677 if Is_Discrete_Type (Parent_Base)
7678 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
7679 then
7680 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
7681 end if;
7683 Set_Has_Delayed_Freeze (Implicit_Base);
7685 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
7686 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
7688 Set_Scalar_Range (Implicit_Base,
7689 Make_Range (Loc,
7690 Low_Bound => Lo,
7691 High_Bound => Hi));
7693 if Has_Infinities (Parent_Base) then
7694 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
7695 end if;
7697 -- The Derived_Type, which is the entity of the declaration, is a
7698 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7699 -- absence of an explicit constraint.
7701 Set_Etype (Derived_Type, Implicit_Base);
7703 -- If we did not have a constraint, then the Ekind is set from the
7704 -- parent type (otherwise Process_Subtype has set the bounds)
7706 if No_Constraint then
7707 Mutate_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
7708 end if;
7710 -- If we did not have a range constraint, then set the range from the
7711 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7713 if No_Constraint or else not Has_Range_Constraint (Indic) then
7714 Set_Scalar_Range (Derived_Type,
7715 Make_Range (Loc,
7716 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
7717 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
7718 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7720 if Has_Infinities (Parent_Type) then
7721 Set_Includes_Infinities (Scalar_Range (Derived_Type));
7722 end if;
7724 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
7725 end if;
7727 Set_Is_Descendant_Of_Address (Derived_Type,
7728 Is_Descendant_Of_Address (Parent_Type));
7729 Set_Is_Descendant_Of_Address (Implicit_Base,
7730 Is_Descendant_Of_Address (Parent_Type));
7732 -- Set remaining type-specific fields, depending on numeric type
7734 if Is_Modular_Integer_Type (Parent_Type) then
7735 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
7737 Set_Non_Binary_Modulus
7738 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
7740 Set_Is_Known_Valid
7741 (Implicit_Base, Is_Known_Valid (Parent_Base));
7743 elsif Is_Floating_Point_Type (Parent_Type) then
7745 -- Digits of base type is always copied from the digits value of
7746 -- the parent base type, but the digits of the derived type will
7747 -- already have been set if there was a constraint present.
7749 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7750 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
7752 if No_Constraint then
7753 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
7754 end if;
7756 elsif Is_Fixed_Point_Type (Parent_Type) then
7758 -- Small of base type and derived type are always copied from the
7759 -- parent base type, since smalls never change. The delta of the
7760 -- base type is also copied from the parent base type. However the
7761 -- delta of the derived type will have been set already if a
7762 -- constraint was present.
7764 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
7765 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
7766 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
7768 if No_Constraint then
7769 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
7770 end if;
7772 -- The scale and machine radix in the decimal case are always
7773 -- copied from the parent base type.
7775 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
7776 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
7777 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
7779 Set_Machine_Radix_10
7780 (Derived_Type, Machine_Radix_10 (Parent_Base));
7781 Set_Machine_Radix_10
7782 (Implicit_Base, Machine_Radix_10 (Parent_Base));
7784 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7786 if No_Constraint then
7787 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
7789 else
7790 -- the analysis of the subtype_indication sets the
7791 -- digits value of the derived type.
7793 null;
7794 end if;
7795 end if;
7796 end if;
7798 if Is_Integer_Type (Parent_Type) then
7799 Set_Has_Shift_Operator
7800 (Implicit_Base, Has_Shift_Operator (Parent_Type));
7801 end if;
7803 -- The type of the bounds is that of the parent type, and they
7804 -- must be converted to the derived type.
7806 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
7808 -- The implicit_base should be frozen when the derived type is frozen,
7809 -- but note that it is used in the conversions of the bounds. For fixed
7810 -- types we delay the determination of the bounds until the proper
7811 -- freezing point. For other numeric types this is rejected by GCC, for
7812 -- reasons that are currently unclear (???), so we choose to freeze the
7813 -- implicit base now. In the case of integers and floating point types
7814 -- this is harmless because subsequent representation clauses cannot
7815 -- affect anything, but it is still baffling that we cannot use the
7816 -- same mechanism for all derived numeric types.
7818 -- There is a further complication: actually some representation
7819 -- clauses can affect the implicit base type. For example, attribute
7820 -- definition clauses for stream-oriented attributes need to set the
7821 -- corresponding TSS entries on the base type, and this normally
7822 -- cannot be done after the base type is frozen, so the circuitry in
7823 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7824 -- and not use Set_TSS in this case.
7826 -- There are also consequences for the case of delayed representation
7827 -- aspects for some cases. For example, a Size aspect is delayed and
7828 -- should not be evaluated to the freeze point. This early freezing
7829 -- means that the size attribute evaluation happens too early???
7831 if Is_Fixed_Point_Type (Parent_Type) then
7832 Conditional_Delay (Implicit_Base, Parent_Type);
7833 else
7834 Freeze_Before (N, Implicit_Base);
7835 end if;
7836 end Build_Derived_Numeric_Type;
7838 --------------------------------
7839 -- Build_Derived_Private_Type --
7840 --------------------------------
7842 procedure Build_Derived_Private_Type
7843 (N : Node_Id;
7844 Parent_Type : Entity_Id;
7845 Derived_Type : Entity_Id;
7846 Is_Completion : Boolean;
7847 Derive_Subps : Boolean := True)
7849 Loc : constant Source_Ptr := Sloc (N);
7850 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
7851 Par_Scope : constant Entity_Id := Scope (Par_Base);
7852 Full_N : constant Node_Id := New_Copy_Tree (N);
7853 Full_Der : Entity_Id := New_Copy (Derived_Type);
7854 Full_P : Entity_Id;
7856 function Available_Full_View (Typ : Entity_Id) return Entity_Id;
7857 -- Return the Full_View or Underlying_Full_View of Typ, whichever is
7858 -- present (they cannot be both present for the same type), or Empty.
7860 procedure Build_Full_Derivation;
7861 -- Build full derivation, i.e. derive from the full view
7863 procedure Copy_And_Build;
7864 -- Copy derived type declaration, replace parent with its full view,
7865 -- and build derivation
7867 -------------------------
7868 -- Available_Full_View --
7869 -------------------------
7871 function Available_Full_View (Typ : Entity_Id) return Entity_Id is
7872 begin
7873 if Present (Full_View (Typ)) then
7874 return Full_View (Typ);
7876 elsif Present (Underlying_Full_View (Typ)) then
7878 -- We should be called on a type with an underlying full view
7879 -- only by means of the recursive call made in Copy_And_Build
7880 -- through the first call to Build_Derived_Type, or else if
7881 -- the parent scope is being analyzed because we are deriving
7882 -- a completion.
7884 pragma Assert (Is_Completion or else In_Private_Part (Par_Scope));
7886 return Underlying_Full_View (Typ);
7888 else
7889 return Empty;
7890 end if;
7891 end Available_Full_View;
7893 ---------------------------
7894 -- Build_Full_Derivation --
7895 ---------------------------
7897 procedure Build_Full_Derivation is
7898 begin
7899 -- If parent scope is not open, install the declarations
7901 if not In_Open_Scopes (Par_Scope) then
7902 Install_Private_Declarations (Par_Scope);
7903 Install_Visible_Declarations (Par_Scope);
7904 Copy_And_Build;
7905 Uninstall_Declarations (Par_Scope);
7907 -- If parent scope is open and in another unit, and parent has a
7908 -- completion, then the derivation is taking place in the visible
7909 -- part of a child unit. In that case retrieve the full view of
7910 -- the parent momentarily.
7912 elsif not In_Same_Source_Unit (N, Parent_Type)
7913 and then Present (Full_View (Parent_Type))
7914 then
7915 Full_P := Full_View (Parent_Type);
7916 Exchange_Declarations (Parent_Type);
7917 Copy_And_Build;
7918 Exchange_Declarations (Full_P);
7920 -- Otherwise it is a local derivation
7922 else
7923 Copy_And_Build;
7924 end if;
7925 end Build_Full_Derivation;
7927 --------------------
7928 -- Copy_And_Build --
7929 --------------------
7931 procedure Copy_And_Build is
7932 Full_Parent : Entity_Id := Parent_Type;
7934 begin
7935 -- If the parent is itself derived from another private type,
7936 -- installing the private declarations has not affected its
7937 -- privacy status, so use its own full view explicitly.
7939 if Is_Private_Type (Full_Parent)
7940 and then Present (Full_View (Full_Parent))
7941 then
7942 Full_Parent := Full_View (Full_Parent);
7943 end if;
7945 -- If the full view is itself derived from another private type
7946 -- and has got an underlying full view, and this is done for a
7947 -- completion, i.e. to build the underlying full view of the type,
7948 -- then use this underlying full view. We cannot do that if this
7949 -- is not a completion, i.e. to build the full view of the type,
7950 -- because this would break the privacy of the parent type, except
7951 -- if the parent scope is being analyzed because we are deriving a
7952 -- completion.
7954 if Is_Private_Type (Full_Parent)
7955 and then Present (Underlying_Full_View (Full_Parent))
7956 and then (Is_Completion or else In_Private_Part (Par_Scope))
7957 then
7958 Full_Parent := Underlying_Full_View (Full_Parent);
7959 end if;
7961 -- For private, record, concurrent, access and almost all enumeration
7962 -- types, the derivation from the full view requires a fully-fledged
7963 -- declaration. In the other cases, just use an itype.
7965 if Is_Private_Type (Full_Parent)
7966 or else Is_Record_Type (Full_Parent)
7967 or else Is_Concurrent_Type (Full_Parent)
7968 or else Is_Access_Type (Full_Parent)
7969 or else
7970 (Is_Enumeration_Type (Full_Parent)
7971 and then not Is_Standard_Character_Type (Full_Parent)
7972 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7973 then
7974 -- Copy and adjust declaration to provide a completion for what
7975 -- is originally a private declaration. Indicate that full view
7976 -- is internally generated.
7978 Set_Comes_From_Source (Full_N, False);
7979 Set_Comes_From_Source (Full_Der, False);
7980 Set_Parent (Full_Der, Full_N);
7981 Set_Defining_Identifier (Full_N, Full_Der);
7983 -- If there are no constraints, adjust the subtype mark
7985 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7986 N_Subtype_Indication
7987 then
7988 Set_Subtype_Indication
7989 (Type_Definition (Full_N),
7990 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7991 end if;
7993 Insert_After (N, Full_N);
7995 -- Build full view of derived type from full view of parent which
7996 -- is now installed. Subprograms have been derived on the partial
7997 -- view, the completion does not derive them anew.
7999 if Is_Record_Type (Full_Parent) then
8001 -- If parent type is tagged, the completion inherits the proper
8002 -- primitive operations.
8004 if Is_Tagged_Type (Parent_Type) then
8005 Build_Derived_Record_Type
8006 (Full_N, Full_Parent, Full_Der, Derive_Subps);
8007 else
8008 Build_Derived_Record_Type
8009 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
8010 end if;
8012 else
8013 -- If the parent type is private, this is not a completion and
8014 -- we build the full derivation recursively as a completion.
8016 Build_Derived_Type
8017 (Full_N, Full_Parent, Full_Der,
8018 Is_Completion => Is_Private_Type (Full_Parent),
8019 Derive_Subps => False);
8020 end if;
8022 -- The full declaration has been introduced into the tree and
8023 -- processed in the step above. It should not be analyzed again
8024 -- (when encountered later in the current list of declarations)
8025 -- to prevent spurious name conflicts. The full entity remains
8026 -- invisible.
8028 Set_Analyzed (Full_N);
8030 else
8031 Full_Der :=
8032 Make_Defining_Identifier (Sloc (Derived_Type),
8033 Chars => Chars (Derived_Type));
8034 Set_Is_Itype (Full_Der);
8035 Set_Associated_Node_For_Itype (Full_Der, N);
8036 Set_Parent (Full_Der, N);
8037 Build_Derived_Type
8038 (N, Full_Parent, Full_Der,
8039 Is_Completion => False, Derive_Subps => False);
8040 end if;
8042 Set_Has_Private_Declaration (Full_Der);
8043 Set_Has_Private_Declaration (Derived_Type);
8045 Set_Scope (Full_Der, Scope (Derived_Type));
8046 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
8047 Set_Has_Size_Clause (Full_Der, False);
8048 Set_Has_Alignment_Clause (Full_Der, False);
8049 Set_Has_Delayed_Freeze (Full_Der);
8050 Set_Is_Frozen (Full_Der, False);
8051 Set_Freeze_Node (Full_Der, Empty);
8052 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
8053 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
8055 -- The convention on the base type may be set in the private part
8056 -- and not propagated to the subtype until later, so we obtain the
8057 -- convention from the base type of the parent.
8059 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
8060 end Copy_And_Build;
8062 -- Start of processing for Build_Derived_Private_Type
8064 begin
8065 if Is_Tagged_Type (Parent_Type) then
8066 Full_P := Full_View (Parent_Type);
8068 -- A type extension of a type with unknown discriminants is an
8069 -- indefinite type that the back-end cannot handle directly.
8070 -- We treat it as a private type, and build a completion that is
8071 -- derived from the full view of the parent, and hopefully has
8072 -- known discriminants.
8074 -- If the full view of the parent type has an underlying record view,
8075 -- use it to generate the underlying record view of this derived type
8076 -- (required for chains of derivations with unknown discriminants).
8078 -- Minor optimization: we avoid the generation of useless underlying
8079 -- record view entities if the private type declaration has unknown
8080 -- discriminants but its corresponding full view has no
8081 -- discriminants.
8083 if Has_Unknown_Discriminants (Parent_Type)
8084 and then Present (Full_P)
8085 and then (Has_Discriminants (Full_P)
8086 or else Present (Underlying_Record_View (Full_P)))
8087 and then not In_Open_Scopes (Par_Scope)
8088 and then Expander_Active
8089 then
8090 declare
8091 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
8092 New_Ext : constant Node_Id :=
8093 Copy_Separate_Tree
8094 (Record_Extension_Part (Type_Definition (N)));
8095 Decl : Node_Id;
8097 begin
8098 Build_Derived_Record_Type
8099 (N, Parent_Type, Derived_Type, Derive_Subps);
8101 -- Build anonymous completion, as a derivation from the full
8102 -- view of the parent. This is not a completion in the usual
8103 -- sense, because the current type is not private.
8105 Decl :=
8106 Make_Full_Type_Declaration (Loc,
8107 Defining_Identifier => Full_Der,
8108 Type_Definition =>
8109 Make_Derived_Type_Definition (Loc,
8110 Subtype_Indication =>
8111 New_Copy_Tree
8112 (Subtype_Indication (Type_Definition (N))),
8113 Record_Extension_Part => New_Ext));
8115 -- If the parent type has an underlying record view, use it
8116 -- here to build the new underlying record view.
8118 if Present (Underlying_Record_View (Full_P)) then
8119 pragma Assert
8120 (Nkind (Subtype_Indication (Type_Definition (Decl)))
8121 = N_Identifier);
8122 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
8123 Underlying_Record_View (Full_P));
8124 end if;
8126 Install_Private_Declarations (Par_Scope);
8127 Install_Visible_Declarations (Par_Scope);
8128 Insert_Before (N, Decl);
8130 -- Mark entity as an underlying record view before analysis,
8131 -- to avoid generating the list of its primitive operations
8132 -- (which is not really required for this entity) and thus
8133 -- prevent spurious errors associated with missing overriding
8134 -- of abstract primitives (overridden only for Derived_Type).
8136 Mutate_Ekind (Full_Der, E_Record_Type);
8137 Set_Is_Underlying_Record_View (Full_Der);
8138 Set_Default_SSO (Full_Der);
8139 Set_No_Reordering (Full_Der, No_Component_Reordering);
8141 Analyze (Decl);
8143 pragma Assert (Has_Discriminants (Full_Der)
8144 and then not Has_Unknown_Discriminants (Full_Der));
8146 Uninstall_Declarations (Par_Scope);
8148 -- Freeze the underlying record view, to prevent generation of
8149 -- useless dispatching information, which is simply shared with
8150 -- the real derived type.
8152 Set_Is_Frozen (Full_Der);
8154 -- If the derived type has access discriminants, create
8155 -- references to their anonymous types now, to prevent
8156 -- back-end problems when their first use is in generated
8157 -- bodies of primitives.
8159 declare
8160 E : Entity_Id;
8162 begin
8163 E := First_Entity (Full_Der);
8165 while Present (E) loop
8166 if Ekind (E) = E_Discriminant
8167 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
8168 then
8169 Build_Itype_Reference (Etype (E), Decl);
8170 end if;
8172 Next_Entity (E);
8173 end loop;
8174 end;
8176 -- Set up links between real entity and underlying record view
8178 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
8179 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
8180 end;
8182 -- If discriminants are known, build derived record
8184 else
8185 Build_Derived_Record_Type
8186 (N, Parent_Type, Derived_Type, Derive_Subps);
8187 end if;
8189 return;
8191 elsif Has_Discriminants (Parent_Type) then
8193 -- Build partial view of derived type from partial view of parent.
8194 -- This must be done before building the full derivation because the
8195 -- second derivation will modify the discriminants of the first and
8196 -- the discriminants are chained with the rest of the components in
8197 -- the full derivation.
8199 Build_Derived_Record_Type
8200 (N, Parent_Type, Derived_Type, Derive_Subps);
8202 -- Build the full derivation if this is not the anonymous derived
8203 -- base type created by Build_Derived_Record_Type in the constrained
8204 -- case (see point 5. of its head comment) since we build it for the
8205 -- derived subtype.
8207 if Present (Available_Full_View (Parent_Type))
8208 and then not Is_Itype (Derived_Type)
8209 then
8210 declare
8211 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
8212 Discr : Entity_Id;
8213 Last_Discr : Entity_Id;
8215 begin
8216 -- If this is not a completion, construct the implicit full
8217 -- view by deriving from the full view of the parent type.
8218 -- But if this is a completion, the derived private type
8219 -- being built is a full view and the full derivation can
8220 -- only be its underlying full view.
8222 Build_Full_Derivation;
8224 if not Is_Completion then
8225 Set_Full_View (Derived_Type, Full_Der);
8226 else
8227 Set_Underlying_Full_View (Derived_Type, Full_Der);
8228 Set_Is_Underlying_Full_View (Full_Der);
8229 end if;
8231 if not Is_Base_Type (Derived_Type) then
8232 Set_Full_View (Der_Base, Base_Type (Full_Der));
8233 end if;
8235 -- Copy the discriminant list from full view to the partial
8236 -- view (base type and its subtype). Gigi requires that the
8237 -- partial and full views have the same discriminants.
8239 -- Note that since the partial view points to discriminants
8240 -- in the full view, their scope will be that of the full
8241 -- view. This might cause some front end problems and need
8242 -- adjustment???
8244 Discr := First_Discriminant (Base_Type (Full_Der));
8245 Set_First_Entity (Der_Base, Discr);
8247 loop
8248 Last_Discr := Discr;
8249 Next_Discriminant (Discr);
8250 exit when No (Discr);
8251 end loop;
8253 Set_Last_Entity (Der_Base, Last_Discr);
8254 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
8255 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
8256 end;
8257 end if;
8259 elsif Present (Available_Full_View (Parent_Type))
8260 and then Has_Discriminants (Available_Full_View (Parent_Type))
8261 then
8262 if Has_Unknown_Discriminants (Parent_Type)
8263 and then Nkind (Subtype_Indication (Type_Definition (N))) =
8264 N_Subtype_Indication
8265 then
8266 Error_Msg_N
8267 ("cannot constrain type with unknown discriminants",
8268 Subtype_Indication (Type_Definition (N)));
8269 return;
8270 end if;
8272 -- If this is not a completion, construct the implicit full view by
8273 -- deriving from the full view of the parent type. But if this is a
8274 -- completion, the derived private type being built is a full view
8275 -- and the full derivation can only be its underlying full view.
8277 Build_Full_Derivation;
8279 if not Is_Completion then
8280 Set_Full_View (Derived_Type, Full_Der);
8281 else
8282 Set_Underlying_Full_View (Derived_Type, Full_Der);
8283 Set_Is_Underlying_Full_View (Full_Der);
8284 end if;
8286 -- In any case, the primitive operations are inherited from the
8287 -- parent type, not from the internal full view.
8289 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
8291 if Derive_Subps then
8292 Derive_Subprograms (Parent_Type, Derived_Type);
8293 end if;
8295 Set_Stored_Constraint (Derived_Type, No_Elist);
8296 Set_Is_Constrained
8297 (Derived_Type, Is_Constrained (Available_Full_View (Parent_Type)));
8299 else
8300 -- Untagged type, No discriminants on either view
8302 if Nkind (Subtype_Indication (Type_Definition (N))) =
8303 N_Subtype_Indication
8304 then
8305 Error_Msg_N
8306 ("illegal constraint on type without discriminants", N);
8307 end if;
8309 if Present (Discriminant_Specifications (N))
8310 and then Present (Available_Full_View (Parent_Type))
8311 and then not Is_Tagged_Type (Available_Full_View (Parent_Type))
8312 then
8313 Error_Msg_N ("cannot add discriminants to untagged type", N);
8314 end if;
8316 Set_Stored_Constraint (Derived_Type, No_Elist);
8317 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
8319 Set_Is_Controlled_Active
8320 (Derived_Type, Is_Controlled_Active (Parent_Type));
8322 Set_Disable_Controlled
8323 (Derived_Type, Disable_Controlled (Parent_Type));
8325 Set_Has_Controlled_Component
8326 (Derived_Type, Has_Controlled_Component (Parent_Type));
8328 -- Direct controlled types do not inherit Finalize_Storage_Only flag
8330 if not Is_Controlled (Parent_Type) then
8331 Set_Finalize_Storage_Only
8332 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
8333 end if;
8335 -- If this is not a completion, construct the implicit full view by
8336 -- deriving from the full view of the parent type. But if this is a
8337 -- completion, the derived private type being built is a full view
8338 -- and the full derivation can only be its underlying full view.
8340 -- ??? If the parent type is untagged private and its completion is
8341 -- tagged, this mechanism will not work because we cannot derive from
8342 -- the tagged full view unless we have an extension.
8344 if Present (Available_Full_View (Parent_Type))
8345 and then not Is_Tagged_Type (Available_Full_View (Parent_Type))
8346 and then not Error_Posted (N)
8347 then
8348 Build_Full_Derivation;
8350 if not Is_Completion then
8351 Set_Full_View (Derived_Type, Full_Der);
8352 else
8353 Set_Underlying_Full_View (Derived_Type, Full_Der);
8354 Set_Is_Underlying_Full_View (Full_Der);
8355 end if;
8356 end if;
8357 end if;
8359 Set_Has_Unknown_Discriminants (Derived_Type,
8360 Has_Unknown_Discriminants (Parent_Type));
8362 if Is_Private_Type (Derived_Type) then
8363 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8364 end if;
8366 -- If the parent base type is in scope, add the derived type to its
8367 -- list of private dependents, because its full view may become
8368 -- visible subsequently (in a nested private part, a body, or in a
8369 -- further child unit).
8371 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
8372 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
8374 -- Check for unusual case where a type completed by a private
8375 -- derivation occurs within a package nested in a child unit, and
8376 -- the parent is declared in an ancestor.
8378 if Is_Child_Unit (Scope (Current_Scope))
8379 and then Is_Completion
8380 and then In_Private_Part (Current_Scope)
8381 and then Scope (Parent_Type) /= Current_Scope
8383 -- Note that if the parent has a completion in the private part,
8384 -- (which is itself a derivation from some other private type)
8385 -- it is that completion that is visible, there is no full view
8386 -- available, and no special processing is needed.
8388 and then Present (Full_View (Parent_Type))
8389 then
8390 -- In this case, the full view of the parent type will become
8391 -- visible in the body of the enclosing child, and only then will
8392 -- the current type be possibly non-private. Build an underlying
8393 -- full view that will be installed when the enclosing child body
8394 -- is compiled.
8396 if Present (Underlying_Full_View (Derived_Type)) then
8397 Full_Der := Underlying_Full_View (Derived_Type);
8398 else
8399 Build_Full_Derivation;
8400 Set_Underlying_Full_View (Derived_Type, Full_Der);
8401 Set_Is_Underlying_Full_View (Full_Der);
8402 end if;
8404 -- The full view will be used to swap entities on entry/exit to
8405 -- the body, and must appear in the entity list for the package.
8407 Append_Entity (Full_Der, Scope (Derived_Type));
8408 end if;
8409 end if;
8410 end Build_Derived_Private_Type;
8412 -------------------------------
8413 -- Build_Derived_Record_Type --
8414 -------------------------------
8416 -- 1. INTRODUCTION
8418 -- Ideally we would like to use the same model of type derivation for
8419 -- tagged and untagged record types. Unfortunately this is not quite
8420 -- possible because the semantics of representation clauses is different
8421 -- for tagged and untagged records under inheritance. Consider the
8422 -- following:
8424 -- type R (...) is [tagged] record ... end record;
8425 -- type T (...) is new R (...) [with ...];
8427 -- The representation clauses for T can specify a completely different
8428 -- record layout from R's. Hence the same component can be placed in two
8429 -- very different positions in objects of type T and R. If R and T are
8430 -- tagged types, representation clauses for T can only specify the layout
8431 -- of non inherited components, thus components that are common in R and T
8432 -- have the same position in objects of type R and T.
8434 -- This has two implications. The first is that the entire tree for R's
8435 -- declaration needs to be copied for T in the untagged case, so that T
8436 -- can be viewed as a record type of its own with its own representation
8437 -- clauses. The second implication is the way we handle discriminants.
8438 -- Specifically, in the untagged case we need a way to communicate to Gigi
8439 -- what are the real discriminants in the record, while for the semantics
8440 -- we need to consider those introduced by the user to rename the
8441 -- discriminants in the parent type. This is handled by introducing the
8442 -- notion of stored discriminants. See below for more.
8444 -- Fortunately the way regular components are inherited can be handled in
8445 -- the same way in tagged and untagged types.
8447 -- To complicate things a bit more the private view of a private extension
8448 -- cannot be handled in the same way as the full view (for one thing the
8449 -- semantic rules are somewhat different). We will explain what differs
8450 -- below.
8452 -- 2. DISCRIMINANTS UNDER INHERITANCE
8454 -- The semantic rules governing the discriminants of derived types are
8455 -- quite subtle.
8457 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
8458 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
8460 -- If parent type has discriminants, then the discriminants that are
8461 -- declared in the derived type are [3.4 (11)]:
8463 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
8464 -- there is one;
8466 -- o Otherwise, each discriminant of the parent type (implicitly declared
8467 -- in the same order with the same specifications). In this case, the
8468 -- discriminants are said to be "inherited", or if unknown in the parent
8469 -- are also unknown in the derived type.
8471 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8473 -- o The parent subtype must be constrained;
8475 -- o If the parent type is not a tagged type, then each discriminant of
8476 -- the derived type must be used in the constraint defining a parent
8477 -- subtype. [Implementation note: This ensures that the new discriminant
8478 -- can share storage with an existing discriminant.]
8480 -- For the derived type each discriminant of the parent type is either
8481 -- inherited, constrained to equal some new discriminant of the derived
8482 -- type, or constrained to the value of an expression.
8484 -- When inherited or constrained to equal some new discriminant, the
8485 -- parent discriminant and the discriminant of the derived type are said
8486 -- to "correspond".
8488 -- If a discriminant of the parent type is constrained to a specific value
8489 -- in the derived type definition, then the discriminant is said to be
8490 -- "specified" by that derived type definition.
8492 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8494 -- We have spoken about stored discriminants in point 1 (introduction)
8495 -- above. There are two sorts of stored discriminants: implicit and
8496 -- explicit. As long as the derived type inherits the same discriminants as
8497 -- the root record type, stored discriminants are the same as regular
8498 -- discriminants, and are said to be implicit. However, if any discriminant
8499 -- in the root type was renamed in the derived type, then the derived
8500 -- type will contain explicit stored discriminants. Explicit stored
8501 -- discriminants are discriminants in addition to the semantically visible
8502 -- discriminants defined for the derived type. Stored discriminants are
8503 -- used by Gigi to figure out what are the physical discriminants in
8504 -- objects of the derived type (see precise definition in einfo.ads).
8505 -- As an example, consider the following:
8507 -- type R (D1, D2, D3 : Int) is record ... end record;
8508 -- type T1 is new R;
8509 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8510 -- type T3 is new T2;
8511 -- type T4 (Y : Int) is new T3 (Y, 99);
8513 -- The following table summarizes the discriminants and stored
8514 -- discriminants in R and T1 through T4:
8516 -- Type Discrim Stored Discrim Comment
8517 -- R (D1, D2, D3) (D1, D2, D3) Stored discrims implicit in R
8518 -- T1 (D1, D2, D3) (D1, D2, D3) Stored discrims implicit in T1
8519 -- T2 (X1, X2) (D1, D2, D3) Stored discrims EXPLICIT in T2
8520 -- T3 (X1, X2) (D1, D2, D3) Stored discrims EXPLICIT in T3
8521 -- T4 (Y) (D1, D2, D3) Stored discrims EXPLICIT in T4
8523 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8524 -- find the corresponding discriminant in the parent type, while
8525 -- Original_Record_Component (abbreviated ORC below) the actual physical
8526 -- component that is renamed. Finally the field Is_Completely_Hidden
8527 -- (abbreviated ICH below) is set for all explicit stored discriminants
8528 -- (see einfo.ads for more info). For the above example this gives:
8530 -- Discrim CD ORC ICH
8531 -- ^^^^^^^ ^^ ^^^ ^^^
8532 -- D1 in R empty itself no
8533 -- D2 in R empty itself no
8534 -- D3 in R empty itself no
8536 -- D1 in T1 D1 in R itself no
8537 -- D2 in T1 D2 in R itself no
8538 -- D3 in T1 D3 in R itself no
8540 -- X1 in T2 D3 in T1 D3 in T2 no
8541 -- X2 in T2 D1 in T1 D1 in T2 no
8542 -- D1 in T2 empty itself yes
8543 -- D2 in T2 empty itself yes
8544 -- D3 in T2 empty itself yes
8546 -- X1 in T3 X1 in T2 D3 in T3 no
8547 -- X2 in T3 X2 in T2 D1 in T3 no
8548 -- D1 in T3 empty itself yes
8549 -- D2 in T3 empty itself yes
8550 -- D3 in T3 empty itself yes
8552 -- Y in T4 X1 in T3 D3 in T4 no
8553 -- D1 in T4 empty itself yes
8554 -- D2 in T4 empty itself yes
8555 -- D3 in T4 empty itself yes
8557 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8559 -- Type derivation for tagged types is fairly straightforward. If no
8560 -- discriminants are specified by the derived type, these are inherited
8561 -- from the parent. No explicit stored discriminants are ever necessary.
8562 -- The only manipulation that is done to the tree is that of adding a
8563 -- _parent field with parent type and constrained to the same constraint
8564 -- specified for the parent in the derived type definition. For instance:
8566 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8567 -- type T1 is new R with null record;
8568 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8570 -- are changed into:
8572 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8573 -- _parent : R (D1, D2, D3);
8574 -- end record;
8576 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8577 -- _parent : T1 (X2, 88, X1);
8578 -- end record;
8580 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8581 -- ORC and ICH fields are:
8583 -- Discrim CD ORC ICH
8584 -- ^^^^^^^ ^^ ^^^ ^^^
8585 -- D1 in R empty itself no
8586 -- D2 in R empty itself no
8587 -- D3 in R empty itself no
8589 -- D1 in T1 D1 in R D1 in R no
8590 -- D2 in T1 D2 in R D2 in R no
8591 -- D3 in T1 D3 in R D3 in R no
8593 -- X1 in T2 D3 in T1 D3 in R no
8594 -- X2 in T2 D1 in T1 D1 in R no
8596 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8598 -- Regardless of whether we dealing with a tagged or untagged type
8599 -- we will transform all derived type declarations of the form
8601 -- type T is new R (...) [with ...];
8602 -- or
8603 -- subtype S is R (...);
8604 -- type T is new S [with ...];
8605 -- into
8606 -- type BT is new R [with ...];
8607 -- subtype T is BT (...);
8609 -- That is, the base derived type is constrained only if it has no
8610 -- discriminants. The reason for doing this is that GNAT's semantic model
8611 -- assumes that a base type with discriminants is unconstrained.
8613 -- Note that, strictly speaking, the above transformation is not always
8614 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8616 -- procedure B34011A is
8617 -- type REC (D : integer := 0) is record
8618 -- I : Integer;
8619 -- end record;
8621 -- package P is
8622 -- type T6 is new Rec;
8623 -- function F return T6;
8624 -- end P;
8626 -- use P;
8627 -- package Q6 is
8628 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8629 -- end Q6;
8631 -- The definition of Q6.U is illegal. However transforming Q6.U into
8633 -- type BaseU is new T6;
8634 -- subtype U is BaseU (Q6.F.I)
8636 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8637 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8638 -- the transformation described above.
8640 -- There is another instance where the above transformation is incorrect.
8641 -- Consider:
8643 -- package Pack is
8644 -- type Base (D : Integer) is tagged null record;
8645 -- procedure P (X : Base);
8647 -- type Der is new Base (2) with null record;
8648 -- procedure P (X : Der);
8649 -- end Pack;
8651 -- Then the above transformation turns this into
8653 -- type Der_Base is new Base with null record;
8654 -- -- procedure P (X : Base) is implicitly inherited here
8655 -- -- as procedure P (X : Der_Base).
8657 -- subtype Der is Der_Base (2);
8658 -- procedure P (X : Der);
8659 -- -- The overriding of P (X : Der_Base) is illegal since we
8660 -- -- have a parameter conformance problem.
8662 -- To get around this problem, after having semantically processed Der_Base
8663 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8664 -- Discriminant_Constraint from Der so that when parameter conformance is
8665 -- checked when P is overridden, no semantic errors are flagged.
8667 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8669 -- Regardless of whether we are dealing with a tagged or untagged type
8670 -- we will transform all derived type declarations of the form
8672 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8673 -- type T is new R [with ...];
8674 -- into
8675 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8677 -- The reason for such transformation is that it allows us to implement a
8678 -- very clean form of component inheritance as explained below.
8680 -- Note that this transformation is not achieved by direct tree rewriting
8681 -- and manipulation, but rather by redoing the semantic actions that the
8682 -- above transformation will entail. This is done directly in routine
8683 -- Inherit_Components.
8685 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8687 -- In both tagged and untagged derived types, regular non discriminant
8688 -- components are inherited in the derived type from the parent type. In
8689 -- the absence of discriminants component, inheritance is straightforward
8690 -- as components can simply be copied from the parent.
8692 -- If the parent has discriminants, inheriting components constrained with
8693 -- these discriminants requires caution. Consider the following example:
8695 -- type R (D1, D2 : Positive) is [tagged] record
8696 -- S : String (D1 .. D2);
8697 -- end record;
8699 -- type T1 is new R [with null record];
8700 -- type T2 (X : positive) is new R (1, X) [with null record];
8702 -- As explained in 6. above, T1 is rewritten as
8703 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8704 -- which makes the treatment for T1 and T2 identical.
8706 -- What we want when inheriting S, is that references to D1 and D2 in R are
8707 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8708 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8709 -- with either discriminant references in the derived type or expressions.
8710 -- This replacement is achieved as follows: before inheriting R's
8711 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8712 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8713 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8714 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8715 -- by String (1 .. X).
8717 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8719 -- We explain here the rules governing private type extensions relevant to
8720 -- type derivation. These rules are explained on the following example:
8722 -- type D [(...)] is new A [(...)] with private; <-- partial view
8723 -- type D [(...)] is new P [(...)] with null record; <-- full view
8725 -- Type A is called the ancestor subtype of the private extension.
8726 -- Type P is the parent type of the full view of the private extension. It
8727 -- must be A or a type derived from A.
8729 -- The rules concerning the discriminants of private type extensions are
8730 -- [7.3(10-13)]:
8732 -- o If a private extension inherits known discriminants from the ancestor
8733 -- subtype, then the full view must also inherit its discriminants from
8734 -- the ancestor subtype and the parent subtype of the full view must be
8735 -- constrained if and only if the ancestor subtype is constrained.
8737 -- o If a partial view has unknown discriminants, then the full view may
8738 -- define a definite or an indefinite subtype, with or without
8739 -- discriminants.
8741 -- o If a partial view has neither known nor unknown discriminants, then
8742 -- the full view must define a definite subtype.
8744 -- o If the ancestor subtype of a private extension has constrained
8745 -- discriminants, then the parent subtype of the full view must impose a
8746 -- statically matching constraint on those discriminants.
8748 -- This means that only the following forms of private extensions are
8749 -- allowed:
8751 -- type D is new A with private; <-- partial view
8752 -- type D is new P with null record; <-- full view
8754 -- If A has no discriminants than P has no discriminants, otherwise P must
8755 -- inherit A's discriminants.
8757 -- type D is new A (...) with private; <-- partial view
8758 -- type D is new P (:::) with null record; <-- full view
8760 -- P must inherit A's discriminants and (...) and (:::) must statically
8761 -- match.
8763 -- subtype A is R (...);
8764 -- type D is new A with private; <-- partial view
8765 -- type D is new P with null record; <-- full view
8767 -- P must have inherited R's discriminants and must be derived from A or
8768 -- any of its subtypes.
8770 -- type D (..) is new A with private; <-- partial view
8771 -- type D (..) is new P [(:::)] with null record; <-- full view
8773 -- No specific constraints on P's discriminants or constraint (:::).
8774 -- Note that A can be unconstrained, but the parent subtype P must either
8775 -- be constrained or (:::) must be present.
8777 -- type D (..) is new A [(...)] with private; <-- partial view
8778 -- type D (..) is new P [(:::)] with null record; <-- full view
8780 -- P's constraints on A's discriminants must statically match those
8781 -- imposed by (...).
8783 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8785 -- The full view of a private extension is handled exactly as described
8786 -- above. The model chose for the private view of a private extension is
8787 -- the same for what concerns discriminants (i.e. they receive the same
8788 -- treatment as in the tagged case). However, the private view of the
8789 -- private extension always inherits the components of the parent base,
8790 -- without replacing any discriminant reference. Strictly speaking this is
8791 -- incorrect. However, Gigi never uses this view to generate code so this
8792 -- is a purely semantic issue. In theory, a set of transformations similar
8793 -- to those given in 5. and 6. above could be applied to private views of
8794 -- private extensions to have the same model of component inheritance as
8795 -- for non private extensions. However, this is not done because it would
8796 -- further complicate private type processing. Semantically speaking, this
8797 -- leaves us in an uncomfortable situation. As an example consider:
8799 -- package Pack is
8800 -- type R (D : integer) is tagged record
8801 -- S : String (1 .. D);
8802 -- end record;
8803 -- procedure P (X : R);
8804 -- type T is new R (1) with private;
8805 -- private
8806 -- type T is new R (1) with null record;
8807 -- end;
8809 -- This is transformed into:
8811 -- package Pack is
8812 -- type R (D : integer) is tagged record
8813 -- S : String (1 .. D);
8814 -- end record;
8815 -- procedure P (X : R);
8816 -- type T is new R (1) with private;
8817 -- private
8818 -- type BaseT is new R with null record;
8819 -- subtype T is BaseT (1);
8820 -- end;
8822 -- (strictly speaking the above is incorrect Ada)
8824 -- From the semantic standpoint the private view of private extension T
8825 -- should be flagged as constrained since one can clearly have
8827 -- Obj : T;
8829 -- in a unit withing Pack. However, when deriving subprograms for the
8830 -- private view of private extension T, T must be seen as unconstrained
8831 -- since T has discriminants (this is a constraint of the current
8832 -- subprogram derivation model). Thus, when processing the private view of
8833 -- a private extension such as T, we first mark T as unconstrained, we
8834 -- process it, we perform program derivation and just before returning from
8835 -- Build_Derived_Record_Type we mark T as constrained.
8837 -- ??? Are there are other uncomfortable cases that we will have to
8838 -- deal with.
8840 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8842 -- Types that are derived from a visible record type and have a private
8843 -- extension present other peculiarities. They behave mostly like private
8844 -- types, but if they have primitive operations defined, these will not
8845 -- have the proper signatures for further inheritance, because other
8846 -- primitive operations will use the implicit base that we define for
8847 -- private derivations below. This affect subprogram inheritance (see
8848 -- Derive_Subprograms for details). We also derive the implicit base from
8849 -- the base type of the full view, so that the implicit base is a record
8850 -- type and not another private type, This avoids infinite loops.
8852 procedure Build_Derived_Record_Type
8853 (N : Node_Id;
8854 Parent_Type : Entity_Id;
8855 Derived_Type : Entity_Id;
8856 Derive_Subps : Boolean := True)
8858 Discriminant_Specs : constant Boolean :=
8859 Present (Discriminant_Specifications (N));
8860 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
8861 Loc : constant Source_Ptr := Sloc (N);
8862 Private_Extension : constant Boolean :=
8863 Nkind (N) = N_Private_Extension_Declaration;
8864 Assoc_List : Elist_Id;
8865 Constraint_Present : Boolean;
8866 Constrs : Elist_Id;
8867 Discrim : Entity_Id;
8868 Indic : Node_Id;
8869 Inherit_Discrims : Boolean := False;
8870 Last_Discrim : Entity_Id;
8871 New_Base : Entity_Id;
8872 New_Decl : Node_Id;
8873 New_Discrs : Elist_Id;
8874 New_Indic : Node_Id;
8875 Parent_Base : Entity_Id;
8876 Save_Etype : Entity_Id;
8877 Save_Discr_Constr : Elist_Id;
8878 Save_Next_Entity : Entity_Id;
8879 Type_Def : Node_Id;
8881 Discs : Elist_Id := New_Elmt_List;
8882 -- An empty Discs list means that there were no constraints in the
8883 -- subtype indication or that there was an error processing it.
8885 procedure Check_Generic_Ancestors;
8886 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8887 -- cannot be declared at a deeper level than its parent type is
8888 -- removed. The check on derivation within a generic body is also
8889 -- relaxed, but there's a restriction that a derived tagged type
8890 -- cannot be declared in a generic body if it's derived directly
8891 -- or indirectly from a formal type of that generic. This applies
8892 -- to progenitors as well.
8894 -----------------------------
8895 -- Check_Generic_Ancestors --
8896 -----------------------------
8898 procedure Check_Generic_Ancestors is
8899 Ancestor_Type : Entity_Id;
8900 Intf_List : List_Id;
8901 Intf_Name : Node_Id;
8903 procedure Check_Ancestor;
8904 -- For parent and progenitors.
8906 --------------------
8907 -- Check_Ancestor --
8908 --------------------
8910 procedure Check_Ancestor is
8911 begin
8912 -- If the derived type does have a formal type as an ancestor
8913 -- then it's an error if the derived type is declared within
8914 -- the body of the generic unit that declares the formal type
8915 -- in its generic formal part. It's sufficient to check whether
8916 -- the ancestor type is declared inside the same generic body
8917 -- as the derived type (such as within a nested generic spec),
8918 -- in which case the derivation is legal. If the formal type is
8919 -- declared outside of that generic body, then it's certain
8920 -- that the derived type is declared within the generic body
8921 -- of the generic unit declaring the formal type.
8923 if Is_Generic_Type (Ancestor_Type)
8924 and then Enclosing_Generic_Body (Ancestor_Type) /=
8925 Enclosing_Generic_Body (Derived_Type)
8926 then
8927 Error_Msg_NE
8928 ("ancestor type& is formal type of enclosing"
8929 & " generic unit (RM 3.9.1 (4/2))",
8930 Indic, Ancestor_Type);
8931 end if;
8932 end Check_Ancestor;
8934 begin
8935 if Nkind (N) = N_Private_Extension_Declaration then
8936 Intf_List := Interface_List (N);
8937 else
8938 Intf_List := Interface_List (Type_Definition (N));
8939 end if;
8941 if Present (Enclosing_Generic_Body (Derived_Type)) then
8942 Ancestor_Type := Parent_Type;
8944 while not Is_Generic_Type (Ancestor_Type)
8945 and then Etype (Ancestor_Type) /= Ancestor_Type
8946 loop
8947 Ancestor_Type := Etype (Ancestor_Type);
8948 end loop;
8950 Check_Ancestor;
8952 if Present (Intf_List) then
8953 Intf_Name := First (Intf_List);
8954 while Present (Intf_Name) loop
8955 Ancestor_Type := Entity (Intf_Name);
8956 Check_Ancestor;
8957 Next (Intf_Name);
8958 end loop;
8959 end if;
8960 end if;
8961 end Check_Generic_Ancestors;
8963 -- Start of processing for Build_Derived_Record_Type
8965 begin
8966 if Ekind (Parent_Type) = E_Record_Type_With_Private
8967 and then Present (Full_View (Parent_Type))
8968 and then Has_Discriminants (Parent_Type)
8969 then
8970 Parent_Base := Base_Type (Full_View (Parent_Type));
8971 else
8972 Parent_Base := Base_Type (Parent_Type);
8973 end if;
8975 -- If the parent type is declared as a subtype of another private
8976 -- type with inherited discriminants, its generated base type is
8977 -- itself a record subtype. To further inherit the constraint we
8978 -- need to use its own base to have an unconstrained type on which
8979 -- to apply the inherited constraint.
8981 if Ekind (Parent_Base) = E_Record_Subtype then
8982 Parent_Base := Base_Type (Parent_Base);
8983 end if;
8985 -- AI05-0115: if this is a derivation from a private type in some
8986 -- other scope that may lead to invisible components for the derived
8987 -- type, mark it accordingly.
8989 if Is_Private_Type (Parent_Type) then
8990 if Scope (Parent_Base) = Scope (Derived_Type) then
8991 null;
8993 elsif In_Open_Scopes (Scope (Parent_Base))
8994 and then In_Private_Part (Scope (Parent_Base))
8995 then
8996 null;
8998 else
8999 Set_Has_Private_Ancestor (Derived_Type);
9000 end if;
9002 else
9003 Set_Has_Private_Ancestor
9004 (Derived_Type, Has_Private_Ancestor (Parent_Type));
9005 end if;
9007 -- Before we start the previously documented transformations, here is
9008 -- little fix for size and alignment of tagged types. Normally when we
9009 -- derive type D from type P, we copy the size and alignment of P as the
9010 -- default for D, and in the absence of explicit representation clauses
9011 -- for D, the size and alignment are indeed the same as the parent.
9013 -- But this is wrong for tagged types, since fields may be added, and
9014 -- the default size may need to be larger, and the default alignment may
9015 -- need to be larger.
9017 -- We therefore reset the size and alignment fields in the tagged case.
9018 -- Note that the size and alignment will in any case be at least as
9019 -- large as the parent type (since the derived type has a copy of the
9020 -- parent type in the _parent field)
9022 -- The type is also marked as being tagged here, which is needed when
9023 -- processing components with a self-referential anonymous access type
9024 -- in the call to Check_Anonymous_Access_Components below. Note that
9025 -- this flag is also set later on for completeness.
9027 if Is_Tagged then
9028 Set_Is_Tagged_Type (Derived_Type);
9029 Reinit_Size_Align (Derived_Type);
9030 end if;
9032 -- STEP 0a: figure out what kind of derived type declaration we have
9034 if Private_Extension then
9035 Type_Def := N;
9036 Mutate_Ekind (Derived_Type, E_Record_Type_With_Private);
9037 Set_Default_SSO (Derived_Type);
9038 Set_No_Reordering (Derived_Type, No_Component_Reordering);
9040 else
9041 Type_Def := Type_Definition (N);
9043 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
9044 -- Parent_Base can be a private type or private extension. However,
9045 -- for tagged types with an extension the newly added fields are
9046 -- visible and hence the Derived_Type is always an E_Record_Type.
9047 -- (except that the parent may have its own private fields).
9048 -- For untagged types we preserve the Ekind of the Parent_Base.
9050 if Present (Record_Extension_Part (Type_Def)) then
9051 Mutate_Ekind (Derived_Type, E_Record_Type);
9052 Set_Default_SSO (Derived_Type);
9053 Set_No_Reordering (Derived_Type, No_Component_Reordering);
9055 -- Create internal access types for components with anonymous
9056 -- access types.
9058 if Ada_Version >= Ada_2005 then
9059 Check_Anonymous_Access_Components
9060 (N, Derived_Type, Derived_Type,
9061 Component_List (Record_Extension_Part (Type_Def)));
9062 end if;
9064 else
9065 Mutate_Ekind (Derived_Type, Ekind (Parent_Base));
9066 end if;
9067 end if;
9069 -- Indic can either be an N_Identifier if the subtype indication
9070 -- contains no constraint or an N_Subtype_Indication if the subtype
9071 -- indication has a constraint. In either case it can include an
9072 -- interface list.
9074 Indic := Subtype_Indication (Type_Def);
9075 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
9077 -- Check that the type has visible discriminants. The type may be
9078 -- a private type with unknown discriminants whose full view has
9079 -- discriminants which are invisible.
9081 if Constraint_Present then
9082 if not Has_Discriminants (Parent_Base)
9083 or else
9084 (Has_Unknown_Discriminants (Parent_Base)
9085 and then Is_Private_Type (Parent_Base))
9086 then
9087 Error_Msg_N
9088 ("invalid constraint: type has no discriminant",
9089 Constraint (Indic));
9091 Constraint_Present := False;
9092 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
9094 elsif Is_Constrained (Parent_Type) then
9095 Error_Msg_N
9096 ("invalid constraint: parent type is already constrained",
9097 Constraint (Indic));
9099 Constraint_Present := False;
9100 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
9101 end if;
9102 end if;
9104 -- STEP 0b: If needed, apply transformation given in point 5. above
9106 if not Private_Extension
9107 and then Has_Discriminants (Parent_Type)
9108 and then not Discriminant_Specs
9109 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
9110 then
9111 -- First, we must analyze the constraint (see comment in point 5.)
9112 -- The constraint may come from the subtype indication of the full
9113 -- declaration.
9115 if Constraint_Present then
9116 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
9118 -- If there is no explicit constraint, there might be one that is
9119 -- inherited from a constrained parent type. In that case verify that
9120 -- it conforms to the constraint in the partial view. In perverse
9121 -- cases the parent subtypes of the partial and full view can have
9122 -- different constraints.
9124 elsif Present (Stored_Constraint (Parent_Type)) then
9125 New_Discrs := Stored_Constraint (Parent_Type);
9127 else
9128 New_Discrs := No_Elist;
9129 end if;
9131 if Has_Discriminants (Derived_Type)
9132 and then Has_Private_Declaration (Derived_Type)
9133 and then Present (Discriminant_Constraint (Derived_Type))
9134 and then Present (New_Discrs)
9135 then
9136 -- Verify that constraints of the full view statically match
9137 -- those given in the partial view.
9139 declare
9140 C1, C2 : Elmt_Id;
9142 begin
9143 C1 := First_Elmt (New_Discrs);
9144 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
9145 while Present (C1) and then Present (C2) loop
9146 if Fully_Conformant_Expressions (Node (C1), Node (C2))
9147 or else
9148 (Is_OK_Static_Expression (Node (C1))
9149 and then Is_OK_Static_Expression (Node (C2))
9150 and then
9151 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
9152 then
9153 null;
9155 else
9156 if Constraint_Present then
9157 Error_Msg_N
9158 ("constraint not conformant to previous declaration",
9159 Node (C1));
9160 else
9161 Error_Msg_N
9162 ("constraint of full view is incompatible "
9163 & "with partial view", N);
9164 end if;
9165 end if;
9167 Next_Elmt (C1);
9168 Next_Elmt (C2);
9169 end loop;
9170 end;
9171 end if;
9173 -- Insert and analyze the declaration for the unconstrained base type
9175 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
9177 New_Decl :=
9178 Make_Full_Type_Declaration (Loc,
9179 Defining_Identifier => New_Base,
9180 Type_Definition =>
9181 Make_Derived_Type_Definition (Loc,
9182 Abstract_Present => Abstract_Present (Type_Def),
9183 Limited_Present => Limited_Present (Type_Def),
9184 Subtype_Indication =>
9185 New_Occurrence_Of (Parent_Base, Loc),
9186 Record_Extension_Part =>
9187 Relocate_Node (Record_Extension_Part (Type_Def)),
9188 Interface_List => Interface_List (Type_Def)));
9190 Set_Parent (New_Decl, Parent (N));
9191 Mark_Rewrite_Insertion (New_Decl);
9192 Insert_Before (N, New_Decl);
9194 -- In the extension case, make sure ancestor is frozen appropriately
9195 -- (see also non-discriminated case below).
9197 if Present (Record_Extension_Part (Type_Def))
9198 or else Is_Interface (Parent_Base)
9199 then
9200 Freeze_Before (New_Decl, Parent_Type);
9201 end if;
9203 -- Note that this call passes False for the Derive_Subps parameter
9204 -- because subprogram derivation is deferred until after creating
9205 -- the subtype (see below).
9207 Build_Derived_Type
9208 (New_Decl, Parent_Base, New_Base,
9209 Is_Completion => False, Derive_Subps => False);
9211 -- ??? This needs re-examination to determine whether the
9212 -- above call can simply be replaced by a call to Analyze.
9214 Set_Analyzed (New_Decl);
9216 -- Insert and analyze the declaration for the constrained subtype
9218 if Constraint_Present then
9219 New_Indic :=
9220 Make_Subtype_Indication (Loc,
9221 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
9222 Constraint => Relocate_Node (Constraint (Indic)));
9224 else
9225 declare
9226 Constr_List : constant List_Id := New_List;
9227 C : Elmt_Id;
9228 Expr : Node_Id;
9230 begin
9231 C := First_Elmt (Discriminant_Constraint (Parent_Type));
9232 while Present (C) loop
9233 Expr := Node (C);
9235 -- It is safe here to call New_Copy_Tree since we called
9236 -- Force_Evaluation on each constraint previously
9237 -- in Build_Discriminant_Constraints.
9239 Append (New_Copy_Tree (Expr), To => Constr_List);
9241 Next_Elmt (C);
9242 end loop;
9244 New_Indic :=
9245 Make_Subtype_Indication (Loc,
9246 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
9247 Constraint =>
9248 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
9249 end;
9250 end if;
9252 Rewrite (N,
9253 Make_Subtype_Declaration (Loc,
9254 Defining_Identifier => Derived_Type,
9255 Subtype_Indication => New_Indic));
9257 Analyze (N);
9259 -- Derivation of subprograms must be delayed until the full subtype
9260 -- has been established, to ensure proper overriding of subprograms
9261 -- inherited by full types. If the derivations occurred as part of
9262 -- the call to Build_Derived_Type above, then the check for type
9263 -- conformance would fail because earlier primitive subprograms
9264 -- could still refer to the full type prior the change to the new
9265 -- subtype and hence would not match the new base type created here.
9266 -- Subprograms are not derived, however, when Derive_Subps is False
9267 -- (since otherwise there could be redundant derivations).
9269 if Derive_Subps then
9270 Derive_Subprograms (Parent_Type, Derived_Type);
9271 end if;
9273 -- For tagged types the Discriminant_Constraint of the new base itype
9274 -- is inherited from the first subtype so that no subtype conformance
9275 -- problem arise when the first subtype overrides primitive
9276 -- operations inherited by the implicit base type.
9278 if Is_Tagged then
9279 Set_Discriminant_Constraint
9280 (New_Base, Discriminant_Constraint (Derived_Type));
9281 end if;
9283 return;
9284 end if;
9286 -- If we get here Derived_Type will have no discriminants or it will be
9287 -- a discriminated unconstrained base type.
9289 -- STEP 1a: perform preliminary actions/checks for derived tagged types
9291 if Is_Tagged then
9293 -- The parent type is frozen for non-private extensions (RM 13.14(7))
9294 -- The declaration of a specific descendant of an interface type
9295 -- freezes the interface type (RM 13.14).
9297 if not Private_Extension or else Is_Interface (Parent_Base) then
9298 Freeze_Before (N, Parent_Type);
9299 end if;
9301 if Ada_Version >= Ada_2005 then
9302 Check_Generic_Ancestors;
9304 elsif Type_Access_Level (Derived_Type) /=
9305 Type_Access_Level (Parent_Type)
9306 and then not Is_Generic_Type (Derived_Type)
9307 then
9308 if Is_Controlled (Parent_Type) then
9309 Error_Msg_N
9310 ("controlled type must be declared at the library level",
9311 Indic);
9312 else
9313 Error_Msg_N
9314 ("type extension at deeper accessibility level than parent",
9315 Indic);
9316 end if;
9318 else
9319 declare
9320 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
9321 begin
9322 if Present (GB)
9323 and then GB /= Enclosing_Generic_Body (Parent_Base)
9324 then
9325 Error_Msg_NE
9326 ("parent type of& must not be outside generic body"
9327 & " (RM 3.9.1(4))",
9328 Indic, Derived_Type);
9329 end if;
9330 end;
9331 end if;
9332 end if;
9334 -- Ada 2005 (AI-251)
9336 if Ada_Version >= Ada_2005 and then Is_Tagged then
9338 -- "The declaration of a specific descendant of an interface type
9339 -- freezes the interface type" (RM 13.14).
9341 declare
9342 Iface : Node_Id;
9343 begin
9344 if Is_Non_Empty_List (Interface_List (Type_Def)) then
9345 Iface := First (Interface_List (Type_Def));
9346 while Present (Iface) loop
9347 Freeze_Before (N, Etype (Iface));
9348 Next (Iface);
9349 end loop;
9350 end if;
9351 end;
9352 end if;
9354 -- STEP 1b : preliminary cleanup of the full view of private types
9356 -- If the type is already marked as having discriminants, then it's the
9357 -- completion of a private type or private extension and we need to
9358 -- retain the discriminants from the partial view if the current
9359 -- declaration has Discriminant_Specifications so that we can verify
9360 -- conformance. However, we must remove any existing components that
9361 -- were inherited from the parent (and attached in Copy_And_Swap)
9362 -- because the full type inherits all appropriate components anyway, and
9363 -- we do not want the partial view's components interfering.
9365 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
9366 Discrim := First_Discriminant (Derived_Type);
9367 loop
9368 Last_Discrim := Discrim;
9369 Next_Discriminant (Discrim);
9370 exit when No (Discrim);
9371 end loop;
9373 Set_Last_Entity (Derived_Type, Last_Discrim);
9375 -- In all other cases wipe out the list of inherited components (even
9376 -- inherited discriminants), it will be properly rebuilt here.
9378 else
9379 Set_First_Entity (Derived_Type, Empty);
9380 Set_Last_Entity (Derived_Type, Empty);
9381 end if;
9383 -- STEP 1c: Initialize some flags for the Derived_Type
9385 -- The following flags must be initialized here so that
9386 -- Process_Discriminants can check that discriminants of tagged types do
9387 -- not have a default initial value and that access discriminants are
9388 -- only specified for limited records. For completeness, these flags are
9389 -- also initialized along with all the other flags below.
9391 -- AI-419: Limitedness is not inherited from an interface parent, so to
9392 -- be limited in that case the type must be explicitly declared as
9393 -- limited. However, task and protected interfaces are always limited.
9395 if Limited_Present (Type_Def) then
9396 Set_Is_Limited_Record (Derived_Type);
9398 elsif Is_Limited_Record (Parent_Type)
9399 or else (Present (Full_View (Parent_Type))
9400 and then Is_Limited_Record (Full_View (Parent_Type)))
9401 then
9402 if not Is_Interface (Parent_Type)
9403 or else Is_Concurrent_Interface (Parent_Type)
9404 then
9405 Set_Is_Limited_Record (Derived_Type);
9406 end if;
9407 end if;
9409 -- STEP 2a: process discriminants of derived type if any
9411 Push_Scope (Derived_Type);
9413 if Discriminant_Specs then
9414 Set_Has_Unknown_Discriminants (Derived_Type, False);
9416 -- The following call initializes fields Has_Discriminants and
9417 -- Discriminant_Constraint, unless we are processing the completion
9418 -- of a private type declaration.
9420 Check_Or_Process_Discriminants (N, Derived_Type);
9422 -- For untagged types, the constraint on the Parent_Type must be
9423 -- present and is used to rename the discriminants.
9425 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
9426 Error_Msg_N ("untagged parent must have discriminants", Indic);
9428 elsif not Is_Tagged and then not Constraint_Present then
9429 Error_Msg_N
9430 ("discriminant constraint needed for derived untagged records",
9431 Indic);
9433 -- Otherwise the parent subtype must be constrained unless we have a
9434 -- private extension.
9436 elsif not Constraint_Present
9437 and then not Private_Extension
9438 and then not Is_Constrained (Parent_Type)
9439 then
9440 Error_Msg_N
9441 ("unconstrained type not allowed in this context", Indic);
9443 elsif Constraint_Present then
9444 -- The following call sets the field Corresponding_Discriminant
9445 -- for the discriminants in the Derived_Type.
9447 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
9449 -- For untagged types all new discriminants must rename
9450 -- discriminants in the parent. For private extensions new
9451 -- discriminants cannot rename old ones (implied by [7.3(13)]).
9453 Discrim := First_Discriminant (Derived_Type);
9454 while Present (Discrim) loop
9455 if not Is_Tagged
9456 and then No (Corresponding_Discriminant (Discrim))
9457 then
9458 Error_Msg_N
9459 ("new discriminants must constrain old ones", Discrim);
9461 elsif Private_Extension
9462 and then Present (Corresponding_Discriminant (Discrim))
9463 then
9464 Error_Msg_N
9465 ("only static constraints allowed for parent"
9466 & " discriminants in the partial view", Indic);
9467 exit;
9468 end if;
9470 -- If a new discriminant is used in the constraint, then its
9471 -- subtype must be statically compatible with the subtype of
9472 -- the parent discriminant (RM 3.7(15)).
9474 if Present (Corresponding_Discriminant (Discrim)) then
9475 Check_Constraining_Discriminant
9476 (Discrim, Corresponding_Discriminant (Discrim));
9477 end if;
9479 Next_Discriminant (Discrim);
9480 end loop;
9482 -- Check whether the constraints of the full view statically
9483 -- match those imposed by the parent subtype [7.3(13)].
9485 if Present (Stored_Constraint (Derived_Type)) then
9486 declare
9487 C1, C2 : Elmt_Id;
9489 begin
9490 C1 := First_Elmt (Discs);
9491 C2 := First_Elmt (Stored_Constraint (Derived_Type));
9492 while Present (C1) and then Present (C2) loop
9493 if not
9494 Fully_Conformant_Expressions (Node (C1), Node (C2))
9495 then
9496 Error_Msg_N
9497 ("not conformant with previous declaration",
9498 Node (C1));
9499 end if;
9501 Next_Elmt (C1);
9502 Next_Elmt (C2);
9503 end loop;
9504 end;
9505 end if;
9506 end if;
9508 -- STEP 2b: No new discriminants, inherit discriminants if any
9510 else
9511 if Private_Extension then
9512 Set_Has_Unknown_Discriminants
9513 (Derived_Type,
9514 Has_Unknown_Discriminants (Parent_Type)
9515 or else Unknown_Discriminants_Present (N));
9517 -- The partial view of the parent may have unknown discriminants,
9518 -- but if the full view has discriminants and the parent type is
9519 -- in scope they must be inherited.
9521 elsif Has_Unknown_Discriminants (Parent_Type)
9522 and then
9523 (not Has_Discriminants (Parent_Type)
9524 or else not In_Open_Scopes (Scope (Parent_Base)))
9525 then
9526 Set_Has_Unknown_Discriminants (Derived_Type);
9527 end if;
9529 if not Has_Unknown_Discriminants (Derived_Type)
9530 and then not Has_Unknown_Discriminants (Parent_Base)
9531 and then Has_Discriminants (Parent_Type)
9532 then
9533 Inherit_Discrims := True;
9534 Set_Has_Discriminants
9535 (Derived_Type, True);
9536 Set_Discriminant_Constraint
9537 (Derived_Type, Discriminant_Constraint (Parent_Base));
9538 end if;
9540 -- The following test is true for private types (remember
9541 -- transformation 5. is not applied to those) and in an error
9542 -- situation.
9544 if Constraint_Present then
9545 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
9546 end if;
9548 -- For now mark a new derived type as constrained only if it has no
9549 -- discriminants. At the end of Build_Derived_Record_Type we properly
9550 -- set this flag in the case of private extensions. See comments in
9551 -- point 9. just before body of Build_Derived_Record_Type.
9553 Set_Is_Constrained
9554 (Derived_Type,
9555 not (Inherit_Discrims
9556 or else Has_Unknown_Discriminants (Derived_Type)));
9557 end if;
9559 -- STEP 3: initialize fields of derived type
9561 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
9562 Set_Stored_Constraint (Derived_Type, No_Elist);
9564 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9565 -- but cannot be interfaces
9567 if not Private_Extension
9568 and then Ekind (Derived_Type) /= E_Private_Type
9569 and then Ekind (Derived_Type) /= E_Limited_Private_Type
9570 then
9571 if Interface_Present (Type_Def) then
9572 Analyze_Interface_Declaration (Derived_Type, Type_Def);
9573 end if;
9575 Set_Interfaces (Derived_Type, No_Elist);
9576 end if;
9578 -- Fields inherited from the Parent_Type
9580 Set_Has_Specified_Layout
9581 (Derived_Type, Has_Specified_Layout (Parent_Type));
9582 Set_Is_Limited_Composite
9583 (Derived_Type, Is_Limited_Composite (Parent_Type));
9584 Set_Is_Private_Composite
9585 (Derived_Type, Is_Private_Composite (Parent_Type));
9587 if Is_Tagged_Type (Parent_Type) then
9588 Set_No_Tagged_Streams_Pragma
9589 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9590 end if;
9592 -- Fields inherited from the Parent_Base
9594 Set_Has_Controlled_Component
9595 (Derived_Type, Has_Controlled_Component (Parent_Base));
9596 Set_Has_Non_Standard_Rep
9597 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9598 Set_Has_Primitive_Operations
9599 (Derived_Type, Has_Primitive_Operations (Parent_Base));
9601 -- Set fields for private derived types
9603 if Is_Private_Type (Derived_Type) then
9604 Set_Depends_On_Private (Derived_Type, True);
9605 Set_Private_Dependents (Derived_Type, New_Elmt_List);
9606 end if;
9608 -- Inherit fields for non-private types. If this is the completion of a
9609 -- derivation from a private type, the parent itself is private and the
9610 -- attributes come from its full view, which must be present.
9612 if Is_Record_Type (Derived_Type) then
9613 declare
9614 Parent_Full : Entity_Id;
9616 begin
9617 if Is_Private_Type (Parent_Base)
9618 and then not Is_Record_Type (Parent_Base)
9619 then
9620 Parent_Full := Full_View (Parent_Base);
9621 else
9622 Parent_Full := Parent_Base;
9623 end if;
9625 Set_Component_Alignment
9626 (Derived_Type, Component_Alignment (Parent_Full));
9627 Set_C_Pass_By_Copy
9628 (Derived_Type, C_Pass_By_Copy (Parent_Full));
9629 Set_Has_Complex_Representation
9630 (Derived_Type, Has_Complex_Representation (Parent_Full));
9632 -- For untagged types, inherit the layout by default to avoid
9633 -- costly changes of representation for type conversions.
9635 if not Is_Tagged then
9636 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Full));
9637 Set_No_Reordering (Derived_Type, No_Reordering (Parent_Full));
9638 end if;
9639 end;
9640 end if;
9642 -- When prefixed-call syntax is allowed for untagged types, initialize
9643 -- the list of primitive operations to an empty list.
9645 if Extensions_Allowed and then not Is_Tagged then
9646 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9647 end if;
9649 -- Set fields for tagged types
9651 if Is_Tagged then
9652 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9654 -- All tagged types defined in Ada.Finalization are controlled
9656 if Chars (Scope (Derived_Type)) = Name_Finalization
9657 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
9658 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
9659 then
9660 Set_Is_Controlled_Active (Derived_Type);
9661 else
9662 Set_Is_Controlled_Active
9663 (Derived_Type, Is_Controlled_Active (Parent_Base));
9664 end if;
9666 -- Minor optimization: there is no need to generate the class-wide
9667 -- entity associated with an underlying record view.
9669 if not Is_Underlying_Record_View (Derived_Type) then
9670 Make_Class_Wide_Type (Derived_Type);
9671 end if;
9673 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
9675 if Has_Discriminants (Derived_Type)
9676 and then Constraint_Present
9677 then
9678 Set_Stored_Constraint
9679 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
9680 end if;
9682 if Ada_Version >= Ada_2005 then
9683 declare
9684 Ifaces_List : Elist_Id;
9686 begin
9687 -- Checks rules 3.9.4 (13/2 and 14/2)
9689 if Comes_From_Source (Derived_Type)
9690 and then not Is_Private_Type (Derived_Type)
9691 and then Is_Interface (Parent_Type)
9692 and then not Is_Interface (Derived_Type)
9693 then
9694 if Is_Task_Interface (Parent_Type) then
9695 Error_Msg_N
9696 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9697 Derived_Type);
9699 elsif Is_Protected_Interface (Parent_Type) then
9700 Error_Msg_N
9701 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9702 Derived_Type);
9703 end if;
9704 end if;
9706 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9708 Check_Interfaces (N, Type_Def);
9710 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9711 -- not already in the parents.
9713 Collect_Interfaces
9714 (T => Derived_Type,
9715 Ifaces_List => Ifaces_List,
9716 Exclude_Parents => True);
9718 Set_Interfaces (Derived_Type, Ifaces_List);
9720 -- If the derived type is the anonymous type created for
9721 -- a declaration whose parent has a constraint, propagate
9722 -- the interface list to the source type. This must be done
9723 -- prior to the completion of the analysis of the source type
9724 -- because the components in the extension may contain current
9725 -- instances whose legality depends on some ancestor.
9727 if Is_Itype (Derived_Type) then
9728 declare
9729 Def : constant Node_Id :=
9730 Associated_Node_For_Itype (Derived_Type);
9731 begin
9732 if Present (Def)
9733 and then Nkind (Def) = N_Full_Type_Declaration
9734 then
9735 Set_Interfaces
9736 (Defining_Identifier (Def), Ifaces_List);
9737 end if;
9738 end;
9739 end if;
9741 -- A type extension is automatically Ghost when one of its
9742 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9743 -- also inherited when the parent type is Ghost, but this is
9744 -- done in Build_Derived_Type as the mechanism also handles
9745 -- untagged derivations.
9747 if Implements_Ghost_Interface (Derived_Type) then
9748 Set_Is_Ghost_Entity (Derived_Type);
9749 end if;
9750 end;
9751 end if;
9752 end if;
9754 -- STEP 4: Inherit components from the parent base and constrain them.
9755 -- Apply the second transformation described in point 6. above.
9757 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
9758 or else not Has_Discriminants (Parent_Type)
9759 or else not Is_Constrained (Parent_Type)
9760 then
9761 Constrs := Discs;
9762 else
9763 Constrs := Discriminant_Constraint (Parent_Type);
9764 end if;
9766 Assoc_List :=
9767 Inherit_Components
9768 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
9770 -- STEP 5a: Copy the parent record declaration for untagged types
9772 Set_Has_Implicit_Dereference
9773 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
9775 if not Is_Tagged then
9777 -- Discriminant_Constraint (Derived_Type) has been properly
9778 -- constructed. Save it and temporarily set it to Empty because we
9779 -- do not want the call to New_Copy_Tree below to mess this list.
9781 if Has_Discriminants (Derived_Type) then
9782 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
9783 Set_Discriminant_Constraint (Derived_Type, No_Elist);
9784 else
9785 Save_Discr_Constr := No_Elist;
9786 end if;
9788 -- Save the Etype field of Derived_Type. It is correctly set now,
9789 -- but the call to New_Copy tree may remap it to point to itself,
9790 -- which is not what we want. Ditto for the Next_Entity field.
9792 Save_Etype := Etype (Derived_Type);
9793 Save_Next_Entity := Next_Entity (Derived_Type);
9795 -- Assoc_List maps all stored discriminants in the Parent_Base to
9796 -- stored discriminants in the Derived_Type. It is fundamental that
9797 -- no types or itypes with discriminants other than the stored
9798 -- discriminants appear in the entities declared inside
9799 -- Derived_Type, since the back end cannot deal with it.
9801 New_Decl :=
9802 New_Copy_Tree
9803 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
9804 Copy_Dimensions_Of_Components (Derived_Type);
9806 -- Restore the fields saved prior to the New_Copy_Tree call
9807 -- and compute the stored constraint.
9809 Set_Etype (Derived_Type, Save_Etype);
9810 Link_Entities (Derived_Type, Save_Next_Entity);
9812 if Has_Discriminants (Derived_Type) then
9813 Set_Discriminant_Constraint
9814 (Derived_Type, Save_Discr_Constr);
9815 Set_Stored_Constraint
9816 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
9818 Replace_Discriminants (Derived_Type, New_Decl);
9819 end if;
9821 -- Insert the new derived type declaration
9823 Rewrite (N, New_Decl);
9825 -- STEP 5b: Complete the processing for record extensions in generics
9827 -- There is no completion for record extensions declared in the
9828 -- parameter part of a generic, so we need to complete processing for
9829 -- these generic record extensions here. The Record_Type_Definition call
9830 -- will change the Ekind of the components from E_Void to E_Component.
9832 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
9833 Record_Type_Definition (Empty, Derived_Type);
9835 -- STEP 5c: Process the record extension for non private tagged types
9837 elsif not Private_Extension then
9838 Expand_Record_Extension (Derived_Type, Type_Def);
9840 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9841 -- implemented interfaces if we are in expansion mode
9843 if Expander_Active
9844 and then Has_Interfaces (Derived_Type)
9845 then
9846 Add_Interface_Tag_Components (N, Derived_Type);
9847 end if;
9849 -- Analyze the record extension
9851 Record_Type_Definition
9852 (Record_Extension_Part (Type_Def), Derived_Type);
9853 end if;
9855 End_Scope;
9857 -- Nothing else to do if there is an error in the derivation.
9858 -- An unusual case: the full view may be derived from a type in an
9859 -- instance, when the partial view was used illegally as an actual
9860 -- in that instance, leading to a circular definition.
9862 if Etype (Derived_Type) = Any_Type
9863 or else Etype (Parent_Type) = Derived_Type
9864 then
9865 return;
9866 end if;
9868 -- Set delayed freeze and then derive subprograms, we need to do
9869 -- this in this order so that derived subprograms inherit the
9870 -- derived freeze if necessary.
9872 Set_Has_Delayed_Freeze (Derived_Type);
9874 if Derive_Subps then
9875 Derive_Subprograms (Parent_Type, Derived_Type);
9876 end if;
9878 -- If we have a private extension which defines a constrained derived
9879 -- type mark as constrained here after we have derived subprograms. See
9880 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9882 if Private_Extension and then Inherit_Discrims then
9883 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9884 Set_Is_Constrained (Derived_Type, True);
9885 Set_Discriminant_Constraint (Derived_Type, Discs);
9887 elsif Is_Constrained (Parent_Type) then
9888 Set_Is_Constrained
9889 (Derived_Type, True);
9890 Set_Discriminant_Constraint
9891 (Derived_Type, Discriminant_Constraint (Parent_Type));
9892 end if;
9893 end if;
9895 -- Update the class-wide type, which shares the now-completed entity
9896 -- list with its specific type. In case of underlying record views,
9897 -- we do not generate the corresponding class wide entity.
9899 if Is_Tagged
9900 and then not Is_Underlying_Record_View (Derived_Type)
9901 then
9902 Set_First_Entity
9903 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9904 Set_Last_Entity
9905 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9906 end if;
9908 Check_Function_Writable_Actuals (N);
9909 end Build_Derived_Record_Type;
9911 ------------------------
9912 -- Build_Derived_Type --
9913 ------------------------
9915 procedure Build_Derived_Type
9916 (N : Node_Id;
9917 Parent_Type : Entity_Id;
9918 Derived_Type : Entity_Id;
9919 Is_Completion : Boolean;
9920 Derive_Subps : Boolean := True)
9922 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9924 begin
9925 -- Set common attributes
9927 if Ekind (Derived_Type) in Incomplete_Or_Private_Kind
9928 and then Ekind (Parent_Base) in Modular_Integer_Kind | Array_Kind
9929 then
9930 Reinit_Field_To_Zero (Derived_Type, F_Stored_Constraint);
9931 end if;
9933 Set_Scope (Derived_Type, Current_Scope);
9934 Set_Etype (Derived_Type, Parent_Base);
9935 Mutate_Ekind (Derived_Type, Ekind (Parent_Base));
9936 Propagate_Concurrent_Flags (Derived_Type, Parent_Base);
9938 Set_Size_Info (Derived_Type, Parent_Type);
9939 Copy_RM_Size (To => Derived_Type, From => Parent_Type);
9941 Set_Is_Controlled_Active
9942 (Derived_Type, Is_Controlled_Active (Parent_Type));
9944 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9945 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
9946 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
9948 if Is_Tagged_Type (Derived_Type) then
9949 Set_No_Tagged_Streams_Pragma
9950 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9951 end if;
9953 -- If the parent has primitive routines and may have not-seen-yet aspect
9954 -- specifications (e.g., a Pack pragma), then set the derived type link
9955 -- in order to later diagnose "early derivation" issues. If in different
9956 -- compilation units, then "early derivation" cannot be an issue (and we
9957 -- don't like interunit references that go in the opposite direction of
9958 -- semantic dependencies).
9960 if Has_Primitive_Operations (Parent_Type)
9961 and then Enclosing_Comp_Unit_Node (Parent_Type) =
9962 Enclosing_Comp_Unit_Node (Derived_Type)
9963 then
9964 Set_Derived_Type_Link (Parent_Base, Derived_Type);
9965 end if;
9967 -- If the parent type is a private subtype, the convention on the base
9968 -- type may be set in the private part, and not propagated to the
9969 -- subtype until later, so we obtain the convention from the base type.
9971 Set_Convention (Derived_Type, Convention (Parent_Base));
9973 if Is_Tagged_Type (Derived_Type)
9974 and then Present (Class_Wide_Type (Derived_Type))
9975 then
9976 Set_Convention (Class_Wide_Type (Derived_Type),
9977 Convention (Class_Wide_Type (Parent_Base)));
9978 end if;
9980 -- Set SSO default for record or array type
9982 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9983 and then Is_Base_Type (Derived_Type)
9984 then
9985 Set_Default_SSO (Derived_Type);
9986 end if;
9988 -- A derived type inherits the Default_Initial_Condition pragma coming
9989 -- from any parent type within the derivation chain.
9991 if Has_DIC (Parent_Type) then
9992 Set_Has_Inherited_DIC (Derived_Type);
9993 end if;
9995 -- A derived type inherits any class-wide invariants coming from a
9996 -- parent type or an interface. Note that the invariant procedure of
9997 -- the parent type should not be inherited because the derived type may
9998 -- define invariants of its own.
10000 if not Is_Interface (Derived_Type) then
10001 if Has_Inherited_Invariants (Parent_Type)
10002 or else Has_Inheritable_Invariants (Parent_Type)
10003 then
10004 Set_Has_Inherited_Invariants (Derived_Type);
10006 elsif Is_Concurrent_Type (Derived_Type)
10007 or else Is_Tagged_Type (Derived_Type)
10008 then
10009 declare
10010 Iface : Entity_Id;
10011 Ifaces : Elist_Id;
10012 Iface_Elmt : Elmt_Id;
10014 begin
10015 Collect_Interfaces
10016 (T => Derived_Type,
10017 Ifaces_List => Ifaces,
10018 Exclude_Parents => True);
10020 if Present (Ifaces) then
10021 Iface_Elmt := First_Elmt (Ifaces);
10022 while Present (Iface_Elmt) loop
10023 Iface := Node (Iface_Elmt);
10025 if Has_Inheritable_Invariants (Iface) then
10026 Set_Has_Inherited_Invariants (Derived_Type);
10027 exit;
10028 end if;
10030 Next_Elmt (Iface_Elmt);
10031 end loop;
10032 end if;
10033 end;
10034 end if;
10035 end if;
10037 -- We similarly inherit predicates. Note that for scalar derived types
10038 -- the predicate is inherited from the first subtype, and not from its
10039 -- (anonymous) base type.
10041 if Has_Predicates (Parent_Type)
10042 or else Has_Predicates (First_Subtype (Parent_Type))
10043 then
10044 Set_Has_Predicates (Derived_Type);
10045 end if;
10047 -- The derived type inherits representation clauses from the parent
10048 -- type, and from any interfaces.
10050 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
10052 declare
10053 Iface : Node_Id := First (Abstract_Interface_List (Derived_Type));
10054 begin
10055 while Present (Iface) loop
10056 Inherit_Rep_Item_Chain (Derived_Type, Entity (Iface));
10057 Next (Iface);
10058 end loop;
10059 end;
10061 -- If the parent type has delayed rep aspects, then mark the derived
10062 -- type as possibly inheriting a delayed rep aspect.
10064 if Has_Delayed_Rep_Aspects (Parent_Type) then
10065 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
10066 end if;
10068 -- A derived type becomes Ghost when its parent type is also Ghost
10069 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
10070 -- directly inherited because the Ghost policy in effect may differ.
10072 if Is_Ghost_Entity (Parent_Type) then
10073 Set_Is_Ghost_Entity (Derived_Type);
10074 end if;
10076 -- Type dependent processing
10078 case Ekind (Parent_Type) is
10079 when Numeric_Kind =>
10080 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
10082 when Array_Kind =>
10083 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
10085 when Class_Wide_Kind
10086 | E_Record_Subtype
10087 | E_Record_Type
10089 Build_Derived_Record_Type
10090 (N, Parent_Type, Derived_Type, Derive_Subps);
10091 return;
10093 when Enumeration_Kind =>
10094 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
10096 when Access_Kind =>
10097 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
10099 when Incomplete_Or_Private_Kind =>
10100 Build_Derived_Private_Type
10101 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
10103 -- For discriminated types, the derivation includes deriving
10104 -- primitive operations. For others it is done below.
10106 if Is_Tagged_Type (Parent_Type)
10107 or else Has_Discriminants (Parent_Type)
10108 or else (Present (Full_View (Parent_Type))
10109 and then Has_Discriminants (Full_View (Parent_Type)))
10110 then
10111 return;
10112 end if;
10114 when Concurrent_Kind =>
10115 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
10117 when others =>
10118 raise Program_Error;
10119 end case;
10121 -- Nothing more to do if some error occurred
10123 if Etype (Derived_Type) = Any_Type then
10124 return;
10125 end if;
10127 -- If not already set, initialize the derived type's list of primitive
10128 -- operations to an empty element list.
10130 if not Present (Direct_Primitive_Operations (Derived_Type)) then
10131 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
10133 -- If Etype of the derived type is the base type (as opposed to
10134 -- a parent type) and doesn't have an associated list of primitive
10135 -- operations, then set the base type's primitive list to the
10136 -- derived type's list. The lists need to be shared in common
10137 -- between the two.
10139 if Etype (Derived_Type) = Base_Type (Derived_Type)
10140 and then
10141 not Present (Direct_Primitive_Operations (Etype (Derived_Type)))
10142 then
10143 Set_Direct_Primitive_Operations
10144 (Etype (Derived_Type),
10145 Direct_Primitive_Operations (Derived_Type));
10146 end if;
10147 end if;
10149 -- Set delayed freeze and then derive subprograms, we need to do this
10150 -- in this order so that derived subprograms inherit the derived freeze
10151 -- if necessary.
10153 Set_Has_Delayed_Freeze (Derived_Type);
10155 if Derive_Subps then
10156 Derive_Subprograms (Parent_Type, Derived_Type);
10157 end if;
10159 Set_Has_Primitive_Operations
10160 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
10161 end Build_Derived_Type;
10163 -----------------------
10164 -- Build_Discriminal --
10165 -----------------------
10167 procedure Build_Discriminal (Discrim : Entity_Id) is
10168 D_Minal : Entity_Id;
10169 CR_Disc : Entity_Id;
10171 begin
10172 -- A discriminal has the same name as the discriminant
10174 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
10176 Mutate_Ekind (D_Minal, E_In_Parameter);
10177 Set_Mechanism (D_Minal, Default_Mechanism);
10178 Set_Etype (D_Minal, Etype (Discrim));
10179 Set_Scope (D_Minal, Current_Scope);
10180 Set_Parent (D_Minal, Parent (Discrim));
10182 Set_Discriminal (Discrim, D_Minal);
10183 Set_Discriminal_Link (D_Minal, Discrim);
10185 -- For task types, build at once the discriminants of the corresponding
10186 -- record, which are needed if discriminants are used in entry defaults
10187 -- and in family bounds.
10189 if Is_Concurrent_Type (Current_Scope)
10190 or else
10191 Is_Limited_Type (Current_Scope)
10192 then
10193 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
10195 Mutate_Ekind (CR_Disc, E_In_Parameter);
10196 Set_Mechanism (CR_Disc, Default_Mechanism);
10197 Set_Etype (CR_Disc, Etype (Discrim));
10198 Set_Scope (CR_Disc, Current_Scope);
10199 Set_Discriminal_Link (CR_Disc, Discrim);
10200 Set_CR_Discriminant (Discrim, CR_Disc);
10201 end if;
10202 end Build_Discriminal;
10204 ------------------------------------
10205 -- Build_Discriminant_Constraints --
10206 ------------------------------------
10208 function Build_Discriminant_Constraints
10209 (T : Entity_Id;
10210 Def : Node_Id;
10211 Derived_Def : Boolean := False) return Elist_Id
10213 C : constant Node_Id := Constraint (Def);
10214 Nb_Discr : constant Nat := Number_Discriminants (T);
10216 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
10217 -- Saves the expression corresponding to a given discriminant in T
10219 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
10220 -- Return the Position number within array Discr_Expr of a discriminant
10221 -- D within the discriminant list of the discriminated type T.
10223 procedure Process_Discriminant_Expression
10224 (Expr : Node_Id;
10225 D : Entity_Id);
10226 -- If this is a discriminant constraint on a partial view, do not
10227 -- generate an overflow check on the discriminant expression. The check
10228 -- will be generated when constraining the full view. Otherwise the
10229 -- backend creates duplicate symbols for the temporaries corresponding
10230 -- to the expressions to be checked, causing spurious assembler errors.
10232 ------------------
10233 -- Pos_Of_Discr --
10234 ------------------
10236 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
10237 Disc : Entity_Id;
10239 begin
10240 Disc := First_Discriminant (T);
10241 for J in Discr_Expr'Range loop
10242 if Disc = D then
10243 return J;
10244 end if;
10246 Next_Discriminant (Disc);
10247 end loop;
10249 -- Note: Since this function is called on discriminants that are
10250 -- known to belong to the discriminated type, falling through the
10251 -- loop with no match signals an internal compiler error.
10253 raise Program_Error;
10254 end Pos_Of_Discr;
10256 -------------------------------------
10257 -- Process_Discriminant_Expression --
10258 -------------------------------------
10260 procedure Process_Discriminant_Expression
10261 (Expr : Node_Id;
10262 D : Entity_Id)
10264 BDT : constant Entity_Id := Base_Type (Etype (D));
10266 begin
10267 -- If this is a discriminant constraint on a partial view, do
10268 -- not generate an overflow on the discriminant expression. The
10269 -- check will be generated when constraining the full view.
10271 if Is_Private_Type (T)
10272 and then Present (Full_View (T))
10273 then
10274 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
10275 else
10276 Analyze_And_Resolve (Expr, BDT);
10277 end if;
10278 end Process_Discriminant_Expression;
10280 -- Declarations local to Build_Discriminant_Constraints
10282 Discr : Entity_Id;
10283 E : Entity_Id;
10284 Elist : constant Elist_Id := New_Elmt_List;
10286 Constr : Node_Id;
10287 Expr : Node_Id;
10288 Id : Node_Id;
10289 Position : Nat;
10290 Found : Boolean;
10292 Discrim_Present : Boolean := False;
10294 -- Start of processing for Build_Discriminant_Constraints
10296 begin
10297 -- The following loop will process positional associations only.
10298 -- For a positional association, the (single) discriminant is
10299 -- implicitly specified by position, in textual order (RM 3.7.2).
10301 Discr := First_Discriminant (T);
10302 Constr := First (Constraints (C));
10303 for D in Discr_Expr'Range loop
10304 exit when Nkind (Constr) = N_Discriminant_Association;
10306 if No (Constr) then
10307 Error_Msg_N ("too few discriminants given in constraint", C);
10308 return New_Elmt_List;
10310 elsif Nkind (Constr) = N_Range
10311 or else (Nkind (Constr) = N_Attribute_Reference
10312 and then Attribute_Name (Constr) = Name_Range)
10313 then
10314 Error_Msg_N
10315 ("a range is not a valid discriminant constraint", Constr);
10316 Discr_Expr (D) := Error;
10318 elsif Nkind (Constr) = N_Subtype_Indication then
10319 Error_Msg_N
10320 ("a subtype indication is not a valid discriminant constraint",
10321 Constr);
10322 Discr_Expr (D) := Error;
10324 else
10325 Process_Discriminant_Expression (Constr, Discr);
10326 Discr_Expr (D) := Constr;
10327 end if;
10329 Next_Discriminant (Discr);
10330 Next (Constr);
10331 end loop;
10333 if No (Discr) and then Present (Constr) then
10334 Error_Msg_N ("too many discriminants given in constraint", Constr);
10335 return New_Elmt_List;
10336 end if;
10338 -- Named associations can be given in any order, but if both positional
10339 -- and named associations are used in the same discriminant constraint,
10340 -- then positional associations must occur first, at their normal
10341 -- position. Hence once a named association is used, the rest of the
10342 -- discriminant constraint must use only named associations.
10344 while Present (Constr) loop
10346 -- Positional association forbidden after a named association
10348 if Nkind (Constr) /= N_Discriminant_Association then
10349 Error_Msg_N ("positional association follows named one", Constr);
10350 return New_Elmt_List;
10352 -- Otherwise it is a named association
10354 else
10355 -- E records the type of the discriminants in the named
10356 -- association. All the discriminants specified in the same name
10357 -- association must have the same type.
10359 E := Empty;
10361 -- Search the list of discriminants in T to see if the simple name
10362 -- given in the constraint matches any of them.
10364 Id := First (Selector_Names (Constr));
10365 while Present (Id) loop
10366 Found := False;
10368 -- If Original_Discriminant is present, we are processing a
10369 -- generic instantiation and this is an instance node. We need
10370 -- to find the name of the corresponding discriminant in the
10371 -- actual record type T and not the name of the discriminant in
10372 -- the generic formal. Example:
10374 -- generic
10375 -- type G (D : int) is private;
10376 -- package P is
10377 -- subtype W is G (D => 1);
10378 -- end package;
10379 -- type Rec (X : int) is record ... end record;
10380 -- package Q is new P (G => Rec);
10382 -- At the point of the instantiation, formal type G is Rec
10383 -- and therefore when reanalyzing "subtype W is G (D => 1);"
10384 -- which really looks like "subtype W is Rec (D => 1);" at
10385 -- the point of instantiation, we want to find the discriminant
10386 -- that corresponds to D in Rec, i.e. X.
10388 if Present (Original_Discriminant (Id))
10389 and then In_Instance
10390 then
10391 Discr := Find_Corresponding_Discriminant (Id, T);
10392 Found := True;
10394 else
10395 Discr := First_Discriminant (T);
10396 while Present (Discr) loop
10397 if Chars (Discr) = Chars (Id) then
10398 Found := True;
10399 exit;
10400 end if;
10402 Next_Discriminant (Discr);
10403 end loop;
10405 if not Found then
10406 Error_Msg_N ("& does not match any discriminant", Id);
10407 return New_Elmt_List;
10409 -- If the parent type is a generic formal, preserve the
10410 -- name of the discriminant for subsequent instances.
10411 -- see comment at the beginning of this if statement.
10413 elsif Is_Generic_Type (Root_Type (T)) then
10414 Set_Original_Discriminant (Id, Discr);
10415 end if;
10416 end if;
10418 Position := Pos_Of_Discr (T, Discr);
10420 if Present (Discr_Expr (Position)) then
10421 Error_Msg_N ("duplicate constraint for discriminant&", Id);
10423 else
10424 -- Each discriminant specified in the same named association
10425 -- must be associated with a separate copy of the
10426 -- corresponding expression.
10428 if Present (Next (Id)) then
10429 Expr := New_Copy_Tree (Expression (Constr));
10430 Set_Parent (Expr, Parent (Expression (Constr)));
10431 else
10432 Expr := Expression (Constr);
10433 end if;
10435 Discr_Expr (Position) := Expr;
10436 Process_Discriminant_Expression (Expr, Discr);
10437 end if;
10439 -- A discriminant association with more than one discriminant
10440 -- name is only allowed if the named discriminants are all of
10441 -- the same type (RM 3.7.1(8)).
10443 if E = Empty then
10444 E := Base_Type (Etype (Discr));
10446 elsif Base_Type (Etype (Discr)) /= E then
10447 Error_Msg_N
10448 ("all discriminants in an association " &
10449 "must have the same type", Id);
10450 end if;
10452 Next (Id);
10453 end loop;
10454 end if;
10456 Next (Constr);
10457 end loop;
10459 -- A discriminant constraint must provide exactly one value for each
10460 -- discriminant of the type (RM 3.7.1(8)).
10462 for J in Discr_Expr'Range loop
10463 if No (Discr_Expr (J)) then
10464 Error_Msg_N ("too few discriminants given in constraint", C);
10465 return New_Elmt_List;
10466 end if;
10467 end loop;
10469 -- Determine if there are discriminant expressions in the constraint
10471 for J in Discr_Expr'Range loop
10472 if Denotes_Discriminant
10473 (Discr_Expr (J), Check_Concurrent => True)
10474 then
10475 Discrim_Present := True;
10476 exit;
10477 end if;
10478 end loop;
10480 -- Build an element list consisting of the expressions given in the
10481 -- discriminant constraint and apply the appropriate checks. The list
10482 -- is constructed after resolving any named discriminant associations
10483 -- and therefore the expressions appear in the textual order of the
10484 -- discriminants.
10486 Discr := First_Discriminant (T);
10487 for J in Discr_Expr'Range loop
10488 if Discr_Expr (J) /= Error then
10489 Append_Elmt (Discr_Expr (J), Elist);
10491 -- If any of the discriminant constraints is given by a
10492 -- discriminant and we are in a derived type declaration we
10493 -- have a discriminant renaming. Establish link between new
10494 -- and old discriminant. The new discriminant has an implicit
10495 -- dereference if the old one does.
10497 if Denotes_Discriminant (Discr_Expr (J)) then
10498 if Derived_Def then
10499 declare
10500 New_Discr : constant Entity_Id := Entity (Discr_Expr (J));
10502 begin
10503 Set_Corresponding_Discriminant (New_Discr, Discr);
10504 Set_Has_Implicit_Dereference (New_Discr,
10505 Has_Implicit_Dereference (Discr));
10506 end;
10507 end if;
10509 -- Force the evaluation of non-discriminant expressions.
10510 -- If we have found a discriminant in the constraint 3.4(26)
10511 -- and 3.8(18) demand that no range checks are performed are
10512 -- after evaluation. If the constraint is for a component
10513 -- definition that has a per-object constraint, expressions are
10514 -- evaluated but not checked either. In all other cases perform
10515 -- a range check.
10517 else
10518 if Discrim_Present then
10519 null;
10521 elsif Parent_Kind (Parent (Def)) = N_Component_Declaration
10522 and then Has_Per_Object_Constraint
10523 (Defining_Identifier (Parent (Parent (Def))))
10524 then
10525 null;
10527 elsif Is_Access_Type (Etype (Discr)) then
10528 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
10530 else
10531 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
10532 end if;
10534 -- If the value of the discriminant may be visible in
10535 -- another unit or child unit, create an external name
10536 -- for it. We use the name of the object or component
10537 -- that carries the discriminated subtype. The code
10538 -- below may generate external symbols for the discriminant
10539 -- expression when not strictly needed, which is harmless.
10541 if Expander_Active
10542 and then Comes_From_Source (Def)
10543 and then not Is_Subprogram (Current_Scope)
10544 then
10545 declare
10546 Id : Entity_Id := Empty;
10547 begin
10548 if Nkind (Parent (Def)) = N_Object_Declaration then
10549 Id := Defining_Identifier (Parent (Def));
10551 elsif Nkind (Parent (Def)) = N_Component_Definition
10552 and then
10553 Nkind (Parent (Parent (Def)))
10554 = N_Component_Declaration
10555 then
10556 Id := Defining_Identifier (Parent (Parent (Def)));
10557 end if;
10559 if Present (Id) then
10560 Force_Evaluation (
10561 Discr_Expr (J),
10562 Related_Id => Id,
10563 Discr_Number => J);
10564 else
10565 Force_Evaluation (Discr_Expr (J));
10566 end if;
10567 end;
10568 else
10569 Force_Evaluation (Discr_Expr (J));
10570 end if;
10571 end if;
10573 -- Check that the designated type of an access discriminant's
10574 -- expression is not a class-wide type unless the discriminant's
10575 -- designated type is also class-wide.
10577 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
10578 and then not Is_Class_Wide_Type
10579 (Designated_Type (Etype (Discr)))
10580 and then Etype (Discr_Expr (J)) /= Any_Type
10581 and then Is_Class_Wide_Type
10582 (Designated_Type (Etype (Discr_Expr (J))))
10583 then
10584 Wrong_Type (Discr_Expr (J), Etype (Discr));
10586 elsif Is_Access_Type (Etype (Discr))
10587 and then not Is_Access_Constant (Etype (Discr))
10588 and then Is_Access_Type (Etype (Discr_Expr (J)))
10589 and then Is_Access_Constant (Etype (Discr_Expr (J)))
10590 then
10591 Error_Msg_NE
10592 ("constraint for discriminant& must be access to variable",
10593 Def, Discr);
10594 end if;
10595 end if;
10597 Next_Discriminant (Discr);
10598 end loop;
10600 return Elist;
10601 end Build_Discriminant_Constraints;
10603 ---------------------------------
10604 -- Build_Discriminated_Subtype --
10605 ---------------------------------
10607 procedure Build_Discriminated_Subtype
10608 (T : Entity_Id;
10609 Def_Id : Entity_Id;
10610 Elist : Elist_Id;
10611 Related_Nod : Node_Id;
10612 For_Access : Boolean := False)
10614 Has_Discrs : constant Boolean := Has_Discriminants (T);
10615 Constrained : constant Boolean :=
10616 (Has_Discrs
10617 and then not Is_Empty_Elmt_List (Elist)
10618 and then not Is_Class_Wide_Type (T))
10619 or else Is_Constrained (T);
10621 begin
10622 if Ekind (T) = E_Record_Type then
10623 Mutate_Ekind (Def_Id, E_Record_Subtype);
10625 -- Inherit preelaboration flag from base, for types for which it
10626 -- may have been set: records, private types, protected types.
10628 Set_Known_To_Have_Preelab_Init
10629 (Def_Id, Known_To_Have_Preelab_Init (T));
10631 elsif Ekind (T) = E_Task_Type then
10632 Mutate_Ekind (Def_Id, E_Task_Subtype);
10634 elsif Ekind (T) = E_Protected_Type then
10635 Mutate_Ekind (Def_Id, E_Protected_Subtype);
10636 Set_Known_To_Have_Preelab_Init
10637 (Def_Id, Known_To_Have_Preelab_Init (T));
10639 elsif Is_Private_Type (T) then
10640 Mutate_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10641 Set_Known_To_Have_Preelab_Init
10642 (Def_Id, Known_To_Have_Preelab_Init (T));
10644 -- Private subtypes may have private dependents
10646 Set_Private_Dependents (Def_Id, New_Elmt_List);
10648 elsif Is_Class_Wide_Type (T) then
10649 Mutate_Ekind (Def_Id, E_Class_Wide_Subtype);
10651 else
10652 -- Incomplete type. Attach subtype to list of dependents, to be
10653 -- completed with full view of parent type, unless is it the
10654 -- designated subtype of a record component within an init_proc.
10655 -- This last case arises for a component of an access type whose
10656 -- designated type is incomplete (e.g. a Taft Amendment type).
10657 -- The designated subtype is within an inner scope, and needs no
10658 -- elaboration, because only the access type is needed in the
10659 -- initialization procedure.
10661 if Ekind (T) = E_Incomplete_Type then
10662 Mutate_Ekind (Def_Id, E_Incomplete_Subtype);
10663 else
10664 Mutate_Ekind (Def_Id, Ekind (T));
10665 end if;
10667 if For_Access and then Within_Init_Proc then
10668 null;
10669 else
10670 Append_Elmt (Def_Id, Private_Dependents (T));
10671 end if;
10672 end if;
10674 Set_Etype (Def_Id, T);
10675 Reinit_Size_Align (Def_Id);
10676 Set_Has_Discriminants (Def_Id, Has_Discrs);
10677 Set_Is_Constrained (Def_Id, Constrained);
10679 Set_First_Entity (Def_Id, First_Entity (T));
10680 Set_Last_Entity (Def_Id, Last_Entity (T));
10681 Set_Has_Implicit_Dereference
10682 (Def_Id, Has_Implicit_Dereference (T));
10683 Set_Has_Pragma_Unreferenced_Objects
10684 (Def_Id, Has_Pragma_Unreferenced_Objects (T));
10686 -- If the subtype is the completion of a private declaration, there may
10687 -- have been representation clauses for the partial view, and they must
10688 -- be preserved. Build_Derived_Type chains the inherited clauses with
10689 -- the ones appearing on the extension. If this comes from a subtype
10690 -- declaration, all clauses are inherited.
10692 if No (First_Rep_Item (Def_Id)) then
10693 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10694 end if;
10696 if Is_Tagged_Type (T) then
10697 Set_Is_Tagged_Type (Def_Id);
10698 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
10699 Make_Class_Wide_Type (Def_Id);
10700 end if;
10702 Set_Stored_Constraint (Def_Id, No_Elist);
10704 if Has_Discrs then
10705 Set_Discriminant_Constraint (Def_Id, Elist);
10706 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
10707 end if;
10709 if Is_Tagged_Type (T) then
10711 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10712 -- concurrent record type (which has the list of primitive
10713 -- operations).
10715 if Ada_Version >= Ada_2005
10716 and then Is_Concurrent_Type (T)
10717 then
10718 Set_Corresponding_Record_Type (Def_Id,
10719 Corresponding_Record_Type (T));
10720 else
10721 Set_Direct_Primitive_Operations (Def_Id,
10722 Direct_Primitive_Operations (T));
10723 end if;
10725 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
10726 end if;
10728 -- Subtypes introduced by component declarations do not need to be
10729 -- marked as delayed, and do not get freeze nodes, because the semantics
10730 -- verifies that the parents of the subtypes are frozen before the
10731 -- enclosing record is frozen.
10733 if not Is_Type (Scope (Def_Id)) then
10734 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10736 if Is_Private_Type (T)
10737 and then Present (Full_View (T))
10738 then
10739 Conditional_Delay (Def_Id, Full_View (T));
10740 else
10741 Conditional_Delay (Def_Id, T);
10742 end if;
10743 end if;
10745 if Is_Record_Type (T) then
10746 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
10748 if Has_Discrs
10749 and then not Is_Empty_Elmt_List (Elist)
10750 and then not For_Access
10751 then
10752 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
10754 elsif not Is_Private_Type (T) then
10755 Set_Cloned_Subtype (Def_Id, T);
10756 end if;
10757 end if;
10758 end Build_Discriminated_Subtype;
10760 ---------------------------
10761 -- Build_Itype_Reference --
10762 ---------------------------
10764 procedure Build_Itype_Reference
10765 (Ityp : Entity_Id;
10766 Nod : Node_Id)
10768 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
10769 begin
10771 -- Itype references are only created for use by the back-end
10773 if Inside_A_Generic then
10774 return;
10775 else
10776 Set_Itype (IR, Ityp);
10778 -- If Nod is a library unit entity, then Insert_After won't work,
10779 -- because Nod is not a member of any list. Therefore, we use
10780 -- Add_Global_Declaration in this case. This can happen if we have a
10781 -- build-in-place library function, child unit or not.
10783 if (Nkind (Nod) in N_Entity and then Is_Compilation_Unit (Nod))
10784 or else (Nkind (Nod) in
10785 N_Defining_Program_Unit_Name | N_Subprogram_Declaration
10786 and then Is_Compilation_Unit (Defining_Entity (Nod)))
10787 then
10788 Add_Global_Declaration (IR);
10789 else
10790 Insert_After (Nod, IR);
10791 end if;
10792 end if;
10793 end Build_Itype_Reference;
10795 ------------------------
10796 -- Build_Scalar_Bound --
10797 ------------------------
10799 function Build_Scalar_Bound
10800 (Bound : Node_Id;
10801 Par_T : Entity_Id;
10802 Der_T : Entity_Id) return Node_Id
10804 New_Bound : Entity_Id;
10806 begin
10807 -- Note: not clear why this is needed, how can the original bound
10808 -- be unanalyzed at this point? and if it is, what business do we
10809 -- have messing around with it? and why is the base type of the
10810 -- parent type the right type for the resolution. It probably is
10811 -- not. It is OK for the new bound we are creating, but not for
10812 -- the old one??? Still if it never happens, no problem.
10814 Analyze_And_Resolve (Bound, Base_Type (Par_T));
10816 if Nkind (Bound) in N_Integer_Literal | N_Real_Literal then
10817 New_Bound := New_Copy (Bound);
10818 Set_Etype (New_Bound, Der_T);
10819 Set_Analyzed (New_Bound);
10821 elsif Is_Entity_Name (Bound) then
10822 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
10824 -- The following is almost certainly wrong. What business do we have
10825 -- relocating a node (Bound) that is presumably still attached to
10826 -- the tree elsewhere???
10828 else
10829 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
10830 end if;
10832 Set_Etype (New_Bound, Der_T);
10833 return New_Bound;
10834 end Build_Scalar_Bound;
10836 -------------------------------
10837 -- Check_Abstract_Overriding --
10838 -------------------------------
10840 procedure Check_Abstract_Overriding (T : Entity_Id) is
10841 Alias_Subp : Entity_Id;
10842 Elmt : Elmt_Id;
10843 Op_List : Elist_Id;
10844 Subp : Entity_Id;
10845 Type_Def : Node_Id;
10847 procedure Check_Pragma_Implemented (Subp : Entity_Id);
10848 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10849 -- which has pragma Implemented already set. Check whether Subp's entity
10850 -- kind conforms to the implementation kind of the overridden routine.
10852 procedure Check_Pragma_Implemented
10853 (Subp : Entity_Id;
10854 Iface_Subp : Entity_Id);
10855 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10856 -- Iface_Subp and both entities have pragma Implemented already set on
10857 -- them. Check whether the two implementation kinds are conforming.
10859 procedure Inherit_Pragma_Implemented
10860 (Subp : Entity_Id;
10861 Iface_Subp : Entity_Id);
10862 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10863 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10864 -- Propagate the implementation kind of Iface_Subp to Subp.
10866 ------------------------------
10867 -- Check_Pragma_Implemented --
10868 ------------------------------
10870 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
10871 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
10872 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
10873 Subp_Alias : constant Entity_Id := Alias (Subp);
10874 Contr_Typ : Entity_Id;
10875 Impl_Subp : Entity_Id;
10877 begin
10878 -- Subp must have an alias since it is a hidden entity used to link
10879 -- an interface subprogram to its overriding counterpart.
10881 pragma Assert (Present (Subp_Alias));
10883 -- Handle aliases to synchronized wrappers
10885 Impl_Subp := Subp_Alias;
10887 if Is_Primitive_Wrapper (Impl_Subp) then
10888 Impl_Subp := Wrapped_Entity (Impl_Subp);
10889 end if;
10891 -- Extract the type of the controlling formal
10893 Contr_Typ := Etype (First_Formal (Subp_Alias));
10895 if Is_Concurrent_Record_Type (Contr_Typ) then
10896 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
10897 end if;
10899 -- An interface subprogram whose implementation kind is By_Entry must
10900 -- be implemented by an entry.
10902 if Impl_Kind = Name_By_Entry
10903 and then Ekind (Impl_Subp) /= E_Entry
10904 then
10905 Error_Msg_Node_2 := Iface_Alias;
10906 Error_Msg_NE
10907 ("type & must implement abstract subprogram & with an entry",
10908 Subp_Alias, Contr_Typ);
10910 elsif Impl_Kind = Name_By_Protected_Procedure then
10912 -- An interface subprogram whose implementation kind is By_
10913 -- Protected_Procedure cannot be implemented by a primitive
10914 -- procedure of a task type.
10916 if Ekind (Contr_Typ) /= E_Protected_Type then
10917 Error_Msg_Node_2 := Contr_Typ;
10918 Error_Msg_NE
10919 ("interface subprogram & cannot be implemented by a "
10920 & "primitive procedure of task type &",
10921 Subp_Alias, Iface_Alias);
10923 -- An interface subprogram whose implementation kind is By_
10924 -- Protected_Procedure must be implemented by a procedure.
10926 elsif Ekind (Impl_Subp) /= E_Procedure then
10927 Error_Msg_Node_2 := Iface_Alias;
10928 Error_Msg_NE
10929 ("type & must implement abstract subprogram & with a "
10930 & "procedure", Subp_Alias, Contr_Typ);
10932 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10933 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10934 then
10935 Error_Msg_Name_1 := Impl_Kind;
10936 Error_Msg_N
10937 ("overriding operation& must have synchronization%",
10938 Subp_Alias);
10939 end if;
10941 -- If primitive has Optional synchronization, overriding operation
10942 -- must match if it has an explicit synchronization.
10944 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10945 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10946 then
10947 Error_Msg_Name_1 := Impl_Kind;
10948 Error_Msg_N
10949 ("overriding operation& must have synchronization%", Subp_Alias);
10950 end if;
10951 end Check_Pragma_Implemented;
10953 ------------------------------
10954 -- Check_Pragma_Implemented --
10955 ------------------------------
10957 procedure Check_Pragma_Implemented
10958 (Subp : Entity_Id;
10959 Iface_Subp : Entity_Id)
10961 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10962 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
10964 begin
10965 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10966 -- and overriding subprogram are different. In general this is an
10967 -- error except when the implementation kind of the overridden
10968 -- subprograms is By_Any or Optional.
10970 if Iface_Kind /= Subp_Kind
10971 and then Iface_Kind /= Name_By_Any
10972 and then Iface_Kind /= Name_Optional
10973 then
10974 if Iface_Kind = Name_By_Entry then
10975 Error_Msg_N
10976 ("incompatible implementation kind, overridden subprogram " &
10977 "is marked By_Entry", Subp);
10978 else
10979 Error_Msg_N
10980 ("incompatible implementation kind, overridden subprogram " &
10981 "is marked By_Protected_Procedure", Subp);
10982 end if;
10983 end if;
10984 end Check_Pragma_Implemented;
10986 --------------------------------
10987 -- Inherit_Pragma_Implemented --
10988 --------------------------------
10990 procedure Inherit_Pragma_Implemented
10991 (Subp : Entity_Id;
10992 Iface_Subp : Entity_Id)
10994 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10995 Loc : constant Source_Ptr := Sloc (Subp);
10996 Impl_Prag : Node_Id;
10998 begin
10999 -- Since the implementation kind is stored as a representation item
11000 -- rather than a flag, create a pragma node.
11002 Impl_Prag :=
11003 Make_Pragma (Loc,
11004 Chars => Name_Implemented,
11005 Pragma_Argument_Associations => New_List (
11006 Make_Pragma_Argument_Association (Loc,
11007 Expression => New_Occurrence_Of (Subp, Loc)),
11009 Make_Pragma_Argument_Association (Loc,
11010 Expression => Make_Identifier (Loc, Iface_Kind))));
11012 -- The pragma doesn't need to be analyzed because it is internally
11013 -- built. It is safe to directly register it as a rep item since we
11014 -- are only interested in the characters of the implementation kind.
11016 Record_Rep_Item (Subp, Impl_Prag);
11017 end Inherit_Pragma_Implemented;
11019 -- Start of processing for Check_Abstract_Overriding
11021 begin
11022 Op_List := Primitive_Operations (T);
11024 -- Loop to check primitive operations
11026 Elmt := First_Elmt (Op_List);
11027 while Present (Elmt) loop
11028 Subp := Node (Elmt);
11029 Alias_Subp := Alias (Subp);
11031 -- Inherited subprograms are identified by the fact that they do not
11032 -- come from source, and the associated source location is the
11033 -- location of the first subtype of the derived type.
11035 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
11036 -- subprograms that "require overriding".
11038 -- Special exception, do not complain about failure to override the
11039 -- stream routines _Input and _Output, as well as the primitive
11040 -- operations used in dispatching selects since we always provide
11041 -- automatic overridings for these subprograms.
11043 -- The partial view of T may have been a private extension, for
11044 -- which inherited functions dispatching on result are abstract.
11045 -- If the full view is a null extension, there is no need for
11046 -- overriding in Ada 2005, but wrappers need to be built for them
11047 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
11049 if Is_Null_Extension (T)
11050 and then Has_Controlling_Result (Subp)
11051 and then Ada_Version >= Ada_2005
11052 and then Present (Alias_Subp)
11053 and then not Comes_From_Source (Subp)
11054 and then not Is_Abstract_Subprogram (Alias_Subp)
11055 and then not Is_Access_Type (Etype (Subp))
11056 then
11057 null;
11059 -- Ada 2005 (AI-251): Internal entities of interfaces need no
11060 -- processing because this check is done with the aliased
11061 -- entity
11063 elsif Present (Interface_Alias (Subp)) then
11064 null;
11066 -- AI12-0042: Test for rule in 7.3.2(6.1/4), that requires overriding
11067 -- of a visible private primitive inherited from an ancestor with
11068 -- the aspect Type_Invariant'Class, unless the inherited primitive
11069 -- is abstract.
11071 elsif not Is_Abstract_Subprogram (Subp)
11072 and then not Comes_From_Source (Subp) -- An inherited subprogram
11073 and then Requires_Overriding (Subp)
11074 and then Present (Alias_Subp)
11075 and then Has_Invariants (Etype (T))
11076 and then Present (Get_Pragma (Etype (T), Pragma_Invariant))
11077 and then Class_Present (Get_Pragma (Etype (T), Pragma_Invariant))
11078 and then Is_Private_Primitive (Alias_Subp)
11079 then
11080 Error_Msg_NE
11081 ("inherited private primitive & must be overridden", T, Subp);
11082 Error_Msg_N
11083 ("\because ancestor type has 'Type_'Invariant''Class " &
11084 "(RM 7.3.2(6.1))", T);
11086 elsif (Is_Abstract_Subprogram (Subp)
11087 or else Requires_Overriding (Subp)
11088 or else
11089 (Has_Controlling_Result (Subp)
11090 and then Present (Alias_Subp)
11091 and then not Comes_From_Source (Subp)
11092 and then Sloc (Subp) = Sloc (First_Subtype (T))))
11093 and then not Is_TSS (Subp, TSS_Stream_Input)
11094 and then not Is_TSS (Subp, TSS_Stream_Output)
11095 and then not Is_Abstract_Type (T)
11096 and then not Is_Predefined_Interface_Primitive (Subp)
11098 -- Ada 2005 (AI-251): Do not consider hidden entities associated
11099 -- with abstract interface types because the check will be done
11100 -- with the aliased entity (otherwise we generate a duplicated
11101 -- error message).
11103 and then not Present (Interface_Alias (Subp))
11104 then
11105 if Present (Alias_Subp) then
11107 -- Only perform the check for a derived subprogram when the
11108 -- type has an explicit record extension. This avoids incorrect
11109 -- flagging of abstract subprograms for the case of a type
11110 -- without an extension that is derived from a formal type
11111 -- with a tagged actual (can occur within a private part).
11113 -- Ada 2005 (AI-391): In the case of an inherited function with
11114 -- a controlling result of the type, the rule does not apply if
11115 -- the type is a null extension (unless the parent function
11116 -- itself is abstract, in which case the function must still be
11117 -- be overridden). The expander will generate an overriding
11118 -- wrapper function calling the parent subprogram (see
11119 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
11121 Type_Def := Type_Definition (Parent (T));
11123 if Nkind (Type_Def) = N_Derived_Type_Definition
11124 and then Present (Record_Extension_Part (Type_Def))
11125 and then
11126 (Ada_Version < Ada_2005
11127 or else not Is_Null_Extension (T)
11128 or else Ekind (Subp) = E_Procedure
11129 or else not Has_Controlling_Result (Subp)
11130 or else Is_Abstract_Subprogram (Alias_Subp)
11131 or else Requires_Overriding (Subp)
11132 or else Is_Access_Type (Etype (Subp)))
11133 then
11134 -- Avoid reporting error in case of abstract predefined
11135 -- primitive inherited from interface type because the
11136 -- body of internally generated predefined primitives
11137 -- of tagged types are generated later by Freeze_Type
11139 if Is_Interface (Root_Type (T))
11140 and then Is_Abstract_Subprogram (Subp)
11141 and then Is_Predefined_Dispatching_Operation (Subp)
11142 and then not Comes_From_Source (Ultimate_Alias (Subp))
11143 then
11144 null;
11146 -- A null extension is not obliged to override an inherited
11147 -- procedure subject to pragma Extensions_Visible with value
11148 -- False and at least one controlling OUT parameter
11149 -- (SPARK RM 6.1.7(6)).
11151 elsif Is_Null_Extension (T)
11152 and then Is_EVF_Procedure (Subp)
11153 then
11154 null;
11156 -- Subprogram renamings cannot be overridden
11158 elsif Comes_From_Source (Subp)
11159 and then Present (Alias (Subp))
11160 then
11161 null;
11163 -- Skip reporting the error on Ada 2022 only subprograms
11164 -- that require overriding if we are not in Ada 2022 mode.
11166 elsif Ada_Version < Ada_2022
11167 and then Requires_Overriding (Subp)
11168 and then Is_Ada_2022_Only (Ultimate_Alias (Subp))
11169 then
11170 null;
11172 else
11173 Error_Msg_NE
11174 ("type must be declared abstract or & overridden",
11175 T, Subp);
11177 -- Traverse the whole chain of aliased subprograms to
11178 -- complete the error notification. This is especially
11179 -- useful for traceability of the chain of entities when
11180 -- the subprogram corresponds with an interface
11181 -- subprogram (which may be defined in another package).
11183 if Present (Alias_Subp) then
11184 declare
11185 E : Entity_Id;
11187 begin
11188 E := Subp;
11189 while Present (Alias (E)) loop
11191 -- Avoid reporting redundant errors on entities
11192 -- inherited from interfaces
11194 if Sloc (E) /= Sloc (T) then
11195 Error_Msg_Sloc := Sloc (E);
11196 Error_Msg_NE
11197 ("\& has been inherited #", T, Subp);
11198 end if;
11200 E := Alias (E);
11201 end loop;
11203 Error_Msg_Sloc := Sloc (E);
11205 -- AI05-0068: report if there is an overriding
11206 -- non-abstract subprogram that is invisible.
11208 if Is_Hidden (E)
11209 and then not Is_Abstract_Subprogram (E)
11210 then
11211 Error_Msg_NE
11212 ("\& subprogram# is not visible",
11213 T, Subp);
11215 -- Clarify the case where a non-null extension must
11216 -- override inherited procedure subject to pragma
11217 -- Extensions_Visible with value False and at least
11218 -- one controlling OUT param.
11220 elsif Is_EVF_Procedure (E) then
11221 Error_Msg_NE
11222 ("\& # is subject to Extensions_Visible False",
11223 T, Subp);
11225 else
11226 Error_Msg_NE
11227 ("\& has been inherited from subprogram #",
11228 T, Subp);
11229 end if;
11230 end;
11231 end if;
11232 end if;
11234 -- Ada 2005 (AI-345): Protected or task type implementing
11235 -- abstract interfaces.
11237 elsif Is_Concurrent_Record_Type (T)
11238 and then Present (Interfaces (T))
11239 then
11240 -- There is no need to check here RM 9.4(11.9/3) since we
11241 -- are processing the corresponding record type and the
11242 -- mode of the overriding subprograms was verified by
11243 -- Check_Conformance when the corresponding concurrent
11244 -- type declaration was analyzed.
11246 Error_Msg_NE
11247 ("interface subprogram & must be overridden", T, Subp);
11249 -- Examine primitive operations of synchronized type to find
11250 -- homonyms that have the wrong profile.
11252 declare
11253 Prim : Entity_Id;
11255 begin
11256 Prim := First_Entity (Corresponding_Concurrent_Type (T));
11257 while Present (Prim) loop
11258 if Chars (Prim) = Chars (Subp) then
11259 Error_Msg_NE
11260 ("profile is not type conformant with prefixed "
11261 & "view profile of inherited operation&",
11262 Prim, Subp);
11263 end if;
11265 Next_Entity (Prim);
11266 end loop;
11267 end;
11268 end if;
11270 else
11271 Error_Msg_Node_2 := T;
11272 Error_Msg_N
11273 ("abstract subprogram& not allowed for type&", Subp);
11275 -- Also post unconditional warning on the type (unconditional
11276 -- so that if there are more than one of these cases, we get
11277 -- them all, and not just the first one).
11279 Error_Msg_Node_2 := Subp;
11280 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
11281 end if;
11283 -- A subprogram subject to pragma Extensions_Visible with value
11284 -- "True" cannot override a subprogram subject to the same pragma
11285 -- with value "False" (SPARK RM 6.1.7(5)).
11287 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
11288 and then Present (Overridden_Operation (Subp))
11289 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
11290 Extensions_Visible_False
11291 then
11292 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
11293 Error_Msg_N
11294 ("subprogram & with Extensions_Visible True cannot override "
11295 & "subprogram # with Extensions_Visible False", Subp);
11296 end if;
11298 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
11300 -- Subp is an expander-generated procedure which maps an interface
11301 -- alias to a protected wrapper. The interface alias is flagged by
11302 -- pragma Implemented. Ensure that Subp is a procedure when the
11303 -- implementation kind is By_Protected_Procedure or an entry when
11304 -- By_Entry.
11306 if Ada_Version >= Ada_2012
11307 and then Is_Hidden (Subp)
11308 and then Present (Interface_Alias (Subp))
11309 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
11310 then
11311 Check_Pragma_Implemented (Subp);
11312 end if;
11314 -- Subp is an interface primitive which overrides another interface
11315 -- primitive marked with pragma Implemented.
11317 if Ada_Version >= Ada_2012
11318 and then Present (Overridden_Operation (Subp))
11319 and then Has_Rep_Pragma
11320 (Overridden_Operation (Subp), Name_Implemented)
11321 then
11322 -- If the overriding routine is also marked by Implemented, check
11323 -- that the two implementation kinds are conforming.
11325 if Has_Rep_Pragma (Subp, Name_Implemented) then
11326 Check_Pragma_Implemented
11327 (Subp => Subp,
11328 Iface_Subp => Overridden_Operation (Subp));
11330 -- Otherwise the overriding routine inherits the implementation
11331 -- kind from the overridden subprogram.
11333 else
11334 Inherit_Pragma_Implemented
11335 (Subp => Subp,
11336 Iface_Subp => Overridden_Operation (Subp));
11337 end if;
11338 end if;
11340 -- Ada 2005 (AI95-0414) and Ada 2022 (AI12-0269): Diagnose failure to
11341 -- match No_Return in parent, but do it unconditionally in Ada 95 too
11342 -- for procedures, since this is our pragma.
11344 if Present (Overridden_Operation (Subp))
11345 and then No_Return (Overridden_Operation (Subp))
11346 then
11348 -- If the subprogram is a renaming, check that the renamed
11349 -- subprogram is No_Return.
11351 if Present (Renamed_Or_Alias (Subp)) then
11352 if not No_Return (Renamed_Or_Alias (Subp)) then
11353 Error_Msg_NE ("subprogram & must be No_Return",
11354 Subp,
11355 Renamed_Or_Alias (Subp));
11356 Error_Msg_N ("\since renaming & overrides No_Return "
11357 & "subprogram (RM 6.5.1(6/2))",
11358 Subp);
11359 end if;
11361 -- Make sure that the subprogram itself is No_Return.
11363 elsif not No_Return (Subp) then
11364 Error_Msg_N ("overriding subprogram & must be No_Return", Subp);
11365 Error_Msg_N
11366 ("\since overridden subprogram is No_Return (RM 6.5.1(6/2))",
11367 Subp);
11368 end if;
11369 end if;
11371 -- If the operation is a wrapper for a synchronized primitive, it
11372 -- may be called indirectly through a dispatching select. We assume
11373 -- that it will be referenced elsewhere indirectly, and suppress
11374 -- warnings about an unused entity.
11376 if Is_Primitive_Wrapper (Subp)
11377 and then Present (Wrapped_Entity (Subp))
11378 then
11379 Set_Referenced (Wrapped_Entity (Subp));
11380 end if;
11382 Next_Elmt (Elmt);
11383 end loop;
11384 end Check_Abstract_Overriding;
11386 ------------------------------------------------
11387 -- Check_Access_Discriminant_Requires_Limited --
11388 ------------------------------------------------
11390 procedure Check_Access_Discriminant_Requires_Limited
11391 (D : Node_Id;
11392 Loc : Node_Id)
11394 begin
11395 -- A discriminant_specification for an access discriminant shall appear
11396 -- only in the declaration for a task or protected type, or for a type
11397 -- with the reserved word 'limited' in its definition or in one of its
11398 -- ancestors (RM 3.7(10)).
11400 -- AI-0063: The proper condition is that type must be immutably limited,
11401 -- or else be a partial view.
11403 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
11404 if Is_Limited_View (Current_Scope)
11405 or else
11406 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
11407 and then Limited_Present (Parent (Current_Scope)))
11408 then
11409 null;
11411 else
11412 Error_Msg_N
11413 ("access discriminants allowed only for limited types", Loc);
11414 end if;
11415 end if;
11416 end Check_Access_Discriminant_Requires_Limited;
11418 -----------------------------------
11419 -- Check_Aliased_Component_Types --
11420 -----------------------------------
11422 procedure Check_Aliased_Component_Types (T : Entity_Id) is
11423 C : Entity_Id;
11425 begin
11426 -- ??? Also need to check components of record extensions, but not
11427 -- components of protected types (which are always limited).
11429 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
11430 -- types to be unconstrained. This is safe because it is illegal to
11431 -- create access subtypes to such types with explicit discriminant
11432 -- constraints.
11434 if not Is_Limited_Type (T) then
11435 if Ekind (T) = E_Record_Type then
11436 C := First_Component (T);
11437 while Present (C) loop
11438 if Is_Aliased (C)
11439 and then Has_Discriminants (Etype (C))
11440 and then not Is_Constrained (Etype (C))
11441 and then not In_Instance_Body
11442 and then Ada_Version < Ada_2005
11443 then
11444 Error_Msg_N
11445 ("aliased component must be constrained (RM 3.6(11))",
11447 end if;
11449 Next_Component (C);
11450 end loop;
11452 elsif Ekind (T) = E_Array_Type then
11453 if Has_Aliased_Components (T)
11454 and then Has_Discriminants (Component_Type (T))
11455 and then not Is_Constrained (Component_Type (T))
11456 and then not In_Instance_Body
11457 and then Ada_Version < Ada_2005
11458 then
11459 Error_Msg_N
11460 ("aliased component type must be constrained (RM 3.6(11))",
11462 end if;
11463 end if;
11464 end if;
11465 end Check_Aliased_Component_Types;
11467 --------------------------------------
11468 -- Check_Anonymous_Access_Component --
11469 --------------------------------------
11471 procedure Check_Anonymous_Access_Component
11472 (Typ_Decl : Node_Id;
11473 Typ : Entity_Id;
11474 Prev : Entity_Id;
11475 Comp_Def : Node_Id;
11476 Access_Def : Node_Id)
11478 Loc : constant Source_Ptr := Sloc (Comp_Def);
11479 Anon_Access : Entity_Id;
11480 Acc_Def : Node_Id;
11481 Decl : Node_Id;
11482 Type_Def : Node_Id;
11484 procedure Build_Incomplete_Type_Declaration;
11485 -- If the record type contains components that include an access to the
11486 -- current record, then create an incomplete type declaration for the
11487 -- record, to be used as the designated type of the anonymous access.
11488 -- This is done only once, and only if there is no previous partial
11489 -- view of the type.
11491 function Designates_T (Subt : Node_Id) return Boolean;
11492 -- Check whether a node designates the enclosing record type, or 'Class
11493 -- of that type
11495 function Mentions_T (Acc_Def : Node_Id) return Boolean;
11496 -- Check whether an access definition includes a reference to
11497 -- the enclosing record type. The reference can be a subtype mark
11498 -- in the access definition itself, a 'Class attribute reference, or
11499 -- recursively a reference appearing in a parameter specification
11500 -- or result definition of an access_to_subprogram definition.
11502 --------------------------------------
11503 -- Build_Incomplete_Type_Declaration --
11504 --------------------------------------
11506 procedure Build_Incomplete_Type_Declaration is
11507 Decl : Node_Id;
11508 Inc_T : Entity_Id;
11509 H : Entity_Id;
11511 -- Is_Tagged indicates whether the type is tagged. It is tagged if
11512 -- it's "is new ... with record" or else "is tagged record ...".
11514 Typ_Def : constant Node_Id :=
11515 (if Nkind (Typ_Decl) = N_Full_Type_Declaration
11516 then Type_Definition (Typ_Decl) else Empty);
11517 Is_Tagged : constant Boolean :=
11518 Present (Typ_Def)
11519 and then
11520 ((Nkind (Typ_Def) = N_Derived_Type_Definition
11521 and then
11522 Present (Record_Extension_Part (Typ_Def)))
11523 or else
11524 (Nkind (Typ_Def) = N_Record_Definition
11525 and then Tagged_Present (Typ_Def)));
11527 begin
11528 -- If there is a previous partial view, no need to create a new one
11529 -- If the partial view, given by Prev, is incomplete, If Prev is
11530 -- a private declaration, full declaration is flagged accordingly.
11532 if Prev /= Typ then
11533 if Is_Tagged then
11534 Make_Class_Wide_Type (Prev);
11535 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
11536 Set_Etype (Class_Wide_Type (Typ), Typ);
11537 end if;
11539 return;
11541 elsif Has_Private_Declaration (Typ) then
11543 -- If we refer to T'Class inside T, and T is the completion of a
11544 -- private type, then make sure the class-wide type exists.
11546 if Is_Tagged then
11547 Make_Class_Wide_Type (Typ);
11548 end if;
11550 return;
11552 -- If there was a previous anonymous access type, the incomplete
11553 -- type declaration will have been created already.
11555 elsif Present (Current_Entity (Typ))
11556 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
11557 and then Full_View (Current_Entity (Typ)) = Typ
11558 then
11559 if Is_Tagged
11560 and then Comes_From_Source (Current_Entity (Typ))
11561 and then not Is_Tagged_Type (Current_Entity (Typ))
11562 then
11563 Make_Class_Wide_Type (Typ);
11564 Error_Msg_N
11565 ("incomplete view of tagged type should be declared tagged??",
11566 Parent (Current_Entity (Typ)));
11567 end if;
11568 return;
11570 else
11571 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
11572 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
11574 -- Type has already been inserted into the current scope. Remove
11575 -- it, and add incomplete declaration for type, so that subsequent
11576 -- anonymous access types can use it. The entity is unchained from
11577 -- the homonym list and from immediate visibility. After analysis,
11578 -- the entity in the incomplete declaration becomes immediately
11579 -- visible in the record declaration that follows.
11581 H := Current_Entity (Typ);
11583 if H = Typ then
11584 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
11585 else
11586 while Present (H)
11587 and then Homonym (H) /= Typ
11588 loop
11589 H := Homonym (Typ);
11590 end loop;
11592 Set_Homonym (H, Homonym (Typ));
11593 end if;
11595 Insert_Before (Typ_Decl, Decl);
11596 Analyze (Decl);
11597 Set_Full_View (Inc_T, Typ);
11599 if Is_Tagged then
11601 -- Create a common class-wide type for both views, and set the
11602 -- Etype of the class-wide type to the full view.
11604 Make_Class_Wide_Type (Inc_T);
11605 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
11606 Set_Etype (Class_Wide_Type (Typ), Typ);
11607 end if;
11608 end if;
11609 end Build_Incomplete_Type_Declaration;
11611 ------------------
11612 -- Designates_T --
11613 ------------------
11615 function Designates_T (Subt : Node_Id) return Boolean is
11616 Type_Id : constant Name_Id := Chars (Typ);
11618 function Names_T (Nam : Node_Id) return Boolean;
11619 -- The record type has not been introduced in the current scope
11620 -- yet, so we must examine the name of the type itself, either
11621 -- an identifier T, or an expanded name of the form P.T, where
11622 -- P denotes the current scope.
11624 -------------
11625 -- Names_T --
11626 -------------
11628 function Names_T (Nam : Node_Id) return Boolean is
11629 begin
11630 if Nkind (Nam) = N_Identifier then
11631 return Chars (Nam) = Type_Id;
11633 elsif Nkind (Nam) = N_Selected_Component then
11634 if Chars (Selector_Name (Nam)) = Type_Id then
11635 if Nkind (Prefix (Nam)) = N_Identifier then
11636 return Chars (Prefix (Nam)) = Chars (Current_Scope);
11638 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
11639 return Chars (Selector_Name (Prefix (Nam))) =
11640 Chars (Current_Scope);
11641 else
11642 return False;
11643 end if;
11645 else
11646 return False;
11647 end if;
11649 else
11650 return False;
11651 end if;
11652 end Names_T;
11654 -- Start of processing for Designates_T
11656 begin
11657 if Nkind (Subt) = N_Identifier then
11658 return Chars (Subt) = Type_Id;
11660 -- Reference can be through an expanded name which has not been
11661 -- analyzed yet, and which designates enclosing scopes.
11663 elsif Nkind (Subt) = N_Selected_Component then
11664 if Names_T (Subt) then
11665 return True;
11667 -- Otherwise it must denote an entity that is already visible.
11668 -- The access definition may name a subtype of the enclosing
11669 -- type, if there is a previous incomplete declaration for it.
11671 else
11672 Find_Selected_Component (Subt);
11673 return
11674 Is_Entity_Name (Subt)
11675 and then Scope (Entity (Subt)) = Current_Scope
11676 and then
11677 (Chars (Base_Type (Entity (Subt))) = Type_Id
11678 or else
11679 (Is_Class_Wide_Type (Entity (Subt))
11680 and then
11681 Chars (Etype (Base_Type (Entity (Subt)))) =
11682 Type_Id));
11683 end if;
11685 -- A reference to the current type may appear as the prefix of
11686 -- a 'Class attribute.
11688 elsif Nkind (Subt) = N_Attribute_Reference
11689 and then Attribute_Name (Subt) = Name_Class
11690 then
11691 return Names_T (Prefix (Subt));
11693 else
11694 return False;
11695 end if;
11696 end Designates_T;
11698 ----------------
11699 -- Mentions_T --
11700 ----------------
11702 function Mentions_T (Acc_Def : Node_Id) return Boolean is
11703 Param_Spec : Node_Id;
11705 Acc_Subprg : constant Node_Id :=
11706 Access_To_Subprogram_Definition (Acc_Def);
11708 begin
11709 if No (Acc_Subprg) then
11710 return Designates_T (Subtype_Mark (Acc_Def));
11711 end if;
11713 -- Component is an access_to_subprogram: examine its formals,
11714 -- and result definition in the case of an access_to_function.
11716 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
11717 while Present (Param_Spec) loop
11718 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
11719 and then Mentions_T (Parameter_Type (Param_Spec))
11720 then
11721 return True;
11723 elsif Designates_T (Parameter_Type (Param_Spec)) then
11724 return True;
11725 end if;
11727 Next (Param_Spec);
11728 end loop;
11730 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
11731 if Nkind (Result_Definition (Acc_Subprg)) =
11732 N_Access_Definition
11733 then
11734 return Mentions_T (Result_Definition (Acc_Subprg));
11735 else
11736 return Designates_T (Result_Definition (Acc_Subprg));
11737 end if;
11738 end if;
11740 return False;
11741 end Mentions_T;
11743 -- Start of processing for Check_Anonymous_Access_Component
11745 begin
11746 if Present (Access_Def) and then Mentions_T (Access_Def) then
11747 Acc_Def := Access_To_Subprogram_Definition (Access_Def);
11749 Build_Incomplete_Type_Declaration;
11750 Anon_Access := Make_Temporary (Loc, 'S');
11752 -- Create a declaration for the anonymous access type: either
11753 -- an access_to_object or an access_to_subprogram.
11755 if Present (Acc_Def) then
11756 if Nkind (Acc_Def) = N_Access_Function_Definition then
11757 Type_Def :=
11758 Make_Access_Function_Definition (Loc,
11759 Parameter_Specifications =>
11760 Parameter_Specifications (Acc_Def),
11761 Result_Definition => Result_Definition (Acc_Def));
11762 else
11763 Type_Def :=
11764 Make_Access_Procedure_Definition (Loc,
11765 Parameter_Specifications =>
11766 Parameter_Specifications (Acc_Def));
11767 end if;
11769 else
11770 Type_Def :=
11771 Make_Access_To_Object_Definition (Loc,
11772 Subtype_Indication =>
11773 Relocate_Node (Subtype_Mark (Access_Def)));
11775 Set_Constant_Present (Type_Def, Constant_Present (Access_Def));
11776 Set_All_Present (Type_Def, All_Present (Access_Def));
11777 end if;
11779 Set_Null_Exclusion_Present
11780 (Type_Def, Null_Exclusion_Present (Access_Def));
11782 Decl :=
11783 Make_Full_Type_Declaration (Loc,
11784 Defining_Identifier => Anon_Access,
11785 Type_Definition => Type_Def);
11787 Insert_Before (Typ_Decl, Decl);
11788 Analyze (Decl);
11790 -- If an access to subprogram, create the extra formals
11792 if Present (Acc_Def) then
11793 Create_Extra_Formals (Designated_Type (Anon_Access));
11794 end if;
11796 if Nkind (Comp_Def) = N_Component_Definition then
11797 Rewrite (Comp_Def,
11798 Make_Component_Definition (Loc,
11799 Subtype_Indication => New_Occurrence_Of (Anon_Access, Loc)));
11800 else
11801 pragma Assert (Nkind (Comp_Def) = N_Discriminant_Specification);
11802 Rewrite (Comp_Def,
11803 Make_Discriminant_Specification (Loc,
11804 Defining_Identifier => Defining_Identifier (Comp_Def),
11805 Discriminant_Type => New_Occurrence_Of (Anon_Access, Loc)));
11806 end if;
11808 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
11809 Mutate_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
11810 else
11811 Mutate_Ekind (Anon_Access, E_Anonymous_Access_Type);
11812 end if;
11814 Set_Is_Local_Anonymous_Access (Anon_Access);
11815 end if;
11816 end Check_Anonymous_Access_Component;
11818 ---------------------------------------
11819 -- Check_Anonymous_Access_Components --
11820 ---------------------------------------
11822 procedure Check_Anonymous_Access_Components
11823 (Typ_Decl : Node_Id;
11824 Typ : Entity_Id;
11825 Prev : Entity_Id;
11826 Comp_List : Node_Id)
11828 Comp : Node_Id;
11829 begin
11830 if No (Comp_List) then
11831 return;
11832 end if;
11834 Comp := First (Component_Items (Comp_List));
11835 while Present (Comp) loop
11836 if Nkind (Comp) = N_Component_Declaration then
11837 Check_Anonymous_Access_Component
11838 (Typ_Decl, Typ, Prev,
11839 Component_Definition (Comp),
11840 Access_Definition (Component_Definition (Comp)));
11841 end if;
11843 Next (Comp);
11844 end loop;
11846 if Present (Variant_Part (Comp_List)) then
11847 declare
11848 V : Node_Id;
11849 begin
11850 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
11851 while Present (V) loop
11852 Check_Anonymous_Access_Components
11853 (Typ_Decl, Typ, Prev, Component_List (V));
11854 Next_Non_Pragma (V);
11855 end loop;
11856 end;
11857 end if;
11858 end Check_Anonymous_Access_Components;
11860 ----------------------
11861 -- Check_Completion --
11862 ----------------------
11864 procedure Check_Completion (Body_Id : Node_Id := Empty) is
11865 E : Entity_Id;
11867 procedure Post_Error;
11868 -- Post error message for lack of completion for entity E
11870 ----------------
11871 -- Post_Error --
11872 ----------------
11874 procedure Post_Error is
11875 procedure Missing_Body;
11876 -- Output missing body message
11878 ------------------
11879 -- Missing_Body --
11880 ------------------
11882 procedure Missing_Body is
11883 begin
11884 -- Spec is in same unit, so we can post on spec
11886 if In_Same_Source_Unit (Body_Id, E) then
11887 Error_Msg_N ("missing body for &", E);
11889 -- Spec is in a separate unit, so we have to post on the body
11891 else
11892 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
11893 end if;
11894 end Missing_Body;
11896 -- Start of processing for Post_Error
11898 begin
11899 if not Comes_From_Source (E) then
11900 if Ekind (E) in E_Task_Type | E_Protected_Type then
11902 -- It may be an anonymous protected type created for a
11903 -- single variable. Post error on variable, if present.
11905 declare
11906 Var : Entity_Id;
11908 begin
11909 Var := First_Entity (Current_Scope);
11910 while Present (Var) loop
11911 exit when Etype (Var) = E
11912 and then Comes_From_Source (Var);
11914 Next_Entity (Var);
11915 end loop;
11917 if Present (Var) then
11918 E := Var;
11919 end if;
11920 end;
11921 end if;
11922 end if;
11924 -- If a generated entity has no completion, then either previous
11925 -- semantic errors have disabled the expansion phase, or else we had
11926 -- missing subunits, or else we are compiling without expansion,
11927 -- or else something is very wrong.
11929 if not Comes_From_Source (E) then
11930 pragma Assert
11931 (Serious_Errors_Detected > 0
11932 or else Configurable_Run_Time_Violations > 0
11933 or else Subunits_Missing
11934 or else not Expander_Active);
11935 return;
11937 -- Here for source entity
11939 else
11940 -- Here if no body to post the error message, so we post the error
11941 -- on the declaration that has no completion. This is not really
11942 -- the right place to post it, think about this later ???
11944 if No (Body_Id) then
11945 if Is_Type (E) then
11946 Error_Msg_NE
11947 ("missing full declaration for }", Parent (E), E);
11948 else
11949 Error_Msg_NE ("missing body for &", Parent (E), E);
11950 end if;
11952 -- Package body has no completion for a declaration that appears
11953 -- in the corresponding spec. Post error on the body, with a
11954 -- reference to the non-completed declaration.
11956 else
11957 Error_Msg_Sloc := Sloc (E);
11959 if Is_Type (E) then
11960 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
11962 elsif Is_Overloadable (E)
11963 and then Current_Entity_In_Scope (E) /= E
11964 then
11965 -- It may be that the completion is mistyped and appears as
11966 -- a distinct overloading of the entity.
11968 declare
11969 Candidate : constant Entity_Id :=
11970 Current_Entity_In_Scope (E);
11971 Decl : constant Node_Id :=
11972 Unit_Declaration_Node (Candidate);
11974 begin
11975 if Is_Overloadable (Candidate)
11976 and then Ekind (Candidate) = Ekind (E)
11977 and then Nkind (Decl) = N_Subprogram_Body
11978 and then Acts_As_Spec (Decl)
11979 then
11980 Check_Type_Conformant (Candidate, E);
11982 else
11983 Missing_Body;
11984 end if;
11985 end;
11987 else
11988 Missing_Body;
11989 end if;
11990 end if;
11991 end if;
11992 end Post_Error;
11994 -- Local variables
11996 Pack_Id : constant Entity_Id := Current_Scope;
11998 -- Start of processing for Check_Completion
12000 begin
12001 E := First_Entity (Pack_Id);
12002 while Present (E) loop
12003 if Is_Intrinsic_Subprogram (E) then
12004 null;
12006 -- The following situation requires special handling: a child unit
12007 -- that appears in the context clause of the body of its parent:
12009 -- procedure Parent.Child (...);
12011 -- with Parent.Child;
12012 -- package body Parent is
12014 -- Here Parent.Child appears as a local entity, but should not be
12015 -- flagged as requiring completion, because it is a compilation
12016 -- unit.
12018 -- Ignore missing completion for a subprogram that does not come from
12019 -- source (including the _Call primitive operation of RAS types,
12020 -- which has to have the flag Comes_From_Source for other purposes):
12021 -- we assume that the expander will provide the missing completion.
12022 -- In case of previous errors, other expansion actions that provide
12023 -- bodies for null procedures with not be invoked, so inhibit message
12024 -- in those cases.
12026 -- Note that E_Operator is not in the list that follows, because
12027 -- this kind is reserved for predefined operators, that are
12028 -- intrinsic and do not need completion.
12030 elsif Ekind (E) in E_Function
12031 | E_Procedure
12032 | E_Generic_Function
12033 | E_Generic_Procedure
12034 then
12035 if Has_Completion (E) then
12036 null;
12038 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
12039 null;
12041 elsif Is_Subprogram (E)
12042 and then (not Comes_From_Source (E)
12043 or else Chars (E) = Name_uCall)
12044 then
12045 null;
12047 elsif
12048 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
12049 then
12050 null;
12052 elsif Nkind (Parent (E)) = N_Procedure_Specification
12053 and then Null_Present (Parent (E))
12054 and then Serious_Errors_Detected > 0
12055 then
12056 null;
12058 else
12059 Post_Error;
12060 end if;
12062 elsif Is_Entry (E) then
12063 if not Has_Completion (E)
12064 and then Ekind (Scope (E)) = E_Protected_Type
12065 then
12066 Post_Error;
12067 end if;
12069 elsif Is_Package_Or_Generic_Package (E) then
12070 if Unit_Requires_Body (E) then
12071 if not Has_Completion (E)
12072 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
12073 N_Compilation_Unit
12074 then
12075 Post_Error;
12076 end if;
12078 elsif not Is_Child_Unit (E) then
12079 May_Need_Implicit_Body (E);
12080 end if;
12082 -- A formal incomplete type (Ada 2012) does not require a completion;
12083 -- other incomplete type declarations do.
12085 elsif Ekind (E) = E_Incomplete_Type then
12086 if No (Underlying_Type (E))
12087 and then not Is_Generic_Type (E)
12088 then
12089 Post_Error;
12090 end if;
12092 elsif Ekind (E) in E_Task_Type | E_Protected_Type then
12093 if not Has_Completion (E) then
12094 Post_Error;
12095 end if;
12097 -- A single task declared in the current scope is a constant, verify
12098 -- that the body of its anonymous type is in the same scope. If the
12099 -- task is defined elsewhere, this may be a renaming declaration for
12100 -- which no completion is needed.
12102 elsif Ekind (E) = E_Constant then
12103 if Ekind (Etype (E)) = E_Task_Type
12104 and then not Has_Completion (Etype (E))
12105 and then Scope (Etype (E)) = Current_Scope
12106 then
12107 Post_Error;
12108 end if;
12110 elsif Ekind (E) = E_Record_Type then
12111 if Is_Tagged_Type (E) then
12112 Check_Abstract_Overriding (E);
12113 Check_Conventions (E);
12114 end if;
12116 Check_Aliased_Component_Types (E);
12118 elsif Ekind (E) = E_Array_Type then
12119 Check_Aliased_Component_Types (E);
12121 end if;
12123 Next_Entity (E);
12124 end loop;
12125 end Check_Completion;
12127 -------------------------------------
12128 -- Check_Constraining_Discriminant --
12129 -------------------------------------
12131 procedure Check_Constraining_Discriminant (New_Disc, Old_Disc : Entity_Id)
12133 New_Type : constant Entity_Id := Etype (New_Disc);
12134 Old_Type : Entity_Id;
12136 begin
12137 -- If the record type contains an array constrained by the discriminant
12138 -- but with some different bound, the compiler tries to create a smaller
12139 -- range for the discriminant type (see exp_ch3.Adjust_Discriminants).
12140 -- In this case, where the discriminant type is a scalar type, the check
12141 -- must use the original discriminant type in the parent declaration.
12143 if Is_Scalar_Type (New_Type) then
12144 Old_Type := Entity (Discriminant_Type (Parent (Old_Disc)));
12145 else
12146 Old_Type := Etype (Old_Disc);
12147 end if;
12149 if not Subtypes_Statically_Compatible (New_Type, Old_Type) then
12150 Error_Msg_N
12151 ("subtype must be statically compatible with parent discriminant",
12152 New_Disc);
12154 if not Predicates_Compatible (New_Type, Old_Type) then
12155 Error_Msg_N
12156 ("\subtype predicate is not compatible with parent discriminant",
12157 New_Disc);
12158 end if;
12159 end if;
12160 end Check_Constraining_Discriminant;
12162 ------------------------------------
12163 -- Check_CPP_Type_Has_No_Defaults --
12164 ------------------------------------
12166 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
12167 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
12168 Clist : Node_Id;
12169 Comp : Node_Id;
12171 begin
12172 -- Obtain the component list
12174 if Nkind (Tdef) = N_Record_Definition then
12175 Clist := Component_List (Tdef);
12176 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
12177 Clist := Component_List (Record_Extension_Part (Tdef));
12178 end if;
12180 -- Check all components to ensure no default expressions
12182 if Present (Clist) then
12183 Comp := First (Component_Items (Clist));
12184 while Present (Comp) loop
12185 if Present (Expression (Comp)) then
12186 Error_Msg_N
12187 ("component of imported 'C'P'P type cannot have "
12188 & "default expression", Expression (Comp));
12189 end if;
12191 Next (Comp);
12192 end loop;
12193 end if;
12194 end Check_CPP_Type_Has_No_Defaults;
12196 ----------------------------
12197 -- Check_Delta_Expression --
12198 ----------------------------
12200 procedure Check_Delta_Expression (E : Node_Id) is
12201 begin
12202 if not (Is_Real_Type (Etype (E))) then
12203 Wrong_Type (E, Any_Real);
12205 elsif not Is_OK_Static_Expression (E) then
12206 Flag_Non_Static_Expr
12207 ("non-static expression used for delta value!", E);
12209 elsif not UR_Is_Positive (Expr_Value_R (E)) then
12210 Error_Msg_N ("delta expression must be positive", E);
12212 else
12213 return;
12214 end if;
12216 -- If any of above errors occurred, then replace the incorrect
12217 -- expression by the real 0.1, which should prevent further errors.
12219 Rewrite (E,
12220 Make_Real_Literal (Sloc (E), Ureal_Tenth));
12221 Analyze_And_Resolve (E, Standard_Float);
12222 end Check_Delta_Expression;
12224 -----------------------------
12225 -- Check_Digits_Expression --
12226 -----------------------------
12228 procedure Check_Digits_Expression (E : Node_Id) is
12229 begin
12230 if not (Is_Integer_Type (Etype (E))) then
12231 Wrong_Type (E, Any_Integer);
12233 elsif not Is_OK_Static_Expression (E) then
12234 Flag_Non_Static_Expr
12235 ("non-static expression used for digits value!", E);
12237 elsif Expr_Value (E) <= 0 then
12238 Error_Msg_N ("digits value must be greater than zero", E);
12240 else
12241 return;
12242 end if;
12244 -- If any of above errors occurred, then replace the incorrect
12245 -- expression by the integer 1, which should prevent further errors.
12247 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
12248 Analyze_And_Resolve (E, Standard_Integer);
12250 end Check_Digits_Expression;
12252 --------------------------
12253 -- Check_Initialization --
12254 --------------------------
12256 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
12257 begin
12258 -- Special processing for limited types
12260 if Is_Limited_Type (T)
12261 and then not In_Instance
12262 and then not In_Inlined_Body
12263 then
12264 if not OK_For_Limited_Init (T, Exp) then
12266 -- In GNAT mode, this is just a warning, to allow it to be evilly
12267 -- turned off. Otherwise it is a real error.
12269 if GNAT_Mode then
12270 Error_Msg_N
12271 ("??cannot initialize entities of limited type!", Exp);
12273 elsif Ada_Version < Ada_2005 then
12275 -- The side effect removal machinery may generate illegal Ada
12276 -- code to avoid the usage of access types and 'reference in
12277 -- SPARK mode. Since this is legal code with respect to theorem
12278 -- proving, do not emit the error.
12280 if GNATprove_Mode
12281 and then Nkind (Exp) = N_Function_Call
12282 and then Nkind (Parent (Exp)) = N_Object_Declaration
12283 and then not Comes_From_Source
12284 (Defining_Identifier (Parent (Exp)))
12285 then
12286 null;
12288 else
12289 Error_Msg_N
12290 ("cannot initialize entities of limited type", Exp);
12291 Explain_Limited_Type (T, Exp);
12292 end if;
12294 else
12295 -- Specialize error message according to kind of illegal
12296 -- initial expression. We check the Original_Node to cover
12297 -- cases where the initialization expression of an object
12298 -- declaration generated by the compiler has been rewritten
12299 -- (such as for dispatching calls).
12301 if Nkind (Original_Node (Exp)) = N_Type_Conversion
12302 and then
12303 Nkind (Expression (Original_Node (Exp))) = N_Function_Call
12304 then
12305 -- No error for internally-generated object declarations,
12306 -- which can come from build-in-place assignment statements.
12308 if Nkind (Parent (Exp)) = N_Object_Declaration
12309 and then not Comes_From_Source
12310 (Defining_Identifier (Parent (Exp)))
12311 then
12312 null;
12314 else
12315 Error_Msg_N
12316 ("illegal context for call to function with limited "
12317 & "result", Exp);
12318 end if;
12320 else
12321 Error_Msg_N
12322 ("initialization of limited object requires aggregate or "
12323 & "function call", Exp);
12324 end if;
12325 end if;
12326 end if;
12327 end if;
12329 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
12330 -- set unless we can be sure that no range check is required.
12332 if not Expander_Active
12333 and then Is_Scalar_Type (T)
12334 and then not Is_In_Range (Exp, T, Assume_Valid => True)
12335 then
12336 Set_Do_Range_Check (Exp);
12337 end if;
12338 end Check_Initialization;
12340 ----------------------
12341 -- Check_Interfaces --
12342 ----------------------
12344 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
12345 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
12347 Iface : Node_Id;
12348 Iface_Def : Node_Id;
12349 Iface_Typ : Entity_Id;
12350 Parent_Node : Node_Id;
12352 Is_Task : Boolean := False;
12353 -- Set True if parent type or any progenitor is a task interface
12355 Is_Protected : Boolean := False;
12356 -- Set True if parent type or any progenitor is a protected interface
12358 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
12359 -- Check that a progenitor is compatible with declaration. If an error
12360 -- message is output, it is posted on Error_Node.
12362 ------------------
12363 -- Check_Ifaces --
12364 ------------------
12366 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
12367 Iface_Id : constant Entity_Id :=
12368 Defining_Identifier (Parent (Iface_Def));
12369 Type_Def : Node_Id;
12371 begin
12372 if Nkind (N) = N_Private_Extension_Declaration then
12373 Type_Def := N;
12374 else
12375 Type_Def := Type_Definition (N);
12376 end if;
12378 if Is_Task_Interface (Iface_Id) then
12379 Is_Task := True;
12381 elsif Is_Protected_Interface (Iface_Id) then
12382 Is_Protected := True;
12383 end if;
12385 if Is_Synchronized_Interface (Iface_Id) then
12387 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
12388 -- extension derived from a synchronized interface must explicitly
12389 -- be declared synchronized, because the full view will be a
12390 -- synchronized type.
12392 if Nkind (N) = N_Private_Extension_Declaration then
12393 if not Synchronized_Present (N) then
12394 Error_Msg_NE
12395 ("private extension of& must be explicitly synchronized",
12396 N, Iface_Id);
12397 end if;
12399 -- However, by 3.9.4(16/2), a full type that is a record extension
12400 -- is never allowed to derive from a synchronized interface (note
12401 -- that interfaces must be excluded from this check, because those
12402 -- are represented by derived type definitions in some cases).
12404 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
12405 and then not Interface_Present (Type_Definition (N))
12406 then
12407 Error_Msg_N ("record extension cannot derive from synchronized "
12408 & "interface", Error_Node);
12409 end if;
12410 end if;
12412 -- Check that the characteristics of the progenitor are compatible
12413 -- with the explicit qualifier in the declaration.
12414 -- The check only applies to qualifiers that come from source.
12415 -- Limited_Present also appears in the declaration of corresponding
12416 -- records, and the check does not apply to them.
12418 if Limited_Present (Type_Def)
12419 and then not
12420 Is_Concurrent_Record_Type (Defining_Identifier (N))
12421 then
12422 if Is_Limited_Interface (Parent_Type)
12423 and then not Is_Limited_Interface (Iface_Id)
12424 then
12425 Error_Msg_NE
12426 ("progenitor & must be limited interface",
12427 Error_Node, Iface_Id);
12429 elsif
12430 (Task_Present (Iface_Def)
12431 or else Protected_Present (Iface_Def)
12432 or else Synchronized_Present (Iface_Def))
12433 and then Nkind (N) /= N_Private_Extension_Declaration
12434 and then not Error_Posted (N)
12435 then
12436 Error_Msg_NE
12437 ("progenitor & must be limited interface",
12438 Error_Node, Iface_Id);
12439 end if;
12441 -- Protected interfaces can only inherit from limited, synchronized
12442 -- or protected interfaces.
12444 elsif Nkind (N) = N_Full_Type_Declaration
12445 and then Protected_Present (Type_Def)
12446 then
12447 if Limited_Present (Iface_Def)
12448 or else Synchronized_Present (Iface_Def)
12449 or else Protected_Present (Iface_Def)
12450 then
12451 null;
12453 elsif Task_Present (Iface_Def) then
12454 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12455 & "from task interface", Error_Node);
12457 else
12458 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12459 & "from non-limited interface", Error_Node);
12460 end if;
12462 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
12463 -- limited and synchronized.
12465 elsif Synchronized_Present (Type_Def) then
12466 if Limited_Present (Iface_Def)
12467 or else Synchronized_Present (Iface_Def)
12468 then
12469 null;
12471 elsif Protected_Present (Iface_Def)
12472 and then Nkind (N) /= N_Private_Extension_Declaration
12473 then
12474 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12475 & "from protected interface", Error_Node);
12477 elsif Task_Present (Iface_Def)
12478 and then Nkind (N) /= N_Private_Extension_Declaration
12479 then
12480 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12481 & "from task interface", Error_Node);
12483 elsif not Is_Limited_Interface (Iface_Id) then
12484 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12485 & "from non-limited interface", Error_Node);
12486 end if;
12488 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
12489 -- synchronized or task interfaces.
12491 elsif Nkind (N) = N_Full_Type_Declaration
12492 and then Task_Present (Type_Def)
12493 then
12494 if Limited_Present (Iface_Def)
12495 or else Synchronized_Present (Iface_Def)
12496 or else Task_Present (Iface_Def)
12497 then
12498 null;
12500 elsif Protected_Present (Iface_Def) then
12501 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12502 & "protected interface", Error_Node);
12504 else
12505 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12506 & "non-limited interface", Error_Node);
12507 end if;
12508 end if;
12509 end Check_Ifaces;
12511 -- Start of processing for Check_Interfaces
12513 begin
12514 if Is_Interface (Parent_Type) then
12515 if Is_Task_Interface (Parent_Type) then
12516 Is_Task := True;
12518 elsif Is_Protected_Interface (Parent_Type) then
12519 Is_Protected := True;
12520 end if;
12521 end if;
12523 if Nkind (N) = N_Private_Extension_Declaration then
12525 -- Check that progenitors are compatible with declaration
12527 Iface := First (Interface_List (Def));
12528 while Present (Iface) loop
12529 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12531 Parent_Node := Parent (Base_Type (Iface_Typ));
12532 Iface_Def := Type_Definition (Parent_Node);
12534 if not Is_Interface (Iface_Typ) then
12535 Diagnose_Interface (Iface, Iface_Typ);
12536 else
12537 Check_Ifaces (Iface_Def, Iface);
12538 end if;
12540 Next (Iface);
12541 end loop;
12543 if Is_Task and Is_Protected then
12544 Error_Msg_N
12545 ("type cannot derive from task and protected interface", N);
12546 end if;
12548 return;
12549 end if;
12551 -- Full type declaration of derived type.
12552 -- Check compatibility with parent if it is interface type
12554 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
12555 and then Is_Interface (Parent_Type)
12556 then
12557 Parent_Node := Parent (Parent_Type);
12559 -- More detailed checks for interface varieties
12561 Check_Ifaces
12562 (Iface_Def => Type_Definition (Parent_Node),
12563 Error_Node => Subtype_Indication (Type_Definition (N)));
12564 end if;
12566 Iface := First (Interface_List (Def));
12567 while Present (Iface) loop
12568 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12570 Parent_Node := Parent (Base_Type (Iface_Typ));
12571 Iface_Def := Type_Definition (Parent_Node);
12573 if not Is_Interface (Iface_Typ) then
12574 Diagnose_Interface (Iface, Iface_Typ);
12576 else
12577 -- "The declaration of a specific descendant of an interface
12578 -- type freezes the interface type" RM 13.14
12580 Freeze_Before (N, Iface_Typ);
12581 Check_Ifaces (Iface_Def, Error_Node => Iface);
12582 end if;
12584 Next (Iface);
12585 end loop;
12587 if Is_Task and Is_Protected then
12588 Error_Msg_N
12589 ("type cannot derive from task and protected interface", N);
12590 end if;
12591 end Check_Interfaces;
12593 ------------------------------------
12594 -- Check_Or_Process_Discriminants --
12595 ------------------------------------
12597 -- If an incomplete or private type declaration was already given for the
12598 -- type, the discriminants may have already been processed if they were
12599 -- present on the incomplete declaration. In this case a full conformance
12600 -- check has been performed in Find_Type_Name, and we then recheck here
12601 -- some properties that can't be checked on the partial view alone.
12602 -- Otherwise we call Process_Discriminants.
12604 procedure Check_Or_Process_Discriminants
12605 (N : Node_Id;
12606 T : Entity_Id;
12607 Prev : Entity_Id := Empty)
12609 begin
12610 if Has_Discriminants (T) then
12612 -- Discriminants are already set on T if they were already present
12613 -- on the partial view. Make them visible to component declarations.
12615 declare
12616 D : Entity_Id;
12617 -- Discriminant on T (full view) referencing expr on partial view
12619 Prev_D : Entity_Id;
12620 -- Entity of corresponding discriminant on partial view
12622 New_D : Node_Id;
12623 -- Discriminant specification for full view, expression is
12624 -- the syntactic copy on full view (which has been checked for
12625 -- conformance with partial view), only used here to post error
12626 -- message.
12628 begin
12629 D := First_Discriminant (T);
12630 New_D := First (Discriminant_Specifications (N));
12631 while Present (D) loop
12632 Prev_D := Current_Entity (D);
12633 Set_Current_Entity (D);
12634 Set_Is_Immediately_Visible (D);
12635 Set_Homonym (D, Prev_D);
12637 -- Handle the case where there is an untagged partial view and
12638 -- the full view is tagged: must disallow discriminants with
12639 -- defaults, unless compiling for Ada 2012, which allows a
12640 -- limited tagged type to have defaulted discriminants (see
12641 -- AI05-0214). However, suppress error here if it was already
12642 -- reported on the default expression of the partial view.
12644 if Is_Tagged_Type (T)
12645 and then Present (Expression (Parent (D)))
12646 and then (not Is_Limited_Type (Current_Scope)
12647 or else Ada_Version < Ada_2012)
12648 and then not Error_Posted (Expression (Parent (D)))
12649 then
12650 if Ada_Version >= Ada_2012 then
12651 Error_Msg_N
12652 ("discriminants of nonlimited tagged type cannot have "
12653 & "defaults",
12654 Expression (New_D));
12655 else
12656 Error_Msg_N
12657 ("discriminants of tagged type cannot have defaults",
12658 Expression (New_D));
12659 end if;
12660 end if;
12662 -- Ada 2005 (AI-230): Access discriminant allowed in
12663 -- non-limited record types.
12665 if Ada_Version < Ada_2005 then
12667 -- This restriction gets applied to the full type here. It
12668 -- has already been applied earlier to the partial view.
12670 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
12671 end if;
12673 Next_Discriminant (D);
12674 Next (New_D);
12675 end loop;
12676 end;
12678 elsif Present (Discriminant_Specifications (N)) then
12679 Process_Discriminants (N, Prev);
12680 end if;
12681 end Check_Or_Process_Discriminants;
12683 ----------------------
12684 -- Check_Real_Bound --
12685 ----------------------
12687 procedure Check_Real_Bound (Bound : Node_Id) is
12688 begin
12689 if not Is_Real_Type (Etype (Bound)) then
12690 Error_Msg_N
12691 ("bound in real type definition must be of real type", Bound);
12693 elsif not Is_OK_Static_Expression (Bound) then
12694 Flag_Non_Static_Expr
12695 ("non-static expression used for real type bound!", Bound);
12697 else
12698 return;
12699 end if;
12701 Rewrite
12702 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
12703 Analyze (Bound);
12704 Resolve (Bound, Standard_Float);
12705 end Check_Real_Bound;
12707 ------------------------------
12708 -- Complete_Private_Subtype --
12709 ------------------------------
12711 procedure Complete_Private_Subtype
12712 (Priv : Entity_Id;
12713 Full : Entity_Id;
12714 Full_Base : Entity_Id;
12715 Related_Nod : Node_Id)
12717 Save_Next_Entity : Entity_Id;
12718 Save_Homonym : Entity_Id;
12720 begin
12721 -- Set semantic attributes for (implicit) private subtype completion.
12722 -- If the full type has no discriminants, then it is a copy of the
12723 -- full view of the base. Otherwise, it is a subtype of the base with
12724 -- a possible discriminant constraint. Save and restore the original
12725 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12726 -- not corrupt the entity chain.
12728 Save_Next_Entity := Next_Entity (Full);
12729 Save_Homonym := Homonym (Priv);
12731 if Is_Private_Type (Full_Base)
12732 or else Is_Record_Type (Full_Base)
12733 or else Is_Concurrent_Type (Full_Base)
12734 then
12735 Copy_Node (Priv, Full);
12737 -- Note that the Etype of the full view is the same as the Etype of
12738 -- the partial view. In this fashion, the subtype has access to the
12739 -- correct view of the parent.
12741 Set_Has_Discriminants (Full, Has_Discriminants (Full_Base));
12742 Set_Has_Unknown_Discriminants
12743 (Full, Has_Unknown_Discriminants (Full_Base));
12744 Set_First_Entity (Full, First_Entity (Full_Base));
12745 Set_Last_Entity (Full, Last_Entity (Full_Base));
12747 -- If the underlying base type is constrained, we know that the
12748 -- full view of the subtype is constrained as well (the converse
12749 -- is not necessarily true).
12751 if Is_Constrained (Full_Base) then
12752 Set_Is_Constrained (Full);
12753 end if;
12755 else
12756 Copy_Node (Full_Base, Full);
12758 -- The following subtlety with the Etype of the full view needs to be
12759 -- taken into account here. One could think that it must naturally be
12760 -- set to the base type of the full base:
12762 -- Set_Etype (Full, Base_Type (Full_Base));
12764 -- so that the full view becomes a subtype of the full base when the
12765 -- latter is a base type, which must for example happen when the full
12766 -- base is declared as derived type. That's also correct if the full
12767 -- base is declared as an array type, or a floating-point type, or a
12768 -- fixed-point type, or a signed integer type, as these declarations
12769 -- create an implicit base type and a first subtype so the Etype of
12770 -- the full views must be the implicit base type. But that's wrong
12771 -- if the full base is declared as an access type, or an enumeration
12772 -- type, or a modular integer type, as these declarations directly
12773 -- create a base type, i.e. with Etype pointing to itself. Moreover
12774 -- the full base being declared in the private part, i.e. when the
12775 -- views are swapped, the end result is that the Etype of the full
12776 -- base is set to its private view in this case and that we need to
12777 -- propagate this setting to the full view in order for the subtype
12778 -- to be compatible with the base type.
12780 if Is_Base_Type (Full_Base)
12781 and then (Is_Derived_Type (Full_Base)
12782 or else Ekind (Full_Base) in Array_Kind
12783 or else Ekind (Full_Base) in Fixed_Point_Kind
12784 or else Ekind (Full_Base) in Float_Kind
12785 or else Ekind (Full_Base) in Signed_Integer_Kind)
12786 then
12787 Set_Etype (Full, Full_Base);
12788 end if;
12790 Set_Chars (Full, Chars (Priv));
12791 Set_Sloc (Full, Sloc (Priv));
12792 Conditional_Delay (Full, Priv);
12793 end if;
12795 Link_Entities (Full, Save_Next_Entity);
12796 Set_Homonym (Full, Save_Homonym);
12797 Set_Associated_Node_For_Itype (Full, Related_Nod);
12799 if Ekind (Full) in Incomplete_Or_Private_Kind then
12800 Reinit_Field_To_Zero (Full, F_Private_Dependents);
12801 end if;
12803 -- Set common attributes for all subtypes: kind, convention, etc.
12805 Mutate_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
12806 Set_Convention (Full, Convention (Full_Base));
12807 Set_Is_First_Subtype (Full, False);
12808 Set_Scope (Full, Scope (Priv));
12809 Set_Size_Info (Full, Full_Base);
12810 Copy_RM_Size (To => Full, From => Full_Base);
12811 Set_Is_Itype (Full);
12813 -- A subtype of a private-type-without-discriminants, whose full-view
12814 -- has discriminants with default expressions, is not constrained.
12816 if not Has_Discriminants (Priv) then
12817 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
12819 if Has_Discriminants (Full_Base) then
12820 Set_Discriminant_Constraint
12821 (Full, Discriminant_Constraint (Full_Base));
12823 -- The partial view may have been indefinite, the full view
12824 -- might not be.
12826 Set_Has_Unknown_Discriminants
12827 (Full, Has_Unknown_Discriminants (Full_Base));
12828 end if;
12829 end if;
12831 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
12832 Set_Depends_On_Private (Full, Has_Private_Component (Full));
12834 -- Freeze the private subtype entity if its parent is delayed, and not
12835 -- already frozen. We skip this processing if the type is an anonymous
12836 -- subtype of a record component, or is the corresponding record of a
12837 -- protected type, since these are processed when the enclosing type
12838 -- is frozen. If the parent type is declared in a nested package then
12839 -- the freezing of the private and full views also happens later.
12841 if not Is_Type (Scope (Full)) then
12842 if Is_Itype (Priv)
12843 and then In_Same_Source_Unit (Full, Full_Base)
12844 and then Scope (Full_Base) /= Scope (Full)
12845 then
12846 Set_Has_Delayed_Freeze (Full);
12847 Set_Has_Delayed_Freeze (Priv);
12849 else
12850 Set_Has_Delayed_Freeze (Full,
12851 Has_Delayed_Freeze (Full_Base)
12852 and then not Is_Frozen (Full_Base));
12853 end if;
12854 end if;
12856 Set_Freeze_Node (Full, Empty);
12857 Set_Is_Frozen (Full, False);
12859 if Has_Discriminants (Full) then
12860 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
12861 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
12863 if Has_Unknown_Discriminants (Full) then
12864 Set_Discriminant_Constraint (Full, No_Elist);
12865 end if;
12866 end if;
12868 if Ekind (Full_Base) = E_Record_Type
12869 and then Has_Discriminants (Full_Base)
12870 and then Has_Discriminants (Priv) -- might not, if errors
12871 and then not Has_Unknown_Discriminants (Priv)
12872 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
12873 then
12874 Create_Constrained_Components
12875 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
12877 -- If the full base is itself derived from private, build a congruent
12878 -- subtype of its underlying full view, for use by the back end.
12880 elsif Is_Private_Type (Full_Base)
12881 and then Present (Underlying_Full_View (Full_Base))
12882 then
12883 declare
12884 Underlying_Full_Base : constant Entity_Id
12885 := Underlying_Full_View (Full_Base);
12886 Underlying_Full : constant Entity_Id
12887 := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
12888 begin
12889 Set_Is_Itype (Underlying_Full);
12890 Set_Associated_Node_For_Itype (Underlying_Full, Related_Nod);
12891 Complete_Private_Subtype
12892 (Priv, Underlying_Full, Underlying_Full_Base, Related_Nod);
12893 Set_Underlying_Full_View (Full, Underlying_Full);
12894 Set_Is_Underlying_Full_View (Underlying_Full);
12895 end;
12897 elsif Is_Record_Type (Full_Base) then
12899 -- Show Full is simply a renaming of Full_Base
12901 Set_Cloned_Subtype (Full, Full_Base);
12902 Set_Is_Limited_Record (Full, Is_Limited_Record (Full_Base));
12904 -- Propagate predicates
12906 Propagate_Predicate_Attributes (Full, Full_Base);
12907 end if;
12909 -- It is unsafe to share the bounds of a scalar type, because the Itype
12910 -- is elaborated on demand, and if a bound is nonstatic, then different
12911 -- orders of elaboration in different units will lead to different
12912 -- external symbols.
12914 if Is_Scalar_Type (Full_Base) then
12915 Set_Scalar_Range (Full,
12916 Make_Range (Sloc (Related_Nod),
12917 Low_Bound =>
12918 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
12919 High_Bound =>
12920 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
12922 -- This completion inherits the bounds of the full parent, but if
12923 -- the parent is an unconstrained floating point type, so is the
12924 -- completion.
12926 if Is_Floating_Point_Type (Full_Base) then
12927 Set_Includes_Infinities
12928 (Scalar_Range (Full), Has_Infinities (Full_Base));
12929 end if;
12930 end if;
12932 -- ??? It seems that a lot of fields are missing that should be copied
12933 -- from Full_Base to Full. Here are some that are introduced in a
12934 -- non-disruptive way but a cleanup is necessary.
12936 if Is_Tagged_Type (Full_Base) then
12937 Set_Is_Tagged_Type (Full);
12938 Set_Is_Limited_Record (Full, Is_Limited_Record (Full_Base));
12940 Set_Direct_Primitive_Operations
12941 (Full, Direct_Primitive_Operations (Full_Base));
12942 Set_No_Tagged_Streams_Pragma
12943 (Full, No_Tagged_Streams_Pragma (Full_Base));
12945 if Is_Interface (Full_Base) then
12946 Set_Is_Interface (Full);
12947 Set_Is_Limited_Interface (Full, Is_Limited_Interface (Full_Base));
12948 end if;
12950 -- Inherit class_wide type of full_base in case the partial view was
12951 -- not tagged. Otherwise it has already been created when the private
12952 -- subtype was analyzed.
12954 if No (Class_Wide_Type (Full)) then
12955 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
12956 end if;
12958 -- If this is a subtype of a protected or task type, constrain its
12959 -- corresponding record, unless this is a subtype without constraints,
12960 -- i.e. a simple renaming as with an actual subtype in an instance.
12962 elsif Is_Concurrent_Type (Full_Base) then
12963 if Has_Discriminants (Full)
12964 and then Present (Corresponding_Record_Type (Full_Base))
12965 and then
12966 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
12967 then
12968 Set_Corresponding_Record_Type (Full,
12969 Constrain_Corresponding_Record
12970 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
12972 else
12973 Set_Corresponding_Record_Type (Full,
12974 Corresponding_Record_Type (Full_Base));
12975 end if;
12976 end if;
12978 -- Link rep item chain, and also setting of Has_Predicates from private
12979 -- subtype to full subtype, since we will need these on the full subtype
12980 -- to create the predicate function. Note that the full subtype may
12981 -- already have rep items, inherited from the full view of the base
12982 -- type, so we must be sure not to overwrite these entries.
12984 declare
12985 Append : Boolean;
12986 Item : Node_Id;
12987 Next_Item : Node_Id;
12988 Priv_Item : Node_Id;
12990 begin
12991 Item := First_Rep_Item (Full);
12992 Priv_Item := First_Rep_Item (Priv);
12994 -- If no existing rep items on full type, we can just link directly
12995 -- to the list of items on the private type, if any exist.. Same if
12996 -- the rep items are only those inherited from the base
12998 if (No (Item)
12999 or else Nkind (Item) /= N_Aspect_Specification
13000 or else Entity (Item) = Full_Base)
13001 and then Present (First_Rep_Item (Priv))
13002 then
13003 Set_First_Rep_Item (Full, Priv_Item);
13005 -- Otherwise, search to the end of items currently linked to the full
13006 -- subtype and append the private items to the end. However, if Priv
13007 -- and Full already have the same list of rep items, then the append
13008 -- is not done, as that would create a circularity.
13010 -- The partial view may have a predicate and the rep item lists of
13011 -- both views agree when inherited from the same ancestor. In that
13012 -- case, simply propagate the list from one view to the other.
13013 -- A more complex analysis needed here ???
13015 elsif Present (Priv_Item)
13016 and then Item = Next_Rep_Item (Priv_Item)
13017 then
13018 Set_First_Rep_Item (Full, Priv_Item);
13020 elsif Item /= Priv_Item then
13021 Append := True;
13022 loop
13023 Next_Item := Next_Rep_Item (Item);
13024 exit when No (Next_Item);
13025 Item := Next_Item;
13027 -- If the private view has aspect specifications, the full view
13028 -- inherits them. Since these aspects may already have been
13029 -- attached to the full view during derivation, do not append
13030 -- them if already present.
13032 if Item = First_Rep_Item (Priv) then
13033 Append := False;
13034 exit;
13035 end if;
13036 end loop;
13038 -- And link the private type items at the end of the chain
13040 if Append then
13041 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
13042 end if;
13043 end if;
13044 end;
13046 -- Make sure Has_Predicates is set on full type if it is set on the
13047 -- private type. Note that it may already be set on the full type and
13048 -- if so, we don't want to unset it. Similarly, propagate information
13049 -- about delayed aspects, because the corresponding pragmas must be
13050 -- analyzed when one of the views is frozen. This last step is needed
13051 -- in particular when the full type is a scalar type for which an
13052 -- anonymous base type is constructed.
13054 -- The predicate functions are generated either at the freeze point
13055 -- of the type or at the end of the visible part, and we must avoid
13056 -- generating them twice.
13058 Propagate_Predicate_Attributes (Full, Priv);
13060 if Has_Delayed_Aspects (Priv) then
13061 Set_Has_Delayed_Aspects (Full);
13062 end if;
13063 end Complete_Private_Subtype;
13065 ----------------------------
13066 -- Constant_Redeclaration --
13067 ----------------------------
13069 procedure Constant_Redeclaration
13070 (Id : Entity_Id;
13071 N : Node_Id;
13072 T : out Entity_Id)
13074 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
13075 Obj_Def : constant Node_Id := Object_Definition (N);
13076 New_T : Entity_Id;
13078 procedure Check_Possible_Deferred_Completion
13079 (Prev_Id : Entity_Id;
13080 Prev_Obj_Def : Node_Id;
13081 Curr_Obj_Def : Node_Id);
13082 -- Determine whether the two object definitions describe the partial
13083 -- and the full view of a constrained deferred constant. Generate
13084 -- a subtype for the full view and verify that it statically matches
13085 -- the subtype of the partial view.
13087 procedure Check_Recursive_Declaration (Typ : Entity_Id);
13088 -- If deferred constant is an access type initialized with an allocator,
13089 -- check whether there is an illegal recursion in the definition,
13090 -- through a default value of some record subcomponent. This is normally
13091 -- detected when generating init procs, but requires this additional
13092 -- mechanism when expansion is disabled.
13094 ----------------------------------------
13095 -- Check_Possible_Deferred_Completion --
13096 ----------------------------------------
13098 procedure Check_Possible_Deferred_Completion
13099 (Prev_Id : Entity_Id;
13100 Prev_Obj_Def : Node_Id;
13101 Curr_Obj_Def : Node_Id)
13103 begin
13104 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
13105 and then Present (Constraint (Prev_Obj_Def))
13106 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
13107 and then Present (Constraint (Curr_Obj_Def))
13108 then
13109 declare
13110 Loc : constant Source_Ptr := Sloc (N);
13111 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
13112 Decl : constant Node_Id :=
13113 Make_Subtype_Declaration (Loc,
13114 Defining_Identifier => Def_Id,
13115 Subtype_Indication =>
13116 Relocate_Node (Curr_Obj_Def));
13118 begin
13119 Insert_Before_And_Analyze (N, Decl);
13120 Set_Etype (Id, Def_Id);
13122 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
13123 Error_Msg_Sloc := Sloc (Prev_Id);
13124 Error_Msg_N ("subtype does not statically match deferred "
13125 & "declaration #", N);
13126 end if;
13127 end;
13128 end if;
13129 end Check_Possible_Deferred_Completion;
13131 ---------------------------------
13132 -- Check_Recursive_Declaration --
13133 ---------------------------------
13135 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
13136 Comp : Entity_Id;
13138 begin
13139 if Is_Record_Type (Typ) then
13140 Comp := First_Component (Typ);
13141 while Present (Comp) loop
13142 if Comes_From_Source (Comp) then
13143 if Present (Expression (Parent (Comp)))
13144 and then Is_Entity_Name (Expression (Parent (Comp)))
13145 and then Entity (Expression (Parent (Comp))) = Prev
13146 then
13147 Error_Msg_Sloc := Sloc (Parent (Comp));
13148 Error_Msg_NE
13149 ("illegal circularity with declaration for & #",
13150 N, Comp);
13151 return;
13153 elsif Is_Record_Type (Etype (Comp)) then
13154 Check_Recursive_Declaration (Etype (Comp));
13155 end if;
13156 end if;
13158 Next_Component (Comp);
13159 end loop;
13160 end if;
13161 end Check_Recursive_Declaration;
13163 -- Start of processing for Constant_Redeclaration
13165 begin
13166 if Nkind (Parent (Prev)) = N_Object_Declaration then
13167 if Nkind (Object_Definition
13168 (Parent (Prev))) = N_Subtype_Indication
13169 then
13170 -- Find type of new declaration. The constraints of the two
13171 -- views must match statically, but there is no point in
13172 -- creating an itype for the full view.
13174 if Nkind (Obj_Def) = N_Subtype_Indication then
13175 Find_Type (Subtype_Mark (Obj_Def));
13176 New_T := Entity (Subtype_Mark (Obj_Def));
13178 else
13179 Find_Type (Obj_Def);
13180 New_T := Entity (Obj_Def);
13181 end if;
13183 T := Etype (Prev);
13185 else
13186 -- The full view may impose a constraint, even if the partial
13187 -- view does not, so construct the subtype.
13189 New_T := Find_Type_Of_Object (Obj_Def, N);
13190 T := New_T;
13191 end if;
13193 else
13194 -- Current declaration is illegal, diagnosed below in Enter_Name
13196 T := Empty;
13197 New_T := Any_Type;
13198 end if;
13200 -- If previous full declaration or a renaming declaration exists, or if
13201 -- a homograph is present, let Enter_Name handle it, either with an
13202 -- error or with the removal of an overridden implicit subprogram.
13203 -- The previous one is a full declaration if it has an expression
13204 -- (which in the case of an aggregate is indicated by the Init flag).
13206 if Ekind (Prev) /= E_Constant
13207 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
13208 or else Present (Expression (Parent (Prev)))
13209 or else Has_Init_Expression (Parent (Prev))
13210 or else Present (Full_View (Prev))
13211 then
13212 Enter_Name (Id);
13214 -- Verify that types of both declarations match, or else that both types
13215 -- are anonymous access types whose designated subtypes statically match
13216 -- (as allowed in Ada 2005 by AI-385).
13218 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
13219 and then
13220 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
13221 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
13222 or else Is_Access_Constant (Etype (New_T)) /=
13223 Is_Access_Constant (Etype (Prev))
13224 or else Can_Never_Be_Null (Etype (New_T)) /=
13225 Can_Never_Be_Null (Etype (Prev))
13226 or else Null_Exclusion_Present (Parent (Prev)) /=
13227 Null_Exclusion_Present (Parent (Id))
13228 or else not Subtypes_Statically_Match
13229 (Designated_Type (Etype (Prev)),
13230 Designated_Type (Etype (New_T))))
13231 then
13232 Error_Msg_Sloc := Sloc (Prev);
13233 Error_Msg_N ("type does not match declaration#", N);
13234 Set_Full_View (Prev, Id);
13235 Set_Etype (Id, Any_Type);
13237 -- A deferred constant whose type is an anonymous array is always
13238 -- illegal (unless imported). A detailed error message might be
13239 -- helpful for Ada beginners.
13241 if Nkind (Object_Definition (Parent (Prev)))
13242 = N_Constrained_Array_Definition
13243 and then Nkind (Object_Definition (N))
13244 = N_Constrained_Array_Definition
13245 then
13246 Error_Msg_N ("\each anonymous array is a distinct type", N);
13247 Error_Msg_N ("a deferred constant must have a named type",
13248 Object_Definition (Parent (Prev)));
13249 end if;
13251 elsif
13252 Null_Exclusion_Present (Parent (Prev))
13253 and then not Null_Exclusion_Present (N)
13254 then
13255 Error_Msg_Sloc := Sloc (Prev);
13256 Error_Msg_N ("null-exclusion does not match declaration#", N);
13257 Set_Full_View (Prev, Id);
13258 Set_Etype (Id, Any_Type);
13260 -- If so, process the full constant declaration
13262 else
13263 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
13264 -- the deferred declaration is constrained, then the subtype defined
13265 -- by the subtype_indication in the full declaration shall match it
13266 -- statically.
13268 Check_Possible_Deferred_Completion
13269 (Prev_Id => Prev,
13270 Prev_Obj_Def => Object_Definition (Parent (Prev)),
13271 Curr_Obj_Def => Obj_Def);
13273 Set_Full_View (Prev, Id);
13274 Set_Is_Public (Id, Is_Public (Prev));
13275 Set_Is_Internal (Id);
13276 Append_Entity (Id, Current_Scope);
13278 -- Check ALIASED present if present before (RM 7.4(7))
13280 if Is_Aliased (Prev)
13281 and then not Aliased_Present (N)
13282 then
13283 Error_Msg_Sloc := Sloc (Prev);
13284 Error_Msg_N ("ALIASED required (see declaration #)", N);
13285 end if;
13287 -- Check that placement is in private part and that the incomplete
13288 -- declaration appeared in the visible part.
13290 if Ekind (Current_Scope) = E_Package
13291 and then not In_Private_Part (Current_Scope)
13292 then
13293 Error_Msg_Sloc := Sloc (Prev);
13294 Error_Msg_N
13295 ("full constant for declaration # must be in private part", N);
13297 elsif Ekind (Current_Scope) = E_Package
13298 and then
13299 List_Containing (Parent (Prev)) /=
13300 Visible_Declarations (Package_Specification (Current_Scope))
13301 then
13302 Error_Msg_N
13303 ("deferred constant must be declared in visible part",
13304 Parent (Prev));
13305 end if;
13307 if Is_Access_Type (T)
13308 and then Nkind (Expression (N)) = N_Allocator
13309 then
13310 Check_Recursive_Declaration (Designated_Type (T));
13311 end if;
13313 -- A deferred constant is a visible entity. If type has invariants,
13314 -- verify that the initial value satisfies them. This is not done in
13315 -- GNATprove mode, as GNATprove handles invariant checks itself.
13317 if Has_Invariants (T)
13318 and then Present (Invariant_Procedure (T))
13319 and then not GNATprove_Mode
13320 then
13321 Insert_After (N,
13322 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
13323 end if;
13324 end if;
13325 end Constant_Redeclaration;
13327 ----------------------
13328 -- Constrain_Access --
13329 ----------------------
13331 procedure Constrain_Access
13332 (Def_Id : in out Entity_Id;
13333 S : Node_Id;
13334 Related_Nod : Node_Id)
13336 T : constant Entity_Id := Entity (Subtype_Mark (S));
13337 Desig_Type : constant Entity_Id := Designated_Type (T);
13338 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
13339 Constraint_OK : Boolean := True;
13341 begin
13342 if Is_Array_Type (Desig_Type) then
13343 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
13345 elsif (Is_Record_Type (Desig_Type)
13346 or else Is_Incomplete_Or_Private_Type (Desig_Type))
13347 and then not Is_Constrained (Desig_Type)
13348 then
13349 -- If this is a constrained access definition for a record
13350 -- component, we leave the type as an unconstrained access,
13351 -- and mark the component so that its actual type is built
13352 -- at a point of use (e.g., an assignment statement). This
13353 -- is handled in Sem_Util.Build_Actual_Subtype_Of_Component.
13355 if Desig_Type = Current_Scope
13356 and then No (Def_Id)
13357 then
13358 Desig_Subtype :=
13359 Create_Itype
13360 (E_Void, Related_Nod, Scope_Id => Scope (Desig_Type));
13361 Mutate_Ekind (Desig_Subtype, E_Record_Subtype);
13362 Def_Id := Entity (Subtype_Mark (S));
13364 -- We indicate that the component has a per-object constraint
13365 -- for treatment at a point of use, even though the constraint
13366 -- may be independent of discriminants of the enclosing type.
13368 if Nkind (Related_Nod) = N_Component_Declaration then
13369 Set_Has_Per_Object_Constraint
13370 (Defining_Identifier (Related_Nod));
13371 end if;
13373 -- This call added to ensure that the constraint is analyzed
13374 -- (needed for a B test). Note that we still return early from
13375 -- this procedure to avoid recursive processing.
13377 Constrain_Discriminated_Type
13378 (Desig_Subtype, S, Related_Nod, For_Access => True);
13379 return;
13380 end if;
13382 -- Enforce rule that the constraint is illegal if there is an
13383 -- unconstrained view of the designated type. This means that the
13384 -- partial view (either a private type declaration or a derivation
13385 -- from a private type) has no discriminants. (Defect Report
13386 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
13388 -- Rule updated for Ada 2005: The private type is said to have
13389 -- a constrained partial view, given that objects of the type
13390 -- can be declared. Furthermore, the rule applies to all access
13391 -- types, unlike the rule concerning default discriminants (see
13392 -- RM 3.7.1(7/3))
13394 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
13395 and then Has_Private_Declaration (Desig_Type)
13396 and then In_Open_Scopes (Scope (Desig_Type))
13397 and then Has_Discriminants (Desig_Type)
13398 then
13399 declare
13400 Pack : constant Node_Id :=
13401 Unit_Declaration_Node (Scope (Desig_Type));
13402 Decls : List_Id;
13403 Decl : Node_Id;
13405 begin
13406 if Nkind (Pack) = N_Package_Declaration then
13407 Decls := Visible_Declarations (Specification (Pack));
13408 Decl := First (Decls);
13409 while Present (Decl) loop
13410 if (Nkind (Decl) = N_Private_Type_Declaration
13411 and then Chars (Defining_Identifier (Decl)) =
13412 Chars (Desig_Type))
13414 or else
13415 (Nkind (Decl) = N_Full_Type_Declaration
13416 and then
13417 Chars (Defining_Identifier (Decl)) =
13418 Chars (Desig_Type)
13419 and then Is_Derived_Type (Desig_Type)
13420 and then
13421 Has_Private_Declaration (Etype (Desig_Type)))
13422 then
13423 if No (Discriminant_Specifications (Decl)) then
13424 Error_Msg_N
13425 ("cannot constrain access type if designated "
13426 & "type has constrained partial view", S);
13427 end if;
13429 exit;
13430 end if;
13432 Next (Decl);
13433 end loop;
13434 end if;
13435 end;
13436 end if;
13438 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
13439 For_Access => True);
13441 elsif Is_Concurrent_Type (Desig_Type)
13442 and then not Is_Constrained (Desig_Type)
13443 then
13444 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
13446 else
13447 Error_Msg_N ("invalid constraint on access type", S);
13449 -- We simply ignore an invalid constraint
13451 Desig_Subtype := Desig_Type;
13452 Constraint_OK := False;
13453 end if;
13455 if No (Def_Id) then
13456 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
13457 else
13458 Mutate_Ekind (Def_Id, E_Access_Subtype);
13459 end if;
13461 if Constraint_OK then
13462 Set_Etype (Def_Id, Base_Type (T));
13464 if Is_Private_Type (Desig_Type) then
13465 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
13466 end if;
13467 else
13468 Set_Etype (Def_Id, Any_Type);
13469 end if;
13471 Set_Size_Info (Def_Id, T);
13472 Set_Is_Constrained (Def_Id, Constraint_OK);
13473 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
13474 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13475 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
13477 Conditional_Delay (Def_Id, T);
13479 -- AI-363 : Subtypes of general access types whose designated types have
13480 -- default discriminants are disallowed. In instances, the rule has to
13481 -- be checked against the actual, of which T is the subtype. In a
13482 -- generic body, the rule is checked assuming that the actual type has
13483 -- defaulted discriminants.
13485 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
13486 if Ekind (Base_Type (T)) = E_General_Access_Type
13487 and then Has_Defaulted_Discriminants (Desig_Type)
13488 then
13489 if Ada_Version < Ada_2005 then
13490 Error_Msg_N
13491 ("access subtype of general access type would not " &
13492 "be allowed in Ada 2005?y?", S);
13493 else
13494 Error_Msg_N
13495 ("access subtype of general access type not allowed", S);
13496 end if;
13498 Error_Msg_N ("\discriminants have defaults", S);
13500 elsif Is_Access_Type (T)
13501 and then Is_Generic_Type (Desig_Type)
13502 and then Has_Discriminants (Desig_Type)
13503 and then In_Package_Body (Current_Scope)
13504 then
13505 if Ada_Version < Ada_2005 then
13506 Error_Msg_N
13507 ("access subtype would not be allowed in generic body "
13508 & "in Ada 2005?y?", S);
13509 else
13510 Error_Msg_N
13511 ("access subtype not allowed in generic body", S);
13512 end if;
13514 Error_Msg_N
13515 ("\designated type is a discriminated formal", S);
13516 end if;
13517 end if;
13518 end Constrain_Access;
13520 ---------------------
13521 -- Constrain_Array --
13522 ---------------------
13524 procedure Constrain_Array
13525 (Def_Id : in out Entity_Id;
13526 SI : Node_Id;
13527 Related_Nod : Node_Id;
13528 Related_Id : Entity_Id;
13529 Suffix : Character)
13531 C : constant Node_Id := Constraint (SI);
13532 Number_Of_Constraints : Nat := 0;
13533 Index : Node_Id;
13534 S, T : Entity_Id;
13535 Constraint_OK : Boolean := True;
13536 Is_FLB_Array_Subtype : Boolean := False;
13538 begin
13539 T := Entity (Subtype_Mark (SI));
13541 if Is_Access_Type (T) then
13542 T := Designated_Type (T);
13543 end if;
13545 -- If an index constraint follows a subtype mark in a subtype indication
13546 -- then the type or subtype denoted by the subtype mark must not already
13547 -- impose an index constraint. The subtype mark must denote either an
13548 -- unconstrained array type or an access type whose designated type
13549 -- is such an array type... (RM 3.6.1)
13551 if Is_Constrained (T) then
13552 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
13553 Constraint_OK := False;
13555 else
13556 S := First (Constraints (C));
13557 while Present (S) loop
13558 Number_Of_Constraints := Number_Of_Constraints + 1;
13559 Next (S);
13560 end loop;
13562 -- In either case, the index constraint must provide a discrete
13563 -- range for each index of the array type and the type of each
13564 -- discrete range must be the same as that of the corresponding
13565 -- index. (RM 3.6.1)
13567 if Number_Of_Constraints /= Number_Dimensions (T) then
13568 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
13569 Constraint_OK := False;
13571 else
13572 S := First (Constraints (C));
13573 Index := First_Index (T);
13574 Analyze (Index);
13576 -- Apply constraints to each index type
13578 for J in 1 .. Number_Of_Constraints loop
13579 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
13581 -- If the subtype of the index has been set to indicate that
13582 -- it has a fixed lower bound, then record that the subtype's
13583 -- entity will need to be marked as being a fixed-lower-bound
13584 -- array subtype.
13586 if S = First (Constraints (C)) then
13587 Is_FLB_Array_Subtype :=
13588 Is_Fixed_Lower_Bound_Index_Subtype (Etype (S));
13590 -- If the parent subtype (or should this be Etype of that?)
13591 -- is an FLB array subtype, we flag an error, because we
13592 -- don't currently allow subtypes of such subtypes to
13593 -- specify a fixed lower bound for any of their indexes,
13594 -- even if the index of the parent subtype is a "range <>"
13595 -- index.
13597 if Is_FLB_Array_Subtype
13598 and then Is_Fixed_Lower_Bound_Array_Subtype (T)
13599 then
13600 Error_Msg_NE
13601 ("index with fixed lower bound not allowed for subtype "
13602 & "of fixed-lower-bound }", S, T);
13604 Is_FLB_Array_Subtype := False;
13605 end if;
13607 elsif Is_FLB_Array_Subtype
13608 and then not Is_Fixed_Lower_Bound_Index_Subtype (Etype (S))
13609 then
13610 Error_Msg_NE
13611 ("constrained index not allowed for fixed-lower-bound "
13612 & "subtype of}", S, T);
13614 elsif not Is_FLB_Array_Subtype
13615 and then Is_Fixed_Lower_Bound_Index_Subtype (Etype (S))
13616 then
13617 Error_Msg_NE
13618 ("index with fixed lower bound not allowed for "
13619 & "constrained subtype of}", S, T);
13620 end if;
13622 Next (Index);
13623 Next (S);
13624 end loop;
13626 end if;
13627 end if;
13629 if No (Def_Id) then
13630 Def_Id :=
13631 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
13632 Set_Parent (Def_Id, Related_Nod);
13634 else
13635 Mutate_Ekind (Def_Id, E_Array_Subtype);
13636 end if;
13638 Set_Size_Info (Def_Id, (T));
13639 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13640 Set_Etype (Def_Id, Base_Type (T));
13642 if Constraint_OK then
13643 Set_First_Index (Def_Id, First (Constraints (C)));
13644 else
13645 Set_First_Index (Def_Id, First_Index (T));
13646 end if;
13648 Set_Is_Constrained (Def_Id, not Is_FLB_Array_Subtype);
13649 Set_Is_Fixed_Lower_Bound_Array_Subtype
13650 (Def_Id, Is_FLB_Array_Subtype);
13651 Set_Is_Aliased (Def_Id, Is_Aliased (T));
13652 Set_Is_Independent (Def_Id, Is_Independent (T));
13653 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13655 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
13656 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
13658 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
13659 -- We need to initialize the attribute because if Def_Id is previously
13660 -- analyzed through a limited_with clause, it will have the attributes
13661 -- of an incomplete type, one of which is an Elist that overlaps the
13662 -- Packed_Array_Impl_Type field.
13664 Set_Packed_Array_Impl_Type (Def_Id, Empty);
13666 -- Build a freeze node if parent still needs one. Also make sure that
13667 -- the Depends_On_Private status is set because the subtype will need
13668 -- reprocessing at the time the base type does, and also we must set a
13669 -- conditional delay.
13671 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
13672 Conditional_Delay (Def_Id, T);
13673 end Constrain_Array;
13675 ------------------------------
13676 -- Constrain_Component_Type --
13677 ------------------------------
13679 function Constrain_Component_Type
13680 (Comp : Entity_Id;
13681 Constrained_Typ : Entity_Id;
13682 Related_Node : Node_Id;
13683 Typ : Entity_Id;
13684 Constraints : Elist_Id) return Entity_Id
13686 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
13687 Compon_Type : constant Entity_Id := Etype (Comp);
13689 function Build_Constrained_Array_Type
13690 (Old_Type : Entity_Id) return Entity_Id;
13691 -- If Old_Type is an array type, one of whose indexes is constrained
13692 -- by a discriminant, build an Itype whose constraint replaces the
13693 -- discriminant with its value in the constraint.
13695 function Build_Constrained_Discriminated_Type
13696 (Old_Type : Entity_Id) return Entity_Id;
13697 -- Ditto for record components. Handle the case where the constraint
13698 -- is a conversion of the discriminant value, introduced during
13699 -- expansion.
13701 function Build_Constrained_Access_Type
13702 (Old_Type : Entity_Id) return Entity_Id;
13703 -- Ditto for access types. Makes use of previous two functions, to
13704 -- constrain designated type.
13706 function Is_Discriminant (Expr : Node_Id) return Boolean;
13707 -- Returns True if Expr is a discriminant
13709 function Get_Discr_Value (Discr_Expr : Node_Id) return Node_Id;
13710 -- Find the value of a discriminant named by Discr_Expr in Constraints
13712 -----------------------------------
13713 -- Build_Constrained_Access_Type --
13714 -----------------------------------
13716 function Build_Constrained_Access_Type
13717 (Old_Type : Entity_Id) return Entity_Id
13719 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
13720 Itype : Entity_Id;
13721 Desig_Subtype : Entity_Id;
13722 Scop : Entity_Id;
13724 begin
13725 -- If the original access type was not embedded in the enclosing
13726 -- type definition, there is no need to produce a new access
13727 -- subtype. In fact every access type with an explicit constraint
13728 -- generates an itype whose scope is the enclosing record.
13730 if not Is_Type (Scope (Old_Type)) then
13731 return Old_Type;
13733 elsif Is_Array_Type (Desig_Type) then
13734 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
13736 elsif Has_Discriminants (Desig_Type) then
13738 -- This may be an access type to an enclosing record type for
13739 -- which we are constructing the constrained components. Return
13740 -- the enclosing record subtype. This is not always correct,
13741 -- but avoids infinite recursion. ???
13743 Desig_Subtype := Any_Type;
13745 for J in reverse 0 .. Scope_Stack.Last loop
13746 Scop := Scope_Stack.Table (J).Entity;
13748 if Is_Type (Scop)
13749 and then Base_Type (Scop) = Base_Type (Desig_Type)
13750 then
13751 Desig_Subtype := Scop;
13752 end if;
13754 exit when not Is_Type (Scop);
13755 end loop;
13757 if Desig_Subtype = Any_Type then
13758 Desig_Subtype :=
13759 Build_Constrained_Discriminated_Type (Desig_Type);
13760 end if;
13762 else
13763 return Old_Type;
13764 end if;
13766 if Desig_Subtype /= Desig_Type then
13768 -- The Related_Node better be here or else we won't be able
13769 -- to attach new itypes to a node in the tree.
13771 pragma Assert (Present (Related_Node));
13773 Itype := Create_Itype (E_Access_Subtype, Related_Node);
13775 Set_Etype (Itype, Base_Type (Old_Type));
13776 Set_Size_Info (Itype, (Old_Type));
13777 Set_Directly_Designated_Type (Itype, Desig_Subtype);
13778 Set_Depends_On_Private (Itype, Has_Private_Component
13779 (Old_Type));
13780 Set_Is_Access_Constant (Itype, Is_Access_Constant
13781 (Old_Type));
13783 -- The new itype needs freezing when it depends on a not frozen
13784 -- type and the enclosing subtype needs freezing.
13786 if Has_Delayed_Freeze (Constrained_Typ)
13787 and then not Is_Frozen (Constrained_Typ)
13788 then
13789 Conditional_Delay (Itype, Base_Type (Old_Type));
13790 end if;
13792 return Itype;
13794 else
13795 return Old_Type;
13796 end if;
13797 end Build_Constrained_Access_Type;
13799 ----------------------------------
13800 -- Build_Constrained_Array_Type --
13801 ----------------------------------
13803 function Build_Constrained_Array_Type
13804 (Old_Type : Entity_Id) return Entity_Id
13806 Lo_Expr : Node_Id;
13807 Hi_Expr : Node_Id;
13808 Old_Index : Node_Id;
13809 Range_Node : Node_Id;
13810 Constr_List : List_Id;
13812 Need_To_Create_Itype : Boolean := False;
13814 begin
13815 Old_Index := First_Index (Old_Type);
13816 while Present (Old_Index) loop
13817 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13819 if Is_Discriminant (Lo_Expr)
13820 or else
13821 Is_Discriminant (Hi_Expr)
13822 then
13823 Need_To_Create_Itype := True;
13824 exit;
13825 end if;
13827 Next_Index (Old_Index);
13828 end loop;
13830 if Need_To_Create_Itype then
13831 Constr_List := New_List;
13833 Old_Index := First_Index (Old_Type);
13834 while Present (Old_Index) loop
13835 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13837 if Is_Discriminant (Lo_Expr) then
13838 Lo_Expr := Get_Discr_Value (Lo_Expr);
13839 end if;
13841 if Is_Discriminant (Hi_Expr) then
13842 Hi_Expr := Get_Discr_Value (Hi_Expr);
13843 end if;
13845 Range_Node :=
13846 Make_Range
13847 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
13849 Append (Range_Node, To => Constr_List);
13851 Next_Index (Old_Index);
13852 end loop;
13854 return Build_Subtype (Related_Node, Loc, Old_Type, Constr_List);
13856 else
13857 return Old_Type;
13858 end if;
13859 end Build_Constrained_Array_Type;
13861 ------------------------------------------
13862 -- Build_Constrained_Discriminated_Type --
13863 ------------------------------------------
13865 function Build_Constrained_Discriminated_Type
13866 (Old_Type : Entity_Id) return Entity_Id
13868 Expr : Node_Id;
13869 Constr_List : List_Id;
13870 Old_Constraint : Elmt_Id;
13872 Need_To_Create_Itype : Boolean := False;
13874 begin
13875 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13876 while Present (Old_Constraint) loop
13877 Expr := Node (Old_Constraint);
13879 if Is_Discriminant (Expr) then
13880 Need_To_Create_Itype := True;
13881 exit;
13883 -- After expansion of discriminated task types, the value
13884 -- of the discriminant may be converted to a run-time type
13885 -- for restricted run-times. Propagate the value of the
13886 -- discriminant as well, so that e.g. the secondary stack
13887 -- component has a static constraint. Necessary for LLVM.
13889 elsif Nkind (Expr) = N_Type_Conversion
13890 and then Is_Discriminant (Expression (Expr))
13891 then
13892 Need_To_Create_Itype := True;
13893 exit;
13894 end if;
13896 Next_Elmt (Old_Constraint);
13897 end loop;
13899 if Need_To_Create_Itype then
13900 Constr_List := New_List;
13902 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13903 while Present (Old_Constraint) loop
13904 Expr := Node (Old_Constraint);
13906 if Is_Discriminant (Expr) then
13907 Expr := Get_Discr_Value (Expr);
13909 elsif Nkind (Expr) = N_Type_Conversion
13910 and then Is_Discriminant (Expression (Expr))
13911 then
13912 Expr := New_Copy_Tree (Expr);
13913 Set_Expression (Expr, Get_Discr_Value (Expression (Expr)));
13914 end if;
13916 Append (New_Copy_Tree (Expr), To => Constr_List);
13918 Next_Elmt (Old_Constraint);
13919 end loop;
13921 return Build_Subtype (Related_Node, Loc, Old_Type, Constr_List);
13923 else
13924 return Old_Type;
13925 end if;
13926 end Build_Constrained_Discriminated_Type;
13928 ---------------------
13929 -- Get_Discr_Value --
13930 ---------------------
13932 function Get_Discr_Value (Discr_Expr : Node_Id) return Node_Id is
13933 Discr_Id : constant Entity_Id := Entity (Discr_Expr);
13934 -- Entity of a discriminant that appear as a standalone expression in
13935 -- the constraint of a component.
13937 D : Entity_Id;
13938 E : Elmt_Id;
13940 begin
13941 -- The discriminant may be declared for the type, in which case we
13942 -- find it by iterating over the list of discriminants. If the
13943 -- discriminant is inherited from a parent type, it appears as the
13944 -- corresponding discriminant of the current type. This will be the
13945 -- case when constraining an inherited component whose constraint is
13946 -- given by a discriminant of the parent.
13948 D := First_Discriminant (Typ);
13949 E := First_Elmt (Constraints);
13951 while Present (D) loop
13952 if D = Discr_Id
13953 or else D = CR_Discriminant (Discr_Id)
13954 or else Corresponding_Discriminant (D) = Discr_Id
13955 then
13956 return Node (E);
13957 end if;
13959 Next_Discriminant (D);
13960 Next_Elmt (E);
13961 end loop;
13963 -- The Corresponding_Discriminant mechanism is incomplete, because
13964 -- the correspondence between new and old discriminants is not one
13965 -- to one: one new discriminant can constrain several old ones. In
13966 -- that case, scan sequentially the stored_constraint, the list of
13967 -- discriminants of the parents, and the constraints.
13969 -- Previous code checked for the present of the Stored_Constraint
13970 -- list for the derived type, but did not use it at all. Should it
13971 -- be present when the component is a discriminated task type?
13973 if Is_Derived_Type (Typ)
13974 and then Scope (Discr_Id) = Etype (Typ)
13975 then
13976 D := First_Discriminant (Etype (Typ));
13977 E := First_Elmt (Constraints);
13978 while Present (D) loop
13979 if D = Discr_Id then
13980 return Node (E);
13981 end if;
13983 Next_Discriminant (D);
13984 Next_Elmt (E);
13985 end loop;
13986 end if;
13988 -- Something is wrong if we did not find the value
13990 raise Program_Error;
13991 end Get_Discr_Value;
13993 ---------------------
13994 -- Is_Discriminant --
13995 ---------------------
13997 function Is_Discriminant (Expr : Node_Id) return Boolean is
13998 Discrim_Scope : Entity_Id;
14000 begin
14001 if Denotes_Discriminant (Expr) then
14002 Discrim_Scope := Scope (Entity (Expr));
14004 -- Either we have a reference to one of Typ's discriminants,
14006 pragma Assert (Discrim_Scope = Typ
14008 -- or to the discriminants of the parent type, in the case
14009 -- of a derivation of a tagged type with variants.
14011 or else Discrim_Scope = Etype (Typ)
14012 or else Full_View (Discrim_Scope) = Etype (Typ)
14014 -- or same as above for the case where the discriminants
14015 -- were declared in Typ's private view.
14017 or else (Is_Private_Type (Discrim_Scope)
14018 and then Chars (Discrim_Scope) = Chars (Typ))
14020 -- or else we are deriving from the full view and the
14021 -- discriminant is declared in the private entity.
14023 or else (Is_Private_Type (Typ)
14024 and then Chars (Discrim_Scope) = Chars (Typ))
14026 -- Or we are constrained the corresponding record of a
14027 -- synchronized type that completes a private declaration.
14029 or else (Is_Concurrent_Record_Type (Typ)
14030 and then
14031 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
14033 -- or we have a class-wide type, in which case make sure the
14034 -- discriminant found belongs to the root type.
14036 or else (Is_Class_Wide_Type (Typ)
14037 and then Etype (Typ) = Discrim_Scope));
14039 return True;
14040 end if;
14042 -- In all other cases we have something wrong
14044 return False;
14045 end Is_Discriminant;
14047 -- Start of processing for Constrain_Component_Type
14049 begin
14050 if Nkind (Parent (Comp)) = N_Component_Declaration
14051 and then Comes_From_Source (Parent (Comp))
14052 and then Comes_From_Source
14053 (Subtype_Indication (Component_Definition (Parent (Comp))))
14054 and then
14055 Is_Entity_Name
14056 (Subtype_Indication (Component_Definition (Parent (Comp))))
14057 then
14058 return Compon_Type;
14060 elsif Is_Array_Type (Compon_Type) then
14061 return Build_Constrained_Array_Type (Compon_Type);
14063 elsif Has_Discriminants (Compon_Type) then
14064 return Build_Constrained_Discriminated_Type (Compon_Type);
14066 elsif Is_Access_Type (Compon_Type) then
14067 return Build_Constrained_Access_Type (Compon_Type);
14069 else
14070 return Compon_Type;
14071 end if;
14072 end Constrain_Component_Type;
14074 --------------------------
14075 -- Constrain_Concurrent --
14076 --------------------------
14078 -- For concurrent types, the associated record value type carries the same
14079 -- discriminants, so when we constrain a concurrent type, we must constrain
14080 -- the corresponding record type as well.
14082 procedure Constrain_Concurrent
14083 (Def_Id : in out Entity_Id;
14084 SI : Node_Id;
14085 Related_Nod : Node_Id;
14086 Related_Id : Entity_Id;
14087 Suffix : Character)
14089 -- Retrieve Base_Type to ensure getting to the concurrent type in the
14090 -- case of a private subtype (needed when only doing semantic analysis).
14092 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
14093 T_Val : Entity_Id;
14095 begin
14096 if Is_Access_Type (T_Ent) then
14097 T_Ent := Designated_Type (T_Ent);
14098 end if;
14100 T_Val := Corresponding_Record_Type (T_Ent);
14102 if Present (T_Val) then
14104 if No (Def_Id) then
14105 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
14107 -- Elaborate itype now, as it may be used in a subsequent
14108 -- synchronized operation in another scope.
14110 if Nkind (Related_Nod) = N_Full_Type_Declaration then
14111 Build_Itype_Reference (Def_Id, Related_Nod);
14112 end if;
14113 end if;
14115 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
14116 Set_First_Private_Entity (Def_Id, First_Private_Entity (T_Ent));
14118 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
14119 Set_Corresponding_Record_Type (Def_Id,
14120 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
14122 else
14123 -- If there is no associated record, expansion is disabled and this
14124 -- is a generic context. Create a subtype in any case, so that
14125 -- semantic analysis can proceed.
14127 if No (Def_Id) then
14128 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
14129 end if;
14131 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
14132 end if;
14133 end Constrain_Concurrent;
14135 ------------------------------------
14136 -- Constrain_Corresponding_Record --
14137 ------------------------------------
14139 function Constrain_Corresponding_Record
14140 (Prot_Subt : Entity_Id;
14141 Corr_Rec : Entity_Id;
14142 Related_Nod : Node_Id) return Entity_Id
14144 T_Sub : constant Entity_Id :=
14145 Create_Itype
14146 (Ekind => E_Record_Subtype,
14147 Related_Nod => Related_Nod,
14148 Related_Id => Corr_Rec,
14149 Suffix => 'C',
14150 Suffix_Index => -1);
14152 begin
14153 Set_Etype (T_Sub, Corr_Rec);
14154 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
14155 Set_Is_Tagged_Type (T_Sub, Is_Tagged_Type (Corr_Rec));
14156 Set_Is_Constrained (T_Sub, True);
14157 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
14158 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
14160 if Has_Discriminants (Prot_Subt) then -- False only if errors.
14161 Set_Discriminant_Constraint
14162 (T_Sub, Discriminant_Constraint (Prot_Subt));
14163 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
14164 Create_Constrained_Components
14165 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
14166 end if;
14168 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
14170 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
14171 Conditional_Delay (T_Sub, Corr_Rec);
14173 else
14174 -- This is a component subtype: it will be frozen in the context of
14175 -- the enclosing record's init_proc, so that discriminant references
14176 -- are resolved to discriminals. (Note: we used to skip freezing
14177 -- altogether in that case, which caused errors downstream for
14178 -- components of a bit packed array type).
14180 Set_Has_Delayed_Freeze (T_Sub);
14181 end if;
14183 return T_Sub;
14184 end Constrain_Corresponding_Record;
14186 -----------------------
14187 -- Constrain_Decimal --
14188 -----------------------
14190 procedure Constrain_Decimal (Def_Id : Entity_Id; S : Node_Id) is
14191 T : constant Entity_Id := Entity (Subtype_Mark (S));
14192 C : constant Node_Id := Constraint (S);
14193 Loc : constant Source_Ptr := Sloc (C);
14194 Range_Expr : Node_Id;
14195 Digits_Expr : Node_Id;
14196 Digits_Val : Uint;
14197 Bound_Val : Ureal;
14199 begin
14200 Mutate_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
14202 if Nkind (C) = N_Range_Constraint then
14203 Range_Expr := Range_Expression (C);
14204 Digits_Val := Digits_Value (T);
14206 else
14207 pragma Assert (Nkind (C) = N_Digits_Constraint);
14209 Digits_Expr := Digits_Expression (C);
14210 Analyze_And_Resolve (Digits_Expr, Any_Integer);
14212 Check_Digits_Expression (Digits_Expr);
14213 Digits_Val := Expr_Value (Digits_Expr);
14215 if Digits_Val > Digits_Value (T) then
14216 Error_Msg_N
14217 ("digits expression is incompatible with subtype", C);
14218 Digits_Val := Digits_Value (T);
14219 end if;
14221 if Present (Range_Constraint (C)) then
14222 Range_Expr := Range_Expression (Range_Constraint (C));
14223 else
14224 Range_Expr := Empty;
14225 end if;
14226 end if;
14228 Set_Etype (Def_Id, Base_Type (T));
14229 Set_Size_Info (Def_Id, (T));
14230 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14231 Set_Delta_Value (Def_Id, Delta_Value (T));
14232 Set_Scale_Value (Def_Id, Scale_Value (T));
14233 Set_Small_Value (Def_Id, Small_Value (T));
14234 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
14235 Set_Digits_Value (Def_Id, Digits_Val);
14237 -- Manufacture range from given digits value if no range present
14239 if No (Range_Expr) then
14240 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
14241 Range_Expr :=
14242 Make_Range (Loc,
14243 Low_Bound =>
14244 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
14245 High_Bound =>
14246 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
14247 end if;
14249 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
14250 Set_Discrete_RM_Size (Def_Id);
14252 -- Unconditionally delay the freeze, since we cannot set size
14253 -- information in all cases correctly until the freeze point.
14255 Set_Has_Delayed_Freeze (Def_Id);
14256 end Constrain_Decimal;
14258 ----------------------------------
14259 -- Constrain_Discriminated_Type --
14260 ----------------------------------
14262 procedure Constrain_Discriminated_Type
14263 (Def_Id : Entity_Id;
14264 S : Node_Id;
14265 Related_Nod : Node_Id;
14266 For_Access : Boolean := False)
14268 E : Entity_Id := Entity (Subtype_Mark (S));
14269 T : Entity_Id;
14271 procedure Fixup_Bad_Constraint;
14272 -- Called after finding a bad constraint, and after having posted an
14273 -- appropriate error message. The goal is to leave type Def_Id in as
14274 -- reasonable state as possible.
14276 --------------------------
14277 -- Fixup_Bad_Constraint --
14278 --------------------------
14280 procedure Fixup_Bad_Constraint is
14281 begin
14282 -- Set a reasonable Ekind for the entity, including incomplete types.
14284 Mutate_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
14286 -- Set Etype to the known type, to reduce chances of cascaded errors
14288 Set_Etype (Def_Id, E);
14289 Set_Error_Posted (Def_Id);
14290 end Fixup_Bad_Constraint;
14292 -- Local variables
14294 C : Node_Id;
14295 Constr : Elist_Id := New_Elmt_List;
14297 -- Start of processing for Constrain_Discriminated_Type
14299 begin
14300 C := Constraint (S);
14302 -- A discriminant constraint is only allowed in a subtype indication,
14303 -- after a subtype mark. This subtype mark must denote either a type
14304 -- with discriminants, or an access type whose designated type is a
14305 -- type with discriminants. A discriminant constraint specifies the
14306 -- values of these discriminants (RM 3.7.2(5)).
14308 T := Base_Type (Entity (Subtype_Mark (S)));
14310 if Is_Access_Type (T) then
14311 T := Designated_Type (T);
14312 end if;
14314 -- In an instance it may be necessary to retrieve the full view of a
14315 -- type with unknown discriminants, or a full view with defaulted
14316 -- discriminants. In other contexts the constraint is illegal.
14318 if In_Instance
14319 and then Is_Private_Type (T)
14320 and then Present (Full_View (T))
14321 and then
14322 (Has_Unknown_Discriminants (T)
14323 or else
14324 (not Has_Discriminants (T)
14325 and then Has_Defaulted_Discriminants (Full_View (T))))
14326 then
14327 T := Full_View (T);
14328 E := Full_View (E);
14329 end if;
14331 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
14332 -- generating an error for access-to-incomplete subtypes.
14334 if Ada_Version >= Ada_2005
14335 and then Ekind (T) = E_Incomplete_Type
14336 and then Nkind (Parent (S)) = N_Subtype_Declaration
14337 and then not Is_Itype (Def_Id)
14338 then
14339 -- A little sanity check: emit an error message if the type has
14340 -- discriminants to begin with. Type T may be a regular incomplete
14341 -- type or imported via a limited with clause.
14343 if Has_Discriminants (T)
14344 or else (From_Limited_With (T)
14345 and then Present (Non_Limited_View (T))
14346 and then Nkind (Parent (Non_Limited_View (T))) =
14347 N_Full_Type_Declaration
14348 and then Present (Discriminant_Specifications
14349 (Parent (Non_Limited_View (T)))))
14350 then
14351 Error_Msg_N
14352 ("(Ada 2005) incomplete subtype may not be constrained", C);
14353 else
14354 Error_Msg_N ("invalid constraint: type has no discriminant", C);
14355 end if;
14357 Fixup_Bad_Constraint;
14358 return;
14360 -- Check that the type has visible discriminants. The type may be
14361 -- a private type with unknown discriminants whose full view has
14362 -- discriminants which are invisible.
14364 elsif not Has_Discriminants (T)
14365 or else
14366 (Has_Unknown_Discriminants (T)
14367 and then Is_Private_Type (T))
14368 then
14369 Error_Msg_N ("invalid constraint: type has no discriminant", C);
14370 Fixup_Bad_Constraint;
14371 return;
14373 elsif Is_Constrained (E)
14374 or else (Ekind (E) = E_Class_Wide_Subtype
14375 and then Present (Discriminant_Constraint (E)))
14376 then
14377 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
14378 Fixup_Bad_Constraint;
14379 return;
14380 end if;
14382 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
14383 -- applies to the base type.
14385 T := Base_Type (T);
14387 Constr := Build_Discriminant_Constraints (T, S);
14389 -- If the list returned was empty we had an error in building the
14390 -- discriminant constraint. We have also already signalled an error
14391 -- in the incomplete type case
14393 if Is_Empty_Elmt_List (Constr) then
14394 Fixup_Bad_Constraint;
14395 return;
14396 end if;
14398 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
14399 end Constrain_Discriminated_Type;
14401 ---------------------------
14402 -- Constrain_Enumeration --
14403 ---------------------------
14405 procedure Constrain_Enumeration (Def_Id : Entity_Id; S : Node_Id) is
14406 T : constant Entity_Id := Entity (Subtype_Mark (S));
14407 C : constant Node_Id := Constraint (S);
14409 begin
14410 Mutate_Ekind (Def_Id, E_Enumeration_Subtype);
14412 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
14414 Set_Etype (Def_Id, Base_Type (T));
14415 Set_Size_Info (Def_Id, (T));
14416 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14417 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
14419 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14421 Set_Discrete_RM_Size (Def_Id);
14422 end Constrain_Enumeration;
14424 ----------------------
14425 -- Constrain_Float --
14426 ----------------------
14428 procedure Constrain_Float (Def_Id : Entity_Id; S : Node_Id) is
14429 T : constant Entity_Id := Entity (Subtype_Mark (S));
14430 C : Node_Id;
14431 D : Node_Id;
14432 Rais : Node_Id;
14434 begin
14435 Mutate_Ekind (Def_Id, E_Floating_Point_Subtype);
14437 Set_Etype (Def_Id, Base_Type (T));
14438 Set_Size_Info (Def_Id, (T));
14439 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14441 -- Process the constraint
14443 C := Constraint (S);
14445 -- Digits constraint present
14447 if Nkind (C) = N_Digits_Constraint then
14448 Check_Restriction (No_Obsolescent_Features, C);
14450 if Warn_On_Obsolescent_Feature then
14451 Error_Msg_N
14452 ("subtype digits constraint is an " &
14453 "obsolescent feature (RM J.3(8))?j?", C);
14454 end if;
14456 D := Digits_Expression (C);
14457 Analyze_And_Resolve (D, Any_Integer);
14458 Check_Digits_Expression (D);
14459 Set_Digits_Value (Def_Id, Expr_Value (D));
14461 -- Check that digits value is in range. Obviously we can do this
14462 -- at compile time, but it is strictly a runtime check, and of
14463 -- course there is an ACVC test that checks this.
14465 if Digits_Value (Def_Id) > Digits_Value (T) then
14466 Error_Msg_Uint_1 := Digits_Value (T);
14467 Error_Msg_N ("??digits value is too large, maximum is ^", D);
14468 Rais :=
14469 Make_Raise_Constraint_Error (Sloc (D),
14470 Reason => CE_Range_Check_Failed);
14471 Insert_Action (Declaration_Node (Def_Id), Rais);
14472 end if;
14474 C := Range_Constraint (C);
14476 -- No digits constraint present
14478 else
14479 Set_Digits_Value (Def_Id, Digits_Value (T));
14480 end if;
14482 -- Range constraint present
14484 if Nkind (C) = N_Range_Constraint then
14485 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14487 -- No range constraint present
14489 else
14490 pragma Assert (No (C));
14491 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14492 end if;
14494 Set_Is_Constrained (Def_Id);
14495 end Constrain_Float;
14497 ---------------------
14498 -- Constrain_Index --
14499 ---------------------
14501 procedure Constrain_Index
14502 (Index : Node_Id;
14503 S : Node_Id;
14504 Related_Nod : Node_Id;
14505 Related_Id : Entity_Id;
14506 Suffix : Character;
14507 Suffix_Index : Pos)
14509 Def_Id : Entity_Id;
14510 R : Node_Id := Empty;
14511 T : constant Entity_Id := Etype (Index);
14512 Is_FLB_Index : Boolean := False;
14514 begin
14515 Def_Id :=
14516 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
14517 Set_Etype (Def_Id, Base_Type (T));
14519 if Nkind (S) = N_Range
14520 or else
14521 (Nkind (S) = N_Attribute_Reference
14522 and then Attribute_Name (S) = Name_Range)
14523 then
14524 -- A Range attribute will be transformed into N_Range by Resolve
14526 -- If a range has an Empty upper bound, then remember that for later
14527 -- setting of the index subtype's Is_Fixed_Lower_Bound_Index_Subtype
14528 -- flag, and also set the upper bound of the range to the index
14529 -- subtype's upper bound rather than leaving it Empty. In truth,
14530 -- that upper bound corresponds to a box ("<>"), but it's convenient
14531 -- to set it to the upper bound to avoid needing to add special tests
14532 -- in various places for an Empty upper bound, and in any case it
14533 -- accurately characterizes the index's range of values.
14535 if Nkind (S) = N_Range and then not Present (High_Bound (S)) then
14536 Is_FLB_Index := True;
14537 Set_High_Bound (S, Type_High_Bound (T));
14538 end if;
14540 R := S;
14542 Process_Range_Expr_In_Decl (R, T);
14544 if not Error_Posted (S)
14545 and then
14546 (Nkind (S) /= N_Range
14547 or else not Covers (T, (Etype (Low_Bound (S))))
14548 or else not Covers (T, (Etype (High_Bound (S)))))
14549 then
14550 if Base_Type (T) /= Any_Type
14551 and then Etype (Low_Bound (S)) /= Any_Type
14552 and then Etype (High_Bound (S)) /= Any_Type
14553 then
14554 Error_Msg_N ("range expected", S);
14555 end if;
14556 end if;
14558 elsif Nkind (S) = N_Subtype_Indication then
14560 -- The parser has verified that this is a discrete indication
14562 Resolve_Discrete_Subtype_Indication (S, T);
14563 Bad_Predicated_Subtype_Use
14564 ("subtype& has predicate, not allowed in index constraint",
14565 S, Entity (Subtype_Mark (S)));
14567 R := Range_Expression (Constraint (S));
14569 -- Capture values of bounds and generate temporaries for them if
14570 -- needed, since checks may cause duplication of the expressions
14571 -- which must not be reevaluated.
14573 -- The forced evaluation removes side effects from expressions, which
14574 -- should occur also in GNATprove mode. Otherwise, we end up with
14575 -- unexpected insertions of actions at places where this is not
14576 -- supposed to occur, e.g. on default parameters of a call.
14578 if Expander_Active or GNATprove_Mode then
14579 Force_Evaluation
14580 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
14581 Force_Evaluation
14582 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
14583 end if;
14585 elsif Nkind (S) = N_Discriminant_Association then
14587 -- Syntactically valid in subtype indication
14589 Error_Msg_N ("invalid index constraint", S);
14590 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14591 return;
14593 -- Subtype_Mark case, no anonymous subtypes to construct
14595 else
14596 Analyze (S);
14598 if Is_Entity_Name (S) then
14599 if not Is_Type (Entity (S)) then
14600 Error_Msg_N ("expect subtype mark for index constraint", S);
14602 elsif Base_Type (Entity (S)) /= Base_Type (T) then
14603 Wrong_Type (S, Base_Type (T));
14605 -- Check error of subtype with predicate in index constraint
14607 else
14608 Bad_Predicated_Subtype_Use
14609 ("subtype& has predicate, not allowed in index constraint",
14610 S, Entity (S));
14611 end if;
14613 return;
14615 else
14616 Error_Msg_N ("invalid index constraint", S);
14617 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14618 return;
14619 end if;
14620 end if;
14622 -- Complete construction of the Itype
14624 if Is_Modular_Integer_Type (T) then
14625 Mutate_Ekind (Def_Id, E_Modular_Integer_Subtype);
14627 elsif Is_Integer_Type (T) then
14628 Mutate_Ekind (Def_Id, E_Signed_Integer_Subtype);
14630 else
14631 Mutate_Ekind (Def_Id, E_Enumeration_Subtype);
14632 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
14633 Set_First_Literal (Def_Id, First_Literal (T));
14634 end if;
14636 Set_Size_Info (Def_Id, (T));
14637 Copy_RM_Size (To => Def_Id, From => T);
14638 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14640 -- If this is a range for a fixed-lower-bound subtype, then set the
14641 -- index itype's low bound to the FLB and the index itype's upper bound
14642 -- to the high bound of the parent array type's index subtype. Also,
14643 -- mark the itype as an FLB index subtype.
14645 if Nkind (S) = N_Range and then Is_FLB_Index then
14646 Set_Scalar_Range
14647 (Def_Id,
14648 Make_Range (Sloc (S),
14649 Low_Bound => Low_Bound (S),
14650 High_Bound => Type_High_Bound (T)));
14651 Set_Is_Fixed_Lower_Bound_Index_Subtype (Def_Id);
14653 else
14654 Set_Scalar_Range (Def_Id, R);
14655 end if;
14657 Set_Etype (S, Def_Id);
14658 Set_Discrete_RM_Size (Def_Id);
14659 end Constrain_Index;
14661 -----------------------
14662 -- Constrain_Integer --
14663 -----------------------
14665 procedure Constrain_Integer (Def_Id : Entity_Id; S : Node_Id) is
14666 T : constant Entity_Id := Entity (Subtype_Mark (S));
14667 C : constant Node_Id := Constraint (S);
14669 begin
14670 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14672 if Is_Modular_Integer_Type (T) then
14673 Mutate_Ekind (Def_Id, E_Modular_Integer_Subtype);
14674 else
14675 Mutate_Ekind (Def_Id, E_Signed_Integer_Subtype);
14676 end if;
14678 Set_Etype (Def_Id, Base_Type (T));
14679 Set_Size_Info (Def_Id, (T));
14680 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14681 Set_Discrete_RM_Size (Def_Id);
14682 end Constrain_Integer;
14684 ------------------------------
14685 -- Constrain_Ordinary_Fixed --
14686 ------------------------------
14688 procedure Constrain_Ordinary_Fixed (Def_Id : Entity_Id; S : Node_Id) is
14689 T : constant Entity_Id := Entity (Subtype_Mark (S));
14690 C : Node_Id;
14691 D : Node_Id;
14692 Rais : Node_Id;
14694 begin
14695 Mutate_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
14696 Set_Etype (Def_Id, Base_Type (T));
14697 Set_Size_Info (Def_Id, (T));
14698 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14699 Set_Small_Value (Def_Id, Small_Value (T));
14701 -- Process the constraint
14703 C := Constraint (S);
14705 -- Delta constraint present
14707 if Nkind (C) = N_Delta_Constraint then
14708 Check_Restriction (No_Obsolescent_Features, C);
14710 if Warn_On_Obsolescent_Feature then
14711 Error_Msg_S
14712 ("subtype delta constraint is an " &
14713 "obsolescent feature (RM J.3(7))?j?");
14714 end if;
14716 D := Delta_Expression (C);
14717 Analyze_And_Resolve (D, Any_Real);
14718 Check_Delta_Expression (D);
14719 Set_Delta_Value (Def_Id, Expr_Value_R (D));
14721 -- Check that delta value is in range. Obviously we can do this
14722 -- at compile time, but it is strictly a runtime check, and of
14723 -- course there is an ACVC test that checks this.
14725 if Delta_Value (Def_Id) < Delta_Value (T) then
14726 Error_Msg_N ("??delta value is too small", D);
14727 Rais :=
14728 Make_Raise_Constraint_Error (Sloc (D),
14729 Reason => CE_Range_Check_Failed);
14730 Insert_Action (Declaration_Node (Def_Id), Rais);
14731 end if;
14733 C := Range_Constraint (C);
14735 -- No delta constraint present
14737 else
14738 Set_Delta_Value (Def_Id, Delta_Value (T));
14739 end if;
14741 -- Range constraint present
14743 if Nkind (C) = N_Range_Constraint then
14744 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14746 -- No range constraint present
14748 else
14749 pragma Assert (No (C));
14750 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14751 end if;
14753 Set_Discrete_RM_Size (Def_Id);
14755 -- Unconditionally delay the freeze, since we cannot set size
14756 -- information in all cases correctly until the freeze point.
14758 Set_Has_Delayed_Freeze (Def_Id);
14759 end Constrain_Ordinary_Fixed;
14761 -----------------------
14762 -- Contain_Interface --
14763 -----------------------
14765 function Contain_Interface
14766 (Iface : Entity_Id;
14767 Ifaces : Elist_Id) return Boolean
14769 Iface_Elmt : Elmt_Id;
14771 begin
14772 if Present (Ifaces) then
14773 Iface_Elmt := First_Elmt (Ifaces);
14774 while Present (Iface_Elmt) loop
14775 if Node (Iface_Elmt) = Iface then
14776 return True;
14777 end if;
14779 Next_Elmt (Iface_Elmt);
14780 end loop;
14781 end if;
14783 return False;
14784 end Contain_Interface;
14786 ---------------------------
14787 -- Convert_Scalar_Bounds --
14788 ---------------------------
14790 procedure Convert_Scalar_Bounds
14791 (N : Node_Id;
14792 Parent_Type : Entity_Id;
14793 Derived_Type : Entity_Id;
14794 Loc : Source_Ptr)
14796 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
14798 Lo : Node_Id;
14799 Hi : Node_Id;
14800 Rng : Node_Id;
14802 begin
14803 -- Defend against previous errors
14805 if No (Scalar_Range (Derived_Type)) then
14806 Check_Error_Detected;
14807 return;
14808 end if;
14810 Lo := Build_Scalar_Bound
14811 (Type_Low_Bound (Derived_Type),
14812 Parent_Type, Implicit_Base);
14814 Hi := Build_Scalar_Bound
14815 (Type_High_Bound (Derived_Type),
14816 Parent_Type, Implicit_Base);
14818 Rng :=
14819 Make_Range (Loc,
14820 Low_Bound => Lo,
14821 High_Bound => Hi);
14823 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
14825 Set_Parent (Rng, N);
14826 Set_Scalar_Range (Derived_Type, Rng);
14828 -- Analyze the bounds
14830 Analyze_And_Resolve (Lo, Implicit_Base);
14831 Analyze_And_Resolve (Hi, Implicit_Base);
14833 -- Analyze the range itself, except that we do not analyze it if
14834 -- the bounds are real literals, and we have a fixed-point type.
14835 -- The reason for this is that we delay setting the bounds in this
14836 -- case till we know the final Small and Size values (see circuit
14837 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14839 if Is_Fixed_Point_Type (Parent_Type)
14840 and then Nkind (Lo) = N_Real_Literal
14841 and then Nkind (Hi) = N_Real_Literal
14842 then
14843 return;
14845 -- Here we do the analysis of the range
14847 -- Note: we do this manually, since if we do a normal Analyze and
14848 -- Resolve call, there are problems with the conversions used for
14849 -- the derived type range.
14851 else
14852 Set_Etype (Rng, Implicit_Base);
14853 Set_Analyzed (Rng, True);
14854 end if;
14855 end Convert_Scalar_Bounds;
14857 -------------------
14858 -- Copy_And_Swap --
14859 -------------------
14861 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
14862 begin
14863 -- Initialize new full declaration entity by copying the pertinent
14864 -- fields of the corresponding private declaration entity.
14866 -- We temporarily set Ekind to a value appropriate for a type to
14867 -- avoid assert failures in Einfo from checking for setting type
14868 -- attributes on something that is not a type. Ekind (Priv) is an
14869 -- appropriate choice, since it allowed the attributes to be set
14870 -- in the first place. This Ekind value will be modified later.
14872 Mutate_Ekind (Full, Ekind (Priv));
14874 -- Also set Etype temporarily to Any_Type, again, in the absence
14875 -- of errors, it will be properly reset, and if there are errors,
14876 -- then we want a value of Any_Type to remain.
14878 Set_Etype (Full, Any_Type);
14880 -- Now start copying attributes
14882 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
14884 if Has_Discriminants (Full) then
14885 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
14886 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
14887 end if;
14889 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
14890 Set_Homonym (Full, Homonym (Priv));
14891 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
14892 Set_Is_Public (Full, Is_Public (Priv));
14893 Set_Is_Pure (Full, Is_Pure (Priv));
14894 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
14895 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
14896 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
14897 Set_Has_Pragma_Unreferenced_Objects
14898 (Full, Has_Pragma_Unreferenced_Objects
14899 (Priv));
14901 Conditional_Delay (Full, Priv);
14903 if Is_Tagged_Type (Full) then
14904 Set_Direct_Primitive_Operations
14905 (Full, Direct_Primitive_Operations (Priv));
14906 Set_No_Tagged_Streams_Pragma
14907 (Full, No_Tagged_Streams_Pragma (Priv));
14909 if Is_Base_Type (Priv) then
14910 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
14911 end if;
14912 end if;
14914 Set_Is_Volatile (Full, Is_Volatile (Priv));
14915 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
14916 Set_Scope (Full, Scope (Priv));
14917 Set_Prev_Entity (Full, Prev_Entity (Priv));
14918 Set_Next_Entity (Full, Next_Entity (Priv));
14919 Set_First_Entity (Full, First_Entity (Priv));
14920 Set_Last_Entity (Full, Last_Entity (Priv));
14922 -- If access types have been recorded for later handling, keep them in
14923 -- the full view so that they get handled when the full view freeze
14924 -- node is expanded.
14926 if Present (Freeze_Node (Priv))
14927 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
14928 then
14929 Ensure_Freeze_Node (Full);
14930 Set_Access_Types_To_Process
14931 (Freeze_Node (Full),
14932 Access_Types_To_Process (Freeze_Node (Priv)));
14933 end if;
14935 -- Swap the two entities. Now Private is the full type entity and Full
14936 -- is the private one. They will be swapped back at the end of the
14937 -- private part. This swapping ensures that the entity that is visible
14938 -- in the private part is the full declaration.
14940 Exchange_Entities (Priv, Full);
14941 Append_Entity (Full, Scope (Full));
14942 end Copy_And_Swap;
14944 -------------------------------------
14945 -- Copy_Array_Base_Type_Attributes --
14946 -------------------------------------
14948 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
14949 begin
14950 Set_Component_Alignment (T1, Component_Alignment (T2));
14951 Set_Component_Type (T1, Component_Type (T2));
14952 Set_Component_Size (T1, Component_Size (T2));
14953 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
14954 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
14955 Propagate_Concurrent_Flags (T1, T2);
14956 Set_Is_Packed (T1, Is_Packed (T2));
14957 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
14958 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
14959 Set_Has_Independent_Components (T1, Has_Independent_Components (T2));
14960 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
14961 end Copy_Array_Base_Type_Attributes;
14963 -----------------------------------
14964 -- Copy_Array_Subtype_Attributes --
14965 -----------------------------------
14967 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
14968 begin
14969 Set_Size_Info (T1, T2);
14971 Set_First_Index (T1, First_Index (T2));
14972 Set_Is_Aliased (T1, Is_Aliased (T2));
14973 Set_Is_Atomic (T1, Is_Atomic (T2));
14974 Set_Is_Independent (T1, Is_Independent (T2));
14975 Set_Is_Volatile (T1, Is_Volatile (T2));
14976 Set_Is_Volatile_Full_Access (T1, Is_Volatile_Full_Access (T2));
14977 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
14978 Set_Is_Constrained (T1, Is_Constrained (T2));
14979 Set_Depends_On_Private (T1, Has_Private_Component (T2));
14980 Inherit_Rep_Item_Chain (T1, T2);
14981 Set_Convention (T1, Convention (T2));
14982 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
14983 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
14984 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
14985 end Copy_Array_Subtype_Attributes;
14987 -----------------------------------
14988 -- Create_Constrained_Components --
14989 -----------------------------------
14991 procedure Create_Constrained_Components
14992 (Subt : Entity_Id;
14993 Decl_Node : Node_Id;
14994 Typ : Entity_Id;
14995 Constraints : Elist_Id)
14997 Loc : constant Source_Ptr := Sloc (Subt);
14998 Comp_List : constant Elist_Id := New_Elmt_List;
14999 Parent_Type : constant Entity_Id := Etype (Typ);
15000 Assoc_List : constant List_Id := New_List;
15002 Discr_Val : Elmt_Id;
15003 Errors : Boolean;
15004 New_C : Entity_Id;
15005 Old_C : Entity_Id;
15006 Is_Static : Boolean := True;
15007 Is_Compile_Time_Known : Boolean := True;
15009 procedure Collect_Fixed_Components (Typ : Entity_Id);
15010 -- Collect parent type components that do not appear in a variant part
15012 procedure Create_All_Components;
15013 -- Iterate over Comp_List to create the components of the subtype
15015 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
15016 -- Creates a new component from Old_Compon, copying all the fields from
15017 -- it, including its Etype, inserts the new component in the Subt entity
15018 -- chain and returns the new component.
15020 function Is_Variant_Record (T : Entity_Id) return Boolean;
15021 -- If true, and discriminants are static, collect only components from
15022 -- variants selected by discriminant values.
15024 ------------------------------
15025 -- Collect_Fixed_Components --
15026 ------------------------------
15028 procedure Collect_Fixed_Components (Typ : Entity_Id) is
15029 begin
15030 -- Build association list for discriminants, and find components of the
15031 -- variant part selected by the values of the discriminants.
15033 Old_C := First_Discriminant (Typ);
15034 Discr_Val := First_Elmt (Constraints);
15035 while Present (Old_C) loop
15036 Append_To (Assoc_List,
15037 Make_Component_Association (Loc,
15038 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
15039 Expression => New_Copy (Node (Discr_Val))));
15041 Next_Elmt (Discr_Val);
15042 Next_Discriminant (Old_C);
15043 end loop;
15045 -- The tag and the possible parent component are unconditionally in
15046 -- the subtype.
15048 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
15049 Old_C := First_Component (Typ);
15050 while Present (Old_C) loop
15051 if Chars (Old_C) in Name_uTag | Name_uParent then
15052 Append_Elmt (Old_C, Comp_List);
15053 end if;
15055 Next_Component (Old_C);
15056 end loop;
15057 end if;
15058 end Collect_Fixed_Components;
15060 ---------------------------
15061 -- Create_All_Components --
15062 ---------------------------
15064 procedure Create_All_Components is
15065 Comp : Elmt_Id;
15067 begin
15068 Comp := First_Elmt (Comp_List);
15069 while Present (Comp) loop
15070 Old_C := Node (Comp);
15071 New_C := Create_Component (Old_C);
15073 Set_Etype
15074 (New_C,
15075 Constrain_Component_Type
15076 (Old_C, Subt, Decl_Node, Typ, Constraints));
15077 Set_Is_Public (New_C, Is_Public (Subt));
15079 Next_Elmt (Comp);
15080 end loop;
15081 end Create_All_Components;
15083 ----------------------
15084 -- Create_Component --
15085 ----------------------
15087 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
15088 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
15090 begin
15091 if Ekind (Old_Compon) = E_Discriminant
15092 and then Is_Completely_Hidden (Old_Compon)
15093 then
15094 -- This is a shadow discriminant created for a discriminant of
15095 -- the parent type, which needs to be present in the subtype.
15096 -- Give the shadow discriminant an internal name that cannot
15097 -- conflict with that of visible components.
15099 Set_Chars (New_Compon, New_Internal_Name ('C'));
15100 end if;
15102 -- Set the parent so we have a proper link for freezing etc. This is
15103 -- not a real parent pointer, since of course our parent does not own
15104 -- up to us and reference us, we are an illegitimate child of the
15105 -- original parent.
15107 Set_Parent (New_Compon, Parent (Old_Compon));
15109 -- We do not want this node marked as Comes_From_Source, since
15110 -- otherwise it would get first class status and a separate cross-
15111 -- reference line would be generated. Illegitimate children do not
15112 -- rate such recognition.
15114 Set_Comes_From_Source (New_Compon, False);
15116 -- But it is a real entity, and a birth certificate must be properly
15117 -- registered by entering it into the entity list, and setting its
15118 -- scope to the given subtype. This turns out to be useful for the
15119 -- LLVM code generator, but that scope is not used otherwise.
15121 Enter_Name (New_Compon);
15122 Set_Scope (New_Compon, Subt);
15124 return New_Compon;
15125 end Create_Component;
15127 -----------------------
15128 -- Is_Variant_Record --
15129 -----------------------
15131 function Is_Variant_Record (T : Entity_Id) return Boolean is
15132 begin
15133 return Nkind (Parent (T)) = N_Full_Type_Declaration
15134 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
15135 and then Present (Component_List (Type_Definition (Parent (T))))
15136 and then
15137 Present
15138 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
15139 end Is_Variant_Record;
15141 -- Start of processing for Create_Constrained_Components
15143 begin
15144 pragma Assert (Subt /= Base_Type (Subt));
15145 pragma Assert (Typ = Base_Type (Typ));
15147 Set_First_Entity (Subt, Empty);
15148 Set_Last_Entity (Subt, Empty);
15150 -- Check whether constraint is fully static, in which case we can
15151 -- optimize the list of components.
15153 Discr_Val := First_Elmt (Constraints);
15154 while Present (Discr_Val) loop
15155 if not Is_OK_Static_Expression (Node (Discr_Val)) then
15156 Is_Static := False;
15158 if not Compile_Time_Known_Value (Node (Discr_Val)) then
15159 Is_Compile_Time_Known := False;
15160 exit;
15161 end if;
15162 end if;
15164 Next_Elmt (Discr_Val);
15165 end loop;
15167 Set_Has_Static_Discriminants (Subt, Is_Static);
15169 Push_Scope (Subt);
15171 -- Inherit the discriminants of the parent type
15173 Add_Discriminants : declare
15174 Num_Disc : Nat;
15175 Num_Stor : Nat;
15177 begin
15178 Num_Disc := 0;
15179 Old_C := First_Discriminant (Typ);
15181 while Present (Old_C) loop
15182 Num_Disc := Num_Disc + 1;
15183 New_C := Create_Component (Old_C);
15184 Set_Is_Public (New_C, Is_Public (Subt));
15185 Next_Discriminant (Old_C);
15186 end loop;
15188 -- For an untagged derived subtype, the number of discriminants may
15189 -- be smaller than the number of inherited discriminants, because
15190 -- several of them may be renamed by a single new discriminant or
15191 -- constrained. In this case, add the hidden discriminants back into
15192 -- the subtype, because they need to be present if the optimizer of
15193 -- the GCC 4.x back-end decides to break apart assignments between
15194 -- objects using the parent view into member-wise assignments.
15196 Num_Stor := 0;
15198 if Is_Derived_Type (Typ)
15199 and then not Is_Tagged_Type (Typ)
15200 then
15201 Old_C := First_Stored_Discriminant (Typ);
15203 while Present (Old_C) loop
15204 Num_Stor := Num_Stor + 1;
15205 Next_Stored_Discriminant (Old_C);
15206 end loop;
15207 end if;
15209 if Num_Stor > Num_Disc then
15211 -- Find out multiple uses of new discriminants, and add hidden
15212 -- components for the extra renamed discriminants. We recognize
15213 -- multiple uses through the Corresponding_Discriminant of a
15214 -- new discriminant: if it constrains several old discriminants,
15215 -- this field points to the last one in the parent type. The
15216 -- stored discriminants of the derived type have the same name
15217 -- as those of the parent.
15219 declare
15220 Constr : Elmt_Id;
15221 New_Discr : Entity_Id;
15222 Old_Discr : Entity_Id;
15224 begin
15225 Constr := First_Elmt (Stored_Constraint (Typ));
15226 Old_Discr := First_Stored_Discriminant (Typ);
15227 while Present (Constr) loop
15228 if Is_Entity_Name (Node (Constr))
15229 and then Ekind (Entity (Node (Constr))) = E_Discriminant
15230 then
15231 New_Discr := Entity (Node (Constr));
15233 if Chars (Corresponding_Discriminant (New_Discr)) /=
15234 Chars (Old_Discr)
15235 then
15236 -- The new discriminant has been used to rename a
15237 -- subsequent old discriminant. Introduce a shadow
15238 -- component for the current old discriminant.
15240 New_C := Create_Component (Old_Discr);
15241 Set_Original_Record_Component (New_C, Old_Discr);
15242 end if;
15244 else
15245 -- The constraint has eliminated the old discriminant.
15246 -- Introduce a shadow component.
15248 New_C := Create_Component (Old_Discr);
15249 Set_Original_Record_Component (New_C, Old_Discr);
15250 end if;
15252 Next_Elmt (Constr);
15253 Next_Stored_Discriminant (Old_Discr);
15254 end loop;
15255 end;
15256 end if;
15257 end Add_Discriminants;
15259 if Is_Compile_Time_Known
15260 and then Is_Variant_Record (Typ)
15261 then
15262 Collect_Fixed_Components (Typ);
15263 Gather_Components
15264 (Typ,
15265 Component_List (Type_Definition (Parent (Typ))),
15266 Governed_By => Assoc_List,
15267 Into => Comp_List,
15268 Report_Errors => Errors,
15269 Allow_Compile_Time => True);
15270 pragma Assert (not Errors or else Serious_Errors_Detected > 0);
15272 Create_All_Components;
15274 -- If the subtype declaration is created for a tagged type derivation
15275 -- with constraints, we retrieve the record definition of the parent
15276 -- type to select the components of the proper variant.
15278 elsif Is_Compile_Time_Known
15279 and then Is_Tagged_Type (Typ)
15280 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
15281 and then
15282 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
15283 and then Is_Variant_Record (Parent_Type)
15284 then
15285 Collect_Fixed_Components (Typ);
15286 Gather_Components
15287 (Typ,
15288 Component_List (Type_Definition (Parent (Parent_Type))),
15289 Governed_By => Assoc_List,
15290 Into => Comp_List,
15291 Report_Errors => Errors,
15292 Allow_Compile_Time => True);
15294 -- Note: previously there was a check at this point that no errors
15295 -- were detected. As a consequence of AI05-220 there may be an error
15296 -- if an inherited discriminant that controls a variant has a non-
15297 -- static constraint.
15299 -- If the tagged derivation has a type extension, collect all the
15300 -- new relevant components therein via Gather_Components.
15302 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
15303 then
15304 Gather_Components
15305 (Typ,
15306 Component_List
15307 (Record_Extension_Part (Type_Definition (Parent (Typ)))),
15308 Governed_By => Assoc_List,
15309 Into => Comp_List,
15310 Report_Errors => Errors,
15311 Allow_Compile_Time => True,
15312 Include_Interface_Tag => True);
15313 end if;
15315 Create_All_Components;
15317 else
15318 -- If discriminants are not static, or if this is a multi-level type
15319 -- extension, we have to include all components of the parent type.
15321 Old_C := First_Component (Typ);
15322 while Present (Old_C) loop
15323 New_C := Create_Component (Old_C);
15325 Set_Etype
15326 (New_C,
15327 Constrain_Component_Type
15328 (Old_C, Subt, Decl_Node, Typ, Constraints));
15329 Set_Is_Public (New_C, Is_Public (Subt));
15331 Next_Component (Old_C);
15332 end loop;
15333 end if;
15335 End_Scope;
15336 end Create_Constrained_Components;
15338 ------------------------------------------
15339 -- Decimal_Fixed_Point_Type_Declaration --
15340 ------------------------------------------
15342 procedure Decimal_Fixed_Point_Type_Declaration
15343 (T : Entity_Id;
15344 Def : Node_Id)
15346 Loc : constant Source_Ptr := Sloc (Def);
15347 Digs_Expr : constant Node_Id := Digits_Expression (Def);
15348 Delta_Expr : constant Node_Id := Delta_Expression (Def);
15349 Max_Digits : constant Nat :=
15350 (if System_Max_Integer_Size = 128 then 38 else 18);
15351 -- Maximum number of digits that can be represented in an integer
15353 Implicit_Base : Entity_Id;
15354 Digs_Val : Uint;
15355 Delta_Val : Ureal;
15356 Scale_Val : Uint;
15357 Bound_Val : Ureal;
15359 begin
15360 Check_Restriction (No_Fixed_Point, Def);
15362 -- Create implicit base type
15364 Implicit_Base :=
15365 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
15366 Set_Etype (Implicit_Base, Implicit_Base);
15368 -- Analyze and process delta expression
15370 Analyze_And_Resolve (Delta_Expr, Universal_Real);
15372 Check_Delta_Expression (Delta_Expr);
15373 Delta_Val := Expr_Value_R (Delta_Expr);
15375 -- Check delta is power of 10, and determine scale value from it
15377 declare
15378 Val : Ureal;
15380 begin
15381 Scale_Val := Uint_0;
15382 Val := Delta_Val;
15384 if Val < Ureal_1 then
15385 while Val < Ureal_1 loop
15386 Val := Val * Ureal_10;
15387 Scale_Val := Scale_Val + 1;
15388 end loop;
15390 if Scale_Val > Max_Digits then
15391 Error_Msg_Uint_1 := UI_From_Int (Max_Digits);
15392 Error_Msg_N ("scale exceeds maximum value of ^", Def);
15393 Scale_Val := UI_From_Int (Max_Digits);
15394 end if;
15396 else
15397 while Val > Ureal_1 loop
15398 Val := Val / Ureal_10;
15399 Scale_Val := Scale_Val - 1;
15400 end loop;
15402 if Scale_Val < -Max_Digits then
15403 Error_Msg_Uint_1 := UI_From_Int (-Max_Digits);
15404 Error_Msg_N ("scale is less than minimum value of ^", Def);
15405 Scale_Val := UI_From_Int (-Max_Digits);
15406 end if;
15407 end if;
15409 if Val /= Ureal_1 then
15410 Error_Msg_N ("delta expression must be a power of 10", Def);
15411 Delta_Val := Ureal_10 ** (-Scale_Val);
15412 end if;
15413 end;
15415 -- Set delta, scale and small (small = delta for decimal type)
15417 Set_Delta_Value (Implicit_Base, Delta_Val);
15418 Set_Scale_Value (Implicit_Base, Scale_Val);
15419 Set_Small_Value (Implicit_Base, Delta_Val);
15421 -- Analyze and process digits expression
15423 Analyze_And_Resolve (Digs_Expr, Any_Integer);
15424 Check_Digits_Expression (Digs_Expr);
15425 Digs_Val := Expr_Value (Digs_Expr);
15427 if Digs_Val > Max_Digits then
15428 Error_Msg_Uint_1 := UI_From_Int (Max_Digits);
15429 Error_Msg_N ("digits value out of range, maximum is ^", Digs_Expr);
15430 Digs_Val := UI_From_Int (Max_Digits);
15431 end if;
15433 Set_Digits_Value (Implicit_Base, Digs_Val);
15434 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
15436 -- Set range of base type from digits value for now. This will be
15437 -- expanded to represent the true underlying base range by Freeze.
15439 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
15441 -- Note: We leave Esize unset for now, size will be set at freeze
15442 -- time. We have to do this for ordinary fixed-point, because the size
15443 -- depends on the specified small, and we might as well do the same for
15444 -- decimal fixed-point.
15446 pragma Assert (not Known_Esize (Implicit_Base));
15448 -- If there are bounds given in the declaration use them as the
15449 -- bounds of the first named subtype.
15451 if Present (Real_Range_Specification (Def)) then
15452 declare
15453 RRS : constant Node_Id := Real_Range_Specification (Def);
15454 Low : constant Node_Id := Low_Bound (RRS);
15455 High : constant Node_Id := High_Bound (RRS);
15456 Low_Val : Ureal;
15457 High_Val : Ureal;
15459 begin
15460 Analyze_And_Resolve (Low, Any_Real);
15461 Analyze_And_Resolve (High, Any_Real);
15462 Check_Real_Bound (Low);
15463 Check_Real_Bound (High);
15464 Low_Val := Expr_Value_R (Low);
15465 High_Val := Expr_Value_R (High);
15467 if Low_Val < (-Bound_Val) then
15468 Error_Msg_N
15469 ("range low bound too small for digits value", Low);
15470 Low_Val := -Bound_Val;
15471 end if;
15473 if High_Val > Bound_Val then
15474 Error_Msg_N
15475 ("range high bound too large for digits value", High);
15476 High_Val := Bound_Val;
15477 end if;
15479 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
15480 end;
15482 -- If no explicit range, use range that corresponds to given
15483 -- digits value. This will end up as the final range for the
15484 -- first subtype.
15486 else
15487 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
15488 end if;
15490 -- Complete entity for first subtype. The inheritance of the rep item
15491 -- chain ensures that SPARK-related pragmas are not clobbered when the
15492 -- decimal fixed point type acts as a full view of a private type.
15494 Mutate_Ekind (T, E_Decimal_Fixed_Point_Subtype);
15495 Set_Etype (T, Implicit_Base);
15496 Set_Size_Info (T, Implicit_Base);
15497 Inherit_Rep_Item_Chain (T, Implicit_Base);
15498 Set_Digits_Value (T, Digs_Val);
15499 Set_Delta_Value (T, Delta_Val);
15500 Set_Small_Value (T, Delta_Val);
15501 Set_Scale_Value (T, Scale_Val);
15502 Set_Is_Constrained (T);
15503 end Decimal_Fixed_Point_Type_Declaration;
15505 -----------------------------------
15506 -- Derive_Progenitor_Subprograms --
15507 -----------------------------------
15509 procedure Derive_Progenitor_Subprograms
15510 (Parent_Type : Entity_Id;
15511 Tagged_Type : Entity_Id)
15513 E : Entity_Id;
15514 Elmt : Elmt_Id;
15515 Iface : Entity_Id;
15516 Iface_Alias : Entity_Id;
15517 Iface_Elmt : Elmt_Id;
15518 Iface_Subp : Entity_Id;
15519 New_Subp : Entity_Id := Empty;
15520 Prim_Elmt : Elmt_Id;
15521 Subp : Entity_Id;
15522 Typ : Entity_Id;
15524 begin
15525 pragma Assert (Ada_Version >= Ada_2005
15526 and then Is_Record_Type (Tagged_Type)
15527 and then Is_Tagged_Type (Tagged_Type)
15528 and then Has_Interfaces (Tagged_Type));
15530 -- Step 1: Transfer to the full-view primitives associated with the
15531 -- partial-view that cover interface primitives. Conceptually this
15532 -- work should be done later by Process_Full_View; done here to
15533 -- simplify its implementation at later stages. It can be safely
15534 -- done here because interfaces must be visible in the partial and
15535 -- private view (RM 7.3(7.3/2)).
15537 -- Small optimization: This work is only required if the parent may
15538 -- have entities whose Alias attribute reference an interface primitive.
15539 -- Such a situation may occur if the parent is an abstract type and the
15540 -- primitive has not been yet overridden or if the parent is a generic
15541 -- formal type covering interfaces.
15543 -- If the tagged type is not abstract, it cannot have abstract
15544 -- primitives (the only entities in the list of primitives of
15545 -- non-abstract tagged types that can reference abstract primitives
15546 -- through its Alias attribute are the internal entities that have
15547 -- attribute Interface_Alias, and these entities are generated later
15548 -- by Add_Internal_Interface_Entities).
15550 if In_Private_Part (Current_Scope)
15551 and then (Is_Abstract_Type (Parent_Type)
15552 or else
15553 Is_Generic_Type (Parent_Type))
15554 then
15555 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
15556 while Present (Elmt) loop
15557 Subp := Node (Elmt);
15559 -- At this stage it is not possible to have entities in the list
15560 -- of primitives that have attribute Interface_Alias.
15562 pragma Assert (No (Interface_Alias (Subp)));
15564 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
15566 if Is_Interface (Typ) then
15567 E := Find_Primitive_Covering_Interface
15568 (Tagged_Type => Tagged_Type,
15569 Iface_Prim => Subp);
15571 if Present (E)
15572 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
15573 then
15574 Replace_Elmt (Elmt, E);
15575 Remove_Homonym (Subp);
15576 end if;
15577 end if;
15579 Next_Elmt (Elmt);
15580 end loop;
15581 end if;
15583 -- Step 2: Add primitives of progenitors that are not implemented by
15584 -- parents of Tagged_Type.
15586 if Present (Interfaces (Base_Type (Tagged_Type))) then
15587 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
15588 while Present (Iface_Elmt) loop
15589 Iface := Node (Iface_Elmt);
15591 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
15592 while Present (Prim_Elmt) loop
15593 Iface_Subp := Node (Prim_Elmt);
15594 Iface_Alias := Ultimate_Alias (Iface_Subp);
15596 -- Exclude derivation of predefined primitives except those
15597 -- that come from source, or are inherited from one that comes
15598 -- from source. Required to catch declarations of equality
15599 -- operators of interfaces. For example:
15601 -- type Iface is interface;
15602 -- function "=" (Left, Right : Iface) return Boolean;
15604 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
15605 or else Comes_From_Source (Iface_Alias)
15606 then
15607 E :=
15608 Find_Primitive_Covering_Interface
15609 (Tagged_Type => Tagged_Type,
15610 Iface_Prim => Iface_Subp);
15612 -- If not found we derive a new primitive leaving its alias
15613 -- attribute referencing the interface primitive.
15615 if No (E) then
15616 Derive_Subprogram
15617 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15619 -- Ada 2012 (AI05-0197): If the covering primitive's name
15620 -- differs from the name of the interface primitive then it
15621 -- is a private primitive inherited from a parent type. In
15622 -- such case, given that Tagged_Type covers the interface,
15623 -- the inherited private primitive becomes visible. For such
15624 -- purpose we add a new entity that renames the inherited
15625 -- private primitive.
15627 elsif Chars (E) /= Chars (Iface_Subp) then
15628 pragma Assert (Has_Suffix (E, 'P'));
15629 Derive_Subprogram
15630 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15631 Set_Alias (New_Subp, E);
15632 Set_Is_Abstract_Subprogram (New_Subp,
15633 Is_Abstract_Subprogram (E));
15635 -- Propagate to the full view interface entities associated
15636 -- with the partial view.
15638 elsif In_Private_Part (Current_Scope)
15639 and then Present (Alias (E))
15640 and then Alias (E) = Iface_Subp
15641 and then
15642 List_Containing (Parent (E)) /=
15643 Private_Declarations
15644 (Specification
15645 (Unit_Declaration_Node (Current_Scope)))
15646 then
15647 Append_Elmt (E, Primitive_Operations (Tagged_Type));
15648 end if;
15649 end if;
15651 Next_Elmt (Prim_Elmt);
15652 end loop;
15654 Next_Elmt (Iface_Elmt);
15655 end loop;
15656 end if;
15657 end Derive_Progenitor_Subprograms;
15659 -----------------------
15660 -- Derive_Subprogram --
15661 -----------------------
15663 procedure Derive_Subprogram
15664 (New_Subp : out Entity_Id;
15665 Parent_Subp : Entity_Id;
15666 Derived_Type : Entity_Id;
15667 Parent_Type : Entity_Id;
15668 Actual_Subp : Entity_Id := Empty)
15670 Formal : Entity_Id;
15671 -- Formal parameter of parent primitive operation
15673 Formal_Of_Actual : Entity_Id;
15674 -- Formal parameter of actual operation, when the derivation is to
15675 -- create a renaming for a primitive operation of an actual in an
15676 -- instantiation.
15678 New_Formal : Entity_Id;
15679 -- Formal of inherited operation
15681 Visible_Subp : Entity_Id := Parent_Subp;
15683 function Is_Private_Overriding return Boolean;
15684 -- If Subp is a private overriding of a visible operation, the inherited
15685 -- operation derives from the overridden op (even though its body is the
15686 -- overriding one) and the inherited operation is visible now. See
15687 -- sem_disp to see the full details of the handling of the overridden
15688 -- subprogram, which is removed from the list of primitive operations of
15689 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15690 -- and used to diagnose abstract operations that need overriding in the
15691 -- derived type.
15693 procedure Replace_Type (Id, New_Id : Entity_Id);
15694 -- When the type is an anonymous access type, create a new access type
15695 -- designating the derived type.
15697 procedure Set_Derived_Name;
15698 -- This procedure sets the appropriate Chars name for New_Subp. This
15699 -- is normally just a copy of the parent name. An exception arises for
15700 -- type support subprograms, where the name is changed to reflect the
15701 -- name of the derived type, e.g. if type foo is derived from type bar,
15702 -- then a procedure barDA is derived with a name fooDA.
15704 ---------------------------
15705 -- Is_Private_Overriding --
15706 ---------------------------
15708 function Is_Private_Overriding return Boolean is
15709 Prev : Entity_Id;
15711 begin
15712 -- If the parent is not a dispatching operation there is no
15713 -- need to investigate overridings
15715 if not Is_Dispatching_Operation (Parent_Subp) then
15716 return False;
15717 end if;
15719 -- The visible operation that is overridden is a homonym of the
15720 -- parent subprogram. We scan the homonym chain to find the one
15721 -- whose alias is the subprogram we are deriving.
15723 Prev := Current_Entity (Parent_Subp);
15724 while Present (Prev) loop
15725 if Ekind (Prev) = Ekind (Parent_Subp)
15726 and then Alias (Prev) = Parent_Subp
15727 and then Scope (Parent_Subp) = Scope (Prev)
15728 and then not Is_Hidden (Prev)
15729 then
15730 Visible_Subp := Prev;
15731 return True;
15732 end if;
15734 Prev := Homonym (Prev);
15735 end loop;
15737 return False;
15738 end Is_Private_Overriding;
15740 ------------------
15741 -- Replace_Type --
15742 ------------------
15744 procedure Replace_Type (Id, New_Id : Entity_Id) is
15745 Id_Type : constant Entity_Id := Etype (Id);
15746 Acc_Type : Entity_Id;
15747 Par : constant Node_Id := Parent (Derived_Type);
15749 begin
15750 -- When the type is an anonymous access type, create a new access
15751 -- type designating the derived type. This itype must be elaborated
15752 -- at the point of the derivation, not on subsequent calls that may
15753 -- be out of the proper scope for Gigi, so we insert a reference to
15754 -- it after the derivation.
15756 if Ekind (Id_Type) = E_Anonymous_Access_Type then
15757 declare
15758 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
15760 begin
15761 if Ekind (Desig_Typ) = E_Record_Type_With_Private
15762 and then Present (Full_View (Desig_Typ))
15763 and then not Is_Private_Type (Parent_Type)
15764 then
15765 Desig_Typ := Full_View (Desig_Typ);
15766 end if;
15768 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
15770 -- Ada 2005 (AI-251): Handle also derivations of abstract
15771 -- interface primitives.
15773 or else (Is_Interface (Desig_Typ)
15774 and then not Is_Class_Wide_Type (Desig_Typ))
15775 then
15776 Acc_Type := New_Copy (Id_Type);
15777 Set_Etype (Acc_Type, Acc_Type);
15778 Set_Scope (Acc_Type, New_Subp);
15780 -- Set size of anonymous access type. If we have an access
15781 -- to an unconstrained array, this is a fat pointer, so it
15782 -- is sizes at twice addtress size.
15784 if Is_Array_Type (Desig_Typ)
15785 and then not Is_Constrained (Desig_Typ)
15786 then
15787 Init_Size (Acc_Type, 2 * System_Address_Size);
15789 -- Other cases use a thin pointer
15791 else
15792 Init_Size (Acc_Type, System_Address_Size);
15793 end if;
15795 -- Set remaining characterstics of anonymous access type
15797 Reinit_Alignment (Acc_Type);
15798 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
15800 Set_Etype (New_Id, Acc_Type);
15801 Set_Scope (New_Id, New_Subp);
15803 -- Create a reference to it
15805 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
15807 else
15808 Set_Etype (New_Id, Id_Type);
15809 end if;
15810 end;
15812 -- In Ada2012, a formal may have an incomplete type but the type
15813 -- derivation that inherits the primitive follows the full view.
15815 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
15816 or else
15817 (Ekind (Id_Type) = E_Record_Type_With_Private
15818 and then Present (Full_View (Id_Type))
15819 and then
15820 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
15821 or else
15822 (Ada_Version >= Ada_2012
15823 and then Ekind (Id_Type) = E_Incomplete_Type
15824 and then Full_View (Id_Type) = Parent_Type)
15825 then
15826 -- Constraint checks on formals are generated during expansion,
15827 -- based on the signature of the original subprogram. The bounds
15828 -- of the derived type are not relevant, and thus we can use
15829 -- the base type for the formals. However, the return type may be
15830 -- used in a context that requires that the proper static bounds
15831 -- be used (a case statement, for example) and for those cases
15832 -- we must use the derived type (first subtype), not its base.
15834 -- If the derived_type_definition has no constraints, we know that
15835 -- the derived type has the same constraints as the first subtype
15836 -- of the parent, and we can also use it rather than its base,
15837 -- which can lead to more efficient code.
15839 if Etype (Id) = Parent_Type then
15840 if Is_Scalar_Type (Parent_Type)
15841 and then
15842 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
15843 then
15844 Set_Etype (New_Id, Derived_Type);
15846 elsif Nkind (Par) = N_Full_Type_Declaration
15847 and then
15848 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
15849 and then
15850 Is_Entity_Name
15851 (Subtype_Indication (Type_Definition (Par)))
15852 then
15853 Set_Etype (New_Id, Derived_Type);
15855 else
15856 Set_Etype (New_Id, Base_Type (Derived_Type));
15857 end if;
15859 else
15860 Set_Etype (New_Id, Base_Type (Derived_Type));
15861 end if;
15863 else
15864 Set_Etype (New_Id, Etype (Id));
15865 end if;
15866 end Replace_Type;
15868 ----------------------
15869 -- Set_Derived_Name --
15870 ----------------------
15872 procedure Set_Derived_Name is
15873 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
15874 begin
15875 if Nm = TSS_Null then
15876 Set_Chars (New_Subp, Chars (Parent_Subp));
15877 else
15878 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
15879 end if;
15880 end Set_Derived_Name;
15882 -- Start of processing for Derive_Subprogram
15884 begin
15885 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
15886 Mutate_Ekind (New_Subp, Ekind (Parent_Subp));
15888 -- Check whether the inherited subprogram is a private operation that
15889 -- should be inherited but not yet made visible. Such subprograms can
15890 -- become visible at a later point (e.g., the private part of a public
15891 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15892 -- following predicate is true, then this is not such a private
15893 -- operation and the subprogram simply inherits the name of the parent
15894 -- subprogram. Note the special check for the names of controlled
15895 -- operations, which are currently exempted from being inherited with
15896 -- a hidden name because they must be findable for generation of
15897 -- implicit run-time calls.
15899 if not Is_Hidden (Parent_Subp)
15900 or else Is_Internal (Parent_Subp)
15901 or else Is_Private_Overriding
15902 or else Is_Internal_Name (Chars (Parent_Subp))
15903 or else (Is_Controlled (Parent_Type)
15904 and then Chars (Parent_Subp) in Name_Adjust
15905 | Name_Finalize
15906 | Name_Initialize)
15907 then
15908 Set_Derived_Name;
15910 -- An inherited dispatching equality will be overridden by an internally
15911 -- generated one, or by an explicit one, so preserve its name and thus
15912 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15913 -- private operation it may become invisible if the full view has
15914 -- progenitors, and the dispatch table will be malformed.
15915 -- We check that the type is limited to handle the anomalous declaration
15916 -- of Limited_Controlled, which is derived from a non-limited type, and
15917 -- which is handled specially elsewhere as well.
15919 elsif Chars (Parent_Subp) = Name_Op_Eq
15920 and then Is_Dispatching_Operation (Parent_Subp)
15921 and then Etype (Parent_Subp) = Standard_Boolean
15922 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
15923 and then
15924 Etype (First_Formal (Parent_Subp)) =
15925 Etype (Next_Formal (First_Formal (Parent_Subp)))
15926 then
15927 Set_Derived_Name;
15929 -- If parent is hidden, this can be a regular derivation if the
15930 -- parent is immediately visible in a non-instantiating context,
15931 -- or if we are in the private part of an instance. This test
15932 -- should still be refined ???
15934 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15935 -- operation as a non-visible operation in cases where the parent
15936 -- subprogram might not be visible now, but was visible within the
15937 -- original generic, so it would be wrong to make the inherited
15938 -- subprogram non-visible now. (Not clear if this test is fully
15939 -- correct; are there any cases where we should declare the inherited
15940 -- operation as not visible to avoid it being overridden, e.g., when
15941 -- the parent type is a generic actual with private primitives ???)
15943 -- (they should be treated the same as other private inherited
15944 -- subprograms, but it's not clear how to do this cleanly). ???
15946 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15947 and then Is_Immediately_Visible (Parent_Subp)
15948 and then not In_Instance)
15949 or else In_Instance_Not_Visible
15950 then
15951 Set_Derived_Name;
15953 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15954 -- overrides an interface primitive because interface primitives
15955 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15957 elsif Ada_Version >= Ada_2005
15958 and then Is_Dispatching_Operation (Parent_Subp)
15959 and then Present (Covered_Interface_Op (Parent_Subp))
15960 then
15961 Set_Derived_Name;
15963 -- Otherwise, the type is inheriting a private operation, so enter it
15964 -- with a special name so it can't be overridden. See also below, where
15965 -- we check for this case, and if so avoid setting Requires_Overriding.
15967 else
15968 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
15969 end if;
15971 Set_Parent (New_Subp, Parent (Derived_Type));
15973 if Present (Actual_Subp) then
15974 Replace_Type (Actual_Subp, New_Subp);
15975 else
15976 Replace_Type (Parent_Subp, New_Subp);
15977 end if;
15979 Conditional_Delay (New_Subp, Parent_Subp);
15981 -- If we are creating a renaming for a primitive operation of an
15982 -- actual of a generic derived type, we must examine the signature
15983 -- of the actual primitive, not that of the generic formal, which for
15984 -- example may be an interface. However the name and initial value
15985 -- of the inherited operation are those of the formal primitive.
15987 Formal := First_Formal (Parent_Subp);
15989 if Present (Actual_Subp) then
15990 Formal_Of_Actual := First_Formal (Actual_Subp);
15991 else
15992 Formal_Of_Actual := Empty;
15993 end if;
15995 while Present (Formal) loop
15996 New_Formal := New_Copy (Formal);
15998 -- Extra formals are not inherited from a limited interface parent
15999 -- since limitedness is not inherited in such case (AI-419) and this
16000 -- affects the extra formals.
16002 if Is_Limited_Interface (Parent_Type) then
16003 Set_Extra_Formal (New_Formal, Empty);
16004 Set_Extra_Accessibility (New_Formal, Empty);
16005 end if;
16007 -- Normally we do not go copying parents, but in the case of
16008 -- formals, we need to link up to the declaration (which is the
16009 -- parameter specification), and it is fine to link up to the
16010 -- original formal's parameter specification in this case.
16012 Set_Parent (New_Formal, Parent (Formal));
16013 Append_Entity (New_Formal, New_Subp);
16015 if Present (Formal_Of_Actual) then
16016 Replace_Type (Formal_Of_Actual, New_Formal);
16017 Next_Formal (Formal_Of_Actual);
16018 else
16019 Replace_Type (Formal, New_Formal);
16020 end if;
16022 Next_Formal (Formal);
16023 end loop;
16025 -- Extra formals are shared between the parent subprogram and the
16026 -- derived subprogram (implicit in the above copy of formals), unless
16027 -- the parent type is a limited interface type; hence we must inherit
16028 -- also the reference to the first extra formal. When the parent type is
16029 -- an interface the extra formals will be added when the subprogram is
16030 -- frozen (see Freeze.Freeze_Subprogram).
16032 if not Is_Limited_Interface (Parent_Type) then
16033 Set_Extra_Formals (New_Subp, Extra_Formals (Parent_Subp));
16035 if Ekind (New_Subp) = E_Function then
16036 Set_Extra_Accessibility_Of_Result (New_Subp,
16037 Extra_Accessibility_Of_Result (Parent_Subp));
16038 end if;
16039 end if;
16041 -- If this derivation corresponds to a tagged generic actual, then
16042 -- primitive operations rename those of the actual. Otherwise the
16043 -- primitive operations rename those of the parent type, If the parent
16044 -- renames an intrinsic operator, so does the new subprogram. We except
16045 -- concatenation, which is always properly typed, and does not get
16046 -- expanded as other intrinsic operations.
16048 if No (Actual_Subp) then
16049 if Is_Intrinsic_Subprogram (Parent_Subp) then
16050 Set_Is_Intrinsic_Subprogram (New_Subp);
16052 if Present (Alias (Parent_Subp))
16053 and then Chars (Parent_Subp) /= Name_Op_Concat
16054 then
16055 Set_Alias (New_Subp, Alias (Parent_Subp));
16056 else
16057 Set_Alias (New_Subp, Parent_Subp);
16058 end if;
16060 else
16061 Set_Alias (New_Subp, Parent_Subp);
16062 end if;
16064 else
16065 Set_Alias (New_Subp, Actual_Subp);
16066 end if;
16068 -- Derived subprograms of a tagged type must inherit the convention
16069 -- of the parent subprogram (a requirement of AI-117). Derived
16070 -- subprograms of untagged types simply get convention Ada by default.
16072 -- If the derived type is a tagged generic formal type with unknown
16073 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
16075 -- However, if the type is derived from a generic formal, the further
16076 -- inherited subprogram has the convention of the non-generic ancestor.
16077 -- Otherwise there would be no way to override the operation.
16078 -- (This is subject to forthcoming ARG discussions).
16080 if Is_Tagged_Type (Derived_Type) then
16081 if Is_Generic_Type (Derived_Type)
16082 and then Has_Unknown_Discriminants (Derived_Type)
16083 then
16084 Set_Convention (New_Subp, Convention_Intrinsic);
16086 else
16087 if Is_Generic_Type (Parent_Type)
16088 and then Has_Unknown_Discriminants (Parent_Type)
16089 then
16090 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
16091 else
16092 Set_Convention (New_Subp, Convention (Parent_Subp));
16093 end if;
16094 end if;
16095 end if;
16097 -- Predefined controlled operations retain their name even if the parent
16098 -- is hidden (see above), but they are not primitive operations if the
16099 -- ancestor is not visible, for example if the parent is a private
16100 -- extension completed with a controlled extension. Note that a full
16101 -- type that is controlled can break privacy: the flag Is_Controlled is
16102 -- set on both views of the type.
16104 if Is_Controlled (Parent_Type)
16105 and then Chars (Parent_Subp) in Name_Initialize
16106 | Name_Adjust
16107 | Name_Finalize
16108 and then Is_Hidden (Parent_Subp)
16109 and then not Is_Visibly_Controlled (Parent_Type)
16110 then
16111 Set_Is_Hidden (New_Subp);
16112 end if;
16114 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
16115 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
16117 if Ekind (Parent_Subp) = E_Procedure then
16118 Set_Is_Valued_Procedure
16119 (New_Subp, Is_Valued_Procedure (Parent_Subp));
16120 else
16121 Set_Has_Controlling_Result
16122 (New_Subp, Has_Controlling_Result (Parent_Subp));
16123 end if;
16125 -- No_Return must be inherited properly. If this is overridden in the
16126 -- case of a dispatching operation, then the check is made later in
16127 -- Check_Abstract_Overriding that the overriding operation is also
16128 -- No_Return (no such check is required for the nondispatching case).
16130 Set_No_Return (New_Subp, No_Return (Parent_Subp));
16132 -- If the parent subprogram is marked as Ghost, then so is the derived
16133 -- subprogram. The ghost policy for the derived subprogram is set from
16134 -- the effective ghost policy at the point of derived type declaration.
16136 if Is_Ghost_Entity (Parent_Subp) then
16137 Set_Is_Ghost_Entity (New_Subp);
16138 end if;
16140 -- A derived function with a controlling result is abstract. If the
16141 -- Derived_Type is a nonabstract formal generic derived type, then
16142 -- inherited operations are not abstract: the required check is done at
16143 -- instantiation time. If the derivation is for a generic actual, the
16144 -- function is not abstract unless the actual is.
16146 if Is_Generic_Type (Derived_Type)
16147 and then not Is_Abstract_Type (Derived_Type)
16148 then
16149 null;
16151 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
16152 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2). Note
16153 -- that functions with controlling access results of record extensions
16154 -- with a null extension part require overriding (AI95-00391/06).
16156 -- Ada 2022 (AI12-0042): Similarly, set those properties for
16157 -- implementing the rule of RM 7.3.2(6.1/4).
16159 -- A subprogram subject to pragma Extensions_Visible with value False
16160 -- requires overriding if the subprogram has at least one controlling
16161 -- OUT parameter (SPARK RM 6.1.7(6)).
16163 elsif Ada_Version >= Ada_2005
16164 and then (Is_Abstract_Subprogram (Alias (New_Subp))
16165 or else (Is_Tagged_Type (Derived_Type)
16166 and then Etype (New_Subp) = Derived_Type
16167 and then not Is_Null_Extension (Derived_Type))
16168 or else (Is_Tagged_Type (Derived_Type)
16169 and then Ekind (Etype (New_Subp)) =
16170 E_Anonymous_Access_Type
16171 and then Designated_Type (Etype (New_Subp)) =
16172 Derived_Type)
16173 or else (Comes_From_Source (Alias (New_Subp))
16174 and then Is_EVF_Procedure (Alias (New_Subp)))
16176 -- AI12-0042: Set Requires_Overriding when a type extension
16177 -- inherits a private operation that is visible at the
16178 -- point of extension (Has_Private_Ancestor is False) from
16179 -- an ancestor that has Type_Invariant'Class, and when the
16180 -- type extension is in a visible part (the latter as
16181 -- clarified by AI12-0382).
16183 or else
16184 (not Has_Private_Ancestor (Derived_Type)
16185 and then Has_Invariants (Parent_Type)
16186 and then
16187 Present (Get_Pragma (Parent_Type, Pragma_Invariant))
16188 and then
16189 Class_Present
16190 (Get_Pragma (Parent_Type, Pragma_Invariant))
16191 and then Is_Private_Primitive (Parent_Subp)
16192 and then In_Visible_Part (Scope (Derived_Type))))
16194 and then No (Actual_Subp)
16195 then
16196 if not Is_Tagged_Type (Derived_Type)
16197 or else Is_Abstract_Type (Derived_Type)
16198 or else Is_Abstract_Subprogram (Alias (New_Subp))
16199 then
16200 Set_Is_Abstract_Subprogram (New_Subp);
16202 -- If the Chars of the new subprogram is different from that of the
16203 -- parent's one, it means that we entered it with a special name so
16204 -- it can't be overridden (see above). In that case we had better not
16205 -- *require* it to be overridden. This is the case where the parent
16206 -- type inherited the operation privately, so there's no danger of
16207 -- dangling dispatching.
16209 elsif Chars (New_Subp) = Chars (Alias (New_Subp)) then
16210 Set_Requires_Overriding (New_Subp);
16211 end if;
16213 elsif Ada_Version < Ada_2005
16214 and then (Is_Abstract_Subprogram (Alias (New_Subp))
16215 or else (Is_Tagged_Type (Derived_Type)
16216 and then Etype (New_Subp) = Derived_Type
16217 and then No (Actual_Subp)))
16218 then
16219 Set_Is_Abstract_Subprogram (New_Subp);
16221 -- AI05-0097 : an inherited operation that dispatches on result is
16222 -- abstract if the derived type is abstract, even if the parent type
16223 -- is concrete and the derived type is a null extension.
16225 elsif Has_Controlling_Result (Alias (New_Subp))
16226 and then Is_Abstract_Type (Etype (New_Subp))
16227 then
16228 Set_Is_Abstract_Subprogram (New_Subp);
16230 -- Finally, if the parent type is abstract we must verify that all
16231 -- inherited operations are either non-abstract or overridden, or that
16232 -- the derived type itself is abstract (this check is performed at the
16233 -- end of a package declaration, in Check_Abstract_Overriding). A
16234 -- private overriding in the parent type will not be visible in the
16235 -- derivation if we are not in an inner package or in a child unit of
16236 -- the parent type, in which case the abstractness of the inherited
16237 -- operation is carried to the new subprogram.
16239 elsif Is_Abstract_Type (Parent_Type)
16240 and then not In_Open_Scopes (Scope (Parent_Type))
16241 and then Is_Private_Overriding
16242 and then Is_Abstract_Subprogram (Visible_Subp)
16243 then
16244 if No (Actual_Subp) then
16245 Set_Alias (New_Subp, Visible_Subp);
16246 Set_Is_Abstract_Subprogram (New_Subp, True);
16248 else
16249 -- If this is a derivation for an instance of a formal derived
16250 -- type, abstractness comes from the primitive operation of the
16251 -- actual, not from the operation inherited from the ancestor.
16253 Set_Is_Abstract_Subprogram
16254 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
16255 end if;
16256 end if;
16258 New_Overloaded_Entity (New_Subp, Derived_Type);
16260 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
16261 -- preconditions and the derived type is abstract, the derived operation
16262 -- is abstract as well if parent subprogram is not abstract or null.
16264 if Is_Abstract_Type (Derived_Type)
16265 and then Has_Non_Trivial_Precondition (Parent_Subp)
16266 and then Present (Interfaces (Derived_Type))
16267 then
16269 -- Add useful attributes of subprogram before the freeze point,
16270 -- in case freezing is delayed or there are previous errors.
16272 Set_Is_Dispatching_Operation (New_Subp);
16274 declare
16275 Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp);
16277 begin
16278 if Present (Iface_Prim)
16279 and then Has_Non_Trivial_Precondition (Iface_Prim)
16280 then
16281 Set_Is_Abstract_Subprogram (New_Subp);
16282 end if;
16283 end;
16284 end if;
16286 -- Check for case of a derived subprogram for the instantiation of a
16287 -- formal derived tagged type, if so mark the subprogram as dispatching
16288 -- and inherit the dispatching attributes of the actual subprogram. The
16289 -- derived subprogram is effectively renaming of the actual subprogram,
16290 -- so it needs to have the same attributes as the actual.
16292 if Present (Actual_Subp)
16293 and then Is_Dispatching_Operation (Actual_Subp)
16294 then
16295 Set_Is_Dispatching_Operation (New_Subp);
16297 if Present (DTC_Entity (Actual_Subp)) then
16298 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
16299 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
16300 end if;
16301 end if;
16303 -- Indicate that a derived subprogram does not require a body and that
16304 -- it does not require processing of default expressions.
16306 Set_Has_Completion (New_Subp);
16307 Set_Default_Expressions_Processed (New_Subp);
16309 if Ekind (New_Subp) = E_Function then
16310 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
16311 end if;
16313 -- Ada 2022 (AI12-0279): If a Yield aspect is specified True for a
16314 -- primitive subprogram S of a type T, then the aspect is inherited
16315 -- by the corresponding primitive subprogram of each descendant of T.
16317 if Is_Tagged_Type (Derived_Type)
16318 and then Is_Dispatching_Operation (New_Subp)
16319 and then Has_Yield_Aspect (Alias (New_Subp))
16320 then
16321 Set_Has_Yield_Aspect (New_Subp, Has_Yield_Aspect (Alias (New_Subp)));
16322 end if;
16324 Set_Is_Ada_2022_Only (New_Subp, Is_Ada_2022_Only (Parent_Subp));
16325 end Derive_Subprogram;
16327 ------------------------
16328 -- Derive_Subprograms --
16329 ------------------------
16331 procedure Derive_Subprograms
16332 (Parent_Type : Entity_Id;
16333 Derived_Type : Entity_Id;
16334 Generic_Actual : Entity_Id := Empty)
16336 Op_List : constant Elist_Id :=
16337 Collect_Primitive_Operations (Parent_Type);
16339 function Check_Derived_Type return Boolean;
16340 -- Check that all the entities derived from Parent_Type are found in
16341 -- the list of primitives of Derived_Type exactly in the same order.
16343 procedure Derive_Interface_Subprogram
16344 (New_Subp : out Entity_Id;
16345 Subp : Entity_Id;
16346 Actual_Subp : Entity_Id);
16347 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
16348 -- (which is an interface primitive). If Generic_Actual is present then
16349 -- Actual_Subp is the actual subprogram corresponding with the generic
16350 -- subprogram Subp.
16352 ------------------------
16353 -- Check_Derived_Type --
16354 ------------------------
16356 function Check_Derived_Type return Boolean is
16357 E : Entity_Id;
16358 Elmt : Elmt_Id;
16359 List : Elist_Id;
16360 New_Subp : Entity_Id;
16361 Op_Elmt : Elmt_Id;
16362 Subp : Entity_Id;
16364 begin
16365 -- Traverse list of entities in the current scope searching for
16366 -- an incomplete type whose full-view is derived type.
16368 E := First_Entity (Scope (Derived_Type));
16369 while Present (E) and then E /= Derived_Type loop
16370 if Ekind (E) = E_Incomplete_Type
16371 and then Present (Full_View (E))
16372 and then Full_View (E) = Derived_Type
16373 then
16374 -- Disable this test if Derived_Type completes an incomplete
16375 -- type because in such case more primitives can be added
16376 -- later to the list of primitives of Derived_Type by routine
16377 -- Process_Incomplete_Dependents
16379 return True;
16380 end if;
16382 Next_Entity (E);
16383 end loop;
16385 List := Collect_Primitive_Operations (Derived_Type);
16386 Elmt := First_Elmt (List);
16388 Op_Elmt := First_Elmt (Op_List);
16389 while Present (Op_Elmt) loop
16390 Subp := Node (Op_Elmt);
16391 New_Subp := Node (Elmt);
16393 -- At this early stage Derived_Type has no entities with attribute
16394 -- Interface_Alias. In addition, such primitives are always
16395 -- located at the end of the list of primitives of Parent_Type.
16396 -- Therefore, if found we can safely stop processing pending
16397 -- entities.
16399 exit when Present (Interface_Alias (Subp));
16401 -- Handle hidden entities
16403 if not Is_Predefined_Dispatching_Operation (Subp)
16404 and then Is_Hidden (Subp)
16405 then
16406 if Present (New_Subp)
16407 and then Primitive_Names_Match (Subp, New_Subp)
16408 then
16409 Next_Elmt (Elmt);
16410 end if;
16412 else
16413 if not Present (New_Subp)
16414 or else Ekind (Subp) /= Ekind (New_Subp)
16415 or else not Primitive_Names_Match (Subp, New_Subp)
16416 then
16417 return False;
16418 end if;
16420 Next_Elmt (Elmt);
16421 end if;
16423 Next_Elmt (Op_Elmt);
16424 end loop;
16426 return True;
16427 end Check_Derived_Type;
16429 ---------------------------------
16430 -- Derive_Interface_Subprogram --
16431 ---------------------------------
16433 procedure Derive_Interface_Subprogram
16434 (New_Subp : out Entity_Id;
16435 Subp : Entity_Id;
16436 Actual_Subp : Entity_Id)
16438 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
16439 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
16441 begin
16442 pragma Assert (Is_Interface (Iface_Type));
16444 Derive_Subprogram
16445 (New_Subp => New_Subp,
16446 Parent_Subp => Iface_Subp,
16447 Derived_Type => Derived_Type,
16448 Parent_Type => Iface_Type,
16449 Actual_Subp => Actual_Subp);
16451 -- Given that this new interface entity corresponds with a primitive
16452 -- of the parent that was not overridden we must leave it associated
16453 -- with its parent primitive to ensure that it will share the same
16454 -- dispatch table slot when overridden. We must set the Alias to Subp
16455 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
16456 -- (in case we inherited Subp from Iface_Type via a nonabstract
16457 -- generic formal type).
16459 if No (Actual_Subp) then
16460 Set_Alias (New_Subp, Subp);
16462 declare
16463 T : Entity_Id := Find_Dispatching_Type (Subp);
16464 begin
16465 while Etype (T) /= T loop
16466 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
16467 Set_Is_Abstract_Subprogram (New_Subp, False);
16468 exit;
16469 end if;
16471 T := Etype (T);
16472 end loop;
16473 end;
16475 -- For instantiations this is not needed since the previous call to
16476 -- Derive_Subprogram leaves the entity well decorated.
16478 else
16479 pragma Assert (Alias (New_Subp) = Actual_Subp);
16480 null;
16481 end if;
16482 end Derive_Interface_Subprogram;
16484 -- Local variables
16486 Alias_Subp : Entity_Id;
16487 Act_List : Elist_Id;
16488 Act_Elmt : Elmt_Id;
16489 Act_Subp : Entity_Id := Empty;
16490 Elmt : Elmt_Id;
16491 Need_Search : Boolean := False;
16492 New_Subp : Entity_Id := Empty;
16493 Parent_Base : Entity_Id;
16494 Subp : Entity_Id;
16496 -- Start of processing for Derive_Subprograms
16498 begin
16499 if Ekind (Parent_Type) = E_Record_Type_With_Private
16500 and then Has_Discriminants (Parent_Type)
16501 and then Present (Full_View (Parent_Type))
16502 then
16503 Parent_Base := Full_View (Parent_Type);
16504 else
16505 Parent_Base := Parent_Type;
16506 end if;
16508 if Present (Generic_Actual) then
16509 Act_List := Collect_Primitive_Operations (Generic_Actual);
16510 Act_Elmt := First_Elmt (Act_List);
16511 else
16512 Act_List := No_Elist;
16513 Act_Elmt := No_Elmt;
16514 end if;
16516 -- Derive primitives inherited from the parent. Note that if the generic
16517 -- actual is present, this is not really a type derivation, it is a
16518 -- completion within an instance.
16520 -- Case 1: Derived_Type does not implement interfaces
16522 if not Is_Tagged_Type (Derived_Type)
16523 or else (not Has_Interfaces (Derived_Type)
16524 and then not (Present (Generic_Actual)
16525 and then Has_Interfaces (Generic_Actual)))
16526 then
16527 Elmt := First_Elmt (Op_List);
16528 while Present (Elmt) loop
16529 Subp := Node (Elmt);
16531 -- Literals are derived earlier in the process of building the
16532 -- derived type, and are skipped here.
16534 if Ekind (Subp) = E_Enumeration_Literal then
16535 null;
16537 -- The actual is a direct descendant and the common primitive
16538 -- operations appear in the same order.
16540 -- If the generic parent type is present, the derived type is an
16541 -- instance of a formal derived type, and within the instance its
16542 -- operations are those of the actual. We derive from the formal
16543 -- type but make the inherited operations aliases of the
16544 -- corresponding operations of the actual.
16546 else
16547 pragma Assert (No (Node (Act_Elmt))
16548 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
16549 and then
16550 Type_Conformant
16551 (Subp, Node (Act_Elmt),
16552 Skip_Controlling_Formals => True)));
16554 Derive_Subprogram
16555 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
16557 if Present (Act_Elmt) then
16558 Next_Elmt (Act_Elmt);
16559 end if;
16560 end if;
16562 Next_Elmt (Elmt);
16563 end loop;
16565 -- Case 2: Derived_Type implements interfaces
16567 else
16568 -- If the parent type has no predefined primitives we remove
16569 -- predefined primitives from the list of primitives of generic
16570 -- actual to simplify the complexity of this algorithm.
16572 if Present (Generic_Actual) then
16573 declare
16574 Has_Predefined_Primitives : Boolean := False;
16576 begin
16577 -- Check if the parent type has predefined primitives
16579 Elmt := First_Elmt (Op_List);
16580 while Present (Elmt) loop
16581 Subp := Node (Elmt);
16583 if Is_Predefined_Dispatching_Operation (Subp)
16584 and then not Comes_From_Source (Ultimate_Alias (Subp))
16585 then
16586 Has_Predefined_Primitives := True;
16587 exit;
16588 end if;
16590 Next_Elmt (Elmt);
16591 end loop;
16593 -- Remove predefined primitives of Generic_Actual. We must use
16594 -- an auxiliary list because in case of tagged types the value
16595 -- returned by Collect_Primitive_Operations is the value stored
16596 -- in its Primitive_Operations attribute (and we don't want to
16597 -- modify its current contents).
16599 if not Has_Predefined_Primitives then
16600 declare
16601 Aux_List : constant Elist_Id := New_Elmt_List;
16603 begin
16604 Elmt := First_Elmt (Act_List);
16605 while Present (Elmt) loop
16606 Subp := Node (Elmt);
16608 if not Is_Predefined_Dispatching_Operation (Subp)
16609 or else Comes_From_Source (Subp)
16610 then
16611 Append_Elmt (Subp, Aux_List);
16612 end if;
16614 Next_Elmt (Elmt);
16615 end loop;
16617 Act_List := Aux_List;
16618 end;
16619 end if;
16621 Act_Elmt := First_Elmt (Act_List);
16622 Act_Subp := Node (Act_Elmt);
16623 end;
16624 end if;
16626 -- Stage 1: If the generic actual is not present we derive the
16627 -- primitives inherited from the parent type. If the generic parent
16628 -- type is present, the derived type is an instance of a formal
16629 -- derived type, and within the instance its operations are those of
16630 -- the actual. We derive from the formal type but make the inherited
16631 -- operations aliases of the corresponding operations of the actual.
16633 Elmt := First_Elmt (Op_List);
16634 while Present (Elmt) loop
16635 Subp := Node (Elmt);
16636 Alias_Subp := Ultimate_Alias (Subp);
16638 -- Do not derive internal entities of the parent that link
16639 -- interface primitives with their covering primitive. These
16640 -- entities will be added to this type when frozen.
16642 if Present (Interface_Alias (Subp)) then
16643 goto Continue;
16644 end if;
16646 -- If the generic actual is present find the corresponding
16647 -- operation in the generic actual. If the parent type is a
16648 -- direct ancestor of the derived type then, even if it is an
16649 -- interface, the operations are inherited from the primary
16650 -- dispatch table and are in the proper order. If we detect here
16651 -- that primitives are not in the same order we traverse the list
16652 -- of primitive operations of the actual to find the one that
16653 -- implements the interface primitive.
16655 if Need_Search
16656 or else
16657 (Present (Generic_Actual)
16658 and then Present (Act_Subp)
16659 and then not
16660 (Primitive_Names_Match (Subp, Act_Subp)
16661 and then
16662 Type_Conformant (Subp, Act_Subp,
16663 Skip_Controlling_Formals => True)))
16664 then
16665 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
16666 Use_Full_View => True));
16668 -- Remember that we need searching for all pending primitives
16670 Need_Search := True;
16672 -- Handle entities associated with interface primitives
16674 if Present (Alias_Subp)
16675 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16676 and then not Is_Predefined_Dispatching_Operation (Subp)
16677 then
16678 -- Search for the primitive in the homonym chain
16680 Act_Subp :=
16681 Find_Primitive_Covering_Interface
16682 (Tagged_Type => Generic_Actual,
16683 Iface_Prim => Alias_Subp);
16685 -- Previous search may not locate primitives covering
16686 -- interfaces defined in generics units or instantiations.
16687 -- (it fails if the covering primitive has formals whose
16688 -- type is also defined in generics or instantiations).
16689 -- In such case we search in the list of primitives of the
16690 -- generic actual for the internal entity that links the
16691 -- interface primitive and the covering primitive.
16693 if No (Act_Subp)
16694 and then Is_Generic_Type (Parent_Type)
16695 then
16696 -- This code has been designed to handle only generic
16697 -- formals that implement interfaces that are defined
16698 -- in a generic unit or instantiation. If this code is
16699 -- needed for other cases we must review it because
16700 -- (given that it relies on Original_Location to locate
16701 -- the primitive of Generic_Actual that covers the
16702 -- interface) it could leave linked through attribute
16703 -- Alias entities of unrelated instantiations).
16705 pragma Assert
16706 (Is_Generic_Unit
16707 (Scope (Find_Dispatching_Type (Alias_Subp)))
16708 or else
16709 Instantiation_Depth
16710 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
16712 declare
16713 Iface_Prim_Loc : constant Source_Ptr :=
16714 Original_Location (Sloc (Alias_Subp));
16716 Elmt : Elmt_Id;
16717 Prim : Entity_Id;
16719 begin
16720 Elmt :=
16721 First_Elmt (Primitive_Operations (Generic_Actual));
16723 Search : while Present (Elmt) loop
16724 Prim := Node (Elmt);
16726 if Present (Interface_Alias (Prim))
16727 and then Original_Location
16728 (Sloc (Interface_Alias (Prim))) =
16729 Iface_Prim_Loc
16730 then
16731 Act_Subp := Alias (Prim);
16732 exit Search;
16733 end if;
16735 Next_Elmt (Elmt);
16736 end loop Search;
16737 end;
16738 end if;
16740 pragma Assert (Present (Act_Subp)
16741 or else Is_Abstract_Type (Generic_Actual)
16742 or else Serious_Errors_Detected > 0);
16744 -- Handle predefined primitives plus the rest of user-defined
16745 -- primitives
16747 else
16748 Act_Elmt := First_Elmt (Act_List);
16749 while Present (Act_Elmt) loop
16750 Act_Subp := Node (Act_Elmt);
16752 exit when Primitive_Names_Match (Subp, Act_Subp)
16753 and then Type_Conformant
16754 (Subp, Act_Subp,
16755 Skip_Controlling_Formals => True)
16756 and then No (Interface_Alias (Act_Subp));
16758 Next_Elmt (Act_Elmt);
16759 end loop;
16761 if No (Act_Elmt) then
16762 Act_Subp := Empty;
16763 end if;
16764 end if;
16765 end if;
16767 -- Case 1: If the parent is a limited interface then it has the
16768 -- predefined primitives of synchronized interfaces. However, the
16769 -- actual type may be a non-limited type and hence it does not
16770 -- have such primitives.
16772 if Present (Generic_Actual)
16773 and then not Present (Act_Subp)
16774 and then Is_Limited_Interface (Parent_Base)
16775 and then Is_Predefined_Interface_Primitive (Subp)
16776 then
16777 null;
16779 -- Case 2: Inherit entities associated with interfaces that were
16780 -- not covered by the parent type. We exclude here null interface
16781 -- primitives because they do not need special management.
16783 -- We also exclude interface operations that are renamings. If the
16784 -- subprogram is an explicit renaming of an interface primitive,
16785 -- it is a regular primitive operation, and the presence of its
16786 -- alias is not relevant: it has to be derived like any other
16787 -- primitive.
16789 elsif Present (Alias (Subp))
16790 and then Nkind (Unit_Declaration_Node (Subp)) /=
16791 N_Subprogram_Renaming_Declaration
16792 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16793 and then not
16794 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
16795 and then Null_Present (Parent (Alias_Subp)))
16796 then
16797 -- If this is an abstract private type then we transfer the
16798 -- derivation of the interface primitive from the partial view
16799 -- to the full view. This is safe because all the interfaces
16800 -- must be visible in the partial view. Done to avoid adding
16801 -- a new interface derivation to the private part of the
16802 -- enclosing package; otherwise this new derivation would be
16803 -- decorated as hidden when the analysis of the enclosing
16804 -- package completes.
16806 if Is_Abstract_Type (Derived_Type)
16807 and then In_Private_Part (Current_Scope)
16808 and then Has_Private_Declaration (Derived_Type)
16809 then
16810 declare
16811 Partial_View : Entity_Id;
16812 Elmt : Elmt_Id;
16813 Ent : Entity_Id;
16815 begin
16816 Partial_View := First_Entity (Current_Scope);
16817 loop
16818 exit when No (Partial_View)
16819 or else (Has_Private_Declaration (Partial_View)
16820 and then
16821 Full_View (Partial_View) = Derived_Type);
16823 Next_Entity (Partial_View);
16824 end loop;
16826 -- If the partial view was not found then the source code
16827 -- has errors and the derivation is not needed.
16829 if Present (Partial_View) then
16830 Elmt :=
16831 First_Elmt (Primitive_Operations (Partial_View));
16832 while Present (Elmt) loop
16833 Ent := Node (Elmt);
16835 if Present (Alias (Ent))
16836 and then Ultimate_Alias (Ent) = Alias (Subp)
16837 then
16838 Append_Elmt
16839 (Ent, Primitive_Operations (Derived_Type));
16840 exit;
16841 end if;
16843 Next_Elmt (Elmt);
16844 end loop;
16846 -- If the interface primitive was not found in the
16847 -- partial view then this interface primitive was
16848 -- overridden. We add a derivation to activate in
16849 -- Derive_Progenitor_Subprograms the machinery to
16850 -- search for it.
16852 if No (Elmt) then
16853 Derive_Interface_Subprogram
16854 (New_Subp => New_Subp,
16855 Subp => Subp,
16856 Actual_Subp => Act_Subp);
16857 end if;
16858 end if;
16859 end;
16860 else
16861 Derive_Interface_Subprogram
16862 (New_Subp => New_Subp,
16863 Subp => Subp,
16864 Actual_Subp => Act_Subp);
16865 end if;
16867 -- Case 3: Common derivation
16869 else
16870 Derive_Subprogram
16871 (New_Subp => New_Subp,
16872 Parent_Subp => Subp,
16873 Derived_Type => Derived_Type,
16874 Parent_Type => Parent_Base,
16875 Actual_Subp => Act_Subp);
16876 end if;
16878 -- No need to update Act_Elm if we must search for the
16879 -- corresponding operation in the generic actual
16881 if not Need_Search
16882 and then Present (Act_Elmt)
16883 then
16884 Next_Elmt (Act_Elmt);
16885 Act_Subp := Node (Act_Elmt);
16886 end if;
16888 <<Continue>>
16889 Next_Elmt (Elmt);
16890 end loop;
16892 -- Inherit additional operations from progenitors. If the derived
16893 -- type is a generic actual, there are not new primitive operations
16894 -- for the type because it has those of the actual, and therefore
16895 -- nothing needs to be done. The renamings generated above are not
16896 -- primitive operations, and their purpose is simply to make the
16897 -- proper operations visible within an instantiation.
16899 if No (Generic_Actual) then
16900 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
16901 end if;
16902 end if;
16904 -- Final check: Direct descendants must have their primitives in the
16905 -- same order. We exclude from this test untagged types and instances
16906 -- of formal derived types. We skip this test if we have already
16907 -- reported serious errors in the sources.
16909 pragma Assert (not Is_Tagged_Type (Derived_Type)
16910 or else Present (Generic_Actual)
16911 or else Serious_Errors_Detected > 0
16912 or else Check_Derived_Type);
16913 end Derive_Subprograms;
16915 --------------------------------
16916 -- Derived_Standard_Character --
16917 --------------------------------
16919 procedure Derived_Standard_Character
16920 (N : Node_Id;
16921 Parent_Type : Entity_Id;
16922 Derived_Type : Entity_Id)
16924 Loc : constant Source_Ptr := Sloc (N);
16925 Def : constant Node_Id := Type_Definition (N);
16926 Indic : constant Node_Id := Subtype_Indication (Def);
16927 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
16928 Implicit_Base : constant Entity_Id :=
16929 Create_Itype
16930 (E_Enumeration_Type, N, Derived_Type, 'B');
16932 Lo : Node_Id;
16933 Hi : Node_Id;
16935 begin
16936 Discard_Node (Process_Subtype (Indic, N));
16938 Set_Etype (Implicit_Base, Parent_Base);
16939 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
16940 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
16942 Set_Is_Character_Type (Implicit_Base, True);
16943 Set_Has_Delayed_Freeze (Implicit_Base);
16945 -- The bounds of the implicit base are the bounds of the parent base.
16946 -- Note that their type is the parent base.
16948 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
16949 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
16951 Set_Scalar_Range (Implicit_Base,
16952 Make_Range (Loc,
16953 Low_Bound => Lo,
16954 High_Bound => Hi));
16956 Conditional_Delay (Derived_Type, Parent_Type);
16958 Mutate_Ekind (Derived_Type, E_Enumeration_Subtype);
16959 Set_Etype (Derived_Type, Implicit_Base);
16960 Set_Size_Info (Derived_Type, Parent_Type);
16962 if not Known_RM_Size (Derived_Type) then
16963 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
16964 end if;
16966 Set_Is_Character_Type (Derived_Type, True);
16968 if Nkind (Indic) /= N_Subtype_Indication then
16970 -- If no explicit constraint, the bounds are those
16971 -- of the parent type.
16973 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
16974 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
16975 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
16976 end if;
16978 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
16980 -- Because the implicit base is used in the conversion of the bounds, we
16981 -- have to freeze it now. This is similar to what is done for numeric
16982 -- types, and it equally suspicious, but otherwise a nonstatic bound
16983 -- will have a reference to an unfrozen type, which is rejected by Gigi
16984 -- (???). This requires specific care for definition of stream
16985 -- attributes. For details, see comments at the end of
16986 -- Build_Derived_Numeric_Type.
16988 Freeze_Before (N, Implicit_Base);
16989 end Derived_Standard_Character;
16991 ------------------------------
16992 -- Derived_Type_Declaration --
16993 ------------------------------
16995 procedure Derived_Type_Declaration
16996 (T : Entity_Id;
16997 N : Node_Id;
16998 Is_Completion : Boolean)
17000 Parent_Type : Entity_Id;
17002 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
17003 -- Check whether the parent type is a generic formal, or derives
17004 -- directly or indirectly from one.
17006 ------------------------
17007 -- Comes_From_Generic --
17008 ------------------------
17010 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
17011 begin
17012 if Is_Generic_Type (Typ) then
17013 return True;
17015 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
17016 return True;
17018 elsif Is_Private_Type (Typ)
17019 and then Present (Full_View (Typ))
17020 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
17021 then
17022 return True;
17024 elsif Is_Generic_Actual_Type (Typ) then
17025 return True;
17027 else
17028 return False;
17029 end if;
17030 end Comes_From_Generic;
17032 -- Local variables
17034 Def : constant Node_Id := Type_Definition (N);
17035 Iface_Def : Node_Id;
17036 Indic : constant Node_Id := Subtype_Indication (Def);
17037 Extension : constant Node_Id := Record_Extension_Part (Def);
17038 Parent_Node : Node_Id;
17039 Taggd : Boolean;
17041 -- Start of processing for Derived_Type_Declaration
17043 begin
17044 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
17046 if SPARK_Mode = On
17047 and then Is_Tagged_Type (Parent_Type)
17048 then
17049 declare
17050 Partial_View : constant Entity_Id :=
17051 Incomplete_Or_Partial_View (Parent_Type);
17053 begin
17054 -- If the partial view was not found then the parent type is not
17055 -- a private type. Otherwise check if the partial view is a tagged
17056 -- private type.
17058 if Present (Partial_View)
17059 and then Is_Private_Type (Partial_View)
17060 and then not Is_Tagged_Type (Partial_View)
17061 then
17062 Error_Msg_NE
17063 ("cannot derive from & declared as untagged private "
17064 & "(SPARK RM 3.4(1))", N, Partial_View);
17065 end if;
17066 end;
17067 end if;
17069 -- Ada 2005 (AI-251): In case of interface derivation check that the
17070 -- parent is also an interface.
17072 if Interface_Present (Def) then
17073 if not Is_Interface (Parent_Type) then
17074 Diagnose_Interface (Indic, Parent_Type);
17076 else
17077 Parent_Node := Parent (Base_Type (Parent_Type));
17078 Iface_Def := Type_Definition (Parent_Node);
17080 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
17081 -- other limited interfaces.
17083 if Limited_Present (Def) then
17084 if Limited_Present (Iface_Def) then
17085 null;
17087 elsif Protected_Present (Iface_Def) then
17088 Error_Msg_NE
17089 ("descendant of & must be declared as a protected "
17090 & "interface", N, Parent_Type);
17092 elsif Synchronized_Present (Iface_Def) then
17093 Error_Msg_NE
17094 ("descendant of & must be declared as a synchronized "
17095 & "interface", N, Parent_Type);
17097 elsif Task_Present (Iface_Def) then
17098 Error_Msg_NE
17099 ("descendant of & must be declared as a task interface",
17100 N, Parent_Type);
17102 else
17103 Error_Msg_N
17104 ("(Ada 2005) limited interface cannot inherit from "
17105 & "non-limited interface", Indic);
17106 end if;
17108 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
17109 -- from non-limited or limited interfaces.
17111 elsif not Protected_Present (Def)
17112 and then not Synchronized_Present (Def)
17113 and then not Task_Present (Def)
17114 then
17115 if Limited_Present (Iface_Def) then
17116 null;
17118 elsif Protected_Present (Iface_Def) then
17119 Error_Msg_NE
17120 ("descendant of & must be declared as a protected "
17121 & "interface", N, Parent_Type);
17123 elsif Synchronized_Present (Iface_Def) then
17124 Error_Msg_NE
17125 ("descendant of & must be declared as a synchronized "
17126 & "interface", N, Parent_Type);
17128 elsif Task_Present (Iface_Def) then
17129 Error_Msg_NE
17130 ("descendant of & must be declared as a task interface",
17131 N, Parent_Type);
17132 else
17133 null;
17134 end if;
17135 end if;
17136 end if;
17137 end if;
17139 if Is_Tagged_Type (Parent_Type)
17140 and then Is_Concurrent_Type (Parent_Type)
17141 and then not Is_Interface (Parent_Type)
17142 then
17143 Error_Msg_N
17144 ("parent type of a record extension cannot be a synchronized "
17145 & "tagged type (RM 3.9.1 (3/1))", N);
17146 Set_Etype (T, Any_Type);
17147 return;
17148 end if;
17150 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
17151 -- interfaces
17153 if Is_Tagged_Type (Parent_Type)
17154 and then Is_Non_Empty_List (Interface_List (Def))
17155 then
17156 declare
17157 Intf : Node_Id;
17158 T : Entity_Id;
17160 begin
17161 Intf := First (Interface_List (Def));
17162 while Present (Intf) loop
17163 T := Find_Type_Of_Subtype_Indic (Intf);
17165 if not Is_Interface (T) then
17166 Diagnose_Interface (Intf, T);
17168 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
17169 -- a limited type from having a nonlimited progenitor.
17171 elsif (Limited_Present (Def)
17172 or else (not Is_Interface (Parent_Type)
17173 and then Is_Limited_Type (Parent_Type)))
17174 and then not Is_Limited_Interface (T)
17175 then
17176 Error_Msg_NE
17177 ("progenitor interface& of limited type must be limited",
17178 N, T);
17179 end if;
17181 Next (Intf);
17182 end loop;
17183 end;
17185 -- Check consistency of any nonoverridable aspects that are
17186 -- inherited from multiple sources.
17188 Check_Inherited_Nonoverridable_Aspects
17189 (Inheritor => T,
17190 Interface_List => Interface_List (Def),
17191 Parent_Type => Parent_Type);
17192 end if;
17194 if Parent_Type = Any_Type
17195 or else Etype (Parent_Type) = Any_Type
17196 or else (Is_Class_Wide_Type (Parent_Type)
17197 and then Etype (Parent_Type) = T)
17198 then
17199 -- If Parent_Type is undefined or illegal, make new type into a
17200 -- subtype of Any_Type, and set a few attributes to prevent cascaded
17201 -- errors. If this is a self-definition, emit error now.
17203 if T = Parent_Type or else T = Etype (Parent_Type) then
17204 Error_Msg_N ("type cannot be used in its own definition", Indic);
17205 end if;
17207 Mutate_Ekind (T, Ekind (Parent_Type));
17208 Set_Etype (T, Any_Type);
17209 Set_Scalar_Range (T, Scalar_Range (Any_Type));
17211 -- For tagged types, or when prefixed-call syntax is allowed for
17212 -- untagged types, initialize the list of primitive operations to
17213 -- an empty list.
17215 if (Is_Tagged_Type (T) and then Is_Record_Type (T))
17216 or else Extensions_Allowed
17217 then
17218 Set_Direct_Primitive_Operations (T, New_Elmt_List);
17219 end if;
17221 return;
17222 end if;
17224 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
17225 -- an interface is special because the list of interfaces in the full
17226 -- view can be given in any order. For example:
17228 -- type A is interface;
17229 -- type B is interface and A;
17230 -- type D is new B with private;
17231 -- private
17232 -- type D is new A and B with null record; -- 1 --
17234 -- In this case we perform the following transformation of -1-:
17236 -- type D is new B and A with null record;
17238 -- If the parent of the full-view covers the parent of the partial-view
17239 -- we have two possible cases:
17241 -- 1) They have the same parent
17242 -- 2) The parent of the full-view implements some further interfaces
17244 -- In both cases we do not need to perform the transformation. In the
17245 -- first case the source program is correct and the transformation is
17246 -- not needed; in the second case the source program does not fulfill
17247 -- the no-hidden interfaces rule (AI-396) and the error will be reported
17248 -- later.
17250 -- This transformation not only simplifies the rest of the analysis of
17251 -- this type declaration but also simplifies the correct generation of
17252 -- the object layout to the expander.
17254 if In_Private_Part (Current_Scope)
17255 and then Is_Interface (Parent_Type)
17256 then
17257 declare
17258 Iface : Node_Id;
17259 Partial_View : Entity_Id;
17260 Partial_View_Parent : Entity_Id;
17261 New_Iface : Node_Id;
17263 begin
17264 -- Look for the associated private type declaration
17266 Partial_View := Incomplete_Or_Partial_View (T);
17268 -- If the partial view was not found then the source code has
17269 -- errors and the transformation is not needed.
17271 if Present (Partial_View) then
17272 Partial_View_Parent := Etype (Partial_View);
17274 -- If the parent of the full-view covers the parent of the
17275 -- partial-view we have nothing else to do.
17277 if Interface_Present_In_Ancestor
17278 (Parent_Type, Partial_View_Parent)
17279 then
17280 null;
17282 -- Traverse the list of interfaces of the full-view to look
17283 -- for the parent of the partial-view and perform the tree
17284 -- transformation.
17286 else
17287 Iface := First (Interface_List (Def));
17288 while Present (Iface) loop
17289 if Etype (Iface) = Etype (Partial_View) then
17290 Rewrite (Subtype_Indication (Def),
17291 New_Copy (Subtype_Indication
17292 (Parent (Partial_View))));
17294 New_Iface :=
17295 Make_Identifier (Sloc (N), Chars (Parent_Type));
17296 Append (New_Iface, Interface_List (Def));
17298 -- Analyze the transformed code
17300 Derived_Type_Declaration (T, N, Is_Completion);
17301 return;
17302 end if;
17304 Next (Iface);
17305 end loop;
17306 end if;
17307 end if;
17308 end;
17309 end if;
17311 -- Only composite types other than array types are allowed to have
17312 -- discriminants.
17314 if Present (Discriminant_Specifications (N)) then
17315 if (Is_Elementary_Type (Parent_Type)
17316 or else
17317 Is_Array_Type (Parent_Type))
17318 and then not Error_Posted (N)
17319 then
17320 Error_Msg_N
17321 ("elementary or array type cannot have discriminants",
17322 Defining_Identifier (First (Discriminant_Specifications (N))));
17324 -- Unset Has_Discriminants flag to prevent cascaded errors, but
17325 -- only if we are not already processing a malformed syntax tree.
17327 if Is_Type (T) then
17328 Set_Has_Discriminants (T, False);
17329 end if;
17330 end if;
17331 end if;
17333 -- In Ada 83, a derived type defined in a package specification cannot
17334 -- be used for further derivation until the end of its visible part.
17335 -- Note that derivation in the private part of the package is allowed.
17337 if Ada_Version = Ada_83
17338 and then Is_Derived_Type (Parent_Type)
17339 and then In_Visible_Part (Scope (Parent_Type))
17340 then
17341 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
17342 Error_Msg_N
17343 ("(Ada 83) premature use of type for derivation", Indic);
17344 end if;
17345 end if;
17347 -- Check for early use of incomplete or private type
17349 if Ekind (Parent_Type) in E_Void | E_Incomplete_Type then
17350 Error_Msg_N ("premature derivation of incomplete type", Indic);
17351 return;
17353 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
17354 and then not Comes_From_Generic (Parent_Type))
17355 or else Has_Private_Component (Parent_Type)
17356 then
17357 -- The ancestor type of a formal type can be incomplete, in which
17358 -- case only the operations of the partial view are available in the
17359 -- generic. Subsequent checks may be required when the full view is
17360 -- analyzed to verify that a derivation from a tagged type has an
17361 -- extension.
17363 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
17364 null;
17366 elsif No (Underlying_Type (Parent_Type))
17367 or else Has_Private_Component (Parent_Type)
17368 then
17369 Error_Msg_N
17370 ("premature derivation of derived or private type", Indic);
17372 -- Flag the type itself as being in error, this prevents some
17373 -- nasty problems with subsequent uses of the malformed type.
17375 Set_Error_Posted (T);
17377 -- Check that within the immediate scope of an untagged partial
17378 -- view it's illegal to derive from the partial view if the
17379 -- full view is tagged. (7.3(7))
17381 -- We verify that the Parent_Type is a partial view by checking
17382 -- that it is not a Full_Type_Declaration (i.e. a private type or
17383 -- private extension declaration), to distinguish a partial view
17384 -- from a derivation from a private type which also appears as
17385 -- E_Private_Type. If the parent base type is not declared in an
17386 -- enclosing scope there is no need to check.
17388 elsif Present (Full_View (Parent_Type))
17389 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
17390 and then not Is_Tagged_Type (Parent_Type)
17391 and then Is_Tagged_Type (Full_View (Parent_Type))
17392 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
17393 then
17394 Error_Msg_N
17395 ("premature derivation from type with tagged full view",
17396 Indic);
17397 end if;
17398 end if;
17400 -- Check that form of derivation is appropriate
17402 Taggd := Is_Tagged_Type (Parent_Type);
17404 -- Set the parent type to the class-wide type's specific type in this
17405 -- case to prevent cascading errors
17407 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
17408 Error_Msg_N ("parent type must not be a class-wide type", Indic);
17409 Set_Etype (T, Etype (Parent_Type));
17410 return;
17411 end if;
17413 if Present (Extension) and then not Taggd then
17414 Error_Msg_N
17415 ("type derived from untagged type cannot have extension", Indic);
17417 elsif No (Extension) and then Taggd then
17419 -- If this declaration is within a private part (or body) of a
17420 -- generic instantiation then the derivation is allowed (the parent
17421 -- type can only appear tagged in this case if it's a generic actual
17422 -- type, since it would otherwise have been rejected in the analysis
17423 -- of the generic template).
17425 if not Is_Generic_Actual_Type (Parent_Type)
17426 or else In_Visible_Part (Scope (Parent_Type))
17427 then
17428 if Is_Class_Wide_Type (Parent_Type) then
17429 Error_Msg_N
17430 ("parent type must not be a class-wide type", Indic);
17432 -- Use specific type to prevent cascaded errors.
17434 Parent_Type := Etype (Parent_Type);
17436 else
17437 Error_Msg_N
17438 ("type derived from tagged type must have extension", Indic);
17439 end if;
17440 end if;
17441 end if;
17443 -- AI-443: Synchronized formal derived types require a private
17444 -- extension. There is no point in checking the ancestor type or
17445 -- the progenitors since the construct is wrong to begin with.
17447 if Ada_Version >= Ada_2005
17448 and then Is_Generic_Type (T)
17449 and then Present (Original_Node (N))
17450 then
17451 declare
17452 Decl : constant Node_Id := Original_Node (N);
17454 begin
17455 if Nkind (Decl) = N_Formal_Type_Declaration
17456 and then Nkind (Formal_Type_Definition (Decl)) =
17457 N_Formal_Derived_Type_Definition
17458 and then Synchronized_Present (Formal_Type_Definition (Decl))
17459 and then No (Extension)
17461 -- Avoid emitting a duplicate error message
17463 and then not Error_Posted (Indic)
17464 then
17465 Error_Msg_N
17466 ("synchronized derived type must have extension", N);
17467 end if;
17468 end;
17469 end if;
17471 if Null_Exclusion_Present (Def)
17472 and then not Is_Access_Type (Parent_Type)
17473 then
17474 Error_Msg_N ("null exclusion can only apply to an access type", N);
17475 end if;
17477 Check_Wide_Character_Restriction (Parent_Type, Indic);
17479 -- Avoid deriving parent primitives of underlying record views
17481 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
17482 Derive_Subps => not Is_Underlying_Record_View (T));
17484 -- AI-419: The parent type of an explicitly limited derived type must
17485 -- be a limited type or a limited interface.
17487 if Limited_Present (Def) then
17488 Set_Is_Limited_Record (T);
17490 if Is_Interface (T) then
17491 Set_Is_Limited_Interface (T);
17492 end if;
17494 if not Is_Limited_Type (Parent_Type)
17495 and then
17496 (not Is_Interface (Parent_Type)
17497 or else not Is_Limited_Interface (Parent_Type))
17498 then
17499 -- AI05-0096: a derivation in the private part of an instance is
17500 -- legal if the generic formal is untagged limited, and the actual
17501 -- is non-limited.
17503 if Is_Generic_Actual_Type (Parent_Type)
17504 and then In_Private_Part (Current_Scope)
17505 and then
17506 not Is_Tagged_Type
17507 (Generic_Parent_Type (Parent (Parent_Type)))
17508 then
17509 null;
17511 else
17512 Error_Msg_NE
17513 ("parent type& of limited type must be limited",
17514 N, Parent_Type);
17515 end if;
17516 end if;
17517 end if;
17518 end Derived_Type_Declaration;
17520 ------------------------
17521 -- Diagnose_Interface --
17522 ------------------------
17524 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
17525 begin
17526 if not Is_Interface (E) and then E /= Any_Type then
17527 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
17528 end if;
17529 end Diagnose_Interface;
17531 ----------------------------------
17532 -- Enumeration_Type_Declaration --
17533 ----------------------------------
17535 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17536 Ev : Uint;
17537 L : Node_Id;
17538 R_Node : Node_Id;
17539 B_Node : Node_Id;
17541 begin
17542 -- Create identifier node representing lower bound
17544 B_Node := New_Node (N_Identifier, Sloc (Def));
17545 L := First (Literals (Def));
17546 Set_Chars (B_Node, Chars (L));
17547 Set_Entity (B_Node, L);
17548 Set_Etype (B_Node, T);
17549 Set_Is_Static_Expression (B_Node, True);
17551 R_Node := New_Node (N_Range, Sloc (Def));
17552 Set_Low_Bound (R_Node, B_Node);
17554 Mutate_Ekind (T, E_Enumeration_Type);
17555 Set_First_Literal (T, L);
17556 Set_Etype (T, T);
17557 Set_Is_Constrained (T);
17559 Ev := Uint_0;
17561 -- Loop through literals of enumeration type setting pos and rep values
17562 -- except that if the Ekind is already set, then it means the literal
17563 -- was already constructed (case of a derived type declaration and we
17564 -- should not disturb the Pos and Rep values.
17566 while Present (L) loop
17567 if Ekind (L) /= E_Enumeration_Literal then
17568 Mutate_Ekind (L, E_Enumeration_Literal);
17569 Set_Enumeration_Pos (L, Ev);
17570 Set_Enumeration_Rep (L, Ev);
17571 Set_Is_Known_Valid (L, True);
17572 end if;
17574 Set_Etype (L, T);
17575 New_Overloaded_Entity (L);
17576 Generate_Definition (L);
17577 Set_Convention (L, Convention_Intrinsic);
17579 -- Case of character literal
17581 if Nkind (L) = N_Defining_Character_Literal then
17582 Set_Is_Character_Type (T, True);
17584 -- Check violation of No_Wide_Characters
17586 if Restriction_Check_Required (No_Wide_Characters) then
17587 Get_Name_String (Chars (L));
17589 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
17590 Check_Restriction (No_Wide_Characters, L);
17591 end if;
17592 end if;
17593 end if;
17595 Ev := Ev + 1;
17596 Next (L);
17597 end loop;
17599 -- Now create a node representing upper bound
17601 B_Node := New_Node (N_Identifier, Sloc (Def));
17602 Set_Chars (B_Node, Chars (Last (Literals (Def))));
17603 Set_Entity (B_Node, Last (Literals (Def)));
17604 Set_Etype (B_Node, T);
17605 Set_Is_Static_Expression (B_Node, True);
17607 Set_High_Bound (R_Node, B_Node);
17609 -- Initialize various fields of the type. Some of this information
17610 -- may be overwritten later through rep. clauses.
17612 Set_Scalar_Range (T, R_Node);
17613 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
17614 Set_Enum_Esize (T);
17615 Set_Enum_Pos_To_Rep (T, Empty);
17617 -- Set Discard_Names if configuration pragma set, or if there is
17618 -- a parameterless pragma in the current declarative region
17620 if Global_Discard_Names or else Discard_Names (Scope (T)) then
17621 Set_Discard_Names (T);
17622 end if;
17624 -- Process end label if there is one
17626 if Present (Def) then
17627 Process_End_Label (Def, 'e', T);
17628 end if;
17629 end Enumeration_Type_Declaration;
17631 ---------------------------------
17632 -- Expand_To_Stored_Constraint --
17633 ---------------------------------
17635 function Expand_To_Stored_Constraint
17636 (Typ : Entity_Id;
17637 Constraint : Elist_Id) return Elist_Id
17639 Explicitly_Discriminated_Type : Entity_Id;
17640 Expansion : Elist_Id;
17641 Discriminant : Entity_Id;
17643 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
17644 -- Find the nearest type that actually specifies discriminants
17646 ---------------------------------
17647 -- Type_With_Explicit_Discrims --
17648 ---------------------------------
17650 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
17651 Typ : constant E := Base_Type (Id);
17653 begin
17654 if Ekind (Typ) in Incomplete_Or_Private_Kind then
17655 if Present (Full_View (Typ)) then
17656 return Type_With_Explicit_Discrims (Full_View (Typ));
17657 end if;
17659 else
17660 if Has_Discriminants (Typ) then
17661 return Typ;
17662 end if;
17663 end if;
17665 if Etype (Typ) = Typ then
17666 return Empty;
17667 elsif Has_Discriminants (Typ) then
17668 return Typ;
17669 else
17670 return Type_With_Explicit_Discrims (Etype (Typ));
17671 end if;
17673 end Type_With_Explicit_Discrims;
17675 -- Start of processing for Expand_To_Stored_Constraint
17677 begin
17678 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
17679 return No_Elist;
17680 end if;
17682 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
17684 if No (Explicitly_Discriminated_Type) then
17685 return No_Elist;
17686 end if;
17688 Expansion := New_Elmt_List;
17690 Discriminant :=
17691 First_Stored_Discriminant (Explicitly_Discriminated_Type);
17692 while Present (Discriminant) loop
17693 Append_Elmt
17694 (Get_Discriminant_Value
17695 (Discriminant, Explicitly_Discriminated_Type, Constraint),
17696 To => Expansion);
17697 Next_Stored_Discriminant (Discriminant);
17698 end loop;
17700 return Expansion;
17701 end Expand_To_Stored_Constraint;
17703 ---------------------------
17704 -- Find_Hidden_Interface --
17705 ---------------------------
17707 function Find_Hidden_Interface
17708 (Src : Elist_Id;
17709 Dest : Elist_Id) return Entity_Id
17711 Iface : Entity_Id;
17712 Iface_Elmt : Elmt_Id;
17714 begin
17715 if Present (Src) and then Present (Dest) then
17716 Iface_Elmt := First_Elmt (Src);
17717 while Present (Iface_Elmt) loop
17718 Iface := Node (Iface_Elmt);
17720 if Is_Interface (Iface)
17721 and then not Contain_Interface (Iface, Dest)
17722 then
17723 return Iface;
17724 end if;
17726 Next_Elmt (Iface_Elmt);
17727 end loop;
17728 end if;
17730 return Empty;
17731 end Find_Hidden_Interface;
17733 --------------------
17734 -- Find_Type_Name --
17735 --------------------
17737 function Find_Type_Name (N : Node_Id) return Entity_Id is
17738 Id : constant Entity_Id := Defining_Identifier (N);
17739 New_Id : Entity_Id;
17740 Prev : Entity_Id;
17741 Prev_Par : Node_Id;
17743 procedure Check_Duplicate_Aspects;
17744 -- Check that aspects specified in a completion have not been specified
17745 -- already in the partial view.
17747 procedure Tag_Mismatch;
17748 -- Diagnose a tagged partial view whose full view is untagged. We post
17749 -- the message on the full view, with a reference to the previous
17750 -- partial view. The partial view can be private or incomplete, and
17751 -- these are handled in a different manner, so we determine the position
17752 -- of the error message from the respective slocs of both.
17754 -----------------------------
17755 -- Check_Duplicate_Aspects --
17756 -----------------------------
17758 procedure Check_Duplicate_Aspects is
17759 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
17760 -- Return the corresponding aspect of the partial view which matches
17761 -- the aspect id of Asp. Return Empty is no such aspect exists.
17763 -----------------------------
17764 -- Get_Partial_View_Aspect --
17765 -----------------------------
17767 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
17768 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
17769 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par);
17770 Prev_Asp : Node_Id;
17772 begin
17773 if Present (Prev_Asps) then
17774 Prev_Asp := First (Prev_Asps);
17775 while Present (Prev_Asp) loop
17776 if Get_Aspect_Id (Prev_Asp) = Asp_Id then
17777 return Prev_Asp;
17778 end if;
17780 Next (Prev_Asp);
17781 end loop;
17782 end if;
17784 return Empty;
17785 end Get_Partial_View_Aspect;
17787 -- Local variables
17789 Full_Asps : constant List_Id := Aspect_Specifications (N);
17790 Full_Asp : Node_Id;
17791 Part_Asp : Node_Id;
17793 -- Start of processing for Check_Duplicate_Aspects
17795 begin
17796 if Present (Full_Asps) then
17797 Full_Asp := First (Full_Asps);
17798 while Present (Full_Asp) loop
17799 Part_Asp := Get_Partial_View_Aspect (Full_Asp);
17801 -- An aspect and its class-wide counterpart are two distinct
17802 -- aspects and may apply to both views of an entity.
17804 if Present (Part_Asp)
17805 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
17806 then
17807 Error_Msg_N
17808 ("aspect already specified in private declaration",
17809 Full_Asp);
17811 Remove (Full_Asp);
17812 return;
17813 end if;
17815 if Has_Discriminants (Prev)
17816 and then not Has_Unknown_Discriminants (Prev)
17817 and then Get_Aspect_Id (Full_Asp) =
17818 Aspect_Implicit_Dereference
17819 then
17820 Error_Msg_N
17821 ("cannot specify aspect if partial view has known "
17822 & "discriminants", Full_Asp);
17823 end if;
17825 Next (Full_Asp);
17826 end loop;
17827 end if;
17828 end Check_Duplicate_Aspects;
17830 ------------------
17831 -- Tag_Mismatch --
17832 ------------------
17834 procedure Tag_Mismatch is
17835 begin
17836 if Sloc (Prev) < Sloc (Id) then
17837 if Ada_Version >= Ada_2012
17838 and then Nkind (N) = N_Private_Type_Declaration
17839 then
17840 Error_Msg_NE
17841 ("declaration of private } must be a tagged type", Id, Prev);
17842 else
17843 Error_Msg_NE
17844 ("full declaration of } must be a tagged type", Id, Prev);
17845 end if;
17847 else
17848 if Ada_Version >= Ada_2012
17849 and then Nkind (N) = N_Private_Type_Declaration
17850 then
17851 Error_Msg_NE
17852 ("declaration of private } must be a tagged type", Prev, Id);
17853 else
17854 Error_Msg_NE
17855 ("full declaration of } must be a tagged type", Prev, Id);
17856 end if;
17857 end if;
17858 end Tag_Mismatch;
17860 -- Start of processing for Find_Type_Name
17862 begin
17863 -- Find incomplete declaration, if one was given
17865 Prev := Current_Entity_In_Scope (Id);
17867 -- New type declaration
17869 if No (Prev) then
17870 Enter_Name (Id);
17871 return Id;
17873 -- Previous declaration exists
17875 else
17876 Prev_Par := Parent (Prev);
17878 -- Error if not incomplete/private case except if previous
17879 -- declaration is implicit, etc. Enter_Name will emit error if
17880 -- appropriate.
17882 if not Is_Incomplete_Or_Private_Type (Prev) then
17883 Enter_Name (Id);
17884 New_Id := Id;
17886 -- Check invalid completion of private or incomplete type
17888 elsif Nkind (N) not in N_Full_Type_Declaration
17889 | N_Task_Type_Declaration
17890 | N_Protected_Type_Declaration
17891 and then
17892 (Ada_Version < Ada_2012
17893 or else not Is_Incomplete_Type (Prev)
17894 or else Nkind (N) not in N_Private_Type_Declaration
17895 | N_Private_Extension_Declaration)
17896 then
17897 -- Completion must be a full type declarations (RM 7.3(4))
17899 Error_Msg_Sloc := Sloc (Prev);
17900 Error_Msg_NE ("invalid completion of }", Id, Prev);
17902 -- Set scope of Id to avoid cascaded errors. Entity is never
17903 -- examined again, except when saving globals in generics.
17905 Set_Scope (Id, Current_Scope);
17906 New_Id := Id;
17908 -- If this is a repeated incomplete declaration, no further
17909 -- checks are possible.
17911 if Nkind (N) = N_Incomplete_Type_Declaration then
17912 return Prev;
17913 end if;
17915 -- Case of full declaration of incomplete type
17917 elsif Ekind (Prev) = E_Incomplete_Type
17918 and then (Ada_Version < Ada_2012
17919 or else No (Full_View (Prev))
17920 or else not Is_Private_Type (Full_View (Prev)))
17921 then
17922 -- Indicate that the incomplete declaration has a matching full
17923 -- declaration. The defining occurrence of the incomplete
17924 -- declaration remains the visible one, and the procedure
17925 -- Get_Full_View dereferences it whenever the type is used.
17927 if Present (Full_View (Prev)) then
17928 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17929 end if;
17931 Set_Full_View (Prev, Id);
17932 Append_Entity (Id, Current_Scope);
17933 Set_Is_Public (Id, Is_Public (Prev));
17934 Set_Is_Internal (Id);
17935 New_Id := Prev;
17937 -- If the incomplete view is tagged, a class_wide type has been
17938 -- created already. Use it for the private type as well, in order
17939 -- to prevent multiple incompatible class-wide types that may be
17940 -- created for self-referential anonymous access components.
17942 if Is_Tagged_Type (Prev)
17943 and then Present (Class_Wide_Type (Prev))
17944 then
17945 Mutate_Ekind (Id, Ekind (Prev)); -- will be reset later
17946 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
17948 -- Type of the class-wide type is the current Id. Previously
17949 -- this was not done for private declarations because of order-
17950 -- of-elaboration issues in the back end, but gigi now handles
17951 -- this properly.
17953 Set_Etype (Class_Wide_Type (Id), Id);
17954 end if;
17956 -- Case of full declaration of private type
17958 else
17959 -- If the private type was a completion of an incomplete type then
17960 -- update Prev to reference the private type
17962 if Ada_Version >= Ada_2012
17963 and then Ekind (Prev) = E_Incomplete_Type
17964 and then Present (Full_View (Prev))
17965 and then Is_Private_Type (Full_View (Prev))
17966 then
17967 Prev := Full_View (Prev);
17968 Prev_Par := Parent (Prev);
17969 end if;
17971 if Nkind (N) = N_Full_Type_Declaration
17972 and then Nkind (Type_Definition (N)) in
17973 N_Record_Definition | N_Derived_Type_Definition
17974 and then Interface_Present (Type_Definition (N))
17975 then
17976 Error_Msg_N
17977 ("completion of private type cannot be an interface", N);
17978 end if;
17980 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
17981 if Etype (Prev) /= Prev then
17983 -- Prev is a private subtype or a derived type, and needs
17984 -- no completion.
17986 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17987 New_Id := Id;
17989 elsif Ekind (Prev) = E_Private_Type
17990 and then Nkind (N) in N_Task_Type_Declaration
17991 | N_Protected_Type_Declaration
17992 then
17993 Error_Msg_N
17994 ("completion of nonlimited type cannot be limited", N);
17996 elsif Ekind (Prev) = E_Record_Type_With_Private
17997 and then Nkind (N) in N_Task_Type_Declaration
17998 | N_Protected_Type_Declaration
17999 then
18000 if not Is_Limited_Record (Prev) then
18001 Error_Msg_N
18002 ("completion of nonlimited type cannot be limited", N);
18004 elsif No (Interface_List (N)) then
18005 Error_Msg_N
18006 ("completion of tagged private type must be tagged",
18008 end if;
18009 end if;
18011 -- Ada 2005 (AI-251): Private extension declaration of a task
18012 -- type or a protected type. This case arises when covering
18013 -- interface types.
18015 elsif Nkind (N) in N_Task_Type_Declaration
18016 | N_Protected_Type_Declaration
18017 then
18018 null;
18020 elsif Nkind (N) /= N_Full_Type_Declaration
18021 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
18022 then
18023 Error_Msg_N
18024 ("full view of private extension must be an extension", N);
18026 elsif not (Abstract_Present (Parent (Prev)))
18027 and then Abstract_Present (Type_Definition (N))
18028 then
18029 Error_Msg_N
18030 ("full view of non-abstract extension cannot be abstract", N);
18031 end if;
18033 if not In_Private_Part (Current_Scope) then
18034 Error_Msg_N
18035 ("declaration of full view must appear in private part", N);
18036 end if;
18038 if Ada_Version >= Ada_2012 then
18039 Check_Duplicate_Aspects;
18040 end if;
18042 Copy_And_Swap (Prev, Id);
18043 Set_Has_Private_Declaration (Prev);
18044 Set_Has_Private_Declaration (Id);
18046 -- AI12-0133: Indicate whether we have a partial view with
18047 -- unknown discriminants, in which case initialization of objects
18048 -- of the type do not receive an invariant check.
18050 Set_Partial_View_Has_Unknown_Discr
18051 (Prev, Has_Unknown_Discriminants (Id));
18053 -- Preserve aspect and iterator flags that may have been set on
18054 -- the partial view.
18056 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
18057 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
18059 -- If no error, propagate freeze_node from private to full view.
18060 -- It may have been generated for an early operational item.
18062 if Present (Freeze_Node (Id))
18063 and then Serious_Errors_Detected = 0
18064 and then No (Full_View (Id))
18065 then
18066 Set_Freeze_Node (Prev, Freeze_Node (Id));
18067 Set_Freeze_Node (Id, Empty);
18068 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
18069 end if;
18071 Set_Full_View (Id, Prev);
18072 New_Id := Prev;
18073 end if;
18075 -- Verify that full declaration conforms to partial one
18077 if Is_Incomplete_Or_Private_Type (Prev)
18078 and then Present (Discriminant_Specifications (Prev_Par))
18079 then
18080 if Present (Discriminant_Specifications (N)) then
18081 if Ekind (Prev) = E_Incomplete_Type then
18082 Check_Discriminant_Conformance (N, Prev, Prev);
18083 else
18084 Check_Discriminant_Conformance (N, Prev, Id);
18085 end if;
18087 else
18088 Error_Msg_N
18089 ("missing discriminants in full type declaration", N);
18091 -- To avoid cascaded errors on subsequent use, share the
18092 -- discriminants of the partial view.
18094 Set_Discriminant_Specifications (N,
18095 Discriminant_Specifications (Prev_Par));
18096 end if;
18097 end if;
18099 -- A prior untagged partial view can have an associated class-wide
18100 -- type due to use of the class attribute, and in this case the full
18101 -- type must also be tagged. This Ada 95 usage is deprecated in favor
18102 -- of incomplete tagged declarations, but we check for it.
18104 if Is_Type (Prev)
18105 and then (Is_Tagged_Type (Prev)
18106 or else Present (Class_Wide_Type (Prev)))
18107 then
18108 -- Ada 2012 (AI05-0162): A private type may be the completion of
18109 -- an incomplete type.
18111 if Ada_Version >= Ada_2012
18112 and then Is_Incomplete_Type (Prev)
18113 and then Nkind (N) in N_Private_Type_Declaration
18114 | N_Private_Extension_Declaration
18115 then
18116 -- No need to check private extensions since they are tagged
18118 if Nkind (N) = N_Private_Type_Declaration
18119 and then not Tagged_Present (N)
18120 then
18121 Tag_Mismatch;
18122 end if;
18124 -- The full declaration is either a tagged type (including
18125 -- a synchronized type that implements interfaces) or a
18126 -- type extension, otherwise this is an error.
18128 elsif Nkind (N) in N_Task_Type_Declaration
18129 | N_Protected_Type_Declaration
18130 then
18131 if No (Interface_List (N)) and then not Error_Posted (N) then
18132 Tag_Mismatch;
18133 end if;
18135 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
18137 -- Indicate that the previous declaration (tagged incomplete
18138 -- or private declaration) requires the same on the full one.
18140 if not Tagged_Present (Type_Definition (N)) then
18141 Tag_Mismatch;
18142 Set_Is_Tagged_Type (Id);
18143 end if;
18145 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
18146 if No (Record_Extension_Part (Type_Definition (N))) then
18147 Error_Msg_NE
18148 ("full declaration of } must be a record extension",
18149 Prev, Id);
18151 -- Set some attributes to produce a usable full view
18153 Set_Is_Tagged_Type (Id);
18154 end if;
18156 else
18157 Tag_Mismatch;
18158 end if;
18159 end if;
18161 if Present (Prev)
18162 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
18163 and then Present (Premature_Use (Parent (Prev)))
18164 then
18165 Error_Msg_Sloc := Sloc (N);
18166 Error_Msg_N
18167 ("\full declaration #", Premature_Use (Parent (Prev)));
18168 end if;
18170 return New_Id;
18171 end if;
18172 end Find_Type_Name;
18174 -------------------------
18175 -- Find_Type_Of_Object --
18176 -------------------------
18178 function Find_Type_Of_Object
18179 (Obj_Def : Node_Id;
18180 Related_Nod : Node_Id) return Entity_Id
18182 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
18183 P : Node_Id := Parent (Obj_Def);
18184 T : Entity_Id;
18185 Nam : Name_Id;
18187 begin
18188 -- If the parent is a component_definition node we climb to the
18189 -- component_declaration node
18191 if Nkind (P) = N_Component_Definition then
18192 P := Parent (P);
18193 end if;
18195 -- Case of an anonymous array subtype
18197 if Def_Kind in N_Array_Type_Definition then
18198 T := Empty;
18199 Array_Type_Declaration (T, Obj_Def);
18201 -- Create an explicit subtype whenever possible
18203 elsif Nkind (P) /= N_Component_Declaration
18204 and then Def_Kind = N_Subtype_Indication
18205 then
18206 -- Base name of subtype on object name, which will be unique in
18207 -- the current scope.
18209 -- If this is a duplicate declaration, return base type, to avoid
18210 -- generating duplicate anonymous types.
18212 if Error_Posted (P) then
18213 Analyze (Subtype_Mark (Obj_Def));
18214 return Entity (Subtype_Mark (Obj_Def));
18215 end if;
18217 Nam :=
18218 New_External_Name
18219 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
18221 T := Make_Defining_Identifier (Sloc (P), Nam);
18223 -- If In_Spec_Expression, for example within a pre/postcondition,
18224 -- provide enough information for use of the subtype without
18225 -- depending on full analysis and freezing, which will happen when
18226 -- building the correspondiing subprogram.
18228 if In_Spec_Expression then
18229 Analyze (Subtype_Mark (Obj_Def));
18231 declare
18232 Base_T : constant Entity_Id := Entity (Subtype_Mark (Obj_Def));
18233 Decl : constant Node_Id :=
18234 Make_Subtype_Declaration (Sloc (P),
18235 Defining_Identifier => T,
18236 Subtype_Indication => Relocate_Node (Obj_Def));
18237 begin
18238 Set_Etype (T, Base_T);
18239 Mutate_Ekind (T, Subtype_Kind (Ekind (Base_T)));
18240 Set_Parent (T, Obj_Def);
18242 if Ekind (T) = E_Array_Subtype then
18243 Set_First_Index (T, First_Index (Base_T));
18244 Set_Is_Constrained (T);
18246 elsif Ekind (T) = E_Record_Subtype then
18247 Set_First_Entity (T, First_Entity (Base_T));
18248 Set_Has_Discriminants (T, Has_Discriminants (Base_T));
18249 Set_Is_Constrained (T);
18250 end if;
18252 Insert_Before (Related_Nod, Decl);
18253 end;
18255 return T;
18256 end if;
18258 -- When generating code, insert subtype declaration ahead of
18259 -- declaration that generated it.
18261 Insert_Action (Obj_Def,
18262 Make_Subtype_Declaration (Sloc (P),
18263 Defining_Identifier => T,
18264 Subtype_Indication => Relocate_Node (Obj_Def)));
18266 -- This subtype may need freezing, and this will not be done
18267 -- automatically if the object declaration is not in declarative
18268 -- part. Since this is an object declaration, the type cannot always
18269 -- be frozen here. Deferred constants do not freeze their type
18270 -- (which often enough will be private).
18272 if Nkind (P) = N_Object_Declaration
18273 and then Constant_Present (P)
18274 and then No (Expression (P))
18275 then
18276 null;
18278 -- Here we freeze the base type of object type to catch premature use
18279 -- of discriminated private type without a full view.
18281 else
18282 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
18283 end if;
18285 -- Ada 2005 AI-406: the object definition in an object declaration
18286 -- can be an access definition.
18288 elsif Def_Kind = N_Access_Definition then
18289 T := Access_Definition (Related_Nod, Obj_Def);
18291 Set_Is_Local_Anonymous_Access
18292 (T, Ada_Version < Ada_2012
18293 or else Nkind (P) /= N_Object_Declaration
18294 or else Is_Library_Level_Entity (Defining_Identifier (P)));
18296 -- Otherwise, the object definition is just a subtype_mark
18298 else
18299 T := Process_Subtype (Obj_Def, Related_Nod);
18300 end if;
18302 return T;
18303 end Find_Type_Of_Object;
18305 --------------------------------
18306 -- Find_Type_Of_Subtype_Indic --
18307 --------------------------------
18309 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
18310 Typ : Entity_Id;
18312 begin
18313 -- Case of subtype mark with a constraint
18315 if Nkind (S) = N_Subtype_Indication then
18316 Find_Type (Subtype_Mark (S));
18317 Typ := Entity (Subtype_Mark (S));
18319 if not
18320 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
18321 then
18322 Error_Msg_N
18323 ("incorrect constraint for this kind of type", Constraint (S));
18324 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
18325 end if;
18327 -- Otherwise we have a subtype mark without a constraint
18329 elsif Error_Posted (S) then
18330 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
18331 return Any_Type;
18333 else
18334 Find_Type (S);
18335 Typ := Entity (S);
18336 end if;
18338 return Typ;
18339 end Find_Type_Of_Subtype_Indic;
18341 -------------------------------------
18342 -- Floating_Point_Type_Declaration --
18343 -------------------------------------
18345 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
18346 Digs : constant Node_Id := Digits_Expression (Def);
18347 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
18348 Digs_Val : Uint;
18349 Base_Typ : Entity_Id;
18350 Implicit_Base : Entity_Id;
18352 function Can_Derive_From (E : Entity_Id) return Boolean;
18353 -- Find if given digits value, and possibly a specified range, allows
18354 -- derivation from specified type
18356 procedure Convert_Bound (B : Node_Id);
18357 -- If specified, the bounds must be static but may be of different
18358 -- types. They must be converted into machine numbers of the base type,
18359 -- in accordance with RM 4.9(38).
18361 function Find_Base_Type return Entity_Id;
18362 -- Find a predefined base type that Def can derive from, or generate
18363 -- an error and substitute Long_Long_Float if none exists.
18365 ---------------------
18366 -- Can_Derive_From --
18367 ---------------------
18369 function Can_Derive_From (E : Entity_Id) return Boolean is
18370 Spec : constant Entity_Id := Real_Range_Specification (Def);
18372 begin
18373 -- Check specified "digits" constraint
18375 if Digs_Val > Digits_Value (E) then
18376 return False;
18377 end if;
18379 -- Check for matching range, if specified
18381 if Present (Spec) then
18382 if Expr_Value_R (Type_Low_Bound (E)) >
18383 Expr_Value_R (Low_Bound (Spec))
18384 then
18385 return False;
18386 end if;
18388 if Expr_Value_R (Type_High_Bound (E)) <
18389 Expr_Value_R (High_Bound (Spec))
18390 then
18391 return False;
18392 end if;
18393 end if;
18395 return True;
18396 end Can_Derive_From;
18398 -------------------
18399 -- Convert_Bound --
18400 --------------------
18402 procedure Convert_Bound (B : Node_Id) is
18403 begin
18404 -- If the bound is not a literal it can only be static if it is
18405 -- a static constant, possibly of a specified type.
18407 if Is_Entity_Name (B)
18408 and then Ekind (Entity (B)) = E_Constant
18409 then
18410 Rewrite (B, Constant_Value (Entity (B)));
18411 end if;
18413 if Nkind (B) = N_Real_Literal then
18414 Set_Realval (B, Machine (Base_Typ, Realval (B), Round, B));
18415 Set_Is_Machine_Number (B);
18416 Set_Etype (B, Base_Typ);
18417 end if;
18418 end Convert_Bound;
18420 --------------------
18421 -- Find_Base_Type --
18422 --------------------
18424 function Find_Base_Type return Entity_Id is
18425 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
18427 begin
18428 -- Iterate over the predefined types in order, returning the first
18429 -- one that Def can derive from.
18431 while Present (Choice) loop
18432 if Can_Derive_From (Node (Choice)) then
18433 return Node (Choice);
18434 end if;
18436 Next_Elmt (Choice);
18437 end loop;
18439 -- If we can't derive from any existing type, use Long_Long_Float
18440 -- and give appropriate message explaining the problem.
18442 if Digs_Val > Max_Digs_Val then
18443 -- It might be the case that there is a type with the requested
18444 -- range, just not the combination of digits and range.
18446 Error_Msg_N
18447 ("no predefined type has requested range and precision",
18448 Real_Range_Specification (Def));
18450 else
18451 Error_Msg_N
18452 ("range too large for any predefined type",
18453 Real_Range_Specification (Def));
18454 end if;
18456 return Standard_Long_Long_Float;
18457 end Find_Base_Type;
18459 -- Start of processing for Floating_Point_Type_Declaration
18461 begin
18462 Check_Restriction (No_Floating_Point, Def);
18464 -- Create an implicit base type
18466 Implicit_Base :=
18467 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
18469 -- Analyze and verify digits value
18471 Analyze_And_Resolve (Digs, Any_Integer);
18472 Check_Digits_Expression (Digs);
18473 Digs_Val := Expr_Value (Digs);
18475 -- Process possible range spec and find correct type to derive from
18477 Process_Real_Range_Specification (Def);
18479 -- Check that requested number of digits is not too high.
18481 if Digs_Val > Max_Digs_Val then
18483 -- The check for Max_Base_Digits may be somewhat expensive, as it
18484 -- requires reading System, so only do it when necessary.
18486 declare
18487 Max_Base_Digits : constant Uint :=
18488 Expr_Value
18489 (Expression
18490 (Parent (RTE (RE_Max_Base_Digits))));
18492 begin
18493 if Digs_Val > Max_Base_Digits then
18494 Error_Msg_Uint_1 := Max_Base_Digits;
18495 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
18497 elsif No (Real_Range_Specification (Def)) then
18498 Error_Msg_Uint_1 := Max_Digs_Val;
18499 Error_Msg_N ("types with more than ^ digits need range spec "
18500 & "(RM 3.5.7(6))", Digs);
18501 end if;
18502 end;
18503 end if;
18505 -- Find a suitable type to derive from or complain and use a substitute
18507 Base_Typ := Find_Base_Type;
18509 -- If there are bounds given in the declaration use them as the bounds
18510 -- of the type, otherwise use the bounds of the predefined base type
18511 -- that was chosen based on the Digits value.
18513 if Present (Real_Range_Specification (Def)) then
18514 Set_Scalar_Range (T, Real_Range_Specification (Def));
18515 Set_Is_Constrained (T);
18517 Convert_Bound (Type_Low_Bound (T));
18518 Convert_Bound (Type_High_Bound (T));
18520 else
18521 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
18522 end if;
18524 -- Complete definition of implicit base and declared first subtype. The
18525 -- inheritance of the rep item chain ensures that SPARK-related pragmas
18526 -- are not clobbered when the floating point type acts as a full view of
18527 -- a private type.
18529 Set_Etype (Implicit_Base, Base_Typ);
18530 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
18531 Set_Size_Info (Implicit_Base, Base_Typ);
18532 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
18533 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
18534 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
18535 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
18537 Mutate_Ekind (T, E_Floating_Point_Subtype);
18538 Set_Etype (T, Implicit_Base);
18539 Set_Size_Info (T, Implicit_Base);
18540 Set_RM_Size (T, RM_Size (Implicit_Base));
18541 Inherit_Rep_Item_Chain (T, Implicit_Base);
18543 if Digs_Val >= Uint_1 then
18544 Set_Digits_Value (T, Digs_Val);
18545 else
18546 pragma Assert (Serious_Errors_Detected > 0); null;
18547 end if;
18548 end Floating_Point_Type_Declaration;
18550 ----------------------------
18551 -- Get_Discriminant_Value --
18552 ----------------------------
18554 -- This is the situation:
18556 -- There is a non-derived type
18558 -- type T0 (Dx, Dy, Dz...)
18560 -- There are zero or more levels of derivation, with each derivation
18561 -- either purely inheriting the discriminants, or defining its own.
18563 -- type Ti is new Ti-1
18564 -- or
18565 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
18566 -- or
18567 -- subtype Ti is ...
18569 -- The subtype issue is avoided by the use of Original_Record_Component,
18570 -- and the fact that derived subtypes also derive the constraints.
18572 -- This chain leads back from
18574 -- Typ_For_Constraint
18576 -- Typ_For_Constraint has discriminants, and the value for each
18577 -- discriminant is given by its corresponding Elmt of Constraints.
18579 -- Discriminant is some discriminant in this hierarchy
18581 -- We need to return its value
18583 -- We do this by recursively searching each level, and looking for
18584 -- Discriminant. Once we get to the bottom, we start backing up
18585 -- returning the value for it which may in turn be a discriminant
18586 -- further up, so on the backup we continue the substitution.
18588 function Get_Discriminant_Value
18589 (Discriminant : Entity_Id;
18590 Typ_For_Constraint : Entity_Id;
18591 Constraint : Elist_Id) return Node_Id
18593 function Root_Corresponding_Discriminant
18594 (Discr : Entity_Id) return Entity_Id;
18595 -- Given a discriminant, traverse the chain of inherited discriminants
18596 -- and return the topmost discriminant.
18598 function Search_Derivation_Levels
18599 (Ti : Entity_Id;
18600 Discrim_Values : Elist_Id;
18601 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
18602 -- This is the routine that performs the recursive search of levels
18603 -- as described above.
18605 -------------------------------------
18606 -- Root_Corresponding_Discriminant --
18607 -------------------------------------
18609 function Root_Corresponding_Discriminant
18610 (Discr : Entity_Id) return Entity_Id
18612 D : Entity_Id;
18614 begin
18615 D := Discr;
18616 while Present (Corresponding_Discriminant (D)) loop
18617 D := Corresponding_Discriminant (D);
18618 end loop;
18620 return D;
18621 end Root_Corresponding_Discriminant;
18623 ------------------------------
18624 -- Search_Derivation_Levels --
18625 ------------------------------
18627 function Search_Derivation_Levels
18628 (Ti : Entity_Id;
18629 Discrim_Values : Elist_Id;
18630 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
18632 Assoc : Elmt_Id;
18633 Disc : Entity_Id;
18634 Result : Node_Or_Entity_Id;
18635 Result_Entity : Node_Id;
18637 begin
18638 -- If inappropriate type, return Error, this happens only in
18639 -- cascaded error situations, and we want to avoid a blow up.
18641 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
18642 return Error;
18643 end if;
18645 -- Look deeper if possible. Use Stored_Constraints only for
18646 -- untagged types. For tagged types use the given constraint.
18647 -- This asymmetry needs explanation???
18649 if not Stored_Discrim_Values
18650 and then Present (Stored_Constraint (Ti))
18651 and then not Is_Tagged_Type (Ti)
18652 then
18653 Result :=
18654 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
18656 else
18657 declare
18658 Td : Entity_Id := Etype (Ti);
18660 begin
18661 -- If the parent type is private, the full view may include
18662 -- renamed discriminants, and it is those stored values that
18663 -- may be needed (the partial view never has more information
18664 -- than the full view).
18666 if Is_Private_Type (Td) and then Present (Full_View (Td)) then
18667 Td := Full_View (Td);
18668 end if;
18670 if Td = Ti then
18671 Result := Discriminant;
18673 else
18674 if Present (Stored_Constraint (Ti)) then
18675 Result :=
18676 Search_Derivation_Levels
18677 (Td, Stored_Constraint (Ti), True);
18678 else
18679 Result :=
18680 Search_Derivation_Levels
18681 (Td, Discrim_Values, Stored_Discrim_Values);
18682 end if;
18683 end if;
18684 end;
18685 end if;
18687 -- Extra underlying places to search, if not found above. For
18688 -- concurrent types, the relevant discriminant appears in the
18689 -- corresponding record. For a type derived from a private type
18690 -- without discriminant, the full view inherits the discriminants
18691 -- of the full view of the parent.
18693 if Result = Discriminant then
18694 if Is_Concurrent_Type (Ti)
18695 and then Present (Corresponding_Record_Type (Ti))
18696 then
18697 Result :=
18698 Search_Derivation_Levels (
18699 Corresponding_Record_Type (Ti),
18700 Discrim_Values,
18701 Stored_Discrim_Values);
18703 elsif Is_Private_Type (Ti)
18704 and then not Has_Discriminants (Ti)
18705 and then Present (Full_View (Ti))
18706 and then Etype (Full_View (Ti)) /= Ti
18707 then
18708 Result :=
18709 Search_Derivation_Levels (
18710 Full_View (Ti),
18711 Discrim_Values,
18712 Stored_Discrim_Values);
18713 end if;
18714 end if;
18716 -- If Result is not a (reference to a) discriminant, return it,
18717 -- otherwise set Result_Entity to the discriminant.
18719 if Nkind (Result) = N_Defining_Identifier then
18720 pragma Assert (Result = Discriminant);
18721 Result_Entity := Result;
18723 else
18724 if not Denotes_Discriminant (Result) then
18725 return Result;
18726 end if;
18728 Result_Entity := Entity (Result);
18729 end if;
18731 -- See if this level of derivation actually has discriminants because
18732 -- tagged derivations can add them, hence the lower levels need not
18733 -- have any.
18735 if not Has_Discriminants (Ti) then
18736 return Result;
18737 end if;
18739 -- Scan Ti's discriminants for Result_Entity, and return its
18740 -- corresponding value, if any.
18742 Result_Entity := Original_Record_Component (Result_Entity);
18744 Assoc := First_Elmt (Discrim_Values);
18746 if Stored_Discrim_Values then
18747 Disc := First_Stored_Discriminant (Ti);
18748 else
18749 Disc := First_Discriminant (Ti);
18750 end if;
18752 while Present (Disc) loop
18754 -- If no further associations return the discriminant, value will
18755 -- be found on the second pass.
18757 if No (Assoc) then
18758 return Result;
18759 end if;
18761 if Original_Record_Component (Disc) = Result_Entity then
18762 return Node (Assoc);
18763 end if;
18765 Next_Elmt (Assoc);
18767 if Stored_Discrim_Values then
18768 Next_Stored_Discriminant (Disc);
18769 else
18770 Next_Discriminant (Disc);
18771 end if;
18772 end loop;
18774 -- Could not find it
18776 return Result;
18777 end Search_Derivation_Levels;
18779 -- Local Variables
18781 Result : Node_Or_Entity_Id;
18783 -- Start of processing for Get_Discriminant_Value
18785 begin
18786 -- ??? This routine is a gigantic mess and will be deleted. For the
18787 -- time being just test for the trivial case before calling recurse.
18789 -- We are now celebrating the 20th anniversary of this comment!
18791 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
18792 declare
18793 D : Entity_Id;
18794 E : Elmt_Id;
18796 begin
18797 D := First_Discriminant (Typ_For_Constraint);
18798 E := First_Elmt (Constraint);
18799 while Present (D) loop
18800 if Chars (D) = Chars (Discriminant) then
18801 return Node (E);
18802 end if;
18804 Next_Discriminant (D);
18805 Next_Elmt (E);
18806 end loop;
18807 end;
18808 end if;
18810 Result := Search_Derivation_Levels
18811 (Typ_For_Constraint, Constraint, False);
18813 -- ??? hack to disappear when this routine is gone
18815 if Nkind (Result) = N_Defining_Identifier then
18816 declare
18817 D : Entity_Id;
18818 E : Elmt_Id;
18820 begin
18821 D := First_Discriminant (Typ_For_Constraint);
18822 E := First_Elmt (Constraint);
18823 while Present (D) loop
18824 if Root_Corresponding_Discriminant (D) = Discriminant then
18825 return Node (E);
18826 end if;
18828 Next_Discriminant (D);
18829 Next_Elmt (E);
18830 end loop;
18831 end;
18832 end if;
18834 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
18835 return Result;
18836 end Get_Discriminant_Value;
18838 --------------------------
18839 -- Has_Range_Constraint --
18840 --------------------------
18842 function Has_Range_Constraint (N : Node_Id) return Boolean is
18843 C : constant Node_Id := Constraint (N);
18845 begin
18846 if Nkind (C) = N_Range_Constraint then
18847 return True;
18849 elsif Nkind (C) = N_Digits_Constraint then
18850 return
18851 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
18852 or else Present (Range_Constraint (C));
18854 elsif Nkind (C) = N_Delta_Constraint then
18855 return Present (Range_Constraint (C));
18857 else
18858 return False;
18859 end if;
18860 end Has_Range_Constraint;
18862 ------------------------
18863 -- Inherit_Components --
18864 ------------------------
18866 function Inherit_Components
18867 (N : Node_Id;
18868 Parent_Base : Entity_Id;
18869 Derived_Base : Entity_Id;
18870 Is_Tagged : Boolean;
18871 Inherit_Discr : Boolean;
18872 Discs : Elist_Id) return Elist_Id
18874 Assoc_List : constant Elist_Id := New_Elmt_List;
18876 procedure Inherit_Component
18877 (Old_C : Entity_Id;
18878 Plain_Discrim : Boolean := False;
18879 Stored_Discrim : Boolean := False);
18880 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18881 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18882 -- True, Old_C is a stored discriminant. If they are both false then
18883 -- Old_C is a regular component.
18885 -----------------------
18886 -- Inherit_Component --
18887 -----------------------
18889 procedure Inherit_Component
18890 (Old_C : Entity_Id;
18891 Plain_Discrim : Boolean := False;
18892 Stored_Discrim : Boolean := False)
18894 procedure Set_Anonymous_Type (Id : Entity_Id);
18895 -- Id denotes the entity of an access discriminant or anonymous
18896 -- access component. Set the type of Id to either the same type of
18897 -- Old_C or create a new one depending on whether the parent and
18898 -- the child types are in the same scope.
18900 ------------------------
18901 -- Set_Anonymous_Type --
18902 ------------------------
18904 procedure Set_Anonymous_Type (Id : Entity_Id) is
18905 Old_Typ : constant Entity_Id := Etype (Old_C);
18907 begin
18908 if Scope (Parent_Base) = Scope (Derived_Base) then
18909 Set_Etype (Id, Old_Typ);
18911 -- The parent and the derived type are in two different scopes.
18912 -- Reuse the type of the original discriminant / component by
18913 -- copying it in order to preserve all attributes.
18915 else
18916 declare
18917 Typ : constant Entity_Id := New_Copy (Old_Typ);
18919 begin
18920 Set_Etype (Id, Typ);
18922 -- Since we do not generate component declarations for
18923 -- inherited components, associate the itype with the
18924 -- derived type.
18926 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
18927 Set_Scope (Typ, Derived_Base);
18928 end;
18929 end if;
18930 end Set_Anonymous_Type;
18932 -- Local variables and constants
18934 New_C : constant Entity_Id := New_Copy (Old_C);
18936 Corr_Discrim : Entity_Id;
18937 Discrim : Entity_Id;
18939 -- Start of processing for Inherit_Component
18941 begin
18942 pragma Assert (not Is_Tagged or not Stored_Discrim);
18944 Set_Parent (New_C, Parent (Old_C));
18946 -- Regular discriminants and components must be inserted in the scope
18947 -- of the Derived_Base. Do it here.
18949 if not Stored_Discrim then
18950 Enter_Name (New_C);
18951 end if;
18953 -- For tagged types the Original_Record_Component must point to
18954 -- whatever this field was pointing to in the parent type. This has
18955 -- already been achieved by the call to New_Copy above.
18957 if not Is_Tagged then
18958 Set_Original_Record_Component (New_C, New_C);
18959 Set_Corresponding_Record_Component (New_C, Old_C);
18960 end if;
18962 -- Set the proper type of an access discriminant
18964 if Ekind (New_C) = E_Discriminant
18965 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
18966 then
18967 Set_Anonymous_Type (New_C);
18968 end if;
18970 -- If we have inherited a component then see if its Etype contains
18971 -- references to Parent_Base discriminants. In this case, replace
18972 -- these references with the constraints given in Discs. We do not
18973 -- do this for the partial view of private types because this is
18974 -- not needed (only the components of the full view will be used
18975 -- for code generation) and cause problem. We also avoid this
18976 -- transformation in some error situations.
18978 if Ekind (New_C) = E_Component then
18980 -- Set the proper type of an anonymous access component
18982 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
18983 Set_Anonymous_Type (New_C);
18985 elsif (Is_Private_Type (Derived_Base)
18986 and then not Is_Generic_Type (Derived_Base))
18987 or else (Is_Empty_Elmt_List (Discs)
18988 and then not Expander_Active)
18989 then
18990 Set_Etype (New_C, Etype (Old_C));
18992 else
18993 -- The current component introduces a circularity of the
18994 -- following kind:
18996 -- limited with Pack_2;
18997 -- package Pack_1 is
18998 -- type T_1 is tagged record
18999 -- Comp : access Pack_2.T_2;
19000 -- ...
19001 -- end record;
19002 -- end Pack_1;
19004 -- with Pack_1;
19005 -- package Pack_2 is
19006 -- type T_2 is new Pack_1.T_1 with ...;
19007 -- end Pack_2;
19009 Set_Etype
19010 (New_C,
19011 Constrain_Component_Type
19012 (Old_C, Derived_Base, N, Parent_Base, Discs));
19013 end if;
19014 end if;
19016 -- In derived tagged types it is illegal to reference a non
19017 -- discriminant component in the parent type. To catch this, mark
19018 -- these components with an Ekind of E_Void. This will be reset in
19019 -- Record_Type_Definition after processing the record extension of
19020 -- the derived type.
19022 -- If the declaration is a private extension, there is no further
19023 -- record extension to process, and the components retain their
19024 -- current kind, because they are visible at this point.
19026 if Is_Tagged and then Ekind (New_C) = E_Component
19027 and then Nkind (N) /= N_Private_Extension_Declaration
19028 then
19029 Mutate_Ekind (New_C, E_Void);
19030 end if;
19032 if Plain_Discrim then
19033 Set_Corresponding_Discriminant (New_C, Old_C);
19034 Build_Discriminal (New_C);
19036 -- If we are explicitly inheriting a stored discriminant it will be
19037 -- completely hidden.
19039 elsif Stored_Discrim then
19040 Set_Corresponding_Discriminant (New_C, Empty);
19041 Set_Discriminal (New_C, Empty);
19042 Set_Is_Completely_Hidden (New_C);
19044 -- Set the Original_Record_Component of each discriminant in the
19045 -- derived base to point to the corresponding stored that we just
19046 -- created.
19048 Discrim := First_Discriminant (Derived_Base);
19049 while Present (Discrim) loop
19050 Corr_Discrim := Corresponding_Discriminant (Discrim);
19052 -- Corr_Discrim could be missing in an error situation
19054 if Present (Corr_Discrim)
19055 and then Original_Record_Component (Corr_Discrim) = Old_C
19056 then
19057 Set_Original_Record_Component (Discrim, New_C);
19058 Set_Corresponding_Record_Component (Discrim, Empty);
19059 end if;
19061 Next_Discriminant (Discrim);
19062 end loop;
19064 Append_Entity (New_C, Derived_Base);
19065 end if;
19067 if not Is_Tagged then
19068 Append_Elmt (Old_C, Assoc_List);
19069 Append_Elmt (New_C, Assoc_List);
19070 end if;
19071 end Inherit_Component;
19073 -- Variables local to Inherit_Component
19075 Loc : constant Source_Ptr := Sloc (N);
19077 Parent_Discrim : Entity_Id;
19078 Stored_Discrim : Entity_Id;
19079 D : Entity_Id;
19080 Component : Entity_Id;
19082 -- Start of processing for Inherit_Components
19084 begin
19085 if not Is_Tagged then
19086 Append_Elmt (Parent_Base, Assoc_List);
19087 Append_Elmt (Derived_Base, Assoc_List);
19088 end if;
19090 -- Inherit parent discriminants if needed
19092 if Inherit_Discr then
19093 Parent_Discrim := First_Discriminant (Parent_Base);
19094 while Present (Parent_Discrim) loop
19095 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
19096 Next_Discriminant (Parent_Discrim);
19097 end loop;
19098 end if;
19100 -- Create explicit stored discrims for untagged types when necessary
19102 if not Has_Unknown_Discriminants (Derived_Base)
19103 and then Has_Discriminants (Parent_Base)
19104 and then not Is_Tagged
19105 and then
19106 (not Inherit_Discr
19107 or else First_Discriminant (Parent_Base) /=
19108 First_Stored_Discriminant (Parent_Base))
19109 then
19110 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
19111 while Present (Stored_Discrim) loop
19112 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
19113 Next_Stored_Discriminant (Stored_Discrim);
19114 end loop;
19115 end if;
19117 -- See if we can apply the second transformation for derived types, as
19118 -- explained in point 6. in the comments above Build_Derived_Record_Type
19119 -- This is achieved by appending Derived_Base discriminants into Discs,
19120 -- which has the side effect of returning a non empty Discs list to the
19121 -- caller of Inherit_Components, which is what we want. This must be
19122 -- done for private derived types if there are explicit stored
19123 -- discriminants, to ensure that we can retrieve the values of the
19124 -- constraints provided in the ancestors.
19126 if Inherit_Discr
19127 and then Is_Empty_Elmt_List (Discs)
19128 and then Present (First_Discriminant (Derived_Base))
19129 and then
19130 (not Is_Private_Type (Derived_Base)
19131 or else Is_Completely_Hidden
19132 (First_Stored_Discriminant (Derived_Base))
19133 or else Is_Generic_Type (Derived_Base))
19134 then
19135 D := First_Discriminant (Derived_Base);
19136 while Present (D) loop
19137 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
19138 Next_Discriminant (D);
19139 end loop;
19140 end if;
19142 -- Finally, inherit non-discriminant components unless they are not
19143 -- visible because defined or inherited from the full view of the
19144 -- parent. Don't inherit the _parent field of the parent type.
19146 Component := First_Entity (Parent_Base);
19147 while Present (Component) loop
19149 -- Ada 2005 (AI-251): Do not inherit components associated with
19150 -- secondary tags of the parent.
19152 if Ekind (Component) = E_Component
19153 and then Present (Related_Type (Component))
19154 then
19155 null;
19157 elsif Ekind (Component) /= E_Component
19158 or else Chars (Component) = Name_uParent
19159 then
19160 null;
19162 -- If the derived type is within the parent type's declarative
19163 -- region, then the components can still be inherited even though
19164 -- they aren't visible at this point. This can occur for cases
19165 -- such as within public child units where the components must
19166 -- become visible upon entering the child unit's private part.
19168 elsif not Is_Visible_Component (Component)
19169 and then not In_Open_Scopes (Scope (Parent_Base))
19170 then
19171 null;
19173 elsif Ekind (Derived_Base) in E_Private_Type | E_Limited_Private_Type
19174 then
19175 null;
19177 else
19178 Inherit_Component (Component);
19179 end if;
19181 Next_Entity (Component);
19182 end loop;
19184 -- For tagged derived types, inherited discriminants cannot be used in
19185 -- component declarations of the record extension part. To achieve this
19186 -- we mark the inherited discriminants as not visible.
19188 if Is_Tagged and then Inherit_Discr then
19189 D := First_Discriminant (Derived_Base);
19190 while Present (D) loop
19191 Set_Is_Immediately_Visible (D, False);
19192 Next_Discriminant (D);
19193 end loop;
19194 end if;
19196 return Assoc_List;
19197 end Inherit_Components;
19199 ----------------------
19200 -- Is_EVF_Procedure --
19201 ----------------------
19203 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
19204 Formal : Entity_Id;
19206 begin
19207 -- Examine the formals of an Extensions_Visible False procedure looking
19208 -- for a controlling OUT parameter.
19210 if Ekind (Subp) = E_Procedure
19211 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
19212 then
19213 Formal := First_Formal (Subp);
19214 while Present (Formal) loop
19215 if Ekind (Formal) = E_Out_Parameter
19216 and then Is_Controlling_Formal (Formal)
19217 then
19218 return True;
19219 end if;
19221 Next_Formal (Formal);
19222 end loop;
19223 end if;
19225 return False;
19226 end Is_EVF_Procedure;
19228 --------------------------
19229 -- Is_Private_Primitive --
19230 --------------------------
19232 function Is_Private_Primitive (Prim : Entity_Id) return Boolean is
19233 Prim_Scope : constant Entity_Id := Scope (Prim);
19234 Priv_Entity : Entity_Id;
19235 begin
19236 if Is_Package_Or_Generic_Package (Prim_Scope) then
19237 Priv_Entity := First_Private_Entity (Prim_Scope);
19239 while Present (Priv_Entity) loop
19240 if Priv_Entity = Prim then
19241 return True;
19242 end if;
19244 Next_Entity (Priv_Entity);
19245 end loop;
19246 end if;
19248 return False;
19249 end Is_Private_Primitive;
19251 ------------------------------
19252 -- Is_Valid_Constraint_Kind --
19253 ------------------------------
19255 function Is_Valid_Constraint_Kind
19256 (T_Kind : Type_Kind;
19257 Constraint_Kind : Node_Kind) return Boolean
19259 begin
19260 case T_Kind is
19261 when Enumeration_Kind
19262 | Integer_Kind
19264 return Constraint_Kind = N_Range_Constraint;
19266 when Decimal_Fixed_Point_Kind =>
19267 return Constraint_Kind in N_Digits_Constraint | N_Range_Constraint;
19269 when Ordinary_Fixed_Point_Kind =>
19270 return Constraint_Kind in N_Delta_Constraint | N_Range_Constraint;
19272 when Float_Kind =>
19273 return Constraint_Kind in N_Digits_Constraint | N_Range_Constraint;
19275 when Access_Kind
19276 | Array_Kind
19277 | Class_Wide_Kind
19278 | Concurrent_Kind
19279 | Private_Kind
19280 | E_Incomplete_Type
19281 | E_Record_Subtype
19282 | E_Record_Type
19284 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
19286 when others =>
19287 return True; -- Error will be detected later
19288 end case;
19289 end Is_Valid_Constraint_Kind;
19291 --------------------------
19292 -- Is_Visible_Component --
19293 --------------------------
19295 function Is_Visible_Component
19296 (C : Entity_Id;
19297 N : Node_Id := Empty) return Boolean
19299 Original_Comp : Entity_Id := Empty;
19300 Original_Type : Entity_Id;
19301 Type_Scope : Entity_Id;
19303 function Is_Local_Type (Typ : Entity_Id) return Boolean;
19304 -- Check whether parent type of inherited component is declared locally,
19305 -- possibly within a nested package or instance. The current scope is
19306 -- the derived record itself.
19308 -------------------
19309 -- Is_Local_Type --
19310 -------------------
19312 function Is_Local_Type (Typ : Entity_Id) return Boolean is
19313 begin
19314 return Scope_Within (Inner => Typ, Outer => Scope (Current_Scope));
19315 end Is_Local_Type;
19317 -- Start of processing for Is_Visible_Component
19319 begin
19320 if Ekind (C) in E_Component | E_Discriminant then
19321 Original_Comp := Original_Record_Component (C);
19322 end if;
19324 if No (Original_Comp) then
19326 -- Premature usage, or previous error
19328 return False;
19330 else
19331 Original_Type := Scope (Original_Comp);
19332 Type_Scope := Scope (Base_Type (Scope (C)));
19333 end if;
19335 -- This test only concerns tagged types
19337 if not Is_Tagged_Type (Original_Type) then
19339 -- Check if this is a renamed discriminant (hidden either by the
19340 -- derived type or by some ancestor), unless we are analyzing code
19341 -- generated by the expander since it may reference such components
19342 -- (for example see the expansion of Deep_Adjust).
19344 if Ekind (C) = E_Discriminant and then Present (N) then
19345 return
19346 not Comes_From_Source (N)
19347 or else not Is_Completely_Hidden (C);
19348 else
19349 return True;
19350 end if;
19352 -- If it is _Parent or _Tag, there is no visibility issue
19354 elsif not Comes_From_Source (Original_Comp) then
19355 return True;
19357 -- Discriminants are visible unless the (private) type has unknown
19358 -- discriminants. If the discriminant reference is inserted for a
19359 -- discriminant check on a full view it is also visible.
19361 elsif Ekind (Original_Comp) = E_Discriminant
19362 and then
19363 (not Has_Unknown_Discriminants (Original_Type)
19364 or else (Present (N)
19365 and then Nkind (N) = N_Selected_Component
19366 and then Nkind (Prefix (N)) = N_Type_Conversion
19367 and then not Comes_From_Source (Prefix (N))))
19368 then
19369 return True;
19371 -- If the component has been declared in an ancestor which is currently
19372 -- a private type, then it is not visible. The same applies if the
19373 -- component's containing type is not in an open scope and the original
19374 -- component's enclosing type is a visible full view of a private type
19375 -- (which can occur in cases where an attempt is being made to reference
19376 -- a component in a sibling package that is inherited from a visible
19377 -- component of a type in an ancestor package; the component in the
19378 -- sibling package should not be visible even though the component it
19379 -- inherited from is visible), but instance bodies are not subject to
19380 -- this second case since they have the Has_Private_View mechanism to
19381 -- ensure proper visibility. This does not apply however in the case
19382 -- where the scope of the type is a private child unit, or when the
19383 -- parent comes from a local package in which the ancestor is currently
19384 -- visible. The latter suppression of visibility is needed for cases
19385 -- that are tested in B730006.
19387 elsif Is_Private_Type (Original_Type)
19388 or else
19389 (not Is_Private_Descendant (Type_Scope)
19390 and then not In_Open_Scopes (Type_Scope)
19391 and then Has_Private_Declaration (Original_Type)
19392 and then not In_Instance_Body)
19393 then
19394 -- If the type derives from an entity in a formal package, there
19395 -- are no additional visible components.
19397 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
19398 N_Formal_Package_Declaration
19399 then
19400 return False;
19402 -- if we are not in the private part of the current package, there
19403 -- are no additional visible components.
19405 elsif Ekind (Scope (Current_Scope)) = E_Package
19406 and then not In_Private_Part (Scope (Current_Scope))
19407 then
19408 return False;
19409 else
19410 return
19411 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
19412 and then In_Open_Scopes (Scope (Original_Type))
19413 and then Is_Local_Type (Type_Scope);
19414 end if;
19416 -- There is another weird way in which a component may be invisible when
19417 -- the private and the full view are not derived from the same ancestor.
19418 -- Here is an example :
19420 -- type A1 is tagged record F1 : integer; end record;
19421 -- type A2 is new A1 with record F2 : integer; end record;
19422 -- type T is new A1 with private;
19423 -- private
19424 -- type T is new A2 with null record;
19426 -- In this case, the full view of T inherits F1 and F2 but the private
19427 -- view inherits only F1
19429 else
19430 declare
19431 Ancestor : Entity_Id := Scope (C);
19433 begin
19434 loop
19435 if Ancestor = Original_Type then
19436 return True;
19438 -- The ancestor may have a partial view of the original type,
19439 -- but if the full view is in scope, as in a child body, the
19440 -- component is visible.
19442 elsif In_Private_Part (Scope (Original_Type))
19443 and then Full_View (Ancestor) = Original_Type
19444 then
19445 return True;
19447 elsif Ancestor = Etype (Ancestor) then
19449 -- No further ancestors to examine
19451 return False;
19452 end if;
19454 Ancestor := Etype (Ancestor);
19455 end loop;
19456 end;
19457 end if;
19458 end Is_Visible_Component;
19460 --------------------------
19461 -- Make_Class_Wide_Type --
19462 --------------------------
19464 procedure Make_Class_Wide_Type (T : Entity_Id) is
19465 CW_Type : Entity_Id;
19466 CW_Name : Name_Id;
19467 Next_E : Entity_Id;
19468 Prev_E : Entity_Id;
19470 begin
19471 if Present (Class_Wide_Type (T)) then
19473 -- The class-wide type is a partially decorated entity created for a
19474 -- unanalyzed tagged type referenced through a limited with clause.
19475 -- When the tagged type is analyzed, its class-wide type needs to be
19476 -- redecorated. Note that we reuse the entity created by Decorate_
19477 -- Tagged_Type in order to preserve all links.
19479 if Materialize_Entity (Class_Wide_Type (T)) then
19480 CW_Type := Class_Wide_Type (T);
19481 Set_Materialize_Entity (CW_Type, False);
19483 -- The class wide type can have been defined by the partial view, in
19484 -- which case everything is already done.
19486 else
19487 return;
19488 end if;
19490 -- Default case, we need to create a new class-wide type
19492 else
19493 CW_Type :=
19494 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
19495 end if;
19497 -- Inherit root type characteristics
19499 CW_Name := Chars (CW_Type);
19500 Next_E := Next_Entity (CW_Type);
19501 Prev_E := Prev_Entity (CW_Type);
19502 Copy_Node (T, CW_Type);
19503 Set_Comes_From_Source (CW_Type, False);
19504 Set_Chars (CW_Type, CW_Name);
19505 Set_Parent (CW_Type, Parent (T));
19506 Set_Prev_Entity (CW_Type, Prev_E);
19507 Set_Next_Entity (CW_Type, Next_E);
19509 -- Ensure we have a new freeze node for the class-wide type. The partial
19510 -- view may have freeze action of its own, requiring a proper freeze
19511 -- node, and the same freeze node cannot be shared between the two
19512 -- types.
19514 Set_Has_Delayed_Freeze (CW_Type);
19515 Set_Freeze_Node (CW_Type, Empty);
19517 -- Customize the class-wide type: It has no prim. op., it cannot be
19518 -- abstract, its Etype points back to the specific root type, and it
19519 -- cannot have any invariants.
19521 if Ekind (CW_Type) in Incomplete_Or_Private_Kind then
19522 Reinit_Field_To_Zero (CW_Type, F_Private_Dependents);
19524 elsif Ekind (CW_Type) in Concurrent_Kind then
19525 Reinit_Field_To_Zero (CW_Type, F_First_Private_Entity);
19526 Reinit_Field_To_Zero (CW_Type, F_Scope_Depth_Value);
19528 if Ekind (CW_Type) in Task_Kind then
19529 Reinit_Field_To_Zero (CW_Type, F_Is_Elaboration_Checks_OK_Id);
19530 Reinit_Field_To_Zero (CW_Type, F_Is_Elaboration_Warnings_OK_Id);
19531 end if;
19533 if Ekind (CW_Type) in E_Task_Type | E_Protected_Type then
19534 Reinit_Field_To_Zero (CW_Type, F_SPARK_Aux_Pragma_Inherited);
19535 end if;
19536 end if;
19538 Mutate_Ekind (CW_Type, E_Class_Wide_Type);
19539 Set_Is_Tagged_Type (CW_Type, True);
19540 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
19541 Set_Is_Abstract_Type (CW_Type, False);
19542 Set_Is_Constrained (CW_Type, False);
19543 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
19544 Set_Default_SSO (CW_Type);
19545 Set_Has_Inheritable_Invariants (CW_Type, False);
19546 Set_Has_Inherited_Invariants (CW_Type, False);
19547 Set_Has_Own_Invariants (CW_Type, False);
19549 if Ekind (T) = E_Class_Wide_Subtype then
19550 Set_Etype (CW_Type, Etype (Base_Type (T)));
19551 else
19552 Set_Etype (CW_Type, T);
19553 end if;
19555 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
19557 -- If this is the class_wide type of a constrained subtype, it does
19558 -- not have discriminants.
19560 Set_Has_Discriminants (CW_Type,
19561 Has_Discriminants (T) and then not Is_Constrained (T));
19563 Set_Has_Unknown_Discriminants (CW_Type, True);
19564 Set_Class_Wide_Type (T, CW_Type);
19565 Set_Equivalent_Type (CW_Type, Empty);
19567 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
19569 Set_Class_Wide_Type (CW_Type, CW_Type);
19570 end Make_Class_Wide_Type;
19572 ----------------
19573 -- Make_Index --
19574 ----------------
19576 procedure Make_Index
19577 (N : Node_Id;
19578 Related_Nod : Node_Id;
19579 Related_Id : Entity_Id := Empty;
19580 Suffix_Index : Pos := 1)
19582 R : Node_Id;
19583 T : Entity_Id;
19584 Def_Id : Entity_Id := Empty;
19585 Found : Boolean := False;
19587 begin
19588 -- For a discrete range used in a constrained array definition and
19589 -- defined by a range, an implicit conversion to the predefined type
19590 -- INTEGER is assumed if each bound is either a numeric literal, a named
19591 -- number, or an attribute, and the type of both bounds (prior to the
19592 -- implicit conversion) is the type universal_integer. Otherwise, both
19593 -- bounds must be of the same discrete type, other than universal
19594 -- integer; this type must be determinable independently of the
19595 -- context, but using the fact that the type must be discrete and that
19596 -- both bounds must have the same type.
19598 -- Character literals also have a universal type in the absence of
19599 -- of additional context, and are resolved to Standard_Character.
19601 if Nkind (N) = N_Range then
19603 -- The index is given by a range constraint. The bounds are known
19604 -- to be of a consistent type.
19606 if not Is_Overloaded (N) then
19607 T := Etype (N);
19609 -- For universal bounds, choose the specific predefined type
19611 if T = Universal_Integer then
19612 T := Standard_Integer;
19614 elsif T = Any_Character then
19615 Ambiguous_Character (Low_Bound (N));
19617 T := Standard_Character;
19618 end if;
19620 -- The node may be overloaded because some user-defined operators
19621 -- are available, but if a universal interpretation exists it is
19622 -- also the selected one.
19624 elsif Universal_Interpretation (N) = Universal_Integer then
19625 T := Standard_Integer;
19627 else
19628 T := Any_Type;
19630 declare
19631 Ind : Interp_Index;
19632 It : Interp;
19634 begin
19635 Get_First_Interp (N, Ind, It);
19636 while Present (It.Typ) loop
19637 if Is_Discrete_Type (It.Typ) then
19639 if Found
19640 and then not Covers (It.Typ, T)
19641 and then not Covers (T, It.Typ)
19642 then
19643 Error_Msg_N ("ambiguous bounds in discrete range", N);
19644 exit;
19645 else
19646 T := It.Typ;
19647 Found := True;
19648 end if;
19649 end if;
19651 Get_Next_Interp (Ind, It);
19652 end loop;
19654 if T = Any_Type then
19655 Error_Msg_N ("discrete type required for range", N);
19656 Set_Etype (N, Any_Type);
19657 return;
19659 elsif T = Universal_Integer then
19660 T := Standard_Integer;
19661 end if;
19662 end;
19663 end if;
19665 if not Is_Discrete_Type (T) then
19666 Error_Msg_N ("discrete type required for range", N);
19667 Set_Etype (N, Any_Type);
19668 return;
19669 end if;
19671 -- If the range bounds are "T'First .. T'Last" where T is a name of a
19672 -- discrete type, then use T as the type of the index.
19674 if Nkind (Low_Bound (N)) = N_Attribute_Reference
19675 and then Attribute_Name (Low_Bound (N)) = Name_First
19676 and then Is_Entity_Name (Prefix (Low_Bound (N)))
19677 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
19679 and then Nkind (High_Bound (N)) = N_Attribute_Reference
19680 and then Attribute_Name (High_Bound (N)) = Name_Last
19681 and then Is_Entity_Name (Prefix (High_Bound (N)))
19682 and then Entity (Prefix (High_Bound (N))) = Def_Id
19683 then
19684 Def_Id := Entity (Prefix (Low_Bound (N)));
19685 end if;
19687 R := N;
19688 Process_Range_Expr_In_Decl (R, T);
19690 elsif Nkind (N) = N_Subtype_Indication then
19692 -- The index is given by a subtype with a range constraint
19694 T := Base_Type (Entity (Subtype_Mark (N)));
19696 if not Is_Discrete_Type (T) then
19697 Error_Msg_N ("discrete type required for range", N);
19698 Set_Etype (N, Any_Type);
19699 return;
19700 end if;
19702 R := Range_Expression (Constraint (N));
19704 Resolve (R, T);
19705 Process_Range_Expr_In_Decl (R, Entity (Subtype_Mark (N)));
19707 elsif Nkind (N) = N_Attribute_Reference then
19709 -- Catch beginner's error (use of attribute other than 'Range)
19711 if Attribute_Name (N) /= Name_Range then
19712 Error_Msg_N ("expect attribute ''Range", N);
19713 Set_Etype (N, Any_Type);
19714 return;
19715 end if;
19717 -- If the node denotes the range of a type mark, that is also the
19718 -- resulting type, and we do not need to create an Itype for it.
19720 if Is_Entity_Name (Prefix (N))
19721 and then Comes_From_Source (N)
19722 and then Is_Discrete_Type (Entity (Prefix (N)))
19723 then
19724 Def_Id := Entity (Prefix (N));
19725 end if;
19727 Analyze_And_Resolve (N);
19728 T := Etype (N);
19729 R := N;
19731 -- If none of the above, must be a subtype. We convert this to a
19732 -- range attribute reference because in the case of declared first
19733 -- named subtypes, the types in the range reference can be different
19734 -- from the type of the entity. A range attribute normalizes the
19735 -- reference and obtains the correct types for the bounds.
19737 -- This transformation is in the nature of an expansion, is only
19738 -- done if expansion is active. In particular, it is not done on
19739 -- formal generic types, because we need to retain the name of the
19740 -- original index for instantiation purposes.
19742 else
19743 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
19744 Error_Msg_N ("invalid subtype mark in discrete range", N);
19745 Set_Etype (N, Any_Integer);
19746 return;
19748 else
19749 -- The type mark may be that of an incomplete type. It is only
19750 -- now that we can get the full view, previous analysis does
19751 -- not look specifically for a type mark.
19753 Set_Entity (N, Get_Full_View (Entity (N)));
19754 Set_Etype (N, Entity (N));
19755 Def_Id := Entity (N);
19757 if not Is_Discrete_Type (Def_Id) then
19758 Error_Msg_N ("discrete type required for index", N);
19759 Set_Etype (N, Any_Type);
19760 return;
19761 end if;
19762 end if;
19764 if Expander_Active then
19765 Rewrite (N,
19766 Make_Attribute_Reference (Sloc (N),
19767 Attribute_Name => Name_Range,
19768 Prefix => Relocate_Node (N)));
19770 -- The original was a subtype mark that does not freeze. This
19771 -- means that the rewritten version must not freeze either.
19773 Set_Must_Not_Freeze (N);
19774 Set_Must_Not_Freeze (Prefix (N));
19775 Analyze_And_Resolve (N);
19776 T := Etype (N);
19777 R := N;
19779 -- If expander is inactive, type is legal, nothing else to construct
19781 else
19782 return;
19783 end if;
19784 end if;
19786 if not Is_Discrete_Type (T) then
19787 Error_Msg_N ("discrete type required for range", N);
19788 Set_Etype (N, Any_Type);
19789 return;
19791 elsif T = Any_Type then
19792 Set_Etype (N, Any_Type);
19793 return;
19794 end if;
19796 -- We will now create the appropriate Itype to describe the range, but
19797 -- first a check. If we originally had a subtype, then we just label
19798 -- the range with this subtype. Not only is there no need to construct
19799 -- a new subtype, but it is wrong to do so for two reasons:
19801 -- 1. A legality concern, if we have a subtype, it must not freeze,
19802 -- and the Itype would cause freezing incorrectly
19804 -- 2. An efficiency concern, if we created an Itype, it would not be
19805 -- recognized as the same type for the purposes of eliminating
19806 -- checks in some circumstances.
19808 -- We signal this case by setting the subtype entity in Def_Id
19810 if No (Def_Id) then
19811 Def_Id :=
19812 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
19813 Set_Etype (Def_Id, Base_Type (T));
19815 if Is_Signed_Integer_Type (T) then
19816 Mutate_Ekind (Def_Id, E_Signed_Integer_Subtype);
19818 elsif Is_Modular_Integer_Type (T) then
19819 Mutate_Ekind (Def_Id, E_Modular_Integer_Subtype);
19821 else
19822 Mutate_Ekind (Def_Id, E_Enumeration_Subtype);
19823 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
19824 Set_First_Literal (Def_Id, First_Literal (T));
19825 end if;
19827 Set_Size_Info (Def_Id, (T));
19828 Set_RM_Size (Def_Id, RM_Size (T));
19829 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
19831 Set_Scalar_Range (Def_Id, R);
19832 Conditional_Delay (Def_Id, T);
19834 -- In the subtype indication case inherit properties of the parent
19836 if Nkind (N) = N_Subtype_Indication then
19838 -- It is enough to inherit predicate flags and not the predicate
19839 -- functions, because predicates on an index type are illegal
19840 -- anyway and the flags are enough to detect them.
19842 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
19844 -- If the immediate parent of the new subtype is nonstatic, then
19845 -- the subtype we create is nonstatic as well, even if its bounds
19846 -- are static.
19848 if not Is_OK_Static_Subtype (Entity (Subtype_Mark (N))) then
19849 Set_Is_Non_Static_Subtype (Def_Id);
19850 end if;
19851 end if;
19853 Set_Parent (Def_Id, N);
19854 end if;
19856 -- Final step is to label the index with this constructed type
19858 Set_Etype (N, Def_Id);
19859 end Make_Index;
19861 ------------------------------
19862 -- Modular_Type_Declaration --
19863 ------------------------------
19865 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19866 Mod_Expr : constant Node_Id := Expression (Def);
19867 M_Val : Uint;
19869 procedure Set_Modular_Size (Bits : Int);
19870 -- Sets RM_Size to Bits, and Esize to normal word size above this
19872 ----------------------
19873 -- Set_Modular_Size --
19874 ----------------------
19876 procedure Set_Modular_Size (Bits : Int) is
19877 Siz : Int;
19879 begin
19880 Set_RM_Size (T, UI_From_Int (Bits));
19882 if Bits < System_Max_Binary_Modulus_Power then
19883 Siz := 8;
19885 while Siz < 128 loop
19886 exit when Bits <= Siz;
19887 Siz := Siz * 2;
19888 end loop;
19890 Set_Esize (T, UI_From_Int (Siz));
19892 else
19893 Set_Esize (T, UI_From_Int (System_Max_Binary_Modulus_Power));
19894 end if;
19896 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
19897 Set_Is_Known_Valid (T);
19898 end if;
19899 end Set_Modular_Size;
19901 -- Start of processing for Modular_Type_Declaration
19903 begin
19904 -- If the mod expression is (exactly) 2 * literal, where literal is
19905 -- 128 or less, then almost certainly the * was meant to be **. Warn.
19907 if Warn_On_Suspicious_Modulus_Value
19908 and then Nkind (Mod_Expr) = N_Op_Multiply
19909 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
19910 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
19911 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
19912 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_128
19913 then
19914 Error_Msg_N
19915 ("suspicious MOD value, was '*'* intended'??.m?", Mod_Expr);
19916 end if;
19918 -- Proceed with analysis of mod expression
19920 Analyze_And_Resolve (Mod_Expr, Any_Integer);
19922 if Ekind (T) in Incomplete_Or_Private_Kind then
19923 Reinit_Field_To_Zero (T, F_Stored_Constraint);
19924 end if;
19926 Set_Etype (T, T);
19927 Mutate_Ekind (T, E_Modular_Integer_Type);
19928 Reinit_Alignment (T);
19929 Set_Is_Constrained (T);
19931 if not Is_OK_Static_Expression (Mod_Expr) then
19932 Flag_Non_Static_Expr
19933 ("non-static expression used for modular type bound!", Mod_Expr);
19934 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19935 else
19936 M_Val := Expr_Value (Mod_Expr);
19937 end if;
19939 if M_Val < 1 then
19940 Error_Msg_N ("modulus value must be positive", Mod_Expr);
19941 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19942 end if;
19944 if M_Val > 2 ** Standard_Long_Integer_Size then
19945 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
19946 end if;
19948 Set_Modulus (T, M_Val);
19950 -- Create bounds for the modular type based on the modulus given in
19951 -- the type declaration and then analyze and resolve those bounds.
19953 Set_Scalar_Range (T,
19954 Make_Range (Sloc (Mod_Expr),
19955 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
19956 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
19958 -- Properly analyze the literals for the range. We do this manually
19959 -- because we can't go calling Resolve, since we are resolving these
19960 -- bounds with the type, and this type is certainly not complete yet.
19962 Set_Etype (Low_Bound (Scalar_Range (T)), T);
19963 Set_Etype (High_Bound (Scalar_Range (T)), T);
19964 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
19965 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
19967 -- Loop through powers of two to find number of bits required
19969 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
19971 -- Binary case
19973 if M_Val = 2 ** Bits then
19974 Set_Modular_Size (Bits);
19975 return;
19977 -- Nonbinary case
19979 elsif M_Val < 2 ** Bits then
19980 Set_Non_Binary_Modulus (T);
19982 if Bits > System_Max_Nonbinary_Modulus_Power then
19983 Error_Msg_Uint_1 :=
19984 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
19985 Error_Msg_F
19986 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
19987 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19988 return;
19990 else
19991 -- In the nonbinary case, set size as per RM 13.3(55)
19993 Set_Modular_Size (Bits);
19994 return;
19995 end if;
19996 end if;
19998 end loop;
20000 -- If we fall through, then the size exceed System.Max_Binary_Modulus
20001 -- so we just signal an error and set the maximum size.
20003 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
20004 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
20006 Set_Modular_Size (System_Max_Binary_Modulus_Power);
20007 Reinit_Alignment (T);
20009 end Modular_Type_Declaration;
20011 --------------------------
20012 -- New_Concatenation_Op --
20013 --------------------------
20015 procedure New_Concatenation_Op (Typ : Entity_Id) is
20016 Loc : constant Source_Ptr := Sloc (Typ);
20017 Op : Entity_Id;
20019 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
20020 -- Create abbreviated declaration for the formal of a predefined
20021 -- Operator 'Op' of type 'Typ'
20023 --------------------
20024 -- Make_Op_Formal --
20025 --------------------
20027 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
20028 Formal : Entity_Id;
20029 begin
20030 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
20031 Set_Etype (Formal, Typ);
20032 Set_Mechanism (Formal, Default_Mechanism);
20033 return Formal;
20034 end Make_Op_Formal;
20036 -- Start of processing for New_Concatenation_Op
20038 begin
20039 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
20041 Mutate_Ekind (Op, E_Operator);
20042 Set_Scope (Op, Current_Scope);
20043 Set_Etype (Op, Typ);
20044 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
20045 Set_Is_Immediately_Visible (Op);
20046 Set_Is_Intrinsic_Subprogram (Op);
20047 Set_Has_Completion (Op);
20048 Append_Entity (Op, Current_Scope);
20050 Set_Name_Entity_Id (Name_Op_Concat, Op);
20052 Append_Entity (Make_Op_Formal (Typ, Op), Op);
20053 Append_Entity (Make_Op_Formal (Typ, Op), Op);
20054 end New_Concatenation_Op;
20056 -------------------------
20057 -- OK_For_Limited_Init --
20058 -------------------------
20060 -- ???Check all calls of this, and compare the conditions under which it's
20061 -- called.
20063 function OK_For_Limited_Init
20064 (Typ : Entity_Id;
20065 Exp : Node_Id) return Boolean
20067 begin
20068 return Is_CPP_Constructor_Call (Exp)
20069 or else (Ada_Version >= Ada_2005
20070 and then not Debug_Flag_Dot_L
20071 and then OK_For_Limited_Init_In_05 (Typ, Exp));
20072 end OK_For_Limited_Init;
20074 -------------------------------
20075 -- OK_For_Limited_Init_In_05 --
20076 -------------------------------
20078 function OK_For_Limited_Init_In_05
20079 (Typ : Entity_Id;
20080 Exp : Node_Id) return Boolean
20082 begin
20083 -- An object of a limited interface type can be initialized with any
20084 -- expression of a nonlimited descendant type. However this does not
20085 -- apply if this is a view conversion of some other expression. This
20086 -- is checked below.
20088 if Is_Class_Wide_Type (Typ)
20089 and then Is_Limited_Interface (Typ)
20090 and then not Is_Limited_Type (Etype (Exp))
20091 and then Nkind (Exp) /= N_Type_Conversion
20092 then
20093 return True;
20094 end if;
20096 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
20097 -- case of limited aggregates (including extension aggregates), and
20098 -- function calls. The function call may have been given in prefixed
20099 -- notation, in which case the original node is an indexed component.
20100 -- If the function is parameterless, the original node was an explicit
20101 -- dereference. The function may also be parameterless, in which case
20102 -- the source node is just an identifier.
20104 -- A branch of a conditional expression may have been removed if the
20105 -- condition is statically known. This happens during expansion, and
20106 -- thus will not happen if previous errors were encountered. The check
20107 -- will have been performed on the chosen branch, which replaces the
20108 -- original conditional expression.
20110 if No (Exp) then
20111 return True;
20112 end if;
20114 case Nkind (Original_Node (Exp)) is
20115 when N_Aggregate
20116 | N_Extension_Aggregate
20117 | N_Function_Call
20118 | N_Op
20120 return True;
20122 when N_Identifier =>
20123 return Present (Entity (Original_Node (Exp)))
20124 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
20126 when N_Qualified_Expression =>
20127 return
20128 OK_For_Limited_Init_In_05
20129 (Typ, Expression (Original_Node (Exp)));
20131 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
20132 -- with a function call, the expander has rewritten the call into an
20133 -- N_Type_Conversion node to force displacement of the pointer to
20134 -- reference the component containing the secondary dispatch table.
20135 -- Otherwise a type conversion is not a legal context.
20136 -- A return statement for a build-in-place function returning a
20137 -- synchronized type also introduces an unchecked conversion.
20139 when N_Type_Conversion
20140 | N_Unchecked_Type_Conversion
20142 return not Comes_From_Source (Exp)
20143 and then
20144 -- If the conversion has been rewritten, check Original_Node
20146 ((Original_Node (Exp) /= Exp
20147 and then
20148 OK_For_Limited_Init_In_05 (Typ, Original_Node (Exp)))
20150 -- Otherwise, check the expression of the compiler-generated
20151 -- conversion (which is a conversion that we want to ignore
20152 -- for purposes of the limited-initialization restrictions).
20154 or else
20155 (Original_Node (Exp) = Exp
20156 and then
20157 OK_For_Limited_Init_In_05 (Typ, Expression (Exp))));
20159 when N_Explicit_Dereference
20160 | N_Indexed_Component
20161 | N_Selected_Component
20163 return Nkind (Exp) = N_Function_Call;
20165 -- A use of 'Input is a function call, hence allowed. Normally the
20166 -- attribute will be changed to a call, but the attribute by itself
20167 -- can occur with -gnatc.
20169 when N_Attribute_Reference =>
20170 return Attribute_Name (Original_Node (Exp)) = Name_Input;
20172 -- "return raise ..." is OK
20174 when N_Raise_Expression =>
20175 return True;
20177 -- For a case expression, all dependent expressions must be legal
20179 when N_Case_Expression =>
20180 declare
20181 Alt : Node_Id;
20183 begin
20184 Alt := First (Alternatives (Original_Node (Exp)));
20185 while Present (Alt) loop
20186 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
20187 return False;
20188 end if;
20190 Next (Alt);
20191 end loop;
20193 return True;
20194 end;
20196 -- For an if expression, all dependent expressions must be legal
20198 when N_If_Expression =>
20199 declare
20200 Then_Expr : constant Node_Id :=
20201 Next (First (Expressions (Original_Node (Exp))));
20202 Else_Expr : constant Node_Id := Next (Then_Expr);
20203 begin
20204 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
20205 and then
20206 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
20207 end;
20209 when others =>
20210 return False;
20211 end case;
20212 end OK_For_Limited_Init_In_05;
20214 -------------------------------------------
20215 -- Ordinary_Fixed_Point_Type_Declaration --
20216 -------------------------------------------
20218 procedure Ordinary_Fixed_Point_Type_Declaration
20219 (T : Entity_Id;
20220 Def : Node_Id)
20222 Loc : constant Source_Ptr := Sloc (Def);
20223 Delta_Expr : constant Node_Id := Delta_Expression (Def);
20224 RRS : constant Node_Id := Real_Range_Specification (Def);
20225 Implicit_Base : Entity_Id;
20226 Delta_Val : Ureal;
20227 Small_Val : Ureal;
20228 Low_Val : Ureal;
20229 High_Val : Ureal;
20231 begin
20232 Check_Restriction (No_Fixed_Point, Def);
20234 -- Create implicit base type
20236 Implicit_Base :=
20237 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
20238 Set_Etype (Implicit_Base, Implicit_Base);
20240 -- Analyze and process delta expression
20242 Analyze_And_Resolve (Delta_Expr, Any_Real);
20244 Check_Delta_Expression (Delta_Expr);
20245 Delta_Val := Expr_Value_R (Delta_Expr);
20247 Set_Delta_Value (Implicit_Base, Delta_Val);
20249 -- Compute default small from given delta, which is the largest power
20250 -- of two that does not exceed the given delta value.
20252 declare
20253 Tmp : Ureal;
20254 Scale : Int;
20256 begin
20257 Tmp := Ureal_1;
20258 Scale := 0;
20260 if Delta_Val < Ureal_1 then
20261 while Delta_Val < Tmp loop
20262 Tmp := Tmp / Ureal_2;
20263 Scale := Scale + 1;
20264 end loop;
20266 else
20267 loop
20268 Tmp := Tmp * Ureal_2;
20269 exit when Tmp > Delta_Val;
20270 Scale := Scale - 1;
20271 end loop;
20272 end if;
20274 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
20275 end;
20277 Set_Small_Value (Implicit_Base, Small_Val);
20279 -- If no range was given, set a dummy range
20281 if RRS <= Empty_Or_Error then
20282 Low_Val := -Small_Val;
20283 High_Val := Small_Val;
20285 -- Otherwise analyze and process given range
20287 else
20288 declare
20289 Low : constant Node_Id := Low_Bound (RRS);
20290 High : constant Node_Id := High_Bound (RRS);
20292 begin
20293 Analyze_And_Resolve (Low, Any_Real);
20294 Analyze_And_Resolve (High, Any_Real);
20295 Check_Real_Bound (Low);
20296 Check_Real_Bound (High);
20298 -- Obtain and set the range
20300 Low_Val := Expr_Value_R (Low);
20301 High_Val := Expr_Value_R (High);
20303 if Low_Val > High_Val then
20304 Error_Msg_NE ("??fixed point type& has null range", Def, T);
20305 end if;
20306 end;
20307 end if;
20309 -- The range for both the implicit base and the declared first subtype
20310 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
20311 -- set a temporary range in place. Note that the bounds of the base
20312 -- type will be widened to be symmetrical and to fill the available
20313 -- bits when the type is frozen.
20315 -- We could do this with all discrete types, and probably should, but
20316 -- we absolutely have to do it for fixed-point, since the end-points
20317 -- of the range and the size are determined by the small value, which
20318 -- could be reset before the freeze point.
20320 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
20321 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
20323 -- Complete definition of first subtype. The inheritance of the rep item
20324 -- chain ensures that SPARK-related pragmas are not clobbered when the
20325 -- ordinary fixed point type acts as a full view of a private type.
20327 Mutate_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
20328 Set_Etype (T, Implicit_Base);
20329 Reinit_Size_Align (T);
20330 Inherit_Rep_Item_Chain (T, Implicit_Base);
20331 Set_Small_Value (T, Small_Val);
20332 Set_Delta_Value (T, Delta_Val);
20333 Set_Is_Constrained (T);
20334 end Ordinary_Fixed_Point_Type_Declaration;
20336 ----------------------------------
20337 -- Preanalyze_Assert_Expression --
20338 ----------------------------------
20340 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
20341 begin
20342 In_Assertion_Expr := In_Assertion_Expr + 1;
20343 Preanalyze_Spec_Expression (N, T);
20344 In_Assertion_Expr := In_Assertion_Expr - 1;
20345 end Preanalyze_Assert_Expression;
20347 -----------------------------------
20348 -- Preanalyze_Default_Expression --
20349 -----------------------------------
20351 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
20352 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
20353 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
20355 begin
20356 In_Default_Expr := True;
20357 In_Spec_Expression := True;
20359 Preanalyze_With_Freezing_And_Resolve (N, T);
20361 In_Default_Expr := Save_In_Default_Expr;
20362 In_Spec_Expression := Save_In_Spec_Expression;
20363 end Preanalyze_Default_Expression;
20365 --------------------------------
20366 -- Preanalyze_Spec_Expression --
20367 --------------------------------
20369 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
20370 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
20371 begin
20372 In_Spec_Expression := True;
20373 Preanalyze_And_Resolve (N, T);
20374 In_Spec_Expression := Save_In_Spec_Expression;
20375 end Preanalyze_Spec_Expression;
20377 ----------------------------------------
20378 -- Prepare_Private_Subtype_Completion --
20379 ----------------------------------------
20381 procedure Prepare_Private_Subtype_Completion
20382 (Id : Entity_Id;
20383 Related_Nod : Node_Id)
20385 Id_B : constant Entity_Id := Base_Type (Id);
20386 Full_B : constant Entity_Id := Full_View (Id_B);
20387 Full : Entity_Id;
20389 begin
20390 if Present (Full_B) then
20392 -- The Base_Type is already completed, we can complete the subtype
20393 -- now. We have to create a new entity with the same name, Thus we
20394 -- can't use Create_Itype.
20396 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
20397 Set_Is_Itype (Full);
20398 Set_Associated_Node_For_Itype (Full, Related_Nod);
20399 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
20400 Set_Full_View (Id, Full);
20401 end if;
20403 -- The parent subtype may be private, but the base might not, in some
20404 -- nested instances. In that case, the subtype does not need to be
20405 -- exchanged. It would still be nice to make private subtypes and their
20406 -- bases consistent at all times ???
20408 if Is_Private_Type (Id_B) then
20409 Append_Elmt (Id, Private_Dependents (Id_B));
20410 end if;
20411 end Prepare_Private_Subtype_Completion;
20413 ---------------------------
20414 -- Process_Discriminants --
20415 ---------------------------
20417 procedure Process_Discriminants
20418 (N : Node_Id;
20419 Prev : Entity_Id := Empty)
20421 Elist : constant Elist_Id := New_Elmt_List;
20422 Id : Node_Id;
20423 Discr : Node_Id;
20424 Discr_Number : Uint;
20425 Discr_Type : Entity_Id;
20426 Default_Present : Boolean := False;
20427 Default_Not_Present : Boolean := False;
20429 begin
20430 -- A composite type other than an array type can have discriminants.
20431 -- On entry, the current scope is the composite type.
20433 -- The discriminants are initially entered into the scope of the type
20434 -- via Enter_Name with the default Ekind of E_Void to prevent premature
20435 -- use, as explained at the end of this procedure.
20437 Discr := First (Discriminant_Specifications (N));
20438 while Present (Discr) loop
20439 Enter_Name (Defining_Identifier (Discr));
20441 -- For navigation purposes we add a reference to the discriminant
20442 -- in the entity for the type. If the current declaration is a
20443 -- completion, place references on the partial view. Otherwise the
20444 -- type is the current scope.
20446 if Present (Prev) then
20448 -- The references go on the partial view, if present. If the
20449 -- partial view has discriminants, the references have been
20450 -- generated already.
20452 if not Has_Discriminants (Prev) then
20453 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
20454 end if;
20455 else
20456 Generate_Reference
20457 (Current_Scope, Defining_Identifier (Discr), 'd');
20458 end if;
20460 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
20461 Check_Anonymous_Access_Component
20462 (Typ_Decl => N,
20463 Typ => Defining_Identifier (N),
20464 Prev => Prev,
20465 Comp_Def => Discr,
20466 Access_Def => Discriminant_Type (Discr));
20468 -- if Check_Anonymous_Access_Component replaced Discr then
20469 -- its Original_Node points to the old Discr and the access type
20470 -- for Discr_Type has already been created.
20472 if Original_Node (Discr) /= Discr then
20473 Discr_Type := Etype (Discriminant_Type (Discr));
20474 else
20475 Discr_Type :=
20476 Access_Definition (Discr, Discriminant_Type (Discr));
20478 -- Ada 2005 (AI-254)
20480 if Present (Access_To_Subprogram_Definition
20481 (Discriminant_Type (Discr)))
20482 and then Protected_Present (Access_To_Subprogram_Definition
20483 (Discriminant_Type (Discr)))
20484 then
20485 Discr_Type :=
20486 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
20487 end if;
20488 end if;
20489 else
20490 Find_Type (Discriminant_Type (Discr));
20491 Discr_Type := Etype (Discriminant_Type (Discr));
20493 if Error_Posted (Discriminant_Type (Discr)) then
20494 Discr_Type := Any_Type;
20495 end if;
20496 end if;
20498 -- Handling of discriminants that are access types
20500 if Is_Access_Type (Discr_Type) then
20502 -- Ada 2005 (AI-230): Access discriminant allowed in non-
20503 -- limited record types
20505 if Ada_Version < Ada_2005 then
20506 Check_Access_Discriminant_Requires_Limited
20507 (Discr, Discriminant_Type (Discr));
20508 end if;
20510 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
20511 Error_Msg_N
20512 ("(Ada 83) access discriminant not allowed", Discr);
20513 end if;
20515 -- If not access type, must be a discrete type
20517 elsif not Is_Discrete_Type (Discr_Type) then
20518 Error_Msg_N
20519 ("discriminants must have a discrete or access type",
20520 Discriminant_Type (Discr));
20521 end if;
20523 Set_Etype (Defining_Identifier (Discr), Discr_Type);
20525 -- If a discriminant specification includes the assignment compound
20526 -- delimiter followed by an expression, the expression is the default
20527 -- expression of the discriminant; the default expression must be of
20528 -- the type of the discriminant. (RM 3.7.1) Since this expression is
20529 -- a default expression, we do the special preanalysis, since this
20530 -- expression does not freeze (see section "Handling of Default and
20531 -- Per-Object Expressions" in spec of package Sem).
20533 if Present (Expression (Discr)) then
20534 Preanalyze_Default_Expression (Expression (Discr), Discr_Type);
20536 -- Legaity checks
20538 if Nkind (N) = N_Formal_Type_Declaration then
20539 Error_Msg_N
20540 ("discriminant defaults not allowed for formal type",
20541 Expression (Discr));
20543 -- Flag an error for a tagged type with defaulted discriminants,
20544 -- excluding limited tagged types when compiling for Ada 2012
20545 -- (see AI05-0214).
20547 elsif Is_Tagged_Type (Current_Scope)
20548 and then (not Is_Limited_Type (Current_Scope)
20549 or else Ada_Version < Ada_2012)
20550 and then Comes_From_Source (N)
20551 then
20552 -- Note: see similar test in Check_Or_Process_Discriminants, to
20553 -- handle the (illegal) case of the completion of an untagged
20554 -- view with discriminants with defaults by a tagged full view.
20555 -- We skip the check if Discr does not come from source, to
20556 -- account for the case of an untagged derived type providing
20557 -- defaults for a renamed discriminant from a private untagged
20558 -- ancestor with a tagged full view (ACATS B460006).
20560 if Ada_Version >= Ada_2012 then
20561 Error_Msg_N
20562 ("discriminants of nonlimited tagged type cannot have"
20563 & " defaults",
20564 Expression (Discr));
20565 else
20566 Error_Msg_N
20567 ("discriminants of tagged type cannot have defaults",
20568 Expression (Discr));
20569 end if;
20571 else
20572 Default_Present := True;
20573 Append_Elmt (Expression (Discr), Elist);
20575 -- Tag the defining identifiers for the discriminants with
20576 -- their corresponding default expressions from the tree.
20578 Set_Discriminant_Default_Value
20579 (Defining_Identifier (Discr), Expression (Discr));
20580 end if;
20582 -- In gnatc or GNATprove mode, make sure set Do_Range_Check flag
20583 -- gets set unless we can be sure that no range check is required.
20585 if not Expander_Active
20586 and then not
20587 Is_In_Range
20588 (Expression (Discr), Discr_Type, Assume_Valid => True)
20589 then
20590 Set_Do_Range_Check (Expression (Discr));
20591 end if;
20593 -- No default discriminant value given
20595 else
20596 Default_Not_Present := True;
20597 end if;
20599 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
20600 -- Discr_Type but with the null-exclusion attribute
20602 if Ada_Version >= Ada_2005 then
20604 -- Ada 2005 (AI-231): Static checks
20606 if Can_Never_Be_Null (Discr_Type) then
20607 Null_Exclusion_Static_Checks (Discr);
20609 elsif Is_Access_Type (Discr_Type)
20610 and then Null_Exclusion_Present (Discr)
20612 -- No need to check itypes because in their case this check
20613 -- was done at their point of creation
20615 and then not Is_Itype (Discr_Type)
20616 then
20617 if Can_Never_Be_Null (Discr_Type) then
20618 Error_Msg_NE
20619 ("`NOT NULL` not allowed (& already excludes null)",
20620 Discr,
20621 Discr_Type);
20622 end if;
20624 Set_Etype (Defining_Identifier (Discr),
20625 Create_Null_Excluding_Itype
20626 (T => Discr_Type,
20627 Related_Nod => Discr));
20629 -- Check for improper null exclusion if the type is otherwise
20630 -- legal for a discriminant.
20632 elsif Null_Exclusion_Present (Discr)
20633 and then Is_Discrete_Type (Discr_Type)
20634 then
20635 Error_Msg_N
20636 ("null exclusion can only apply to an access type", Discr);
20637 end if;
20639 -- Ada 2005 (AI-402): access discriminants of nonlimited types
20640 -- can't have defaults. Synchronized types, or types that are
20641 -- explicitly limited are fine, but special tests apply to derived
20642 -- types in generics: in a generic body we have to assume the
20643 -- worst, and therefore defaults are not allowed if the parent is
20644 -- a generic formal private type (see ACATS B370001).
20646 if Is_Access_Type (Discr_Type) and then Default_Present then
20647 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
20648 or else Is_Limited_Record (Current_Scope)
20649 or else Is_Concurrent_Type (Current_Scope)
20650 or else Is_Concurrent_Record_Type (Current_Scope)
20651 or else Ekind (Current_Scope) = E_Limited_Private_Type
20652 then
20653 if not Is_Derived_Type (Current_Scope)
20654 or else not Is_Generic_Type (Etype (Current_Scope))
20655 or else not In_Package_Body (Scope (Etype (Current_Scope)))
20656 or else Limited_Present
20657 (Type_Definition (Parent (Current_Scope)))
20658 then
20659 null;
20661 else
20662 Error_Msg_N
20663 ("access discriminants of nonlimited types cannot "
20664 & "have defaults", Expression (Discr));
20665 end if;
20667 elsif Present (Expression (Discr)) then
20668 Error_Msg_N
20669 ("(Ada 2005) access discriminants of nonlimited types "
20670 & "cannot have defaults", Expression (Discr));
20671 end if;
20672 end if;
20673 end if;
20675 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(4)).
20676 -- This check is relevant only when SPARK_Mode is on as it is not a
20677 -- standard Ada legality rule. The only way for a discriminant to be
20678 -- effectively volatile is to have an effectively volatile type, so
20679 -- we check this directly, because the Ekind of Discr might not be
20680 -- set yet (to help preventing cascaded errors on derived types).
20682 if SPARK_Mode = On
20683 and then Is_Effectively_Volatile (Discr_Type)
20684 then
20685 Error_Msg_N ("discriminant cannot be volatile", Discr);
20686 end if;
20688 Next (Discr);
20689 end loop;
20691 -- An element list consisting of the default expressions of the
20692 -- discriminants is constructed in the above loop and used to set
20693 -- the Discriminant_Constraint attribute for the type. If an object
20694 -- is declared of this (record or task) type without any explicit
20695 -- discriminant constraint given, this element list will form the
20696 -- actual parameters for the corresponding initialization procedure
20697 -- for the type.
20699 Set_Discriminant_Constraint (Current_Scope, Elist);
20700 Set_Stored_Constraint (Current_Scope, No_Elist);
20702 -- Default expressions must be provided either for all or for none
20703 -- of the discriminants of a discriminant part. (RM 3.7.1)
20705 if Default_Present and then Default_Not_Present then
20706 Error_Msg_N
20707 ("incomplete specification of defaults for discriminants", N);
20708 end if;
20710 -- The use of the name of a discriminant is not allowed in default
20711 -- expressions of a discriminant part if the specification of the
20712 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
20714 -- To detect this, the discriminant names are entered initially with an
20715 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
20716 -- attempt to use a void entity (for example in an expression that is
20717 -- type-checked) produces the error message: premature usage. Now after
20718 -- completing the semantic analysis of the discriminant part, we can set
20719 -- the Ekind of all the discriminants appropriately.
20721 Discr := First (Discriminant_Specifications (N));
20722 Discr_Number := Uint_1;
20723 while Present (Discr) loop
20724 Id := Defining_Identifier (Discr);
20726 if Ekind (Id) = E_In_Parameter then
20727 Reinit_Field_To_Zero (Id, F_Discriminal_Link);
20728 end if;
20730 Mutate_Ekind (Id, E_Discriminant);
20731 Reinit_Component_Location (Id);
20732 Reinit_Esize (Id);
20733 Set_Discriminant_Number (Id, Discr_Number);
20735 -- Make sure this is always set, even in illegal programs
20737 Set_Corresponding_Discriminant (Id, Empty);
20739 -- Initialize the Original_Record_Component to the entity itself.
20740 -- Inherit_Components will propagate the right value to
20741 -- discriminants in derived record types.
20743 Set_Original_Record_Component (Id, Id);
20745 -- Create the discriminal for the discriminant
20747 Build_Discriminal (Id);
20749 Next (Discr);
20750 Discr_Number := Discr_Number + 1;
20751 end loop;
20753 Set_Has_Discriminants (Current_Scope);
20754 end Process_Discriminants;
20756 -----------------------
20757 -- Process_Full_View --
20758 -----------------------
20760 -- WARNING: This routine manages Ghost regions. Return statements must be
20761 -- replaced by gotos which jump to the end of the routine and restore the
20762 -- Ghost mode.
20764 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
20765 procedure Collect_Implemented_Interfaces
20766 (Typ : Entity_Id;
20767 Ifaces : Elist_Id);
20768 -- Ada 2005: Gather all the interfaces that Typ directly or
20769 -- inherently implements. Duplicate entries are not added to
20770 -- the list Ifaces.
20772 ------------------------------------
20773 -- Collect_Implemented_Interfaces --
20774 ------------------------------------
20776 procedure Collect_Implemented_Interfaces
20777 (Typ : Entity_Id;
20778 Ifaces : Elist_Id)
20780 Iface : Entity_Id;
20781 Iface_Elmt : Elmt_Id;
20783 begin
20784 -- Abstract interfaces are only associated with tagged record types
20786 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
20787 return;
20788 end if;
20790 -- Recursively climb to the ancestors
20792 if Etype (Typ) /= Typ
20794 -- Protect the frontend against wrong cyclic declarations like:
20796 -- type B is new A with private;
20797 -- type C is new A with private;
20798 -- private
20799 -- type B is new C with null record;
20800 -- type C is new B with null record;
20802 and then Etype (Typ) /= Priv_T
20803 and then Etype (Typ) /= Full_T
20804 then
20805 -- Keep separate the management of private type declarations
20807 if Ekind (Typ) = E_Record_Type_With_Private then
20809 -- Handle the following illegal usage:
20810 -- type Private_Type is tagged private;
20811 -- private
20812 -- type Private_Type is new Type_Implementing_Iface;
20814 if Present (Full_View (Typ))
20815 and then Etype (Typ) /= Full_View (Typ)
20816 then
20817 if Is_Interface (Etype (Typ)) then
20818 Append_Unique_Elmt (Etype (Typ), Ifaces);
20819 end if;
20821 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20822 end if;
20824 -- Non-private types
20826 else
20827 if Is_Interface (Etype (Typ)) then
20828 Append_Unique_Elmt (Etype (Typ), Ifaces);
20829 end if;
20831 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20832 end if;
20833 end if;
20835 -- Handle entities in the list of abstract interfaces
20837 if Present (Interfaces (Typ)) then
20838 Iface_Elmt := First_Elmt (Interfaces (Typ));
20839 while Present (Iface_Elmt) loop
20840 Iface := Node (Iface_Elmt);
20842 pragma Assert (Is_Interface (Iface));
20844 if not Contain_Interface (Iface, Ifaces) then
20845 Append_Elmt (Iface, Ifaces);
20846 Collect_Implemented_Interfaces (Iface, Ifaces);
20847 end if;
20849 Next_Elmt (Iface_Elmt);
20850 end loop;
20851 end if;
20852 end Collect_Implemented_Interfaces;
20854 -- Local variables
20856 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
20857 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
20858 -- Save the Ghost-related attributes to restore on exit
20860 Full_Indic : Node_Id;
20861 Full_Parent : Entity_Id;
20862 Priv_Parent : Entity_Id;
20864 -- Start of processing for Process_Full_View
20866 begin
20867 Mark_And_Set_Ghost_Completion (N, Priv_T);
20869 -- First some sanity checks that must be done after semantic
20870 -- decoration of the full view and thus cannot be placed with other
20871 -- similar checks in Find_Type_Name
20873 if not Is_Limited_Type (Priv_T)
20874 and then (Is_Limited_Type (Full_T)
20875 or else Is_Limited_Composite (Full_T))
20876 then
20877 if In_Instance then
20878 null;
20879 else
20880 Error_Msg_N
20881 ("completion of nonlimited type cannot be limited", Full_T);
20882 Explain_Limited_Type (Full_T, Full_T);
20883 end if;
20885 elsif Is_Abstract_Type (Full_T)
20886 and then not Is_Abstract_Type (Priv_T)
20887 then
20888 Error_Msg_N
20889 ("completion of nonabstract type cannot be abstract", Full_T);
20891 elsif Is_Tagged_Type (Priv_T)
20892 and then Is_Limited_Type (Priv_T)
20893 and then not Is_Limited_Type (Full_T)
20894 then
20895 -- If pragma CPP_Class was applied to the private declaration
20896 -- propagate the limitedness to the full-view
20898 if Is_CPP_Class (Priv_T) then
20899 Set_Is_Limited_Record (Full_T);
20901 -- GNAT allow its own definition of Limited_Controlled to disobey
20902 -- this rule in order in ease the implementation. This test is safe
20903 -- because Root_Controlled is defined in a child of System that
20904 -- normal programs are not supposed to use.
20906 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
20907 Set_Is_Limited_Composite (Full_T);
20908 else
20909 Error_Msg_N
20910 ("completion of limited tagged type must be limited", Full_T);
20911 end if;
20913 elsif Is_Generic_Type (Priv_T) then
20914 Error_Msg_N ("generic type cannot have a completion", Full_T);
20915 end if;
20917 -- Check that ancestor interfaces of private and full views are
20918 -- consistent. We omit this check for synchronized types because
20919 -- they are performed on the corresponding record type when frozen.
20921 if Ada_Version >= Ada_2005
20922 and then Is_Tagged_Type (Priv_T)
20923 and then Is_Tagged_Type (Full_T)
20924 and then not Is_Concurrent_Type (Full_T)
20925 then
20926 declare
20927 Iface : Entity_Id;
20928 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
20929 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
20931 begin
20932 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
20933 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
20935 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20936 -- an interface type if and only if the full type is descendant
20937 -- of the interface type (AARM 7.3 (7.3/2)).
20939 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
20941 if Present (Iface) then
20942 Error_Msg_NE
20943 ("interface in partial view& not implemented by full type "
20944 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20945 end if;
20947 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
20949 if Present (Iface) then
20950 Error_Msg_NE
20951 ("interface & not implemented by partial view "
20952 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20953 end if;
20954 end;
20955 end if;
20957 if Is_Tagged_Type (Priv_T)
20958 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20959 and then Is_Derived_Type (Full_T)
20960 then
20961 Priv_Parent := Etype (Priv_T);
20963 -- The full view of a private extension may have been transformed
20964 -- into an unconstrained derived type declaration and a subtype
20965 -- declaration (see build_derived_record_type for details).
20967 if Nkind (N) = N_Subtype_Declaration then
20968 Full_Indic := Subtype_Indication (N);
20969 Full_Parent := Etype (Base_Type (Full_T));
20970 else
20971 Full_Indic := Subtype_Indication (Type_Definition (N));
20972 Full_Parent := Etype (Full_T);
20973 end if;
20975 -- Check that the parent type of the full type is a descendant of
20976 -- the ancestor subtype given in the private extension. If either
20977 -- entity has an Etype equal to Any_Type then we had some previous
20978 -- error situation [7.3(8)].
20980 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
20981 goto Leave;
20983 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20984 -- any order. Therefore we don't have to check that its parent must
20985 -- be a descendant of the parent of the private type declaration.
20987 elsif Is_Interface (Priv_Parent)
20988 and then Is_Interface (Full_Parent)
20989 then
20990 null;
20992 -- Ada 2005 (AI-251): If the parent of the private type declaration
20993 -- is an interface there is no need to check that it is an ancestor
20994 -- of the associated full type declaration. The required tests for
20995 -- this case are performed by Build_Derived_Record_Type.
20997 elsif not Is_Interface (Base_Type (Priv_Parent))
20998 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
20999 then
21000 Error_Msg_N
21001 ("parent of full type must descend from parent of private "
21002 & "extension", Full_Indic);
21004 -- First check a formal restriction, and then proceed with checking
21005 -- Ada rules. Since the formal restriction is not a serious error, we
21006 -- don't prevent further error detection for this check, hence the
21007 -- ELSE.
21009 else
21010 -- Check the rules of 7.3(10): if the private extension inherits
21011 -- known discriminants, then the full type must also inherit those
21012 -- discriminants from the same (ancestor) type, and the parent
21013 -- subtype of the full type must be constrained if and only if
21014 -- the ancestor subtype of the private extension is constrained.
21016 if No (Discriminant_Specifications (Parent (Priv_T)))
21017 and then not Has_Unknown_Discriminants (Priv_T)
21018 and then Has_Discriminants (Base_Type (Priv_Parent))
21019 then
21020 declare
21021 Priv_Indic : constant Node_Id :=
21022 Subtype_Indication (Parent (Priv_T));
21024 Priv_Constr : constant Boolean :=
21025 Is_Constrained (Priv_Parent)
21026 or else
21027 Nkind (Priv_Indic) = N_Subtype_Indication
21028 or else
21029 Is_Constrained (Entity (Priv_Indic));
21031 Full_Constr : constant Boolean :=
21032 Is_Constrained (Full_Parent)
21033 or else
21034 Nkind (Full_Indic) = N_Subtype_Indication
21035 or else
21036 Is_Constrained (Entity (Full_Indic));
21038 Priv_Discr : Entity_Id;
21039 Full_Discr : Entity_Id;
21041 begin
21042 Priv_Discr := First_Discriminant (Priv_Parent);
21043 Full_Discr := First_Discriminant (Full_Parent);
21044 while Present (Priv_Discr) and then Present (Full_Discr) loop
21045 if Original_Record_Component (Priv_Discr) =
21046 Original_Record_Component (Full_Discr)
21047 or else
21048 Corresponding_Discriminant (Priv_Discr) =
21049 Corresponding_Discriminant (Full_Discr)
21050 then
21051 null;
21052 else
21053 exit;
21054 end if;
21056 Next_Discriminant (Priv_Discr);
21057 Next_Discriminant (Full_Discr);
21058 end loop;
21060 if Present (Priv_Discr) or else Present (Full_Discr) then
21061 Error_Msg_N
21062 ("full view must inherit discriminants of the parent "
21063 & "type used in the private extension", Full_Indic);
21065 elsif Priv_Constr and then not Full_Constr then
21066 Error_Msg_N
21067 ("parent subtype of full type must be constrained",
21068 Full_Indic);
21070 elsif Full_Constr and then not Priv_Constr then
21071 Error_Msg_N
21072 ("parent subtype of full type must be unconstrained",
21073 Full_Indic);
21074 end if;
21075 end;
21077 -- Check the rules of 7.3(12): if a partial view has neither
21078 -- known or unknown discriminants, then the full type
21079 -- declaration shall define a definite subtype.
21081 elsif not Has_Unknown_Discriminants (Priv_T)
21082 and then not Has_Discriminants (Priv_T)
21083 and then not Is_Constrained (Full_T)
21084 then
21085 Error_Msg_N
21086 ("full view must define a constrained type if partial view "
21087 & "has no discriminants", Full_T);
21088 end if;
21090 -- Do we implement the following properly???
21091 -- If the ancestor subtype of a private extension has constrained
21092 -- discriminants, then the parent subtype of the full view shall
21093 -- impose a statically matching constraint on those discriminants
21094 -- [7.3(13)].
21095 end if;
21097 else
21098 -- For untagged types, verify that a type without discriminants is
21099 -- not completed with an unconstrained type. A separate error message
21100 -- is produced if the full type has defaulted discriminants.
21102 if Is_Definite_Subtype (Priv_T)
21103 and then not Is_Definite_Subtype (Full_T)
21104 then
21105 Error_Msg_Sloc := Sloc (Parent (Priv_T));
21106 Error_Msg_NE
21107 ("full view of& not compatible with declaration#",
21108 Full_T, Priv_T);
21110 if not Is_Tagged_Type (Full_T) then
21111 Error_Msg_N
21112 ("\one is constrained, the other unconstrained", Full_T);
21113 end if;
21114 end if;
21115 end if;
21117 -- AI-419: verify that the use of "limited" is consistent
21119 declare
21120 Orig_Decl : constant Node_Id := Original_Node (N);
21122 begin
21123 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
21124 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
21125 and then Nkind
21126 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
21127 then
21128 if not Limited_Present (Parent (Priv_T))
21129 and then not Synchronized_Present (Parent (Priv_T))
21130 and then Limited_Present (Type_Definition (Orig_Decl))
21131 then
21132 Error_Msg_N
21133 ("full view of non-limited extension cannot be limited", N);
21135 -- Conversely, if the partial view carries the limited keyword,
21136 -- the full view must as well, even if it may be redundant.
21138 elsif Limited_Present (Parent (Priv_T))
21139 and then not Limited_Present (Type_Definition (Orig_Decl))
21140 then
21141 Error_Msg_N
21142 ("full view of limited extension must be explicitly limited",
21144 end if;
21145 end if;
21146 end;
21148 -- Ada 2005 (AI-443): A synchronized private extension must be
21149 -- completed by a task or protected type.
21151 if Ada_Version >= Ada_2005
21152 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
21153 and then Synchronized_Present (Parent (Priv_T))
21154 and then not Is_Concurrent_Type (Full_T)
21155 then
21156 Error_Msg_N ("full view of synchronized extension must " &
21157 "be synchronized type", N);
21158 end if;
21160 -- Ada 2005 AI-363: if the full view has discriminants with
21161 -- defaults, it is illegal to declare constrained access subtypes
21162 -- whose designated type is the current type. This allows objects
21163 -- of the type that are declared in the heap to be unconstrained.
21165 if not Has_Unknown_Discriminants (Priv_T)
21166 and then not Has_Discriminants (Priv_T)
21167 and then Has_Defaulted_Discriminants (Full_T)
21168 then
21169 Set_Has_Constrained_Partial_View (Base_Type (Full_T));
21170 Set_Has_Constrained_Partial_View (Priv_T);
21171 end if;
21173 -- Create a full declaration for all its subtypes recorded in
21174 -- Private_Dependents and swap them similarly to the base type. These
21175 -- are subtypes that have been define before the full declaration of
21176 -- the private type. We also swap the entry in Private_Dependents list
21177 -- so we can properly restore the private view on exit from the scope.
21179 declare
21180 Priv_Elmt : Elmt_Id;
21181 Priv_Scop : Entity_Id;
21182 Priv : Entity_Id;
21183 Full : Entity_Id;
21185 begin
21186 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
21187 while Present (Priv_Elmt) loop
21188 Priv := Node (Priv_Elmt);
21189 Priv_Scop := Scope (Priv);
21191 if Ekind (Priv) in E_Private_Subtype
21192 | E_Limited_Private_Subtype
21193 | E_Record_Subtype_With_Private
21194 then
21195 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
21196 Set_Is_Itype (Full);
21197 Set_Parent (Full, Parent (Priv));
21198 Set_Associated_Node_For_Itype (Full, N);
21200 -- Now we need to complete the private subtype, but since the
21201 -- base type has already been swapped, we must also swap the
21202 -- subtypes (and thus, reverse the arguments in the call to
21203 -- Complete_Private_Subtype). Also note that we may need to
21204 -- re-establish the scope of the private subtype.
21206 Copy_And_Swap (Priv, Full);
21208 if not In_Open_Scopes (Priv_Scop) then
21209 Push_Scope (Priv_Scop);
21211 else
21212 -- Reset Priv_Scop to Empty to indicate no scope was pushed
21214 Priv_Scop := Empty;
21215 end if;
21217 Complete_Private_Subtype (Full, Priv, Full_T, N);
21218 Set_Full_View (Full, Priv);
21220 if Present (Priv_Scop) then
21221 Pop_Scope;
21222 end if;
21224 Replace_Elmt (Priv_Elmt, Full);
21225 end if;
21227 Next_Elmt (Priv_Elmt);
21228 end loop;
21229 end;
21231 declare
21232 Disp_Typ : Entity_Id;
21233 Full_List : Elist_Id;
21234 Prim : Entity_Id;
21235 Prim_Elmt : Elmt_Id;
21236 Priv_List : Elist_Id;
21238 function Contains
21239 (E : Entity_Id;
21240 L : Elist_Id) return Boolean;
21241 -- Determine whether list L contains element E
21243 --------------
21244 -- Contains --
21245 --------------
21247 function Contains
21248 (E : Entity_Id;
21249 L : Elist_Id) return Boolean
21251 List_Elmt : Elmt_Id;
21253 begin
21254 List_Elmt := First_Elmt (L);
21255 while Present (List_Elmt) loop
21256 if Node (List_Elmt) = E then
21257 return True;
21258 end if;
21260 Next_Elmt (List_Elmt);
21261 end loop;
21263 return False;
21264 end Contains;
21266 -- Start of processing
21268 begin
21269 -- If the private view was tagged, copy the new primitive operations
21270 -- from the private view to the full view.
21272 if Is_Tagged_Type (Full_T) then
21273 if Is_Tagged_Type (Priv_T) then
21274 Priv_List := Primitive_Operations (Priv_T);
21275 Prim_Elmt := First_Elmt (Priv_List);
21277 -- In the case of a concurrent type completing a private tagged
21278 -- type, primitives may have been declared in between the two
21279 -- views. These subprograms need to be wrapped the same way
21280 -- entries and protected procedures are handled because they
21281 -- cannot be directly shared by the two views.
21283 if Is_Concurrent_Type (Full_T) then
21284 declare
21285 Conc_Typ : constant Entity_Id :=
21286 Corresponding_Record_Type (Full_T);
21287 Curr_Nod : Node_Id := Parent (Conc_Typ);
21288 Wrap_Spec : Node_Id;
21290 begin
21291 while Present (Prim_Elmt) loop
21292 Prim := Node (Prim_Elmt);
21294 if Comes_From_Source (Prim)
21295 and then not Is_Abstract_Subprogram (Prim)
21296 then
21297 Wrap_Spec :=
21298 Make_Subprogram_Declaration (Sloc (Prim),
21299 Specification =>
21300 Build_Wrapper_Spec
21301 (Subp_Id => Prim,
21302 Obj_Typ => Conc_Typ,
21303 Formals =>
21304 Parameter_Specifications
21305 (Parent (Prim))));
21307 Insert_After (Curr_Nod, Wrap_Spec);
21308 Curr_Nod := Wrap_Spec;
21310 Analyze (Wrap_Spec);
21312 -- Remove the wrapper from visibility to avoid
21313 -- spurious conflict with the wrapped entity.
21315 Set_Is_Immediately_Visible
21316 (Defining_Entity (Specification (Wrap_Spec)),
21317 False);
21318 end if;
21320 Next_Elmt (Prim_Elmt);
21321 end loop;
21323 goto Leave;
21324 end;
21326 -- For nonconcurrent types, transfer explicit primitives, but
21327 -- omit those inherited from the parent of the private view
21328 -- since they will be re-inherited later on.
21330 else
21331 Full_List := Primitive_Operations (Full_T);
21332 while Present (Prim_Elmt) loop
21333 Prim := Node (Prim_Elmt);
21335 if Comes_From_Source (Prim)
21336 and then not Contains (Prim, Full_List)
21337 then
21338 Append_Elmt (Prim, Full_List);
21339 end if;
21341 Next_Elmt (Prim_Elmt);
21342 end loop;
21343 end if;
21345 -- Untagged private view
21347 else
21348 Full_List := Primitive_Operations (Full_T);
21350 -- In this case the partial view is untagged, so here we locate
21351 -- all of the earlier primitives that need to be treated as
21352 -- dispatching (those that appear between the two views). Note
21353 -- that these additional operations must all be new operations
21354 -- (any earlier operations that override inherited operations
21355 -- of the full view will already have been inserted in the
21356 -- primitives list, marked by Check_Operation_From_Private_View
21357 -- as dispatching. Note that implicit "/=" operators are
21358 -- excluded from being added to the primitives list since they
21359 -- shouldn't be treated as dispatching (tagged "/=" is handled
21360 -- specially).
21362 Prim := Next_Entity (Full_T);
21363 while Present (Prim) and then Prim /= Priv_T loop
21364 if Ekind (Prim) in E_Procedure | E_Function then
21365 Disp_Typ := Find_Dispatching_Type (Prim);
21367 if Disp_Typ = Full_T
21368 and then (Chars (Prim) /= Name_Op_Ne
21369 or else Comes_From_Source (Prim))
21370 then
21371 Check_Controlling_Formals (Full_T, Prim);
21373 if Is_Suitable_Primitive (Prim)
21374 and then not Is_Dispatching_Operation (Prim)
21375 then
21376 Append_Elmt (Prim, Full_List);
21377 Set_Is_Dispatching_Operation (Prim);
21378 Set_DT_Position_Value (Prim, No_Uint);
21379 end if;
21381 elsif Is_Dispatching_Operation (Prim)
21382 and then Disp_Typ /= Full_T
21383 then
21384 -- Verify that it is not otherwise controlled by a
21385 -- formal or a return value of type T.
21387 Check_Controlling_Formals (Disp_Typ, Prim);
21388 end if;
21389 end if;
21391 Next_Entity (Prim);
21392 end loop;
21393 end if;
21395 -- For the tagged case, the two views can share the same primitive
21396 -- operations list and the same class-wide type. Update attributes
21397 -- of the class-wide type which depend on the full declaration.
21399 if Is_Tagged_Type (Priv_T) then
21400 Set_Direct_Primitive_Operations (Priv_T, Full_List);
21401 Set_Class_Wide_Type
21402 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
21404 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
21405 end if;
21407 -- For untagged types, copy the primitives across from the private
21408 -- view to the full view (when extensions are allowed), for support
21409 -- of prefixed calls (when extensions are enabled).
21411 elsif Extensions_Allowed then
21412 Priv_List := Primitive_Operations (Priv_T);
21413 Prim_Elmt := First_Elmt (Priv_List);
21415 Full_List := Primitive_Operations (Full_T);
21416 while Present (Prim_Elmt) loop
21417 Prim := Node (Prim_Elmt);
21418 Append_Elmt (Prim, Full_List);
21419 Next_Elmt (Prim_Elmt);
21420 end loop;
21421 end if;
21422 end;
21424 -- Ada 2005 AI 161: Check preelaborable initialization consistency
21426 if Known_To_Have_Preelab_Init (Priv_T) then
21428 -- Case where there is a pragma Preelaborable_Initialization. We
21429 -- always allow this in predefined units, which is cheating a bit,
21430 -- but it means we don't have to struggle to meet the requirements in
21431 -- the RM for having Preelaborable Initialization. Otherwise we
21432 -- require that the type meets the RM rules. But we can't check that
21433 -- yet, because of the rule about overriding Initialize, so we simply
21434 -- set a flag that will be checked at freeze time.
21436 if not In_Predefined_Unit (Full_T) then
21437 Set_Must_Have_Preelab_Init (Full_T);
21438 end if;
21439 end if;
21441 -- If pragma CPP_Class was applied to the private type declaration,
21442 -- propagate it now to the full type declaration.
21444 if Is_CPP_Class (Priv_T) then
21445 Set_Is_CPP_Class (Full_T);
21446 Set_Convention (Full_T, Convention_CPP);
21448 -- Check that components of imported CPP types do not have default
21449 -- expressions.
21451 Check_CPP_Type_Has_No_Defaults (Full_T);
21452 end if;
21454 -- If the private view has user specified stream attributes, then so has
21455 -- the full view.
21457 -- Why the test, how could these flags be already set in Full_T ???
21459 if Has_Specified_Stream_Read (Priv_T) then
21460 Set_Has_Specified_Stream_Read (Full_T);
21461 end if;
21463 if Has_Specified_Stream_Write (Priv_T) then
21464 Set_Has_Specified_Stream_Write (Full_T);
21465 end if;
21467 if Has_Specified_Stream_Input (Priv_T) then
21468 Set_Has_Specified_Stream_Input (Full_T);
21469 end if;
21471 if Has_Specified_Stream_Output (Priv_T) then
21472 Set_Has_Specified_Stream_Output (Full_T);
21473 end if;
21475 -- Propagate Default_Initial_Condition-related attributes from the
21476 -- partial view to the full view.
21478 Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T);
21480 -- And to the underlying full view, if any
21482 if Is_Private_Type (Full_T)
21483 and then Present (Underlying_Full_View (Full_T))
21484 then
21485 Propagate_DIC_Attributes
21486 (Underlying_Full_View (Full_T), From_Typ => Priv_T);
21487 end if;
21489 -- Propagate invariant-related attributes from the partial view to the
21490 -- full view.
21492 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
21494 -- And to the underlying full view, if any
21496 if Is_Private_Type (Full_T)
21497 and then Present (Underlying_Full_View (Full_T))
21498 then
21499 Propagate_Invariant_Attributes
21500 (Underlying_Full_View (Full_T), From_Typ => Priv_T);
21501 end if;
21503 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
21504 -- in the full view without advertising the inheritance in the partial
21505 -- view. This can only occur when the partial view has no parent type
21506 -- and the full view has an interface as a parent. Any other scenarios
21507 -- are illegal because implemented interfaces must match between the
21508 -- two views.
21510 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
21511 declare
21512 Full_Par : constant Entity_Id := Etype (Full_T);
21513 Priv_Par : constant Entity_Id := Etype (Priv_T);
21515 begin
21516 if not Is_Interface (Priv_Par)
21517 and then Is_Interface (Full_Par)
21518 and then Has_Inheritable_Invariants (Full_Par)
21519 then
21520 Error_Msg_N
21521 ("hidden inheritance of class-wide type invariants not "
21522 & "allowed", N);
21523 end if;
21524 end;
21525 end if;
21527 -- Propagate predicates to full type, and predicate function if already
21528 -- defined. It is not clear that this can actually happen? the partial
21529 -- view cannot be frozen yet, and the predicate function has not been
21530 -- built. Still it is a cheap check and seems safer to make it.
21532 Propagate_Predicate_Attributes (Full_T, Priv_T);
21534 if Is_Private_Type (Full_T)
21535 and then Present (Underlying_Full_View (Full_T))
21536 then
21537 Propagate_Predicate_Attributes
21538 (Underlying_Full_View (Full_T), Priv_T);
21539 end if;
21541 <<Leave>>
21542 Restore_Ghost_Region (Saved_GM, Saved_IGR);
21543 end Process_Full_View;
21545 -----------------------------------
21546 -- Process_Incomplete_Dependents --
21547 -----------------------------------
21549 procedure Process_Incomplete_Dependents
21550 (N : Node_Id;
21551 Full_T : Entity_Id;
21552 Inc_T : Entity_Id)
21554 Inc_Elmt : Elmt_Id;
21555 Priv_Dep : Entity_Id;
21556 New_Subt : Entity_Id;
21558 Disc_Constraint : Elist_Id;
21560 begin
21561 if No (Private_Dependents (Inc_T)) then
21562 return;
21563 end if;
21565 -- Itypes that may be generated by the completion of an incomplete
21566 -- subtype are not used by the back-end and not attached to the tree.
21567 -- They are created only for constraint-checking purposes.
21569 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
21570 while Present (Inc_Elmt) loop
21571 Priv_Dep := Node (Inc_Elmt);
21573 if Ekind (Priv_Dep) = E_Subprogram_Type then
21575 -- An Access_To_Subprogram type may have a return type or a
21576 -- parameter type that is incomplete. Replace with the full view.
21578 if Etype (Priv_Dep) = Inc_T then
21579 Set_Etype (Priv_Dep, Full_T);
21580 end if;
21582 declare
21583 Formal : Entity_Id;
21585 begin
21586 Formal := First_Formal (Priv_Dep);
21587 while Present (Formal) loop
21588 if Etype (Formal) = Inc_T then
21589 Set_Etype (Formal, Full_T);
21590 end if;
21592 Next_Formal (Formal);
21593 end loop;
21594 end;
21596 elsif Is_Overloadable (Priv_Dep) then
21598 -- If a subprogram in the incomplete dependents list is primitive
21599 -- for a tagged full type then mark it as a dispatching operation,
21600 -- check whether it overrides an inherited subprogram, and check
21601 -- restrictions on its controlling formals. Note that a protected
21602 -- operation is never dispatching: only its wrapper operation
21603 -- (which has convention Ada) is.
21605 if Is_Tagged_Type (Full_T)
21606 and then Is_Primitive (Priv_Dep)
21607 and then Convention (Priv_Dep) /= Convention_Protected
21608 then
21609 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
21610 Set_Is_Dispatching_Operation (Priv_Dep);
21611 Check_Controlling_Formals (Full_T, Priv_Dep);
21612 end if;
21614 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
21616 -- Can happen during processing of a body before the completion
21617 -- of a TA type. Ignore, because spec is also on dependent list.
21619 return;
21621 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
21622 -- corresponding subtype of the full view.
21624 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype
21625 and then Comes_From_Source (Priv_Dep)
21626 then
21627 Set_Subtype_Indication
21628 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
21629 Reinit_Field_To_Zero
21630 (Priv_Dep, F_Private_Dependents,
21631 Old_Ekind => E_Incomplete_Subtype);
21632 Mutate_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
21633 Set_Etype (Priv_Dep, Full_T);
21634 Set_Analyzed (Parent (Priv_Dep), False);
21636 -- Reanalyze the declaration, suppressing the call to Enter_Name
21637 -- to avoid duplicate names.
21639 Analyze_Subtype_Declaration
21640 (N => Parent (Priv_Dep),
21641 Skip => True);
21643 -- Dependent is a subtype
21645 else
21646 -- We build a new subtype indication using the full view of the
21647 -- incomplete parent. The discriminant constraints have been
21648 -- elaborated already at the point of the subtype declaration.
21650 New_Subt := Create_Itype (E_Void, N);
21652 if Has_Discriminants (Full_T) then
21653 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
21654 else
21655 Disc_Constraint := No_Elist;
21656 end if;
21658 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
21659 Set_Full_View (Priv_Dep, New_Subt);
21660 end if;
21662 Next_Elmt (Inc_Elmt);
21663 end loop;
21664 end Process_Incomplete_Dependents;
21666 --------------------------------
21667 -- Process_Range_Expr_In_Decl --
21668 --------------------------------
21670 procedure Process_Range_Expr_In_Decl
21671 (R : Node_Id;
21672 T : Entity_Id;
21673 Subtyp : Entity_Id := Empty;
21674 Check_List : List_Id := No_List)
21676 Lo, Hi : Node_Id;
21677 R_Checks : Check_Result;
21678 Insert_Node : Node_Id;
21679 Def_Id : Entity_Id;
21681 begin
21682 Analyze_And_Resolve (R, Base_Type (T));
21684 if Nkind (R) = N_Range then
21685 Lo := Low_Bound (R);
21686 Hi := High_Bound (R);
21688 -- Validity checks on the range of a quantified expression are
21689 -- delayed until the construct is transformed into a loop.
21691 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
21692 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
21693 then
21694 null;
21696 -- We need to ensure validity of the bounds here, because if we
21697 -- go ahead and do the expansion, then the expanded code will get
21698 -- analyzed with range checks suppressed and we miss the check.
21700 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
21701 -- the temporaries generated by routine Remove_Side_Effects by means
21702 -- of validity checks must use the same names. When a range appears
21703 -- in the parent of a generic, the range is processed with checks
21704 -- disabled as part of the generic context and with checks enabled
21705 -- for code generation purposes. This leads to link issues as the
21706 -- generic contains references to xxx_FIRST/_LAST, but the inlined
21707 -- template sees the temporaries generated by Remove_Side_Effects.
21709 else
21710 Validity_Check_Range (R, Subtyp);
21711 end if;
21713 -- If there were errors in the declaration, try and patch up some
21714 -- common mistakes in the bounds. The cases handled are literals
21715 -- which are Integer where the expected type is Real and vice versa.
21716 -- These corrections allow the compilation process to proceed further
21717 -- along since some basic assumptions of the format of the bounds
21718 -- are guaranteed.
21720 if Etype (R) = Any_Type then
21721 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
21722 Rewrite (Lo,
21723 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
21725 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
21726 Rewrite (Hi,
21727 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
21729 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
21730 Rewrite (Lo,
21731 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
21733 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
21734 Rewrite (Hi,
21735 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
21736 end if;
21738 Set_Etype (Lo, T);
21739 Set_Etype (Hi, T);
21740 end if;
21742 -- If the bounds of the range have been mistakenly given as string
21743 -- literals (perhaps in place of character literals), then an error
21744 -- has already been reported, but we rewrite the string literal as a
21745 -- bound of the range's type to avoid blowups in later processing
21746 -- that looks at static values.
21748 if Nkind (Lo) = N_String_Literal then
21749 Rewrite (Lo,
21750 Make_Attribute_Reference (Sloc (Lo),
21751 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
21752 Attribute_Name => Name_First));
21753 Analyze_And_Resolve (Lo);
21754 end if;
21756 if Nkind (Hi) = N_String_Literal then
21757 Rewrite (Hi,
21758 Make_Attribute_Reference (Sloc (Hi),
21759 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
21760 Attribute_Name => Name_First));
21761 Analyze_And_Resolve (Hi);
21762 end if;
21764 -- If bounds aren't scalar at this point then exit, avoiding
21765 -- problems with further processing of the range in this procedure.
21767 if not Is_Scalar_Type (Etype (Lo)) then
21768 return;
21769 end if;
21771 -- Resolve (actually Sem_Eval) has checked that the bounds are in
21772 -- then range of the base type. Here we check whether the bounds
21773 -- are in the range of the subtype itself. Note that if the bounds
21774 -- represent the null range the Constraint_Error exception should
21775 -- not be raised.
21777 -- Capture values of bounds and generate temporaries for them
21778 -- if needed, before applying checks, since checks may cause
21779 -- duplication of the expression without forcing evaluation.
21781 -- The forced evaluation removes side effects from expressions,
21782 -- which should occur also in GNATprove mode. Otherwise, we end up
21783 -- with unexpected insertions of actions at places where this is
21784 -- not supposed to occur, e.g. on default parameters of a call.
21786 if Expander_Active or GNATprove_Mode then
21788 -- Call Force_Evaluation to create declarations as needed
21789 -- to deal with side effects, and also create typ_FIRST/LAST
21790 -- entities for bounds if we have a subtype name.
21792 -- Note: we do this transformation even if expansion is not
21793 -- active if we are in GNATprove_Mode since the transformation
21794 -- is in general required to ensure that the resulting tree has
21795 -- proper Ada semantics.
21797 Force_Evaluation
21798 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
21799 Force_Evaluation
21800 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
21801 end if;
21803 -- We use a flag here instead of suppressing checks on the type
21804 -- because the type we check against isn't necessarily the place
21805 -- where we put the check.
21807 R_Checks := Get_Range_Checks (R, T);
21809 -- Look up tree to find an appropriate insertion point. We can't
21810 -- just use insert_actions because later processing depends on
21811 -- the insertion node. Prior to Ada 2012 the insertion point could
21812 -- only be a declaration or a loop, but quantified expressions can
21813 -- appear within any context in an expression, and the insertion
21814 -- point can be any statement, pragma, or declaration.
21816 Insert_Node := Parent (R);
21817 while Present (Insert_Node) loop
21818 exit when
21819 Nkind (Insert_Node) in N_Declaration
21820 and then
21821 Nkind (Insert_Node) not in N_Component_Declaration
21822 | N_Loop_Parameter_Specification
21823 | N_Function_Specification
21824 | N_Procedure_Specification;
21826 exit when Nkind (Insert_Node) in
21827 N_Later_Decl_Item |
21828 N_Statement_Other_Than_Procedure_Call |
21829 N_Procedure_Call_Statement |
21830 N_Pragma;
21832 Insert_Node := Parent (Insert_Node);
21833 end loop;
21835 if Present (Insert_Node) then
21837 -- Case of loop statement. Verify that the range is part of the
21838 -- subtype indication of the iteration scheme.
21840 if Nkind (Insert_Node) = N_Loop_Statement then
21841 declare
21842 Indic : Node_Id;
21844 begin
21845 Indic := Parent (R);
21846 while Present (Indic)
21847 and then Nkind (Indic) /= N_Subtype_Indication
21848 loop
21849 Indic := Parent (Indic);
21850 end loop;
21852 if Present (Indic) then
21853 Def_Id := Etype (Subtype_Mark (Indic));
21855 Insert_Range_Checks
21856 (R_Checks,
21857 Insert_Node,
21858 Def_Id,
21859 Sloc (Insert_Node),
21860 Do_Before => True);
21861 end if;
21862 end;
21864 -- Case of declarations. If the declaration is for a type and
21865 -- involves discriminants, the checks are premature at the
21866 -- declaration point and need to wait for the expansion of the
21867 -- initialization procedure, which will pass in the list to put
21868 -- them on; otherwise, the checks are done at the declaration
21869 -- point and there is no need to do them again in the
21870 -- initialization procedure.
21872 elsif Nkind (Insert_Node) in N_Declaration then
21873 Def_Id := Defining_Identifier (Insert_Node);
21875 if (Ekind (Def_Id) = E_Record_Type
21876 and then Depends_On_Discriminant (R))
21877 or else
21878 (Ekind (Def_Id) = E_Protected_Type
21879 and then Has_Discriminants (Def_Id))
21880 then
21881 if Present (Check_List) then
21882 Append_Range_Checks
21883 (R_Checks,
21884 Check_List, Def_Id, Sloc (Insert_Node));
21885 end if;
21887 else
21888 if No (Check_List) then
21889 Insert_Range_Checks
21890 (R_Checks,
21891 Insert_Node, Def_Id, Sloc (Insert_Node));
21892 end if;
21893 end if;
21895 -- Case of statements. Drop the checks, as the range appears in
21896 -- the context of a quantified expression. Insertion will take
21897 -- place when expression is expanded.
21899 else
21900 null;
21901 end if;
21902 end if;
21904 -- Case of other than an explicit N_Range node
21906 -- The forced evaluation removes side effects from expressions, which
21907 -- should occur also in GNATprove mode. Otherwise, we end up with
21908 -- unexpected insertions of actions at places where this is not
21909 -- supposed to occur, e.g. on default parameters of a call.
21911 elsif Expander_Active or GNATprove_Mode then
21912 Get_Index_Bounds (R, Lo, Hi);
21913 Force_Evaluation (Lo);
21914 Force_Evaluation (Hi);
21915 end if;
21916 end Process_Range_Expr_In_Decl;
21918 --------------------------------------
21919 -- Process_Real_Range_Specification --
21920 --------------------------------------
21922 procedure Process_Real_Range_Specification (Def : Node_Id) is
21923 Spec : constant Node_Id := Real_Range_Specification (Def);
21924 Lo : Node_Id;
21925 Hi : Node_Id;
21926 Err : Boolean := False;
21928 procedure Analyze_Bound (N : Node_Id);
21929 -- Analyze and check one bound
21931 -------------------
21932 -- Analyze_Bound --
21933 -------------------
21935 procedure Analyze_Bound (N : Node_Id) is
21936 begin
21937 Analyze_And_Resolve (N, Any_Real);
21939 if not Is_OK_Static_Expression (N) then
21940 Flag_Non_Static_Expr
21941 ("bound in real type definition is not static!", N);
21942 Err := True;
21943 end if;
21944 end Analyze_Bound;
21946 -- Start of processing for Process_Real_Range_Specification
21948 begin
21949 if Present (Spec) then
21950 Lo := Low_Bound (Spec);
21951 Hi := High_Bound (Spec);
21952 Analyze_Bound (Lo);
21953 Analyze_Bound (Hi);
21955 -- If error, clear away junk range specification
21957 if Err then
21958 Set_Real_Range_Specification (Def, Empty);
21959 end if;
21960 end if;
21961 end Process_Real_Range_Specification;
21963 ---------------------
21964 -- Process_Subtype --
21965 ---------------------
21967 function Process_Subtype
21968 (S : Node_Id;
21969 Related_Nod : Node_Id;
21970 Related_Id : Entity_Id := Empty;
21971 Suffix : Character := ' ') return Entity_Id
21973 procedure Check_Incomplete (T : Node_Id);
21974 -- Called to verify that an incomplete type is not used prematurely
21976 ----------------------
21977 -- Check_Incomplete --
21978 ----------------------
21980 procedure Check_Incomplete (T : Node_Id) is
21981 begin
21982 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21984 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
21985 and then
21986 not (Ada_Version >= Ada_2005
21987 and then
21988 (Nkind (Parent (T)) = N_Subtype_Declaration
21989 or else (Nkind (Parent (T)) = N_Subtype_Indication
21990 and then Nkind (Parent (Parent (T))) =
21991 N_Subtype_Declaration)))
21992 then
21993 Error_Msg_N ("invalid use of type before its full declaration", T);
21994 end if;
21995 end Check_Incomplete;
21997 -- Local variables
21999 P : Node_Id;
22000 Def_Id : Entity_Id;
22001 Error_Node : Node_Id;
22002 Full_View_Id : Entity_Id;
22003 Subtype_Mark_Id : Entity_Id;
22005 May_Have_Null_Exclusion : Boolean;
22007 -- Start of processing for Process_Subtype
22009 begin
22010 -- Case of no constraints present
22012 if Nkind (S) /= N_Subtype_Indication then
22013 Find_Type (S);
22015 -- No way to proceed if the subtype indication is malformed. This
22016 -- will happen for example when the subtype indication in an object
22017 -- declaration is missing altogether and the expression is analyzed
22018 -- as if it were that indication.
22020 if not Is_Entity_Name (S) then
22021 return Any_Type;
22022 end if;
22024 Check_Incomplete (S);
22025 P := Parent (S);
22027 -- The following mirroring of assertion in Null_Exclusion_Present is
22028 -- ugly, can't we have a range, a static predicate or even a flag???
22030 May_Have_Null_Exclusion :=
22031 Present (P)
22032 and then
22033 Nkind (P) in N_Access_Definition
22034 | N_Access_Function_Definition
22035 | N_Access_Procedure_Definition
22036 | N_Access_To_Object_Definition
22037 | N_Allocator
22038 | N_Component_Definition
22039 | N_Derived_Type_Definition
22040 | N_Discriminant_Specification
22041 | N_Formal_Object_Declaration
22042 | N_Function_Specification
22043 | N_Object_Declaration
22044 | N_Object_Renaming_Declaration
22045 | N_Parameter_Specification
22046 | N_Subtype_Declaration;
22048 -- Ada 2005 (AI-231): Static check
22050 if Ada_Version >= Ada_2005
22051 and then May_Have_Null_Exclusion
22052 and then Null_Exclusion_Present (P)
22053 and then Nkind (P) /= N_Access_To_Object_Definition
22054 and then not Is_Access_Type (Entity (S))
22055 then
22056 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
22057 end if;
22059 -- Create an Itype that is a duplicate of Entity (S) but with the
22060 -- null-exclusion attribute.
22062 if May_Have_Null_Exclusion
22063 and then Is_Access_Type (Entity (S))
22064 and then Null_Exclusion_Present (P)
22066 -- No need to check the case of an access to object definition.
22067 -- It is correct to define double not-null pointers.
22069 -- Example:
22070 -- type Not_Null_Int_Ptr is not null access Integer;
22071 -- type Acc is not null access Not_Null_Int_Ptr;
22073 and then Nkind (P) /= N_Access_To_Object_Definition
22074 then
22075 if Can_Never_Be_Null (Entity (S)) then
22076 case Nkind (Related_Nod) is
22077 when N_Full_Type_Declaration =>
22078 if Nkind (Type_Definition (Related_Nod))
22079 in N_Array_Type_Definition
22080 then
22081 Error_Node :=
22082 Subtype_Indication
22083 (Component_Definition
22084 (Type_Definition (Related_Nod)));
22085 else
22086 Error_Node :=
22087 Subtype_Indication (Type_Definition (Related_Nod));
22088 end if;
22090 when N_Subtype_Declaration =>
22091 Error_Node := Subtype_Indication (Related_Nod);
22093 when N_Object_Declaration =>
22094 Error_Node := Object_Definition (Related_Nod);
22096 when N_Component_Declaration =>
22097 Error_Node :=
22098 Subtype_Indication (Component_Definition (Related_Nod));
22100 when N_Allocator =>
22101 Error_Node := Expression (Related_Nod);
22103 when others =>
22104 pragma Assert (False);
22105 Error_Node := Related_Nod;
22106 end case;
22108 Error_Msg_NE
22109 ("`NOT NULL` not allowed (& already excludes null)",
22110 Error_Node,
22111 Entity (S));
22112 end if;
22114 Set_Etype (S,
22115 Create_Null_Excluding_Itype
22116 (T => Entity (S),
22117 Related_Nod => P));
22118 Set_Entity (S, Etype (S));
22119 end if;
22121 return Entity (S);
22123 -- Case of constraint present, so that we have an N_Subtype_Indication
22124 -- node (this node is created only if constraints are present).
22126 else
22127 Find_Type (Subtype_Mark (S));
22129 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
22130 and then not
22131 (Nkind (Parent (S)) = N_Subtype_Declaration
22132 and then Is_Itype (Defining_Identifier (Parent (S))))
22133 then
22134 Check_Incomplete (Subtype_Mark (S));
22135 end if;
22137 P := Parent (S);
22138 Subtype_Mark_Id := Entity (Subtype_Mark (S));
22140 -- Explicit subtype declaration case
22142 if Nkind (P) = N_Subtype_Declaration then
22143 Def_Id := Defining_Identifier (P);
22145 -- Explicit derived type definition case
22147 elsif Nkind (P) = N_Derived_Type_Definition then
22148 Def_Id := Defining_Identifier (Parent (P));
22150 -- Implicit case, the Def_Id must be created as an implicit type.
22151 -- The one exception arises in the case of concurrent types, array
22152 -- and access types, where other subsidiary implicit types may be
22153 -- created and must appear before the main implicit type. In these
22154 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
22155 -- has not yet been called to create Def_Id.
22157 else
22158 if Is_Array_Type (Subtype_Mark_Id)
22159 or else Is_Concurrent_Type (Subtype_Mark_Id)
22160 or else Is_Access_Type (Subtype_Mark_Id)
22161 then
22162 Def_Id := Empty;
22164 -- For the other cases, we create a new unattached Itype,
22165 -- and set the indication to ensure it gets attached later.
22167 else
22168 Def_Id :=
22169 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
22170 end if;
22171 end if;
22173 -- If the kind of constraint is invalid for this kind of type,
22174 -- then give an error, and then pretend no constraint was given.
22176 if not Is_Valid_Constraint_Kind
22177 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
22178 then
22179 Error_Msg_N
22180 ("incorrect constraint for this kind of type", Constraint (S));
22182 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
22184 -- Set Ekind of orphan itype, to prevent cascaded errors
22186 if Present (Def_Id) then
22187 Mutate_Ekind (Def_Id, Ekind (Any_Type));
22188 end if;
22190 -- Make recursive call, having got rid of the bogus constraint
22192 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
22193 end if;
22195 -- Remaining processing depends on type. Select on Base_Type kind to
22196 -- ensure getting to the concrete type kind in the case of a private
22197 -- subtype (needed when only doing semantic analysis).
22199 case Ekind (Base_Type (Subtype_Mark_Id)) is
22200 when Access_Kind =>
22202 -- If this is a constraint on a class-wide type, discard it.
22203 -- There is currently no way to express a partial discriminant
22204 -- constraint on a type with unknown discriminants. This is
22205 -- a pathology that the ACATS wisely decides not to test.
22207 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
22208 if Comes_From_Source (S) then
22209 Error_Msg_N
22210 ("constraint on class-wide type ignored??",
22211 Constraint (S));
22212 end if;
22214 if Nkind (P) = N_Subtype_Declaration then
22215 Set_Subtype_Indication (P,
22216 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
22217 end if;
22219 return Subtype_Mark_Id;
22220 end if;
22222 Constrain_Access (Def_Id, S, Related_Nod);
22224 if Expander_Active
22225 and then Is_Itype (Designated_Type (Def_Id))
22226 and then Nkind (Related_Nod) = N_Subtype_Declaration
22227 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
22228 then
22229 Build_Itype_Reference
22230 (Designated_Type (Def_Id), Related_Nod);
22231 end if;
22233 when Array_Kind =>
22234 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
22236 when Decimal_Fixed_Point_Kind =>
22237 Constrain_Decimal (Def_Id, S);
22239 when Enumeration_Kind =>
22240 Constrain_Enumeration (Def_Id, S);
22242 when Ordinary_Fixed_Point_Kind =>
22243 Constrain_Ordinary_Fixed (Def_Id, S);
22245 when Float_Kind =>
22246 Constrain_Float (Def_Id, S);
22248 when Integer_Kind =>
22249 Constrain_Integer (Def_Id, S);
22251 when Class_Wide_Kind
22252 | E_Incomplete_Type
22253 | E_Record_Subtype
22254 | E_Record_Type
22256 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
22258 if Ekind (Def_Id) = E_Incomplete_Type then
22259 Set_Private_Dependents (Def_Id, New_Elmt_List);
22260 end if;
22262 when Private_Kind =>
22264 -- A private type with unknown discriminants may be completed
22265 -- by an unconstrained array type.
22267 if Has_Unknown_Discriminants (Subtype_Mark_Id)
22268 and then Present (Full_View (Subtype_Mark_Id))
22269 and then Is_Array_Type (Full_View (Subtype_Mark_Id))
22270 then
22271 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
22273 -- ... but more commonly is completed by a discriminated record
22274 -- type.
22276 else
22277 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
22278 end if;
22280 -- The base type may be private but Def_Id may be a full view
22281 -- in an instance.
22283 if Is_Private_Type (Def_Id) then
22284 Set_Private_Dependents (Def_Id, New_Elmt_List);
22285 end if;
22287 -- In case of an invalid constraint prevent further processing
22288 -- since the type constructed is missing expected fields.
22290 if Etype (Def_Id) = Any_Type then
22291 return Def_Id;
22292 end if;
22294 -- If the full view is that of a task with discriminants,
22295 -- we must constrain both the concurrent type and its
22296 -- corresponding record type. Otherwise we will just propagate
22297 -- the constraint to the full view, if available.
22299 if Present (Full_View (Subtype_Mark_Id))
22300 and then Has_Discriminants (Subtype_Mark_Id)
22301 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
22302 then
22303 Full_View_Id :=
22304 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
22306 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
22307 Constrain_Concurrent (Full_View_Id, S,
22308 Related_Nod, Related_Id, Suffix);
22309 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
22310 Set_Full_View (Def_Id, Full_View_Id);
22312 -- Introduce an explicit reference to the private subtype,
22313 -- to prevent scope anomalies in gigi if first use appears
22314 -- in a nested context, e.g. a later function body.
22315 -- Should this be generated in other contexts than a full
22316 -- type declaration?
22318 if Is_Itype (Def_Id)
22319 and then
22320 Nkind (Parent (P)) = N_Full_Type_Declaration
22321 then
22322 Build_Itype_Reference (Def_Id, Parent (P));
22323 end if;
22325 else
22326 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
22327 end if;
22329 when Concurrent_Kind =>
22330 Constrain_Concurrent (Def_Id, S,
22331 Related_Nod, Related_Id, Suffix);
22333 when others =>
22334 Error_Msg_N ("invalid subtype mark in subtype indication", S);
22335 end case;
22337 -- Size, Alignment, Representation aspects and Convention are always
22338 -- inherited from the base type.
22340 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
22341 Set_Rep_Info (Def_Id, (Subtype_Mark_Id));
22342 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
22344 -- The anonymous subtype created for the subtype indication
22345 -- inherits the predicates of the parent.
22347 if Has_Predicates (Subtype_Mark_Id) then
22348 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
22350 -- Indicate where the predicate function may be found
22352 if No (Predicate_Function (Def_Id)) and then Is_Itype (Def_Id) then
22353 Set_Predicated_Parent (Def_Id, Subtype_Mark_Id);
22354 end if;
22355 end if;
22357 return Def_Id;
22358 end if;
22359 end Process_Subtype;
22361 -----------------------------
22362 -- Record_Type_Declaration --
22363 -----------------------------
22365 procedure Record_Type_Declaration
22366 (T : Entity_Id;
22367 N : Node_Id;
22368 Prev : Entity_Id)
22370 Def : constant Node_Id := Type_Definition (N);
22371 Is_Tagged : Boolean;
22372 Tag_Comp : Entity_Id;
22374 begin
22375 -- These flags must be initialized before calling Process_Discriminants
22376 -- because this routine makes use of them.
22378 Mutate_Ekind (T, E_Record_Type);
22379 Set_Etype (T, T);
22380 Reinit_Size_Align (T);
22381 Set_Interfaces (T, No_Elist);
22382 Set_Stored_Constraint (T, No_Elist);
22383 Set_Default_SSO (T);
22384 Set_No_Reordering (T, No_Component_Reordering);
22386 -- Normal case
22388 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
22389 -- The flag Is_Tagged_Type might have already been set by
22390 -- Find_Type_Name if it detected an error for declaration T. This
22391 -- arises in the case of private tagged types where the full view
22392 -- omits the word tagged.
22394 Is_Tagged :=
22395 Tagged_Present (Def)
22396 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
22398 Set_Is_Limited_Record (T, Limited_Present (Def));
22400 if Is_Tagged then
22401 Set_Is_Tagged_Type (T, True);
22402 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
22403 end if;
22405 -- Type is abstract if full declaration carries keyword, or if
22406 -- previous partial view did.
22408 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
22409 or else Abstract_Present (Def));
22411 else
22412 Is_Tagged := True;
22413 Analyze_Interface_Declaration (T, Def);
22415 if Present (Discriminant_Specifications (N)) then
22416 Error_Msg_N
22417 ("interface types cannot have discriminants",
22418 Defining_Identifier
22419 (First (Discriminant_Specifications (N))));
22420 end if;
22421 end if;
22423 -- First pass: if there are self-referential access components,
22424 -- create the required anonymous access type declarations, and if
22425 -- need be an incomplete type declaration for T itself.
22427 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
22429 if Ada_Version >= Ada_2005
22430 and then Present (Interface_List (Def))
22431 then
22432 Check_Interfaces (N, Def);
22434 declare
22435 Ifaces_List : Elist_Id;
22437 begin
22438 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
22439 -- already in the parents.
22441 Collect_Interfaces
22442 (T => T,
22443 Ifaces_List => Ifaces_List,
22444 Exclude_Parents => True);
22446 Set_Interfaces (T, Ifaces_List);
22447 end;
22448 end if;
22450 -- Records constitute a scope for the component declarations within.
22451 -- The scope is created prior to the processing of these declarations.
22452 -- Discriminants are processed first, so that they are visible when
22453 -- processing the other components. The Ekind of the record type itself
22454 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
22456 -- Enter record scope
22458 Push_Scope (T);
22460 -- If an incomplete or private type declaration was already given for
22461 -- the type, then this scope already exists, and the discriminants have
22462 -- been declared within. We must verify that the full declaration
22463 -- matches the incomplete one.
22465 Check_Or_Process_Discriminants (N, T, Prev);
22467 Set_Is_Constrained (T, not Has_Discriminants (T));
22468 Set_Has_Delayed_Freeze (T, True);
22470 -- For tagged types add a manually analyzed component corresponding
22471 -- to the component _tag, the corresponding piece of tree will be
22472 -- expanded as part of the freezing actions if it is not a CPP_Class.
22474 if Is_Tagged then
22476 -- Do not add the tag unless we are in expansion mode
22478 if Expander_Active then
22479 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
22480 Enter_Name (Tag_Comp);
22482 Mutate_Ekind (Tag_Comp, E_Component);
22483 Set_Is_Tag (Tag_Comp);
22484 Set_Is_Aliased (Tag_Comp);
22485 Set_Is_Independent (Tag_Comp);
22486 Set_Etype (Tag_Comp, RTE (RE_Tag));
22487 Set_DT_Entry_Count (Tag_Comp, No_Uint);
22488 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
22489 Reinit_Component_Location (Tag_Comp);
22491 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
22492 -- implemented interfaces.
22494 if Has_Interfaces (T) then
22495 Add_Interface_Tag_Components (N, T);
22496 end if;
22497 end if;
22499 Make_Class_Wide_Type (T);
22500 Set_Direct_Primitive_Operations (T, New_Elmt_List);
22501 end if;
22503 -- We must suppress range checks when processing record components in
22504 -- the presence of discriminants, since we don't want spurious checks to
22505 -- be generated during their analysis, but Suppress_Range_Checks flags
22506 -- must be reset the after processing the record definition.
22508 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
22509 -- couldn't we just use the normal range check suppression method here.
22510 -- That would seem cleaner ???
22512 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
22513 Set_Kill_Range_Checks (T, True);
22514 Record_Type_Definition (Def, Prev);
22515 Set_Kill_Range_Checks (T, False);
22516 else
22517 Record_Type_Definition (Def, Prev);
22518 end if;
22520 -- Exit from record scope
22522 End_Scope;
22524 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
22525 -- the implemented interfaces and associate them an aliased entity.
22527 if Is_Tagged
22528 and then not Is_Empty_List (Interface_List (Def))
22529 then
22530 Derive_Progenitor_Subprograms (T, T);
22531 end if;
22533 Check_Function_Writable_Actuals (N);
22534 end Record_Type_Declaration;
22536 ----------------------------
22537 -- Record_Type_Definition --
22538 ----------------------------
22540 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
22541 Component : Entity_Id;
22542 Ctrl_Components : Boolean := False;
22543 Final_Storage_Only : Boolean;
22544 T : Entity_Id;
22546 begin
22547 if Ekind (Prev_T) = E_Incomplete_Type then
22548 T := Full_View (Prev_T);
22549 else
22550 T := Prev_T;
22551 end if;
22553 Final_Storage_Only := not Is_Controlled (T);
22555 -- Ada 2005: Check whether an explicit "limited" is present in a derived
22556 -- type declaration.
22558 if Parent_Kind (Def) = N_Derived_Type_Definition
22559 and then Limited_Present (Parent (Def))
22560 then
22561 Set_Is_Limited_Record (T);
22562 end if;
22564 -- If the component list of a record type is defined by the reserved
22565 -- word null and there is no discriminant part, then the record type has
22566 -- no components and all records of the type are null records (RM 3.7)
22567 -- This procedure is also called to process the extension part of a
22568 -- record extension, in which case the current scope may have inherited
22569 -- components.
22571 if Present (Def)
22572 and then Present (Component_List (Def))
22573 and then not Null_Present (Component_List (Def))
22574 then
22575 Analyze_Declarations (Component_Items (Component_List (Def)));
22577 if Present (Variant_Part (Component_List (Def))) then
22578 Analyze (Variant_Part (Component_List (Def)));
22579 end if;
22580 end if;
22582 -- After completing the semantic analysis of the record definition,
22583 -- record components, both new and inherited, are accessible. Set their
22584 -- kind accordingly. Exclude malformed itypes from illegal declarations,
22585 -- whose Ekind may be void.
22587 Component := First_Entity (Current_Scope);
22588 while Present (Component) loop
22589 if Ekind (Component) = E_Void
22590 and then not Is_Itype (Component)
22591 then
22592 Mutate_Ekind (Component, E_Component);
22593 Reinit_Component_Location (Component);
22594 end if;
22596 Propagate_Concurrent_Flags (T, Etype (Component));
22598 if Ekind (Component) /= E_Component then
22599 null;
22601 -- Do not set Has_Controlled_Component on a class-wide equivalent
22602 -- type. See Make_CW_Equivalent_Type.
22604 elsif not Is_Class_Wide_Equivalent_Type (T)
22605 and then (Has_Controlled_Component (Etype (Component))
22606 or else (Chars (Component) /= Name_uParent
22607 and then Is_Controlled (Etype (Component))))
22608 then
22609 Set_Has_Controlled_Component (T, True);
22610 Final_Storage_Only :=
22611 Final_Storage_Only
22612 and then Finalize_Storage_Only (Etype (Component));
22613 Ctrl_Components := True;
22614 end if;
22616 Next_Entity (Component);
22617 end loop;
22619 -- A Type is Finalize_Storage_Only only if all its controlled components
22620 -- are also.
22622 if Ctrl_Components then
22623 Set_Finalize_Storage_Only (T, Final_Storage_Only);
22624 end if;
22626 -- Place reference to end record on the proper entity, which may
22627 -- be a partial view.
22629 if Present (Def) then
22630 Process_End_Label (Def, 'e', Prev_T);
22631 end if;
22632 end Record_Type_Definition;
22634 ---------------------------
22635 -- Replace_Discriminants --
22636 ---------------------------
22638 procedure Replace_Discriminants (Typ : Entity_Id; Decl : Node_Id) is
22639 function Process (N : Node_Id) return Traverse_Result;
22641 -------------
22642 -- Process --
22643 -------------
22645 function Process (N : Node_Id) return Traverse_Result is
22646 Comp : Entity_Id;
22648 begin
22649 if Nkind (N) = N_Discriminant_Specification then
22650 Comp := First_Discriminant (Typ);
22651 while Present (Comp) loop
22652 if Original_Record_Component (Comp) = Defining_Identifier (N)
22653 or else Chars (Comp) = Chars (Defining_Identifier (N))
22654 then
22655 Set_Defining_Identifier (N, Comp);
22656 exit;
22657 end if;
22659 Next_Discriminant (Comp);
22660 end loop;
22662 elsif Nkind (N) = N_Variant_Part then
22663 Comp := First_Discriminant (Typ);
22664 while Present (Comp) loop
22665 if Original_Record_Component (Comp) = Entity (Name (N))
22666 or else Chars (Comp) = Chars (Name (N))
22667 then
22668 -- Make sure to preserve the type coming from the parent on
22669 -- the Name, even if the subtype of the discriminant can be
22670 -- constrained, so that discrete choices inherited from the
22671 -- parent in the variant part are not flagged as violating
22672 -- the constraints of the subtype.
22674 declare
22675 Typ : constant Entity_Id := Etype (Name (N));
22676 begin
22677 Rewrite (Name (N), New_Occurrence_Of (Comp, Sloc (N)));
22678 Set_Etype (Name (N), Typ);
22679 end;
22680 exit;
22681 end if;
22683 Next_Discriminant (Comp);
22684 end loop;
22685 end if;
22687 return OK;
22688 end Process;
22690 procedure Replace is new Traverse_Proc (Process);
22692 -- Start of processing for Replace_Discriminants
22694 begin
22695 Replace (Decl);
22696 end Replace_Discriminants;
22698 -------------------------------
22699 -- Set_Completion_Referenced --
22700 -------------------------------
22702 procedure Set_Completion_Referenced (E : Entity_Id) is
22703 begin
22704 -- If in main unit, mark entity that is a completion as referenced,
22705 -- warnings go on the partial view when needed.
22707 if In_Extended_Main_Source_Unit (E) then
22708 Set_Referenced (E);
22709 end if;
22710 end Set_Completion_Referenced;
22712 ---------------------
22713 -- Set_Default_SSO --
22714 ---------------------
22716 procedure Set_Default_SSO (T : Entity_Id) is
22717 begin
22718 case Opt.Default_SSO is
22719 when ' ' =>
22720 null;
22721 when 'L' =>
22722 Set_SSO_Set_Low_By_Default (T, True);
22723 when 'H' =>
22724 Set_SSO_Set_High_By_Default (T, True);
22725 when others =>
22726 raise Program_Error;
22727 end case;
22728 end Set_Default_SSO;
22730 ---------------------
22731 -- Set_Fixed_Range --
22732 ---------------------
22734 -- The range for fixed-point types is complicated by the fact that we
22735 -- do not know the exact end points at the time of the declaration. This
22736 -- is true for three reasons:
22738 -- A size clause may affect the fudging of the end-points.
22739 -- A small clause may affect the values of the end-points.
22740 -- We try to include the end-points if it does not affect the size.
22742 -- This means that the actual end-points must be established at the
22743 -- point when the type is frozen. Meanwhile, we first narrow the range
22744 -- as permitted (so that it will fit if necessary in a small specified
22745 -- size), and then build a range subtree with these narrowed bounds.
22746 -- Set_Fixed_Range constructs the range from real literal values, and
22747 -- sets the range as the Scalar_Range of the given fixed-point type entity.
22749 -- The parent of this range is set to point to the entity so that it is
22750 -- properly hooked into the tree (unlike normal Scalar_Range entries for
22751 -- other scalar types, which are just pointers to the range in the
22752 -- original tree, this would otherwise be an orphan).
22754 -- The tree is left unanalyzed. When the type is frozen, the processing
22755 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
22756 -- analyzed, and uses this as an indication that it should complete
22757 -- work on the range (it will know the final small and size values).
22759 procedure Set_Fixed_Range
22760 (E : Entity_Id;
22761 Loc : Source_Ptr;
22762 Lo : Ureal;
22763 Hi : Ureal)
22765 S : constant Node_Id :=
22766 Make_Range (Loc,
22767 Low_Bound => Make_Real_Literal (Loc, Lo),
22768 High_Bound => Make_Real_Literal (Loc, Hi));
22769 begin
22770 Set_Scalar_Range (E, S);
22771 Set_Parent (S, E);
22773 -- Before the freeze point, the bounds of a fixed point are universal
22774 -- and carry the corresponding type.
22776 Set_Etype (Low_Bound (S), Universal_Real);
22777 Set_Etype (High_Bound (S), Universal_Real);
22778 end Set_Fixed_Range;
22780 ----------------------------------
22781 -- Set_Scalar_Range_For_Subtype --
22782 ----------------------------------
22784 procedure Set_Scalar_Range_For_Subtype
22785 (Def_Id : Entity_Id;
22786 R : Node_Id;
22787 Subt : Entity_Id)
22789 Kind : constant Entity_Kind := Ekind (Def_Id);
22791 begin
22792 -- Defend against previous error
22794 if Nkind (R) = N_Error then
22795 return;
22796 end if;
22798 Set_Scalar_Range (Def_Id, R);
22800 -- We need to link the range into the tree before resolving it so
22801 -- that types that are referenced, including importantly the subtype
22802 -- itself, are properly frozen (Freeze_Expression requires that the
22803 -- expression be properly linked into the tree). Of course if it is
22804 -- already linked in, then we do not disturb the current link.
22806 if No (Parent (R)) then
22807 Set_Parent (R, Def_Id);
22808 end if;
22810 -- Reset the kind of the subtype during analysis of the range, to
22811 -- catch possible premature use in the bounds themselves.
22813 Mutate_Ekind (Def_Id, E_Void);
22814 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
22815 Mutate_Ekind (Def_Id, Kind);
22816 end Set_Scalar_Range_For_Subtype;
22818 --------------------------------------------------------
22819 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22820 --------------------------------------------------------
22822 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22823 (E : Entity_Id)
22825 begin
22826 -- Make sure set if encountered during Expand_To_Stored_Constraint
22828 Set_Stored_Constraint (E, No_Elist);
22830 -- Give it the right value
22832 if Is_Constrained (E) and then Has_Discriminants (E) then
22833 Set_Stored_Constraint (E,
22834 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
22835 end if;
22836 end Set_Stored_Constraint_From_Discriminant_Constraint;
22838 -------------------------------------
22839 -- Signed_Integer_Type_Declaration --
22840 -------------------------------------
22842 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
22843 Implicit_Base : Entity_Id;
22844 Base_Typ : Entity_Id;
22845 Lo_Val : Uint;
22846 Hi_Val : Uint;
22847 Errs : Boolean := False;
22848 Lo : Node_Id;
22849 Hi : Node_Id;
22851 function Can_Derive_From (E : Entity_Id) return Boolean;
22852 -- Determine whether given bounds allow derivation from specified type
22854 procedure Check_Bound (Expr : Node_Id);
22855 -- Check bound to make sure it is integral and static. If not, post
22856 -- appropriate error message and set Errs flag
22858 ---------------------
22859 -- Can_Derive_From --
22860 ---------------------
22862 -- Note we check both bounds against both end values, to deal with
22863 -- strange types like ones with a range of 0 .. -12341234.
22865 function Can_Derive_From (E : Entity_Id) return Boolean is
22866 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
22867 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
22868 begin
22869 return Lo <= Lo_Val and then Lo_Val <= Hi
22870 and then
22871 Lo <= Hi_Val and then Hi_Val <= Hi;
22872 end Can_Derive_From;
22874 -----------------
22875 -- Check_Bound --
22876 -----------------
22878 procedure Check_Bound (Expr : Node_Id) is
22879 begin
22880 -- If a range constraint is used as an integer type definition, each
22881 -- bound of the range must be defined by a static expression of some
22882 -- integer type, but the two bounds need not have the same integer
22883 -- type (Negative bounds are allowed.) (RM 3.5.4)
22885 if not Is_Integer_Type (Etype (Expr)) then
22886 Error_Msg_N
22887 ("integer type definition bounds must be of integer type", Expr);
22888 Errs := True;
22890 elsif not Is_OK_Static_Expression (Expr) then
22891 Flag_Non_Static_Expr
22892 ("non-static expression used for integer type bound!", Expr);
22893 Errs := True;
22895 -- Otherwise the bounds are folded into literals
22897 elsif Is_Entity_Name (Expr) then
22898 Fold_Uint (Expr, Expr_Value (Expr), True);
22899 end if;
22900 end Check_Bound;
22902 -- Start of processing for Signed_Integer_Type_Declaration
22904 begin
22905 -- Create an anonymous base type
22907 Implicit_Base :=
22908 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
22910 -- Analyze and check the bounds, they can be of any integer type
22912 Lo := Low_Bound (Def);
22913 Hi := High_Bound (Def);
22915 -- Arbitrarily use Integer as the type if either bound had an error
22917 if Hi = Error or else Lo = Error then
22918 Base_Typ := Any_Integer;
22919 Set_Error_Posted (T, True);
22920 Errs := True;
22922 -- Here both bounds are OK expressions
22924 else
22925 Analyze_And_Resolve (Lo, Any_Integer);
22926 Analyze_And_Resolve (Hi, Any_Integer);
22928 Check_Bound (Lo);
22929 Check_Bound (Hi);
22931 if Errs then
22932 Hi := Type_High_Bound (Standard_Long_Long_Long_Integer);
22933 Lo := Type_Low_Bound (Standard_Long_Long_Long_Integer);
22934 end if;
22936 -- Find type to derive from
22938 Lo_Val := Expr_Value (Lo);
22939 Hi_Val := Expr_Value (Hi);
22941 if Can_Derive_From (Standard_Short_Short_Integer) then
22942 Base_Typ := Base_Type (Standard_Short_Short_Integer);
22944 elsif Can_Derive_From (Standard_Short_Integer) then
22945 Base_Typ := Base_Type (Standard_Short_Integer);
22947 elsif Can_Derive_From (Standard_Integer) then
22948 Base_Typ := Base_Type (Standard_Integer);
22950 elsif Can_Derive_From (Standard_Long_Integer) then
22951 Base_Typ := Base_Type (Standard_Long_Integer);
22953 elsif Can_Derive_From (Standard_Long_Long_Integer) then
22954 Check_Restriction (No_Long_Long_Integers, Def);
22955 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22957 elsif Can_Derive_From (Standard_Long_Long_Long_Integer) then
22958 Check_Restriction (No_Long_Long_Integers, Def);
22959 Base_Typ := Base_Type (Standard_Long_Long_Long_Integer);
22961 else
22962 Base_Typ := Base_Type (Standard_Long_Long_Long_Integer);
22963 Error_Msg_N ("integer type definition bounds out of range", Def);
22964 Hi := Type_High_Bound (Standard_Long_Long_Long_Integer);
22965 Lo := Type_Low_Bound (Standard_Long_Long_Long_Integer);
22966 end if;
22967 end if;
22969 -- Set the type of the bounds to the implicit base: we cannot set it to
22970 -- the new type, because this would be a forward reference for the code
22971 -- generator and, if the original type is user-defined, this could even
22972 -- lead to spurious semantic errors. Furthermore we do not set it to be
22973 -- universal, because this could make it much larger than needed here.
22975 if not Errs then
22976 Set_Etype (Lo, Implicit_Base);
22977 Set_Etype (Hi, Implicit_Base);
22978 end if;
22980 -- Complete both implicit base and declared first subtype entities. The
22981 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22982 -- are not clobbered when the signed integer type acts as a full view of
22983 -- a private type.
22985 Set_Etype (Implicit_Base, Base_Typ);
22986 Set_Size_Info (Implicit_Base, Base_Typ);
22987 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
22988 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
22989 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
22991 Mutate_Ekind (T, E_Signed_Integer_Subtype);
22992 Set_Etype (T, Implicit_Base);
22993 Set_Size_Info (T, Implicit_Base);
22994 Inherit_Rep_Item_Chain (T, Implicit_Base);
22995 Set_Scalar_Range (T, Def);
22996 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
22997 Set_Is_Constrained (T);
22998 end Signed_Integer_Type_Declaration;
23000 end Sem_Ch3;