1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
26 #include "coretypes.h"
31 #include "hard-reg-set.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
39 #include "sched-int.h"
41 #include "cfglayout.h"
49 /* A flag indicating that a ddg edge belongs to an SCC or not. */
50 enum edge_flag
{NOT_IN_SCC
= 0, IN_SCC
};
52 /* Forward declarations. */
53 static void add_backarc_to_ddg (ddg_ptr
, ddg_edge_ptr
);
54 static void add_backarc_to_scc (ddg_scc_ptr
, ddg_edge_ptr
);
55 static void add_scc_to_ddg (ddg_all_sccs_ptr
, ddg_scc_ptr
);
56 static void create_ddg_dependence (ddg_ptr
, ddg_node_ptr
, ddg_node_ptr
, dep_t
);
57 static void create_ddg_dep_no_link (ddg_ptr
, ddg_node_ptr
, ddg_node_ptr
,
58 dep_type
, dep_data_type
, int);
59 static ddg_edge_ptr
create_ddg_edge (ddg_node_ptr
, ddg_node_ptr
, dep_type
,
60 dep_data_type
, int, int);
61 static void add_edge_to_ddg (ddg_ptr g
, ddg_edge_ptr
);
63 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
64 static bool mem_ref_p
;
66 /* Auxiliary function for mem_read_insn_p. */
68 mark_mem_use (rtx
*x
, void *data ATTRIBUTE_UNUSED
)
75 /* Auxiliary function for mem_read_insn_p. */
77 mark_mem_use_1 (rtx
*x
, void *data
)
79 for_each_rtx (x
, mark_mem_use
, data
);
82 /* Returns nonzero if INSN reads from memory. */
84 mem_read_insn_p (rtx insn
)
87 note_uses (&PATTERN (insn
), mark_mem_use_1
, NULL
);
92 mark_mem_store (rtx loc
, rtx setter ATTRIBUTE_UNUSED
, void *data ATTRIBUTE_UNUSED
)
98 /* Returns nonzero if INSN writes to memory. */
100 mem_write_insn_p (rtx insn
)
103 note_stores (PATTERN (insn
), mark_mem_store
, NULL
);
107 /* Returns nonzero if X has access to memory. */
109 rtx_mem_access_p (rtx x
)
122 fmt
= GET_RTX_FORMAT (code
);
123 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
127 if (rtx_mem_access_p (XEXP (x
, i
)))
130 else if (fmt
[i
] == 'E')
131 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
133 if (rtx_mem_access_p (XVECEXP (x
, i
, j
)))
140 /* Returns nonzero if INSN reads to or writes from memory. */
142 mem_access_insn_p (rtx insn
)
144 return rtx_mem_access_p (PATTERN (insn
));
147 /* Computes the dependence parameters (latency, distance etc.), creates
148 a ddg_edge and adds it to the given DDG. */
150 create_ddg_dependence (ddg_ptr g
, ddg_node_ptr src_node
,
151 ddg_node_ptr dest_node
, dep_t link
)
154 int latency
, distance
= 0;
155 int interloop
= (src_node
->cuid
>= dest_node
->cuid
);
156 dep_type t
= TRUE_DEP
;
157 dep_data_type dt
= (mem_access_insn_p (src_node
->insn
)
158 && mem_access_insn_p (dest_node
->insn
) ? MEM_DEP
161 /* For now we don't have an exact calculation of the distance,
162 so assume 1 conservatively. */
168 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
169 if (DEP_KIND (link
) == REG_DEP_ANTI
)
171 else if (DEP_KIND (link
) == REG_DEP_OUTPUT
)
173 latency
= dep_cost (link
);
175 e
= create_ddg_edge (src_node
, dest_node
, t
, dt
, latency
, distance
);
179 /* Some interloop dependencies are relaxed:
180 1. Every insn is output dependent on itself; ignore such deps.
181 2. Every true/flow dependence is an anti dependence in the
182 opposite direction with distance 1; such register deps
183 will be removed by renaming if broken --- ignore them. */
184 if (!(t
== OUTPUT_DEP
&& src_node
== dest_node
)
185 && !(t
== ANTI_DEP
&& dt
== REG_DEP
))
186 add_backarc_to_ddg (g
, e
);
190 else if (t
== ANTI_DEP
&& dt
== REG_DEP
)
191 free (e
); /* We can fix broken anti register deps using reg-moves. */
193 add_edge_to_ddg (g
, e
);
196 /* The same as the above function, but it doesn't require a link parameter. */
198 create_ddg_dep_no_link (ddg_ptr g
, ddg_node_ptr from
, ddg_node_ptr to
,
199 dep_type d_t
, dep_data_type d_dt
, int distance
)
203 enum reg_note dep_kind
;
204 struct _dep _dep
, *dep
= &_dep
;
207 dep_kind
= REG_DEP_ANTI
;
208 else if (d_t
== OUTPUT_DEP
)
209 dep_kind
= REG_DEP_OUTPUT
;
212 gcc_assert (d_t
== TRUE_DEP
);
214 dep_kind
= REG_DEP_TRUE
;
217 init_dep (dep
, from
->insn
, to
->insn
, dep_kind
);
221 e
= create_ddg_edge (from
, to
, d_t
, d_dt
, l
, distance
);
223 add_backarc_to_ddg (g
, e
);
225 add_edge_to_ddg (g
, e
);
229 /* Given a downwards exposed register def RD, add inter-loop true dependences
230 for all its uses in the next iteration, and an output dependence to the
231 first def of the next iteration. */
233 add_deps_for_def (ddg_ptr g
, struct df
*df
, struct df_ref
*rd
)
235 int regno
= DF_REF_REGNO (rd
);
236 struct df_ru_bb_info
*bb_info
= DF_RU_BB_INFO (df
, g
->bb
);
237 struct df_link
*r_use
;
238 int use_before_def
= false;
239 rtx def_insn
= DF_REF_INSN (rd
);
240 ddg_node_ptr src_node
= get_node_of_insn (g
, def_insn
);
242 /* Create and inter-loop true dependence between RD and each of its uses
243 that is upwards exposed in RD's block. */
244 for (r_use
= DF_REF_CHAIN (rd
); r_use
!= NULL
; r_use
= r_use
->next
)
246 if (bitmap_bit_p (bb_info
->gen
, r_use
->ref
->id
))
248 rtx use_insn
= DF_REF_INSN (r_use
->ref
);
249 ddg_node_ptr dest_node
= get_node_of_insn (g
, use_insn
);
251 gcc_assert (src_node
&& dest_node
);
253 /* Any such upwards exposed use appears before the rd def. */
254 use_before_def
= true;
255 create_ddg_dep_no_link (g
, src_node
, dest_node
, TRUE_DEP
,
260 /* Create an inter-loop output dependence between RD (which is the
261 last def in its block, being downwards exposed) and the first def
262 in its block. Avoid creating a self output dependence. Avoid creating
263 an output dependence if there is a dependence path between the two defs
264 starting with a true dependence followed by an anti dependence (i.e. if
265 there is a use between the two defs. */
266 if (! use_before_def
)
268 struct df_ref
*def
= df_bb_regno_first_def_find (df
, g
->bb
, regno
);
270 ddg_node_ptr dest_node
;
272 if (!def
|| rd
->id
== def
->id
)
275 /* Check if there are uses after RD. */
276 for (i
= src_node
->cuid
+ 1; i
< g
->num_nodes
; i
++)
277 if (df_find_use (df
, g
->nodes
[i
].insn
, rd
->reg
))
280 dest_node
= get_node_of_insn (g
, def
->insn
);
281 create_ddg_dep_no_link (g
, src_node
, dest_node
, OUTPUT_DEP
, REG_DEP
, 1);
285 /* Given a register USE, add an inter-loop anti dependence to the first
286 (nearest BLOCK_BEGIN) def of the next iteration, unless USE is followed
287 by a def in the block. */
289 add_deps_for_use (ddg_ptr g
, struct df
*df
, struct df_ref
*use
)
292 int regno
= DF_REF_REGNO (use
);
293 struct df_ref
*first_def
= df_bb_regno_first_def_find (df
, g
->bb
, regno
);
294 ddg_node_ptr use_node
;
295 ddg_node_ptr def_node
;
296 struct df_rd_bb_info
*bb_info
;
298 bb_info
= DF_RD_BB_INFO (df
, g
->bb
);
303 use_node
= get_node_of_insn (g
, use
->insn
);
304 def_node
= get_node_of_insn (g
, first_def
->insn
);
306 gcc_assert (use_node
&& def_node
);
308 /* Make sure there are no defs after USE. */
309 for (i
= use_node
->cuid
+ 1; i
< g
->num_nodes
; i
++)
310 if (df_find_def (df
, g
->nodes
[i
].insn
, use
->reg
))
312 /* We must not add ANTI dep when there is an intra-loop TRUE dep in
313 the opposite direction. If the first_def reaches the USE then there is
315 if (! bitmap_bit_p (bb_info
->gen
, first_def
->id
))
316 create_ddg_dep_no_link (g
, use_node
, def_node
, ANTI_DEP
, REG_DEP
, 1);
319 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
321 build_inter_loop_deps (ddg_ptr g
, struct df
*df
)
323 unsigned rd_num
, u_num
;
324 struct df_rd_bb_info
*rd_bb_info
;
325 struct df_ru_bb_info
*ru_bb_info
;
328 rd_bb_info
= DF_RD_BB_INFO (df
, g
->bb
);
330 /* Find inter-loop output and true deps by connecting downward exposed defs
331 to the first def of the BB and to upwards exposed uses. */
332 EXECUTE_IF_SET_IN_BITMAP (rd_bb_info
->gen
, 0, rd_num
, bi
)
334 struct df_ref
*rd
= DF_DEFS_GET (df
, rd_num
);
336 add_deps_for_def (g
, df
, rd
);
339 ru_bb_info
= DF_RU_BB_INFO (df
, g
->bb
);
341 /* Find inter-loop anti deps. We are interested in uses of the block that
342 appear below all defs; this implies that these uses are killed. */
343 EXECUTE_IF_SET_IN_BITMAP (ru_bb_info
->kill
, 0, u_num
, bi
)
345 struct df_ref
*use
= DF_USES_GET (df
, u_num
);
347 /* We are interested in uses of this BB. */
348 if (BLOCK_FOR_INSN (use
->insn
) == g
->bb
)
349 add_deps_for_use (g
, df
, use
);
353 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
356 add_inter_loop_mem_dep (ddg_ptr g
, ddg_node_ptr from
, ddg_node_ptr to
)
358 if (mem_write_insn_p (from
->insn
))
360 if (mem_read_insn_p (to
->insn
))
361 create_ddg_dep_no_link (g
, from
, to
, TRUE_DEP
, MEM_DEP
, 1);
362 else if (from
->cuid
!= to
->cuid
)
363 create_ddg_dep_no_link (g
, from
, to
, OUTPUT_DEP
, MEM_DEP
, 1);
367 if (mem_read_insn_p (to
->insn
))
369 else if (from
->cuid
!= to
->cuid
)
371 create_ddg_dep_no_link (g
, from
, to
, ANTI_DEP
, MEM_DEP
, 1);
372 create_ddg_dep_no_link (g
, to
, from
, TRUE_DEP
, MEM_DEP
, 1);
378 /* Perform intra-block Data Dependency analysis and connect the nodes in
379 the DDG. We assume the loop has a single basic block. */
381 build_intra_loop_deps (ddg_ptr g
)
384 /* Hold the dependency analysis state during dependency calculations. */
385 struct deps tmp_deps
;
389 /* Build the dependence information, using the sched_analyze function. */
391 init_deps (&tmp_deps
);
393 /* Do the intra-block data dependence analysis for the given block. */
394 get_ebb_head_tail (g
->bb
, g
->bb
, &head
, &tail
);
395 sched_analyze (&tmp_deps
, head
, tail
);
397 /* Build intra-loop data dependencies using the scheduler dependency
399 for (i
= 0; i
< g
->num_nodes
; i
++)
401 ddg_node_ptr dest_node
= &g
->nodes
[i
];
403 if (! INSN_P (dest_node
->insn
))
406 FOR_EACH_DEP_LINK (link
, INSN_BACK_DEPS (dest_node
->insn
))
408 dep_t dep
= DEP_LINK_DEP (link
);
409 ddg_node_ptr src_node
= get_node_of_insn (g
, DEP_PRO (dep
));
415 create_ddg_dependence (g
, src_node
, dest_node
, dep
);
418 /* If this insn modifies memory, add an edge to all insns that access
420 if (mem_access_insn_p (dest_node
->insn
))
424 for (j
= 0; j
<= i
; j
++)
426 ddg_node_ptr j_node
= &g
->nodes
[j
];
427 if (mem_access_insn_p (j_node
->insn
))
428 /* Don't bother calculating inter-loop dep if an intra-loop dep
430 if (! TEST_BIT (dest_node
->successors
, j
))
431 add_inter_loop_mem_dep (g
, dest_node
, j_node
);
436 /* Free the INSN_LISTs. */
437 finish_deps_global ();
438 free_deps (&tmp_deps
);
442 /* Given a basic block, create its DDG and return a pointer to a variable
443 of ddg type that represents it.
444 Initialize the ddg structure fields to the appropriate values. */
446 create_ddg (basic_block bb
, struct df
*df
, int closing_branch_deps
)
449 rtx insn
, first_note
;
453 g
= (ddg_ptr
) xcalloc (1, sizeof (struct ddg
));
456 g
->closing_branch_deps
= closing_branch_deps
;
458 /* Count the number of insns in the BB. */
459 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
));
460 insn
= NEXT_INSN (insn
))
462 if (! INSN_P (insn
) || GET_CODE (PATTERN (insn
)) == USE
)
465 if (mem_read_insn_p (insn
))
467 if (mem_write_insn_p (insn
))
472 /* There is nothing to do for this BB. */
479 /* Allocate the nodes array, and initialize the nodes. */
480 g
->num_nodes
= num_nodes
;
481 g
->nodes
= (ddg_node_ptr
) xcalloc (num_nodes
, sizeof (struct ddg_node
));
482 g
->closing_branch
= NULL
;
484 first_note
= NULL_RTX
;
485 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
));
486 insn
= NEXT_INSN (insn
))
490 if (! first_note
&& NOTE_P (insn
)
491 && NOTE_LINE_NUMBER (insn
) != NOTE_INSN_BASIC_BLOCK
)
497 gcc_assert (!g
->closing_branch
);
498 g
->closing_branch
= &g
->nodes
[i
];
500 else if (GET_CODE (PATTERN (insn
)) == USE
)
507 g
->nodes
[i
].cuid
= i
;
508 g
->nodes
[i
].successors
= sbitmap_alloc (num_nodes
);
509 sbitmap_zero (g
->nodes
[i
].successors
);
510 g
->nodes
[i
].predecessors
= sbitmap_alloc (num_nodes
);
511 sbitmap_zero (g
->nodes
[i
].predecessors
);
512 g
->nodes
[i
].first_note
= (first_note
? first_note
: insn
);
513 g
->nodes
[i
++].insn
= insn
;
514 first_note
= NULL_RTX
;
517 /* We must have found a branch in DDG. */
518 gcc_assert (g
->closing_branch
);
521 /* Build the data dependency graph. */
522 build_intra_loop_deps (g
);
523 build_inter_loop_deps (g
, df
);
527 /* Free all the memory allocated for the DDG. */
536 for (i
= 0; i
< g
->num_nodes
; i
++)
538 ddg_edge_ptr e
= g
->nodes
[i
].out
;
542 ddg_edge_ptr next
= e
->next_out
;
547 sbitmap_free (g
->nodes
[i
].successors
);
548 sbitmap_free (g
->nodes
[i
].predecessors
);
550 if (g
->num_backarcs
> 0)
557 print_ddg_edge (FILE *file
, ddg_edge_ptr e
)
573 fprintf (file
, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e
->src
->insn
),
574 dep_c
, e
->latency
, e
->distance
, INSN_UID (e
->dest
->insn
));
577 /* Print the DDG nodes with there in/out edges to the dump file. */
579 print_ddg (FILE *file
, ddg_ptr g
)
583 for (i
= 0; i
< g
->num_nodes
; i
++)
587 print_rtl_single (file
, g
->nodes
[i
].insn
);
588 fprintf (file
, "OUT ARCS: ");
589 for (e
= g
->nodes
[i
].out
; e
; e
= e
->next_out
)
590 print_ddg_edge (file
, e
);
592 fprintf (file
, "\nIN ARCS: ");
593 for (e
= g
->nodes
[i
].in
; e
; e
= e
->next_in
)
594 print_ddg_edge (file
, e
);
596 fprintf (file
, "\n");
600 /* Print the given DDG in VCG format. */
602 vcg_print_ddg (FILE *file
, ddg_ptr g
)
606 fprintf (file
, "graph: {\n");
607 for (src_cuid
= 0; src_cuid
< g
->num_nodes
; src_cuid
++)
610 int src_uid
= INSN_UID (g
->nodes
[src_cuid
].insn
);
612 fprintf (file
, "node: {title: \"%d_%d\" info1: \"", src_cuid
, src_uid
);
613 print_rtl_single (file
, g
->nodes
[src_cuid
].insn
);
614 fprintf (file
, "\"}\n");
615 for (e
= g
->nodes
[src_cuid
].out
; e
; e
= e
->next_out
)
617 int dst_uid
= INSN_UID (e
->dest
->insn
);
618 int dst_cuid
= e
->dest
->cuid
;
620 /* Give the backarcs a different color. */
622 fprintf (file
, "backedge: {color: red ");
624 fprintf (file
, "edge: { ");
626 fprintf (file
, "sourcename: \"%d_%d\" ", src_cuid
, src_uid
);
627 fprintf (file
, "targetname: \"%d_%d\" ", dst_cuid
, dst_uid
);
628 fprintf (file
, "label: \"%d_%d\"}\n", e
->latency
, e
->distance
);
631 fprintf (file
, "}\n");
634 /* Create an edge and initialize it with given values. */
636 create_ddg_edge (ddg_node_ptr src
, ddg_node_ptr dest
,
637 dep_type t
, dep_data_type dt
, int l
, int d
)
639 ddg_edge_ptr e
= (ddg_edge_ptr
) xmalloc (sizeof (struct ddg_edge
));
647 e
->next_in
= e
->next_out
= NULL
;
652 /* Add the given edge to the in/out linked lists of the DDG nodes. */
654 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED
, ddg_edge_ptr e
)
656 ddg_node_ptr src
= e
->src
;
657 ddg_node_ptr dest
= e
->dest
;
659 /* Should have allocated the sbitmaps. */
660 gcc_assert (src
->successors
&& dest
->predecessors
);
662 SET_BIT (src
->successors
, dest
->cuid
);
663 SET_BIT (dest
->predecessors
, src
->cuid
);
664 e
->next_in
= dest
->in
;
666 e
->next_out
= src
->out
;
672 /* Algorithm for computing the recurrence_length of an scc. We assume at
673 for now that cycles in the data dependence graph contain a single backarc.
674 This simplifies the algorithm, and can be generalized later. */
676 set_recurrence_length (ddg_scc_ptr scc
, ddg_ptr g
)
681 for (j
= 0; j
< scc
->num_backarcs
; j
++)
683 ddg_edge_ptr backarc
= scc
->backarcs
[j
];
685 int distance
= backarc
->distance
;
686 ddg_node_ptr src
= backarc
->dest
;
687 ddg_node_ptr dest
= backarc
->src
;
689 length
= longest_simple_path (g
, src
->cuid
, dest
->cuid
, scc
->nodes
);
692 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
695 length
+= backarc
->latency
;
696 result
= MAX (result
, (length
/ distance
));
698 scc
->recurrence_length
= result
;
701 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
702 and mark edges that belong to this scc as IN_SCC. */
704 create_scc (ddg_ptr g
, sbitmap nodes
)
708 sbitmap_iterator sbi
;
710 scc
= (ddg_scc_ptr
) xmalloc (sizeof (struct ddg_scc
));
711 scc
->backarcs
= NULL
;
712 scc
->num_backarcs
= 0;
713 scc
->nodes
= sbitmap_alloc (g
->num_nodes
);
714 sbitmap_copy (scc
->nodes
, nodes
);
716 /* Mark the backarcs that belong to this SCC. */
717 EXECUTE_IF_SET_IN_SBITMAP (nodes
, 0, u
, sbi
)
720 ddg_node_ptr n
= &g
->nodes
[u
];
722 for (e
= n
->out
; e
; e
= e
->next_out
)
723 if (TEST_BIT (nodes
, e
->dest
->cuid
))
725 e
->aux
.count
= IN_SCC
;
727 add_backarc_to_scc (scc
, e
);
731 set_recurrence_length (scc
, g
);
735 /* Cleans the memory allocation of a given SCC. */
737 free_scc (ddg_scc_ptr scc
)
742 sbitmap_free (scc
->nodes
);
743 if (scc
->num_backarcs
> 0)
744 free (scc
->backarcs
);
749 /* Add a given edge known to be a backarc to the given DDG. */
751 add_backarc_to_ddg (ddg_ptr g
, ddg_edge_ptr e
)
753 int size
= (g
->num_backarcs
+ 1) * sizeof (ddg_edge_ptr
);
755 add_edge_to_ddg (g
, e
);
756 g
->backarcs
= (ddg_edge_ptr
*) xrealloc (g
->backarcs
, size
);
757 g
->backarcs
[g
->num_backarcs
++] = e
;
760 /* Add backarc to an SCC. */
762 add_backarc_to_scc (ddg_scc_ptr scc
, ddg_edge_ptr e
)
764 int size
= (scc
->num_backarcs
+ 1) * sizeof (ddg_edge_ptr
);
766 scc
->backarcs
= (ddg_edge_ptr
*) xrealloc (scc
->backarcs
, size
);
767 scc
->backarcs
[scc
->num_backarcs
++] = e
;
770 /* Add the given SCC to the DDG. */
772 add_scc_to_ddg (ddg_all_sccs_ptr g
, ddg_scc_ptr scc
)
774 int size
= (g
->num_sccs
+ 1) * sizeof (ddg_scc_ptr
);
776 g
->sccs
= (ddg_scc_ptr
*) xrealloc (g
->sccs
, size
);
777 g
->sccs
[g
->num_sccs
++] = scc
;
780 /* Given the instruction INSN return the node that represents it. */
782 get_node_of_insn (ddg_ptr g
, rtx insn
)
786 for (i
= 0; i
< g
->num_nodes
; i
++)
787 if (insn
== g
->nodes
[i
].insn
)
792 /* Given a set OPS of nodes in the DDG, find the set of their successors
793 which are not in OPS, and set their bits in SUCC. Bits corresponding to
794 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
796 find_successors (sbitmap succ
, ddg_ptr g
, sbitmap ops
)
799 sbitmap_iterator sbi
;
801 EXECUTE_IF_SET_IN_SBITMAP (ops
, 0, i
, sbi
)
803 const sbitmap node_succ
= NODE_SUCCESSORS (&g
->nodes
[i
]);
804 sbitmap_a_or_b (succ
, succ
, node_succ
);
807 /* We want those that are not in ops. */
808 sbitmap_difference (succ
, succ
, ops
);
811 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
812 which are not in OPS, and set their bits in PREDS. Bits corresponding to
813 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
815 find_predecessors (sbitmap preds
, ddg_ptr g
, sbitmap ops
)
818 sbitmap_iterator sbi
;
820 EXECUTE_IF_SET_IN_SBITMAP (ops
, 0, i
, sbi
)
822 const sbitmap node_preds
= NODE_PREDECESSORS (&g
->nodes
[i
]);
823 sbitmap_a_or_b (preds
, preds
, node_preds
);
826 /* We want those that are not in ops. */
827 sbitmap_difference (preds
, preds
, ops
);
831 /* Compare function to be passed to qsort to order the backarcs in descending
834 compare_sccs (const void *s1
, const void *s2
)
836 int rec_l1
= (*(ddg_scc_ptr
*)s1
)->recurrence_length
;
837 int rec_l2
= (*(ddg_scc_ptr
*)s2
)->recurrence_length
;
838 return ((rec_l2
> rec_l1
) - (rec_l2
< rec_l1
));
842 /* Order the backarcs in descending recMII order using compare_sccs. */
844 order_sccs (ddg_all_sccs_ptr g
)
846 qsort (g
->sccs
, g
->num_sccs
, sizeof (ddg_scc_ptr
),
847 (int (*) (const void *, const void *)) compare_sccs
);
850 /* Perform the Strongly Connected Components decomposing algorithm on the
851 DDG and return DDG_ALL_SCCS structure that contains them. */
853 create_ddg_all_sccs (ddg_ptr g
)
856 int num_nodes
= g
->num_nodes
;
857 sbitmap from
= sbitmap_alloc (num_nodes
);
858 sbitmap to
= sbitmap_alloc (num_nodes
);
859 sbitmap scc_nodes
= sbitmap_alloc (num_nodes
);
860 ddg_all_sccs_ptr sccs
= (ddg_all_sccs_ptr
)
861 xmalloc (sizeof (struct ddg_all_sccs
));
867 for (i
= 0; i
< g
->num_backarcs
; i
++)
870 ddg_edge_ptr backarc
= g
->backarcs
[i
];
871 ddg_node_ptr src
= backarc
->src
;
872 ddg_node_ptr dest
= backarc
->dest
;
874 /* If the backarc already belongs to an SCC, continue. */
875 if (backarc
->aux
.count
== IN_SCC
)
880 SET_BIT (from
, dest
->cuid
);
881 SET_BIT (to
, src
->cuid
);
883 if (find_nodes_on_paths (scc_nodes
, g
, from
, to
))
885 scc
= create_scc (g
, scc_nodes
);
886 add_scc_to_ddg (sccs
, scc
);
892 sbitmap_free (scc_nodes
);
896 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
898 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs
)
905 for (i
= 0; i
< all_sccs
->num_sccs
; i
++)
906 free_scc (all_sccs
->sccs
[i
]);
912 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
913 nodes - find all nodes that lie on paths from FROM to TO (not excluding
914 nodes from FROM and TO). Return nonzero if nodes exist. */
916 find_nodes_on_paths (sbitmap result
, ddg_ptr g
, sbitmap from
, sbitmap to
)
921 int num_nodes
= g
->num_nodes
;
922 sbitmap_iterator sbi
;
924 sbitmap workset
= sbitmap_alloc (num_nodes
);
925 sbitmap reachable_from
= sbitmap_alloc (num_nodes
);
926 sbitmap reach_to
= sbitmap_alloc (num_nodes
);
927 sbitmap tmp
= sbitmap_alloc (num_nodes
);
929 sbitmap_copy (reachable_from
, from
);
930 sbitmap_copy (tmp
, from
);
936 sbitmap_copy (workset
, tmp
);
938 EXECUTE_IF_SET_IN_SBITMAP (workset
, 0, u
, sbi
)
941 ddg_node_ptr u_node
= &g
->nodes
[u
];
943 for (e
= u_node
->out
; e
!= (ddg_edge_ptr
) 0; e
= e
->next_out
)
945 ddg_node_ptr v_node
= e
->dest
;
946 int v
= v_node
->cuid
;
948 if (!TEST_BIT (reachable_from
, v
))
950 SET_BIT (reachable_from
, v
);
958 sbitmap_copy (reach_to
, to
);
959 sbitmap_copy (tmp
, to
);
965 sbitmap_copy (workset
, tmp
);
967 EXECUTE_IF_SET_IN_SBITMAP (workset
, 0, u
, sbi
)
970 ddg_node_ptr u_node
= &g
->nodes
[u
];
972 for (e
= u_node
->in
; e
!= (ddg_edge_ptr
) 0; e
= e
->next_in
)
974 ddg_node_ptr v_node
= e
->src
;
975 int v
= v_node
->cuid
;
977 if (!TEST_BIT (reach_to
, v
))
979 SET_BIT (reach_to
, v
);
987 answer
= sbitmap_a_and_b_cg (result
, reachable_from
, reach_to
);
988 sbitmap_free (workset
);
989 sbitmap_free (reachable_from
);
990 sbitmap_free (reach_to
);
996 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
997 at-least as large as the count of U_NODE plus the latency between them.
998 Sets a bit in TMP for each successor whose count was changed (increased).
999 Returns nonzero if any count was changed. */
1001 update_dist_to_successors (ddg_node_ptr u_node
, sbitmap nodes
, sbitmap tmp
)
1006 for (e
= u_node
->out
; e
; e
= e
->next_out
)
1008 ddg_node_ptr v_node
= e
->dest
;
1009 int v
= v_node
->cuid
;
1011 if (TEST_BIT (nodes
, v
)
1012 && (e
->distance
== 0)
1013 && (v_node
->aux
.count
< u_node
->aux
.count
+ e
->latency
))
1015 v_node
->aux
.count
= u_node
->aux
.count
+ e
->latency
;
1024 /* Find the length of a longest path from SRC to DEST in G,
1025 going only through NODES, and disregarding backarcs. */
1027 longest_simple_path (struct ddg
* g
, int src
, int dest
, sbitmap nodes
)
1033 int num_nodes
= g
->num_nodes
;
1034 sbitmap workset
= sbitmap_alloc (num_nodes
);
1035 sbitmap tmp
= sbitmap_alloc (num_nodes
);
1038 /* Data will hold the distance of the longest path found so far from
1039 src to each node. Initialize to -1 = less than minimum. */
1040 for (i
= 0; i
< g
->num_nodes
; i
++)
1041 g
->nodes
[i
].aux
.count
= -1;
1042 g
->nodes
[src
].aux
.count
= 0;
1049 sbitmap_iterator sbi
;
1052 sbitmap_copy (workset
, tmp
);
1054 EXECUTE_IF_SET_IN_SBITMAP (workset
, 0, u
, sbi
)
1056 ddg_node_ptr u_node
= &g
->nodes
[u
];
1058 change
|= update_dist_to_successors (u_node
, nodes
, tmp
);
1061 result
= g
->nodes
[dest
].aux
.count
;
1062 sbitmap_free (workset
);