Update my entries in the MAINTAINERS file.
[official-gcc.git] / gcc / rtlanal.c
blob88b49fe649eff498ec0da97dc8c1d40d0b45c47d
1 /* Analyze RTL for C-Compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "toplev.h"
26 #include "rtl.h"
28 static int rtx_addr_can_trap_p PARAMS ((rtx));
29 static void reg_set_p_1 PARAMS ((rtx, rtx, void *));
30 static void insn_dependent_p_1 PARAMS ((rtx, rtx, void *));
31 static void reg_set_last_1 PARAMS ((rtx, rtx, void *));
34 /* Forward declarations */
35 static int jmp_uses_reg_or_mem PARAMS ((rtx));
37 /* Bit flags that specify the machine subtype we are compiling for.
38 Bits are tested using macros TARGET_... defined in the tm.h file
39 and set by `-m...' switches. Must be defined in rtlanal.c. */
41 int target_flags;
43 /* Return 1 if the value of X is unstable
44 (would be different at a different point in the program).
45 The frame pointer, arg pointer, etc. are considered stable
46 (within one function) and so is anything marked `unchanging'. */
48 int
49 rtx_unstable_p (x)
50 rtx x;
52 register RTX_CODE code = GET_CODE (x);
53 register int i;
54 register const char *fmt;
56 switch (code)
58 case MEM:
59 return ! RTX_UNCHANGING_P (x) || rtx_unstable_p (XEXP (x, 0));
61 case QUEUED:
62 return 1;
64 case CONST:
65 case CONST_INT:
66 case CONST_DOUBLE:
67 case SYMBOL_REF:
68 case LABEL_REF:
69 return 0;
71 case REG:
72 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
73 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
74 || x == arg_pointer_rtx || RTX_UNCHANGING_P (x))
75 return 0;
76 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
77 /* ??? When call-clobbered, the value is stable modulo the restore
78 that must happen after a call. This currently screws up local-alloc
79 into believing that the restore is not needed. */
80 if (x == pic_offset_table_rtx)
81 return 0;
82 #endif
83 return 1;
85 case ASM_OPERANDS:
86 if (MEM_VOLATILE_P (x))
87 return 1;
89 /* FALLTHROUGH */
91 default:
92 break;
95 fmt = GET_RTX_FORMAT (code);
96 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
97 if (fmt[i] == 'e')
99 if (rtx_unstable_p (XEXP (x, i)))
100 return 1;
102 else if (fmt[i] == 'E')
104 int j;
105 for (j = 0; j < XVECLEN (x, i); j++)
106 if (rtx_unstable_p (XVECEXP (x, i, j)))
107 return 1;
110 return 0;
113 /* Return 1 if X has a value that can vary even between two
114 executions of the program. 0 means X can be compared reliably
115 against certain constants or near-constants.
116 The frame pointer and the arg pointer are considered constant. */
119 rtx_varies_p (x)
120 rtx x;
122 register RTX_CODE code = GET_CODE (x);
123 register int i;
124 register const char *fmt;
126 switch (code)
128 case MEM:
129 return ! RTX_UNCHANGING_P (x) || rtx_varies_p (XEXP (x, 0));
131 case QUEUED:
132 return 1;
134 case CONST:
135 case CONST_INT:
136 case CONST_DOUBLE:
137 case SYMBOL_REF:
138 case LABEL_REF:
139 return 0;
141 case REG:
142 /* Note that we have to test for the actual rtx used for the frame
143 and arg pointers and not just the register number in case we have
144 eliminated the frame and/or arg pointer and are using it
145 for pseudos. */
146 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
147 || x == arg_pointer_rtx)
148 return 0;
149 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
150 /* ??? When call-clobbered, the value is stable modulo the restore
151 that must happen after a call. This currently screws up local-alloc
152 into believing that the restore is not needed. */
153 if (x == pic_offset_table_rtx)
154 return 0;
155 #endif
156 return 1;
158 case LO_SUM:
159 /* The operand 0 of a LO_SUM is considered constant
160 (in fact is it related specifically to operand 1). */
161 return rtx_varies_p (XEXP (x, 1));
163 case ASM_OPERANDS:
164 if (MEM_VOLATILE_P (x))
165 return 1;
167 /* FALLTHROUGH */
169 default:
170 break;
173 fmt = GET_RTX_FORMAT (code);
174 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
175 if (fmt[i] == 'e')
177 if (rtx_varies_p (XEXP (x, i)))
178 return 1;
180 else if (fmt[i] == 'E')
182 int j;
183 for (j = 0; j < XVECLEN (x, i); j++)
184 if (rtx_varies_p (XVECEXP (x, i, j)))
185 return 1;
188 return 0;
191 /* Return 0 if the use of X as an address in a MEM can cause a trap. */
193 static int
194 rtx_addr_can_trap_p (x)
195 register rtx x;
197 register enum rtx_code code = GET_CODE (x);
199 switch (code)
201 case SYMBOL_REF:
202 case LABEL_REF:
203 /* SYMBOL_REF is problematic due to the possible presence of
204 a #pragma weak, but to say that loads from symbols can trap is
205 *very* costly. It's not at all clear what's best here. For
206 now, we ignore the impact of #pragma weak. */
207 return 0;
209 case REG:
210 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
211 return ! (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
212 || x == stack_pointer_rtx || x == arg_pointer_rtx);
214 case CONST:
215 return rtx_addr_can_trap_p (XEXP (x, 0));
217 case PLUS:
218 /* An address is assumed not to trap if it is an address that can't
219 trap plus a constant integer or it is the pic register plus a
220 constant. */
221 return ! ((! rtx_addr_can_trap_p (XEXP (x, 0))
222 && GET_CODE (XEXP (x, 1)) == CONST_INT)
223 || (XEXP (x, 0) == pic_offset_table_rtx
224 && CONSTANT_P (XEXP (x, 1))));
226 case LO_SUM:
227 return rtx_addr_can_trap_p (XEXP (x, 1));
229 default:
230 break;
233 /* If it isn't one of the case above, it can cause a trap. */
234 return 1;
237 /* Return 1 if X refers to a memory location whose address
238 cannot be compared reliably with constant addresses,
239 or if X refers to a BLKmode memory object. */
242 rtx_addr_varies_p (x)
243 rtx x;
245 register enum rtx_code code;
246 register int i;
247 register const char *fmt;
249 if (x == 0)
250 return 0;
252 code = GET_CODE (x);
253 if (code == MEM)
254 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0));
256 fmt = GET_RTX_FORMAT (code);
257 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
258 if (fmt[i] == 'e')
260 if (rtx_addr_varies_p (XEXP (x, i)))
261 return 1;
263 else if (fmt[i] == 'E')
265 int j;
266 for (j = 0; j < XVECLEN (x, i); j++)
267 if (rtx_addr_varies_p (XVECEXP (x, i, j)))
268 return 1;
270 return 0;
273 /* Return the value of the integer term in X, if one is apparent;
274 otherwise return 0.
275 Only obvious integer terms are detected.
276 This is used in cse.c with the `related_value' field.*/
278 HOST_WIDE_INT
279 get_integer_term (x)
280 rtx x;
282 if (GET_CODE (x) == CONST)
283 x = XEXP (x, 0);
285 if (GET_CODE (x) == MINUS
286 && GET_CODE (XEXP (x, 1)) == CONST_INT)
287 return - INTVAL (XEXP (x, 1));
288 if (GET_CODE (x) == PLUS
289 && GET_CODE (XEXP (x, 1)) == CONST_INT)
290 return INTVAL (XEXP (x, 1));
291 return 0;
294 /* If X is a constant, return the value sans apparent integer term;
295 otherwise return 0.
296 Only obvious integer terms are detected. */
299 get_related_value (x)
300 rtx x;
302 if (GET_CODE (x) != CONST)
303 return 0;
304 x = XEXP (x, 0);
305 if (GET_CODE (x) == PLUS
306 && GET_CODE (XEXP (x, 1)) == CONST_INT)
307 return XEXP (x, 0);
308 else if (GET_CODE (x) == MINUS
309 && GET_CODE (XEXP (x, 1)) == CONST_INT)
310 return XEXP (x, 0);
311 return 0;
314 /* Return the number of places FIND appears within X. If COUNT_DEST is
315 zero, we do not count occurrences inside the destination of a SET. */
318 count_occurrences (x, find, count_dest)
319 rtx x, find;
320 int count_dest;
322 int i, j;
323 enum rtx_code code;
324 const char *format_ptr;
325 int count;
327 if (x == find)
328 return 1;
330 code = GET_CODE (x);
332 switch (code)
334 case REG:
335 case CONST_INT:
336 case CONST_DOUBLE:
337 case SYMBOL_REF:
338 case CODE_LABEL:
339 case PC:
340 case CC0:
341 return 0;
343 case MEM:
344 if (GET_CODE (find) == MEM && rtx_equal_p (x, find))
345 return 1;
346 break;
348 case SET:
349 if (SET_DEST (x) == find && ! count_dest)
350 return count_occurrences (SET_SRC (x), find, count_dest);
351 break;
353 default:
354 break;
357 format_ptr = GET_RTX_FORMAT (code);
358 count = 0;
360 for (i = 0; i < GET_RTX_LENGTH (code); i++)
362 switch (*format_ptr++)
364 case 'e':
365 count += count_occurrences (XEXP (x, i), find, count_dest);
366 break;
368 case 'E':
369 for (j = 0; j < XVECLEN (x, i); j++)
370 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
371 break;
374 return count;
377 /* Nonzero if register REG appears somewhere within IN.
378 Also works if REG is not a register; in this case it checks
379 for a subexpression of IN that is Lisp "equal" to REG. */
382 reg_mentioned_p (reg, in)
383 register rtx reg, in;
385 register const char *fmt;
386 register int i;
387 register enum rtx_code code;
389 if (in == 0)
390 return 0;
392 if (reg == in)
393 return 1;
395 if (GET_CODE (in) == LABEL_REF)
396 return reg == XEXP (in, 0);
398 code = GET_CODE (in);
400 switch (code)
402 /* Compare registers by number. */
403 case REG:
404 return GET_CODE (reg) == REG && REGNO (in) == REGNO (reg);
406 /* These codes have no constituent expressions
407 and are unique. */
408 case SCRATCH:
409 case CC0:
410 case PC:
411 return 0;
413 case CONST_INT:
414 return GET_CODE (reg) == CONST_INT && INTVAL (in) == INTVAL (reg);
416 case CONST_DOUBLE:
417 /* These are kept unique for a given value. */
418 return 0;
420 default:
421 break;
424 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
425 return 1;
427 fmt = GET_RTX_FORMAT (code);
429 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
431 if (fmt[i] == 'E')
433 register int j;
434 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
435 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
436 return 1;
438 else if (fmt[i] == 'e'
439 && reg_mentioned_p (reg, XEXP (in, i)))
440 return 1;
442 return 0;
445 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
446 no CODE_LABEL insn. */
449 no_labels_between_p (beg, end)
450 rtx beg, end;
452 register rtx p;
453 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
454 if (GET_CODE (p) == CODE_LABEL)
455 return 0;
456 return 1;
459 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
460 no JUMP_INSN insn. */
463 no_jumps_between_p (beg, end)
464 rtx beg, end;
466 register rtx p;
467 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
468 if (GET_CODE (p) == JUMP_INSN)
469 return 0;
470 return 1;
473 /* Nonzero if register REG is used in an insn between
474 FROM_INSN and TO_INSN (exclusive of those two). */
477 reg_used_between_p (reg, from_insn, to_insn)
478 rtx reg, from_insn, to_insn;
480 register rtx insn;
482 if (from_insn == to_insn)
483 return 0;
485 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
486 if (INSN_P (insn)
487 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
488 || (GET_CODE (insn) == CALL_INSN
489 && (find_reg_fusage (insn, USE, reg)
490 || find_reg_fusage (insn, CLOBBER, reg)))))
491 return 1;
492 return 0;
495 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
496 is entirely replaced by a new value and the only use is as a SET_DEST,
497 we do not consider it a reference. */
500 reg_referenced_p (x, body)
501 rtx x;
502 rtx body;
504 int i;
506 switch (GET_CODE (body))
508 case SET:
509 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
510 return 1;
512 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
513 of a REG that occupies all of the REG, the insn references X if
514 it is mentioned in the destination. */
515 if (GET_CODE (SET_DEST (body)) != CC0
516 && GET_CODE (SET_DEST (body)) != PC
517 && GET_CODE (SET_DEST (body)) != REG
518 && ! (GET_CODE (SET_DEST (body)) == SUBREG
519 && GET_CODE (SUBREG_REG (SET_DEST (body))) == REG
520 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
521 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
522 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
523 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
524 && reg_overlap_mentioned_p (x, SET_DEST (body)))
525 return 1;
526 return 0;
528 case ASM_OPERANDS:
529 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
530 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
531 return 1;
532 return 0;
534 case CALL:
535 case USE:
536 case IF_THEN_ELSE:
537 return reg_overlap_mentioned_p (x, body);
539 case TRAP_IF:
540 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
542 case UNSPEC:
543 case UNSPEC_VOLATILE:
544 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
545 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
546 return 1;
547 return 0;
549 case PARALLEL:
550 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
551 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
552 return 1;
553 return 0;
555 case CLOBBER:
556 if (GET_CODE (XEXP (body, 0)) == MEM)
557 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
558 return 1;
559 return 0;
561 case COND_EXEC:
562 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
563 return 1;
564 return reg_referenced_p (x, COND_EXEC_CODE (body));
566 default:
567 return 0;
571 /* Nonzero if register REG is referenced in an insn between
572 FROM_INSN and TO_INSN (exclusive of those two). Sets of REG do
573 not count. */
576 reg_referenced_between_p (reg, from_insn, to_insn)
577 rtx reg, from_insn, to_insn;
579 register rtx insn;
581 if (from_insn == to_insn)
582 return 0;
584 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
585 if (INSN_P (insn)
586 && (reg_referenced_p (reg, PATTERN (insn))
587 || (GET_CODE (insn) == CALL_INSN
588 && find_reg_fusage (insn, USE, reg))))
589 return 1;
590 return 0;
593 /* Nonzero if register REG is set or clobbered in an insn between
594 FROM_INSN and TO_INSN (exclusive of those two). */
597 reg_set_between_p (reg, from_insn, to_insn)
598 rtx reg, from_insn, to_insn;
600 register rtx insn;
602 if (from_insn == to_insn)
603 return 0;
605 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
606 if (INSN_P (insn) && reg_set_p (reg, insn))
607 return 1;
608 return 0;
611 /* Internals of reg_set_between_p. */
613 static rtx reg_set_reg;
614 static int reg_set_flag;
616 static void
617 reg_set_p_1 (x, pat, data)
618 rtx x;
619 rtx pat ATTRIBUTE_UNUSED;
620 void *data ATTRIBUTE_UNUSED;
622 /* We don't want to return 1 if X is a MEM that contains a register
623 within REG_SET_REG. */
625 if ((GET_CODE (x) != MEM)
626 && reg_overlap_mentioned_p (reg_set_reg, x))
627 reg_set_flag = 1;
631 reg_set_p (reg, insn)
632 rtx reg, insn;
634 rtx body = insn;
636 /* We can be passed an insn or part of one. If we are passed an insn,
637 check if a side-effect of the insn clobbers REG. */
638 if (INSN_P (insn))
640 if (FIND_REG_INC_NOTE (insn, reg)
641 || (GET_CODE (insn) == CALL_INSN
642 /* We'd like to test call_used_regs here, but rtlanal.c can't
643 reference that variable due to its use in genattrtab. So
644 we'll just be more conservative.
646 ??? Unless we could ensure that the CALL_INSN_FUNCTION_USAGE
647 information holds all clobbered registers. */
648 && ((GET_CODE (reg) == REG
649 && REGNO (reg) < FIRST_PSEUDO_REGISTER)
650 || GET_CODE (reg) == MEM
651 || find_reg_fusage (insn, CLOBBER, reg))))
652 return 1;
654 body = PATTERN (insn);
657 reg_set_reg = reg;
658 reg_set_flag = 0;
659 note_stores (body, reg_set_p_1, NULL);
660 return reg_set_flag;
663 /* Similar to reg_set_between_p, but check all registers in X. Return 0
664 only if none of them are modified between START and END. Do not
665 consider non-registers one way or the other. */
668 regs_set_between_p (x, start, end)
669 rtx x;
670 rtx start, end;
672 enum rtx_code code = GET_CODE (x);
673 const char *fmt;
674 int i, j;
676 switch (code)
678 case CONST_INT:
679 case CONST_DOUBLE:
680 case CONST:
681 case SYMBOL_REF:
682 case LABEL_REF:
683 case PC:
684 case CC0:
685 return 0;
687 case REG:
688 return reg_set_between_p (x, start, end);
690 default:
691 break;
694 fmt = GET_RTX_FORMAT (code);
695 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
697 if (fmt[i] == 'e' && regs_set_between_p (XEXP (x, i), start, end))
698 return 1;
700 else if (fmt[i] == 'E')
701 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
702 if (regs_set_between_p (XVECEXP (x, i, j), start, end))
703 return 1;
706 return 0;
709 /* Similar to reg_set_between_p, but check all registers in X. Return 0
710 only if none of them are modified between START and END. Return 1 if
711 X contains a MEM; this routine does not perform any memory aliasing. */
714 modified_between_p (x, start, end)
715 rtx x;
716 rtx start, end;
718 enum rtx_code code = GET_CODE (x);
719 const char *fmt;
720 int i, j;
722 switch (code)
724 case CONST_INT:
725 case CONST_DOUBLE:
726 case CONST:
727 case SYMBOL_REF:
728 case LABEL_REF:
729 return 0;
731 case PC:
732 case CC0:
733 return 1;
735 case MEM:
736 /* If the memory is not constant, assume it is modified. If it is
737 constant, we still have to check the address. */
738 if (! RTX_UNCHANGING_P (x))
739 return 1;
740 break;
742 case REG:
743 return reg_set_between_p (x, start, end);
745 default:
746 break;
749 fmt = GET_RTX_FORMAT (code);
750 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
752 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
753 return 1;
755 else if (fmt[i] == 'E')
756 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
757 if (modified_between_p (XVECEXP (x, i, j), start, end))
758 return 1;
761 return 0;
764 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
765 of them are modified in INSN. Return 1 if X contains a MEM; this routine
766 does not perform any memory aliasing. */
769 modified_in_p (x, insn)
770 rtx x;
771 rtx insn;
773 enum rtx_code code = GET_CODE (x);
774 const char *fmt;
775 int i, j;
777 switch (code)
779 case CONST_INT:
780 case CONST_DOUBLE:
781 case CONST:
782 case SYMBOL_REF:
783 case LABEL_REF:
784 return 0;
786 case PC:
787 case CC0:
788 return 1;
790 case MEM:
791 /* If the memory is not constant, assume it is modified. If it is
792 constant, we still have to check the address. */
793 if (! RTX_UNCHANGING_P (x))
794 return 1;
795 break;
797 case REG:
798 return reg_set_p (x, insn);
800 default:
801 break;
804 fmt = GET_RTX_FORMAT (code);
805 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
807 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
808 return 1;
810 else if (fmt[i] == 'E')
811 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
812 if (modified_in_p (XVECEXP (x, i, j), insn))
813 return 1;
816 return 0;
819 /* Return true if anything in insn X is (anti,output,true) dependent on
820 anything in insn Y. */
823 insn_dependent_p (x, y)
824 rtx x, y;
826 rtx tmp;
828 if (! INSN_P (x) || ! INSN_P (y))
829 abort ();
831 tmp = PATTERN (y);
832 note_stores (PATTERN (x), insn_dependent_p_1, &tmp);
833 if (tmp == NULL_RTX)
834 return 1;
836 tmp = PATTERN (x);
837 note_stores (PATTERN (y), insn_dependent_p_1, &tmp);
838 if (tmp == NULL_RTX)
839 return 1;
841 return 0;
844 /* A helper routine for insn_dependent_p called through note_stores. */
846 static void
847 insn_dependent_p_1 (x, pat, data)
848 rtx x;
849 rtx pat ATTRIBUTE_UNUSED;
850 void *data;
852 rtx * pinsn = (rtx *) data;
854 if (*pinsn && reg_mentioned_p (x, *pinsn))
855 *pinsn = NULL_RTX;
858 /* Given an INSN, return a SET expression if this insn has only a single SET.
859 It may also have CLOBBERs, USEs, or SET whose output
860 will not be used, which we ignore. */
863 single_set_1 (insn)
864 rtx insn;
866 rtx set = NULL;
867 int set_verified = 1;
868 rtx pat = PATTERN (insn);
869 int i;
871 if (GET_CODE (pat) == PARALLEL)
873 for (i = 0; i < XVECLEN (pat, 0); i++)
875 rtx sub = XVECEXP (pat, 0, i);
876 switch (GET_CODE (sub))
878 case USE:
879 case CLOBBER:
880 break;
882 case SET:
883 /* We can consider insns having multiple sets, where all
884 but one are dead as single set insns. In common case
885 only single set is present in the pattern so we want
886 to avoid checking for REG_UNUSED notes unless neccesary.
888 When we reach set first time, we just expect this is
889 the single set we are looking for and only when more
890 sets are found in the insn, we check them. */
891 if (!set_verified)
893 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
894 && !side_effects_p (set))
895 set = NULL;
896 else
897 set_verified = 1;
899 if (!set)
900 set = sub, set_verified = 0;
901 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
902 || side_effects_p (sub))
903 return NULL_RTX;
904 break;
906 default:
907 return NULL_RTX;
911 return set;
914 /* Given an INSN, return nonzero if it has more than one SET, else return
915 zero. */
918 multiple_sets (insn)
919 rtx insn;
921 int found;
922 int i;
924 /* INSN must be an insn. */
925 if (! INSN_P (insn))
926 return 0;
928 /* Only a PARALLEL can have multiple SETs. */
929 if (GET_CODE (PATTERN (insn)) == PARALLEL)
931 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
932 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
934 /* If we have already found a SET, then return now. */
935 if (found)
936 return 1;
937 else
938 found = 1;
942 /* Either zero or one SET. */
943 return 0;
946 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
947 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
948 If the object was modified, if we hit a partial assignment to X, or hit a
949 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
950 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
951 be the src. */
954 find_last_value (x, pinsn, valid_to, allow_hwreg)
955 rtx x;
956 rtx *pinsn;
957 rtx valid_to;
958 int allow_hwreg;
960 rtx p;
962 for (p = PREV_INSN (*pinsn); p && GET_CODE (p) != CODE_LABEL;
963 p = PREV_INSN (p))
964 if (INSN_P (p))
966 rtx set = single_set (p);
967 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
969 if (set && rtx_equal_p (x, SET_DEST (set)))
971 rtx src = SET_SRC (set);
973 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
974 src = XEXP (note, 0);
976 if ((valid_to == NULL_RTX
977 || ! modified_between_p (src, PREV_INSN (p), valid_to))
978 /* Reject hard registers because we don't usually want
979 to use them; we'd rather use a pseudo. */
980 && (! (GET_CODE (src) == REG
981 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
983 *pinsn = p;
984 return src;
988 /* If set in non-simple way, we don't have a value. */
989 if (reg_set_p (x, p))
990 break;
993 return x;
996 /* Return nonzero if register in range [REGNO, ENDREGNO)
997 appears either explicitly or implicitly in X
998 other than being stored into.
1000 References contained within the substructure at LOC do not count.
1001 LOC may be zero, meaning don't ignore anything. */
1004 refers_to_regno_p (regno, endregno, x, loc)
1005 unsigned int regno, endregno;
1006 rtx x;
1007 rtx *loc;
1009 int i;
1010 unsigned int x_regno;
1011 RTX_CODE code;
1012 const char *fmt;
1014 repeat:
1015 /* The contents of a REG_NONNEG note is always zero, so we must come here
1016 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1017 if (x == 0)
1018 return 0;
1020 code = GET_CODE (x);
1022 switch (code)
1024 case REG:
1025 x_regno = REGNO (x);
1027 /* If we modifying the stack, frame, or argument pointer, it will
1028 clobber a virtual register. In fact, we could be more precise,
1029 but it isn't worth it. */
1030 if ((x_regno == STACK_POINTER_REGNUM
1031 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1032 || x_regno == ARG_POINTER_REGNUM
1033 #endif
1034 || x_regno == FRAME_POINTER_REGNUM)
1035 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1036 return 1;
1038 return (endregno > x_regno
1039 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1040 ? HARD_REGNO_NREGS (x_regno, GET_MODE (x))
1041 : 1));
1043 case SUBREG:
1044 /* If this is a SUBREG of a hard reg, we can see exactly which
1045 registers are being modified. Otherwise, handle normally. */
1046 if (GET_CODE (SUBREG_REG (x)) == REG
1047 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1049 unsigned int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
1050 unsigned int inner_endregno
1051 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1052 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
1054 return endregno > inner_regno && regno < inner_endregno;
1056 break;
1058 case CLOBBER:
1059 case SET:
1060 if (&SET_DEST (x) != loc
1061 /* Note setting a SUBREG counts as referring to the REG it is in for
1062 a pseudo but not for hard registers since we can
1063 treat each word individually. */
1064 && ((GET_CODE (SET_DEST (x)) == SUBREG
1065 && loc != &SUBREG_REG (SET_DEST (x))
1066 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
1067 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1068 && refers_to_regno_p (regno, endregno,
1069 SUBREG_REG (SET_DEST (x)), loc))
1070 || (GET_CODE (SET_DEST (x)) != REG
1071 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1072 return 1;
1074 if (code == CLOBBER || loc == &SET_SRC (x))
1075 return 0;
1076 x = SET_SRC (x);
1077 goto repeat;
1079 default:
1080 break;
1083 /* X does not match, so try its subexpressions. */
1085 fmt = GET_RTX_FORMAT (code);
1086 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1088 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1090 if (i == 0)
1092 x = XEXP (x, 0);
1093 goto repeat;
1095 else
1096 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1097 return 1;
1099 else if (fmt[i] == 'E')
1101 register int j;
1102 for (j = XVECLEN (x, i) - 1; j >=0; j--)
1103 if (loc != &XVECEXP (x, i, j)
1104 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1105 return 1;
1108 return 0;
1111 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1112 we check if any register number in X conflicts with the relevant register
1113 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1114 contains a MEM (we don't bother checking for memory addresses that can't
1115 conflict because we expect this to be a rare case. */
1118 reg_overlap_mentioned_p (x, in)
1119 rtx x, in;
1121 unsigned int regno, endregno;
1123 /* Overly conservative. */
1124 if (GET_CODE (x) == STRICT_LOW_PART)
1125 x = XEXP (x, 0);
1127 /* If either argument is a constant, then modifying X can not affect IN. */
1128 if (CONSTANT_P (x) || CONSTANT_P (in))
1129 return 0;
1131 switch (GET_CODE (x))
1133 case SUBREG:
1134 regno = REGNO (SUBREG_REG (x));
1135 if (regno < FIRST_PSEUDO_REGISTER)
1136 regno += SUBREG_WORD (x);
1137 goto do_reg;
1139 case REG:
1140 regno = REGNO (x);
1141 do_reg:
1142 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1143 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
1144 return refers_to_regno_p (regno, endregno, in, NULL_PTR);
1146 case MEM:
1148 const char *fmt;
1149 int i;
1151 if (GET_CODE (in) == MEM)
1152 return 1;
1154 fmt = GET_RTX_FORMAT (GET_CODE (in));
1155 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1156 if (fmt[i] == 'e' && reg_overlap_mentioned_p (x, XEXP (in, i)))
1157 return 1;
1159 return 0;
1162 case SCRATCH:
1163 case PC:
1164 case CC0:
1165 return reg_mentioned_p (x, in);
1167 case PARALLEL:
1169 int i, n;
1171 /* Check for a NULL entry, used to indicate that the parameter goes
1172 both on the stack and in registers. */
1173 if (XEXP (XVECEXP (x, 0, 0), 0))
1174 i = 0;
1175 else
1176 i = 1;
1178 /* If any register in here refers to it we return true. */
1179 for (n = XVECLEN (x, 0); i < n; ++i)
1180 if (reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1181 return 1;
1182 return 0;
1185 default:
1186 break;
1189 abort ();
1192 /* Used for communications between the next few functions. */
1194 static int reg_set_last_unknown;
1195 static rtx reg_set_last_value;
1196 static unsigned int reg_set_last_first_regno, reg_set_last_last_regno;
1198 /* Called via note_stores from reg_set_last. */
1200 static void
1201 reg_set_last_1 (x, pat, data)
1202 rtx x;
1203 rtx pat;
1204 void *data ATTRIBUTE_UNUSED;
1206 unsigned int first, last;
1208 /* If X is not a register, or is not one in the range we care
1209 about, ignore. */
1210 if (GET_CODE (x) != REG)
1211 return;
1213 first = REGNO (x);
1214 last = first + (first < FIRST_PSEUDO_REGISTER
1215 ? HARD_REGNO_NREGS (first, GET_MODE (x)) : 1);
1217 if (first >= reg_set_last_last_regno
1218 || last <= reg_set_last_first_regno)
1219 return;
1221 /* If this is a CLOBBER or is some complex LHS, or doesn't modify
1222 exactly the registers we care about, show we don't know the value. */
1223 if (GET_CODE (pat) == CLOBBER || SET_DEST (pat) != x
1224 || first != reg_set_last_first_regno
1225 || last != reg_set_last_last_regno)
1226 reg_set_last_unknown = 1;
1227 else
1228 reg_set_last_value = SET_SRC (pat);
1231 /* Return the last value to which REG was set prior to INSN. If we can't
1232 find it easily, return 0.
1234 We only return a REG, SUBREG, or constant because it is too hard to
1235 check if a MEM remains unchanged. */
1238 reg_set_last (x, insn)
1239 rtx x;
1240 rtx insn;
1242 rtx orig_insn = insn;
1244 reg_set_last_first_regno = REGNO (x);
1246 reg_set_last_last_regno
1247 = reg_set_last_first_regno
1248 + (reg_set_last_first_regno < FIRST_PSEUDO_REGISTER
1249 ? HARD_REGNO_NREGS (reg_set_last_first_regno, GET_MODE (x)) : 1);
1251 reg_set_last_unknown = 0;
1252 reg_set_last_value = 0;
1254 /* Scan backwards until reg_set_last_1 changed one of the above flags.
1255 Stop when we reach a label or X is a hard reg and we reach a
1256 CALL_INSN (if reg_set_last_last_regno is a hard reg).
1258 If we find a set of X, ensure that its SET_SRC remains unchanged. */
1260 /* We compare with <= here, because reg_set_last_last_regno
1261 is actually the number of the first reg *not* in X. */
1262 for (;
1263 insn && GET_CODE (insn) != CODE_LABEL
1264 && ! (GET_CODE (insn) == CALL_INSN
1265 && reg_set_last_last_regno <= FIRST_PSEUDO_REGISTER);
1266 insn = PREV_INSN (insn))
1267 if (INSN_P (insn))
1269 note_stores (PATTERN (insn), reg_set_last_1, NULL);
1270 if (reg_set_last_unknown)
1271 return 0;
1272 else if (reg_set_last_value)
1274 if (CONSTANT_P (reg_set_last_value)
1275 || ((GET_CODE (reg_set_last_value) == REG
1276 || GET_CODE (reg_set_last_value) == SUBREG)
1277 && ! reg_set_between_p (reg_set_last_value,
1278 insn, orig_insn)))
1279 return reg_set_last_value;
1280 else
1281 return 0;
1285 return 0;
1288 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1289 (X would be the pattern of an insn).
1290 FUN receives two arguments:
1291 the REG, MEM, CC0 or PC being stored in or clobbered,
1292 the SET or CLOBBER rtx that does the store.
1294 If the item being stored in or clobbered is a SUBREG of a hard register,
1295 the SUBREG will be passed. */
1297 void
1298 note_stores (x, fun, data)
1299 register rtx x;
1300 void (*fun) PARAMS ((rtx, rtx, void *));
1301 void *data;
1303 if (GET_CODE (x) == COND_EXEC)
1304 x = COND_EXEC_CODE (x);
1305 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1307 register rtx dest = SET_DEST (x);
1308 while ((GET_CODE (dest) == SUBREG
1309 && (GET_CODE (SUBREG_REG (dest)) != REG
1310 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1311 || GET_CODE (dest) == ZERO_EXTRACT
1312 || GET_CODE (dest) == SIGN_EXTRACT
1313 || GET_CODE (dest) == STRICT_LOW_PART)
1314 dest = XEXP (dest, 0);
1316 if (GET_CODE (dest) == PARALLEL
1317 && GET_MODE (dest) == BLKmode)
1319 register int i;
1320 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1321 (*fun) (SET_DEST (XVECEXP (dest, 0, i)), x, data);
1323 else
1324 (*fun) (dest, x, data);
1326 else if (GET_CODE (x) == PARALLEL)
1328 register int i;
1329 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1331 register rtx y = XVECEXP (x, 0, i);
1332 if (GET_CODE (y) == COND_EXEC)
1333 y = COND_EXEC_CODE (y);
1334 if (GET_CODE (y) == SET || GET_CODE (y) == CLOBBER)
1336 register rtx dest = SET_DEST (y);
1337 while ((GET_CODE (dest) == SUBREG
1338 && (GET_CODE (SUBREG_REG (dest)) != REG
1339 || (REGNO (SUBREG_REG (dest))
1340 >= FIRST_PSEUDO_REGISTER)))
1341 || GET_CODE (dest) == ZERO_EXTRACT
1342 || GET_CODE (dest) == SIGN_EXTRACT
1343 || GET_CODE (dest) == STRICT_LOW_PART)
1344 dest = XEXP (dest, 0);
1345 if (GET_CODE (dest) == PARALLEL
1346 && GET_MODE (dest) == BLKmode)
1348 register int i;
1350 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1351 (*fun) (SET_DEST (XVECEXP (dest, 0, i)), y, data);
1353 else
1354 (*fun) (dest, y, data);
1360 /* Return nonzero if X's old contents don't survive after INSN.
1361 This will be true if X is (cc0) or if X is a register and
1362 X dies in INSN or because INSN entirely sets X.
1364 "Entirely set" means set directly and not through a SUBREG,
1365 ZERO_EXTRACT or SIGN_EXTRACT, so no trace of the old contents remains.
1366 Likewise, REG_INC does not count.
1368 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1369 but for this use that makes no difference, since regs don't overlap
1370 during their lifetimes. Therefore, this function may be used
1371 at any time after deaths have been computed (in flow.c).
1373 If REG is a hard reg that occupies multiple machine registers, this
1374 function will only return 1 if each of those registers will be replaced
1375 by INSN. */
1378 dead_or_set_p (insn, x)
1379 rtx insn;
1380 rtx x;
1382 unsigned int regno, last_regno;
1383 unsigned int i;
1385 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1386 if (GET_CODE (x) == CC0)
1387 return 1;
1389 if (GET_CODE (x) != REG)
1390 abort ();
1392 regno = REGNO (x);
1393 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1394 : regno + HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1);
1396 for (i = regno; i <= last_regno; i++)
1397 if (! dead_or_set_regno_p (insn, i))
1398 return 0;
1400 return 1;
1403 /* Utility function for dead_or_set_p to check an individual register. Also
1404 called from flow.c. */
1407 dead_or_set_regno_p (insn, test_regno)
1408 rtx insn;
1409 unsigned int test_regno;
1411 unsigned int regno, endregno;
1412 rtx pattern;
1414 /* See if there is a death note for something that includes TEST_REGNO. */
1415 if (find_regno_note (insn, REG_DEAD, test_regno))
1416 return 1;
1418 if (GET_CODE (insn) == CALL_INSN
1419 && find_regno_fusage (insn, CLOBBER, test_regno))
1420 return 1;
1422 pattern = PATTERN (insn);
1424 if (GET_CODE (pattern) == COND_EXEC)
1425 pattern = COND_EXEC_CODE (pattern);
1427 if (GET_CODE (pattern) == SET)
1429 rtx dest = SET_DEST (PATTERN (insn));
1431 /* A value is totally replaced if it is the destination or the
1432 destination is a SUBREG of REGNO that does not change the number of
1433 words in it. */
1434 if (GET_CODE (dest) == SUBREG
1435 && (((GET_MODE_SIZE (GET_MODE (dest))
1436 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1437 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1438 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1439 dest = SUBREG_REG (dest);
1441 if (GET_CODE (dest) != REG)
1442 return 0;
1444 regno = REGNO (dest);
1445 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1446 : regno + HARD_REGNO_NREGS (regno, GET_MODE (dest)));
1448 return (test_regno >= regno && test_regno < endregno);
1450 else if (GET_CODE (pattern) == PARALLEL)
1452 register int i;
1454 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1456 rtx body = XVECEXP (pattern, 0, i);
1458 if (GET_CODE (body) == COND_EXEC)
1459 body = COND_EXEC_CODE (body);
1461 if (GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1463 rtx dest = SET_DEST (body);
1465 if (GET_CODE (dest) == SUBREG
1466 && (((GET_MODE_SIZE (GET_MODE (dest))
1467 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1468 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1469 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1470 dest = SUBREG_REG (dest);
1472 if (GET_CODE (dest) != REG)
1473 continue;
1475 regno = REGNO (dest);
1476 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1477 : regno + HARD_REGNO_NREGS (regno, GET_MODE (dest)));
1479 if (test_regno >= regno && test_regno < endregno)
1480 return 1;
1485 return 0;
1488 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1489 If DATUM is nonzero, look for one whose datum is DATUM. */
1492 find_reg_note (insn, kind, datum)
1493 rtx insn;
1494 enum reg_note kind;
1495 rtx datum;
1497 register rtx link;
1499 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1500 if (! INSN_P (insn))
1501 return 0;
1503 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1504 if (REG_NOTE_KIND (link) == kind
1505 && (datum == 0 || datum == XEXP (link, 0)))
1506 return link;
1507 return 0;
1510 /* Return the reg-note of kind KIND in insn INSN which applies to register
1511 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1512 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1513 it might be the case that the note overlaps REGNO. */
1516 find_regno_note (insn, kind, regno)
1517 rtx insn;
1518 enum reg_note kind;
1519 unsigned int regno;
1521 register rtx link;
1523 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1524 if (! INSN_P (insn))
1525 return 0;
1527 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1528 if (REG_NOTE_KIND (link) == kind
1529 /* Verify that it is a register, so that scratch and MEM won't cause a
1530 problem here. */
1531 && GET_CODE (XEXP (link, 0)) == REG
1532 && REGNO (XEXP (link, 0)) <= regno
1533 && ((REGNO (XEXP (link, 0))
1534 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1535 : HARD_REGNO_NREGS (REGNO (XEXP (link, 0)),
1536 GET_MODE (XEXP (link, 0)))))
1537 > regno))
1538 return link;
1539 return 0;
1542 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1543 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1546 find_reg_fusage (insn, code, datum)
1547 rtx insn;
1548 enum rtx_code code;
1549 rtx datum;
1551 /* If it's not a CALL_INSN, it can't possibly have a
1552 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1553 if (GET_CODE (insn) != CALL_INSN)
1554 return 0;
1556 if (! datum)
1557 abort();
1559 if (GET_CODE (datum) != REG)
1561 register rtx link;
1563 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1564 link;
1565 link = XEXP (link, 1))
1566 if (GET_CODE (XEXP (link, 0)) == code
1567 && rtx_equal_p (datum, SET_DEST (XEXP (link, 0))))
1568 return 1;
1570 else
1572 unsigned int regno = REGNO (datum);
1574 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1575 to pseudo registers, so don't bother checking. */
1577 if (regno < FIRST_PSEUDO_REGISTER)
1579 unsigned int end_regno
1580 = regno + HARD_REGNO_NREGS (regno, GET_MODE (datum));
1581 unsigned int i;
1583 for (i = regno; i < end_regno; i++)
1584 if (find_regno_fusage (insn, code, i))
1585 return 1;
1589 return 0;
1592 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1593 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1596 find_regno_fusage (insn, code, regno)
1597 rtx insn;
1598 enum rtx_code code;
1599 unsigned int regno;
1601 register rtx link;
1603 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1604 to pseudo registers, so don't bother checking. */
1606 if (regno >= FIRST_PSEUDO_REGISTER
1607 || GET_CODE (insn) != CALL_INSN )
1608 return 0;
1610 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1612 unsigned int regnote;
1613 rtx op, reg;
1615 if (GET_CODE (op = XEXP (link, 0)) == code
1616 && GET_CODE (reg = XEXP (op, 0)) == REG
1617 && (regnote = REGNO (reg)) <= regno
1618 && regnote + HARD_REGNO_NREGS (regnote, GET_MODE (reg)) > regno)
1619 return 1;
1622 return 0;
1625 /* Remove register note NOTE from the REG_NOTES of INSN. */
1627 void
1628 remove_note (insn, note)
1629 register rtx insn;
1630 register rtx note;
1632 register rtx link;
1634 if (note == NULL_RTX)
1635 return;
1637 if (REG_NOTES (insn) == note)
1639 REG_NOTES (insn) = XEXP (note, 1);
1640 return;
1643 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1644 if (XEXP (link, 1) == note)
1646 XEXP (link, 1) = XEXP (note, 1);
1647 return;
1650 abort ();
1653 /* Search LISTP (an EXPR_LIST) for NODE and remove NODE from the list
1654 if it is found.
1656 A simple equality test is used to determine if NODE is on the
1657 EXPR_LIST. */
1659 void
1660 remove_node_from_expr_list (node, listp)
1661 rtx node;
1662 rtx *listp;
1664 rtx temp = *listp;
1665 rtx prev = NULL_RTX;
1667 while (temp)
1669 if (node == XEXP (temp, 0))
1671 /* Splice the node out of the list. */
1672 if (prev)
1673 XEXP (prev, 1) = XEXP (temp, 1);
1674 else
1675 *listp = XEXP (temp, 1);
1677 return;
1679 temp = XEXP (temp, 1);
1683 /* Nonzero if X contains any volatile instructions. These are instructions
1684 which may cause unpredictable machine state instructions, and thus no
1685 instructions should be moved or combined across them. This includes
1686 only volatile asms and UNSPEC_VOLATILE instructions. */
1689 volatile_insn_p (x)
1690 rtx x;
1692 register RTX_CODE code;
1694 code = GET_CODE (x);
1695 switch (code)
1697 case LABEL_REF:
1698 case SYMBOL_REF:
1699 case CONST_INT:
1700 case CONST:
1701 case CONST_DOUBLE:
1702 case CC0:
1703 case PC:
1704 case REG:
1705 case SCRATCH:
1706 case CLOBBER:
1707 case ASM_INPUT:
1708 case ADDR_VEC:
1709 case ADDR_DIFF_VEC:
1710 case CALL:
1711 case MEM:
1712 return 0;
1714 case UNSPEC_VOLATILE:
1715 /* case TRAP_IF: This isn't clear yet. */
1716 return 1;
1718 case ASM_OPERANDS:
1719 if (MEM_VOLATILE_P (x))
1720 return 1;
1722 default:
1723 break;
1726 /* Recursively scan the operands of this expression. */
1729 register const char *fmt = GET_RTX_FORMAT (code);
1730 register int i;
1732 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1734 if (fmt[i] == 'e')
1736 if (volatile_insn_p (XEXP (x, i)))
1737 return 1;
1739 else if (fmt[i] == 'E')
1741 register int j;
1742 for (j = 0; j < XVECLEN (x, i); j++)
1743 if (volatile_insn_p (XVECEXP (x, i, j)))
1744 return 1;
1748 return 0;
1751 /* Nonzero if X contains any volatile memory references
1752 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
1755 volatile_refs_p (x)
1756 rtx x;
1758 register RTX_CODE code;
1760 code = GET_CODE (x);
1761 switch (code)
1763 case LABEL_REF:
1764 case SYMBOL_REF:
1765 case CONST_INT:
1766 case CONST:
1767 case CONST_DOUBLE:
1768 case CC0:
1769 case PC:
1770 case REG:
1771 case SCRATCH:
1772 case CLOBBER:
1773 case ASM_INPUT:
1774 case ADDR_VEC:
1775 case ADDR_DIFF_VEC:
1776 return 0;
1778 case CALL:
1779 case UNSPEC_VOLATILE:
1780 /* case TRAP_IF: This isn't clear yet. */
1781 return 1;
1783 case MEM:
1784 case ASM_OPERANDS:
1785 if (MEM_VOLATILE_P (x))
1786 return 1;
1788 default:
1789 break;
1792 /* Recursively scan the operands of this expression. */
1795 register const char *fmt = GET_RTX_FORMAT (code);
1796 register int i;
1798 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1800 if (fmt[i] == 'e')
1802 if (volatile_refs_p (XEXP (x, i)))
1803 return 1;
1805 else if (fmt[i] == 'E')
1807 register int j;
1808 for (j = 0; j < XVECLEN (x, i); j++)
1809 if (volatile_refs_p (XVECEXP (x, i, j)))
1810 return 1;
1814 return 0;
1817 /* Similar to above, except that it also rejects register pre- and post-
1818 incrementing. */
1821 side_effects_p (x)
1822 rtx x;
1824 register RTX_CODE code;
1826 code = GET_CODE (x);
1827 switch (code)
1829 case LABEL_REF:
1830 case SYMBOL_REF:
1831 case CONST_INT:
1832 case CONST:
1833 case CONST_DOUBLE:
1834 case CC0:
1835 case PC:
1836 case REG:
1837 case SCRATCH:
1838 case ASM_INPUT:
1839 case ADDR_VEC:
1840 case ADDR_DIFF_VEC:
1841 return 0;
1843 case CLOBBER:
1844 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
1845 when some combination can't be done. If we see one, don't think
1846 that we can simplify the expression. */
1847 return (GET_MODE (x) != VOIDmode);
1849 case PRE_INC:
1850 case PRE_DEC:
1851 case POST_INC:
1852 case POST_DEC:
1853 case CALL:
1854 case UNSPEC_VOLATILE:
1855 /* case TRAP_IF: This isn't clear yet. */
1856 return 1;
1858 case MEM:
1859 case ASM_OPERANDS:
1860 if (MEM_VOLATILE_P (x))
1861 return 1;
1863 default:
1864 break;
1867 /* Recursively scan the operands of this expression. */
1870 register const char *fmt = GET_RTX_FORMAT (code);
1871 register int i;
1873 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1875 if (fmt[i] == 'e')
1877 if (side_effects_p (XEXP (x, i)))
1878 return 1;
1880 else if (fmt[i] == 'E')
1882 register int j;
1883 for (j = 0; j < XVECLEN (x, i); j++)
1884 if (side_effects_p (XVECEXP (x, i, j)))
1885 return 1;
1889 return 0;
1892 /* Return nonzero if evaluating rtx X might cause a trap. */
1895 may_trap_p (x)
1896 rtx x;
1898 int i;
1899 enum rtx_code code;
1900 const char *fmt;
1902 if (x == 0)
1903 return 0;
1904 code = GET_CODE (x);
1905 switch (code)
1907 /* Handle these cases quickly. */
1908 case CONST_INT:
1909 case CONST_DOUBLE:
1910 case SYMBOL_REF:
1911 case LABEL_REF:
1912 case CONST:
1913 case PC:
1914 case CC0:
1915 case REG:
1916 case SCRATCH:
1917 return 0;
1919 case ASM_INPUT:
1920 case UNSPEC_VOLATILE:
1921 case TRAP_IF:
1922 return 1;
1924 case ASM_OPERANDS:
1925 return MEM_VOLATILE_P (x);
1927 /* Memory ref can trap unless it's a static var or a stack slot. */
1928 case MEM:
1929 return rtx_addr_can_trap_p (XEXP (x, 0));
1931 /* Division by a non-constant might trap. */
1932 case DIV:
1933 case MOD:
1934 case UDIV:
1935 case UMOD:
1936 if (! CONSTANT_P (XEXP (x, 1))
1937 || GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1938 return 1;
1939 /* This was const0_rtx, but by not using that,
1940 we can link this file into other programs. */
1941 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
1942 return 1;
1943 break;
1945 case EXPR_LIST:
1946 /* An EXPR_LIST is used to represent a function call. This
1947 certainly may trap. */
1948 return 1;
1950 case COMPARE:
1951 /* Any floating comparison may trap. */
1952 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1953 return 1;
1954 /* But often the compare has some CC mode, so check operand
1955 modes as well. */
1956 if (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) == MODE_FLOAT
1957 || GET_MODE_CLASS (GET_MODE (XEXP (x, 1))) == MODE_FLOAT)
1958 return 1;
1959 break;
1961 default:
1962 /* Any floating arithmetic may trap. */
1963 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1964 return 1;
1967 fmt = GET_RTX_FORMAT (code);
1968 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1970 if (fmt[i] == 'e')
1972 if (may_trap_p (XEXP (x, i)))
1973 return 1;
1975 else if (fmt[i] == 'E')
1977 register int j;
1978 for (j = 0; j < XVECLEN (x, i); j++)
1979 if (may_trap_p (XVECEXP (x, i, j)))
1980 return 1;
1983 return 0;
1986 /* Return nonzero if X contains a comparison that is not either EQ or NE,
1987 i.e., an inequality. */
1990 inequality_comparisons_p (x)
1991 rtx x;
1993 register const char *fmt;
1994 register int len, i;
1995 register enum rtx_code code = GET_CODE (x);
1997 switch (code)
1999 case REG:
2000 case SCRATCH:
2001 case PC:
2002 case CC0:
2003 case CONST_INT:
2004 case CONST_DOUBLE:
2005 case CONST:
2006 case LABEL_REF:
2007 case SYMBOL_REF:
2008 return 0;
2010 case LT:
2011 case LTU:
2012 case GT:
2013 case GTU:
2014 case LE:
2015 case LEU:
2016 case GE:
2017 case GEU:
2018 return 1;
2020 default:
2021 break;
2024 len = GET_RTX_LENGTH (code);
2025 fmt = GET_RTX_FORMAT (code);
2027 for (i = 0; i < len; i++)
2029 if (fmt[i] == 'e')
2031 if (inequality_comparisons_p (XEXP (x, i)))
2032 return 1;
2034 else if (fmt[i] == 'E')
2036 register int j;
2037 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2038 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2039 return 1;
2043 return 0;
2046 /* Replace any occurrence of FROM in X with TO. The function does
2047 not enter into CONST_DOUBLE for the replace.
2049 Note that copying is not done so X must not be shared unless all copies
2050 are to be modified. */
2053 replace_rtx (x, from, to)
2054 rtx x, from, to;
2056 register int i, j;
2057 register const char *fmt;
2059 /* The following prevents loops occurrence when we change MEM in
2060 CONST_DOUBLE onto the same CONST_DOUBLE. */
2061 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2062 return x;
2064 if (x == from)
2065 return to;
2067 /* Allow this function to make replacements in EXPR_LISTs. */
2068 if (x == 0)
2069 return 0;
2071 fmt = GET_RTX_FORMAT (GET_CODE (x));
2072 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2074 if (fmt[i] == 'e')
2075 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2076 else if (fmt[i] == 'E')
2077 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2078 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2081 return x;
2084 /* Throughout the rtx X, replace many registers according to REG_MAP.
2085 Return the replacement for X (which may be X with altered contents).
2086 REG_MAP[R] is the replacement for register R, or 0 for don't replace.
2087 NREGS is the length of REG_MAP; regs >= NREGS are not mapped.
2089 We only support REG_MAP entries of REG or SUBREG. Also, hard registers
2090 should not be mapped to pseudos or vice versa since validate_change
2091 is not called.
2093 If REPLACE_DEST is 1, replacements are also done in destinations;
2094 otherwise, only sources are replaced. */
2097 replace_regs (x, reg_map, nregs, replace_dest)
2098 rtx x;
2099 rtx *reg_map;
2100 unsigned int nregs;
2101 int replace_dest;
2103 register enum rtx_code code;
2104 register int i;
2105 register const char *fmt;
2107 if (x == 0)
2108 return x;
2110 code = GET_CODE (x);
2111 switch (code)
2113 case SCRATCH:
2114 case PC:
2115 case CC0:
2116 case CONST_INT:
2117 case CONST_DOUBLE:
2118 case CONST:
2119 case SYMBOL_REF:
2120 case LABEL_REF:
2121 return x;
2123 case REG:
2124 /* Verify that the register has an entry before trying to access it. */
2125 if (REGNO (x) < nregs && reg_map[REGNO (x)] != 0)
2127 /* SUBREGs can't be shared. Always return a copy to ensure that if
2128 this replacement occurs more than once then each instance will
2129 get distinct rtx. */
2130 if (GET_CODE (reg_map[REGNO (x)]) == SUBREG)
2131 return copy_rtx (reg_map[REGNO (x)]);
2132 return reg_map[REGNO (x)];
2134 return x;
2136 case SUBREG:
2137 /* Prevent making nested SUBREGs. */
2138 if (GET_CODE (SUBREG_REG (x)) == REG && REGNO (SUBREG_REG (x)) < nregs
2139 && reg_map[REGNO (SUBREG_REG (x))] != 0
2140 && GET_CODE (reg_map[REGNO (SUBREG_REG (x))]) == SUBREG)
2142 rtx map_val = reg_map[REGNO (SUBREG_REG (x))];
2143 rtx map_inner = SUBREG_REG (map_val);
2145 if (GET_MODE (x) == GET_MODE (map_inner))
2146 return map_inner;
2147 else
2149 /* We cannot call gen_rtx here since we may be linked with
2150 genattrtab.c. */
2151 /* Let's try clobbering the incoming SUBREG and see
2152 if this is really safe. */
2153 SUBREG_REG (x) = map_inner;
2154 SUBREG_WORD (x) += SUBREG_WORD (map_val);
2155 return x;
2156 #if 0
2157 rtx new = rtx_alloc (SUBREG);
2158 PUT_MODE (new, GET_MODE (x));
2159 SUBREG_REG (new) = map_inner;
2160 SUBREG_WORD (new) = SUBREG_WORD (x) + SUBREG_WORD (map_val);
2161 #endif
2164 break;
2166 case SET:
2167 if (replace_dest)
2168 SET_DEST (x) = replace_regs (SET_DEST (x), reg_map, nregs, 0);
2170 else if (GET_CODE (SET_DEST (x)) == MEM
2171 || GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2172 /* Even if we are not to replace destinations, replace register if it
2173 is CONTAINED in destination (destination is memory or
2174 STRICT_LOW_PART). */
2175 XEXP (SET_DEST (x), 0) = replace_regs (XEXP (SET_DEST (x), 0),
2176 reg_map, nregs, 0);
2177 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2178 /* Similarly, for ZERO_EXTRACT we replace all operands. */
2179 break;
2181 SET_SRC (x) = replace_regs (SET_SRC (x), reg_map, nregs, 0);
2182 return x;
2184 default:
2185 break;
2188 fmt = GET_RTX_FORMAT (code);
2189 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2191 if (fmt[i] == 'e')
2192 XEXP (x, i) = replace_regs (XEXP (x, i), reg_map, nregs, replace_dest);
2193 else if (fmt[i] == 'E')
2195 register int j;
2196 for (j = 0; j < XVECLEN (x, i); j++)
2197 XVECEXP (x, i, j) = replace_regs (XVECEXP (x, i, j), reg_map,
2198 nregs, replace_dest);
2201 return x;
2204 /* Return 1 if X, the SRC_SRC of SET of (pc) contain a REG or MEM that is
2205 not in the constant pool and not in the condition of an IF_THEN_ELSE. */
2207 static int
2208 jmp_uses_reg_or_mem (x)
2209 rtx x;
2211 enum rtx_code code = GET_CODE (x);
2212 int i, j;
2213 const char *fmt;
2215 switch (code)
2217 case CONST:
2218 case LABEL_REF:
2219 case PC:
2220 return 0;
2222 case REG:
2223 return 1;
2225 case MEM:
2226 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2227 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2229 case IF_THEN_ELSE:
2230 return (jmp_uses_reg_or_mem (XEXP (x, 1))
2231 || jmp_uses_reg_or_mem (XEXP (x, 2)));
2233 case PLUS: case MINUS: case MULT:
2234 return (jmp_uses_reg_or_mem (XEXP (x, 0))
2235 || jmp_uses_reg_or_mem (XEXP (x, 1)));
2237 default:
2238 break;
2241 fmt = GET_RTX_FORMAT (code);
2242 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2244 if (fmt[i] == 'e'
2245 && jmp_uses_reg_or_mem (XEXP (x, i)))
2246 return 1;
2248 else if (fmt[i] == 'E')
2249 for (j = 0; j < XVECLEN (x, i); j++)
2250 if (jmp_uses_reg_or_mem (XVECEXP (x, i, j)))
2251 return 1;
2254 return 0;
2257 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2259 Tablejumps and casesi insns are not considered indirect jumps;
2260 we can recognize them by a (use (label_ref)). */
2263 computed_jump_p (insn)
2264 rtx insn;
2266 int i;
2267 if (GET_CODE (insn) == JUMP_INSN)
2269 rtx pat = PATTERN (insn);
2271 if (GET_CODE (pat) == PARALLEL)
2273 int len = XVECLEN (pat, 0);
2274 int has_use_labelref = 0;
2276 for (i = len - 1; i >= 0; i--)
2277 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2278 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2279 == LABEL_REF))
2280 has_use_labelref = 1;
2282 if (! has_use_labelref)
2283 for (i = len - 1; i >= 0; i--)
2284 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2285 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2286 && jmp_uses_reg_or_mem (SET_SRC (XVECEXP (pat, 0, i))))
2287 return 1;
2289 else if (GET_CODE (pat) == SET
2290 && SET_DEST (pat) == pc_rtx
2291 && jmp_uses_reg_or_mem (SET_SRC (pat)))
2292 return 1;
2294 return 0;
2297 /* Traverse X via depth-first search, calling F for each
2298 sub-expression (including X itself). F is also passed the DATA.
2299 If F returns -1, do not traverse sub-expressions, but continue
2300 traversing the rest of the tree. If F ever returns any other
2301 non-zero value, stop the traversal, and return the value returned
2302 by F. Otherwise, return 0. This function does not traverse inside
2303 tree structure that contains RTX_EXPRs, or into sub-expressions
2304 whose format code is `0' since it is not known whether or not those
2305 codes are actually RTL.
2307 This routine is very general, and could (should?) be used to
2308 implement many of the other routines in this file. */
2311 for_each_rtx (x, f, data)
2312 rtx *x;
2313 rtx_function f;
2314 void *data;
2316 int result;
2317 int length;
2318 const char* format;
2319 int i;
2321 /* Call F on X. */
2322 result = (*f)(x, data);
2323 if (result == -1)
2324 /* Do not traverse sub-expressions. */
2325 return 0;
2326 else if (result != 0)
2327 /* Stop the traversal. */
2328 return result;
2330 if (*x == NULL_RTX)
2331 /* There are no sub-expressions. */
2332 return 0;
2334 length = GET_RTX_LENGTH (GET_CODE (*x));
2335 format = GET_RTX_FORMAT (GET_CODE (*x));
2337 for (i = 0; i < length; ++i)
2339 switch (format[i])
2341 case 'e':
2342 result = for_each_rtx (&XEXP (*x, i), f, data);
2343 if (result != 0)
2344 return result;
2345 break;
2347 case 'V':
2348 case 'E':
2349 if (XVEC (*x, i) != 0)
2351 int j;
2352 for (j = 0; j < XVECLEN (*x, i); ++j)
2354 result = for_each_rtx (&XVECEXP (*x, i, j), f, data);
2355 if (result != 0)
2356 return result;
2359 break;
2361 default:
2362 /* Nothing to do. */
2363 break;
2368 return 0;
2371 /* Searches X for any reference to REGNO, returning the rtx of the
2372 reference found if any. Otherwise, returns NULL_RTX. */
2375 regno_use_in (regno, x)
2376 unsigned int regno;
2377 rtx x;
2379 register const char *fmt;
2380 int i, j;
2381 rtx tem;
2383 if (GET_CODE (x) == REG && REGNO (x) == regno)
2384 return x;
2386 fmt = GET_RTX_FORMAT (GET_CODE (x));
2387 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2389 if (fmt[i] == 'e')
2391 if ((tem = regno_use_in (regno, XEXP (x, i))))
2392 return tem;
2394 else if (fmt[i] == 'E')
2395 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2396 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2397 return tem;
2400 return NULL_RTX;
2404 /* Return 1 if X is an autoincrement side effect and the register is
2405 not the stack pointer. */
2407 auto_inc_p (x)
2408 rtx x;
2410 switch (GET_CODE (x))
2412 case PRE_INC:
2413 case POST_INC:
2414 case PRE_DEC:
2415 case POST_DEC:
2416 case PRE_MODIFY:
2417 case POST_MODIFY:
2418 /* There are no REG_INC notes for SP. */
2419 if (XEXP (x, 0) != stack_pointer_rtx)
2420 return 1;
2421 default:
2422 break;
2424 return 0;
2427 /* Return 1 if the sequence of instructions beginning with FROM and up
2428 to and including TO is safe to move. If NEW_TO is non-NULL, and
2429 the sequence is not already safe to move, but can be easily
2430 extended to a sequence which is safe, then NEW_TO will point to the
2431 end of the extended sequence.
2433 For now, this function only checks that the region contains whole
2434 exception regiongs, but it could be extended to check additional
2435 conditions as well. */
2438 insns_safe_to_move_p (from, to, new_to)
2439 rtx from;
2440 rtx to;
2441 rtx *new_to;
2443 int eh_region_count = 0;
2444 int past_to_p = 0;
2445 rtx r = from;
2447 /* By default, assume the end of the region will be what was
2448 suggested. */
2449 if (new_to)
2450 *new_to = to;
2452 while (r)
2454 if (GET_CODE (r) == NOTE)
2456 switch (NOTE_LINE_NUMBER (r))
2458 case NOTE_INSN_EH_REGION_BEG:
2459 ++eh_region_count;
2460 break;
2462 case NOTE_INSN_EH_REGION_END:
2463 if (eh_region_count == 0)
2464 /* This sequence of instructions contains the end of
2465 an exception region, but not he beginning. Moving
2466 it will cause chaos. */
2467 return 0;
2469 --eh_region_count;
2470 break;
2472 default:
2473 break;
2476 else if (past_to_p)
2477 /* If we've passed TO, and we see a non-note instruction, we
2478 can't extend the sequence to a movable sequence. */
2479 return 0;
2481 if (r == to)
2483 if (!new_to)
2484 /* It's OK to move the sequence if there were matched sets of
2485 exception region notes. */
2486 return eh_region_count == 0;
2488 past_to_p = 1;
2491 /* It's OK to move the sequence if there were matched sets of
2492 exception region notes. */
2493 if (past_to_p && eh_region_count == 0)
2495 *new_to = r;
2496 return 1;
2499 /* Go to the next instruction. */
2500 r = NEXT_INSN (r);
2503 return 0;
2506 /* Return non-zero if IN contains a piece of rtl that has the address LOC */
2508 loc_mentioned_in_p (loc, in)
2509 rtx *loc, in;
2511 enum rtx_code code = GET_CODE (in);
2512 const char *fmt = GET_RTX_FORMAT (code);
2513 int i, j;
2515 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2517 if (loc == &in->fld[i].rtx)
2518 return 1;
2519 if (fmt[i] == 'e')
2521 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2522 return 1;
2524 else if (fmt[i] == 'E')
2525 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2526 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2527 return 1;
2529 return 0;