2013-05-16 Marc Glisse <marc.glisse@inria.fr>
[official-gcc.git] / gcc / cfgloop.c
blob01287246c330c2ecd97858aa99a43ce60e949222
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "function.h"
26 #include "basic-block.h"
27 #include "cfgloop.h"
28 #include "diagnostic-core.h"
29 #include "flags.h"
30 #include "tree.h"
31 #include "tree-flow.h"
32 #include "pointer-set.h"
33 #include "ggc.h"
34 #include "dumpfile.h"
36 static void flow_loops_cfg_dump (FILE *);
38 /* Dump loop related CFG information. */
40 static void
41 flow_loops_cfg_dump (FILE *file)
43 basic_block bb;
45 if (!file)
46 return;
48 FOR_EACH_BB (bb)
50 edge succ;
51 edge_iterator ei;
53 fprintf (file, ";; %d succs { ", bb->index);
54 FOR_EACH_EDGE (succ, ei, bb->succs)
55 fprintf (file, "%d ", succ->dest->index);
56 fprintf (file, "}\n");
60 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
62 bool
63 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
65 unsigned odepth = loop_depth (outer);
67 return (loop_depth (loop) > odepth
68 && (*loop->superloops)[odepth] == outer);
71 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
72 loops within LOOP. */
74 struct loop *
75 superloop_at_depth (struct loop *loop, unsigned depth)
77 unsigned ldepth = loop_depth (loop);
79 gcc_assert (depth <= ldepth);
81 if (depth == ldepth)
82 return loop;
84 return (*loop->superloops)[depth];
87 /* Returns the list of the latch edges of LOOP. */
89 static vec<edge>
90 get_loop_latch_edges (const struct loop *loop)
92 edge_iterator ei;
93 edge e;
94 vec<edge> ret = vNULL;
96 FOR_EACH_EDGE (e, ei, loop->header->preds)
98 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
99 ret.safe_push (e);
102 return ret;
105 /* Dump the loop information specified by LOOP to the stream FILE
106 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
108 void
109 flow_loop_dump (const struct loop *loop, FILE *file,
110 void (*loop_dump_aux) (const struct loop *, FILE *, int),
111 int verbose)
113 basic_block *bbs;
114 unsigned i;
115 vec<edge> latches;
116 edge e;
118 if (! loop || ! loop->header)
119 return;
121 fprintf (file, ";;\n;; Loop %d\n", loop->num);
123 fprintf (file, ";; header %d, ", loop->header->index);
124 if (loop->latch)
125 fprintf (file, "latch %d\n", loop->latch->index);
126 else
128 fprintf (file, "multiple latches:");
129 latches = get_loop_latch_edges (loop);
130 FOR_EACH_VEC_ELT (latches, i, e)
131 fprintf (file, " %d", e->src->index);
132 latches.release ();
133 fprintf (file, "\n");
136 fprintf (file, ";; depth %d, outer %ld\n",
137 loop_depth (loop), (long) (loop_outer (loop)
138 ? loop_outer (loop)->num : -1));
140 fprintf (file, ";; nodes:");
141 bbs = get_loop_body (loop);
142 for (i = 0; i < loop->num_nodes; i++)
143 fprintf (file, " %d", bbs[i]->index);
144 free (bbs);
145 fprintf (file, "\n");
147 if (loop_dump_aux)
148 loop_dump_aux (loop, file, verbose);
151 /* Dump the loop information about loops to the stream FILE,
152 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
154 void
155 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
157 loop_iterator li;
158 struct loop *loop;
160 if (!current_loops || ! file)
161 return;
163 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
165 FOR_EACH_LOOP (li, loop, LI_INCLUDE_ROOT)
167 flow_loop_dump (loop, file, loop_dump_aux, verbose);
170 if (verbose)
171 flow_loops_cfg_dump (file);
174 /* Free data allocated for LOOP. */
176 void
177 flow_loop_free (struct loop *loop)
179 struct loop_exit *exit, *next;
181 vec_free (loop->superloops);
183 /* Break the list of the loop exit records. They will be freed when the
184 corresponding edge is rescanned or removed, and this avoids
185 accessing the (already released) head of the list stored in the
186 loop structure. */
187 for (exit = loop->exits->next; exit != loop->exits; exit = next)
189 next = exit->next;
190 exit->next = exit;
191 exit->prev = exit;
194 ggc_free (loop->exits);
195 ggc_free (loop);
198 /* Free all the memory allocated for LOOPS. */
200 void
201 flow_loops_free (struct loops *loops)
203 if (loops->larray)
205 unsigned i;
206 loop_p loop;
208 /* Free the loop descriptors. */
209 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
211 if (!loop)
212 continue;
214 flow_loop_free (loop);
217 vec_free (loops->larray);
221 /* Find the nodes contained within the LOOP with header HEADER.
222 Return the number of nodes within the loop. */
225 flow_loop_nodes_find (basic_block header, struct loop *loop)
227 vec<basic_block> stack = vNULL;
228 int num_nodes = 1;
229 edge latch;
230 edge_iterator latch_ei;
232 header->loop_father = loop;
234 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
236 if (latch->src->loop_father == loop
237 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
238 continue;
240 num_nodes++;
241 stack.safe_push (latch->src);
242 latch->src->loop_father = loop;
244 while (!stack.is_empty ())
246 basic_block node;
247 edge e;
248 edge_iterator ei;
250 node = stack.pop ();
252 FOR_EACH_EDGE (e, ei, node->preds)
254 basic_block ancestor = e->src;
256 if (ancestor->loop_father != loop)
258 ancestor->loop_father = loop;
259 num_nodes++;
260 stack.safe_push (ancestor);
265 stack.release ();
267 return num_nodes;
270 /* Records the vector of superloops of the loop LOOP, whose immediate
271 superloop is FATHER. */
273 static void
274 establish_preds (struct loop *loop, struct loop *father)
276 loop_p ploop;
277 unsigned depth = loop_depth (father) + 1;
278 unsigned i;
280 loop->superloops = 0;
281 vec_alloc (loop->superloops, depth);
282 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
283 loop->superloops->quick_push (ploop);
284 loop->superloops->quick_push (father);
286 for (ploop = loop->inner; ploop; ploop = ploop->next)
287 establish_preds (ploop, loop);
290 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
291 added loop. If LOOP has some children, take care of that their
292 pred field will be initialized correctly. */
294 void
295 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
297 loop->next = father->inner;
298 father->inner = loop;
300 establish_preds (loop, father);
303 /* Remove LOOP from the loop hierarchy tree. */
305 void
306 flow_loop_tree_node_remove (struct loop *loop)
308 struct loop *prev, *father;
310 father = loop_outer (loop);
312 /* Remove loop from the list of sons. */
313 if (father->inner == loop)
314 father->inner = loop->next;
315 else
317 for (prev = father->inner; prev->next != loop; prev = prev->next)
318 continue;
319 prev->next = loop->next;
322 loop->superloops = NULL;
325 /* Allocates and returns new loop structure. */
327 struct loop *
328 alloc_loop (void)
330 struct loop *loop = ggc_alloc_cleared_loop ();
332 loop->exits = ggc_alloc_cleared_loop_exit ();
333 loop->exits->next = loop->exits->prev = loop->exits;
334 loop->can_be_parallel = false;
336 return loop;
339 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
340 (including the root of the loop tree). */
342 void
343 init_loops_structure (struct function *fn,
344 struct loops *loops, unsigned num_loops)
346 struct loop *root;
348 memset (loops, 0, sizeof *loops);
349 vec_alloc (loops->larray, num_loops);
351 /* Dummy loop containing whole function. */
352 root = alloc_loop ();
353 root->num_nodes = n_basic_blocks_for_function (fn);
354 root->latch = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
355 root->header = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
356 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->loop_father = root;
357 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->loop_father = root;
359 loops->larray->quick_push (root);
360 loops->tree_root = root;
363 /* Returns whether HEADER is a loop header. */
365 bool
366 bb_loop_header_p (basic_block header)
368 edge_iterator ei;
369 edge e;
371 /* If we have an abnormal predecessor, do not consider the
372 loop (not worth the problems). */
373 if (bb_has_abnormal_pred (header))
374 return false;
376 /* Look for back edges where a predecessor is dominated
377 by this block. A natural loop has a single entry
378 node (header) that dominates all the nodes in the
379 loop. It also has single back edge to the header
380 from a latch node. */
381 FOR_EACH_EDGE (e, ei, header->preds)
383 basic_block latch = e->src;
384 if (latch != ENTRY_BLOCK_PTR
385 && dominated_by_p (CDI_DOMINATORS, latch, header))
386 return true;
389 return false;
392 /* Find all the natural loops in the function and save in LOOPS structure and
393 recalculate loop_father information in basic block structures.
394 If LOOPS is non-NULL then the loop structures for already recorded loops
395 will be re-used and their number will not change. We assume that no
396 stale loops exist in LOOPS.
397 When LOOPS is NULL it is allocated and re-built from scratch.
398 Return the built LOOPS structure. */
400 struct loops *
401 flow_loops_find (struct loops *loops)
403 bool from_scratch = (loops == NULL);
404 int *rc_order;
405 int b;
406 unsigned i;
407 vec<loop_p> larray;
409 /* Ensure that the dominators are computed. */
410 calculate_dominance_info (CDI_DOMINATORS);
412 if (!loops)
414 loops = ggc_alloc_cleared_loops ();
415 init_loops_structure (cfun, loops, 1);
418 /* Ensure that loop exits were released. */
419 gcc_assert (loops->exits == NULL);
421 /* Taking care of this degenerate case makes the rest of
422 this code simpler. */
423 if (n_basic_blocks == NUM_FIXED_BLOCKS)
424 return loops;
426 /* The root loop node contains all basic-blocks. */
427 loops->tree_root->num_nodes = n_basic_blocks;
429 /* Compute depth first search order of the CFG so that outer
430 natural loops will be found before inner natural loops. */
431 rc_order = XNEWVEC (int, n_basic_blocks);
432 pre_and_rev_post_order_compute (NULL, rc_order, false);
434 /* Gather all loop headers in reverse completion order and allocate
435 loop structures for loops that are not already present. */
436 larray.create (loops->larray->length());
437 for (b = 0; b < n_basic_blocks - NUM_FIXED_BLOCKS; b++)
439 basic_block header = BASIC_BLOCK (rc_order[b]);
440 if (bb_loop_header_p (header))
442 struct loop *loop;
444 /* The current active loop tree has valid loop-fathers for
445 header blocks. */
446 if (!from_scratch
447 && header->loop_father->header == header)
449 loop = header->loop_father;
450 /* If we found an existing loop remove it from the
451 loop tree. It is going to be inserted again
452 below. */
453 flow_loop_tree_node_remove (loop);
455 else
457 /* Otherwise allocate a new loop structure for the loop. */
458 loop = alloc_loop ();
459 /* ??? We could re-use unused loop slots here. */
460 loop->num = loops->larray->length ();
461 vec_safe_push (loops->larray, loop);
462 loop->header = header;
464 if (!from_scratch
465 && dump_file && (dump_flags & TDF_DETAILS))
466 fprintf (dump_file, "flow_loops_find: discovered new "
467 "loop %d with header %d\n",
468 loop->num, header->index);
470 /* Reset latch, we recompute it below. */
471 loop->latch = NULL;
472 larray.safe_push (loop);
475 /* Make blocks part of the loop root node at start. */
476 header->loop_father = loops->tree_root;
479 free (rc_order);
481 /* Now iterate over the loops found, insert them into the loop tree
482 and assign basic-block ownership. */
483 for (i = 0; i < larray.length (); ++i)
485 struct loop *loop = larray[i];
486 basic_block header = loop->header;
487 edge_iterator ei;
488 edge e;
490 flow_loop_tree_node_add (header->loop_father, loop);
491 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
493 /* Look for the latch for this header block, if it has just a
494 single one. */
495 FOR_EACH_EDGE (e, ei, header->preds)
497 basic_block latch = e->src;
499 if (flow_bb_inside_loop_p (loop, latch))
501 if (loop->latch != NULL)
503 /* More than one latch edge. */
504 loop->latch = NULL;
505 break;
507 loop->latch = latch;
512 larray.release();
514 return loops;
517 /* Ratio of frequencies of edges so that one of more latch edges is
518 considered to belong to inner loop with same header. */
519 #define HEAVY_EDGE_RATIO 8
521 /* Minimum number of samples for that we apply
522 find_subloop_latch_edge_by_profile heuristics. */
523 #define HEAVY_EDGE_MIN_SAMPLES 10
525 /* If the profile info is available, finds an edge in LATCHES that much more
526 frequent than the remaining edges. Returns such an edge, or NULL if we do
527 not find one.
529 We do not use guessed profile here, only the measured one. The guessed
530 profile is usually too flat and unreliable for this (and it is mostly based
531 on the loop structure of the program, so it does not make much sense to
532 derive the loop structure from it). */
534 static edge
535 find_subloop_latch_edge_by_profile (vec<edge> latches)
537 unsigned i;
538 edge e, me = NULL;
539 gcov_type mcount = 0, tcount = 0;
541 FOR_EACH_VEC_ELT (latches, i, e)
543 if (e->count > mcount)
545 me = e;
546 mcount = e->count;
548 tcount += e->count;
551 if (tcount < HEAVY_EDGE_MIN_SAMPLES
552 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
553 return NULL;
555 if (dump_file)
556 fprintf (dump_file,
557 "Found latch edge %d -> %d using profile information.\n",
558 me->src->index, me->dest->index);
559 return me;
562 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
563 on the structure of induction variables. Returns this edge, or NULL if we
564 do not find any.
566 We are quite conservative, and look just for an obvious simple innermost
567 loop (which is the case where we would lose the most performance by not
568 disambiguating the loop). More precisely, we look for the following
569 situation: The source of the chosen latch edge dominates sources of all
570 the other latch edges. Additionally, the header does not contain a phi node
571 such that the argument from the chosen edge is equal to the argument from
572 another edge. */
574 static edge
575 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
577 edge e, latch = latches[0];
578 unsigned i;
579 gimple phi;
580 gimple_stmt_iterator psi;
581 tree lop;
582 basic_block bb;
584 /* Find the candidate for the latch edge. */
585 for (i = 1; latches.iterate (i, &e); i++)
586 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
587 latch = e;
589 /* Verify that it dominates all the latch edges. */
590 FOR_EACH_VEC_ELT (latches, i, e)
591 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
592 return NULL;
594 /* Check for a phi node that would deny that this is a latch edge of
595 a subloop. */
596 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
598 phi = gsi_stmt (psi);
599 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
601 /* Ignore the values that are not changed inside the subloop. */
602 if (TREE_CODE (lop) != SSA_NAME
603 || SSA_NAME_DEF_STMT (lop) == phi)
604 continue;
605 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
606 if (!bb || !flow_bb_inside_loop_p (loop, bb))
607 continue;
609 FOR_EACH_VEC_ELT (latches, i, e)
610 if (e != latch
611 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
612 return NULL;
615 if (dump_file)
616 fprintf (dump_file,
617 "Found latch edge %d -> %d using iv structure.\n",
618 latch->src->index, latch->dest->index);
619 return latch;
622 /* If we can determine that one of the several latch edges of LOOP behaves
623 as a latch edge of a separate subloop, returns this edge. Otherwise
624 returns NULL. */
626 static edge
627 find_subloop_latch_edge (struct loop *loop)
629 vec<edge> latches = get_loop_latch_edges (loop);
630 edge latch = NULL;
632 if (latches.length () > 1)
634 latch = find_subloop_latch_edge_by_profile (latches);
636 if (!latch
637 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
638 should use cfghook for this, but it is hard to imagine it would
639 be useful elsewhere. */
640 && current_ir_type () == IR_GIMPLE)
641 latch = find_subloop_latch_edge_by_ivs (loop, latches);
644 latches.release ();
645 return latch;
648 /* Callback for make_forwarder_block. Returns true if the edge E is marked
649 in the set MFB_REIS_SET. */
651 static struct pointer_set_t *mfb_reis_set;
652 static bool
653 mfb_redirect_edges_in_set (edge e)
655 return pointer_set_contains (mfb_reis_set, e);
658 /* Creates a subloop of LOOP with latch edge LATCH. */
660 static void
661 form_subloop (struct loop *loop, edge latch)
663 edge_iterator ei;
664 edge e, new_entry;
665 struct loop *new_loop;
667 mfb_reis_set = pointer_set_create ();
668 FOR_EACH_EDGE (e, ei, loop->header->preds)
670 if (e != latch)
671 pointer_set_insert (mfb_reis_set, e);
673 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
674 NULL);
675 pointer_set_destroy (mfb_reis_set);
677 loop->header = new_entry->src;
679 /* Find the blocks and subloops that belong to the new loop, and add it to
680 the appropriate place in the loop tree. */
681 new_loop = alloc_loop ();
682 new_loop->header = new_entry->dest;
683 new_loop->latch = latch->src;
684 add_loop (new_loop, loop);
687 /* Make all the latch edges of LOOP to go to a single forwarder block --
688 a new latch of LOOP. */
690 static void
691 merge_latch_edges (struct loop *loop)
693 vec<edge> latches = get_loop_latch_edges (loop);
694 edge latch, e;
695 unsigned i;
697 gcc_assert (latches.length () > 0);
699 if (latches.length () == 1)
700 loop->latch = latches[0]->src;
701 else
703 if (dump_file)
704 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
706 mfb_reis_set = pointer_set_create ();
707 FOR_EACH_VEC_ELT (latches, i, e)
708 pointer_set_insert (mfb_reis_set, e);
709 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
710 NULL);
711 pointer_set_destroy (mfb_reis_set);
713 loop->header = latch->dest;
714 loop->latch = latch->src;
717 latches.release ();
720 /* LOOP may have several latch edges. Transform it into (possibly several)
721 loops with single latch edge. */
723 static void
724 disambiguate_multiple_latches (struct loop *loop)
726 edge e;
728 /* We eliminate the multiple latches by splitting the header to the forwarder
729 block F and the rest R, and redirecting the edges. There are two cases:
731 1) If there is a latch edge E that corresponds to a subloop (we guess
732 that based on profile -- if it is taken much more often than the
733 remaining edges; and on trees, using the information about induction
734 variables of the loops), we redirect E to R, all the remaining edges to
735 F, then rescan the loops and try again for the outer loop.
736 2) If there is no such edge, we redirect all latch edges to F, and the
737 entry edges to R, thus making F the single latch of the loop. */
739 if (dump_file)
740 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
741 loop->num);
743 /* During latch merging, we may need to redirect the entry edges to a new
744 block. This would cause problems if the entry edge was the one from the
745 entry block. To avoid having to handle this case specially, split
746 such entry edge. */
747 e = find_edge (ENTRY_BLOCK_PTR, loop->header);
748 if (e)
749 split_edge (e);
751 while (1)
753 e = find_subloop_latch_edge (loop);
754 if (!e)
755 break;
757 form_subloop (loop, e);
760 merge_latch_edges (loop);
763 /* Split loops with multiple latch edges. */
765 void
766 disambiguate_loops_with_multiple_latches (void)
768 loop_iterator li;
769 struct loop *loop;
771 FOR_EACH_LOOP (li, loop, 0)
773 if (!loop->latch)
774 disambiguate_multiple_latches (loop);
778 /* Return nonzero if basic block BB belongs to LOOP. */
779 bool
780 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
782 struct loop *source_loop;
784 if (bb == ENTRY_BLOCK_PTR || bb == EXIT_BLOCK_PTR)
785 return 0;
787 source_loop = bb->loop_father;
788 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
791 /* Enumeration predicate for get_loop_body_with_size. */
792 static bool
793 glb_enum_p (const_basic_block bb, const void *glb_loop)
795 const struct loop *const loop = (const struct loop *) glb_loop;
796 return (bb != loop->header
797 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
800 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
801 order against direction of edges from latch. Specially, if
802 header != latch, latch is the 1-st block. LOOP cannot be the fake
803 loop tree root, and its size must be at most MAX_SIZE. The blocks
804 in the LOOP body are stored to BODY, and the size of the LOOP is
805 returned. */
807 unsigned
808 get_loop_body_with_size (const struct loop *loop, basic_block *body,
809 unsigned max_size)
811 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
812 body, max_size, loop);
815 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
816 order against direction of edges from latch. Specially, if
817 header != latch, latch is the 1-st block. */
819 basic_block *
820 get_loop_body (const struct loop *loop)
822 basic_block *body, bb;
823 unsigned tv = 0;
825 gcc_assert (loop->num_nodes);
827 body = XNEWVEC (basic_block, loop->num_nodes);
829 if (loop->latch == EXIT_BLOCK_PTR)
831 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
832 special-case the fake loop that contains the whole function. */
833 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks);
834 body[tv++] = loop->header;
835 body[tv++] = EXIT_BLOCK_PTR;
836 FOR_EACH_BB (bb)
837 body[tv++] = bb;
839 else
840 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
842 gcc_assert (tv == loop->num_nodes);
843 return body;
846 /* Fills dominance descendants inside LOOP of the basic block BB into
847 array TOVISIT from index *TV. */
849 static void
850 fill_sons_in_loop (const struct loop *loop, basic_block bb,
851 basic_block *tovisit, int *tv)
853 basic_block son, postpone = NULL;
855 tovisit[(*tv)++] = bb;
856 for (son = first_dom_son (CDI_DOMINATORS, bb);
857 son;
858 son = next_dom_son (CDI_DOMINATORS, son))
860 if (!flow_bb_inside_loop_p (loop, son))
861 continue;
863 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
865 postpone = son;
866 continue;
868 fill_sons_in_loop (loop, son, tovisit, tv);
871 if (postpone)
872 fill_sons_in_loop (loop, postpone, tovisit, tv);
875 /* Gets body of a LOOP (that must be different from the outermost loop)
876 sorted by dominance relation. Additionally, if a basic block s dominates
877 the latch, then only blocks dominated by s are be after it. */
879 basic_block *
880 get_loop_body_in_dom_order (const struct loop *loop)
882 basic_block *tovisit;
883 int tv;
885 gcc_assert (loop->num_nodes);
887 tovisit = XNEWVEC (basic_block, loop->num_nodes);
889 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
891 tv = 0;
892 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
894 gcc_assert (tv == (int) loop->num_nodes);
896 return tovisit;
899 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
901 basic_block *
902 get_loop_body_in_custom_order (const struct loop *loop,
903 int (*bb_comparator) (const void *, const void *))
905 basic_block *bbs = get_loop_body (loop);
907 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
909 return bbs;
912 /* Get body of a LOOP in breadth first sort order. */
914 basic_block *
915 get_loop_body_in_bfs_order (const struct loop *loop)
917 basic_block *blocks;
918 basic_block bb;
919 bitmap visited;
920 unsigned int i = 0;
921 unsigned int vc = 1;
923 gcc_assert (loop->num_nodes);
924 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
926 blocks = XNEWVEC (basic_block, loop->num_nodes);
927 visited = BITMAP_ALLOC (NULL);
929 bb = loop->header;
930 while (i < loop->num_nodes)
932 edge e;
933 edge_iterator ei;
935 if (bitmap_set_bit (visited, bb->index))
936 /* This basic block is now visited */
937 blocks[i++] = bb;
939 FOR_EACH_EDGE (e, ei, bb->succs)
941 if (flow_bb_inside_loop_p (loop, e->dest))
943 if (bitmap_set_bit (visited, e->dest->index))
944 blocks[i++] = e->dest;
948 gcc_assert (i >= vc);
950 bb = blocks[vc++];
953 BITMAP_FREE (visited);
954 return blocks;
957 /* Hash function for struct loop_exit. */
959 static hashval_t
960 loop_exit_hash (const void *ex)
962 const struct loop_exit *const exit = (const struct loop_exit *) ex;
964 return htab_hash_pointer (exit->e);
967 /* Equality function for struct loop_exit. Compares with edge. */
969 static int
970 loop_exit_eq (const void *ex, const void *e)
972 const struct loop_exit *const exit = (const struct loop_exit *) ex;
974 return exit->e == e;
977 /* Frees the list of loop exit descriptions EX. */
979 static void
980 loop_exit_free (void *ex)
982 struct loop_exit *exit = (struct loop_exit *) ex, *next;
984 for (; exit; exit = next)
986 next = exit->next_e;
988 exit->next->prev = exit->prev;
989 exit->prev->next = exit->next;
991 ggc_free (exit);
995 /* Returns the list of records for E as an exit of a loop. */
997 static struct loop_exit *
998 get_exit_descriptions (edge e)
1000 return (struct loop_exit *) htab_find_with_hash (current_loops->exits, e,
1001 htab_hash_pointer (e));
1004 /* Updates the lists of loop exits in that E appears.
1005 If REMOVED is true, E is being removed, and we
1006 just remove it from the lists of exits.
1007 If NEW_EDGE is true and E is not a loop exit, we
1008 do not try to remove it from loop exit lists. */
1010 void
1011 rescan_loop_exit (edge e, bool new_edge, bool removed)
1013 void **slot;
1014 struct loop_exit *exits = NULL, *exit;
1015 struct loop *aloop, *cloop;
1017 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1018 return;
1020 if (!removed
1021 && e->src->loop_father != NULL
1022 && e->dest->loop_father != NULL
1023 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1025 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1026 for (aloop = e->src->loop_father;
1027 aloop != cloop;
1028 aloop = loop_outer (aloop))
1030 exit = ggc_alloc_loop_exit ();
1031 exit->e = e;
1033 exit->next = aloop->exits->next;
1034 exit->prev = aloop->exits;
1035 exit->next->prev = exit;
1036 exit->prev->next = exit;
1038 exit->next_e = exits;
1039 exits = exit;
1043 if (!exits && new_edge)
1044 return;
1046 slot = htab_find_slot_with_hash (current_loops->exits, e,
1047 htab_hash_pointer (e),
1048 exits ? INSERT : NO_INSERT);
1049 if (!slot)
1050 return;
1052 if (exits)
1054 if (*slot)
1055 loop_exit_free (*slot);
1056 *slot = exits;
1058 else
1059 htab_clear_slot (current_loops->exits, slot);
1062 /* For each loop, record list of exit edges, and start maintaining these
1063 lists. */
1065 void
1066 record_loop_exits (void)
1068 basic_block bb;
1069 edge_iterator ei;
1070 edge e;
1072 if (!current_loops)
1073 return;
1075 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1076 return;
1077 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1079 gcc_assert (current_loops->exits == NULL);
1080 current_loops->exits = htab_create_ggc (2 * number_of_loops (cfun),
1081 loop_exit_hash, loop_exit_eq,
1082 loop_exit_free);
1084 FOR_EACH_BB (bb)
1086 FOR_EACH_EDGE (e, ei, bb->succs)
1088 rescan_loop_exit (e, true, false);
1093 /* Dumps information about the exit in *SLOT to FILE.
1094 Callback for htab_traverse. */
1096 static int
1097 dump_recorded_exit (void **slot, void *file)
1099 struct loop_exit *exit = (struct loop_exit *) *slot;
1100 unsigned n = 0;
1101 edge e = exit->e;
1103 for (; exit != NULL; exit = exit->next_e)
1104 n++;
1106 fprintf ((FILE*) file, "Edge %d->%d exits %u loops\n",
1107 e->src->index, e->dest->index, n);
1109 return 1;
1112 /* Dumps the recorded exits of loops to FILE. */
1114 extern void dump_recorded_exits (FILE *);
1115 void
1116 dump_recorded_exits (FILE *file)
1118 if (!current_loops->exits)
1119 return;
1120 htab_traverse (current_loops->exits, dump_recorded_exit, file);
1123 /* Releases lists of loop exits. */
1125 void
1126 release_recorded_exits (void)
1128 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1129 htab_delete (current_loops->exits);
1130 current_loops->exits = NULL;
1131 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1134 /* Returns the list of the exit edges of a LOOP. */
1136 vec<edge>
1137 get_loop_exit_edges (const struct loop *loop)
1139 vec<edge> edges = vNULL;
1140 edge e;
1141 unsigned i;
1142 basic_block *body;
1143 edge_iterator ei;
1144 struct loop_exit *exit;
1146 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1148 /* If we maintain the lists of exits, use them. Otherwise we must
1149 scan the body of the loop. */
1150 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1152 for (exit = loop->exits->next; exit->e; exit = exit->next)
1153 edges.safe_push (exit->e);
1155 else
1157 body = get_loop_body (loop);
1158 for (i = 0; i < loop->num_nodes; i++)
1159 FOR_EACH_EDGE (e, ei, body[i]->succs)
1161 if (!flow_bb_inside_loop_p (loop, e->dest))
1162 edges.safe_push (e);
1164 free (body);
1167 return edges;
1170 /* Counts the number of conditional branches inside LOOP. */
1172 unsigned
1173 num_loop_branches (const struct loop *loop)
1175 unsigned i, n;
1176 basic_block * body;
1178 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
1180 body = get_loop_body (loop);
1181 n = 0;
1182 for (i = 0; i < loop->num_nodes; i++)
1183 if (EDGE_COUNT (body[i]->succs) >= 2)
1184 n++;
1185 free (body);
1187 return n;
1190 /* Adds basic block BB to LOOP. */
1191 void
1192 add_bb_to_loop (basic_block bb, struct loop *loop)
1194 unsigned i;
1195 loop_p ploop;
1196 edge_iterator ei;
1197 edge e;
1199 gcc_assert (bb->loop_father == NULL);
1200 bb->loop_father = loop;
1201 loop->num_nodes++;
1202 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1203 ploop->num_nodes++;
1205 FOR_EACH_EDGE (e, ei, bb->succs)
1207 rescan_loop_exit (e, true, false);
1209 FOR_EACH_EDGE (e, ei, bb->preds)
1211 rescan_loop_exit (e, true, false);
1215 /* Remove basic block BB from loops. */
1216 void
1217 remove_bb_from_loops (basic_block bb)
1219 unsigned i;
1220 struct loop *loop = bb->loop_father;
1221 loop_p ploop;
1222 edge_iterator ei;
1223 edge e;
1225 gcc_assert (loop != NULL);
1226 loop->num_nodes--;
1227 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1228 ploop->num_nodes--;
1229 bb->loop_father = NULL;
1231 FOR_EACH_EDGE (e, ei, bb->succs)
1233 rescan_loop_exit (e, false, true);
1235 FOR_EACH_EDGE (e, ei, bb->preds)
1237 rescan_loop_exit (e, false, true);
1241 /* Finds nearest common ancestor in loop tree for given loops. */
1242 struct loop *
1243 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1245 unsigned sdepth, ddepth;
1247 if (!loop_s) return loop_d;
1248 if (!loop_d) return loop_s;
1250 sdepth = loop_depth (loop_s);
1251 ddepth = loop_depth (loop_d);
1253 if (sdepth < ddepth)
1254 loop_d = (*loop_d->superloops)[sdepth];
1255 else if (sdepth > ddepth)
1256 loop_s = (*loop_s->superloops)[ddepth];
1258 while (loop_s != loop_d)
1260 loop_s = loop_outer (loop_s);
1261 loop_d = loop_outer (loop_d);
1263 return loop_s;
1266 /* Removes LOOP from structures and frees its data. */
1268 void
1269 delete_loop (struct loop *loop)
1271 /* Remove the loop from structure. */
1272 flow_loop_tree_node_remove (loop);
1274 /* Remove loop from loops array. */
1275 (*current_loops->larray)[loop->num] = NULL;
1277 /* Free loop data. */
1278 flow_loop_free (loop);
1281 /* Cancels the LOOP; it must be innermost one. */
1283 static void
1284 cancel_loop (struct loop *loop)
1286 basic_block *bbs;
1287 unsigned i;
1288 struct loop *outer = loop_outer (loop);
1290 gcc_assert (!loop->inner);
1292 /* Move blocks up one level (they should be removed as soon as possible). */
1293 bbs = get_loop_body (loop);
1294 for (i = 0; i < loop->num_nodes; i++)
1295 bbs[i]->loop_father = outer;
1297 free (bbs);
1298 delete_loop (loop);
1301 /* Cancels LOOP and all its subloops. */
1302 void
1303 cancel_loop_tree (struct loop *loop)
1305 while (loop->inner)
1306 cancel_loop_tree (loop->inner);
1307 cancel_loop (loop);
1310 /* Checks that information about loops is correct
1311 -- sizes of loops are all right
1312 -- results of get_loop_body really belong to the loop
1313 -- loop header have just single entry edge and single latch edge
1314 -- loop latches have only single successor that is header of their loop
1315 -- irreducible loops are correctly marked
1316 -- the cached loop depth and loop father of each bb is correct
1318 DEBUG_FUNCTION void
1319 verify_loop_structure (void)
1321 unsigned *sizes, i, j;
1322 sbitmap irreds;
1323 basic_block bb, *bbs;
1324 struct loop *loop;
1325 int err = 0;
1326 edge e;
1327 unsigned num = number_of_loops (cfun);
1328 loop_iterator li;
1329 struct loop_exit *exit, *mexit;
1330 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1331 sbitmap visited;
1333 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1335 error ("loop verification on loop tree that needs fixup");
1336 err = 1;
1339 /* We need up-to-date dominators, compute or verify them. */
1340 if (!dom_available)
1341 calculate_dominance_info (CDI_DOMINATORS);
1342 else
1343 verify_dominators (CDI_DOMINATORS);
1345 /* Check the headers. */
1346 FOR_EACH_BB (bb)
1347 if (bb_loop_header_p (bb))
1349 if (bb->loop_father->header == NULL)
1351 error ("loop with header %d marked for removal", bb->index);
1352 err = 1;
1354 else if (bb->loop_father->header != bb)
1356 error ("loop with header %d not in loop tree", bb->index);
1357 err = 1;
1360 else if (bb->loop_father->header == bb)
1362 error ("non-loop with header %d not marked for removal", bb->index);
1363 err = 1;
1366 /* Check the recorded loop father and sizes of loops. */
1367 visited = sbitmap_alloc (last_basic_block);
1368 bitmap_clear (visited);
1369 bbs = XNEWVEC (basic_block, n_basic_blocks);
1370 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1372 unsigned n;
1374 if (loop->header == NULL)
1376 error ("removed loop %d in loop tree", loop->num);
1377 err = 1;
1378 continue;
1381 n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
1382 if (loop->num_nodes != n)
1384 error ("size of loop %d should be %d, not %d",
1385 loop->num, n, loop->num_nodes);
1386 err = 1;
1389 for (j = 0; j < n; j++)
1391 bb = bbs[j];
1393 if (!flow_bb_inside_loop_p (loop, bb))
1395 error ("bb %d does not belong to loop %d",
1396 bb->index, loop->num);
1397 err = 1;
1400 /* Ignore this block if it is in an inner loop. */
1401 if (bitmap_bit_p (visited, bb->index))
1402 continue;
1403 bitmap_set_bit (visited, bb->index);
1405 if (bb->loop_father != loop)
1407 error ("bb %d has father loop %d, should be loop %d",
1408 bb->index, bb->loop_father->num, loop->num);
1409 err = 1;
1413 free (bbs);
1414 sbitmap_free (visited);
1416 /* Check headers and latches. */
1417 FOR_EACH_LOOP (li, loop, 0)
1419 i = loop->num;
1420 if (loop->header == NULL)
1421 continue;
1422 if (!bb_loop_header_p (loop->header))
1424 error ("loop %d%'s header is not a loop header", i);
1425 err = 1;
1427 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1428 && EDGE_COUNT (loop->header->preds) != 2)
1430 error ("loop %d%'s header does not have exactly 2 entries", i);
1431 err = 1;
1433 if (loop->latch)
1435 if (!find_edge (loop->latch, loop->header))
1437 error ("loop %d%'s latch does not have an edge to its header", i);
1438 err = 1;
1440 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1442 error ("loop %d%'s latch is not dominated by its header", i);
1443 err = 1;
1446 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1448 if (!single_succ_p (loop->latch))
1450 error ("loop %d%'s latch does not have exactly 1 successor", i);
1451 err = 1;
1453 if (single_succ (loop->latch) != loop->header)
1455 error ("loop %d%'s latch does not have header as successor", i);
1456 err = 1;
1458 if (loop->latch->loop_father != loop)
1460 error ("loop %d%'s latch does not belong directly to it", i);
1461 err = 1;
1464 if (loop->header->loop_father != loop)
1466 error ("loop %d%'s header does not belong directly to it", i);
1467 err = 1;
1469 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1470 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1472 error ("loop %d%'s latch is marked as part of irreducible region", i);
1473 err = 1;
1477 /* Check irreducible loops. */
1478 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1480 /* Record old info. */
1481 irreds = sbitmap_alloc (last_basic_block);
1482 FOR_EACH_BB (bb)
1484 edge_iterator ei;
1485 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1486 bitmap_set_bit (irreds, bb->index);
1487 else
1488 bitmap_clear_bit (irreds, bb->index);
1489 FOR_EACH_EDGE (e, ei, bb->succs)
1490 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1491 e->flags |= EDGE_ALL_FLAGS + 1;
1494 /* Recount it. */
1495 mark_irreducible_loops ();
1497 /* Compare. */
1498 FOR_EACH_BB (bb)
1500 edge_iterator ei;
1502 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1503 && !bitmap_bit_p (irreds, bb->index))
1505 error ("basic block %d should be marked irreducible", bb->index);
1506 err = 1;
1508 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1509 && bitmap_bit_p (irreds, bb->index))
1511 error ("basic block %d should not be marked irreducible", bb->index);
1512 err = 1;
1514 FOR_EACH_EDGE (e, ei, bb->succs)
1516 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1517 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1519 error ("edge from %d to %d should be marked irreducible",
1520 e->src->index, e->dest->index);
1521 err = 1;
1523 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1524 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1526 error ("edge from %d to %d should not be marked irreducible",
1527 e->src->index, e->dest->index);
1528 err = 1;
1530 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1533 free (irreds);
1536 /* Check the recorded loop exits. */
1537 FOR_EACH_LOOP (li, loop, 0)
1539 if (!loop->exits || loop->exits->e != NULL)
1541 error ("corrupted head of the exits list of loop %d",
1542 loop->num);
1543 err = 1;
1545 else
1547 /* Check that the list forms a cycle, and all elements except
1548 for the head are nonnull. */
1549 for (mexit = loop->exits, exit = mexit->next, i = 0;
1550 exit->e && exit != mexit;
1551 exit = exit->next)
1553 if (i++ & 1)
1554 mexit = mexit->next;
1557 if (exit != loop->exits)
1559 error ("corrupted exits list of loop %d", loop->num);
1560 err = 1;
1564 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1566 if (loop->exits->next != loop->exits)
1568 error ("nonempty exits list of loop %d, but exits are not recorded",
1569 loop->num);
1570 err = 1;
1575 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1577 unsigned n_exits = 0, eloops;
1579 sizes = XCNEWVEC (unsigned, num);
1580 memset (sizes, 0, sizeof (unsigned) * num);
1581 FOR_EACH_BB (bb)
1583 edge_iterator ei;
1584 if (bb->loop_father == current_loops->tree_root)
1585 continue;
1586 FOR_EACH_EDGE (e, ei, bb->succs)
1588 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1589 continue;
1591 n_exits++;
1592 exit = get_exit_descriptions (e);
1593 if (!exit)
1595 error ("exit %d->%d not recorded",
1596 e->src->index, e->dest->index);
1597 err = 1;
1599 eloops = 0;
1600 for (; exit; exit = exit->next_e)
1601 eloops++;
1603 for (loop = bb->loop_father;
1604 loop != e->dest->loop_father
1605 /* When a loop exit is also an entry edge which
1606 can happen when avoiding CFG manipulations
1607 then the last loop exited is the outer loop
1608 of the loop entered. */
1609 && loop != loop_outer (e->dest->loop_father);
1610 loop = loop_outer (loop))
1612 eloops--;
1613 sizes[loop->num]++;
1616 if (eloops != 0)
1618 error ("wrong list of exited loops for edge %d->%d",
1619 e->src->index, e->dest->index);
1620 err = 1;
1625 if (n_exits != htab_elements (current_loops->exits))
1627 error ("too many loop exits recorded");
1628 err = 1;
1631 FOR_EACH_LOOP (li, loop, 0)
1633 eloops = 0;
1634 for (exit = loop->exits->next; exit->e; exit = exit->next)
1635 eloops++;
1636 if (eloops != sizes[loop->num])
1638 error ("%d exits recorded for loop %d (having %d exits)",
1639 eloops, loop->num, sizes[loop->num]);
1640 err = 1;
1644 free (sizes);
1647 gcc_assert (!err);
1649 if (!dom_available)
1650 free_dominance_info (CDI_DOMINATORS);
1653 /* Returns latch edge of LOOP. */
1654 edge
1655 loop_latch_edge (const struct loop *loop)
1657 return find_edge (loop->latch, loop->header);
1660 /* Returns preheader edge of LOOP. */
1661 edge
1662 loop_preheader_edge (const struct loop *loop)
1664 edge e;
1665 edge_iterator ei;
1667 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1669 FOR_EACH_EDGE (e, ei, loop->header->preds)
1670 if (e->src != loop->latch)
1671 break;
1673 return e;
1676 /* Returns true if E is an exit of LOOP. */
1678 bool
1679 loop_exit_edge_p (const struct loop *loop, const_edge e)
1681 return (flow_bb_inside_loop_p (loop, e->src)
1682 && !flow_bb_inside_loop_p (loop, e->dest));
1685 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1686 or more than one exit. If loops do not have the exits recorded, NULL
1687 is returned always. */
1689 edge
1690 single_exit (const struct loop *loop)
1692 struct loop_exit *exit = loop->exits->next;
1694 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1695 return NULL;
1697 if (exit->e && exit->next == loop->exits)
1698 return exit->e;
1699 else
1700 return NULL;
1703 /* Returns true when BB has an incoming edge exiting LOOP. */
1705 bool
1706 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1708 edge e;
1709 edge_iterator ei;
1711 FOR_EACH_EDGE (e, ei, bb->preds)
1712 if (loop_exit_edge_p (loop, e))
1713 return true;
1715 return false;
1718 /* Returns true when BB has an outgoing edge exiting LOOP. */
1720 bool
1721 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1723 edge e;
1724 edge_iterator ei;
1726 FOR_EACH_EDGE (e, ei, bb->succs)
1727 if (loop_exit_edge_p (loop, e))
1728 return true;
1730 return false;
1733 /* Return location corresponding to the loop control condition if possible. */
1735 location_t
1736 get_loop_location (struct loop *loop)
1738 rtx insn = NULL;
1739 struct niter_desc *desc = NULL;
1740 edge exit;
1742 /* For a for or while loop, we would like to return the location
1743 of the for or while statement, if possible. To do this, look
1744 for the branch guarding the loop back-edge. */
1746 /* If this is a simple loop with an in_edge, then the loop control
1747 branch is typically at the end of its source. */
1748 desc = get_simple_loop_desc (loop);
1749 if (desc->in_edge)
1751 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1753 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1754 return INSN_LOCATION (insn);
1757 /* If loop has a single exit, then the loop control branch
1758 must be at the end of its source. */
1759 if ((exit = single_exit (loop)))
1761 FOR_BB_INSNS_REVERSE (exit->src, insn)
1763 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1764 return INSN_LOCATION (insn);
1767 /* Next check the latch, to see if it is non-empty. */
1768 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1770 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1771 return INSN_LOCATION (insn);
1773 /* Finally, if none of the above identifies the loop control branch,
1774 return the first location in the loop header. */
1775 FOR_BB_INSNS (loop->header, insn)
1777 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1778 return INSN_LOCATION (insn);
1780 /* If all else fails, simply return the current function location. */
1781 return DECL_SOURCE_LOCATION (current_function_decl);