PR middle-end/51472
[official-gcc.git] / gcc / rtlanal.c
blob7c4a49bef09e3148717b600ed6585914a8194934
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "regs.h"
37 #include "function.h"
38 #include "df.h"
39 #include "tree.h"
40 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int rtx_referenced_p_1 (rtx *, void *);
47 static int computed_jump_p_1 (const_rtx);
48 static void parms_set (rtx, const_rtx, void *);
50 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
51 const_rtx, enum machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
54 const_rtx, enum machine_mode,
55 unsigned HOST_WIDE_INT);
56 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
57 enum machine_mode,
58 unsigned int);
59 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
60 enum machine_mode, unsigned int);
62 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63 -1 if a code has no such operand. */
64 static int non_rtx_starting_operands[NUM_RTX_CODE];
66 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
67 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
68 SIGN_EXTEND then while narrowing we also have to enforce the
69 representation and sign-extend the value to mode DESTINATION_REP.
71 If the value is already sign-extended to DESTINATION_REP mode we
72 can just switch to DESTINATION mode on it. For each pair of
73 integral modes SOURCE and DESTINATION, when truncating from SOURCE
74 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
75 contains the number of high-order bits in SOURCE that have to be
76 copies of the sign-bit so that we can do this mode-switch to
77 DESTINATION. */
79 static unsigned int
80 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
82 /* Return 1 if the value of X is unstable
83 (would be different at a different point in the program).
84 The frame pointer, arg pointer, etc. are considered stable
85 (within one function) and so is anything marked `unchanging'. */
87 int
88 rtx_unstable_p (const_rtx x)
90 const RTX_CODE code = GET_CODE (x);
91 int i;
92 const char *fmt;
94 switch (code)
96 case MEM:
97 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
99 case CONST:
100 case CONST_INT:
101 case CONST_DOUBLE:
102 case CONST_FIXED:
103 case CONST_VECTOR:
104 case SYMBOL_REF:
105 case LABEL_REF:
106 return 0;
108 case REG:
109 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
110 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
111 /* The arg pointer varies if it is not a fixed register. */
112 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
113 return 0;
114 /* ??? When call-clobbered, the value is stable modulo the restore
115 that must happen after a call. This currently screws up local-alloc
116 into believing that the restore is not needed. */
117 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
118 return 0;
119 return 1;
121 case ASM_OPERANDS:
122 if (MEM_VOLATILE_P (x))
123 return 1;
125 /* Fall through. */
127 default:
128 break;
131 fmt = GET_RTX_FORMAT (code);
132 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
133 if (fmt[i] == 'e')
135 if (rtx_unstable_p (XEXP (x, i)))
136 return 1;
138 else if (fmt[i] == 'E')
140 int j;
141 for (j = 0; j < XVECLEN (x, i); j++)
142 if (rtx_unstable_p (XVECEXP (x, i, j)))
143 return 1;
146 return 0;
149 /* Return 1 if X has a value that can vary even between two
150 executions of the program. 0 means X can be compared reliably
151 against certain constants or near-constants.
152 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
153 zero, we are slightly more conservative.
154 The frame pointer and the arg pointer are considered constant. */
156 bool
157 rtx_varies_p (const_rtx x, bool for_alias)
159 RTX_CODE code;
160 int i;
161 const char *fmt;
163 if (!x)
164 return 0;
166 code = GET_CODE (x);
167 switch (code)
169 case MEM:
170 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
172 case CONST:
173 case CONST_INT:
174 case CONST_DOUBLE:
175 case CONST_FIXED:
176 case CONST_VECTOR:
177 case SYMBOL_REF:
178 case LABEL_REF:
179 return 0;
181 case REG:
182 /* Note that we have to test for the actual rtx used for the frame
183 and arg pointers and not just the register number in case we have
184 eliminated the frame and/or arg pointer and are using it
185 for pseudos. */
186 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
187 /* The arg pointer varies if it is not a fixed register. */
188 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
189 return 0;
190 if (x == pic_offset_table_rtx
191 /* ??? When call-clobbered, the value is stable modulo the restore
192 that must happen after a call. This currently screws up
193 local-alloc into believing that the restore is not needed, so we
194 must return 0 only if we are called from alias analysis. */
195 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
196 return 0;
197 return 1;
199 case LO_SUM:
200 /* The operand 0 of a LO_SUM is considered constant
201 (in fact it is related specifically to operand 1)
202 during alias analysis. */
203 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
204 || rtx_varies_p (XEXP (x, 1), for_alias);
206 case ASM_OPERANDS:
207 if (MEM_VOLATILE_P (x))
208 return 1;
210 /* Fall through. */
212 default:
213 break;
216 fmt = GET_RTX_FORMAT (code);
217 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
218 if (fmt[i] == 'e')
220 if (rtx_varies_p (XEXP (x, i), for_alias))
221 return 1;
223 else if (fmt[i] == 'E')
225 int j;
226 for (j = 0; j < XVECLEN (x, i); j++)
227 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
228 return 1;
231 return 0;
234 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
235 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
236 whether nonzero is returned for unaligned memory accesses on strict
237 alignment machines. */
239 static int
240 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
241 enum machine_mode mode, bool unaligned_mems)
243 enum rtx_code code = GET_CODE (x);
245 if (STRICT_ALIGNMENT
246 && unaligned_mems
247 && GET_MODE_SIZE (mode) != 0)
249 HOST_WIDE_INT actual_offset = offset;
250 #ifdef SPARC_STACK_BOUNDARY_HACK
251 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
252 the real alignment of %sp. However, when it does this, the
253 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
254 if (SPARC_STACK_BOUNDARY_HACK
255 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
256 actual_offset -= STACK_POINTER_OFFSET;
257 #endif
259 if (actual_offset % GET_MODE_SIZE (mode) != 0)
260 return 1;
263 switch (code)
265 case SYMBOL_REF:
266 if (SYMBOL_REF_WEAK (x))
267 return 1;
268 if (!CONSTANT_POOL_ADDRESS_P (x))
270 tree decl;
271 HOST_WIDE_INT decl_size;
273 if (offset < 0)
274 return 1;
275 if (size == 0)
276 size = GET_MODE_SIZE (mode);
277 if (size == 0)
278 return offset != 0;
280 /* If the size of the access or of the symbol is unknown,
281 assume the worst. */
282 decl = SYMBOL_REF_DECL (x);
284 /* Else check that the access is in bounds. TODO: restructure
285 expr_size/tree_expr_size/int_expr_size and just use the latter. */
286 if (!decl)
287 decl_size = -1;
288 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
289 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
290 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
291 : -1);
292 else if (TREE_CODE (decl) == STRING_CST)
293 decl_size = TREE_STRING_LENGTH (decl);
294 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
295 decl_size = int_size_in_bytes (TREE_TYPE (decl));
296 else
297 decl_size = -1;
299 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
302 return 0;
304 case LABEL_REF:
305 return 0;
307 case REG:
308 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
309 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
310 || x == stack_pointer_rtx
311 /* The arg pointer varies if it is not a fixed register. */
312 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
313 return 0;
314 /* All of the virtual frame registers are stack references. */
315 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
316 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
317 return 0;
318 return 1;
320 case CONST:
321 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
322 mode, unaligned_mems);
324 case PLUS:
325 /* An address is assumed not to trap if:
326 - it is the pic register plus a constant. */
327 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
328 return 0;
330 /* - or it is an address that can't trap plus a constant integer,
331 with the proper remainder modulo the mode size if we are
332 considering unaligned memory references. */
333 if (CONST_INT_P (XEXP (x, 1))
334 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
335 size, mode, unaligned_mems))
336 return 0;
338 return 1;
340 case LO_SUM:
341 case PRE_MODIFY:
342 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
343 mode, unaligned_mems);
345 case PRE_DEC:
346 case PRE_INC:
347 case POST_DEC:
348 case POST_INC:
349 case POST_MODIFY:
350 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
351 mode, unaligned_mems);
353 default:
354 break;
357 /* If it isn't one of the case above, it can cause a trap. */
358 return 1;
361 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
364 rtx_addr_can_trap_p (const_rtx x)
366 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
369 /* Return true if X is an address that is known to not be zero. */
371 bool
372 nonzero_address_p (const_rtx x)
374 const enum rtx_code code = GET_CODE (x);
376 switch (code)
378 case SYMBOL_REF:
379 return !SYMBOL_REF_WEAK (x);
381 case LABEL_REF:
382 return true;
384 case REG:
385 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
386 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
387 || x == stack_pointer_rtx
388 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
389 return true;
390 /* All of the virtual frame registers are stack references. */
391 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
392 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
393 return true;
394 return false;
396 case CONST:
397 return nonzero_address_p (XEXP (x, 0));
399 case PLUS:
400 if (CONST_INT_P (XEXP (x, 1)))
401 return nonzero_address_p (XEXP (x, 0));
402 /* Handle PIC references. */
403 else if (XEXP (x, 0) == pic_offset_table_rtx
404 && CONSTANT_P (XEXP (x, 1)))
405 return true;
406 return false;
408 case PRE_MODIFY:
409 /* Similar to the above; allow positive offsets. Further, since
410 auto-inc is only allowed in memories, the register must be a
411 pointer. */
412 if (CONST_INT_P (XEXP (x, 1))
413 && INTVAL (XEXP (x, 1)) > 0)
414 return true;
415 return nonzero_address_p (XEXP (x, 0));
417 case PRE_INC:
418 /* Similarly. Further, the offset is always positive. */
419 return true;
421 case PRE_DEC:
422 case POST_DEC:
423 case POST_INC:
424 case POST_MODIFY:
425 return nonzero_address_p (XEXP (x, 0));
427 case LO_SUM:
428 return nonzero_address_p (XEXP (x, 1));
430 default:
431 break;
434 /* If it isn't one of the case above, might be zero. */
435 return false;
438 /* Return 1 if X refers to a memory location whose address
439 cannot be compared reliably with constant addresses,
440 or if X refers to a BLKmode memory object.
441 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
442 zero, we are slightly more conservative. */
444 bool
445 rtx_addr_varies_p (const_rtx x, bool for_alias)
447 enum rtx_code code;
448 int i;
449 const char *fmt;
451 if (x == 0)
452 return 0;
454 code = GET_CODE (x);
455 if (code == MEM)
456 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
458 fmt = GET_RTX_FORMAT (code);
459 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
460 if (fmt[i] == 'e')
462 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
463 return 1;
465 else if (fmt[i] == 'E')
467 int j;
468 for (j = 0; j < XVECLEN (x, i); j++)
469 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
470 return 1;
472 return 0;
475 /* Return the value of the integer term in X, if one is apparent;
476 otherwise return 0.
477 Only obvious integer terms are detected.
478 This is used in cse.c with the `related_value' field. */
480 HOST_WIDE_INT
481 get_integer_term (const_rtx x)
483 if (GET_CODE (x) == CONST)
484 x = XEXP (x, 0);
486 if (GET_CODE (x) == MINUS
487 && CONST_INT_P (XEXP (x, 1)))
488 return - INTVAL (XEXP (x, 1));
489 if (GET_CODE (x) == PLUS
490 && CONST_INT_P (XEXP (x, 1)))
491 return INTVAL (XEXP (x, 1));
492 return 0;
495 /* If X is a constant, return the value sans apparent integer term;
496 otherwise return 0.
497 Only obvious integer terms are detected. */
500 get_related_value (const_rtx x)
502 if (GET_CODE (x) != CONST)
503 return 0;
504 x = XEXP (x, 0);
505 if (GET_CODE (x) == PLUS
506 && CONST_INT_P (XEXP (x, 1)))
507 return XEXP (x, 0);
508 else if (GET_CODE (x) == MINUS
509 && CONST_INT_P (XEXP (x, 1)))
510 return XEXP (x, 0);
511 return 0;
514 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
515 to somewhere in the same object or object_block as SYMBOL. */
517 bool
518 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
520 tree decl;
522 if (GET_CODE (symbol) != SYMBOL_REF)
523 return false;
525 if (offset == 0)
526 return true;
528 if (offset > 0)
530 if (CONSTANT_POOL_ADDRESS_P (symbol)
531 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
532 return true;
534 decl = SYMBOL_REF_DECL (symbol);
535 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
536 return true;
539 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
540 && SYMBOL_REF_BLOCK (symbol)
541 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
542 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
543 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
544 return true;
546 return false;
549 /* Split X into a base and a constant offset, storing them in *BASE_OUT
550 and *OFFSET_OUT respectively. */
552 void
553 split_const (rtx x, rtx *base_out, rtx *offset_out)
555 if (GET_CODE (x) == CONST)
557 x = XEXP (x, 0);
558 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
560 *base_out = XEXP (x, 0);
561 *offset_out = XEXP (x, 1);
562 return;
565 *base_out = x;
566 *offset_out = const0_rtx;
569 /* Return the number of places FIND appears within X. If COUNT_DEST is
570 zero, we do not count occurrences inside the destination of a SET. */
573 count_occurrences (const_rtx x, const_rtx find, int count_dest)
575 int i, j;
576 enum rtx_code code;
577 const char *format_ptr;
578 int count;
580 if (x == find)
581 return 1;
583 code = GET_CODE (x);
585 switch (code)
587 case REG:
588 case CONST_INT:
589 case CONST_DOUBLE:
590 case CONST_FIXED:
591 case CONST_VECTOR:
592 case SYMBOL_REF:
593 case CODE_LABEL:
594 case PC:
595 case CC0:
596 return 0;
598 case EXPR_LIST:
599 count = count_occurrences (XEXP (x, 0), find, count_dest);
600 if (XEXP (x, 1))
601 count += count_occurrences (XEXP (x, 1), find, count_dest);
602 return count;
604 case MEM:
605 if (MEM_P (find) && rtx_equal_p (x, find))
606 return 1;
607 break;
609 case SET:
610 if (SET_DEST (x) == find && ! count_dest)
611 return count_occurrences (SET_SRC (x), find, count_dest);
612 break;
614 default:
615 break;
618 format_ptr = GET_RTX_FORMAT (code);
619 count = 0;
621 for (i = 0; i < GET_RTX_LENGTH (code); i++)
623 switch (*format_ptr++)
625 case 'e':
626 count += count_occurrences (XEXP (x, i), find, count_dest);
627 break;
629 case 'E':
630 for (j = 0; j < XVECLEN (x, i); j++)
631 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
632 break;
635 return count;
639 /* Nonzero if register REG appears somewhere within IN.
640 Also works if REG is not a register; in this case it checks
641 for a subexpression of IN that is Lisp "equal" to REG. */
644 reg_mentioned_p (const_rtx reg, const_rtx in)
646 const char *fmt;
647 int i;
648 enum rtx_code code;
650 if (in == 0)
651 return 0;
653 if (reg == in)
654 return 1;
656 if (GET_CODE (in) == LABEL_REF)
657 return reg == XEXP (in, 0);
659 code = GET_CODE (in);
661 switch (code)
663 /* Compare registers by number. */
664 case REG:
665 return REG_P (reg) && REGNO (in) == REGNO (reg);
667 /* These codes have no constituent expressions
668 and are unique. */
669 case SCRATCH:
670 case CC0:
671 case PC:
672 return 0;
674 case CONST_INT:
675 case CONST_VECTOR:
676 case CONST_DOUBLE:
677 case CONST_FIXED:
678 /* These are kept unique for a given value. */
679 return 0;
681 default:
682 break;
685 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
686 return 1;
688 fmt = GET_RTX_FORMAT (code);
690 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
692 if (fmt[i] == 'E')
694 int j;
695 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
696 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
697 return 1;
699 else if (fmt[i] == 'e'
700 && reg_mentioned_p (reg, XEXP (in, i)))
701 return 1;
703 return 0;
706 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
707 no CODE_LABEL insn. */
710 no_labels_between_p (const_rtx beg, const_rtx end)
712 rtx p;
713 if (beg == end)
714 return 0;
715 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
716 if (LABEL_P (p))
717 return 0;
718 return 1;
721 /* Nonzero if register REG is used in an insn between
722 FROM_INSN and TO_INSN (exclusive of those two). */
725 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
727 rtx insn;
729 if (from_insn == to_insn)
730 return 0;
732 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
733 if (NONDEBUG_INSN_P (insn)
734 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
735 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
736 return 1;
737 return 0;
740 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
741 is entirely replaced by a new value and the only use is as a SET_DEST,
742 we do not consider it a reference. */
745 reg_referenced_p (const_rtx x, const_rtx body)
747 int i;
749 switch (GET_CODE (body))
751 case SET:
752 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
753 return 1;
755 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
756 of a REG that occupies all of the REG, the insn references X if
757 it is mentioned in the destination. */
758 if (GET_CODE (SET_DEST (body)) != CC0
759 && GET_CODE (SET_DEST (body)) != PC
760 && !REG_P (SET_DEST (body))
761 && ! (GET_CODE (SET_DEST (body)) == SUBREG
762 && REG_P (SUBREG_REG (SET_DEST (body)))
763 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
764 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
765 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
766 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
767 && reg_overlap_mentioned_p (x, SET_DEST (body)))
768 return 1;
769 return 0;
771 case ASM_OPERANDS:
772 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
773 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
774 return 1;
775 return 0;
777 case CALL:
778 case USE:
779 case IF_THEN_ELSE:
780 return reg_overlap_mentioned_p (x, body);
782 case TRAP_IF:
783 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
785 case PREFETCH:
786 return reg_overlap_mentioned_p (x, XEXP (body, 0));
788 case UNSPEC:
789 case UNSPEC_VOLATILE:
790 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
791 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
792 return 1;
793 return 0;
795 case PARALLEL:
796 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
797 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
798 return 1;
799 return 0;
801 case CLOBBER:
802 if (MEM_P (XEXP (body, 0)))
803 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
804 return 1;
805 return 0;
807 case COND_EXEC:
808 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
809 return 1;
810 return reg_referenced_p (x, COND_EXEC_CODE (body));
812 default:
813 return 0;
817 /* Nonzero if register REG is set or clobbered in an insn between
818 FROM_INSN and TO_INSN (exclusive of those two). */
821 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
823 const_rtx insn;
825 if (from_insn == to_insn)
826 return 0;
828 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
829 if (INSN_P (insn) && reg_set_p (reg, insn))
830 return 1;
831 return 0;
834 /* Internals of reg_set_between_p. */
836 reg_set_p (const_rtx reg, const_rtx insn)
838 /* We can be passed an insn or part of one. If we are passed an insn,
839 check if a side-effect of the insn clobbers REG. */
840 if (INSN_P (insn)
841 && (FIND_REG_INC_NOTE (insn, reg)
842 || (CALL_P (insn)
843 && ((REG_P (reg)
844 && REGNO (reg) < FIRST_PSEUDO_REGISTER
845 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
846 GET_MODE (reg), REGNO (reg)))
847 || MEM_P (reg)
848 || find_reg_fusage (insn, CLOBBER, reg)))))
849 return 1;
851 return set_of (reg, insn) != NULL_RTX;
854 /* Similar to reg_set_between_p, but check all registers in X. Return 0
855 only if none of them are modified between START and END. Return 1 if
856 X contains a MEM; this routine does use memory aliasing. */
859 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
861 const enum rtx_code code = GET_CODE (x);
862 const char *fmt;
863 int i, j;
864 rtx insn;
866 if (start == end)
867 return 0;
869 switch (code)
871 case CONST_INT:
872 case CONST_DOUBLE:
873 case CONST_FIXED:
874 case CONST_VECTOR:
875 case CONST:
876 case SYMBOL_REF:
877 case LABEL_REF:
878 return 0;
880 case PC:
881 case CC0:
882 return 1;
884 case MEM:
885 if (modified_between_p (XEXP (x, 0), start, end))
886 return 1;
887 if (MEM_READONLY_P (x))
888 return 0;
889 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
890 if (memory_modified_in_insn_p (x, insn))
891 return 1;
892 return 0;
893 break;
895 case REG:
896 return reg_set_between_p (x, start, end);
898 default:
899 break;
902 fmt = GET_RTX_FORMAT (code);
903 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
905 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
906 return 1;
908 else if (fmt[i] == 'E')
909 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
910 if (modified_between_p (XVECEXP (x, i, j), start, end))
911 return 1;
914 return 0;
917 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
918 of them are modified in INSN. Return 1 if X contains a MEM; this routine
919 does use memory aliasing. */
922 modified_in_p (const_rtx x, const_rtx insn)
924 const enum rtx_code code = GET_CODE (x);
925 const char *fmt;
926 int i, j;
928 switch (code)
930 case CONST_INT:
931 case CONST_DOUBLE:
932 case CONST_FIXED:
933 case CONST_VECTOR:
934 case CONST:
935 case SYMBOL_REF:
936 case LABEL_REF:
937 return 0;
939 case PC:
940 case CC0:
941 return 1;
943 case MEM:
944 if (modified_in_p (XEXP (x, 0), insn))
945 return 1;
946 if (MEM_READONLY_P (x))
947 return 0;
948 if (memory_modified_in_insn_p (x, insn))
949 return 1;
950 return 0;
951 break;
953 case REG:
954 return reg_set_p (x, insn);
956 default:
957 break;
960 fmt = GET_RTX_FORMAT (code);
961 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
963 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
964 return 1;
966 else if (fmt[i] == 'E')
967 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
968 if (modified_in_p (XVECEXP (x, i, j), insn))
969 return 1;
972 return 0;
975 /* Helper function for set_of. */
976 struct set_of_data
978 const_rtx found;
979 const_rtx pat;
982 static void
983 set_of_1 (rtx x, const_rtx pat, void *data1)
985 struct set_of_data *const data = (struct set_of_data *) (data1);
986 if (rtx_equal_p (x, data->pat)
987 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
988 data->found = pat;
991 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
992 (either directly or via STRICT_LOW_PART and similar modifiers). */
993 const_rtx
994 set_of (const_rtx pat, const_rtx insn)
996 struct set_of_data data;
997 data.found = NULL_RTX;
998 data.pat = pat;
999 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1000 return data.found;
1003 /* This function, called through note_stores, collects sets and
1004 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1005 by DATA. */
1006 void
1007 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1009 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1010 if (REG_P (x) && HARD_REGISTER_P (x))
1011 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1014 /* Examine INSN, and compute the set of hard registers written by it.
1015 Store it in *PSET. Should only be called after reload. */
1016 void
1017 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset)
1019 rtx link;
1021 CLEAR_HARD_REG_SET (*pset);
1022 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1023 if (CALL_P (insn))
1024 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1025 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1026 if (REG_NOTE_KIND (link) == REG_INC)
1027 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1030 /* A for_each_rtx subroutine of record_hard_reg_uses. */
1031 static int
1032 record_hard_reg_uses_1 (rtx *px, void *data)
1034 rtx x = *px;
1035 HARD_REG_SET *pused = (HARD_REG_SET *)data;
1037 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1039 int nregs = hard_regno_nregs[REGNO (x)][GET_MODE (x)];
1040 while (nregs-- > 0)
1041 SET_HARD_REG_BIT (*pused, REGNO (x) + nregs);
1043 return 0;
1046 /* Like record_hard_reg_sets, but called through note_uses. */
1047 void
1048 record_hard_reg_uses (rtx *px, void *data)
1050 for_each_rtx (px, record_hard_reg_uses_1, data);
1053 /* Given an INSN, return a SET expression if this insn has only a single SET.
1054 It may also have CLOBBERs, USEs, or SET whose output
1055 will not be used, which we ignore. */
1058 single_set_2 (const_rtx insn, const_rtx pat)
1060 rtx set = NULL;
1061 int set_verified = 1;
1062 int i;
1064 if (GET_CODE (pat) == PARALLEL)
1066 for (i = 0; i < XVECLEN (pat, 0); i++)
1068 rtx sub = XVECEXP (pat, 0, i);
1069 switch (GET_CODE (sub))
1071 case USE:
1072 case CLOBBER:
1073 break;
1075 case SET:
1076 /* We can consider insns having multiple sets, where all
1077 but one are dead as single set insns. In common case
1078 only single set is present in the pattern so we want
1079 to avoid checking for REG_UNUSED notes unless necessary.
1081 When we reach set first time, we just expect this is
1082 the single set we are looking for and only when more
1083 sets are found in the insn, we check them. */
1084 if (!set_verified)
1086 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1087 && !side_effects_p (set))
1088 set = NULL;
1089 else
1090 set_verified = 1;
1092 if (!set)
1093 set = sub, set_verified = 0;
1094 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1095 || side_effects_p (sub))
1096 return NULL_RTX;
1097 break;
1099 default:
1100 return NULL_RTX;
1104 return set;
1107 /* Given an INSN, return nonzero if it has more than one SET, else return
1108 zero. */
1111 multiple_sets (const_rtx insn)
1113 int found;
1114 int i;
1116 /* INSN must be an insn. */
1117 if (! INSN_P (insn))
1118 return 0;
1120 /* Only a PARALLEL can have multiple SETs. */
1121 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1123 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1124 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1126 /* If we have already found a SET, then return now. */
1127 if (found)
1128 return 1;
1129 else
1130 found = 1;
1134 /* Either zero or one SET. */
1135 return 0;
1138 /* Return nonzero if the destination of SET equals the source
1139 and there are no side effects. */
1142 set_noop_p (const_rtx set)
1144 rtx src = SET_SRC (set);
1145 rtx dst = SET_DEST (set);
1147 if (dst == pc_rtx && src == pc_rtx)
1148 return 1;
1150 if (MEM_P (dst) && MEM_P (src))
1151 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1153 if (GET_CODE (dst) == ZERO_EXTRACT)
1154 return rtx_equal_p (XEXP (dst, 0), src)
1155 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1156 && !side_effects_p (src);
1158 if (GET_CODE (dst) == STRICT_LOW_PART)
1159 dst = XEXP (dst, 0);
1161 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1163 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1164 return 0;
1165 src = SUBREG_REG (src);
1166 dst = SUBREG_REG (dst);
1169 return (REG_P (src) && REG_P (dst)
1170 && REGNO (src) == REGNO (dst));
1173 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1174 value to itself. */
1177 noop_move_p (const_rtx insn)
1179 rtx pat = PATTERN (insn);
1181 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1182 return 1;
1184 /* Insns carrying these notes are useful later on. */
1185 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1186 return 0;
1188 if (GET_CODE (pat) == SET && set_noop_p (pat))
1189 return 1;
1191 if (GET_CODE (pat) == PARALLEL)
1193 int i;
1194 /* If nothing but SETs of registers to themselves,
1195 this insn can also be deleted. */
1196 for (i = 0; i < XVECLEN (pat, 0); i++)
1198 rtx tem = XVECEXP (pat, 0, i);
1200 if (GET_CODE (tem) == USE
1201 || GET_CODE (tem) == CLOBBER)
1202 continue;
1204 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1205 return 0;
1208 return 1;
1210 return 0;
1214 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1215 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1216 If the object was modified, if we hit a partial assignment to X, or hit a
1217 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1218 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1219 be the src. */
1222 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1224 rtx p;
1226 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1227 p = PREV_INSN (p))
1228 if (INSN_P (p))
1230 rtx set = single_set (p);
1231 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1233 if (set && rtx_equal_p (x, SET_DEST (set)))
1235 rtx src = SET_SRC (set);
1237 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1238 src = XEXP (note, 0);
1240 if ((valid_to == NULL_RTX
1241 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1242 /* Reject hard registers because we don't usually want
1243 to use them; we'd rather use a pseudo. */
1244 && (! (REG_P (src)
1245 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1247 *pinsn = p;
1248 return src;
1252 /* If set in non-simple way, we don't have a value. */
1253 if (reg_set_p (x, p))
1254 break;
1257 return x;
1260 /* Return nonzero if register in range [REGNO, ENDREGNO)
1261 appears either explicitly or implicitly in X
1262 other than being stored into.
1264 References contained within the substructure at LOC do not count.
1265 LOC may be zero, meaning don't ignore anything. */
1268 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1269 rtx *loc)
1271 int i;
1272 unsigned int x_regno;
1273 RTX_CODE code;
1274 const char *fmt;
1276 repeat:
1277 /* The contents of a REG_NONNEG note is always zero, so we must come here
1278 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1279 if (x == 0)
1280 return 0;
1282 code = GET_CODE (x);
1284 switch (code)
1286 case REG:
1287 x_regno = REGNO (x);
1289 /* If we modifying the stack, frame, or argument pointer, it will
1290 clobber a virtual register. In fact, we could be more precise,
1291 but it isn't worth it. */
1292 if ((x_regno == STACK_POINTER_REGNUM
1293 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1294 || x_regno == ARG_POINTER_REGNUM
1295 #endif
1296 || x_regno == FRAME_POINTER_REGNUM)
1297 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1298 return 1;
1300 return endregno > x_regno && regno < END_REGNO (x);
1302 case SUBREG:
1303 /* If this is a SUBREG of a hard reg, we can see exactly which
1304 registers are being modified. Otherwise, handle normally. */
1305 if (REG_P (SUBREG_REG (x))
1306 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1308 unsigned int inner_regno = subreg_regno (x);
1309 unsigned int inner_endregno
1310 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1311 ? subreg_nregs (x) : 1);
1313 return endregno > inner_regno && regno < inner_endregno;
1315 break;
1317 case CLOBBER:
1318 case SET:
1319 if (&SET_DEST (x) != loc
1320 /* Note setting a SUBREG counts as referring to the REG it is in for
1321 a pseudo but not for hard registers since we can
1322 treat each word individually. */
1323 && ((GET_CODE (SET_DEST (x)) == SUBREG
1324 && loc != &SUBREG_REG (SET_DEST (x))
1325 && REG_P (SUBREG_REG (SET_DEST (x)))
1326 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1327 && refers_to_regno_p (regno, endregno,
1328 SUBREG_REG (SET_DEST (x)), loc))
1329 || (!REG_P (SET_DEST (x))
1330 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1331 return 1;
1333 if (code == CLOBBER || loc == &SET_SRC (x))
1334 return 0;
1335 x = SET_SRC (x);
1336 goto repeat;
1338 default:
1339 break;
1342 /* X does not match, so try its subexpressions. */
1344 fmt = GET_RTX_FORMAT (code);
1345 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1347 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1349 if (i == 0)
1351 x = XEXP (x, 0);
1352 goto repeat;
1354 else
1355 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1356 return 1;
1358 else if (fmt[i] == 'E')
1360 int j;
1361 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1362 if (loc != &XVECEXP (x, i, j)
1363 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1364 return 1;
1367 return 0;
1370 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1371 we check if any register number in X conflicts with the relevant register
1372 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1373 contains a MEM (we don't bother checking for memory addresses that can't
1374 conflict because we expect this to be a rare case. */
1377 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1379 unsigned int regno, endregno;
1381 /* If either argument is a constant, then modifying X can not
1382 affect IN. Here we look at IN, we can profitably combine
1383 CONSTANT_P (x) with the switch statement below. */
1384 if (CONSTANT_P (in))
1385 return 0;
1387 recurse:
1388 switch (GET_CODE (x))
1390 case STRICT_LOW_PART:
1391 case ZERO_EXTRACT:
1392 case SIGN_EXTRACT:
1393 /* Overly conservative. */
1394 x = XEXP (x, 0);
1395 goto recurse;
1397 case SUBREG:
1398 regno = REGNO (SUBREG_REG (x));
1399 if (regno < FIRST_PSEUDO_REGISTER)
1400 regno = subreg_regno (x);
1401 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1402 ? subreg_nregs (x) : 1);
1403 goto do_reg;
1405 case REG:
1406 regno = REGNO (x);
1407 endregno = END_REGNO (x);
1408 do_reg:
1409 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1411 case MEM:
1413 const char *fmt;
1414 int i;
1416 if (MEM_P (in))
1417 return 1;
1419 fmt = GET_RTX_FORMAT (GET_CODE (in));
1420 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1421 if (fmt[i] == 'e')
1423 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1424 return 1;
1426 else if (fmt[i] == 'E')
1428 int j;
1429 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1430 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1431 return 1;
1434 return 0;
1437 case SCRATCH:
1438 case PC:
1439 case CC0:
1440 return reg_mentioned_p (x, in);
1442 case PARALLEL:
1444 int i;
1446 /* If any register in here refers to it we return true. */
1447 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1448 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1449 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1450 return 1;
1451 return 0;
1454 default:
1455 gcc_assert (CONSTANT_P (x));
1456 return 0;
1460 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1461 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1462 ignored by note_stores, but passed to FUN.
1464 FUN receives three arguments:
1465 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1466 2. the SET or CLOBBER rtx that does the store,
1467 3. the pointer DATA provided to note_stores.
1469 If the item being stored in or clobbered is a SUBREG of a hard register,
1470 the SUBREG will be passed. */
1472 void
1473 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1475 int i;
1477 if (GET_CODE (x) == COND_EXEC)
1478 x = COND_EXEC_CODE (x);
1480 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1482 rtx dest = SET_DEST (x);
1484 while ((GET_CODE (dest) == SUBREG
1485 && (!REG_P (SUBREG_REG (dest))
1486 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1487 || GET_CODE (dest) == ZERO_EXTRACT
1488 || GET_CODE (dest) == STRICT_LOW_PART)
1489 dest = XEXP (dest, 0);
1491 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1492 each of whose first operand is a register. */
1493 if (GET_CODE (dest) == PARALLEL)
1495 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1496 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1497 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1499 else
1500 (*fun) (dest, x, data);
1503 else if (GET_CODE (x) == PARALLEL)
1504 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1505 note_stores (XVECEXP (x, 0, i), fun, data);
1508 /* Like notes_stores, but call FUN for each expression that is being
1509 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1510 FUN for each expression, not any interior subexpressions. FUN receives a
1511 pointer to the expression and the DATA passed to this function.
1513 Note that this is not quite the same test as that done in reg_referenced_p
1514 since that considers something as being referenced if it is being
1515 partially set, while we do not. */
1517 void
1518 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1520 rtx body = *pbody;
1521 int i;
1523 switch (GET_CODE (body))
1525 case COND_EXEC:
1526 (*fun) (&COND_EXEC_TEST (body), data);
1527 note_uses (&COND_EXEC_CODE (body), fun, data);
1528 return;
1530 case PARALLEL:
1531 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1532 note_uses (&XVECEXP (body, 0, i), fun, data);
1533 return;
1535 case SEQUENCE:
1536 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1537 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1538 return;
1540 case USE:
1541 (*fun) (&XEXP (body, 0), data);
1542 return;
1544 case ASM_OPERANDS:
1545 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1546 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1547 return;
1549 case TRAP_IF:
1550 (*fun) (&TRAP_CONDITION (body), data);
1551 return;
1553 case PREFETCH:
1554 (*fun) (&XEXP (body, 0), data);
1555 return;
1557 case UNSPEC:
1558 case UNSPEC_VOLATILE:
1559 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1560 (*fun) (&XVECEXP (body, 0, i), data);
1561 return;
1563 case CLOBBER:
1564 if (MEM_P (XEXP (body, 0)))
1565 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1566 return;
1568 case SET:
1570 rtx dest = SET_DEST (body);
1572 /* For sets we replace everything in source plus registers in memory
1573 expression in store and operands of a ZERO_EXTRACT. */
1574 (*fun) (&SET_SRC (body), data);
1576 if (GET_CODE (dest) == ZERO_EXTRACT)
1578 (*fun) (&XEXP (dest, 1), data);
1579 (*fun) (&XEXP (dest, 2), data);
1582 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1583 dest = XEXP (dest, 0);
1585 if (MEM_P (dest))
1586 (*fun) (&XEXP (dest, 0), data);
1588 return;
1590 default:
1591 /* All the other possibilities never store. */
1592 (*fun) (pbody, data);
1593 return;
1597 /* Return nonzero if X's old contents don't survive after INSN.
1598 This will be true if X is (cc0) or if X is a register and
1599 X dies in INSN or because INSN entirely sets X.
1601 "Entirely set" means set directly and not through a SUBREG, or
1602 ZERO_EXTRACT, so no trace of the old contents remains.
1603 Likewise, REG_INC does not count.
1605 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1606 but for this use that makes no difference, since regs don't overlap
1607 during their lifetimes. Therefore, this function may be used
1608 at any time after deaths have been computed.
1610 If REG is a hard reg that occupies multiple machine registers, this
1611 function will only return 1 if each of those registers will be replaced
1612 by INSN. */
1615 dead_or_set_p (const_rtx insn, const_rtx x)
1617 unsigned int regno, end_regno;
1618 unsigned int i;
1620 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1621 if (GET_CODE (x) == CC0)
1622 return 1;
1624 gcc_assert (REG_P (x));
1626 regno = REGNO (x);
1627 end_regno = END_REGNO (x);
1628 for (i = regno; i < end_regno; i++)
1629 if (! dead_or_set_regno_p (insn, i))
1630 return 0;
1632 return 1;
1635 /* Return TRUE iff DEST is a register or subreg of a register and
1636 doesn't change the number of words of the inner register, and any
1637 part of the register is TEST_REGNO. */
1639 static bool
1640 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1642 unsigned int regno, endregno;
1644 if (GET_CODE (dest) == SUBREG
1645 && (((GET_MODE_SIZE (GET_MODE (dest))
1646 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1647 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1648 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1649 dest = SUBREG_REG (dest);
1651 if (!REG_P (dest))
1652 return false;
1654 regno = REGNO (dest);
1655 endregno = END_REGNO (dest);
1656 return (test_regno >= regno && test_regno < endregno);
1659 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1660 any member matches the covers_regno_no_parallel_p criteria. */
1662 static bool
1663 covers_regno_p (const_rtx dest, unsigned int test_regno)
1665 if (GET_CODE (dest) == PARALLEL)
1667 /* Some targets place small structures in registers for return
1668 values of functions, and those registers are wrapped in
1669 PARALLELs that we may see as the destination of a SET. */
1670 int i;
1672 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1674 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1675 if (inner != NULL_RTX
1676 && covers_regno_no_parallel_p (inner, test_regno))
1677 return true;
1680 return false;
1682 else
1683 return covers_regno_no_parallel_p (dest, test_regno);
1686 /* Utility function for dead_or_set_p to check an individual register. */
1689 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1691 const_rtx pattern;
1693 /* See if there is a death note for something that includes TEST_REGNO. */
1694 if (find_regno_note (insn, REG_DEAD, test_regno))
1695 return 1;
1697 if (CALL_P (insn)
1698 && find_regno_fusage (insn, CLOBBER, test_regno))
1699 return 1;
1701 pattern = PATTERN (insn);
1703 if (GET_CODE (pattern) == COND_EXEC)
1704 pattern = COND_EXEC_CODE (pattern);
1706 if (GET_CODE (pattern) == SET)
1707 return covers_regno_p (SET_DEST (pattern), test_regno);
1708 else if (GET_CODE (pattern) == PARALLEL)
1710 int i;
1712 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1714 rtx body = XVECEXP (pattern, 0, i);
1716 if (GET_CODE (body) == COND_EXEC)
1717 body = COND_EXEC_CODE (body);
1719 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1720 && covers_regno_p (SET_DEST (body), test_regno))
1721 return 1;
1725 return 0;
1728 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1729 If DATUM is nonzero, look for one whose datum is DATUM. */
1732 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1734 rtx link;
1736 gcc_checking_assert (insn);
1738 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1739 if (! INSN_P (insn))
1740 return 0;
1741 if (datum == 0)
1743 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1744 if (REG_NOTE_KIND (link) == kind)
1745 return link;
1746 return 0;
1749 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1750 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1751 return link;
1752 return 0;
1755 /* Return the reg-note of kind KIND in insn INSN which applies to register
1756 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1757 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1758 it might be the case that the note overlaps REGNO. */
1761 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1763 rtx link;
1765 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1766 if (! INSN_P (insn))
1767 return 0;
1769 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1770 if (REG_NOTE_KIND (link) == kind
1771 /* Verify that it is a register, so that scratch and MEM won't cause a
1772 problem here. */
1773 && REG_P (XEXP (link, 0))
1774 && REGNO (XEXP (link, 0)) <= regno
1775 && END_REGNO (XEXP (link, 0)) > regno)
1776 return link;
1777 return 0;
1780 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1781 has such a note. */
1784 find_reg_equal_equiv_note (const_rtx insn)
1786 rtx link;
1788 if (!INSN_P (insn))
1789 return 0;
1791 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1792 if (REG_NOTE_KIND (link) == REG_EQUAL
1793 || REG_NOTE_KIND (link) == REG_EQUIV)
1795 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1796 insns that have multiple sets. Checking single_set to
1797 make sure of this is not the proper check, as explained
1798 in the comment in set_unique_reg_note.
1800 This should be changed into an assert. */
1801 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1802 return 0;
1803 return link;
1805 return NULL;
1808 /* Check whether INSN is a single_set whose source is known to be
1809 equivalent to a constant. Return that constant if so, otherwise
1810 return null. */
1813 find_constant_src (const_rtx insn)
1815 rtx note, set, x;
1817 set = single_set (insn);
1818 if (set)
1820 x = avoid_constant_pool_reference (SET_SRC (set));
1821 if (CONSTANT_P (x))
1822 return x;
1825 note = find_reg_equal_equiv_note (insn);
1826 if (note && CONSTANT_P (XEXP (note, 0)))
1827 return XEXP (note, 0);
1829 return NULL_RTX;
1832 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1833 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1836 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1838 /* If it's not a CALL_INSN, it can't possibly have a
1839 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1840 if (!CALL_P (insn))
1841 return 0;
1843 gcc_assert (datum);
1845 if (!REG_P (datum))
1847 rtx link;
1849 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1850 link;
1851 link = XEXP (link, 1))
1852 if (GET_CODE (XEXP (link, 0)) == code
1853 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1854 return 1;
1856 else
1858 unsigned int regno = REGNO (datum);
1860 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1861 to pseudo registers, so don't bother checking. */
1863 if (regno < FIRST_PSEUDO_REGISTER)
1865 unsigned int end_regno = END_HARD_REGNO (datum);
1866 unsigned int i;
1868 for (i = regno; i < end_regno; i++)
1869 if (find_regno_fusage (insn, code, i))
1870 return 1;
1874 return 0;
1877 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1878 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1881 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1883 rtx link;
1885 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1886 to pseudo registers, so don't bother checking. */
1888 if (regno >= FIRST_PSEUDO_REGISTER
1889 || !CALL_P (insn) )
1890 return 0;
1892 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1894 rtx op, reg;
1896 if (GET_CODE (op = XEXP (link, 0)) == code
1897 && REG_P (reg = XEXP (op, 0))
1898 && REGNO (reg) <= regno
1899 && END_HARD_REGNO (reg) > regno)
1900 return 1;
1903 return 0;
1907 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1908 stored as the pointer to the next register note. */
1911 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1913 rtx note;
1915 switch (kind)
1917 case REG_CC_SETTER:
1918 case REG_CC_USER:
1919 case REG_LABEL_TARGET:
1920 case REG_LABEL_OPERAND:
1921 case REG_TM:
1922 /* These types of register notes use an INSN_LIST rather than an
1923 EXPR_LIST, so that copying is done right and dumps look
1924 better. */
1925 note = alloc_INSN_LIST (datum, list);
1926 PUT_REG_NOTE_KIND (note, kind);
1927 break;
1929 default:
1930 note = alloc_EXPR_LIST (kind, datum, list);
1931 break;
1934 return note;
1937 /* Add register note with kind KIND and datum DATUM to INSN. */
1939 void
1940 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1942 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1945 /* Remove register note NOTE from the REG_NOTES of INSN. */
1947 void
1948 remove_note (rtx insn, const_rtx note)
1950 rtx link;
1952 if (note == NULL_RTX)
1953 return;
1955 if (REG_NOTES (insn) == note)
1956 REG_NOTES (insn) = XEXP (note, 1);
1957 else
1958 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1959 if (XEXP (link, 1) == note)
1961 XEXP (link, 1) = XEXP (note, 1);
1962 break;
1965 switch (REG_NOTE_KIND (note))
1967 case REG_EQUAL:
1968 case REG_EQUIV:
1969 df_notes_rescan (insn);
1970 break;
1971 default:
1972 break;
1976 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1978 void
1979 remove_reg_equal_equiv_notes (rtx insn)
1981 rtx *loc;
1983 loc = &REG_NOTES (insn);
1984 while (*loc)
1986 enum reg_note kind = REG_NOTE_KIND (*loc);
1987 if (kind == REG_EQUAL || kind == REG_EQUIV)
1988 *loc = XEXP (*loc, 1);
1989 else
1990 loc = &XEXP (*loc, 1);
1994 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
1996 void
1997 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
1999 df_ref eq_use;
2001 if (!df)
2002 return;
2004 /* This loop is a little tricky. We cannot just go down the chain because
2005 it is being modified by some actions in the loop. So we just iterate
2006 over the head. We plan to drain the list anyway. */
2007 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2009 rtx insn = DF_REF_INSN (eq_use);
2010 rtx note = find_reg_equal_equiv_note (insn);
2012 /* This assert is generally triggered when someone deletes a REG_EQUAL
2013 or REG_EQUIV note by hacking the list manually rather than calling
2014 remove_note. */
2015 gcc_assert (note);
2017 remove_note (insn, note);
2021 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2022 return 1 if it is found. A simple equality test is used to determine if
2023 NODE matches. */
2026 in_expr_list_p (const_rtx listp, const_rtx node)
2028 const_rtx x;
2030 for (x = listp; x; x = XEXP (x, 1))
2031 if (node == XEXP (x, 0))
2032 return 1;
2034 return 0;
2037 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2038 remove that entry from the list if it is found.
2040 A simple equality test is used to determine if NODE matches. */
2042 void
2043 remove_node_from_expr_list (const_rtx node, rtx *listp)
2045 rtx temp = *listp;
2046 rtx prev = NULL_RTX;
2048 while (temp)
2050 if (node == XEXP (temp, 0))
2052 /* Splice the node out of the list. */
2053 if (prev)
2054 XEXP (prev, 1) = XEXP (temp, 1);
2055 else
2056 *listp = XEXP (temp, 1);
2058 return;
2061 prev = temp;
2062 temp = XEXP (temp, 1);
2066 /* Nonzero if X contains any volatile instructions. These are instructions
2067 which may cause unpredictable machine state instructions, and thus no
2068 instructions should be moved or combined across them. This includes
2069 only volatile asms and UNSPEC_VOLATILE instructions. */
2072 volatile_insn_p (const_rtx x)
2074 const RTX_CODE code = GET_CODE (x);
2075 switch (code)
2077 case LABEL_REF:
2078 case SYMBOL_REF:
2079 case CONST_INT:
2080 case CONST:
2081 case CONST_DOUBLE:
2082 case CONST_FIXED:
2083 case CONST_VECTOR:
2084 case CC0:
2085 case PC:
2086 case REG:
2087 case SCRATCH:
2088 case CLOBBER:
2089 case ADDR_VEC:
2090 case ADDR_DIFF_VEC:
2091 case CALL:
2092 case MEM:
2093 return 0;
2095 case UNSPEC_VOLATILE:
2096 /* case TRAP_IF: This isn't clear yet. */
2097 return 1;
2099 case ASM_INPUT:
2100 case ASM_OPERANDS:
2101 if (MEM_VOLATILE_P (x))
2102 return 1;
2104 default:
2105 break;
2108 /* Recursively scan the operands of this expression. */
2111 const char *const fmt = GET_RTX_FORMAT (code);
2112 int i;
2114 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2116 if (fmt[i] == 'e')
2118 if (volatile_insn_p (XEXP (x, i)))
2119 return 1;
2121 else if (fmt[i] == 'E')
2123 int j;
2124 for (j = 0; j < XVECLEN (x, i); j++)
2125 if (volatile_insn_p (XVECEXP (x, i, j)))
2126 return 1;
2130 return 0;
2133 /* Nonzero if X contains any volatile memory references
2134 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2137 volatile_refs_p (const_rtx x)
2139 const RTX_CODE code = GET_CODE (x);
2140 switch (code)
2142 case LABEL_REF:
2143 case SYMBOL_REF:
2144 case CONST_INT:
2145 case CONST:
2146 case CONST_DOUBLE:
2147 case CONST_FIXED:
2148 case CONST_VECTOR:
2149 case CC0:
2150 case PC:
2151 case REG:
2152 case SCRATCH:
2153 case CLOBBER:
2154 case ADDR_VEC:
2155 case ADDR_DIFF_VEC:
2156 return 0;
2158 case UNSPEC_VOLATILE:
2159 return 1;
2161 case MEM:
2162 case ASM_INPUT:
2163 case ASM_OPERANDS:
2164 if (MEM_VOLATILE_P (x))
2165 return 1;
2167 default:
2168 break;
2171 /* Recursively scan the operands of this expression. */
2174 const char *const fmt = GET_RTX_FORMAT (code);
2175 int i;
2177 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2179 if (fmt[i] == 'e')
2181 if (volatile_refs_p (XEXP (x, i)))
2182 return 1;
2184 else if (fmt[i] == 'E')
2186 int j;
2187 for (j = 0; j < XVECLEN (x, i); j++)
2188 if (volatile_refs_p (XVECEXP (x, i, j)))
2189 return 1;
2193 return 0;
2196 /* Similar to above, except that it also rejects register pre- and post-
2197 incrementing. */
2200 side_effects_p (const_rtx x)
2202 const RTX_CODE code = GET_CODE (x);
2203 switch (code)
2205 case LABEL_REF:
2206 case SYMBOL_REF:
2207 case CONST_INT:
2208 case CONST:
2209 case CONST_DOUBLE:
2210 case CONST_FIXED:
2211 case CONST_VECTOR:
2212 case CC0:
2213 case PC:
2214 case REG:
2215 case SCRATCH:
2216 case ADDR_VEC:
2217 case ADDR_DIFF_VEC:
2218 case VAR_LOCATION:
2219 return 0;
2221 case CLOBBER:
2222 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2223 when some combination can't be done. If we see one, don't think
2224 that we can simplify the expression. */
2225 return (GET_MODE (x) != VOIDmode);
2227 case PRE_INC:
2228 case PRE_DEC:
2229 case POST_INC:
2230 case POST_DEC:
2231 case PRE_MODIFY:
2232 case POST_MODIFY:
2233 case CALL:
2234 case UNSPEC_VOLATILE:
2235 /* case TRAP_IF: This isn't clear yet. */
2236 return 1;
2238 case MEM:
2239 case ASM_INPUT:
2240 case ASM_OPERANDS:
2241 if (MEM_VOLATILE_P (x))
2242 return 1;
2244 default:
2245 break;
2248 /* Recursively scan the operands of this expression. */
2251 const char *fmt = GET_RTX_FORMAT (code);
2252 int i;
2254 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2256 if (fmt[i] == 'e')
2258 if (side_effects_p (XEXP (x, i)))
2259 return 1;
2261 else if (fmt[i] == 'E')
2263 int j;
2264 for (j = 0; j < XVECLEN (x, i); j++)
2265 if (side_effects_p (XVECEXP (x, i, j)))
2266 return 1;
2270 return 0;
2273 /* Return nonzero if evaluating rtx X might cause a trap.
2274 FLAGS controls how to consider MEMs. A nonzero means the context
2275 of the access may have changed from the original, such that the
2276 address may have become invalid. */
2279 may_trap_p_1 (const_rtx x, unsigned flags)
2281 int i;
2282 enum rtx_code code;
2283 const char *fmt;
2285 /* We make no distinction currently, but this function is part of
2286 the internal target-hooks ABI so we keep the parameter as
2287 "unsigned flags". */
2288 bool code_changed = flags != 0;
2290 if (x == 0)
2291 return 0;
2292 code = GET_CODE (x);
2293 switch (code)
2295 /* Handle these cases quickly. */
2296 case CONST_INT:
2297 case CONST_DOUBLE:
2298 case CONST_FIXED:
2299 case CONST_VECTOR:
2300 case SYMBOL_REF:
2301 case LABEL_REF:
2302 case CONST:
2303 case PC:
2304 case CC0:
2305 case REG:
2306 case SCRATCH:
2307 return 0;
2309 case UNSPEC:
2310 case UNSPEC_VOLATILE:
2311 return targetm.unspec_may_trap_p (x, flags);
2313 case ASM_INPUT:
2314 case TRAP_IF:
2315 return 1;
2317 case ASM_OPERANDS:
2318 return MEM_VOLATILE_P (x);
2320 /* Memory ref can trap unless it's a static var or a stack slot. */
2321 case MEM:
2322 /* Recognize specific pattern of stack checking probes. */
2323 if (flag_stack_check
2324 && MEM_VOLATILE_P (x)
2325 && XEXP (x, 0) == stack_pointer_rtx)
2326 return 1;
2327 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2328 reference; moving it out of context such as when moving code
2329 when optimizing, might cause its address to become invalid. */
2330 code_changed
2331 || !MEM_NOTRAP_P (x))
2333 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2334 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2335 GET_MODE (x), code_changed);
2338 return 0;
2340 /* Division by a non-constant might trap. */
2341 case DIV:
2342 case MOD:
2343 case UDIV:
2344 case UMOD:
2345 if (HONOR_SNANS (GET_MODE (x)))
2346 return 1;
2347 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2348 return flag_trapping_math;
2349 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2350 return 1;
2351 break;
2353 case EXPR_LIST:
2354 /* An EXPR_LIST is used to represent a function call. This
2355 certainly may trap. */
2356 return 1;
2358 case GE:
2359 case GT:
2360 case LE:
2361 case LT:
2362 case LTGT:
2363 case COMPARE:
2364 /* Some floating point comparisons may trap. */
2365 if (!flag_trapping_math)
2366 break;
2367 /* ??? There is no machine independent way to check for tests that trap
2368 when COMPARE is used, though many targets do make this distinction.
2369 For instance, sparc uses CCFPE for compares which generate exceptions
2370 and CCFP for compares which do not generate exceptions. */
2371 if (HONOR_NANS (GET_MODE (x)))
2372 return 1;
2373 /* But often the compare has some CC mode, so check operand
2374 modes as well. */
2375 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2376 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2377 return 1;
2378 break;
2380 case EQ:
2381 case NE:
2382 if (HONOR_SNANS (GET_MODE (x)))
2383 return 1;
2384 /* Often comparison is CC mode, so check operand modes. */
2385 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2386 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2387 return 1;
2388 break;
2390 case FIX:
2391 /* Conversion of floating point might trap. */
2392 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2393 return 1;
2394 break;
2396 case NEG:
2397 case ABS:
2398 case SUBREG:
2399 /* These operations don't trap even with floating point. */
2400 break;
2402 default:
2403 /* Any floating arithmetic may trap. */
2404 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2405 && flag_trapping_math)
2406 return 1;
2409 fmt = GET_RTX_FORMAT (code);
2410 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2412 if (fmt[i] == 'e')
2414 if (may_trap_p_1 (XEXP (x, i), flags))
2415 return 1;
2417 else if (fmt[i] == 'E')
2419 int j;
2420 for (j = 0; j < XVECLEN (x, i); j++)
2421 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2422 return 1;
2425 return 0;
2428 /* Return nonzero if evaluating rtx X might cause a trap. */
2431 may_trap_p (const_rtx x)
2433 return may_trap_p_1 (x, 0);
2436 /* Same as above, but additionally return nonzero if evaluating rtx X might
2437 cause a fault. We define a fault for the purpose of this function as a
2438 erroneous execution condition that cannot be encountered during the normal
2439 execution of a valid program; the typical example is an unaligned memory
2440 access on a strict alignment machine. The compiler guarantees that it
2441 doesn't generate code that will fault from a valid program, but this
2442 guarantee doesn't mean anything for individual instructions. Consider
2443 the following example:
2445 struct S { int d; union { char *cp; int *ip; }; };
2447 int foo(struct S *s)
2449 if (s->d == 1)
2450 return *s->ip;
2451 else
2452 return *s->cp;
2455 on a strict alignment machine. In a valid program, foo will never be
2456 invoked on a structure for which d is equal to 1 and the underlying
2457 unique field of the union not aligned on a 4-byte boundary, but the
2458 expression *s->ip might cause a fault if considered individually.
2460 At the RTL level, potentially problematic expressions will almost always
2461 verify may_trap_p; for example, the above dereference can be emitted as
2462 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2463 However, suppose that foo is inlined in a caller that causes s->cp to
2464 point to a local character variable and guarantees that s->d is not set
2465 to 1; foo may have been effectively translated into pseudo-RTL as:
2467 if ((reg:SI) == 1)
2468 (set (reg:SI) (mem:SI (%fp - 7)))
2469 else
2470 (set (reg:QI) (mem:QI (%fp - 7)))
2472 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2473 memory reference to a stack slot, but it will certainly cause a fault
2474 on a strict alignment machine. */
2477 may_trap_or_fault_p (const_rtx x)
2479 return may_trap_p_1 (x, 1);
2482 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2483 i.e., an inequality. */
2486 inequality_comparisons_p (const_rtx x)
2488 const char *fmt;
2489 int len, i;
2490 const enum rtx_code code = GET_CODE (x);
2492 switch (code)
2494 case REG:
2495 case SCRATCH:
2496 case PC:
2497 case CC0:
2498 case CONST_INT:
2499 case CONST_DOUBLE:
2500 case CONST_FIXED:
2501 case CONST_VECTOR:
2502 case CONST:
2503 case LABEL_REF:
2504 case SYMBOL_REF:
2505 return 0;
2507 case LT:
2508 case LTU:
2509 case GT:
2510 case GTU:
2511 case LE:
2512 case LEU:
2513 case GE:
2514 case GEU:
2515 return 1;
2517 default:
2518 break;
2521 len = GET_RTX_LENGTH (code);
2522 fmt = GET_RTX_FORMAT (code);
2524 for (i = 0; i < len; i++)
2526 if (fmt[i] == 'e')
2528 if (inequality_comparisons_p (XEXP (x, i)))
2529 return 1;
2531 else if (fmt[i] == 'E')
2533 int j;
2534 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2535 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2536 return 1;
2540 return 0;
2543 /* Replace any occurrence of FROM in X with TO. The function does
2544 not enter into CONST_DOUBLE for the replace.
2546 Note that copying is not done so X must not be shared unless all copies
2547 are to be modified. */
2550 replace_rtx (rtx x, rtx from, rtx to)
2552 int i, j;
2553 const char *fmt;
2555 /* The following prevents loops occurrence when we change MEM in
2556 CONST_DOUBLE onto the same CONST_DOUBLE. */
2557 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2558 return x;
2560 if (x == from)
2561 return to;
2563 /* Allow this function to make replacements in EXPR_LISTs. */
2564 if (x == 0)
2565 return 0;
2567 if (GET_CODE (x) == SUBREG)
2569 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2571 if (CONST_INT_P (new_rtx))
2573 x = simplify_subreg (GET_MODE (x), new_rtx,
2574 GET_MODE (SUBREG_REG (x)),
2575 SUBREG_BYTE (x));
2576 gcc_assert (x);
2578 else
2579 SUBREG_REG (x) = new_rtx;
2581 return x;
2583 else if (GET_CODE (x) == ZERO_EXTEND)
2585 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2587 if (CONST_INT_P (new_rtx))
2589 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2590 new_rtx, GET_MODE (XEXP (x, 0)));
2591 gcc_assert (x);
2593 else
2594 XEXP (x, 0) = new_rtx;
2596 return x;
2599 fmt = GET_RTX_FORMAT (GET_CODE (x));
2600 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2602 if (fmt[i] == 'e')
2603 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2604 else if (fmt[i] == 'E')
2605 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2606 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2609 return x;
2612 /* Replace occurrences of the old label in *X with the new one.
2613 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2616 replace_label (rtx *x, void *data)
2618 rtx l = *x;
2619 rtx old_label = ((replace_label_data *) data)->r1;
2620 rtx new_label = ((replace_label_data *) data)->r2;
2621 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2623 if (l == NULL_RTX)
2624 return 0;
2626 if (GET_CODE (l) == SYMBOL_REF
2627 && CONSTANT_POOL_ADDRESS_P (l))
2629 rtx c = get_pool_constant (l);
2630 if (rtx_referenced_p (old_label, c))
2632 rtx new_c, new_l;
2633 replace_label_data *d = (replace_label_data *) data;
2635 /* Create a copy of constant C; replace the label inside
2636 but do not update LABEL_NUSES because uses in constant pool
2637 are not counted. */
2638 new_c = copy_rtx (c);
2639 d->update_label_nuses = false;
2640 for_each_rtx (&new_c, replace_label, data);
2641 d->update_label_nuses = update_label_nuses;
2643 /* Add the new constant NEW_C to constant pool and replace
2644 the old reference to constant by new reference. */
2645 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2646 *x = replace_rtx (l, l, new_l);
2648 return 0;
2651 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2652 field. This is not handled by for_each_rtx because it doesn't
2653 handle unprinted ('0') fields. */
2654 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2655 JUMP_LABEL (l) = new_label;
2657 if ((GET_CODE (l) == LABEL_REF
2658 || GET_CODE (l) == INSN_LIST)
2659 && XEXP (l, 0) == old_label)
2661 XEXP (l, 0) = new_label;
2662 if (update_label_nuses)
2664 ++LABEL_NUSES (new_label);
2665 --LABEL_NUSES (old_label);
2667 return 0;
2670 return 0;
2673 /* When *BODY is equal to X or X is directly referenced by *BODY
2674 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2675 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2677 static int
2678 rtx_referenced_p_1 (rtx *body, void *x)
2680 rtx y = (rtx) x;
2682 if (*body == NULL_RTX)
2683 return y == NULL_RTX;
2685 /* Return true if a label_ref *BODY refers to label Y. */
2686 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2687 return XEXP (*body, 0) == y;
2689 /* If *BODY is a reference to pool constant traverse the constant. */
2690 if (GET_CODE (*body) == SYMBOL_REF
2691 && CONSTANT_POOL_ADDRESS_P (*body))
2692 return rtx_referenced_p (y, get_pool_constant (*body));
2694 /* By default, compare the RTL expressions. */
2695 return rtx_equal_p (*body, y);
2698 /* Return true if X is referenced in BODY. */
2701 rtx_referenced_p (rtx x, rtx body)
2703 return for_each_rtx (&body, rtx_referenced_p_1, x);
2706 /* If INSN is a tablejump return true and store the label (before jump table) to
2707 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2709 bool
2710 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2712 rtx label, table;
2714 if (!JUMP_P (insn))
2715 return false;
2717 label = JUMP_LABEL (insn);
2718 if (label != NULL_RTX && !ANY_RETURN_P (label)
2719 && (table = next_active_insn (label)) != NULL_RTX
2720 && JUMP_TABLE_DATA_P (table))
2722 if (labelp)
2723 *labelp = label;
2724 if (tablep)
2725 *tablep = table;
2726 return true;
2728 return false;
2731 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2732 constant that is not in the constant pool and not in the condition
2733 of an IF_THEN_ELSE. */
2735 static int
2736 computed_jump_p_1 (const_rtx x)
2738 const enum rtx_code code = GET_CODE (x);
2739 int i, j;
2740 const char *fmt;
2742 switch (code)
2744 case LABEL_REF:
2745 case PC:
2746 return 0;
2748 case CONST:
2749 case CONST_INT:
2750 case CONST_DOUBLE:
2751 case CONST_FIXED:
2752 case CONST_VECTOR:
2753 case SYMBOL_REF:
2754 case REG:
2755 return 1;
2757 case MEM:
2758 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2759 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2761 case IF_THEN_ELSE:
2762 return (computed_jump_p_1 (XEXP (x, 1))
2763 || computed_jump_p_1 (XEXP (x, 2)));
2765 default:
2766 break;
2769 fmt = GET_RTX_FORMAT (code);
2770 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2772 if (fmt[i] == 'e'
2773 && computed_jump_p_1 (XEXP (x, i)))
2774 return 1;
2776 else if (fmt[i] == 'E')
2777 for (j = 0; j < XVECLEN (x, i); j++)
2778 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2779 return 1;
2782 return 0;
2785 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2787 Tablejumps and casesi insns are not considered indirect jumps;
2788 we can recognize them by a (use (label_ref)). */
2791 computed_jump_p (const_rtx insn)
2793 int i;
2794 if (JUMP_P (insn))
2796 rtx pat = PATTERN (insn);
2798 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2799 if (JUMP_LABEL (insn) != NULL)
2800 return 0;
2802 if (GET_CODE (pat) == PARALLEL)
2804 int len = XVECLEN (pat, 0);
2805 int has_use_labelref = 0;
2807 for (i = len - 1; i >= 0; i--)
2808 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2809 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2810 == LABEL_REF))
2811 has_use_labelref = 1;
2813 if (! has_use_labelref)
2814 for (i = len - 1; i >= 0; i--)
2815 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2816 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2817 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2818 return 1;
2820 else if (GET_CODE (pat) == SET
2821 && SET_DEST (pat) == pc_rtx
2822 && computed_jump_p_1 (SET_SRC (pat)))
2823 return 1;
2825 return 0;
2828 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2829 calls. Processes the subexpressions of EXP and passes them to F. */
2830 static int
2831 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2833 int result, i, j;
2834 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2835 rtx *x;
2837 for (; format[n] != '\0'; n++)
2839 switch (format[n])
2841 case 'e':
2842 /* Call F on X. */
2843 x = &XEXP (exp, n);
2844 result = (*f) (x, data);
2845 if (result == -1)
2846 /* Do not traverse sub-expressions. */
2847 continue;
2848 else if (result != 0)
2849 /* Stop the traversal. */
2850 return result;
2852 if (*x == NULL_RTX)
2853 /* There are no sub-expressions. */
2854 continue;
2856 i = non_rtx_starting_operands[GET_CODE (*x)];
2857 if (i >= 0)
2859 result = for_each_rtx_1 (*x, i, f, data);
2860 if (result != 0)
2861 return result;
2863 break;
2865 case 'V':
2866 case 'E':
2867 if (XVEC (exp, n) == 0)
2868 continue;
2869 for (j = 0; j < XVECLEN (exp, n); ++j)
2871 /* Call F on X. */
2872 x = &XVECEXP (exp, n, j);
2873 result = (*f) (x, data);
2874 if (result == -1)
2875 /* Do not traverse sub-expressions. */
2876 continue;
2877 else if (result != 0)
2878 /* Stop the traversal. */
2879 return result;
2881 if (*x == NULL_RTX)
2882 /* There are no sub-expressions. */
2883 continue;
2885 i = non_rtx_starting_operands[GET_CODE (*x)];
2886 if (i >= 0)
2888 result = for_each_rtx_1 (*x, i, f, data);
2889 if (result != 0)
2890 return result;
2893 break;
2895 default:
2896 /* Nothing to do. */
2897 break;
2901 return 0;
2904 /* Traverse X via depth-first search, calling F for each
2905 sub-expression (including X itself). F is also passed the DATA.
2906 If F returns -1, do not traverse sub-expressions, but continue
2907 traversing the rest of the tree. If F ever returns any other
2908 nonzero value, stop the traversal, and return the value returned
2909 by F. Otherwise, return 0. This function does not traverse inside
2910 tree structure that contains RTX_EXPRs, or into sub-expressions
2911 whose format code is `0' since it is not known whether or not those
2912 codes are actually RTL.
2914 This routine is very general, and could (should?) be used to
2915 implement many of the other routines in this file. */
2918 for_each_rtx (rtx *x, rtx_function f, void *data)
2920 int result;
2921 int i;
2923 /* Call F on X. */
2924 result = (*f) (x, data);
2925 if (result == -1)
2926 /* Do not traverse sub-expressions. */
2927 return 0;
2928 else if (result != 0)
2929 /* Stop the traversal. */
2930 return result;
2932 if (*x == NULL_RTX)
2933 /* There are no sub-expressions. */
2934 return 0;
2936 i = non_rtx_starting_operands[GET_CODE (*x)];
2937 if (i < 0)
2938 return 0;
2940 return for_each_rtx_1 (*x, i, f, data);
2945 /* Data structure that holds the internal state communicated between
2946 for_each_inc_dec, for_each_inc_dec_find_mem and
2947 for_each_inc_dec_find_inc_dec. */
2949 struct for_each_inc_dec_ops {
2950 /* The function to be called for each autoinc operation found. */
2951 for_each_inc_dec_fn fn;
2952 /* The opaque argument to be passed to it. */
2953 void *arg;
2954 /* The MEM we're visiting, if any. */
2955 rtx mem;
2958 static int for_each_inc_dec_find_mem (rtx *r, void *d);
2960 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2961 operands of the equivalent add insn and pass the result to the
2962 operator specified by *D. */
2964 static int
2965 for_each_inc_dec_find_inc_dec (rtx *r, void *d)
2967 rtx x = *r;
2968 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *)d;
2970 switch (GET_CODE (x))
2972 case PRE_INC:
2973 case POST_INC:
2975 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2976 rtx r1 = XEXP (x, 0);
2977 rtx c = gen_int_mode (size, GET_MODE (r1));
2978 return data->fn (data->mem, x, r1, r1, c, data->arg);
2981 case PRE_DEC:
2982 case POST_DEC:
2984 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2985 rtx r1 = XEXP (x, 0);
2986 rtx c = gen_int_mode (-size, GET_MODE (r1));
2987 return data->fn (data->mem, x, r1, r1, c, data->arg);
2990 case PRE_MODIFY:
2991 case POST_MODIFY:
2993 rtx r1 = XEXP (x, 0);
2994 rtx add = XEXP (x, 1);
2995 return data->fn (data->mem, x, r1, add, NULL, data->arg);
2998 case MEM:
3000 rtx save = data->mem;
3001 int ret = for_each_inc_dec_find_mem (r, d);
3002 data->mem = save;
3003 return ret;
3006 default:
3007 return 0;
3011 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
3012 address, extract the operands of the equivalent add insn and pass
3013 the result to the operator specified by *D. */
3015 static int
3016 for_each_inc_dec_find_mem (rtx *r, void *d)
3018 rtx x = *r;
3019 if (x != NULL_RTX && MEM_P (x))
3021 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *) d;
3022 int result;
3024 data->mem = x;
3026 result = for_each_rtx (&XEXP (x, 0), for_each_inc_dec_find_inc_dec,
3027 data);
3028 if (result)
3029 return result;
3031 return -1;
3033 return 0;
3036 /* Traverse *X looking for MEMs, and for autoinc operations within
3037 them. For each such autoinc operation found, call FN, passing it
3038 the innermost enclosing MEM, the operation itself, the RTX modified
3039 by the operation, two RTXs (the second may be NULL) that, once
3040 added, represent the value to be held by the modified RTX
3041 afterwards, and ARG. FN is to return -1 to skip looking for other
3042 autoinc operations within the visited operation, 0 to continue the
3043 traversal, or any other value to have it returned to the caller of
3044 for_each_inc_dec. */
3047 for_each_inc_dec (rtx *x,
3048 for_each_inc_dec_fn fn,
3049 void *arg)
3051 struct for_each_inc_dec_ops data;
3053 data.fn = fn;
3054 data.arg = arg;
3055 data.mem = NULL;
3057 return for_each_rtx (x, for_each_inc_dec_find_mem, &data);
3061 /* Searches X for any reference to REGNO, returning the rtx of the
3062 reference found if any. Otherwise, returns NULL_RTX. */
3065 regno_use_in (unsigned int regno, rtx x)
3067 const char *fmt;
3068 int i, j;
3069 rtx tem;
3071 if (REG_P (x) && REGNO (x) == regno)
3072 return x;
3074 fmt = GET_RTX_FORMAT (GET_CODE (x));
3075 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3077 if (fmt[i] == 'e')
3079 if ((tem = regno_use_in (regno, XEXP (x, i))))
3080 return tem;
3082 else if (fmt[i] == 'E')
3083 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3084 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3085 return tem;
3088 return NULL_RTX;
3091 /* Return a value indicating whether OP, an operand of a commutative
3092 operation, is preferred as the first or second operand. The higher
3093 the value, the stronger the preference for being the first operand.
3094 We use negative values to indicate a preference for the first operand
3095 and positive values for the second operand. */
3098 commutative_operand_precedence (rtx op)
3100 enum rtx_code code = GET_CODE (op);
3102 /* Constants always come the second operand. Prefer "nice" constants. */
3103 if (code == CONST_INT)
3104 return -8;
3105 if (code == CONST_DOUBLE)
3106 return -7;
3107 if (code == CONST_FIXED)
3108 return -7;
3109 op = avoid_constant_pool_reference (op);
3110 code = GET_CODE (op);
3112 switch (GET_RTX_CLASS (code))
3114 case RTX_CONST_OBJ:
3115 if (code == CONST_INT)
3116 return -6;
3117 if (code == CONST_DOUBLE)
3118 return -5;
3119 if (code == CONST_FIXED)
3120 return -5;
3121 return -4;
3123 case RTX_EXTRA:
3124 /* SUBREGs of objects should come second. */
3125 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3126 return -3;
3127 return 0;
3129 case RTX_OBJ:
3130 /* Complex expressions should be the first, so decrease priority
3131 of objects. Prefer pointer objects over non pointer objects. */
3132 if ((REG_P (op) && REG_POINTER (op))
3133 || (MEM_P (op) && MEM_POINTER (op)))
3134 return -1;
3135 return -2;
3137 case RTX_COMM_ARITH:
3138 /* Prefer operands that are themselves commutative to be first.
3139 This helps to make things linear. In particular,
3140 (and (and (reg) (reg)) (not (reg))) is canonical. */
3141 return 4;
3143 case RTX_BIN_ARITH:
3144 /* If only one operand is a binary expression, it will be the first
3145 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3146 is canonical, although it will usually be further simplified. */
3147 return 2;
3149 case RTX_UNARY:
3150 /* Then prefer NEG and NOT. */
3151 if (code == NEG || code == NOT)
3152 return 1;
3154 default:
3155 return 0;
3159 /* Return 1 iff it is necessary to swap operands of commutative operation
3160 in order to canonicalize expression. */
3162 bool
3163 swap_commutative_operands_p (rtx x, rtx y)
3165 return (commutative_operand_precedence (x)
3166 < commutative_operand_precedence (y));
3169 /* Return 1 if X is an autoincrement side effect and the register is
3170 not the stack pointer. */
3172 auto_inc_p (const_rtx x)
3174 switch (GET_CODE (x))
3176 case PRE_INC:
3177 case POST_INC:
3178 case PRE_DEC:
3179 case POST_DEC:
3180 case PRE_MODIFY:
3181 case POST_MODIFY:
3182 /* There are no REG_INC notes for SP. */
3183 if (XEXP (x, 0) != stack_pointer_rtx)
3184 return 1;
3185 default:
3186 break;
3188 return 0;
3191 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3193 loc_mentioned_in_p (rtx *loc, const_rtx in)
3195 enum rtx_code code;
3196 const char *fmt;
3197 int i, j;
3199 if (!in)
3200 return 0;
3202 code = GET_CODE (in);
3203 fmt = GET_RTX_FORMAT (code);
3204 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3206 if (fmt[i] == 'e')
3208 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3209 return 1;
3211 else if (fmt[i] == 'E')
3212 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3213 if (loc == &XVECEXP (in, i, j)
3214 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3215 return 1;
3217 return 0;
3220 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3221 and SUBREG_BYTE, return the bit offset where the subreg begins
3222 (counting from the least significant bit of the operand). */
3224 unsigned int
3225 subreg_lsb_1 (enum machine_mode outer_mode,
3226 enum machine_mode inner_mode,
3227 unsigned int subreg_byte)
3229 unsigned int bitpos;
3230 unsigned int byte;
3231 unsigned int word;
3233 /* A paradoxical subreg begins at bit position 0. */
3234 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3235 return 0;
3237 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3238 /* If the subreg crosses a word boundary ensure that
3239 it also begins and ends on a word boundary. */
3240 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3241 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3242 && (subreg_byte % UNITS_PER_WORD
3243 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3245 if (WORDS_BIG_ENDIAN)
3246 word = (GET_MODE_SIZE (inner_mode)
3247 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3248 else
3249 word = subreg_byte / UNITS_PER_WORD;
3250 bitpos = word * BITS_PER_WORD;
3252 if (BYTES_BIG_ENDIAN)
3253 byte = (GET_MODE_SIZE (inner_mode)
3254 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3255 else
3256 byte = subreg_byte % UNITS_PER_WORD;
3257 bitpos += byte * BITS_PER_UNIT;
3259 return bitpos;
3262 /* Given a subreg X, return the bit offset where the subreg begins
3263 (counting from the least significant bit of the reg). */
3265 unsigned int
3266 subreg_lsb (const_rtx x)
3268 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3269 SUBREG_BYTE (x));
3272 /* Fill in information about a subreg of a hard register.
3273 xregno - A regno of an inner hard subreg_reg (or what will become one).
3274 xmode - The mode of xregno.
3275 offset - The byte offset.
3276 ymode - The mode of a top level SUBREG (or what may become one).
3277 info - Pointer to structure to fill in. */
3278 void
3279 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3280 unsigned int offset, enum machine_mode ymode,
3281 struct subreg_info *info)
3283 int nregs_xmode, nregs_ymode;
3284 int mode_multiple, nregs_multiple;
3285 int offset_adj, y_offset, y_offset_adj;
3286 int regsize_xmode, regsize_ymode;
3287 bool rknown;
3289 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3291 rknown = false;
3293 /* If there are holes in a non-scalar mode in registers, we expect
3294 that it is made up of its units concatenated together. */
3295 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3297 enum machine_mode xmode_unit;
3299 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3300 if (GET_MODE_INNER (xmode) == VOIDmode)
3301 xmode_unit = xmode;
3302 else
3303 xmode_unit = GET_MODE_INNER (xmode);
3304 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3305 gcc_assert (nregs_xmode
3306 == (GET_MODE_NUNITS (xmode)
3307 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3308 gcc_assert (hard_regno_nregs[xregno][xmode]
3309 == (hard_regno_nregs[xregno][xmode_unit]
3310 * GET_MODE_NUNITS (xmode)));
3312 /* You can only ask for a SUBREG of a value with holes in the middle
3313 if you don't cross the holes. (Such a SUBREG should be done by
3314 picking a different register class, or doing it in memory if
3315 necessary.) An example of a value with holes is XCmode on 32-bit
3316 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3317 3 for each part, but in memory it's two 128-bit parts.
3318 Padding is assumed to be at the end (not necessarily the 'high part')
3319 of each unit. */
3320 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3321 < GET_MODE_NUNITS (xmode))
3322 && (offset / GET_MODE_SIZE (xmode_unit)
3323 != ((offset + GET_MODE_SIZE (ymode) - 1)
3324 / GET_MODE_SIZE (xmode_unit))))
3326 info->representable_p = false;
3327 rknown = true;
3330 else
3331 nregs_xmode = hard_regno_nregs[xregno][xmode];
3333 nregs_ymode = hard_regno_nregs[xregno][ymode];
3335 /* Paradoxical subregs are otherwise valid. */
3336 if (!rknown
3337 && offset == 0
3338 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3340 info->representable_p = true;
3341 /* If this is a big endian paradoxical subreg, which uses more
3342 actual hard registers than the original register, we must
3343 return a negative offset so that we find the proper highpart
3344 of the register. */
3345 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3346 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3347 info->offset = nregs_xmode - nregs_ymode;
3348 else
3349 info->offset = 0;
3350 info->nregs = nregs_ymode;
3351 return;
3354 /* If registers store different numbers of bits in the different
3355 modes, we cannot generally form this subreg. */
3356 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3357 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3358 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3359 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3361 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3362 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3363 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3365 info->representable_p = false;
3366 info->nregs
3367 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3368 info->offset = offset / regsize_xmode;
3369 return;
3371 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3373 info->representable_p = false;
3374 info->nregs
3375 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3376 info->offset = offset / regsize_xmode;
3377 return;
3381 /* Lowpart subregs are otherwise valid. */
3382 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3384 info->representable_p = true;
3385 rknown = true;
3387 if (offset == 0 || nregs_xmode == nregs_ymode)
3389 info->offset = 0;
3390 info->nregs = nregs_ymode;
3391 return;
3395 /* This should always pass, otherwise we don't know how to verify
3396 the constraint. These conditions may be relaxed but
3397 subreg_regno_offset would need to be redesigned. */
3398 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3399 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3401 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3402 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3404 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3405 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3406 HOST_WIDE_INT off_low = offset & (ysize - 1);
3407 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3408 offset = (xsize - ysize - off_high) | off_low;
3410 /* The XMODE value can be seen as a vector of NREGS_XMODE
3411 values. The subreg must represent a lowpart of given field.
3412 Compute what field it is. */
3413 offset_adj = offset;
3414 offset_adj -= subreg_lowpart_offset (ymode,
3415 mode_for_size (GET_MODE_BITSIZE (xmode)
3416 / nregs_xmode,
3417 MODE_INT, 0));
3419 /* Size of ymode must not be greater than the size of xmode. */
3420 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3421 gcc_assert (mode_multiple != 0);
3423 y_offset = offset / GET_MODE_SIZE (ymode);
3424 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3425 nregs_multiple = nregs_xmode / nregs_ymode;
3427 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3428 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3430 if (!rknown)
3432 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3433 rknown = true;
3435 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3436 info->nregs = nregs_ymode;
3439 /* This function returns the regno offset of a subreg expression.
3440 xregno - A regno of an inner hard subreg_reg (or what will become one).
3441 xmode - The mode of xregno.
3442 offset - The byte offset.
3443 ymode - The mode of a top level SUBREG (or what may become one).
3444 RETURN - The regno offset which would be used. */
3445 unsigned int
3446 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3447 unsigned int offset, enum machine_mode ymode)
3449 struct subreg_info info;
3450 subreg_get_info (xregno, xmode, offset, ymode, &info);
3451 return info.offset;
3454 /* This function returns true when the offset is representable via
3455 subreg_offset in the given regno.
3456 xregno - A regno of an inner hard subreg_reg (or what will become one).
3457 xmode - The mode of xregno.
3458 offset - The byte offset.
3459 ymode - The mode of a top level SUBREG (or what may become one).
3460 RETURN - Whether the offset is representable. */
3461 bool
3462 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3463 unsigned int offset, enum machine_mode ymode)
3465 struct subreg_info info;
3466 subreg_get_info (xregno, xmode, offset, ymode, &info);
3467 return info.representable_p;
3470 /* Return the number of a YMODE register to which
3472 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3474 can be simplified. Return -1 if the subreg can't be simplified.
3476 XREGNO is a hard register number. */
3479 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3480 unsigned int offset, enum machine_mode ymode)
3482 struct subreg_info info;
3483 unsigned int yregno;
3485 #ifdef CANNOT_CHANGE_MODE_CLASS
3486 /* Give the backend a chance to disallow the mode change. */
3487 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3488 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3489 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3490 return -1;
3491 #endif
3493 /* We shouldn't simplify stack-related registers. */
3494 if ((!reload_completed || frame_pointer_needed)
3495 && xregno == FRAME_POINTER_REGNUM)
3496 return -1;
3498 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3499 && xregno == ARG_POINTER_REGNUM)
3500 return -1;
3502 if (xregno == STACK_POINTER_REGNUM)
3503 return -1;
3505 /* Try to get the register offset. */
3506 subreg_get_info (xregno, xmode, offset, ymode, &info);
3507 if (!info.representable_p)
3508 return -1;
3510 /* Make sure that the offsetted register value is in range. */
3511 yregno = xregno + info.offset;
3512 if (!HARD_REGISTER_NUM_P (yregno))
3513 return -1;
3515 /* See whether (reg:YMODE YREGNO) is valid.
3517 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3518 This is a kludge to work around how complex FP arguments are passed
3519 on IA-64 and should be fixed. See PR target/49226. */
3520 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3521 && HARD_REGNO_MODE_OK (xregno, xmode))
3522 return -1;
3524 return (int) yregno;
3527 /* Return the final regno that a subreg expression refers to. */
3528 unsigned int
3529 subreg_regno (const_rtx x)
3531 unsigned int ret;
3532 rtx subreg = SUBREG_REG (x);
3533 int regno = REGNO (subreg);
3535 ret = regno + subreg_regno_offset (regno,
3536 GET_MODE (subreg),
3537 SUBREG_BYTE (x),
3538 GET_MODE (x));
3539 return ret;
3543 /* Return the number of registers that a subreg expression refers
3544 to. */
3545 unsigned int
3546 subreg_nregs (const_rtx x)
3548 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3551 /* Return the number of registers that a subreg REG with REGNO
3552 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3553 changed so that the regno can be passed in. */
3555 unsigned int
3556 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3558 struct subreg_info info;
3559 rtx subreg = SUBREG_REG (x);
3561 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3562 &info);
3563 return info.nregs;
3567 struct parms_set_data
3569 int nregs;
3570 HARD_REG_SET regs;
3573 /* Helper function for noticing stores to parameter registers. */
3574 static void
3575 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3577 struct parms_set_data *const d = (struct parms_set_data *) data;
3578 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3579 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3581 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3582 d->nregs--;
3586 /* Look backward for first parameter to be loaded.
3587 Note that loads of all parameters will not necessarily be
3588 found if CSE has eliminated some of them (e.g., an argument
3589 to the outer function is passed down as a parameter).
3590 Do not skip BOUNDARY. */
3592 find_first_parameter_load (rtx call_insn, rtx boundary)
3594 struct parms_set_data parm;
3595 rtx p, before, first_set;
3597 /* Since different machines initialize their parameter registers
3598 in different orders, assume nothing. Collect the set of all
3599 parameter registers. */
3600 CLEAR_HARD_REG_SET (parm.regs);
3601 parm.nregs = 0;
3602 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3603 if (GET_CODE (XEXP (p, 0)) == USE
3604 && REG_P (XEXP (XEXP (p, 0), 0)))
3606 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3608 /* We only care about registers which can hold function
3609 arguments. */
3610 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3611 continue;
3613 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3614 parm.nregs++;
3616 before = call_insn;
3617 first_set = call_insn;
3619 /* Search backward for the first set of a register in this set. */
3620 while (parm.nregs && before != boundary)
3622 before = PREV_INSN (before);
3624 /* It is possible that some loads got CSEed from one call to
3625 another. Stop in that case. */
3626 if (CALL_P (before))
3627 break;
3629 /* Our caller needs either ensure that we will find all sets
3630 (in case code has not been optimized yet), or take care
3631 for possible labels in a way by setting boundary to preceding
3632 CODE_LABEL. */
3633 if (LABEL_P (before))
3635 gcc_assert (before == boundary);
3636 break;
3639 if (INSN_P (before))
3641 int nregs_old = parm.nregs;
3642 note_stores (PATTERN (before), parms_set, &parm);
3643 /* If we found something that did not set a parameter reg,
3644 we're done. Do not keep going, as that might result
3645 in hoisting an insn before the setting of a pseudo
3646 that is used by the hoisted insn. */
3647 if (nregs_old != parm.nregs)
3648 first_set = before;
3649 else
3650 break;
3653 return first_set;
3656 /* Return true if we should avoid inserting code between INSN and preceding
3657 call instruction. */
3659 bool
3660 keep_with_call_p (const_rtx insn)
3662 rtx set;
3664 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3666 if (REG_P (SET_DEST (set))
3667 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3668 && fixed_regs[REGNO (SET_DEST (set))]
3669 && general_operand (SET_SRC (set), VOIDmode))
3670 return true;
3671 if (REG_P (SET_SRC (set))
3672 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3673 && REG_P (SET_DEST (set))
3674 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3675 return true;
3676 /* There may be a stack pop just after the call and before the store
3677 of the return register. Search for the actual store when deciding
3678 if we can break or not. */
3679 if (SET_DEST (set) == stack_pointer_rtx)
3681 /* This CONST_CAST is okay because next_nonnote_insn just
3682 returns its argument and we assign it to a const_rtx
3683 variable. */
3684 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3685 if (i2 && keep_with_call_p (i2))
3686 return true;
3689 return false;
3692 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3693 to non-complex jumps. That is, direct unconditional, conditional,
3694 and tablejumps, but not computed jumps or returns. It also does
3695 not apply to the fallthru case of a conditional jump. */
3697 bool
3698 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3700 rtx tmp = JUMP_LABEL (jump_insn);
3702 if (label == tmp)
3703 return true;
3705 if (tablejump_p (jump_insn, NULL, &tmp))
3707 rtvec vec = XVEC (PATTERN (tmp),
3708 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3709 int i, veclen = GET_NUM_ELEM (vec);
3711 for (i = 0; i < veclen; ++i)
3712 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3713 return true;
3716 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3717 return true;
3719 return false;
3723 /* Return an estimate of the cost of computing rtx X.
3724 One use is in cse, to decide which expression to keep in the hash table.
3725 Another is in rtl generation, to pick the cheapest way to multiply.
3726 Other uses like the latter are expected in the future.
3728 X appears as operand OPNO in an expression with code OUTER_CODE.
3729 SPEED specifies whether costs optimized for speed or size should
3730 be returned. */
3733 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3735 int i, j;
3736 enum rtx_code code;
3737 const char *fmt;
3738 int total;
3740 if (x == 0)
3741 return 0;
3743 /* Compute the default costs of certain things.
3744 Note that targetm.rtx_costs can override the defaults. */
3746 code = GET_CODE (x);
3747 switch (code)
3749 case MULT:
3750 total = COSTS_N_INSNS (5);
3751 break;
3752 case DIV:
3753 case UDIV:
3754 case MOD:
3755 case UMOD:
3756 total = COSTS_N_INSNS (7);
3757 break;
3758 case USE:
3759 /* Used in combine.c as a marker. */
3760 total = 0;
3761 break;
3762 default:
3763 total = COSTS_N_INSNS (1);
3766 switch (code)
3768 case REG:
3769 return 0;
3771 case SUBREG:
3772 total = 0;
3773 /* If we can't tie these modes, make this expensive. The larger
3774 the mode, the more expensive it is. */
3775 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3776 return COSTS_N_INSNS (2
3777 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3778 break;
3780 default:
3781 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3782 return total;
3783 break;
3786 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3787 which is already in total. */
3789 fmt = GET_RTX_FORMAT (code);
3790 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3791 if (fmt[i] == 'e')
3792 total += rtx_cost (XEXP (x, i), code, i, speed);
3793 else if (fmt[i] == 'E')
3794 for (j = 0; j < XVECLEN (x, i); j++)
3795 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3797 return total;
3800 /* Fill in the structure C with information about both speed and size rtx
3801 costs for X, which is operand OPNO in an expression with code OUTER. */
3803 void
3804 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3805 struct full_rtx_costs *c)
3807 c->speed = rtx_cost (x, outer, opno, true);
3808 c->size = rtx_cost (x, outer, opno, false);
3812 /* Return cost of address expression X.
3813 Expect that X is properly formed address reference.
3815 SPEED parameter specify whether costs optimized for speed or size should
3816 be returned. */
3819 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3821 /* We may be asked for cost of various unusual addresses, such as operands
3822 of push instruction. It is not worthwhile to complicate writing
3823 of the target hook by such cases. */
3825 if (!memory_address_addr_space_p (mode, x, as))
3826 return 1000;
3828 return targetm.address_cost (x, speed);
3831 /* If the target doesn't override, compute the cost as with arithmetic. */
3834 default_address_cost (rtx x, bool speed)
3836 return rtx_cost (x, MEM, 0, speed);
3840 unsigned HOST_WIDE_INT
3841 nonzero_bits (const_rtx x, enum machine_mode mode)
3843 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3846 unsigned int
3847 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3849 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3852 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3853 It avoids exponential behavior in nonzero_bits1 when X has
3854 identical subexpressions on the first or the second level. */
3856 static unsigned HOST_WIDE_INT
3857 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3858 enum machine_mode known_mode,
3859 unsigned HOST_WIDE_INT known_ret)
3861 if (x == known_x && mode == known_mode)
3862 return known_ret;
3864 /* Try to find identical subexpressions. If found call
3865 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3866 precomputed value for the subexpression as KNOWN_RET. */
3868 if (ARITHMETIC_P (x))
3870 rtx x0 = XEXP (x, 0);
3871 rtx x1 = XEXP (x, 1);
3873 /* Check the first level. */
3874 if (x0 == x1)
3875 return nonzero_bits1 (x, mode, x0, mode,
3876 cached_nonzero_bits (x0, mode, known_x,
3877 known_mode, known_ret));
3879 /* Check the second level. */
3880 if (ARITHMETIC_P (x0)
3881 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3882 return nonzero_bits1 (x, mode, x1, mode,
3883 cached_nonzero_bits (x1, mode, known_x,
3884 known_mode, known_ret));
3886 if (ARITHMETIC_P (x1)
3887 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3888 return nonzero_bits1 (x, mode, x0, mode,
3889 cached_nonzero_bits (x0, mode, known_x,
3890 known_mode, known_ret));
3893 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3896 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3897 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3898 is less useful. We can't allow both, because that results in exponential
3899 run time recursion. There is a nullstone testcase that triggered
3900 this. This macro avoids accidental uses of num_sign_bit_copies. */
3901 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3903 /* Given an expression, X, compute which bits in X can be nonzero.
3904 We don't care about bits outside of those defined in MODE.
3906 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3907 an arithmetic operation, we can do better. */
3909 static unsigned HOST_WIDE_INT
3910 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3911 enum machine_mode known_mode,
3912 unsigned HOST_WIDE_INT known_ret)
3914 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3915 unsigned HOST_WIDE_INT inner_nz;
3916 enum rtx_code code;
3917 enum machine_mode inner_mode;
3918 unsigned int mode_width = GET_MODE_PRECISION (mode);
3920 /* For floating-point and vector values, assume all bits are needed. */
3921 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3922 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3923 return nonzero;
3925 /* If X is wider than MODE, use its mode instead. */
3926 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
3928 mode = GET_MODE (x);
3929 nonzero = GET_MODE_MASK (mode);
3930 mode_width = GET_MODE_PRECISION (mode);
3933 if (mode_width > HOST_BITS_PER_WIDE_INT)
3934 /* Our only callers in this case look for single bit values. So
3935 just return the mode mask. Those tests will then be false. */
3936 return nonzero;
3938 #ifndef WORD_REGISTER_OPERATIONS
3939 /* If MODE is wider than X, but both are a single word for both the host
3940 and target machines, we can compute this from which bits of the
3941 object might be nonzero in its own mode, taking into account the fact
3942 that on many CISC machines, accessing an object in a wider mode
3943 causes the high-order bits to become undefined. So they are
3944 not known to be zero. */
3946 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3947 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
3948 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3949 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
3951 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3952 known_x, known_mode, known_ret);
3953 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3954 return nonzero;
3956 #endif
3958 code = GET_CODE (x);
3959 switch (code)
3961 case REG:
3962 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3963 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3964 all the bits above ptr_mode are known to be zero. */
3965 /* As we do not know which address space the pointer is refering to,
3966 we can do this only if the target does not support different pointer
3967 or address modes depending on the address space. */
3968 if (target_default_pointer_address_modes_p ()
3969 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3970 && REG_POINTER (x))
3971 nonzero &= GET_MODE_MASK (ptr_mode);
3972 #endif
3974 /* Include declared information about alignment of pointers. */
3975 /* ??? We don't properly preserve REG_POINTER changes across
3976 pointer-to-integer casts, so we can't trust it except for
3977 things that we know must be pointers. See execute/960116-1.c. */
3978 if ((x == stack_pointer_rtx
3979 || x == frame_pointer_rtx
3980 || x == arg_pointer_rtx)
3981 && REGNO_POINTER_ALIGN (REGNO (x)))
3983 unsigned HOST_WIDE_INT alignment
3984 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3986 #ifdef PUSH_ROUNDING
3987 /* If PUSH_ROUNDING is defined, it is possible for the
3988 stack to be momentarily aligned only to that amount,
3989 so we pick the least alignment. */
3990 if (x == stack_pointer_rtx && PUSH_ARGS)
3991 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3992 alignment);
3993 #endif
3995 nonzero &= ~(alignment - 1);
3999 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4000 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4001 known_mode, known_ret,
4002 &nonzero_for_hook);
4004 if (new_rtx)
4005 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4006 known_mode, known_ret);
4008 return nonzero_for_hook;
4011 case CONST_INT:
4012 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4013 /* If X is negative in MODE, sign-extend the value. */
4014 if (INTVAL (x) > 0
4015 && mode_width < BITS_PER_WORD
4016 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4017 != 0)
4018 return UINTVAL (x) | ((unsigned HOST_WIDE_INT) (-1) << mode_width);
4019 #endif
4021 return UINTVAL (x);
4023 case MEM:
4024 #ifdef LOAD_EXTEND_OP
4025 /* In many, if not most, RISC machines, reading a byte from memory
4026 zeros the rest of the register. Noticing that fact saves a lot
4027 of extra zero-extends. */
4028 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4029 nonzero &= GET_MODE_MASK (GET_MODE (x));
4030 #endif
4031 break;
4033 case EQ: case NE:
4034 case UNEQ: case LTGT:
4035 case GT: case GTU: case UNGT:
4036 case LT: case LTU: case UNLT:
4037 case GE: case GEU: case UNGE:
4038 case LE: case LEU: case UNLE:
4039 case UNORDERED: case ORDERED:
4040 /* If this produces an integer result, we know which bits are set.
4041 Code here used to clear bits outside the mode of X, but that is
4042 now done above. */
4043 /* Mind that MODE is the mode the caller wants to look at this
4044 operation in, and not the actual operation mode. We can wind
4045 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4046 that describes the results of a vector compare. */
4047 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4048 && mode_width <= HOST_BITS_PER_WIDE_INT)
4049 nonzero = STORE_FLAG_VALUE;
4050 break;
4052 case NEG:
4053 #if 0
4054 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4055 and num_sign_bit_copies. */
4056 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4057 == GET_MODE_PRECISION (GET_MODE (x)))
4058 nonzero = 1;
4059 #endif
4061 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4062 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4063 break;
4065 case ABS:
4066 #if 0
4067 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4068 and num_sign_bit_copies. */
4069 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4070 == GET_MODE_PRECISION (GET_MODE (x)))
4071 nonzero = 1;
4072 #endif
4073 break;
4075 case TRUNCATE:
4076 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4077 known_x, known_mode, known_ret)
4078 & GET_MODE_MASK (mode));
4079 break;
4081 case ZERO_EXTEND:
4082 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4083 known_x, known_mode, known_ret);
4084 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4085 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4086 break;
4088 case SIGN_EXTEND:
4089 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4090 Otherwise, show all the bits in the outer mode but not the inner
4091 may be nonzero. */
4092 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4093 known_x, known_mode, known_ret);
4094 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4096 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4097 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4098 inner_nz |= (GET_MODE_MASK (mode)
4099 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4102 nonzero &= inner_nz;
4103 break;
4105 case AND:
4106 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4107 known_x, known_mode, known_ret)
4108 & cached_nonzero_bits (XEXP (x, 1), mode,
4109 known_x, known_mode, known_ret);
4110 break;
4112 case XOR: case IOR:
4113 case UMIN: case UMAX: case SMIN: case SMAX:
4115 unsigned HOST_WIDE_INT nonzero0
4116 = cached_nonzero_bits (XEXP (x, 0), mode,
4117 known_x, known_mode, known_ret);
4119 /* Don't call nonzero_bits for the second time if it cannot change
4120 anything. */
4121 if ((nonzero & nonzero0) != nonzero)
4122 nonzero &= nonzero0
4123 | cached_nonzero_bits (XEXP (x, 1), mode,
4124 known_x, known_mode, known_ret);
4126 break;
4128 case PLUS: case MINUS:
4129 case MULT:
4130 case DIV: case UDIV:
4131 case MOD: case UMOD:
4132 /* We can apply the rules of arithmetic to compute the number of
4133 high- and low-order zero bits of these operations. We start by
4134 computing the width (position of the highest-order nonzero bit)
4135 and the number of low-order zero bits for each value. */
4137 unsigned HOST_WIDE_INT nz0
4138 = cached_nonzero_bits (XEXP (x, 0), mode,
4139 known_x, known_mode, known_ret);
4140 unsigned HOST_WIDE_INT nz1
4141 = cached_nonzero_bits (XEXP (x, 1), mode,
4142 known_x, known_mode, known_ret);
4143 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4144 int width0 = floor_log2 (nz0) + 1;
4145 int width1 = floor_log2 (nz1) + 1;
4146 int low0 = floor_log2 (nz0 & -nz0);
4147 int low1 = floor_log2 (nz1 & -nz1);
4148 unsigned HOST_WIDE_INT op0_maybe_minusp
4149 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4150 unsigned HOST_WIDE_INT op1_maybe_minusp
4151 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4152 unsigned int result_width = mode_width;
4153 int result_low = 0;
4155 switch (code)
4157 case PLUS:
4158 result_width = MAX (width0, width1) + 1;
4159 result_low = MIN (low0, low1);
4160 break;
4161 case MINUS:
4162 result_low = MIN (low0, low1);
4163 break;
4164 case MULT:
4165 result_width = width0 + width1;
4166 result_low = low0 + low1;
4167 break;
4168 case DIV:
4169 if (width1 == 0)
4170 break;
4171 if (!op0_maybe_minusp && !op1_maybe_minusp)
4172 result_width = width0;
4173 break;
4174 case UDIV:
4175 if (width1 == 0)
4176 break;
4177 result_width = width0;
4178 break;
4179 case MOD:
4180 if (width1 == 0)
4181 break;
4182 if (!op0_maybe_minusp && !op1_maybe_minusp)
4183 result_width = MIN (width0, width1);
4184 result_low = MIN (low0, low1);
4185 break;
4186 case UMOD:
4187 if (width1 == 0)
4188 break;
4189 result_width = MIN (width0, width1);
4190 result_low = MIN (low0, low1);
4191 break;
4192 default:
4193 gcc_unreachable ();
4196 if (result_width < mode_width)
4197 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4199 if (result_low > 0)
4200 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4202 break;
4204 case ZERO_EXTRACT:
4205 if (CONST_INT_P (XEXP (x, 1))
4206 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4207 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4208 break;
4210 case SUBREG:
4211 /* If this is a SUBREG formed for a promoted variable that has
4212 been zero-extended, we know that at least the high-order bits
4213 are zero, though others might be too. */
4215 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4216 nonzero = GET_MODE_MASK (GET_MODE (x))
4217 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4218 known_x, known_mode, known_ret);
4220 inner_mode = GET_MODE (SUBREG_REG (x));
4221 /* If the inner mode is a single word for both the host and target
4222 machines, we can compute this from which bits of the inner
4223 object might be nonzero. */
4224 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4225 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4227 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4228 known_x, known_mode, known_ret);
4230 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4231 /* If this is a typical RISC machine, we only have to worry
4232 about the way loads are extended. */
4233 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4234 ? val_signbit_known_set_p (inner_mode, nonzero)
4235 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4236 || !MEM_P (SUBREG_REG (x)))
4237 #endif
4239 /* On many CISC machines, accessing an object in a wider mode
4240 causes the high-order bits to become undefined. So they are
4241 not known to be zero. */
4242 if (GET_MODE_PRECISION (GET_MODE (x))
4243 > GET_MODE_PRECISION (inner_mode))
4244 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4245 & ~GET_MODE_MASK (inner_mode));
4248 break;
4250 case ASHIFTRT:
4251 case LSHIFTRT:
4252 case ASHIFT:
4253 case ROTATE:
4254 /* The nonzero bits are in two classes: any bits within MODE
4255 that aren't in GET_MODE (x) are always significant. The rest of the
4256 nonzero bits are those that are significant in the operand of
4257 the shift when shifted the appropriate number of bits. This
4258 shows that high-order bits are cleared by the right shift and
4259 low-order bits by left shifts. */
4260 if (CONST_INT_P (XEXP (x, 1))
4261 && INTVAL (XEXP (x, 1)) >= 0
4262 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4263 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4265 enum machine_mode inner_mode = GET_MODE (x);
4266 unsigned int width = GET_MODE_PRECISION (inner_mode);
4267 int count = INTVAL (XEXP (x, 1));
4268 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4269 unsigned HOST_WIDE_INT op_nonzero
4270 = cached_nonzero_bits (XEXP (x, 0), mode,
4271 known_x, known_mode, known_ret);
4272 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4273 unsigned HOST_WIDE_INT outer = 0;
4275 if (mode_width > width)
4276 outer = (op_nonzero & nonzero & ~mode_mask);
4278 if (code == LSHIFTRT)
4279 inner >>= count;
4280 else if (code == ASHIFTRT)
4282 inner >>= count;
4284 /* If the sign bit may have been nonzero before the shift, we
4285 need to mark all the places it could have been copied to
4286 by the shift as possibly nonzero. */
4287 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4288 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4289 << (width - count);
4291 else if (code == ASHIFT)
4292 inner <<= count;
4293 else
4294 inner = ((inner << (count % width)
4295 | (inner >> (width - (count % width)))) & mode_mask);
4297 nonzero &= (outer | inner);
4299 break;
4301 case FFS:
4302 case POPCOUNT:
4303 /* This is at most the number of bits in the mode. */
4304 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4305 break;
4307 case CLZ:
4308 /* If CLZ has a known value at zero, then the nonzero bits are
4309 that value, plus the number of bits in the mode minus one. */
4310 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4311 nonzero
4312 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4313 else
4314 nonzero = -1;
4315 break;
4317 case CTZ:
4318 /* If CTZ has a known value at zero, then the nonzero bits are
4319 that value, plus the number of bits in the mode minus one. */
4320 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4321 nonzero
4322 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4323 else
4324 nonzero = -1;
4325 break;
4327 case CLRSB:
4328 /* This is at most the number of bits in the mode minus 1. */
4329 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4330 break;
4332 case PARITY:
4333 nonzero = 1;
4334 break;
4336 case IF_THEN_ELSE:
4338 unsigned HOST_WIDE_INT nonzero_true
4339 = cached_nonzero_bits (XEXP (x, 1), mode,
4340 known_x, known_mode, known_ret);
4342 /* Don't call nonzero_bits for the second time if it cannot change
4343 anything. */
4344 if ((nonzero & nonzero_true) != nonzero)
4345 nonzero &= nonzero_true
4346 | cached_nonzero_bits (XEXP (x, 2), mode,
4347 known_x, known_mode, known_ret);
4349 break;
4351 default:
4352 break;
4355 return nonzero;
4358 /* See the macro definition above. */
4359 #undef cached_num_sign_bit_copies
4362 /* The function cached_num_sign_bit_copies is a wrapper around
4363 num_sign_bit_copies1. It avoids exponential behavior in
4364 num_sign_bit_copies1 when X has identical subexpressions on the
4365 first or the second level. */
4367 static unsigned int
4368 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4369 enum machine_mode known_mode,
4370 unsigned int known_ret)
4372 if (x == known_x && mode == known_mode)
4373 return known_ret;
4375 /* Try to find identical subexpressions. If found call
4376 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4377 the precomputed value for the subexpression as KNOWN_RET. */
4379 if (ARITHMETIC_P (x))
4381 rtx x0 = XEXP (x, 0);
4382 rtx x1 = XEXP (x, 1);
4384 /* Check the first level. */
4385 if (x0 == x1)
4386 return
4387 num_sign_bit_copies1 (x, mode, x0, mode,
4388 cached_num_sign_bit_copies (x0, mode, known_x,
4389 known_mode,
4390 known_ret));
4392 /* Check the second level. */
4393 if (ARITHMETIC_P (x0)
4394 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4395 return
4396 num_sign_bit_copies1 (x, mode, x1, mode,
4397 cached_num_sign_bit_copies (x1, mode, known_x,
4398 known_mode,
4399 known_ret));
4401 if (ARITHMETIC_P (x1)
4402 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4403 return
4404 num_sign_bit_copies1 (x, mode, x0, mode,
4405 cached_num_sign_bit_copies (x0, mode, known_x,
4406 known_mode,
4407 known_ret));
4410 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4413 /* Return the number of bits at the high-order end of X that are known to
4414 be equal to the sign bit. X will be used in mode MODE; if MODE is
4415 VOIDmode, X will be used in its own mode. The returned value will always
4416 be between 1 and the number of bits in MODE. */
4418 static unsigned int
4419 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4420 enum machine_mode known_mode,
4421 unsigned int known_ret)
4423 enum rtx_code code = GET_CODE (x);
4424 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4425 int num0, num1, result;
4426 unsigned HOST_WIDE_INT nonzero;
4428 /* If we weren't given a mode, use the mode of X. If the mode is still
4429 VOIDmode, we don't know anything. Likewise if one of the modes is
4430 floating-point. */
4432 if (mode == VOIDmode)
4433 mode = GET_MODE (x);
4435 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4436 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4437 return 1;
4439 /* For a smaller object, just ignore the high bits. */
4440 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4442 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4443 known_x, known_mode, known_ret);
4444 return MAX (1,
4445 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4448 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4450 #ifndef WORD_REGISTER_OPERATIONS
4451 /* If this machine does not do all register operations on the entire
4452 register and MODE is wider than the mode of X, we can say nothing
4453 at all about the high-order bits. */
4454 return 1;
4455 #else
4456 /* Likewise on machines that do, if the mode of the object is smaller
4457 than a word and loads of that size don't sign extend, we can say
4458 nothing about the high order bits. */
4459 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4460 #ifdef LOAD_EXTEND_OP
4461 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4462 #endif
4464 return 1;
4465 #endif
4468 switch (code)
4470 case REG:
4472 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4473 /* If pointers extend signed and this is a pointer in Pmode, say that
4474 all the bits above ptr_mode are known to be sign bit copies. */
4475 /* As we do not know which address space the pointer is refering to,
4476 we can do this only if the target does not support different pointer
4477 or address modes depending on the address space. */
4478 if (target_default_pointer_address_modes_p ()
4479 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4480 && mode == Pmode && REG_POINTER (x))
4481 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4482 #endif
4485 unsigned int copies_for_hook = 1, copies = 1;
4486 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4487 known_mode, known_ret,
4488 &copies_for_hook);
4490 if (new_rtx)
4491 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4492 known_mode, known_ret);
4494 if (copies > 1 || copies_for_hook > 1)
4495 return MAX (copies, copies_for_hook);
4497 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4499 break;
4501 case MEM:
4502 #ifdef LOAD_EXTEND_OP
4503 /* Some RISC machines sign-extend all loads of smaller than a word. */
4504 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4505 return MAX (1, ((int) bitwidth
4506 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4507 #endif
4508 break;
4510 case CONST_INT:
4511 /* If the constant is negative, take its 1's complement and remask.
4512 Then see how many zero bits we have. */
4513 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4514 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4515 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4516 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4518 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4520 case SUBREG:
4521 /* If this is a SUBREG for a promoted object that is sign-extended
4522 and we are looking at it in a wider mode, we know that at least the
4523 high-order bits are known to be sign bit copies. */
4525 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4527 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4528 known_x, known_mode, known_ret);
4529 return MAX ((int) bitwidth
4530 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4531 num0);
4534 /* For a smaller object, just ignore the high bits. */
4535 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4537 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4538 known_x, known_mode, known_ret);
4539 return MAX (1, (num0
4540 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4541 - bitwidth)));
4544 #ifdef WORD_REGISTER_OPERATIONS
4545 #ifdef LOAD_EXTEND_OP
4546 /* For paradoxical SUBREGs on machines where all register operations
4547 affect the entire register, just look inside. Note that we are
4548 passing MODE to the recursive call, so the number of sign bit copies
4549 will remain relative to that mode, not the inner mode. */
4551 /* This works only if loads sign extend. Otherwise, if we get a
4552 reload for the inner part, it may be loaded from the stack, and
4553 then we lose all sign bit copies that existed before the store
4554 to the stack. */
4556 if (paradoxical_subreg_p (x)
4557 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4558 && MEM_P (SUBREG_REG (x)))
4559 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4560 known_x, known_mode, known_ret);
4561 #endif
4562 #endif
4563 break;
4565 case SIGN_EXTRACT:
4566 if (CONST_INT_P (XEXP (x, 1)))
4567 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4568 break;
4570 case SIGN_EXTEND:
4571 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4572 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4573 known_x, known_mode, known_ret));
4575 case TRUNCATE:
4576 /* For a smaller object, just ignore the high bits. */
4577 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4578 known_x, known_mode, known_ret);
4579 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4580 - bitwidth)));
4582 case NOT:
4583 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4584 known_x, known_mode, known_ret);
4586 case ROTATE: case ROTATERT:
4587 /* If we are rotating left by a number of bits less than the number
4588 of sign bit copies, we can just subtract that amount from the
4589 number. */
4590 if (CONST_INT_P (XEXP (x, 1))
4591 && INTVAL (XEXP (x, 1)) >= 0
4592 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4594 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4595 known_x, known_mode, known_ret);
4596 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4597 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4599 break;
4601 case NEG:
4602 /* In general, this subtracts one sign bit copy. But if the value
4603 is known to be positive, the number of sign bit copies is the
4604 same as that of the input. Finally, if the input has just one bit
4605 that might be nonzero, all the bits are copies of the sign bit. */
4606 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4607 known_x, known_mode, known_ret);
4608 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4609 return num0 > 1 ? num0 - 1 : 1;
4611 nonzero = nonzero_bits (XEXP (x, 0), mode);
4612 if (nonzero == 1)
4613 return bitwidth;
4615 if (num0 > 1
4616 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4617 num0--;
4619 return num0;
4621 case IOR: case AND: case XOR:
4622 case SMIN: case SMAX: case UMIN: case UMAX:
4623 /* Logical operations will preserve the number of sign-bit copies.
4624 MIN and MAX operations always return one of the operands. */
4625 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4626 known_x, known_mode, known_ret);
4627 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4628 known_x, known_mode, known_ret);
4630 /* If num1 is clearing some of the top bits then regardless of
4631 the other term, we are guaranteed to have at least that many
4632 high-order zero bits. */
4633 if (code == AND
4634 && num1 > 1
4635 && bitwidth <= HOST_BITS_PER_WIDE_INT
4636 && CONST_INT_P (XEXP (x, 1))
4637 && (UINTVAL (XEXP (x, 1))
4638 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4639 return num1;
4641 /* Similarly for IOR when setting high-order bits. */
4642 if (code == IOR
4643 && num1 > 1
4644 && bitwidth <= HOST_BITS_PER_WIDE_INT
4645 && CONST_INT_P (XEXP (x, 1))
4646 && (UINTVAL (XEXP (x, 1))
4647 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4648 return num1;
4650 return MIN (num0, num1);
4652 case PLUS: case MINUS:
4653 /* For addition and subtraction, we can have a 1-bit carry. However,
4654 if we are subtracting 1 from a positive number, there will not
4655 be such a carry. Furthermore, if the positive number is known to
4656 be 0 or 1, we know the result is either -1 or 0. */
4658 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4659 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4661 nonzero = nonzero_bits (XEXP (x, 0), mode);
4662 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4663 return (nonzero == 1 || nonzero == 0 ? bitwidth
4664 : bitwidth - floor_log2 (nonzero) - 1);
4667 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4668 known_x, known_mode, known_ret);
4669 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4670 known_x, known_mode, known_ret);
4671 result = MAX (1, MIN (num0, num1) - 1);
4673 return result;
4675 case MULT:
4676 /* The number of bits of the product is the sum of the number of
4677 bits of both terms. However, unless one of the terms if known
4678 to be positive, we must allow for an additional bit since negating
4679 a negative number can remove one sign bit copy. */
4681 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4682 known_x, known_mode, known_ret);
4683 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4684 known_x, known_mode, known_ret);
4686 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4687 if (result > 0
4688 && (bitwidth > HOST_BITS_PER_WIDE_INT
4689 || (((nonzero_bits (XEXP (x, 0), mode)
4690 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4691 && ((nonzero_bits (XEXP (x, 1), mode)
4692 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4693 != 0))))
4694 result--;
4696 return MAX (1, result);
4698 case UDIV:
4699 /* The result must be <= the first operand. If the first operand
4700 has the high bit set, we know nothing about the number of sign
4701 bit copies. */
4702 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4703 return 1;
4704 else if ((nonzero_bits (XEXP (x, 0), mode)
4705 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4706 return 1;
4707 else
4708 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4709 known_x, known_mode, known_ret);
4711 case UMOD:
4712 /* The result must be <= the second operand. If the second operand
4713 has (or just might have) the high bit set, we know nothing about
4714 the number of sign bit copies. */
4715 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4716 return 1;
4717 else if ((nonzero_bits (XEXP (x, 1), mode)
4718 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4719 return 1;
4720 else
4721 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4722 known_x, known_mode, known_ret);
4724 case DIV:
4725 /* Similar to unsigned division, except that we have to worry about
4726 the case where the divisor is negative, in which case we have
4727 to add 1. */
4728 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4729 known_x, known_mode, known_ret);
4730 if (result > 1
4731 && (bitwidth > HOST_BITS_PER_WIDE_INT
4732 || (nonzero_bits (XEXP (x, 1), mode)
4733 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4734 result--;
4736 return result;
4738 case MOD:
4739 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4740 known_x, known_mode, known_ret);
4741 if (result > 1
4742 && (bitwidth > HOST_BITS_PER_WIDE_INT
4743 || (nonzero_bits (XEXP (x, 1), mode)
4744 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4745 result--;
4747 return result;
4749 case ASHIFTRT:
4750 /* Shifts by a constant add to the number of bits equal to the
4751 sign bit. */
4752 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4753 known_x, known_mode, known_ret);
4754 if (CONST_INT_P (XEXP (x, 1))
4755 && INTVAL (XEXP (x, 1)) > 0
4756 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4757 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4759 return num0;
4761 case ASHIFT:
4762 /* Left shifts destroy copies. */
4763 if (!CONST_INT_P (XEXP (x, 1))
4764 || INTVAL (XEXP (x, 1)) < 0
4765 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4766 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4767 return 1;
4769 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4770 known_x, known_mode, known_ret);
4771 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4773 case IF_THEN_ELSE:
4774 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4775 known_x, known_mode, known_ret);
4776 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4777 known_x, known_mode, known_ret);
4778 return MIN (num0, num1);
4780 case EQ: case NE: case GE: case GT: case LE: case LT:
4781 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4782 case GEU: case GTU: case LEU: case LTU:
4783 case UNORDERED: case ORDERED:
4784 /* If the constant is negative, take its 1's complement and remask.
4785 Then see how many zero bits we have. */
4786 nonzero = STORE_FLAG_VALUE;
4787 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4788 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4789 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4791 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4793 default:
4794 break;
4797 /* If we haven't been able to figure it out by one of the above rules,
4798 see if some of the high-order bits are known to be zero. If so,
4799 count those bits and return one less than that amount. If we can't
4800 safely compute the mask for this mode, always return BITWIDTH. */
4802 bitwidth = GET_MODE_PRECISION (mode);
4803 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4804 return 1;
4806 nonzero = nonzero_bits (x, mode);
4807 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4808 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4811 /* Calculate the rtx_cost of a single instruction. A return value of
4812 zero indicates an instruction pattern without a known cost. */
4815 insn_rtx_cost (rtx pat, bool speed)
4817 int i, cost;
4818 rtx set;
4820 /* Extract the single set rtx from the instruction pattern.
4821 We can't use single_set since we only have the pattern. */
4822 if (GET_CODE (pat) == SET)
4823 set = pat;
4824 else if (GET_CODE (pat) == PARALLEL)
4826 set = NULL_RTX;
4827 for (i = 0; i < XVECLEN (pat, 0); i++)
4829 rtx x = XVECEXP (pat, 0, i);
4830 if (GET_CODE (x) == SET)
4832 if (set)
4833 return 0;
4834 set = x;
4837 if (!set)
4838 return 0;
4840 else
4841 return 0;
4843 cost = set_src_cost (SET_SRC (set), speed);
4844 return cost > 0 ? cost : COSTS_N_INSNS (1);
4847 /* Given an insn INSN and condition COND, return the condition in a
4848 canonical form to simplify testing by callers. Specifically:
4850 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4851 (2) Both operands will be machine operands; (cc0) will have been replaced.
4852 (3) If an operand is a constant, it will be the second operand.
4853 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4854 for GE, GEU, and LEU.
4856 If the condition cannot be understood, or is an inequality floating-point
4857 comparison which needs to be reversed, 0 will be returned.
4859 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4861 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4862 insn used in locating the condition was found. If a replacement test
4863 of the condition is desired, it should be placed in front of that
4864 insn and we will be sure that the inputs are still valid.
4866 If WANT_REG is nonzero, we wish the condition to be relative to that
4867 register, if possible. Therefore, do not canonicalize the condition
4868 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4869 to be a compare to a CC mode register.
4871 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4872 and at INSN. */
4875 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4876 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4878 enum rtx_code code;
4879 rtx prev = insn;
4880 const_rtx set;
4881 rtx tem;
4882 rtx op0, op1;
4883 int reverse_code = 0;
4884 enum machine_mode mode;
4885 basic_block bb = BLOCK_FOR_INSN (insn);
4887 code = GET_CODE (cond);
4888 mode = GET_MODE (cond);
4889 op0 = XEXP (cond, 0);
4890 op1 = XEXP (cond, 1);
4892 if (reverse)
4893 code = reversed_comparison_code (cond, insn);
4894 if (code == UNKNOWN)
4895 return 0;
4897 if (earliest)
4898 *earliest = insn;
4900 /* If we are comparing a register with zero, see if the register is set
4901 in the previous insn to a COMPARE or a comparison operation. Perform
4902 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4903 in cse.c */
4905 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4906 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4907 && op1 == CONST0_RTX (GET_MODE (op0))
4908 && op0 != want_reg)
4910 /* Set nonzero when we find something of interest. */
4911 rtx x = 0;
4913 #ifdef HAVE_cc0
4914 /* If comparison with cc0, import actual comparison from compare
4915 insn. */
4916 if (op0 == cc0_rtx)
4918 if ((prev = prev_nonnote_insn (prev)) == 0
4919 || !NONJUMP_INSN_P (prev)
4920 || (set = single_set (prev)) == 0
4921 || SET_DEST (set) != cc0_rtx)
4922 return 0;
4924 op0 = SET_SRC (set);
4925 op1 = CONST0_RTX (GET_MODE (op0));
4926 if (earliest)
4927 *earliest = prev;
4929 #endif
4931 /* If this is a COMPARE, pick up the two things being compared. */
4932 if (GET_CODE (op0) == COMPARE)
4934 op1 = XEXP (op0, 1);
4935 op0 = XEXP (op0, 0);
4936 continue;
4938 else if (!REG_P (op0))
4939 break;
4941 /* Go back to the previous insn. Stop if it is not an INSN. We also
4942 stop if it isn't a single set or if it has a REG_INC note because
4943 we don't want to bother dealing with it. */
4945 prev = prev_nonnote_nondebug_insn (prev);
4947 if (prev == 0
4948 || !NONJUMP_INSN_P (prev)
4949 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4950 /* In cfglayout mode, there do not have to be labels at the
4951 beginning of a block, or jumps at the end, so the previous
4952 conditions would not stop us when we reach bb boundary. */
4953 || BLOCK_FOR_INSN (prev) != bb)
4954 break;
4956 set = set_of (op0, prev);
4958 if (set
4959 && (GET_CODE (set) != SET
4960 || !rtx_equal_p (SET_DEST (set), op0)))
4961 break;
4963 /* If this is setting OP0, get what it sets it to if it looks
4964 relevant. */
4965 if (set)
4967 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4968 #ifdef FLOAT_STORE_FLAG_VALUE
4969 REAL_VALUE_TYPE fsfv;
4970 #endif
4972 /* ??? We may not combine comparisons done in a CCmode with
4973 comparisons not done in a CCmode. This is to aid targets
4974 like Alpha that have an IEEE compliant EQ instruction, and
4975 a non-IEEE compliant BEQ instruction. The use of CCmode is
4976 actually artificial, simply to prevent the combination, but
4977 should not affect other platforms.
4979 However, we must allow VOIDmode comparisons to match either
4980 CCmode or non-CCmode comparison, because some ports have
4981 modeless comparisons inside branch patterns.
4983 ??? This mode check should perhaps look more like the mode check
4984 in simplify_comparison in combine. */
4986 if ((GET_CODE (SET_SRC (set)) == COMPARE
4987 || (((code == NE
4988 || (code == LT
4989 && val_signbit_known_set_p (inner_mode,
4990 STORE_FLAG_VALUE))
4991 #ifdef FLOAT_STORE_FLAG_VALUE
4992 || (code == LT
4993 && SCALAR_FLOAT_MODE_P (inner_mode)
4994 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4995 REAL_VALUE_NEGATIVE (fsfv)))
4996 #endif
4998 && COMPARISON_P (SET_SRC (set))))
4999 && (((GET_MODE_CLASS (mode) == MODE_CC)
5000 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5001 || mode == VOIDmode || inner_mode == VOIDmode))
5002 x = SET_SRC (set);
5003 else if (((code == EQ
5004 || (code == GE
5005 && val_signbit_known_set_p (inner_mode,
5006 STORE_FLAG_VALUE))
5007 #ifdef FLOAT_STORE_FLAG_VALUE
5008 || (code == GE
5009 && SCALAR_FLOAT_MODE_P (inner_mode)
5010 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5011 REAL_VALUE_NEGATIVE (fsfv)))
5012 #endif
5014 && COMPARISON_P (SET_SRC (set))
5015 && (((GET_MODE_CLASS (mode) == MODE_CC)
5016 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5017 || mode == VOIDmode || inner_mode == VOIDmode))
5020 reverse_code = 1;
5021 x = SET_SRC (set);
5023 else
5024 break;
5027 else if (reg_set_p (op0, prev))
5028 /* If this sets OP0, but not directly, we have to give up. */
5029 break;
5031 if (x)
5033 /* If the caller is expecting the condition to be valid at INSN,
5034 make sure X doesn't change before INSN. */
5035 if (valid_at_insn_p)
5036 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5037 break;
5038 if (COMPARISON_P (x))
5039 code = GET_CODE (x);
5040 if (reverse_code)
5042 code = reversed_comparison_code (x, prev);
5043 if (code == UNKNOWN)
5044 return 0;
5045 reverse_code = 0;
5048 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5049 if (earliest)
5050 *earliest = prev;
5054 /* If constant is first, put it last. */
5055 if (CONSTANT_P (op0))
5056 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5058 /* If OP0 is the result of a comparison, we weren't able to find what
5059 was really being compared, so fail. */
5060 if (!allow_cc_mode
5061 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5062 return 0;
5064 /* Canonicalize any ordered comparison with integers involving equality
5065 if we can do computations in the relevant mode and we do not
5066 overflow. */
5068 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5069 && CONST_INT_P (op1)
5070 && GET_MODE (op0) != VOIDmode
5071 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5073 HOST_WIDE_INT const_val = INTVAL (op1);
5074 unsigned HOST_WIDE_INT uconst_val = const_val;
5075 unsigned HOST_WIDE_INT max_val
5076 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5078 switch (code)
5080 case LE:
5081 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5082 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5083 break;
5085 /* When cross-compiling, const_val might be sign-extended from
5086 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5087 case GE:
5088 if ((const_val & max_val)
5089 != ((unsigned HOST_WIDE_INT) 1
5090 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5091 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5092 break;
5094 case LEU:
5095 if (uconst_val < max_val)
5096 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5097 break;
5099 case GEU:
5100 if (uconst_val != 0)
5101 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5102 break;
5104 default:
5105 break;
5109 /* Never return CC0; return zero instead. */
5110 if (CC0_P (op0))
5111 return 0;
5113 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5116 /* Given a jump insn JUMP, return the condition that will cause it to branch
5117 to its JUMP_LABEL. If the condition cannot be understood, or is an
5118 inequality floating-point comparison which needs to be reversed, 0 will
5119 be returned.
5121 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5122 insn used in locating the condition was found. If a replacement test
5123 of the condition is desired, it should be placed in front of that
5124 insn and we will be sure that the inputs are still valid. If EARLIEST
5125 is null, the returned condition will be valid at INSN.
5127 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5128 compare CC mode register.
5130 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5133 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
5135 rtx cond;
5136 int reverse;
5137 rtx set;
5139 /* If this is not a standard conditional jump, we can't parse it. */
5140 if (!JUMP_P (jump)
5141 || ! any_condjump_p (jump))
5142 return 0;
5143 set = pc_set (jump);
5145 cond = XEXP (SET_SRC (set), 0);
5147 /* If this branches to JUMP_LABEL when the condition is false, reverse
5148 the condition. */
5149 reverse
5150 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5151 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5153 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5154 allow_cc_mode, valid_at_insn_p);
5157 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5158 TARGET_MODE_REP_EXTENDED.
5160 Note that we assume that the property of
5161 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5162 narrower than mode B. I.e., if A is a mode narrower than B then in
5163 order to be able to operate on it in mode B, mode A needs to
5164 satisfy the requirements set by the representation of mode B. */
5166 static void
5167 init_num_sign_bit_copies_in_rep (void)
5169 enum machine_mode mode, in_mode;
5171 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5172 in_mode = GET_MODE_WIDER_MODE (mode))
5173 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5174 mode = GET_MODE_WIDER_MODE (mode))
5176 enum machine_mode i;
5178 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5179 extends to the next widest mode. */
5180 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5181 || GET_MODE_WIDER_MODE (mode) == in_mode);
5183 /* We are in in_mode. Count how many bits outside of mode
5184 have to be copies of the sign-bit. */
5185 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5187 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5189 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5190 /* We can only check sign-bit copies starting from the
5191 top-bit. In order to be able to check the bits we
5192 have already seen we pretend that subsequent bits
5193 have to be sign-bit copies too. */
5194 || num_sign_bit_copies_in_rep [in_mode][mode])
5195 num_sign_bit_copies_in_rep [in_mode][mode]
5196 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5201 /* Suppose that truncation from the machine mode of X to MODE is not a
5202 no-op. See if there is anything special about X so that we can
5203 assume it already contains a truncated value of MODE. */
5205 bool
5206 truncated_to_mode (enum machine_mode mode, const_rtx x)
5208 /* This register has already been used in MODE without explicit
5209 truncation. */
5210 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5211 return true;
5213 /* See if we already satisfy the requirements of MODE. If yes we
5214 can just switch to MODE. */
5215 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5216 && (num_sign_bit_copies (x, GET_MODE (x))
5217 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5218 return true;
5220 return false;
5223 /* Initialize non_rtx_starting_operands, which is used to speed up
5224 for_each_rtx. */
5225 void
5226 init_rtlanal (void)
5228 int i;
5229 for (i = 0; i < NUM_RTX_CODE; i++)
5231 const char *format = GET_RTX_FORMAT (i);
5232 const char *first = strpbrk (format, "eEV");
5233 non_rtx_starting_operands[i] = first ? first - format : -1;
5236 init_num_sign_bit_copies_in_rep ();
5239 /* Check whether this is a constant pool constant. */
5240 bool
5241 constant_pool_constant_p (rtx x)
5243 x = avoid_constant_pool_reference (x);
5244 return GET_CODE (x) == CONST_DOUBLE;
5247 /* If M is a bitmask that selects a field of low-order bits within an item but
5248 not the entire word, return the length of the field. Return -1 otherwise.
5249 M is used in machine mode MODE. */
5252 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5254 if (mode != VOIDmode)
5256 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5257 return -1;
5258 m &= GET_MODE_MASK (mode);
5261 return exact_log2 (m + 1);