tree-ssa.texi: Remove documentation for V_MUST_DEF.
[official-gcc.git] / gcc / tree-vrp.c
blob74f63e2478829b6869e8a41c5dcedd00255d3391
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "toplev.h"
36 #include "intl.h"
37 #include "cfgloop.h"
38 #include "tree-scalar-evolution.h"
39 #include "tree-ssa-propagate.h"
40 #include "tree-chrec.h"
42 /* Set of SSA names found during the dominator traversal of a
43 sub-graph in find_assert_locations. */
44 static sbitmap found_in_subgraph;
46 /* Local functions. */
47 static int compare_values (tree val1, tree val2);
48 static int compare_values_warnv (tree val1, tree val2, bool *);
49 static void vrp_meet (value_range_t *, value_range_t *);
50 static tree vrp_evaluate_conditional_warnv (tree, bool, bool *);
52 /* Location information for ASSERT_EXPRs. Each instance of this
53 structure describes an ASSERT_EXPR for an SSA name. Since a single
54 SSA name may have more than one assertion associated with it, these
55 locations are kept in a linked list attached to the corresponding
56 SSA name. */
57 struct assert_locus_d
59 /* Basic block where the assertion would be inserted. */
60 basic_block bb;
62 /* Some assertions need to be inserted on an edge (e.g., assertions
63 generated by COND_EXPRs). In those cases, BB will be NULL. */
64 edge e;
66 /* Pointer to the statement that generated this assertion. */
67 block_stmt_iterator si;
69 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
70 enum tree_code comp_code;
72 /* Value being compared against. */
73 tree val;
75 /* Next node in the linked list. */
76 struct assert_locus_d *next;
79 typedef struct assert_locus_d *assert_locus_t;
81 /* If bit I is present, it means that SSA name N_i has a list of
82 assertions that should be inserted in the IL. */
83 static bitmap need_assert_for;
85 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
86 holds a list of ASSERT_LOCUS_T nodes that describe where
87 ASSERT_EXPRs for SSA name N_I should be inserted. */
88 static assert_locus_t *asserts_for;
90 /* Set of blocks visited in find_assert_locations. Used to avoid
91 visiting the same block more than once. */
92 static sbitmap blocks_visited;
94 /* Value range array. After propagation, VR_VALUE[I] holds the range
95 of values that SSA name N_I may take. */
96 static value_range_t **vr_value;
99 /* Return whether TYPE should use an overflow infinity distinct from
100 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
101 represent a signed overflow during VRP computations. An infinity
102 is distinct from a half-range, which will go from some number to
103 TYPE_{MIN,MAX}_VALUE. */
105 static inline bool
106 needs_overflow_infinity (tree type)
108 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
111 /* Return whether TYPE can support our overflow infinity
112 representation: we use the TREE_OVERFLOW flag, which only exists
113 for constants. If TYPE doesn't support this, we don't optimize
114 cases which would require signed overflow--we drop them to
115 VARYING. */
117 static inline bool
118 supports_overflow_infinity (tree type)
120 #ifdef ENABLE_CHECKING
121 gcc_assert (needs_overflow_infinity (type));
122 #endif
123 return (TYPE_MIN_VALUE (type) != NULL_TREE
124 && CONSTANT_CLASS_P (TYPE_MIN_VALUE (type))
125 && TYPE_MAX_VALUE (type) != NULL_TREE
126 && CONSTANT_CLASS_P (TYPE_MAX_VALUE (type)));
129 /* VAL is the maximum or minimum value of a type. Return a
130 corresponding overflow infinity. */
132 static inline tree
133 make_overflow_infinity (tree val)
135 #ifdef ENABLE_CHECKING
136 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
137 #endif
138 val = copy_node (val);
139 TREE_OVERFLOW (val) = 1;
140 return val;
143 /* Return a negative overflow infinity for TYPE. */
145 static inline tree
146 negative_overflow_infinity (tree type)
148 #ifdef ENABLE_CHECKING
149 gcc_assert (supports_overflow_infinity (type));
150 #endif
151 return make_overflow_infinity (TYPE_MIN_VALUE (type));
154 /* Return a positive overflow infinity for TYPE. */
156 static inline tree
157 positive_overflow_infinity (tree type)
159 #ifdef ENABLE_CHECKING
160 gcc_assert (supports_overflow_infinity (type));
161 #endif
162 return make_overflow_infinity (TYPE_MAX_VALUE (type));
165 /* Return whether VAL is a negative overflow infinity. */
167 static inline bool
168 is_negative_overflow_infinity (tree val)
170 return (needs_overflow_infinity (TREE_TYPE (val))
171 && CONSTANT_CLASS_P (val)
172 && TREE_OVERFLOW (val)
173 && operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
176 /* Return whether VAL is a positive overflow infinity. */
178 static inline bool
179 is_positive_overflow_infinity (tree val)
181 return (needs_overflow_infinity (TREE_TYPE (val))
182 && CONSTANT_CLASS_P (val)
183 && TREE_OVERFLOW (val)
184 && operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0));
187 /* Return whether VAL is a positive or negative overflow infinity. */
189 static inline bool
190 is_overflow_infinity (tree val)
192 return (needs_overflow_infinity (TREE_TYPE (val))
193 && CONSTANT_CLASS_P (val)
194 && TREE_OVERFLOW (val)
195 && (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0)
196 || operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0)));
200 /* Return true if ARG is marked with the nonnull attribute in the
201 current function signature. */
203 static bool
204 nonnull_arg_p (tree arg)
206 tree t, attrs, fntype;
207 unsigned HOST_WIDE_INT arg_num;
209 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
211 /* The static chain decl is always non null. */
212 if (arg == cfun->static_chain_decl)
213 return true;
215 fntype = TREE_TYPE (current_function_decl);
216 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
218 /* If "nonnull" wasn't specified, we know nothing about the argument. */
219 if (attrs == NULL_TREE)
220 return false;
222 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
223 if (TREE_VALUE (attrs) == NULL_TREE)
224 return true;
226 /* Get the position number for ARG in the function signature. */
227 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
229 t = TREE_CHAIN (t), arg_num++)
231 if (t == arg)
232 break;
235 gcc_assert (t == arg);
237 /* Now see if ARG_NUM is mentioned in the nonnull list. */
238 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
240 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
241 return true;
244 return false;
248 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
250 static void
251 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
252 tree max, bitmap equiv)
254 #if defined ENABLE_CHECKING
255 /* Check the validity of the range. */
256 if (t == VR_RANGE || t == VR_ANTI_RANGE)
258 int cmp;
260 gcc_assert (min && max);
262 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
263 gcc_assert ((min != TYPE_MIN_VALUE (TREE_TYPE (min))
264 && !is_negative_overflow_infinity (min))
265 || (max != TYPE_MAX_VALUE (TREE_TYPE (max))
266 && !is_positive_overflow_infinity (max)));
268 cmp = compare_values (min, max);
269 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
272 if (t == VR_UNDEFINED || t == VR_VARYING)
273 gcc_assert (min == NULL_TREE && max == NULL_TREE);
275 if (t == VR_UNDEFINED || t == VR_VARYING)
276 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
277 #endif
279 vr->type = t;
280 vr->min = min;
281 vr->max = max;
283 /* Since updating the equivalence set involves deep copying the
284 bitmaps, only do it if absolutely necessary. */
285 if (vr->equiv == NULL)
286 vr->equiv = BITMAP_ALLOC (NULL);
288 if (equiv != vr->equiv)
290 if (equiv && !bitmap_empty_p (equiv))
291 bitmap_copy (vr->equiv, equiv);
292 else
293 bitmap_clear (vr->equiv);
298 /* Copy value range FROM into value range TO. */
300 static inline void
301 copy_value_range (value_range_t *to, value_range_t *from)
303 set_value_range (to, from->type, from->min, from->max, from->equiv);
307 /* Set value range VR to VR_VARYING. */
309 static inline void
310 set_value_range_to_varying (value_range_t *vr)
312 vr->type = VR_VARYING;
313 vr->min = vr->max = NULL_TREE;
314 if (vr->equiv)
315 bitmap_clear (vr->equiv);
318 /* Set value range VR to a non-negative range of type TYPE.
319 OVERFLOW_INFINITY indicates whether to use a overflow infinity
320 rather than TYPE_MAX_VALUE; this should be true if we determine
321 that the range is nonnegative based on the assumption that signed
322 overflow does not occur. */
324 static inline void
325 set_value_range_to_nonnegative (value_range_t *vr, tree type,
326 bool overflow_infinity)
328 tree zero;
330 if (overflow_infinity && !supports_overflow_infinity (type))
332 set_value_range_to_varying (vr);
333 return;
336 zero = build_int_cst (type, 0);
337 set_value_range (vr, VR_RANGE, zero,
338 (overflow_infinity
339 ? positive_overflow_infinity (type)
340 : TYPE_MAX_VALUE (type)),
341 vr->equiv);
344 /* Set value range VR to a non-NULL range of type TYPE. */
346 static inline void
347 set_value_range_to_nonnull (value_range_t *vr, tree type)
349 tree zero = build_int_cst (type, 0);
350 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
354 /* Set value range VR to a NULL range of type TYPE. */
356 static inline void
357 set_value_range_to_null (value_range_t *vr, tree type)
359 tree zero = build_int_cst (type, 0);
360 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
364 /* Set value range VR to a range of a truthvalue of type TYPE. */
366 static inline void
367 set_value_range_to_truthvalue (value_range_t *vr, tree type)
369 if (TYPE_PRECISION (type) == 1)
370 set_value_range_to_varying (vr);
371 else
372 set_value_range (vr, VR_RANGE,
373 build_int_cst (type, 0), build_int_cst (type, 1),
374 vr->equiv);
378 /* Set value range VR to VR_UNDEFINED. */
380 static inline void
381 set_value_range_to_undefined (value_range_t *vr)
383 vr->type = VR_UNDEFINED;
384 vr->min = vr->max = NULL_TREE;
385 if (vr->equiv)
386 bitmap_clear (vr->equiv);
390 /* Return value range information for VAR.
392 If we have no values ranges recorded (ie, VRP is not running), then
393 return NULL. Otherwise create an empty range if none existed for VAR. */
395 static value_range_t *
396 get_value_range (tree var)
398 value_range_t *vr;
399 tree sym;
400 unsigned ver = SSA_NAME_VERSION (var);
402 /* If we have no recorded ranges, then return NULL. */
403 if (! vr_value)
404 return NULL;
406 vr = vr_value[ver];
407 if (vr)
408 return vr;
410 /* Create a default value range. */
411 vr_value[ver] = vr = XCNEW (value_range_t);
413 /* Allocate an equivalence set. */
414 vr->equiv = BITMAP_ALLOC (NULL);
416 /* If VAR is a default definition, the variable can take any value
417 in VAR's type. */
418 sym = SSA_NAME_VAR (var);
419 if (SSA_NAME_IS_DEFAULT_DEF (var))
421 /* Try to use the "nonnull" attribute to create ~[0, 0]
422 anti-ranges for pointers. Note that this is only valid with
423 default definitions of PARM_DECLs. */
424 if (TREE_CODE (sym) == PARM_DECL
425 && POINTER_TYPE_P (TREE_TYPE (sym))
426 && nonnull_arg_p (sym))
427 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
428 else
429 set_value_range_to_varying (vr);
432 return vr;
435 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
437 static inline bool
438 vrp_operand_equal_p (tree val1, tree val2)
440 if (val1 == val2)
441 return true;
442 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
443 return false;
444 if (is_overflow_infinity (val1))
445 return is_overflow_infinity (val2);
446 return true;
449 /* Return true, if the bitmaps B1 and B2 are equal. */
451 static inline bool
452 vrp_bitmap_equal_p (bitmap b1, bitmap b2)
454 return (b1 == b2
455 || (b1 && b2
456 && bitmap_equal_p (b1, b2)));
459 /* Update the value range and equivalence set for variable VAR to
460 NEW_VR. Return true if NEW_VR is different from VAR's previous
461 value.
463 NOTE: This function assumes that NEW_VR is a temporary value range
464 object created for the sole purpose of updating VAR's range. The
465 storage used by the equivalence set from NEW_VR will be freed by
466 this function. Do not call update_value_range when NEW_VR
467 is the range object associated with another SSA name. */
469 static inline bool
470 update_value_range (tree var, value_range_t *new_vr)
472 value_range_t *old_vr;
473 bool is_new;
475 /* Update the value range, if necessary. */
476 old_vr = get_value_range (var);
477 is_new = old_vr->type != new_vr->type
478 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
479 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
480 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
482 if (is_new)
483 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
484 new_vr->equiv);
486 BITMAP_FREE (new_vr->equiv);
487 new_vr->equiv = NULL;
489 return is_new;
493 /* Add VAR and VAR's equivalence set to EQUIV. */
495 static void
496 add_equivalence (bitmap equiv, tree var)
498 unsigned ver = SSA_NAME_VERSION (var);
499 value_range_t *vr = vr_value[ver];
501 bitmap_set_bit (equiv, ver);
502 if (vr && vr->equiv)
503 bitmap_ior_into (equiv, vr->equiv);
507 /* Return true if VR is ~[0, 0]. */
509 static inline bool
510 range_is_nonnull (value_range_t *vr)
512 return vr->type == VR_ANTI_RANGE
513 && integer_zerop (vr->min)
514 && integer_zerop (vr->max);
518 /* Return true if VR is [0, 0]. */
520 static inline bool
521 range_is_null (value_range_t *vr)
523 return vr->type == VR_RANGE
524 && integer_zerop (vr->min)
525 && integer_zerop (vr->max);
529 /* Return true if value range VR involves at least one symbol. */
531 static inline bool
532 symbolic_range_p (value_range_t *vr)
534 return (!is_gimple_min_invariant (vr->min)
535 || !is_gimple_min_invariant (vr->max));
538 /* Return true if value range VR uses a overflow infinity. */
540 static inline bool
541 overflow_infinity_range_p (value_range_t *vr)
543 return (vr->type == VR_RANGE
544 && (is_overflow_infinity (vr->min)
545 || is_overflow_infinity (vr->max)));
548 /* Return false if we can not make a valid comparison based on VR;
549 this will be the case if it uses an overflow infinity and overflow
550 is not undefined (i.e., -fno-strict-overflow is in effect).
551 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
552 uses an overflow infinity. */
554 static bool
555 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
557 gcc_assert (vr->type == VR_RANGE);
558 if (is_overflow_infinity (vr->min))
560 *strict_overflow_p = true;
561 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
562 return false;
564 if (is_overflow_infinity (vr->max))
566 *strict_overflow_p = true;
567 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
568 return false;
570 return true;
574 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
575 ranges obtained so far. */
577 static bool
578 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
580 return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
583 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
584 obtained so far. */
586 static bool
587 vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
589 if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
590 return true;
592 /* If we have an expression of the form &X->a, then the expression
593 is nonnull if X is nonnull. */
594 if (TREE_CODE (expr) == ADDR_EXPR)
596 tree base = get_base_address (TREE_OPERAND (expr, 0));
598 if (base != NULL_TREE
599 && TREE_CODE (base) == INDIRECT_REF
600 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
602 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
603 if (range_is_nonnull (vr))
604 return true;
608 return false;
611 /* Returns true if EXPR is a valid value (as expected by compare_values) --
612 a gimple invariant, or SSA_NAME +- CST. */
614 static bool
615 valid_value_p (tree expr)
617 if (TREE_CODE (expr) == SSA_NAME)
618 return true;
620 if (TREE_CODE (expr) == PLUS_EXPR
621 || TREE_CODE (expr) == MINUS_EXPR)
622 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
623 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
625 return is_gimple_min_invariant (expr);
628 /* Return
629 1 if VAL < VAL2
630 0 if !(VAL < VAL2)
631 -2 if those are incomparable. */
632 static inline int
633 operand_less_p (tree val, tree val2)
635 /* LT is folded faster than GE and others. Inline the common case. */
636 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
638 if (TYPE_UNSIGNED (TREE_TYPE (val)))
639 return INT_CST_LT_UNSIGNED (val, val2);
640 else
642 if (INT_CST_LT (val, val2))
643 return 1;
646 else
648 tree tcmp;
650 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
651 if (!tcmp)
652 return -2;
654 if (!integer_zerop (tcmp))
655 return 1;
658 /* val >= val2, not considering overflow infinity. */
659 if (is_negative_overflow_infinity (val))
660 return is_negative_overflow_infinity (val2) ? 0 : 1;
661 else if (is_positive_overflow_infinity (val2))
662 return is_positive_overflow_infinity (val) ? 0 : 1;
664 return 0;
667 /* Compare two values VAL1 and VAL2. Return
669 -2 if VAL1 and VAL2 cannot be compared at compile-time,
670 -1 if VAL1 < VAL2,
671 0 if VAL1 == VAL2,
672 +1 if VAL1 > VAL2, and
673 +2 if VAL1 != VAL2
675 This is similar to tree_int_cst_compare but supports pointer values
676 and values that cannot be compared at compile time.
678 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
679 true if the return value is only valid if we assume that signed
680 overflow is undefined. */
682 static int
683 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
685 if (val1 == val2)
686 return 0;
688 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
689 both integers. */
690 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
691 == POINTER_TYPE_P (TREE_TYPE (val2)));
693 if ((TREE_CODE (val1) == SSA_NAME
694 || TREE_CODE (val1) == PLUS_EXPR
695 || TREE_CODE (val1) == MINUS_EXPR)
696 && (TREE_CODE (val2) == SSA_NAME
697 || TREE_CODE (val2) == PLUS_EXPR
698 || TREE_CODE (val2) == MINUS_EXPR))
700 tree n1, c1, n2, c2;
701 enum tree_code code1, code2;
703 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
704 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
705 same name, return -2. */
706 if (TREE_CODE (val1) == SSA_NAME)
708 code1 = SSA_NAME;
709 n1 = val1;
710 c1 = NULL_TREE;
712 else
714 code1 = TREE_CODE (val1);
715 n1 = TREE_OPERAND (val1, 0);
716 c1 = TREE_OPERAND (val1, 1);
717 if (tree_int_cst_sgn (c1) == -1)
719 if (is_negative_overflow_infinity (c1))
720 return -2;
721 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
722 if (!c1)
723 return -2;
724 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
728 if (TREE_CODE (val2) == SSA_NAME)
730 code2 = SSA_NAME;
731 n2 = val2;
732 c2 = NULL_TREE;
734 else
736 code2 = TREE_CODE (val2);
737 n2 = TREE_OPERAND (val2, 0);
738 c2 = TREE_OPERAND (val2, 1);
739 if (tree_int_cst_sgn (c2) == -1)
741 if (is_negative_overflow_infinity (c2))
742 return -2;
743 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
744 if (!c2)
745 return -2;
746 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
750 /* Both values must use the same name. */
751 if (n1 != n2)
752 return -2;
754 if (code1 == SSA_NAME
755 && code2 == SSA_NAME)
756 /* NAME == NAME */
757 return 0;
759 /* If overflow is defined we cannot simplify more. */
760 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
761 return -2;
763 if (strict_overflow_p != NULL)
764 *strict_overflow_p = true;
766 if (code1 == SSA_NAME)
768 if (code2 == PLUS_EXPR)
769 /* NAME < NAME + CST */
770 return -1;
771 else if (code2 == MINUS_EXPR)
772 /* NAME > NAME - CST */
773 return 1;
775 else if (code1 == PLUS_EXPR)
777 if (code2 == SSA_NAME)
778 /* NAME + CST > NAME */
779 return 1;
780 else if (code2 == PLUS_EXPR)
781 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
782 return compare_values_warnv (c1, c2, strict_overflow_p);
783 else if (code2 == MINUS_EXPR)
784 /* NAME + CST1 > NAME - CST2 */
785 return 1;
787 else if (code1 == MINUS_EXPR)
789 if (code2 == SSA_NAME)
790 /* NAME - CST < NAME */
791 return -1;
792 else if (code2 == PLUS_EXPR)
793 /* NAME - CST1 < NAME + CST2 */
794 return -1;
795 else if (code2 == MINUS_EXPR)
796 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
797 C1 and C2 are swapped in the call to compare_values. */
798 return compare_values_warnv (c2, c1, strict_overflow_p);
801 gcc_unreachable ();
804 /* We cannot compare non-constants. */
805 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
806 return -2;
808 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
810 /* We cannot compare overflowed values, except for overflow
811 infinities. */
812 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
814 if (strict_overflow_p != NULL)
815 *strict_overflow_p = true;
816 if (is_negative_overflow_infinity (val1))
817 return is_negative_overflow_infinity (val2) ? 0 : -1;
818 else if (is_negative_overflow_infinity (val2))
819 return 1;
820 else if (is_positive_overflow_infinity (val1))
821 return is_positive_overflow_infinity (val2) ? 0 : 1;
822 else if (is_positive_overflow_infinity (val2))
823 return -1;
824 return -2;
827 return tree_int_cst_compare (val1, val2);
829 else
831 tree t;
833 /* First see if VAL1 and VAL2 are not the same. */
834 if (val1 == val2 || operand_equal_p (val1, val2, 0))
835 return 0;
837 /* If VAL1 is a lower address than VAL2, return -1. */
838 if (operand_less_p (val1, val2) == 1)
839 return -1;
841 /* If VAL1 is a higher address than VAL2, return +1. */
842 if (operand_less_p (val2, val1) == 1)
843 return 1;
845 /* If VAL1 is different than VAL2, return +2.
846 For integer constants we either have already returned -1 or 1
847 or they are equivalent. We still might succeed in proving
848 something about non-trivial operands. */
849 if (TREE_CODE (val1) != INTEGER_CST
850 || TREE_CODE (val2) != INTEGER_CST)
852 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
853 if (t && tree_expr_nonzero_p (t))
854 return 2;
857 return -2;
861 /* Compare values like compare_values_warnv, but treat comparisons of
862 nonconstants which rely on undefined overflow as incomparable. */
864 static int
865 compare_values (tree val1, tree val2)
867 bool sop;
868 int ret;
870 sop = false;
871 ret = compare_values_warnv (val1, val2, &sop);
872 if (sop
873 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
874 ret = -2;
875 return ret;
879 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
880 0 if VAL is not inside VR,
881 -2 if we cannot tell either way.
883 FIXME, the current semantics of this functions are a bit quirky
884 when taken in the context of VRP. In here we do not care
885 about VR's type. If VR is the anti-range ~[3, 5] the call
886 value_inside_range (4, VR) will return 1.
888 This is counter-intuitive in a strict sense, but the callers
889 currently expect this. They are calling the function
890 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
891 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
892 themselves.
894 This also applies to value_ranges_intersect_p and
895 range_includes_zero_p. The semantics of VR_RANGE and
896 VR_ANTI_RANGE should be encoded here, but that also means
897 adapting the users of these functions to the new semantics.
899 Benchmark compile/20001226-1.c compilation time after changing this
900 function. */
902 static inline int
903 value_inside_range (tree val, value_range_t * vr)
905 int cmp1, cmp2;
907 cmp1 = operand_less_p (val, vr->min);
908 if (cmp1 == -2)
909 return -2;
910 if (cmp1 == 1)
911 return 0;
913 cmp2 = operand_less_p (vr->max, val);
914 if (cmp2 == -2)
915 return -2;
917 return !cmp2;
921 /* Return true if value ranges VR0 and VR1 have a non-empty
922 intersection.
924 Benchmark compile/20001226-1.c compilation time after changing this
925 function.
928 static inline bool
929 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
931 /* The value ranges do not intersect if the maximum of the first range is
932 less than the minimum of the second range or vice versa.
933 When those relations are unknown, we can't do any better. */
934 if (operand_less_p (vr0->max, vr1->min) != 0)
935 return false;
936 if (operand_less_p (vr1->max, vr0->min) != 0)
937 return false;
938 return true;
942 /* Return true if VR includes the value zero, false otherwise. FIXME,
943 currently this will return false for an anti-range like ~[-4, 3].
944 This will be wrong when the semantics of value_inside_range are
945 modified (currently the users of this function expect these
946 semantics). */
948 static inline bool
949 range_includes_zero_p (value_range_t *vr)
951 tree zero;
953 gcc_assert (vr->type != VR_UNDEFINED
954 && vr->type != VR_VARYING
955 && !symbolic_range_p (vr));
957 zero = build_int_cst (TREE_TYPE (vr->min), 0);
958 return (value_inside_range (zero, vr) == 1);
961 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
962 false otherwise or if no value range information is available. */
964 bool
965 ssa_name_nonnegative_p (tree t)
967 value_range_t *vr = get_value_range (t);
969 if (!vr)
970 return false;
972 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
973 which would return a useful value should be encoded as a VR_RANGE. */
974 if (vr->type == VR_RANGE)
976 int result = compare_values (vr->min, integer_zero_node);
978 return (result == 0 || result == 1);
980 return false;
983 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
984 false otherwise or if no value range information is available. */
986 bool
987 ssa_name_nonzero_p (tree t)
989 value_range_t *vr = get_value_range (t);
991 if (!vr)
992 return false;
994 /* A VR_RANGE which does not include zero is a nonzero value. */
995 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
996 return ! range_includes_zero_p (vr);
998 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
999 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1000 return range_includes_zero_p (vr);
1002 return false;
1006 /* Extract value range information from an ASSERT_EXPR EXPR and store
1007 it in *VR_P. */
1009 static void
1010 extract_range_from_assert (value_range_t *vr_p, tree expr)
1012 tree var, cond, limit, min, max, type;
1013 value_range_t *var_vr, *limit_vr;
1014 enum tree_code cond_code;
1016 var = ASSERT_EXPR_VAR (expr);
1017 cond = ASSERT_EXPR_COND (expr);
1019 gcc_assert (COMPARISON_CLASS_P (cond));
1021 /* Find VAR in the ASSERT_EXPR conditional. */
1022 if (var == TREE_OPERAND (cond, 0))
1024 /* If the predicate is of the form VAR COMP LIMIT, then we just
1025 take LIMIT from the RHS and use the same comparison code. */
1026 limit = TREE_OPERAND (cond, 1);
1027 cond_code = TREE_CODE (cond);
1029 else
1031 /* If the predicate is of the form LIMIT COMP VAR, then we need
1032 to flip around the comparison code to create the proper range
1033 for VAR. */
1034 limit = TREE_OPERAND (cond, 0);
1035 cond_code = swap_tree_comparison (TREE_CODE (cond));
1038 type = TREE_TYPE (limit);
1039 gcc_assert (limit != var);
1041 /* For pointer arithmetic, we only keep track of pointer equality
1042 and inequality. */
1043 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1045 set_value_range_to_varying (vr_p);
1046 return;
1049 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1050 try to use LIMIT's range to avoid creating symbolic ranges
1051 unnecessarily. */
1052 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1054 /* LIMIT's range is only interesting if it has any useful information. */
1055 if (limit_vr
1056 && (limit_vr->type == VR_UNDEFINED
1057 || limit_vr->type == VR_VARYING
1058 || symbolic_range_p (limit_vr)))
1059 limit_vr = NULL;
1061 /* Initially, the new range has the same set of equivalences of
1062 VAR's range. This will be revised before returning the final
1063 value. Since assertions may be chained via mutually exclusive
1064 predicates, we will need to trim the set of equivalences before
1065 we are done. */
1066 gcc_assert (vr_p->equiv == NULL);
1067 vr_p->equiv = BITMAP_ALLOC (NULL);
1068 add_equivalence (vr_p->equiv, var);
1070 /* Extract a new range based on the asserted comparison for VAR and
1071 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1072 will only use it for equality comparisons (EQ_EXPR). For any
1073 other kind of assertion, we cannot derive a range from LIMIT's
1074 anti-range that can be used to describe the new range. For
1075 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1076 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1077 no single range for x_2 that could describe LE_EXPR, so we might
1078 as well build the range [b_4, +INF] for it. */
1079 if (cond_code == EQ_EXPR)
1081 enum value_range_type range_type;
1083 if (limit_vr)
1085 range_type = limit_vr->type;
1086 min = limit_vr->min;
1087 max = limit_vr->max;
1089 else
1091 range_type = VR_RANGE;
1092 min = limit;
1093 max = limit;
1096 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1098 /* When asserting the equality VAR == LIMIT and LIMIT is another
1099 SSA name, the new range will also inherit the equivalence set
1100 from LIMIT. */
1101 if (TREE_CODE (limit) == SSA_NAME)
1102 add_equivalence (vr_p->equiv, limit);
1104 else if (cond_code == NE_EXPR)
1106 /* As described above, when LIMIT's range is an anti-range and
1107 this assertion is an inequality (NE_EXPR), then we cannot
1108 derive anything from the anti-range. For instance, if
1109 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1110 not imply that VAR's range is [0, 0]. So, in the case of
1111 anti-ranges, we just assert the inequality using LIMIT and
1112 not its anti-range.
1114 If LIMIT_VR is a range, we can only use it to build a new
1115 anti-range if LIMIT_VR is a single-valued range. For
1116 instance, if LIMIT_VR is [0, 1], the predicate
1117 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1118 Rather, it means that for value 0 VAR should be ~[0, 0]
1119 and for value 1, VAR should be ~[1, 1]. We cannot
1120 represent these ranges.
1122 The only situation in which we can build a valid
1123 anti-range is when LIMIT_VR is a single-valued range
1124 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1125 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1126 if (limit_vr
1127 && limit_vr->type == VR_RANGE
1128 && compare_values (limit_vr->min, limit_vr->max) == 0)
1130 min = limit_vr->min;
1131 max = limit_vr->max;
1133 else
1135 /* In any other case, we cannot use LIMIT's range to build a
1136 valid anti-range. */
1137 min = max = limit;
1140 /* If MIN and MAX cover the whole range for their type, then
1141 just use the original LIMIT. */
1142 if (INTEGRAL_TYPE_P (type)
1143 && (min == TYPE_MIN_VALUE (type)
1144 || is_negative_overflow_infinity (min))
1145 && (max == TYPE_MAX_VALUE (type)
1146 || is_positive_overflow_infinity (max)))
1147 min = max = limit;
1149 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1151 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1153 min = TYPE_MIN_VALUE (type);
1155 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1156 max = limit;
1157 else
1159 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1160 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1161 LT_EXPR. */
1162 max = limit_vr->max;
1165 /* If the maximum value forces us to be out of bounds, simply punt.
1166 It would be pointless to try and do anything more since this
1167 all should be optimized away above us. */
1168 if ((cond_code == LT_EXPR
1169 && compare_values (max, min) == 0)
1170 || is_overflow_infinity (max))
1171 set_value_range_to_varying (vr_p);
1172 else
1174 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1175 if (cond_code == LT_EXPR)
1177 tree one = build_int_cst (type, 1);
1178 max = fold_build2 (MINUS_EXPR, type, max, one);
1181 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1184 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1186 max = TYPE_MAX_VALUE (type);
1188 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1189 min = limit;
1190 else
1192 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1193 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1194 GT_EXPR. */
1195 min = limit_vr->min;
1198 /* If the minimum value forces us to be out of bounds, simply punt.
1199 It would be pointless to try and do anything more since this
1200 all should be optimized away above us. */
1201 if ((cond_code == GT_EXPR
1202 && compare_values (min, max) == 0)
1203 || is_overflow_infinity (min))
1204 set_value_range_to_varying (vr_p);
1205 else
1207 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1208 if (cond_code == GT_EXPR)
1210 tree one = build_int_cst (type, 1);
1211 min = fold_build2 (PLUS_EXPR, type, min, one);
1214 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1217 else
1218 gcc_unreachable ();
1220 /* If VAR already had a known range, it may happen that the new
1221 range we have computed and VAR's range are not compatible. For
1222 instance,
1224 if (p_5 == NULL)
1225 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1226 x_7 = p_6->fld;
1227 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1229 While the above comes from a faulty program, it will cause an ICE
1230 later because p_8 and p_6 will have incompatible ranges and at
1231 the same time will be considered equivalent. A similar situation
1232 would arise from
1234 if (i_5 > 10)
1235 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1236 if (i_5 < 5)
1237 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1239 Again i_6 and i_7 will have incompatible ranges. It would be
1240 pointless to try and do anything with i_7's range because
1241 anything dominated by 'if (i_5 < 5)' will be optimized away.
1242 Note, due to the wa in which simulation proceeds, the statement
1243 i_7 = ASSERT_EXPR <...> we would never be visited because the
1244 conditional 'if (i_5 < 5)' always evaluates to false. However,
1245 this extra check does not hurt and may protect against future
1246 changes to VRP that may get into a situation similar to the
1247 NULL pointer dereference example.
1249 Note that these compatibility tests are only needed when dealing
1250 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1251 are both anti-ranges, they will always be compatible, because two
1252 anti-ranges will always have a non-empty intersection. */
1254 var_vr = get_value_range (var);
1256 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1257 ranges or anti-ranges. */
1258 if (vr_p->type == VR_VARYING
1259 || vr_p->type == VR_UNDEFINED
1260 || var_vr->type == VR_VARYING
1261 || var_vr->type == VR_UNDEFINED
1262 || symbolic_range_p (vr_p)
1263 || symbolic_range_p (var_vr))
1264 return;
1266 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1268 /* If the two ranges have a non-empty intersection, we can
1269 refine the resulting range. Since the assert expression
1270 creates an equivalency and at the same time it asserts a
1271 predicate, we can take the intersection of the two ranges to
1272 get better precision. */
1273 if (value_ranges_intersect_p (var_vr, vr_p))
1275 /* Use the larger of the two minimums. */
1276 if (compare_values (vr_p->min, var_vr->min) == -1)
1277 min = var_vr->min;
1278 else
1279 min = vr_p->min;
1281 /* Use the smaller of the two maximums. */
1282 if (compare_values (vr_p->max, var_vr->max) == 1)
1283 max = var_vr->max;
1284 else
1285 max = vr_p->max;
1287 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1289 else
1291 /* The two ranges do not intersect, set the new range to
1292 VARYING, because we will not be able to do anything
1293 meaningful with it. */
1294 set_value_range_to_varying (vr_p);
1297 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1298 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1300 /* A range and an anti-range will cancel each other only if
1301 their ends are the same. For instance, in the example above,
1302 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1303 so VR_P should be set to VR_VARYING. */
1304 if (compare_values (var_vr->min, vr_p->min) == 0
1305 && compare_values (var_vr->max, vr_p->max) == 0)
1306 set_value_range_to_varying (vr_p);
1307 else
1309 tree min, max, anti_min, anti_max, real_min, real_max;
1310 int cmp;
1312 /* We want to compute the logical AND of the two ranges;
1313 there are three cases to consider.
1316 1. The VR_ANTI_RANGE range is completely within the
1317 VR_RANGE and the endpoints of the ranges are
1318 different. In that case the resulting range
1319 should be whichever range is more precise.
1320 Typically that will be the VR_RANGE.
1322 2. The VR_ANTI_RANGE is completely disjoint from
1323 the VR_RANGE. In this case the resulting range
1324 should be the VR_RANGE.
1326 3. There is some overlap between the VR_ANTI_RANGE
1327 and the VR_RANGE.
1329 3a. If the high limit of the VR_ANTI_RANGE resides
1330 within the VR_RANGE, then the result is a new
1331 VR_RANGE starting at the high limit of the
1332 the VR_ANTI_RANGE + 1 and extending to the
1333 high limit of the original VR_RANGE.
1335 3b. If the low limit of the VR_ANTI_RANGE resides
1336 within the VR_RANGE, then the result is a new
1337 VR_RANGE starting at the low limit of the original
1338 VR_RANGE and extending to the low limit of the
1339 VR_ANTI_RANGE - 1. */
1340 if (vr_p->type == VR_ANTI_RANGE)
1342 anti_min = vr_p->min;
1343 anti_max = vr_p->max;
1344 real_min = var_vr->min;
1345 real_max = var_vr->max;
1347 else
1349 anti_min = var_vr->min;
1350 anti_max = var_vr->max;
1351 real_min = vr_p->min;
1352 real_max = vr_p->max;
1356 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1357 not including any endpoints. */
1358 if (compare_values (anti_max, real_max) == -1
1359 && compare_values (anti_min, real_min) == 1)
1361 set_value_range (vr_p, VR_RANGE, real_min,
1362 real_max, vr_p->equiv);
1364 /* Case 2, VR_ANTI_RANGE completely disjoint from
1365 VR_RANGE. */
1366 else if (compare_values (anti_min, real_max) == 1
1367 || compare_values (anti_max, real_min) == -1)
1369 set_value_range (vr_p, VR_RANGE, real_min,
1370 real_max, vr_p->equiv);
1372 /* Case 3a, the anti-range extends into the low
1373 part of the real range. Thus creating a new
1374 low for the real range. */
1375 else if (((cmp = compare_values (anti_max, real_min)) == 1
1376 || cmp == 0)
1377 && compare_values (anti_max, real_max) == -1)
1379 gcc_assert (!is_positive_overflow_infinity (anti_max));
1380 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1381 && anti_max == TYPE_MAX_VALUE (TREE_TYPE (anti_max)))
1383 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1385 set_value_range_to_varying (vr_p);
1386 return;
1388 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1390 else
1391 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1392 anti_max,
1393 build_int_cst (TREE_TYPE (var_vr->min), 1));
1394 max = real_max;
1395 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1397 /* Case 3b, the anti-range extends into the high
1398 part of the real range. Thus creating a new
1399 higher for the real range. */
1400 else if (compare_values (anti_min, real_min) == 1
1401 && ((cmp = compare_values (anti_min, real_max)) == -1
1402 || cmp == 0))
1404 gcc_assert (!is_negative_overflow_infinity (anti_min));
1405 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1406 && anti_min == TYPE_MIN_VALUE (TREE_TYPE (anti_min)))
1408 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1410 set_value_range_to_varying (vr_p);
1411 return;
1413 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1415 else
1416 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1417 anti_min,
1418 build_int_cst (TREE_TYPE (var_vr->min), 1));
1419 min = real_min;
1420 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1427 /* Extract range information from SSA name VAR and store it in VR. If
1428 VAR has an interesting range, use it. Otherwise, create the
1429 range [VAR, VAR] and return it. This is useful in situations where
1430 we may have conditionals testing values of VARYING names. For
1431 instance,
1433 x_3 = y_5;
1434 if (x_3 > y_5)
1437 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1438 always false. */
1440 static void
1441 extract_range_from_ssa_name (value_range_t *vr, tree var)
1443 value_range_t *var_vr = get_value_range (var);
1445 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1446 copy_value_range (vr, var_vr);
1447 else
1448 set_value_range (vr, VR_RANGE, var, var, NULL);
1450 add_equivalence (vr->equiv, var);
1454 /* Wrapper around int_const_binop. If the operation overflows and we
1455 are not using wrapping arithmetic, then adjust the result to be
1456 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1457 NULL_TREE if we need to use an overflow infinity representation but
1458 the type does not support it. */
1460 static tree
1461 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1463 tree res;
1465 res = int_const_binop (code, val1, val2, 0);
1467 /* If we are not using wrapping arithmetic, operate symbolically
1468 on -INF and +INF. */
1469 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1471 int checkz = compare_values (res, val1);
1472 bool overflow = false;
1474 /* Ensure that res = val1 [+*] val2 >= val1
1475 or that res = val1 - val2 <= val1. */
1476 if ((code == PLUS_EXPR
1477 && !(checkz == 1 || checkz == 0))
1478 || (code == MINUS_EXPR
1479 && !(checkz == 0 || checkz == -1)))
1481 overflow = true;
1483 /* Checking for multiplication overflow is done by dividing the
1484 output of the multiplication by the first input of the
1485 multiplication. If the result of that division operation is
1486 not equal to the second input of the multiplication, then the
1487 multiplication overflowed. */
1488 else if (code == MULT_EXPR && !integer_zerop (val1))
1490 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1491 res,
1492 val1, 0);
1493 int check = compare_values (tmp, val2);
1495 if (check != 0)
1496 overflow = true;
1499 if (overflow)
1501 res = copy_node (res);
1502 TREE_OVERFLOW (res) = 1;
1506 else if ((TREE_OVERFLOW (res)
1507 && !TREE_OVERFLOW (val1)
1508 && !TREE_OVERFLOW (val2))
1509 || is_overflow_infinity (val1)
1510 || is_overflow_infinity (val2))
1512 /* If the operation overflowed but neither VAL1 nor VAL2 are
1513 overflown, return -INF or +INF depending on the operation
1514 and the combination of signs of the operands. */
1515 int sgn1 = tree_int_cst_sgn (val1);
1516 int sgn2 = tree_int_cst_sgn (val2);
1518 if (needs_overflow_infinity (TREE_TYPE (res))
1519 && !supports_overflow_infinity (TREE_TYPE (res)))
1520 return NULL_TREE;
1522 /* We have to punt on subtracting infinities of the same sign,
1523 since we can't tell what the sign of the result should
1524 be. */
1525 if (code == MINUS_EXPR
1526 && sgn1 == sgn2
1527 && is_overflow_infinity (val1)
1528 && is_overflow_infinity (val2))
1529 return NULL_TREE;
1531 /* Notice that we only need to handle the restricted set of
1532 operations handled by extract_range_from_binary_expr.
1533 Among them, only multiplication, addition and subtraction
1534 can yield overflow without overflown operands because we
1535 are working with integral types only... except in the
1536 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1537 for division too. */
1539 /* For multiplication, the sign of the overflow is given
1540 by the comparison of the signs of the operands. */
1541 if ((code == MULT_EXPR && sgn1 == sgn2)
1542 /* For addition, the operands must be of the same sign
1543 to yield an overflow. Its sign is therefore that
1544 of one of the operands, for example the first. */
1545 || (code == PLUS_EXPR && sgn1 > 0)
1546 /* For subtraction, non-infinite operands must be of
1547 different signs to yield an overflow. Its sign is
1548 therefore that of the first operand or the opposite of
1549 that of the second operand. A first operand of 0 counts
1550 as positive here, for the corner case 0 - (-INF), which
1551 overflows, but must yield +INF. For infinite operands 0
1552 - INF is negative, not positive. */
1553 || (code == MINUS_EXPR
1554 && (sgn1 >= 0
1555 ? !is_positive_overflow_infinity (val2)
1556 : is_negative_overflow_infinity (val2)))
1557 /* For division, the only case is -INF / -1 = +INF. */
1558 || code == TRUNC_DIV_EXPR
1559 || code == FLOOR_DIV_EXPR
1560 || code == CEIL_DIV_EXPR
1561 || code == EXACT_DIV_EXPR
1562 || code == ROUND_DIV_EXPR)
1563 return (needs_overflow_infinity (TREE_TYPE (res))
1564 ? positive_overflow_infinity (TREE_TYPE (res))
1565 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1566 else
1567 return (needs_overflow_infinity (TREE_TYPE (res))
1568 ? negative_overflow_infinity (TREE_TYPE (res))
1569 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1572 return res;
1576 /* Extract range information from a binary expression EXPR based on
1577 the ranges of each of its operands and the expression code. */
1579 static void
1580 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1582 enum tree_code code = TREE_CODE (expr);
1583 enum value_range_type type;
1584 tree op0, op1, min, max;
1585 int cmp;
1586 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1587 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1589 /* Not all binary expressions can be applied to ranges in a
1590 meaningful way. Handle only arithmetic operations. */
1591 if (code != PLUS_EXPR
1592 && code != MINUS_EXPR
1593 && code != MULT_EXPR
1594 && code != TRUNC_DIV_EXPR
1595 && code != FLOOR_DIV_EXPR
1596 && code != CEIL_DIV_EXPR
1597 && code != EXACT_DIV_EXPR
1598 && code != ROUND_DIV_EXPR
1599 && code != MIN_EXPR
1600 && code != MAX_EXPR
1601 && code != BIT_AND_EXPR
1602 && code != TRUTH_ANDIF_EXPR
1603 && code != TRUTH_ORIF_EXPR
1604 && code != TRUTH_AND_EXPR
1605 && code != TRUTH_OR_EXPR)
1607 set_value_range_to_varying (vr);
1608 return;
1611 /* Get value ranges for each operand. For constant operands, create
1612 a new value range with the operand to simplify processing. */
1613 op0 = TREE_OPERAND (expr, 0);
1614 if (TREE_CODE (op0) == SSA_NAME)
1615 vr0 = *(get_value_range (op0));
1616 else if (is_gimple_min_invariant (op0))
1617 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1618 else
1619 set_value_range_to_varying (&vr0);
1621 op1 = TREE_OPERAND (expr, 1);
1622 if (TREE_CODE (op1) == SSA_NAME)
1623 vr1 = *(get_value_range (op1));
1624 else if (is_gimple_min_invariant (op1))
1625 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1626 else
1627 set_value_range_to_varying (&vr1);
1629 /* If either range is UNDEFINED, so is the result. */
1630 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1632 set_value_range_to_undefined (vr);
1633 return;
1636 /* The type of the resulting value range defaults to VR0.TYPE. */
1637 type = vr0.type;
1639 /* Refuse to operate on VARYING ranges, ranges of different kinds
1640 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1641 because we may be able to derive a useful range even if one of
1642 the operands is VR_VARYING or symbolic range. TODO, we may be
1643 able to derive anti-ranges in some cases. */
1644 if (code != BIT_AND_EXPR
1645 && code != TRUTH_AND_EXPR
1646 && code != TRUTH_OR_EXPR
1647 && (vr0.type == VR_VARYING
1648 || vr1.type == VR_VARYING
1649 || vr0.type != vr1.type
1650 || symbolic_range_p (&vr0)
1651 || symbolic_range_p (&vr1)))
1653 set_value_range_to_varying (vr);
1654 return;
1657 /* Now evaluate the expression to determine the new range. */
1658 if (POINTER_TYPE_P (TREE_TYPE (expr))
1659 || POINTER_TYPE_P (TREE_TYPE (op0))
1660 || POINTER_TYPE_P (TREE_TYPE (op1)))
1662 /* For pointer types, we are really only interested in asserting
1663 whether the expression evaluates to non-NULL. FIXME, we used
1664 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1665 ivopts is generating expressions with pointer multiplication
1666 in them. */
1667 if (code == PLUS_EXPR)
1669 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1670 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1671 else if (range_is_null (&vr0) && range_is_null (&vr1))
1672 set_value_range_to_null (vr, TREE_TYPE (expr));
1673 else
1674 set_value_range_to_varying (vr);
1676 else
1678 /* Subtracting from a pointer, may yield 0, so just drop the
1679 resulting range to varying. */
1680 set_value_range_to_varying (vr);
1683 return;
1686 /* For integer ranges, apply the operation to each end of the
1687 range and see what we end up with. */
1688 if (code == TRUTH_ANDIF_EXPR
1689 || code == TRUTH_ORIF_EXPR
1690 || code == TRUTH_AND_EXPR
1691 || code == TRUTH_OR_EXPR)
1693 /* If one of the operands is zero, we know that the whole
1694 expression evaluates zero. */
1695 if (code == TRUTH_AND_EXPR
1696 && ((vr0.type == VR_RANGE
1697 && integer_zerop (vr0.min)
1698 && integer_zerop (vr0.max))
1699 || (vr1.type == VR_RANGE
1700 && integer_zerop (vr1.min)
1701 && integer_zerop (vr1.max))))
1703 type = VR_RANGE;
1704 min = max = build_int_cst (TREE_TYPE (expr), 0);
1706 /* If one of the operands is one, we know that the whole
1707 expression evaluates one. */
1708 else if (code == TRUTH_OR_EXPR
1709 && ((vr0.type == VR_RANGE
1710 && integer_onep (vr0.min)
1711 && integer_onep (vr0.max))
1712 || (vr1.type == VR_RANGE
1713 && integer_onep (vr1.min)
1714 && integer_onep (vr1.max))))
1716 type = VR_RANGE;
1717 min = max = build_int_cst (TREE_TYPE (expr), 1);
1719 else if (vr0.type != VR_VARYING
1720 && vr1.type != VR_VARYING
1721 && vr0.type == vr1.type
1722 && !symbolic_range_p (&vr0)
1723 && !overflow_infinity_range_p (&vr0)
1724 && !symbolic_range_p (&vr1)
1725 && !overflow_infinity_range_p (&vr1))
1727 /* Boolean expressions cannot be folded with int_const_binop. */
1728 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1729 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1731 else
1733 /* The result of a TRUTH_*_EXPR is always true or false. */
1734 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
1735 return;
1738 else if (code == PLUS_EXPR
1739 || code == MIN_EXPR
1740 || code == MAX_EXPR)
1742 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1743 VR_VARYING. It would take more effort to compute a precise
1744 range for such a case. For example, if we have op0 == 1 and
1745 op1 == -1 with their ranges both being ~[0,0], we would have
1746 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1747 Note that we are guaranteed to have vr0.type == vr1.type at
1748 this point. */
1749 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1751 set_value_range_to_varying (vr);
1752 return;
1755 /* For operations that make the resulting range directly
1756 proportional to the original ranges, apply the operation to
1757 the same end of each range. */
1758 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1759 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1761 else if (code == MULT_EXPR
1762 || code == TRUNC_DIV_EXPR
1763 || code == FLOOR_DIV_EXPR
1764 || code == CEIL_DIV_EXPR
1765 || code == EXACT_DIV_EXPR
1766 || code == ROUND_DIV_EXPR)
1768 tree val[4];
1769 size_t i;
1770 bool sop;
1772 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1773 drop to VR_VARYING. It would take more effort to compute a
1774 precise range for such a case. For example, if we have
1775 op0 == 65536 and op1 == 65536 with their ranges both being
1776 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1777 we cannot claim that the product is in ~[0,0]. Note that we
1778 are guaranteed to have vr0.type == vr1.type at this
1779 point. */
1780 if (code == MULT_EXPR
1781 && vr0.type == VR_ANTI_RANGE
1782 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
1784 set_value_range_to_varying (vr);
1785 return;
1788 /* Multiplications and divisions are a bit tricky to handle,
1789 depending on the mix of signs we have in the two ranges, we
1790 need to operate on different values to get the minimum and
1791 maximum values for the new range. One approach is to figure
1792 out all the variations of range combinations and do the
1793 operations.
1795 However, this involves several calls to compare_values and it
1796 is pretty convoluted. It's simpler to do the 4 operations
1797 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1798 MAX1) and then figure the smallest and largest values to form
1799 the new range. */
1801 /* Divisions by zero result in a VARYING value. */
1802 if (code != MULT_EXPR
1803 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1805 set_value_range_to_varying (vr);
1806 return;
1809 /* Compute the 4 cross operations. */
1810 sop = false;
1811 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1812 if (val[0] == NULL_TREE)
1813 sop = true;
1815 if (vr1.max == vr1.min)
1816 val[1] = NULL_TREE;
1817 else
1819 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
1820 if (val[1] == NULL_TREE)
1821 sop = true;
1824 if (vr0.max == vr0.min)
1825 val[2] = NULL_TREE;
1826 else
1828 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
1829 if (val[2] == NULL_TREE)
1830 sop = true;
1833 if (vr0.min == vr0.max || vr1.min == vr1.max)
1834 val[3] = NULL_TREE;
1835 else
1837 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
1838 if (val[3] == NULL_TREE)
1839 sop = true;
1842 if (sop)
1844 set_value_range_to_varying (vr);
1845 return;
1848 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1849 of VAL[i]. */
1850 min = val[0];
1851 max = val[0];
1852 for (i = 1; i < 4; i++)
1854 if (!is_gimple_min_invariant (min)
1855 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1856 || !is_gimple_min_invariant (max)
1857 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1858 break;
1860 if (val[i])
1862 if (!is_gimple_min_invariant (val[i])
1863 || (TREE_OVERFLOW (val[i])
1864 && !is_overflow_infinity (val[i])))
1866 /* If we found an overflowed value, set MIN and MAX
1867 to it so that we set the resulting range to
1868 VARYING. */
1869 min = max = val[i];
1870 break;
1873 if (compare_values (val[i], min) == -1)
1874 min = val[i];
1876 if (compare_values (val[i], max) == 1)
1877 max = val[i];
1881 else if (code == MINUS_EXPR)
1883 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1884 VR_VARYING. It would take more effort to compute a precise
1885 range for such a case. For example, if we have op0 == 1 and
1886 op1 == 1 with their ranges both being ~[0,0], we would have
1887 op0 - op1 == 0, so we cannot claim that the difference is in
1888 ~[0,0]. Note that we are guaranteed to have
1889 vr0.type == vr1.type at this point. */
1890 if (vr0.type == VR_ANTI_RANGE)
1892 set_value_range_to_varying (vr);
1893 return;
1896 /* For MINUS_EXPR, apply the operation to the opposite ends of
1897 each range. */
1898 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1899 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1901 else if (code == BIT_AND_EXPR)
1903 if (vr0.type == VR_RANGE
1904 && vr0.min == vr0.max
1905 && TREE_CODE (vr0.max) == INTEGER_CST
1906 && !TREE_OVERFLOW (vr0.max)
1907 && tree_int_cst_sgn (vr0.max) >= 0)
1909 min = build_int_cst (TREE_TYPE (expr), 0);
1910 max = vr0.max;
1912 else if (vr1.type == VR_RANGE
1913 && vr1.min == vr1.max
1914 && TREE_CODE (vr1.max) == INTEGER_CST
1915 && !TREE_OVERFLOW (vr1.max)
1916 && tree_int_cst_sgn (vr1.max) >= 0)
1918 type = VR_RANGE;
1919 min = build_int_cst (TREE_TYPE (expr), 0);
1920 max = vr1.max;
1922 else
1924 set_value_range_to_varying (vr);
1925 return;
1928 else
1929 gcc_unreachable ();
1931 /* If either MIN or MAX overflowed, then set the resulting range to
1932 VARYING. But we do accept an overflow infinity
1933 representation. */
1934 if (min == NULL_TREE
1935 || !is_gimple_min_invariant (min)
1936 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1937 || max == NULL_TREE
1938 || !is_gimple_min_invariant (max)
1939 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1941 set_value_range_to_varying (vr);
1942 return;
1945 if ((min == TYPE_MIN_VALUE (TREE_TYPE (min))
1946 || is_negative_overflow_infinity (min))
1947 && (max == TYPE_MAX_VALUE (TREE_TYPE (max))
1948 || is_positive_overflow_infinity (max)))
1950 set_value_range_to_varying (vr);
1951 return;
1954 cmp = compare_values (min, max);
1955 if (cmp == -2 || cmp == 1)
1957 /* If the new range has its limits swapped around (MIN > MAX),
1958 then the operation caused one of them to wrap around, mark
1959 the new range VARYING. */
1960 set_value_range_to_varying (vr);
1962 else
1963 set_value_range (vr, type, min, max, NULL);
1967 /* Extract range information from a unary expression EXPR based on
1968 the range of its operand and the expression code. */
1970 static void
1971 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1973 enum tree_code code = TREE_CODE (expr);
1974 tree min, max, op0;
1975 int cmp;
1976 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1978 /* Refuse to operate on certain unary expressions for which we
1979 cannot easily determine a resulting range. */
1980 if (code == FIX_TRUNC_EXPR
1981 || code == FLOAT_EXPR
1982 || code == BIT_NOT_EXPR
1983 || code == NON_LVALUE_EXPR
1984 || code == CONJ_EXPR)
1986 set_value_range_to_varying (vr);
1987 return;
1990 /* Get value ranges for the operand. For constant operands, create
1991 a new value range with the operand to simplify processing. */
1992 op0 = TREE_OPERAND (expr, 0);
1993 if (TREE_CODE (op0) == SSA_NAME)
1994 vr0 = *(get_value_range (op0));
1995 else if (is_gimple_min_invariant (op0))
1996 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1997 else
1998 set_value_range_to_varying (&vr0);
2000 /* If VR0 is UNDEFINED, so is the result. */
2001 if (vr0.type == VR_UNDEFINED)
2003 set_value_range_to_undefined (vr);
2004 return;
2007 /* Refuse to operate on symbolic ranges, or if neither operand is
2008 a pointer or integral type. */
2009 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2010 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2011 || (vr0.type != VR_VARYING
2012 && symbolic_range_p (&vr0)))
2014 set_value_range_to_varying (vr);
2015 return;
2018 /* If the expression involves pointers, we are only interested in
2019 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2020 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
2022 bool sop;
2024 sop = false;
2025 if (range_is_nonnull (&vr0)
2026 || (tree_expr_nonzero_warnv_p (expr, &sop)
2027 && !sop))
2028 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2029 else if (range_is_null (&vr0))
2030 set_value_range_to_null (vr, TREE_TYPE (expr));
2031 else
2032 set_value_range_to_varying (vr);
2034 return;
2037 /* Handle unary expressions on integer ranges. */
2038 if (code == NOP_EXPR || code == CONVERT_EXPR)
2040 tree inner_type = TREE_TYPE (op0);
2041 tree outer_type = TREE_TYPE (expr);
2043 /* If VR0 represents a simple range, then try to convert
2044 the min and max values for the range to the same type
2045 as OUTER_TYPE. If the results compare equal to VR0's
2046 min and max values and the new min is still less than
2047 or equal to the new max, then we can safely use the newly
2048 computed range for EXPR. This allows us to compute
2049 accurate ranges through many casts. */
2050 if ((vr0.type == VR_RANGE
2051 && !overflow_infinity_range_p (&vr0))
2052 || (vr0.type == VR_VARYING
2053 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
2055 tree new_min, new_max, orig_min, orig_max;
2057 /* Convert the input operand min/max to OUTER_TYPE. If
2058 the input has no range information, then use the min/max
2059 for the input's type. */
2060 if (vr0.type == VR_RANGE)
2062 orig_min = vr0.min;
2063 orig_max = vr0.max;
2065 else
2067 orig_min = TYPE_MIN_VALUE (inner_type);
2068 orig_max = TYPE_MAX_VALUE (inner_type);
2071 new_min = fold_convert (outer_type, orig_min);
2072 new_max = fold_convert (outer_type, orig_max);
2074 /* Verify the new min/max values are gimple values and
2075 that they compare equal to the original input's
2076 min/max values. */
2077 if (is_gimple_val (new_min)
2078 && is_gimple_val (new_max)
2079 && tree_int_cst_equal (new_min, orig_min)
2080 && tree_int_cst_equal (new_max, orig_max)
2081 && (cmp = compare_values (new_min, new_max)) <= 0
2082 && cmp >= -1)
2084 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
2085 return;
2089 /* When converting types of different sizes, set the result to
2090 VARYING. Things like sign extensions and precision loss may
2091 change the range. For instance, if x_3 is of type 'long long
2092 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
2093 is impossible to know at compile time whether y_5 will be
2094 ~[0, 0]. */
2095 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
2096 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
2098 set_value_range_to_varying (vr);
2099 return;
2103 /* Conversion of a VR_VARYING value to a wider type can result
2104 in a usable range. So wait until after we've handled conversions
2105 before dropping the result to VR_VARYING if we had a source
2106 operand that is VR_VARYING. */
2107 if (vr0.type == VR_VARYING)
2109 set_value_range_to_varying (vr);
2110 return;
2113 /* Apply the operation to each end of the range and see what we end
2114 up with. */
2115 if (code == NEGATE_EXPR
2116 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2118 /* NEGATE_EXPR flips the range around. We need to treat
2119 TYPE_MIN_VALUE specially. */
2120 if (is_positive_overflow_infinity (vr0.max))
2121 min = negative_overflow_infinity (TREE_TYPE (expr));
2122 else if (is_negative_overflow_infinity (vr0.max))
2123 min = positive_overflow_infinity (TREE_TYPE (expr));
2124 else if (vr0.max != TYPE_MIN_VALUE (TREE_TYPE (expr)))
2125 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2126 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2128 if (supports_overflow_infinity (TREE_TYPE (expr)))
2129 min = positive_overflow_infinity (TREE_TYPE (expr));
2130 else
2132 set_value_range_to_varying (vr);
2133 return;
2136 else
2137 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2139 if (is_positive_overflow_infinity (vr0.min))
2140 max = negative_overflow_infinity (TREE_TYPE (expr));
2141 else if (is_negative_overflow_infinity (vr0.min))
2142 max = positive_overflow_infinity (TREE_TYPE (expr));
2143 else if (vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr)))
2144 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2145 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2147 if (supports_overflow_infinity (TREE_TYPE (expr)))
2148 max = positive_overflow_infinity (TREE_TYPE (expr));
2149 else
2151 set_value_range_to_varying (vr);
2152 return;
2155 else
2156 max = TYPE_MIN_VALUE (TREE_TYPE (expr));
2158 else if (code == NEGATE_EXPR
2159 && TYPE_UNSIGNED (TREE_TYPE (expr)))
2161 if (!range_includes_zero_p (&vr0))
2163 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2164 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2166 else
2168 if (range_is_null (&vr0))
2169 set_value_range_to_null (vr, TREE_TYPE (expr));
2170 else
2171 set_value_range_to_varying (vr);
2172 return;
2175 else if (code == ABS_EXPR
2176 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2178 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2179 useful range. */
2180 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (expr))
2181 && ((vr0.type == VR_RANGE
2182 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
2183 || (vr0.type == VR_ANTI_RANGE
2184 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
2185 && !range_includes_zero_p (&vr0))))
2187 set_value_range_to_varying (vr);
2188 return;
2191 /* ABS_EXPR may flip the range around, if the original range
2192 included negative values. */
2193 if (is_overflow_infinity (vr0.min))
2194 min = positive_overflow_infinity (TREE_TYPE (expr));
2195 else if (vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr)))
2196 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2197 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2198 min = TYPE_MAX_VALUE (TREE_TYPE (expr));
2199 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2200 min = positive_overflow_infinity (TREE_TYPE (expr));
2201 else
2203 set_value_range_to_varying (vr);
2204 return;
2207 if (is_overflow_infinity (vr0.max))
2208 max = positive_overflow_infinity (TREE_TYPE (expr));
2209 else if (vr0.max != TYPE_MIN_VALUE (TREE_TYPE (expr)))
2210 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2211 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2212 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2213 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2214 max = positive_overflow_infinity (TREE_TYPE (expr));
2215 else
2217 set_value_range_to_varying (vr);
2218 return;
2221 cmp = compare_values (min, max);
2223 /* If a VR_ANTI_RANGEs contains zero, then we have
2224 ~[-INF, min(MIN, MAX)]. */
2225 if (vr0.type == VR_ANTI_RANGE)
2227 if (range_includes_zero_p (&vr0))
2229 /* Take the lower of the two values. */
2230 if (cmp != 1)
2231 max = min;
2233 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2234 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2235 flag_wrapv is set and the original anti-range doesn't include
2236 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2237 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
2239 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
2241 min = (vr0.min != type_min_value
2242 ? int_const_binop (PLUS_EXPR, type_min_value,
2243 integer_one_node, 0)
2244 : type_min_value);
2246 else
2248 if (overflow_infinity_range_p (&vr0))
2249 min = negative_overflow_infinity (TREE_TYPE (expr));
2250 else
2251 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2254 else
2256 /* All else has failed, so create the range [0, INF], even for
2257 flag_wrapv since TYPE_MIN_VALUE is in the original
2258 anti-range. */
2259 vr0.type = VR_RANGE;
2260 min = build_int_cst (TREE_TYPE (expr), 0);
2261 if (needs_overflow_infinity (TREE_TYPE (expr)))
2263 if (supports_overflow_infinity (TREE_TYPE (expr)))
2264 max = positive_overflow_infinity (TREE_TYPE (expr));
2265 else
2267 set_value_range_to_varying (vr);
2268 return;
2271 else
2272 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2276 /* If the range contains zero then we know that the minimum value in the
2277 range will be zero. */
2278 else if (range_includes_zero_p (&vr0))
2280 if (cmp == 1)
2281 max = min;
2282 min = build_int_cst (TREE_TYPE (expr), 0);
2284 else
2286 /* If the range was reversed, swap MIN and MAX. */
2287 if (cmp == 1)
2289 tree t = min;
2290 min = max;
2291 max = t;
2295 else
2297 /* Otherwise, operate on each end of the range. */
2298 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2299 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2301 if (needs_overflow_infinity (TREE_TYPE (expr)))
2303 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2304 if (is_overflow_infinity (vr0.min))
2305 min = vr0.min;
2306 else if (TREE_OVERFLOW (min))
2308 if (supports_overflow_infinity (TREE_TYPE (expr)))
2309 min = (tree_int_cst_sgn (min) >= 0
2310 ? positive_overflow_infinity (TREE_TYPE (min))
2311 : negative_overflow_infinity (TREE_TYPE (min)));
2312 else
2314 set_value_range_to_varying (vr);
2315 return;
2319 if (is_overflow_infinity (vr0.max))
2320 max = vr0.max;
2321 else if (TREE_OVERFLOW (max))
2323 if (supports_overflow_infinity (TREE_TYPE (expr)))
2324 max = (tree_int_cst_sgn (max) >= 0
2325 ? positive_overflow_infinity (TREE_TYPE (max))
2326 : negative_overflow_infinity (TREE_TYPE (max)));
2327 else
2329 set_value_range_to_varying (vr);
2330 return;
2336 cmp = compare_values (min, max);
2337 if (cmp == -2 || cmp == 1)
2339 /* If the new range has its limits swapped around (MIN > MAX),
2340 then the operation caused one of them to wrap around, mark
2341 the new range VARYING. */
2342 set_value_range_to_varying (vr);
2344 else
2345 set_value_range (vr, vr0.type, min, max, NULL);
2349 /* Extract range information from a conditional expression EXPR based on
2350 the ranges of each of its operands and the expression code. */
2352 static void
2353 extract_range_from_cond_expr (value_range_t *vr, tree expr)
2355 tree op0, op1;
2356 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2357 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2359 /* Get value ranges for each operand. For constant operands, create
2360 a new value range with the operand to simplify processing. */
2361 op0 = COND_EXPR_THEN (expr);
2362 if (TREE_CODE (op0) == SSA_NAME)
2363 vr0 = *(get_value_range (op0));
2364 else if (is_gimple_min_invariant (op0))
2365 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
2366 else
2367 set_value_range_to_varying (&vr0);
2369 op1 = COND_EXPR_ELSE (expr);
2370 if (TREE_CODE (op1) == SSA_NAME)
2371 vr1 = *(get_value_range (op1));
2372 else if (is_gimple_min_invariant (op1))
2373 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
2374 else
2375 set_value_range_to_varying (&vr1);
2377 /* The resulting value range is the union of the operand ranges */
2378 vrp_meet (&vr0, &vr1);
2379 copy_value_range (vr, &vr0);
2383 /* Extract range information from a comparison expression EXPR based
2384 on the range of its operand and the expression code. */
2386 static void
2387 extract_range_from_comparison (value_range_t *vr, tree expr)
2389 bool sop = false;
2390 tree val = vrp_evaluate_conditional_warnv (expr, false, &sop);
2392 /* A disadvantage of using a special infinity as an overflow
2393 representation is that we lose the ability to record overflow
2394 when we don't have an infinity. So we have to ignore a result
2395 which relies on overflow. */
2397 if (val && !is_overflow_infinity (val) && !sop)
2399 /* Since this expression was found on the RHS of an assignment,
2400 its type may be different from _Bool. Convert VAL to EXPR's
2401 type. */
2402 val = fold_convert (TREE_TYPE (expr), val);
2403 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
2405 else
2406 /* The result of a comparison is always true or false. */
2407 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
2411 /* Try to compute a useful range out of expression EXPR and store it
2412 in *VR. */
2414 static void
2415 extract_range_from_expr (value_range_t *vr, tree expr)
2417 enum tree_code code = TREE_CODE (expr);
2419 if (code == ASSERT_EXPR)
2420 extract_range_from_assert (vr, expr);
2421 else if (code == SSA_NAME)
2422 extract_range_from_ssa_name (vr, expr);
2423 else if (TREE_CODE_CLASS (code) == tcc_binary
2424 || code == TRUTH_ANDIF_EXPR
2425 || code == TRUTH_ORIF_EXPR
2426 || code == TRUTH_AND_EXPR
2427 || code == TRUTH_OR_EXPR
2428 || code == TRUTH_XOR_EXPR)
2429 extract_range_from_binary_expr (vr, expr);
2430 else if (TREE_CODE_CLASS (code) == tcc_unary)
2431 extract_range_from_unary_expr (vr, expr);
2432 else if (code == COND_EXPR)
2433 extract_range_from_cond_expr (vr, expr);
2434 else if (TREE_CODE_CLASS (code) == tcc_comparison)
2435 extract_range_from_comparison (vr, expr);
2436 else if (is_gimple_min_invariant (expr))
2437 set_value_range (vr, VR_RANGE, expr, expr, NULL);
2438 else
2439 set_value_range_to_varying (vr);
2441 /* If we got a varying range from the tests above, try a final
2442 time to derive a nonnegative or nonzero range. This time
2443 relying primarily on generic routines in fold in conjunction
2444 with range data. */
2445 if (vr->type == VR_VARYING)
2447 bool sop = false;
2449 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2450 && vrp_expr_computes_nonnegative (expr, &sop))
2451 set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
2452 sop || is_overflow_infinity (expr));
2453 else if (vrp_expr_computes_nonzero (expr, &sop)
2454 && !sop)
2455 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2459 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2460 would be profitable to adjust VR using scalar evolution information
2461 for VAR. If so, update VR with the new limits. */
2463 static void
2464 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2465 tree var)
2467 tree init, step, chrec, tmin, tmax, min, max, type;
2468 enum ev_direction dir;
2470 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2471 better opportunities than a regular range, but I'm not sure. */
2472 if (vr->type == VR_ANTI_RANGE)
2473 return;
2475 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2476 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2477 return;
2479 init = initial_condition_in_loop_num (chrec, loop->num);
2480 step = evolution_part_in_loop_num (chrec, loop->num);
2482 /* If STEP is symbolic, we can't know whether INIT will be the
2483 minimum or maximum value in the range. Also, unless INIT is
2484 a simple expression, compare_values and possibly other functions
2485 in tree-vrp won't be able to handle it. */
2486 if (step == NULL_TREE
2487 || !is_gimple_min_invariant (step)
2488 || !valid_value_p (init))
2489 return;
2491 dir = scev_direction (chrec);
2492 if (/* Do not adjust ranges if we do not know whether the iv increases
2493 or decreases, ... */
2494 dir == EV_DIR_UNKNOWN
2495 /* ... or if it may wrap. */
2496 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2497 true))
2498 return;
2500 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
2501 negative_overflow_infinity and positive_overflow_infinity,
2502 because we have concluded that the loop probably does not
2503 wrap. */
2505 type = TREE_TYPE (var);
2506 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2507 tmin = lower_bound_in_type (type, type);
2508 else
2509 tmin = TYPE_MIN_VALUE (type);
2510 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2511 tmax = upper_bound_in_type (type, type);
2512 else
2513 tmax = TYPE_MAX_VALUE (type);
2515 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2517 min = tmin;
2518 max = tmax;
2520 /* For VARYING or UNDEFINED ranges, just about anything we get
2521 from scalar evolutions should be better. */
2523 if (dir == EV_DIR_DECREASES)
2524 max = init;
2525 else
2526 min = init;
2528 /* If we would create an invalid range, then just assume we
2529 know absolutely nothing. This may be over-conservative,
2530 but it's clearly safe, and should happen only in unreachable
2531 parts of code, or for invalid programs. */
2532 if (compare_values (min, max) == 1)
2533 return;
2535 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2537 else if (vr->type == VR_RANGE)
2539 min = vr->min;
2540 max = vr->max;
2542 if (dir == EV_DIR_DECREASES)
2544 /* INIT is the maximum value. If INIT is lower than VR->MAX
2545 but no smaller than VR->MIN, set VR->MAX to INIT. */
2546 if (compare_values (init, max) == -1)
2548 max = init;
2550 /* If we just created an invalid range with the minimum
2551 greater than the maximum, we fail conservatively.
2552 This should happen only in unreachable
2553 parts of code, or for invalid programs. */
2554 if (compare_values (min, max) == 1)
2555 return;
2558 else
2560 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2561 if (compare_values (init, min) == 1)
2563 min = init;
2565 /* Again, avoid creating invalid range by failing. */
2566 if (compare_values (min, max) == 1)
2567 return;
2571 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2576 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2578 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2579 all the values in the ranges.
2581 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2583 - Return NULL_TREE if it is not always possible to determine the
2584 value of the comparison.
2586 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
2587 overflow infinity was used in the test. */
2590 static tree
2591 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
2592 bool *strict_overflow_p)
2594 /* VARYING or UNDEFINED ranges cannot be compared. */
2595 if (vr0->type == VR_VARYING
2596 || vr0->type == VR_UNDEFINED
2597 || vr1->type == VR_VARYING
2598 || vr1->type == VR_UNDEFINED)
2599 return NULL_TREE;
2601 /* Anti-ranges need to be handled separately. */
2602 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2604 /* If both are anti-ranges, then we cannot compute any
2605 comparison. */
2606 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2607 return NULL_TREE;
2609 /* These comparisons are never statically computable. */
2610 if (comp == GT_EXPR
2611 || comp == GE_EXPR
2612 || comp == LT_EXPR
2613 || comp == LE_EXPR)
2614 return NULL_TREE;
2616 /* Equality can be computed only between a range and an
2617 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2618 if (vr0->type == VR_RANGE)
2620 /* To simplify processing, make VR0 the anti-range. */
2621 value_range_t *tmp = vr0;
2622 vr0 = vr1;
2623 vr1 = tmp;
2626 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2628 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
2629 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
2630 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2632 return NULL_TREE;
2635 if (!usable_range_p (vr0, strict_overflow_p)
2636 || !usable_range_p (vr1, strict_overflow_p))
2637 return NULL_TREE;
2639 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2640 operands around and change the comparison code. */
2641 if (comp == GT_EXPR || comp == GE_EXPR)
2643 value_range_t *tmp;
2644 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2645 tmp = vr0;
2646 vr0 = vr1;
2647 vr1 = tmp;
2650 if (comp == EQ_EXPR)
2652 /* Equality may only be computed if both ranges represent
2653 exactly one value. */
2654 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
2655 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
2657 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
2658 strict_overflow_p);
2659 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
2660 strict_overflow_p);
2661 if (cmp_min == 0 && cmp_max == 0)
2662 return boolean_true_node;
2663 else if (cmp_min != -2 && cmp_max != -2)
2664 return boolean_false_node;
2666 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2667 else if (compare_values_warnv (vr0->min, vr1->max,
2668 strict_overflow_p) == 1
2669 || compare_values_warnv (vr1->min, vr0->max,
2670 strict_overflow_p) == 1)
2671 return boolean_false_node;
2673 return NULL_TREE;
2675 else if (comp == NE_EXPR)
2677 int cmp1, cmp2;
2679 /* If VR0 is completely to the left or completely to the right
2680 of VR1, they are always different. Notice that we need to
2681 make sure that both comparisons yield similar results to
2682 avoid comparing values that cannot be compared at
2683 compile-time. */
2684 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2685 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2686 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2687 return boolean_true_node;
2689 /* If VR0 and VR1 represent a single value and are identical,
2690 return false. */
2691 else if (compare_values_warnv (vr0->min, vr0->max,
2692 strict_overflow_p) == 0
2693 && compare_values_warnv (vr1->min, vr1->max,
2694 strict_overflow_p) == 0
2695 && compare_values_warnv (vr0->min, vr1->min,
2696 strict_overflow_p) == 0
2697 && compare_values_warnv (vr0->max, vr1->max,
2698 strict_overflow_p) == 0)
2699 return boolean_false_node;
2701 /* Otherwise, they may or may not be different. */
2702 else
2703 return NULL_TREE;
2705 else if (comp == LT_EXPR || comp == LE_EXPR)
2707 int tst;
2709 /* If VR0 is to the left of VR1, return true. */
2710 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2711 if ((comp == LT_EXPR && tst == -1)
2712 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2714 if (overflow_infinity_range_p (vr0)
2715 || overflow_infinity_range_p (vr1))
2716 *strict_overflow_p = true;
2717 return boolean_true_node;
2720 /* If VR0 is to the right of VR1, return false. */
2721 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2722 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2723 || (comp == LE_EXPR && tst == 1))
2725 if (overflow_infinity_range_p (vr0)
2726 || overflow_infinity_range_p (vr1))
2727 *strict_overflow_p = true;
2728 return boolean_false_node;
2731 /* Otherwise, we don't know. */
2732 return NULL_TREE;
2735 gcc_unreachable ();
2739 /* Given a value range VR, a value VAL and a comparison code COMP, return
2740 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2741 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2742 always returns false. Return NULL_TREE if it is not always
2743 possible to determine the value of the comparison. Also set
2744 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
2745 infinity was used in the test. */
2747 static tree
2748 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
2749 bool *strict_overflow_p)
2751 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2752 return NULL_TREE;
2754 /* Anti-ranges need to be handled separately. */
2755 if (vr->type == VR_ANTI_RANGE)
2757 /* For anti-ranges, the only predicates that we can compute at
2758 compile time are equality and inequality. */
2759 if (comp == GT_EXPR
2760 || comp == GE_EXPR
2761 || comp == LT_EXPR
2762 || comp == LE_EXPR)
2763 return NULL_TREE;
2765 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2766 if (value_inside_range (val, vr) == 1)
2767 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2769 return NULL_TREE;
2772 if (!usable_range_p (vr, strict_overflow_p))
2773 return NULL_TREE;
2775 if (comp == EQ_EXPR)
2777 /* EQ_EXPR may only be computed if VR represents exactly
2778 one value. */
2779 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
2781 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
2782 if (cmp == 0)
2783 return boolean_true_node;
2784 else if (cmp == -1 || cmp == 1 || cmp == 2)
2785 return boolean_false_node;
2787 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
2788 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
2789 return boolean_false_node;
2791 return NULL_TREE;
2793 else if (comp == NE_EXPR)
2795 /* If VAL is not inside VR, then they are always different. */
2796 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
2797 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
2798 return boolean_true_node;
2800 /* If VR represents exactly one value equal to VAL, then return
2801 false. */
2802 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
2803 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
2804 return boolean_false_node;
2806 /* Otherwise, they may or may not be different. */
2807 return NULL_TREE;
2809 else if (comp == LT_EXPR || comp == LE_EXPR)
2811 int tst;
2813 /* If VR is to the left of VAL, return true. */
2814 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
2815 if ((comp == LT_EXPR && tst == -1)
2816 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2818 if (overflow_infinity_range_p (vr))
2819 *strict_overflow_p = true;
2820 return boolean_true_node;
2823 /* If VR is to the right of VAL, return false. */
2824 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
2825 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2826 || (comp == LE_EXPR && tst == 1))
2828 if (overflow_infinity_range_p (vr))
2829 *strict_overflow_p = true;
2830 return boolean_false_node;
2833 /* Otherwise, we don't know. */
2834 return NULL_TREE;
2836 else if (comp == GT_EXPR || comp == GE_EXPR)
2838 int tst;
2840 /* If VR is to the right of VAL, return true. */
2841 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
2842 if ((comp == GT_EXPR && tst == 1)
2843 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2845 if (overflow_infinity_range_p (vr))
2846 *strict_overflow_p = true;
2847 return boolean_true_node;
2850 /* If VR is to the left of VAL, return false. */
2851 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
2852 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2853 || (comp == GE_EXPR && tst == -1))
2855 if (overflow_infinity_range_p (vr))
2856 *strict_overflow_p = true;
2857 return boolean_false_node;
2860 /* Otherwise, we don't know. */
2861 return NULL_TREE;
2864 gcc_unreachable ();
2868 /* Debugging dumps. */
2870 void dump_value_range (FILE *, value_range_t *);
2871 void debug_value_range (value_range_t *);
2872 void dump_all_value_ranges (FILE *);
2873 void debug_all_value_ranges (void);
2874 void dump_vr_equiv (FILE *, bitmap);
2875 void debug_vr_equiv (bitmap);
2878 /* Dump value range VR to FILE. */
2880 void
2881 dump_value_range (FILE *file, value_range_t *vr)
2883 if (vr == NULL)
2884 fprintf (file, "[]");
2885 else if (vr->type == VR_UNDEFINED)
2886 fprintf (file, "UNDEFINED");
2887 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2889 tree type = TREE_TYPE (vr->min);
2891 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2893 if (INTEGRAL_TYPE_P (type)
2894 && !TYPE_UNSIGNED (type)
2895 && vr->min == TYPE_MIN_VALUE (type))
2896 fprintf (file, "-INF");
2897 else if (needs_overflow_infinity (type)
2898 && is_negative_overflow_infinity (vr->min))
2899 fprintf (file, "-INF(OVF)");
2900 else
2901 print_generic_expr (file, vr->min, 0);
2903 fprintf (file, ", ");
2905 if (INTEGRAL_TYPE_P (type)
2906 && vr->max == TYPE_MAX_VALUE (type))
2907 fprintf (file, "+INF");
2908 else if (needs_overflow_infinity (type)
2909 && is_positive_overflow_infinity (vr->max))
2910 fprintf (file, "+INF(OVF)");
2911 else
2912 print_generic_expr (file, vr->max, 0);
2914 fprintf (file, "]");
2916 if (vr->equiv)
2918 bitmap_iterator bi;
2919 unsigned i, c = 0;
2921 fprintf (file, " EQUIVALENCES: { ");
2923 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2925 print_generic_expr (file, ssa_name (i), 0);
2926 fprintf (file, " ");
2927 c++;
2930 fprintf (file, "} (%u elements)", c);
2933 else if (vr->type == VR_VARYING)
2934 fprintf (file, "VARYING");
2935 else
2936 fprintf (file, "INVALID RANGE");
2940 /* Dump value range VR to stderr. */
2942 void
2943 debug_value_range (value_range_t *vr)
2945 dump_value_range (stderr, vr);
2946 fprintf (stderr, "\n");
2950 /* Dump value ranges of all SSA_NAMEs to FILE. */
2952 void
2953 dump_all_value_ranges (FILE *file)
2955 size_t i;
2957 for (i = 0; i < num_ssa_names; i++)
2959 if (vr_value[i])
2961 print_generic_expr (file, ssa_name (i), 0);
2962 fprintf (file, ": ");
2963 dump_value_range (file, vr_value[i]);
2964 fprintf (file, "\n");
2968 fprintf (file, "\n");
2972 /* Dump all value ranges to stderr. */
2974 void
2975 debug_all_value_ranges (void)
2977 dump_all_value_ranges (stderr);
2981 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2982 create a new SSA name N and return the assertion assignment
2983 'V = ASSERT_EXPR <V, V OP W>'. */
2985 static tree
2986 build_assert_expr_for (tree cond, tree v)
2988 tree n, assertion;
2990 gcc_assert (TREE_CODE (v) == SSA_NAME);
2991 n = duplicate_ssa_name (v, NULL_TREE);
2993 if (COMPARISON_CLASS_P (cond))
2995 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2996 assertion = build_gimple_modify_stmt (n, a);
2998 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3000 /* Given !V, build the assignment N = false. */
3001 tree op0 = TREE_OPERAND (cond, 0);
3002 gcc_assert (op0 == v);
3003 assertion = build_gimple_modify_stmt (n, boolean_false_node);
3005 else if (TREE_CODE (cond) == SSA_NAME)
3007 /* Given V, build the assignment N = true. */
3008 gcc_assert (v == cond);
3009 assertion = build_gimple_modify_stmt (n, boolean_true_node);
3011 else
3012 gcc_unreachable ();
3014 SSA_NAME_DEF_STMT (n) = assertion;
3016 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3017 operand of the ASSERT_EXPR. Register the new name and the old one
3018 in the replacement table so that we can fix the SSA web after
3019 adding all the ASSERT_EXPRs. */
3020 register_new_name_mapping (n, v);
3022 return assertion;
3026 /* Return false if EXPR is a predicate expression involving floating
3027 point values. */
3029 static inline bool
3030 fp_predicate (tree expr)
3032 return (COMPARISON_CLASS_P (expr)
3033 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
3037 /* If the range of values taken by OP can be inferred after STMT executes,
3038 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3039 describes the inferred range. Return true if a range could be
3040 inferred. */
3042 static bool
3043 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3045 *val_p = NULL_TREE;
3046 *comp_code_p = ERROR_MARK;
3048 /* Do not attempt to infer anything in names that flow through
3049 abnormal edges. */
3050 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3051 return false;
3053 /* Similarly, don't infer anything from statements that may throw
3054 exceptions. */
3055 if (tree_could_throw_p (stmt))
3056 return false;
3058 /* If STMT is the last statement of a basic block with no
3059 successors, there is no point inferring anything about any of its
3060 operands. We would not be able to find a proper insertion point
3061 for the assertion, anyway. */
3062 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
3063 return false;
3065 /* We can only assume that a pointer dereference will yield
3066 non-NULL if -fdelete-null-pointer-checks is enabled. */
3067 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
3069 bool is_store;
3070 unsigned num_uses, num_derefs;
3072 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
3073 if (num_derefs > 0)
3075 *val_p = build_int_cst (TREE_TYPE (op), 0);
3076 *comp_code_p = NE_EXPR;
3077 return true;
3081 return false;
3085 void dump_asserts_for (FILE *, tree);
3086 void debug_asserts_for (tree);
3087 void dump_all_asserts (FILE *);
3088 void debug_all_asserts (void);
3090 /* Dump all the registered assertions for NAME to FILE. */
3092 void
3093 dump_asserts_for (FILE *file, tree name)
3095 assert_locus_t loc;
3097 fprintf (file, "Assertions to be inserted for ");
3098 print_generic_expr (file, name, 0);
3099 fprintf (file, "\n");
3101 loc = asserts_for[SSA_NAME_VERSION (name)];
3102 while (loc)
3104 fprintf (file, "\t");
3105 print_generic_expr (file, bsi_stmt (loc->si), 0);
3106 fprintf (file, "\n\tBB #%d", loc->bb->index);
3107 if (loc->e)
3109 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3110 loc->e->dest->index);
3111 dump_edge_info (file, loc->e, 0);
3113 fprintf (file, "\n\tPREDICATE: ");
3114 print_generic_expr (file, name, 0);
3115 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3116 print_generic_expr (file, loc->val, 0);
3117 fprintf (file, "\n\n");
3118 loc = loc->next;
3121 fprintf (file, "\n");
3125 /* Dump all the registered assertions for NAME to stderr. */
3127 void
3128 debug_asserts_for (tree name)
3130 dump_asserts_for (stderr, name);
3134 /* Dump all the registered assertions for all the names to FILE. */
3136 void
3137 dump_all_asserts (FILE *file)
3139 unsigned i;
3140 bitmap_iterator bi;
3142 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3143 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3144 dump_asserts_for (file, ssa_name (i));
3145 fprintf (file, "\n");
3149 /* Dump all the registered assertions for all the names to stderr. */
3151 void
3152 debug_all_asserts (void)
3154 dump_all_asserts (stderr);
3158 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3159 'NAME COMP_CODE VAL' at a location that dominates block BB or
3160 E->DEST, then register this location as a possible insertion point
3161 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
3163 BB, E and SI provide the exact insertion point for the new
3164 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3165 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3166 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3167 must not be NULL. */
3169 static void
3170 register_new_assert_for (tree name,
3171 enum tree_code comp_code,
3172 tree val,
3173 basic_block bb,
3174 edge e,
3175 block_stmt_iterator si)
3177 assert_locus_t n, loc, last_loc;
3178 bool found;
3179 basic_block dest_bb;
3181 #if defined ENABLE_CHECKING
3182 gcc_assert (bb == NULL || e == NULL);
3184 if (e == NULL)
3185 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
3186 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
3187 #endif
3189 /* The new assertion A will be inserted at BB or E. We need to
3190 determine if the new location is dominated by a previously
3191 registered location for A. If we are doing an edge insertion,
3192 assume that A will be inserted at E->DEST. Note that this is not
3193 necessarily true.
3195 If E is a critical edge, it will be split. But even if E is
3196 split, the new block will dominate the same set of blocks that
3197 E->DEST dominates.
3199 The reverse, however, is not true, blocks dominated by E->DEST
3200 will not be dominated by the new block created to split E. So,
3201 if the insertion location is on a critical edge, we will not use
3202 the new location to move another assertion previously registered
3203 at a block dominated by E->DEST. */
3204 dest_bb = (bb) ? bb : e->dest;
3206 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3207 VAL at a block dominating DEST_BB, then we don't need to insert a new
3208 one. Similarly, if the same assertion already exists at a block
3209 dominated by DEST_BB and the new location is not on a critical
3210 edge, then update the existing location for the assertion (i.e.,
3211 move the assertion up in the dominance tree).
3213 Note, this is implemented as a simple linked list because there
3214 should not be more than a handful of assertions registered per
3215 name. If this becomes a performance problem, a table hashed by
3216 COMP_CODE and VAL could be implemented. */
3217 loc = asserts_for[SSA_NAME_VERSION (name)];
3218 last_loc = loc;
3219 found = false;
3220 while (loc)
3222 if (loc->comp_code == comp_code
3223 && (loc->val == val
3224 || operand_equal_p (loc->val, val, 0)))
3226 /* If the assertion NAME COMP_CODE VAL has already been
3227 registered at a basic block that dominates DEST_BB, then
3228 we don't need to insert the same assertion again. Note
3229 that we don't check strict dominance here to avoid
3230 replicating the same assertion inside the same basic
3231 block more than once (e.g., when a pointer is
3232 dereferenced several times inside a block).
3234 An exception to this rule are edge insertions. If the
3235 new assertion is to be inserted on edge E, then it will
3236 dominate all the other insertions that we may want to
3237 insert in DEST_BB. So, if we are doing an edge
3238 insertion, don't do this dominance check. */
3239 if (e == NULL
3240 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3241 return;
3243 /* Otherwise, if E is not a critical edge and DEST_BB
3244 dominates the existing location for the assertion, move
3245 the assertion up in the dominance tree by updating its
3246 location information. */
3247 if ((e == NULL || !EDGE_CRITICAL_P (e))
3248 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3250 loc->bb = dest_bb;
3251 loc->e = e;
3252 loc->si = si;
3253 return;
3257 /* Update the last node of the list and move to the next one. */
3258 last_loc = loc;
3259 loc = loc->next;
3262 /* If we didn't find an assertion already registered for
3263 NAME COMP_CODE VAL, add a new one at the end of the list of
3264 assertions associated with NAME. */
3265 n = XNEW (struct assert_locus_d);
3266 n->bb = dest_bb;
3267 n->e = e;
3268 n->si = si;
3269 n->comp_code = comp_code;
3270 n->val = val;
3271 n->next = NULL;
3273 if (last_loc)
3274 last_loc->next = n;
3275 else
3276 asserts_for[SSA_NAME_VERSION (name)] = n;
3278 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3281 /* COND is a predicate which uses NAME. Extract a suitable test code
3282 and value and store them into *CODE_P and *VAL_P so the predicate
3283 is normalized to NAME *CODE_P *VAL_P.
3285 If no extraction was possible, return FALSE, otherwise return TRUE.
3287 If INVERT is true, then we invert the result stored into *CODE_P. */
3289 static bool
3290 extract_code_and_val_from_cond (tree name, tree cond, bool invert,
3291 enum tree_code *code_p, tree *val_p)
3293 enum tree_code comp_code;
3294 tree val;
3296 /* Predicates may be a single SSA name or NAME OP VAL. */
3297 if (cond == name)
3299 /* If the predicate is a name, it must be NAME, in which
3300 case we create the predicate NAME == true or
3301 NAME == false accordingly. */
3302 comp_code = EQ_EXPR;
3303 val = invert ? boolean_false_node : boolean_true_node;
3305 else
3307 /* Otherwise, we have a comparison of the form NAME COMP VAL
3308 or VAL COMP NAME. */
3309 if (name == TREE_OPERAND (cond, 1))
3311 /* If the predicate is of the form VAL COMP NAME, flip
3312 COMP around because we need to register NAME as the
3313 first operand in the predicate. */
3314 comp_code = swap_tree_comparison (TREE_CODE (cond));
3315 val = TREE_OPERAND (cond, 0);
3317 else
3319 /* The comparison is of the form NAME COMP VAL, so the
3320 comparison code remains unchanged. */
3321 comp_code = TREE_CODE (cond);
3322 val = TREE_OPERAND (cond, 1);
3325 /* Invert the comparison code as necessary. */
3326 if (invert)
3327 comp_code = invert_tree_comparison (comp_code, 0);
3329 /* VRP does not handle float types. */
3330 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
3331 return false;
3333 /* Do not register always-false predicates.
3334 FIXME: this works around a limitation in fold() when dealing with
3335 enumerations. Given 'enum { N1, N2 } x;', fold will not
3336 fold 'if (x > N2)' to 'if (0)'. */
3337 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3338 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
3340 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3341 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3343 if (comp_code == GT_EXPR
3344 && (!max
3345 || compare_values (val, max) == 0))
3346 return false;
3348 if (comp_code == LT_EXPR
3349 && (!min
3350 || compare_values (val, min) == 0))
3351 return false;
3354 *code_p = comp_code;
3355 *val_p = val;
3356 return true;
3359 /* OP is an operand of a truth value expression which is known to have
3360 a particular value. Register any asserts for OP and for any
3361 operands in OP's defining statement.
3363 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3364 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3366 static bool
3367 register_edge_assert_for_1 (tree op, enum tree_code code,
3368 edge e, block_stmt_iterator bsi)
3370 bool retval = false;
3371 tree op_def, rhs, val;
3373 /* We only care about SSA_NAMEs. */
3374 if (TREE_CODE (op) != SSA_NAME)
3375 return false;
3377 /* We know that OP will have a zero or nonzero value. If OP is used
3378 more than once go ahead and register an assert for OP.
3380 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
3381 it will always be set for OP (because OP is used in a COND_EXPR in
3382 the subgraph). */
3383 if (!has_single_use (op))
3385 val = build_int_cst (TREE_TYPE (op), 0);
3386 register_new_assert_for (op, code, val, NULL, e, bsi);
3387 retval = true;
3390 /* Now look at how OP is set. If it's set from a comparison,
3391 a truth operation or some bit operations, then we may be able
3392 to register information about the operands of that assignment. */
3393 op_def = SSA_NAME_DEF_STMT (op);
3394 if (TREE_CODE (op_def) != GIMPLE_MODIFY_STMT)
3395 return retval;
3397 rhs = GIMPLE_STMT_OPERAND (op_def, 1);
3399 if (COMPARISON_CLASS_P (rhs))
3401 bool invert = (code == EQ_EXPR ? true : false);
3402 tree op0 = TREE_OPERAND (rhs, 0);
3403 tree op1 = TREE_OPERAND (rhs, 1);
3405 /* Conditionally register an assert for each SSA_NAME in the
3406 comparison. */
3407 if (TREE_CODE (op0) == SSA_NAME
3408 && !has_single_use (op0)
3409 && extract_code_and_val_from_cond (op0, rhs,
3410 invert, &code, &val))
3412 register_new_assert_for (op0, code, val, NULL, e, bsi);
3413 retval = true;
3416 /* Similarly for the second operand of the comparison. */
3417 if (TREE_CODE (op1) == SSA_NAME
3418 && !has_single_use (op1)
3419 && extract_code_and_val_from_cond (op1, rhs,
3420 invert, &code, &val))
3422 register_new_assert_for (op1, code, val, NULL, e, bsi);
3423 retval = true;
3426 else if ((code == NE_EXPR
3427 && (TREE_CODE (rhs) == TRUTH_AND_EXPR
3428 || TREE_CODE (rhs) == BIT_AND_EXPR))
3429 || (code == EQ_EXPR
3430 && (TREE_CODE (rhs) == TRUTH_OR_EXPR
3431 || TREE_CODE (rhs) == BIT_IOR_EXPR)))
3433 /* Recurse on each operand. */
3434 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3435 code, e, bsi);
3436 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 1),
3437 code, e, bsi);
3439 else if (TREE_CODE (rhs) == TRUTH_NOT_EXPR)
3441 /* Recurse, flipping CODE. */
3442 code = invert_tree_comparison (code, false);
3443 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3444 code, e, bsi);
3446 else if (TREE_CODE (rhs) == SSA_NAME)
3448 /* Recurse through the copy. */
3449 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
3451 else if (TREE_CODE (rhs) == NOP_EXPR
3452 || TREE_CODE (rhs) == CONVERT_EXPR
3453 || TREE_CODE (rhs) == VIEW_CONVERT_EXPR
3454 || TREE_CODE (rhs) == NON_LVALUE_EXPR)
3456 /* Recurse through the type conversion. */
3457 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3458 code, e, bsi);
3461 return retval;
3464 /* Try to register an edge assertion for SSA name NAME on edge E for
3465 the condition COND contributing to the conditional jump pointed to by SI.
3466 Return true if an assertion for NAME could be registered. */
3468 static bool
3469 register_edge_assert_for (tree name, edge e, block_stmt_iterator si, tree cond)
3471 tree val;
3472 enum tree_code comp_code;
3473 bool retval = false;
3474 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3476 /* Do not attempt to infer anything in names that flow through
3477 abnormal edges. */
3478 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3479 return false;
3481 if (!extract_code_and_val_from_cond (name, cond, is_else_edge,
3482 &comp_code, &val))
3483 return false;
3485 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3486 reachable from E. */
3487 if (TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
3489 register_new_assert_for (name, comp_code, val, NULL, e, si);
3490 retval = true;
3493 /* If COND is effectively an equality test of an SSA_NAME against
3494 the value zero or one, then we may be able to assert values
3495 for SSA_NAMEs which flow into COND. */
3497 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
3498 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
3499 have nonzero value. */
3500 if (((comp_code == EQ_EXPR && integer_onep (val))
3501 || (comp_code == NE_EXPR && integer_zerop (val))))
3503 tree def_stmt = SSA_NAME_DEF_STMT (name);
3505 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3506 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_AND_EXPR
3507 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_AND_EXPR))
3509 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3510 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3511 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
3512 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
3516 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
3517 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
3518 have zero value. */
3519 if (((comp_code == EQ_EXPR && integer_zerop (val))
3520 || (comp_code == NE_EXPR && integer_onep (val))))
3522 tree def_stmt = SSA_NAME_DEF_STMT (name);
3524 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3525 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_OR_EXPR
3526 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_IOR_EXPR))
3528 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3529 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3530 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
3531 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
3535 return retval;
3539 static bool find_assert_locations (basic_block bb);
3541 /* Determine whether the outgoing edges of BB should receive an
3542 ASSERT_EXPR for each of the operands of BB's LAST statement.
3543 The last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
3545 If any of the sub-graphs rooted at BB have an interesting use of
3546 the predicate operands, an assert location node is added to the
3547 list of assertions for the corresponding operands. */
3549 static bool
3550 find_conditional_asserts (basic_block bb, tree last)
3552 bool need_assert;
3553 block_stmt_iterator bsi;
3554 tree op;
3555 edge_iterator ei;
3556 edge e;
3557 ssa_op_iter iter;
3559 need_assert = false;
3560 bsi = bsi_for_stmt (last);
3562 /* Look for uses of the operands in each of the sub-graphs
3563 rooted at BB. We need to check each of the outgoing edges
3564 separately, so that we know what kind of ASSERT_EXPR to
3565 insert. */
3566 FOR_EACH_EDGE (e, ei, bb->succs)
3568 if (e->dest == bb)
3569 continue;
3571 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
3572 Otherwise, when we finish traversing each of the sub-graphs, we
3573 won't know whether the variables were found in the sub-graphs or
3574 if they had been found in a block upstream from BB.
3576 This is actually a bad idea is some cases, particularly jump
3577 threading. Consider a CFG like the following:
3587 Assume that one or more operands in the conditional at the
3588 end of block 0 are used in a conditional in block 2, but not
3589 anywhere in block 1. In this case we will not insert any
3590 assert statements in block 1, which may cause us to miss
3591 opportunities to optimize, particularly for jump threading. */
3592 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3593 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3595 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3596 to determine if any of the operands in the conditional
3597 predicate are used. */
3598 if (e->dest != bb)
3599 need_assert |= find_assert_locations (e->dest);
3601 /* Register the necessary assertions for each operand in the
3602 conditional predicate. */
3603 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3604 need_assert |= register_edge_assert_for (op, e, bsi,
3605 COND_EXPR_COND (last));
3608 /* Finally, indicate that we have found the operands in the
3609 conditional. */
3610 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3611 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3613 return need_assert;
3617 /* Traverse all the statements in block BB looking for statements that
3618 may generate useful assertions for the SSA names in their operand.
3619 If a statement produces a useful assertion A for name N_i, then the
3620 list of assertions already generated for N_i is scanned to
3621 determine if A is actually needed.
3623 If N_i already had the assertion A at a location dominating the
3624 current location, then nothing needs to be done. Otherwise, the
3625 new location for A is recorded instead.
3627 1- For every statement S in BB, all the variables used by S are
3628 added to bitmap FOUND_IN_SUBGRAPH.
3630 2- If statement S uses an operand N in a way that exposes a known
3631 value range for N, then if N was not already generated by an
3632 ASSERT_EXPR, create a new assert location for N. For instance,
3633 if N is a pointer and the statement dereferences it, we can
3634 assume that N is not NULL.
3636 3- COND_EXPRs are a special case of #2. We can derive range
3637 information from the predicate but need to insert different
3638 ASSERT_EXPRs for each of the sub-graphs rooted at the
3639 conditional block. If the last statement of BB is a conditional
3640 expression of the form 'X op Y', then
3642 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3644 b) If the conditional is the only entry point to the sub-graph
3645 corresponding to the THEN_CLAUSE, recurse into it. On
3646 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3647 an ASSERT_EXPR is added for the corresponding variable.
3649 c) Repeat step (b) on the ELSE_CLAUSE.
3651 d) Mark X and Y in FOUND_IN_SUBGRAPH.
3653 For instance,
3655 if (a == 9)
3656 b = a;
3657 else
3658 b = c + 1;
3660 In this case, an assertion on the THEN clause is useful to
3661 determine that 'a' is always 9 on that edge. However, an assertion
3662 on the ELSE clause would be unnecessary.
3664 4- If BB does not end in a conditional expression, then we recurse
3665 into BB's dominator children.
3667 At the end of the recursive traversal, every SSA name will have a
3668 list of locations where ASSERT_EXPRs should be added. When a new
3669 location for name N is found, it is registered by calling
3670 register_new_assert_for. That function keeps track of all the
3671 registered assertions to prevent adding unnecessary assertions.
3672 For instance, if a pointer P_4 is dereferenced more than once in a
3673 dominator tree, only the location dominating all the dereference of
3674 P_4 will receive an ASSERT_EXPR.
3676 If this function returns true, then it means that there are names
3677 for which we need to generate ASSERT_EXPRs. Those assertions are
3678 inserted by process_assert_insertions.
3680 TODO. Handle SWITCH_EXPR. */
3682 static bool
3683 find_assert_locations (basic_block bb)
3685 block_stmt_iterator si;
3686 tree last, phi;
3687 bool need_assert;
3688 basic_block son;
3690 if (TEST_BIT (blocks_visited, bb->index))
3691 return false;
3693 SET_BIT (blocks_visited, bb->index);
3695 need_assert = false;
3697 /* Traverse all PHI nodes in BB marking used operands. */
3698 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3700 use_operand_p arg_p;
3701 ssa_op_iter i;
3703 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3705 tree arg = USE_FROM_PTR (arg_p);
3706 if (TREE_CODE (arg) == SSA_NAME)
3708 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
3709 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
3714 /* Traverse all the statements in BB marking used names and looking
3715 for statements that may infer assertions for their used operands. */
3716 last = NULL_TREE;
3717 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3719 tree stmt, op;
3720 ssa_op_iter i;
3722 stmt = bsi_stmt (si);
3724 /* See if we can derive an assertion for any of STMT's operands. */
3725 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3727 tree value;
3728 enum tree_code comp_code;
3730 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
3731 the sub-graph of a conditional block, when we return from
3732 this recursive walk, our parent will use the
3733 FOUND_IN_SUBGRAPH bitset to determine if one of the
3734 operands it was looking for was present in the sub-graph. */
3735 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3737 /* If OP is used in such a way that we can infer a value
3738 range for it, and we don't find a previous assertion for
3739 it, create a new assertion location node for OP. */
3740 if (infer_value_range (stmt, op, &comp_code, &value))
3742 /* If we are able to infer a nonzero value range for OP,
3743 then walk backwards through the use-def chain to see if OP
3744 was set via a typecast.
3746 If so, then we can also infer a nonzero value range
3747 for the operand of the NOP_EXPR. */
3748 if (comp_code == NE_EXPR && integer_zerop (value))
3750 tree t = op;
3751 tree def_stmt = SSA_NAME_DEF_STMT (t);
3753 while (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3754 && TREE_CODE
3755 (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
3756 && TREE_CODE
3757 (TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1),
3758 0)) == SSA_NAME
3759 && POINTER_TYPE_P
3760 (TREE_TYPE (TREE_OPERAND
3761 (GIMPLE_STMT_OPERAND (def_stmt,
3762 1), 0))))
3764 t = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3765 def_stmt = SSA_NAME_DEF_STMT (t);
3767 /* Note we want to register the assert for the
3768 operand of the NOP_EXPR after SI, not after the
3769 conversion. */
3770 if (! has_single_use (t))
3772 register_new_assert_for (t, comp_code, value,
3773 bb, NULL, si);
3774 need_assert = true;
3779 /* If OP is used only once, namely in this STMT, don't
3780 bother creating an ASSERT_EXPR for it. Such an
3781 ASSERT_EXPR would do nothing but increase compile time. */
3782 if (!has_single_use (op))
3784 register_new_assert_for (op, comp_code, value, bb, NULL, si);
3785 need_assert = true;
3790 /* Remember the last statement of the block. */
3791 last = stmt;
3794 /* If BB's last statement is a conditional expression
3795 involving integer operands, recurse into each of the sub-graphs
3796 rooted at BB to determine if we need to add ASSERT_EXPRs. */
3797 if (last
3798 && TREE_CODE (last) == COND_EXPR
3799 && !fp_predicate (COND_EXPR_COND (last))
3800 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3801 need_assert |= find_conditional_asserts (bb, last);
3803 /* Recurse into the dominator children of BB. */
3804 for (son = first_dom_son (CDI_DOMINATORS, bb);
3805 son;
3806 son = next_dom_son (CDI_DOMINATORS, son))
3807 need_assert |= find_assert_locations (son);
3809 return need_assert;
3813 /* Create an ASSERT_EXPR for NAME and insert it in the location
3814 indicated by LOC. Return true if we made any edge insertions. */
3816 static bool
3817 process_assert_insertions_for (tree name, assert_locus_t loc)
3819 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3820 tree stmt, cond, assert_expr;
3821 edge_iterator ei;
3822 edge e;
3824 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
3825 assert_expr = build_assert_expr_for (cond, name);
3827 if (loc->e)
3829 /* We have been asked to insert the assertion on an edge. This
3830 is used only by COND_EXPR and SWITCH_EXPR assertions. */
3831 #if defined ENABLE_CHECKING
3832 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
3833 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
3834 #endif
3836 bsi_insert_on_edge (loc->e, assert_expr);
3837 return true;
3840 /* Otherwise, we can insert right after LOC->SI iff the
3841 statement must not be the last statement in the block. */
3842 stmt = bsi_stmt (loc->si);
3843 if (!stmt_ends_bb_p (stmt))
3845 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
3846 return false;
3849 /* If STMT must be the last statement in BB, we can only insert new
3850 assertions on the non-abnormal edge out of BB. Note that since
3851 STMT is not control flow, there may only be one non-abnormal edge
3852 out of BB. */
3853 FOR_EACH_EDGE (e, ei, loc->bb->succs)
3854 if (!(e->flags & EDGE_ABNORMAL))
3856 bsi_insert_on_edge (e, assert_expr);
3857 return true;
3860 gcc_unreachable ();
3864 /* Process all the insertions registered for every name N_i registered
3865 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3866 found in ASSERTS_FOR[i]. */
3868 static void
3869 process_assert_insertions (void)
3871 unsigned i;
3872 bitmap_iterator bi;
3873 bool update_edges_p = false;
3874 int num_asserts = 0;
3876 if (dump_file && (dump_flags & TDF_DETAILS))
3877 dump_all_asserts (dump_file);
3879 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3881 assert_locus_t loc = asserts_for[i];
3882 gcc_assert (loc);
3884 while (loc)
3886 assert_locus_t next = loc->next;
3887 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3888 free (loc);
3889 loc = next;
3890 num_asserts++;
3894 if (update_edges_p)
3895 bsi_commit_edge_inserts ();
3897 if (dump_file && (dump_flags & TDF_STATS))
3898 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3899 num_asserts);
3903 /* Traverse the flowgraph looking for conditional jumps to insert range
3904 expressions. These range expressions are meant to provide information
3905 to optimizations that need to reason in terms of value ranges. They
3906 will not be expanded into RTL. For instance, given:
3908 x = ...
3909 y = ...
3910 if (x < y)
3911 y = x - 2;
3912 else
3913 x = y + 3;
3915 this pass will transform the code into:
3917 x = ...
3918 y = ...
3919 if (x < y)
3921 x = ASSERT_EXPR <x, x < y>
3922 y = x - 2
3924 else
3926 y = ASSERT_EXPR <y, x <= y>
3927 x = y + 3
3930 The idea is that once copy and constant propagation have run, other
3931 optimizations will be able to determine what ranges of values can 'x'
3932 take in different paths of the code, simply by checking the reaching
3933 definition of 'x'. */
3935 static void
3936 insert_range_assertions (void)
3938 edge e;
3939 edge_iterator ei;
3940 bool update_ssa_p;
3942 found_in_subgraph = sbitmap_alloc (num_ssa_names);
3943 sbitmap_zero (found_in_subgraph);
3945 blocks_visited = sbitmap_alloc (last_basic_block);
3946 sbitmap_zero (blocks_visited);
3948 need_assert_for = BITMAP_ALLOC (NULL);
3949 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
3951 calculate_dominance_info (CDI_DOMINATORS);
3953 update_ssa_p = false;
3954 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3955 if (find_assert_locations (e->dest))
3956 update_ssa_p = true;
3958 if (update_ssa_p)
3960 process_assert_insertions ();
3961 update_ssa (TODO_update_ssa_no_phi);
3964 if (dump_file && (dump_flags & TDF_DETAILS))
3966 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3967 dump_function_to_file (current_function_decl, dump_file, dump_flags);
3970 sbitmap_free (found_in_subgraph);
3971 free (asserts_for);
3972 BITMAP_FREE (need_assert_for);
3975 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
3976 and "struct" hacks. If VRP can determine that the
3977 array subscript is a constant, check if it is outside valid
3978 range. If the array subscript is a RANGE, warn if it is
3979 non-overlapping with valid range.
3980 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
3982 static void
3983 check_array_ref (tree ref, location_t* locus, bool ignore_off_by_one)
3985 value_range_t* vr = NULL;
3986 tree low_sub, up_sub;
3987 tree low_bound, up_bound = array_ref_up_bound (ref);
3989 low_sub = up_sub = TREE_OPERAND (ref, 1);
3991 if (!up_bound || !locus || TREE_NO_WARNING (ref)
3992 || TREE_CODE (up_bound) != INTEGER_CST
3993 /* Can not check flexible arrays. */
3994 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
3995 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
3996 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
3997 /* Accesses after the end of arrays of size 0 (gcc
3998 extension) and 1 are likely intentional ("struct
3999 hack"). */
4000 || compare_tree_int (up_bound, 1) <= 0)
4001 return;
4003 low_bound = array_ref_low_bound (ref);
4005 if (TREE_CODE (low_sub) == SSA_NAME)
4007 vr = get_value_range (low_sub);
4008 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4010 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
4011 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
4015 if (vr && vr->type == VR_ANTI_RANGE)
4017 if (TREE_CODE (up_sub) == INTEGER_CST
4018 && tree_int_cst_lt (up_bound, up_sub)
4019 && TREE_CODE (low_sub) == INTEGER_CST
4020 && tree_int_cst_lt (low_sub, low_bound))
4022 warning (OPT_Warray_bounds,
4023 "%Harray subscript is outside array bounds", locus);
4024 TREE_NO_WARNING (ref) = 1;
4027 else if (TREE_CODE (up_sub) == INTEGER_CST
4028 && tree_int_cst_lt (up_bound, up_sub)
4029 && !tree_int_cst_equal (up_bound, up_sub)
4030 && (!ignore_off_by_one
4031 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
4032 up_bound,
4033 integer_one_node,
4035 up_sub)))
4037 warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
4038 locus);
4039 TREE_NO_WARNING (ref) = 1;
4041 else if (TREE_CODE (low_sub) == INTEGER_CST
4042 && tree_int_cst_lt (low_sub, low_bound))
4044 warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
4045 locus);
4046 TREE_NO_WARNING (ref) = 1;
4050 /* walk_tree() callback that checks if *TP is
4051 an ARRAY_REF inside an ADDR_EXPR (in which an array
4052 subscript one outside the valid range is allowed). Call
4053 check_array_ref for each ARRAY_REF found. The location is
4054 passed in DATA. */
4056 static tree
4057 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4059 tree t = *tp;
4060 tree stmt = (tree)data;
4061 location_t *location = EXPR_LOCUS (stmt);
4063 *walk_subtree = TRUE;
4065 if (TREE_CODE (t) == ARRAY_REF)
4066 check_array_ref (t, location, false /*ignore_off_by_one*/);
4067 else if (TREE_CODE (t) == ADDR_EXPR)
4069 use_operand_p op;
4070 tree use_stmt;
4071 t = TREE_OPERAND (t, 0);
4073 /* Don't warn on statements like
4075 ssa_name = 500 + &array[-200]
4079 ssa_name = &array[-200]
4080 other_name = ssa_name + 300;
4082 which are sometimes
4083 produced by other optimizing passes. */
4085 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4086 && BINARY_CLASS_P (GIMPLE_STMT_OPERAND (stmt, 1)))
4087 *walk_subtree = FALSE;
4089 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4090 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == SSA_NAME
4091 && single_imm_use (GIMPLE_STMT_OPERAND (stmt, 0), &op, &use_stmt)
4092 && TREE_CODE (use_stmt) == GIMPLE_MODIFY_STMT
4093 && BINARY_CLASS_P (GIMPLE_STMT_OPERAND (use_stmt, 1)))
4094 *walk_subtree = FALSE;
4096 while (*walk_subtree && handled_component_p (t))
4098 if (TREE_CODE (t) == ARRAY_REF)
4099 check_array_ref (t, location, true /*ignore_off_by_one*/);
4100 t = TREE_OPERAND (t, 0);
4102 *walk_subtree = FALSE;
4105 return NULL_TREE;
4108 /* Walk over all statements of all reachable BBs and call check_array_bounds
4109 on them. */
4111 static void
4112 check_all_array_refs (void)
4114 basic_block bb;
4115 block_stmt_iterator si;
4117 FOR_EACH_BB (bb)
4119 /* Skip bb's that are clearly unreachable. */
4120 if (single_pred_p (bb))
4122 basic_block pred_bb = EDGE_PRED (bb, 0)->src;
4123 tree ls = NULL_TREE;
4125 if (!bsi_end_p (bsi_last (pred_bb)))
4126 ls = bsi_stmt (bsi_last (pred_bb));
4128 if (ls && TREE_CODE (ls) == COND_EXPR
4129 && ((COND_EXPR_COND (ls) == boolean_false_node
4130 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
4131 || (COND_EXPR_COND (ls) == boolean_true_node
4132 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
4133 continue;
4135 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4136 walk_tree (bsi_stmt_ptr (si), check_array_bounds,
4137 bsi_stmt (si), NULL);
4141 /* Convert range assertion expressions into the implied copies and
4142 copy propagate away the copies. Doing the trivial copy propagation
4143 here avoids the need to run the full copy propagation pass after
4144 VRP.
4146 FIXME, this will eventually lead to copy propagation removing the
4147 names that had useful range information attached to them. For
4148 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4149 then N_i will have the range [3, +INF].
4151 However, by converting the assertion into the implied copy
4152 operation N_i = N_j, we will then copy-propagate N_j into the uses
4153 of N_i and lose the range information. We may want to hold on to
4154 ASSERT_EXPRs a little while longer as the ranges could be used in
4155 things like jump threading.
4157 The problem with keeping ASSERT_EXPRs around is that passes after
4158 VRP need to handle them appropriately.
4160 Another approach would be to make the range information a first
4161 class property of the SSA_NAME so that it can be queried from
4162 any pass. This is made somewhat more complex by the need for
4163 multiple ranges to be associated with one SSA_NAME. */
4165 static void
4166 remove_range_assertions (void)
4168 basic_block bb;
4169 block_stmt_iterator si;
4171 /* Note that the BSI iterator bump happens at the bottom of the
4172 loop and no bump is necessary if we're removing the statement
4173 referenced by the current BSI. */
4174 FOR_EACH_BB (bb)
4175 for (si = bsi_start (bb); !bsi_end_p (si);)
4177 tree stmt = bsi_stmt (si);
4178 tree use_stmt;
4180 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4181 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
4183 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1), var;
4184 tree cond = fold (ASSERT_EXPR_COND (rhs));
4185 use_operand_p use_p;
4186 imm_use_iterator iter;
4188 gcc_assert (cond != boolean_false_node);
4190 /* Propagate the RHS into every use of the LHS. */
4191 var = ASSERT_EXPR_VAR (rhs);
4192 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
4193 GIMPLE_STMT_OPERAND (stmt, 0))
4194 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4196 SET_USE (use_p, var);
4197 gcc_assert (TREE_CODE (var) == SSA_NAME);
4200 /* And finally, remove the copy, it is not needed. */
4201 bsi_remove (&si, true);
4202 release_defs (stmt);
4204 else
4205 bsi_next (&si);
4208 sbitmap_free (blocks_visited);
4212 /* Return true if STMT is interesting for VRP. */
4214 static bool
4215 stmt_interesting_for_vrp (tree stmt)
4217 if (TREE_CODE (stmt) == PHI_NODE
4218 && is_gimple_reg (PHI_RESULT (stmt))
4219 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
4220 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
4221 return true;
4222 else if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4224 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4225 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4227 /* In general, assignments with virtual operands are not useful
4228 for deriving ranges, with the obvious exception of calls to
4229 builtin functions. */
4230 if (TREE_CODE (lhs) == SSA_NAME
4231 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4232 || POINTER_TYPE_P (TREE_TYPE (lhs)))
4233 && ((TREE_CODE (rhs) == CALL_EXPR
4234 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
4235 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
4236 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
4237 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
4238 return true;
4240 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4241 return true;
4243 return false;
4247 /* Initialize local data structures for VRP. */
4249 static void
4250 vrp_initialize (void)
4252 basic_block bb;
4254 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
4256 FOR_EACH_BB (bb)
4258 block_stmt_iterator si;
4259 tree phi;
4261 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4263 if (!stmt_interesting_for_vrp (phi))
4265 tree lhs = PHI_RESULT (phi);
4266 set_value_range_to_varying (get_value_range (lhs));
4267 DONT_SIMULATE_AGAIN (phi) = true;
4269 else
4270 DONT_SIMULATE_AGAIN (phi) = false;
4273 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4275 tree stmt = bsi_stmt (si);
4277 if (!stmt_interesting_for_vrp (stmt))
4279 ssa_op_iter i;
4280 tree def;
4281 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
4282 set_value_range_to_varying (get_value_range (def));
4283 DONT_SIMULATE_AGAIN (stmt) = true;
4285 else
4287 DONT_SIMULATE_AGAIN (stmt) = false;
4294 /* Visit assignment STMT. If it produces an interesting range, record
4295 the SSA name in *OUTPUT_P. */
4297 static enum ssa_prop_result
4298 vrp_visit_assignment (tree stmt, tree *output_p)
4300 tree lhs, rhs, def;
4301 ssa_op_iter iter;
4303 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4304 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4306 /* We only keep track of ranges in integral and pointer types. */
4307 if (TREE_CODE (lhs) == SSA_NAME
4308 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4309 /* It is valid to have NULL MIN/MAX values on a type. See
4310 build_range_type. */
4311 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
4312 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
4313 || POINTER_TYPE_P (TREE_TYPE (lhs))))
4315 struct loop *l;
4316 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4318 extract_range_from_expr (&new_vr, rhs);
4320 /* If STMT is inside a loop, we may be able to know something
4321 else about the range of LHS by examining scalar evolution
4322 information. */
4323 if (current_loops && (l = loop_containing_stmt (stmt)))
4324 adjust_range_with_scev (&new_vr, l, stmt, lhs);
4326 if (update_value_range (lhs, &new_vr))
4328 *output_p = lhs;
4330 if (dump_file && (dump_flags & TDF_DETAILS))
4332 fprintf (dump_file, "Found new range for ");
4333 print_generic_expr (dump_file, lhs, 0);
4334 fprintf (dump_file, ": ");
4335 dump_value_range (dump_file, &new_vr);
4336 fprintf (dump_file, "\n\n");
4339 if (new_vr.type == VR_VARYING)
4340 return SSA_PROP_VARYING;
4342 return SSA_PROP_INTERESTING;
4345 return SSA_PROP_NOT_INTERESTING;
4348 /* Every other statement produces no useful ranges. */
4349 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4350 set_value_range_to_varying (get_value_range (def));
4352 return SSA_PROP_VARYING;
4356 /* Compare all the value ranges for names equivalent to VAR with VAL
4357 using comparison code COMP. Return the same value returned by
4358 compare_range_with_value, including the setting of
4359 *STRICT_OVERFLOW_P. */
4361 static tree
4362 compare_name_with_value (enum tree_code comp, tree var, tree val,
4363 bool *strict_overflow_p)
4365 bitmap_iterator bi;
4366 unsigned i;
4367 bitmap e;
4368 tree retval, t;
4369 int used_strict_overflow;
4371 t = retval = NULL_TREE;
4373 /* Get the set of equivalences for VAR. */
4374 e = get_value_range (var)->equiv;
4376 /* Add VAR to its own set of equivalences so that VAR's value range
4377 is processed by this loop (otherwise, we would have to replicate
4378 the body of the loop just to check VAR's value range). */
4379 bitmap_set_bit (e, SSA_NAME_VERSION (var));
4381 /* Start at -1. Set it to 0 if we do a comparison without relying
4382 on overflow, or 1 if all comparisons rely on overflow. */
4383 used_strict_overflow = -1;
4385 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
4387 bool sop;
4389 value_range_t equiv_vr = *(vr_value[i]);
4391 /* If name N_i does not have a valid range, use N_i as its own
4392 range. This allows us to compare against names that may
4393 have N_i in their ranges. */
4394 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
4396 equiv_vr.type = VR_RANGE;
4397 equiv_vr.min = ssa_name (i);
4398 equiv_vr.max = ssa_name (i);
4401 sop = false;
4402 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
4403 if (t)
4405 /* If we get different answers from different members
4406 of the equivalence set this check must be in a dead
4407 code region. Folding it to a trap representation
4408 would be correct here. For now just return don't-know. */
4409 if (retval != NULL
4410 && t != retval)
4412 retval = NULL_TREE;
4413 break;
4415 retval = t;
4417 if (!sop)
4418 used_strict_overflow = 0;
4419 else if (used_strict_overflow < 0)
4420 used_strict_overflow = 1;
4424 /* Remove VAR from its own equivalence set. */
4425 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
4427 if (retval)
4429 if (used_strict_overflow > 0)
4430 *strict_overflow_p = true;
4431 return retval;
4434 /* We couldn't find a non-NULL value for the predicate. */
4435 return NULL_TREE;
4439 /* Given a comparison code COMP and names N1 and N2, compare all the
4440 ranges equivalent to N1 against all the ranges equivalent to N2
4441 to determine the value of N1 COMP N2. Return the same value
4442 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
4443 whether we relied on an overflow infinity in the comparison. */
4446 static tree
4447 compare_names (enum tree_code comp, tree n1, tree n2,
4448 bool *strict_overflow_p)
4450 tree t, retval;
4451 bitmap e1, e2;
4452 bitmap_iterator bi1, bi2;
4453 unsigned i1, i2;
4454 int used_strict_overflow;
4456 /* Compare the ranges of every name equivalent to N1 against the
4457 ranges of every name equivalent to N2. */
4458 e1 = get_value_range (n1)->equiv;
4459 e2 = get_value_range (n2)->equiv;
4461 /* Add N1 and N2 to their own set of equivalences to avoid
4462 duplicating the body of the loop just to check N1 and N2
4463 ranges. */
4464 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
4465 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
4467 /* If the equivalence sets have a common intersection, then the two
4468 names can be compared without checking their ranges. */
4469 if (bitmap_intersect_p (e1, e2))
4471 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4472 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4474 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
4475 ? boolean_true_node
4476 : boolean_false_node;
4479 /* Start at -1. Set it to 0 if we do a comparison without relying
4480 on overflow, or 1 if all comparisons rely on overflow. */
4481 used_strict_overflow = -1;
4483 /* Otherwise, compare all the equivalent ranges. First, add N1 and
4484 N2 to their own set of equivalences to avoid duplicating the body
4485 of the loop just to check N1 and N2 ranges. */
4486 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
4488 value_range_t vr1 = *(vr_value[i1]);
4490 /* If the range is VARYING or UNDEFINED, use the name itself. */
4491 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
4493 vr1.type = VR_RANGE;
4494 vr1.min = ssa_name (i1);
4495 vr1.max = ssa_name (i1);
4498 t = retval = NULL_TREE;
4499 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
4501 bool sop;
4503 value_range_t vr2 = *(vr_value[i2]);
4505 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
4507 vr2.type = VR_RANGE;
4508 vr2.min = ssa_name (i2);
4509 vr2.max = ssa_name (i2);
4512 t = compare_ranges (comp, &vr1, &vr2, &sop);
4513 if (t)
4515 /* If we get different answers from different members
4516 of the equivalence set this check must be in a dead
4517 code region. Folding it to a trap representation
4518 would be correct here. For now just return don't-know. */
4519 if (retval != NULL
4520 && t != retval)
4522 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4523 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4524 return NULL_TREE;
4526 retval = t;
4528 if (!sop)
4529 used_strict_overflow = 0;
4530 else if (used_strict_overflow < 0)
4531 used_strict_overflow = 1;
4535 if (retval)
4537 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4538 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4539 if (used_strict_overflow > 0)
4540 *strict_overflow_p = true;
4541 return retval;
4545 /* None of the equivalent ranges are useful in computing this
4546 comparison. */
4547 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4548 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4549 return NULL_TREE;
4553 /* Given a conditional predicate COND, try to determine if COND yields
4554 true or false based on the value ranges of its operands. Return
4555 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
4556 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
4557 NULL if the conditional cannot be evaluated at compile time.
4559 If USE_EQUIV_P is true, the ranges of all the names equivalent with
4560 the operands in COND are used when trying to compute its value.
4561 This is only used during final substitution. During propagation,
4562 we only check the range of each variable and not its equivalents.
4564 Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
4565 infinity to produce the result. */
4567 static tree
4568 vrp_evaluate_conditional_warnv (tree cond, bool use_equiv_p,
4569 bool *strict_overflow_p)
4571 gcc_assert (TREE_CODE (cond) == SSA_NAME
4572 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
4574 if (TREE_CODE (cond) == SSA_NAME)
4576 value_range_t *vr;
4577 tree retval;
4579 if (use_equiv_p)
4580 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node,
4581 strict_overflow_p);
4582 else
4584 value_range_t *vr = get_value_range (cond);
4585 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node,
4586 strict_overflow_p);
4589 /* If COND has a known boolean range, return it. */
4590 if (retval)
4591 return retval;
4593 /* Otherwise, if COND has a symbolic range of exactly one value,
4594 return it. */
4595 vr = get_value_range (cond);
4596 if (vr->type == VR_RANGE && vr->min == vr->max)
4597 return vr->min;
4599 else
4601 tree op0 = TREE_OPERAND (cond, 0);
4602 tree op1 = TREE_OPERAND (cond, 1);
4604 /* We only deal with integral and pointer types. */
4605 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
4606 && !POINTER_TYPE_P (TREE_TYPE (op0)))
4607 return NULL_TREE;
4609 if (use_equiv_p)
4611 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
4612 return compare_names (TREE_CODE (cond), op0, op1,
4613 strict_overflow_p);
4614 else if (TREE_CODE (op0) == SSA_NAME)
4615 return compare_name_with_value (TREE_CODE (cond), op0, op1,
4616 strict_overflow_p);
4617 else if (TREE_CODE (op1) == SSA_NAME)
4618 return (compare_name_with_value
4619 (swap_tree_comparison (TREE_CODE (cond)), op1, op0,
4620 strict_overflow_p));
4622 else
4624 value_range_t *vr0, *vr1;
4626 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
4627 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
4629 if (vr0 && vr1)
4630 return compare_ranges (TREE_CODE (cond), vr0, vr1,
4631 strict_overflow_p);
4632 else if (vr0 && vr1 == NULL)
4633 return compare_range_with_value (TREE_CODE (cond), vr0, op1,
4634 strict_overflow_p);
4635 else if (vr0 == NULL && vr1)
4636 return (compare_range_with_value
4637 (swap_tree_comparison (TREE_CODE (cond)), vr1, op0,
4638 strict_overflow_p));
4642 /* Anything else cannot be computed statically. */
4643 return NULL_TREE;
4646 /* Given COND within STMT, try to simplify it based on value range
4647 information. Return NULL if the conditional can not be evaluated.
4648 The ranges of all the names equivalent with the operands in COND
4649 will be used when trying to compute the value. If the result is
4650 based on undefined signed overflow, issue a warning if
4651 appropriate. */
4653 tree
4654 vrp_evaluate_conditional (tree cond, tree stmt)
4656 bool sop;
4657 tree ret;
4659 sop = false;
4660 ret = vrp_evaluate_conditional_warnv (cond, true, &sop);
4662 if (ret && sop)
4664 enum warn_strict_overflow_code wc;
4665 const char* warnmsg;
4667 if (is_gimple_min_invariant (ret))
4669 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
4670 warnmsg = G_("assuming signed overflow does not occur when "
4671 "simplifying conditional to constant");
4673 else
4675 wc = WARN_STRICT_OVERFLOW_COMPARISON;
4676 warnmsg = G_("assuming signed overflow does not occur when "
4677 "simplifying conditional");
4680 if (issue_strict_overflow_warning (wc))
4682 location_t locus;
4684 if (!EXPR_HAS_LOCATION (stmt))
4685 locus = input_location;
4686 else
4687 locus = EXPR_LOCATION (stmt);
4688 warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
4692 return ret;
4696 /* Visit conditional statement STMT. If we can determine which edge
4697 will be taken out of STMT's basic block, record it in
4698 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
4699 SSA_PROP_VARYING. */
4701 static enum ssa_prop_result
4702 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
4704 tree cond, val;
4705 bool sop;
4707 *taken_edge_p = NULL;
4709 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
4710 add ASSERT_EXPRs for them. */
4711 if (TREE_CODE (stmt) == SWITCH_EXPR)
4712 return SSA_PROP_VARYING;
4714 cond = COND_EXPR_COND (stmt);
4716 if (dump_file && (dump_flags & TDF_DETAILS))
4718 tree use;
4719 ssa_op_iter i;
4721 fprintf (dump_file, "\nVisiting conditional with predicate: ");
4722 print_generic_expr (dump_file, cond, 0);
4723 fprintf (dump_file, "\nWith known ranges\n");
4725 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4727 fprintf (dump_file, "\t");
4728 print_generic_expr (dump_file, use, 0);
4729 fprintf (dump_file, ": ");
4730 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
4733 fprintf (dump_file, "\n");
4736 /* Compute the value of the predicate COND by checking the known
4737 ranges of each of its operands.
4739 Note that we cannot evaluate all the equivalent ranges here
4740 because those ranges may not yet be final and with the current
4741 propagation strategy, we cannot determine when the value ranges
4742 of the names in the equivalence set have changed.
4744 For instance, given the following code fragment
4746 i_5 = PHI <8, i_13>
4748 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
4749 if (i_14 == 1)
4752 Assume that on the first visit to i_14, i_5 has the temporary
4753 range [8, 8] because the second argument to the PHI function is
4754 not yet executable. We derive the range ~[0, 0] for i_14 and the
4755 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
4756 the first time, since i_14 is equivalent to the range [8, 8], we
4757 determine that the predicate is always false.
4759 On the next round of propagation, i_13 is determined to be
4760 VARYING, which causes i_5 to drop down to VARYING. So, another
4761 visit to i_14 is scheduled. In this second visit, we compute the
4762 exact same range and equivalence set for i_14, namely ~[0, 0] and
4763 { i_5 }. But we did not have the previous range for i_5
4764 registered, so vrp_visit_assignment thinks that the range for
4765 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
4766 is not visited again, which stops propagation from visiting
4767 statements in the THEN clause of that if().
4769 To properly fix this we would need to keep the previous range
4770 value for the names in the equivalence set. This way we would've
4771 discovered that from one visit to the other i_5 changed from
4772 range [8, 8] to VR_VARYING.
4774 However, fixing this apparent limitation may not be worth the
4775 additional checking. Testing on several code bases (GCC, DLV,
4776 MICO, TRAMP3D and SPEC2000) showed that doing this results in
4777 4 more predicates folded in SPEC. */
4778 sop = false;
4779 val = vrp_evaluate_conditional_warnv (cond, false, &sop);
4780 if (val)
4782 if (!sop)
4783 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
4784 else
4786 if (dump_file && (dump_flags & TDF_DETAILS))
4787 fprintf (dump_file,
4788 "\nIgnoring predicate evaluation because "
4789 "it assumes that signed overflow is undefined");
4790 val = NULL_TREE;
4794 if (dump_file && (dump_flags & TDF_DETAILS))
4796 fprintf (dump_file, "\nPredicate evaluates to: ");
4797 if (val == NULL_TREE)
4798 fprintf (dump_file, "DON'T KNOW\n");
4799 else
4800 print_generic_stmt (dump_file, val, 0);
4803 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
4807 /* Evaluate statement STMT. If the statement produces a useful range,
4808 return SSA_PROP_INTERESTING and record the SSA name with the
4809 interesting range into *OUTPUT_P.
4811 If STMT is a conditional branch and we can determine its truth
4812 value, the taken edge is recorded in *TAKEN_EDGE_P.
4814 If STMT produces a varying value, return SSA_PROP_VARYING. */
4816 static enum ssa_prop_result
4817 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
4819 tree def;
4820 ssa_op_iter iter;
4821 stmt_ann_t ann;
4823 if (dump_file && (dump_flags & TDF_DETAILS))
4825 fprintf (dump_file, "\nVisiting statement:\n");
4826 print_generic_stmt (dump_file, stmt, dump_flags);
4827 fprintf (dump_file, "\n");
4830 ann = stmt_ann (stmt);
4831 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4833 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4835 /* In general, assignments with virtual operands are not useful
4836 for deriving ranges, with the obvious exception of calls to
4837 builtin functions. */
4838 if ((TREE_CODE (rhs) == CALL_EXPR
4839 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
4840 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
4841 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
4842 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
4843 return vrp_visit_assignment (stmt, output_p);
4845 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4846 return vrp_visit_cond_stmt (stmt, taken_edge_p);
4848 /* All other statements produce nothing of interest for VRP, so mark
4849 their outputs varying and prevent further simulation. */
4850 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4851 set_value_range_to_varying (get_value_range (def));
4853 return SSA_PROP_VARYING;
4857 /* Meet operation for value ranges. Given two value ranges VR0 and
4858 VR1, store in VR0 a range that contains both VR0 and VR1. This
4859 may not be the smallest possible such range. */
4861 static void
4862 vrp_meet (value_range_t *vr0, value_range_t *vr1)
4864 if (vr0->type == VR_UNDEFINED)
4866 copy_value_range (vr0, vr1);
4867 return;
4870 if (vr1->type == VR_UNDEFINED)
4872 /* Nothing to do. VR0 already has the resulting range. */
4873 return;
4876 if (vr0->type == VR_VARYING)
4878 /* Nothing to do. VR0 already has the resulting range. */
4879 return;
4882 if (vr1->type == VR_VARYING)
4884 set_value_range_to_varying (vr0);
4885 return;
4888 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
4890 int cmp;
4891 tree min, max;
4893 /* Compute the convex hull of the ranges. The lower limit of
4894 the new range is the minimum of the two ranges. If they
4895 cannot be compared, then give up. */
4896 cmp = compare_values (vr0->min, vr1->min);
4897 if (cmp == 0 || cmp == 1)
4898 min = vr1->min;
4899 else if (cmp == -1)
4900 min = vr0->min;
4901 else
4902 goto give_up;
4904 /* Similarly, the upper limit of the new range is the maximum
4905 of the two ranges. If they cannot be compared, then
4906 give up. */
4907 cmp = compare_values (vr0->max, vr1->max);
4908 if (cmp == 0 || cmp == -1)
4909 max = vr1->max;
4910 else if (cmp == 1)
4911 max = vr0->max;
4912 else
4913 goto give_up;
4915 /* The resulting set of equivalences is the intersection of
4916 the two sets. */
4917 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4918 bitmap_and_into (vr0->equiv, vr1->equiv);
4919 else if (vr0->equiv && !vr1->equiv)
4920 bitmap_clear (vr0->equiv);
4922 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
4924 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4926 /* Two anti-ranges meet only if their complements intersect.
4927 Only handle the case of identical ranges. */
4928 if (compare_values (vr0->min, vr1->min) == 0
4929 && compare_values (vr0->max, vr1->max) == 0
4930 && compare_values (vr0->min, vr0->max) == 0)
4932 /* The resulting set of equivalences is the intersection of
4933 the two sets. */
4934 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4935 bitmap_and_into (vr0->equiv, vr1->equiv);
4936 else if (vr0->equiv && !vr1->equiv)
4937 bitmap_clear (vr0->equiv);
4939 else
4940 goto give_up;
4942 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4944 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
4945 only handle the case where the ranges have an empty intersection.
4946 The result of the meet operation is the anti-range. */
4947 if (!symbolic_range_p (vr0)
4948 && !symbolic_range_p (vr1)
4949 && !value_ranges_intersect_p (vr0, vr1))
4951 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
4952 set. We need to compute the intersection of the two
4953 equivalence sets. */
4954 if (vr1->type == VR_ANTI_RANGE)
4955 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
4957 /* The resulting set of equivalences is the intersection of
4958 the two sets. */
4959 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4960 bitmap_and_into (vr0->equiv, vr1->equiv);
4961 else if (vr0->equiv && !vr1->equiv)
4962 bitmap_clear (vr0->equiv);
4964 else
4965 goto give_up;
4967 else
4968 gcc_unreachable ();
4970 return;
4972 give_up:
4973 /* Failed to find an efficient meet. Before giving up and setting
4974 the result to VARYING, see if we can at least derive a useful
4975 anti-range. FIXME, all this nonsense about distinguishing
4976 anti-ranges from ranges is necessary because of the odd
4977 semantics of range_includes_zero_p and friends. */
4978 if (!symbolic_range_p (vr0)
4979 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
4980 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
4981 && !symbolic_range_p (vr1)
4982 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
4983 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
4985 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
4987 /* Since this meet operation did not result from the meeting of
4988 two equivalent names, VR0 cannot have any equivalences. */
4989 if (vr0->equiv)
4990 bitmap_clear (vr0->equiv);
4992 else
4993 set_value_range_to_varying (vr0);
4997 /* Visit all arguments for PHI node PHI that flow through executable
4998 edges. If a valid value range can be derived from all the incoming
4999 value ranges, set a new range for the LHS of PHI. */
5001 static enum ssa_prop_result
5002 vrp_visit_phi_node (tree phi)
5004 int i;
5005 tree lhs = PHI_RESULT (phi);
5006 value_range_t *lhs_vr = get_value_range (lhs);
5007 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5008 bool all_const = true;
5010 copy_value_range (&vr_result, lhs_vr);
5012 if (dump_file && (dump_flags & TDF_DETAILS))
5014 fprintf (dump_file, "\nVisiting PHI node: ");
5015 print_generic_expr (dump_file, phi, dump_flags);
5018 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
5020 edge e = PHI_ARG_EDGE (phi, i);
5022 if (dump_file && (dump_flags & TDF_DETAILS))
5024 fprintf (dump_file,
5025 "\n Argument #%d (%d -> %d %sexecutable)\n",
5026 i, e->src->index, e->dest->index,
5027 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
5030 if (e->flags & EDGE_EXECUTABLE)
5032 tree arg = PHI_ARG_DEF (phi, i);
5033 value_range_t vr_arg;
5035 if (TREE_CODE (arg) == SSA_NAME)
5037 vr_arg = *(get_value_range (arg));
5038 all_const = false;
5040 else
5042 vr_arg.type = VR_RANGE;
5043 vr_arg.min = arg;
5044 vr_arg.max = arg;
5045 vr_arg.equiv = NULL;
5048 if (dump_file && (dump_flags & TDF_DETAILS))
5050 fprintf (dump_file, "\t");
5051 print_generic_expr (dump_file, arg, dump_flags);
5052 fprintf (dump_file, "\n\tValue: ");
5053 dump_value_range (dump_file, &vr_arg);
5054 fprintf (dump_file, "\n");
5057 vrp_meet (&vr_result, &vr_arg);
5059 if (vr_result.type == VR_VARYING)
5060 break;
5064 if (vr_result.type == VR_VARYING)
5065 goto varying;
5067 /* To prevent infinite iterations in the algorithm, derive ranges
5068 when the new value is slightly bigger or smaller than the
5069 previous one. */
5070 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
5071 && !all_const)
5073 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
5075 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
5076 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
5078 /* If the new minimum is smaller or larger than the previous
5079 one, go all the way to -INF. In the first case, to avoid
5080 iterating millions of times to reach -INF, and in the
5081 other case to avoid infinite bouncing between different
5082 minimums. */
5083 if (cmp_min > 0 || cmp_min < 0)
5085 /* If we will end up with a (-INF, +INF) range, set it
5086 to VARYING. */
5087 if (is_positive_overflow_infinity (vr_result.max)
5088 || (vr_result.max
5089 == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max))))
5090 goto varying;
5092 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min)))
5093 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
5094 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
5095 vr_result.min =
5096 negative_overflow_infinity (TREE_TYPE (vr_result.min));
5097 else
5098 goto varying;
5101 /* Similarly, if the new maximum is smaller or larger than
5102 the previous one, go all the way to +INF. */
5103 if (cmp_max < 0 || cmp_max > 0)
5105 /* If we will end up with a (-INF, +INF) range, set it
5106 to VARYING. */
5107 if (is_negative_overflow_infinity (vr_result.min)
5108 || (vr_result.min
5109 == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))))
5110 goto varying;
5112 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max)))
5113 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
5114 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
5115 vr_result.max =
5116 positive_overflow_infinity (TREE_TYPE (vr_result.max));
5117 else
5118 goto varying;
5123 /* If the new range is different than the previous value, keep
5124 iterating. */
5125 if (update_value_range (lhs, &vr_result))
5126 return SSA_PROP_INTERESTING;
5128 /* Nothing changed, don't add outgoing edges. */
5129 return SSA_PROP_NOT_INTERESTING;
5131 /* No match found. Set the LHS to VARYING. */
5132 varying:
5133 set_value_range_to_varying (lhs_vr);
5134 return SSA_PROP_VARYING;
5137 /* Simplify a division or modulo operator to a right shift or
5138 bitwise and if the first operand is unsigned or is greater
5139 than zero and the second operand is an exact power of two. */
5141 static void
5142 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
5144 tree val = NULL;
5145 tree op = TREE_OPERAND (rhs, 0);
5146 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
5148 if (TYPE_UNSIGNED (TREE_TYPE (op)))
5150 val = integer_one_node;
5152 else
5154 bool sop = false;
5156 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node, &sop);
5158 if (val
5159 && sop
5160 && integer_onep (val)
5161 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5163 location_t locus;
5165 if (!EXPR_HAS_LOCATION (stmt))
5166 locus = input_location;
5167 else
5168 locus = EXPR_LOCATION (stmt);
5169 warning (OPT_Wstrict_overflow,
5170 ("%Hassuming signed overflow does not occur when "
5171 "simplifying / or %% to >> or &"),
5172 &locus);
5176 if (val && integer_onep (val))
5178 tree t;
5179 tree op0 = TREE_OPERAND (rhs, 0);
5180 tree op1 = TREE_OPERAND (rhs, 1);
5182 if (rhs_code == TRUNC_DIV_EXPR)
5184 t = build_int_cst (NULL_TREE, tree_log2 (op1));
5185 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
5187 else
5189 t = build_int_cst (TREE_TYPE (op1), 1);
5190 t = int_const_binop (MINUS_EXPR, op1, t, 0);
5191 t = fold_convert (TREE_TYPE (op0), t);
5192 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
5195 GIMPLE_STMT_OPERAND (stmt, 1) = t;
5196 update_stmt (stmt);
5200 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
5201 ABS_EXPR. If the operand is <= 0, then simplify the
5202 ABS_EXPR into a NEGATE_EXPR. */
5204 static void
5205 simplify_abs_using_ranges (tree stmt, tree rhs)
5207 tree val = NULL;
5208 tree op = TREE_OPERAND (rhs, 0);
5209 tree type = TREE_TYPE (op);
5210 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
5212 if (TYPE_UNSIGNED (type))
5214 val = integer_zero_node;
5216 else if (vr)
5218 bool sop = false;
5220 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
5221 if (!val)
5223 sop = false;
5224 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
5225 &sop);
5227 if (val)
5229 if (integer_zerop (val))
5230 val = integer_one_node;
5231 else if (integer_onep (val))
5232 val = integer_zero_node;
5236 if (val
5237 && (integer_onep (val) || integer_zerop (val)))
5239 tree t;
5241 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5243 location_t locus;
5245 if (!EXPR_HAS_LOCATION (stmt))
5246 locus = input_location;
5247 else
5248 locus = EXPR_LOCATION (stmt);
5249 warning (OPT_Wstrict_overflow,
5250 ("%Hassuming signed overflow does not occur when "
5251 "simplifying abs (X) to X or -X"),
5252 &locus);
5255 if (integer_onep (val))
5256 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
5257 else
5258 t = op;
5260 GIMPLE_STMT_OPERAND (stmt, 1) = t;
5261 update_stmt (stmt);
5266 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
5267 a known value range VR.
5269 If there is one and only one value which will satisfy the
5270 conditional, then return that value. Else return NULL. */
5272 static tree
5273 test_for_singularity (enum tree_code cond_code, tree op0,
5274 tree op1, value_range_t *vr)
5276 tree min = NULL;
5277 tree max = NULL;
5279 /* Extract minimum/maximum values which satisfy the
5280 the conditional as it was written. */
5281 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
5283 /* This should not be negative infinity; there is no overflow
5284 here. */
5285 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
5287 max = op1;
5288 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
5290 tree one = build_int_cst (TREE_TYPE (op0), 1);
5291 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
5294 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
5296 /* This should not be positive infinity; there is no overflow
5297 here. */
5298 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
5300 min = op1;
5301 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
5303 tree one = build_int_cst (TREE_TYPE (op0), 1);
5304 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
5308 /* Now refine the minimum and maximum values using any
5309 value range information we have for op0. */
5310 if (min && max)
5312 if (compare_values (vr->min, min) == -1)
5313 min = min;
5314 else
5315 min = vr->min;
5316 if (compare_values (vr->max, max) == 1)
5317 max = max;
5318 else
5319 max = vr->max;
5321 /* If the new min/max values have converged to a single value,
5322 then there is only one value which can satisfy the condition,
5323 return that value. */
5324 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
5325 return min;
5327 return NULL;
5330 /* Simplify a conditional using a relational operator to an equality
5331 test if the range information indicates only one value can satisfy
5332 the original conditional. */
5334 static void
5335 simplify_cond_using_ranges (tree stmt)
5337 tree cond = COND_EXPR_COND (stmt);
5338 tree op0 = TREE_OPERAND (cond, 0);
5339 tree op1 = TREE_OPERAND (cond, 1);
5340 enum tree_code cond_code = TREE_CODE (cond);
5342 if (cond_code != NE_EXPR
5343 && cond_code != EQ_EXPR
5344 && TREE_CODE (op0) == SSA_NAME
5345 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
5346 && is_gimple_min_invariant (op1))
5348 value_range_t *vr = get_value_range (op0);
5350 /* If we have range information for OP0, then we might be
5351 able to simplify this conditional. */
5352 if (vr->type == VR_RANGE)
5354 tree new = test_for_singularity (cond_code, op0, op1, vr);
5356 if (new)
5358 if (dump_file)
5360 fprintf (dump_file, "Simplified relational ");
5361 print_generic_expr (dump_file, cond, 0);
5362 fprintf (dump_file, " into ");
5365 COND_EXPR_COND (stmt)
5366 = build2 (EQ_EXPR, boolean_type_node, op0, new);
5367 update_stmt (stmt);
5369 if (dump_file)
5371 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5372 fprintf (dump_file, "\n");
5374 return;
5378 /* Try again after inverting the condition. We only deal
5379 with integral types here, so no need to worry about
5380 issues with inverting FP comparisons. */
5381 cond_code = invert_tree_comparison (cond_code, false);
5382 new = test_for_singularity (cond_code, op0, op1, vr);
5384 if (new)
5386 if (dump_file)
5388 fprintf (dump_file, "Simplified relational ");
5389 print_generic_expr (dump_file, cond, 0);
5390 fprintf (dump_file, " into ");
5393 COND_EXPR_COND (stmt)
5394 = build2 (NE_EXPR, boolean_type_node, op0, new);
5395 update_stmt (stmt);
5397 if (dump_file)
5399 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5400 fprintf (dump_file, "\n");
5402 return;
5409 /* Simplify STMT using ranges if possible. */
5411 void
5412 simplify_stmt_using_ranges (tree stmt)
5414 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
5416 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5417 enum tree_code rhs_code = TREE_CODE (rhs);
5419 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
5420 and BIT_AND_EXPR respectively if the first operand is greater
5421 than zero and the second operand is an exact power of two. */
5422 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
5423 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
5424 && integer_pow2p (TREE_OPERAND (rhs, 1)))
5425 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
5427 /* Transform ABS (X) into X or -X as appropriate. */
5428 if (rhs_code == ABS_EXPR
5429 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
5430 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
5431 simplify_abs_using_ranges (stmt, rhs);
5433 else if (TREE_CODE (stmt) == COND_EXPR
5434 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
5436 simplify_cond_using_ranges (stmt);
5440 /* Stack of dest,src equivalency pairs that need to be restored after
5441 each attempt to thread a block's incoming edge to an outgoing edge.
5443 A NULL entry is used to mark the end of pairs which need to be
5444 restored. */
5445 static VEC(tree,heap) *stack;
5447 /* A trivial wrapper so that we can present the generic jump threading
5448 code with a simple API for simplifying statements. STMT is the
5449 statement we want to simplify, WITHIN_STMT provides the location
5450 for any overflow warnings. */
5452 static tree
5453 simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
5455 /* We only use VRP information to simplify conditionals. This is
5456 overly conservative, but it's unclear if doing more would be
5457 worth the compile time cost. */
5458 if (TREE_CODE (stmt) != COND_EXPR)
5459 return NULL;
5461 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), within_stmt);
5464 /* Blocks which have more than one predecessor and more than
5465 one successor present jump threading opportunities. ie,
5466 when the block is reached from a specific predecessor, we
5467 may be able to determine which of the outgoing edges will
5468 be traversed. When this optimization applies, we are able
5469 to avoid conditionals at runtime and we may expose secondary
5470 optimization opportunities.
5472 This routine is effectively a driver for the generic jump
5473 threading code. It basically just presents the generic code
5474 with edges that may be suitable for jump threading.
5476 Unlike DOM, we do not iterate VRP if jump threading was successful.
5477 While iterating may expose new opportunities for VRP, it is expected
5478 those opportunities would be very limited and the compile time cost
5479 to expose those opportunities would be significant.
5481 As jump threading opportunities are discovered, they are registered
5482 for later realization. */
5484 static void
5485 identify_jump_threads (void)
5487 basic_block bb;
5488 tree dummy;
5490 /* Ugh. When substituting values earlier in this pass we can
5491 wipe the dominance information. So rebuild the dominator
5492 information as we need it within the jump threading code. */
5493 calculate_dominance_info (CDI_DOMINATORS);
5495 /* We do not allow VRP information to be used for jump threading
5496 across a back edge in the CFG. Otherwise it becomes too
5497 difficult to avoid eliminating loop exit tests. Of course
5498 EDGE_DFS_BACK is not accurate at this time so we have to
5499 recompute it. */
5500 mark_dfs_back_edges ();
5502 /* Allocate our unwinder stack to unwind any temporary equivalences
5503 that might be recorded. */
5504 stack = VEC_alloc (tree, heap, 20);
5506 /* To avoid lots of silly node creation, we create a single
5507 conditional and just modify it in-place when attempting to
5508 thread jumps. */
5509 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
5510 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
5512 /* Walk through all the blocks finding those which present a
5513 potential jump threading opportunity. We could set this up
5514 as a dominator walker and record data during the walk, but
5515 I doubt it's worth the effort for the classes of jump
5516 threading opportunities we are trying to identify at this
5517 point in compilation. */
5518 FOR_EACH_BB (bb)
5520 tree last, cond;
5522 /* If the generic jump threading code does not find this block
5523 interesting, then there is nothing to do. */
5524 if (! potentially_threadable_block (bb))
5525 continue;
5527 /* We only care about blocks ending in a COND_EXPR. While there
5528 may be some value in handling SWITCH_EXPR here, I doubt it's
5529 terribly important. */
5530 last = bsi_stmt (bsi_last (bb));
5531 if (TREE_CODE (last) != COND_EXPR)
5532 continue;
5534 /* We're basically looking for any kind of conditional with
5535 integral type arguments. */
5536 cond = COND_EXPR_COND (last);
5537 if ((TREE_CODE (cond) == SSA_NAME
5538 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
5539 || (COMPARISON_CLASS_P (cond)
5540 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
5541 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
5542 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
5543 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
5544 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
5546 edge_iterator ei;
5547 edge e;
5549 /* We've got a block with multiple predecessors and multiple
5550 successors which also ends in a suitable conditional. For
5551 each predecessor, see if we can thread it to a specific
5552 successor. */
5553 FOR_EACH_EDGE (e, ei, bb->preds)
5555 /* Do not thread across back edges or abnormal edges
5556 in the CFG. */
5557 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
5558 continue;
5560 thread_across_edge (dummy, e, true,
5561 &stack,
5562 simplify_stmt_for_jump_threading);
5567 /* We do not actually update the CFG or SSA graphs at this point as
5568 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
5569 handle ASSERT_EXPRs gracefully. */
5572 /* We identified all the jump threading opportunities earlier, but could
5573 not transform the CFG at that time. This routine transforms the
5574 CFG and arranges for the dominator tree to be rebuilt if necessary.
5576 Note the SSA graph update will occur during the normal TODO
5577 processing by the pass manager. */
5578 static void
5579 finalize_jump_threads (void)
5581 bool cfg_altered = false;
5582 cfg_altered = thread_through_all_blocks ();
5584 /* If we threaded jumps, then we need to recompute the dominance
5585 information. */
5586 if (cfg_altered)
5587 free_dominance_info (CDI_DOMINATORS);
5588 VEC_free (tree, heap, stack);
5592 /* Traverse all the blocks folding conditionals with known ranges. */
5594 static void
5595 vrp_finalize (void)
5597 size_t i;
5598 prop_value_t *single_val_range;
5599 bool do_value_subst_p;
5601 if (dump_file)
5603 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
5604 dump_all_value_ranges (dump_file);
5605 fprintf (dump_file, "\n");
5608 /* We may have ended with ranges that have exactly one value. Those
5609 values can be substituted as any other copy/const propagated
5610 value using substitute_and_fold. */
5611 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
5613 do_value_subst_p = false;
5614 for (i = 0; i < num_ssa_names; i++)
5615 if (vr_value[i]
5616 && vr_value[i]->type == VR_RANGE
5617 && vr_value[i]->min == vr_value[i]->max)
5619 single_val_range[i].value = vr_value[i]->min;
5620 do_value_subst_p = true;
5623 if (!do_value_subst_p)
5625 /* We found no single-valued ranges, don't waste time trying to
5626 do single value substitution in substitute_and_fold. */
5627 free (single_val_range);
5628 single_val_range = NULL;
5631 substitute_and_fold (single_val_range, true);
5633 if (warn_array_bounds)
5634 check_all_array_refs ();
5636 /* We must identify jump threading opportunities before we release
5637 the datastructures built by VRP. */
5638 identify_jump_threads ();
5640 /* Free allocated memory. */
5641 for (i = 0; i < num_ssa_names; i++)
5642 if (vr_value[i])
5644 BITMAP_FREE (vr_value[i]->equiv);
5645 free (vr_value[i]);
5648 free (single_val_range);
5649 free (vr_value);
5651 /* So that we can distinguish between VRP data being available
5652 and not available. */
5653 vr_value = NULL;
5657 /* Main entry point to VRP (Value Range Propagation). This pass is
5658 loosely based on J. R. C. Patterson, ``Accurate Static Branch
5659 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
5660 Programming Language Design and Implementation, pp. 67-78, 1995.
5661 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
5663 This is essentially an SSA-CCP pass modified to deal with ranges
5664 instead of constants.
5666 While propagating ranges, we may find that two or more SSA name
5667 have equivalent, though distinct ranges. For instance,
5669 1 x_9 = p_3->a;
5670 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
5671 3 if (p_4 == q_2)
5672 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
5673 5 endif
5674 6 if (q_2)
5676 In the code above, pointer p_5 has range [q_2, q_2], but from the
5677 code we can also determine that p_5 cannot be NULL and, if q_2 had
5678 a non-varying range, p_5's range should also be compatible with it.
5680 These equivalences are created by two expressions: ASSERT_EXPR and
5681 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
5682 result of another assertion, then we can use the fact that p_5 and
5683 p_4 are equivalent when evaluating p_5's range.
5685 Together with value ranges, we also propagate these equivalences
5686 between names so that we can take advantage of information from
5687 multiple ranges when doing final replacement. Note that this
5688 equivalency relation is transitive but not symmetric.
5690 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
5691 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
5692 in contexts where that assertion does not hold (e.g., in line 6).
5694 TODO, the main difference between this pass and Patterson's is that
5695 we do not propagate edge probabilities. We only compute whether
5696 edges can be taken or not. That is, instead of having a spectrum
5697 of jump probabilities between 0 and 1, we only deal with 0, 1 and
5698 DON'T KNOW. In the future, it may be worthwhile to propagate
5699 probabilities to aid branch prediction. */
5701 static unsigned int
5702 execute_vrp (void)
5704 insert_range_assertions ();
5706 loop_optimizer_init (LOOPS_NORMAL);
5707 if (current_loops)
5708 scev_initialize ();
5710 vrp_initialize ();
5711 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
5712 vrp_finalize ();
5714 if (current_loops)
5716 scev_finalize ();
5717 loop_optimizer_finalize ();
5720 /* ASSERT_EXPRs must be removed before finalizing jump threads
5721 as finalizing jump threads calls the CFG cleanup code which
5722 does not properly handle ASSERT_EXPRs. */
5723 remove_range_assertions ();
5725 /* If we exposed any new variables, go ahead and put them into
5726 SSA form now, before we handle jump threading. This simplifies
5727 interactions between rewriting of _DECL nodes into SSA form
5728 and rewriting SSA_NAME nodes into SSA form after block
5729 duplication and CFG manipulation. */
5730 update_ssa (TODO_update_ssa);
5732 finalize_jump_threads ();
5733 return 0;
5736 static bool
5737 gate_vrp (void)
5739 return flag_tree_vrp != 0;
5742 struct tree_opt_pass pass_vrp =
5744 "vrp", /* name */
5745 gate_vrp, /* gate */
5746 execute_vrp, /* execute */
5747 NULL, /* sub */
5748 NULL, /* next */
5749 0, /* static_pass_number */
5750 TV_TREE_VRP, /* tv_id */
5751 PROP_ssa | PROP_alias, /* properties_required */
5752 0, /* properties_provided */
5753 0, /* properties_destroyed */
5754 0, /* todo_flags_start */
5755 TODO_cleanup_cfg
5756 | TODO_ggc_collect
5757 | TODO_verify_ssa
5758 | TODO_dump_func
5759 | TODO_update_ssa
5760 | TODO_update_smt_usage, /* todo_flags_finish */
5761 0 /* letter */