1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
27 #include "diagnostic-core.h"
28 #include "hard-reg-set.h"
30 #include "insn-config.h"
40 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
42 /* Forward declarations */
43 static void set_of_1 (rtx
, const_rtx
, void *);
44 static bool covers_regno_p (const_rtx
, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx
, unsigned int);
46 static int rtx_referenced_p_1 (rtx
*, void *);
47 static int computed_jump_p_1 (const_rtx
);
48 static void parms_set (rtx
, const_rtx
, void *);
50 static unsigned HOST_WIDE_INT
cached_nonzero_bits (const_rtx
, enum machine_mode
,
51 const_rtx
, enum machine_mode
,
52 unsigned HOST_WIDE_INT
);
53 static unsigned HOST_WIDE_INT
nonzero_bits1 (const_rtx
, enum machine_mode
,
54 const_rtx
, enum machine_mode
,
55 unsigned HOST_WIDE_INT
);
56 static unsigned int cached_num_sign_bit_copies (const_rtx
, enum machine_mode
, const_rtx
,
59 static unsigned int num_sign_bit_copies1 (const_rtx
, enum machine_mode
, const_rtx
,
60 enum machine_mode
, unsigned int);
62 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63 -1 if a code has no such operand. */
64 static int non_rtx_starting_operands
[NUM_RTX_CODE
];
66 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
67 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
68 SIGN_EXTEND then while narrowing we also have to enforce the
69 representation and sign-extend the value to mode DESTINATION_REP.
71 If the value is already sign-extended to DESTINATION_REP mode we
72 can just switch to DESTINATION mode on it. For each pair of
73 integral modes SOURCE and DESTINATION, when truncating from SOURCE
74 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
75 contains the number of high-order bits in SOURCE that have to be
76 copies of the sign-bit so that we can do this mode-switch to
80 num_sign_bit_copies_in_rep
[MAX_MODE_INT
+ 1][MAX_MODE_INT
+ 1];
82 /* Return 1 if the value of X is unstable
83 (would be different at a different point in the program).
84 The frame pointer, arg pointer, etc. are considered stable
85 (within one function) and so is anything marked `unchanging'. */
88 rtx_unstable_p (const_rtx x
)
90 const RTX_CODE code
= GET_CODE (x
);
97 return !MEM_READONLY_P (x
) || rtx_unstable_p (XEXP (x
, 0));
109 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
110 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
111 /* The arg pointer varies if it is not a fixed register. */
112 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
114 /* ??? When call-clobbered, the value is stable modulo the restore
115 that must happen after a call. This currently screws up local-alloc
116 into believing that the restore is not needed. */
117 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
&& x
== pic_offset_table_rtx
)
122 if (MEM_VOLATILE_P (x
))
131 fmt
= GET_RTX_FORMAT (code
);
132 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
135 if (rtx_unstable_p (XEXP (x
, i
)))
138 else if (fmt
[i
] == 'E')
141 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
142 if (rtx_unstable_p (XVECEXP (x
, i
, j
)))
149 /* Return 1 if X has a value that can vary even between two
150 executions of the program. 0 means X can be compared reliably
151 against certain constants or near-constants.
152 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
153 zero, we are slightly more conservative.
154 The frame pointer and the arg pointer are considered constant. */
157 rtx_varies_p (const_rtx x
, bool for_alias
)
170 return !MEM_READONLY_P (x
) || rtx_varies_p (XEXP (x
, 0), for_alias
);
182 /* Note that we have to test for the actual rtx used for the frame
183 and arg pointers and not just the register number in case we have
184 eliminated the frame and/or arg pointer and are using it
186 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
187 /* The arg pointer varies if it is not a fixed register. */
188 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
190 if (x
== pic_offset_table_rtx
191 /* ??? When call-clobbered, the value is stable modulo the restore
192 that must happen after a call. This currently screws up
193 local-alloc into believing that the restore is not needed, so we
194 must return 0 only if we are called from alias analysis. */
195 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
|| for_alias
))
200 /* The operand 0 of a LO_SUM is considered constant
201 (in fact it is related specifically to operand 1)
202 during alias analysis. */
203 return (! for_alias
&& rtx_varies_p (XEXP (x
, 0), for_alias
))
204 || rtx_varies_p (XEXP (x
, 1), for_alias
);
207 if (MEM_VOLATILE_P (x
))
216 fmt
= GET_RTX_FORMAT (code
);
217 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
220 if (rtx_varies_p (XEXP (x
, i
), for_alias
))
223 else if (fmt
[i
] == 'E')
226 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
227 if (rtx_varies_p (XVECEXP (x
, i
, j
), for_alias
))
234 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
235 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
236 whether nonzero is returned for unaligned memory accesses on strict
237 alignment machines. */
240 rtx_addr_can_trap_p_1 (const_rtx x
, HOST_WIDE_INT offset
, HOST_WIDE_INT size
,
241 enum machine_mode mode
, bool unaligned_mems
)
243 enum rtx_code code
= GET_CODE (x
);
247 && GET_MODE_SIZE (mode
) != 0)
249 HOST_WIDE_INT actual_offset
= offset
;
250 #ifdef SPARC_STACK_BOUNDARY_HACK
251 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
252 the real alignment of %sp. However, when it does this, the
253 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
254 if (SPARC_STACK_BOUNDARY_HACK
255 && (x
== stack_pointer_rtx
|| x
== hard_frame_pointer_rtx
))
256 actual_offset
-= STACK_POINTER_OFFSET
;
259 if (actual_offset
% GET_MODE_SIZE (mode
) != 0)
266 if (SYMBOL_REF_WEAK (x
))
268 if (!CONSTANT_POOL_ADDRESS_P (x
))
271 HOST_WIDE_INT decl_size
;
276 size
= GET_MODE_SIZE (mode
);
280 /* If the size of the access or of the symbol is unknown,
282 decl
= SYMBOL_REF_DECL (x
);
284 /* Else check that the access is in bounds. TODO: restructure
285 expr_size/tree_expr_size/int_expr_size and just use the latter. */
288 else if (DECL_P (decl
) && DECL_SIZE_UNIT (decl
))
289 decl_size
= (host_integerp (DECL_SIZE_UNIT (decl
), 0)
290 ? tree_low_cst (DECL_SIZE_UNIT (decl
), 0)
292 else if (TREE_CODE (decl
) == STRING_CST
)
293 decl_size
= TREE_STRING_LENGTH (decl
);
294 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl
)))
295 decl_size
= int_size_in_bytes (TREE_TYPE (decl
));
299 return (decl_size
<= 0 ? offset
!= 0 : offset
+ size
> decl_size
);
308 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
309 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
310 || x
== stack_pointer_rtx
311 /* The arg pointer varies if it is not a fixed register. */
312 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
314 /* All of the virtual frame registers are stack references. */
315 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
316 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
321 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
322 mode
, unaligned_mems
);
325 /* An address is assumed not to trap if:
326 - it is the pic register plus a constant. */
327 if (XEXP (x
, 0) == pic_offset_table_rtx
&& CONSTANT_P (XEXP (x
, 1)))
330 /* - or it is an address that can't trap plus a constant integer,
331 with the proper remainder modulo the mode size if we are
332 considering unaligned memory references. */
333 if (CONST_INT_P (XEXP (x
, 1))
334 && !rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
+ INTVAL (XEXP (x
, 1)),
335 size
, mode
, unaligned_mems
))
342 return rtx_addr_can_trap_p_1 (XEXP (x
, 1), offset
, size
,
343 mode
, unaligned_mems
);
350 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), offset
, size
,
351 mode
, unaligned_mems
);
357 /* If it isn't one of the case above, it can cause a trap. */
361 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
364 rtx_addr_can_trap_p (const_rtx x
)
366 return rtx_addr_can_trap_p_1 (x
, 0, 0, VOIDmode
, false);
369 /* Return true if X is an address that is known to not be zero. */
372 nonzero_address_p (const_rtx x
)
374 const enum rtx_code code
= GET_CODE (x
);
379 return !SYMBOL_REF_WEAK (x
);
385 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
386 if (x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
387 || x
== stack_pointer_rtx
388 || (x
== arg_pointer_rtx
&& fixed_regs
[ARG_POINTER_REGNUM
]))
390 /* All of the virtual frame registers are stack references. */
391 if (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
392 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
)
397 return nonzero_address_p (XEXP (x
, 0));
400 if (CONST_INT_P (XEXP (x
, 1)))
401 return nonzero_address_p (XEXP (x
, 0));
402 /* Handle PIC references. */
403 else if (XEXP (x
, 0) == pic_offset_table_rtx
404 && CONSTANT_P (XEXP (x
, 1)))
409 /* Similar to the above; allow positive offsets. Further, since
410 auto-inc is only allowed in memories, the register must be a
412 if (CONST_INT_P (XEXP (x
, 1))
413 && INTVAL (XEXP (x
, 1)) > 0)
415 return nonzero_address_p (XEXP (x
, 0));
418 /* Similarly. Further, the offset is always positive. */
425 return nonzero_address_p (XEXP (x
, 0));
428 return nonzero_address_p (XEXP (x
, 1));
434 /* If it isn't one of the case above, might be zero. */
438 /* Return 1 if X refers to a memory location whose address
439 cannot be compared reliably with constant addresses,
440 or if X refers to a BLKmode memory object.
441 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
442 zero, we are slightly more conservative. */
445 rtx_addr_varies_p (const_rtx x
, bool for_alias
)
456 return GET_MODE (x
) == BLKmode
|| rtx_varies_p (XEXP (x
, 0), for_alias
);
458 fmt
= GET_RTX_FORMAT (code
);
459 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
462 if (rtx_addr_varies_p (XEXP (x
, i
), for_alias
))
465 else if (fmt
[i
] == 'E')
468 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
469 if (rtx_addr_varies_p (XVECEXP (x
, i
, j
), for_alias
))
475 /* Return the value of the integer term in X, if one is apparent;
477 Only obvious integer terms are detected.
478 This is used in cse.c with the `related_value' field. */
481 get_integer_term (const_rtx x
)
483 if (GET_CODE (x
) == CONST
)
486 if (GET_CODE (x
) == MINUS
487 && CONST_INT_P (XEXP (x
, 1)))
488 return - INTVAL (XEXP (x
, 1));
489 if (GET_CODE (x
) == PLUS
490 && CONST_INT_P (XEXP (x
, 1)))
491 return INTVAL (XEXP (x
, 1));
495 /* If X is a constant, return the value sans apparent integer term;
497 Only obvious integer terms are detected. */
500 get_related_value (const_rtx x
)
502 if (GET_CODE (x
) != CONST
)
505 if (GET_CODE (x
) == PLUS
506 && CONST_INT_P (XEXP (x
, 1)))
508 else if (GET_CODE (x
) == MINUS
509 && CONST_INT_P (XEXP (x
, 1)))
514 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
515 to somewhere in the same object or object_block as SYMBOL. */
518 offset_within_block_p (const_rtx symbol
, HOST_WIDE_INT offset
)
522 if (GET_CODE (symbol
) != SYMBOL_REF
)
530 if (CONSTANT_POOL_ADDRESS_P (symbol
)
531 && offset
< (int) GET_MODE_SIZE (get_pool_mode (symbol
)))
534 decl
= SYMBOL_REF_DECL (symbol
);
535 if (decl
&& offset
< int_size_in_bytes (TREE_TYPE (decl
)))
539 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol
)
540 && SYMBOL_REF_BLOCK (symbol
)
541 && SYMBOL_REF_BLOCK_OFFSET (symbol
) >= 0
542 && ((unsigned HOST_WIDE_INT
) offset
+ SYMBOL_REF_BLOCK_OFFSET (symbol
)
543 < (unsigned HOST_WIDE_INT
) SYMBOL_REF_BLOCK (symbol
)->size
))
549 /* Split X into a base and a constant offset, storing them in *BASE_OUT
550 and *OFFSET_OUT respectively. */
553 split_const (rtx x
, rtx
*base_out
, rtx
*offset_out
)
555 if (GET_CODE (x
) == CONST
)
558 if (GET_CODE (x
) == PLUS
&& CONST_INT_P (XEXP (x
, 1)))
560 *base_out
= XEXP (x
, 0);
561 *offset_out
= XEXP (x
, 1);
566 *offset_out
= const0_rtx
;
569 /* Return the number of places FIND appears within X. If COUNT_DEST is
570 zero, we do not count occurrences inside the destination of a SET. */
573 count_occurrences (const_rtx x
, const_rtx find
, int count_dest
)
577 const char *format_ptr
;
599 count
= count_occurrences (XEXP (x
, 0), find
, count_dest
);
601 count
+= count_occurrences (XEXP (x
, 1), find
, count_dest
);
605 if (MEM_P (find
) && rtx_equal_p (x
, find
))
610 if (SET_DEST (x
) == find
&& ! count_dest
)
611 return count_occurrences (SET_SRC (x
), find
, count_dest
);
618 format_ptr
= GET_RTX_FORMAT (code
);
621 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
623 switch (*format_ptr
++)
626 count
+= count_occurrences (XEXP (x
, i
), find
, count_dest
);
630 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
631 count
+= count_occurrences (XVECEXP (x
, i
, j
), find
, count_dest
);
639 /* Nonzero if register REG appears somewhere within IN.
640 Also works if REG is not a register; in this case it checks
641 for a subexpression of IN that is Lisp "equal" to REG. */
644 reg_mentioned_p (const_rtx reg
, const_rtx in
)
656 if (GET_CODE (in
) == LABEL_REF
)
657 return reg
== XEXP (in
, 0);
659 code
= GET_CODE (in
);
663 /* Compare registers by number. */
665 return REG_P (reg
) && REGNO (in
) == REGNO (reg
);
667 /* These codes have no constituent expressions
678 /* These are kept unique for a given value. */
685 if (GET_CODE (reg
) == code
&& rtx_equal_p (reg
, in
))
688 fmt
= GET_RTX_FORMAT (code
);
690 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
695 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
696 if (reg_mentioned_p (reg
, XVECEXP (in
, i
, j
)))
699 else if (fmt
[i
] == 'e'
700 && reg_mentioned_p (reg
, XEXP (in
, i
)))
706 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
707 no CODE_LABEL insn. */
710 no_labels_between_p (const_rtx beg
, const_rtx end
)
715 for (p
= NEXT_INSN (beg
); p
!= end
; p
= NEXT_INSN (p
))
721 /* Nonzero if register REG is used in an insn between
722 FROM_INSN and TO_INSN (exclusive of those two). */
725 reg_used_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
729 if (from_insn
== to_insn
)
732 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
733 if (NONDEBUG_INSN_P (insn
)
734 && (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
735 || (CALL_P (insn
) && find_reg_fusage (insn
, USE
, reg
))))
740 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
741 is entirely replaced by a new value and the only use is as a SET_DEST,
742 we do not consider it a reference. */
745 reg_referenced_p (const_rtx x
, const_rtx body
)
749 switch (GET_CODE (body
))
752 if (reg_overlap_mentioned_p (x
, SET_SRC (body
)))
755 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
756 of a REG that occupies all of the REG, the insn references X if
757 it is mentioned in the destination. */
758 if (GET_CODE (SET_DEST (body
)) != CC0
759 && GET_CODE (SET_DEST (body
)) != PC
760 && !REG_P (SET_DEST (body
))
761 && ! (GET_CODE (SET_DEST (body
)) == SUBREG
762 && REG_P (SUBREG_REG (SET_DEST (body
)))
763 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body
))))
764 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
765 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body
)))
766 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
767 && reg_overlap_mentioned_p (x
, SET_DEST (body
)))
772 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
773 if (reg_overlap_mentioned_p (x
, ASM_OPERANDS_INPUT (body
, i
)))
780 return reg_overlap_mentioned_p (x
, body
);
783 return reg_overlap_mentioned_p (x
, TRAP_CONDITION (body
));
786 return reg_overlap_mentioned_p (x
, XEXP (body
, 0));
789 case UNSPEC_VOLATILE
:
790 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
791 if (reg_overlap_mentioned_p (x
, XVECEXP (body
, 0, i
)))
796 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
797 if (reg_referenced_p (x
, XVECEXP (body
, 0, i
)))
802 if (MEM_P (XEXP (body
, 0)))
803 if (reg_overlap_mentioned_p (x
, XEXP (XEXP (body
, 0), 0)))
808 if (reg_overlap_mentioned_p (x
, COND_EXEC_TEST (body
)))
810 return reg_referenced_p (x
, COND_EXEC_CODE (body
));
817 /* Nonzero if register REG is set or clobbered in an insn between
818 FROM_INSN and TO_INSN (exclusive of those two). */
821 reg_set_between_p (const_rtx reg
, const_rtx from_insn
, const_rtx to_insn
)
825 if (from_insn
== to_insn
)
828 for (insn
= NEXT_INSN (from_insn
); insn
!= to_insn
; insn
= NEXT_INSN (insn
))
829 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
834 /* Internals of reg_set_between_p. */
836 reg_set_p (const_rtx reg
, const_rtx insn
)
838 /* We can be passed an insn or part of one. If we are passed an insn,
839 check if a side-effect of the insn clobbers REG. */
841 && (FIND_REG_INC_NOTE (insn
, reg
)
844 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
845 && overlaps_hard_reg_set_p (regs_invalidated_by_call
,
846 GET_MODE (reg
), REGNO (reg
)))
848 || find_reg_fusage (insn
, CLOBBER
, reg
)))))
851 return set_of (reg
, insn
) != NULL_RTX
;
854 /* Similar to reg_set_between_p, but check all registers in X. Return 0
855 only if none of them are modified between START and END. Return 1 if
856 X contains a MEM; this routine does use memory aliasing. */
859 modified_between_p (const_rtx x
, const_rtx start
, const_rtx end
)
861 const enum rtx_code code
= GET_CODE (x
);
885 if (modified_between_p (XEXP (x
, 0), start
, end
))
887 if (MEM_READONLY_P (x
))
889 for (insn
= NEXT_INSN (start
); insn
!= end
; insn
= NEXT_INSN (insn
))
890 if (memory_modified_in_insn_p (x
, insn
))
896 return reg_set_between_p (x
, start
, end
);
902 fmt
= GET_RTX_FORMAT (code
);
903 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
905 if (fmt
[i
] == 'e' && modified_between_p (XEXP (x
, i
), start
, end
))
908 else if (fmt
[i
] == 'E')
909 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
910 if (modified_between_p (XVECEXP (x
, i
, j
), start
, end
))
917 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
918 of them are modified in INSN. Return 1 if X contains a MEM; this routine
919 does use memory aliasing. */
922 modified_in_p (const_rtx x
, const_rtx insn
)
924 const enum rtx_code code
= GET_CODE (x
);
944 if (modified_in_p (XEXP (x
, 0), insn
))
946 if (MEM_READONLY_P (x
))
948 if (memory_modified_in_insn_p (x
, insn
))
954 return reg_set_p (x
, insn
);
960 fmt
= GET_RTX_FORMAT (code
);
961 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
963 if (fmt
[i
] == 'e' && modified_in_p (XEXP (x
, i
), insn
))
966 else if (fmt
[i
] == 'E')
967 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
968 if (modified_in_p (XVECEXP (x
, i
, j
), insn
))
975 /* Helper function for set_of. */
983 set_of_1 (rtx x
, const_rtx pat
, void *data1
)
985 struct set_of_data
*const data
= (struct set_of_data
*) (data1
);
986 if (rtx_equal_p (x
, data
->pat
)
987 || (!MEM_P (x
) && reg_overlap_mentioned_p (data
->pat
, x
)))
991 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
992 (either directly or via STRICT_LOW_PART and similar modifiers). */
994 set_of (const_rtx pat
, const_rtx insn
)
996 struct set_of_data data
;
997 data
.found
= NULL_RTX
;
999 note_stores (INSN_P (insn
) ? PATTERN (insn
) : insn
, set_of_1
, &data
);
1003 /* This function, called through note_stores, collects sets and
1004 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1007 record_hard_reg_sets (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
1009 HARD_REG_SET
*pset
= (HARD_REG_SET
*)data
;
1010 if (REG_P (x
) && HARD_REGISTER_P (x
))
1011 add_to_hard_reg_set (pset
, GET_MODE (x
), REGNO (x
));
1014 /* Examine INSN, and compute the set of hard registers written by it.
1015 Store it in *PSET. Should only be called after reload. */
1017 find_all_hard_reg_sets (const_rtx insn
, HARD_REG_SET
*pset
)
1021 CLEAR_HARD_REG_SET (*pset
);
1022 note_stores (PATTERN (insn
), record_hard_reg_sets
, pset
);
1024 IOR_HARD_REG_SET (*pset
, call_used_reg_set
);
1025 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1026 if (REG_NOTE_KIND (link
) == REG_INC
)
1027 record_hard_reg_sets (XEXP (link
, 0), NULL
, pset
);
1030 /* A for_each_rtx subroutine of record_hard_reg_uses. */
1032 record_hard_reg_uses_1 (rtx
*px
, void *data
)
1035 HARD_REG_SET
*pused
= (HARD_REG_SET
*)data
;
1037 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1039 int nregs
= hard_regno_nregs
[REGNO (x
)][GET_MODE (x
)];
1041 SET_HARD_REG_BIT (*pused
, REGNO (x
) + nregs
);
1046 /* Like record_hard_reg_sets, but called through note_uses. */
1048 record_hard_reg_uses (rtx
*px
, void *data
)
1050 for_each_rtx (px
, record_hard_reg_uses_1
, data
);
1053 /* Given an INSN, return a SET expression if this insn has only a single SET.
1054 It may also have CLOBBERs, USEs, or SET whose output
1055 will not be used, which we ignore. */
1058 single_set_2 (const_rtx insn
, const_rtx pat
)
1061 int set_verified
= 1;
1064 if (GET_CODE (pat
) == PARALLEL
)
1066 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1068 rtx sub
= XVECEXP (pat
, 0, i
);
1069 switch (GET_CODE (sub
))
1076 /* We can consider insns having multiple sets, where all
1077 but one are dead as single set insns. In common case
1078 only single set is present in the pattern so we want
1079 to avoid checking for REG_UNUSED notes unless necessary.
1081 When we reach set first time, we just expect this is
1082 the single set we are looking for and only when more
1083 sets are found in the insn, we check them. */
1086 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (set
))
1087 && !side_effects_p (set
))
1093 set
= sub
, set_verified
= 0;
1094 else if (!find_reg_note (insn
, REG_UNUSED
, SET_DEST (sub
))
1095 || side_effects_p (sub
))
1107 /* Given an INSN, return nonzero if it has more than one SET, else return
1111 multiple_sets (const_rtx insn
)
1116 /* INSN must be an insn. */
1117 if (! INSN_P (insn
))
1120 /* Only a PARALLEL can have multiple SETs. */
1121 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1123 for (i
= 0, found
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1124 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == SET
)
1126 /* If we have already found a SET, then return now. */
1134 /* Either zero or one SET. */
1138 /* Return nonzero if the destination of SET equals the source
1139 and there are no side effects. */
1142 set_noop_p (const_rtx set
)
1144 rtx src
= SET_SRC (set
);
1145 rtx dst
= SET_DEST (set
);
1147 if (dst
== pc_rtx
&& src
== pc_rtx
)
1150 if (MEM_P (dst
) && MEM_P (src
))
1151 return rtx_equal_p (dst
, src
) && !side_effects_p (dst
);
1153 if (GET_CODE (dst
) == ZERO_EXTRACT
)
1154 return rtx_equal_p (XEXP (dst
, 0), src
)
1155 && ! BYTES_BIG_ENDIAN
&& XEXP (dst
, 2) == const0_rtx
1156 && !side_effects_p (src
);
1158 if (GET_CODE (dst
) == STRICT_LOW_PART
)
1159 dst
= XEXP (dst
, 0);
1161 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
1163 if (SUBREG_BYTE (src
) != SUBREG_BYTE (dst
))
1165 src
= SUBREG_REG (src
);
1166 dst
= SUBREG_REG (dst
);
1169 return (REG_P (src
) && REG_P (dst
)
1170 && REGNO (src
) == REGNO (dst
));
1173 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1177 noop_move_p (const_rtx insn
)
1179 rtx pat
= PATTERN (insn
);
1181 if (INSN_CODE (insn
) == NOOP_MOVE_INSN_CODE
)
1184 /* Insns carrying these notes are useful later on. */
1185 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1188 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
1191 if (GET_CODE (pat
) == PARALLEL
)
1194 /* If nothing but SETs of registers to themselves,
1195 this insn can also be deleted. */
1196 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1198 rtx tem
= XVECEXP (pat
, 0, i
);
1200 if (GET_CODE (tem
) == USE
1201 || GET_CODE (tem
) == CLOBBER
)
1204 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
1214 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1215 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1216 If the object was modified, if we hit a partial assignment to X, or hit a
1217 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1218 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1222 find_last_value (rtx x
, rtx
*pinsn
, rtx valid_to
, int allow_hwreg
)
1226 for (p
= PREV_INSN (*pinsn
); p
&& !LABEL_P (p
);
1230 rtx set
= single_set (p
);
1231 rtx note
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
1233 if (set
&& rtx_equal_p (x
, SET_DEST (set
)))
1235 rtx src
= SET_SRC (set
);
1237 if (note
&& GET_CODE (XEXP (note
, 0)) != EXPR_LIST
)
1238 src
= XEXP (note
, 0);
1240 if ((valid_to
== NULL_RTX
1241 || ! modified_between_p (src
, PREV_INSN (p
), valid_to
))
1242 /* Reject hard registers because we don't usually want
1243 to use them; we'd rather use a pseudo. */
1245 && REGNO (src
) < FIRST_PSEUDO_REGISTER
) || allow_hwreg
))
1252 /* If set in non-simple way, we don't have a value. */
1253 if (reg_set_p (x
, p
))
1260 /* Return nonzero if register in range [REGNO, ENDREGNO)
1261 appears either explicitly or implicitly in X
1262 other than being stored into.
1264 References contained within the substructure at LOC do not count.
1265 LOC may be zero, meaning don't ignore anything. */
1268 refers_to_regno_p (unsigned int regno
, unsigned int endregno
, const_rtx x
,
1272 unsigned int x_regno
;
1277 /* The contents of a REG_NONNEG note is always zero, so we must come here
1278 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1282 code
= GET_CODE (x
);
1287 x_regno
= REGNO (x
);
1289 /* If we modifying the stack, frame, or argument pointer, it will
1290 clobber a virtual register. In fact, we could be more precise,
1291 but it isn't worth it. */
1292 if ((x_regno
== STACK_POINTER_REGNUM
1293 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1294 || x_regno
== ARG_POINTER_REGNUM
1296 || x_regno
== FRAME_POINTER_REGNUM
)
1297 && regno
>= FIRST_VIRTUAL_REGISTER
&& regno
<= LAST_VIRTUAL_REGISTER
)
1300 return endregno
> x_regno
&& regno
< END_REGNO (x
);
1303 /* If this is a SUBREG of a hard reg, we can see exactly which
1304 registers are being modified. Otherwise, handle normally. */
1305 if (REG_P (SUBREG_REG (x
))
1306 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
1308 unsigned int inner_regno
= subreg_regno (x
);
1309 unsigned int inner_endregno
1310 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
1311 ? subreg_nregs (x
) : 1);
1313 return endregno
> inner_regno
&& regno
< inner_endregno
;
1319 if (&SET_DEST (x
) != loc
1320 /* Note setting a SUBREG counts as referring to the REG it is in for
1321 a pseudo but not for hard registers since we can
1322 treat each word individually. */
1323 && ((GET_CODE (SET_DEST (x
)) == SUBREG
1324 && loc
!= &SUBREG_REG (SET_DEST (x
))
1325 && REG_P (SUBREG_REG (SET_DEST (x
)))
1326 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
1327 && refers_to_regno_p (regno
, endregno
,
1328 SUBREG_REG (SET_DEST (x
)), loc
))
1329 || (!REG_P (SET_DEST (x
))
1330 && refers_to_regno_p (regno
, endregno
, SET_DEST (x
), loc
))))
1333 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
1342 /* X does not match, so try its subexpressions. */
1344 fmt
= GET_RTX_FORMAT (code
);
1345 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1347 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
1355 if (refers_to_regno_p (regno
, endregno
, XEXP (x
, i
), loc
))
1358 else if (fmt
[i
] == 'E')
1361 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1362 if (loc
!= &XVECEXP (x
, i
, j
)
1363 && refers_to_regno_p (regno
, endregno
, XVECEXP (x
, i
, j
), loc
))
1370 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1371 we check if any register number in X conflicts with the relevant register
1372 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1373 contains a MEM (we don't bother checking for memory addresses that can't
1374 conflict because we expect this to be a rare case. */
1377 reg_overlap_mentioned_p (const_rtx x
, const_rtx in
)
1379 unsigned int regno
, endregno
;
1381 /* If either argument is a constant, then modifying X can not
1382 affect IN. Here we look at IN, we can profitably combine
1383 CONSTANT_P (x) with the switch statement below. */
1384 if (CONSTANT_P (in
))
1388 switch (GET_CODE (x
))
1390 case STRICT_LOW_PART
:
1393 /* Overly conservative. */
1398 regno
= REGNO (SUBREG_REG (x
));
1399 if (regno
< FIRST_PSEUDO_REGISTER
)
1400 regno
= subreg_regno (x
);
1401 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
1402 ? subreg_nregs (x
) : 1);
1407 endregno
= END_REGNO (x
);
1409 return refers_to_regno_p (regno
, endregno
, in
, (rtx
*) 0);
1419 fmt
= GET_RTX_FORMAT (GET_CODE (in
));
1420 for (i
= GET_RTX_LENGTH (GET_CODE (in
)) - 1; i
>= 0; i
--)
1423 if (reg_overlap_mentioned_p (x
, XEXP (in
, i
)))
1426 else if (fmt
[i
] == 'E')
1429 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; --j
)
1430 if (reg_overlap_mentioned_p (x
, XVECEXP (in
, i
, j
)))
1440 return reg_mentioned_p (x
, in
);
1446 /* If any register in here refers to it we return true. */
1447 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1448 if (XEXP (XVECEXP (x
, 0, i
), 0) != 0
1449 && reg_overlap_mentioned_p (XEXP (XVECEXP (x
, 0, i
), 0), in
))
1455 gcc_assert (CONSTANT_P (x
));
1460 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1461 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1462 ignored by note_stores, but passed to FUN.
1464 FUN receives three arguments:
1465 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1466 2. the SET or CLOBBER rtx that does the store,
1467 3. the pointer DATA provided to note_stores.
1469 If the item being stored in or clobbered is a SUBREG of a hard register,
1470 the SUBREG will be passed. */
1473 note_stores (const_rtx x
, void (*fun
) (rtx
, const_rtx
, void *), void *data
)
1477 if (GET_CODE (x
) == COND_EXEC
)
1478 x
= COND_EXEC_CODE (x
);
1480 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1482 rtx dest
= SET_DEST (x
);
1484 while ((GET_CODE (dest
) == SUBREG
1485 && (!REG_P (SUBREG_REG (dest
))
1486 || REGNO (SUBREG_REG (dest
)) >= FIRST_PSEUDO_REGISTER
))
1487 || GET_CODE (dest
) == ZERO_EXTRACT
1488 || GET_CODE (dest
) == STRICT_LOW_PART
)
1489 dest
= XEXP (dest
, 0);
1491 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1492 each of whose first operand is a register. */
1493 if (GET_CODE (dest
) == PARALLEL
)
1495 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1496 if (XEXP (XVECEXP (dest
, 0, i
), 0) != 0)
1497 (*fun
) (XEXP (XVECEXP (dest
, 0, i
), 0), x
, data
);
1500 (*fun
) (dest
, x
, data
);
1503 else if (GET_CODE (x
) == PARALLEL
)
1504 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1505 note_stores (XVECEXP (x
, 0, i
), fun
, data
);
1508 /* Like notes_stores, but call FUN for each expression that is being
1509 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1510 FUN for each expression, not any interior subexpressions. FUN receives a
1511 pointer to the expression and the DATA passed to this function.
1513 Note that this is not quite the same test as that done in reg_referenced_p
1514 since that considers something as being referenced if it is being
1515 partially set, while we do not. */
1518 note_uses (rtx
*pbody
, void (*fun
) (rtx
*, void *), void *data
)
1523 switch (GET_CODE (body
))
1526 (*fun
) (&COND_EXEC_TEST (body
), data
);
1527 note_uses (&COND_EXEC_CODE (body
), fun
, data
);
1531 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1532 note_uses (&XVECEXP (body
, 0, i
), fun
, data
);
1536 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1537 note_uses (&PATTERN (XVECEXP (body
, 0, i
)), fun
, data
);
1541 (*fun
) (&XEXP (body
, 0), data
);
1545 for (i
= ASM_OPERANDS_INPUT_LENGTH (body
) - 1; i
>= 0; i
--)
1546 (*fun
) (&ASM_OPERANDS_INPUT (body
, i
), data
);
1550 (*fun
) (&TRAP_CONDITION (body
), data
);
1554 (*fun
) (&XEXP (body
, 0), data
);
1558 case UNSPEC_VOLATILE
:
1559 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
1560 (*fun
) (&XVECEXP (body
, 0, i
), data
);
1564 if (MEM_P (XEXP (body
, 0)))
1565 (*fun
) (&XEXP (XEXP (body
, 0), 0), data
);
1570 rtx dest
= SET_DEST (body
);
1572 /* For sets we replace everything in source plus registers in memory
1573 expression in store and operands of a ZERO_EXTRACT. */
1574 (*fun
) (&SET_SRC (body
), data
);
1576 if (GET_CODE (dest
) == ZERO_EXTRACT
)
1578 (*fun
) (&XEXP (dest
, 1), data
);
1579 (*fun
) (&XEXP (dest
, 2), data
);
1582 while (GET_CODE (dest
) == SUBREG
|| GET_CODE (dest
) == STRICT_LOW_PART
)
1583 dest
= XEXP (dest
, 0);
1586 (*fun
) (&XEXP (dest
, 0), data
);
1591 /* All the other possibilities never store. */
1592 (*fun
) (pbody
, data
);
1597 /* Return nonzero if X's old contents don't survive after INSN.
1598 This will be true if X is (cc0) or if X is a register and
1599 X dies in INSN or because INSN entirely sets X.
1601 "Entirely set" means set directly and not through a SUBREG, or
1602 ZERO_EXTRACT, so no trace of the old contents remains.
1603 Likewise, REG_INC does not count.
1605 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1606 but for this use that makes no difference, since regs don't overlap
1607 during their lifetimes. Therefore, this function may be used
1608 at any time after deaths have been computed.
1610 If REG is a hard reg that occupies multiple machine registers, this
1611 function will only return 1 if each of those registers will be replaced
1615 dead_or_set_p (const_rtx insn
, const_rtx x
)
1617 unsigned int regno
, end_regno
;
1620 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1621 if (GET_CODE (x
) == CC0
)
1624 gcc_assert (REG_P (x
));
1627 end_regno
= END_REGNO (x
);
1628 for (i
= regno
; i
< end_regno
; i
++)
1629 if (! dead_or_set_regno_p (insn
, i
))
1635 /* Return TRUE iff DEST is a register or subreg of a register and
1636 doesn't change the number of words of the inner register, and any
1637 part of the register is TEST_REGNO. */
1640 covers_regno_no_parallel_p (const_rtx dest
, unsigned int test_regno
)
1642 unsigned int regno
, endregno
;
1644 if (GET_CODE (dest
) == SUBREG
1645 && (((GET_MODE_SIZE (GET_MODE (dest
))
1646 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
1647 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
1648 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)))
1649 dest
= SUBREG_REG (dest
);
1654 regno
= REGNO (dest
);
1655 endregno
= END_REGNO (dest
);
1656 return (test_regno
>= regno
&& test_regno
< endregno
);
1659 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1660 any member matches the covers_regno_no_parallel_p criteria. */
1663 covers_regno_p (const_rtx dest
, unsigned int test_regno
)
1665 if (GET_CODE (dest
) == PARALLEL
)
1667 /* Some targets place small structures in registers for return
1668 values of functions, and those registers are wrapped in
1669 PARALLELs that we may see as the destination of a SET. */
1672 for (i
= XVECLEN (dest
, 0) - 1; i
>= 0; i
--)
1674 rtx inner
= XEXP (XVECEXP (dest
, 0, i
), 0);
1675 if (inner
!= NULL_RTX
1676 && covers_regno_no_parallel_p (inner
, test_regno
))
1683 return covers_regno_no_parallel_p (dest
, test_regno
);
1686 /* Utility function for dead_or_set_p to check an individual register. */
1689 dead_or_set_regno_p (const_rtx insn
, unsigned int test_regno
)
1693 /* See if there is a death note for something that includes TEST_REGNO. */
1694 if (find_regno_note (insn
, REG_DEAD
, test_regno
))
1698 && find_regno_fusage (insn
, CLOBBER
, test_regno
))
1701 pattern
= PATTERN (insn
);
1703 if (GET_CODE (pattern
) == COND_EXEC
)
1704 pattern
= COND_EXEC_CODE (pattern
);
1706 if (GET_CODE (pattern
) == SET
)
1707 return covers_regno_p (SET_DEST (pattern
), test_regno
);
1708 else if (GET_CODE (pattern
) == PARALLEL
)
1712 for (i
= XVECLEN (pattern
, 0) - 1; i
>= 0; i
--)
1714 rtx body
= XVECEXP (pattern
, 0, i
);
1716 if (GET_CODE (body
) == COND_EXEC
)
1717 body
= COND_EXEC_CODE (body
);
1719 if ((GET_CODE (body
) == SET
|| GET_CODE (body
) == CLOBBER
)
1720 && covers_regno_p (SET_DEST (body
), test_regno
))
1728 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1729 If DATUM is nonzero, look for one whose datum is DATUM. */
1732 find_reg_note (const_rtx insn
, enum reg_note kind
, const_rtx datum
)
1736 gcc_checking_assert (insn
);
1738 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1739 if (! INSN_P (insn
))
1743 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1744 if (REG_NOTE_KIND (link
) == kind
)
1749 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1750 if (REG_NOTE_KIND (link
) == kind
&& datum
== XEXP (link
, 0))
1755 /* Return the reg-note of kind KIND in insn INSN which applies to register
1756 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1757 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1758 it might be the case that the note overlaps REGNO. */
1761 find_regno_note (const_rtx insn
, enum reg_note kind
, unsigned int regno
)
1765 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1766 if (! INSN_P (insn
))
1769 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1770 if (REG_NOTE_KIND (link
) == kind
1771 /* Verify that it is a register, so that scratch and MEM won't cause a
1773 && REG_P (XEXP (link
, 0))
1774 && REGNO (XEXP (link
, 0)) <= regno
1775 && END_REGNO (XEXP (link
, 0)) > regno
)
1780 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1784 find_reg_equal_equiv_note (const_rtx insn
)
1791 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1792 if (REG_NOTE_KIND (link
) == REG_EQUAL
1793 || REG_NOTE_KIND (link
) == REG_EQUIV
)
1795 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1796 insns that have multiple sets. Checking single_set to
1797 make sure of this is not the proper check, as explained
1798 in the comment in set_unique_reg_note.
1800 This should be changed into an assert. */
1801 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
1808 /* Check whether INSN is a single_set whose source is known to be
1809 equivalent to a constant. Return that constant if so, otherwise
1813 find_constant_src (const_rtx insn
)
1817 set
= single_set (insn
);
1820 x
= avoid_constant_pool_reference (SET_SRC (set
));
1825 note
= find_reg_equal_equiv_note (insn
);
1826 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1827 return XEXP (note
, 0);
1832 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1833 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1836 find_reg_fusage (const_rtx insn
, enum rtx_code code
, const_rtx datum
)
1838 /* If it's not a CALL_INSN, it can't possibly have a
1839 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1849 for (link
= CALL_INSN_FUNCTION_USAGE (insn
);
1851 link
= XEXP (link
, 1))
1852 if (GET_CODE (XEXP (link
, 0)) == code
1853 && rtx_equal_p (datum
, XEXP (XEXP (link
, 0), 0)))
1858 unsigned int regno
= REGNO (datum
);
1860 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1861 to pseudo registers, so don't bother checking. */
1863 if (regno
< FIRST_PSEUDO_REGISTER
)
1865 unsigned int end_regno
= END_HARD_REGNO (datum
);
1868 for (i
= regno
; i
< end_regno
; i
++)
1869 if (find_regno_fusage (insn
, code
, i
))
1877 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1878 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1881 find_regno_fusage (const_rtx insn
, enum rtx_code code
, unsigned int regno
)
1885 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1886 to pseudo registers, so don't bother checking. */
1888 if (regno
>= FIRST_PSEUDO_REGISTER
1892 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
; link
= XEXP (link
, 1))
1896 if (GET_CODE (op
= XEXP (link
, 0)) == code
1897 && REG_P (reg
= XEXP (op
, 0))
1898 && REGNO (reg
) <= regno
1899 && END_HARD_REGNO (reg
) > regno
)
1907 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1908 stored as the pointer to the next register note. */
1911 alloc_reg_note (enum reg_note kind
, rtx datum
, rtx list
)
1919 case REG_LABEL_TARGET
:
1920 case REG_LABEL_OPERAND
:
1922 /* These types of register notes use an INSN_LIST rather than an
1923 EXPR_LIST, so that copying is done right and dumps look
1925 note
= alloc_INSN_LIST (datum
, list
);
1926 PUT_REG_NOTE_KIND (note
, kind
);
1930 note
= alloc_EXPR_LIST (kind
, datum
, list
);
1937 /* Add register note with kind KIND and datum DATUM to INSN. */
1940 add_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
1942 REG_NOTES (insn
) = alloc_reg_note (kind
, datum
, REG_NOTES (insn
));
1945 /* Remove register note NOTE from the REG_NOTES of INSN. */
1948 remove_note (rtx insn
, const_rtx note
)
1952 if (note
== NULL_RTX
)
1955 if (REG_NOTES (insn
) == note
)
1956 REG_NOTES (insn
) = XEXP (note
, 1);
1958 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1959 if (XEXP (link
, 1) == note
)
1961 XEXP (link
, 1) = XEXP (note
, 1);
1965 switch (REG_NOTE_KIND (note
))
1969 df_notes_rescan (insn
);
1976 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1979 remove_reg_equal_equiv_notes (rtx insn
)
1983 loc
= ®_NOTES (insn
);
1986 enum reg_note kind
= REG_NOTE_KIND (*loc
);
1987 if (kind
== REG_EQUAL
|| kind
== REG_EQUIV
)
1988 *loc
= XEXP (*loc
, 1);
1990 loc
= &XEXP (*loc
, 1);
1994 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
1997 remove_reg_equal_equiv_notes_for_regno (unsigned int regno
)
2004 /* This loop is a little tricky. We cannot just go down the chain because
2005 it is being modified by some actions in the loop. So we just iterate
2006 over the head. We plan to drain the list anyway. */
2007 while ((eq_use
= DF_REG_EQ_USE_CHAIN (regno
)) != NULL
)
2009 rtx insn
= DF_REF_INSN (eq_use
);
2010 rtx note
= find_reg_equal_equiv_note (insn
);
2012 /* This assert is generally triggered when someone deletes a REG_EQUAL
2013 or REG_EQUIV note by hacking the list manually rather than calling
2017 remove_note (insn
, note
);
2021 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2022 return 1 if it is found. A simple equality test is used to determine if
2026 in_expr_list_p (const_rtx listp
, const_rtx node
)
2030 for (x
= listp
; x
; x
= XEXP (x
, 1))
2031 if (node
== XEXP (x
, 0))
2037 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2038 remove that entry from the list if it is found.
2040 A simple equality test is used to determine if NODE matches. */
2043 remove_node_from_expr_list (const_rtx node
, rtx
*listp
)
2046 rtx prev
= NULL_RTX
;
2050 if (node
== XEXP (temp
, 0))
2052 /* Splice the node out of the list. */
2054 XEXP (prev
, 1) = XEXP (temp
, 1);
2056 *listp
= XEXP (temp
, 1);
2062 temp
= XEXP (temp
, 1);
2066 /* Nonzero if X contains any volatile instructions. These are instructions
2067 which may cause unpredictable machine state instructions, and thus no
2068 instructions should be moved or combined across them. This includes
2069 only volatile asms and UNSPEC_VOLATILE instructions. */
2072 volatile_insn_p (const_rtx x
)
2074 const RTX_CODE code
= GET_CODE (x
);
2095 case UNSPEC_VOLATILE
:
2096 /* case TRAP_IF: This isn't clear yet. */
2101 if (MEM_VOLATILE_P (x
))
2108 /* Recursively scan the operands of this expression. */
2111 const char *const fmt
= GET_RTX_FORMAT (code
);
2114 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2118 if (volatile_insn_p (XEXP (x
, i
)))
2121 else if (fmt
[i
] == 'E')
2124 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2125 if (volatile_insn_p (XVECEXP (x
, i
, j
)))
2133 /* Nonzero if X contains any volatile memory references
2134 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2137 volatile_refs_p (const_rtx x
)
2139 const RTX_CODE code
= GET_CODE (x
);
2158 case UNSPEC_VOLATILE
:
2164 if (MEM_VOLATILE_P (x
))
2171 /* Recursively scan the operands of this expression. */
2174 const char *const fmt
= GET_RTX_FORMAT (code
);
2177 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2181 if (volatile_refs_p (XEXP (x
, i
)))
2184 else if (fmt
[i
] == 'E')
2187 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2188 if (volatile_refs_p (XVECEXP (x
, i
, j
)))
2196 /* Similar to above, except that it also rejects register pre- and post-
2200 side_effects_p (const_rtx x
)
2202 const RTX_CODE code
= GET_CODE (x
);
2222 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2223 when some combination can't be done. If we see one, don't think
2224 that we can simplify the expression. */
2225 return (GET_MODE (x
) != VOIDmode
);
2234 case UNSPEC_VOLATILE
:
2235 /* case TRAP_IF: This isn't clear yet. */
2241 if (MEM_VOLATILE_P (x
))
2248 /* Recursively scan the operands of this expression. */
2251 const char *fmt
= GET_RTX_FORMAT (code
);
2254 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2258 if (side_effects_p (XEXP (x
, i
)))
2261 else if (fmt
[i
] == 'E')
2264 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2265 if (side_effects_p (XVECEXP (x
, i
, j
)))
2273 /* Return nonzero if evaluating rtx X might cause a trap.
2274 FLAGS controls how to consider MEMs. A nonzero means the context
2275 of the access may have changed from the original, such that the
2276 address may have become invalid. */
2279 may_trap_p_1 (const_rtx x
, unsigned flags
)
2285 /* We make no distinction currently, but this function is part of
2286 the internal target-hooks ABI so we keep the parameter as
2287 "unsigned flags". */
2288 bool code_changed
= flags
!= 0;
2292 code
= GET_CODE (x
);
2295 /* Handle these cases quickly. */
2310 case UNSPEC_VOLATILE
:
2311 return targetm
.unspec_may_trap_p (x
, flags
);
2318 return MEM_VOLATILE_P (x
);
2320 /* Memory ref can trap unless it's a static var or a stack slot. */
2322 /* Recognize specific pattern of stack checking probes. */
2323 if (flag_stack_check
2324 && MEM_VOLATILE_P (x
)
2325 && XEXP (x
, 0) == stack_pointer_rtx
)
2327 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2328 reference; moving it out of context such as when moving code
2329 when optimizing, might cause its address to become invalid. */
2331 || !MEM_NOTRAP_P (x
))
2333 HOST_WIDE_INT size
= MEM_SIZE_KNOWN_P (x
) ? MEM_SIZE (x
) : 0;
2334 return rtx_addr_can_trap_p_1 (XEXP (x
, 0), 0, size
,
2335 GET_MODE (x
), code_changed
);
2340 /* Division by a non-constant might trap. */
2345 if (HONOR_SNANS (GET_MODE (x
)))
2347 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
)))
2348 return flag_trapping_math
;
2349 if (!CONSTANT_P (XEXP (x
, 1)) || (XEXP (x
, 1) == const0_rtx
))
2354 /* An EXPR_LIST is used to represent a function call. This
2355 certainly may trap. */
2364 /* Some floating point comparisons may trap. */
2365 if (!flag_trapping_math
)
2367 /* ??? There is no machine independent way to check for tests that trap
2368 when COMPARE is used, though many targets do make this distinction.
2369 For instance, sparc uses CCFPE for compares which generate exceptions
2370 and CCFP for compares which do not generate exceptions. */
2371 if (HONOR_NANS (GET_MODE (x
)))
2373 /* But often the compare has some CC mode, so check operand
2375 if (HONOR_NANS (GET_MODE (XEXP (x
, 0)))
2376 || HONOR_NANS (GET_MODE (XEXP (x
, 1))))
2382 if (HONOR_SNANS (GET_MODE (x
)))
2384 /* Often comparison is CC mode, so check operand modes. */
2385 if (HONOR_SNANS (GET_MODE (XEXP (x
, 0)))
2386 || HONOR_SNANS (GET_MODE (XEXP (x
, 1))))
2391 /* Conversion of floating point might trap. */
2392 if (flag_trapping_math
&& HONOR_NANS (GET_MODE (XEXP (x
, 0))))
2399 /* These operations don't trap even with floating point. */
2403 /* Any floating arithmetic may trap. */
2404 if (SCALAR_FLOAT_MODE_P (GET_MODE (x
))
2405 && flag_trapping_math
)
2409 fmt
= GET_RTX_FORMAT (code
);
2410 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2414 if (may_trap_p_1 (XEXP (x
, i
), flags
))
2417 else if (fmt
[i
] == 'E')
2420 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2421 if (may_trap_p_1 (XVECEXP (x
, i
, j
), flags
))
2428 /* Return nonzero if evaluating rtx X might cause a trap. */
2431 may_trap_p (const_rtx x
)
2433 return may_trap_p_1 (x
, 0);
2436 /* Same as above, but additionally return nonzero if evaluating rtx X might
2437 cause a fault. We define a fault for the purpose of this function as a
2438 erroneous execution condition that cannot be encountered during the normal
2439 execution of a valid program; the typical example is an unaligned memory
2440 access on a strict alignment machine. The compiler guarantees that it
2441 doesn't generate code that will fault from a valid program, but this
2442 guarantee doesn't mean anything for individual instructions. Consider
2443 the following example:
2445 struct S { int d; union { char *cp; int *ip; }; };
2447 int foo(struct S *s)
2455 on a strict alignment machine. In a valid program, foo will never be
2456 invoked on a structure for which d is equal to 1 and the underlying
2457 unique field of the union not aligned on a 4-byte boundary, but the
2458 expression *s->ip might cause a fault if considered individually.
2460 At the RTL level, potentially problematic expressions will almost always
2461 verify may_trap_p; for example, the above dereference can be emitted as
2462 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2463 However, suppose that foo is inlined in a caller that causes s->cp to
2464 point to a local character variable and guarantees that s->d is not set
2465 to 1; foo may have been effectively translated into pseudo-RTL as:
2468 (set (reg:SI) (mem:SI (%fp - 7)))
2470 (set (reg:QI) (mem:QI (%fp - 7)))
2472 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2473 memory reference to a stack slot, but it will certainly cause a fault
2474 on a strict alignment machine. */
2477 may_trap_or_fault_p (const_rtx x
)
2479 return may_trap_p_1 (x
, 1);
2482 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2483 i.e., an inequality. */
2486 inequality_comparisons_p (const_rtx x
)
2490 const enum rtx_code code
= GET_CODE (x
);
2521 len
= GET_RTX_LENGTH (code
);
2522 fmt
= GET_RTX_FORMAT (code
);
2524 for (i
= 0; i
< len
; i
++)
2528 if (inequality_comparisons_p (XEXP (x
, i
)))
2531 else if (fmt
[i
] == 'E')
2534 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2535 if (inequality_comparisons_p (XVECEXP (x
, i
, j
)))
2543 /* Replace any occurrence of FROM in X with TO. The function does
2544 not enter into CONST_DOUBLE for the replace.
2546 Note that copying is not done so X must not be shared unless all copies
2547 are to be modified. */
2550 replace_rtx (rtx x
, rtx from
, rtx to
)
2555 /* The following prevents loops occurrence when we change MEM in
2556 CONST_DOUBLE onto the same CONST_DOUBLE. */
2557 if (x
!= 0 && GET_CODE (x
) == CONST_DOUBLE
)
2563 /* Allow this function to make replacements in EXPR_LISTs. */
2567 if (GET_CODE (x
) == SUBREG
)
2569 rtx new_rtx
= replace_rtx (SUBREG_REG (x
), from
, to
);
2571 if (CONST_INT_P (new_rtx
))
2573 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
2574 GET_MODE (SUBREG_REG (x
)),
2579 SUBREG_REG (x
) = new_rtx
;
2583 else if (GET_CODE (x
) == ZERO_EXTEND
)
2585 rtx new_rtx
= replace_rtx (XEXP (x
, 0), from
, to
);
2587 if (CONST_INT_P (new_rtx
))
2589 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
2590 new_rtx
, GET_MODE (XEXP (x
, 0)));
2594 XEXP (x
, 0) = new_rtx
;
2599 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
2600 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
2603 XEXP (x
, i
) = replace_rtx (XEXP (x
, i
), from
, to
);
2604 else if (fmt
[i
] == 'E')
2605 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2606 XVECEXP (x
, i
, j
) = replace_rtx (XVECEXP (x
, i
, j
), from
, to
);
2612 /* Replace occurrences of the old label in *X with the new one.
2613 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2616 replace_label (rtx
*x
, void *data
)
2619 rtx old_label
= ((replace_label_data
*) data
)->r1
;
2620 rtx new_label
= ((replace_label_data
*) data
)->r2
;
2621 bool update_label_nuses
= ((replace_label_data
*) data
)->update_label_nuses
;
2626 if (GET_CODE (l
) == SYMBOL_REF
2627 && CONSTANT_POOL_ADDRESS_P (l
))
2629 rtx c
= get_pool_constant (l
);
2630 if (rtx_referenced_p (old_label
, c
))
2633 replace_label_data
*d
= (replace_label_data
*) data
;
2635 /* Create a copy of constant C; replace the label inside
2636 but do not update LABEL_NUSES because uses in constant pool
2638 new_c
= copy_rtx (c
);
2639 d
->update_label_nuses
= false;
2640 for_each_rtx (&new_c
, replace_label
, data
);
2641 d
->update_label_nuses
= update_label_nuses
;
2643 /* Add the new constant NEW_C to constant pool and replace
2644 the old reference to constant by new reference. */
2645 new_l
= XEXP (force_const_mem (get_pool_mode (l
), new_c
), 0);
2646 *x
= replace_rtx (l
, l
, new_l
);
2651 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2652 field. This is not handled by for_each_rtx because it doesn't
2653 handle unprinted ('0') fields. */
2654 if (JUMP_P (l
) && JUMP_LABEL (l
) == old_label
)
2655 JUMP_LABEL (l
) = new_label
;
2657 if ((GET_CODE (l
) == LABEL_REF
2658 || GET_CODE (l
) == INSN_LIST
)
2659 && XEXP (l
, 0) == old_label
)
2661 XEXP (l
, 0) = new_label
;
2662 if (update_label_nuses
)
2664 ++LABEL_NUSES (new_label
);
2665 --LABEL_NUSES (old_label
);
2673 /* When *BODY is equal to X or X is directly referenced by *BODY
2674 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2675 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2678 rtx_referenced_p_1 (rtx
*body
, void *x
)
2682 if (*body
== NULL_RTX
)
2683 return y
== NULL_RTX
;
2685 /* Return true if a label_ref *BODY refers to label Y. */
2686 if (GET_CODE (*body
) == LABEL_REF
&& LABEL_P (y
))
2687 return XEXP (*body
, 0) == y
;
2689 /* If *BODY is a reference to pool constant traverse the constant. */
2690 if (GET_CODE (*body
) == SYMBOL_REF
2691 && CONSTANT_POOL_ADDRESS_P (*body
))
2692 return rtx_referenced_p (y
, get_pool_constant (*body
));
2694 /* By default, compare the RTL expressions. */
2695 return rtx_equal_p (*body
, y
);
2698 /* Return true if X is referenced in BODY. */
2701 rtx_referenced_p (rtx x
, rtx body
)
2703 return for_each_rtx (&body
, rtx_referenced_p_1
, x
);
2706 /* If INSN is a tablejump return true and store the label (before jump table) to
2707 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2710 tablejump_p (const_rtx insn
, rtx
*labelp
, rtx
*tablep
)
2717 label
= JUMP_LABEL (insn
);
2718 if (label
!= NULL_RTX
&& !ANY_RETURN_P (label
)
2719 && (table
= next_active_insn (label
)) != NULL_RTX
2720 && JUMP_TABLE_DATA_P (table
))
2731 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2732 constant that is not in the constant pool and not in the condition
2733 of an IF_THEN_ELSE. */
2736 computed_jump_p_1 (const_rtx x
)
2738 const enum rtx_code code
= GET_CODE (x
);
2758 return ! (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
2759 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)));
2762 return (computed_jump_p_1 (XEXP (x
, 1))
2763 || computed_jump_p_1 (XEXP (x
, 2)));
2769 fmt
= GET_RTX_FORMAT (code
);
2770 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2773 && computed_jump_p_1 (XEXP (x
, i
)))
2776 else if (fmt
[i
] == 'E')
2777 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2778 if (computed_jump_p_1 (XVECEXP (x
, i
, j
)))
2785 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2787 Tablejumps and casesi insns are not considered indirect jumps;
2788 we can recognize them by a (use (label_ref)). */
2791 computed_jump_p (const_rtx insn
)
2796 rtx pat
= PATTERN (insn
);
2798 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2799 if (JUMP_LABEL (insn
) != NULL
)
2802 if (GET_CODE (pat
) == PARALLEL
)
2804 int len
= XVECLEN (pat
, 0);
2805 int has_use_labelref
= 0;
2807 for (i
= len
- 1; i
>= 0; i
--)
2808 if (GET_CODE (XVECEXP (pat
, 0, i
)) == USE
2809 && (GET_CODE (XEXP (XVECEXP (pat
, 0, i
), 0))
2811 has_use_labelref
= 1;
2813 if (! has_use_labelref
)
2814 for (i
= len
- 1; i
>= 0; i
--)
2815 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
2816 && SET_DEST (XVECEXP (pat
, 0, i
)) == pc_rtx
2817 && computed_jump_p_1 (SET_SRC (XVECEXP (pat
, 0, i
))))
2820 else if (GET_CODE (pat
) == SET
2821 && SET_DEST (pat
) == pc_rtx
2822 && computed_jump_p_1 (SET_SRC (pat
)))
2828 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2829 calls. Processes the subexpressions of EXP and passes them to F. */
2831 for_each_rtx_1 (rtx exp
, int n
, rtx_function f
, void *data
)
2834 const char *format
= GET_RTX_FORMAT (GET_CODE (exp
));
2837 for (; format
[n
] != '\0'; n
++)
2844 result
= (*f
) (x
, data
);
2846 /* Do not traverse sub-expressions. */
2848 else if (result
!= 0)
2849 /* Stop the traversal. */
2853 /* There are no sub-expressions. */
2856 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2859 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2867 if (XVEC (exp
, n
) == 0)
2869 for (j
= 0; j
< XVECLEN (exp
, n
); ++j
)
2872 x
= &XVECEXP (exp
, n
, j
);
2873 result
= (*f
) (x
, data
);
2875 /* Do not traverse sub-expressions. */
2877 else if (result
!= 0)
2878 /* Stop the traversal. */
2882 /* There are no sub-expressions. */
2885 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2888 result
= for_each_rtx_1 (*x
, i
, f
, data
);
2896 /* Nothing to do. */
2904 /* Traverse X via depth-first search, calling F for each
2905 sub-expression (including X itself). F is also passed the DATA.
2906 If F returns -1, do not traverse sub-expressions, but continue
2907 traversing the rest of the tree. If F ever returns any other
2908 nonzero value, stop the traversal, and return the value returned
2909 by F. Otherwise, return 0. This function does not traverse inside
2910 tree structure that contains RTX_EXPRs, or into sub-expressions
2911 whose format code is `0' since it is not known whether or not those
2912 codes are actually RTL.
2914 This routine is very general, and could (should?) be used to
2915 implement many of the other routines in this file. */
2918 for_each_rtx (rtx
*x
, rtx_function f
, void *data
)
2924 result
= (*f
) (x
, data
);
2926 /* Do not traverse sub-expressions. */
2928 else if (result
!= 0)
2929 /* Stop the traversal. */
2933 /* There are no sub-expressions. */
2936 i
= non_rtx_starting_operands
[GET_CODE (*x
)];
2940 return for_each_rtx_1 (*x
, i
, f
, data
);
2945 /* Data structure that holds the internal state communicated between
2946 for_each_inc_dec, for_each_inc_dec_find_mem and
2947 for_each_inc_dec_find_inc_dec. */
2949 struct for_each_inc_dec_ops
{
2950 /* The function to be called for each autoinc operation found. */
2951 for_each_inc_dec_fn fn
;
2952 /* The opaque argument to be passed to it. */
2954 /* The MEM we're visiting, if any. */
2958 static int for_each_inc_dec_find_mem (rtx
*r
, void *d
);
2960 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2961 operands of the equivalent add insn and pass the result to the
2962 operator specified by *D. */
2965 for_each_inc_dec_find_inc_dec (rtx
*r
, void *d
)
2968 struct for_each_inc_dec_ops
*data
= (struct for_each_inc_dec_ops
*)d
;
2970 switch (GET_CODE (x
))
2975 int size
= GET_MODE_SIZE (GET_MODE (data
->mem
));
2976 rtx r1
= XEXP (x
, 0);
2977 rtx c
= gen_int_mode (size
, GET_MODE (r1
));
2978 return data
->fn (data
->mem
, x
, r1
, r1
, c
, data
->arg
);
2984 int size
= GET_MODE_SIZE (GET_MODE (data
->mem
));
2985 rtx r1
= XEXP (x
, 0);
2986 rtx c
= gen_int_mode (-size
, GET_MODE (r1
));
2987 return data
->fn (data
->mem
, x
, r1
, r1
, c
, data
->arg
);
2993 rtx r1
= XEXP (x
, 0);
2994 rtx add
= XEXP (x
, 1);
2995 return data
->fn (data
->mem
, x
, r1
, add
, NULL
, data
->arg
);
3000 rtx save
= data
->mem
;
3001 int ret
= for_each_inc_dec_find_mem (r
, d
);
3011 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
3012 address, extract the operands of the equivalent add insn and pass
3013 the result to the operator specified by *D. */
3016 for_each_inc_dec_find_mem (rtx
*r
, void *d
)
3019 if (x
!= NULL_RTX
&& MEM_P (x
))
3021 struct for_each_inc_dec_ops
*data
= (struct for_each_inc_dec_ops
*) d
;
3026 result
= for_each_rtx (&XEXP (x
, 0), for_each_inc_dec_find_inc_dec
,
3036 /* Traverse *X looking for MEMs, and for autoinc operations within
3037 them. For each such autoinc operation found, call FN, passing it
3038 the innermost enclosing MEM, the operation itself, the RTX modified
3039 by the operation, two RTXs (the second may be NULL) that, once
3040 added, represent the value to be held by the modified RTX
3041 afterwards, and ARG. FN is to return -1 to skip looking for other
3042 autoinc operations within the visited operation, 0 to continue the
3043 traversal, or any other value to have it returned to the caller of
3044 for_each_inc_dec. */
3047 for_each_inc_dec (rtx
*x
,
3048 for_each_inc_dec_fn fn
,
3051 struct for_each_inc_dec_ops data
;
3057 return for_each_rtx (x
, for_each_inc_dec_find_mem
, &data
);
3061 /* Searches X for any reference to REGNO, returning the rtx of the
3062 reference found if any. Otherwise, returns NULL_RTX. */
3065 regno_use_in (unsigned int regno
, rtx x
)
3071 if (REG_P (x
) && REGNO (x
) == regno
)
3074 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
3075 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
3079 if ((tem
= regno_use_in (regno
, XEXP (x
, i
))))
3082 else if (fmt
[i
] == 'E')
3083 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3084 if ((tem
= regno_use_in (regno
, XVECEXP (x
, i
, j
))))
3091 /* Return a value indicating whether OP, an operand of a commutative
3092 operation, is preferred as the first or second operand. The higher
3093 the value, the stronger the preference for being the first operand.
3094 We use negative values to indicate a preference for the first operand
3095 and positive values for the second operand. */
3098 commutative_operand_precedence (rtx op
)
3100 enum rtx_code code
= GET_CODE (op
);
3102 /* Constants always come the second operand. Prefer "nice" constants. */
3103 if (code
== CONST_INT
)
3105 if (code
== CONST_DOUBLE
)
3107 if (code
== CONST_FIXED
)
3109 op
= avoid_constant_pool_reference (op
);
3110 code
= GET_CODE (op
);
3112 switch (GET_RTX_CLASS (code
))
3115 if (code
== CONST_INT
)
3117 if (code
== CONST_DOUBLE
)
3119 if (code
== CONST_FIXED
)
3124 /* SUBREGs of objects should come second. */
3125 if (code
== SUBREG
&& OBJECT_P (SUBREG_REG (op
)))
3130 /* Complex expressions should be the first, so decrease priority
3131 of objects. Prefer pointer objects over non pointer objects. */
3132 if ((REG_P (op
) && REG_POINTER (op
))
3133 || (MEM_P (op
) && MEM_POINTER (op
)))
3137 case RTX_COMM_ARITH
:
3138 /* Prefer operands that are themselves commutative to be first.
3139 This helps to make things linear. In particular,
3140 (and (and (reg) (reg)) (not (reg))) is canonical. */
3144 /* If only one operand is a binary expression, it will be the first
3145 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3146 is canonical, although it will usually be further simplified. */
3150 /* Then prefer NEG and NOT. */
3151 if (code
== NEG
|| code
== NOT
)
3159 /* Return 1 iff it is necessary to swap operands of commutative operation
3160 in order to canonicalize expression. */
3163 swap_commutative_operands_p (rtx x
, rtx y
)
3165 return (commutative_operand_precedence (x
)
3166 < commutative_operand_precedence (y
));
3169 /* Return 1 if X is an autoincrement side effect and the register is
3170 not the stack pointer. */
3172 auto_inc_p (const_rtx x
)
3174 switch (GET_CODE (x
))
3182 /* There are no REG_INC notes for SP. */
3183 if (XEXP (x
, 0) != stack_pointer_rtx
)
3191 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3193 loc_mentioned_in_p (rtx
*loc
, const_rtx in
)
3202 code
= GET_CODE (in
);
3203 fmt
= GET_RTX_FORMAT (code
);
3204 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3208 if (loc
== &XEXP (in
, i
) || loc_mentioned_in_p (loc
, XEXP (in
, i
)))
3211 else if (fmt
[i
] == 'E')
3212 for (j
= XVECLEN (in
, i
) - 1; j
>= 0; j
--)
3213 if (loc
== &XVECEXP (in
, i
, j
)
3214 || loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
3220 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3221 and SUBREG_BYTE, return the bit offset where the subreg begins
3222 (counting from the least significant bit of the operand). */
3225 subreg_lsb_1 (enum machine_mode outer_mode
,
3226 enum machine_mode inner_mode
,
3227 unsigned int subreg_byte
)
3229 unsigned int bitpos
;
3233 /* A paradoxical subreg begins at bit position 0. */
3234 if (GET_MODE_PRECISION (outer_mode
) > GET_MODE_PRECISION (inner_mode
))
3237 if (WORDS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
3238 /* If the subreg crosses a word boundary ensure that
3239 it also begins and ends on a word boundary. */
3240 gcc_assert (!((subreg_byte
% UNITS_PER_WORD
3241 + GET_MODE_SIZE (outer_mode
)) > UNITS_PER_WORD
3242 && (subreg_byte
% UNITS_PER_WORD
3243 || GET_MODE_SIZE (outer_mode
) % UNITS_PER_WORD
)));
3245 if (WORDS_BIG_ENDIAN
)
3246 word
= (GET_MODE_SIZE (inner_mode
)
3247 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) / UNITS_PER_WORD
;
3249 word
= subreg_byte
/ UNITS_PER_WORD
;
3250 bitpos
= word
* BITS_PER_WORD
;
3252 if (BYTES_BIG_ENDIAN
)
3253 byte
= (GET_MODE_SIZE (inner_mode
)
3254 - (subreg_byte
+ GET_MODE_SIZE (outer_mode
))) % UNITS_PER_WORD
;
3256 byte
= subreg_byte
% UNITS_PER_WORD
;
3257 bitpos
+= byte
* BITS_PER_UNIT
;
3262 /* Given a subreg X, return the bit offset where the subreg begins
3263 (counting from the least significant bit of the reg). */
3266 subreg_lsb (const_rtx x
)
3268 return subreg_lsb_1 (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
3272 /* Fill in information about a subreg of a hard register.
3273 xregno - A regno of an inner hard subreg_reg (or what will become one).
3274 xmode - The mode of xregno.
3275 offset - The byte offset.
3276 ymode - The mode of a top level SUBREG (or what may become one).
3277 info - Pointer to structure to fill in. */
3279 subreg_get_info (unsigned int xregno
, enum machine_mode xmode
,
3280 unsigned int offset
, enum machine_mode ymode
,
3281 struct subreg_info
*info
)
3283 int nregs_xmode
, nregs_ymode
;
3284 int mode_multiple
, nregs_multiple
;
3285 int offset_adj
, y_offset
, y_offset_adj
;
3286 int regsize_xmode
, regsize_ymode
;
3289 gcc_assert (xregno
< FIRST_PSEUDO_REGISTER
);
3293 /* If there are holes in a non-scalar mode in registers, we expect
3294 that it is made up of its units concatenated together. */
3295 if (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
))
3297 enum machine_mode xmode_unit
;
3299 nregs_xmode
= HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode
);
3300 if (GET_MODE_INNER (xmode
) == VOIDmode
)
3303 xmode_unit
= GET_MODE_INNER (xmode
);
3304 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode_unit
));
3305 gcc_assert (nregs_xmode
3306 == (GET_MODE_NUNITS (xmode
)
3307 * HARD_REGNO_NREGS_WITH_PADDING (xregno
, xmode_unit
)));
3308 gcc_assert (hard_regno_nregs
[xregno
][xmode
]
3309 == (hard_regno_nregs
[xregno
][xmode_unit
]
3310 * GET_MODE_NUNITS (xmode
)));
3312 /* You can only ask for a SUBREG of a value with holes in the middle
3313 if you don't cross the holes. (Such a SUBREG should be done by
3314 picking a different register class, or doing it in memory if
3315 necessary.) An example of a value with holes is XCmode on 32-bit
3316 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3317 3 for each part, but in memory it's two 128-bit parts.
3318 Padding is assumed to be at the end (not necessarily the 'high part')
3320 if ((offset
/ GET_MODE_SIZE (xmode_unit
) + 1
3321 < GET_MODE_NUNITS (xmode
))
3322 && (offset
/ GET_MODE_SIZE (xmode_unit
)
3323 != ((offset
+ GET_MODE_SIZE (ymode
) - 1)
3324 / GET_MODE_SIZE (xmode_unit
))))
3326 info
->representable_p
= false;
3331 nregs_xmode
= hard_regno_nregs
[xregno
][xmode
];
3333 nregs_ymode
= hard_regno_nregs
[xregno
][ymode
];
3335 /* Paradoxical subregs are otherwise valid. */
3338 && GET_MODE_PRECISION (ymode
) > GET_MODE_PRECISION (xmode
))
3340 info
->representable_p
= true;
3341 /* If this is a big endian paradoxical subreg, which uses more
3342 actual hard registers than the original register, we must
3343 return a negative offset so that we find the proper highpart
3345 if (GET_MODE_SIZE (ymode
) > UNITS_PER_WORD
3346 ? REG_WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
3347 info
->offset
= nregs_xmode
- nregs_ymode
;
3350 info
->nregs
= nregs_ymode
;
3354 /* If registers store different numbers of bits in the different
3355 modes, we cannot generally form this subreg. */
3356 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno
, xmode
)
3357 && !HARD_REGNO_NREGS_HAS_PADDING (xregno
, ymode
)
3358 && (GET_MODE_SIZE (xmode
) % nregs_xmode
) == 0
3359 && (GET_MODE_SIZE (ymode
) % nregs_ymode
) == 0)
3361 regsize_xmode
= GET_MODE_SIZE (xmode
) / nregs_xmode
;
3362 regsize_ymode
= GET_MODE_SIZE (ymode
) / nregs_ymode
;
3363 if (!rknown
&& regsize_xmode
> regsize_ymode
&& nregs_ymode
> 1)
3365 info
->representable_p
= false;
3367 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3368 info
->offset
= offset
/ regsize_xmode
;
3371 if (!rknown
&& regsize_ymode
> regsize_xmode
&& nregs_xmode
> 1)
3373 info
->representable_p
= false;
3375 = (GET_MODE_SIZE (ymode
) + regsize_xmode
- 1) / regsize_xmode
;
3376 info
->offset
= offset
/ regsize_xmode
;
3381 /* Lowpart subregs are otherwise valid. */
3382 if (!rknown
&& offset
== subreg_lowpart_offset (ymode
, xmode
))
3384 info
->representable_p
= true;
3387 if (offset
== 0 || nregs_xmode
== nregs_ymode
)
3390 info
->nregs
= nregs_ymode
;
3395 /* This should always pass, otherwise we don't know how to verify
3396 the constraint. These conditions may be relaxed but
3397 subreg_regno_offset would need to be redesigned. */
3398 gcc_assert ((GET_MODE_SIZE (xmode
) % GET_MODE_SIZE (ymode
)) == 0);
3399 gcc_assert ((nregs_xmode
% nregs_ymode
) == 0);
3401 if (WORDS_BIG_ENDIAN
!= REG_WORDS_BIG_ENDIAN
3402 && GET_MODE_SIZE (xmode
) > UNITS_PER_WORD
)
3404 HOST_WIDE_INT xsize
= GET_MODE_SIZE (xmode
);
3405 HOST_WIDE_INT ysize
= GET_MODE_SIZE (ymode
);
3406 HOST_WIDE_INT off_low
= offset
& (ysize
- 1);
3407 HOST_WIDE_INT off_high
= offset
& ~(ysize
- 1);
3408 offset
= (xsize
- ysize
- off_high
) | off_low
;
3410 /* The XMODE value can be seen as a vector of NREGS_XMODE
3411 values. The subreg must represent a lowpart of given field.
3412 Compute what field it is. */
3413 offset_adj
= offset
;
3414 offset_adj
-= subreg_lowpart_offset (ymode
,
3415 mode_for_size (GET_MODE_BITSIZE (xmode
)
3419 /* Size of ymode must not be greater than the size of xmode. */
3420 mode_multiple
= GET_MODE_SIZE (xmode
) / GET_MODE_SIZE (ymode
);
3421 gcc_assert (mode_multiple
!= 0);
3423 y_offset
= offset
/ GET_MODE_SIZE (ymode
);
3424 y_offset_adj
= offset_adj
/ GET_MODE_SIZE (ymode
);
3425 nregs_multiple
= nregs_xmode
/ nregs_ymode
;
3427 gcc_assert ((offset_adj
% GET_MODE_SIZE (ymode
)) == 0);
3428 gcc_assert ((mode_multiple
% nregs_multiple
) == 0);
3432 info
->representable_p
= (!(y_offset_adj
% (mode_multiple
/ nregs_multiple
)));
3435 info
->offset
= (y_offset
/ (mode_multiple
/ nregs_multiple
)) * nregs_ymode
;
3436 info
->nregs
= nregs_ymode
;
3439 /* This function returns the regno offset of a subreg expression.
3440 xregno - A regno of an inner hard subreg_reg (or what will become one).
3441 xmode - The mode of xregno.
3442 offset - The byte offset.
3443 ymode - The mode of a top level SUBREG (or what may become one).
3444 RETURN - The regno offset which would be used. */
3446 subreg_regno_offset (unsigned int xregno
, enum machine_mode xmode
,
3447 unsigned int offset
, enum machine_mode ymode
)
3449 struct subreg_info info
;
3450 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3454 /* This function returns true when the offset is representable via
3455 subreg_offset in the given regno.
3456 xregno - A regno of an inner hard subreg_reg (or what will become one).
3457 xmode - The mode of xregno.
3458 offset - The byte offset.
3459 ymode - The mode of a top level SUBREG (or what may become one).
3460 RETURN - Whether the offset is representable. */
3462 subreg_offset_representable_p (unsigned int xregno
, enum machine_mode xmode
,
3463 unsigned int offset
, enum machine_mode ymode
)
3465 struct subreg_info info
;
3466 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3467 return info
.representable_p
;
3470 /* Return the number of a YMODE register to which
3472 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3474 can be simplified. Return -1 if the subreg can't be simplified.
3476 XREGNO is a hard register number. */
3479 simplify_subreg_regno (unsigned int xregno
, enum machine_mode xmode
,
3480 unsigned int offset
, enum machine_mode ymode
)
3482 struct subreg_info info
;
3483 unsigned int yregno
;
3485 #ifdef CANNOT_CHANGE_MODE_CLASS
3486 /* Give the backend a chance to disallow the mode change. */
3487 if (GET_MODE_CLASS (xmode
) != MODE_COMPLEX_INT
3488 && GET_MODE_CLASS (xmode
) != MODE_COMPLEX_FLOAT
3489 && REG_CANNOT_CHANGE_MODE_P (xregno
, xmode
, ymode
))
3493 /* We shouldn't simplify stack-related registers. */
3494 if ((!reload_completed
|| frame_pointer_needed
)
3495 && xregno
== FRAME_POINTER_REGNUM
)
3498 if (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
3499 && xregno
== ARG_POINTER_REGNUM
)
3502 if (xregno
== STACK_POINTER_REGNUM
)
3505 /* Try to get the register offset. */
3506 subreg_get_info (xregno
, xmode
, offset
, ymode
, &info
);
3507 if (!info
.representable_p
)
3510 /* Make sure that the offsetted register value is in range. */
3511 yregno
= xregno
+ info
.offset
;
3512 if (!HARD_REGISTER_NUM_P (yregno
))
3515 /* See whether (reg:YMODE YREGNO) is valid.
3517 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3518 This is a kludge to work around how complex FP arguments are passed
3519 on IA-64 and should be fixed. See PR target/49226. */
3520 if (!HARD_REGNO_MODE_OK (yregno
, ymode
)
3521 && HARD_REGNO_MODE_OK (xregno
, xmode
))
3524 return (int) yregno
;
3527 /* Return the final regno that a subreg expression refers to. */
3529 subreg_regno (const_rtx x
)
3532 rtx subreg
= SUBREG_REG (x
);
3533 int regno
= REGNO (subreg
);
3535 ret
= regno
+ subreg_regno_offset (regno
,
3543 /* Return the number of registers that a subreg expression refers
3546 subreg_nregs (const_rtx x
)
3548 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x
)), x
);
3551 /* Return the number of registers that a subreg REG with REGNO
3552 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3553 changed so that the regno can be passed in. */
3556 subreg_nregs_with_regno (unsigned int regno
, const_rtx x
)
3558 struct subreg_info info
;
3559 rtx subreg
= SUBREG_REG (x
);
3561 subreg_get_info (regno
, GET_MODE (subreg
), SUBREG_BYTE (x
), GET_MODE (x
),
3567 struct parms_set_data
3573 /* Helper function for noticing stores to parameter registers. */
3575 parms_set (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
3577 struct parms_set_data
*const d
= (struct parms_set_data
*) data
;
3578 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3579 && TEST_HARD_REG_BIT (d
->regs
, REGNO (x
)))
3581 CLEAR_HARD_REG_BIT (d
->regs
, REGNO (x
));
3586 /* Look backward for first parameter to be loaded.
3587 Note that loads of all parameters will not necessarily be
3588 found if CSE has eliminated some of them (e.g., an argument
3589 to the outer function is passed down as a parameter).
3590 Do not skip BOUNDARY. */
3592 find_first_parameter_load (rtx call_insn
, rtx boundary
)
3594 struct parms_set_data parm
;
3595 rtx p
, before
, first_set
;
3597 /* Since different machines initialize their parameter registers
3598 in different orders, assume nothing. Collect the set of all
3599 parameter registers. */
3600 CLEAR_HARD_REG_SET (parm
.regs
);
3602 for (p
= CALL_INSN_FUNCTION_USAGE (call_insn
); p
; p
= XEXP (p
, 1))
3603 if (GET_CODE (XEXP (p
, 0)) == USE
3604 && REG_P (XEXP (XEXP (p
, 0), 0)))
3606 gcc_assert (REGNO (XEXP (XEXP (p
, 0), 0)) < FIRST_PSEUDO_REGISTER
);
3608 /* We only care about registers which can hold function
3610 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p
, 0), 0))))
3613 SET_HARD_REG_BIT (parm
.regs
, REGNO (XEXP (XEXP (p
, 0), 0)));
3617 first_set
= call_insn
;
3619 /* Search backward for the first set of a register in this set. */
3620 while (parm
.nregs
&& before
!= boundary
)
3622 before
= PREV_INSN (before
);
3624 /* It is possible that some loads got CSEed from one call to
3625 another. Stop in that case. */
3626 if (CALL_P (before
))
3629 /* Our caller needs either ensure that we will find all sets
3630 (in case code has not been optimized yet), or take care
3631 for possible labels in a way by setting boundary to preceding
3633 if (LABEL_P (before
))
3635 gcc_assert (before
== boundary
);
3639 if (INSN_P (before
))
3641 int nregs_old
= parm
.nregs
;
3642 note_stores (PATTERN (before
), parms_set
, &parm
);
3643 /* If we found something that did not set a parameter reg,
3644 we're done. Do not keep going, as that might result
3645 in hoisting an insn before the setting of a pseudo
3646 that is used by the hoisted insn. */
3647 if (nregs_old
!= parm
.nregs
)
3656 /* Return true if we should avoid inserting code between INSN and preceding
3657 call instruction. */
3660 keep_with_call_p (const_rtx insn
)
3664 if (INSN_P (insn
) && (set
= single_set (insn
)) != NULL
)
3666 if (REG_P (SET_DEST (set
))
3667 && REGNO (SET_DEST (set
)) < FIRST_PSEUDO_REGISTER
3668 && fixed_regs
[REGNO (SET_DEST (set
))]
3669 && general_operand (SET_SRC (set
), VOIDmode
))
3671 if (REG_P (SET_SRC (set
))
3672 && targetm
.calls
.function_value_regno_p (REGNO (SET_SRC (set
)))
3673 && REG_P (SET_DEST (set
))
3674 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3676 /* There may be a stack pop just after the call and before the store
3677 of the return register. Search for the actual store when deciding
3678 if we can break or not. */
3679 if (SET_DEST (set
) == stack_pointer_rtx
)
3681 /* This CONST_CAST is okay because next_nonnote_insn just
3682 returns its argument and we assign it to a const_rtx
3684 const_rtx i2
= next_nonnote_insn (CONST_CAST_RTX(insn
));
3685 if (i2
&& keep_with_call_p (i2
))
3692 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3693 to non-complex jumps. That is, direct unconditional, conditional,
3694 and tablejumps, but not computed jumps or returns. It also does
3695 not apply to the fallthru case of a conditional jump. */
3698 label_is_jump_target_p (const_rtx label
, const_rtx jump_insn
)
3700 rtx tmp
= JUMP_LABEL (jump_insn
);
3705 if (tablejump_p (jump_insn
, NULL
, &tmp
))
3707 rtvec vec
= XVEC (PATTERN (tmp
),
3708 GET_CODE (PATTERN (tmp
)) == ADDR_DIFF_VEC
);
3709 int i
, veclen
= GET_NUM_ELEM (vec
);
3711 for (i
= 0; i
< veclen
; ++i
)
3712 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
3716 if (find_reg_note (jump_insn
, REG_LABEL_TARGET
, label
))
3723 /* Return an estimate of the cost of computing rtx X.
3724 One use is in cse, to decide which expression to keep in the hash table.
3725 Another is in rtl generation, to pick the cheapest way to multiply.
3726 Other uses like the latter are expected in the future.
3728 X appears as operand OPNO in an expression with code OUTER_CODE.
3729 SPEED specifies whether costs optimized for speed or size should
3733 rtx_cost (rtx x
, enum rtx_code outer_code
, int opno
, bool speed
)
3743 /* Compute the default costs of certain things.
3744 Note that targetm.rtx_costs can override the defaults. */
3746 code
= GET_CODE (x
);
3750 total
= COSTS_N_INSNS (5);
3756 total
= COSTS_N_INSNS (7);
3759 /* Used in combine.c as a marker. */
3763 total
= COSTS_N_INSNS (1);
3773 /* If we can't tie these modes, make this expensive. The larger
3774 the mode, the more expensive it is. */
3775 if (! MODES_TIEABLE_P (GET_MODE (x
), GET_MODE (SUBREG_REG (x
))))
3776 return COSTS_N_INSNS (2
3777 + GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
);
3781 if (targetm
.rtx_costs (x
, code
, outer_code
, opno
, &total
, speed
))
3786 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3787 which is already in total. */
3789 fmt
= GET_RTX_FORMAT (code
);
3790 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3792 total
+= rtx_cost (XEXP (x
, i
), code
, i
, speed
);
3793 else if (fmt
[i
] == 'E')
3794 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3795 total
+= rtx_cost (XVECEXP (x
, i
, j
), code
, i
, speed
);
3800 /* Fill in the structure C with information about both speed and size rtx
3801 costs for X, which is operand OPNO in an expression with code OUTER. */
3804 get_full_rtx_cost (rtx x
, enum rtx_code outer
, int opno
,
3805 struct full_rtx_costs
*c
)
3807 c
->speed
= rtx_cost (x
, outer
, opno
, true);
3808 c
->size
= rtx_cost (x
, outer
, opno
, false);
3812 /* Return cost of address expression X.
3813 Expect that X is properly formed address reference.
3815 SPEED parameter specify whether costs optimized for speed or size should
3819 address_cost (rtx x
, enum machine_mode mode
, addr_space_t as
, bool speed
)
3821 /* We may be asked for cost of various unusual addresses, such as operands
3822 of push instruction. It is not worthwhile to complicate writing
3823 of the target hook by such cases. */
3825 if (!memory_address_addr_space_p (mode
, x
, as
))
3828 return targetm
.address_cost (x
, speed
);
3831 /* If the target doesn't override, compute the cost as with arithmetic. */
3834 default_address_cost (rtx x
, bool speed
)
3836 return rtx_cost (x
, MEM
, 0, speed
);
3840 unsigned HOST_WIDE_INT
3841 nonzero_bits (const_rtx x
, enum machine_mode mode
)
3843 return cached_nonzero_bits (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3847 num_sign_bit_copies (const_rtx x
, enum machine_mode mode
)
3849 return cached_num_sign_bit_copies (x
, mode
, NULL_RTX
, VOIDmode
, 0);
3852 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3853 It avoids exponential behavior in nonzero_bits1 when X has
3854 identical subexpressions on the first or the second level. */
3856 static unsigned HOST_WIDE_INT
3857 cached_nonzero_bits (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3858 enum machine_mode known_mode
,
3859 unsigned HOST_WIDE_INT known_ret
)
3861 if (x
== known_x
&& mode
== known_mode
)
3864 /* Try to find identical subexpressions. If found call
3865 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3866 precomputed value for the subexpression as KNOWN_RET. */
3868 if (ARITHMETIC_P (x
))
3870 rtx x0
= XEXP (x
, 0);
3871 rtx x1
= XEXP (x
, 1);
3873 /* Check the first level. */
3875 return nonzero_bits1 (x
, mode
, x0
, mode
,
3876 cached_nonzero_bits (x0
, mode
, known_x
,
3877 known_mode
, known_ret
));
3879 /* Check the second level. */
3880 if (ARITHMETIC_P (x0
)
3881 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
3882 return nonzero_bits1 (x
, mode
, x1
, mode
,
3883 cached_nonzero_bits (x1
, mode
, known_x
,
3884 known_mode
, known_ret
));
3886 if (ARITHMETIC_P (x1
)
3887 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
3888 return nonzero_bits1 (x
, mode
, x0
, mode
,
3889 cached_nonzero_bits (x0
, mode
, known_x
,
3890 known_mode
, known_ret
));
3893 return nonzero_bits1 (x
, mode
, known_x
, known_mode
, known_ret
);
3896 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3897 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3898 is less useful. We can't allow both, because that results in exponential
3899 run time recursion. There is a nullstone testcase that triggered
3900 this. This macro avoids accidental uses of num_sign_bit_copies. */
3901 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3903 /* Given an expression, X, compute which bits in X can be nonzero.
3904 We don't care about bits outside of those defined in MODE.
3906 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3907 an arithmetic operation, we can do better. */
3909 static unsigned HOST_WIDE_INT
3910 nonzero_bits1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
3911 enum machine_mode known_mode
,
3912 unsigned HOST_WIDE_INT known_ret
)
3914 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
3915 unsigned HOST_WIDE_INT inner_nz
;
3917 enum machine_mode inner_mode
;
3918 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
3920 /* For floating-point and vector values, assume all bits are needed. */
3921 if (FLOAT_MODE_P (GET_MODE (x
)) || FLOAT_MODE_P (mode
)
3922 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
3925 /* If X is wider than MODE, use its mode instead. */
3926 if (GET_MODE_PRECISION (GET_MODE (x
)) > mode_width
)
3928 mode
= GET_MODE (x
);
3929 nonzero
= GET_MODE_MASK (mode
);
3930 mode_width
= GET_MODE_PRECISION (mode
);
3933 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
3934 /* Our only callers in this case look for single bit values. So
3935 just return the mode mask. Those tests will then be false. */
3938 #ifndef WORD_REGISTER_OPERATIONS
3939 /* If MODE is wider than X, but both are a single word for both the host
3940 and target machines, we can compute this from which bits of the
3941 object might be nonzero in its own mode, taking into account the fact
3942 that on many CISC machines, accessing an object in a wider mode
3943 causes the high-order bits to become undefined. So they are
3944 not known to be zero. */
3946 if (GET_MODE (x
) != VOIDmode
&& GET_MODE (x
) != mode
3947 && GET_MODE_PRECISION (GET_MODE (x
)) <= BITS_PER_WORD
3948 && GET_MODE_PRECISION (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
3949 && GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (GET_MODE (x
)))
3951 nonzero
&= cached_nonzero_bits (x
, GET_MODE (x
),
3952 known_x
, known_mode
, known_ret
);
3953 nonzero
|= GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
));
3958 code
= GET_CODE (x
);
3962 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3963 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3964 all the bits above ptr_mode are known to be zero. */
3965 /* As we do not know which address space the pointer is refering to,
3966 we can do this only if the target does not support different pointer
3967 or address modes depending on the address space. */
3968 if (target_default_pointer_address_modes_p ()
3969 && POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
3971 nonzero
&= GET_MODE_MASK (ptr_mode
);
3974 /* Include declared information about alignment of pointers. */
3975 /* ??? We don't properly preserve REG_POINTER changes across
3976 pointer-to-integer casts, so we can't trust it except for
3977 things that we know must be pointers. See execute/960116-1.c. */
3978 if ((x
== stack_pointer_rtx
3979 || x
== frame_pointer_rtx
3980 || x
== arg_pointer_rtx
)
3981 && REGNO_POINTER_ALIGN (REGNO (x
)))
3983 unsigned HOST_WIDE_INT alignment
3984 = REGNO_POINTER_ALIGN (REGNO (x
)) / BITS_PER_UNIT
;
3986 #ifdef PUSH_ROUNDING
3987 /* If PUSH_ROUNDING is defined, it is possible for the
3988 stack to be momentarily aligned only to that amount,
3989 so we pick the least alignment. */
3990 if (x
== stack_pointer_rtx
&& PUSH_ARGS
)
3991 alignment
= MIN ((unsigned HOST_WIDE_INT
) PUSH_ROUNDING (1),
3995 nonzero
&= ~(alignment
- 1);
3999 unsigned HOST_WIDE_INT nonzero_for_hook
= nonzero
;
4000 rtx new_rtx
= rtl_hooks
.reg_nonzero_bits (x
, mode
, known_x
,
4001 known_mode
, known_ret
,
4005 nonzero_for_hook
&= cached_nonzero_bits (new_rtx
, mode
, known_x
,
4006 known_mode
, known_ret
);
4008 return nonzero_for_hook
;
4012 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4013 /* If X is negative in MODE, sign-extend the value. */
4015 && mode_width
< BITS_PER_WORD
4016 && (UINTVAL (x
) & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
4018 return UINTVAL (x
) | ((unsigned HOST_WIDE_INT
) (-1) << mode_width
);
4024 #ifdef LOAD_EXTEND_OP
4025 /* In many, if not most, RISC machines, reading a byte from memory
4026 zeros the rest of the register. Noticing that fact saves a lot
4027 of extra zero-extends. */
4028 if (LOAD_EXTEND_OP (GET_MODE (x
)) == ZERO_EXTEND
)
4029 nonzero
&= GET_MODE_MASK (GET_MODE (x
));
4034 case UNEQ
: case LTGT
:
4035 case GT
: case GTU
: case UNGT
:
4036 case LT
: case LTU
: case UNLT
:
4037 case GE
: case GEU
: case UNGE
:
4038 case LE
: case LEU
: case UNLE
:
4039 case UNORDERED
: case ORDERED
:
4040 /* If this produces an integer result, we know which bits are set.
4041 Code here used to clear bits outside the mode of X, but that is
4043 /* Mind that MODE is the mode the caller wants to look at this
4044 operation in, and not the actual operation mode. We can wind
4045 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4046 that describes the results of a vector compare. */
4047 if (GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
4048 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
4049 nonzero
= STORE_FLAG_VALUE
;
4054 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4055 and num_sign_bit_copies. */
4056 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
4057 == GET_MODE_PRECISION (GET_MODE (x
)))
4061 if (GET_MODE_PRECISION (GET_MODE (x
)) < mode_width
)
4062 nonzero
|= (GET_MODE_MASK (mode
) & ~GET_MODE_MASK (GET_MODE (x
)));
4067 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4068 and num_sign_bit_copies. */
4069 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
4070 == GET_MODE_PRECISION (GET_MODE (x
)))
4076 nonzero
&= (cached_nonzero_bits (XEXP (x
, 0), mode
,
4077 known_x
, known_mode
, known_ret
)
4078 & GET_MODE_MASK (mode
));
4082 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4083 known_x
, known_mode
, known_ret
);
4084 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4085 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4089 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4090 Otherwise, show all the bits in the outer mode but not the inner
4092 inner_nz
= cached_nonzero_bits (XEXP (x
, 0), mode
,
4093 known_x
, known_mode
, known_ret
);
4094 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
4096 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
4097 if (val_signbit_known_set_p (GET_MODE (XEXP (x
, 0)), inner_nz
))
4098 inner_nz
|= (GET_MODE_MASK (mode
)
4099 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
4102 nonzero
&= inner_nz
;
4106 nonzero
&= cached_nonzero_bits (XEXP (x
, 0), mode
,
4107 known_x
, known_mode
, known_ret
)
4108 & cached_nonzero_bits (XEXP (x
, 1), mode
,
4109 known_x
, known_mode
, known_ret
);
4113 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
4115 unsigned HOST_WIDE_INT nonzero0
4116 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4117 known_x
, known_mode
, known_ret
);
4119 /* Don't call nonzero_bits for the second time if it cannot change
4121 if ((nonzero
& nonzero0
) != nonzero
)
4123 | cached_nonzero_bits (XEXP (x
, 1), mode
,
4124 known_x
, known_mode
, known_ret
);
4128 case PLUS
: case MINUS
:
4130 case DIV
: case UDIV
:
4131 case MOD
: case UMOD
:
4132 /* We can apply the rules of arithmetic to compute the number of
4133 high- and low-order zero bits of these operations. We start by
4134 computing the width (position of the highest-order nonzero bit)
4135 and the number of low-order zero bits for each value. */
4137 unsigned HOST_WIDE_INT nz0
4138 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4139 known_x
, known_mode
, known_ret
);
4140 unsigned HOST_WIDE_INT nz1
4141 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4142 known_x
, known_mode
, known_ret
);
4143 int sign_index
= GET_MODE_PRECISION (GET_MODE (x
)) - 1;
4144 int width0
= floor_log2 (nz0
) + 1;
4145 int width1
= floor_log2 (nz1
) + 1;
4146 int low0
= floor_log2 (nz0
& -nz0
);
4147 int low1
= floor_log2 (nz1
& -nz1
);
4148 unsigned HOST_WIDE_INT op0_maybe_minusp
4149 = nz0
& ((unsigned HOST_WIDE_INT
) 1 << sign_index
);
4150 unsigned HOST_WIDE_INT op1_maybe_minusp
4151 = nz1
& ((unsigned HOST_WIDE_INT
) 1 << sign_index
);
4152 unsigned int result_width
= mode_width
;
4158 result_width
= MAX (width0
, width1
) + 1;
4159 result_low
= MIN (low0
, low1
);
4162 result_low
= MIN (low0
, low1
);
4165 result_width
= width0
+ width1
;
4166 result_low
= low0
+ low1
;
4171 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4172 result_width
= width0
;
4177 result_width
= width0
;
4182 if (!op0_maybe_minusp
&& !op1_maybe_minusp
)
4183 result_width
= MIN (width0
, width1
);
4184 result_low
= MIN (low0
, low1
);
4189 result_width
= MIN (width0
, width1
);
4190 result_low
= MIN (low0
, low1
);
4196 if (result_width
< mode_width
)
4197 nonzero
&= ((unsigned HOST_WIDE_INT
) 1 << result_width
) - 1;
4200 nonzero
&= ~(((unsigned HOST_WIDE_INT
) 1 << result_low
) - 1);
4205 if (CONST_INT_P (XEXP (x
, 1))
4206 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
4207 nonzero
&= ((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (x
, 1))) - 1;
4211 /* If this is a SUBREG formed for a promoted variable that has
4212 been zero-extended, we know that at least the high-order bits
4213 are zero, though others might be too. */
4215 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
) > 0)
4216 nonzero
= GET_MODE_MASK (GET_MODE (x
))
4217 & cached_nonzero_bits (SUBREG_REG (x
), GET_MODE (x
),
4218 known_x
, known_mode
, known_ret
);
4220 inner_mode
= GET_MODE (SUBREG_REG (x
));
4221 /* If the inner mode is a single word for both the host and target
4222 machines, we can compute this from which bits of the inner
4223 object might be nonzero. */
4224 if (GET_MODE_PRECISION (inner_mode
) <= BITS_PER_WORD
4225 && (GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
))
4227 nonzero
&= cached_nonzero_bits (SUBREG_REG (x
), mode
,
4228 known_x
, known_mode
, known_ret
);
4230 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4231 /* If this is a typical RISC machine, we only have to worry
4232 about the way loads are extended. */
4233 if ((LOAD_EXTEND_OP (inner_mode
) == SIGN_EXTEND
4234 ? val_signbit_known_set_p (inner_mode
, nonzero
)
4235 : LOAD_EXTEND_OP (inner_mode
) != ZERO_EXTEND
)
4236 || !MEM_P (SUBREG_REG (x
)))
4239 /* On many CISC machines, accessing an object in a wider mode
4240 causes the high-order bits to become undefined. So they are
4241 not known to be zero. */
4242 if (GET_MODE_PRECISION (GET_MODE (x
))
4243 > GET_MODE_PRECISION (inner_mode
))
4244 nonzero
|= (GET_MODE_MASK (GET_MODE (x
))
4245 & ~GET_MODE_MASK (inner_mode
));
4254 /* The nonzero bits are in two classes: any bits within MODE
4255 that aren't in GET_MODE (x) are always significant. The rest of the
4256 nonzero bits are those that are significant in the operand of
4257 the shift when shifted the appropriate number of bits. This
4258 shows that high-order bits are cleared by the right shift and
4259 low-order bits by left shifts. */
4260 if (CONST_INT_P (XEXP (x
, 1))
4261 && INTVAL (XEXP (x
, 1)) >= 0
4262 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
4263 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (GET_MODE (x
)))
4265 enum machine_mode inner_mode
= GET_MODE (x
);
4266 unsigned int width
= GET_MODE_PRECISION (inner_mode
);
4267 int count
= INTVAL (XEXP (x
, 1));
4268 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (inner_mode
);
4269 unsigned HOST_WIDE_INT op_nonzero
4270 = cached_nonzero_bits (XEXP (x
, 0), mode
,
4271 known_x
, known_mode
, known_ret
);
4272 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
4273 unsigned HOST_WIDE_INT outer
= 0;
4275 if (mode_width
> width
)
4276 outer
= (op_nonzero
& nonzero
& ~mode_mask
);
4278 if (code
== LSHIFTRT
)
4280 else if (code
== ASHIFTRT
)
4284 /* If the sign bit may have been nonzero before the shift, we
4285 need to mark all the places it could have been copied to
4286 by the shift as possibly nonzero. */
4287 if (inner
& ((unsigned HOST_WIDE_INT
) 1 << (width
- 1 - count
)))
4288 inner
|= (((unsigned HOST_WIDE_INT
) 1 << count
) - 1)
4291 else if (code
== ASHIFT
)
4294 inner
= ((inner
<< (count
% width
)
4295 | (inner
>> (width
- (count
% width
)))) & mode_mask
);
4297 nonzero
&= (outer
| inner
);
4303 /* This is at most the number of bits in the mode. */
4304 nonzero
= ((unsigned HOST_WIDE_INT
) 2 << (floor_log2 (mode_width
))) - 1;
4308 /* If CLZ has a known value at zero, then the nonzero bits are
4309 that value, plus the number of bits in the mode minus one. */
4310 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4312 |= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4318 /* If CTZ has a known value at zero, then the nonzero bits are
4319 that value, plus the number of bits in the mode minus one. */
4320 if (CTZ_DEFINED_VALUE_AT_ZERO (mode
, nonzero
))
4322 |= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4328 /* This is at most the number of bits in the mode minus 1. */
4329 nonzero
= ((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
))) - 1;
4338 unsigned HOST_WIDE_INT nonzero_true
4339 = cached_nonzero_bits (XEXP (x
, 1), mode
,
4340 known_x
, known_mode
, known_ret
);
4342 /* Don't call nonzero_bits for the second time if it cannot change
4344 if ((nonzero
& nonzero_true
) != nonzero
)
4345 nonzero
&= nonzero_true
4346 | cached_nonzero_bits (XEXP (x
, 2), mode
,
4347 known_x
, known_mode
, known_ret
);
4358 /* See the macro definition above. */
4359 #undef cached_num_sign_bit_copies
4362 /* The function cached_num_sign_bit_copies is a wrapper around
4363 num_sign_bit_copies1. It avoids exponential behavior in
4364 num_sign_bit_copies1 when X has identical subexpressions on the
4365 first or the second level. */
4368 cached_num_sign_bit_copies (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4369 enum machine_mode known_mode
,
4370 unsigned int known_ret
)
4372 if (x
== known_x
&& mode
== known_mode
)
4375 /* Try to find identical subexpressions. If found call
4376 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4377 the precomputed value for the subexpression as KNOWN_RET. */
4379 if (ARITHMETIC_P (x
))
4381 rtx x0
= XEXP (x
, 0);
4382 rtx x1
= XEXP (x
, 1);
4384 /* Check the first level. */
4387 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4388 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4392 /* Check the second level. */
4393 if (ARITHMETIC_P (x0
)
4394 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
4396 num_sign_bit_copies1 (x
, mode
, x1
, mode
,
4397 cached_num_sign_bit_copies (x1
, mode
, known_x
,
4401 if (ARITHMETIC_P (x1
)
4402 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
4404 num_sign_bit_copies1 (x
, mode
, x0
, mode
,
4405 cached_num_sign_bit_copies (x0
, mode
, known_x
,
4410 return num_sign_bit_copies1 (x
, mode
, known_x
, known_mode
, known_ret
);
4413 /* Return the number of bits at the high-order end of X that are known to
4414 be equal to the sign bit. X will be used in mode MODE; if MODE is
4415 VOIDmode, X will be used in its own mode. The returned value will always
4416 be between 1 and the number of bits in MODE. */
4419 num_sign_bit_copies1 (const_rtx x
, enum machine_mode mode
, const_rtx known_x
,
4420 enum machine_mode known_mode
,
4421 unsigned int known_ret
)
4423 enum rtx_code code
= GET_CODE (x
);
4424 unsigned int bitwidth
= GET_MODE_PRECISION (mode
);
4425 int num0
, num1
, result
;
4426 unsigned HOST_WIDE_INT nonzero
;
4428 /* If we weren't given a mode, use the mode of X. If the mode is still
4429 VOIDmode, we don't know anything. Likewise if one of the modes is
4432 if (mode
== VOIDmode
)
4433 mode
= GET_MODE (x
);
4435 if (mode
== VOIDmode
|| FLOAT_MODE_P (mode
) || FLOAT_MODE_P (GET_MODE (x
))
4436 || VECTOR_MODE_P (GET_MODE (x
)) || VECTOR_MODE_P (mode
))
4439 /* For a smaller object, just ignore the high bits. */
4440 if (bitwidth
< GET_MODE_PRECISION (GET_MODE (x
)))
4442 num0
= cached_num_sign_bit_copies (x
, GET_MODE (x
),
4443 known_x
, known_mode
, known_ret
);
4445 num0
- (int) (GET_MODE_PRECISION (GET_MODE (x
)) - bitwidth
));
4448 if (GET_MODE (x
) != VOIDmode
&& bitwidth
> GET_MODE_PRECISION (GET_MODE (x
)))
4450 #ifndef WORD_REGISTER_OPERATIONS
4451 /* If this machine does not do all register operations on the entire
4452 register and MODE is wider than the mode of X, we can say nothing
4453 at all about the high-order bits. */
4456 /* Likewise on machines that do, if the mode of the object is smaller
4457 than a word and loads of that size don't sign extend, we can say
4458 nothing about the high order bits. */
4459 if (GET_MODE_PRECISION (GET_MODE (x
)) < BITS_PER_WORD
4460 #ifdef LOAD_EXTEND_OP
4461 && LOAD_EXTEND_OP (GET_MODE (x
)) != SIGN_EXTEND
4472 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4473 /* If pointers extend signed and this is a pointer in Pmode, say that
4474 all the bits above ptr_mode are known to be sign bit copies. */
4475 /* As we do not know which address space the pointer is refering to,
4476 we can do this only if the target does not support different pointer
4477 or address modes depending on the address space. */
4478 if (target_default_pointer_address_modes_p ()
4479 && ! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
4480 && mode
== Pmode
&& REG_POINTER (x
))
4481 return GET_MODE_PRECISION (Pmode
) - GET_MODE_PRECISION (ptr_mode
) + 1;
4485 unsigned int copies_for_hook
= 1, copies
= 1;
4486 rtx new_rtx
= rtl_hooks
.reg_num_sign_bit_copies (x
, mode
, known_x
,
4487 known_mode
, known_ret
,
4491 copies
= cached_num_sign_bit_copies (new_rtx
, mode
, known_x
,
4492 known_mode
, known_ret
);
4494 if (copies
> 1 || copies_for_hook
> 1)
4495 return MAX (copies
, copies_for_hook
);
4497 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4502 #ifdef LOAD_EXTEND_OP
4503 /* Some RISC machines sign-extend all loads of smaller than a word. */
4504 if (LOAD_EXTEND_OP (GET_MODE (x
)) == SIGN_EXTEND
)
4505 return MAX (1, ((int) bitwidth
4506 - (int) GET_MODE_PRECISION (GET_MODE (x
)) + 1));
4511 /* If the constant is negative, take its 1's complement and remask.
4512 Then see how many zero bits we have. */
4513 nonzero
= UINTVAL (x
) & GET_MODE_MASK (mode
);
4514 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4515 && (nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4516 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4518 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4521 /* If this is a SUBREG for a promoted object that is sign-extended
4522 and we are looking at it in a wider mode, we know that at least the
4523 high-order bits are known to be sign bit copies. */
4525 if (SUBREG_PROMOTED_VAR_P (x
) && ! SUBREG_PROMOTED_UNSIGNED_P (x
))
4527 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4528 known_x
, known_mode
, known_ret
);
4529 return MAX ((int) bitwidth
4530 - (int) GET_MODE_PRECISION (GET_MODE (x
)) + 1,
4534 /* For a smaller object, just ignore the high bits. */
4535 if (bitwidth
<= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
))))
4537 num0
= cached_num_sign_bit_copies (SUBREG_REG (x
), VOIDmode
,
4538 known_x
, known_mode
, known_ret
);
4539 return MAX (1, (num0
4540 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x
)))
4544 #ifdef WORD_REGISTER_OPERATIONS
4545 #ifdef LOAD_EXTEND_OP
4546 /* For paradoxical SUBREGs on machines where all register operations
4547 affect the entire register, just look inside. Note that we are
4548 passing MODE to the recursive call, so the number of sign bit copies
4549 will remain relative to that mode, not the inner mode. */
4551 /* This works only if loads sign extend. Otherwise, if we get a
4552 reload for the inner part, it may be loaded from the stack, and
4553 then we lose all sign bit copies that existed before the store
4556 if (paradoxical_subreg_p (x
)
4557 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
4558 && MEM_P (SUBREG_REG (x
)))
4559 return cached_num_sign_bit_copies (SUBREG_REG (x
), mode
,
4560 known_x
, known_mode
, known_ret
);
4566 if (CONST_INT_P (XEXP (x
, 1)))
4567 return MAX (1, (int) bitwidth
- INTVAL (XEXP (x
, 1)));
4571 return (bitwidth
- GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
4572 + cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4573 known_x
, known_mode
, known_ret
));
4576 /* For a smaller object, just ignore the high bits. */
4577 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), VOIDmode
,
4578 known_x
, known_mode
, known_ret
);
4579 return MAX (1, (num0
- (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
4583 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4584 known_x
, known_mode
, known_ret
);
4586 case ROTATE
: case ROTATERT
:
4587 /* If we are rotating left by a number of bits less than the number
4588 of sign bit copies, we can just subtract that amount from the
4590 if (CONST_INT_P (XEXP (x
, 1))
4591 && INTVAL (XEXP (x
, 1)) >= 0
4592 && INTVAL (XEXP (x
, 1)) < (int) bitwidth
)
4594 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4595 known_x
, known_mode
, known_ret
);
4596 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
4597 : (int) bitwidth
- INTVAL (XEXP (x
, 1))));
4602 /* In general, this subtracts one sign bit copy. But if the value
4603 is known to be positive, the number of sign bit copies is the
4604 same as that of the input. Finally, if the input has just one bit
4605 that might be nonzero, all the bits are copies of the sign bit. */
4606 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4607 known_x
, known_mode
, known_ret
);
4608 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4609 return num0
> 1 ? num0
- 1 : 1;
4611 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4616 && (((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
))
4621 case IOR
: case AND
: case XOR
:
4622 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
4623 /* Logical operations will preserve the number of sign-bit copies.
4624 MIN and MAX operations always return one of the operands. */
4625 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4626 known_x
, known_mode
, known_ret
);
4627 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4628 known_x
, known_mode
, known_ret
);
4630 /* If num1 is clearing some of the top bits then regardless of
4631 the other term, we are guaranteed to have at least that many
4632 high-order zero bits. */
4635 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4636 && CONST_INT_P (XEXP (x
, 1))
4637 && (UINTVAL (XEXP (x
, 1))
4638 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) == 0)
4641 /* Similarly for IOR when setting high-order bits. */
4644 && bitwidth
<= HOST_BITS_PER_WIDE_INT
4645 && CONST_INT_P (XEXP (x
, 1))
4646 && (UINTVAL (XEXP (x
, 1))
4647 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4650 return MIN (num0
, num1
);
4652 case PLUS
: case MINUS
:
4653 /* For addition and subtraction, we can have a 1-bit carry. However,
4654 if we are subtracting 1 from a positive number, there will not
4655 be such a carry. Furthermore, if the positive number is known to
4656 be 0 or 1, we know the result is either -1 or 0. */
4658 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
4659 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
4661 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
4662 if ((((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
) == 0)
4663 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
4664 : bitwidth
- floor_log2 (nonzero
) - 1);
4667 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4668 known_x
, known_mode
, known_ret
);
4669 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4670 known_x
, known_mode
, known_ret
);
4671 result
= MAX (1, MIN (num0
, num1
) - 1);
4676 /* The number of bits of the product is the sum of the number of
4677 bits of both terms. However, unless one of the terms if known
4678 to be positive, we must allow for an additional bit since negating
4679 a negative number can remove one sign bit copy. */
4681 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4682 known_x
, known_mode
, known_ret
);
4683 num1
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4684 known_x
, known_mode
, known_ret
);
4686 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
4688 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4689 || (((nonzero_bits (XEXP (x
, 0), mode
)
4690 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4691 && ((nonzero_bits (XEXP (x
, 1), mode
)
4692 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1)))
4696 return MAX (1, result
);
4699 /* The result must be <= the first operand. If the first operand
4700 has the high bit set, we know nothing about the number of sign
4702 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4704 else if ((nonzero_bits (XEXP (x
, 0), mode
)
4705 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4708 return cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4709 known_x
, known_mode
, known_ret
);
4712 /* The result must be <= the second operand. If the second operand
4713 has (or just might have) the high bit set, we know nothing about
4714 the number of sign bit copies. */
4715 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4717 else if ((nonzero_bits (XEXP (x
, 1), mode
)
4718 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4721 return cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4722 known_x
, known_mode
, known_ret
);
4725 /* Similar to unsigned division, except that we have to worry about
4726 the case where the divisor is negative, in which case we have
4728 result
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4729 known_x
, known_mode
, known_ret
);
4731 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4732 || (nonzero_bits (XEXP (x
, 1), mode
)
4733 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4739 result
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4740 known_x
, known_mode
, known_ret
);
4742 && (bitwidth
> HOST_BITS_PER_WIDE_INT
4743 || (nonzero_bits (XEXP (x
, 1), mode
)
4744 & ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
4750 /* Shifts by a constant add to the number of bits equal to the
4752 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4753 known_x
, known_mode
, known_ret
);
4754 if (CONST_INT_P (XEXP (x
, 1))
4755 && INTVAL (XEXP (x
, 1)) > 0
4756 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (GET_MODE (x
)))
4757 num0
= MIN ((int) bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
4762 /* Left shifts destroy copies. */
4763 if (!CONST_INT_P (XEXP (x
, 1))
4764 || INTVAL (XEXP (x
, 1)) < 0
4765 || INTVAL (XEXP (x
, 1)) >= (int) bitwidth
4766 || INTVAL (XEXP (x
, 1)) >= GET_MODE_PRECISION (GET_MODE (x
)))
4769 num0
= cached_num_sign_bit_copies (XEXP (x
, 0), mode
,
4770 known_x
, known_mode
, known_ret
);
4771 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
4774 num0
= cached_num_sign_bit_copies (XEXP (x
, 1), mode
,
4775 known_x
, known_mode
, known_ret
);
4776 num1
= cached_num_sign_bit_copies (XEXP (x
, 2), mode
,
4777 known_x
, known_mode
, known_ret
);
4778 return MIN (num0
, num1
);
4780 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
4781 case UNEQ
: case LTGT
: case UNGE
: case UNGT
: case UNLE
: case UNLT
:
4782 case GEU
: case GTU
: case LEU
: case LTU
:
4783 case UNORDERED
: case ORDERED
:
4784 /* If the constant is negative, take its 1's complement and remask.
4785 Then see how many zero bits we have. */
4786 nonzero
= STORE_FLAG_VALUE
;
4787 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
4788 && (nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
4789 nonzero
= (~nonzero
) & GET_MODE_MASK (mode
);
4791 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
4797 /* If we haven't been able to figure it out by one of the above rules,
4798 see if some of the high-order bits are known to be zero. If so,
4799 count those bits and return one less than that amount. If we can't
4800 safely compute the mask for this mode, always return BITWIDTH. */
4802 bitwidth
= GET_MODE_PRECISION (mode
);
4803 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
4806 nonzero
= nonzero_bits (x
, mode
);
4807 return nonzero
& ((unsigned HOST_WIDE_INT
) 1 << (bitwidth
- 1))
4808 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1;
4811 /* Calculate the rtx_cost of a single instruction. A return value of
4812 zero indicates an instruction pattern without a known cost. */
4815 insn_rtx_cost (rtx pat
, bool speed
)
4820 /* Extract the single set rtx from the instruction pattern.
4821 We can't use single_set since we only have the pattern. */
4822 if (GET_CODE (pat
) == SET
)
4824 else if (GET_CODE (pat
) == PARALLEL
)
4827 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4829 rtx x
= XVECEXP (pat
, 0, i
);
4830 if (GET_CODE (x
) == SET
)
4843 cost
= set_src_cost (SET_SRC (set
), speed
);
4844 return cost
> 0 ? cost
: COSTS_N_INSNS (1);
4847 /* Given an insn INSN and condition COND, return the condition in a
4848 canonical form to simplify testing by callers. Specifically:
4850 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4851 (2) Both operands will be machine operands; (cc0) will have been replaced.
4852 (3) If an operand is a constant, it will be the second operand.
4853 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4854 for GE, GEU, and LEU.
4856 If the condition cannot be understood, or is an inequality floating-point
4857 comparison which needs to be reversed, 0 will be returned.
4859 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4861 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4862 insn used in locating the condition was found. If a replacement test
4863 of the condition is desired, it should be placed in front of that
4864 insn and we will be sure that the inputs are still valid.
4866 If WANT_REG is nonzero, we wish the condition to be relative to that
4867 register, if possible. Therefore, do not canonicalize the condition
4868 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4869 to be a compare to a CC mode register.
4871 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4875 canonicalize_condition (rtx insn
, rtx cond
, int reverse
, rtx
*earliest
,
4876 rtx want_reg
, int allow_cc_mode
, int valid_at_insn_p
)
4883 int reverse_code
= 0;
4884 enum machine_mode mode
;
4885 basic_block bb
= BLOCK_FOR_INSN (insn
);
4887 code
= GET_CODE (cond
);
4888 mode
= GET_MODE (cond
);
4889 op0
= XEXP (cond
, 0);
4890 op1
= XEXP (cond
, 1);
4893 code
= reversed_comparison_code (cond
, insn
);
4894 if (code
== UNKNOWN
)
4900 /* If we are comparing a register with zero, see if the register is set
4901 in the previous insn to a COMPARE or a comparison operation. Perform
4902 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4905 while ((GET_RTX_CLASS (code
) == RTX_COMPARE
4906 || GET_RTX_CLASS (code
) == RTX_COMM_COMPARE
)
4907 && op1
== CONST0_RTX (GET_MODE (op0
))
4910 /* Set nonzero when we find something of interest. */
4914 /* If comparison with cc0, import actual comparison from compare
4918 if ((prev
= prev_nonnote_insn (prev
)) == 0
4919 || !NONJUMP_INSN_P (prev
)
4920 || (set
= single_set (prev
)) == 0
4921 || SET_DEST (set
) != cc0_rtx
)
4924 op0
= SET_SRC (set
);
4925 op1
= CONST0_RTX (GET_MODE (op0
));
4931 /* If this is a COMPARE, pick up the two things being compared. */
4932 if (GET_CODE (op0
) == COMPARE
)
4934 op1
= XEXP (op0
, 1);
4935 op0
= XEXP (op0
, 0);
4938 else if (!REG_P (op0
))
4941 /* Go back to the previous insn. Stop if it is not an INSN. We also
4942 stop if it isn't a single set or if it has a REG_INC note because
4943 we don't want to bother dealing with it. */
4945 prev
= prev_nonnote_nondebug_insn (prev
);
4948 || !NONJUMP_INSN_P (prev
)
4949 || FIND_REG_INC_NOTE (prev
, NULL_RTX
)
4950 /* In cfglayout mode, there do not have to be labels at the
4951 beginning of a block, or jumps at the end, so the previous
4952 conditions would not stop us when we reach bb boundary. */
4953 || BLOCK_FOR_INSN (prev
) != bb
)
4956 set
= set_of (op0
, prev
);
4959 && (GET_CODE (set
) != SET
4960 || !rtx_equal_p (SET_DEST (set
), op0
)))
4963 /* If this is setting OP0, get what it sets it to if it looks
4967 enum machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
4968 #ifdef FLOAT_STORE_FLAG_VALUE
4969 REAL_VALUE_TYPE fsfv
;
4972 /* ??? We may not combine comparisons done in a CCmode with
4973 comparisons not done in a CCmode. This is to aid targets
4974 like Alpha that have an IEEE compliant EQ instruction, and
4975 a non-IEEE compliant BEQ instruction. The use of CCmode is
4976 actually artificial, simply to prevent the combination, but
4977 should not affect other platforms.
4979 However, we must allow VOIDmode comparisons to match either
4980 CCmode or non-CCmode comparison, because some ports have
4981 modeless comparisons inside branch patterns.
4983 ??? This mode check should perhaps look more like the mode check
4984 in simplify_comparison in combine. */
4986 if ((GET_CODE (SET_SRC (set
)) == COMPARE
4989 && val_signbit_known_set_p (inner_mode
,
4991 #ifdef FLOAT_STORE_FLAG_VALUE
4993 && SCALAR_FLOAT_MODE_P (inner_mode
)
4994 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
4995 REAL_VALUE_NEGATIVE (fsfv
)))
4998 && COMPARISON_P (SET_SRC (set
))))
4999 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
5000 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
5001 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
5003 else if (((code
== EQ
5005 && val_signbit_known_set_p (inner_mode
,
5007 #ifdef FLOAT_STORE_FLAG_VALUE
5009 && SCALAR_FLOAT_MODE_P (inner_mode
)
5010 && (fsfv
= FLOAT_STORE_FLAG_VALUE (inner_mode
),
5011 REAL_VALUE_NEGATIVE (fsfv
)))
5014 && COMPARISON_P (SET_SRC (set
))
5015 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
5016 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
5017 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
5027 else if (reg_set_p (op0
, prev
))
5028 /* If this sets OP0, but not directly, we have to give up. */
5033 /* If the caller is expecting the condition to be valid at INSN,
5034 make sure X doesn't change before INSN. */
5035 if (valid_at_insn_p
)
5036 if (modified_in_p (x
, prev
) || modified_between_p (x
, prev
, insn
))
5038 if (COMPARISON_P (x
))
5039 code
= GET_CODE (x
);
5042 code
= reversed_comparison_code (x
, prev
);
5043 if (code
== UNKNOWN
)
5048 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
5054 /* If constant is first, put it last. */
5055 if (CONSTANT_P (op0
))
5056 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
5058 /* If OP0 is the result of a comparison, we weren't able to find what
5059 was really being compared, so fail. */
5061 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
5064 /* Canonicalize any ordered comparison with integers involving equality
5065 if we can do computations in the relevant mode and we do not
5068 if (GET_MODE_CLASS (GET_MODE (op0
)) != MODE_CC
5069 && CONST_INT_P (op1
)
5070 && GET_MODE (op0
) != VOIDmode
5071 && GET_MODE_PRECISION (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
)
5073 HOST_WIDE_INT const_val
= INTVAL (op1
);
5074 unsigned HOST_WIDE_INT uconst_val
= const_val
;
5075 unsigned HOST_WIDE_INT max_val
5076 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (GET_MODE (op0
));
5081 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
5082 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
5085 /* When cross-compiling, const_val might be sign-extended from
5086 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5088 if ((const_val
& max_val
)
5089 != ((unsigned HOST_WIDE_INT
) 1
5090 << (GET_MODE_PRECISION (GET_MODE (op0
)) - 1)))
5091 code
= GT
, op1
= gen_int_mode (const_val
- 1, GET_MODE (op0
));
5095 if (uconst_val
< max_val
)
5096 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, GET_MODE (op0
));
5100 if (uconst_val
!= 0)
5101 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, GET_MODE (op0
));
5109 /* Never return CC0; return zero instead. */
5113 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
5116 /* Given a jump insn JUMP, return the condition that will cause it to branch
5117 to its JUMP_LABEL. If the condition cannot be understood, or is an
5118 inequality floating-point comparison which needs to be reversed, 0 will
5121 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5122 insn used in locating the condition was found. If a replacement test
5123 of the condition is desired, it should be placed in front of that
5124 insn and we will be sure that the inputs are still valid. If EARLIEST
5125 is null, the returned condition will be valid at INSN.
5127 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5128 compare CC mode register.
5130 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5133 get_condition (rtx jump
, rtx
*earliest
, int allow_cc_mode
, int valid_at_insn_p
)
5139 /* If this is not a standard conditional jump, we can't parse it. */
5141 || ! any_condjump_p (jump
))
5143 set
= pc_set (jump
);
5145 cond
= XEXP (SET_SRC (set
), 0);
5147 /* If this branches to JUMP_LABEL when the condition is false, reverse
5150 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
5151 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
);
5153 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
,
5154 allow_cc_mode
, valid_at_insn_p
);
5157 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5158 TARGET_MODE_REP_EXTENDED.
5160 Note that we assume that the property of
5161 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5162 narrower than mode B. I.e., if A is a mode narrower than B then in
5163 order to be able to operate on it in mode B, mode A needs to
5164 satisfy the requirements set by the representation of mode B. */
5167 init_num_sign_bit_copies_in_rep (void)
5169 enum machine_mode mode
, in_mode
;
5171 for (in_mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); in_mode
!= VOIDmode
;
5172 in_mode
= GET_MODE_WIDER_MODE (mode
))
5173 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= in_mode
;
5174 mode
= GET_MODE_WIDER_MODE (mode
))
5176 enum machine_mode i
;
5178 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5179 extends to the next widest mode. */
5180 gcc_assert (targetm
.mode_rep_extended (mode
, in_mode
) == UNKNOWN
5181 || GET_MODE_WIDER_MODE (mode
) == in_mode
);
5183 /* We are in in_mode. Count how many bits outside of mode
5184 have to be copies of the sign-bit. */
5185 for (i
= mode
; i
!= in_mode
; i
= GET_MODE_WIDER_MODE (i
))
5187 enum machine_mode wider
= GET_MODE_WIDER_MODE (i
);
5189 if (targetm
.mode_rep_extended (i
, wider
) == SIGN_EXTEND
5190 /* We can only check sign-bit copies starting from the
5191 top-bit. In order to be able to check the bits we
5192 have already seen we pretend that subsequent bits
5193 have to be sign-bit copies too. */
5194 || num_sign_bit_copies_in_rep
[in_mode
][mode
])
5195 num_sign_bit_copies_in_rep
[in_mode
][mode
]
5196 += GET_MODE_PRECISION (wider
) - GET_MODE_PRECISION (i
);
5201 /* Suppose that truncation from the machine mode of X to MODE is not a
5202 no-op. See if there is anything special about X so that we can
5203 assume it already contains a truncated value of MODE. */
5206 truncated_to_mode (enum machine_mode mode
, const_rtx x
)
5208 /* This register has already been used in MODE without explicit
5210 if (REG_P (x
) && rtl_hooks
.reg_truncated_to_mode (mode
, x
))
5213 /* See if we already satisfy the requirements of MODE. If yes we
5214 can just switch to MODE. */
5215 if (num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
]
5216 && (num_sign_bit_copies (x
, GET_MODE (x
))
5217 >= num_sign_bit_copies_in_rep
[GET_MODE (x
)][mode
] + 1))
5223 /* Initialize non_rtx_starting_operands, which is used to speed up
5229 for (i
= 0; i
< NUM_RTX_CODE
; i
++)
5231 const char *format
= GET_RTX_FORMAT (i
);
5232 const char *first
= strpbrk (format
, "eEV");
5233 non_rtx_starting_operands
[i
] = first
? first
- format
: -1;
5236 init_num_sign_bit_copies_in_rep ();
5239 /* Check whether this is a constant pool constant. */
5241 constant_pool_constant_p (rtx x
)
5243 x
= avoid_constant_pool_reference (x
);
5244 return GET_CODE (x
) == CONST_DOUBLE
;
5247 /* If M is a bitmask that selects a field of low-order bits within an item but
5248 not the entire word, return the length of the field. Return -1 otherwise.
5249 M is used in machine mode MODE. */
5252 low_bitmask_len (enum machine_mode mode
, unsigned HOST_WIDE_INT m
)
5254 if (mode
!= VOIDmode
)
5256 if (GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
)
5258 m
&= GET_MODE_MASK (mode
);
5261 return exact_log2 (m
+ 1);