* const-uniq-1.c: Expand regex to match AIX XCOFF labels.
[official-gcc.git] / libgo / runtime / proc.c
blob43071e581cc485809753f6dcccf2ab1b82e1bc73
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 #include <limits.h>
6 #include <stdlib.h>
7 #include <pthread.h>
8 #include <unistd.h>
10 #include "config.h"
12 #ifdef HAVE_DL_ITERATE_PHDR
13 #include <link.h>
14 #endif
16 #include "runtime.h"
17 #include "arch.h"
18 #include "defs.h"
19 #include "malloc.h"
20 #include "race.h"
21 #include "go-defer.h"
23 #ifdef USING_SPLIT_STACK
25 /* FIXME: These are not declared anywhere. */
27 extern void __splitstack_getcontext(void *context[10]);
29 extern void __splitstack_setcontext(void *context[10]);
31 extern void *__splitstack_makecontext(size_t, void *context[10], size_t *);
33 extern void * __splitstack_resetcontext(void *context[10], size_t *);
35 extern void *__splitstack_find(void *, void *, size_t *, void **, void **,
36 void **);
38 extern void __splitstack_block_signals (int *, int *);
40 extern void __splitstack_block_signals_context (void *context[10], int *,
41 int *);
43 #endif
45 #ifndef PTHREAD_STACK_MIN
46 # define PTHREAD_STACK_MIN 8192
47 #endif
49 #if defined(USING_SPLIT_STACK) && defined(LINKER_SUPPORTS_SPLIT_STACK)
50 # define StackMin PTHREAD_STACK_MIN
51 #else
52 # define StackMin 2 * 1024 * 1024
53 #endif
55 uintptr runtime_stacks_sys;
57 static void schedule(G*);
59 static void gtraceback(G*);
61 typedef struct Sched Sched;
63 M runtime_m0;
64 G runtime_g0; // idle goroutine for m0
66 #ifdef __rtems__
67 #define __thread
68 #endif
70 static __thread G *g;
71 static __thread M *m;
73 #ifndef SETCONTEXT_CLOBBERS_TLS
75 static inline void
76 initcontext(void)
80 static inline void
81 fixcontext(ucontext_t *c __attribute__ ((unused)))
85 #else
87 # if defined(__x86_64__) && defined(__sun__)
89 // x86_64 Solaris 10 and 11 have a bug: setcontext switches the %fs
90 // register to that of the thread which called getcontext. The effect
91 // is that the address of all __thread variables changes. This bug
92 // also affects pthread_self() and pthread_getspecific. We work
93 // around it by clobbering the context field directly to keep %fs the
94 // same.
96 static __thread greg_t fs;
98 static inline void
99 initcontext(void)
101 ucontext_t c;
103 getcontext(&c);
104 fs = c.uc_mcontext.gregs[REG_FSBASE];
107 static inline void
108 fixcontext(ucontext_t* c)
110 c->uc_mcontext.gregs[REG_FSBASE] = fs;
113 # elif defined(__NetBSD__)
115 // NetBSD has a bug: setcontext clobbers tlsbase, we need to save
116 // and restore it ourselves.
118 static __thread __greg_t tlsbase;
120 static inline void
121 initcontext(void)
123 ucontext_t c;
125 getcontext(&c);
126 tlsbase = c.uc_mcontext._mc_tlsbase;
129 static inline void
130 fixcontext(ucontext_t* c)
132 c->uc_mcontext._mc_tlsbase = tlsbase;
135 # else
137 # error unknown case for SETCONTEXT_CLOBBERS_TLS
139 # endif
141 #endif
143 // We can not always refer to the TLS variables directly. The
144 // compiler will call tls_get_addr to get the address of the variable,
145 // and it may hold it in a register across a call to schedule. When
146 // we get back from the call we may be running in a different thread,
147 // in which case the register now points to the TLS variable for a
148 // different thread. We use non-inlinable functions to avoid this
149 // when necessary.
151 G* runtime_g(void) __attribute__ ((noinline, no_split_stack));
154 runtime_g(void)
156 return g;
159 M* runtime_m(void) __attribute__ ((noinline, no_split_stack));
162 runtime_m(void)
164 return m;
167 int32 runtime_gcwaiting;
169 // The static TLS size. See runtime_newm.
170 static int tlssize;
172 #ifdef HAVE_DL_ITERATE_PHDR
174 // Called via dl_iterate_phdr.
176 static int
177 addtls(struct dl_phdr_info* info, size_t size __attribute__ ((unused)), void *data)
179 size_t *total = (size_t *)data;
180 unsigned int i;
182 for(i = 0; i < info->dlpi_phnum; ++i) {
183 if(info->dlpi_phdr[i].p_type == PT_TLS)
184 *total += info->dlpi_phdr[i].p_memsz;
186 return 0;
189 // Set the total TLS size.
191 static void
192 inittlssize()
194 size_t total = 0;
196 dl_iterate_phdr(addtls, (void *)&total);
197 tlssize = total;
200 #else
202 static void
203 inittlssize()
207 #endif
209 // Go scheduler
211 // The go scheduler's job is to match ready-to-run goroutines (`g's)
212 // with waiting-for-work schedulers (`m's). If there are ready g's
213 // and no waiting m's, ready() will start a new m running in a new
214 // OS thread, so that all ready g's can run simultaneously, up to a limit.
215 // For now, m's never go away.
217 // By default, Go keeps only one kernel thread (m) running user code
218 // at a single time; other threads may be blocked in the operating system.
219 // Setting the environment variable $GOMAXPROCS or calling
220 // runtime.GOMAXPROCS() will change the number of user threads
221 // allowed to execute simultaneously. $GOMAXPROCS is thus an
222 // approximation of the maximum number of cores to use.
224 // Even a program that can run without deadlock in a single process
225 // might use more m's if given the chance. For example, the prime
226 // sieve will use as many m's as there are primes (up to runtime_sched.mmax),
227 // allowing different stages of the pipeline to execute in parallel.
228 // We could revisit this choice, only kicking off new m's for blocking
229 // system calls, but that would limit the amount of parallel computation
230 // that go would try to do.
232 // In general, one could imagine all sorts of refinements to the
233 // scheduler, but the goal now is just to get something working on
234 // Linux and OS X.
236 struct Sched {
237 Lock;
239 G *gfree; // available g's (status == Gdead)
240 int32 goidgen;
242 G *ghead; // g's waiting to run
243 G *gtail;
244 int32 gwait; // number of g's waiting to run
245 int32 gcount; // number of g's that are alive
246 int32 grunning; // number of g's running on cpu or in syscall
248 M *mhead; // m's waiting for work
249 int32 mwait; // number of m's waiting for work
250 int32 mcount; // number of m's that have been created
252 volatile uint32 atomic; // atomic scheduling word (see below)
254 int32 profilehz; // cpu profiling rate
256 bool init; // running initialization
257 bool lockmain; // init called runtime.LockOSThread
259 Note stopped; // one g can set waitstop and wait here for m's to stop
262 // The atomic word in sched is an atomic uint32 that
263 // holds these fields.
265 // [15 bits] mcpu number of m's executing on cpu
266 // [15 bits] mcpumax max number of m's allowed on cpu
267 // [1 bit] waitstop some g is waiting on stopped
268 // [1 bit] gwaiting gwait != 0
270 // These fields are the information needed by entersyscall
271 // and exitsyscall to decide whether to coordinate with the
272 // scheduler. Packing them into a single machine word lets
273 // them use a fast path with a single atomic read/write and
274 // no lock/unlock. This greatly reduces contention in
275 // syscall- or cgo-heavy multithreaded programs.
277 // Except for entersyscall and exitsyscall, the manipulations
278 // to these fields only happen while holding the schedlock,
279 // so the routines holding schedlock only need to worry about
280 // what entersyscall and exitsyscall do, not the other routines
281 // (which also use the schedlock).
283 // In particular, entersyscall and exitsyscall only read mcpumax,
284 // waitstop, and gwaiting. They never write them. Thus, writes to those
285 // fields can be done (holding schedlock) without fear of write conflicts.
286 // There may still be logic conflicts: for example, the set of waitstop must
287 // be conditioned on mcpu >= mcpumax or else the wait may be a
288 // spurious sleep. The Promela model in proc.p verifies these accesses.
289 enum {
290 mcpuWidth = 15,
291 mcpuMask = (1<<mcpuWidth) - 1,
292 mcpuShift = 0,
293 mcpumaxShift = mcpuShift + mcpuWidth,
294 waitstopShift = mcpumaxShift + mcpuWidth,
295 gwaitingShift = waitstopShift+1,
297 // The max value of GOMAXPROCS is constrained
298 // by the max value we can store in the bit fields
299 // of the atomic word. Reserve a few high values
300 // so that we can detect accidental decrement
301 // beyond zero.
302 maxgomaxprocs = mcpuMask - 10,
305 #define atomic_mcpu(v) (((v)>>mcpuShift)&mcpuMask)
306 #define atomic_mcpumax(v) (((v)>>mcpumaxShift)&mcpuMask)
307 #define atomic_waitstop(v) (((v)>>waitstopShift)&1)
308 #define atomic_gwaiting(v) (((v)>>gwaitingShift)&1)
310 Sched runtime_sched;
311 int32 runtime_gomaxprocs;
312 bool runtime_singleproc;
314 static bool canaddmcpu(void);
316 // An m that is waiting for notewakeup(&m->havenextg). This may
317 // only be accessed while the scheduler lock is held. This is used to
318 // minimize the number of times we call notewakeup while the scheduler
319 // lock is held, since the m will normally move quickly to lock the
320 // scheduler itself, producing lock contention.
321 static M* mwakeup;
323 // Scheduling helpers. Sched must be locked.
324 static void gput(G*); // put/get on ghead/gtail
325 static G* gget(void);
326 static void mput(M*); // put/get on mhead
327 static M* mget(G*);
328 static void gfput(G*); // put/get on gfree
329 static G* gfget(void);
330 static void matchmg(void); // match m's to g's
331 static void readylocked(G*); // ready, but sched is locked
332 static void mnextg(M*, G*);
333 static void mcommoninit(M*);
335 void
336 setmcpumax(uint32 n)
338 uint32 v, w;
340 for(;;) {
341 v = runtime_sched.atomic;
342 w = v;
343 w &= ~(mcpuMask<<mcpumaxShift);
344 w |= n<<mcpumaxShift;
345 if(runtime_cas(&runtime_sched.atomic, v, w))
346 break;
350 // First function run by a new goroutine. This replaces gogocall.
351 static void
352 kickoff(void)
354 void (*fn)(void*);
356 if(g->traceback != nil)
357 gtraceback(g);
359 fn = (void (*)(void*))(g->entry);
360 fn(g->param);
361 runtime_goexit();
364 // Switch context to a different goroutine. This is like longjmp.
365 static void runtime_gogo(G*) __attribute__ ((noinline));
366 static void
367 runtime_gogo(G* newg)
369 #ifdef USING_SPLIT_STACK
370 __splitstack_setcontext(&newg->stack_context[0]);
371 #endif
372 g = newg;
373 newg->fromgogo = true;
374 fixcontext(&newg->context);
375 setcontext(&newg->context);
376 runtime_throw("gogo setcontext returned");
379 // Save context and call fn passing g as a parameter. This is like
380 // setjmp. Because getcontext always returns 0, unlike setjmp, we use
381 // g->fromgogo as a code. It will be true if we got here via
382 // setcontext. g == nil the first time this is called in a new m.
383 static void runtime_mcall(void (*)(G*)) __attribute__ ((noinline));
384 static void
385 runtime_mcall(void (*pfn)(G*))
387 M *mp;
388 G *gp;
389 #ifndef USING_SPLIT_STACK
390 int i;
391 #endif
393 // Ensure that all registers are on the stack for the garbage
394 // collector.
395 __builtin_unwind_init();
397 mp = m;
398 gp = g;
399 if(gp == mp->g0)
400 runtime_throw("runtime: mcall called on m->g0 stack");
402 if(gp != nil) {
404 #ifdef USING_SPLIT_STACK
405 __splitstack_getcontext(&g->stack_context[0]);
406 #else
407 gp->gcnext_sp = &i;
408 #endif
409 gp->fromgogo = false;
410 getcontext(&gp->context);
412 // When we return from getcontext, we may be running
413 // in a new thread. That means that m and g may have
414 // changed. They are global variables so we will
415 // reload them, but the addresses of m and g may be
416 // cached in our local stack frame, and those
417 // addresses may be wrong. Call functions to reload
418 // the values for this thread.
419 mp = runtime_m();
420 gp = runtime_g();
422 if(gp->traceback != nil)
423 gtraceback(gp);
425 if (gp == nil || !gp->fromgogo) {
426 #ifdef USING_SPLIT_STACK
427 __splitstack_setcontext(&mp->g0->stack_context[0]);
428 #endif
429 mp->g0->entry = (byte*)pfn;
430 mp->g0->param = gp;
432 // It's OK to set g directly here because this case
433 // can not occur if we got here via a setcontext to
434 // the getcontext call just above.
435 g = mp->g0;
437 fixcontext(&mp->g0->context);
438 setcontext(&mp->g0->context);
439 runtime_throw("runtime: mcall function returned");
443 // Keep trace of scavenger's goroutine for deadlock detection.
444 static G *scvg;
446 // The bootstrap sequence is:
448 // call osinit
449 // call schedinit
450 // make & queue new G
451 // call runtime_mstart
453 // The new G calls runtime_main.
454 void
455 runtime_schedinit(void)
457 int32 n;
458 const byte *p;
460 m = &runtime_m0;
461 g = &runtime_g0;
462 m->g0 = g;
463 m->curg = g;
464 g->m = m;
466 initcontext();
467 inittlssize();
469 m->nomemprof++;
470 runtime_mallocinit();
471 mcommoninit(m);
473 runtime_goargs();
474 runtime_goenvs();
476 // For debugging:
477 // Allocate internal symbol table representation now,
478 // so that we don't need to call malloc when we crash.
479 // runtime_findfunc(0);
481 runtime_gomaxprocs = 1;
482 p = runtime_getenv("GOMAXPROCS");
483 if(p != nil && (n = runtime_atoi(p)) != 0) {
484 if(n > maxgomaxprocs)
485 n = maxgomaxprocs;
486 runtime_gomaxprocs = n;
488 // wait for the main goroutine to start before taking
489 // GOMAXPROCS into account.
490 setmcpumax(1);
491 runtime_singleproc = runtime_gomaxprocs == 1;
493 canaddmcpu(); // mcpu++ to account for bootstrap m
494 m->helpgc = 1; // flag to tell schedule() to mcpu--
495 runtime_sched.grunning++;
497 // Can not enable GC until all roots are registered.
498 // mstats.enablegc = 1;
499 m->nomemprof--;
501 if(raceenabled)
502 runtime_raceinit();
505 extern void main_init(void) __asm__ ("__go_init_main");
506 extern void main_main(void) __asm__ ("main.main");
508 // The main goroutine.
509 void
510 runtime_main(void)
512 // Lock the main goroutine onto this, the main OS thread,
513 // during initialization. Most programs won't care, but a few
514 // do require certain calls to be made by the main thread.
515 // Those can arrange for main.main to run in the main thread
516 // by calling runtime.LockOSThread during initialization
517 // to preserve the lock.
518 runtime_LockOSThread();
519 // From now on, newgoroutines may use non-main threads.
520 setmcpumax(runtime_gomaxprocs);
521 runtime_sched.init = true;
522 scvg = __go_go(runtime_MHeap_Scavenger, nil);
523 main_init();
524 runtime_sched.init = false;
525 if(!runtime_sched.lockmain)
526 runtime_UnlockOSThread();
528 // For gccgo we have to wait until after main is initialized
529 // to enable GC, because initializing main registers the GC
530 // roots.
531 mstats.enablegc = 1;
533 // The deadlock detection has false negatives.
534 // Let scvg start up, to eliminate the false negative
535 // for the trivial program func main() { select{} }.
536 runtime_gosched();
538 main_main();
539 if(raceenabled)
540 runtime_racefini();
541 runtime_exit(0);
542 for(;;)
543 *(int32*)0 = 0;
546 // Lock the scheduler.
547 static void
548 schedlock(void)
550 runtime_lock(&runtime_sched);
553 // Unlock the scheduler.
554 static void
555 schedunlock(void)
557 M *m;
559 m = mwakeup;
560 mwakeup = nil;
561 runtime_unlock(&runtime_sched);
562 if(m != nil)
563 runtime_notewakeup(&m->havenextg);
566 void
567 runtime_goexit(void)
569 g->status = Gmoribund;
570 runtime_gosched();
573 void
574 runtime_goroutineheader(G *gp)
576 const char *status;
578 switch(gp->status) {
579 case Gidle:
580 status = "idle";
581 break;
582 case Grunnable:
583 status = "runnable";
584 break;
585 case Grunning:
586 status = "running";
587 break;
588 case Gsyscall:
589 status = "syscall";
590 break;
591 case Gwaiting:
592 if(gp->waitreason)
593 status = gp->waitreason;
594 else
595 status = "waiting";
596 break;
597 case Gmoribund:
598 status = "moribund";
599 break;
600 default:
601 status = "???";
602 break;
604 runtime_printf("goroutine %d [%s]:\n", gp->goid, status);
607 void
608 runtime_goroutinetrailer(G *g)
610 if(g != nil && g->gopc != 0 && g->goid != 1) {
611 String fn;
612 String file;
613 int line;
615 if(__go_file_line(g->gopc - 1, &fn, &file, &line)) {
616 runtime_printf("created by %S\n", fn);
617 runtime_printf("\t%S:%d\n", file, line);
622 struct Traceback
624 G* gp;
625 uintptr pcbuf[100];
626 int32 c;
629 void
630 runtime_tracebackothers(G * volatile me)
632 G * volatile gp;
633 Traceback traceback;
635 traceback.gp = me;
636 for(gp = runtime_allg; gp != nil; gp = gp->alllink) {
637 if(gp == me || gp->status == Gdead)
638 continue;
639 runtime_printf("\n");
640 runtime_goroutineheader(gp);
642 // Our only mechanism for doing a stack trace is
643 // _Unwind_Backtrace. And that only works for the
644 // current thread, not for other random goroutines.
645 // So we need to switch context to the goroutine, get
646 // the backtrace, and then switch back.
648 // This means that if g is running or in a syscall, we
649 // can't reliably print a stack trace. FIXME.
650 if(gp->status == Gsyscall || gp->status == Grunning) {
651 runtime_printf("no stack trace available\n");
652 runtime_goroutinetrailer(gp);
653 continue;
656 gp->traceback = &traceback;
658 #ifdef USING_SPLIT_STACK
659 __splitstack_getcontext(&me->stack_context[0]);
660 #endif
661 getcontext(&me->context);
663 if(gp->traceback != nil) {
664 runtime_gogo(gp);
667 runtime_printtrace(traceback.pcbuf, traceback.c);
668 runtime_goroutinetrailer(gp);
672 // Do a stack trace of gp, and then restore the context to
673 // gp->dotraceback.
675 static void
676 gtraceback(G* gp)
678 Traceback* traceback;
680 traceback = gp->traceback;
681 gp->traceback = nil;
682 traceback->c = runtime_callers(1, traceback->pcbuf,
683 sizeof traceback->pcbuf / sizeof traceback->pcbuf[0]);
684 runtime_gogo(traceback->gp);
687 // Mark this g as m's idle goroutine.
688 // This functionality might be used in environments where programs
689 // are limited to a single thread, to simulate a select-driven
690 // network server. It is not exposed via the standard runtime API.
691 void
692 runtime_idlegoroutine(void)
694 if(g->idlem != nil)
695 runtime_throw("g is already an idle goroutine");
696 g->idlem = m;
699 static void
700 mcommoninit(M *mp)
702 mp->id = runtime_sched.mcount++;
703 mp->fastrand = 0x49f6428aUL + mp->id + runtime_cputicks();
705 if(mp->mcache == nil)
706 mp->mcache = runtime_allocmcache();
708 runtime_callers(1, mp->createstack, nelem(mp->createstack));
710 // Add to runtime_allm so garbage collector doesn't free m
711 // when it is just in a register or thread-local storage.
712 mp->alllink = runtime_allm;
713 // runtime_NumCgoCall() iterates over allm w/o schedlock,
714 // so we need to publish it safely.
715 runtime_atomicstorep(&runtime_allm, mp);
718 // Try to increment mcpu. Report whether succeeded.
719 static bool
720 canaddmcpu(void)
722 uint32 v;
724 for(;;) {
725 v = runtime_sched.atomic;
726 if(atomic_mcpu(v) >= atomic_mcpumax(v))
727 return 0;
728 if(runtime_cas(&runtime_sched.atomic, v, v+(1<<mcpuShift)))
729 return 1;
733 // Put on `g' queue. Sched must be locked.
734 static void
735 gput(G *gp)
737 M *mp;
739 // If g is wired, hand it off directly.
740 if((mp = gp->lockedm) != nil && canaddmcpu()) {
741 mnextg(mp, gp);
742 return;
745 // If g is the idle goroutine for an m, hand it off.
746 if(gp->idlem != nil) {
747 if(gp->idlem->idleg != nil) {
748 runtime_printf("m%d idle out of sync: g%d g%d\n",
749 gp->idlem->id,
750 gp->idlem->idleg->goid, gp->goid);
751 runtime_throw("runtime: double idle");
753 gp->idlem->idleg = gp;
754 return;
757 gp->schedlink = nil;
758 if(runtime_sched.ghead == nil)
759 runtime_sched.ghead = gp;
760 else
761 runtime_sched.gtail->schedlink = gp;
762 runtime_sched.gtail = gp;
764 // increment gwait.
765 // if it transitions to nonzero, set atomic gwaiting bit.
766 if(runtime_sched.gwait++ == 0)
767 runtime_xadd(&runtime_sched.atomic, 1<<gwaitingShift);
770 // Report whether gget would return something.
771 static bool
772 haveg(void)
774 return runtime_sched.ghead != nil || m->idleg != nil;
777 // Get from `g' queue. Sched must be locked.
778 static G*
779 gget(void)
781 G *gp;
783 gp = runtime_sched.ghead;
784 if(gp) {
785 runtime_sched.ghead = gp->schedlink;
786 if(runtime_sched.ghead == nil)
787 runtime_sched.gtail = nil;
788 // decrement gwait.
789 // if it transitions to zero, clear atomic gwaiting bit.
790 if(--runtime_sched.gwait == 0)
791 runtime_xadd(&runtime_sched.atomic, -1<<gwaitingShift);
792 } else if(m->idleg != nil) {
793 gp = m->idleg;
794 m->idleg = nil;
796 return gp;
799 // Put on `m' list. Sched must be locked.
800 static void
801 mput(M *mp)
803 mp->schedlink = runtime_sched.mhead;
804 runtime_sched.mhead = mp;
805 runtime_sched.mwait++;
808 // Get an `m' to run `g'. Sched must be locked.
809 static M*
810 mget(G *gp)
812 M *mp;
814 // if g has its own m, use it.
815 if(gp && (mp = gp->lockedm) != nil)
816 return mp;
818 // otherwise use general m pool.
819 if((mp = runtime_sched.mhead) != nil) {
820 runtime_sched.mhead = mp->schedlink;
821 runtime_sched.mwait--;
823 return mp;
826 // Mark g ready to run.
827 void
828 runtime_ready(G *gp)
830 schedlock();
831 readylocked(gp);
832 schedunlock();
835 // Mark g ready to run. Sched is already locked.
836 // G might be running already and about to stop.
837 // The sched lock protects g->status from changing underfoot.
838 static void
839 readylocked(G *gp)
841 if(gp->m) {
842 // Running on another machine.
843 // Ready it when it stops.
844 gp->readyonstop = 1;
845 return;
848 // Mark runnable.
849 if(gp->status == Grunnable || gp->status == Grunning) {
850 runtime_printf("goroutine %d has status %d\n", gp->goid, gp->status);
851 runtime_throw("bad g->status in ready");
853 gp->status = Grunnable;
855 gput(gp);
856 matchmg();
859 // Same as readylocked but a different symbol so that
860 // debuggers can set a breakpoint here and catch all
861 // new goroutines.
862 static void
863 newprocreadylocked(G *gp)
865 readylocked(gp);
868 // Pass g to m for running.
869 // Caller has already incremented mcpu.
870 static void
871 mnextg(M *mp, G *gp)
873 runtime_sched.grunning++;
874 mp->nextg = gp;
875 if(mp->waitnextg) {
876 mp->waitnextg = 0;
877 if(mwakeup != nil)
878 runtime_notewakeup(&mwakeup->havenextg);
879 mwakeup = mp;
883 // Get the next goroutine that m should run.
884 // Sched must be locked on entry, is unlocked on exit.
885 // Makes sure that at most $GOMAXPROCS g's are
886 // running on cpus (not in system calls) at any given time.
887 static G*
888 nextgandunlock(void)
890 G *gp;
891 uint32 v;
893 top:
894 if(atomic_mcpu(runtime_sched.atomic) >= maxgomaxprocs)
895 runtime_throw("negative mcpu");
897 // If there is a g waiting as m->nextg, the mcpu++
898 // happened before it was passed to mnextg.
899 if(m->nextg != nil) {
900 gp = m->nextg;
901 m->nextg = nil;
902 schedunlock();
903 return gp;
906 if(m->lockedg != nil) {
907 // We can only run one g, and it's not available.
908 // Make sure some other cpu is running to handle
909 // the ordinary run queue.
910 if(runtime_sched.gwait != 0) {
911 matchmg();
912 // m->lockedg might have been on the queue.
913 if(m->nextg != nil) {
914 gp = m->nextg;
915 m->nextg = nil;
916 schedunlock();
917 return gp;
920 } else {
921 // Look for work on global queue.
922 while(haveg() && canaddmcpu()) {
923 gp = gget();
924 if(gp == nil)
925 runtime_throw("gget inconsistency");
927 if(gp->lockedm) {
928 mnextg(gp->lockedm, gp);
929 continue;
931 runtime_sched.grunning++;
932 schedunlock();
933 return gp;
936 // The while loop ended either because the g queue is empty
937 // or because we have maxed out our m procs running go
938 // code (mcpu >= mcpumax). We need to check that
939 // concurrent actions by entersyscall/exitsyscall cannot
940 // invalidate the decision to end the loop.
942 // We hold the sched lock, so no one else is manipulating the
943 // g queue or changing mcpumax. Entersyscall can decrement
944 // mcpu, but if does so when there is something on the g queue,
945 // the gwait bit will be set, so entersyscall will take the slow path
946 // and use the sched lock. So it cannot invalidate our decision.
948 // Wait on global m queue.
949 mput(m);
952 // Look for deadlock situation.
953 // There is a race with the scavenger that causes false negatives:
954 // if the scavenger is just starting, then we have
955 // scvg != nil && grunning == 0 && gwait == 0
956 // and we do not detect a deadlock. It is possible that we should
957 // add that case to the if statement here, but it is too close to Go 1
958 // to make such a subtle change. Instead, we work around the
959 // false negative in trivial programs by calling runtime.gosched
960 // from the main goroutine just before main.main.
961 // See runtime_main above.
963 // On a related note, it is also possible that the scvg == nil case is
964 // wrong and should include gwait, but that does not happen in
965 // standard Go programs, which all start the scavenger.
967 if((scvg == nil && runtime_sched.grunning == 0) ||
968 (scvg != nil && runtime_sched.grunning == 1 && runtime_sched.gwait == 0 &&
969 (scvg->status == Grunning || scvg->status == Gsyscall))) {
970 runtime_throw("all goroutines are asleep - deadlock!");
973 m->nextg = nil;
974 m->waitnextg = 1;
975 runtime_noteclear(&m->havenextg);
977 // Stoptheworld is waiting for all but its cpu to go to stop.
978 // Entersyscall might have decremented mcpu too, but if so
979 // it will see the waitstop and take the slow path.
980 // Exitsyscall never increments mcpu beyond mcpumax.
981 v = runtime_atomicload(&runtime_sched.atomic);
982 if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) {
983 // set waitstop = 0 (known to be 1)
984 runtime_xadd(&runtime_sched.atomic, -1<<waitstopShift);
985 runtime_notewakeup(&runtime_sched.stopped);
987 schedunlock();
989 runtime_notesleep(&m->havenextg);
990 if(m->helpgc) {
991 runtime_gchelper();
992 m->helpgc = 0;
993 runtime_lock(&runtime_sched);
994 goto top;
996 if((gp = m->nextg) == nil)
997 runtime_throw("bad m->nextg in nextgoroutine");
998 m->nextg = nil;
999 return gp;
1002 int32
1003 runtime_gcprocs(void)
1005 int32 n;
1007 // Figure out how many CPUs to use during GC.
1008 // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
1009 n = runtime_gomaxprocs;
1010 if(n > runtime_ncpu)
1011 n = runtime_ncpu > 0 ? runtime_ncpu : 1;
1012 if(n > MaxGcproc)
1013 n = MaxGcproc;
1014 if(n > runtime_sched.mwait+1) // one M is currently running
1015 n = runtime_sched.mwait+1;
1016 return n;
1019 void
1020 runtime_helpgc(int32 nproc)
1022 M *mp;
1023 int32 n;
1025 runtime_lock(&runtime_sched);
1026 for(n = 1; n < nproc; n++) { // one M is currently running
1027 mp = mget(nil);
1028 if(mp == nil)
1029 runtime_throw("runtime_gcprocs inconsistency");
1030 mp->helpgc = 1;
1031 mp->waitnextg = 0;
1032 runtime_notewakeup(&mp->havenextg);
1034 runtime_unlock(&runtime_sched);
1037 void
1038 runtime_stoptheworld(void)
1040 uint32 v;
1042 schedlock();
1043 runtime_gcwaiting = 1;
1045 setmcpumax(1);
1047 // while mcpu > 1
1048 for(;;) {
1049 v = runtime_sched.atomic;
1050 if(atomic_mcpu(v) <= 1)
1051 break;
1053 // It would be unsafe for multiple threads to be using
1054 // the stopped note at once, but there is only
1055 // ever one thread doing garbage collection.
1056 runtime_noteclear(&runtime_sched.stopped);
1057 if(atomic_waitstop(v))
1058 runtime_throw("invalid waitstop");
1060 // atomic { waitstop = 1 }, predicated on mcpu <= 1 check above
1061 // still being true.
1062 if(!runtime_cas(&runtime_sched.atomic, v, v+(1<<waitstopShift)))
1063 continue;
1065 schedunlock();
1066 runtime_notesleep(&runtime_sched.stopped);
1067 schedlock();
1069 runtime_singleproc = runtime_gomaxprocs == 1;
1070 schedunlock();
1073 void
1074 runtime_starttheworld(void)
1076 M *mp;
1077 int32 max;
1079 // Figure out how many CPUs GC could possibly use.
1080 max = runtime_gomaxprocs;
1081 if(max > runtime_ncpu)
1082 max = runtime_ncpu > 0 ? runtime_ncpu : 1;
1083 if(max > MaxGcproc)
1084 max = MaxGcproc;
1086 schedlock();
1087 runtime_gcwaiting = 0;
1088 setmcpumax(runtime_gomaxprocs);
1089 matchmg();
1090 if(runtime_gcprocs() < max && canaddmcpu()) {
1091 // If GC could have used another helper proc, start one now,
1092 // in the hope that it will be available next time.
1093 // It would have been even better to start it before the collection,
1094 // but doing so requires allocating memory, so it's tricky to
1095 // coordinate. This lazy approach works out in practice:
1096 // we don't mind if the first couple gc rounds don't have quite
1097 // the maximum number of procs.
1098 // canaddmcpu above did mcpu++
1099 // (necessary, because m will be doing various
1100 // initialization work so is definitely running),
1101 // but m is not running a specific goroutine,
1102 // so set the helpgc flag as a signal to m's
1103 // first schedule(nil) to mcpu-- and grunning--.
1104 mp = runtime_newm();
1105 mp->helpgc = 1;
1106 runtime_sched.grunning++;
1108 schedunlock();
1111 // Called to start an M.
1112 void*
1113 runtime_mstart(void* mp)
1115 m = (M*)mp;
1116 g = m->g0;
1118 initcontext();
1120 g->entry = nil;
1121 g->param = nil;
1123 // Record top of stack for use by mcall.
1124 // Once we call schedule we're never coming back,
1125 // so other calls can reuse this stack space.
1126 #ifdef USING_SPLIT_STACK
1127 __splitstack_getcontext(&g->stack_context[0]);
1128 #else
1129 g->gcinitial_sp = &mp;
1130 // Setting gcstack_size to 0 is a marker meaning that gcinitial_sp
1131 // is the top of the stack, not the bottom.
1132 g->gcstack_size = 0;
1133 g->gcnext_sp = &mp;
1134 #endif
1135 getcontext(&g->context);
1137 if(g->entry != nil) {
1138 // Got here from mcall.
1139 void (*pfn)(G*) = (void (*)(G*))g->entry;
1140 G* gp = (G*)g->param;
1141 pfn(gp);
1142 *(int*)0x21 = 0x21;
1144 runtime_minit();
1146 #ifdef USING_SPLIT_STACK
1148 int dont_block_signals = 0;
1149 __splitstack_block_signals(&dont_block_signals, nil);
1151 #endif
1153 // Install signal handlers; after minit so that minit can
1154 // prepare the thread to be able to handle the signals.
1155 if(m == &runtime_m0)
1156 runtime_initsig();
1158 schedule(nil);
1160 // TODO(brainman): This point is never reached, because scheduler
1161 // does not release os threads at the moment. But once this path
1162 // is enabled, we must remove our seh here.
1164 return nil;
1167 typedef struct CgoThreadStart CgoThreadStart;
1168 struct CgoThreadStart
1170 M *m;
1171 G *g;
1172 void (*fn)(void);
1175 // Kick off new m's as needed (up to mcpumax).
1176 // Sched is locked.
1177 static void
1178 matchmg(void)
1180 G *gp;
1181 M *mp;
1183 if(m->mallocing || m->gcing)
1184 return;
1186 while(haveg() && canaddmcpu()) {
1187 gp = gget();
1188 if(gp == nil)
1189 runtime_throw("gget inconsistency");
1191 // Find the m that will run gp.
1192 if((mp = mget(gp)) == nil)
1193 mp = runtime_newm();
1194 mnextg(mp, gp);
1198 // Create a new m. It will start off with a call to runtime_mstart.
1200 runtime_newm(void)
1202 M *mp;
1203 pthread_attr_t attr;
1204 pthread_t tid;
1205 size_t stacksize;
1207 mp = runtime_malloc(sizeof(M));
1208 mcommoninit(mp);
1209 mp->g0 = runtime_malg(-1, nil, nil);
1211 if(pthread_attr_init(&attr) != 0)
1212 runtime_throw("pthread_attr_init");
1213 if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0)
1214 runtime_throw("pthread_attr_setdetachstate");
1216 stacksize = PTHREAD_STACK_MIN;
1218 // With glibc before version 2.16 the static TLS size is taken
1219 // out of the stack size, and we get an error or a crash if
1220 // there is not enough stack space left. Add it back in if we
1221 // can, in case the program uses a lot of TLS space. FIXME:
1222 // This can be disabled in glibc 2.16 and later, if the bug is
1223 // indeed fixed then.
1224 stacksize += tlssize;
1226 if(pthread_attr_setstacksize(&attr, stacksize) != 0)
1227 runtime_throw("pthread_attr_setstacksize");
1229 if(pthread_create(&tid, &attr, runtime_mstart, mp) != 0)
1230 runtime_throw("pthread_create");
1232 return mp;
1235 // One round of scheduler: find a goroutine and run it.
1236 // The argument is the goroutine that was running before
1237 // schedule was called, or nil if this is the first call.
1238 // Never returns.
1239 static void
1240 schedule(G *gp)
1242 int32 hz;
1243 uint32 v;
1245 schedlock();
1246 if(gp != nil) {
1247 // Just finished running gp.
1248 gp->m = nil;
1249 runtime_sched.grunning--;
1251 // atomic { mcpu-- }
1252 v = runtime_xadd(&runtime_sched.atomic, -1<<mcpuShift);
1253 if(atomic_mcpu(v) > maxgomaxprocs)
1254 runtime_throw("negative mcpu in scheduler");
1256 switch(gp->status) {
1257 case Grunnable:
1258 case Gdead:
1259 // Shouldn't have been running!
1260 runtime_throw("bad gp->status in sched");
1261 case Grunning:
1262 gp->status = Grunnable;
1263 gput(gp);
1264 break;
1265 case Gmoribund:
1266 if(raceenabled)
1267 runtime_racegoend(gp->goid);
1268 gp->status = Gdead;
1269 if(gp->lockedm) {
1270 gp->lockedm = nil;
1271 m->lockedg = nil;
1273 gp->idlem = nil;
1274 runtime_memclr(&gp->context, sizeof gp->context);
1275 gfput(gp);
1276 if(--runtime_sched.gcount == 0)
1277 runtime_exit(0);
1278 break;
1280 if(gp->readyonstop) {
1281 gp->readyonstop = 0;
1282 readylocked(gp);
1284 } else if(m->helpgc) {
1285 // Bootstrap m or new m started by starttheworld.
1286 // atomic { mcpu-- }
1287 v = runtime_xadd(&runtime_sched.atomic, -1<<mcpuShift);
1288 if(atomic_mcpu(v) > maxgomaxprocs)
1289 runtime_throw("negative mcpu in scheduler");
1290 // Compensate for increment in starttheworld().
1291 runtime_sched.grunning--;
1292 m->helpgc = 0;
1293 } else if(m->nextg != nil) {
1294 // New m started by matchmg.
1295 } else {
1296 runtime_throw("invalid m state in scheduler");
1299 // Find (or wait for) g to run. Unlocks runtime_sched.
1300 gp = nextgandunlock();
1301 gp->readyonstop = 0;
1302 gp->status = Grunning;
1303 m->curg = gp;
1304 gp->m = m;
1306 // Check whether the profiler needs to be turned on or off.
1307 hz = runtime_sched.profilehz;
1308 if(m->profilehz != hz)
1309 runtime_resetcpuprofiler(hz);
1311 runtime_gogo(gp);
1314 // Enter scheduler. If g->status is Grunning,
1315 // re-queues g and runs everyone else who is waiting
1316 // before running g again. If g->status is Gmoribund,
1317 // kills off g.
1318 void
1319 runtime_gosched(void)
1321 if(m->locks != 0)
1322 runtime_throw("gosched holding locks");
1323 if(g == m->g0)
1324 runtime_throw("gosched of g0");
1325 runtime_mcall(schedule);
1328 // Puts the current goroutine into a waiting state and unlocks the lock.
1329 // The goroutine can be made runnable again by calling runtime_ready(gp).
1330 void
1331 runtime_park(void (*unlockf)(Lock*), Lock *lock, const char *reason)
1333 g->status = Gwaiting;
1334 g->waitreason = reason;
1335 if(unlockf)
1336 unlockf(lock);
1337 runtime_gosched();
1340 // The goroutine g is about to enter a system call.
1341 // Record that it's not using the cpu anymore.
1342 // This is called only from the go syscall library and cgocall,
1343 // not from the low-level system calls used by the runtime.
1345 // Entersyscall cannot split the stack: the runtime_gosave must
1346 // make g->sched refer to the caller's stack segment, because
1347 // entersyscall is going to return immediately after.
1348 // It's okay to call matchmg and notewakeup even after
1349 // decrementing mcpu, because we haven't released the
1350 // sched lock yet, so the garbage collector cannot be running.
1352 void runtime_entersyscall(void) __attribute__ ((no_split_stack));
1354 void
1355 runtime_entersyscall(void)
1357 uint32 v;
1359 if(m->profilehz > 0)
1360 runtime_setprof(false);
1362 // Leave SP around for gc and traceback.
1363 #ifdef USING_SPLIT_STACK
1364 g->gcstack = __splitstack_find(nil, nil, &g->gcstack_size,
1365 &g->gcnext_segment, &g->gcnext_sp,
1366 &g->gcinitial_sp);
1367 #else
1368 g->gcnext_sp = (byte *) &v;
1369 #endif
1371 // Save the registers in the g structure so that any pointers
1372 // held in registers will be seen by the garbage collector.
1373 getcontext(&g->gcregs);
1375 g->status = Gsyscall;
1377 // Fast path.
1378 // The slow path inside the schedlock/schedunlock will get
1379 // through without stopping if it does:
1380 // mcpu--
1381 // gwait not true
1382 // waitstop && mcpu <= mcpumax not true
1383 // If we can do the same with a single atomic add,
1384 // then we can skip the locks.
1385 v = runtime_xadd(&runtime_sched.atomic, -1<<mcpuShift);
1386 if(!atomic_gwaiting(v) && (!atomic_waitstop(v) || atomic_mcpu(v) > atomic_mcpumax(v)))
1387 return;
1389 schedlock();
1390 v = runtime_atomicload(&runtime_sched.atomic);
1391 if(atomic_gwaiting(v)) {
1392 matchmg();
1393 v = runtime_atomicload(&runtime_sched.atomic);
1395 if(atomic_waitstop(v) && atomic_mcpu(v) <= atomic_mcpumax(v)) {
1396 runtime_xadd(&runtime_sched.atomic, -1<<waitstopShift);
1397 runtime_notewakeup(&runtime_sched.stopped);
1400 schedunlock();
1403 // The goroutine g exited its system call.
1404 // Arrange for it to run on a cpu again.
1405 // This is called only from the go syscall library, not
1406 // from the low-level system calls used by the runtime.
1407 void
1408 runtime_exitsyscall(void)
1410 G *gp;
1411 uint32 v;
1413 // Fast path.
1414 // If we can do the mcpu++ bookkeeping and
1415 // find that we still have mcpu <= mcpumax, then we can
1416 // start executing Go code immediately, without having to
1417 // schedlock/schedunlock.
1418 // Also do fast return if any locks are held, so that
1419 // panic code can use syscalls to open a file.
1420 gp = g;
1421 v = runtime_xadd(&runtime_sched.atomic, (1<<mcpuShift));
1422 if((m->profilehz == runtime_sched.profilehz && atomic_mcpu(v) <= atomic_mcpumax(v)) || m->locks > 0) {
1423 // There's a cpu for us, so we can run.
1424 gp->status = Grunning;
1425 // Garbage collector isn't running (since we are),
1426 // so okay to clear gcstack.
1427 #ifdef USING_SPLIT_STACK
1428 gp->gcstack = nil;
1429 #endif
1430 gp->gcnext_sp = nil;
1431 runtime_memclr(&gp->gcregs, sizeof gp->gcregs);
1433 if(m->profilehz > 0)
1434 runtime_setprof(true);
1435 return;
1438 // Tell scheduler to put g back on the run queue:
1439 // mostly equivalent to g->status = Grunning,
1440 // but keeps the garbage collector from thinking
1441 // that g is running right now, which it's not.
1442 gp->readyonstop = 1;
1444 // All the cpus are taken.
1445 // The scheduler will ready g and put this m to sleep.
1446 // When the scheduler takes g away from m,
1447 // it will undo the runtime_sched.mcpu++ above.
1448 runtime_gosched();
1450 // Gosched returned, so we're allowed to run now.
1451 // Delete the gcstack information that we left for
1452 // the garbage collector during the system call.
1453 // Must wait until now because until gosched returns
1454 // we don't know for sure that the garbage collector
1455 // is not running.
1456 #ifdef USING_SPLIT_STACK
1457 gp->gcstack = nil;
1458 #endif
1459 gp->gcnext_sp = nil;
1460 runtime_memclr(&gp->gcregs, sizeof gp->gcregs);
1463 // Allocate a new g, with a stack big enough for stacksize bytes.
1465 runtime_malg(int32 stacksize, byte** ret_stack, size_t* ret_stacksize)
1467 G *newg;
1469 newg = runtime_malloc(sizeof(G));
1470 if(stacksize >= 0) {
1471 #if USING_SPLIT_STACK
1472 int dont_block_signals = 0;
1474 *ret_stack = __splitstack_makecontext(stacksize,
1475 &newg->stack_context[0],
1476 ret_stacksize);
1477 __splitstack_block_signals_context(&newg->stack_context[0],
1478 &dont_block_signals, nil);
1479 #else
1480 *ret_stack = runtime_mallocgc(stacksize, FlagNoProfiling|FlagNoGC, 0, 0);
1481 *ret_stacksize = stacksize;
1482 newg->gcinitial_sp = *ret_stack;
1483 newg->gcstack_size = stacksize;
1484 runtime_xadd(&runtime_stacks_sys, stacksize);
1485 #endif
1487 return newg;
1490 /* For runtime package testing. */
1492 void runtime_testing_entersyscall(void)
1493 __asm__("runtime.entersyscall");
1495 void
1496 runtime_testing_entersyscall()
1498 runtime_entersyscall();
1501 void runtime_testing_exitsyscall(void)
1502 __asm__("runtime.exitsyscall");
1504 void
1505 runtime_testing_exitsyscall()
1507 runtime_exitsyscall();
1511 __go_go(void (*fn)(void*), void* arg)
1513 byte *sp;
1514 size_t spsize;
1515 G *newg;
1516 int32 goid;
1518 goid = runtime_xadd((uint32*)&runtime_sched.goidgen, 1);
1519 if(raceenabled)
1520 runtime_racegostart(goid, runtime_getcallerpc(&fn));
1522 schedlock();
1524 if((newg = gfget()) != nil) {
1525 #ifdef USING_SPLIT_STACK
1526 int dont_block_signals = 0;
1528 sp = __splitstack_resetcontext(&newg->stack_context[0],
1529 &spsize);
1530 __splitstack_block_signals_context(&newg->stack_context[0],
1531 &dont_block_signals, nil);
1532 #else
1533 sp = newg->gcinitial_sp;
1534 spsize = newg->gcstack_size;
1535 if(spsize == 0)
1536 runtime_throw("bad spsize in __go_go");
1537 newg->gcnext_sp = sp;
1538 #endif
1539 } else {
1540 newg = runtime_malg(StackMin, &sp, &spsize);
1541 if(runtime_lastg == nil)
1542 runtime_allg = newg;
1543 else
1544 runtime_lastg->alllink = newg;
1545 runtime_lastg = newg;
1547 newg->status = Gwaiting;
1548 newg->waitreason = "new goroutine";
1550 newg->entry = (byte*)fn;
1551 newg->param = arg;
1552 newg->gopc = (uintptr)__builtin_return_address(0);
1554 runtime_sched.gcount++;
1555 newg->goid = goid;
1557 if(sp == nil)
1558 runtime_throw("nil g->stack0");
1561 // Avoid warnings about variables clobbered by
1562 // longjmp.
1563 byte * volatile vsp = sp;
1564 size_t volatile vspsize = spsize;
1565 G * volatile vnewg = newg;
1567 getcontext(&vnewg->context);
1568 vnewg->context.uc_stack.ss_sp = vsp;
1569 #ifdef MAKECONTEXT_STACK_TOP
1570 vnewg->context.uc_stack.ss_sp += vspsize;
1571 #endif
1572 vnewg->context.uc_stack.ss_size = vspsize;
1573 makecontext(&vnewg->context, kickoff, 0);
1575 newprocreadylocked(vnewg);
1576 schedunlock();
1578 return vnewg;
1582 // Put on gfree list. Sched must be locked.
1583 static void
1584 gfput(G *gp)
1586 gp->schedlink = runtime_sched.gfree;
1587 runtime_sched.gfree = gp;
1590 // Get from gfree list. Sched must be locked.
1591 static G*
1592 gfget(void)
1594 G *gp;
1596 gp = runtime_sched.gfree;
1597 if(gp)
1598 runtime_sched.gfree = gp->schedlink;
1599 return gp;
1602 void runtime_Gosched (void) asm ("runtime.Gosched");
1604 void
1605 runtime_Gosched(void)
1607 runtime_gosched();
1610 // Implementation of runtime.GOMAXPROCS.
1611 // delete when scheduler is stronger
1612 int32
1613 runtime_gomaxprocsfunc(int32 n)
1615 int32 ret;
1616 uint32 v;
1618 schedlock();
1619 ret = runtime_gomaxprocs;
1620 if(n <= 0)
1621 n = ret;
1622 if(n > maxgomaxprocs)
1623 n = maxgomaxprocs;
1624 runtime_gomaxprocs = n;
1625 if(runtime_gomaxprocs > 1)
1626 runtime_singleproc = false;
1627 if(runtime_gcwaiting != 0) {
1628 if(atomic_mcpumax(runtime_sched.atomic) != 1)
1629 runtime_throw("invalid mcpumax during gc");
1630 schedunlock();
1631 return ret;
1634 setmcpumax(n);
1636 // If there are now fewer allowed procs
1637 // than procs running, stop.
1638 v = runtime_atomicload(&runtime_sched.atomic);
1639 if((int32)atomic_mcpu(v) > n) {
1640 schedunlock();
1641 runtime_gosched();
1642 return ret;
1644 // handle more procs
1645 matchmg();
1646 schedunlock();
1647 return ret;
1650 void
1651 runtime_LockOSThread(void)
1653 if(m == &runtime_m0 && runtime_sched.init) {
1654 runtime_sched.lockmain = true;
1655 return;
1657 m->lockedg = g;
1658 g->lockedm = m;
1661 void
1662 runtime_UnlockOSThread(void)
1664 if(m == &runtime_m0 && runtime_sched.init) {
1665 runtime_sched.lockmain = false;
1666 return;
1668 m->lockedg = nil;
1669 g->lockedm = nil;
1672 bool
1673 runtime_lockedOSThread(void)
1675 return g->lockedm != nil && m->lockedg != nil;
1678 // for testing of callbacks
1680 _Bool runtime_golockedOSThread(void)
1681 asm("runtime.golockedOSThread");
1683 _Bool
1684 runtime_golockedOSThread(void)
1686 return runtime_lockedOSThread();
1689 // for testing of wire, unwire
1690 uint32
1691 runtime_mid()
1693 return m->id;
1696 intgo runtime_NumGoroutine (void)
1697 __asm__ ("runtime.NumGoroutine");
1699 intgo
1700 runtime_NumGoroutine()
1702 return runtime_sched.gcount;
1705 int32
1706 runtime_gcount(void)
1708 return runtime_sched.gcount;
1711 int32
1712 runtime_mcount(void)
1714 return runtime_sched.mcount;
1717 static struct {
1718 Lock;
1719 void (*fn)(uintptr*, int32);
1720 int32 hz;
1721 uintptr pcbuf[100];
1722 } prof;
1724 // Called if we receive a SIGPROF signal.
1725 void
1726 runtime_sigprof()
1728 int32 n;
1730 if(prof.fn == nil || prof.hz == 0)
1731 return;
1733 runtime_lock(&prof);
1734 if(prof.fn == nil) {
1735 runtime_unlock(&prof);
1736 return;
1738 n = runtime_callers(0, prof.pcbuf, nelem(prof.pcbuf));
1739 if(n > 0)
1740 prof.fn(prof.pcbuf, n);
1741 runtime_unlock(&prof);
1744 // Arrange to call fn with a traceback hz times a second.
1745 void
1746 runtime_setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz)
1748 // Force sane arguments.
1749 if(hz < 0)
1750 hz = 0;
1751 if(hz == 0)
1752 fn = nil;
1753 if(fn == nil)
1754 hz = 0;
1756 // Stop profiler on this cpu so that it is safe to lock prof.
1757 // if a profiling signal came in while we had prof locked,
1758 // it would deadlock.
1759 runtime_resetcpuprofiler(0);
1761 runtime_lock(&prof);
1762 prof.fn = fn;
1763 prof.hz = hz;
1764 runtime_unlock(&prof);
1765 runtime_lock(&runtime_sched);
1766 runtime_sched.profilehz = hz;
1767 runtime_unlock(&runtime_sched);
1769 if(hz != 0)
1770 runtime_resetcpuprofiler(hz);