* const-uniq-1.c: Expand regex to match AIX XCOFF labels.
[official-gcc.git] / libgo / runtime / cpuprof.c
blob23af18b6c2b304f4ff7d21e5d9e7809d1152f2f9
1 // Copyright 2011 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // CPU profiling.
6 // Based on algorithms and data structures used in
7 // http://code.google.com/p/google-perftools/.
8 //
9 // The main difference between this code and the google-perftools
10 // code is that this code is written to allow copying the profile data
11 // to an arbitrary io.Writer, while the google-perftools code always
12 // writes to an operating system file.
14 // The signal handler for the profiling clock tick adds a new stack trace
15 // to a hash table tracking counts for recent traces. Most clock ticks
16 // hit in the cache. In the event of a cache miss, an entry must be
17 // evicted from the hash table, copied to a log that will eventually be
18 // written as profile data. The google-perftools code flushed the
19 // log itself during the signal handler. This code cannot do that, because
20 // the io.Writer might block or need system calls or locks that are not
21 // safe to use from within the signal handler. Instead, we split the log
22 // into two halves and let the signal handler fill one half while a goroutine
23 // is writing out the other half. When the signal handler fills its half, it
24 // offers to swap with the goroutine. If the writer is not done with its half,
25 // we lose the stack trace for this clock tick (and record that loss).
26 // The goroutine interacts with the signal handler by calling getprofile() to
27 // get the next log piece to write, implicitly handing back the last log
28 // piece it obtained.
30 // The state of this dance between the signal handler and the goroutine
31 // is encoded in the Profile.handoff field. If handoff == 0, then the goroutine
32 // is not using either log half and is waiting (or will soon be waiting) for
33 // a new piece by calling notesleep(&p->wait). If the signal handler
34 // changes handoff from 0 to non-zero, it must call notewakeup(&p->wait)
35 // to wake the goroutine. The value indicates the number of entries in the
36 // log half being handed off. The goroutine leaves the non-zero value in
37 // place until it has finished processing the log half and then flips the number
38 // back to zero. Setting the high bit in handoff means that the profiling is over,
39 // and the goroutine is now in charge of flushing the data left in the hash table
40 // to the log and returning that data.
42 // The handoff field is manipulated using atomic operations.
43 // For the most part, the manipulation of handoff is orderly: if handoff == 0
44 // then the signal handler owns it and can change it to non-zero.
45 // If handoff != 0 then the goroutine owns it and can change it to zero.
46 // If that were the end of the story then we would not need to manipulate
47 // handoff using atomic operations. The operations are needed, however,
48 // in order to let the log closer set the high bit to indicate "EOF" safely
49 // in the situation when normally the goroutine "owns" handoff.
51 #include "runtime.h"
52 #include "arch.h"
53 #include "malloc.h"
55 #include "array.h"
56 typedef struct __go_open_array Slice;
57 #define array __values
58 #define len __count
59 #define cap __capacity
61 enum
63 HashSize = 1<<10,
64 LogSize = 1<<17,
65 Assoc = 4,
66 MaxStack = 64,
69 typedef struct Profile Profile;
70 typedef struct Bucket Bucket;
71 typedef struct Entry Entry;
73 struct Entry {
74 uintptr count;
75 uintptr depth;
76 uintptr stack[MaxStack];
79 struct Bucket {
80 Entry entry[Assoc];
83 struct Profile {
84 bool on; // profiling is on
85 Note wait; // goroutine waits here
86 uintptr count; // tick count
87 uintptr evicts; // eviction count
88 uintptr lost; // lost ticks that need to be logged
89 uintptr totallost; // total lost ticks
91 // Active recent stack traces.
92 Bucket hash[HashSize];
94 // Log of traces evicted from hash.
95 // Signal handler has filled log[toggle][:nlog].
96 // Goroutine is writing log[1-toggle][:handoff].
97 uintptr log[2][LogSize/2];
98 uintptr nlog;
99 int32 toggle;
100 uint32 handoff;
102 // Writer state.
103 // Writer maintains its own toggle to avoid races
104 // looking at signal handler's toggle.
105 uint32 wtoggle;
106 bool wholding; // holding & need to release a log half
107 bool flushing; // flushing hash table - profile is over
108 bool eod_sent; // special end-of-data record sent; => flushing
111 static Lock lk;
112 static Profile *prof;
114 static void tick(uintptr*, int32);
115 static void add(Profile*, uintptr*, int32);
116 static bool evict(Profile*, Entry*);
117 static bool flushlog(Profile*);
119 static uintptr eod[3] = {0, 1, 0};
121 // LostProfileData is a no-op function used in profiles
122 // to mark the number of profiling stack traces that were
123 // discarded due to slow data writers.
124 static void LostProfileData(void) {
127 extern void runtime_SetCPUProfileRate(int32)
128 __asm__("runtime.SetCPUProfileRate");
130 // SetCPUProfileRate sets the CPU profiling rate.
131 // The user documentation is in debug.go.
132 void
133 runtime_SetCPUProfileRate(intgo hz)
135 uintptr *p;
136 uintptr n;
138 // Clamp hz to something reasonable.
139 if(hz < 0)
140 hz = 0;
141 if(hz > 1000000)
142 hz = 1000000;
144 runtime_lock(&lk);
145 if(hz > 0) {
146 if(prof == nil) {
147 prof = runtime_SysAlloc(sizeof *prof);
148 if(prof == nil) {
149 runtime_printf("runtime: cpu profiling cannot allocate memory\n");
150 runtime_unlock(&lk);
151 return;
154 if(prof->on || prof->handoff != 0) {
155 runtime_printf("runtime: cannot set cpu profile rate until previous profile has finished.\n");
156 runtime_unlock(&lk);
157 return;
160 prof->on = true;
161 p = prof->log[0];
162 // pprof binary header format.
163 // http://code.google.com/p/google-perftools/source/browse/trunk/src/profiledata.cc#117
164 *p++ = 0; // count for header
165 *p++ = 3; // depth for header
166 *p++ = 0; // version number
167 *p++ = 1000000 / hz; // period (microseconds)
168 *p++ = 0;
169 prof->nlog = p - prof->log[0];
170 prof->toggle = 0;
171 prof->wholding = false;
172 prof->wtoggle = 0;
173 prof->flushing = false;
174 prof->eod_sent = false;
175 runtime_noteclear(&prof->wait);
177 runtime_setcpuprofilerate(tick, hz);
178 } else if(prof->on) {
179 runtime_setcpuprofilerate(nil, 0);
180 prof->on = false;
182 // Now add is not running anymore, and getprofile owns the entire log.
183 // Set the high bit in prof->handoff to tell getprofile.
184 for(;;) {
185 n = prof->handoff;
186 if(n&0x80000000)
187 runtime_printf("runtime: setcpuprofile(off) twice");
188 if(runtime_cas(&prof->handoff, n, n|0x80000000))
189 break;
191 if(n == 0) {
192 // we did the transition from 0 -> nonzero so we wake getprofile
193 runtime_notewakeup(&prof->wait);
196 runtime_unlock(&lk);
199 static void
200 tick(uintptr *pc, int32 n)
202 add(prof, pc, n);
205 // add adds the stack trace to the profile.
206 // It is called from signal handlers and other limited environments
207 // and cannot allocate memory or acquire locks that might be
208 // held at the time of the signal, nor can it use substantial amounts
209 // of stack. It is allowed to call evict.
210 static void
211 add(Profile *p, uintptr *pc, int32 n)
213 int32 i, j;
214 uintptr h, x;
215 Bucket *b;
216 Entry *e;
218 if(n > MaxStack)
219 n = MaxStack;
221 // Compute hash.
222 h = 0;
223 for(i=0; i<n; i++) {
224 h = h<<8 | (h>>(8*(sizeof(h)-1)));
225 x = pc[i];
226 h += x*31 + x*7 + x*3;
228 p->count++;
230 // Add to entry count if already present in table.
231 b = &p->hash[h%HashSize];
232 for(i=0; i<Assoc; i++) {
233 e = &b->entry[i];
234 if(e->depth != (uintptr)n)
235 continue;
236 for(j=0; j<n; j++)
237 if(e->stack[j] != pc[j])
238 goto ContinueAssoc;
239 e->count++;
240 return;
241 ContinueAssoc:;
244 // Evict entry with smallest count.
245 e = &b->entry[0];
246 for(i=1; i<Assoc; i++)
247 if(b->entry[i].count < e->count)
248 e = &b->entry[i];
249 if(e->count > 0) {
250 if(!evict(p, e)) {
251 // Could not evict entry. Record lost stack.
252 p->lost++;
253 p->totallost++;
254 return;
256 p->evicts++;
259 // Reuse the newly evicted entry.
260 e->depth = n;
261 e->count = 1;
262 for(i=0; i<n; i++)
263 e->stack[i] = pc[i];
266 // evict copies the given entry's data into the log, so that
267 // the entry can be reused. evict is called from add, which
268 // is called from the profiling signal handler, so it must not
269 // allocate memory or block. It is safe to call flushLog.
270 // evict returns true if the entry was copied to the log,
271 // false if there was no room available.
272 static bool
273 evict(Profile *p, Entry *e)
275 int32 i, d, nslot;
276 uintptr *log, *q;
278 d = e->depth;
279 nslot = d+2;
280 log = p->log[p->toggle];
281 if(p->nlog+nslot > nelem(p->log[0])) {
282 if(!flushlog(p))
283 return false;
284 log = p->log[p->toggle];
287 q = log+p->nlog;
288 *q++ = e->count;
289 *q++ = d;
290 for(i=0; i<d; i++)
291 *q++ = e->stack[i];
292 p->nlog = q - log;
293 e->count = 0;
294 return true;
297 // flushlog tries to flush the current log and switch to the other one.
298 // flushlog is called from evict, called from add, called from the signal handler,
299 // so it cannot allocate memory or block. It can try to swap logs with
300 // the writing goroutine, as explained in the comment at the top of this file.
301 static bool
302 flushlog(Profile *p)
304 uintptr *log, *q;
306 if(!runtime_cas(&p->handoff, 0, p->nlog))
307 return false;
308 runtime_notewakeup(&p->wait);
310 p->toggle = 1 - p->toggle;
311 log = p->log[p->toggle];
312 q = log;
313 if(p->lost > 0) {
314 *q++ = p->lost;
315 *q++ = 1;
316 *q++ = (uintptr)LostProfileData;
318 p->nlog = q - log;
319 return true;
322 // getprofile blocks until the next block of profiling data is available
323 // and returns it as a []byte. It is called from the writing goroutine.
324 Slice
325 getprofile(Profile *p)
327 uint32 i, j, n;
328 Slice ret;
329 Bucket *b;
330 Entry *e;
332 ret.array = nil;
333 ret.len = 0;
334 ret.cap = 0;
336 if(p == nil)
337 return ret;
339 if(p->wholding) {
340 // Release previous log to signal handling side.
341 // Loop because we are racing against setprofile(off).
342 for(;;) {
343 n = p->handoff;
344 if(n == 0) {
345 runtime_printf("runtime: phase error during cpu profile handoff\n");
346 return ret;
348 if(n & 0x80000000) {
349 p->wtoggle = 1 - p->wtoggle;
350 p->wholding = false;
351 p->flushing = true;
352 goto flush;
354 if(runtime_cas(&p->handoff, n, 0))
355 break;
357 p->wtoggle = 1 - p->wtoggle;
358 p->wholding = false;
361 if(p->flushing)
362 goto flush;
364 if(!p->on && p->handoff == 0)
365 return ret;
367 // Wait for new log.
368 runtime_entersyscall();
369 runtime_notesleep(&p->wait);
370 runtime_exitsyscall();
371 runtime_noteclear(&p->wait);
373 n = p->handoff;
374 if(n == 0) {
375 runtime_printf("runtime: phase error during cpu profile wait\n");
376 return ret;
378 if(n == 0x80000000) {
379 p->flushing = true;
380 goto flush;
382 n &= ~0x80000000;
384 // Return new log to caller.
385 p->wholding = true;
387 ret.array = (byte*)p->log[p->wtoggle];
388 ret.len = n*sizeof(uintptr);
389 ret.cap = ret.len;
390 return ret;
392 flush:
393 // In flush mode.
394 // Add is no longer being called. We own the log.
395 // Also, p->handoff is non-zero, so flushlog will return false.
396 // Evict the hash table into the log and return it.
397 for(i=0; i<HashSize; i++) {
398 b = &p->hash[i];
399 for(j=0; j<Assoc; j++) {
400 e = &b->entry[j];
401 if(e->count > 0 && !evict(p, e)) {
402 // Filled the log. Stop the loop and return what we've got.
403 goto breakflush;
407 breakflush:
409 // Return pending log data.
410 if(p->nlog > 0) {
411 // Note that we're using toggle now, not wtoggle,
412 // because we're working on the log directly.
413 ret.array = (byte*)p->log[p->toggle];
414 ret.len = p->nlog*sizeof(uintptr);
415 ret.cap = ret.len;
416 p->nlog = 0;
417 return ret;
420 // Made it through the table without finding anything to log.
421 if(!p->eod_sent) {
422 // We may not have space to append this to the partial log buf,
423 // so we always return a new slice for the end-of-data marker.
424 p->eod_sent = true;
425 ret.array = (byte*)eod;
426 ret.len = sizeof eod;
427 ret.cap = ret.len;
428 return ret;
431 // Finally done. Clean up and return nil.
432 p->flushing = false;
433 if(!runtime_cas(&p->handoff, p->handoff, 0))
434 runtime_printf("runtime: profile flush racing with something\n");
435 return ret; // set to nil at top of function
438 extern Slice runtime_CPUProfile(void)
439 __asm__("runtime.CPUProfile");
441 // CPUProfile returns the next cpu profile block as a []byte.
442 // The user documentation is in debug.go.
443 Slice
444 runtime_CPUProfile(void)
446 return getprofile(prof);