* combine.c (try_combine): Use hard_regno_nregs array instead of
[official-gcc.git] / gcc / function.c
blob6337b5dab1d08a5e9a51ace536fc67996cb27a63
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* This file handles the generation of rtl code from tree structure
24 at the level of the function as a whole.
25 It creates the rtl expressions for parameters and auto variables
26 and has full responsibility for allocating stack slots.
28 `expand_function_start' is called at the beginning of a function,
29 before the function body is parsed, and `expand_function_end' is
30 called after parsing the body.
32 Call `assign_stack_local' to allocate a stack slot for a local variable.
33 This is usually done during the RTL generation for the function body,
34 but it can also be done in the reload pass when a pseudo-register does
35 not get a hard register. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "toplev.h"
56 #include "hashtab.h"
57 #include "ggc.h"
58 #include "tm_p.h"
59 #include "integrate.h"
60 #include "langhooks.h"
61 #include "target.h"
62 #include "cfglayout.h"
63 #include "tree-gimple.h"
65 #ifndef LOCAL_ALIGNMENT
66 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
67 #endif
69 #ifndef STACK_ALIGNMENT_NEEDED
70 #define STACK_ALIGNMENT_NEEDED 1
71 #endif
73 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
75 /* Some systems use __main in a way incompatible with its use in gcc, in these
76 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
77 give the same symbol without quotes for an alternative entry point. You
78 must define both, or neither. */
79 #ifndef NAME__MAIN
80 #define NAME__MAIN "__main"
81 #endif
83 /* Round a value to the lowest integer less than it that is a multiple of
84 the required alignment. Avoid using division in case the value is
85 negative. Assume the alignment is a power of two. */
86 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
88 /* Similar, but round to the next highest integer that meets the
89 alignment. */
90 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
92 /* Nonzero if function being compiled doesn't contain any calls
93 (ignoring the prologue and epilogue). This is set prior to
94 local register allocation and is valid for the remaining
95 compiler passes. */
96 int current_function_is_leaf;
98 /* Nonzero if function being compiled doesn't modify the stack pointer
99 (ignoring the prologue and epilogue). This is only valid after
100 life_analysis has run. */
101 int current_function_sp_is_unchanging;
103 /* Nonzero if the function being compiled is a leaf function which only
104 uses leaf registers. This is valid after reload (specifically after
105 sched2) and is useful only if the port defines LEAF_REGISTERS. */
106 int current_function_uses_only_leaf_regs;
108 /* Nonzero once virtual register instantiation has been done.
109 assign_stack_local uses frame_pointer_rtx when this is nonzero.
110 calls.c:emit_library_call_value_1 uses it to set up
111 post-instantiation libcalls. */
112 int virtuals_instantiated;
114 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
115 static GTY(()) int funcdef_no;
117 /* These variables hold pointers to functions to create and destroy
118 target specific, per-function data structures. */
119 struct machine_function * (*init_machine_status) (void);
121 /* The currently compiled function. */
122 struct function *cfun = 0;
124 DEF_VEC_I(int);
125 DEF_VEC_ALLOC_I(int,heap);
127 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
128 static VEC(int,heap) *prologue;
129 static VEC(int,heap) *epilogue;
131 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
132 in this function. */
133 static VEC(int,heap) *sibcall_epilogue;
135 /* In order to evaluate some expressions, such as function calls returning
136 structures in memory, we need to temporarily allocate stack locations.
137 We record each allocated temporary in the following structure.
139 Associated with each temporary slot is a nesting level. When we pop up
140 one level, all temporaries associated with the previous level are freed.
141 Normally, all temporaries are freed after the execution of the statement
142 in which they were created. However, if we are inside a ({...}) grouping,
143 the result may be in a temporary and hence must be preserved. If the
144 result could be in a temporary, we preserve it if we can determine which
145 one it is in. If we cannot determine which temporary may contain the
146 result, all temporaries are preserved. A temporary is preserved by
147 pretending it was allocated at the previous nesting level.
149 Automatic variables are also assigned temporary slots, at the nesting
150 level where they are defined. They are marked a "kept" so that
151 free_temp_slots will not free them. */
153 struct temp_slot GTY(())
155 /* Points to next temporary slot. */
156 struct temp_slot *next;
157 /* Points to previous temporary slot. */
158 struct temp_slot *prev;
160 /* The rtx to used to reference the slot. */
161 rtx slot;
162 /* The rtx used to represent the address if not the address of the
163 slot above. May be an EXPR_LIST if multiple addresses exist. */
164 rtx address;
165 /* The alignment (in bits) of the slot. */
166 unsigned int align;
167 /* The size, in units, of the slot. */
168 HOST_WIDE_INT size;
169 /* The type of the object in the slot, or zero if it doesn't correspond
170 to a type. We use this to determine whether a slot can be reused.
171 It can be reused if objects of the type of the new slot will always
172 conflict with objects of the type of the old slot. */
173 tree type;
174 /* Nonzero if this temporary is currently in use. */
175 char in_use;
176 /* Nonzero if this temporary has its address taken. */
177 char addr_taken;
178 /* Nesting level at which this slot is being used. */
179 int level;
180 /* Nonzero if this should survive a call to free_temp_slots. */
181 int keep;
182 /* The offset of the slot from the frame_pointer, including extra space
183 for alignment. This info is for combine_temp_slots. */
184 HOST_WIDE_INT base_offset;
185 /* The size of the slot, including extra space for alignment. This
186 info is for combine_temp_slots. */
187 HOST_WIDE_INT full_size;
190 /* Forward declarations. */
192 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
193 struct function *);
194 static struct temp_slot *find_temp_slot_from_address (rtx);
195 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
196 static void pad_below (struct args_size *, enum machine_mode, tree);
197 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
198 static void reorder_fix_fragments (tree);
199 static int all_blocks (tree, tree *);
200 static tree *get_block_vector (tree, int *);
201 extern tree debug_find_var_in_block_tree (tree, tree);
202 /* We always define `record_insns' even if it's not used so that we
203 can always export `prologue_epilogue_contains'. */
204 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
205 static int contains (rtx, VEC(int,heap) **);
206 #ifdef HAVE_return
207 static void emit_return_into_block (basic_block, rtx);
208 #endif
209 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
210 static rtx keep_stack_depressed (rtx);
211 #endif
212 static void prepare_function_start (tree);
213 static void do_clobber_return_reg (rtx, void *);
214 static void do_use_return_reg (rtx, void *);
215 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
217 /* Pointer to chain of `struct function' for containing functions. */
218 struct function *outer_function_chain;
220 /* Given a function decl for a containing function,
221 return the `struct function' for it. */
223 struct function *
224 find_function_data (tree decl)
226 struct function *p;
228 for (p = outer_function_chain; p; p = p->outer)
229 if (p->decl == decl)
230 return p;
232 gcc_unreachable ();
235 /* Save the current context for compilation of a nested function.
236 This is called from language-specific code. The caller should use
237 the enter_nested langhook to save any language-specific state,
238 since this function knows only about language-independent
239 variables. */
241 void
242 push_function_context_to (tree context ATTRIBUTE_UNUSED)
244 struct function *p;
246 if (cfun == 0)
247 init_dummy_function_start ();
248 p = cfun;
250 p->outer = outer_function_chain;
251 outer_function_chain = p;
253 lang_hooks.function.enter_nested (p);
255 cfun = 0;
258 void
259 push_function_context (void)
261 push_function_context_to (current_function_decl);
264 /* Restore the last saved context, at the end of a nested function.
265 This function is called from language-specific code. */
267 void
268 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
270 struct function *p = outer_function_chain;
272 cfun = p;
273 outer_function_chain = p->outer;
275 current_function_decl = p->decl;
277 lang_hooks.function.leave_nested (p);
279 /* Reset variables that have known state during rtx generation. */
280 virtuals_instantiated = 0;
281 generating_concat_p = 1;
284 void
285 pop_function_context (void)
287 pop_function_context_from (current_function_decl);
290 /* Clear out all parts of the state in F that can safely be discarded
291 after the function has been parsed, but not compiled, to let
292 garbage collection reclaim the memory. */
294 void
295 free_after_parsing (struct function *f)
297 /* f->expr->forced_labels is used by code generation. */
298 /* f->emit->regno_reg_rtx is used by code generation. */
299 /* f->varasm is used by code generation. */
300 /* f->eh->eh_return_stub_label is used by code generation. */
302 lang_hooks.function.final (f);
305 /* Clear out all parts of the state in F that can safely be discarded
306 after the function has been compiled, to let garbage collection
307 reclaim the memory. */
309 void
310 free_after_compilation (struct function *f)
312 VEC_free (int, heap, prologue);
313 VEC_free (int, heap, epilogue);
314 VEC_free (int, heap, sibcall_epilogue);
316 f->eh = NULL;
317 f->expr = NULL;
318 f->emit = NULL;
319 f->varasm = NULL;
320 f->machine = NULL;
321 f->cfg = NULL;
323 f->x_avail_temp_slots = NULL;
324 f->x_used_temp_slots = NULL;
325 f->arg_offset_rtx = NULL;
326 f->return_rtx = NULL;
327 f->internal_arg_pointer = NULL;
328 f->x_nonlocal_goto_handler_labels = NULL;
329 f->x_return_label = NULL;
330 f->x_naked_return_label = NULL;
331 f->x_stack_slot_list = NULL;
332 f->x_tail_recursion_reentry = NULL;
333 f->x_arg_pointer_save_area = NULL;
334 f->x_parm_birth_insn = NULL;
335 f->original_arg_vector = NULL;
336 f->original_decl_initial = NULL;
337 f->epilogue_delay_list = NULL;
340 /* Allocate fixed slots in the stack frame of the current function. */
342 /* Return size needed for stack frame based on slots so far allocated in
343 function F.
344 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
345 the caller may have to do that. */
347 static HOST_WIDE_INT
348 get_func_frame_size (struct function *f)
350 #ifdef FRAME_GROWS_DOWNWARD
351 return -f->x_frame_offset;
352 #else
353 return f->x_frame_offset;
354 #endif
357 /* Return size needed for stack frame based on slots so far allocated.
358 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
359 the caller may have to do that. */
360 HOST_WIDE_INT
361 get_frame_size (void)
363 return get_func_frame_size (cfun);
366 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
367 with machine mode MODE.
369 ALIGN controls the amount of alignment for the address of the slot:
370 0 means according to MODE,
371 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
372 -2 means use BITS_PER_UNIT,
373 positive specifies alignment boundary in bits.
375 We do not round to stack_boundary here.
377 FUNCTION specifies the function to allocate in. */
379 static rtx
380 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
381 struct function *function)
383 rtx x, addr;
384 int bigend_correction = 0;
385 unsigned int alignment;
386 int frame_off, frame_alignment, frame_phase;
388 if (align == 0)
390 tree type;
392 if (mode == BLKmode)
393 alignment = BIGGEST_ALIGNMENT;
394 else
395 alignment = GET_MODE_ALIGNMENT (mode);
397 /* Allow the target to (possibly) increase the alignment of this
398 stack slot. */
399 type = lang_hooks.types.type_for_mode (mode, 0);
400 if (type)
401 alignment = LOCAL_ALIGNMENT (type, alignment);
403 alignment /= BITS_PER_UNIT;
405 else if (align == -1)
407 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
408 size = CEIL_ROUND (size, alignment);
410 else if (align == -2)
411 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
412 else
413 alignment = align / BITS_PER_UNIT;
415 #ifdef FRAME_GROWS_DOWNWARD
416 function->x_frame_offset -= size;
417 #endif
419 /* Ignore alignment we can't do with expected alignment of the boundary. */
420 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
421 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
423 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
424 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
426 /* Calculate how many bytes the start of local variables is off from
427 stack alignment. */
428 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
429 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
430 frame_phase = frame_off ? frame_alignment - frame_off : 0;
432 /* Round the frame offset to the specified alignment. The default is
433 to always honor requests to align the stack but a port may choose to
434 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
435 if (STACK_ALIGNMENT_NEEDED
436 || mode != BLKmode
437 || size != 0)
439 /* We must be careful here, since FRAME_OFFSET might be negative and
440 division with a negative dividend isn't as well defined as we might
441 like. So we instead assume that ALIGNMENT is a power of two and
442 use logical operations which are unambiguous. */
443 #ifdef FRAME_GROWS_DOWNWARD
444 function->x_frame_offset
445 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
446 (unsigned HOST_WIDE_INT) alignment)
447 + frame_phase);
448 #else
449 function->x_frame_offset
450 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
451 (unsigned HOST_WIDE_INT) alignment)
452 + frame_phase);
453 #endif
456 /* On a big-endian machine, if we are allocating more space than we will use,
457 use the least significant bytes of those that are allocated. */
458 if (BYTES_BIG_ENDIAN && mode != BLKmode)
459 bigend_correction = size - GET_MODE_SIZE (mode);
461 /* If we have already instantiated virtual registers, return the actual
462 address relative to the frame pointer. */
463 if (function == cfun && virtuals_instantiated)
464 addr = plus_constant (frame_pointer_rtx,
465 trunc_int_for_mode
466 (frame_offset + bigend_correction
467 + STARTING_FRAME_OFFSET, Pmode));
468 else
469 addr = plus_constant (virtual_stack_vars_rtx,
470 trunc_int_for_mode
471 (function->x_frame_offset + bigend_correction,
472 Pmode));
474 #ifndef FRAME_GROWS_DOWNWARD
475 function->x_frame_offset += size;
476 #endif
478 x = gen_rtx_MEM (mode, addr);
480 function->x_stack_slot_list
481 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
483 return x;
486 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
487 current function. */
490 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
492 return assign_stack_local_1 (mode, size, align, cfun);
496 /* Removes temporary slot TEMP from LIST. */
498 static void
499 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
501 if (temp->next)
502 temp->next->prev = temp->prev;
503 if (temp->prev)
504 temp->prev->next = temp->next;
505 else
506 *list = temp->next;
508 temp->prev = temp->next = NULL;
511 /* Inserts temporary slot TEMP to LIST. */
513 static void
514 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
516 temp->next = *list;
517 if (*list)
518 (*list)->prev = temp;
519 temp->prev = NULL;
520 *list = temp;
523 /* Returns the list of used temp slots at LEVEL. */
525 static struct temp_slot **
526 temp_slots_at_level (int level)
529 if (!used_temp_slots)
530 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
532 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
533 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
535 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
538 /* Returns the maximal temporary slot level. */
540 static int
541 max_slot_level (void)
543 if (!used_temp_slots)
544 return -1;
546 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
549 /* Moves temporary slot TEMP to LEVEL. */
551 static void
552 move_slot_to_level (struct temp_slot *temp, int level)
554 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
555 insert_slot_to_list (temp, temp_slots_at_level (level));
556 temp->level = level;
559 /* Make temporary slot TEMP available. */
561 static void
562 make_slot_available (struct temp_slot *temp)
564 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
565 insert_slot_to_list (temp, &avail_temp_slots);
566 temp->in_use = 0;
567 temp->level = -1;
570 /* Allocate a temporary stack slot and record it for possible later
571 reuse.
573 MODE is the machine mode to be given to the returned rtx.
575 SIZE is the size in units of the space required. We do no rounding here
576 since assign_stack_local will do any required rounding.
578 KEEP is 1 if this slot is to be retained after a call to
579 free_temp_slots. Automatic variables for a block are allocated
580 with this flag. KEEP values of 2 or 3 were needed respectively
581 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
582 or for SAVE_EXPRs, but they are now unused.
584 TYPE is the type that will be used for the stack slot. */
587 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
588 int keep, tree type)
590 unsigned int align;
591 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
592 rtx slot;
594 /* If SIZE is -1 it means that somebody tried to allocate a temporary
595 of a variable size. */
596 gcc_assert (size != -1);
598 /* These are now unused. */
599 gcc_assert (keep <= 1);
601 if (mode == BLKmode)
602 align = BIGGEST_ALIGNMENT;
603 else
604 align = GET_MODE_ALIGNMENT (mode);
606 if (! type)
607 type = lang_hooks.types.type_for_mode (mode, 0);
609 if (type)
610 align = LOCAL_ALIGNMENT (type, align);
612 /* Try to find an available, already-allocated temporary of the proper
613 mode which meets the size and alignment requirements. Choose the
614 smallest one with the closest alignment. */
615 for (p = avail_temp_slots; p; p = p->next)
617 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
618 && objects_must_conflict_p (p->type, type)
619 && (best_p == 0 || best_p->size > p->size
620 || (best_p->size == p->size && best_p->align > p->align)))
622 if (p->align == align && p->size == size)
624 selected = p;
625 cut_slot_from_list (selected, &avail_temp_slots);
626 best_p = 0;
627 break;
629 best_p = p;
633 /* Make our best, if any, the one to use. */
634 if (best_p)
636 selected = best_p;
637 cut_slot_from_list (selected, &avail_temp_slots);
639 /* If there are enough aligned bytes left over, make them into a new
640 temp_slot so that the extra bytes don't get wasted. Do this only
641 for BLKmode slots, so that we can be sure of the alignment. */
642 if (GET_MODE (best_p->slot) == BLKmode)
644 int alignment = best_p->align / BITS_PER_UNIT;
645 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
647 if (best_p->size - rounded_size >= alignment)
649 p = ggc_alloc (sizeof (struct temp_slot));
650 p->in_use = p->addr_taken = 0;
651 p->size = best_p->size - rounded_size;
652 p->base_offset = best_p->base_offset + rounded_size;
653 p->full_size = best_p->full_size - rounded_size;
654 p->slot = gen_rtx_MEM (BLKmode,
655 plus_constant (XEXP (best_p->slot, 0),
656 rounded_size));
657 p->align = best_p->align;
658 p->address = 0;
659 p->type = best_p->type;
660 insert_slot_to_list (p, &avail_temp_slots);
662 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
663 stack_slot_list);
665 best_p->size = rounded_size;
666 best_p->full_size = rounded_size;
671 /* If we still didn't find one, make a new temporary. */
672 if (selected == 0)
674 HOST_WIDE_INT frame_offset_old = frame_offset;
676 p = ggc_alloc (sizeof (struct temp_slot));
678 /* We are passing an explicit alignment request to assign_stack_local.
679 One side effect of that is assign_stack_local will not round SIZE
680 to ensure the frame offset remains suitably aligned.
682 So for requests which depended on the rounding of SIZE, we go ahead
683 and round it now. We also make sure ALIGNMENT is at least
684 BIGGEST_ALIGNMENT. */
685 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
686 p->slot = assign_stack_local (mode,
687 (mode == BLKmode
688 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
689 : size),
690 align);
692 p->align = align;
694 /* The following slot size computation is necessary because we don't
695 know the actual size of the temporary slot until assign_stack_local
696 has performed all the frame alignment and size rounding for the
697 requested temporary. Note that extra space added for alignment
698 can be either above or below this stack slot depending on which
699 way the frame grows. We include the extra space if and only if it
700 is above this slot. */
701 #ifdef FRAME_GROWS_DOWNWARD
702 p->size = frame_offset_old - frame_offset;
703 #else
704 p->size = size;
705 #endif
707 /* Now define the fields used by combine_temp_slots. */
708 #ifdef FRAME_GROWS_DOWNWARD
709 p->base_offset = frame_offset;
710 p->full_size = frame_offset_old - frame_offset;
711 #else
712 p->base_offset = frame_offset_old;
713 p->full_size = frame_offset - frame_offset_old;
714 #endif
715 p->address = 0;
717 selected = p;
720 p = selected;
721 p->in_use = 1;
722 p->addr_taken = 0;
723 p->type = type;
724 p->level = temp_slot_level;
725 p->keep = keep;
727 pp = temp_slots_at_level (p->level);
728 insert_slot_to_list (p, pp);
730 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
731 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
732 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
734 /* If we know the alias set for the memory that will be used, use
735 it. If there's no TYPE, then we don't know anything about the
736 alias set for the memory. */
737 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
738 set_mem_align (slot, align);
740 /* If a type is specified, set the relevant flags. */
741 if (type != 0)
743 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
744 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
747 return slot;
750 /* Allocate a temporary stack slot and record it for possible later
751 reuse. First three arguments are same as in preceding function. */
754 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
756 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
759 /* Assign a temporary.
760 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
761 and so that should be used in error messages. In either case, we
762 allocate of the given type.
763 KEEP is as for assign_stack_temp.
764 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
765 it is 0 if a register is OK.
766 DONT_PROMOTE is 1 if we should not promote values in register
767 to wider modes. */
770 assign_temp (tree type_or_decl, int keep, int memory_required,
771 int dont_promote ATTRIBUTE_UNUSED)
773 tree type, decl;
774 enum machine_mode mode;
775 #ifdef PROMOTE_MODE
776 int unsignedp;
777 #endif
779 if (DECL_P (type_or_decl))
780 decl = type_or_decl, type = TREE_TYPE (decl);
781 else
782 decl = NULL, type = type_or_decl;
784 mode = TYPE_MODE (type);
785 #ifdef PROMOTE_MODE
786 unsignedp = TYPE_UNSIGNED (type);
787 #endif
789 if (mode == BLKmode || memory_required)
791 HOST_WIDE_INT size = int_size_in_bytes (type);
792 tree size_tree;
793 rtx tmp;
795 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
796 problems with allocating the stack space. */
797 if (size == 0)
798 size = 1;
800 /* Unfortunately, we don't yet know how to allocate variable-sized
801 temporaries. However, sometimes we have a fixed upper limit on
802 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
803 instead. This is the case for Chill variable-sized strings. */
804 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
805 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
806 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
807 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
809 /* If we still haven't been able to get a size, see if the language
810 can compute a maximum size. */
811 if (size == -1
812 && (size_tree = lang_hooks.types.max_size (type)) != 0
813 && host_integerp (size_tree, 1))
814 size = tree_low_cst (size_tree, 1);
816 /* The size of the temporary may be too large to fit into an integer. */
817 /* ??? Not sure this should happen except for user silliness, so limit
818 this to things that aren't compiler-generated temporaries. The
819 rest of the time we'll die in assign_stack_temp_for_type. */
820 if (decl && size == -1
821 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
823 error ("%Jsize of variable %qD is too large", decl, decl);
824 size = 1;
827 tmp = assign_stack_temp_for_type (mode, size, keep, type);
828 return tmp;
831 #ifdef PROMOTE_MODE
832 if (! dont_promote)
833 mode = promote_mode (type, mode, &unsignedp, 0);
834 #endif
836 return gen_reg_rtx (mode);
839 /* Combine temporary stack slots which are adjacent on the stack.
841 This allows for better use of already allocated stack space. This is only
842 done for BLKmode slots because we can be sure that we won't have alignment
843 problems in this case. */
845 static void
846 combine_temp_slots (void)
848 struct temp_slot *p, *q, *next, *next_q;
849 int num_slots;
851 /* We can't combine slots, because the information about which slot
852 is in which alias set will be lost. */
853 if (flag_strict_aliasing)
854 return;
856 /* If there are a lot of temp slots, don't do anything unless
857 high levels of optimization. */
858 if (! flag_expensive_optimizations)
859 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
860 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
861 return;
863 for (p = avail_temp_slots; p; p = next)
865 int delete_p = 0;
867 next = p->next;
869 if (GET_MODE (p->slot) != BLKmode)
870 continue;
872 for (q = p->next; q; q = next_q)
874 int delete_q = 0;
876 next_q = q->next;
878 if (GET_MODE (q->slot) != BLKmode)
879 continue;
881 if (p->base_offset + p->full_size == q->base_offset)
883 /* Q comes after P; combine Q into P. */
884 p->size += q->size;
885 p->full_size += q->full_size;
886 delete_q = 1;
888 else if (q->base_offset + q->full_size == p->base_offset)
890 /* P comes after Q; combine P into Q. */
891 q->size += p->size;
892 q->full_size += p->full_size;
893 delete_p = 1;
894 break;
896 if (delete_q)
897 cut_slot_from_list (q, &avail_temp_slots);
900 /* Either delete P or advance past it. */
901 if (delete_p)
902 cut_slot_from_list (p, &avail_temp_slots);
906 /* Find the temp slot corresponding to the object at address X. */
908 static struct temp_slot *
909 find_temp_slot_from_address (rtx x)
911 struct temp_slot *p;
912 rtx next;
913 int i;
915 for (i = max_slot_level (); i >= 0; i--)
916 for (p = *temp_slots_at_level (i); p; p = p->next)
918 if (XEXP (p->slot, 0) == x
919 || p->address == x
920 || (GET_CODE (x) == PLUS
921 && XEXP (x, 0) == virtual_stack_vars_rtx
922 && GET_CODE (XEXP (x, 1)) == CONST_INT
923 && INTVAL (XEXP (x, 1)) >= p->base_offset
924 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
925 return p;
927 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
928 for (next = p->address; next; next = XEXP (next, 1))
929 if (XEXP (next, 0) == x)
930 return p;
933 /* If we have a sum involving a register, see if it points to a temp
934 slot. */
935 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
936 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
937 return p;
938 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
939 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
940 return p;
942 return 0;
945 /* Indicate that NEW is an alternate way of referring to the temp slot
946 that previously was known by OLD. */
948 void
949 update_temp_slot_address (rtx old, rtx new)
951 struct temp_slot *p;
953 if (rtx_equal_p (old, new))
954 return;
956 p = find_temp_slot_from_address (old);
958 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
959 is a register, see if one operand of the PLUS is a temporary
960 location. If so, NEW points into it. Otherwise, if both OLD and
961 NEW are a PLUS and if there is a register in common between them.
962 If so, try a recursive call on those values. */
963 if (p == 0)
965 if (GET_CODE (old) != PLUS)
966 return;
968 if (REG_P (new))
970 update_temp_slot_address (XEXP (old, 0), new);
971 update_temp_slot_address (XEXP (old, 1), new);
972 return;
974 else if (GET_CODE (new) != PLUS)
975 return;
977 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
978 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
979 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
980 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
981 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
982 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
983 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
984 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
986 return;
989 /* Otherwise add an alias for the temp's address. */
990 else if (p->address == 0)
991 p->address = new;
992 else
994 if (GET_CODE (p->address) != EXPR_LIST)
995 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
997 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1001 /* If X could be a reference to a temporary slot, mark the fact that its
1002 address was taken. */
1004 void
1005 mark_temp_addr_taken (rtx x)
1007 struct temp_slot *p;
1009 if (x == 0)
1010 return;
1012 /* If X is not in memory or is at a constant address, it cannot be in
1013 a temporary slot. */
1014 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1015 return;
1017 p = find_temp_slot_from_address (XEXP (x, 0));
1018 if (p != 0)
1019 p->addr_taken = 1;
1022 /* If X could be a reference to a temporary slot, mark that slot as
1023 belonging to the to one level higher than the current level. If X
1024 matched one of our slots, just mark that one. Otherwise, we can't
1025 easily predict which it is, so upgrade all of them. Kept slots
1026 need not be touched.
1028 This is called when an ({...}) construct occurs and a statement
1029 returns a value in memory. */
1031 void
1032 preserve_temp_slots (rtx x)
1034 struct temp_slot *p = 0, *next;
1036 /* If there is no result, we still might have some objects whose address
1037 were taken, so we need to make sure they stay around. */
1038 if (x == 0)
1040 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1042 next = p->next;
1044 if (p->addr_taken)
1045 move_slot_to_level (p, temp_slot_level - 1);
1048 return;
1051 /* If X is a register that is being used as a pointer, see if we have
1052 a temporary slot we know it points to. To be consistent with
1053 the code below, we really should preserve all non-kept slots
1054 if we can't find a match, but that seems to be much too costly. */
1055 if (REG_P (x) && REG_POINTER (x))
1056 p = find_temp_slot_from_address (x);
1058 /* If X is not in memory or is at a constant address, it cannot be in
1059 a temporary slot, but it can contain something whose address was
1060 taken. */
1061 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1063 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1065 next = p->next;
1067 if (p->addr_taken)
1068 move_slot_to_level (p, temp_slot_level - 1);
1071 return;
1074 /* First see if we can find a match. */
1075 if (p == 0)
1076 p = find_temp_slot_from_address (XEXP (x, 0));
1078 if (p != 0)
1080 /* Move everything at our level whose address was taken to our new
1081 level in case we used its address. */
1082 struct temp_slot *q;
1084 if (p->level == temp_slot_level)
1086 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1088 next = q->next;
1090 if (p != q && q->addr_taken)
1091 move_slot_to_level (q, temp_slot_level - 1);
1094 move_slot_to_level (p, temp_slot_level - 1);
1095 p->addr_taken = 0;
1097 return;
1100 /* Otherwise, preserve all non-kept slots at this level. */
1101 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1103 next = p->next;
1105 if (!p->keep)
1106 move_slot_to_level (p, temp_slot_level - 1);
1110 /* Free all temporaries used so far. This is normally called at the
1111 end of generating code for a statement. */
1113 void
1114 free_temp_slots (void)
1116 struct temp_slot *p, *next;
1118 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1120 next = p->next;
1122 if (!p->keep)
1123 make_slot_available (p);
1126 combine_temp_slots ();
1129 /* Push deeper into the nesting level for stack temporaries. */
1131 void
1132 push_temp_slots (void)
1134 temp_slot_level++;
1137 /* Pop a temporary nesting level. All slots in use in the current level
1138 are freed. */
1140 void
1141 pop_temp_slots (void)
1143 struct temp_slot *p, *next;
1145 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1147 next = p->next;
1148 make_slot_available (p);
1151 combine_temp_slots ();
1153 temp_slot_level--;
1156 /* Initialize temporary slots. */
1158 void
1159 init_temp_slots (void)
1161 /* We have not allocated any temporaries yet. */
1162 avail_temp_slots = 0;
1163 used_temp_slots = 0;
1164 temp_slot_level = 0;
1167 /* These routines are responsible for converting virtual register references
1168 to the actual hard register references once RTL generation is complete.
1170 The following four variables are used for communication between the
1171 routines. They contain the offsets of the virtual registers from their
1172 respective hard registers. */
1174 static int in_arg_offset;
1175 static int var_offset;
1176 static int dynamic_offset;
1177 static int out_arg_offset;
1178 static int cfa_offset;
1180 /* In most machines, the stack pointer register is equivalent to the bottom
1181 of the stack. */
1183 #ifndef STACK_POINTER_OFFSET
1184 #define STACK_POINTER_OFFSET 0
1185 #endif
1187 /* If not defined, pick an appropriate default for the offset of dynamically
1188 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1189 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1191 #ifndef STACK_DYNAMIC_OFFSET
1193 /* The bottom of the stack points to the actual arguments. If
1194 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1195 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1196 stack space for register parameters is not pushed by the caller, but
1197 rather part of the fixed stack areas and hence not included in
1198 `current_function_outgoing_args_size'. Nevertheless, we must allow
1199 for it when allocating stack dynamic objects. */
1201 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1202 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1203 ((ACCUMULATE_OUTGOING_ARGS \
1204 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1205 + (STACK_POINTER_OFFSET)) \
1207 #else
1208 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1209 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1210 + (STACK_POINTER_OFFSET))
1211 #endif
1212 #endif
1214 /* On most machines, the CFA coincides with the first incoming parm. */
1216 #ifndef ARG_POINTER_CFA_OFFSET
1217 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1218 #endif
1221 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1222 is a virtual register, return the equivalent hard register and set the
1223 offset indirectly through the pointer. Otherwise, return 0. */
1225 static rtx
1226 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1228 rtx new;
1229 HOST_WIDE_INT offset;
1231 if (x == virtual_incoming_args_rtx)
1232 new = arg_pointer_rtx, offset = in_arg_offset;
1233 else if (x == virtual_stack_vars_rtx)
1234 new = frame_pointer_rtx, offset = var_offset;
1235 else if (x == virtual_stack_dynamic_rtx)
1236 new = stack_pointer_rtx, offset = dynamic_offset;
1237 else if (x == virtual_outgoing_args_rtx)
1238 new = stack_pointer_rtx, offset = out_arg_offset;
1239 else if (x == virtual_cfa_rtx)
1240 new = arg_pointer_rtx, offset = cfa_offset;
1241 else
1242 return NULL_RTX;
1244 *poffset = offset;
1245 return new;
1248 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1249 Instantiate any virtual registers present inside of *LOC. The expression
1250 is simplified, as much as possible, but is not to be considered "valid"
1251 in any sense implied by the target. If any change is made, set CHANGED
1252 to true. */
1254 static int
1255 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1257 HOST_WIDE_INT offset;
1258 bool *changed = (bool *) data;
1259 rtx x, new;
1261 x = *loc;
1262 if (x == 0)
1263 return 0;
1265 switch (GET_CODE (x))
1267 case REG:
1268 new = instantiate_new_reg (x, &offset);
1269 if (new)
1271 *loc = plus_constant (new, offset);
1272 if (changed)
1273 *changed = true;
1275 return -1;
1277 case PLUS:
1278 new = instantiate_new_reg (XEXP (x, 0), &offset);
1279 if (new)
1281 new = plus_constant (new, offset);
1282 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1283 if (changed)
1284 *changed = true;
1285 return -1;
1288 /* FIXME -- from old code */
1289 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1290 we can commute the PLUS and SUBREG because pointers into the
1291 frame are well-behaved. */
1292 break;
1294 default:
1295 break;
1298 return 0;
1301 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1302 matches the predicate for insn CODE operand OPERAND. */
1304 static int
1305 safe_insn_predicate (int code, int operand, rtx x)
1307 const struct insn_operand_data *op_data;
1309 if (code < 0)
1310 return true;
1312 op_data = &insn_data[code].operand[operand];
1313 if (op_data->predicate == NULL)
1314 return true;
1316 return op_data->predicate (x, op_data->mode);
1319 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1320 registers present inside of insn. The result will be a valid insn. */
1322 static void
1323 instantiate_virtual_regs_in_insn (rtx insn)
1325 HOST_WIDE_INT offset;
1326 int insn_code, i;
1327 bool any_change = false;
1328 rtx set, new, x, seq;
1330 /* There are some special cases to be handled first. */
1331 set = single_set (insn);
1332 if (set)
1334 /* We're allowed to assign to a virtual register. This is interpreted
1335 to mean that the underlying register gets assigned the inverse
1336 transformation. This is used, for example, in the handling of
1337 non-local gotos. */
1338 new = instantiate_new_reg (SET_DEST (set), &offset);
1339 if (new)
1341 start_sequence ();
1343 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1344 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1345 GEN_INT (-offset));
1346 x = force_operand (x, new);
1347 if (x != new)
1348 emit_move_insn (new, x);
1350 seq = get_insns ();
1351 end_sequence ();
1353 emit_insn_before (seq, insn);
1354 delete_insn (insn);
1355 return;
1358 /* Handle a straight copy from a virtual register by generating a
1359 new add insn. The difference between this and falling through
1360 to the generic case is avoiding a new pseudo and eliminating a
1361 move insn in the initial rtl stream. */
1362 new = instantiate_new_reg (SET_SRC (set), &offset);
1363 if (new && offset != 0
1364 && REG_P (SET_DEST (set))
1365 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1367 start_sequence ();
1369 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1370 new, GEN_INT (offset), SET_DEST (set),
1371 1, OPTAB_LIB_WIDEN);
1372 if (x != SET_DEST (set))
1373 emit_move_insn (SET_DEST (set), x);
1375 seq = get_insns ();
1376 end_sequence ();
1378 emit_insn_before (seq, insn);
1379 delete_insn (insn);
1380 return;
1383 extract_insn (insn);
1384 insn_code = INSN_CODE (insn);
1386 /* Handle a plus involving a virtual register by determining if the
1387 operands remain valid if they're modified in place. */
1388 if (GET_CODE (SET_SRC (set)) == PLUS
1389 && recog_data.n_operands >= 3
1390 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1391 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1392 && GET_CODE (recog_data.operand[2]) == CONST_INT
1393 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1395 offset += INTVAL (recog_data.operand[2]);
1397 /* If the sum is zero, then replace with a plain move. */
1398 if (offset == 0
1399 && REG_P (SET_DEST (set))
1400 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1402 start_sequence ();
1403 emit_move_insn (SET_DEST (set), new);
1404 seq = get_insns ();
1405 end_sequence ();
1407 emit_insn_before (seq, insn);
1408 delete_insn (insn);
1409 return;
1412 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1414 /* Using validate_change and apply_change_group here leaves
1415 recog_data in an invalid state. Since we know exactly what
1416 we want to check, do those two by hand. */
1417 if (safe_insn_predicate (insn_code, 1, new)
1418 && safe_insn_predicate (insn_code, 2, x))
1420 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1421 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1422 any_change = true;
1424 /* Fall through into the regular operand fixup loop in
1425 order to take care of operands other than 1 and 2. */
1429 else
1431 extract_insn (insn);
1432 insn_code = INSN_CODE (insn);
1435 /* In the general case, we expect virtual registers to appear only in
1436 operands, and then only as either bare registers or inside memories. */
1437 for (i = 0; i < recog_data.n_operands; ++i)
1439 x = recog_data.operand[i];
1440 switch (GET_CODE (x))
1442 case MEM:
1444 rtx addr = XEXP (x, 0);
1445 bool changed = false;
1447 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1448 if (!changed)
1449 continue;
1451 start_sequence ();
1452 x = replace_equiv_address (x, addr);
1453 seq = get_insns ();
1454 end_sequence ();
1455 if (seq)
1456 emit_insn_before (seq, insn);
1458 break;
1460 case REG:
1461 new = instantiate_new_reg (x, &offset);
1462 if (new == NULL)
1463 continue;
1464 if (offset == 0)
1465 x = new;
1466 else
1468 start_sequence ();
1470 /* Careful, special mode predicates may have stuff in
1471 insn_data[insn_code].operand[i].mode that isn't useful
1472 to us for computing a new value. */
1473 /* ??? Recognize address_operand and/or "p" constraints
1474 to see if (plus new offset) is a valid before we put
1475 this through expand_simple_binop. */
1476 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1477 GEN_INT (offset), NULL_RTX,
1478 1, OPTAB_LIB_WIDEN);
1479 seq = get_insns ();
1480 end_sequence ();
1481 emit_insn_before (seq, insn);
1483 break;
1485 case SUBREG:
1486 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1487 if (new == NULL)
1488 continue;
1489 if (offset != 0)
1491 start_sequence ();
1492 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1493 GEN_INT (offset), NULL_RTX,
1494 1, OPTAB_LIB_WIDEN);
1495 seq = get_insns ();
1496 end_sequence ();
1497 emit_insn_before (seq, insn);
1499 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1500 GET_MODE (new), SUBREG_BYTE (x));
1501 break;
1503 default:
1504 continue;
1507 /* At this point, X contains the new value for the operand.
1508 Validate the new value vs the insn predicate. Note that
1509 asm insns will have insn_code -1 here. */
1510 if (!safe_insn_predicate (insn_code, i, x))
1511 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1513 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1514 any_change = true;
1517 if (any_change)
1519 /* Propagate operand changes into the duplicates. */
1520 for (i = 0; i < recog_data.n_dups; ++i)
1521 *recog_data.dup_loc[i]
1522 = recog_data.operand[(unsigned)recog_data.dup_num[i]];
1524 /* Force re-recognition of the instruction for validation. */
1525 INSN_CODE (insn) = -1;
1528 if (asm_noperands (PATTERN (insn)) >= 0)
1530 if (!check_asm_operands (PATTERN (insn)))
1532 error_for_asm (insn, "impossible constraint in %<asm%>");
1533 delete_insn (insn);
1536 else
1538 if (recog_memoized (insn) < 0)
1539 fatal_insn_not_found (insn);
1543 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1544 do any instantiation required. */
1546 static void
1547 instantiate_decl (rtx x)
1549 rtx addr;
1551 if (x == 0)
1552 return;
1554 /* If this is a CONCAT, recurse for the pieces. */
1555 if (GET_CODE (x) == CONCAT)
1557 instantiate_decl (XEXP (x, 0));
1558 instantiate_decl (XEXP (x, 1));
1559 return;
1562 /* If this is not a MEM, no need to do anything. Similarly if the
1563 address is a constant or a register that is not a virtual register. */
1564 if (!MEM_P (x))
1565 return;
1567 addr = XEXP (x, 0);
1568 if (CONSTANT_P (addr)
1569 || (REG_P (addr)
1570 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1571 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1572 return;
1574 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1577 /* Subroutine of instantiate_decls: Process all decls in the given
1578 BLOCK node and all its subblocks. */
1580 static void
1581 instantiate_decls_1 (tree let)
1583 tree t;
1585 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1586 if (DECL_RTL_SET_P (t))
1587 instantiate_decl (DECL_RTL (t));
1589 /* Process all subblocks. */
1590 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1591 instantiate_decls_1 (t);
1594 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1595 all virtual registers in their DECL_RTL's. */
1597 static void
1598 instantiate_decls (tree fndecl)
1600 tree decl;
1602 /* Process all parameters of the function. */
1603 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1605 instantiate_decl (DECL_RTL (decl));
1606 instantiate_decl (DECL_INCOMING_RTL (decl));
1609 /* Now process all variables defined in the function or its subblocks. */
1610 instantiate_decls_1 (DECL_INITIAL (fndecl));
1613 /* Pass through the INSNS of function FNDECL and convert virtual register
1614 references to hard register references. */
1616 void
1617 instantiate_virtual_regs (void)
1619 rtx insn;
1621 /* Compute the offsets to use for this function. */
1622 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1623 var_offset = STARTING_FRAME_OFFSET;
1624 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1625 out_arg_offset = STACK_POINTER_OFFSET;
1626 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1628 /* Initialize recognition, indicating that volatile is OK. */
1629 init_recog ();
1631 /* Scan through all the insns, instantiating every virtual register still
1632 present. */
1633 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1634 if (INSN_P (insn))
1636 /* These patterns in the instruction stream can never be recognized.
1637 Fortunately, they shouldn't contain virtual registers either. */
1638 if (GET_CODE (PATTERN (insn)) == USE
1639 || GET_CODE (PATTERN (insn)) == CLOBBER
1640 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1641 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1642 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1643 continue;
1645 instantiate_virtual_regs_in_insn (insn);
1647 if (INSN_DELETED_P (insn))
1648 continue;
1650 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1652 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1653 if (GET_CODE (insn) == CALL_INSN)
1654 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1655 instantiate_virtual_regs_in_rtx, NULL);
1658 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1659 instantiate_decls (current_function_decl);
1661 /* Indicate that, from now on, assign_stack_local should use
1662 frame_pointer_rtx. */
1663 virtuals_instantiated = 1;
1666 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1667 This means a type for which function calls must pass an address to the
1668 function or get an address back from the function.
1669 EXP may be a type node or an expression (whose type is tested). */
1672 aggregate_value_p (tree exp, tree fntype)
1674 int i, regno, nregs;
1675 rtx reg;
1677 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1679 if (fntype)
1680 switch (TREE_CODE (fntype))
1682 case CALL_EXPR:
1683 fntype = get_callee_fndecl (fntype);
1684 fntype = fntype ? TREE_TYPE (fntype) : 0;
1685 break;
1686 case FUNCTION_DECL:
1687 fntype = TREE_TYPE (fntype);
1688 break;
1689 case FUNCTION_TYPE:
1690 case METHOD_TYPE:
1691 break;
1692 case IDENTIFIER_NODE:
1693 fntype = 0;
1694 break;
1695 default:
1696 /* We don't expect other rtl types here. */
1697 gcc_unreachable ();
1700 if (TREE_CODE (type) == VOID_TYPE)
1701 return 0;
1702 /* If the front end has decided that this needs to be passed by
1703 reference, do so. */
1704 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1705 && DECL_BY_REFERENCE (exp))
1706 return 1;
1707 if (targetm.calls.return_in_memory (type, fntype))
1708 return 1;
1709 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1710 and thus can't be returned in registers. */
1711 if (TREE_ADDRESSABLE (type))
1712 return 1;
1713 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1714 return 1;
1715 /* Make sure we have suitable call-clobbered regs to return
1716 the value in; if not, we must return it in memory. */
1717 reg = hard_function_value (type, 0, 0);
1719 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1720 it is OK. */
1721 if (!REG_P (reg))
1722 return 0;
1724 regno = REGNO (reg);
1725 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1726 for (i = 0; i < nregs; i++)
1727 if (! call_used_regs[regno + i])
1728 return 1;
1729 return 0;
1732 /* Return true if we should assign DECL a pseudo register; false if it
1733 should live on the local stack. */
1735 bool
1736 use_register_for_decl (tree decl)
1738 /* Honor volatile. */
1739 if (TREE_SIDE_EFFECTS (decl))
1740 return false;
1742 /* Honor addressability. */
1743 if (TREE_ADDRESSABLE (decl))
1744 return false;
1746 /* Only register-like things go in registers. */
1747 if (DECL_MODE (decl) == BLKmode)
1748 return false;
1750 /* If -ffloat-store specified, don't put explicit float variables
1751 into registers. */
1752 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1753 propagates values across these stores, and it probably shouldn't. */
1754 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1755 return false;
1757 /* If we're not interested in tracking debugging information for
1758 this decl, then we can certainly put it in a register. */
1759 if (DECL_IGNORED_P (decl))
1760 return true;
1762 return (optimize || DECL_REGISTER (decl));
1765 /* Return true if TYPE should be passed by invisible reference. */
1767 bool
1768 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1769 tree type, bool named_arg)
1771 if (type)
1773 /* If this type contains non-trivial constructors, then it is
1774 forbidden for the middle-end to create any new copies. */
1775 if (TREE_ADDRESSABLE (type))
1776 return true;
1778 /* GCC post 3.4 passes *all* variable sized types by reference. */
1779 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1780 return true;
1783 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1786 /* Return true if TYPE, which is passed by reference, should be callee
1787 copied instead of caller copied. */
1789 bool
1790 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1791 tree type, bool named_arg)
1793 if (type && TREE_ADDRESSABLE (type))
1794 return false;
1795 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1798 /* Structures to communicate between the subroutines of assign_parms.
1799 The first holds data persistent across all parameters, the second
1800 is cleared out for each parameter. */
1802 struct assign_parm_data_all
1804 CUMULATIVE_ARGS args_so_far;
1805 struct args_size stack_args_size;
1806 tree function_result_decl;
1807 tree orig_fnargs;
1808 rtx conversion_insns;
1809 HOST_WIDE_INT pretend_args_size;
1810 HOST_WIDE_INT extra_pretend_bytes;
1811 int reg_parm_stack_space;
1814 struct assign_parm_data_one
1816 tree nominal_type;
1817 tree passed_type;
1818 rtx entry_parm;
1819 rtx stack_parm;
1820 enum machine_mode nominal_mode;
1821 enum machine_mode passed_mode;
1822 enum machine_mode promoted_mode;
1823 struct locate_and_pad_arg_data locate;
1824 int partial;
1825 BOOL_BITFIELD named_arg : 1;
1826 BOOL_BITFIELD passed_pointer : 1;
1827 BOOL_BITFIELD on_stack : 1;
1828 BOOL_BITFIELD loaded_in_reg : 1;
1831 /* A subroutine of assign_parms. Initialize ALL. */
1833 static void
1834 assign_parms_initialize_all (struct assign_parm_data_all *all)
1836 tree fntype;
1838 memset (all, 0, sizeof (*all));
1840 fntype = TREE_TYPE (current_function_decl);
1842 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1843 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1844 #else
1845 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1846 current_function_decl, -1);
1847 #endif
1849 #ifdef REG_PARM_STACK_SPACE
1850 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1851 #endif
1854 /* If ARGS contains entries with complex types, split the entry into two
1855 entries of the component type. Return a new list of substitutions are
1856 needed, else the old list. */
1858 static tree
1859 split_complex_args (tree args)
1861 tree p;
1863 /* Before allocating memory, check for the common case of no complex. */
1864 for (p = args; p; p = TREE_CHAIN (p))
1866 tree type = TREE_TYPE (p);
1867 if (TREE_CODE (type) == COMPLEX_TYPE
1868 && targetm.calls.split_complex_arg (type))
1869 goto found;
1871 return args;
1873 found:
1874 args = copy_list (args);
1876 for (p = args; p; p = TREE_CHAIN (p))
1878 tree type = TREE_TYPE (p);
1879 if (TREE_CODE (type) == COMPLEX_TYPE
1880 && targetm.calls.split_complex_arg (type))
1882 tree decl;
1883 tree subtype = TREE_TYPE (type);
1884 bool addressable = TREE_ADDRESSABLE (p);
1886 /* Rewrite the PARM_DECL's type with its component. */
1887 TREE_TYPE (p) = subtype;
1888 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1889 DECL_MODE (p) = VOIDmode;
1890 DECL_SIZE (p) = NULL;
1891 DECL_SIZE_UNIT (p) = NULL;
1892 /* If this arg must go in memory, put it in a pseudo here.
1893 We can't allow it to go in memory as per normal parms,
1894 because the usual place might not have the imag part
1895 adjacent to the real part. */
1896 DECL_ARTIFICIAL (p) = addressable;
1897 DECL_IGNORED_P (p) = addressable;
1898 TREE_ADDRESSABLE (p) = 0;
1899 layout_decl (p, 0);
1901 /* Build a second synthetic decl. */
1902 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
1903 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
1904 DECL_ARTIFICIAL (decl) = addressable;
1905 DECL_IGNORED_P (decl) = addressable;
1906 layout_decl (decl, 0);
1908 /* Splice it in; skip the new decl. */
1909 TREE_CHAIN (decl) = TREE_CHAIN (p);
1910 TREE_CHAIN (p) = decl;
1911 p = decl;
1915 return args;
1918 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
1919 the hidden struct return argument, and (abi willing) complex args.
1920 Return the new parameter list. */
1922 static tree
1923 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
1925 tree fndecl = current_function_decl;
1926 tree fntype = TREE_TYPE (fndecl);
1927 tree fnargs = DECL_ARGUMENTS (fndecl);
1929 /* If struct value address is treated as the first argument, make it so. */
1930 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
1931 && ! current_function_returns_pcc_struct
1932 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
1934 tree type = build_pointer_type (TREE_TYPE (fntype));
1935 tree decl;
1937 decl = build_decl (PARM_DECL, NULL_TREE, type);
1938 DECL_ARG_TYPE (decl) = type;
1939 DECL_ARTIFICIAL (decl) = 1;
1940 DECL_IGNORED_P (decl) = 1;
1942 TREE_CHAIN (decl) = fnargs;
1943 fnargs = decl;
1944 all->function_result_decl = decl;
1947 all->orig_fnargs = fnargs;
1949 /* If the target wants to split complex arguments into scalars, do so. */
1950 if (targetm.calls.split_complex_arg)
1951 fnargs = split_complex_args (fnargs);
1953 return fnargs;
1956 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
1957 data for the parameter. Incorporate ABI specifics such as pass-by-
1958 reference and type promotion. */
1960 static void
1961 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
1962 struct assign_parm_data_one *data)
1964 tree nominal_type, passed_type;
1965 enum machine_mode nominal_mode, passed_mode, promoted_mode;
1967 memset (data, 0, sizeof (*data));
1969 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
1970 if (!current_function_stdarg)
1971 data->named_arg = 1; /* No varadic parms. */
1972 else if (TREE_CHAIN (parm))
1973 data->named_arg = 1; /* Not the last non-varadic parm. */
1974 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
1975 data->named_arg = 1; /* Only varadic ones are unnamed. */
1976 else
1977 data->named_arg = 0; /* Treat as varadic. */
1979 nominal_type = TREE_TYPE (parm);
1980 passed_type = DECL_ARG_TYPE (parm);
1982 /* Look out for errors propagating this far. Also, if the parameter's
1983 type is void then its value doesn't matter. */
1984 if (TREE_TYPE (parm) == error_mark_node
1985 /* This can happen after weird syntax errors
1986 or if an enum type is defined among the parms. */
1987 || TREE_CODE (parm) != PARM_DECL
1988 || passed_type == NULL
1989 || VOID_TYPE_P (nominal_type))
1991 nominal_type = passed_type = void_type_node;
1992 nominal_mode = passed_mode = promoted_mode = VOIDmode;
1993 goto egress;
1996 /* Find mode of arg as it is passed, and mode of arg as it should be
1997 during execution of this function. */
1998 passed_mode = TYPE_MODE (passed_type);
1999 nominal_mode = TYPE_MODE (nominal_type);
2001 /* If the parm is to be passed as a transparent union, use the type of
2002 the first field for the tests below. We have already verified that
2003 the modes are the same. */
2004 if (DECL_TRANSPARENT_UNION (parm)
2005 || (TREE_CODE (passed_type) == UNION_TYPE
2006 && TYPE_TRANSPARENT_UNION (passed_type)))
2007 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2009 /* See if this arg was passed by invisible reference. */
2010 if (pass_by_reference (&all->args_so_far, passed_mode,
2011 passed_type, data->named_arg))
2013 passed_type = nominal_type = build_pointer_type (passed_type);
2014 data->passed_pointer = true;
2015 passed_mode = nominal_mode = Pmode;
2018 /* Find mode as it is passed by the ABI. */
2019 promoted_mode = passed_mode;
2020 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2022 int unsignedp = TYPE_UNSIGNED (passed_type);
2023 promoted_mode = promote_mode (passed_type, promoted_mode,
2024 &unsignedp, 1);
2027 egress:
2028 data->nominal_type = nominal_type;
2029 data->passed_type = passed_type;
2030 data->nominal_mode = nominal_mode;
2031 data->passed_mode = passed_mode;
2032 data->promoted_mode = promoted_mode;
2035 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2037 static void
2038 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2039 struct assign_parm_data_one *data, bool no_rtl)
2041 int varargs_pretend_bytes = 0;
2043 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2044 data->promoted_mode,
2045 data->passed_type,
2046 &varargs_pretend_bytes, no_rtl);
2048 /* If the back-end has requested extra stack space, record how much is
2049 needed. Do not change pretend_args_size otherwise since it may be
2050 nonzero from an earlier partial argument. */
2051 if (varargs_pretend_bytes > 0)
2052 all->pretend_args_size = varargs_pretend_bytes;
2055 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2056 the incoming location of the current parameter. */
2058 static void
2059 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2060 struct assign_parm_data_one *data)
2062 HOST_WIDE_INT pretend_bytes = 0;
2063 rtx entry_parm;
2064 bool in_regs;
2066 if (data->promoted_mode == VOIDmode)
2068 data->entry_parm = data->stack_parm = const0_rtx;
2069 return;
2072 #ifdef FUNCTION_INCOMING_ARG
2073 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2074 data->passed_type, data->named_arg);
2075 #else
2076 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2077 data->passed_type, data->named_arg);
2078 #endif
2080 if (entry_parm == 0)
2081 data->promoted_mode = data->passed_mode;
2083 /* Determine parm's home in the stack, in case it arrives in the stack
2084 or we should pretend it did. Compute the stack position and rtx where
2085 the argument arrives and its size.
2087 There is one complexity here: If this was a parameter that would
2088 have been passed in registers, but wasn't only because it is
2089 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2090 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2091 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2092 as it was the previous time. */
2093 in_regs = entry_parm != 0;
2094 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2095 in_regs = true;
2096 #endif
2097 if (!in_regs && !data->named_arg)
2099 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2101 rtx tem;
2102 #ifdef FUNCTION_INCOMING_ARG
2103 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2104 data->passed_type, true);
2105 #else
2106 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2107 data->passed_type, true);
2108 #endif
2109 in_regs = tem != NULL;
2113 /* If this parameter was passed both in registers and in the stack, use
2114 the copy on the stack. */
2115 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2116 data->passed_type))
2117 entry_parm = 0;
2119 if (entry_parm)
2121 int partial;
2123 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2124 data->promoted_mode,
2125 data->passed_type,
2126 data->named_arg);
2127 data->partial = partial;
2129 /* The caller might already have allocated stack space for the
2130 register parameters. */
2131 if (partial != 0 && all->reg_parm_stack_space == 0)
2133 /* Part of this argument is passed in registers and part
2134 is passed on the stack. Ask the prologue code to extend
2135 the stack part so that we can recreate the full value.
2137 PRETEND_BYTES is the size of the registers we need to store.
2138 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2139 stack space that the prologue should allocate.
2141 Internally, gcc assumes that the argument pointer is aligned
2142 to STACK_BOUNDARY bits. This is used both for alignment
2143 optimizations (see init_emit) and to locate arguments that are
2144 aligned to more than PARM_BOUNDARY bits. We must preserve this
2145 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2146 a stack boundary. */
2148 /* We assume at most one partial arg, and it must be the first
2149 argument on the stack. */
2150 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2152 pretend_bytes = partial;
2153 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2155 /* We want to align relative to the actual stack pointer, so
2156 don't include this in the stack size until later. */
2157 all->extra_pretend_bytes = all->pretend_args_size;
2161 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2162 entry_parm ? data->partial : 0, current_function_decl,
2163 &all->stack_args_size, &data->locate);
2165 /* Adjust offsets to include the pretend args. */
2166 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2167 data->locate.slot_offset.constant += pretend_bytes;
2168 data->locate.offset.constant += pretend_bytes;
2170 data->entry_parm = entry_parm;
2173 /* A subroutine of assign_parms. If there is actually space on the stack
2174 for this parm, count it in stack_args_size and return true. */
2176 static bool
2177 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2178 struct assign_parm_data_one *data)
2180 /* Trivially true if we've no incoming register. */
2181 if (data->entry_parm == NULL)
2183 /* Also true if we're partially in registers and partially not,
2184 since we've arranged to drop the entire argument on the stack. */
2185 else if (data->partial != 0)
2187 /* Also true if the target says that it's passed in both registers
2188 and on the stack. */
2189 else if (GET_CODE (data->entry_parm) == PARALLEL
2190 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2192 /* Also true if the target says that there's stack allocated for
2193 all register parameters. */
2194 else if (all->reg_parm_stack_space > 0)
2196 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2197 else
2198 return false;
2200 all->stack_args_size.constant += data->locate.size.constant;
2201 if (data->locate.size.var)
2202 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2204 return true;
2207 /* A subroutine of assign_parms. Given that this parameter is allocated
2208 stack space by the ABI, find it. */
2210 static void
2211 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2213 rtx offset_rtx, stack_parm;
2214 unsigned int align, boundary;
2216 /* If we're passing this arg using a reg, make its stack home the
2217 aligned stack slot. */
2218 if (data->entry_parm)
2219 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2220 else
2221 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2223 stack_parm = current_function_internal_arg_pointer;
2224 if (offset_rtx != const0_rtx)
2225 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2226 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2228 set_mem_attributes (stack_parm, parm, 1);
2230 boundary = data->locate.boundary;
2231 align = BITS_PER_UNIT;
2233 /* If we're padding upward, we know that the alignment of the slot
2234 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2235 intentionally forcing upward padding. Otherwise we have to come
2236 up with a guess at the alignment based on OFFSET_RTX. */
2237 if (data->locate.where_pad != downward || data->entry_parm)
2238 align = boundary;
2239 else if (GET_CODE (offset_rtx) == CONST_INT)
2241 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2242 align = align & -align;
2244 set_mem_align (stack_parm, align);
2246 if (data->entry_parm)
2247 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2249 data->stack_parm = stack_parm;
2252 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2253 always valid and contiguous. */
2255 static void
2256 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2258 rtx entry_parm = data->entry_parm;
2259 rtx stack_parm = data->stack_parm;
2261 /* If this parm was passed part in regs and part in memory, pretend it
2262 arrived entirely in memory by pushing the register-part onto the stack.
2263 In the special case of a DImode or DFmode that is split, we could put
2264 it together in a pseudoreg directly, but for now that's not worth
2265 bothering with. */
2266 if (data->partial != 0)
2268 /* Handle calls that pass values in multiple non-contiguous
2269 locations. The Irix 6 ABI has examples of this. */
2270 if (GET_CODE (entry_parm) == PARALLEL)
2271 emit_group_store (validize_mem (stack_parm), entry_parm,
2272 data->passed_type,
2273 int_size_in_bytes (data->passed_type));
2274 else
2276 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2277 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2278 data->partial / UNITS_PER_WORD);
2281 entry_parm = stack_parm;
2284 /* If we didn't decide this parm came in a register, by default it came
2285 on the stack. */
2286 else if (entry_parm == NULL)
2287 entry_parm = stack_parm;
2289 /* When an argument is passed in multiple locations, we can't make use
2290 of this information, but we can save some copying if the whole argument
2291 is passed in a single register. */
2292 else if (GET_CODE (entry_parm) == PARALLEL
2293 && data->nominal_mode != BLKmode
2294 && data->passed_mode != BLKmode)
2296 size_t i, len = XVECLEN (entry_parm, 0);
2298 for (i = 0; i < len; i++)
2299 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2300 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2301 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2302 == data->passed_mode)
2303 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2305 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2306 break;
2310 data->entry_parm = entry_parm;
2313 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2314 always valid and properly aligned. */
2316 static void
2317 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2319 rtx stack_parm = data->stack_parm;
2321 /* If we can't trust the parm stack slot to be aligned enough for its
2322 ultimate type, don't use that slot after entry. We'll make another
2323 stack slot, if we need one. */
2324 if (stack_parm
2325 && ((STRICT_ALIGNMENT
2326 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2327 || (data->nominal_type
2328 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2329 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2330 stack_parm = NULL;
2332 /* If parm was passed in memory, and we need to convert it on entry,
2333 don't store it back in that same slot. */
2334 else if (data->entry_parm == stack_parm
2335 && data->nominal_mode != BLKmode
2336 && data->nominal_mode != data->passed_mode)
2337 stack_parm = NULL;
2339 data->stack_parm = stack_parm;
2342 /* A subroutine of assign_parms. Return true if the current parameter
2343 should be stored as a BLKmode in the current frame. */
2345 static bool
2346 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2348 if (data->nominal_mode == BLKmode)
2349 return true;
2350 if (GET_CODE (data->entry_parm) == PARALLEL)
2351 return true;
2353 #ifdef BLOCK_REG_PADDING
2354 /* Only assign_parm_setup_block knows how to deal with register arguments
2355 that are padded at the least significant end. */
2356 if (REG_P (data->entry_parm)
2357 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2358 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2359 == (BYTES_BIG_ENDIAN ? upward : downward)))
2360 return true;
2361 #endif
2363 return false;
2366 /* A subroutine of assign_parms. Arrange for the parameter to be
2367 present and valid in DATA->STACK_RTL. */
2369 static void
2370 assign_parm_setup_block (struct assign_parm_data_all *all,
2371 tree parm, struct assign_parm_data_one *data)
2373 rtx entry_parm = data->entry_parm;
2374 rtx stack_parm = data->stack_parm;
2375 HOST_WIDE_INT size;
2376 HOST_WIDE_INT size_stored;
2377 rtx orig_entry_parm = entry_parm;
2379 if (GET_CODE (entry_parm) == PARALLEL)
2380 entry_parm = emit_group_move_into_temps (entry_parm);
2382 /* If we've a non-block object that's nevertheless passed in parts,
2383 reconstitute it in register operations rather than on the stack. */
2384 if (GET_CODE (entry_parm) == PARALLEL
2385 && data->nominal_mode != BLKmode)
2387 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2389 if ((XVECLEN (entry_parm, 0) > 1
2390 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2391 && use_register_for_decl (parm))
2393 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2395 push_to_sequence (all->conversion_insns);
2397 /* For values returned in multiple registers, handle possible
2398 incompatible calls to emit_group_store.
2400 For example, the following would be invalid, and would have to
2401 be fixed by the conditional below:
2403 emit_group_store ((reg:SF), (parallel:DF))
2404 emit_group_store ((reg:SI), (parallel:DI))
2406 An example of this are doubles in e500 v2:
2407 (parallel:DF (expr_list (reg:SI) (const_int 0))
2408 (expr_list (reg:SI) (const_int 4))). */
2409 if (data->nominal_mode != data->passed_mode)
2411 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2412 emit_group_store (t, entry_parm, NULL_TREE,
2413 GET_MODE_SIZE (GET_MODE (entry_parm)));
2414 convert_move (parmreg, t, 0);
2416 else
2417 emit_group_store (parmreg, entry_parm, data->nominal_type,
2418 int_size_in_bytes (data->nominal_type));
2420 all->conversion_insns = get_insns ();
2421 end_sequence ();
2423 SET_DECL_RTL (parm, parmreg);
2424 return;
2428 size = int_size_in_bytes (data->passed_type);
2429 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2430 if (stack_parm == 0)
2432 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2433 stack_parm = assign_stack_local (BLKmode, size_stored,
2434 DECL_ALIGN (parm));
2435 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2436 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2437 set_mem_attributes (stack_parm, parm, 1);
2440 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2441 calls that pass values in multiple non-contiguous locations. */
2442 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2444 rtx mem;
2446 /* Note that we will be storing an integral number of words.
2447 So we have to be careful to ensure that we allocate an
2448 integral number of words. We do this above when we call
2449 assign_stack_local if space was not allocated in the argument
2450 list. If it was, this will not work if PARM_BOUNDARY is not
2451 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2452 if it becomes a problem. Exception is when BLKmode arrives
2453 with arguments not conforming to word_mode. */
2455 if (data->stack_parm == 0)
2457 else if (GET_CODE (entry_parm) == PARALLEL)
2459 else
2460 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2462 mem = validize_mem (stack_parm);
2464 /* Handle values in multiple non-contiguous locations. */
2465 if (GET_CODE (entry_parm) == PARALLEL)
2467 push_to_sequence (all->conversion_insns);
2468 emit_group_store (mem, entry_parm, data->passed_type, size);
2469 all->conversion_insns = get_insns ();
2470 end_sequence ();
2473 else if (size == 0)
2476 /* If SIZE is that of a mode no bigger than a word, just use
2477 that mode's store operation. */
2478 else if (size <= UNITS_PER_WORD)
2480 enum machine_mode mode
2481 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2483 if (mode != BLKmode
2484 #ifdef BLOCK_REG_PADDING
2485 && (size == UNITS_PER_WORD
2486 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2487 != (BYTES_BIG_ENDIAN ? upward : downward)))
2488 #endif
2491 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2492 emit_move_insn (change_address (mem, mode, 0), reg);
2495 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2496 machine must be aligned to the left before storing
2497 to memory. Note that the previous test doesn't
2498 handle all cases (e.g. SIZE == 3). */
2499 else if (size != UNITS_PER_WORD
2500 #ifdef BLOCK_REG_PADDING
2501 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2502 == downward)
2503 #else
2504 && BYTES_BIG_ENDIAN
2505 #endif
2508 rtx tem, x;
2509 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2510 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2512 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2513 build_int_cst (NULL_TREE, by),
2514 NULL_RTX, 1);
2515 tem = change_address (mem, word_mode, 0);
2516 emit_move_insn (tem, x);
2518 else
2519 move_block_from_reg (REGNO (entry_parm), mem,
2520 size_stored / UNITS_PER_WORD);
2522 else
2523 move_block_from_reg (REGNO (entry_parm), mem,
2524 size_stored / UNITS_PER_WORD);
2526 else if (data->stack_parm == 0)
2528 push_to_sequence (all->conversion_insns);
2529 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2530 BLOCK_OP_NORMAL);
2531 all->conversion_insns = get_insns ();
2532 end_sequence ();
2535 data->stack_parm = stack_parm;
2536 SET_DECL_RTL (parm, stack_parm);
2539 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2540 parameter. Get it there. Perform all ABI specified conversions. */
2542 static void
2543 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2544 struct assign_parm_data_one *data)
2546 rtx parmreg;
2547 enum machine_mode promoted_nominal_mode;
2548 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2549 bool did_conversion = false;
2551 /* Store the parm in a pseudoregister during the function, but we may
2552 need to do it in a wider mode. */
2554 promoted_nominal_mode
2555 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2557 parmreg = gen_reg_rtx (promoted_nominal_mode);
2559 if (!DECL_ARTIFICIAL (parm))
2560 mark_user_reg (parmreg);
2562 /* If this was an item that we received a pointer to,
2563 set DECL_RTL appropriately. */
2564 if (data->passed_pointer)
2566 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2567 set_mem_attributes (x, parm, 1);
2568 SET_DECL_RTL (parm, x);
2570 else
2571 SET_DECL_RTL (parm, parmreg);
2573 /* Copy the value into the register. */
2574 if (data->nominal_mode != data->passed_mode
2575 || promoted_nominal_mode != data->promoted_mode)
2577 int save_tree_used;
2579 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2580 mode, by the caller. We now have to convert it to
2581 NOMINAL_MODE, if different. However, PARMREG may be in
2582 a different mode than NOMINAL_MODE if it is being stored
2583 promoted.
2585 If ENTRY_PARM is a hard register, it might be in a register
2586 not valid for operating in its mode (e.g., an odd-numbered
2587 register for a DFmode). In that case, moves are the only
2588 thing valid, so we can't do a convert from there. This
2589 occurs when the calling sequence allow such misaligned
2590 usages.
2592 In addition, the conversion may involve a call, which could
2593 clobber parameters which haven't been copied to pseudo
2594 registers yet. Therefore, we must first copy the parm to
2595 a pseudo reg here, and save the conversion until after all
2596 parameters have been moved. */
2598 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2600 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2602 push_to_sequence (all->conversion_insns);
2603 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2605 if (GET_CODE (tempreg) == SUBREG
2606 && GET_MODE (tempreg) == data->nominal_mode
2607 && REG_P (SUBREG_REG (tempreg))
2608 && data->nominal_mode == data->passed_mode
2609 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2610 && GET_MODE_SIZE (GET_MODE (tempreg))
2611 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2613 /* The argument is already sign/zero extended, so note it
2614 into the subreg. */
2615 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2616 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2619 /* TREE_USED gets set erroneously during expand_assignment. */
2620 save_tree_used = TREE_USED (parm);
2621 expand_assignment (parm, make_tree (data->nominal_type, tempreg));
2622 TREE_USED (parm) = save_tree_used;
2623 all->conversion_insns = get_insns ();
2624 end_sequence ();
2626 did_conversion = true;
2628 else
2629 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2631 /* If we were passed a pointer but the actual value can safely live
2632 in a register, put it in one. */
2633 if (data->passed_pointer
2634 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2635 /* If by-reference argument was promoted, demote it. */
2636 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2637 || use_register_for_decl (parm)))
2639 /* We can't use nominal_mode, because it will have been set to
2640 Pmode above. We must use the actual mode of the parm. */
2641 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2642 mark_user_reg (parmreg);
2644 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2646 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2647 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2649 push_to_sequence (all->conversion_insns);
2650 emit_move_insn (tempreg, DECL_RTL (parm));
2651 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2652 emit_move_insn (parmreg, tempreg);
2653 all->conversion_insns = get_insns ();
2654 end_sequence ();
2656 did_conversion = true;
2658 else
2659 emit_move_insn (parmreg, DECL_RTL (parm));
2661 SET_DECL_RTL (parm, parmreg);
2663 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2664 now the parm. */
2665 data->stack_parm = NULL;
2668 /* Mark the register as eliminable if we did no conversion and it was
2669 copied from memory at a fixed offset, and the arg pointer was not
2670 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2671 offset formed an invalid address, such memory-equivalences as we
2672 make here would screw up life analysis for it. */
2673 if (data->nominal_mode == data->passed_mode
2674 && !did_conversion
2675 && data->stack_parm != 0
2676 && MEM_P (data->stack_parm)
2677 && data->locate.offset.var == 0
2678 && reg_mentioned_p (virtual_incoming_args_rtx,
2679 XEXP (data->stack_parm, 0)))
2681 rtx linsn = get_last_insn ();
2682 rtx sinsn, set;
2684 /* Mark complex types separately. */
2685 if (GET_CODE (parmreg) == CONCAT)
2687 enum machine_mode submode
2688 = GET_MODE_INNER (GET_MODE (parmreg));
2689 int regnor = REGNO (XEXP (parmreg, 0));
2690 int regnoi = REGNO (XEXP (parmreg, 1));
2691 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2692 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2693 GET_MODE_SIZE (submode));
2695 /* Scan backwards for the set of the real and
2696 imaginary parts. */
2697 for (sinsn = linsn; sinsn != 0;
2698 sinsn = prev_nonnote_insn (sinsn))
2700 set = single_set (sinsn);
2701 if (set == 0)
2702 continue;
2704 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2705 REG_NOTES (sinsn)
2706 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2707 REG_NOTES (sinsn));
2708 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2709 REG_NOTES (sinsn)
2710 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2711 REG_NOTES (sinsn));
2714 else if ((set = single_set (linsn)) != 0
2715 && SET_DEST (set) == parmreg)
2716 REG_NOTES (linsn)
2717 = gen_rtx_EXPR_LIST (REG_EQUIV,
2718 data->stack_parm, REG_NOTES (linsn));
2721 /* For pointer data type, suggest pointer register. */
2722 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2723 mark_reg_pointer (parmreg,
2724 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2727 /* A subroutine of assign_parms. Allocate stack space to hold the current
2728 parameter. Get it there. Perform all ABI specified conversions. */
2730 static void
2731 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2732 struct assign_parm_data_one *data)
2734 /* Value must be stored in the stack slot STACK_PARM during function
2735 execution. */
2736 bool to_conversion = false;
2738 if (data->promoted_mode != data->nominal_mode)
2740 /* Conversion is required. */
2741 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2743 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2745 push_to_sequence (all->conversion_insns);
2746 to_conversion = true;
2748 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2749 TYPE_UNSIGNED (TREE_TYPE (parm)));
2751 if (data->stack_parm)
2752 /* ??? This may need a big-endian conversion on sparc64. */
2753 data->stack_parm
2754 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2757 if (data->entry_parm != data->stack_parm)
2759 rtx src, dest;
2761 if (data->stack_parm == 0)
2763 data->stack_parm
2764 = assign_stack_local (GET_MODE (data->entry_parm),
2765 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2766 TYPE_ALIGN (data->passed_type));
2767 set_mem_attributes (data->stack_parm, parm, 1);
2770 dest = validize_mem (data->stack_parm);
2771 src = validize_mem (data->entry_parm);
2773 if (MEM_P (src))
2775 /* Use a block move to handle potentially misaligned entry_parm. */
2776 if (!to_conversion)
2777 push_to_sequence (all->conversion_insns);
2778 to_conversion = true;
2780 emit_block_move (dest, src,
2781 GEN_INT (int_size_in_bytes (data->passed_type)),
2782 BLOCK_OP_NORMAL);
2784 else
2785 emit_move_insn (dest, src);
2788 if (to_conversion)
2790 all->conversion_insns = get_insns ();
2791 end_sequence ();
2794 SET_DECL_RTL (parm, data->stack_parm);
2797 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2798 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2800 static void
2801 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2803 tree parm;
2804 tree orig_fnargs = all->orig_fnargs;
2806 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2808 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2809 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2811 rtx tmp, real, imag;
2812 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2814 real = DECL_RTL (fnargs);
2815 imag = DECL_RTL (TREE_CHAIN (fnargs));
2816 if (inner != GET_MODE (real))
2818 real = gen_lowpart_SUBREG (inner, real);
2819 imag = gen_lowpart_SUBREG (inner, imag);
2822 if (TREE_ADDRESSABLE (parm))
2824 rtx rmem, imem;
2825 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2827 /* split_complex_arg put the real and imag parts in
2828 pseudos. Move them to memory. */
2829 tmp = assign_stack_local (DECL_MODE (parm), size,
2830 TYPE_ALIGN (TREE_TYPE (parm)));
2831 set_mem_attributes (tmp, parm, 1);
2832 rmem = adjust_address_nv (tmp, inner, 0);
2833 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2834 push_to_sequence (all->conversion_insns);
2835 emit_move_insn (rmem, real);
2836 emit_move_insn (imem, imag);
2837 all->conversion_insns = get_insns ();
2838 end_sequence ();
2840 else
2841 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2842 SET_DECL_RTL (parm, tmp);
2844 real = DECL_INCOMING_RTL (fnargs);
2845 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2846 if (inner != GET_MODE (real))
2848 real = gen_lowpart_SUBREG (inner, real);
2849 imag = gen_lowpart_SUBREG (inner, imag);
2851 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2852 set_decl_incoming_rtl (parm, tmp);
2853 fnargs = TREE_CHAIN (fnargs);
2855 else
2857 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2858 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2860 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2861 instead of the copy of decl, i.e. FNARGS. */
2862 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2863 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2866 fnargs = TREE_CHAIN (fnargs);
2870 /* Assign RTL expressions to the function's parameters. This may involve
2871 copying them into registers and using those registers as the DECL_RTL. */
2873 static void
2874 assign_parms (tree fndecl)
2876 struct assign_parm_data_all all;
2877 tree fnargs, parm;
2878 rtx internal_arg_pointer;
2880 /* If the reg that the virtual arg pointer will be translated into is
2881 not a fixed reg or is the stack pointer, make a copy of the virtual
2882 arg pointer, and address parms via the copy. The frame pointer is
2883 considered fixed even though it is not marked as such.
2885 The second time through, simply use ap to avoid generating rtx. */
2887 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
2888 || ! (fixed_regs[ARG_POINTER_REGNUM]
2889 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
2890 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
2891 else
2892 internal_arg_pointer = virtual_incoming_args_rtx;
2893 current_function_internal_arg_pointer = internal_arg_pointer;
2895 assign_parms_initialize_all (&all);
2896 fnargs = assign_parms_augmented_arg_list (&all);
2898 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
2900 struct assign_parm_data_one data;
2902 /* Extract the type of PARM; adjust it according to ABI. */
2903 assign_parm_find_data_types (&all, parm, &data);
2905 /* Early out for errors and void parameters. */
2906 if (data.passed_mode == VOIDmode)
2908 SET_DECL_RTL (parm, const0_rtx);
2909 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
2910 continue;
2913 if (current_function_stdarg && !TREE_CHAIN (parm))
2914 assign_parms_setup_varargs (&all, &data, false);
2916 /* Find out where the parameter arrives in this function. */
2917 assign_parm_find_entry_rtl (&all, &data);
2919 /* Find out where stack space for this parameter might be. */
2920 if (assign_parm_is_stack_parm (&all, &data))
2922 assign_parm_find_stack_rtl (parm, &data);
2923 assign_parm_adjust_entry_rtl (&data);
2926 /* Record permanently how this parm was passed. */
2927 set_decl_incoming_rtl (parm, data.entry_parm);
2929 /* Update info on where next arg arrives in registers. */
2930 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
2931 data.passed_type, data.named_arg);
2933 assign_parm_adjust_stack_rtl (&data);
2935 if (assign_parm_setup_block_p (&data))
2936 assign_parm_setup_block (&all, parm, &data);
2937 else if (data.passed_pointer || use_register_for_decl (parm))
2938 assign_parm_setup_reg (&all, parm, &data);
2939 else
2940 assign_parm_setup_stack (&all, parm, &data);
2943 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
2944 assign_parms_unsplit_complex (&all, fnargs);
2946 /* Output all parameter conversion instructions (possibly including calls)
2947 now that all parameters have been copied out of hard registers. */
2948 emit_insn (all.conversion_insns);
2950 /* If we are receiving a struct value address as the first argument, set up
2951 the RTL for the function result. As this might require code to convert
2952 the transmitted address to Pmode, we do this here to ensure that possible
2953 preliminary conversions of the address have been emitted already. */
2954 if (all.function_result_decl)
2956 tree result = DECL_RESULT (current_function_decl);
2957 rtx addr = DECL_RTL (all.function_result_decl);
2958 rtx x;
2960 if (DECL_BY_REFERENCE (result))
2961 x = addr;
2962 else
2964 addr = convert_memory_address (Pmode, addr);
2965 x = gen_rtx_MEM (DECL_MODE (result), addr);
2966 set_mem_attributes (x, result, 1);
2968 SET_DECL_RTL (result, x);
2971 /* We have aligned all the args, so add space for the pretend args. */
2972 current_function_pretend_args_size = all.pretend_args_size;
2973 all.stack_args_size.constant += all.extra_pretend_bytes;
2974 current_function_args_size = all.stack_args_size.constant;
2976 /* Adjust function incoming argument size for alignment and
2977 minimum length. */
2979 #ifdef REG_PARM_STACK_SPACE
2980 current_function_args_size = MAX (current_function_args_size,
2981 REG_PARM_STACK_SPACE (fndecl));
2982 #endif
2984 current_function_args_size
2985 = ((current_function_args_size + STACK_BYTES - 1)
2986 / STACK_BYTES) * STACK_BYTES;
2988 #ifdef ARGS_GROW_DOWNWARD
2989 current_function_arg_offset_rtx
2990 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
2991 : expand_expr (size_diffop (all.stack_args_size.var,
2992 size_int (-all.stack_args_size.constant)),
2993 NULL_RTX, VOIDmode, 0));
2994 #else
2995 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
2996 #endif
2998 /* See how many bytes, if any, of its args a function should try to pop
2999 on return. */
3001 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3002 current_function_args_size);
3004 /* For stdarg.h function, save info about
3005 regs and stack space used by the named args. */
3007 current_function_args_info = all.args_so_far;
3009 /* Set the rtx used for the function return value. Put this in its
3010 own variable so any optimizers that need this information don't have
3011 to include tree.h. Do this here so it gets done when an inlined
3012 function gets output. */
3014 current_function_return_rtx
3015 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3016 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3018 /* If scalar return value was computed in a pseudo-reg, or was a named
3019 return value that got dumped to the stack, copy that to the hard
3020 return register. */
3021 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3023 tree decl_result = DECL_RESULT (fndecl);
3024 rtx decl_rtl = DECL_RTL (decl_result);
3026 if (REG_P (decl_rtl)
3027 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3028 : DECL_REGISTER (decl_result))
3030 rtx real_decl_rtl;
3032 #ifdef FUNCTION_OUTGOING_VALUE
3033 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3034 fndecl);
3035 #else
3036 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3037 fndecl);
3038 #endif
3039 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3040 /* The delay slot scheduler assumes that current_function_return_rtx
3041 holds the hard register containing the return value, not a
3042 temporary pseudo. */
3043 current_function_return_rtx = real_decl_rtl;
3048 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3049 For all seen types, gimplify their sizes. */
3051 static tree
3052 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3054 tree t = *tp;
3056 *walk_subtrees = 0;
3057 if (TYPE_P (t))
3059 if (POINTER_TYPE_P (t))
3060 *walk_subtrees = 1;
3061 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3062 && !TYPE_SIZES_GIMPLIFIED (t))
3064 gimplify_type_sizes (t, (tree *) data);
3065 *walk_subtrees = 1;
3069 return NULL;
3072 /* Gimplify the parameter list for current_function_decl. This involves
3073 evaluating SAVE_EXPRs of variable sized parameters and generating code
3074 to implement callee-copies reference parameters. Returns a list of
3075 statements to add to the beginning of the function, or NULL if nothing
3076 to do. */
3078 tree
3079 gimplify_parameters (void)
3081 struct assign_parm_data_all all;
3082 tree fnargs, parm, stmts = NULL;
3084 assign_parms_initialize_all (&all);
3085 fnargs = assign_parms_augmented_arg_list (&all);
3087 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3089 struct assign_parm_data_one data;
3091 /* Extract the type of PARM; adjust it according to ABI. */
3092 assign_parm_find_data_types (&all, parm, &data);
3094 /* Early out for errors and void parameters. */
3095 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3096 continue;
3098 /* Update info on where next arg arrives in registers. */
3099 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3100 data.passed_type, data.named_arg);
3102 /* ??? Once upon a time variable_size stuffed parameter list
3103 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3104 turned out to be less than manageable in the gimple world.
3105 Now we have to hunt them down ourselves. */
3106 walk_tree_without_duplicates (&data.passed_type,
3107 gimplify_parm_type, &stmts);
3109 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3111 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3112 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3115 if (data.passed_pointer)
3117 tree type = TREE_TYPE (data.passed_type);
3118 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3119 type, data.named_arg))
3121 tree local, t;
3123 /* For constant sized objects, this is trivial; for
3124 variable-sized objects, we have to play games. */
3125 if (TREE_CONSTANT (DECL_SIZE (parm)))
3127 local = create_tmp_var (type, get_name (parm));
3128 DECL_IGNORED_P (local) = 0;
3130 else
3132 tree ptr_type, addr, args;
3134 ptr_type = build_pointer_type (type);
3135 addr = create_tmp_var (ptr_type, get_name (parm));
3136 DECL_IGNORED_P (addr) = 0;
3137 local = build_fold_indirect_ref (addr);
3139 args = tree_cons (NULL, DECL_SIZE_UNIT (parm), NULL);
3140 t = built_in_decls[BUILT_IN_ALLOCA];
3141 t = build_function_call_expr (t, args);
3142 t = fold_convert (ptr_type, t);
3143 t = build2 (MODIFY_EXPR, void_type_node, addr, t);
3144 gimplify_and_add (t, &stmts);
3147 t = build2 (MODIFY_EXPR, void_type_node, local, parm);
3148 gimplify_and_add (t, &stmts);
3150 SET_DECL_VALUE_EXPR (parm, local);
3151 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3156 return stmts;
3159 /* Indicate whether REGNO is an incoming argument to the current function
3160 that was promoted to a wider mode. If so, return the RTX for the
3161 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3162 that REGNO is promoted from and whether the promotion was signed or
3163 unsigned. */
3166 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3168 tree arg;
3170 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3171 arg = TREE_CHAIN (arg))
3172 if (REG_P (DECL_INCOMING_RTL (arg))
3173 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3174 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3176 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3177 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3179 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3180 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3181 && mode != DECL_MODE (arg))
3183 *pmode = DECL_MODE (arg);
3184 *punsignedp = unsignedp;
3185 return DECL_INCOMING_RTL (arg);
3189 return 0;
3193 /* Compute the size and offset from the start of the stacked arguments for a
3194 parm passed in mode PASSED_MODE and with type TYPE.
3196 INITIAL_OFFSET_PTR points to the current offset into the stacked
3197 arguments.
3199 The starting offset and size for this parm are returned in
3200 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3201 nonzero, the offset is that of stack slot, which is returned in
3202 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3203 padding required from the initial offset ptr to the stack slot.
3205 IN_REGS is nonzero if the argument will be passed in registers. It will
3206 never be set if REG_PARM_STACK_SPACE is not defined.
3208 FNDECL is the function in which the argument was defined.
3210 There are two types of rounding that are done. The first, controlled by
3211 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3212 list to be aligned to the specific boundary (in bits). This rounding
3213 affects the initial and starting offsets, but not the argument size.
3215 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3216 optionally rounds the size of the parm to PARM_BOUNDARY. The
3217 initial offset is not affected by this rounding, while the size always
3218 is and the starting offset may be. */
3220 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3221 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3222 callers pass in the total size of args so far as
3223 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3225 void
3226 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3227 int partial, tree fndecl ATTRIBUTE_UNUSED,
3228 struct args_size *initial_offset_ptr,
3229 struct locate_and_pad_arg_data *locate)
3231 tree sizetree;
3232 enum direction where_pad;
3233 int boundary;
3234 int reg_parm_stack_space = 0;
3235 int part_size_in_regs;
3237 #ifdef REG_PARM_STACK_SPACE
3238 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3240 /* If we have found a stack parm before we reach the end of the
3241 area reserved for registers, skip that area. */
3242 if (! in_regs)
3244 if (reg_parm_stack_space > 0)
3246 if (initial_offset_ptr->var)
3248 initial_offset_ptr->var
3249 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3250 ssize_int (reg_parm_stack_space));
3251 initial_offset_ptr->constant = 0;
3253 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3254 initial_offset_ptr->constant = reg_parm_stack_space;
3257 #endif /* REG_PARM_STACK_SPACE */
3259 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3261 sizetree
3262 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3263 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3264 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3265 locate->where_pad = where_pad;
3266 locate->boundary = boundary;
3268 #ifdef ARGS_GROW_DOWNWARD
3269 locate->slot_offset.constant = -initial_offset_ptr->constant;
3270 if (initial_offset_ptr->var)
3271 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3272 initial_offset_ptr->var);
3275 tree s2 = sizetree;
3276 if (where_pad != none
3277 && (!host_integerp (sizetree, 1)
3278 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3279 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3280 SUB_PARM_SIZE (locate->slot_offset, s2);
3283 locate->slot_offset.constant += part_size_in_regs;
3285 if (!in_regs
3286 #ifdef REG_PARM_STACK_SPACE
3287 || REG_PARM_STACK_SPACE (fndecl) > 0
3288 #endif
3290 pad_to_arg_alignment (&locate->slot_offset, boundary,
3291 &locate->alignment_pad);
3293 locate->size.constant = (-initial_offset_ptr->constant
3294 - locate->slot_offset.constant);
3295 if (initial_offset_ptr->var)
3296 locate->size.var = size_binop (MINUS_EXPR,
3297 size_binop (MINUS_EXPR,
3298 ssize_int (0),
3299 initial_offset_ptr->var),
3300 locate->slot_offset.var);
3302 /* Pad_below needs the pre-rounded size to know how much to pad
3303 below. */
3304 locate->offset = locate->slot_offset;
3305 if (where_pad == downward)
3306 pad_below (&locate->offset, passed_mode, sizetree);
3308 #else /* !ARGS_GROW_DOWNWARD */
3309 if (!in_regs
3310 #ifdef REG_PARM_STACK_SPACE
3311 || REG_PARM_STACK_SPACE (fndecl) > 0
3312 #endif
3314 pad_to_arg_alignment (initial_offset_ptr, boundary,
3315 &locate->alignment_pad);
3316 locate->slot_offset = *initial_offset_ptr;
3318 #ifdef PUSH_ROUNDING
3319 if (passed_mode != BLKmode)
3320 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3321 #endif
3323 /* Pad_below needs the pre-rounded size to know how much to pad below
3324 so this must be done before rounding up. */
3325 locate->offset = locate->slot_offset;
3326 if (where_pad == downward)
3327 pad_below (&locate->offset, passed_mode, sizetree);
3329 if (where_pad != none
3330 && (!host_integerp (sizetree, 1)
3331 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3332 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3334 ADD_PARM_SIZE (locate->size, sizetree);
3336 locate->size.constant -= part_size_in_regs;
3337 #endif /* ARGS_GROW_DOWNWARD */
3340 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3341 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3343 static void
3344 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3345 struct args_size *alignment_pad)
3347 tree save_var = NULL_TREE;
3348 HOST_WIDE_INT save_constant = 0;
3349 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3350 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3352 #ifdef SPARC_STACK_BOUNDARY_HACK
3353 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3354 higher than the real alignment of %sp. However, when it does this,
3355 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3356 This is a temporary hack while the sparc port is fixed. */
3357 if (SPARC_STACK_BOUNDARY_HACK)
3358 sp_offset = 0;
3359 #endif
3361 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3363 save_var = offset_ptr->var;
3364 save_constant = offset_ptr->constant;
3367 alignment_pad->var = NULL_TREE;
3368 alignment_pad->constant = 0;
3370 if (boundary > BITS_PER_UNIT)
3372 if (offset_ptr->var)
3374 tree sp_offset_tree = ssize_int (sp_offset);
3375 tree offset = size_binop (PLUS_EXPR,
3376 ARGS_SIZE_TREE (*offset_ptr),
3377 sp_offset_tree);
3378 #ifdef ARGS_GROW_DOWNWARD
3379 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3380 #else
3381 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3382 #endif
3384 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3385 /* ARGS_SIZE_TREE includes constant term. */
3386 offset_ptr->constant = 0;
3387 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3388 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3389 save_var);
3391 else
3393 offset_ptr->constant = -sp_offset +
3394 #ifdef ARGS_GROW_DOWNWARD
3395 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3396 #else
3397 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3398 #endif
3399 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3400 alignment_pad->constant = offset_ptr->constant - save_constant;
3405 static void
3406 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3408 if (passed_mode != BLKmode)
3410 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3411 offset_ptr->constant
3412 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3413 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3414 - GET_MODE_SIZE (passed_mode));
3416 else
3418 if (TREE_CODE (sizetree) != INTEGER_CST
3419 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3421 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3422 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3423 /* Add it in. */
3424 ADD_PARM_SIZE (*offset_ptr, s2);
3425 SUB_PARM_SIZE (*offset_ptr, sizetree);
3430 /* Walk the tree of blocks describing the binding levels within a function
3431 and warn about variables the might be killed by setjmp or vfork.
3432 This is done after calling flow_analysis and before global_alloc
3433 clobbers the pseudo-regs to hard regs. */
3435 void
3436 setjmp_vars_warning (tree block)
3438 tree decl, sub;
3440 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3442 if (TREE_CODE (decl) == VAR_DECL
3443 && DECL_RTL_SET_P (decl)
3444 && REG_P (DECL_RTL (decl))
3445 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3446 warning (0, "%Jvariable %qD might be clobbered by %<longjmp%>"
3447 " or %<vfork%>",
3448 decl, decl);
3451 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3452 setjmp_vars_warning (sub);
3455 /* Do the appropriate part of setjmp_vars_warning
3456 but for arguments instead of local variables. */
3458 void
3459 setjmp_args_warning (void)
3461 tree decl;
3462 for (decl = DECL_ARGUMENTS (current_function_decl);
3463 decl; decl = TREE_CHAIN (decl))
3464 if (DECL_RTL (decl) != 0
3465 && REG_P (DECL_RTL (decl))
3466 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3467 warning (0, "%Jargument %qD might be clobbered by %<longjmp%> or %<vfork%>",
3468 decl, decl);
3472 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3473 and create duplicate blocks. */
3474 /* ??? Need an option to either create block fragments or to create
3475 abstract origin duplicates of a source block. It really depends
3476 on what optimization has been performed. */
3478 void
3479 reorder_blocks (void)
3481 tree block = DECL_INITIAL (current_function_decl);
3482 VEC(tree,heap) *block_stack;
3484 if (block == NULL_TREE)
3485 return;
3487 block_stack = VEC_alloc (tree, heap, 10);
3489 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3490 clear_block_marks (block);
3492 /* Prune the old trees away, so that they don't get in the way. */
3493 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3494 BLOCK_CHAIN (block) = NULL_TREE;
3496 /* Recreate the block tree from the note nesting. */
3497 reorder_blocks_1 (get_insns (), block, &block_stack);
3498 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3500 /* Remove deleted blocks from the block fragment chains. */
3501 reorder_fix_fragments (block);
3503 VEC_free (tree, heap, block_stack);
3506 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3508 void
3509 clear_block_marks (tree block)
3511 while (block)
3513 TREE_ASM_WRITTEN (block) = 0;
3514 clear_block_marks (BLOCK_SUBBLOCKS (block));
3515 block = BLOCK_CHAIN (block);
3519 static void
3520 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3522 rtx insn;
3524 for (insn = insns; insn; insn = NEXT_INSN (insn))
3526 if (NOTE_P (insn))
3528 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3530 tree block = NOTE_BLOCK (insn);
3532 /* If we have seen this block before, that means it now
3533 spans multiple address regions. Create a new fragment. */
3534 if (TREE_ASM_WRITTEN (block))
3536 tree new_block = copy_node (block);
3537 tree origin;
3539 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3540 ? BLOCK_FRAGMENT_ORIGIN (block)
3541 : block);
3542 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3543 BLOCK_FRAGMENT_CHAIN (new_block)
3544 = BLOCK_FRAGMENT_CHAIN (origin);
3545 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3547 NOTE_BLOCK (insn) = new_block;
3548 block = new_block;
3551 BLOCK_SUBBLOCKS (block) = 0;
3552 TREE_ASM_WRITTEN (block) = 1;
3553 /* When there's only one block for the entire function,
3554 current_block == block and we mustn't do this, it
3555 will cause infinite recursion. */
3556 if (block != current_block)
3558 BLOCK_SUPERCONTEXT (block) = current_block;
3559 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3560 BLOCK_SUBBLOCKS (current_block) = block;
3561 current_block = block;
3563 VEC_safe_push (tree, heap, *p_block_stack, block);
3565 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3567 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3568 BLOCK_SUBBLOCKS (current_block)
3569 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3570 current_block = BLOCK_SUPERCONTEXT (current_block);
3576 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3577 appears in the block tree, select one of the fragments to become
3578 the new origin block. */
3580 static void
3581 reorder_fix_fragments (tree block)
3583 while (block)
3585 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3586 tree new_origin = NULL_TREE;
3588 if (dup_origin)
3590 if (! TREE_ASM_WRITTEN (dup_origin))
3592 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3594 /* Find the first of the remaining fragments. There must
3595 be at least one -- the current block. */
3596 while (! TREE_ASM_WRITTEN (new_origin))
3597 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3598 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3601 else if (! dup_origin)
3602 new_origin = block;
3604 /* Re-root the rest of the fragments to the new origin. In the
3605 case that DUP_ORIGIN was null, that means BLOCK was the origin
3606 of a chain of fragments and we want to remove those fragments
3607 that didn't make it to the output. */
3608 if (new_origin)
3610 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3611 tree chain = *pp;
3613 while (chain)
3615 if (TREE_ASM_WRITTEN (chain))
3617 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3618 *pp = chain;
3619 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3621 chain = BLOCK_FRAGMENT_CHAIN (chain);
3623 *pp = NULL_TREE;
3626 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3627 block = BLOCK_CHAIN (block);
3631 /* Reverse the order of elements in the chain T of blocks,
3632 and return the new head of the chain (old last element). */
3634 tree
3635 blocks_nreverse (tree t)
3637 tree prev = 0, decl, next;
3638 for (decl = t; decl; decl = next)
3640 next = BLOCK_CHAIN (decl);
3641 BLOCK_CHAIN (decl) = prev;
3642 prev = decl;
3644 return prev;
3647 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3648 non-NULL, list them all into VECTOR, in a depth-first preorder
3649 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3650 blocks. */
3652 static int
3653 all_blocks (tree block, tree *vector)
3655 int n_blocks = 0;
3657 while (block)
3659 TREE_ASM_WRITTEN (block) = 0;
3661 /* Record this block. */
3662 if (vector)
3663 vector[n_blocks] = block;
3665 ++n_blocks;
3667 /* Record the subblocks, and their subblocks... */
3668 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3669 vector ? vector + n_blocks : 0);
3670 block = BLOCK_CHAIN (block);
3673 return n_blocks;
3676 /* Return a vector containing all the blocks rooted at BLOCK. The
3677 number of elements in the vector is stored in N_BLOCKS_P. The
3678 vector is dynamically allocated; it is the caller's responsibility
3679 to call `free' on the pointer returned. */
3681 static tree *
3682 get_block_vector (tree block, int *n_blocks_p)
3684 tree *block_vector;
3686 *n_blocks_p = all_blocks (block, NULL);
3687 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3688 all_blocks (block, block_vector);
3690 return block_vector;
3693 static GTY(()) int next_block_index = 2;
3695 /* Set BLOCK_NUMBER for all the blocks in FN. */
3697 void
3698 number_blocks (tree fn)
3700 int i;
3701 int n_blocks;
3702 tree *block_vector;
3704 /* For SDB and XCOFF debugging output, we start numbering the blocks
3705 from 1 within each function, rather than keeping a running
3706 count. */
3707 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3708 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3709 next_block_index = 1;
3710 #endif
3712 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3714 /* The top-level BLOCK isn't numbered at all. */
3715 for (i = 1; i < n_blocks; ++i)
3716 /* We number the blocks from two. */
3717 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3719 free (block_vector);
3721 return;
3724 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3726 tree
3727 debug_find_var_in_block_tree (tree var, tree block)
3729 tree t;
3731 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3732 if (t == var)
3733 return block;
3735 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3737 tree ret = debug_find_var_in_block_tree (var, t);
3738 if (ret)
3739 return ret;
3742 return NULL_TREE;
3745 /* Allocate a function structure for FNDECL and set its contents
3746 to the defaults. */
3748 void
3749 allocate_struct_function (tree fndecl)
3751 tree result;
3752 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3754 cfun = ggc_alloc_cleared (sizeof (struct function));
3756 cfun->stack_alignment_needed = STACK_BOUNDARY;
3757 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3759 current_function_funcdef_no = funcdef_no++;
3761 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3763 init_eh_for_function ();
3765 lang_hooks.function.init (cfun);
3766 if (init_machine_status)
3767 cfun->machine = (*init_machine_status) ();
3769 if (fndecl == NULL)
3770 return;
3772 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3773 cfun->decl = fndecl;
3775 result = DECL_RESULT (fndecl);
3776 if (aggregate_value_p (result, fndecl))
3778 #ifdef PCC_STATIC_STRUCT_RETURN
3779 current_function_returns_pcc_struct = 1;
3780 #endif
3781 current_function_returns_struct = 1;
3784 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3786 current_function_stdarg
3787 = (fntype
3788 && TYPE_ARG_TYPES (fntype) != 0
3789 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3790 != void_type_node));
3792 /* Assume all registers in stdarg functions need to be saved. */
3793 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3794 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3797 /* Reset cfun, and other non-struct-function variables to defaults as
3798 appropriate for emitting rtl at the start of a function. */
3800 static void
3801 prepare_function_start (tree fndecl)
3803 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3804 cfun = DECL_STRUCT_FUNCTION (fndecl);
3805 else
3806 allocate_struct_function (fndecl);
3807 init_emit ();
3808 init_varasm_status (cfun);
3809 init_expr ();
3811 cse_not_expected = ! optimize;
3813 /* Caller save not needed yet. */
3814 caller_save_needed = 0;
3816 /* We haven't done register allocation yet. */
3817 reg_renumber = 0;
3819 /* Indicate that we have not instantiated virtual registers yet. */
3820 virtuals_instantiated = 0;
3822 /* Indicate that we want CONCATs now. */
3823 generating_concat_p = 1;
3825 /* Indicate we have no need of a frame pointer yet. */
3826 frame_pointer_needed = 0;
3829 /* Initialize the rtl expansion mechanism so that we can do simple things
3830 like generate sequences. This is used to provide a context during global
3831 initialization of some passes. */
3832 void
3833 init_dummy_function_start (void)
3835 prepare_function_start (NULL);
3838 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3839 and initialize static variables for generating RTL for the statements
3840 of the function. */
3842 void
3843 init_function_start (tree subr)
3845 prepare_function_start (subr);
3847 /* Prevent ever trying to delete the first instruction of a
3848 function. Also tell final how to output a linenum before the
3849 function prologue. Note linenums could be missing, e.g. when
3850 compiling a Java .class file. */
3851 if (! DECL_IS_BUILTIN (subr))
3852 emit_line_note (DECL_SOURCE_LOCATION (subr));
3854 /* Make sure first insn is a note even if we don't want linenums.
3855 This makes sure the first insn will never be deleted.
3856 Also, final expects a note to appear there. */
3857 emit_note (NOTE_INSN_DELETED);
3859 /* Warn if this value is an aggregate type,
3860 regardless of which calling convention we are using for it. */
3861 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3862 warning (OPT_Waggregate_return, "function returns an aggregate");
3865 /* Make sure all values used by the optimization passes have sane
3866 defaults. */
3867 void
3868 init_function_for_compilation (void)
3870 reg_renumber = 0;
3872 /* No prologue/epilogue insns yet. Make sure that these vectors are
3873 empty. */
3874 gcc_assert (VEC_length (int, prologue) == 0);
3875 gcc_assert (VEC_length (int, epilogue) == 0);
3876 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
3879 void
3880 expand_main_function (void)
3882 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
3883 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
3885 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
3886 rtx tmp, seq;
3888 start_sequence ();
3889 /* Forcibly align the stack. */
3890 #ifdef STACK_GROWS_DOWNWARD
3891 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
3892 stack_pointer_rtx, 1, OPTAB_WIDEN);
3893 #else
3894 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3895 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
3896 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
3897 stack_pointer_rtx, 1, OPTAB_WIDEN);
3898 #endif
3899 if (tmp != stack_pointer_rtx)
3900 emit_move_insn (stack_pointer_rtx, tmp);
3902 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
3903 tmp = force_reg (Pmode, const0_rtx);
3904 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
3905 seq = get_insns ();
3906 end_sequence ();
3908 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
3909 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
3910 break;
3911 if (tmp)
3912 emit_insn_before (seq, tmp);
3913 else
3914 emit_insn (seq);
3916 #endif
3918 #if (defined(INVOKE__main) \
3919 || (!defined(HAS_INIT_SECTION) \
3920 && !defined(INIT_SECTION_ASM_OP) \
3921 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
3922 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3923 #endif
3926 /* Start the RTL for a new function, and set variables used for
3927 emitting RTL.
3928 SUBR is the FUNCTION_DECL node.
3929 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
3930 the function's parameters, which must be run at any return statement. */
3932 void
3933 expand_function_start (tree subr)
3935 /* Make sure volatile mem refs aren't considered
3936 valid operands of arithmetic insns. */
3937 init_recog_no_volatile ();
3939 current_function_profile
3940 = (profile_flag
3941 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
3943 current_function_limit_stack
3944 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
3946 /* Make the label for return statements to jump to. Do not special
3947 case machines with special return instructions -- they will be
3948 handled later during jump, ifcvt, or epilogue creation. */
3949 return_label = gen_label_rtx ();
3951 /* Initialize rtx used to return the value. */
3952 /* Do this before assign_parms so that we copy the struct value address
3953 before any library calls that assign parms might generate. */
3955 /* Decide whether to return the value in memory or in a register. */
3956 if (aggregate_value_p (DECL_RESULT (subr), subr))
3958 /* Returning something that won't go in a register. */
3959 rtx value_address = 0;
3961 #ifdef PCC_STATIC_STRUCT_RETURN
3962 if (current_function_returns_pcc_struct)
3964 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
3965 value_address = assemble_static_space (size);
3967 else
3968 #endif
3970 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
3971 /* Expect to be passed the address of a place to store the value.
3972 If it is passed as an argument, assign_parms will take care of
3973 it. */
3974 if (sv)
3976 value_address = gen_reg_rtx (Pmode);
3977 emit_move_insn (value_address, sv);
3980 if (value_address)
3982 rtx x = value_address;
3983 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
3985 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
3986 set_mem_attributes (x, DECL_RESULT (subr), 1);
3988 SET_DECL_RTL (DECL_RESULT (subr), x);
3991 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
3992 /* If return mode is void, this decl rtl should not be used. */
3993 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
3994 else
3996 /* Compute the return values into a pseudo reg, which we will copy
3997 into the true return register after the cleanups are done. */
3998 tree return_type = TREE_TYPE (DECL_RESULT (subr));
3999 if (TYPE_MODE (return_type) != BLKmode
4000 && targetm.calls.return_in_msb (return_type))
4001 /* expand_function_end will insert the appropriate padding in
4002 this case. Use the return value's natural (unpadded) mode
4003 within the function proper. */
4004 SET_DECL_RTL (DECL_RESULT (subr),
4005 gen_reg_rtx (TYPE_MODE (return_type)));
4006 else
4008 /* In order to figure out what mode to use for the pseudo, we
4009 figure out what the mode of the eventual return register will
4010 actually be, and use that. */
4011 rtx hard_reg = hard_function_value (return_type, subr, 1);
4013 /* Structures that are returned in registers are not
4014 aggregate_value_p, so we may see a PARALLEL or a REG. */
4015 if (REG_P (hard_reg))
4016 SET_DECL_RTL (DECL_RESULT (subr),
4017 gen_reg_rtx (GET_MODE (hard_reg)));
4018 else
4020 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4021 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4025 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4026 result to the real return register(s). */
4027 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4030 /* Initialize rtx for parameters and local variables.
4031 In some cases this requires emitting insns. */
4032 assign_parms (subr);
4034 /* If function gets a static chain arg, store it. */
4035 if (cfun->static_chain_decl)
4037 tree parm = cfun->static_chain_decl;
4038 rtx local = gen_reg_rtx (Pmode);
4040 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4041 SET_DECL_RTL (parm, local);
4042 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4044 emit_move_insn (local, static_chain_incoming_rtx);
4047 /* If the function receives a non-local goto, then store the
4048 bits we need to restore the frame pointer. */
4049 if (cfun->nonlocal_goto_save_area)
4051 tree t_save;
4052 rtx r_save;
4054 /* ??? We need to do this save early. Unfortunately here is
4055 before the frame variable gets declared. Help out... */
4056 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4058 t_save = build4 (ARRAY_REF, ptr_type_node,
4059 cfun->nonlocal_goto_save_area,
4060 integer_zero_node, NULL_TREE, NULL_TREE);
4061 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4062 r_save = convert_memory_address (Pmode, r_save);
4064 emit_move_insn (r_save, virtual_stack_vars_rtx);
4065 update_nonlocal_goto_save_area ();
4068 /* The following was moved from init_function_start.
4069 The move is supposed to make sdb output more accurate. */
4070 /* Indicate the beginning of the function body,
4071 as opposed to parm setup. */
4072 emit_note (NOTE_INSN_FUNCTION_BEG);
4074 if (!NOTE_P (get_last_insn ()))
4075 emit_note (NOTE_INSN_DELETED);
4076 parm_birth_insn = get_last_insn ();
4078 if (current_function_profile)
4080 #ifdef PROFILE_HOOK
4081 PROFILE_HOOK (current_function_funcdef_no);
4082 #endif
4085 /* After the display initializations is where the tail-recursion label
4086 should go, if we end up needing one. Ensure we have a NOTE here
4087 since some things (like trampolines) get placed before this. */
4088 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4090 /* Make sure there is a line number after the function entry setup code. */
4091 force_next_line_note ();
4094 /* Undo the effects of init_dummy_function_start. */
4095 void
4096 expand_dummy_function_end (void)
4098 /* End any sequences that failed to be closed due to syntax errors. */
4099 while (in_sequence_p ())
4100 end_sequence ();
4102 /* Outside function body, can't compute type's actual size
4103 until next function's body starts. */
4105 free_after_parsing (cfun);
4106 free_after_compilation (cfun);
4107 cfun = 0;
4110 /* Call DOIT for each hard register used as a return value from
4111 the current function. */
4113 void
4114 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4116 rtx outgoing = current_function_return_rtx;
4118 if (! outgoing)
4119 return;
4121 if (REG_P (outgoing))
4122 (*doit) (outgoing, arg);
4123 else if (GET_CODE (outgoing) == PARALLEL)
4125 int i;
4127 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4129 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4131 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4132 (*doit) (x, arg);
4137 static void
4138 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4140 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4143 void
4144 clobber_return_register (void)
4146 diddle_return_value (do_clobber_return_reg, NULL);
4148 /* In case we do use pseudo to return value, clobber it too. */
4149 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4151 tree decl_result = DECL_RESULT (current_function_decl);
4152 rtx decl_rtl = DECL_RTL (decl_result);
4153 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4155 do_clobber_return_reg (decl_rtl, NULL);
4160 static void
4161 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4163 emit_insn (gen_rtx_USE (VOIDmode, reg));
4166 void
4167 use_return_register (void)
4169 diddle_return_value (do_use_return_reg, NULL);
4172 /* Possibly warn about unused parameters. */
4173 void
4174 do_warn_unused_parameter (tree fn)
4176 tree decl;
4178 for (decl = DECL_ARGUMENTS (fn);
4179 decl; decl = TREE_CHAIN (decl))
4180 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4181 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4182 warning (0, "%Junused parameter %qD", decl, decl);
4185 static GTY(()) rtx initial_trampoline;
4187 /* Generate RTL for the end of the current function. */
4189 void
4190 expand_function_end (void)
4192 rtx clobber_after;
4194 /* If arg_pointer_save_area was referenced only from a nested
4195 function, we will not have initialized it yet. Do that now. */
4196 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4197 get_arg_pointer_save_area (cfun);
4199 /* If we are doing stack checking and this function makes calls,
4200 do a stack probe at the start of the function to ensure we have enough
4201 space for another stack frame. */
4202 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4204 rtx insn, seq;
4206 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4207 if (CALL_P (insn))
4209 start_sequence ();
4210 probe_stack_range (STACK_CHECK_PROTECT,
4211 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4212 seq = get_insns ();
4213 end_sequence ();
4214 emit_insn_before (seq, tail_recursion_reentry);
4215 break;
4219 /* Possibly warn about unused parameters.
4220 When frontend does unit-at-a-time, the warning is already
4221 issued at finalization time. */
4222 if (warn_unused_parameter
4223 && !lang_hooks.callgraph.expand_function)
4224 do_warn_unused_parameter (current_function_decl);
4226 /* End any sequences that failed to be closed due to syntax errors. */
4227 while (in_sequence_p ())
4228 end_sequence ();
4230 clear_pending_stack_adjust ();
4231 do_pending_stack_adjust ();
4233 /* @@@ This is a kludge. We want to ensure that instructions that
4234 may trap are not moved into the epilogue by scheduling, because
4235 we don't always emit unwind information for the epilogue.
4236 However, not all machine descriptions define a blockage insn, so
4237 emit an ASM_INPUT to act as one. */
4238 if (flag_non_call_exceptions)
4239 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4241 /* Mark the end of the function body.
4242 If control reaches this insn, the function can drop through
4243 without returning a value. */
4244 emit_note (NOTE_INSN_FUNCTION_END);
4246 /* Must mark the last line number note in the function, so that the test
4247 coverage code can avoid counting the last line twice. This just tells
4248 the code to ignore the immediately following line note, since there
4249 already exists a copy of this note somewhere above. This line number
4250 note is still needed for debugging though, so we can't delete it. */
4251 if (flag_test_coverage)
4252 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4254 /* Output a linenumber for the end of the function.
4255 SDB depends on this. */
4256 force_next_line_note ();
4257 emit_line_note (input_location);
4259 /* Before the return label (if any), clobber the return
4260 registers so that they are not propagated live to the rest of
4261 the function. This can only happen with functions that drop
4262 through; if there had been a return statement, there would
4263 have either been a return rtx, or a jump to the return label.
4265 We delay actual code generation after the current_function_value_rtx
4266 is computed. */
4267 clobber_after = get_last_insn ();
4269 /* Output the label for the actual return from the function. */
4270 emit_label (return_label);
4272 /* Let except.c know where it should emit the call to unregister
4273 the function context for sjlj exceptions. */
4274 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4275 sjlj_emit_function_exit_after (get_last_insn ());
4277 /* If scalar return value was computed in a pseudo-reg, or was a named
4278 return value that got dumped to the stack, copy that to the hard
4279 return register. */
4280 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4282 tree decl_result = DECL_RESULT (current_function_decl);
4283 rtx decl_rtl = DECL_RTL (decl_result);
4285 if (REG_P (decl_rtl)
4286 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4287 : DECL_REGISTER (decl_result))
4289 rtx real_decl_rtl = current_function_return_rtx;
4291 /* This should be set in assign_parms. */
4292 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4294 /* If this is a BLKmode structure being returned in registers,
4295 then use the mode computed in expand_return. Note that if
4296 decl_rtl is memory, then its mode may have been changed,
4297 but that current_function_return_rtx has not. */
4298 if (GET_MODE (real_decl_rtl) == BLKmode)
4299 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4301 /* If a non-BLKmode return value should be padded at the least
4302 significant end of the register, shift it left by the appropriate
4303 amount. BLKmode results are handled using the group load/store
4304 machinery. */
4305 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4306 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4308 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4309 REGNO (real_decl_rtl)),
4310 decl_rtl);
4311 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4313 /* If a named return value dumped decl_return to memory, then
4314 we may need to re-do the PROMOTE_MODE signed/unsigned
4315 extension. */
4316 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4318 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4320 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4321 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4322 &unsignedp, 1);
4324 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4326 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4328 /* If expand_function_start has created a PARALLEL for decl_rtl,
4329 move the result to the real return registers. Otherwise, do
4330 a group load from decl_rtl for a named return. */
4331 if (GET_CODE (decl_rtl) == PARALLEL)
4332 emit_group_move (real_decl_rtl, decl_rtl);
4333 else
4334 emit_group_load (real_decl_rtl, decl_rtl,
4335 TREE_TYPE (decl_result),
4336 int_size_in_bytes (TREE_TYPE (decl_result)));
4338 else
4339 emit_move_insn (real_decl_rtl, decl_rtl);
4343 /* If returning a structure, arrange to return the address of the value
4344 in a place where debuggers expect to find it.
4346 If returning a structure PCC style,
4347 the caller also depends on this value.
4348 And current_function_returns_pcc_struct is not necessarily set. */
4349 if (current_function_returns_struct
4350 || current_function_returns_pcc_struct)
4352 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4353 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4354 rtx outgoing;
4356 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4357 type = TREE_TYPE (type);
4358 else
4359 value_address = XEXP (value_address, 0);
4361 #ifdef FUNCTION_OUTGOING_VALUE
4362 outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4363 current_function_decl);
4364 #else
4365 outgoing = FUNCTION_VALUE (build_pointer_type (type),
4366 current_function_decl);
4367 #endif
4369 /* Mark this as a function return value so integrate will delete the
4370 assignment and USE below when inlining this function. */
4371 REG_FUNCTION_VALUE_P (outgoing) = 1;
4373 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4374 value_address = convert_memory_address (GET_MODE (outgoing),
4375 value_address);
4377 emit_move_insn (outgoing, value_address);
4379 /* Show return register used to hold result (in this case the address
4380 of the result. */
4381 current_function_return_rtx = outgoing;
4384 /* If this is an implementation of throw, do what's necessary to
4385 communicate between __builtin_eh_return and the epilogue. */
4386 expand_eh_return ();
4388 /* Emit the actual code to clobber return register. */
4390 rtx seq;
4392 start_sequence ();
4393 clobber_return_register ();
4394 expand_naked_return ();
4395 seq = get_insns ();
4396 end_sequence ();
4398 emit_insn_after (seq, clobber_after);
4401 /* Output the label for the naked return from the function. */
4402 emit_label (naked_return_label);
4404 /* If we had calls to alloca, and this machine needs
4405 an accurate stack pointer to exit the function,
4406 insert some code to save and restore the stack pointer. */
4407 if (! EXIT_IGNORE_STACK
4408 && current_function_calls_alloca)
4410 rtx tem = 0;
4412 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4413 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4416 /* ??? This should no longer be necessary since stupid is no longer with
4417 us, but there are some parts of the compiler (eg reload_combine, and
4418 sh mach_dep_reorg) that still try and compute their own lifetime info
4419 instead of using the general framework. */
4420 use_return_register ();
4424 get_arg_pointer_save_area (struct function *f)
4426 rtx ret = f->x_arg_pointer_save_area;
4428 if (! ret)
4430 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4431 f->x_arg_pointer_save_area = ret;
4434 if (f == cfun && ! f->arg_pointer_save_area_init)
4436 rtx seq;
4438 /* Save the arg pointer at the beginning of the function. The
4439 generated stack slot may not be a valid memory address, so we
4440 have to check it and fix it if necessary. */
4441 start_sequence ();
4442 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4443 seq = get_insns ();
4444 end_sequence ();
4446 push_topmost_sequence ();
4447 emit_insn_after (seq, entry_of_function ());
4448 pop_topmost_sequence ();
4451 return ret;
4454 /* Extend a vector that records the INSN_UIDs of INSNS
4455 (a list of one or more insns). */
4457 static void
4458 record_insns (rtx insns, VEC(int,heap) **vecp)
4460 rtx tmp;
4462 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4463 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4466 /* Set the locator of the insn chain starting at INSN to LOC. */
4467 static void
4468 set_insn_locators (rtx insn, int loc)
4470 while (insn != NULL_RTX)
4472 if (INSN_P (insn))
4473 INSN_LOCATOR (insn) = loc;
4474 insn = NEXT_INSN (insn);
4478 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4479 be running after reorg, SEQUENCE rtl is possible. */
4481 static int
4482 contains (rtx insn, VEC(int,heap) **vec)
4484 int i, j;
4486 if (NONJUMP_INSN_P (insn)
4487 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4489 int count = 0;
4490 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4491 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4492 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4493 == VEC_index (int, *vec, j))
4494 count++;
4495 return count;
4497 else
4499 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4500 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4501 return 1;
4503 return 0;
4507 prologue_epilogue_contains (rtx insn)
4509 if (contains (insn, &prologue))
4510 return 1;
4511 if (contains (insn, &epilogue))
4512 return 1;
4513 return 0;
4517 sibcall_epilogue_contains (rtx insn)
4519 if (sibcall_epilogue)
4520 return contains (insn, &sibcall_epilogue);
4521 return 0;
4524 #ifdef HAVE_return
4525 /* Insert gen_return at the end of block BB. This also means updating
4526 block_for_insn appropriately. */
4528 static void
4529 emit_return_into_block (basic_block bb, rtx line_note)
4531 emit_jump_insn_after (gen_return (), BB_END (bb));
4532 if (line_note)
4533 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4535 #endif /* HAVE_return */
4537 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4539 /* These functions convert the epilogue into a variant that does not
4540 modify the stack pointer. This is used in cases where a function
4541 returns an object whose size is not known until it is computed.
4542 The called function leaves the object on the stack, leaves the
4543 stack depressed, and returns a pointer to the object.
4545 What we need to do is track all modifications and references to the
4546 stack pointer, deleting the modifications and changing the
4547 references to point to the location the stack pointer would have
4548 pointed to had the modifications taken place.
4550 These functions need to be portable so we need to make as few
4551 assumptions about the epilogue as we can. However, the epilogue
4552 basically contains three things: instructions to reset the stack
4553 pointer, instructions to reload registers, possibly including the
4554 frame pointer, and an instruction to return to the caller.
4556 We must be sure of what a relevant epilogue insn is doing. We also
4557 make no attempt to validate the insns we make since if they are
4558 invalid, we probably can't do anything valid. The intent is that
4559 these routines get "smarter" as more and more machines start to use
4560 them and they try operating on different epilogues.
4562 We use the following structure to track what the part of the
4563 epilogue that we've already processed has done. We keep two copies
4564 of the SP equivalence, one for use during the insn we are
4565 processing and one for use in the next insn. The difference is
4566 because one part of a PARALLEL may adjust SP and the other may use
4567 it. */
4569 struct epi_info
4571 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4572 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4573 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4574 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4575 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4576 should be set to once we no longer need
4577 its value. */
4578 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4579 for registers. */
4582 static void handle_epilogue_set (rtx, struct epi_info *);
4583 static void update_epilogue_consts (rtx, rtx, void *);
4584 static void emit_equiv_load (struct epi_info *);
4586 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4587 no modifications to the stack pointer. Return the new list of insns. */
4589 static rtx
4590 keep_stack_depressed (rtx insns)
4592 int j;
4593 struct epi_info info;
4594 rtx insn, next;
4596 /* If the epilogue is just a single instruction, it must be OK as is. */
4597 if (NEXT_INSN (insns) == NULL_RTX)
4598 return insns;
4600 /* Otherwise, start a sequence, initialize the information we have, and
4601 process all the insns we were given. */
4602 start_sequence ();
4604 info.sp_equiv_reg = stack_pointer_rtx;
4605 info.sp_offset = 0;
4606 info.equiv_reg_src = 0;
4608 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4609 info.const_equiv[j] = 0;
4611 insn = insns;
4612 next = NULL_RTX;
4613 while (insn != NULL_RTX)
4615 next = NEXT_INSN (insn);
4617 if (!INSN_P (insn))
4619 add_insn (insn);
4620 insn = next;
4621 continue;
4624 /* If this insn references the register that SP is equivalent to and
4625 we have a pending load to that register, we must force out the load
4626 first and then indicate we no longer know what SP's equivalent is. */
4627 if (info.equiv_reg_src != 0
4628 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4630 emit_equiv_load (&info);
4631 info.sp_equiv_reg = 0;
4634 info.new_sp_equiv_reg = info.sp_equiv_reg;
4635 info.new_sp_offset = info.sp_offset;
4637 /* If this is a (RETURN) and the return address is on the stack,
4638 update the address and change to an indirect jump. */
4639 if (GET_CODE (PATTERN (insn)) == RETURN
4640 || (GET_CODE (PATTERN (insn)) == PARALLEL
4641 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4643 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4644 rtx base = 0;
4645 HOST_WIDE_INT offset = 0;
4646 rtx jump_insn, jump_set;
4648 /* If the return address is in a register, we can emit the insn
4649 unchanged. Otherwise, it must be a MEM and we see what the
4650 base register and offset are. In any case, we have to emit any
4651 pending load to the equivalent reg of SP, if any. */
4652 if (REG_P (retaddr))
4654 emit_equiv_load (&info);
4655 add_insn (insn);
4656 insn = next;
4657 continue;
4659 else
4661 rtx ret_ptr;
4662 gcc_assert (MEM_P (retaddr));
4664 ret_ptr = XEXP (retaddr, 0);
4666 if (REG_P (ret_ptr))
4668 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4669 offset = 0;
4671 else
4673 gcc_assert (GET_CODE (ret_ptr) == PLUS
4674 && REG_P (XEXP (ret_ptr, 0))
4675 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4676 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4677 offset = INTVAL (XEXP (ret_ptr, 1));
4681 /* If the base of the location containing the return pointer
4682 is SP, we must update it with the replacement address. Otherwise,
4683 just build the necessary MEM. */
4684 retaddr = plus_constant (base, offset);
4685 if (base == stack_pointer_rtx)
4686 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4687 plus_constant (info.sp_equiv_reg,
4688 info.sp_offset));
4690 retaddr = gen_rtx_MEM (Pmode, retaddr);
4692 /* If there is a pending load to the equivalent register for SP
4693 and we reference that register, we must load our address into
4694 a scratch register and then do that load. */
4695 if (info.equiv_reg_src
4696 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4698 unsigned int regno;
4699 rtx reg;
4701 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4702 if (HARD_REGNO_MODE_OK (regno, Pmode)
4703 && !fixed_regs[regno]
4704 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4705 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4706 regno)
4707 && !refers_to_regno_p (regno,
4708 regno + hard_regno_nregs[regno]
4709 [Pmode],
4710 info.equiv_reg_src, NULL)
4711 && info.const_equiv[regno] == 0)
4712 break;
4714 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4716 reg = gen_rtx_REG (Pmode, regno);
4717 emit_move_insn (reg, retaddr);
4718 retaddr = reg;
4721 emit_equiv_load (&info);
4722 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4724 /* Show the SET in the above insn is a RETURN. */
4725 jump_set = single_set (jump_insn);
4726 gcc_assert (jump_set);
4727 SET_IS_RETURN_P (jump_set) = 1;
4730 /* If SP is not mentioned in the pattern and its equivalent register, if
4731 any, is not modified, just emit it. Otherwise, if neither is set,
4732 replace the reference to SP and emit the insn. If none of those are
4733 true, handle each SET individually. */
4734 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4735 && (info.sp_equiv_reg == stack_pointer_rtx
4736 || !reg_set_p (info.sp_equiv_reg, insn)))
4737 add_insn (insn);
4738 else if (! reg_set_p (stack_pointer_rtx, insn)
4739 && (info.sp_equiv_reg == stack_pointer_rtx
4740 || !reg_set_p (info.sp_equiv_reg, insn)))
4742 int changed;
4744 changed = validate_replace_rtx (stack_pointer_rtx,
4745 plus_constant (info.sp_equiv_reg,
4746 info.sp_offset),
4747 insn);
4748 gcc_assert (changed);
4750 add_insn (insn);
4752 else if (GET_CODE (PATTERN (insn)) == SET)
4753 handle_epilogue_set (PATTERN (insn), &info);
4754 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4756 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4757 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4758 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4760 else
4761 add_insn (insn);
4763 info.sp_equiv_reg = info.new_sp_equiv_reg;
4764 info.sp_offset = info.new_sp_offset;
4766 /* Now update any constants this insn sets. */
4767 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4768 insn = next;
4771 insns = get_insns ();
4772 end_sequence ();
4773 return insns;
4776 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4777 structure that contains information about what we've seen so far. We
4778 process this SET by either updating that data or by emitting one or
4779 more insns. */
4781 static void
4782 handle_epilogue_set (rtx set, struct epi_info *p)
4784 /* First handle the case where we are setting SP. Record what it is being
4785 set from, which we must be able to determine */
4786 if (reg_set_p (stack_pointer_rtx, set))
4788 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4790 if (GET_CODE (SET_SRC (set)) == PLUS)
4792 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4793 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4794 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4795 else
4797 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4798 && (REGNO (XEXP (SET_SRC (set), 1))
4799 < FIRST_PSEUDO_REGISTER)
4800 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4801 p->new_sp_offset
4802 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4805 else
4806 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4808 /* If we are adjusting SP, we adjust from the old data. */
4809 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4811 p->new_sp_equiv_reg = p->sp_equiv_reg;
4812 p->new_sp_offset += p->sp_offset;
4815 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4817 return;
4820 /* Next handle the case where we are setting SP's equivalent
4821 register. We must not already have a value to set it to. We
4822 could update, but there seems little point in handling that case.
4823 Note that we have to allow for the case where we are setting the
4824 register set in the previous part of a PARALLEL inside a single
4825 insn. But use the old offset for any updates within this insn.
4826 We must allow for the case where the register is being set in a
4827 different (usually wider) mode than Pmode). */
4828 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4830 gcc_assert (!p->equiv_reg_src
4831 && REG_P (p->new_sp_equiv_reg)
4832 && REG_P (SET_DEST (set))
4833 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4834 <= BITS_PER_WORD)
4835 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4836 p->equiv_reg_src
4837 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4838 plus_constant (p->sp_equiv_reg,
4839 p->sp_offset));
4842 /* Otherwise, replace any references to SP in the insn to its new value
4843 and emit the insn. */
4844 else
4846 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4847 plus_constant (p->sp_equiv_reg,
4848 p->sp_offset));
4849 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4850 plus_constant (p->sp_equiv_reg,
4851 p->sp_offset));
4852 emit_insn (set);
4856 /* Update the tracking information for registers set to constants. */
4858 static void
4859 update_epilogue_consts (rtx dest, rtx x, void *data)
4861 struct epi_info *p = (struct epi_info *) data;
4862 rtx new;
4864 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4865 return;
4867 /* If we are either clobbering a register or doing a partial set,
4868 show we don't know the value. */
4869 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4870 p->const_equiv[REGNO (dest)] = 0;
4872 /* If we are setting it to a constant, record that constant. */
4873 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
4874 p->const_equiv[REGNO (dest)] = SET_SRC (x);
4876 /* If this is a binary operation between a register we have been tracking
4877 and a constant, see if we can compute a new constant value. */
4878 else if (ARITHMETIC_P (SET_SRC (x))
4879 && REG_P (XEXP (SET_SRC (x), 0))
4880 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
4881 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
4882 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4883 && 0 != (new = simplify_binary_operation
4884 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
4885 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
4886 XEXP (SET_SRC (x), 1)))
4887 && GET_CODE (new) == CONST_INT)
4888 p->const_equiv[REGNO (dest)] = new;
4890 /* Otherwise, we can't do anything with this value. */
4891 else
4892 p->const_equiv[REGNO (dest)] = 0;
4895 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
4897 static void
4898 emit_equiv_load (struct epi_info *p)
4900 if (p->equiv_reg_src != 0)
4902 rtx dest = p->sp_equiv_reg;
4904 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
4905 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
4906 REGNO (p->sp_equiv_reg));
4908 emit_move_insn (dest, p->equiv_reg_src);
4909 p->equiv_reg_src = 0;
4912 #endif
4914 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4915 this into place with notes indicating where the prologue ends and where
4916 the epilogue begins. Update the basic block information when possible. */
4918 void
4919 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
4921 int inserted = 0;
4922 edge e;
4923 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4924 rtx seq;
4925 #endif
4926 #ifdef HAVE_prologue
4927 rtx prologue_end = NULL_RTX;
4928 #endif
4929 #if defined (HAVE_epilogue) || defined(HAVE_return)
4930 rtx epilogue_end = NULL_RTX;
4931 #endif
4932 edge_iterator ei;
4934 #ifdef HAVE_prologue
4935 if (HAVE_prologue)
4937 start_sequence ();
4938 seq = gen_prologue ();
4939 emit_insn (seq);
4941 /* Retain a map of the prologue insns. */
4942 record_insns (seq, &prologue);
4943 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
4945 seq = get_insns ();
4946 end_sequence ();
4947 set_insn_locators (seq, prologue_locator);
4949 /* Can't deal with multiple successors of the entry block
4950 at the moment. Function should always have at least one
4951 entry point. */
4952 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
4954 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
4955 inserted = 1;
4957 #endif
4959 /* If the exit block has no non-fake predecessors, we don't need
4960 an epilogue. */
4961 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4962 if ((e->flags & EDGE_FAKE) == 0)
4963 break;
4964 if (e == NULL)
4965 goto epilogue_done;
4967 #ifdef HAVE_return
4968 if (optimize && HAVE_return)
4970 /* If we're allowed to generate a simple return instruction,
4971 then by definition we don't need a full epilogue. Examine
4972 the block that falls through to EXIT. If it does not
4973 contain any code, examine its predecessors and try to
4974 emit (conditional) return instructions. */
4976 basic_block last;
4977 rtx label;
4979 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4980 if (e->flags & EDGE_FALLTHRU)
4981 break;
4982 if (e == NULL)
4983 goto epilogue_done;
4984 last = e->src;
4986 /* Verify that there are no active instructions in the last block. */
4987 label = BB_END (last);
4988 while (label && !LABEL_P (label))
4990 if (active_insn_p (label))
4991 break;
4992 label = PREV_INSN (label);
4995 if (BB_HEAD (last) == label && LABEL_P (label))
4997 edge_iterator ei2;
4998 rtx epilogue_line_note = NULL_RTX;
5000 /* Locate the line number associated with the closing brace,
5001 if we can find one. */
5002 for (seq = get_last_insn ();
5003 seq && ! active_insn_p (seq);
5004 seq = PREV_INSN (seq))
5005 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5007 epilogue_line_note = seq;
5008 break;
5011 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5013 basic_block bb = e->src;
5014 rtx jump;
5016 if (bb == ENTRY_BLOCK_PTR)
5018 ei_next (&ei2);
5019 continue;
5022 jump = BB_END (bb);
5023 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5025 ei_next (&ei2);
5026 continue;
5029 /* If we have an unconditional jump, we can replace that
5030 with a simple return instruction. */
5031 if (simplejump_p (jump))
5033 emit_return_into_block (bb, epilogue_line_note);
5034 delete_insn (jump);
5037 /* If we have a conditional jump, we can try to replace
5038 that with a conditional return instruction. */
5039 else if (condjump_p (jump))
5041 if (! redirect_jump (jump, 0, 0))
5043 ei_next (&ei2);
5044 continue;
5047 /* If this block has only one successor, it both jumps
5048 and falls through to the fallthru block, so we can't
5049 delete the edge. */
5050 if (single_succ_p (bb))
5052 ei_next (&ei2);
5053 continue;
5056 else
5058 ei_next (&ei2);
5059 continue;
5062 /* Fix up the CFG for the successful change we just made. */
5063 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5066 /* Emit a return insn for the exit fallthru block. Whether
5067 this is still reachable will be determined later. */
5069 emit_barrier_after (BB_END (last));
5070 emit_return_into_block (last, epilogue_line_note);
5071 epilogue_end = BB_END (last);
5072 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5073 goto epilogue_done;
5076 #endif
5077 /* Find the edge that falls through to EXIT. Other edges may exist
5078 due to RETURN instructions, but those don't need epilogues.
5079 There really shouldn't be a mixture -- either all should have
5080 been converted or none, however... */
5082 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5083 if (e->flags & EDGE_FALLTHRU)
5084 break;
5085 if (e == NULL)
5086 goto epilogue_done;
5088 #ifdef HAVE_epilogue
5089 if (HAVE_epilogue)
5091 start_sequence ();
5092 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5094 seq = gen_epilogue ();
5096 #ifdef INCOMING_RETURN_ADDR_RTX
5097 /* If this function returns with the stack depressed and we can support
5098 it, massage the epilogue to actually do that. */
5099 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5100 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5101 seq = keep_stack_depressed (seq);
5102 #endif
5104 emit_jump_insn (seq);
5106 /* Retain a map of the epilogue insns. */
5107 record_insns (seq, &epilogue);
5108 set_insn_locators (seq, epilogue_locator);
5110 seq = get_insns ();
5111 end_sequence ();
5113 insert_insn_on_edge (seq, e);
5114 inserted = 1;
5116 else
5117 #endif
5119 basic_block cur_bb;
5121 if (! next_active_insn (BB_END (e->src)))
5122 goto epilogue_done;
5123 /* We have a fall-through edge to the exit block, the source is not
5124 at the end of the function, and there will be an assembler epilogue
5125 at the end of the function.
5126 We can't use force_nonfallthru here, because that would try to
5127 use return. Inserting a jump 'by hand' is extremely messy, so
5128 we take advantage of cfg_layout_finalize using
5129 fixup_fallthru_exit_predecessor. */
5130 cfg_layout_initialize (0);
5131 FOR_EACH_BB (cur_bb)
5132 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5133 cur_bb->rbi->next = cur_bb->next_bb;
5134 cfg_layout_finalize ();
5136 epilogue_done:
5138 if (inserted)
5139 commit_edge_insertions ();
5141 #ifdef HAVE_sibcall_epilogue
5142 /* Emit sibling epilogues before any sibling call sites. */
5143 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5145 basic_block bb = e->src;
5146 rtx insn = BB_END (bb);
5148 if (!CALL_P (insn)
5149 || ! SIBLING_CALL_P (insn))
5151 ei_next (&ei);
5152 continue;
5155 start_sequence ();
5156 emit_insn (gen_sibcall_epilogue ());
5157 seq = get_insns ();
5158 end_sequence ();
5160 /* Retain a map of the epilogue insns. Used in life analysis to
5161 avoid getting rid of sibcall epilogue insns. Do this before we
5162 actually emit the sequence. */
5163 record_insns (seq, &sibcall_epilogue);
5164 set_insn_locators (seq, epilogue_locator);
5166 emit_insn_before (seq, insn);
5167 ei_next (&ei);
5169 #endif
5171 #ifdef HAVE_prologue
5172 /* This is probably all useless now that we use locators. */
5173 if (prologue_end)
5175 rtx insn, prev;
5177 /* GDB handles `break f' by setting a breakpoint on the first
5178 line note after the prologue. Which means (1) that if
5179 there are line number notes before where we inserted the
5180 prologue we should move them, and (2) we should generate a
5181 note before the end of the first basic block, if there isn't
5182 one already there.
5184 ??? This behavior is completely broken when dealing with
5185 multiple entry functions. We simply place the note always
5186 into first basic block and let alternate entry points
5187 to be missed.
5190 for (insn = prologue_end; insn; insn = prev)
5192 prev = PREV_INSN (insn);
5193 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5195 /* Note that we cannot reorder the first insn in the
5196 chain, since rest_of_compilation relies on that
5197 remaining constant. */
5198 if (prev == NULL)
5199 break;
5200 reorder_insns (insn, insn, prologue_end);
5204 /* Find the last line number note in the first block. */
5205 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5206 insn != prologue_end && insn;
5207 insn = PREV_INSN (insn))
5208 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5209 break;
5211 /* If we didn't find one, make a copy of the first line number
5212 we run across. */
5213 if (! insn)
5215 for (insn = next_active_insn (prologue_end);
5216 insn;
5217 insn = PREV_INSN (insn))
5218 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5220 emit_note_copy_after (insn, prologue_end);
5221 break;
5225 #endif
5226 #ifdef HAVE_epilogue
5227 if (epilogue_end)
5229 rtx insn, next;
5231 /* Similarly, move any line notes that appear after the epilogue.
5232 There is no need, however, to be quite so anal about the existence
5233 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5234 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5235 info generation. */
5236 for (insn = epilogue_end; insn; insn = next)
5238 next = NEXT_INSN (insn);
5239 if (NOTE_P (insn)
5240 && (NOTE_LINE_NUMBER (insn) > 0
5241 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5242 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5243 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5246 #endif
5249 /* Reposition the prologue-end and epilogue-begin notes after instruction
5250 scheduling and delayed branch scheduling. */
5252 void
5253 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5255 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5256 rtx insn, last, note;
5257 int len;
5259 if ((len = VEC_length (int, prologue)) > 0)
5261 last = 0, note = 0;
5263 /* Scan from the beginning until we reach the last prologue insn.
5264 We apparently can't depend on basic_block_{head,end} after
5265 reorg has run. */
5266 for (insn = f; insn; insn = NEXT_INSN (insn))
5268 if (NOTE_P (insn))
5270 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5271 note = insn;
5273 else if (contains (insn, &prologue))
5275 last = insn;
5276 if (--len == 0)
5277 break;
5281 if (last)
5283 /* Find the prologue-end note if we haven't already, and
5284 move it to just after the last prologue insn. */
5285 if (note == 0)
5287 for (note = last; (note = NEXT_INSN (note));)
5288 if (NOTE_P (note)
5289 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5290 break;
5293 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5294 if (LABEL_P (last))
5295 last = NEXT_INSN (last);
5296 reorder_insns (note, note, last);
5300 if ((len = VEC_length (int, epilogue)) > 0)
5302 last = 0, note = 0;
5304 /* Scan from the end until we reach the first epilogue insn.
5305 We apparently can't depend on basic_block_{head,end} after
5306 reorg has run. */
5307 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5309 if (NOTE_P (insn))
5311 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5312 note = insn;
5314 else if (contains (insn, &epilogue))
5316 last = insn;
5317 if (--len == 0)
5318 break;
5322 if (last)
5324 /* Find the epilogue-begin note if we haven't already, and
5325 move it to just before the first epilogue insn. */
5326 if (note == 0)
5328 for (note = insn; (note = PREV_INSN (note));)
5329 if (NOTE_P (note)
5330 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5331 break;
5334 if (PREV_INSN (last) != note)
5335 reorder_insns (note, note, PREV_INSN (last));
5338 #endif /* HAVE_prologue or HAVE_epilogue */
5341 /* Resets insn_block_boundaries array. */
5343 void
5344 reset_block_changes (void)
5346 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5347 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5350 /* Record the boundary for BLOCK. */
5351 void
5352 record_block_change (tree block)
5354 int i, n;
5355 tree last_block;
5357 if (!block)
5358 return;
5360 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5361 VARRAY_POP (cfun->ib_boundaries_block);
5362 n = get_max_uid ();
5363 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5364 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5366 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5369 /* Finishes record of boundaries. */
5370 void finalize_block_changes (void)
5372 record_block_change (DECL_INITIAL (current_function_decl));
5375 /* For INSN return the BLOCK it belongs to. */
5376 void
5377 check_block_change (rtx insn, tree *block)
5379 unsigned uid = INSN_UID (insn);
5381 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5382 return;
5384 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5387 /* Releases the ib_boundaries_block records. */
5388 void
5389 free_block_changes (void)
5391 cfun->ib_boundaries_block = NULL;
5394 /* Returns the name of the current function. */
5395 const char *
5396 current_function_name (void)
5398 return lang_hooks.decl_printable_name (cfun->decl, 2);
5401 #include "gt-function.h"