Revert revision 178346 (2011-08-30)
[official-gcc.git] / libquadmath / math / lgammaq.c
blobeef62dbc91f6c9d28a890c99895ba9a047fe2636
1 /* lgammal
3 * Natural logarithm of gamma function
7 * SYNOPSIS:
9 * __float128 x, y, lgammal();
10 * extern int sgngam;
12 * y = lgammal(x);
16 * DESCRIPTION:
18 * Returns the base e (2.718...) logarithm of the absolute
19 * value of the gamma function of the argument.
20 * The sign (+1 or -1) of the gamma function is returned in a
21 * global (extern) variable named signgam.
23 * The positive domain is partitioned into numerous segments for approximation.
24 * For x > 10,
25 * log gamma(x) = (x - 0.5) log(x) - x + log sqrt(2 pi) + 1/x R(1/x^2)
26 * Near the minimum at x = x0 = 1.46... the approximation is
27 * log gamma(x0 + z) = log gamma(x0) + z^2 P(z)/Q(z)
28 * for small z.
29 * Elsewhere between 0 and 10,
30 * log gamma(n + z) = log gamma(n) + z P(z)/Q(z)
31 * for various selected n and small z.
33 * The cosecant reflection formula is employed for negative arguments.
37 * ACCURACY:
40 * arithmetic domain # trials peak rms
41 * Relative error:
42 * IEEE 10, 30 100000 3.9e-34 9.8e-35
43 * IEEE 0, 10 100000 3.8e-34 5.3e-35
44 * Absolute error:
45 * IEEE -10, 0 100000 8.0e-34 8.0e-35
46 * IEEE -30, -10 100000 4.4e-34 1.0e-34
47 * IEEE -100, 100 100000 1.0e-34
49 * The absolute error criterion is the same as relative error
50 * when the function magnitude is greater than one but it is absolute
51 * when the magnitude is less than one.
55 /* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
57 This library is free software; you can redistribute it and/or
58 modify it under the terms of the GNU Lesser General Public
59 License as published by the Free Software Foundation; either
60 version 2.1 of the License, or (at your option) any later version.
62 This library is distributed in the hope that it will be useful,
63 but WITHOUT ANY WARRANTY; without even the implied warranty of
64 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
65 Lesser General Public License for more details.
67 You should have received a copy of the GNU Lesser General Public
68 License along with this library; if not, write to the Free Software
69 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
71 #include "quadmath-imp.h"
73 #ifdef HAVE_MATH_H_SIGNGAM
74 #include <math.h> /* For POSIX's extern int signgam. */
75 #endif
77 static const __float128 PIQ = 3.1415926535897932384626433832795028841972E0Q;
78 static const __float128 MAXLGM = 1.0485738685148938358098967157129705071571E4928Q;
79 static const __float128 one = 1.0Q;
80 static const __float128 zero = 0.0Q;
81 static const __float128 huge = 1.0e4000Q;
83 /* log gamma(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x P(1/x^2)
84 1/x <= 0.0741 (x >= 13.495...)
85 Peak relative error 1.5e-36 */
86 static const __float128 ls2pi = 9.1893853320467274178032973640561763986140E-1Q;
87 #define NRASY 12
88 static const __float128 RASY[NRASY + 1] =
90 8.333333333333333333333333333310437112111E-2Q,
91 -2.777777777777777777777774789556228296902E-3Q,
92 7.936507936507936507795933938448586499183E-4Q,
93 -5.952380952380952041799269756378148574045E-4Q,
94 8.417508417507928904209891117498524452523E-4Q,
95 -1.917526917481263997778542329739806086290E-3Q,
96 6.410256381217852504446848671499409919280E-3Q,
97 -2.955064066900961649768101034477363301626E-2Q,
98 1.796402955865634243663453415388336954675E-1Q,
99 -1.391522089007758553455753477688592767741E0Q,
100 1.326130089598399157988112385013829305510E1Q,
101 -1.420412699593782497803472576479997819149E2Q,
102 1.218058922427762808938869872528846787020E3Q
106 /* log gamma(x+13) = log gamma(13) + x P(x)/Q(x)
107 -0.5 <= x <= 0.5
108 12.5 <= x+13 <= 13.5
109 Peak relative error 1.1e-36 */
110 static const __float128 lgam13a = 1.9987213134765625E1Q;
111 static const __float128 lgam13b = 1.3608962611495173623870550785125024484248E-6Q;
112 #define NRN13 7
113 static const __float128 RN13[NRN13 + 1] =
115 8.591478354823578150238226576156275285700E11Q,
116 2.347931159756482741018258864137297157668E11Q,
117 2.555408396679352028680662433943000804616E10Q,
118 1.408581709264464345480765758902967123937E9Q,
119 4.126759849752613822953004114044451046321E7Q,
120 6.133298899622688505854211579222889943778E5Q,
121 3.929248056293651597987893340755876578072E3Q,
122 6.850783280018706668924952057996075215223E0Q
124 #define NRD13 6
125 static const __float128 RD13[NRD13 + 1] =
127 3.401225382297342302296607039352935541669E11Q,
128 8.756765276918037910363513243563234551784E10Q,
129 8.873913342866613213078554180987647243903E9Q,
130 4.483797255342763263361893016049310017973E8Q,
131 1.178186288833066430952276702931512870676E7Q,
132 1.519928623743264797939103740132278337476E5Q,
133 7.989298844938119228411117593338850892311E2Q
134 /* 1.0E0Q */
138 /* log gamma(x+12) = log gamma(12) + x P(x)/Q(x)
139 -0.5 <= x <= 0.5
140 11.5 <= x+12 <= 12.5
141 Peak relative error 4.1e-36 */
142 static const __float128 lgam12a = 1.75023040771484375E1Q;
143 static const __float128 lgam12b = 3.7687254483392876529072161996717039575982E-6Q;
144 #define NRN12 7
145 static const __float128 RN12[NRN12 + 1] =
147 4.709859662695606986110997348630997559137E11Q,
148 1.398713878079497115037857470168777995230E11Q,
149 1.654654931821564315970930093932954900867E10Q,
150 9.916279414876676861193649489207282144036E8Q,
151 3.159604070526036074112008954113411389879E7Q,
152 5.109099197547205212294747623977502492861E5Q,
153 3.563054878276102790183396740969279826988E3Q,
154 6.769610657004672719224614163196946862747E0Q
156 #define NRD12 6
157 static const __float128 RD12[NRD12 + 1] =
159 1.928167007860968063912467318985802726613E11Q,
160 5.383198282277806237247492369072266389233E10Q,
161 5.915693215338294477444809323037871058363E9Q,
162 3.241438287570196713148310560147925781342E8Q,
163 9.236680081763754597872713592701048455890E6Q,
164 1.292246897881650919242713651166596478850E5Q,
165 7.366532445427159272584194816076600211171E2Q
166 /* 1.0E0Q */
170 /* log gamma(x+11) = log gamma(11) + x P(x)/Q(x)
171 -0.5 <= x <= 0.5
172 10.5 <= x+11 <= 11.5
173 Peak relative error 1.8e-35 */
174 static const __float128 lgam11a = 1.5104400634765625E1Q;
175 static const __float128 lgam11b = 1.1938309890295225709329251070371882250744E-5Q;
176 #define NRN11 7
177 static const __float128 RN11[NRN11 + 1] =
179 2.446960438029415837384622675816736622795E11Q,
180 7.955444974446413315803799763901729640350E10Q,
181 1.030555327949159293591618473447420338444E10Q,
182 6.765022131195302709153994345470493334946E8Q,
183 2.361892792609204855279723576041468347494E7Q,
184 4.186623629779479136428005806072176490125E5Q,
185 3.202506022088912768601325534149383594049E3Q,
186 6.681356101133728289358838690666225691363E0Q
188 #define NRD11 6
189 static const __float128 RD11[NRD11 + 1] =
191 1.040483786179428590683912396379079477432E11Q,
192 3.172251138489229497223696648369823779729E10Q,
193 3.806961885984850433709295832245848084614E9Q,
194 2.278070344022934913730015420611609620171E8Q,
195 7.089478198662651683977290023829391596481E6Q,
196 1.083246385105903533237139380509590158658E5Q,
197 6.744420991491385145885727942219463243597E2Q
198 /* 1.0E0Q */
202 /* log gamma(x+10) = log gamma(10) + x P(x)/Q(x)
203 -0.5 <= x <= 0.5
204 9.5 <= x+10 <= 10.5
205 Peak relative error 5.4e-37 */
206 static const __float128 lgam10a = 1.280181884765625E1Q;
207 static const __float128 lgam10b = 8.6324252196112077178745667061642811492557E-6Q;
208 #define NRN10 7
209 static const __float128 RN10[NRN10 + 1] =
211 -1.239059737177249934158597996648808363783E14Q,
212 -4.725899566371458992365624673357356908719E13Q,
213 -7.283906268647083312042059082837754850808E12Q,
214 -5.802855515464011422171165179767478794637E11Q,
215 -2.532349691157548788382820303182745897298E10Q,
216 -5.884260178023777312587193693477072061820E8Q,
217 -6.437774864512125749845840472131829114906E6Q,
218 -2.350975266781548931856017239843273049384E4Q
220 #define NRD10 7
221 static const __float128 RD10[NRD10 + 1] =
223 -5.502645997581822567468347817182347679552E13Q,
224 -1.970266640239849804162284805400136473801E13Q,
225 -2.819677689615038489384974042561531409392E12Q,
226 -2.056105863694742752589691183194061265094E11Q,
227 -8.053670086493258693186307810815819662078E9Q,
228 -1.632090155573373286153427982504851867131E8Q,
229 -1.483575879240631280658077826889223634921E6Q,
230 -4.002806669713232271615885826373550502510E3Q
231 /* 1.0E0Q */
235 /* log gamma(x+9) = log gamma(9) + x P(x)/Q(x)
236 -0.5 <= x <= 0.5
237 8.5 <= x+9 <= 9.5
238 Peak relative error 3.6e-36 */
239 static const __float128 lgam9a = 1.06045989990234375E1Q;
240 static const __float128 lgam9b = 3.9037218127284172274007216547549861681400E-6Q;
241 #define NRN9 7
242 static const __float128 RN9[NRN9 + 1] =
244 -4.936332264202687973364500998984608306189E13Q,
245 -2.101372682623700967335206138517766274855E13Q,
246 -3.615893404644823888655732817505129444195E12Q,
247 -3.217104993800878891194322691860075472926E11Q,
248 -1.568465330337375725685439173603032921399E10Q,
249 -4.073317518162025744377629219101510217761E8Q,
250 -4.983232096406156139324846656819246974500E6Q,
251 -2.036280038903695980912289722995505277253E4Q
253 #define NRD9 7
254 static const __float128 RD9[NRD9 + 1] =
256 -2.306006080437656357167128541231915480393E13Q,
257 -9.183606842453274924895648863832233799950E12Q,
258 -1.461857965935942962087907301194381010380E12Q,
259 -1.185728254682789754150068652663124298303E11Q,
260 -5.166285094703468567389566085480783070037E9Q,
261 -1.164573656694603024184768200787835094317E8Q,
262 -1.177343939483908678474886454113163527909E6Q,
263 -3.529391059783109732159524500029157638736E3Q
264 /* 1.0E0Q */
268 /* log gamma(x+8) = log gamma(8) + x P(x)/Q(x)
269 -0.5 <= x <= 0.5
270 7.5 <= x+8 <= 8.5
271 Peak relative error 2.4e-37 */
272 static const __float128 lgam8a = 8.525146484375E0Q;
273 static const __float128 lgam8b = 1.4876690414300165531036347125050759667737E-5Q;
274 #define NRN8 8
275 static const __float128 RN8[NRN8 + 1] =
277 6.600775438203423546565361176829139703289E11Q,
278 3.406361267593790705240802723914281025800E11Q,
279 7.222460928505293914746983300555538432830E10Q,
280 8.102984106025088123058747466840656458342E9Q,
281 5.157620015986282905232150979772409345927E8Q,
282 1.851445288272645829028129389609068641517E7Q,
283 3.489261702223124354745894067468953756656E5Q,
284 2.892095396706665774434217489775617756014E3Q,
285 6.596977510622195827183948478627058738034E0Q
287 #define NRD8 7
288 static const __float128 RD8[NRD8 + 1] =
290 3.274776546520735414638114828622673016920E11Q,
291 1.581811207929065544043963828487733970107E11Q,
292 3.108725655667825188135393076860104546416E10Q,
293 3.193055010502912617128480163681842165730E9Q,
294 1.830871482669835106357529710116211541839E8Q,
295 5.790862854275238129848491555068073485086E6Q,
296 9.305213264307921522842678835618803553589E4Q,
297 6.216974105861848386918949336819572333622E2Q
298 /* 1.0E0Q */
302 /* log gamma(x+7) = log gamma(7) + x P(x)/Q(x)
303 -0.5 <= x <= 0.5
304 6.5 <= x+7 <= 7.5
305 Peak relative error 3.2e-36 */
306 static const __float128 lgam7a = 6.5792388916015625E0Q;
307 static const __float128 lgam7b = 1.2320408538495060178292903945321122583007E-5Q;
308 #define NRN7 8
309 static const __float128 RN7[NRN7 + 1] =
311 2.065019306969459407636744543358209942213E11Q,
312 1.226919919023736909889724951708796532847E11Q,
313 2.996157990374348596472241776917953749106E10Q,
314 3.873001919306801037344727168434909521030E9Q,
315 2.841575255593761593270885753992732145094E8Q,
316 1.176342515359431913664715324652399565551E7Q,
317 2.558097039684188723597519300356028511547E5Q,
318 2.448525238332609439023786244782810774702E3Q,
319 6.460280377802030953041566617300902020435E0Q
321 #define NRD7 7
322 static const __float128 RD7[NRD7 + 1] =
324 1.102646614598516998880874785339049304483E11Q,
325 6.099297512712715445879759589407189290040E10Q,
326 1.372898136289611312713283201112060238351E10Q,
327 1.615306270420293159907951633566635172343E9Q,
328 1.061114435798489135996614242842561967459E8Q,
329 3.845638971184305248268608902030718674691E6Q,
330 7.081730675423444975703917836972720495507E4Q,
331 5.423122582741398226693137276201344096370E2Q
332 /* 1.0E0Q */
336 /* log gamma(x+6) = log gamma(6) + x P(x)/Q(x)
337 -0.5 <= x <= 0.5
338 5.5 <= x+6 <= 6.5
339 Peak relative error 6.2e-37 */
340 static const __float128 lgam6a = 4.7874908447265625E0Q;
341 static const __float128 lgam6b = 8.9805548349424770093452324304839959231517E-7Q;
342 #define NRN6 8
343 static const __float128 RN6[NRN6 + 1] =
345 -3.538412754670746879119162116819571823643E13Q,
346 -2.613432593406849155765698121483394257148E13Q,
347 -8.020670732770461579558867891923784753062E12Q,
348 -1.322227822931250045347591780332435433420E12Q,
349 -1.262809382777272476572558806855377129513E11Q,
350 -7.015006277027660872284922325741197022467E9Q,
351 -2.149320689089020841076532186783055727299E8Q,
352 -3.167210585700002703820077565539658995316E6Q,
353 -1.576834867378554185210279285358586385266E4Q
355 #define NRD6 8
356 static const __float128 RD6[NRD6 + 1] =
358 -2.073955870771283609792355579558899389085E13Q,
359 -1.421592856111673959642750863283919318175E13Q,
360 -4.012134994918353924219048850264207074949E12Q,
361 -6.013361045800992316498238470888523722431E11Q,
362 -5.145382510136622274784240527039643430628E10Q,
363 -2.510575820013409711678540476918249524123E9Q,
364 -6.564058379709759600836745035871373240904E7Q,
365 -7.861511116647120540275354855221373571536E5Q,
366 -2.821943442729620524365661338459579270561E3Q
367 /* 1.0E0Q */
371 /* log gamma(x+5) = log gamma(5) + x P(x)/Q(x)
372 -0.5 <= x <= 0.5
373 4.5 <= x+5 <= 5.5
374 Peak relative error 3.4e-37 */
375 static const __float128 lgam5a = 3.17803955078125E0Q;
376 static const __float128 lgam5b = 1.4279566695619646941601297055408873990961E-5Q;
377 #define NRN5 9
378 static const __float128 RN5[NRN5 + 1] =
380 2.010952885441805899580403215533972172098E11Q,
381 1.916132681242540921354921906708215338584E11Q,
382 7.679102403710581712903937970163206882492E10Q,
383 1.680514903671382470108010973615268125169E10Q,
384 2.181011222911537259440775283277711588410E9Q,
385 1.705361119398837808244780667539728356096E8Q,
386 7.792391565652481864976147945997033946360E6Q,
387 1.910741381027985291688667214472560023819E5Q,
388 2.088138241893612679762260077783794329559E3Q,
389 6.330318119566998299106803922739066556550E0Q
391 #define NRD5 8
392 static const __float128 RD5[NRD5 + 1] =
394 1.335189758138651840605141370223112376176E11Q,
395 1.174130445739492885895466097516530211283E11Q,
396 4.308006619274572338118732154886328519910E10Q,
397 8.547402888692578655814445003283720677468E9Q,
398 9.934628078575618309542580800421370730906E8Q,
399 6.847107420092173812998096295422311820672E7Q,
400 2.698552646016599923609773122139463150403E6Q,
401 5.526516251532464176412113632726150253215E4Q,
402 4.772343321713697385780533022595450486932E2Q
403 /* 1.0E0Q */
407 /* log gamma(x+4) = log gamma(4) + x P(x)/Q(x)
408 -0.5 <= x <= 0.5
409 3.5 <= x+4 <= 4.5
410 Peak relative error 6.7e-37 */
411 static const __float128 lgam4a = 1.791748046875E0Q;
412 static const __float128 lgam4b = 1.1422353055000812477358380702272722990692E-5Q;
413 #define NRN4 9
414 static const __float128 RN4[NRN4 + 1] =
416 -1.026583408246155508572442242188887829208E13Q,
417 -1.306476685384622809290193031208776258809E13Q,
418 -7.051088602207062164232806511992978915508E12Q,
419 -2.100849457735620004967624442027793656108E12Q,
420 -3.767473790774546963588549871673843260569E11Q,
421 -4.156387497364909963498394522336575984206E10Q,
422 -2.764021460668011732047778992419118757746E9Q,
423 -1.036617204107109779944986471142938641399E8Q,
424 -1.895730886640349026257780896972598305443E6Q,
425 -1.180509051468390914200720003907727988201E4Q
427 #define NRD4 9
428 static const __float128 RD4[NRD4 + 1] =
430 -8.172669122056002077809119378047536240889E12Q,
431 -9.477592426087986751343695251801814226960E12Q,
432 -4.629448850139318158743900253637212801682E12Q,
433 -1.237965465892012573255370078308035272942E12Q,
434 -1.971624313506929845158062177061297598956E11Q,
435 -1.905434843346570533229942397763361493610E10Q,
436 -1.089409357680461419743730978512856675984E9Q,
437 -3.416703082301143192939774401370222822430E7Q,
438 -4.981791914177103793218433195857635265295E5Q,
439 -2.192507743896742751483055798411231453733E3Q
440 /* 1.0E0Q */
444 /* log gamma(x+3) = log gamma(3) + x P(x)/Q(x)
445 -0.25 <= x <= 0.5
446 2.75 <= x+3 <= 3.5
447 Peak relative error 6.0e-37 */
448 static const __float128 lgam3a = 6.93145751953125E-1Q;
449 static const __float128 lgam3b = 1.4286068203094172321214581765680755001344E-6Q;
451 #define NRN3 9
452 static const __float128 RN3[NRN3 + 1] =
454 -4.813901815114776281494823863935820876670E11Q,
455 -8.425592975288250400493910291066881992620E11Q,
456 -6.228685507402467503655405482985516909157E11Q,
457 -2.531972054436786351403749276956707260499E11Q,
458 -6.170200796658926701311867484296426831687E10Q,
459 -9.211477458528156048231908798456365081135E9Q,
460 -8.251806236175037114064561038908691305583E8Q,
461 -4.147886355917831049939930101151160447495E7Q,
462 -1.010851868928346082547075956946476932162E6Q,
463 -8.333374463411801009783402800801201603736E3Q
465 #define NRD3 9
466 static const __float128 RD3[NRD3 + 1] =
468 -5.216713843111675050627304523368029262450E11Q,
469 -8.014292925418308759369583419234079164391E11Q,
470 -5.180106858220030014546267824392678611990E11Q,
471 -1.830406975497439003897734969120997840011E11Q,
472 -3.845274631904879621945745960119924118925E10Q,
473 -4.891033385370523863288908070309417710903E9Q,
474 -3.670172254411328640353855768698287474282E8Q,
475 -1.505316381525727713026364396635522516989E7Q,
476 -2.856327162923716881454613540575964890347E5Q,
477 -1.622140448015769906847567212766206894547E3Q
478 /* 1.0E0Q */
482 /* log gamma(x+2.5) = log gamma(2.5) + x P(x)/Q(x)
483 -0.125 <= x <= 0.25
484 2.375 <= x+2.5 <= 2.75 */
485 static const __float128 lgam2r5a = 2.8466796875E-1Q;
486 static const __float128 lgam2r5b = 1.4901722919159632494669682701924320137696E-5Q;
487 #define NRN2r5 8
488 static const __float128 RN2r5[NRN2r5 + 1] =
490 -4.676454313888335499356699817678862233205E9Q,
491 -9.361888347911187924389905984624216340639E9Q,
492 -7.695353600835685037920815799526540237703E9Q,
493 -3.364370100981509060441853085968900734521E9Q,
494 -8.449902011848163568670361316804900559863E8Q,
495 -1.225249050950801905108001246436783022179E8Q,
496 -9.732972931077110161639900388121650470926E6Q,
497 -3.695711763932153505623248207576425983573E5Q,
498 -4.717341584067827676530426007495274711306E3Q
500 #define NRD2r5 8
501 static const __float128 RD2r5[NRD2r5 + 1] =
503 -6.650657966618993679456019224416926875619E9Q,
504 -1.099511409330635807899718829033488771623E10Q,
505 -7.482546968307837168164311101447116903148E9Q,
506 -2.702967190056506495988922973755870557217E9Q,
507 -5.570008176482922704972943389590409280950E8Q,
508 -6.536934032192792470926310043166993233231E7Q,
509 -4.101991193844953082400035444146067511725E6Q,
510 -1.174082735875715802334430481065526664020E5Q,
511 -9.932840389994157592102947657277692978511E2Q
512 /* 1.0E0Q */
516 /* log gamma(x+2) = x P(x)/Q(x)
517 -0.125 <= x <= +0.375
518 1.875 <= x+2 <= 2.375
519 Peak relative error 4.6e-36 */
520 #define NRN2 9
521 static const __float128 RN2[NRN2 + 1] =
523 -3.716661929737318153526921358113793421524E9Q,
524 -1.138816715030710406922819131397532331321E10Q,
525 -1.421017419363526524544402598734013569950E10Q,
526 -9.510432842542519665483662502132010331451E9Q,
527 -3.747528562099410197957514973274474767329E9Q,
528 -8.923565763363912474488712255317033616626E8Q,
529 -1.261396653700237624185350402781338231697E8Q,
530 -9.918402520255661797735331317081425749014E6Q,
531 -3.753996255897143855113273724233104768831E5Q,
532 -4.778761333044147141559311805999540765612E3Q
534 #define NRD2 9
535 static const __float128 RD2[NRD2 + 1] =
537 -8.790916836764308497770359421351673950111E9Q,
538 -2.023108608053212516399197678553737477486E10Q,
539 -1.958067901852022239294231785363504458367E10Q,
540 -1.035515043621003101254252481625188704529E10Q,
541 -3.253884432621336737640841276619272224476E9Q,
542 -6.186383531162456814954947669274235815544E8Q,
543 -6.932557847749518463038934953605969951466E7Q,
544 -4.240731768287359608773351626528479703758E6Q,
545 -1.197343995089189188078944689846348116630E5Q,
546 -1.004622911670588064824904487064114090920E3Q
547 /* 1.0E0 */
551 /* log gamma(x+1.75) = log gamma(1.75) + x P(x)/Q(x)
552 -0.125 <= x <= +0.125
553 1.625 <= x+1.75 <= 1.875
554 Peak relative error 9.2e-37 */
555 static const __float128 lgam1r75a = -8.441162109375E-2Q;
556 static const __float128 lgam1r75b = 1.0500073264444042213965868602268256157604E-5Q;
557 #define NRN1r75 8
558 static const __float128 RN1r75[NRN1r75 + 1] =
560 -5.221061693929833937710891646275798251513E7Q,
561 -2.052466337474314812817883030472496436993E8Q,
562 -2.952718275974940270675670705084125640069E8Q,
563 -2.132294039648116684922965964126389017840E8Q,
564 -8.554103077186505960591321962207519908489E7Q,
565 -1.940250901348870867323943119132071960050E7Q,
566 -2.379394147112756860769336400290402208435E6Q,
567 -1.384060879999526222029386539622255797389E5Q,
568 -2.698453601378319296159355612094598695530E3Q
570 #define NRD1r75 8
571 static const __float128 RD1r75[NRD1r75 + 1] =
573 -2.109754689501705828789976311354395393605E8Q,
574 -5.036651829232895725959911504899241062286E8Q,
575 -4.954234699418689764943486770327295098084E8Q,
576 -2.589558042412676610775157783898195339410E8Q,
577 -7.731476117252958268044969614034776883031E7Q,
578 -1.316721702252481296030801191240867486965E7Q,
579 -1.201296501404876774861190604303728810836E6Q,
580 -5.007966406976106636109459072523610273928E4Q,
581 -6.155817990560743422008969155276229018209E2Q
582 /* 1.0E0Q */
586 /* log gamma(x+x0) = y0 + x^2 P(x)/Q(x)
587 -0.0867 <= x <= +0.1634
588 1.374932... <= x+x0 <= 1.625032...
589 Peak relative error 4.0e-36 */
590 static const __float128 x0a = 1.4616241455078125Q;
591 static const __float128 x0b = 7.9994605498412626595423257213002588621246E-6Q;
592 static const __float128 y0a = -1.21490478515625E-1Q;
593 static const __float128 y0b = 4.1879797753919044854428223084178486438269E-6Q;
594 #define NRN1r5 8
595 static const __float128 RN1r5[NRN1r5 + 1] =
597 6.827103657233705798067415468881313128066E5Q,
598 1.910041815932269464714909706705242148108E6Q,
599 2.194344176925978377083808566251427771951E6Q,
600 1.332921400100891472195055269688876427962E6Q,
601 4.589080973377307211815655093824787123508E5Q,
602 8.900334161263456942727083580232613796141E4Q,
603 9.053840838306019753209127312097612455236E3Q,
604 4.053367147553353374151852319743594873771E2Q,
605 5.040631576303952022968949605613514584950E0Q
607 #define NRD1r5 8
608 static const __float128 RD1r5[NRD1r5 + 1] =
610 1.411036368843183477558773688484699813355E6Q,
611 4.378121767236251950226362443134306184849E6Q,
612 5.682322855631723455425929877581697918168E6Q,
613 3.999065731556977782435009349967042222375E6Q,
614 1.653651390456781293163585493620758410333E6Q,
615 4.067774359067489605179546964969435858311E5Q,
616 5.741463295366557346748361781768833633256E4Q,
617 4.226404539738182992856094681115746692030E3Q,
618 1.316980975410327975566999780608618774469E2Q,
619 /* 1.0E0Q */
623 /* log gamma(x+1.25) = log gamma(1.25) + x P(x)/Q(x)
624 -.125 <= x <= +.125
625 1.125 <= x+1.25 <= 1.375
626 Peak relative error = 4.9e-36 */
627 static const __float128 lgam1r25a = -9.82818603515625E-2Q;
628 static const __float128 lgam1r25b = 1.0023929749338536146197303364159774377296E-5Q;
629 #define NRN1r25 9
630 static const __float128 RN1r25[NRN1r25 + 1] =
632 -9.054787275312026472896002240379580536760E4Q,
633 -8.685076892989927640126560802094680794471E4Q,
634 2.797898965448019916967849727279076547109E5Q,
635 6.175520827134342734546868356396008898299E5Q,
636 5.179626599589134831538516906517372619641E5Q,
637 2.253076616239043944538380039205558242161E5Q,
638 5.312653119599957228630544772499197307195E4Q,
639 6.434329437514083776052669599834938898255E3Q,
640 3.385414416983114598582554037612347549220E2Q,
641 4.907821957946273805080625052510832015792E0Q
643 #define NRD1r25 8
644 static const __float128 RD1r25[NRD1r25 + 1] =
646 3.980939377333448005389084785896660309000E5Q,
647 1.429634893085231519692365775184490465542E6Q,
648 2.145438946455476062850151428438668234336E6Q,
649 1.743786661358280837020848127465970357893E6Q,
650 8.316364251289743923178092656080441655273E5Q,
651 2.355732939106812496699621491135458324294E5Q,
652 3.822267399625696880571810137601310855419E4Q,
653 3.228463206479133236028576845538387620856E3Q,
654 1.152133170470059555646301189220117965514E2Q
655 /* 1.0E0Q */
659 /* log gamma(x + 1) = x P(x)/Q(x)
660 0.0 <= x <= +0.125
661 1.0 <= x+1 <= 1.125
662 Peak relative error 1.1e-35 */
663 #define NRN1 8
664 static const __float128 RN1[NRN1 + 1] =
666 -9.987560186094800756471055681088744738818E3Q,
667 -2.506039379419574361949680225279376329742E4Q,
668 -1.386770737662176516403363873617457652991E4Q,
669 1.439445846078103202928677244188837130744E4Q,
670 2.159612048879650471489449668295139990693E4Q,
671 1.047439813638144485276023138173676047079E4Q,
672 2.250316398054332592560412486630769139961E3Q,
673 1.958510425467720733041971651126443864041E2Q,
674 4.516830313569454663374271993200291219855E0Q
676 #define NRD1 7
677 static const __float128 RD1[NRD1 + 1] =
679 1.730299573175751778863269333703788214547E4Q,
680 6.807080914851328611903744668028014678148E4Q,
681 1.090071629101496938655806063184092302439E5Q,
682 9.124354356415154289343303999616003884080E4Q,
683 4.262071638655772404431164427024003253954E4Q,
684 1.096981664067373953673982635805821283581E4Q,
685 1.431229503796575892151252708527595787588E3Q,
686 7.734110684303689320830401788262295992921E1Q
687 /* 1.0E0 */
691 /* log gamma(x + 1) = x P(x)/Q(x)
692 -0.125 <= x <= 0
693 0.875 <= x+1 <= 1.0
694 Peak relative error 7.0e-37 */
695 #define NRNr9 8
696 static const __float128 RNr9[NRNr9 + 1] =
698 4.441379198241760069548832023257571176884E5Q,
699 1.273072988367176540909122090089580368732E6Q,
700 9.732422305818501557502584486510048387724E5Q,
701 -5.040539994443998275271644292272870348684E5Q,
702 -1.208719055525609446357448132109723786736E6Q,
703 -7.434275365370936547146540554419058907156E5Q,
704 -2.075642969983377738209203358199008185741E5Q,
705 -2.565534860781128618589288075109372218042E4Q,
706 -1.032901669542994124131223797515913955938E3Q,
708 #define NRDr9 8
709 static const __float128 RDr9[NRDr9 + 1] =
711 -7.694488331323118759486182246005193998007E5Q,
712 -3.301918855321234414232308938454112213751E6Q,
713 -5.856830900232338906742924836032279404702E6Q,
714 -5.540672519616151584486240871424021377540E6Q,
715 -3.006530901041386626148342989181721176919E6Q,
716 -9.350378280513062139466966374330795935163E5Q,
717 -1.566179100031063346901755685375732739511E5Q,
718 -1.205016539620260779274902967231510804992E4Q,
719 -2.724583156305709733221564484006088794284E2Q
720 /* 1.0E0 */
724 /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
726 static __float128
727 neval (__float128 x, const __float128 *p, int n)
729 __float128 y;
731 p += n;
732 y = *p--;
735 y = y * x + *p--;
737 while (--n > 0);
738 return y;
742 /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
744 static __float128
745 deval (__float128 x, const __float128 *p, int n)
747 __float128 y;
749 p += n;
750 y = x + *p--;
753 y = y * x + *p--;
755 while (--n > 0);
756 return y;
760 __float128
761 lgammaq (__float128 x)
763 __float128 p, q, w, z, nx;
764 int i, nn;
765 #ifndef HAVE_MATH_H_SIGNGAM
766 int signgam;
767 #endif
769 signgam = 1;
771 if (! finiteq (x))
772 return x * x;
774 if (x == 0.0Q)
776 if (signbitq (x))
777 signgam = -1;
780 if (x < 0.0Q)
782 q = -x;
783 p = floorq (q);
784 if (p == q)
785 return (one / (p - p));
786 i = p;
787 if ((i & 1) == 0)
788 signgam = -1;
789 else
790 signgam = 1;
791 z = q - p;
792 if (z > 0.5Q)
794 p += 1.0Q;
795 z = p - q;
797 z = q * sinq (PIQ * z);
798 if (z == 0.0Q)
799 return (signgam * huge * huge);
800 w = lgammaq (q);
801 z = logq (PIQ / z) - w;
802 return (z);
805 if (x < 13.5Q)
807 p = 0.0Q;
808 nx = floorq (x + 0.5Q);
809 nn = nx;
810 switch (nn)
812 case 0:
813 /* log gamma (x + 1) = log(x) + log gamma(x) */
814 if (x <= 0.125)
816 p = x * neval (x, RN1, NRN1) / deval (x, RD1, NRD1);
818 else if (x <= 0.375)
820 z = x - 0.25Q;
821 p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25);
822 p += lgam1r25b;
823 p += lgam1r25a;
825 else if (x <= 0.625)
827 z = x + (1.0Q - x0a);
828 z = z - x0b;
829 p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
830 p = p * z * z;
831 p = p + y0b;
832 p = p + y0a;
834 else if (x <= 0.875)
836 z = x - 0.75Q;
837 p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75);
838 p += lgam1r75b;
839 p += lgam1r75a;
841 else
843 z = x - 1.0Q;
844 p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
846 p = p - logq (x);
847 break;
849 case 1:
850 if (x < 0.875Q)
852 if (x <= 0.625)
854 z = x + (1.0Q - x0a);
855 z = z - x0b;
856 p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
857 p = p * z * z;
858 p = p + y0b;
859 p = p + y0a;
861 else if (x <= 0.875)
863 z = x - 0.75Q;
864 p = z * neval (z, RN1r75, NRN1r75)
865 / deval (z, RD1r75, NRD1r75);
866 p += lgam1r75b;
867 p += lgam1r75a;
869 else
871 z = x - 1.0Q;
872 p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
874 p = p - logq (x);
876 else if (x < 1.0Q)
878 z = x - 1.0Q;
879 p = z * neval (z, RNr9, NRNr9) / deval (z, RDr9, NRDr9);
881 else if (x == 1.0Q)
882 p = 0.0Q;
883 else if (x <= 1.125Q)
885 z = x - 1.0Q;
886 p = z * neval (z, RN1, NRN1) / deval (z, RD1, NRD1);
888 else if (x <= 1.375)
890 z = x - 1.25Q;
891 p = z * neval (z, RN1r25, NRN1r25) / deval (z, RD1r25, NRD1r25);
892 p += lgam1r25b;
893 p += lgam1r25a;
895 else
897 /* 1.375 <= x+x0 <= 1.625 */
898 z = x - x0a;
899 z = z - x0b;
900 p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
901 p = p * z * z;
902 p = p + y0b;
903 p = p + y0a;
905 break;
907 case 2:
908 if (x < 1.625Q)
910 z = x - x0a;
911 z = z - x0b;
912 p = neval (z, RN1r5, NRN1r5) / deval (z, RD1r5, NRD1r5);
913 p = p * z * z;
914 p = p + y0b;
915 p = p + y0a;
917 else if (x < 1.875Q)
919 z = x - 1.75Q;
920 p = z * neval (z, RN1r75, NRN1r75) / deval (z, RD1r75, NRD1r75);
921 p += lgam1r75b;
922 p += lgam1r75a;
924 else if (x == 2.0Q)
925 p = 0.0Q;
926 else if (x < 2.375Q)
928 z = x - 2.0Q;
929 p = z * neval (z, RN2, NRN2) / deval (z, RD2, NRD2);
931 else
933 z = x - 2.5Q;
934 p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5);
935 p += lgam2r5b;
936 p += lgam2r5a;
938 break;
940 case 3:
941 if (x < 2.75)
943 z = x - 2.5Q;
944 p = z * neval (z, RN2r5, NRN2r5) / deval (z, RD2r5, NRD2r5);
945 p += lgam2r5b;
946 p += lgam2r5a;
948 else
950 z = x - 3.0Q;
951 p = z * neval (z, RN3, NRN3) / deval (z, RD3, NRD3);
952 p += lgam3b;
953 p += lgam3a;
955 break;
957 case 4:
958 z = x - 4.0Q;
959 p = z * neval (z, RN4, NRN4) / deval (z, RD4, NRD4);
960 p += lgam4b;
961 p += lgam4a;
962 break;
964 case 5:
965 z = x - 5.0Q;
966 p = z * neval (z, RN5, NRN5) / deval (z, RD5, NRD5);
967 p += lgam5b;
968 p += lgam5a;
969 break;
971 case 6:
972 z = x - 6.0Q;
973 p = z * neval (z, RN6, NRN6) / deval (z, RD6, NRD6);
974 p += lgam6b;
975 p += lgam6a;
976 break;
978 case 7:
979 z = x - 7.0Q;
980 p = z * neval (z, RN7, NRN7) / deval (z, RD7, NRD7);
981 p += lgam7b;
982 p += lgam7a;
983 break;
985 case 8:
986 z = x - 8.0Q;
987 p = z * neval (z, RN8, NRN8) / deval (z, RD8, NRD8);
988 p += lgam8b;
989 p += lgam8a;
990 break;
992 case 9:
993 z = x - 9.0Q;
994 p = z * neval (z, RN9, NRN9) / deval (z, RD9, NRD9);
995 p += lgam9b;
996 p += lgam9a;
997 break;
999 case 10:
1000 z = x - 10.0Q;
1001 p = z * neval (z, RN10, NRN10) / deval (z, RD10, NRD10);
1002 p += lgam10b;
1003 p += lgam10a;
1004 break;
1006 case 11:
1007 z = x - 11.0Q;
1008 p = z * neval (z, RN11, NRN11) / deval (z, RD11, NRD11);
1009 p += lgam11b;
1010 p += lgam11a;
1011 break;
1013 case 12:
1014 z = x - 12.0Q;
1015 p = z * neval (z, RN12, NRN12) / deval (z, RD12, NRD12);
1016 p += lgam12b;
1017 p += lgam12a;
1018 break;
1020 case 13:
1021 z = x - 13.0Q;
1022 p = z * neval (z, RN13, NRN13) / deval (z, RD13, NRD13);
1023 p += lgam13b;
1024 p += lgam13a;
1025 break;
1027 return p;
1030 if (x > MAXLGM)
1031 return (signgam * huge * huge);
1033 q = ls2pi - x;
1034 q = (x - 0.5Q) * logq (x) + q;
1035 if (x > 1.0e18Q)
1036 return (q);
1038 p = 1.0Q / (x * x);
1039 q += neval (p, RASY, NRASY) / x;
1040 return (q);