2008-11-30 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / cp / init.c
blob39d87e3669f0dcd4870782925c8e53e5a1740355
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* High-level class interface. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
43 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_dtor_call (tree, special_function_kind, int);
55 static tree build_field_list (tree, tree, int *);
56 static tree build_vtbl_address (tree);
58 /* We are about to generate some complex initialization code.
59 Conceptually, it is all a single expression. However, we may want
60 to include conditionals, loops, and other such statement-level
61 constructs. Therefore, we build the initialization code inside a
62 statement-expression. This function starts such an expression.
63 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
64 pass them back to finish_init_stmts when the expression is
65 complete. */
67 static bool
68 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
70 bool is_global = !building_stmt_tree ();
72 *stmt_expr_p = begin_stmt_expr ();
73 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
75 return is_global;
78 /* Finish out the statement-expression begun by the previous call to
79 begin_init_stmts. Returns the statement-expression itself. */
81 static tree
82 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
84 finish_compound_stmt (compound_stmt);
86 stmt_expr = finish_stmt_expr (stmt_expr, true);
88 gcc_assert (!building_stmt_tree () == is_global);
90 return stmt_expr;
93 /* Constructors */
95 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
96 which we want to initialize the vtable pointer for, DATA is
97 TREE_LIST whose TREE_VALUE is the this ptr expression. */
99 static tree
100 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
102 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
103 return dfs_skip_bases;
105 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
107 tree base_ptr = TREE_VALUE ((tree) data);
109 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
111 expand_virtual_init (binfo, base_ptr);
114 return NULL_TREE;
117 /* Initialize all the vtable pointers in the object pointed to by
118 ADDR. */
120 void
121 initialize_vtbl_ptrs (tree addr)
123 tree list;
124 tree type;
126 type = TREE_TYPE (TREE_TYPE (addr));
127 list = build_tree_list (type, addr);
129 /* Walk through the hierarchy, initializing the vptr in each base
130 class. We do these in pre-order because we can't find the virtual
131 bases for a class until we've initialized the vtbl for that
132 class. */
133 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
136 /* Return an expression for the zero-initialization of an object with
137 type T. This expression will either be a constant (in the case
138 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
139 aggregate), or NULL (in the case that T does not require
140 initialization). In either case, the value can be used as
141 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
142 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
143 is the number of elements in the array. If STATIC_STORAGE_P is
144 TRUE, initializers are only generated for entities for which
145 zero-initialization does not simply mean filling the storage with
146 zero bytes. */
148 tree
149 build_zero_init (tree type, tree nelts, bool static_storage_p)
151 tree init = NULL_TREE;
153 /* [dcl.init]
155 To zero-initialize an object of type T means:
157 -- if T is a scalar type, the storage is set to the value of zero
158 converted to T.
160 -- if T is a non-union class type, the storage for each nonstatic
161 data member and each base-class subobject is zero-initialized.
163 -- if T is a union type, the storage for its first data member is
164 zero-initialized.
166 -- if T is an array type, the storage for each element is
167 zero-initialized.
169 -- if T is a reference type, no initialization is performed. */
171 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
173 if (type == error_mark_node)
175 else if (static_storage_p && zero_init_p (type))
176 /* In order to save space, we do not explicitly build initializers
177 for items that do not need them. GCC's semantics are that
178 items with static storage duration that are not otherwise
179 initialized are initialized to zero. */
181 else if (SCALAR_TYPE_P (type))
182 init = convert (type, integer_zero_node);
183 else if (CLASS_TYPE_P (type))
185 tree field;
186 VEC(constructor_elt,gc) *v = NULL;
188 /* Iterate over the fields, building initializations. */
189 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
191 if (TREE_CODE (field) != FIELD_DECL)
192 continue;
194 /* Note that for class types there will be FIELD_DECLs
195 corresponding to base classes as well. Thus, iterating
196 over TYPE_FIELDs will result in correct initialization of
197 all of the subobjects. */
198 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
200 tree value = build_zero_init (TREE_TYPE (field),
201 /*nelts=*/NULL_TREE,
202 static_storage_p);
203 if (value)
204 CONSTRUCTOR_APPEND_ELT(v, field, value);
207 /* For unions, only the first field is initialized. */
208 if (TREE_CODE (type) == UNION_TYPE)
209 break;
212 /* Build a constructor to contain the initializations. */
213 init = build_constructor (type, v);
215 else if (TREE_CODE (type) == ARRAY_TYPE)
217 tree max_index;
218 VEC(constructor_elt,gc) *v = NULL;
220 /* Iterate over the array elements, building initializations. */
221 if (nelts)
222 max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
223 nelts, integer_one_node);
224 else
225 max_index = array_type_nelts (type);
227 /* If we have an error_mark here, we should just return error mark
228 as we don't know the size of the array yet. */
229 if (max_index == error_mark_node)
230 return error_mark_node;
231 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
233 /* A zero-sized array, which is accepted as an extension, will
234 have an upper bound of -1. */
235 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
237 constructor_elt *ce;
239 v = VEC_alloc (constructor_elt, gc, 1);
240 ce = VEC_quick_push (constructor_elt, v, NULL);
242 /* If this is a one element array, we just use a regular init. */
243 if (tree_int_cst_equal (size_zero_node, max_index))
244 ce->index = size_zero_node;
245 else
246 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
247 max_index);
249 ce->value = build_zero_init (TREE_TYPE (type),
250 /*nelts=*/NULL_TREE,
251 static_storage_p);
254 /* Build a constructor to contain the initializations. */
255 init = build_constructor (type, v);
257 else if (TREE_CODE (type) == VECTOR_TYPE)
258 init = fold_convert (type, integer_zero_node);
259 else
260 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
262 /* In all cases, the initializer is a constant. */
263 if (init)
264 TREE_CONSTANT (init) = 1;
266 return init;
269 /* Return a suitable initializer for value-initializing an object of type
270 TYPE, as described in [dcl.init]. If HAVE_CTOR is true, the initializer
271 for an enclosing object is already calling the constructor for this
272 object. */
274 static tree
275 build_value_init_1 (tree type, bool have_ctor)
277 /* [dcl.init]
279 To value-initialize an object of type T means:
281 - if T is a class type (clause 9) with a user-provided constructor
282 (12.1), then the default constructor for T is called (and the
283 initialization is ill-formed if T has no accessible default
284 constructor);
286 - if T is a non-union class type without a user-provided constructor,
287 then every non-static data member and base-class component of T is
288 value-initialized;92)
290 - if T is an array type, then each element is value-initialized;
292 - otherwise, the object is zero-initialized.
294 A program that calls for default-initialization or
295 value-initialization of an entity of reference type is ill-formed.
297 92) Value-initialization for such a class object may be implemented by
298 zero-initializing the object and then calling the default
299 constructor. */
301 if (CLASS_TYPE_P (type))
303 if (type_has_user_provided_constructor (type) && !have_ctor)
304 return build_aggr_init_expr
305 (type,
306 build_special_member_call (NULL_TREE, complete_ctor_identifier,
307 NULL_TREE, type, LOOKUP_NORMAL,
308 tf_warning_or_error));
309 else if (TREE_CODE (type) != UNION_TYPE)
311 tree field, init;
312 VEC(constructor_elt,gc) *v = NULL;
313 bool call_ctor = !have_ctor && TYPE_NEEDS_CONSTRUCTING (type);
315 /* Iterate over the fields, building initializations. */
316 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
318 tree ftype, value;
320 if (TREE_CODE (field) != FIELD_DECL)
321 continue;
323 ftype = TREE_TYPE (field);
325 if (TREE_CODE (ftype) == REFERENCE_TYPE)
326 error ("value-initialization of reference");
328 /* We could skip vfields and fields of types with
329 user-defined constructors, but I think that won't improve
330 performance at all; it should be simpler in general just
331 to zero out the entire object than try to only zero the
332 bits that actually need it. */
334 /* Note that for class types there will be FIELD_DECLs
335 corresponding to base classes as well. Thus, iterating
336 over TYPE_FIELDs will result in correct initialization of
337 all of the subobjects. */
338 value = build_value_init_1 (ftype, have_ctor || call_ctor);
340 if (value)
341 CONSTRUCTOR_APPEND_ELT(v, field, value);
344 /* Build a constructor to contain the zero- initializations. */
345 init = build_constructor (type, v);
346 if (call_ctor)
348 /* This is a class that needs constructing, but doesn't have
349 a user-defined constructor. So we need to zero-initialize
350 the object and then call the implicitly defined ctor.
351 Implement this by sticking the zero-initialization inside
352 the TARGET_EXPR for the constructor call;
353 cp_gimplify_init_expr will know how to handle it. */
354 tree ctor = build_special_member_call
355 (NULL_TREE, complete_ctor_identifier,
356 NULL_TREE, type, LOOKUP_NORMAL, tf_warning_or_error);
358 ctor = build_cplus_new (type, ctor);
359 init = build2 (INIT_EXPR, void_type_node,
360 TARGET_EXPR_SLOT (ctor), init);
361 init = build2 (COMPOUND_EXPR, void_type_node, init,
362 TARGET_EXPR_INITIAL (ctor));
363 TARGET_EXPR_INITIAL (ctor) = init;
364 return ctor;
366 return init;
369 else if (TREE_CODE (type) == ARRAY_TYPE)
371 VEC(constructor_elt,gc) *v = NULL;
373 /* Iterate over the array elements, building initializations. */
374 tree max_index = array_type_nelts (type);
376 /* If we have an error_mark here, we should just return error mark
377 as we don't know the size of the array yet. */
378 if (max_index == error_mark_node)
379 return error_mark_node;
380 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
382 /* A zero-sized array, which is accepted as an extension, will
383 have an upper bound of -1. */
384 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
386 constructor_elt *ce;
388 v = VEC_alloc (constructor_elt, gc, 1);
389 ce = VEC_quick_push (constructor_elt, v, NULL);
391 /* If this is a one element array, we just use a regular init. */
392 if (tree_int_cst_equal (size_zero_node, max_index))
393 ce->index = size_zero_node;
394 else
395 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
396 max_index);
398 ce->value = build_value_init_1 (TREE_TYPE (type), have_ctor);
400 /* The gimplifier can't deal with a RANGE_EXPR of TARGET_EXPRs. */
401 gcc_assert (TREE_CODE (ce->value) != TARGET_EXPR
402 && TREE_CODE (ce->value) != AGGR_INIT_EXPR);
405 /* Build a constructor to contain the initializations. */
406 return build_constructor (type, v);
409 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
412 /* Return a suitable initializer for value-initializing an object of type
413 TYPE, as described in [dcl.init]. */
415 tree
416 build_value_init (tree type)
418 return build_value_init_1 (type, false);
421 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
422 arguments. If TREE_LIST is void_type_node, an empty initializer
423 list was given; if NULL_TREE no initializer was given. */
425 static void
426 perform_member_init (tree member, tree init)
428 tree decl;
429 tree type = TREE_TYPE (member);
431 /* Effective C++ rule 12 requires that all data members be
432 initialized. */
433 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
434 warning (OPT_Weffc__, "%J%qD should be initialized in the member initialization "
435 "list", current_function_decl, member);
437 /* Get an lvalue for the data member. */
438 decl = build_class_member_access_expr (current_class_ref, member,
439 /*access_path=*/NULL_TREE,
440 /*preserve_reference=*/true,
441 tf_warning_or_error);
442 if (decl == error_mark_node)
443 return;
445 if (init == void_type_node)
447 /* mem() means value-initialization. */
448 if (TREE_CODE (type) == ARRAY_TYPE)
449 init = build_vec_init (decl, NULL_TREE, NULL_TREE,
450 /*explicit_value_init_p=*/true,
451 /* from_array=*/0,
452 tf_warning_or_error);
453 else
455 if (TREE_CODE (type) == REFERENCE_TYPE)
456 warning (0, "%Jdefault-initialization of %q#D, "
457 "which has reference type",
458 current_function_decl, member);
459 init = build2 (INIT_EXPR, type, decl, build_value_init (type));
461 finish_expr_stmt (init);
463 /* Deal with this here, as we will get confused if we try to call the
464 assignment op for an anonymous union. This can happen in a
465 synthesized copy constructor. */
466 else if (ANON_AGGR_TYPE_P (type))
468 if (init)
470 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
471 finish_expr_stmt (init);
474 else if (TYPE_NEEDS_CONSTRUCTING (type))
476 if (init != NULL_TREE
477 && TREE_CODE (type) == ARRAY_TYPE
478 && TREE_CHAIN (init) == NULL_TREE
479 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
481 /* Initialization of one array from another. */
482 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
483 /*explicit_value_init_p=*/false,
484 /* from_array=*/1,
485 tf_warning_or_error));
487 else
489 if (CP_TYPE_CONST_P (type)
490 && init == NULL_TREE
491 && !type_has_user_provided_default_constructor (type))
492 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
493 vtable; still give this diagnostic. */
494 permerror (input_location, "%Juninitialized member %qD with %<const%> type %qT",
495 current_function_decl, member, type);
496 finish_expr_stmt (build_aggr_init (decl, init, 0,
497 tf_warning_or_error));
500 else
502 if (init == NULL_TREE)
504 /* member traversal: note it leaves init NULL */
505 if (TREE_CODE (type) == REFERENCE_TYPE)
506 permerror (input_location, "%Juninitialized reference member %qD",
507 current_function_decl, member);
508 else if (CP_TYPE_CONST_P (type))
509 permerror (input_location, "%Juninitialized member %qD with %<const%> type %qT",
510 current_function_decl, member, type);
512 else if (TREE_CODE (init) == TREE_LIST)
513 /* There was an explicit member initialization. Do some work
514 in that case. */
515 init = build_x_compound_expr_from_list (init, "member initializer");
517 if (init)
518 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
519 tf_warning_or_error));
522 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
524 tree expr;
526 expr = build_class_member_access_expr (current_class_ref, member,
527 /*access_path=*/NULL_TREE,
528 /*preserve_reference=*/false,
529 tf_warning_or_error);
530 expr = build_delete (type, expr, sfk_complete_destructor,
531 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
533 if (expr != error_mark_node)
534 finish_eh_cleanup (expr);
538 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
539 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
541 static tree
542 build_field_list (tree t, tree list, int *uses_unions_p)
544 tree fields;
546 *uses_unions_p = 0;
548 /* Note whether or not T is a union. */
549 if (TREE_CODE (t) == UNION_TYPE)
550 *uses_unions_p = 1;
552 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
554 /* Skip CONST_DECLs for enumeration constants and so forth. */
555 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
556 continue;
558 /* Keep track of whether or not any fields are unions. */
559 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
560 *uses_unions_p = 1;
562 /* For an anonymous struct or union, we must recursively
563 consider the fields of the anonymous type. They can be
564 directly initialized from the constructor. */
565 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
567 /* Add this field itself. Synthesized copy constructors
568 initialize the entire aggregate. */
569 list = tree_cons (fields, NULL_TREE, list);
570 /* And now add the fields in the anonymous aggregate. */
571 list = build_field_list (TREE_TYPE (fields), list,
572 uses_unions_p);
574 /* Add this field. */
575 else if (DECL_NAME (fields))
576 list = tree_cons (fields, NULL_TREE, list);
579 return list;
582 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
583 a FIELD_DECL or BINFO in T that needs initialization. The
584 TREE_VALUE gives the initializer, or list of initializer arguments.
586 Return a TREE_LIST containing all of the initializations required
587 for T, in the order in which they should be performed. The output
588 list has the same format as the input. */
590 static tree
591 sort_mem_initializers (tree t, tree mem_inits)
593 tree init;
594 tree base, binfo, base_binfo;
595 tree sorted_inits;
596 tree next_subobject;
597 VEC(tree,gc) *vbases;
598 int i;
599 int uses_unions_p;
601 /* Build up a list of initializations. The TREE_PURPOSE of entry
602 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
603 TREE_VALUE will be the constructor arguments, or NULL if no
604 explicit initialization was provided. */
605 sorted_inits = NULL_TREE;
607 /* Process the virtual bases. */
608 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
609 VEC_iterate (tree, vbases, i, base); i++)
610 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
612 /* Process the direct bases. */
613 for (binfo = TYPE_BINFO (t), i = 0;
614 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
615 if (!BINFO_VIRTUAL_P (base_binfo))
616 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
618 /* Process the non-static data members. */
619 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
620 /* Reverse the entire list of initializations, so that they are in
621 the order that they will actually be performed. */
622 sorted_inits = nreverse (sorted_inits);
624 /* If the user presented the initializers in an order different from
625 that in which they will actually occur, we issue a warning. Keep
626 track of the next subobject which can be explicitly initialized
627 without issuing a warning. */
628 next_subobject = sorted_inits;
630 /* Go through the explicit initializers, filling in TREE_PURPOSE in
631 the SORTED_INITS. */
632 for (init = mem_inits; init; init = TREE_CHAIN (init))
634 tree subobject;
635 tree subobject_init;
637 subobject = TREE_PURPOSE (init);
639 /* If the explicit initializers are in sorted order, then
640 SUBOBJECT will be NEXT_SUBOBJECT, or something following
641 it. */
642 for (subobject_init = next_subobject;
643 subobject_init;
644 subobject_init = TREE_CHAIN (subobject_init))
645 if (TREE_PURPOSE (subobject_init) == subobject)
646 break;
648 /* Issue a warning if the explicit initializer order does not
649 match that which will actually occur.
650 ??? Are all these on the correct lines? */
651 if (warn_reorder && !subobject_init)
653 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
654 warning (OPT_Wreorder, "%q+D will be initialized after",
655 TREE_PURPOSE (next_subobject));
656 else
657 warning (OPT_Wreorder, "base %qT will be initialized after",
658 TREE_PURPOSE (next_subobject));
659 if (TREE_CODE (subobject) == FIELD_DECL)
660 warning (OPT_Wreorder, " %q+#D", subobject);
661 else
662 warning (OPT_Wreorder, " base %qT", subobject);
663 warning (OPT_Wreorder, "%J when initialized here", current_function_decl);
666 /* Look again, from the beginning of the list. */
667 if (!subobject_init)
669 subobject_init = sorted_inits;
670 while (TREE_PURPOSE (subobject_init) != subobject)
671 subobject_init = TREE_CHAIN (subobject_init);
674 /* It is invalid to initialize the same subobject more than
675 once. */
676 if (TREE_VALUE (subobject_init))
678 if (TREE_CODE (subobject) == FIELD_DECL)
679 error ("%Jmultiple initializations given for %qD",
680 current_function_decl, subobject);
681 else
682 error ("%Jmultiple initializations given for base %qT",
683 current_function_decl, subobject);
686 /* Record the initialization. */
687 TREE_VALUE (subobject_init) = TREE_VALUE (init);
688 next_subobject = subobject_init;
691 /* [class.base.init]
693 If a ctor-initializer specifies more than one mem-initializer for
694 multiple members of the same union (including members of
695 anonymous unions), the ctor-initializer is ill-formed. */
696 if (uses_unions_p)
698 tree last_field = NULL_TREE;
699 for (init = sorted_inits; init; init = TREE_CHAIN (init))
701 tree field;
702 tree field_type;
703 int done;
705 /* Skip uninitialized members and base classes. */
706 if (!TREE_VALUE (init)
707 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
708 continue;
709 /* See if this field is a member of a union, or a member of a
710 structure contained in a union, etc. */
711 field = TREE_PURPOSE (init);
712 for (field_type = DECL_CONTEXT (field);
713 !same_type_p (field_type, t);
714 field_type = TYPE_CONTEXT (field_type))
715 if (TREE_CODE (field_type) == UNION_TYPE)
716 break;
717 /* If this field is not a member of a union, skip it. */
718 if (TREE_CODE (field_type) != UNION_TYPE)
719 continue;
721 /* It's only an error if we have two initializers for the same
722 union type. */
723 if (!last_field)
725 last_field = field;
726 continue;
729 /* See if LAST_FIELD and the field initialized by INIT are
730 members of the same union. If so, there's a problem,
731 unless they're actually members of the same structure
732 which is itself a member of a union. For example, given:
734 union { struct { int i; int j; }; };
736 initializing both `i' and `j' makes sense. */
737 field_type = DECL_CONTEXT (field);
738 done = 0;
741 tree last_field_type;
743 last_field_type = DECL_CONTEXT (last_field);
744 while (1)
746 if (same_type_p (last_field_type, field_type))
748 if (TREE_CODE (field_type) == UNION_TYPE)
749 error ("%Jinitializations for multiple members of %qT",
750 current_function_decl, last_field_type);
751 done = 1;
752 break;
755 if (same_type_p (last_field_type, t))
756 break;
758 last_field_type = TYPE_CONTEXT (last_field_type);
761 /* If we've reached the outermost class, then we're
762 done. */
763 if (same_type_p (field_type, t))
764 break;
766 field_type = TYPE_CONTEXT (field_type);
768 while (!done);
770 last_field = field;
774 return sorted_inits;
777 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
778 is a TREE_LIST giving the explicit mem-initializer-list for the
779 constructor. The TREE_PURPOSE of each entry is a subobject (a
780 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
781 is a TREE_LIST giving the arguments to the constructor or
782 void_type_node for an empty list of arguments. */
784 void
785 emit_mem_initializers (tree mem_inits)
787 /* We will already have issued an error message about the fact that
788 the type is incomplete. */
789 if (!COMPLETE_TYPE_P (current_class_type))
790 return;
792 /* Sort the mem-initializers into the order in which the
793 initializations should be performed. */
794 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
796 in_base_initializer = 1;
798 /* Initialize base classes. */
799 while (mem_inits
800 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
802 tree subobject = TREE_PURPOSE (mem_inits);
803 tree arguments = TREE_VALUE (mem_inits);
805 /* If these initializations are taking place in a copy constructor,
806 the base class should probably be explicitly initialized if there
807 is a user-defined constructor in the base class (other than the
808 default constructor, which will be called anyway). */
809 if (extra_warnings && !arguments
810 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
811 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
812 warning (OPT_Wextra, "%Jbase class %q#T should be explicitly initialized in the "
813 "copy constructor",
814 current_function_decl, BINFO_TYPE (subobject));
816 /* If an explicit -- but empty -- initializer list was present,
817 treat it just like default initialization at this point. */
818 if (arguments == void_type_node)
819 arguments = NULL_TREE;
821 /* Initialize the base. */
822 if (BINFO_VIRTUAL_P (subobject))
823 construct_virtual_base (subobject, arguments);
824 else
826 tree base_addr;
828 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
829 subobject, 1);
830 expand_aggr_init_1 (subobject, NULL_TREE,
831 cp_build_indirect_ref (base_addr, NULL,
832 tf_warning_or_error),
833 arguments,
834 LOOKUP_NORMAL,
835 tf_warning_or_error);
836 expand_cleanup_for_base (subobject, NULL_TREE);
839 mem_inits = TREE_CHAIN (mem_inits);
841 in_base_initializer = 0;
843 /* Initialize the vptrs. */
844 initialize_vtbl_ptrs (current_class_ptr);
846 /* Initialize the data members. */
847 while (mem_inits)
849 perform_member_init (TREE_PURPOSE (mem_inits),
850 TREE_VALUE (mem_inits));
851 mem_inits = TREE_CHAIN (mem_inits);
855 /* Returns the address of the vtable (i.e., the value that should be
856 assigned to the vptr) for BINFO. */
858 static tree
859 build_vtbl_address (tree binfo)
861 tree binfo_for = binfo;
862 tree vtbl;
864 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
865 /* If this is a virtual primary base, then the vtable we want to store
866 is that for the base this is being used as the primary base of. We
867 can't simply skip the initialization, because we may be expanding the
868 inits of a subobject constructor where the virtual base layout
869 can be different. */
870 while (BINFO_PRIMARY_P (binfo_for))
871 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
873 /* Figure out what vtable BINFO's vtable is based on, and mark it as
874 used. */
875 vtbl = get_vtbl_decl_for_binfo (binfo_for);
876 assemble_external (vtbl);
877 TREE_USED (vtbl) = 1;
879 /* Now compute the address to use when initializing the vptr. */
880 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
881 if (TREE_CODE (vtbl) == VAR_DECL)
882 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
884 return vtbl;
887 /* This code sets up the virtual function tables appropriate for
888 the pointer DECL. It is a one-ply initialization.
890 BINFO is the exact type that DECL is supposed to be. In
891 multiple inheritance, this might mean "C's A" if C : A, B. */
893 static void
894 expand_virtual_init (tree binfo, tree decl)
896 tree vtbl, vtbl_ptr;
897 tree vtt_index;
899 /* Compute the initializer for vptr. */
900 vtbl = build_vtbl_address (binfo);
902 /* We may get this vptr from a VTT, if this is a subobject
903 constructor or subobject destructor. */
904 vtt_index = BINFO_VPTR_INDEX (binfo);
905 if (vtt_index)
907 tree vtbl2;
908 tree vtt_parm;
910 /* Compute the value to use, when there's a VTT. */
911 vtt_parm = current_vtt_parm;
912 vtbl2 = build2 (POINTER_PLUS_EXPR,
913 TREE_TYPE (vtt_parm),
914 vtt_parm,
915 vtt_index);
916 vtbl2 = cp_build_indirect_ref (vtbl2, NULL, tf_warning_or_error);
917 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
919 /* The actual initializer is the VTT value only in the subobject
920 constructor. In maybe_clone_body we'll substitute NULL for
921 the vtt_parm in the case of the non-subobject constructor. */
922 vtbl = build3 (COND_EXPR,
923 TREE_TYPE (vtbl),
924 build2 (EQ_EXPR, boolean_type_node,
925 current_in_charge_parm, integer_zero_node),
926 vtbl2,
927 vtbl);
930 /* Compute the location of the vtpr. */
931 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, NULL,
932 tf_warning_or_error),
933 TREE_TYPE (binfo));
934 gcc_assert (vtbl_ptr != error_mark_node);
936 /* Assign the vtable to the vptr. */
937 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
938 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
939 tf_warning_or_error));
942 /* If an exception is thrown in a constructor, those base classes already
943 constructed must be destroyed. This function creates the cleanup
944 for BINFO, which has just been constructed. If FLAG is non-NULL,
945 it is a DECL which is nonzero when this base needs to be
946 destroyed. */
948 static void
949 expand_cleanup_for_base (tree binfo, tree flag)
951 tree expr;
953 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
954 return;
956 /* Call the destructor. */
957 expr = build_special_member_call (current_class_ref,
958 base_dtor_identifier,
959 NULL_TREE,
960 binfo,
961 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
962 tf_warning_or_error);
963 if (flag)
964 expr = fold_build3 (COND_EXPR, void_type_node,
965 c_common_truthvalue_conversion (input_location, flag),
966 expr, integer_zero_node);
968 finish_eh_cleanup (expr);
971 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
972 constructor. */
974 static void
975 construct_virtual_base (tree vbase, tree arguments)
977 tree inner_if_stmt;
978 tree exp;
979 tree flag;
981 /* If there are virtual base classes with destructors, we need to
982 emit cleanups to destroy them if an exception is thrown during
983 the construction process. These exception regions (i.e., the
984 period during which the cleanups must occur) begin from the time
985 the construction is complete to the end of the function. If we
986 create a conditional block in which to initialize the
987 base-classes, then the cleanup region for the virtual base begins
988 inside a block, and ends outside of that block. This situation
989 confuses the sjlj exception-handling code. Therefore, we do not
990 create a single conditional block, but one for each
991 initialization. (That way the cleanup regions always begin
992 in the outer block.) We trust the back end to figure out
993 that the FLAG will not change across initializations, and
994 avoid doing multiple tests. */
995 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
996 inner_if_stmt = begin_if_stmt ();
997 finish_if_stmt_cond (flag, inner_if_stmt);
999 /* Compute the location of the virtual base. If we're
1000 constructing virtual bases, then we must be the most derived
1001 class. Therefore, we don't have to look up the virtual base;
1002 we already know where it is. */
1003 exp = convert_to_base_statically (current_class_ref, vbase);
1005 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1006 LOOKUP_COMPLAIN, tf_warning_or_error);
1007 finish_then_clause (inner_if_stmt);
1008 finish_if_stmt (inner_if_stmt);
1010 expand_cleanup_for_base (vbase, flag);
1013 /* Find the context in which this FIELD can be initialized. */
1015 static tree
1016 initializing_context (tree field)
1018 tree t = DECL_CONTEXT (field);
1020 /* Anonymous union members can be initialized in the first enclosing
1021 non-anonymous union context. */
1022 while (t && ANON_AGGR_TYPE_P (t))
1023 t = TYPE_CONTEXT (t);
1024 return t;
1027 /* Function to give error message if member initialization specification
1028 is erroneous. FIELD is the member we decided to initialize.
1029 TYPE is the type for which the initialization is being performed.
1030 FIELD must be a member of TYPE.
1032 MEMBER_NAME is the name of the member. */
1034 static int
1035 member_init_ok_or_else (tree field, tree type, tree member_name)
1037 if (field == error_mark_node)
1038 return 0;
1039 if (!field)
1041 error ("class %qT does not have any field named %qD", type,
1042 member_name);
1043 return 0;
1045 if (TREE_CODE (field) == VAR_DECL)
1047 error ("%q#D is a static data member; it can only be "
1048 "initialized at its definition",
1049 field);
1050 return 0;
1052 if (TREE_CODE (field) != FIELD_DECL)
1054 error ("%q#D is not a non-static data member of %qT",
1055 field, type);
1056 return 0;
1058 if (initializing_context (field) != type)
1060 error ("class %qT does not have any field named %qD", type,
1061 member_name);
1062 return 0;
1065 return 1;
1068 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1069 is a _TYPE node or TYPE_DECL which names a base for that type.
1070 Check the validity of NAME, and return either the base _TYPE, base
1071 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1072 NULL_TREE and issue a diagnostic.
1074 An old style unnamed direct single base construction is permitted,
1075 where NAME is NULL. */
1077 tree
1078 expand_member_init (tree name)
1080 tree basetype;
1081 tree field;
1083 if (!current_class_ref)
1084 return NULL_TREE;
1086 if (!name)
1088 /* This is an obsolete unnamed base class initializer. The
1089 parser will already have warned about its use. */
1090 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1092 case 0:
1093 error ("unnamed initializer for %qT, which has no base classes",
1094 current_class_type);
1095 return NULL_TREE;
1096 case 1:
1097 basetype = BINFO_TYPE
1098 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1099 break;
1100 default:
1101 error ("unnamed initializer for %qT, which uses multiple inheritance",
1102 current_class_type);
1103 return NULL_TREE;
1106 else if (TYPE_P (name))
1108 basetype = TYPE_MAIN_VARIANT (name);
1109 name = TYPE_NAME (name);
1111 else if (TREE_CODE (name) == TYPE_DECL)
1112 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1113 else
1114 basetype = NULL_TREE;
1116 if (basetype)
1118 tree class_binfo;
1119 tree direct_binfo;
1120 tree virtual_binfo;
1121 int i;
1123 if (current_template_parms)
1124 return basetype;
1126 class_binfo = TYPE_BINFO (current_class_type);
1127 direct_binfo = NULL_TREE;
1128 virtual_binfo = NULL_TREE;
1130 /* Look for a direct base. */
1131 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1132 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1133 break;
1135 /* Look for a virtual base -- unless the direct base is itself
1136 virtual. */
1137 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1138 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1140 /* [class.base.init]
1142 If a mem-initializer-id is ambiguous because it designates
1143 both a direct non-virtual base class and an inherited virtual
1144 base class, the mem-initializer is ill-formed. */
1145 if (direct_binfo && virtual_binfo)
1147 error ("%qD is both a direct base and an indirect virtual base",
1148 basetype);
1149 return NULL_TREE;
1152 if (!direct_binfo && !virtual_binfo)
1154 if (CLASSTYPE_VBASECLASSES (current_class_type))
1155 error ("type %qT is not a direct or virtual base of %qT",
1156 basetype, current_class_type);
1157 else
1158 error ("type %qT is not a direct base of %qT",
1159 basetype, current_class_type);
1160 return NULL_TREE;
1163 return direct_binfo ? direct_binfo : virtual_binfo;
1165 else
1167 if (TREE_CODE (name) == IDENTIFIER_NODE)
1168 field = lookup_field (current_class_type, name, 1, false);
1169 else
1170 field = name;
1172 if (member_init_ok_or_else (field, current_class_type, name))
1173 return field;
1176 return NULL_TREE;
1179 /* This is like `expand_member_init', only it stores one aggregate
1180 value into another.
1182 INIT comes in two flavors: it is either a value which
1183 is to be stored in EXP, or it is a parameter list
1184 to go to a constructor, which will operate on EXP.
1185 If INIT is not a parameter list for a constructor, then set
1186 LOOKUP_ONLYCONVERTING.
1187 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1188 the initializer, if FLAGS is 0, then it is the (init) form.
1189 If `init' is a CONSTRUCTOR, then we emit a warning message,
1190 explaining that such initializations are invalid.
1192 If INIT resolves to a CALL_EXPR which happens to return
1193 something of the type we are looking for, then we know
1194 that we can safely use that call to perform the
1195 initialization.
1197 The virtual function table pointer cannot be set up here, because
1198 we do not really know its type.
1200 This never calls operator=().
1202 When initializing, nothing is CONST.
1204 A default copy constructor may have to be used to perform the
1205 initialization.
1207 A constructor or a conversion operator may have to be used to
1208 perform the initialization, but not both, as it would be ambiguous. */
1210 tree
1211 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1213 tree stmt_expr;
1214 tree compound_stmt;
1215 int destroy_temps;
1216 tree type = TREE_TYPE (exp);
1217 int was_const = TREE_READONLY (exp);
1218 int was_volatile = TREE_THIS_VOLATILE (exp);
1219 int is_global;
1221 if (init == error_mark_node)
1222 return error_mark_node;
1224 TREE_READONLY (exp) = 0;
1225 TREE_THIS_VOLATILE (exp) = 0;
1227 if (init && TREE_CODE (init) != TREE_LIST)
1228 flags |= LOOKUP_ONLYCONVERTING;
1230 if (TREE_CODE (type) == ARRAY_TYPE)
1232 tree itype;
1234 /* An array may not be initialized use the parenthesized
1235 initialization form -- unless the initializer is "()". */
1236 if (init && TREE_CODE (init) == TREE_LIST)
1238 if (complain & tf_error)
1239 error ("bad array initializer");
1240 return error_mark_node;
1242 /* Must arrange to initialize each element of EXP
1243 from elements of INIT. */
1244 itype = init ? TREE_TYPE (init) : NULL_TREE;
1245 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1246 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1247 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1248 itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1249 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1250 /*explicit_value_init_p=*/false,
1251 itype && same_type_p (itype,
1252 TREE_TYPE (exp)),
1253 complain);
1254 TREE_READONLY (exp) = was_const;
1255 TREE_THIS_VOLATILE (exp) = was_volatile;
1256 TREE_TYPE (exp) = type;
1257 if (init)
1258 TREE_TYPE (init) = itype;
1259 return stmt_expr;
1262 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1263 /* Just know that we've seen something for this node. */
1264 TREE_USED (exp) = 1;
1266 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1267 destroy_temps = stmts_are_full_exprs_p ();
1268 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1269 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1270 init, LOOKUP_NORMAL|flags, complain);
1271 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1272 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1273 TREE_READONLY (exp) = was_const;
1274 TREE_THIS_VOLATILE (exp) = was_volatile;
1276 return stmt_expr;
1279 static void
1280 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1281 tsubst_flags_t complain)
1283 tree type = TREE_TYPE (exp);
1284 tree ctor_name;
1286 /* It fails because there may not be a constructor which takes
1287 its own type as the first (or only parameter), but which does
1288 take other types via a conversion. So, if the thing initializing
1289 the expression is a unit element of type X, first try X(X&),
1290 followed by initialization by X. If neither of these work
1291 out, then look hard. */
1292 tree rval;
1293 tree parms;
1295 if (init && TREE_CODE (init) != TREE_LIST
1296 && (flags & LOOKUP_ONLYCONVERTING))
1298 /* Base subobjects should only get direct-initialization. */
1299 gcc_assert (true_exp == exp);
1301 if (flags & DIRECT_BIND)
1302 /* Do nothing. We hit this in two cases: Reference initialization,
1303 where we aren't initializing a real variable, so we don't want
1304 to run a new constructor; and catching an exception, where we
1305 have already built up the constructor call so we could wrap it
1306 in an exception region. */;
1307 else if (BRACE_ENCLOSED_INITIALIZER_P (init)
1308 && CP_AGGREGATE_TYPE_P (type))
1310 /* A brace-enclosed initializer for an aggregate. */
1311 init = digest_init (type, init);
1313 else
1314 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1316 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1317 /* We need to protect the initialization of a catch parm with a
1318 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1319 around the TARGET_EXPR for the copy constructor. See
1320 initialize_handler_parm. */
1322 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1323 TREE_OPERAND (init, 0));
1324 TREE_TYPE (init) = void_type_node;
1326 else
1327 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1328 TREE_SIDE_EFFECTS (init) = 1;
1329 finish_expr_stmt (init);
1330 return;
1333 if (init == NULL_TREE
1334 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1336 parms = init;
1337 if (parms)
1338 init = TREE_VALUE (parms);
1340 else
1341 parms = build_tree_list (NULL_TREE, init);
1343 if (true_exp == exp)
1344 ctor_name = complete_ctor_identifier;
1345 else
1346 ctor_name = base_ctor_identifier;
1348 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags,
1349 complain);
1350 if (TREE_SIDE_EFFECTS (rval))
1351 finish_expr_stmt (convert_to_void (rval, NULL, complain));
1354 /* This function is responsible for initializing EXP with INIT
1355 (if any).
1357 BINFO is the binfo of the type for who we are performing the
1358 initialization. For example, if W is a virtual base class of A and B,
1359 and C : A, B.
1360 If we are initializing B, then W must contain B's W vtable, whereas
1361 were we initializing C, W must contain C's W vtable.
1363 TRUE_EXP is nonzero if it is the true expression being initialized.
1364 In this case, it may be EXP, or may just contain EXP. The reason we
1365 need this is because if EXP is a base element of TRUE_EXP, we
1366 don't necessarily know by looking at EXP where its virtual
1367 baseclass fields should really be pointing. But we do know
1368 from TRUE_EXP. In constructors, we don't know anything about
1369 the value being initialized.
1371 FLAGS is just passed to `build_new_method_call'. See that function
1372 for its description. */
1374 static void
1375 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1376 tsubst_flags_t complain)
1378 tree type = TREE_TYPE (exp);
1380 gcc_assert (init != error_mark_node && type != error_mark_node);
1381 gcc_assert (building_stmt_tree ());
1383 /* Use a function returning the desired type to initialize EXP for us.
1384 If the function is a constructor, and its first argument is
1385 NULL_TREE, know that it was meant for us--just slide exp on
1386 in and expand the constructor. Constructors now come
1387 as TARGET_EXPRs. */
1389 if (init && TREE_CODE (exp) == VAR_DECL
1390 && COMPOUND_LITERAL_P (init))
1392 /* If store_init_value returns NULL_TREE, the INIT has been
1393 recorded as the DECL_INITIAL for EXP. That means there's
1394 nothing more we have to do. */
1395 init = store_init_value (exp, init);
1396 if (init)
1397 finish_expr_stmt (init);
1398 return;
1401 /* We know that expand_default_init can handle everything we want
1402 at this point. */
1403 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1406 /* Report an error if TYPE is not a user-defined, class type. If
1407 OR_ELSE is nonzero, give an error message. */
1410 is_class_type (tree type, int or_else)
1412 if (type == error_mark_node)
1413 return 0;
1415 if (! CLASS_TYPE_P (type))
1417 if (or_else)
1418 error ("%qT is not a class type", type);
1419 return 0;
1421 return 1;
1424 tree
1425 get_type_value (tree name)
1427 if (name == error_mark_node)
1428 return NULL_TREE;
1430 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1431 return IDENTIFIER_TYPE_VALUE (name);
1432 else
1433 return NULL_TREE;
1436 /* Build a reference to a member of an aggregate. This is not a C++
1437 `&', but really something which can have its address taken, and
1438 then act as a pointer to member, for example TYPE :: FIELD can have
1439 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1440 this expression is the operand of "&".
1442 @@ Prints out lousy diagnostics for operator <typename>
1443 @@ fields.
1445 @@ This function should be rewritten and placed in search.c. */
1447 tree
1448 build_offset_ref (tree type, tree member, bool address_p)
1450 tree decl;
1451 tree basebinfo = NULL_TREE;
1453 /* class templates can come in as TEMPLATE_DECLs here. */
1454 if (TREE_CODE (member) == TEMPLATE_DECL)
1455 return member;
1457 if (dependent_type_p (type) || type_dependent_expression_p (member))
1458 return build_qualified_name (NULL_TREE, type, member,
1459 /*template_p=*/false);
1461 gcc_assert (TYPE_P (type));
1462 if (! is_class_type (type, 1))
1463 return error_mark_node;
1465 gcc_assert (DECL_P (member) || BASELINK_P (member));
1466 /* Callers should call mark_used before this point. */
1467 gcc_assert (!DECL_P (member) || TREE_USED (member));
1469 if (!COMPLETE_TYPE_P (complete_type (type))
1470 && !TYPE_BEING_DEFINED (type))
1472 error ("incomplete type %qT does not have member %qD", type, member);
1473 return error_mark_node;
1476 /* Entities other than non-static members need no further
1477 processing. */
1478 if (TREE_CODE (member) == TYPE_DECL)
1479 return member;
1480 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1481 return convert_from_reference (member);
1483 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1485 error ("invalid pointer to bit-field %qD", member);
1486 return error_mark_node;
1489 /* Set up BASEBINFO for member lookup. */
1490 decl = maybe_dummy_object (type, &basebinfo);
1492 /* A lot of this logic is now handled in lookup_member. */
1493 if (BASELINK_P (member))
1495 /* Go from the TREE_BASELINK to the member function info. */
1496 tree t = BASELINK_FUNCTIONS (member);
1498 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1500 /* Get rid of a potential OVERLOAD around it. */
1501 t = OVL_CURRENT (t);
1503 /* Unique functions are handled easily. */
1505 /* For non-static member of base class, we need a special rule
1506 for access checking [class.protected]:
1508 If the access is to form a pointer to member, the
1509 nested-name-specifier shall name the derived class
1510 (or any class derived from that class). */
1511 if (address_p && DECL_P (t)
1512 && DECL_NONSTATIC_MEMBER_P (t))
1513 perform_or_defer_access_check (TYPE_BINFO (type), t, t);
1514 else
1515 perform_or_defer_access_check (basebinfo, t, t);
1517 if (DECL_STATIC_FUNCTION_P (t))
1518 return t;
1519 member = t;
1521 else
1522 TREE_TYPE (member) = unknown_type_node;
1524 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1525 /* We need additional test besides the one in
1526 check_accessibility_of_qualified_id in case it is
1527 a pointer to non-static member. */
1528 perform_or_defer_access_check (TYPE_BINFO (type), member, member);
1530 if (!address_p)
1532 /* If MEMBER is non-static, then the program has fallen afoul of
1533 [expr.prim]:
1535 An id-expression that denotes a nonstatic data member or
1536 nonstatic member function of a class can only be used:
1538 -- as part of a class member access (_expr.ref_) in which the
1539 object-expression refers to the member's class or a class
1540 derived from that class, or
1542 -- to form a pointer to member (_expr.unary.op_), or
1544 -- in the body of a nonstatic member function of that class or
1545 of a class derived from that class (_class.mfct.nonstatic_), or
1547 -- in a mem-initializer for a constructor for that class or for
1548 a class derived from that class (_class.base.init_). */
1549 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1551 /* Build a representation of the qualified name suitable
1552 for use as the operand to "&" -- even though the "&" is
1553 not actually present. */
1554 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1555 /* In Microsoft mode, treat a non-static member function as if
1556 it were a pointer-to-member. */
1557 if (flag_ms_extensions)
1559 PTRMEM_OK_P (member) = 1;
1560 return cp_build_unary_op (ADDR_EXPR, member, 0,
1561 tf_warning_or_error);
1563 error ("invalid use of non-static member function %qD",
1564 TREE_OPERAND (member, 1));
1565 return error_mark_node;
1567 else if (TREE_CODE (member) == FIELD_DECL)
1569 error ("invalid use of non-static data member %qD", member);
1570 return error_mark_node;
1572 return member;
1575 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1576 PTRMEM_OK_P (member) = 1;
1577 return member;
1580 /* If DECL is a scalar enumeration constant or variable with a
1581 constant initializer, return the initializer (or, its initializers,
1582 recursively); otherwise, return DECL. If INTEGRAL_P, the
1583 initializer is only returned if DECL is an integral
1584 constant-expression. */
1586 static tree
1587 constant_value_1 (tree decl, bool integral_p)
1589 while (TREE_CODE (decl) == CONST_DECL
1590 || (integral_p
1591 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1592 : (TREE_CODE (decl) == VAR_DECL
1593 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1595 tree init;
1596 /* Static data members in template classes may have
1597 non-dependent initializers. References to such non-static
1598 data members are not value-dependent, so we must retrieve the
1599 initializer here. The DECL_INITIAL will have the right type,
1600 but will not have been folded because that would prevent us
1601 from performing all appropriate semantic checks at
1602 instantiation time. */
1603 if (DECL_CLASS_SCOPE_P (decl)
1604 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1605 && uses_template_parms (CLASSTYPE_TI_ARGS
1606 (DECL_CONTEXT (decl))))
1608 ++processing_template_decl;
1609 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1610 --processing_template_decl;
1612 else
1614 /* If DECL is a static data member in a template
1615 specialization, we must instantiate it here. The
1616 initializer for the static data member is not processed
1617 until needed; we need it now. */
1618 mark_used (decl);
1619 init = DECL_INITIAL (decl);
1621 if (init == error_mark_node)
1622 return decl;
1623 /* Initializers in templates are generally expanded during
1624 instantiation, so before that for const int i(2)
1625 INIT is a TREE_LIST with the actual initializer as
1626 TREE_VALUE. */
1627 if (processing_template_decl
1628 && init
1629 && TREE_CODE (init) == TREE_LIST
1630 && TREE_CHAIN (init) == NULL_TREE)
1631 init = TREE_VALUE (init);
1632 if (!init
1633 || !TREE_TYPE (init)
1634 || (integral_p
1635 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1636 : (!TREE_CONSTANT (init)
1637 /* Do not return an aggregate constant (of which
1638 string literals are a special case), as we do not
1639 want to make inadvertent copies of such entities,
1640 and we must be sure that their addresses are the
1641 same everywhere. */
1642 || TREE_CODE (init) == CONSTRUCTOR
1643 || TREE_CODE (init) == STRING_CST)))
1644 break;
1645 decl = unshare_expr (init);
1647 return decl;
1650 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1651 constant of integral or enumeration type, then return that value.
1652 These are those variables permitted in constant expressions by
1653 [5.19/1]. */
1655 tree
1656 integral_constant_value (tree decl)
1658 return constant_value_1 (decl, /*integral_p=*/true);
1661 /* A more relaxed version of integral_constant_value, used by the
1662 common C/C++ code and by the C++ front end for optimization
1663 purposes. */
1665 tree
1666 decl_constant_value (tree decl)
1668 return constant_value_1 (decl,
1669 /*integral_p=*/processing_template_decl);
1672 /* Common subroutines of build_new and build_vec_delete. */
1674 /* Call the global __builtin_delete to delete ADDR. */
1676 static tree
1677 build_builtin_delete_call (tree addr)
1679 mark_used (global_delete_fndecl);
1680 return build_call_n (global_delete_fndecl, 1, addr);
1683 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1684 the type of the object being allocated; otherwise, it's just TYPE.
1685 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1686 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1687 the TREE_LIST of arguments to be provided as arguments to a
1688 placement new operator. This routine performs no semantic checks;
1689 it just creates and returns a NEW_EXPR. */
1691 static tree
1692 build_raw_new_expr (tree placement, tree type, tree nelts, tree init,
1693 int use_global_new)
1695 tree new_expr;
1697 new_expr = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
1698 nelts, init);
1699 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1700 TREE_SIDE_EFFECTS (new_expr) = 1;
1702 return new_expr;
1705 /* Make sure that there are no aliasing issues with T, a placement new
1706 expression applied to PLACEMENT, by recording the change in dynamic
1707 type. If placement new is inlined, as it is with libstdc++, and if
1708 the type of the placement new differs from the type of the
1709 placement location itself, then alias analysis may think it is OK
1710 to interchange writes to the location from before the placement new
1711 and from after the placement new. We have to prevent type-based
1712 alias analysis from applying. PLACEMENT may be NULL, which means
1713 that we couldn't capture it in a temporary variable, in which case
1714 we use a memory clobber. */
1716 static tree
1717 avoid_placement_new_aliasing (tree t, tree placement)
1719 tree type_change;
1721 if (processing_template_decl)
1722 return t;
1724 /* If we are not using type based aliasing, we don't have to do
1725 anything. */
1726 if (!flag_strict_aliasing)
1727 return t;
1729 /* If we have a pointer and a location, record the change in dynamic
1730 type. Otherwise we need a general memory clobber. */
1731 if (TREE_CODE (TREE_TYPE (t)) == POINTER_TYPE
1732 && placement != NULL_TREE
1733 && TREE_CODE (TREE_TYPE (placement)) == POINTER_TYPE)
1734 type_change = build_stmt (CHANGE_DYNAMIC_TYPE_EXPR,
1735 TREE_TYPE (t),
1736 placement);
1737 else
1739 /* Build a memory clobber. */
1740 type_change = build_stmt (ASM_EXPR,
1741 build_string (0, ""),
1742 NULL_TREE,
1743 NULL_TREE,
1744 tree_cons (NULL_TREE,
1745 build_string (6, "memory"),
1746 NULL_TREE));
1748 ASM_VOLATILE_P (type_change) = 1;
1751 return build2 (COMPOUND_EXPR, TREE_TYPE (t), type_change, t);
1754 /* Generate code for a new-expression, including calling the "operator
1755 new" function, initializing the object, and, if an exception occurs
1756 during construction, cleaning up. The arguments are as for
1757 build_raw_new_expr. */
1759 static tree
1760 build_new_1 (tree placement, tree type, tree nelts, tree init,
1761 bool globally_qualified_p, tsubst_flags_t complain)
1763 tree size, rval;
1764 /* True iff this is a call to "operator new[]" instead of just
1765 "operator new". */
1766 bool array_p = false;
1767 /* True iff ARRAY_P is true and the bound of the array type is
1768 not necessarily a compile time constant. For example, VLA_P is
1769 true for "new int[f()]". */
1770 bool vla_p = false;
1771 /* The type being allocated. If ARRAY_P is true, this will be an
1772 ARRAY_TYPE. */
1773 tree full_type;
1774 /* If ARRAY_P is true, the element type of the array. This is an
1775 never ARRAY_TYPE; for something like "new int[3][4]", the
1776 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1777 FULL_TYPE. */
1778 tree elt_type;
1779 /* The type of the new-expression. (This type is always a pointer
1780 type.) */
1781 tree pointer_type;
1782 /* A pointer type pointing to the FULL_TYPE. */
1783 tree full_pointer_type;
1784 tree outer_nelts = NULL_TREE;
1785 tree alloc_call, alloc_expr;
1786 /* The address returned by the call to "operator new". This node is
1787 a VAR_DECL and is therefore reusable. */
1788 tree alloc_node;
1789 tree alloc_fn;
1790 tree cookie_expr, init_expr;
1791 int nothrow, check_new;
1792 int use_java_new = 0;
1793 /* If non-NULL, the number of extra bytes to allocate at the
1794 beginning of the storage allocated for an array-new expression in
1795 order to store the number of elements. */
1796 tree cookie_size = NULL_TREE;
1797 tree placement_expr = NULL_TREE;
1798 /* True if the function we are calling is a placement allocation
1799 function. */
1800 bool placement_allocation_fn_p;
1801 tree args = NULL_TREE;
1802 /* True if the storage must be initialized, either by a constructor
1803 or due to an explicit new-initializer. */
1804 bool is_initialized;
1805 /* The address of the thing allocated, not including any cookie. In
1806 particular, if an array cookie is in use, DATA_ADDR is the
1807 address of the first array element. This node is a VAR_DECL, and
1808 is therefore reusable. */
1809 tree data_addr;
1810 tree init_preeval_expr = NULL_TREE;
1812 if (nelts)
1814 tree index;
1816 outer_nelts = nelts;
1817 array_p = true;
1819 /* ??? The middle-end will error on us for building a VLA outside a
1820 function context. Methinks that's not it's purvey. So we'll do
1821 our own VLA layout later. */
1822 vla_p = true;
1823 index = convert (sizetype, nelts);
1824 index = size_binop (MINUS_EXPR, index, size_one_node);
1825 index = build_index_type (index);
1826 full_type = build_cplus_array_type (type, NULL_TREE);
1827 /* We need a copy of the type as build_array_type will return a shared copy
1828 of the incomplete array type. */
1829 full_type = build_distinct_type_copy (full_type);
1830 TYPE_DOMAIN (full_type) = index;
1831 SET_TYPE_STRUCTURAL_EQUALITY (full_type);
1833 else
1835 full_type = type;
1836 if (TREE_CODE (type) == ARRAY_TYPE)
1838 array_p = true;
1839 nelts = array_type_nelts_top (type);
1840 outer_nelts = nelts;
1841 type = TREE_TYPE (type);
1845 /* If our base type is an array, then make sure we know how many elements
1846 it has. */
1847 for (elt_type = type;
1848 TREE_CODE (elt_type) == ARRAY_TYPE;
1849 elt_type = TREE_TYPE (elt_type))
1850 nelts = cp_build_binary_op (input_location,
1851 MULT_EXPR, nelts,
1852 array_type_nelts_top (elt_type),
1853 complain);
1855 if (TREE_CODE (elt_type) == VOID_TYPE)
1857 if (complain & tf_error)
1858 error ("invalid type %<void%> for new");
1859 return error_mark_node;
1862 if (abstract_virtuals_error (NULL_TREE, elt_type))
1863 return error_mark_node;
1865 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || init);
1867 if (CP_TYPE_CONST_P (elt_type) && !init
1868 && !type_has_user_provided_default_constructor (elt_type))
1870 if (complain & tf_error)
1871 error ("uninitialized const in %<new%> of %q#T", elt_type);
1872 return error_mark_node;
1875 size = size_in_bytes (elt_type);
1876 if (array_p)
1878 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1879 if (vla_p)
1881 tree n, bitsize;
1883 /* Do our own VLA layout. Setting TYPE_SIZE/_UNIT is
1884 necessary in order for the <INIT_EXPR <*foo> <CONSTRUCTOR
1885 ...>> to be valid. */
1886 TYPE_SIZE_UNIT (full_type) = size;
1887 n = convert (bitsizetype, nelts);
1888 bitsize = size_binop (MULT_EXPR, TYPE_SIZE (elt_type), n);
1889 TYPE_SIZE (full_type) = bitsize;
1893 alloc_fn = NULL_TREE;
1895 /* Allocate the object. */
1896 if (! placement && TYPE_FOR_JAVA (elt_type))
1898 tree class_addr;
1899 tree class_decl = build_java_class_ref (elt_type);
1900 static const char alloc_name[] = "_Jv_AllocObject";
1902 if (class_decl == error_mark_node)
1903 return error_mark_node;
1905 use_java_new = 1;
1906 if (!get_global_value_if_present (get_identifier (alloc_name),
1907 &alloc_fn))
1909 if (complain & tf_error)
1910 error ("call to Java constructor with %qs undefined", alloc_name);
1911 return error_mark_node;
1913 else if (really_overloaded_fn (alloc_fn))
1915 if (complain & tf_error)
1916 error ("%qD should never be overloaded", alloc_fn);
1917 return error_mark_node;
1919 alloc_fn = OVL_CURRENT (alloc_fn);
1920 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
1921 alloc_call = (cp_build_function_call
1922 (alloc_fn,
1923 build_tree_list (NULL_TREE, class_addr),
1924 complain));
1926 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
1928 error ("Java class %q#T object allocated using placement new", elt_type);
1929 return error_mark_node;
1931 else
1933 tree fnname;
1934 tree fns;
1936 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
1938 if (!globally_qualified_p
1939 && CLASS_TYPE_P (elt_type)
1940 && (array_p
1941 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
1942 : TYPE_HAS_NEW_OPERATOR (elt_type)))
1944 /* Use a class-specific operator new. */
1945 /* If a cookie is required, add some extra space. */
1946 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1948 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1949 size = size_binop (PLUS_EXPR, size, cookie_size);
1951 /* Create the argument list. */
1952 args = tree_cons (NULL_TREE, size, placement);
1953 /* Do name-lookup to find the appropriate operator. */
1954 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
1955 if (fns == NULL_TREE)
1957 if (complain & tf_error)
1958 error ("no suitable %qD found in class %qT", fnname, elt_type);
1959 return error_mark_node;
1961 if (TREE_CODE (fns) == TREE_LIST)
1963 if (complain & tf_error)
1965 error ("request for member %qD is ambiguous", fnname);
1966 print_candidates (fns);
1968 return error_mark_node;
1970 alloc_call = build_new_method_call (build_dummy_object (elt_type),
1971 fns, args,
1972 /*conversion_path=*/NULL_TREE,
1973 LOOKUP_NORMAL,
1974 &alloc_fn,
1975 complain);
1977 else
1979 /* Use a global operator new. */
1980 /* See if a cookie might be required. */
1981 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
1982 cookie_size = targetm.cxx.get_cookie_size (elt_type);
1983 else
1984 cookie_size = NULL_TREE;
1986 alloc_call = build_operator_new_call (fnname, placement,
1987 &size, &cookie_size,
1988 &alloc_fn);
1992 if (alloc_call == error_mark_node)
1993 return error_mark_node;
1995 gcc_assert (alloc_fn != NULL_TREE);
1997 /* If PLACEMENT is a simple pointer type and is not passed by reference,
1998 then copy it into PLACEMENT_EXPR. */
1999 if (!processing_template_decl
2000 && placement != NULL_TREE
2001 && TREE_CHAIN (placement) == NULL_TREE
2002 && TREE_CODE (TREE_TYPE (TREE_VALUE (placement))) == POINTER_TYPE
2003 && TREE_CODE (alloc_call) == CALL_EXPR
2004 && call_expr_nargs (alloc_call) == 2
2005 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2006 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
2008 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2010 if (INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2011 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2013 placement_expr = get_target_expr (TREE_VALUE (placement));
2014 CALL_EXPR_ARG (alloc_call, 1)
2015 = convert (TREE_TYPE (placement_arg), placement_expr);
2019 /* In the simple case, we can stop now. */
2020 pointer_type = build_pointer_type (type);
2021 if (!cookie_size && !is_initialized)
2023 rval = build_nop (pointer_type, alloc_call);
2024 if (placement != NULL)
2025 rval = avoid_placement_new_aliasing (rval, placement_expr);
2026 return rval;
2029 /* Store the result of the allocation call in a variable so that we can
2030 use it more than once. */
2031 alloc_expr = get_target_expr (alloc_call);
2032 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2034 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2035 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2036 alloc_call = TREE_OPERAND (alloc_call, 1);
2038 /* Now, check to see if this function is actually a placement
2039 allocation function. This can happen even when PLACEMENT is NULL
2040 because we might have something like:
2042 struct S { void* operator new (size_t, int i = 0); };
2044 A call to `new S' will get this allocation function, even though
2045 there is no explicit placement argument. If there is more than
2046 one argument, or there are variable arguments, then this is a
2047 placement allocation function. */
2048 placement_allocation_fn_p
2049 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2050 || varargs_function_p (alloc_fn));
2052 /* Preevaluate the placement args so that we don't reevaluate them for a
2053 placement delete. */
2054 if (placement_allocation_fn_p)
2056 tree inits;
2057 stabilize_call (alloc_call, &inits);
2058 if (inits)
2059 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2060 alloc_expr);
2063 /* unless an allocation function is declared with an empty excep-
2064 tion-specification (_except.spec_), throw(), it indicates failure to
2065 allocate storage by throwing a bad_alloc exception (clause _except_,
2066 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2067 cation function is declared with an empty exception-specification,
2068 throw(), it returns null to indicate failure to allocate storage and a
2069 non-null pointer otherwise.
2071 So check for a null exception spec on the op new we just called. */
2073 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2074 check_new = (flag_check_new || nothrow) && ! use_java_new;
2076 if (cookie_size)
2078 tree cookie;
2079 tree cookie_ptr;
2080 tree size_ptr_type;
2082 /* Adjust so we're pointing to the start of the object. */
2083 data_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2084 alloc_node, cookie_size);
2086 /* Store the number of bytes allocated so that we can know how
2087 many elements to destroy later. We use the last sizeof
2088 (size_t) bytes to store the number of elements. */
2089 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2090 cookie_ptr = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2091 alloc_node, cookie_ptr);
2092 size_ptr_type = build_pointer_type (sizetype);
2093 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2094 cookie = cp_build_indirect_ref (cookie_ptr, NULL, complain);
2096 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2098 if (targetm.cxx.cookie_has_size ())
2100 /* Also store the element size. */
2101 cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type, cookie_ptr,
2102 fold_build1 (NEGATE_EXPR, sizetype,
2103 size_in_bytes (sizetype)));
2105 cookie = cp_build_indirect_ref (cookie_ptr, NULL, complain);
2106 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2107 size_in_bytes (elt_type));
2108 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2109 cookie, cookie_expr);
2112 else
2114 cookie_expr = NULL_TREE;
2115 data_addr = alloc_node;
2118 /* Now use a pointer to the type we've actually allocated. */
2119 full_pointer_type = build_pointer_type (full_type);
2120 data_addr = fold_convert (full_pointer_type, data_addr);
2122 /* Now initialize the allocated object. Note that we preevaluate the
2123 initialization expression, apart from the actual constructor call or
2124 assignment--we do this because we want to delay the allocation as long
2125 as possible in order to minimize the size of the exception region for
2126 placement delete. */
2127 if (is_initialized)
2129 bool stable;
2130 bool explicit_value_init_p = false;
2132 init_expr = cp_build_indirect_ref (data_addr, NULL, complain);
2134 if (init == void_zero_node)
2136 init = NULL_TREE;
2137 explicit_value_init_p = true;
2140 if (array_p)
2142 if (init)
2144 if (complain & tf_error)
2145 permerror (input_location, "ISO C++ forbids initialization in array new");
2146 else
2147 return error_mark_node;
2149 init_expr
2150 = build_vec_init (init_expr,
2151 cp_build_binary_op (input_location,
2152 MINUS_EXPR, outer_nelts,
2153 integer_one_node,
2154 complain),
2155 init,
2156 explicit_value_init_p,
2157 /*from_array=*/0,
2158 complain);
2160 /* An array initialization is stable because the initialization
2161 of each element is a full-expression, so the temporaries don't
2162 leak out. */
2163 stable = true;
2165 else
2167 if (TYPE_NEEDS_CONSTRUCTING (type) && !explicit_value_init_p)
2169 init_expr = build_special_member_call (init_expr,
2170 complete_ctor_identifier,
2171 init, elt_type,
2172 LOOKUP_NORMAL,
2173 complain);
2175 else if (explicit_value_init_p)
2177 /* Something like `new int()'. */
2178 init_expr = build2 (INIT_EXPR, full_type,
2179 init_expr, build_value_init (full_type));
2181 else
2183 /* We are processing something like `new int (10)', which
2184 means allocate an int, and initialize it with 10. */
2186 if (TREE_CODE (init) == TREE_LIST)
2187 init = build_x_compound_expr_from_list (init,
2188 "new initializer");
2189 else
2190 gcc_assert (TREE_CODE (init) != CONSTRUCTOR
2191 || TREE_TYPE (init) != NULL_TREE);
2193 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, init,
2194 complain);
2196 stable = stabilize_init (init_expr, &init_preeval_expr);
2199 if (init_expr == error_mark_node)
2200 return error_mark_node;
2202 /* If any part of the object initialization terminates by throwing an
2203 exception and a suitable deallocation function can be found, the
2204 deallocation function is called to free the memory in which the
2205 object was being constructed, after which the exception continues
2206 to propagate in the context of the new-expression. If no
2207 unambiguous matching deallocation function can be found,
2208 propagating the exception does not cause the object's memory to be
2209 freed. */
2210 if (flag_exceptions && ! use_java_new)
2212 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2213 tree cleanup;
2215 /* The Standard is unclear here, but the right thing to do
2216 is to use the same method for finding deallocation
2217 functions that we use for finding allocation functions. */
2218 cleanup = (build_op_delete_call
2219 (dcode,
2220 fold_convert (full_pointer_type, alloc_node),
2221 size,
2222 globally_qualified_p,
2223 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2224 alloc_fn));
2226 if (!cleanup)
2227 /* We're done. */;
2228 else if (stable)
2229 /* This is much simpler if we were able to preevaluate all of
2230 the arguments to the constructor call. */
2231 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2232 init_expr, cleanup);
2233 else
2234 /* Ack! First we allocate the memory. Then we set our sentry
2235 variable to true, and expand a cleanup that deletes the
2236 memory if sentry is true. Then we run the constructor, and
2237 finally clear the sentry.
2239 We need to do this because we allocate the space first, so
2240 if there are any temporaries with cleanups in the
2241 constructor args and we weren't able to preevaluate them, we
2242 need this EH region to extend until end of full-expression
2243 to preserve nesting. */
2245 tree end, sentry, begin;
2247 begin = get_target_expr (boolean_true_node);
2248 CLEANUP_EH_ONLY (begin) = 1;
2250 sentry = TARGET_EXPR_SLOT (begin);
2252 TARGET_EXPR_CLEANUP (begin)
2253 = build3 (COND_EXPR, void_type_node, sentry,
2254 cleanup, void_zero_node);
2256 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2257 sentry, boolean_false_node);
2259 init_expr
2260 = build2 (COMPOUND_EXPR, void_type_node, begin,
2261 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2262 end));
2267 else
2268 init_expr = NULL_TREE;
2270 /* Now build up the return value in reverse order. */
2272 rval = data_addr;
2274 if (init_expr)
2275 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2276 if (cookie_expr)
2277 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2279 if (rval == data_addr)
2280 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2281 and return the call (which doesn't need to be adjusted). */
2282 rval = TARGET_EXPR_INITIAL (alloc_expr);
2283 else
2285 if (check_new)
2287 tree ifexp = cp_build_binary_op (input_location,
2288 NE_EXPR, alloc_node,
2289 integer_zero_node,
2290 complain);
2291 rval = build_conditional_expr (ifexp, rval, alloc_node,
2292 complain);
2295 /* Perform the allocation before anything else, so that ALLOC_NODE
2296 has been initialized before we start using it. */
2297 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2300 if (init_preeval_expr)
2301 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2303 /* Convert to the final type. */
2304 rval = build_nop (pointer_type, rval);
2306 /* A new-expression is never an lvalue. */
2307 gcc_assert (!lvalue_p (rval));
2309 if (placement != NULL)
2310 rval = avoid_placement_new_aliasing (rval, placement_expr);
2312 return rval;
2315 /* Generate a representation for a C++ "new" expression. PLACEMENT is
2316 a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
2317 NELTS is NULL, TYPE is the type of the storage to be allocated. If
2318 NELTS is not NULL, then this is an array-new allocation; TYPE is
2319 the type of the elements in the array and NELTS is the number of
2320 elements in the array. INIT, if non-NULL, is the initializer for
2321 the new object, or void_zero_node to indicate an initializer of
2322 "()". If USE_GLOBAL_NEW is true, then the user explicitly wrote
2323 "::new" rather than just "new". */
2325 tree
2326 build_new (tree placement, tree type, tree nelts, tree init,
2327 int use_global_new, tsubst_flags_t complain)
2329 tree rval;
2330 tree orig_placement;
2331 tree orig_nelts;
2332 tree orig_init;
2334 if (placement == error_mark_node || type == error_mark_node
2335 || init == error_mark_node)
2336 return error_mark_node;
2338 orig_placement = placement;
2339 orig_nelts = nelts;
2340 orig_init = init;
2342 if (nelts == NULL_TREE && init != void_zero_node && list_length (init) == 1
2343 && !any_type_dependent_arguments_p (init))
2345 tree auto_node = type_uses_auto (type);
2346 if (auto_node)
2347 type = do_auto_deduction (type, TREE_VALUE (init), auto_node);
2350 if (processing_template_decl)
2352 if (dependent_type_p (type)
2353 || any_type_dependent_arguments_p (placement)
2354 || (nelts && type_dependent_expression_p (nelts))
2355 || (init != void_zero_node
2356 && any_type_dependent_arguments_p (init)))
2357 return build_raw_new_expr (placement, type, nelts, init,
2358 use_global_new);
2359 placement = build_non_dependent_args (placement);
2360 if (nelts)
2361 nelts = build_non_dependent_expr (nelts);
2362 if (init != void_zero_node)
2363 init = build_non_dependent_args (init);
2366 if (nelts)
2368 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2370 if (complain & tf_error)
2371 permerror (input_location, "size in array new must have integral type");
2372 else
2373 return error_mark_node;
2375 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2378 /* ``A reference cannot be created by the new operator. A reference
2379 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2380 returned by new.'' ARM 5.3.3 */
2381 if (TREE_CODE (type) == REFERENCE_TYPE)
2383 if (complain & tf_error)
2384 error ("new cannot be applied to a reference type");
2385 else
2386 return error_mark_node;
2387 type = TREE_TYPE (type);
2390 if (TREE_CODE (type) == FUNCTION_TYPE)
2392 if (complain & tf_error)
2393 error ("new cannot be applied to a function type");
2394 return error_mark_node;
2397 /* The type allocated must be complete. If the new-type-id was
2398 "T[N]" then we are just checking that "T" is complete here, but
2399 that is equivalent, since the value of "N" doesn't matter. */
2400 if (!complete_type_or_else (type, NULL_TREE))
2401 return error_mark_node;
2403 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
2404 if (rval == error_mark_node)
2405 return error_mark_node;
2407 if (processing_template_decl)
2408 return build_raw_new_expr (orig_placement, type, orig_nelts, orig_init,
2409 use_global_new);
2411 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2412 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2413 TREE_NO_WARNING (rval) = 1;
2415 return rval;
2418 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2420 tree
2421 build_java_class_ref (tree type)
2423 tree name = NULL_TREE, class_decl;
2424 static tree CL_suffix = NULL_TREE;
2425 if (CL_suffix == NULL_TREE)
2426 CL_suffix = get_identifier("class$");
2427 if (jclass_node == NULL_TREE)
2429 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2430 if (jclass_node == NULL_TREE)
2432 error ("call to Java constructor, while %<jclass%> undefined");
2433 return error_mark_node;
2435 jclass_node = TREE_TYPE (jclass_node);
2438 /* Mangle the class$ field. */
2440 tree field;
2441 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2442 if (DECL_NAME (field) == CL_suffix)
2444 mangle_decl (field);
2445 name = DECL_ASSEMBLER_NAME (field);
2446 break;
2448 if (!field)
2450 error ("can't find %<class$%> in %qT", type);
2451 return error_mark_node;
2455 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2456 if (class_decl == NULL_TREE)
2458 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
2459 TREE_STATIC (class_decl) = 1;
2460 DECL_EXTERNAL (class_decl) = 1;
2461 TREE_PUBLIC (class_decl) = 1;
2462 DECL_ARTIFICIAL (class_decl) = 1;
2463 DECL_IGNORED_P (class_decl) = 1;
2464 pushdecl_top_level (class_decl);
2465 make_decl_rtl (class_decl);
2467 return class_decl;
2470 static tree
2471 build_vec_delete_1 (tree base, tree maxindex, tree type,
2472 special_function_kind auto_delete_vec, int use_global_delete)
2474 tree virtual_size;
2475 tree ptype = build_pointer_type (type = complete_type (type));
2476 tree size_exp = size_in_bytes (type);
2478 /* Temporary variables used by the loop. */
2479 tree tbase, tbase_init;
2481 /* This is the body of the loop that implements the deletion of a
2482 single element, and moves temp variables to next elements. */
2483 tree body;
2485 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2486 tree loop = 0;
2488 /* This is the thing that governs what to do after the loop has run. */
2489 tree deallocate_expr = 0;
2491 /* This is the BIND_EXPR which holds the outermost iterator of the
2492 loop. It is convenient to set this variable up and test it before
2493 executing any other code in the loop.
2494 This is also the containing expression returned by this function. */
2495 tree controller = NULL_TREE;
2496 tree tmp;
2498 /* We should only have 1-D arrays here. */
2499 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2501 if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2502 goto no_destructor;
2504 /* The below is short by the cookie size. */
2505 virtual_size = size_binop (MULT_EXPR, size_exp,
2506 convert (sizetype, maxindex));
2508 tbase = create_temporary_var (ptype);
2509 tbase_init = cp_build_modify_expr (tbase, NOP_EXPR,
2510 fold_build2 (POINTER_PLUS_EXPR, ptype,
2511 fold_convert (ptype, base),
2512 virtual_size),
2513 tf_warning_or_error);
2514 DECL_REGISTER (tbase) = 1;
2515 controller = build3 (BIND_EXPR, void_type_node, tbase,
2516 NULL_TREE, NULL_TREE);
2517 TREE_SIDE_EFFECTS (controller) = 1;
2519 body = build1 (EXIT_EXPR, void_type_node,
2520 build2 (EQ_EXPR, boolean_type_node, tbase,
2521 fold_convert (ptype, base)));
2522 tmp = fold_build1 (NEGATE_EXPR, sizetype, size_exp);
2523 body = build_compound_expr
2524 (body, cp_build_modify_expr (tbase, NOP_EXPR,
2525 build2 (POINTER_PLUS_EXPR, ptype, tbase, tmp),
2526 tf_warning_or_error));
2527 body = build_compound_expr
2528 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2529 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2531 loop = build1 (LOOP_EXPR, void_type_node, body);
2532 loop = build_compound_expr (tbase_init, loop);
2534 no_destructor:
2535 /* If the delete flag is one, or anything else with the low bit set,
2536 delete the storage. */
2537 if (auto_delete_vec != sfk_base_destructor)
2539 tree base_tbd;
2541 /* The below is short by the cookie size. */
2542 virtual_size = size_binop (MULT_EXPR, size_exp,
2543 convert (sizetype, maxindex));
2545 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2546 /* no header */
2547 base_tbd = base;
2548 else
2550 tree cookie_size;
2552 cookie_size = targetm.cxx.get_cookie_size (type);
2553 base_tbd
2554 = cp_convert (ptype,
2555 cp_build_binary_op (input_location,
2556 MINUS_EXPR,
2557 cp_convert (string_type_node,
2558 base),
2559 cookie_size,
2560 tf_warning_or_error));
2561 /* True size with header. */
2562 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2565 if (auto_delete_vec == sfk_deleting_destructor)
2566 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2567 base_tbd, virtual_size,
2568 use_global_delete & 1,
2569 /*placement=*/NULL_TREE,
2570 /*alloc_fn=*/NULL_TREE);
2573 body = loop;
2574 if (!deallocate_expr)
2576 else if (!body)
2577 body = deallocate_expr;
2578 else
2579 body = build_compound_expr (body, deallocate_expr);
2581 if (!body)
2582 body = integer_zero_node;
2584 /* Outermost wrapper: If pointer is null, punt. */
2585 body = fold_build3 (COND_EXPR, void_type_node,
2586 fold_build2 (NE_EXPR, boolean_type_node, base,
2587 convert (TREE_TYPE (base),
2588 integer_zero_node)),
2589 body, integer_zero_node);
2590 body = build1 (NOP_EXPR, void_type_node, body);
2592 if (controller)
2594 TREE_OPERAND (controller, 1) = body;
2595 body = controller;
2598 if (TREE_CODE (base) == SAVE_EXPR)
2599 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2600 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2602 return convert_to_void (body, /*implicit=*/NULL, tf_warning_or_error);
2605 /* Create an unnamed variable of the indicated TYPE. */
2607 tree
2608 create_temporary_var (tree type)
2610 tree decl;
2612 decl = build_decl (VAR_DECL, NULL_TREE, type);
2613 TREE_USED (decl) = 1;
2614 DECL_ARTIFICIAL (decl) = 1;
2615 DECL_IGNORED_P (decl) = 1;
2616 DECL_SOURCE_LOCATION (decl) = input_location;
2617 DECL_CONTEXT (decl) = current_function_decl;
2619 return decl;
2622 /* Create a new temporary variable of the indicated TYPE, initialized
2623 to INIT.
2625 It is not entered into current_binding_level, because that breaks
2626 things when it comes time to do final cleanups (which take place
2627 "outside" the binding contour of the function). */
2629 static tree
2630 get_temp_regvar (tree type, tree init)
2632 tree decl;
2634 decl = create_temporary_var (type);
2635 add_decl_expr (decl);
2637 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
2638 tf_warning_or_error));
2640 return decl;
2643 /* `build_vec_init' returns tree structure that performs
2644 initialization of a vector of aggregate types.
2646 BASE is a reference to the vector, of ARRAY_TYPE.
2647 MAXINDEX is the maximum index of the array (one less than the
2648 number of elements). It is only used if
2649 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2651 INIT is the (possibly NULL) initializer.
2653 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
2654 elements in the array are value-initialized.
2656 FROM_ARRAY is 0 if we should init everything with INIT
2657 (i.e., every element initialized from INIT).
2658 FROM_ARRAY is 1 if we should index into INIT in parallel
2659 with initialization of DECL.
2660 FROM_ARRAY is 2 if we should index into INIT in parallel,
2661 but use assignment instead of initialization. */
2663 tree
2664 build_vec_init (tree base, tree maxindex, tree init,
2665 bool explicit_value_init_p,
2666 int from_array, tsubst_flags_t complain)
2668 tree rval;
2669 tree base2 = NULL_TREE;
2670 tree size;
2671 tree itype = NULL_TREE;
2672 tree iterator;
2673 /* The type of the array. */
2674 tree atype = TREE_TYPE (base);
2675 /* The type of an element in the array. */
2676 tree type = TREE_TYPE (atype);
2677 /* The element type reached after removing all outer array
2678 types. */
2679 tree inner_elt_type;
2680 /* The type of a pointer to an element in the array. */
2681 tree ptype;
2682 tree stmt_expr;
2683 tree compound_stmt;
2684 int destroy_temps;
2685 tree try_block = NULL_TREE;
2686 int num_initialized_elts = 0;
2687 bool is_global;
2689 if (TYPE_DOMAIN (atype))
2690 maxindex = array_type_nelts (atype);
2692 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2693 return error_mark_node;
2695 if (explicit_value_init_p)
2696 gcc_assert (!init);
2698 inner_elt_type = strip_array_types (atype);
2699 if (init
2700 && (from_array == 2
2701 ? (!CLASS_TYPE_P (inner_elt_type)
2702 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2703 : !TYPE_NEEDS_CONSTRUCTING (type))
2704 && ((TREE_CODE (init) == CONSTRUCTOR
2705 /* Don't do this if the CONSTRUCTOR might contain something
2706 that might throw and require us to clean up. */
2707 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2708 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2709 || from_array))
2711 /* Do non-default initialization of POD arrays resulting from
2712 brace-enclosed initializers. In this case, digest_init and
2713 store_constructor will handle the semantics for us. */
2715 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2716 return stmt_expr;
2719 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2720 ptype = build_pointer_type (type);
2721 size = size_in_bytes (type);
2722 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2723 base = cp_convert (ptype, decay_conversion (base));
2725 /* The code we are generating looks like:
2727 T* t1 = (T*) base;
2728 T* rval = t1;
2729 ptrdiff_t iterator = maxindex;
2730 try {
2731 for (; iterator != -1; --iterator) {
2732 ... initialize *t1 ...
2733 ++t1;
2735 } catch (...) {
2736 ... destroy elements that were constructed ...
2738 rval;
2741 We can omit the try and catch blocks if we know that the
2742 initialization will never throw an exception, or if the array
2743 elements do not have destructors. We can omit the loop completely if
2744 the elements of the array do not have constructors.
2746 We actually wrap the entire body of the above in a STMT_EXPR, for
2747 tidiness.
2749 When copying from array to another, when the array elements have
2750 only trivial copy constructors, we should use __builtin_memcpy
2751 rather than generating a loop. That way, we could take advantage
2752 of whatever cleverness the back end has for dealing with copies
2753 of blocks of memory. */
2755 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2756 destroy_temps = stmts_are_full_exprs_p ();
2757 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2758 rval = get_temp_regvar (ptype, base);
2759 base = get_temp_regvar (ptype, rval);
2760 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2762 /* Protect the entire array initialization so that we can destroy
2763 the partially constructed array if an exception is thrown.
2764 But don't do this if we're assigning. */
2765 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2766 && from_array != 2)
2768 try_block = begin_try_block ();
2771 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2773 /* Do non-default initialization of non-POD arrays resulting from
2774 brace-enclosed initializers. */
2775 unsigned HOST_WIDE_INT idx;
2776 tree elt;
2777 from_array = 0;
2779 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2781 tree baseref = build1 (INDIRECT_REF, type, base);
2783 num_initialized_elts++;
2785 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2786 if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
2787 finish_expr_stmt (build_aggr_init (baseref, elt, 0, complain));
2788 else
2789 finish_expr_stmt (cp_build_modify_expr (baseref, NOP_EXPR,
2790 elt, complain));
2791 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2793 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
2794 complain));
2795 finish_expr_stmt (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2796 complain));
2799 /* Clear out INIT so that we don't get confused below. */
2800 init = NULL_TREE;
2802 else if (from_array)
2804 /* If initializing one array from another, initialize element by
2805 element. We rely upon the below calls the do argument
2806 checking. */
2807 if (init)
2809 base2 = decay_conversion (init);
2810 itype = TREE_TYPE (base2);
2811 base2 = get_temp_regvar (itype, base2);
2812 itype = TREE_TYPE (itype);
2814 else if (TYPE_LANG_SPECIFIC (type)
2815 && TYPE_NEEDS_CONSTRUCTING (type)
2816 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2818 if (complain & tf_error)
2819 error ("initializer ends prematurely");
2820 return error_mark_node;
2824 /* Now, default-initialize any remaining elements. We don't need to
2825 do that if a) the type does not need constructing, or b) we've
2826 already initialized all the elements.
2828 We do need to keep going if we're copying an array. */
2830 if (from_array
2831 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_value_init_p)
2832 && ! (host_integerp (maxindex, 0)
2833 && (num_initialized_elts
2834 == tree_low_cst (maxindex, 0) + 1))))
2836 /* If the ITERATOR is equal to -1, then we don't have to loop;
2837 we've already initialized all the elements. */
2838 tree for_stmt;
2839 tree elt_init;
2840 tree to;
2842 for_stmt = begin_for_stmt ();
2843 finish_for_init_stmt (for_stmt);
2844 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2845 build_int_cst (TREE_TYPE (iterator), -1)),
2846 for_stmt);
2847 finish_for_expr (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2848 complain),
2849 for_stmt);
2851 to = build1 (INDIRECT_REF, type, base);
2853 if (from_array)
2855 tree from;
2857 if (base2)
2858 from = build1 (INDIRECT_REF, itype, base2);
2859 else
2860 from = NULL_TREE;
2862 if (from_array == 2)
2863 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2864 complain);
2865 else if (TYPE_NEEDS_CONSTRUCTING (type))
2866 elt_init = build_aggr_init (to, from, 0, complain);
2867 else if (from)
2868 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2869 complain);
2870 else
2871 gcc_unreachable ();
2873 else if (TREE_CODE (type) == ARRAY_TYPE)
2875 if (init != 0)
2876 sorry
2877 ("cannot initialize multi-dimensional array with initializer");
2878 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2879 0, 0,
2880 explicit_value_init_p,
2881 0, complain);
2883 else if (explicit_value_init_p)
2884 elt_init = build2 (INIT_EXPR, type, to,
2885 build_value_init (type));
2886 else
2888 gcc_assert (TYPE_NEEDS_CONSTRUCTING (type));
2889 elt_init = build_aggr_init (to, init, 0, complain);
2892 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2893 finish_expr_stmt (elt_init);
2894 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2896 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
2897 complain));
2898 if (base2)
2899 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
2900 complain));
2902 finish_for_stmt (for_stmt);
2905 /* Make sure to cleanup any partially constructed elements. */
2906 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2907 && from_array != 2)
2909 tree e;
2910 tree m = cp_build_binary_op (input_location,
2911 MINUS_EXPR, maxindex, iterator,
2912 complain);
2914 /* Flatten multi-dimensional array since build_vec_delete only
2915 expects one-dimensional array. */
2916 if (TREE_CODE (type) == ARRAY_TYPE)
2917 m = cp_build_binary_op (input_location,
2918 MULT_EXPR, m,
2919 array_type_nelts_total (type),
2920 complain);
2922 finish_cleanup_try_block (try_block);
2923 e = build_vec_delete_1 (rval, m,
2924 inner_elt_type, sfk_base_destructor,
2925 /*use_global_delete=*/0);
2926 finish_cleanup (e, try_block);
2929 /* The value of the array initialization is the array itself, RVAL
2930 is a pointer to the first element. */
2931 finish_stmt_expr_expr (rval, stmt_expr);
2933 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2935 /* Now convert make the result have the correct type. */
2936 atype = build_pointer_type (atype);
2937 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2938 stmt_expr = cp_build_indirect_ref (stmt_expr, NULL, complain);
2940 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2941 return stmt_expr;
2944 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2945 build_delete. */
2947 static tree
2948 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2950 tree name;
2951 tree fn;
2952 switch (dtor_kind)
2954 case sfk_complete_destructor:
2955 name = complete_dtor_identifier;
2956 break;
2958 case sfk_base_destructor:
2959 name = base_dtor_identifier;
2960 break;
2962 case sfk_deleting_destructor:
2963 name = deleting_dtor_identifier;
2964 break;
2966 default:
2967 gcc_unreachable ();
2969 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2970 return build_new_method_call (exp, fn,
2971 /*args=*/NULL_TREE,
2972 /*conversion_path=*/NULL_TREE,
2973 flags,
2974 /*fn_p=*/NULL,
2975 tf_warning_or_error);
2978 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2979 ADDR is an expression which yields the store to be destroyed.
2980 AUTO_DELETE is the name of the destructor to call, i.e., either
2981 sfk_complete_destructor, sfk_base_destructor, or
2982 sfk_deleting_destructor.
2984 FLAGS is the logical disjunction of zero or more LOOKUP_
2985 flags. See cp-tree.h for more info. */
2987 tree
2988 build_delete (tree type, tree addr, special_function_kind auto_delete,
2989 int flags, int use_global_delete)
2991 tree expr;
2993 if (addr == error_mark_node)
2994 return error_mark_node;
2996 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2997 set to `error_mark_node' before it gets properly cleaned up. */
2998 if (type == error_mark_node)
2999 return error_mark_node;
3001 type = TYPE_MAIN_VARIANT (type);
3003 if (TREE_CODE (type) == POINTER_TYPE)
3005 bool complete_p = true;
3007 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3008 if (TREE_CODE (type) == ARRAY_TYPE)
3009 goto handle_array;
3011 /* We don't want to warn about delete of void*, only other
3012 incomplete types. Deleting other incomplete types
3013 invokes undefined behavior, but it is not ill-formed, so
3014 compile to something that would even do The Right Thing
3015 (TM) should the type have a trivial dtor and no delete
3016 operator. */
3017 if (!VOID_TYPE_P (type))
3019 complete_type (type);
3020 if (!COMPLETE_TYPE_P (type))
3022 if (warning (0, "possible problem detected in invocation of "
3023 "delete operator:"))
3025 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3026 inform (input_location, "neither the destructor nor the class-specific "
3027 "operator delete will be called, even if they are "
3028 "declared when the class is defined.");
3030 complete_p = false;
3033 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3034 /* Call the builtin operator delete. */
3035 return build_builtin_delete_call (addr);
3036 if (TREE_SIDE_EFFECTS (addr))
3037 addr = save_expr (addr);
3039 /* Throw away const and volatile on target type of addr. */
3040 addr = convert_force (build_pointer_type (type), addr, 0);
3042 else if (TREE_CODE (type) == ARRAY_TYPE)
3044 handle_array:
3046 if (TYPE_DOMAIN (type) == NULL_TREE)
3048 error ("unknown array size in delete");
3049 return error_mark_node;
3051 return build_vec_delete (addr, array_type_nelts (type),
3052 auto_delete, use_global_delete);
3054 else
3056 /* Don't check PROTECT here; leave that decision to the
3057 destructor. If the destructor is accessible, call it,
3058 else report error. */
3059 addr = cp_build_unary_op (ADDR_EXPR, addr, 0, tf_warning_or_error);
3060 if (TREE_SIDE_EFFECTS (addr))
3061 addr = save_expr (addr);
3063 addr = convert_force (build_pointer_type (type), addr, 0);
3066 gcc_assert (MAYBE_CLASS_TYPE_P (type));
3068 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3070 if (auto_delete != sfk_deleting_destructor)
3071 return void_zero_node;
3073 return build_op_delete_call (DELETE_EXPR, addr,
3074 cxx_sizeof_nowarn (type),
3075 use_global_delete,
3076 /*placement=*/NULL_TREE,
3077 /*alloc_fn=*/NULL_TREE);
3079 else
3081 tree head = NULL_TREE;
3082 tree do_delete = NULL_TREE;
3083 tree ifexp;
3085 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
3086 lazily_declare_fn (sfk_destructor, type);
3088 /* For `::delete x', we must not use the deleting destructor
3089 since then we would not be sure to get the global `operator
3090 delete'. */
3091 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3093 /* We will use ADDR multiple times so we must save it. */
3094 addr = save_expr (addr);
3095 head = get_target_expr (build_headof (addr));
3096 /* Delete the object. */
3097 do_delete = build_builtin_delete_call (head);
3098 /* Otherwise, treat this like a complete object destructor
3099 call. */
3100 auto_delete = sfk_complete_destructor;
3102 /* If the destructor is non-virtual, there is no deleting
3103 variant. Instead, we must explicitly call the appropriate
3104 `operator delete' here. */
3105 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3106 && auto_delete == sfk_deleting_destructor)
3108 /* We will use ADDR multiple times so we must save it. */
3109 addr = save_expr (addr);
3110 /* Build the call. */
3111 do_delete = build_op_delete_call (DELETE_EXPR,
3112 addr,
3113 cxx_sizeof_nowarn (type),
3114 /*global_p=*/false,
3115 /*placement=*/NULL_TREE,
3116 /*alloc_fn=*/NULL_TREE);
3117 /* Call the complete object destructor. */
3118 auto_delete = sfk_complete_destructor;
3120 else if (auto_delete == sfk_deleting_destructor
3121 && TYPE_GETS_REG_DELETE (type))
3123 /* Make sure we have access to the member op delete, even though
3124 we'll actually be calling it from the destructor. */
3125 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3126 /*global_p=*/false,
3127 /*placement=*/NULL_TREE,
3128 /*alloc_fn=*/NULL_TREE);
3131 expr = build_dtor_call (cp_build_indirect_ref (addr, NULL,
3132 tf_warning_or_error),
3133 auto_delete, flags);
3134 if (do_delete)
3135 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
3137 /* We need to calculate this before the dtor changes the vptr. */
3138 if (head)
3139 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
3141 if (flags & LOOKUP_DESTRUCTOR)
3142 /* Explicit destructor call; don't check for null pointer. */
3143 ifexp = integer_one_node;
3144 else
3145 /* Handle deleting a null pointer. */
3146 ifexp = fold (cp_build_binary_op (input_location,
3147 NE_EXPR, addr, integer_zero_node,
3148 tf_warning_or_error));
3150 if (ifexp != integer_one_node)
3151 expr = build3 (COND_EXPR, void_type_node,
3152 ifexp, expr, void_zero_node);
3154 return expr;
3158 /* At the beginning of a destructor, push cleanups that will call the
3159 destructors for our base classes and members.
3161 Called from begin_destructor_body. */
3163 void
3164 push_base_cleanups (void)
3166 tree binfo, base_binfo;
3167 int i;
3168 tree member;
3169 tree expr;
3170 VEC(tree,gc) *vbases;
3172 /* Run destructors for all virtual baseclasses. */
3173 if (CLASSTYPE_VBASECLASSES (current_class_type))
3175 tree cond = (condition_conversion
3176 (build2 (BIT_AND_EXPR, integer_type_node,
3177 current_in_charge_parm,
3178 integer_two_node)));
3180 /* The CLASSTYPE_VBASECLASSES vector is in initialization
3181 order, which is also the right order for pushing cleanups. */
3182 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
3183 VEC_iterate (tree, vbases, i, base_binfo); i++)
3185 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
3187 expr = build_special_member_call (current_class_ref,
3188 base_dtor_identifier,
3189 NULL_TREE,
3190 base_binfo,
3191 (LOOKUP_NORMAL
3192 | LOOKUP_NONVIRTUAL),
3193 tf_warning_or_error);
3194 expr = build3 (COND_EXPR, void_type_node, cond,
3195 expr, void_zero_node);
3196 finish_decl_cleanup (NULL_TREE, expr);
3201 /* Take care of the remaining baseclasses. */
3202 for (binfo = TYPE_BINFO (current_class_type), i = 0;
3203 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
3205 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3206 || BINFO_VIRTUAL_P (base_binfo))
3207 continue;
3209 expr = build_special_member_call (current_class_ref,
3210 base_dtor_identifier,
3211 NULL_TREE, base_binfo,
3212 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
3213 tf_warning_or_error);
3214 finish_decl_cleanup (NULL_TREE, expr);
3217 for (member = TYPE_FIELDS (current_class_type); member;
3218 member = TREE_CHAIN (member))
3220 if (TREE_TYPE (member) == error_mark_node
3221 || TREE_CODE (member) != FIELD_DECL
3222 || DECL_ARTIFICIAL (member))
3223 continue;
3224 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3226 tree this_member = (build_class_member_access_expr
3227 (current_class_ref, member,
3228 /*access_path=*/NULL_TREE,
3229 /*preserve_reference=*/false,
3230 tf_warning_or_error));
3231 tree this_type = TREE_TYPE (member);
3232 expr = build_delete (this_type, this_member,
3233 sfk_complete_destructor,
3234 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3236 finish_decl_cleanup (NULL_TREE, expr);
3241 /* Build a C++ vector delete expression.
3242 MAXINDEX is the number of elements to be deleted.
3243 ELT_SIZE is the nominal size of each element in the vector.
3244 BASE is the expression that should yield the store to be deleted.
3245 This function expands (or synthesizes) these calls itself.
3246 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3248 This also calls delete for virtual baseclasses of elements of the vector.
3250 Update: MAXINDEX is no longer needed. The size can be extracted from the
3251 start of the vector for pointers, and from the type for arrays. We still
3252 use MAXINDEX for arrays because it happens to already have one of the
3253 values we'd have to extract. (We could use MAXINDEX with pointers to
3254 confirm the size, and trap if the numbers differ; not clear that it'd
3255 be worth bothering.) */
3257 tree
3258 build_vec_delete (tree base, tree maxindex,
3259 special_function_kind auto_delete_vec, int use_global_delete)
3261 tree type;
3262 tree rval;
3263 tree base_init = NULL_TREE;
3265 type = TREE_TYPE (base);
3267 if (TREE_CODE (type) == POINTER_TYPE)
3269 /* Step back one from start of vector, and read dimension. */
3270 tree cookie_addr;
3271 tree size_ptr_type = build_pointer_type (sizetype);
3273 if (TREE_SIDE_EFFECTS (base))
3275 base_init = get_target_expr (base);
3276 base = TARGET_EXPR_SLOT (base_init);
3278 type = strip_array_types (TREE_TYPE (type));
3279 cookie_addr = fold_build1 (NEGATE_EXPR, sizetype, TYPE_SIZE_UNIT (sizetype));
3280 cookie_addr = build2 (POINTER_PLUS_EXPR,
3281 size_ptr_type,
3282 fold_convert (size_ptr_type, base),
3283 cookie_addr);
3284 maxindex = cp_build_indirect_ref (cookie_addr, NULL, tf_warning_or_error);
3286 else if (TREE_CODE (type) == ARRAY_TYPE)
3288 /* Get the total number of things in the array, maxindex is a
3289 bad name. */
3290 maxindex = array_type_nelts_total (type);
3291 type = strip_array_types (type);
3292 base = cp_build_unary_op (ADDR_EXPR, base, 1, tf_warning_or_error);
3293 if (TREE_SIDE_EFFECTS (base))
3295 base_init = get_target_expr (base);
3296 base = TARGET_EXPR_SLOT (base_init);
3299 else
3301 if (base != error_mark_node)
3302 error ("type to vector delete is neither pointer or array type");
3303 return error_mark_node;
3306 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3307 use_global_delete);
3308 if (base_init)
3309 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3311 return rval;