PR c++/86288
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob32797d88f9e06ae9671bd771dc47c727efe476c7
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elab; use Sem_Elab;
65 with Sem_Elim; use Sem_Elim;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Mech; use Sem_Mech;
68 with Sem_Res; use Sem_Res;
69 with Sem_Smem; use Sem_Smem;
70 with Sem_Type; use Sem_Type;
71 with Sem_Util; use Sem_Util;
72 with Sem_Warn; use Sem_Warn;
73 with Stand; use Stand;
74 with Sinfo; use Sinfo;
75 with Sinput; use Sinput;
76 with Snames; use Snames;
77 with Targparm; use Targparm;
78 with Tbuild; use Tbuild;
79 with Ttypes; use Ttypes;
80 with Uintp; use Uintp;
81 with Urealp; use Urealp;
83 package body Sem_Ch3 is
85 -----------------------
86 -- Local Subprograms --
87 -----------------------
89 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
90 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
91 -- abstract interface types implemented by a record type or a derived
92 -- record type.
94 procedure Build_Derived_Type
95 (N : Node_Id;
96 Parent_Type : Entity_Id;
97 Derived_Type : Entity_Id;
98 Is_Completion : Boolean;
99 Derive_Subps : Boolean := True);
100 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
101 -- the N_Full_Type_Declaration node containing the derived type definition.
102 -- Parent_Type is the entity for the parent type in the derived type
103 -- definition and Derived_Type the actual derived type. Is_Completion must
104 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
105 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
106 -- completion of a private type declaration. If Is_Completion is set to
107 -- True, N is the completion of a private type declaration and Derived_Type
108 -- is different from the defining identifier inside N (i.e. Derived_Type /=
109 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
110 -- subprograms should be derived. The only case where this parameter is
111 -- False is when Build_Derived_Type is recursively called to process an
112 -- implicit derived full type for a type derived from a private type (in
113 -- that case the subprograms must only be derived for the private view of
114 -- the type).
116 -- ??? These flags need a bit of re-examination and re-documentation:
117 -- ??? are they both necessary (both seem related to the recursion)?
119 procedure Build_Derived_Access_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
124 -- create an implicit base if the parent type is constrained or if the
125 -- subtype indication has a constraint.
127 procedure Build_Derived_Array_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
132 -- create an implicit base if the parent type is constrained or if the
133 -- subtype indication has a constraint.
135 procedure Build_Derived_Concurrent_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
140 -- protected type, inherit entries and protected subprograms, check
141 -- legality of discriminant constraints if any.
143 procedure Build_Derived_Enumeration_Type
144 (N : Node_Id;
145 Parent_Type : Entity_Id;
146 Derived_Type : Entity_Id);
147 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
148 -- type, we must create a new list of literals. Types derived from
149 -- Character and [Wide_]Wide_Character are special-cased.
151 procedure Build_Derived_Numeric_Type
152 (N : Node_Id;
153 Parent_Type : Entity_Id;
154 Derived_Type : Entity_Id);
155 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
156 -- an anonymous base type, and propagate constraint to subtype if needed.
158 procedure Build_Derived_Private_Type
159 (N : Node_Id;
160 Parent_Type : Entity_Id;
161 Derived_Type : Entity_Id;
162 Is_Completion : Boolean;
163 Derive_Subps : Boolean := True);
164 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
165 -- because the parent may or may not have a completion, and the derivation
166 -- may itself be a completion.
168 procedure Build_Derived_Record_Type
169 (N : Node_Id;
170 Parent_Type : Entity_Id;
171 Derived_Type : Entity_Id;
172 Derive_Subps : Boolean := True);
173 -- Subsidiary procedure used for tagged and untagged record types
174 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
175 -- All parameters are as in Build_Derived_Type except that N, in
176 -- addition to being an N_Full_Type_Declaration node, can also be an
177 -- N_Private_Extension_Declaration node. See the definition of this routine
178 -- for much more info. Derive_Subps indicates whether subprograms should be
179 -- derived from the parent type. The only case where Derive_Subps is False
180 -- is for an implicit derived full type for a type derived from a private
181 -- type (see Build_Derived_Type).
183 procedure Build_Discriminal (Discrim : Entity_Id);
184 -- Create the discriminal corresponding to discriminant Discrim, that is
185 -- the parameter corresponding to Discrim to be used in initialization
186 -- procedures for the type where Discrim is a discriminant. Discriminals
187 -- are not used during semantic analysis, and are not fully defined
188 -- entities until expansion. Thus they are not given a scope until
189 -- initialization procedures are built.
191 function Build_Discriminant_Constraints
192 (T : Entity_Id;
193 Def : Node_Id;
194 Derived_Def : Boolean := False) return Elist_Id;
195 -- Validate discriminant constraints and return the list of the constraints
196 -- in order of discriminant declarations, where T is the discriminated
197 -- unconstrained type. Def is the N_Subtype_Indication node where the
198 -- discriminants constraints for T are specified. Derived_Def is True
199 -- when building the discriminant constraints in a derived type definition
200 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
201 -- type and Def is the constraint "(xxx)" on T and this routine sets the
202 -- Corresponding_Discriminant field of the discriminants in the derived
203 -- type D to point to the corresponding discriminants in the parent type T.
205 procedure Build_Discriminated_Subtype
206 (T : Entity_Id;
207 Def_Id : Entity_Id;
208 Elist : Elist_Id;
209 Related_Nod : Node_Id;
210 For_Access : Boolean := False);
211 -- Subsidiary procedure to Constrain_Discriminated_Type and to
212 -- Process_Incomplete_Dependents. Given
214 -- T (a possibly discriminated base type)
215 -- Def_Id (a very partially built subtype for T),
217 -- the call completes Def_Id to be the appropriate E_*_Subtype.
219 -- The Elist is the list of discriminant constraints if any (it is set
220 -- to No_Elist if T is not a discriminated type, and to an empty list if
221 -- T has discriminants but there are no discriminant constraints). The
222 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
223 -- The For_Access says whether or not this subtype is really constraining
224 -- an access type. That is its sole purpose is the designated type of an
225 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
226 -- is built to avoid freezing T when the access subtype is frozen.
228 function Build_Scalar_Bound
229 (Bound : Node_Id;
230 Par_T : Entity_Id;
231 Der_T : Entity_Id) return Node_Id;
232 -- The bounds of a derived scalar type are conversions of the bounds of
233 -- the parent type. Optimize the representation if the bounds are literals.
234 -- Needs a more complete spec--what are the parameters exactly, and what
235 -- exactly is the returned value, and how is Bound affected???
237 procedure Build_Underlying_Full_View
238 (N : Node_Id;
239 Typ : Entity_Id;
240 Par : Entity_Id);
241 -- If the completion of a private type is itself derived from a private
242 -- type, or if the full view of a private subtype is itself private, the
243 -- back-end has no way to compute the actual size of this type. We build
244 -- an internal subtype declaration of the proper parent type to convey
245 -- this information. This extra mechanism is needed because a full
246 -- view cannot itself have a full view (it would get clobbered during
247 -- view exchanges).
249 procedure Check_Access_Discriminant_Requires_Limited
250 (D : Node_Id;
251 Loc : Node_Id);
252 -- Check the restriction that the type to which an access discriminant
253 -- belongs must be a concurrent type or a descendant of a type with
254 -- the reserved word 'limited' in its declaration.
256 procedure Check_Anonymous_Access_Components
257 (Typ_Decl : Node_Id;
258 Typ : Entity_Id;
259 Prev : Entity_Id;
260 Comp_List : Node_Id);
261 -- Ada 2005 AI-382: an access component in a record definition can refer to
262 -- the enclosing record, in which case it denotes the type itself, and not
263 -- the current instance of the type. We create an anonymous access type for
264 -- the component, and flag it as an access to a component, so accessibility
265 -- checks are properly performed on it. The declaration of the access type
266 -- is placed ahead of that of the record to prevent order-of-elaboration
267 -- circularity issues in Gigi. We create an incomplete type for the record
268 -- declaration, which is the designated type of the anonymous access.
270 procedure Check_Delta_Expression (E : Node_Id);
271 -- Check that the expression represented by E is suitable for use as a
272 -- delta expression, i.e. it is of real type and is static.
274 procedure Check_Digits_Expression (E : Node_Id);
275 -- Check that the expression represented by E is suitable for use as a
276 -- digits expression, i.e. it is of integer type, positive and static.
278 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
279 -- Validate the initialization of an object declaration. T is the required
280 -- type, and Exp is the initialization expression.
282 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
283 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
285 procedure Check_Or_Process_Discriminants
286 (N : Node_Id;
287 T : Entity_Id;
288 Prev : Entity_Id := Empty);
289 -- If N is the full declaration of the completion T of an incomplete or
290 -- private type, check its discriminants (which are already known to be
291 -- conformant with those of the partial view, see Find_Type_Name),
292 -- otherwise process them. Prev is the entity of the partial declaration,
293 -- if any.
295 procedure Check_Real_Bound (Bound : Node_Id);
296 -- Check given bound for being of real type and static. If not, post an
297 -- appropriate message, and rewrite the bound with the real literal zero.
299 procedure Constant_Redeclaration
300 (Id : Entity_Id;
301 N : Node_Id;
302 T : out Entity_Id);
303 -- Various checks on legality of full declaration of deferred constant.
304 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
305 -- node. The caller has not yet set any attributes of this entity.
307 function Contain_Interface
308 (Iface : Entity_Id;
309 Ifaces : Elist_Id) return Boolean;
310 -- Ada 2005: Determine whether Iface is present in the list Ifaces
312 procedure Convert_Scalar_Bounds
313 (N : Node_Id;
314 Parent_Type : Entity_Id;
315 Derived_Type : Entity_Id;
316 Loc : Source_Ptr);
317 -- For derived scalar types, convert the bounds in the type definition to
318 -- the derived type, and complete their analysis. Given a constraint of the
319 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
320 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
321 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
322 -- subtype are conversions of those bounds to the derived_type, so that
323 -- their typing is consistent.
325 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
326 -- Copies attributes from array base type T2 to array base type T1. Copies
327 -- only attributes that apply to base types, but not subtypes.
329 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
330 -- Copies attributes from array subtype T2 to array subtype T1. Copies
331 -- attributes that apply to both subtypes and base types.
333 procedure Create_Constrained_Components
334 (Subt : Entity_Id;
335 Decl_Node : Node_Id;
336 Typ : Entity_Id;
337 Constraints : Elist_Id);
338 -- Build the list of entities for a constrained discriminated record
339 -- subtype. If a component depends on a discriminant, replace its subtype
340 -- using the discriminant values in the discriminant constraint. Subt
341 -- is the defining identifier for the subtype whose list of constrained
342 -- entities we will create. Decl_Node is the type declaration node where
343 -- we will attach all the itypes created. Typ is the base discriminated
344 -- type for the subtype Subt. Constraints is the list of discriminant
345 -- constraints for Typ.
347 function Constrain_Component_Type
348 (Comp : Entity_Id;
349 Constrained_Typ : Entity_Id;
350 Related_Node : Node_Id;
351 Typ : Entity_Id;
352 Constraints : Elist_Id) return Entity_Id;
353 -- Given a discriminated base type Typ, a list of discriminant constraints,
354 -- Constraints, for Typ and a component Comp of Typ, create and return the
355 -- type corresponding to Etype (Comp) where all discriminant references
356 -- are replaced with the corresponding constraint. If Etype (Comp) contains
357 -- no discriminant references then it is returned as-is. Constrained_Typ
358 -- is the final constrained subtype to which the constrained component
359 -- belongs. Related_Node is the node where we attach all created itypes.
361 procedure Constrain_Access
362 (Def_Id : in out Entity_Id;
363 S : Node_Id;
364 Related_Nod : Node_Id);
365 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
366 -- an anonymous type created for a subtype indication. In that case it is
367 -- created in the procedure and attached to Related_Nod.
369 procedure Constrain_Array
370 (Def_Id : in out Entity_Id;
371 SI : Node_Id;
372 Related_Nod : Node_Id;
373 Related_Id : Entity_Id;
374 Suffix : Character);
375 -- Apply a list of index constraints to an unconstrained array type. The
376 -- first parameter is the entity for the resulting subtype. A value of
377 -- Empty for Def_Id indicates that an implicit type must be created, but
378 -- creation is delayed (and must be done by this procedure) because other
379 -- subsidiary implicit types must be created first (which is why Def_Id
380 -- is an in/out parameter). The second parameter is a subtype indication
381 -- node for the constrained array to be created (e.g. something of the
382 -- form string (1 .. 10)). Related_Nod gives the place where this type
383 -- has to be inserted in the tree. The Related_Id and Suffix parameters
384 -- are used to build the associated Implicit type name.
386 procedure Constrain_Concurrent
387 (Def_Id : in out Entity_Id;
388 SI : Node_Id;
389 Related_Nod : Node_Id;
390 Related_Id : Entity_Id;
391 Suffix : Character);
392 -- Apply list of discriminant constraints to an unconstrained concurrent
393 -- type.
395 -- SI is the N_Subtype_Indication node containing the constraint and
396 -- the unconstrained type to constrain.
398 -- Def_Id is the entity for the resulting constrained subtype. A value
399 -- of Empty for Def_Id indicates that an implicit type must be created,
400 -- but creation is delayed (and must be done by this procedure) because
401 -- other subsidiary implicit types must be created first (which is why
402 -- Def_Id is an in/out parameter).
404 -- Related_Nod gives the place where this type has to be inserted
405 -- in the tree.
407 -- The last two arguments are used to create its external name if needed.
409 function Constrain_Corresponding_Record
410 (Prot_Subt : Entity_Id;
411 Corr_Rec : Entity_Id;
412 Related_Nod : Node_Id) return Entity_Id;
413 -- When constraining a protected type or task type with discriminants,
414 -- constrain the corresponding record with the same discriminant values.
416 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
417 -- Constrain a decimal fixed point type with a digits constraint and/or a
418 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
420 procedure Constrain_Discriminated_Type
421 (Def_Id : Entity_Id;
422 S : Node_Id;
423 Related_Nod : Node_Id;
424 For_Access : Boolean := False);
425 -- Process discriminant constraints of composite type. Verify that values
426 -- have been provided for all discriminants, that the original type is
427 -- unconstrained, and that the types of the supplied expressions match
428 -- the discriminant types. The first three parameters are like in routine
429 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
430 -- of For_Access.
432 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
433 -- Constrain an enumeration type with a range constraint. This is identical
434 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
436 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
437 -- Constrain a floating point type with either a digits constraint
438 -- and/or a range constraint, building a E_Floating_Point_Subtype.
440 procedure Constrain_Index
441 (Index : Node_Id;
442 S : Node_Id;
443 Related_Nod : Node_Id;
444 Related_Id : Entity_Id;
445 Suffix : Character;
446 Suffix_Index : Nat);
447 -- Process an index constraint S in a constrained array declaration. The
448 -- constraint can be a subtype name, or a range with or without an explicit
449 -- subtype mark. The index is the corresponding index of the unconstrained
450 -- array. The Related_Id and Suffix parameters are used to build the
451 -- associated Implicit type name.
453 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
454 -- Build subtype of a signed or modular integer type
456 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
457 -- Constrain an ordinary fixed point type with a range constraint, and
458 -- build an E_Ordinary_Fixed_Point_Subtype entity.
460 procedure Copy_And_Swap (Priv, Full : Entity_Id);
461 -- Copy the Priv entity into the entity of its full declaration then swap
462 -- the two entities in such a manner that the former private type is now
463 -- seen as a full type.
465 procedure Decimal_Fixed_Point_Type_Declaration
466 (T : Entity_Id;
467 Def : Node_Id);
468 -- Create a new decimal fixed point type, and apply the constraint to
469 -- obtain a subtype of this new type.
471 procedure Complete_Private_Subtype
472 (Priv : Entity_Id;
473 Full : Entity_Id;
474 Full_Base : Entity_Id;
475 Related_Nod : Node_Id);
476 -- Complete the implicit full view of a private subtype by setting the
477 -- appropriate semantic fields. If the full view of the parent is a record
478 -- type, build constrained components of subtype.
480 procedure Derive_Progenitor_Subprograms
481 (Parent_Type : Entity_Id;
482 Tagged_Type : Entity_Id);
483 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
484 -- operations of progenitors of Tagged_Type, and replace the subsidiary
485 -- subtypes with Tagged_Type, to build the specs of the inherited interface
486 -- primitives. The derived primitives are aliased to those of the
487 -- interface. This routine takes care also of transferring to the full view
488 -- subprograms associated with the partial view of Tagged_Type that cover
489 -- interface primitives.
491 procedure Derived_Standard_Character
492 (N : Node_Id;
493 Parent_Type : Entity_Id;
494 Derived_Type : Entity_Id);
495 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
496 -- derivations from types Standard.Character and Standard.Wide_Character.
498 procedure Derived_Type_Declaration
499 (T : Entity_Id;
500 N : Node_Id;
501 Is_Completion : Boolean);
502 -- Process a derived type declaration. Build_Derived_Type is invoked
503 -- to process the actual derived type definition. Parameters N and
504 -- Is_Completion have the same meaning as in Build_Derived_Type.
505 -- T is the N_Defining_Identifier for the entity defined in the
506 -- N_Full_Type_Declaration node N, that is T is the derived type.
508 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
509 -- Insert each literal in symbol table, as an overloadable identifier. Each
510 -- enumeration type is mapped into a sequence of integers, and each literal
511 -- is defined as a constant with integer value. If any of the literals are
512 -- character literals, the type is a character type, which means that
513 -- strings are legal aggregates for arrays of components of the type.
515 function Expand_To_Stored_Constraint
516 (Typ : Entity_Id;
517 Constraint : Elist_Id) return Elist_Id;
518 -- Given a constraint (i.e. a list of expressions) on the discriminants of
519 -- Typ, expand it into a constraint on the stored discriminants and return
520 -- the new list of expressions constraining the stored discriminants.
522 function Find_Type_Of_Object
523 (Obj_Def : Node_Id;
524 Related_Nod : Node_Id) return Entity_Id;
525 -- Get type entity for object referenced by Obj_Def, attaching the implicit
526 -- types generated to Related_Nod.
528 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
529 -- Create a new float and apply the constraint to obtain subtype of it
531 function Has_Range_Constraint (N : Node_Id) return Boolean;
532 -- Given an N_Subtype_Indication node N, return True if a range constraint
533 -- is present, either directly, or as part of a digits or delta constraint.
534 -- In addition, a digits constraint in the decimal case returns True, since
535 -- it establishes a default range if no explicit range is present.
537 function Inherit_Components
538 (N : Node_Id;
539 Parent_Base : Entity_Id;
540 Derived_Base : Entity_Id;
541 Is_Tagged : Boolean;
542 Inherit_Discr : Boolean;
543 Discs : Elist_Id) return Elist_Id;
544 -- Called from Build_Derived_Record_Type to inherit the components of
545 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
546 -- For more information on derived types and component inheritance please
547 -- consult the comment above the body of Build_Derived_Record_Type.
549 -- N is the original derived type declaration
551 -- Is_Tagged is set if we are dealing with tagged types
553 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
554 -- Parent_Base, otherwise no discriminants are inherited.
556 -- Discs gives the list of constraints that apply to Parent_Base in the
557 -- derived type declaration. If Discs is set to No_Elist, then we have
558 -- the following situation:
560 -- type Parent (D1..Dn : ..) is [tagged] record ...;
561 -- type Derived is new Parent [with ...];
563 -- which gets treated as
565 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
567 -- For untagged types the returned value is an association list. The list
568 -- starts from the association (Parent_Base => Derived_Base), and then it
569 -- contains a sequence of the associations of the form
571 -- (Old_Component => New_Component),
573 -- where Old_Component is the Entity_Id of a component in Parent_Base and
574 -- New_Component is the Entity_Id of the corresponding component in
575 -- Derived_Base. For untagged records, this association list is needed when
576 -- copying the record declaration for the derived base. In the tagged case
577 -- the value returned is irrelevant.
579 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
580 -- Propagate static and dynamic predicate flags from a parent to the
581 -- subtype in a subtype declaration with and without constraints.
583 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
584 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
585 -- Determine whether subprogram Subp is a procedure subject to pragma
586 -- Extensions_Visible with value False and has at least one controlling
587 -- parameter of mode OUT.
589 function Is_Valid_Constraint_Kind
590 (T_Kind : Type_Kind;
591 Constraint_Kind : Node_Kind) return Boolean;
592 -- Returns True if it is legal to apply the given kind of constraint to the
593 -- given kind of type (index constraint to an array type, for example).
595 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
596 -- Create new modular type. Verify that modulus is in bounds
598 procedure New_Concatenation_Op (Typ : Entity_Id);
599 -- Create an abbreviated declaration for an operator in order to
600 -- materialize concatenation on array types.
602 procedure Ordinary_Fixed_Point_Type_Declaration
603 (T : Entity_Id;
604 Def : Node_Id);
605 -- Create a new ordinary fixed point type, and apply the constraint to
606 -- obtain subtype of it.
608 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id);
609 -- Wrapper on Preanalyze_Spec_Expression for default expressions, so that
610 -- In_Default_Expr can be properly adjusted.
612 procedure Prepare_Private_Subtype_Completion
613 (Id : Entity_Id;
614 Related_Nod : Node_Id);
615 -- Id is a subtype of some private type. Creates the full declaration
616 -- associated with Id whenever possible, i.e. when the full declaration
617 -- of the base type is already known. Records each subtype into
618 -- Private_Dependents of the base type.
620 procedure Process_Incomplete_Dependents
621 (N : Node_Id;
622 Full_T : Entity_Id;
623 Inc_T : Entity_Id);
624 -- Process all entities that depend on an incomplete type. There include
625 -- subtypes, subprogram types that mention the incomplete type in their
626 -- profiles, and subprogram with access parameters that designate the
627 -- incomplete type.
629 -- Inc_T is the defining identifier of an incomplete type declaration, its
630 -- Ekind is E_Incomplete_Type.
632 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
634 -- Full_T is N's defining identifier.
636 -- Subtypes of incomplete types with discriminants are completed when the
637 -- parent type is. This is simpler than private subtypes, because they can
638 -- only appear in the same scope, and there is no need to exchange views.
639 -- Similarly, access_to_subprogram types may have a parameter or a return
640 -- type that is an incomplete type, and that must be replaced with the
641 -- full type.
643 -- If the full type is tagged, subprogram with access parameters that
644 -- designated the incomplete may be primitive operations of the full type,
645 -- and have to be processed accordingly.
647 procedure Process_Real_Range_Specification (Def : Node_Id);
648 -- Given the type definition for a real type, this procedure processes and
649 -- checks the real range specification of this type definition if one is
650 -- present. If errors are found, error messages are posted, and the
651 -- Real_Range_Specification of Def is reset to Empty.
653 procedure Record_Type_Declaration
654 (T : Entity_Id;
655 N : Node_Id;
656 Prev : Entity_Id);
657 -- Process a record type declaration (for both untagged and tagged
658 -- records). Parameters T and N are exactly like in procedure
659 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
660 -- for this routine. If this is the completion of an incomplete type
661 -- declaration, Prev is the entity of the incomplete declaration, used for
662 -- cross-referencing. Otherwise Prev = T.
664 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
665 -- This routine is used to process the actual record type definition (both
666 -- for untagged and tagged records). Def is a record type definition node.
667 -- This procedure analyzes the components in this record type definition.
668 -- Prev_T is the entity for the enclosing record type. It is provided so
669 -- that its Has_Task flag can be set if any of the component have Has_Task
670 -- set. If the declaration is the completion of an incomplete type
671 -- declaration, Prev_T is the original incomplete type, whose full view is
672 -- the record type.
674 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
675 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
676 -- build a copy of the declaration tree of the parent, and we create
677 -- independently the list of components for the derived type. Semantic
678 -- information uses the component entities, but record representation
679 -- clauses are validated on the declaration tree. This procedure replaces
680 -- discriminants and components in the declaration with those that have
681 -- been created by Inherit_Components.
683 procedure Set_Fixed_Range
684 (E : Entity_Id;
685 Loc : Source_Ptr;
686 Lo : Ureal;
687 Hi : Ureal);
688 -- Build a range node with the given bounds and set it as the Scalar_Range
689 -- of the given fixed-point type entity. Loc is the source location used
690 -- for the constructed range. See body for further details.
692 procedure Set_Scalar_Range_For_Subtype
693 (Def_Id : Entity_Id;
694 R : Node_Id;
695 Subt : Entity_Id);
696 -- This routine is used to set the scalar range field for a subtype given
697 -- Def_Id, the entity for the subtype, and R, the range expression for the
698 -- scalar range. Subt provides the parent subtype to be used to analyze,
699 -- resolve, and check the given range.
701 procedure Set_Default_SSO (T : Entity_Id);
702 -- T is the entity for an array or record being declared. This procedure
703 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
704 -- to the setting of Opt.Default_SSO.
706 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
707 -- Create a new signed integer entity, and apply the constraint to obtain
708 -- the required first named subtype of this type.
710 procedure Set_Stored_Constraint_From_Discriminant_Constraint
711 (E : Entity_Id);
712 -- E is some record type. This routine computes E's Stored_Constraint
713 -- from its Discriminant_Constraint.
715 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
716 -- Check that an entity in a list of progenitors is an interface,
717 -- emit error otherwise.
719 -----------------------
720 -- Access_Definition --
721 -----------------------
723 function Access_Definition
724 (Related_Nod : Node_Id;
725 N : Node_Id) return Entity_Id
727 Anon_Type : Entity_Id;
728 Anon_Scope : Entity_Id;
729 Desig_Type : Entity_Id;
730 Enclosing_Prot_Type : Entity_Id := Empty;
732 begin
733 Check_SPARK_05_Restriction ("access type is not allowed", N);
735 if Is_Entry (Current_Scope)
736 and then Is_Task_Type (Etype (Scope (Current_Scope)))
737 then
738 Error_Msg_N ("task entries cannot have access parameters", N);
739 return Empty;
740 end if;
742 -- Ada 2005: For an object declaration the corresponding anonymous
743 -- type is declared in the current scope.
745 -- If the access definition is the return type of another access to
746 -- function, scope is the current one, because it is the one of the
747 -- current type declaration, except for the pathological case below.
749 if Nkind_In (Related_Nod, N_Object_Declaration,
750 N_Access_Function_Definition)
751 then
752 Anon_Scope := Current_Scope;
754 -- A pathological case: function returning access functions that
755 -- return access functions, etc. Each anonymous access type created
756 -- is in the enclosing scope of the outermost function.
758 declare
759 Par : Node_Id;
761 begin
762 Par := Related_Nod;
763 while Nkind_In (Par, N_Access_Function_Definition,
764 N_Access_Definition)
765 loop
766 Par := Parent (Par);
767 end loop;
769 if Nkind (Par) = N_Function_Specification then
770 Anon_Scope := Scope (Defining_Entity (Par));
771 end if;
772 end;
774 -- For the anonymous function result case, retrieve the scope of the
775 -- function specification's associated entity rather than using the
776 -- current scope. The current scope will be the function itself if the
777 -- formal part is currently being analyzed, but will be the parent scope
778 -- in the case of a parameterless function, and we always want to use
779 -- the function's parent scope. Finally, if the function is a child
780 -- unit, we must traverse the tree to retrieve the proper entity.
782 elsif Nkind (Related_Nod) = N_Function_Specification
783 and then Nkind (Parent (N)) /= N_Parameter_Specification
784 then
785 -- If the current scope is a protected type, the anonymous access
786 -- is associated with one of the protected operations, and must
787 -- be available in the scope that encloses the protected declaration.
788 -- Otherwise the type is in the scope enclosing the subprogram.
790 -- If the function has formals, The return type of a subprogram
791 -- declaration is analyzed in the scope of the subprogram (see
792 -- Process_Formals) and thus the protected type, if present, is
793 -- the scope of the current function scope.
795 if Ekind (Current_Scope) = E_Protected_Type then
796 Enclosing_Prot_Type := Current_Scope;
798 elsif Ekind (Current_Scope) = E_Function
799 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
800 then
801 Enclosing_Prot_Type := Scope (Current_Scope);
802 end if;
804 if Present (Enclosing_Prot_Type) then
805 Anon_Scope := Scope (Enclosing_Prot_Type);
807 else
808 Anon_Scope := Scope (Defining_Entity (Related_Nod));
809 end if;
811 -- For an access type definition, if the current scope is a child
812 -- unit it is the scope of the type.
814 elsif Is_Compilation_Unit (Current_Scope) then
815 Anon_Scope := Current_Scope;
817 -- For access formals, access components, and access discriminants, the
818 -- scope is that of the enclosing declaration,
820 else
821 Anon_Scope := Scope (Current_Scope);
822 end if;
824 Anon_Type :=
825 Create_Itype
826 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
828 if All_Present (N)
829 and then Ada_Version >= Ada_2005
830 then
831 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
832 end if;
834 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
835 -- the corresponding semantic routine
837 if Present (Access_To_Subprogram_Definition (N)) then
839 -- Compiler runtime units are compiled in Ada 2005 mode when building
840 -- the runtime library but must also be compilable in Ada 95 mode
841 -- (when bootstrapping the compiler).
843 Check_Compiler_Unit ("anonymous access to subprogram", N);
845 Access_Subprogram_Declaration
846 (T_Name => Anon_Type,
847 T_Def => Access_To_Subprogram_Definition (N));
849 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
850 Set_Ekind
851 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
852 else
853 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
854 end if;
856 Set_Can_Use_Internal_Rep
857 (Anon_Type, not Always_Compatible_Rep_On_Target);
859 -- If the anonymous access is associated with a protected operation,
860 -- create a reference to it after the enclosing protected definition
861 -- because the itype will be used in the subsequent bodies.
863 -- If the anonymous access itself is protected, a full type
864 -- declaratiton will be created for it, so that the equivalent
865 -- record type can be constructed. For further details, see
866 -- Replace_Anonymous_Access_To_Protected-Subprogram.
868 if Ekind (Current_Scope) = E_Protected_Type
869 and then not Protected_Present (Access_To_Subprogram_Definition (N))
870 then
871 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
872 end if;
874 return Anon_Type;
875 end if;
877 Find_Type (Subtype_Mark (N));
878 Desig_Type := Entity (Subtype_Mark (N));
880 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
881 Set_Etype (Anon_Type, Anon_Type);
883 -- Make sure the anonymous access type has size and alignment fields
884 -- set, as required by gigi. This is necessary in the case of the
885 -- Task_Body_Procedure.
887 if not Has_Private_Component (Desig_Type) then
888 Layout_Type (Anon_Type);
889 end if;
891 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
892 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
893 -- the null value is allowed. In Ada 95 the null value is never allowed.
895 if Ada_Version >= Ada_2005 then
896 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
897 else
898 Set_Can_Never_Be_Null (Anon_Type, True);
899 end if;
901 -- The anonymous access type is as public as the discriminated type or
902 -- subprogram that defines it. It is imported (for back-end purposes)
903 -- if the designated type is.
905 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
907 -- Ada 2005 (AI-231): Propagate the access-constant attribute
909 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
911 -- The context is either a subprogram declaration, object declaration,
912 -- or an access discriminant, in a private or a full type declaration.
913 -- In the case of a subprogram, if the designated type is incomplete,
914 -- the operation will be a primitive operation of the full type, to be
915 -- updated subsequently. If the type is imported through a limited_with
916 -- clause, the subprogram is not a primitive operation of the type
917 -- (which is declared elsewhere in some other scope).
919 if Ekind (Desig_Type) = E_Incomplete_Type
920 and then not From_Limited_With (Desig_Type)
921 and then Is_Overloadable (Current_Scope)
922 then
923 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
924 Set_Has_Delayed_Freeze (Current_Scope);
925 end if;
927 -- Ada 2005: If the designated type is an interface that may contain
928 -- tasks, create a Master entity for the declaration. This must be done
929 -- before expansion of the full declaration, because the declaration may
930 -- include an expression that is an allocator, whose expansion needs the
931 -- proper Master for the created tasks.
933 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
934 then
935 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
936 then
937 Build_Class_Wide_Master (Anon_Type);
939 -- Similarly, if the type is an anonymous access that designates
940 -- tasks, create a master entity for it in the current context.
942 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
943 then
944 Build_Master_Entity (Defining_Identifier (Related_Nod));
945 Build_Master_Renaming (Anon_Type);
946 end if;
947 end if;
949 -- For a private component of a protected type, it is imperative that
950 -- the back-end elaborate the type immediately after the protected
951 -- declaration, because this type will be used in the declarations
952 -- created for the component within each protected body, so we must
953 -- create an itype reference for it now.
955 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
956 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
958 -- Similarly, if the access definition is the return result of a
959 -- function, create an itype reference for it because it will be used
960 -- within the function body. For a regular function that is not a
961 -- compilation unit, insert reference after the declaration. For a
962 -- protected operation, insert it after the enclosing protected type
963 -- declaration. In either case, do not create a reference for a type
964 -- obtained through a limited_with clause, because this would introduce
965 -- semantic dependencies.
967 -- Similarly, do not create a reference if the designated type is a
968 -- generic formal, because no use of it will reach the backend.
970 elsif Nkind (Related_Nod) = N_Function_Specification
971 and then not From_Limited_With (Desig_Type)
972 and then not Is_Generic_Type (Desig_Type)
973 then
974 if Present (Enclosing_Prot_Type) then
975 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
977 elsif Is_List_Member (Parent (Related_Nod))
978 and then Nkind (Parent (N)) /= N_Parameter_Specification
979 then
980 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
981 end if;
983 -- Finally, create an itype reference for an object declaration of an
984 -- anonymous access type. This is strictly necessary only for deferred
985 -- constants, but in any case will avoid out-of-scope problems in the
986 -- back-end.
988 elsif Nkind (Related_Nod) = N_Object_Declaration then
989 Build_Itype_Reference (Anon_Type, Related_Nod);
990 end if;
992 return Anon_Type;
993 end Access_Definition;
995 -----------------------------------
996 -- Access_Subprogram_Declaration --
997 -----------------------------------
999 procedure Access_Subprogram_Declaration
1000 (T_Name : Entity_Id;
1001 T_Def : Node_Id)
1003 procedure Check_For_Premature_Usage (Def : Node_Id);
1004 -- Check that type T_Name is not used, directly or recursively, as a
1005 -- parameter or a return type in Def. Def is either a subtype, an
1006 -- access_definition, or an access_to_subprogram_definition.
1008 -------------------------------
1009 -- Check_For_Premature_Usage --
1010 -------------------------------
1012 procedure Check_For_Premature_Usage (Def : Node_Id) is
1013 Param : Node_Id;
1015 begin
1016 -- Check for a subtype mark
1018 if Nkind (Def) in N_Has_Etype then
1019 if Etype (Def) = T_Name then
1020 Error_Msg_N
1021 ("type& cannot be used before end of its declaration", Def);
1022 end if;
1024 -- If this is not a subtype, then this is an access_definition
1026 elsif Nkind (Def) = N_Access_Definition then
1027 if Present (Access_To_Subprogram_Definition (Def)) then
1028 Check_For_Premature_Usage
1029 (Access_To_Subprogram_Definition (Def));
1030 else
1031 Check_For_Premature_Usage (Subtype_Mark (Def));
1032 end if;
1034 -- The only cases left are N_Access_Function_Definition and
1035 -- N_Access_Procedure_Definition.
1037 else
1038 if Present (Parameter_Specifications (Def)) then
1039 Param := First (Parameter_Specifications (Def));
1040 while Present (Param) loop
1041 Check_For_Premature_Usage (Parameter_Type (Param));
1042 Param := Next (Param);
1043 end loop;
1044 end if;
1046 if Nkind (Def) = N_Access_Function_Definition then
1047 Check_For_Premature_Usage (Result_Definition (Def));
1048 end if;
1049 end if;
1050 end Check_For_Premature_Usage;
1052 -- Local variables
1054 Formals : constant List_Id := Parameter_Specifications (T_Def);
1055 Formal : Entity_Id;
1056 D_Ityp : Node_Id;
1057 Desig_Type : constant Entity_Id :=
1058 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1060 -- Start of processing for Access_Subprogram_Declaration
1062 begin
1063 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1065 -- Associate the Itype node with the inner full-type declaration or
1066 -- subprogram spec or entry body. This is required to handle nested
1067 -- anonymous declarations. For example:
1069 -- procedure P
1070 -- (X : access procedure
1071 -- (Y : access procedure
1072 -- (Z : access T)))
1074 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1075 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1076 N_Private_Type_Declaration,
1077 N_Private_Extension_Declaration,
1078 N_Procedure_Specification,
1079 N_Function_Specification,
1080 N_Entry_Body)
1082 or else
1083 Nkind_In (D_Ityp, N_Object_Declaration,
1084 N_Object_Renaming_Declaration,
1085 N_Formal_Object_Declaration,
1086 N_Formal_Type_Declaration,
1087 N_Task_Type_Declaration,
1088 N_Protected_Type_Declaration))
1089 loop
1090 D_Ityp := Parent (D_Ityp);
1091 pragma Assert (D_Ityp /= Empty);
1092 end loop;
1094 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1096 if Nkind_In (D_Ityp, N_Procedure_Specification,
1097 N_Function_Specification)
1098 then
1099 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1101 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1102 N_Object_Declaration,
1103 N_Object_Renaming_Declaration,
1104 N_Formal_Type_Declaration)
1105 then
1106 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1107 end if;
1109 if Nkind (T_Def) = N_Access_Function_Definition then
1110 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1111 declare
1112 Acc : constant Node_Id := Result_Definition (T_Def);
1114 begin
1115 if Present (Access_To_Subprogram_Definition (Acc))
1116 and then
1117 Protected_Present (Access_To_Subprogram_Definition (Acc))
1118 then
1119 Set_Etype
1120 (Desig_Type,
1121 Replace_Anonymous_Access_To_Protected_Subprogram
1122 (T_Def));
1124 else
1125 Set_Etype
1126 (Desig_Type,
1127 Access_Definition (T_Def, Result_Definition (T_Def)));
1128 end if;
1129 end;
1131 else
1132 Analyze (Result_Definition (T_Def));
1134 declare
1135 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1137 begin
1138 -- If a null exclusion is imposed on the result type, then
1139 -- create a null-excluding itype (an access subtype) and use
1140 -- it as the function's Etype.
1142 if Is_Access_Type (Typ)
1143 and then Null_Exclusion_In_Return_Present (T_Def)
1144 then
1145 Set_Etype (Desig_Type,
1146 Create_Null_Excluding_Itype
1147 (T => Typ,
1148 Related_Nod => T_Def,
1149 Scope_Id => Current_Scope));
1151 else
1152 if From_Limited_With (Typ) then
1154 -- AI05-151: Incomplete types are allowed in all basic
1155 -- declarations, including access to subprograms.
1157 if Ada_Version >= Ada_2012 then
1158 null;
1160 else
1161 Error_Msg_NE
1162 ("illegal use of incomplete type&",
1163 Result_Definition (T_Def), Typ);
1164 end if;
1166 elsif Ekind (Current_Scope) = E_Package
1167 and then In_Private_Part (Current_Scope)
1168 then
1169 if Ekind (Typ) = E_Incomplete_Type then
1170 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1172 elsif Is_Class_Wide_Type (Typ)
1173 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1174 then
1175 Append_Elmt
1176 (Desig_Type, Private_Dependents (Etype (Typ)));
1177 end if;
1178 end if;
1180 Set_Etype (Desig_Type, Typ);
1181 end if;
1182 end;
1183 end if;
1185 if not (Is_Type (Etype (Desig_Type))) then
1186 Error_Msg_N
1187 ("expect type in function specification",
1188 Result_Definition (T_Def));
1189 end if;
1191 else
1192 Set_Etype (Desig_Type, Standard_Void_Type);
1193 end if;
1195 if Present (Formals) then
1196 Push_Scope (Desig_Type);
1198 -- Some special tests here. These special tests can be removed
1199 -- if and when Itypes always have proper parent pointers to their
1200 -- declarations???
1202 -- Special test 1) Link defining_identifier of formals. Required by
1203 -- First_Formal to provide its functionality.
1205 declare
1206 F : Node_Id;
1208 begin
1209 F := First (Formals);
1211 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1212 -- when it is part of an unconstrained type and subtype expansion
1213 -- is disabled. To avoid back-end problems with shared profiles,
1214 -- use previous subprogram type as the designated type, and then
1215 -- remove scope added above.
1217 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1218 then
1219 Set_Etype (T_Name, T_Name);
1220 Init_Size_Align (T_Name);
1221 Set_Directly_Designated_Type (T_Name,
1222 Scope (Defining_Identifier (F)));
1223 End_Scope;
1224 return;
1225 end if;
1227 while Present (F) loop
1228 if No (Parent (Defining_Identifier (F))) then
1229 Set_Parent (Defining_Identifier (F), F);
1230 end if;
1232 Next (F);
1233 end loop;
1234 end;
1236 Process_Formals (Formals, Parent (T_Def));
1238 -- Special test 2) End_Scope requires that the parent pointer be set
1239 -- to something reasonable, but Itypes don't have parent pointers. So
1240 -- we set it and then unset it ???
1242 Set_Parent (Desig_Type, T_Name);
1243 End_Scope;
1244 Set_Parent (Desig_Type, Empty);
1245 end if;
1247 -- Check for premature usage of the type being defined
1249 Check_For_Premature_Usage (T_Def);
1251 -- The return type and/or any parameter type may be incomplete. Mark the
1252 -- subprogram_type as depending on the incomplete type, so that it can
1253 -- be updated when the full type declaration is seen. This only applies
1254 -- to incomplete types declared in some enclosing scope, not to limited
1255 -- views from other packages.
1257 -- Prior to Ada 2012, access to functions can only have in_parameters.
1259 if Present (Formals) then
1260 Formal := First_Formal (Desig_Type);
1261 while Present (Formal) loop
1262 if Ekind (Formal) /= E_In_Parameter
1263 and then Nkind (T_Def) = N_Access_Function_Definition
1264 and then Ada_Version < Ada_2012
1265 then
1266 Error_Msg_N ("functions can only have IN parameters", Formal);
1267 end if;
1269 if Ekind (Etype (Formal)) = E_Incomplete_Type
1270 and then In_Open_Scopes (Scope (Etype (Formal)))
1271 then
1272 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1273 Set_Has_Delayed_Freeze (Desig_Type);
1274 end if;
1276 Next_Formal (Formal);
1277 end loop;
1278 end if;
1280 -- Check whether an indirect call without actuals may be possible. This
1281 -- is used when resolving calls whose result is then indexed.
1283 May_Need_Actuals (Desig_Type);
1285 -- If the return type is incomplete, this is legal as long as the type
1286 -- is declared in the current scope and will be completed in it (rather
1287 -- than being part of limited view).
1289 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1290 and then not Has_Delayed_Freeze (Desig_Type)
1291 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1292 then
1293 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1294 Set_Has_Delayed_Freeze (Desig_Type);
1295 end if;
1297 Check_Delayed_Subprogram (Desig_Type);
1299 if Protected_Present (T_Def) then
1300 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1301 Set_Convention (Desig_Type, Convention_Protected);
1302 else
1303 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1304 end if;
1306 Set_Can_Use_Internal_Rep (T_Name,
1307 not Always_Compatible_Rep_On_Target);
1308 Set_Etype (T_Name, T_Name);
1309 Init_Size_Align (T_Name);
1310 Set_Directly_Designated_Type (T_Name, Desig_Type);
1312 -- If the access_to_subprogram is not declared at the library level,
1313 -- it can only point to subprograms that are at the same or deeper
1314 -- accessibility level. The corresponding subprogram type might
1315 -- require an activation record when compiling for C.
1317 Set_Needs_Activation_Record (Desig_Type,
1318 not Is_Library_Level_Entity (T_Name));
1320 Generate_Reference_To_Formals (T_Name);
1322 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1324 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1326 Check_Restriction (No_Access_Subprograms, T_Def);
1327 end Access_Subprogram_Declaration;
1329 ----------------------------
1330 -- Access_Type_Declaration --
1331 ----------------------------
1333 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1334 P : constant Node_Id := Parent (Def);
1335 S : constant Node_Id := Subtype_Indication (Def);
1337 Full_Desig : Entity_Id;
1339 begin
1340 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1342 -- Check for permissible use of incomplete type
1344 if Nkind (S) /= N_Subtype_Indication then
1345 Analyze (S);
1347 if Present (Entity (S))
1348 and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type
1349 then
1350 Set_Directly_Designated_Type (T, Entity (S));
1352 -- If the designated type is a limited view, we cannot tell if
1353 -- the full view contains tasks, and there is no way to handle
1354 -- that full view in a client. We create a master entity for the
1355 -- scope, which will be used when a client determines that one
1356 -- is needed.
1358 if From_Limited_With (Entity (S))
1359 and then not Is_Class_Wide_Type (Entity (S))
1360 then
1361 Set_Ekind (T, E_Access_Type);
1362 Build_Master_Entity (T);
1363 Build_Master_Renaming (T);
1364 end if;
1366 else
1367 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1368 end if;
1370 -- If the access definition is of the form: ACCESS NOT NULL ..
1371 -- the subtype indication must be of an access type. Create
1372 -- a null-excluding subtype of it.
1374 if Null_Excluding_Subtype (Def) then
1375 if not Is_Access_Type (Entity (S)) then
1376 Error_Msg_N ("null exclusion must apply to access type", Def);
1378 else
1379 declare
1380 Loc : constant Source_Ptr := Sloc (S);
1381 Decl : Node_Id;
1382 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1384 begin
1385 Decl :=
1386 Make_Subtype_Declaration (Loc,
1387 Defining_Identifier => Nam,
1388 Subtype_Indication =>
1389 New_Occurrence_Of (Entity (S), Loc));
1390 Set_Null_Exclusion_Present (Decl);
1391 Insert_Before (Parent (Def), Decl);
1392 Analyze (Decl);
1393 Set_Entity (S, Nam);
1394 end;
1395 end if;
1396 end if;
1398 else
1399 Set_Directly_Designated_Type (T,
1400 Process_Subtype (S, P, T, 'P'));
1401 end if;
1403 if All_Present (Def) or Constant_Present (Def) then
1404 Set_Ekind (T, E_General_Access_Type);
1405 else
1406 Set_Ekind (T, E_Access_Type);
1407 end if;
1409 Full_Desig := Designated_Type (T);
1411 if Base_Type (Full_Desig) = T then
1412 Error_Msg_N ("access type cannot designate itself", S);
1414 -- In Ada 2005, the type may have a limited view through some unit in
1415 -- its own context, allowing the following circularity that cannot be
1416 -- detected earlier.
1418 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1419 then
1420 Error_Msg_N
1421 ("access type cannot designate its own class-wide type", S);
1423 -- Clean up indication of tagged status to prevent cascaded errors
1425 Set_Is_Tagged_Type (T, False);
1426 end if;
1428 Set_Etype (T, T);
1430 -- If the type has appeared already in a with_type clause, it is frozen
1431 -- and the pointer size is already set. Else, initialize.
1433 if not From_Limited_With (T) then
1434 Init_Size_Align (T);
1435 end if;
1437 -- Note that Has_Task is always false, since the access type itself
1438 -- is not a task type. See Einfo for more description on this point.
1439 -- Exactly the same consideration applies to Has_Controlled_Component
1440 -- and to Has_Protected.
1442 Set_Has_Task (T, False);
1443 Set_Has_Protected (T, False);
1444 Set_Has_Timing_Event (T, False);
1445 Set_Has_Controlled_Component (T, False);
1447 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1448 -- problems where an incomplete view of this entity has been previously
1449 -- established by a limited with and an overlaid version of this field
1450 -- (Stored_Constraint) was initialized for the incomplete view.
1452 -- This reset is performed in most cases except where the access type
1453 -- has been created for the purposes of allocating or deallocating a
1454 -- build-in-place object. Such access types have explicitly set pools
1455 -- and finalization masters.
1457 if No (Associated_Storage_Pool (T)) then
1458 Set_Finalization_Master (T, Empty);
1459 end if;
1461 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1462 -- attributes
1464 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1465 Set_Is_Access_Constant (T, Constant_Present (Def));
1466 end Access_Type_Declaration;
1468 ----------------------------------
1469 -- Add_Interface_Tag_Components --
1470 ----------------------------------
1472 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1473 Loc : constant Source_Ptr := Sloc (N);
1474 L : List_Id;
1475 Last_Tag : Node_Id;
1477 procedure Add_Tag (Iface : Entity_Id);
1478 -- Add tag for one of the progenitor interfaces
1480 -------------
1481 -- Add_Tag --
1482 -------------
1484 procedure Add_Tag (Iface : Entity_Id) is
1485 Decl : Node_Id;
1486 Def : Node_Id;
1487 Tag : Entity_Id;
1488 Offset : Entity_Id;
1490 begin
1491 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1493 -- This is a reasonable place to propagate predicates
1495 if Has_Predicates (Iface) then
1496 Set_Has_Predicates (Typ);
1497 end if;
1499 Def :=
1500 Make_Component_Definition (Loc,
1501 Aliased_Present => True,
1502 Subtype_Indication =>
1503 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1505 Tag := Make_Temporary (Loc, 'V');
1507 Decl :=
1508 Make_Component_Declaration (Loc,
1509 Defining_Identifier => Tag,
1510 Component_Definition => Def);
1512 Analyze_Component_Declaration (Decl);
1514 Set_Analyzed (Decl);
1515 Set_Ekind (Tag, E_Component);
1516 Set_Is_Tag (Tag);
1517 Set_Is_Aliased (Tag);
1518 Set_Related_Type (Tag, Iface);
1519 Init_Component_Location (Tag);
1521 pragma Assert (Is_Frozen (Iface));
1523 Set_DT_Entry_Count (Tag,
1524 DT_Entry_Count (First_Entity (Iface)));
1526 if No (Last_Tag) then
1527 Prepend (Decl, L);
1528 else
1529 Insert_After (Last_Tag, Decl);
1530 end if;
1532 Last_Tag := Decl;
1534 -- If the ancestor has discriminants we need to give special support
1535 -- to store the offset_to_top value of the secondary dispatch tables.
1536 -- For this purpose we add a supplementary component just after the
1537 -- field that contains the tag associated with each secondary DT.
1539 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1540 Def :=
1541 Make_Component_Definition (Loc,
1542 Subtype_Indication =>
1543 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1545 Offset := Make_Temporary (Loc, 'V');
1547 Decl :=
1548 Make_Component_Declaration (Loc,
1549 Defining_Identifier => Offset,
1550 Component_Definition => Def);
1552 Analyze_Component_Declaration (Decl);
1554 Set_Analyzed (Decl);
1555 Set_Ekind (Offset, E_Component);
1556 Set_Is_Aliased (Offset);
1557 Set_Related_Type (Offset, Iface);
1558 Init_Component_Location (Offset);
1559 Insert_After (Last_Tag, Decl);
1560 Last_Tag := Decl;
1561 end if;
1562 end Add_Tag;
1564 -- Local variables
1566 Elmt : Elmt_Id;
1567 Ext : Node_Id;
1568 Comp : Node_Id;
1570 -- Start of processing for Add_Interface_Tag_Components
1572 begin
1573 if not RTE_Available (RE_Interface_Tag) then
1574 Error_Msg
1575 ("(Ada 2005) interface types not supported by this run-time!",
1576 Sloc (N));
1577 return;
1578 end if;
1580 if Ekind (Typ) /= E_Record_Type
1581 or else (Is_Concurrent_Record_Type (Typ)
1582 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1583 or else (not Is_Concurrent_Record_Type (Typ)
1584 and then No (Interfaces (Typ))
1585 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1586 then
1587 return;
1588 end if;
1590 -- Find the current last tag
1592 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1593 Ext := Record_Extension_Part (Type_Definition (N));
1594 else
1595 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1596 Ext := Type_Definition (N);
1597 end if;
1599 Last_Tag := Empty;
1601 if not (Present (Component_List (Ext))) then
1602 Set_Null_Present (Ext, False);
1603 L := New_List;
1604 Set_Component_List (Ext,
1605 Make_Component_List (Loc,
1606 Component_Items => L,
1607 Null_Present => False));
1608 else
1609 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1610 L := Component_Items
1611 (Component_List
1612 (Record_Extension_Part
1613 (Type_Definition (N))));
1614 else
1615 L := Component_Items
1616 (Component_List
1617 (Type_Definition (N)));
1618 end if;
1620 -- Find the last tag component
1622 Comp := First (L);
1623 while Present (Comp) loop
1624 if Nkind (Comp) = N_Component_Declaration
1625 and then Is_Tag (Defining_Identifier (Comp))
1626 then
1627 Last_Tag := Comp;
1628 end if;
1630 Next (Comp);
1631 end loop;
1632 end if;
1634 -- At this point L references the list of components and Last_Tag
1635 -- references the current last tag (if any). Now we add the tag
1636 -- corresponding with all the interfaces that are not implemented
1637 -- by the parent.
1639 if Present (Interfaces (Typ)) then
1640 Elmt := First_Elmt (Interfaces (Typ));
1641 while Present (Elmt) loop
1642 Add_Tag (Node (Elmt));
1643 Next_Elmt (Elmt);
1644 end loop;
1645 end if;
1646 end Add_Interface_Tag_Components;
1648 -------------------------------------
1649 -- Add_Internal_Interface_Entities --
1650 -------------------------------------
1652 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1653 Elmt : Elmt_Id;
1654 Iface : Entity_Id;
1655 Iface_Elmt : Elmt_Id;
1656 Iface_Prim : Entity_Id;
1657 Ifaces_List : Elist_Id;
1658 New_Subp : Entity_Id := Empty;
1659 Prim : Entity_Id;
1660 Restore_Scope : Boolean := False;
1662 begin
1663 pragma Assert (Ada_Version >= Ada_2005
1664 and then Is_Record_Type (Tagged_Type)
1665 and then Is_Tagged_Type (Tagged_Type)
1666 and then Has_Interfaces (Tagged_Type)
1667 and then not Is_Interface (Tagged_Type));
1669 -- Ensure that the internal entities are added to the scope of the type
1671 if Scope (Tagged_Type) /= Current_Scope then
1672 Push_Scope (Scope (Tagged_Type));
1673 Restore_Scope := True;
1674 end if;
1676 Collect_Interfaces (Tagged_Type, Ifaces_List);
1678 Iface_Elmt := First_Elmt (Ifaces_List);
1679 while Present (Iface_Elmt) loop
1680 Iface := Node (Iface_Elmt);
1682 -- Originally we excluded here from this processing interfaces that
1683 -- are parents of Tagged_Type because their primitives are located
1684 -- in the primary dispatch table (and hence no auxiliary internal
1685 -- entities are required to handle secondary dispatch tables in such
1686 -- case). However, these auxiliary entities are also required to
1687 -- handle derivations of interfaces in formals of generics (see
1688 -- Derive_Subprograms).
1690 Elmt := First_Elmt (Primitive_Operations (Iface));
1691 while Present (Elmt) loop
1692 Iface_Prim := Node (Elmt);
1694 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1695 Prim :=
1696 Find_Primitive_Covering_Interface
1697 (Tagged_Type => Tagged_Type,
1698 Iface_Prim => Iface_Prim);
1700 if No (Prim) and then Serious_Errors_Detected > 0 then
1701 goto Continue;
1702 end if;
1704 pragma Assert (Present (Prim));
1706 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1707 -- differs from the name of the interface primitive then it is
1708 -- a private primitive inherited from a parent type. In such
1709 -- case, given that Tagged_Type covers the interface, the
1710 -- inherited private primitive becomes visible. For such
1711 -- purpose we add a new entity that renames the inherited
1712 -- private primitive.
1714 if Chars (Prim) /= Chars (Iface_Prim) then
1715 pragma Assert (Has_Suffix (Prim, 'P'));
1716 Derive_Subprogram
1717 (New_Subp => New_Subp,
1718 Parent_Subp => Iface_Prim,
1719 Derived_Type => Tagged_Type,
1720 Parent_Type => Iface);
1721 Set_Alias (New_Subp, Prim);
1722 Set_Is_Abstract_Subprogram
1723 (New_Subp, Is_Abstract_Subprogram (Prim));
1724 end if;
1726 Derive_Subprogram
1727 (New_Subp => New_Subp,
1728 Parent_Subp => Iface_Prim,
1729 Derived_Type => Tagged_Type,
1730 Parent_Type => Iface);
1732 declare
1733 Anc : Entity_Id;
1734 begin
1735 if Is_Inherited_Operation (Prim)
1736 and then Present (Alias (Prim))
1737 then
1738 Anc := Alias (Prim);
1739 else
1740 Anc := Overridden_Operation (Prim);
1741 end if;
1743 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1744 -- nonconforming preconditions in both an ancestor and
1745 -- a progenitor operation.
1747 -- If the operation is a primitive wrapper it is an explicit
1748 -- (overriding) operqtion and all is fine.
1750 if Present (Anc)
1751 and then Has_Non_Trivial_Precondition (Anc)
1752 and then Has_Non_Trivial_Precondition (Iface_Prim)
1753 then
1754 if Is_Abstract_Subprogram (Prim)
1755 or else
1756 (Ekind (Prim) = E_Procedure
1757 and then Nkind (Parent (Prim)) =
1758 N_Procedure_Specification
1759 and then Null_Present (Parent (Prim)))
1760 or else Is_Primitive_Wrapper (Prim)
1761 then
1762 null;
1764 -- The operation is inherited and must be overridden
1766 elsif not Comes_From_Source (Prim) then
1767 Error_Msg_NE
1768 ("&inherits non-conforming preconditions and must "
1769 & "be overridden (RM 6.1.1 (10-16)",
1770 Parent (Tagged_Type), Prim);
1771 end if;
1772 end if;
1773 end;
1775 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1776 -- associated with interface types. These entities are
1777 -- only registered in the list of primitives of its
1778 -- corresponding tagged type because they are only used
1779 -- to fill the contents of the secondary dispatch tables.
1780 -- Therefore they are removed from the homonym chains.
1782 Set_Is_Hidden (New_Subp);
1783 Set_Is_Internal (New_Subp);
1784 Set_Alias (New_Subp, Prim);
1785 Set_Is_Abstract_Subprogram
1786 (New_Subp, Is_Abstract_Subprogram (Prim));
1787 Set_Interface_Alias (New_Subp, Iface_Prim);
1789 -- If the returned type is an interface then propagate it to
1790 -- the returned type. Needed by the thunk to generate the code
1791 -- which displaces "this" to reference the corresponding
1792 -- secondary dispatch table in the returned object.
1794 if Is_Interface (Etype (Iface_Prim)) then
1795 Set_Etype (New_Subp, Etype (Iface_Prim));
1796 end if;
1798 -- Internal entities associated with interface types are only
1799 -- registered in the list of primitives of the tagged type.
1800 -- They are only used to fill the contents of the secondary
1801 -- dispatch tables. Therefore they are not needed in the
1802 -- homonym chains.
1804 Remove_Homonym (New_Subp);
1806 -- Hidden entities associated with interfaces must have set
1807 -- the Has_Delay_Freeze attribute to ensure that, in case
1808 -- of locally defined tagged types (or compiling with static
1809 -- dispatch tables generation disabled) the corresponding
1810 -- entry of the secondary dispatch table is filled when such
1811 -- an entity is frozen. This is an expansion activity that must
1812 -- be suppressed for ASIS because it leads to gigi elaboration
1813 -- issues in annotate mode.
1815 if not ASIS_Mode then
1816 Set_Has_Delayed_Freeze (New_Subp);
1817 end if;
1818 end if;
1820 <<Continue>>
1821 Next_Elmt (Elmt);
1822 end loop;
1824 Next_Elmt (Iface_Elmt);
1825 end loop;
1827 if Restore_Scope then
1828 Pop_Scope;
1829 end if;
1830 end Add_Internal_Interface_Entities;
1832 -----------------------------------
1833 -- Analyze_Component_Declaration --
1834 -----------------------------------
1836 procedure Analyze_Component_Declaration (N : Node_Id) is
1837 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1838 Id : constant Entity_Id := Defining_Identifier (N);
1839 E : constant Node_Id := Expression (N);
1840 Typ : constant Node_Id :=
1841 Subtype_Indication (Component_Definition (N));
1842 T : Entity_Id;
1843 P : Entity_Id;
1845 function Contains_POC (Constr : Node_Id) return Boolean;
1846 -- Determines whether a constraint uses the discriminant of a record
1847 -- type thus becoming a per-object constraint (POC).
1849 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1850 -- Typ is the type of the current component, check whether this type is
1851 -- a limited type. Used to validate declaration against that of
1852 -- enclosing record.
1854 ------------------
1855 -- Contains_POC --
1856 ------------------
1858 function Contains_POC (Constr : Node_Id) return Boolean is
1859 begin
1860 -- Prevent cascaded errors
1862 if Error_Posted (Constr) then
1863 return False;
1864 end if;
1866 case Nkind (Constr) is
1867 when N_Attribute_Reference =>
1868 return Attribute_Name (Constr) = Name_Access
1869 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1871 when N_Discriminant_Association =>
1872 return Denotes_Discriminant (Expression (Constr));
1874 when N_Identifier =>
1875 return Denotes_Discriminant (Constr);
1877 when N_Index_Or_Discriminant_Constraint =>
1878 declare
1879 IDC : Node_Id;
1881 begin
1882 IDC := First (Constraints (Constr));
1883 while Present (IDC) loop
1885 -- One per-object constraint is sufficient
1887 if Contains_POC (IDC) then
1888 return True;
1889 end if;
1891 Next (IDC);
1892 end loop;
1894 return False;
1895 end;
1897 when N_Range =>
1898 return Denotes_Discriminant (Low_Bound (Constr))
1899 or else
1900 Denotes_Discriminant (High_Bound (Constr));
1902 when N_Range_Constraint =>
1903 return Denotes_Discriminant (Range_Expression (Constr));
1905 when others =>
1906 return False;
1907 end case;
1908 end Contains_POC;
1910 ----------------------
1911 -- Is_Known_Limited --
1912 ----------------------
1914 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1915 P : constant Entity_Id := Etype (Typ);
1916 R : constant Entity_Id := Root_Type (Typ);
1918 begin
1919 if Is_Limited_Record (Typ) then
1920 return True;
1922 -- If the root type is limited (and not a limited interface) so is
1923 -- the current type.
1925 elsif Is_Limited_Record (R)
1926 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1927 then
1928 return True;
1930 -- Else the type may have a limited interface progenitor, but a
1931 -- limited record parent that is not an interface.
1933 elsif R /= P
1934 and then Is_Limited_Record (P)
1935 and then not Is_Interface (P)
1936 then
1937 return True;
1939 else
1940 return False;
1941 end if;
1942 end Is_Known_Limited;
1944 -- Start of processing for Analyze_Component_Declaration
1946 begin
1947 Generate_Definition (Id);
1948 Enter_Name (Id);
1950 if Present (Typ) then
1951 T := Find_Type_Of_Object
1952 (Subtype_Indication (Component_Definition (N)), N);
1954 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1955 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1956 end if;
1958 -- Ada 2005 (AI-230): Access Definition case
1960 else
1961 pragma Assert (Present
1962 (Access_Definition (Component_Definition (N))));
1964 T := Access_Definition
1965 (Related_Nod => N,
1966 N => Access_Definition (Component_Definition (N)));
1967 Set_Is_Local_Anonymous_Access (T);
1969 -- Ada 2005 (AI-254)
1971 if Present (Access_To_Subprogram_Definition
1972 (Access_Definition (Component_Definition (N))))
1973 and then Protected_Present (Access_To_Subprogram_Definition
1974 (Access_Definition
1975 (Component_Definition (N))))
1976 then
1977 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1978 end if;
1979 end if;
1981 -- If the subtype is a constrained subtype of the enclosing record,
1982 -- (which must have a partial view) the back-end does not properly
1983 -- handle the recursion. Rewrite the component declaration with an
1984 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1985 -- the tree directly because side effects have already been removed from
1986 -- discriminant constraints.
1988 if Ekind (T) = E_Access_Subtype
1989 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1990 and then Comes_From_Source (T)
1991 and then Nkind (Parent (T)) = N_Subtype_Declaration
1992 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1993 then
1994 Rewrite
1995 (Subtype_Indication (Component_Definition (N)),
1996 New_Copy_Tree (Subtype_Indication (Parent (T))));
1997 T := Find_Type_Of_Object
1998 (Subtype_Indication (Component_Definition (N)), N);
1999 end if;
2001 -- If the component declaration includes a default expression, then we
2002 -- check that the component is not of a limited type (RM 3.7(5)),
2003 -- and do the special preanalysis of the expression (see section on
2004 -- "Handling of Default and Per-Object Expressions" in the spec of
2005 -- package Sem).
2007 if Present (E) then
2008 Check_SPARK_05_Restriction ("default expression is not allowed", E);
2009 Preanalyze_Default_Expression (E, T);
2010 Check_Initialization (T, E);
2012 if Ada_Version >= Ada_2005
2013 and then Ekind (T) = E_Anonymous_Access_Type
2014 and then Etype (E) /= Any_Type
2015 then
2016 -- Check RM 3.9.2(9): "if the expected type for an expression is
2017 -- an anonymous access-to-specific tagged type, then the object
2018 -- designated by the expression shall not be dynamically tagged
2019 -- unless it is a controlling operand in a call on a dispatching
2020 -- operation"
2022 if Is_Tagged_Type (Directly_Designated_Type (T))
2023 and then
2024 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
2025 and then
2026 Ekind (Directly_Designated_Type (Etype (E))) =
2027 E_Class_Wide_Type
2028 then
2029 Error_Msg_N
2030 ("access to specific tagged type required (RM 3.9.2(9))", E);
2031 end if;
2033 -- (Ada 2005: AI-230): Accessibility check for anonymous
2034 -- components
2036 if Type_Access_Level (Etype (E)) >
2037 Deepest_Type_Access_Level (T)
2038 then
2039 Error_Msg_N
2040 ("expression has deeper access level than component " &
2041 "(RM 3.10.2 (12.2))", E);
2042 end if;
2044 -- The initialization expression is a reference to an access
2045 -- discriminant. The type of the discriminant is always deeper
2046 -- than any access type.
2048 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2049 and then Is_Entity_Name (E)
2050 and then Ekind (Entity (E)) = E_In_Parameter
2051 and then Present (Discriminal_Link (Entity (E)))
2052 then
2053 Error_Msg_N
2054 ("discriminant has deeper accessibility level than target",
2056 end if;
2057 end if;
2058 end if;
2060 -- The parent type may be a private view with unknown discriminants,
2061 -- and thus unconstrained. Regular components must be constrained.
2063 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2064 if Is_Class_Wide_Type (T) then
2065 Error_Msg_N
2066 ("class-wide subtype with unknown discriminants" &
2067 " in component declaration",
2068 Subtype_Indication (Component_Definition (N)));
2069 else
2070 Error_Msg_N
2071 ("unconstrained subtype in component declaration",
2072 Subtype_Indication (Component_Definition (N)));
2073 end if;
2075 -- Components cannot be abstract, except for the special case of
2076 -- the _Parent field (case of extending an abstract tagged type)
2078 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2079 Error_Msg_N ("type of a component cannot be abstract", N);
2080 end if;
2082 Set_Etype (Id, T);
2083 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2085 -- The component declaration may have a per-object constraint, set
2086 -- the appropriate flag in the defining identifier of the subtype.
2088 if Present (Subtype_Indication (Component_Definition (N))) then
2089 declare
2090 Sindic : constant Node_Id :=
2091 Subtype_Indication (Component_Definition (N));
2092 begin
2093 if Nkind (Sindic) = N_Subtype_Indication
2094 and then Present (Constraint (Sindic))
2095 and then Contains_POC (Constraint (Sindic))
2096 then
2097 Set_Has_Per_Object_Constraint (Id);
2098 end if;
2099 end;
2100 end if;
2102 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2103 -- out some static checks.
2105 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2106 Null_Exclusion_Static_Checks (N);
2107 end if;
2109 -- If this component is private (or depends on a private type), flag the
2110 -- record type to indicate that some operations are not available.
2112 P := Private_Component (T);
2114 if Present (P) then
2116 -- Check for circular definitions
2118 if P = Any_Type then
2119 Set_Etype (Id, Any_Type);
2121 -- There is a gap in the visibility of operations only if the
2122 -- component type is not defined in the scope of the record type.
2124 elsif Scope (P) = Scope (Current_Scope) then
2125 null;
2127 elsif Is_Limited_Type (P) then
2128 Set_Is_Limited_Composite (Current_Scope);
2130 else
2131 Set_Is_Private_Composite (Current_Scope);
2132 end if;
2133 end if;
2135 if P /= Any_Type
2136 and then Is_Limited_Type (T)
2137 and then Chars (Id) /= Name_uParent
2138 and then Is_Tagged_Type (Current_Scope)
2139 then
2140 if Is_Derived_Type (Current_Scope)
2141 and then not Is_Known_Limited (Current_Scope)
2142 then
2143 Error_Msg_N
2144 ("extension of nonlimited type cannot have limited components",
2147 if Is_Interface (Root_Type (Current_Scope)) then
2148 Error_Msg_N
2149 ("\limitedness is not inherited from limited interface", N);
2150 Error_Msg_N ("\add LIMITED to type indication", N);
2151 end if;
2153 Explain_Limited_Type (T, N);
2154 Set_Etype (Id, Any_Type);
2155 Set_Is_Limited_Composite (Current_Scope, False);
2157 elsif not Is_Derived_Type (Current_Scope)
2158 and then not Is_Limited_Record (Current_Scope)
2159 and then not Is_Concurrent_Type (Current_Scope)
2160 then
2161 Error_Msg_N
2162 ("nonlimited tagged type cannot have limited components", N);
2163 Explain_Limited_Type (T, N);
2164 Set_Etype (Id, Any_Type);
2165 Set_Is_Limited_Composite (Current_Scope, False);
2166 end if;
2167 end if;
2169 -- If the component is an unconstrained task or protected type with
2170 -- discriminants, the component and the enclosing record are limited
2171 -- and the component is constrained by its default values. Compute
2172 -- its actual subtype, else it may be allocated the maximum size by
2173 -- the backend, and possibly overflow.
2175 if Is_Concurrent_Type (T)
2176 and then not Is_Constrained (T)
2177 and then Has_Discriminants (T)
2178 and then not Has_Discriminants (Current_Scope)
2179 then
2180 declare
2181 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2183 begin
2184 Set_Etype (Id, Act_T);
2186 -- Rewrite component definition to use the constrained subtype
2188 Rewrite (Component_Definition (N),
2189 Make_Component_Definition (Loc,
2190 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2191 end;
2192 end if;
2194 Set_Original_Record_Component (Id, Id);
2196 if Has_Aspects (N) then
2197 Analyze_Aspect_Specifications (N, Id);
2198 end if;
2200 Analyze_Dimension (N);
2201 end Analyze_Component_Declaration;
2203 --------------------------
2204 -- Analyze_Declarations --
2205 --------------------------
2207 procedure Analyze_Declarations (L : List_Id) is
2208 Decl : Node_Id;
2210 procedure Adjust_Decl;
2211 -- Adjust Decl not to include implicit label declarations, since these
2212 -- have strange Sloc values that result in elaboration check problems.
2213 -- (They have the sloc of the label as found in the source, and that
2214 -- is ahead of the current declarative part).
2216 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id);
2217 -- Create the subprogram bodies which verify the run-time semantics of
2218 -- the pragmas listed below for each elibigle type found in declarative
2219 -- list Decls. The pragmas are:
2221 -- Default_Initial_Condition
2222 -- Invariant
2223 -- Type_Invariant
2225 -- Context denotes the owner of the declarative list.
2227 procedure Check_Entry_Contracts;
2228 -- Perform a preanalysis of the pre- and postconditions of an entry
2229 -- declaration. This must be done before full resolution and creation
2230 -- of the parameter block, etc. to catch illegal uses within the
2231 -- contract expression. Full analysis of the expression is done when
2232 -- the contract is processed.
2234 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean;
2235 -- Check if a nested package has entities within it that rely on library
2236 -- level private types where the full view has not been completed for
2237 -- the purposes of checking if it is acceptable to freeze an expression
2238 -- function at the point of declaration.
2240 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2241 -- Determine whether Body_Decl denotes the body of a late controlled
2242 -- primitive (either Initialize, Adjust or Finalize). If this is the
2243 -- case, add a proper spec if the body lacks one. The spec is inserted
2244 -- before Body_Decl and immediately analyzed.
2246 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id);
2247 -- Spec_Id is the entity of a package that may define abstract states,
2248 -- and in the case of a child unit, whose ancestors may define abstract
2249 -- states. If the states have partial visible refinement, remove the
2250 -- partial visibility of each constituent at the end of the package
2251 -- spec and body declarations.
2253 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2254 -- Spec_Id is the entity of a package that may define abstract states.
2255 -- If the states have visible refinement, remove the visibility of each
2256 -- constituent at the end of the package body declaration.
2258 procedure Resolve_Aspects;
2259 -- Utility to resolve the expressions of aspects at the end of a list of
2260 -- declarations, or before a declaration that freezes previous entities,
2261 -- such as in a subprogram body.
2263 -----------------
2264 -- Adjust_Decl --
2265 -----------------
2267 procedure Adjust_Decl is
2268 begin
2269 while Present (Prev (Decl))
2270 and then Nkind (Decl) = N_Implicit_Label_Declaration
2271 loop
2272 Prev (Decl);
2273 end loop;
2274 end Adjust_Decl;
2276 ----------------------------
2277 -- Build_Assertion_Bodies --
2278 ----------------------------
2280 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is
2281 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id);
2282 -- Create the subprogram bodies which verify the run-time semantics
2283 -- of the pragmas listed below for type Typ. The pragmas are:
2285 -- Default_Initial_Condition
2286 -- Invariant
2287 -- Type_Invariant
2289 -------------------------------------
2290 -- Build_Assertion_Bodies_For_Type --
2291 -------------------------------------
2293 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is
2294 begin
2295 -- Preanalyze and resolve the Default_Initial_Condition assertion
2296 -- expression at the end of the declarations to catch any errors.
2298 if Has_DIC (Typ) then
2299 Build_DIC_Procedure_Body (Typ);
2300 end if;
2302 if Nkind (Context) = N_Package_Specification then
2304 -- Preanalyze and resolve the class-wide invariants of an
2305 -- interface at the end of whichever declarative part has the
2306 -- interface type. Note that an interface may be declared in
2307 -- any non-package declarative part, but reaching the end of
2308 -- such a declarative part will always freeze the type and
2309 -- generate the invariant procedure (see Freeze_Type).
2311 if Is_Interface (Typ) then
2313 -- Interfaces are treated as the partial view of a private
2314 -- type, in order to achieve uniformity with the general
2315 -- case. As a result, an interface receives only a "partial"
2316 -- invariant procedure, which is never called.
2318 if Has_Own_Invariants (Typ) then
2319 Build_Invariant_Procedure_Body
2320 (Typ => Typ,
2321 Partial_Invariant => True);
2322 end if;
2324 -- Preanalyze and resolve the invariants of a private type
2325 -- at the end of the visible declarations to catch potential
2326 -- errors. Inherited class-wide invariants are not included
2327 -- because they have already been resolved.
2329 elsif Decls = Visible_Declarations (Context)
2330 and then Ekind_In (Typ, E_Limited_Private_Type,
2331 E_Private_Type,
2332 E_Record_Type_With_Private)
2333 and then Has_Own_Invariants (Typ)
2334 then
2335 Build_Invariant_Procedure_Body
2336 (Typ => Typ,
2337 Partial_Invariant => True);
2339 -- Preanalyze and resolve the invariants of a private type's
2340 -- full view at the end of the private declarations to catch
2341 -- potential errors.
2343 elsif Decls = Private_Declarations (Context)
2344 and then not Is_Private_Type (Typ)
2345 and then Has_Private_Declaration (Typ)
2346 and then Has_Invariants (Typ)
2347 then
2348 Build_Invariant_Procedure_Body (Typ);
2349 end if;
2350 end if;
2351 end Build_Assertion_Bodies_For_Type;
2353 -- Local variables
2355 Decl : Node_Id;
2356 Decl_Id : Entity_Id;
2358 -- Start of processing for Build_Assertion_Bodies
2360 begin
2361 Decl := First (Decls);
2362 while Present (Decl) loop
2363 if Is_Declaration (Decl) then
2364 Decl_Id := Defining_Entity (Decl);
2366 if Is_Type (Decl_Id) then
2367 Build_Assertion_Bodies_For_Type (Decl_Id);
2368 end if;
2369 end if;
2371 Next (Decl);
2372 end loop;
2373 end Build_Assertion_Bodies;
2375 ---------------------------
2376 -- Check_Entry_Contracts --
2377 ---------------------------
2379 procedure Check_Entry_Contracts is
2380 ASN : Node_Id;
2381 Ent : Entity_Id;
2382 Exp : Node_Id;
2384 begin
2385 Ent := First_Entity (Current_Scope);
2386 while Present (Ent) loop
2388 -- This only concerns entries with pre/postconditions
2390 if Ekind (Ent) = E_Entry
2391 and then Present (Contract (Ent))
2392 and then Present (Pre_Post_Conditions (Contract (Ent)))
2393 then
2394 ASN := Pre_Post_Conditions (Contract (Ent));
2395 Push_Scope (Ent);
2396 Install_Formals (Ent);
2398 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2399 -- is performed on a copy of the pragma expression, to prevent
2400 -- modifying the original expression.
2402 while Present (ASN) loop
2403 if Nkind (ASN) = N_Pragma then
2404 Exp :=
2405 New_Copy_Tree
2406 (Expression
2407 (First (Pragma_Argument_Associations (ASN))));
2408 Set_Parent (Exp, ASN);
2410 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
2411 end if;
2413 ASN := Next_Pragma (ASN);
2414 end loop;
2416 End_Scope;
2417 end if;
2419 Next_Entity (Ent);
2420 end loop;
2421 end Check_Entry_Contracts;
2423 ----------------------------------
2424 -- Contains_Lib_Incomplete_Type --
2425 ----------------------------------
2427 function Contains_Lib_Incomplete_Type (Pkg : Entity_Id) return Boolean is
2428 Curr : Entity_Id;
2430 begin
2431 -- Avoid looking through scopes that do not meet the precondition of
2432 -- Pkg not being within a library unit spec.
2434 if not Is_Compilation_Unit (Pkg)
2435 and then not Is_Generic_Instance (Pkg)
2436 and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg))
2437 then
2438 -- Loop through all entities in the current scope to identify
2439 -- an entity that depends on a private type.
2441 Curr := First_Entity (Pkg);
2442 loop
2443 if Nkind (Curr) in N_Entity
2444 and then Depends_On_Private (Curr)
2445 then
2446 return True;
2447 end if;
2449 exit when Last_Entity (Current_Scope) = Curr;
2450 Curr := Next_Entity (Curr);
2451 end loop;
2452 end if;
2454 return False;
2455 end Contains_Lib_Incomplete_Type;
2457 --------------------------------------
2458 -- Handle_Late_Controlled_Primitive --
2459 --------------------------------------
2461 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2462 Body_Spec : constant Node_Id := Specification (Body_Decl);
2463 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2464 Loc : constant Source_Ptr := Sloc (Body_Id);
2465 Params : constant List_Id :=
2466 Parameter_Specifications (Body_Spec);
2467 Spec : Node_Id;
2468 Spec_Id : Entity_Id;
2469 Typ : Node_Id;
2471 begin
2472 -- Consider only procedure bodies whose name matches one of the three
2473 -- controlled primitives.
2475 if Nkind (Body_Spec) /= N_Procedure_Specification
2476 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2477 Name_Finalize,
2478 Name_Initialize)
2479 then
2480 return;
2482 -- A controlled primitive must have exactly one formal which is not
2483 -- an anonymous access type.
2485 elsif List_Length (Params) /= 1 then
2486 return;
2487 end if;
2489 Typ := Parameter_Type (First (Params));
2491 if Nkind (Typ) = N_Access_Definition then
2492 return;
2493 end if;
2495 Find_Type (Typ);
2497 -- The type of the formal must be derived from [Limited_]Controlled
2499 if not Is_Controlled (Entity (Typ)) then
2500 return;
2501 end if;
2503 -- Check whether a specification exists for this body. We do not
2504 -- analyze the spec of the body in full, because it will be analyzed
2505 -- again when the body is properly analyzed, and we cannot create
2506 -- duplicate entries in the formals chain. We look for an explicit
2507 -- specification because the body may be an overriding operation and
2508 -- an inherited spec may be present.
2510 Spec_Id := Current_Entity (Body_Id);
2512 while Present (Spec_Id) loop
2513 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2514 and then Scope (Spec_Id) = Current_Scope
2515 and then Present (First_Formal (Spec_Id))
2516 and then No (Next_Formal (First_Formal (Spec_Id)))
2517 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2518 and then Comes_From_Source (Spec_Id)
2519 then
2520 return;
2521 end if;
2523 Spec_Id := Homonym (Spec_Id);
2524 end loop;
2526 -- At this point the body is known to be a late controlled primitive.
2527 -- Generate a matching spec and insert it before the body. Note the
2528 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2529 -- tree in this case.
2531 Spec := Copy_Separate_Tree (Body_Spec);
2533 -- Ensure that the subprogram declaration does not inherit the null
2534 -- indicator from the body as we now have a proper spec/body pair.
2536 Set_Null_Present (Spec, False);
2538 -- Ensure that the freeze node is inserted after the declaration of
2539 -- the primitive since its expansion will freeze the primitive.
2541 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2543 Insert_Before_And_Analyze (Body_Decl, Decl);
2544 end Handle_Late_Controlled_Primitive;
2546 ----------------------------------------
2547 -- Remove_Partial_Visible_Refinements --
2548 ----------------------------------------
2550 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is
2551 State_Elmt : Elmt_Id;
2552 begin
2553 if Present (Abstract_States (Spec_Id)) then
2554 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2555 while Present (State_Elmt) loop
2556 Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False);
2557 Next_Elmt (State_Elmt);
2558 end loop;
2559 end if;
2561 -- For a child unit, also hide the partial state refinement from
2562 -- ancestor packages.
2564 if Is_Child_Unit (Spec_Id) then
2565 Remove_Partial_Visible_Refinements (Scope (Spec_Id));
2566 end if;
2567 end Remove_Partial_Visible_Refinements;
2569 --------------------------------
2570 -- Remove_Visible_Refinements --
2571 --------------------------------
2573 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2574 State_Elmt : Elmt_Id;
2575 begin
2576 if Present (Abstract_States (Spec_Id)) then
2577 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2578 while Present (State_Elmt) loop
2579 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2580 Next_Elmt (State_Elmt);
2581 end loop;
2582 end if;
2583 end Remove_Visible_Refinements;
2585 ---------------------
2586 -- Resolve_Aspects --
2587 ---------------------
2589 procedure Resolve_Aspects is
2590 E : Entity_Id;
2592 begin
2593 E := First_Entity (Current_Scope);
2594 while Present (E) loop
2595 Resolve_Aspect_Expressions (E);
2596 Next_Entity (E);
2597 end loop;
2598 end Resolve_Aspects;
2600 -- Local variables
2602 Context : Node_Id := Empty;
2603 Freeze_From : Entity_Id := Empty;
2604 Next_Decl : Node_Id;
2606 Body_Seen : Boolean := False;
2607 -- Flag set when the first body [stub] is encountered
2609 -- Start of processing for Analyze_Declarations
2611 begin
2612 if Restriction_Check_Required (SPARK_05) then
2613 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2614 end if;
2616 Decl := First (L);
2617 while Present (Decl) loop
2619 -- Package spec cannot contain a package declaration in SPARK
2621 if Nkind (Decl) = N_Package_Declaration
2622 and then Nkind (Parent (L)) = N_Package_Specification
2623 then
2624 Check_SPARK_05_Restriction
2625 ("package specification cannot contain a package declaration",
2626 Decl);
2627 end if;
2629 -- Complete analysis of declaration
2631 Analyze (Decl);
2632 Next_Decl := Next (Decl);
2634 if No (Freeze_From) then
2635 Freeze_From := First_Entity (Current_Scope);
2636 end if;
2638 -- At the end of a declarative part, freeze remaining entities
2639 -- declared in it. The end of the visible declarations of package
2640 -- specification is not the end of a declarative part if private
2641 -- declarations are present. The end of a package declaration is a
2642 -- freezing point only if it a library package. A task definition or
2643 -- protected type definition is not a freeze point either. Finally,
2644 -- we do not freeze entities in generic scopes, because there is no
2645 -- code generated for them and freeze nodes will be generated for
2646 -- the instance.
2648 -- The end of a package instantiation is not a freeze point, but
2649 -- for now we make it one, because the generic body is inserted
2650 -- (currently) immediately after. Generic instantiations will not
2651 -- be a freeze point once delayed freezing of bodies is implemented.
2652 -- (This is needed in any case for early instantiations ???).
2654 if No (Next_Decl) then
2655 if Nkind (Parent (L)) = N_Component_List then
2656 null;
2658 elsif Nkind_In (Parent (L), N_Protected_Definition,
2659 N_Task_Definition)
2660 then
2661 Check_Entry_Contracts;
2663 elsif Nkind (Parent (L)) /= N_Package_Specification then
2664 if Nkind (Parent (L)) = N_Package_Body then
2665 Freeze_From := First_Entity (Current_Scope);
2666 end if;
2668 -- There may have been several freezing points previously,
2669 -- for example object declarations or subprogram bodies, but
2670 -- at the end of a declarative part we check freezing from
2671 -- the beginning, even though entities may already be frozen,
2672 -- in order to perform visibility checks on delayed aspects.
2674 Adjust_Decl;
2676 -- If the current scope is a generic subprogram body. Skip the
2677 -- generic formal parameters that are not frozen here.
2679 if Is_Subprogram (Current_Scope)
2680 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
2681 N_Generic_Subprogram_Declaration
2682 and then Present (First_Entity (Current_Scope))
2683 then
2684 while Is_Generic_Formal (Freeze_From) loop
2685 Freeze_From := Next_Entity (Freeze_From);
2686 end loop;
2688 Freeze_All (Freeze_From, Decl);
2689 Freeze_From := Last_Entity (Current_Scope);
2691 else
2692 -- For declarations in a subprogram body there is no issue
2693 -- with name resolution in aspect specifications, but in
2694 -- ASIS mode we need to preanalyze aspect specifications
2695 -- that may otherwise only be analyzed during expansion
2696 -- (e.g. during generation of a related subprogram).
2698 if ASIS_Mode then
2699 Resolve_Aspects;
2700 end if;
2702 Freeze_All (First_Entity (Current_Scope), Decl);
2703 Freeze_From := Last_Entity (Current_Scope);
2704 end if;
2706 -- Current scope is a package specification
2708 elsif Scope (Current_Scope) /= Standard_Standard
2709 and then not Is_Child_Unit (Current_Scope)
2710 and then No (Generic_Parent (Parent (L)))
2711 then
2712 -- ARM rule 13.1.1(11/3): usage names in aspect definitions are
2713 -- resolved at the end of the immediately enclosing declaration
2714 -- list (AI05-0183-1).
2716 Resolve_Aspects;
2718 elsif L /= Visible_Declarations (Parent (L))
2719 or else No (Private_Declarations (Parent (L)))
2720 or else Is_Empty_List (Private_Declarations (Parent (L)))
2721 then
2722 Adjust_Decl;
2724 -- End of a package declaration
2726 -- In compilation mode the expansion of freeze node takes care
2727 -- of resolving expressions of all aspects in the list. In ASIS
2728 -- mode this must be done explicitly.
2730 if ASIS_Mode
2731 and then Scope (Current_Scope) = Standard_Standard
2732 then
2733 Resolve_Aspects;
2734 end if;
2736 -- This is a freeze point because it is the end of a
2737 -- compilation unit.
2739 Freeze_All (First_Entity (Current_Scope), Decl);
2740 Freeze_From := Last_Entity (Current_Scope);
2742 -- At the end of the visible declarations the expressions in
2743 -- aspects of all entities declared so far must be resolved.
2744 -- The entities themselves might be frozen later, and the
2745 -- generated pragmas and attribute definition clauses analyzed
2746 -- in full at that point, but name resolution must take place
2747 -- now.
2748 -- In addition to being the proper semantics, this is mandatory
2749 -- within generic units, because global name capture requires
2750 -- those expressions to be analyzed, given that the generated
2751 -- pragmas do not appear in the original generic tree.
2753 elsif Serious_Errors_Detected = 0 then
2754 Resolve_Aspects;
2755 end if;
2757 -- If next node is a body then freeze all types before the body.
2758 -- An exception occurs for some expander-generated bodies. If these
2759 -- are generated at places where in general language rules would not
2760 -- allow a freeze point, then we assume that the expander has
2761 -- explicitly checked that all required types are properly frozen,
2762 -- and we do not cause general freezing here. This special circuit
2763 -- is used when the encountered body is marked as having already
2764 -- been analyzed.
2766 -- In all other cases (bodies that come from source, and expander
2767 -- generated bodies that have not been analyzed yet), freeze all
2768 -- types now. Note that in the latter case, the expander must take
2769 -- care to attach the bodies at a proper place in the tree so as to
2770 -- not cause unwanted freezing at that point.
2772 -- It is also necessary to check for a case where both an expression
2773 -- function is used and the current scope depends on an incomplete
2774 -- private type from a library unit, otherwise premature freezing of
2775 -- the private type will occur.
2777 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl)
2778 and then ((Nkind (Next_Decl) /= N_Subprogram_Body
2779 or else not Was_Expression_Function (Next_Decl))
2780 or else (not Is_Ignored_Ghost_Entity (Current_Scope)
2781 and then not Contains_Lib_Incomplete_Type
2782 (Current_Scope)))
2783 then
2784 -- When a controlled type is frozen, the expander generates stream
2785 -- and controlled-type support routines. If the freeze is caused
2786 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2787 -- expander will end up using the wrong version of these routines,
2788 -- as the body has not been processed yet. To remedy this, detect
2789 -- a late controlled primitive and create a proper spec for it.
2790 -- This ensures that the primitive will override its inherited
2791 -- counterpart before the freeze takes place.
2793 -- If the declaration we just processed is a body, do not attempt
2794 -- to examine Next_Decl as the late primitive idiom can only apply
2795 -- to the first encountered body.
2797 -- The spec of the late primitive is not generated in ASIS mode to
2798 -- ensure a consistent list of primitives that indicates the true
2799 -- semantic structure of the program (which is not relevant when
2800 -- generating executable code).
2802 -- ??? A cleaner approach may be possible and/or this solution
2803 -- could be extended to general-purpose late primitives, TBD.
2805 if not ASIS_Mode
2806 and then not Body_Seen
2807 and then not Is_Body (Decl)
2808 then
2809 Body_Seen := True;
2811 if Nkind (Next_Decl) = N_Subprogram_Body then
2812 Handle_Late_Controlled_Primitive (Next_Decl);
2813 end if;
2815 else
2816 -- In ASIS mode, if the next declaration is a body, complete
2817 -- the analysis of declarations so far.
2819 Resolve_Aspects;
2820 end if;
2822 Adjust_Decl;
2824 -- The generated body of an expression function does not freeze,
2825 -- unless it is a completion, in which case only the expression
2826 -- itself freezes. This is handled when the body itself is
2827 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2829 Freeze_All (Freeze_From, Decl);
2830 Freeze_From := Last_Entity (Current_Scope);
2831 end if;
2833 Decl := Next_Decl;
2834 end loop;
2836 -- Post-freezing actions
2838 if Present (L) then
2839 Context := Parent (L);
2841 -- Certain contract annocations have forward visibility semantics and
2842 -- must be analyzed after all declarative items have been processed.
2843 -- This timing ensures that entities referenced by such contracts are
2844 -- visible.
2846 -- Analyze the contract of an immediately enclosing package spec or
2847 -- body first because other contracts may depend on its information.
2849 if Nkind (Context) = N_Package_Body then
2850 Analyze_Package_Body_Contract (Defining_Entity (Context));
2852 elsif Nkind (Context) = N_Package_Specification then
2853 Analyze_Package_Contract (Defining_Entity (Context));
2854 end if;
2856 -- Analyze the contracts of various constructs in the declarative
2857 -- list.
2859 Analyze_Contracts (L);
2861 if Nkind (Context) = N_Package_Body then
2863 -- Ensure that all abstract states and objects declared in the
2864 -- state space of a package body are utilized as constituents.
2866 Check_Unused_Body_States (Defining_Entity (Context));
2868 -- State refinements are visible up to the end of the package body
2869 -- declarations. Hide the state refinements from visibility to
2870 -- restore the original state conditions.
2872 Remove_Visible_Refinements (Corresponding_Spec (Context));
2873 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2875 elsif Nkind (Context) = N_Package_Specification then
2877 -- Partial state refinements are visible up to the end of the
2878 -- package spec declarations. Hide the partial state refinements
2879 -- from visibility to restore the original state conditions.
2881 Remove_Partial_Visible_Refinements (Defining_Entity (Context));
2882 end if;
2884 -- Verify that all abstract states found in any package declared in
2885 -- the input declarative list have proper refinements. The check is
2886 -- performed only when the context denotes a block, entry, package,
2887 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2889 Check_State_Refinements (Context);
2891 -- Create the subprogram bodies which verify the run-time semantics
2892 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2893 -- types within the current declarative list. This ensures that all
2894 -- assertion expressions are preanalyzed and resolved at the end of
2895 -- the declarative part. Note that the resolution happens even when
2896 -- freezing does not take place.
2898 Build_Assertion_Bodies (L, Context);
2899 end if;
2900 end Analyze_Declarations;
2902 -----------------------------------
2903 -- Analyze_Full_Type_Declaration --
2904 -----------------------------------
2906 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2907 Def : constant Node_Id := Type_Definition (N);
2908 Def_Id : constant Entity_Id := Defining_Identifier (N);
2909 T : Entity_Id;
2910 Prev : Entity_Id;
2912 Is_Remote : constant Boolean :=
2913 (Is_Remote_Types (Current_Scope)
2914 or else Is_Remote_Call_Interface (Current_Scope))
2915 and then not (In_Private_Part (Current_Scope)
2916 or else In_Package_Body (Current_Scope));
2918 procedure Check_Nonoverridable_Aspects;
2919 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2920 -- be overridden, and can only be confirmed on derivation.
2922 procedure Check_Ops_From_Incomplete_Type;
2923 -- If there is a tagged incomplete partial view of the type, traverse
2924 -- the primitives of the incomplete view and change the type of any
2925 -- controlling formals and result to indicate the full view. The
2926 -- primitives will be added to the full type's primitive operations
2927 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2928 -- is called from Process_Incomplete_Dependents).
2930 ----------------------------------
2931 -- Check_Nonoverridable_Aspects --
2932 ----------------------------------
2934 procedure Check_Nonoverridable_Aspects is
2935 function Get_Aspect_Spec
2936 (Specs : List_Id;
2937 Aspect_Name : Name_Id) return Node_Id;
2938 -- Check whether a list of aspect specifications includes an entry
2939 -- for a specific aspect. The list is either that of a partial or
2940 -- a full view.
2942 ---------------------
2943 -- Get_Aspect_Spec --
2944 ---------------------
2946 function Get_Aspect_Spec
2947 (Specs : List_Id;
2948 Aspect_Name : Name_Id) return Node_Id
2950 Spec : Node_Id;
2952 begin
2953 Spec := First (Specs);
2954 while Present (Spec) loop
2955 if Chars (Identifier (Spec)) = Aspect_Name then
2956 return Spec;
2957 end if;
2958 Next (Spec);
2959 end loop;
2961 return Empty;
2962 end Get_Aspect_Spec;
2964 -- Local variables
2966 Prev_Aspects : constant List_Id :=
2967 Aspect_Specifications (Parent (Def_Id));
2968 Par_Type : Entity_Id;
2969 Prev_Aspect : Node_Id;
2971 -- Start of processing for Check_Nonoverridable_Aspects
2973 begin
2974 -- Get parent type of derived type. Note that Prev is the entity in
2975 -- the partial declaration, but its contents are now those of full
2976 -- view, while Def_Id reflects the partial view.
2978 if Is_Private_Type (Def_Id) then
2979 Par_Type := Etype (Full_View (Def_Id));
2980 else
2981 Par_Type := Etype (Def_Id);
2982 end if;
2984 -- If there is an inherited Implicit_Dereference, verify that it is
2985 -- made explicit in the partial view.
2987 if Has_Discriminants (Base_Type (Par_Type))
2988 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2989 and then Present (Discriminant_Specifications (Parent (Prev)))
2990 and then Present (Get_Reference_Discriminant (Par_Type))
2991 then
2992 Prev_Aspect :=
2993 Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference);
2995 if No (Prev_Aspect)
2996 and then Present
2997 (Discriminant_Specifications
2998 (Original_Node (Parent (Prev))))
2999 then
3000 Error_Msg_N
3001 ("type does not inherit implicit dereference", Prev);
3003 else
3004 -- If one of the views has the aspect specified, verify that it
3005 -- is consistent with that of the parent.
3007 declare
3008 Par_Discr : constant Entity_Id :=
3009 Get_Reference_Discriminant (Par_Type);
3010 Cur_Discr : constant Entity_Id :=
3011 Get_Reference_Discriminant (Prev);
3013 begin
3014 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
3015 Error_Msg_N ("aspect incosistent with that of parent", N);
3016 end if;
3018 -- Check that specification in partial view matches the
3019 -- inherited aspect. Compare names directly because aspect
3020 -- expression may not be analyzed.
3022 if Present (Prev_Aspect)
3023 and then Nkind (Expression (Prev_Aspect)) = N_Identifier
3024 and then Chars (Expression (Prev_Aspect)) /=
3025 Chars (Cur_Discr)
3026 then
3027 Error_Msg_N
3028 ("aspect incosistent with that of parent", N);
3029 end if;
3030 end;
3031 end if;
3032 end if;
3034 -- TBD : other nonoverridable aspects.
3035 end Check_Nonoverridable_Aspects;
3037 ------------------------------------
3038 -- Check_Ops_From_Incomplete_Type --
3039 ------------------------------------
3041 procedure Check_Ops_From_Incomplete_Type is
3042 Elmt : Elmt_Id;
3043 Formal : Entity_Id;
3044 Op : Entity_Id;
3046 begin
3047 if Prev /= T
3048 and then Ekind (Prev) = E_Incomplete_Type
3049 and then Is_Tagged_Type (Prev)
3050 and then Is_Tagged_Type (T)
3051 then
3052 Elmt := First_Elmt (Primitive_Operations (Prev));
3053 while Present (Elmt) loop
3054 Op := Node (Elmt);
3056 Formal := First_Formal (Op);
3057 while Present (Formal) loop
3058 if Etype (Formal) = Prev then
3059 Set_Etype (Formal, T);
3060 end if;
3062 Next_Formal (Formal);
3063 end loop;
3065 if Etype (Op) = Prev then
3066 Set_Etype (Op, T);
3067 end if;
3069 Next_Elmt (Elmt);
3070 end loop;
3071 end if;
3072 end Check_Ops_From_Incomplete_Type;
3074 -- Start of processing for Analyze_Full_Type_Declaration
3076 begin
3077 Prev := Find_Type_Name (N);
3079 -- The full view, if present, now points to the current type. If there
3080 -- is an incomplete partial view, set a link to it, to simplify the
3081 -- retrieval of primitive operations of the type.
3083 -- Ada 2005 (AI-50217): If the type was previously decorated when
3084 -- imported through a LIMITED WITH clause, it appears as incomplete
3085 -- but has no full view.
3087 if Ekind (Prev) = E_Incomplete_Type
3088 and then Present (Full_View (Prev))
3089 then
3090 T := Full_View (Prev);
3091 Set_Incomplete_View (N, Parent (Prev));
3092 else
3093 T := Prev;
3094 end if;
3096 Set_Is_Pure (T, Is_Pure (Current_Scope));
3098 -- We set the flag Is_First_Subtype here. It is needed to set the
3099 -- corresponding flag for the Implicit class-wide-type created
3100 -- during tagged types processing.
3102 Set_Is_First_Subtype (T, True);
3104 -- Only composite types other than array types are allowed to have
3105 -- discriminants.
3107 case Nkind (Def) is
3109 -- For derived types, the rule will be checked once we've figured
3110 -- out the parent type.
3112 when N_Derived_Type_Definition =>
3113 null;
3115 -- For record types, discriminants are allowed, unless we are in
3116 -- SPARK.
3118 when N_Record_Definition =>
3119 if Present (Discriminant_Specifications (N)) then
3120 Check_SPARK_05_Restriction
3121 ("discriminant type is not allowed",
3122 Defining_Identifier
3123 (First (Discriminant_Specifications (N))));
3124 end if;
3126 when others =>
3127 if Present (Discriminant_Specifications (N)) then
3128 Error_Msg_N
3129 ("elementary or array type cannot have discriminants",
3130 Defining_Identifier
3131 (First (Discriminant_Specifications (N))));
3132 end if;
3133 end case;
3135 -- Elaborate the type definition according to kind, and generate
3136 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3137 -- already done (this happens during the reanalysis that follows a call
3138 -- to the high level optimizer).
3140 if not Analyzed (T) then
3141 Set_Analyzed (T);
3143 -- Set the SPARK mode from the current context
3145 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3146 Set_SPARK_Pragma_Inherited (T);
3148 case Nkind (Def) is
3149 when N_Access_To_Subprogram_Definition =>
3150 Access_Subprogram_Declaration (T, Def);
3152 -- If this is a remote access to subprogram, we must create the
3153 -- equivalent fat pointer type, and related subprograms.
3155 if Is_Remote then
3156 Process_Remote_AST_Declaration (N);
3157 end if;
3159 -- Validate categorization rule against access type declaration
3160 -- usually a violation in Pure unit, Shared_Passive unit.
3162 Validate_Access_Type_Declaration (T, N);
3164 when N_Access_To_Object_Definition =>
3165 Access_Type_Declaration (T, Def);
3167 -- Validate categorization rule against access type declaration
3168 -- usually a violation in Pure unit, Shared_Passive unit.
3170 Validate_Access_Type_Declaration (T, N);
3172 -- If we are in a Remote_Call_Interface package and define a
3173 -- RACW, then calling stubs and specific stream attributes
3174 -- must be added.
3176 if Is_Remote
3177 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3178 then
3179 Add_RACW_Features (Def_Id);
3180 end if;
3182 when N_Array_Type_Definition =>
3183 Array_Type_Declaration (T, Def);
3185 when N_Derived_Type_Definition =>
3186 Derived_Type_Declaration (T, N, T /= Def_Id);
3188 -- Inherit predicates from parent, and protect against illegal
3189 -- derivations.
3191 if Is_Type (T) and then Has_Predicates (T) then
3192 Set_Has_Predicates (Def_Id);
3193 end if;
3195 -- Save the scenario for examination by the ABE Processing
3196 -- phase.
3198 Record_Elaboration_Scenario (N);
3200 when N_Enumeration_Type_Definition =>
3201 Enumeration_Type_Declaration (T, Def);
3203 when N_Floating_Point_Definition =>
3204 Floating_Point_Type_Declaration (T, Def);
3206 when N_Decimal_Fixed_Point_Definition =>
3207 Decimal_Fixed_Point_Type_Declaration (T, Def);
3209 when N_Ordinary_Fixed_Point_Definition =>
3210 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3212 when N_Signed_Integer_Type_Definition =>
3213 Signed_Integer_Type_Declaration (T, Def);
3215 when N_Modular_Type_Definition =>
3216 Modular_Type_Declaration (T, Def);
3218 when N_Record_Definition =>
3219 Record_Type_Declaration (T, N, Prev);
3221 -- If declaration has a parse error, nothing to elaborate.
3223 when N_Error =>
3224 null;
3226 when others =>
3227 raise Program_Error;
3228 end case;
3229 end if;
3231 if Etype (T) = Any_Type then
3232 return;
3233 end if;
3235 -- Controlled type is not allowed in SPARK
3237 if Is_Visibly_Controlled (T) then
3238 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
3239 end if;
3241 -- Some common processing for all types
3243 Set_Depends_On_Private (T, Has_Private_Component (T));
3244 Check_Ops_From_Incomplete_Type;
3246 -- Both the declared entity, and its anonymous base type if one was
3247 -- created, need freeze nodes allocated.
3249 declare
3250 B : constant Entity_Id := Base_Type (T);
3252 begin
3253 -- In the case where the base type differs from the first subtype, we
3254 -- pre-allocate a freeze node, and set the proper link to the first
3255 -- subtype. Freeze_Entity will use this preallocated freeze node when
3256 -- it freezes the entity.
3258 -- This does not apply if the base type is a generic type, whose
3259 -- declaration is independent of the current derived definition.
3261 if B /= T and then not Is_Generic_Type (B) then
3262 Ensure_Freeze_Node (B);
3263 Set_First_Subtype_Link (Freeze_Node (B), T);
3264 end if;
3266 -- A type that is imported through a limited_with clause cannot
3267 -- generate any code, and thus need not be frozen. However, an access
3268 -- type with an imported designated type needs a finalization list,
3269 -- which may be referenced in some other package that has non-limited
3270 -- visibility on the designated type. Thus we must create the
3271 -- finalization list at the point the access type is frozen, to
3272 -- prevent unsatisfied references at link time.
3274 if not From_Limited_With (T) or else Is_Access_Type (T) then
3275 Set_Has_Delayed_Freeze (T);
3276 end if;
3277 end;
3279 -- Case where T is the full declaration of some private type which has
3280 -- been swapped in Defining_Identifier (N).
3282 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3283 Process_Full_View (N, T, Def_Id);
3285 -- Record the reference. The form of this is a little strange, since
3286 -- the full declaration has been swapped in. So the first parameter
3287 -- here represents the entity to which a reference is made which is
3288 -- the "real" entity, i.e. the one swapped in, and the second
3289 -- parameter provides the reference location.
3291 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3292 -- since we don't want a complaint about the full type being an
3293 -- unwanted reference to the private type
3295 declare
3296 B : constant Boolean := Has_Pragma_Unreferenced (T);
3297 begin
3298 Set_Has_Pragma_Unreferenced (T, False);
3299 Generate_Reference (T, T, 'c');
3300 Set_Has_Pragma_Unreferenced (T, B);
3301 end;
3303 Set_Completion_Referenced (Def_Id);
3305 -- For completion of incomplete type, process incomplete dependents
3306 -- and always mark the full type as referenced (it is the incomplete
3307 -- type that we get for any real reference).
3309 elsif Ekind (Prev) = E_Incomplete_Type then
3310 Process_Incomplete_Dependents (N, T, Prev);
3311 Generate_Reference (Prev, Def_Id, 'c');
3312 Set_Completion_Referenced (Def_Id);
3314 -- If not private type or incomplete type completion, this is a real
3315 -- definition of a new entity, so record it.
3317 else
3318 Generate_Definition (Def_Id);
3319 end if;
3321 -- Propagate any pending access types whose finalization masters need to
3322 -- be fully initialized from the partial to the full view. Guard against
3323 -- an illegal full view that remains unanalyzed.
3325 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
3326 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
3327 end if;
3329 if Chars (Scope (Def_Id)) = Name_System
3330 and then Chars (Def_Id) = Name_Address
3331 and then In_Predefined_Unit (N)
3332 then
3333 Set_Is_Descendant_Of_Address (Def_Id);
3334 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
3335 Set_Is_Descendant_Of_Address (Prev);
3336 end if;
3338 Set_Optimize_Alignment_Flags (Def_Id);
3339 Check_Eliminated (Def_Id);
3341 -- If the declaration is a completion and aspects are present, apply
3342 -- them to the entity for the type which is currently the partial
3343 -- view, but which is the one that will be frozen.
3345 if Has_Aspects (N) then
3347 -- In most cases the partial view is a private type, and both views
3348 -- appear in different declarative parts. In the unusual case where
3349 -- the partial view is incomplete, perform the analysis on the
3350 -- full view, to prevent freezing anomalies with the corresponding
3351 -- class-wide type, which otherwise might be frozen before the
3352 -- dispatch table is built.
3354 if Prev /= Def_Id
3355 and then Ekind (Prev) /= E_Incomplete_Type
3356 then
3357 Analyze_Aspect_Specifications (N, Prev);
3359 -- Normal case
3361 else
3362 Analyze_Aspect_Specifications (N, Def_Id);
3363 end if;
3364 end if;
3366 if Is_Derived_Type (Prev)
3367 and then Def_Id /= Prev
3368 then
3369 Check_Nonoverridable_Aspects;
3370 end if;
3371 end Analyze_Full_Type_Declaration;
3373 ----------------------------------
3374 -- Analyze_Incomplete_Type_Decl --
3375 ----------------------------------
3377 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3378 F : constant Boolean := Is_Pure (Current_Scope);
3379 T : Entity_Id;
3381 begin
3382 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
3384 Generate_Definition (Defining_Identifier (N));
3386 -- Process an incomplete declaration. The identifier must not have been
3387 -- declared already in the scope. However, an incomplete declaration may
3388 -- appear in the private part of a package, for a private type that has
3389 -- already been declared.
3391 -- In this case, the discriminants (if any) must match
3393 T := Find_Type_Name (N);
3395 Set_Ekind (T, E_Incomplete_Type);
3396 Set_Etype (T, T);
3397 Set_Is_First_Subtype (T);
3398 Init_Size_Align (T);
3400 -- Set the SPARK mode from the current context
3402 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
3403 Set_SPARK_Pragma_Inherited (T);
3405 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3406 -- incomplete types.
3408 if Tagged_Present (N) then
3409 Set_Is_Tagged_Type (T, True);
3410 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3411 Make_Class_Wide_Type (T);
3412 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3413 end if;
3415 Set_Stored_Constraint (T, No_Elist);
3417 if Present (Discriminant_Specifications (N)) then
3418 Push_Scope (T);
3419 Process_Discriminants (N);
3420 End_Scope;
3421 end if;
3423 -- If the type has discriminants, nontrivial subtypes may be declared
3424 -- before the full view of the type. The full views of those subtypes
3425 -- will be built after the full view of the type.
3427 Set_Private_Dependents (T, New_Elmt_List);
3428 Set_Is_Pure (T, F);
3429 end Analyze_Incomplete_Type_Decl;
3431 -----------------------------------
3432 -- Analyze_Interface_Declaration --
3433 -----------------------------------
3435 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3436 CW : constant Entity_Id := Class_Wide_Type (T);
3438 begin
3439 Set_Is_Tagged_Type (T);
3440 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3442 Set_Is_Limited_Record (T, Limited_Present (Def)
3443 or else Task_Present (Def)
3444 or else Protected_Present (Def)
3445 or else Synchronized_Present (Def));
3447 -- Type is abstract if full declaration carries keyword, or if previous
3448 -- partial view did.
3450 Set_Is_Abstract_Type (T);
3451 Set_Is_Interface (T);
3453 -- Type is a limited interface if it includes the keyword limited, task,
3454 -- protected, or synchronized.
3456 Set_Is_Limited_Interface
3457 (T, Limited_Present (Def)
3458 or else Protected_Present (Def)
3459 or else Synchronized_Present (Def)
3460 or else Task_Present (Def));
3462 Set_Interfaces (T, New_Elmt_List);
3463 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3465 -- Complete the decoration of the class-wide entity if it was already
3466 -- built (i.e. during the creation of the limited view)
3468 if Present (CW) then
3469 Set_Is_Interface (CW);
3470 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3471 end if;
3473 -- Check runtime support for synchronized interfaces
3475 if (Is_Task_Interface (T)
3476 or else Is_Protected_Interface (T)
3477 or else Is_Synchronized_Interface (T))
3478 and then not RTE_Available (RE_Select_Specific_Data)
3479 then
3480 Error_Msg_CRT ("synchronized interfaces", T);
3481 end if;
3482 end Analyze_Interface_Declaration;
3484 -----------------------------
3485 -- Analyze_Itype_Reference --
3486 -----------------------------
3488 -- Nothing to do. This node is placed in the tree only for the benefit of
3489 -- back end processing, and has no effect on the semantic processing.
3491 procedure Analyze_Itype_Reference (N : Node_Id) is
3492 begin
3493 pragma Assert (Is_Itype (Itype (N)));
3494 null;
3495 end Analyze_Itype_Reference;
3497 --------------------------------
3498 -- Analyze_Number_Declaration --
3499 --------------------------------
3501 procedure Analyze_Number_Declaration (N : Node_Id) is
3502 E : constant Node_Id := Expression (N);
3503 Id : constant Entity_Id := Defining_Identifier (N);
3504 Index : Interp_Index;
3505 It : Interp;
3506 T : Entity_Id;
3508 begin
3509 Generate_Definition (Id);
3510 Enter_Name (Id);
3512 -- This is an optimization of a common case of an integer literal
3514 if Nkind (E) = N_Integer_Literal then
3515 Set_Is_Static_Expression (E, True);
3516 Set_Etype (E, Universal_Integer);
3518 Set_Etype (Id, Universal_Integer);
3519 Set_Ekind (Id, E_Named_Integer);
3520 Set_Is_Frozen (Id, True);
3521 return;
3522 end if;
3524 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3526 -- Process expression, replacing error by integer zero, to avoid
3527 -- cascaded errors or aborts further along in the processing
3529 -- Replace Error by integer zero, which seems least likely to cause
3530 -- cascaded errors.
3532 if E = Error then
3533 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3534 Set_Error_Posted (E);
3535 end if;
3537 Analyze (E);
3539 -- Verify that the expression is static and numeric. If
3540 -- the expression is overloaded, we apply the preference
3541 -- rule that favors root numeric types.
3543 if not Is_Overloaded (E) then
3544 T := Etype (E);
3545 if Has_Dynamic_Predicate_Aspect (T) then
3546 Error_Msg_N
3547 ("subtype has dynamic predicate, "
3548 & "not allowed in number declaration", N);
3549 end if;
3551 else
3552 T := Any_Type;
3554 Get_First_Interp (E, Index, It);
3555 while Present (It.Typ) loop
3556 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3557 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3558 then
3559 if T = Any_Type then
3560 T := It.Typ;
3562 elsif It.Typ = Universal_Real
3563 or else
3564 It.Typ = Universal_Integer
3565 then
3566 -- Choose universal interpretation over any other
3568 T := It.Typ;
3569 exit;
3570 end if;
3571 end if;
3573 Get_Next_Interp (Index, It);
3574 end loop;
3575 end if;
3577 if Is_Integer_Type (T) then
3578 Resolve (E, T);
3579 Set_Etype (Id, Universal_Integer);
3580 Set_Ekind (Id, E_Named_Integer);
3582 elsif Is_Real_Type (T) then
3584 -- Because the real value is converted to universal_real, this is a
3585 -- legal context for a universal fixed expression.
3587 if T = Universal_Fixed then
3588 declare
3589 Loc : constant Source_Ptr := Sloc (N);
3590 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3591 Subtype_Mark =>
3592 New_Occurrence_Of (Universal_Real, Loc),
3593 Expression => Relocate_Node (E));
3595 begin
3596 Rewrite (E, Conv);
3597 Analyze (E);
3598 end;
3600 elsif T = Any_Fixed then
3601 Error_Msg_N ("illegal context for mixed mode operation", E);
3603 -- Expression is of the form : universal_fixed * integer. Try to
3604 -- resolve as universal_real.
3606 T := Universal_Real;
3607 Set_Etype (E, T);
3608 end if;
3610 Resolve (E, T);
3611 Set_Etype (Id, Universal_Real);
3612 Set_Ekind (Id, E_Named_Real);
3614 else
3615 Wrong_Type (E, Any_Numeric);
3616 Resolve (E, T);
3618 Set_Etype (Id, T);
3619 Set_Ekind (Id, E_Constant);
3620 Set_Never_Set_In_Source (Id, True);
3621 Set_Is_True_Constant (Id, True);
3622 return;
3623 end if;
3625 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3626 Set_Etype (E, Etype (Id));
3627 end if;
3629 if not Is_OK_Static_Expression (E) then
3630 Flag_Non_Static_Expr
3631 ("non-static expression used in number declaration!", E);
3632 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3633 Set_Etype (E, Any_Type);
3634 end if;
3636 Analyze_Dimension (N);
3637 end Analyze_Number_Declaration;
3639 --------------------------------
3640 -- Analyze_Object_Declaration --
3641 --------------------------------
3643 -- WARNING: This routine manages Ghost regions. Return statements must be
3644 -- replaced by gotos which jump to the end of the routine and restore the
3645 -- Ghost mode.
3647 procedure Analyze_Object_Declaration (N : Node_Id) is
3648 Loc : constant Source_Ptr := Sloc (N);
3649 Id : constant Entity_Id := Defining_Identifier (N);
3650 Act_T : Entity_Id;
3651 T : Entity_Id;
3653 E : Node_Id := Expression (N);
3654 -- E is set to Expression (N) throughout this routine. When Expression
3655 -- (N) is modified, E is changed accordingly.
3657 Prev_Entity : Entity_Id := Empty;
3659 procedure Check_Dynamic_Object (Typ : Entity_Id);
3660 -- A library-level object with non-static discriminant constraints may
3661 -- require dynamic allocation. The declaration is illegal if the
3662 -- profile includes the restriction No_Implicit_Heap_Allocations.
3664 procedure Check_For_Null_Excluding_Components
3665 (Obj_Typ : Entity_Id;
3666 Obj_Decl : Node_Id);
3667 -- Verify that each null-excluding component of object declaration
3668 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3669 -- a compile-time warning if this is not the case.
3671 function Count_Tasks (T : Entity_Id) return Uint;
3672 -- This function is called when a non-generic library level object of a
3673 -- task type is declared. Its function is to count the static number of
3674 -- tasks declared within the type (it is only called if Has_Task is set
3675 -- for T). As a side effect, if an array of tasks with non-static bounds
3676 -- or a variant record type is encountered, Check_Restriction is called
3677 -- indicating the count is unknown.
3679 function Delayed_Aspect_Present return Boolean;
3680 -- If the declaration has an expression that is an aggregate, and it
3681 -- has aspects that require delayed analysis, the resolution of the
3682 -- aggregate must be deferred to the freeze point of the object. This
3683 -- special processing was created for address clauses, but it must
3684 -- also apply to Alignment. This must be done before the aspect
3685 -- specifications are analyzed because we must handle the aggregate
3686 -- before the analysis of the object declaration is complete.
3688 -- Any other relevant delayed aspects on object declarations ???
3690 --------------------------
3691 -- Check_Dynamic_Object --
3692 --------------------------
3694 procedure Check_Dynamic_Object (Typ : Entity_Id) is
3695 Comp : Entity_Id;
3696 Obj_Type : Entity_Id;
3698 begin
3699 Obj_Type := Typ;
3701 if Is_Private_Type (Obj_Type)
3702 and then Present (Full_View (Obj_Type))
3703 then
3704 Obj_Type := Full_View (Obj_Type);
3705 end if;
3707 if Known_Static_Esize (Obj_Type) then
3708 return;
3709 end if;
3711 if Restriction_Active (No_Implicit_Heap_Allocations)
3712 and then Expander_Active
3713 and then Has_Discriminants (Obj_Type)
3714 then
3715 Comp := First_Component (Obj_Type);
3716 while Present (Comp) loop
3717 if Known_Static_Esize (Etype (Comp))
3718 or else Size_Known_At_Compile_Time (Etype (Comp))
3719 then
3720 null;
3722 elsif not Discriminated_Size (Comp)
3723 and then Comes_From_Source (Comp)
3724 then
3725 Error_Msg_NE
3726 ("component& of non-static size will violate restriction "
3727 & "No_Implicit_Heap_Allocation?", N, Comp);
3729 elsif Is_Record_Type (Etype (Comp)) then
3730 Check_Dynamic_Object (Etype (Comp));
3731 end if;
3733 Next_Component (Comp);
3734 end loop;
3735 end if;
3736 end Check_Dynamic_Object;
3738 -----------------------------------------
3739 -- Check_For_Null_Excluding_Components --
3740 -----------------------------------------
3742 procedure Check_For_Null_Excluding_Components
3743 (Obj_Typ : Entity_Id;
3744 Obj_Decl : Node_Id)
3746 procedure Check_Component
3747 (Comp_Typ : Entity_Id;
3748 Comp_Decl : Node_Id := Empty;
3749 Array_Comp : Boolean := False);
3750 -- Apply a compile-time null-exclusion check on a component denoted
3751 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3752 -- subcomponents (if any).
3754 ---------------------
3755 -- Check_Component --
3756 ---------------------
3758 procedure Check_Component
3759 (Comp_Typ : Entity_Id;
3760 Comp_Decl : Node_Id := Empty;
3761 Array_Comp : Boolean := False)
3763 Comp : Entity_Id;
3764 T : Entity_Id;
3766 begin
3767 -- Do not consider internally-generated components or those that
3768 -- are already initialized.
3770 if Present (Comp_Decl)
3771 and then (not Comes_From_Source (Comp_Decl)
3772 or else Present (Expression (Comp_Decl)))
3773 then
3774 return;
3775 end if;
3777 if Is_Incomplete_Or_Private_Type (Comp_Typ)
3778 and then Present (Full_View (Comp_Typ))
3779 then
3780 T := Full_View (Comp_Typ);
3781 else
3782 T := Comp_Typ;
3783 end if;
3785 -- Verify a component of a null-excluding access type
3787 if Is_Access_Type (T)
3788 and then Can_Never_Be_Null (T)
3789 then
3790 if Comp_Decl = Obj_Decl then
3791 Null_Exclusion_Static_Checks
3792 (N => Obj_Decl,
3793 Comp => Empty,
3794 Array_Comp => Array_Comp);
3796 else
3797 Null_Exclusion_Static_Checks
3798 (N => Obj_Decl,
3799 Comp => Comp_Decl,
3800 Array_Comp => Array_Comp);
3801 end if;
3803 -- Check array components
3805 elsif Is_Array_Type (T) then
3807 -- There is no suitable component when the object is of an
3808 -- array type. However, a namable component may appear at some
3809 -- point during the recursive inspection, but not at the top
3810 -- level. At the top level just indicate array component case.
3812 if Comp_Decl = Obj_Decl then
3813 Check_Component (Component_Type (T), Array_Comp => True);
3814 else
3815 Check_Component (Component_Type (T), Comp_Decl);
3816 end if;
3818 -- Verify all components of type T
3820 -- Note: No checks are performed on types with discriminants due
3821 -- to complexities involving variants. ???
3823 elsif (Is_Concurrent_Type (T)
3824 or else Is_Incomplete_Or_Private_Type (T)
3825 or else Is_Record_Type (T))
3826 and then not Has_Discriminants (T)
3827 then
3828 Comp := First_Component (T);
3829 while Present (Comp) loop
3830 Check_Component (Etype (Comp), Parent (Comp));
3832 Comp := Next_Component (Comp);
3833 end loop;
3834 end if;
3835 end Check_Component;
3837 -- Start processing for Check_For_Null_Excluding_Components
3839 begin
3840 Check_Component (Obj_Typ, Obj_Decl);
3841 end Check_For_Null_Excluding_Components;
3843 -----------------
3844 -- Count_Tasks --
3845 -----------------
3847 function Count_Tasks (T : Entity_Id) return Uint is
3848 C : Entity_Id;
3849 X : Node_Id;
3850 V : Uint;
3852 begin
3853 if Is_Task_Type (T) then
3854 return Uint_1;
3856 elsif Is_Record_Type (T) then
3857 if Has_Discriminants (T) then
3858 Check_Restriction (Max_Tasks, N);
3859 return Uint_0;
3861 else
3862 V := Uint_0;
3863 C := First_Component (T);
3864 while Present (C) loop
3865 V := V + Count_Tasks (Etype (C));
3866 Next_Component (C);
3867 end loop;
3869 return V;
3870 end if;
3872 elsif Is_Array_Type (T) then
3873 X := First_Index (T);
3874 V := Count_Tasks (Component_Type (T));
3875 while Present (X) loop
3876 C := Etype (X);
3878 if not Is_OK_Static_Subtype (C) then
3879 Check_Restriction (Max_Tasks, N);
3880 return Uint_0;
3881 else
3882 V := V * (UI_Max (Uint_0,
3883 Expr_Value (Type_High_Bound (C)) -
3884 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3885 end if;
3887 Next_Index (X);
3888 end loop;
3890 return V;
3892 else
3893 return Uint_0;
3894 end if;
3895 end Count_Tasks;
3897 ----------------------------
3898 -- Delayed_Aspect_Present --
3899 ----------------------------
3901 function Delayed_Aspect_Present return Boolean is
3902 A : Node_Id;
3903 A_Id : Aspect_Id;
3905 begin
3906 if Present (Aspect_Specifications (N)) then
3907 A := First (Aspect_Specifications (N));
3908 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3909 while Present (A) loop
3910 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3911 return True;
3912 end if;
3914 Next (A);
3915 end loop;
3916 end if;
3918 return False;
3919 end Delayed_Aspect_Present;
3921 -- Local variables
3923 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3924 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
3925 -- Save the Ghost-related attributes to restore on exit
3927 Related_Id : Entity_Id;
3929 -- Start of processing for Analyze_Object_Declaration
3931 begin
3932 -- There are three kinds of implicit types generated by an
3933 -- object declaration:
3935 -- 1. Those generated by the original Object Definition
3937 -- 2. Those generated by the Expression
3939 -- 3. Those used to constrain the Object Definition with the
3940 -- expression constraints when the definition is unconstrained.
3942 -- They must be generated in this order to avoid order of elaboration
3943 -- issues. Thus the first step (after entering the name) is to analyze
3944 -- the object definition.
3946 if Constant_Present (N) then
3947 Prev_Entity := Current_Entity_In_Scope (Id);
3949 if Present (Prev_Entity)
3950 and then
3951 -- If the homograph is an implicit subprogram, it is overridden
3952 -- by the current declaration.
3954 ((Is_Overloadable (Prev_Entity)
3955 and then Is_Inherited_Operation (Prev_Entity))
3957 -- The current object is a discriminal generated for an entry
3958 -- family index. Even though the index is a constant, in this
3959 -- particular context there is no true constant redeclaration.
3960 -- Enter_Name will handle the visibility.
3962 or else
3963 (Is_Discriminal (Id)
3964 and then Ekind (Discriminal_Link (Id)) =
3965 E_Entry_Index_Parameter)
3967 -- The current object is the renaming for a generic declared
3968 -- within the instance.
3970 or else
3971 (Ekind (Prev_Entity) = E_Package
3972 and then Nkind (Parent (Prev_Entity)) =
3973 N_Package_Renaming_Declaration
3974 and then not Comes_From_Source (Prev_Entity)
3975 and then
3976 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
3978 -- The entity may be a homonym of a private component of the
3979 -- enclosing protected object, for which we create a local
3980 -- renaming declaration. The declaration is legal, even if
3981 -- useless when it just captures that component.
3983 or else
3984 (Ekind (Scope (Current_Scope)) = E_Protected_Type
3985 and then Nkind (Parent (Prev_Entity)) =
3986 N_Object_Renaming_Declaration))
3987 then
3988 Prev_Entity := Empty;
3989 end if;
3990 end if;
3992 if Present (Prev_Entity) then
3994 -- The object declaration is Ghost when it completes a deferred Ghost
3995 -- constant.
3997 Mark_And_Set_Ghost_Completion (N, Prev_Entity);
3999 Constant_Redeclaration (Id, N, T);
4001 Generate_Reference (Prev_Entity, Id, 'c');
4002 Set_Completion_Referenced (Id);
4004 if Error_Posted (N) then
4006 -- Type mismatch or illegal redeclaration; do not analyze
4007 -- expression to avoid cascaded errors.
4009 T := Find_Type_Of_Object (Object_Definition (N), N);
4010 Set_Etype (Id, T);
4011 Set_Ekind (Id, E_Variable);
4012 goto Leave;
4013 end if;
4015 -- In the normal case, enter identifier at the start to catch premature
4016 -- usage in the initialization expression.
4018 else
4019 Generate_Definition (Id);
4020 Enter_Name (Id);
4022 Mark_Coextensions (N, Object_Definition (N));
4024 T := Find_Type_Of_Object (Object_Definition (N), N);
4026 if Nkind (Object_Definition (N)) = N_Access_Definition
4027 and then Present
4028 (Access_To_Subprogram_Definition (Object_Definition (N)))
4029 and then Protected_Present
4030 (Access_To_Subprogram_Definition (Object_Definition (N)))
4031 then
4032 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
4033 end if;
4035 if Error_Posted (Id) then
4036 Set_Etype (Id, T);
4037 Set_Ekind (Id, E_Variable);
4038 goto Leave;
4039 end if;
4040 end if;
4042 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
4043 -- out some static checks.
4045 if Ada_Version >= Ada_2005 then
4047 -- In case of aggregates we must also take care of the correct
4048 -- initialization of nested aggregates bug this is done at the
4049 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
4051 if Can_Never_Be_Null (T) then
4052 if Present (Expression (N))
4053 and then Nkind (Expression (N)) = N_Aggregate
4054 then
4055 null;
4057 else
4058 declare
4059 Save_Typ : constant Entity_Id := Etype (Id);
4060 begin
4061 Set_Etype (Id, T); -- Temp. decoration for static checks
4062 Null_Exclusion_Static_Checks (N);
4063 Set_Etype (Id, Save_Typ);
4064 end;
4065 end if;
4067 -- We might be dealing with an object of a composite type containing
4068 -- null-excluding components without an aggregate, so we must verify
4069 -- that such components have default initialization.
4071 else
4072 Check_For_Null_Excluding_Components (T, N);
4073 end if;
4074 end if;
4076 -- Object is marked pure if it is in a pure scope
4078 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4080 -- If deferred constant, make sure context is appropriate. We detect
4081 -- a deferred constant as a constant declaration with no expression.
4082 -- A deferred constant can appear in a package body if its completion
4083 -- is by means of an interface pragma.
4085 if Constant_Present (N) and then No (E) then
4087 -- A deferred constant may appear in the declarative part of the
4088 -- following constructs:
4090 -- blocks
4091 -- entry bodies
4092 -- extended return statements
4093 -- package specs
4094 -- package bodies
4095 -- subprogram bodies
4096 -- task bodies
4098 -- When declared inside a package spec, a deferred constant must be
4099 -- completed by a full constant declaration or pragma Import. In all
4100 -- other cases, the only proper completion is pragma Import. Extended
4101 -- return statements are flagged as invalid contexts because they do
4102 -- not have a declarative part and so cannot accommodate the pragma.
4104 if Ekind (Current_Scope) = E_Return_Statement then
4105 Error_Msg_N
4106 ("invalid context for deferred constant declaration (RM 7.4)",
4108 Error_Msg_N
4109 ("\declaration requires an initialization expression",
4111 Set_Constant_Present (N, False);
4113 -- In Ada 83, deferred constant must be of private type
4115 elsif not Is_Private_Type (T) then
4116 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4117 Error_Msg_N
4118 ("(Ada 83) deferred constant must be private type", N);
4119 end if;
4120 end if;
4122 -- If not a deferred constant, then the object declaration freezes
4123 -- its type, unless the object is of an anonymous type and has delayed
4124 -- aspects. In that case the type is frozen when the object itself is.
4126 else
4127 Check_Fully_Declared (T, N);
4129 if Has_Delayed_Aspects (Id)
4130 and then Is_Array_Type (T)
4131 and then Is_Itype (T)
4132 then
4133 Set_Has_Delayed_Freeze (T);
4134 else
4135 Freeze_Before (N, T);
4136 end if;
4137 end if;
4139 -- If the object was created by a constrained array definition, then
4140 -- set the link in both the anonymous base type and anonymous subtype
4141 -- that are built to represent the array type to point to the object.
4143 if Nkind (Object_Definition (Declaration_Node (Id))) =
4144 N_Constrained_Array_Definition
4145 then
4146 Set_Related_Array_Object (T, Id);
4147 Set_Related_Array_Object (Base_Type (T), Id);
4148 end if;
4150 -- Special checks for protected objects not at library level
4152 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
4153 Check_Restriction (No_Local_Protected_Objects, Id);
4155 -- Protected objects with interrupt handlers must be at library level
4157 -- Ada 2005: This test is not needed (and the corresponding clause
4158 -- in the RM is removed) because accessibility checks are sufficient
4159 -- to make handlers not at the library level illegal.
4161 -- AI05-0303: The AI is in fact a binding interpretation, and thus
4162 -- applies to the '95 version of the language as well.
4164 if Is_Protected_Type (T)
4165 and then Has_Interrupt_Handler (T)
4166 and then Ada_Version < Ada_95
4167 then
4168 Error_Msg_N
4169 ("interrupt object can only be declared at library level", Id);
4170 end if;
4171 end if;
4173 -- Check for violation of No_Local_Timing_Events
4175 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
4176 Check_Restriction (No_Local_Timing_Events, Id);
4177 end if;
4179 -- The actual subtype of the object is the nominal subtype, unless
4180 -- the nominal one is unconstrained and obtained from the expression.
4182 Act_T := T;
4184 -- These checks should be performed before the initialization expression
4185 -- is considered, so that the Object_Definition node is still the same
4186 -- as in source code.
4188 -- In SPARK, the nominal subtype is always given by a subtype mark
4189 -- and must not be unconstrained. (The only exception to this is the
4190 -- acceptance of declarations of constants of type String.)
4192 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
4193 then
4194 Check_SPARK_05_Restriction
4195 ("subtype mark required", Object_Definition (N));
4197 elsif Is_Array_Type (T)
4198 and then not Is_Constrained (T)
4199 and then T /= Standard_String
4200 then
4201 Check_SPARK_05_Restriction
4202 ("subtype mark of constrained type expected",
4203 Object_Definition (N));
4204 end if;
4206 if Is_Library_Level_Entity (Id) then
4207 Check_Dynamic_Object (T);
4208 end if;
4210 -- There are no aliased objects in SPARK
4212 if Aliased_Present (N) then
4213 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
4214 end if;
4216 -- Process initialization expression if present and not in error
4218 if Present (E) and then E /= Error then
4220 -- Generate an error in case of CPP class-wide object initialization.
4221 -- Required because otherwise the expansion of the class-wide
4222 -- assignment would try to use 'size to initialize the object
4223 -- (primitive that is not available in CPP tagged types).
4225 if Is_Class_Wide_Type (Act_T)
4226 and then
4227 (Is_CPP_Class (Root_Type (Etype (Act_T)))
4228 or else
4229 (Present (Full_View (Root_Type (Etype (Act_T))))
4230 and then
4231 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
4232 then
4233 Error_Msg_N
4234 ("predefined assignment not available for 'C'P'P tagged types",
4236 end if;
4238 Mark_Coextensions (N, E);
4239 Analyze (E);
4241 -- In case of errors detected in the analysis of the expression,
4242 -- decorate it with the expected type to avoid cascaded errors
4244 if No (Etype (E)) then
4245 Set_Etype (E, T);
4246 end if;
4248 -- If an initialization expression is present, then we set the
4249 -- Is_True_Constant flag. It will be reset if this is a variable
4250 -- and it is indeed modified.
4252 Set_Is_True_Constant (Id, True);
4254 -- If we are analyzing a constant declaration, set its completion
4255 -- flag after analyzing and resolving the expression.
4257 if Constant_Present (N) then
4258 Set_Has_Completion (Id);
4259 end if;
4261 -- Set type and resolve (type may be overridden later on). Note:
4262 -- Ekind (Id) must still be E_Void at this point so that incorrect
4263 -- early usage within E is properly diagnosed.
4265 Set_Etype (Id, T);
4267 -- If the expression is an aggregate we must look ahead to detect
4268 -- the possible presence of an address clause, and defer resolution
4269 -- and expansion of the aggregate to the freeze point of the entity.
4271 -- This is not always legal because the aggregate may contain other
4272 -- references that need freezing, e.g. references to other entities
4273 -- with address clauses. In any case, when compiling with -gnatI the
4274 -- presence of the address clause must be ignored.
4276 if Comes_From_Source (N)
4277 and then Expander_Active
4278 and then Nkind (E) = N_Aggregate
4279 and then
4280 ((Present (Following_Address_Clause (N))
4281 and then not Ignore_Rep_Clauses)
4282 or else Delayed_Aspect_Present)
4283 then
4284 Set_Etype (E, T);
4286 else
4288 -- If the expression is a formal that is a "subprogram pointer"
4289 -- this is illegal in accessibility terms (see RM 3.10.2 (13.1/2)
4290 -- and AARM 3.10.2 (13.b/2)). Add an explicit conversion to force
4291 -- the corresponding check, as is done for assignments.
4293 if Is_Entity_Name (E)
4294 and then Present (Entity (E))
4295 and then Is_Formal (Entity (E))
4296 and then
4297 Ekind (Etype (Entity (E))) = E_Anonymous_Access_Subprogram_Type
4298 and then Ekind (T) /= E_Anonymous_Access_Subprogram_Type
4299 then
4300 Rewrite (E, Convert_To (T, Relocate_Node (E)));
4301 end if;
4303 Resolve (E, T);
4304 end if;
4306 -- No further action needed if E is a call to an inlined function
4307 -- which returns an unconstrained type and it has been expanded into
4308 -- a procedure call. In that case N has been replaced by an object
4309 -- declaration without initializing expression and it has been
4310 -- analyzed (see Expand_Inlined_Call).
4312 if Back_End_Inlining
4313 and then Expander_Active
4314 and then Nkind (E) = N_Function_Call
4315 and then Nkind (Name (E)) in N_Has_Entity
4316 and then Is_Inlined (Entity (Name (E)))
4317 and then not Is_Constrained (Etype (E))
4318 and then Analyzed (N)
4319 and then No (Expression (N))
4320 then
4321 goto Leave;
4322 end if;
4324 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4325 -- node (which was marked already-analyzed), we need to set the type
4326 -- to something other than Any_Access in order to keep gigi happy.
4328 if Etype (E) = Any_Access then
4329 Set_Etype (E, T);
4330 end if;
4332 -- If the object is an access to variable, the initialization
4333 -- expression cannot be an access to constant.
4335 if Is_Access_Type (T)
4336 and then not Is_Access_Constant (T)
4337 and then Is_Access_Type (Etype (E))
4338 and then Is_Access_Constant (Etype (E))
4339 then
4340 Error_Msg_N
4341 ("access to variable cannot be initialized with an "
4342 & "access-to-constant expression", E);
4343 end if;
4345 if not Assignment_OK (N) then
4346 Check_Initialization (T, E);
4347 end if;
4349 Check_Unset_Reference (E);
4351 -- If this is a variable, then set current value. If this is a
4352 -- declared constant of a scalar type with a static expression,
4353 -- indicate that it is always valid.
4355 if not Constant_Present (N) then
4356 if Compile_Time_Known_Value (E) then
4357 Set_Current_Value (Id, E);
4358 end if;
4360 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
4361 Set_Is_Known_Valid (Id);
4362 end if;
4364 -- Deal with setting of null flags
4366 if Is_Access_Type (T) then
4367 if Known_Non_Null (E) then
4368 Set_Is_Known_Non_Null (Id, True);
4369 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
4370 Set_Is_Known_Null (Id, True);
4371 end if;
4372 end if;
4374 -- Check incorrect use of dynamically tagged expressions
4376 if Is_Tagged_Type (T) then
4377 Check_Dynamically_Tagged_Expression
4378 (Expr => E,
4379 Typ => T,
4380 Related_Nod => N);
4381 end if;
4383 Apply_Scalar_Range_Check (E, T);
4384 Apply_Static_Length_Check (E, T);
4386 if Nkind (Original_Node (N)) = N_Object_Declaration
4387 and then Comes_From_Source (Original_Node (N))
4389 -- Only call test if needed
4391 and then Restriction_Check_Required (SPARK_05)
4392 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
4393 then
4394 Check_SPARK_05_Restriction
4395 ("initialization expression is not appropriate", E);
4396 end if;
4398 -- A formal parameter of a specific tagged type whose related
4399 -- subprogram is subject to pragma Extensions_Visible with value
4400 -- "False" cannot be implicitly converted to a class-wide type by
4401 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4402 -- not consider internally generated expressions.
4404 if Is_Class_Wide_Type (T)
4405 and then Comes_From_Source (E)
4406 and then Is_EVF_Expression (E)
4407 then
4408 Error_Msg_N
4409 ("formal parameter cannot be implicitly converted to "
4410 & "class-wide type when Extensions_Visible is False", E);
4411 end if;
4412 end if;
4414 -- If the No_Streams restriction is set, check that the type of the
4415 -- object is not, and does not contain, any subtype derived from
4416 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4417 -- Has_Stream just for efficiency reasons. There is no point in
4418 -- spending time on a Has_Stream check if the restriction is not set.
4420 if Restriction_Check_Required (No_Streams) then
4421 if Has_Stream (T) then
4422 Check_Restriction (No_Streams, N);
4423 end if;
4424 end if;
4426 -- Deal with predicate check before we start to do major rewriting. It
4427 -- is OK to initialize and then check the initialized value, since the
4428 -- object goes out of scope if we get a predicate failure. Note that we
4429 -- do this in the analyzer and not the expander because the analyzer
4430 -- does some substantial rewriting in some cases.
4432 -- We need a predicate check if the type has predicates that are not
4433 -- ignored, and if either there is an initializing expression, or for
4434 -- default initialization when we have at least one case of an explicit
4435 -- default initial value and then this is not an internal declaration
4436 -- whose initialization comes later (as for an aggregate expansion).
4438 if not Suppress_Assignment_Checks (N)
4439 and then Present (Predicate_Function (T))
4440 and then not Predicates_Ignored (T)
4441 and then not No_Initialization (N)
4442 and then
4443 (Present (E)
4444 or else
4445 Is_Partially_Initialized_Type (T, Include_Implicit => False))
4446 then
4447 -- If the type has a static predicate and the expression is known at
4448 -- compile time, see if the expression satisfies the predicate.
4450 if Present (E) then
4451 Check_Expression_Against_Static_Predicate (E, T);
4452 end if;
4454 -- If the type is a null record and there is no explicit initial
4455 -- expression, no predicate check applies.
4457 if No (E) and then Is_Null_Record_Type (T) then
4458 null;
4460 -- Do not generate a predicate check if the initialization expression
4461 -- is a type conversion because the conversion has been subjected to
4462 -- the same check. This is a small optimization which avoid redundant
4463 -- checks.
4465 elsif Present (E) and then Nkind (E) = N_Type_Conversion then
4466 null;
4468 else
4469 Insert_After (N,
4470 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
4471 end if;
4472 end if;
4474 -- Case of unconstrained type
4476 if not Is_Definite_Subtype (T) then
4478 -- In SPARK, a declaration of unconstrained type is allowed
4479 -- only for constants of type string.
4481 if Is_String_Type (T) and then not Constant_Present (N) then
4482 Check_SPARK_05_Restriction
4483 ("declaration of object of unconstrained type not allowed", N);
4484 end if;
4486 -- Nothing to do in deferred constant case
4488 if Constant_Present (N) and then No (E) then
4489 null;
4491 -- Case of no initialization present
4493 elsif No (E) then
4494 if No_Initialization (N) then
4495 null;
4497 elsif Is_Class_Wide_Type (T) then
4498 Error_Msg_N
4499 ("initialization required in class-wide declaration ", N);
4501 else
4502 Error_Msg_N
4503 ("unconstrained subtype not allowed (need initialization)",
4504 Object_Definition (N));
4506 if Is_Record_Type (T) and then Has_Discriminants (T) then
4507 Error_Msg_N
4508 ("\provide initial value or explicit discriminant values",
4509 Object_Definition (N));
4511 Error_Msg_NE
4512 ("\or give default discriminant values for type&",
4513 Object_Definition (N), T);
4515 elsif Is_Array_Type (T) then
4516 Error_Msg_N
4517 ("\provide initial value or explicit array bounds",
4518 Object_Definition (N));
4519 end if;
4520 end if;
4522 -- Case of initialization present but in error. Set initial
4523 -- expression as absent (but do not make above complaints)
4525 elsif E = Error then
4526 Set_Expression (N, Empty);
4527 E := Empty;
4529 -- Case of initialization present
4531 else
4532 -- Check restrictions in Ada 83
4534 if not Constant_Present (N) then
4536 -- Unconstrained variables not allowed in Ada 83 mode
4538 if Ada_Version = Ada_83
4539 and then Comes_From_Source (Object_Definition (N))
4540 then
4541 Error_Msg_N
4542 ("(Ada 83) unconstrained variable not allowed",
4543 Object_Definition (N));
4544 end if;
4545 end if;
4547 -- Now we constrain the variable from the initializing expression
4549 -- If the expression is an aggregate, it has been expanded into
4550 -- individual assignments. Retrieve the actual type from the
4551 -- expanded construct.
4553 if Is_Array_Type (T)
4554 and then No_Initialization (N)
4555 and then Nkind (Original_Node (E)) = N_Aggregate
4556 then
4557 Act_T := Etype (E);
4559 -- In case of class-wide interface object declarations we delay
4560 -- the generation of the equivalent record type declarations until
4561 -- its expansion because there are cases in they are not required.
4563 elsif Is_Interface (T) then
4564 null;
4566 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4567 -- we should prevent the generation of another Itype with the
4568 -- same name as the one already generated, or we end up with
4569 -- two identical types in GNATprove.
4571 elsif GNATprove_Mode then
4572 null;
4574 -- If the type is an unchecked union, no subtype can be built from
4575 -- the expression. Rewrite declaration as a renaming, which the
4576 -- back-end can handle properly. This is a rather unusual case,
4577 -- because most unchecked_union declarations have default values
4578 -- for discriminants and are thus not indefinite.
4580 elsif Is_Unchecked_Union (T) then
4581 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4582 Set_Ekind (Id, E_Constant);
4583 else
4584 Set_Ekind (Id, E_Variable);
4585 end if;
4587 Rewrite (N,
4588 Make_Object_Renaming_Declaration (Loc,
4589 Defining_Identifier => Id,
4590 Subtype_Mark => New_Occurrence_Of (T, Loc),
4591 Name => E));
4593 Set_Renamed_Object (Id, E);
4594 Freeze_Before (N, T);
4595 Set_Is_Frozen (Id);
4596 goto Leave;
4598 else
4599 -- Ensure that the generated subtype has a unique external name
4600 -- when the related object is public. This guarantees that the
4601 -- subtype and its bounds will not be affected by switches or
4602 -- pragmas that may offset the internal counter due to extra
4603 -- generated code.
4605 if Is_Public (Id) then
4606 Related_Id := Id;
4607 else
4608 Related_Id := Empty;
4609 end if;
4611 Expand_Subtype_From_Expr
4612 (N => N,
4613 Unc_Type => T,
4614 Subtype_Indic => Object_Definition (N),
4615 Exp => E,
4616 Related_Id => Related_Id);
4618 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4619 end if;
4621 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4623 if Aliased_Present (N) then
4624 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4625 end if;
4627 Freeze_Before (N, Act_T);
4628 Freeze_Before (N, T);
4629 end if;
4631 elsif Is_Array_Type (T)
4632 and then No_Initialization (N)
4633 and then (Nkind (Original_Node (E)) = N_Aggregate
4634 or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4635 and then Nkind (Original_Node (Expression
4636 (Original_Node (E)))) = N_Aggregate))
4637 then
4638 if not Is_Entity_Name (Object_Definition (N)) then
4639 Act_T := Etype (E);
4640 Check_Compile_Time_Size (Act_T);
4642 if Aliased_Present (N) then
4643 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4644 end if;
4645 end if;
4647 -- When the given object definition and the aggregate are specified
4648 -- independently, and their lengths might differ do a length check.
4649 -- This cannot happen if the aggregate is of the form (others =>...)
4651 if not Is_Constrained (T) then
4652 null;
4654 elsif Nkind (E) = N_Raise_Constraint_Error then
4656 -- Aggregate is statically illegal. Place back in declaration
4658 Set_Expression (N, E);
4659 Set_No_Initialization (N, False);
4661 elsif T = Etype (E) then
4662 null;
4664 elsif Nkind (E) = N_Aggregate
4665 and then Present (Component_Associations (E))
4666 and then Present (Choice_List (First (Component_Associations (E))))
4667 and then
4668 Nkind (First (Choice_List (First (Component_Associations (E))))) =
4669 N_Others_Choice
4670 then
4671 null;
4673 else
4674 Apply_Length_Check (E, T);
4675 end if;
4677 -- If the type is limited unconstrained with defaulted discriminants and
4678 -- there is no expression, then the object is constrained by the
4679 -- defaults, so it is worthwhile building the corresponding subtype.
4681 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4682 and then not Is_Constrained (T)
4683 and then Has_Discriminants (T)
4684 then
4685 if No (E) then
4686 Act_T := Build_Default_Subtype (T, N);
4687 else
4688 -- Ada 2005: A limited object may be initialized by means of an
4689 -- aggregate. If the type has default discriminants it has an
4690 -- unconstrained nominal type, Its actual subtype will be obtained
4691 -- from the aggregate, and not from the default discriminants.
4693 Act_T := Etype (E);
4694 end if;
4696 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4698 elsif Nkind (E) = N_Function_Call
4699 and then Constant_Present (N)
4700 and then Has_Unconstrained_Elements (Etype (E))
4701 then
4702 -- The back-end has problems with constants of a discriminated type
4703 -- with defaults, if the initial value is a function call. We
4704 -- generate an intermediate temporary that will receive a reference
4705 -- to the result of the call. The initialization expression then
4706 -- becomes a dereference of that temporary.
4708 Remove_Side_Effects (E);
4710 -- If this is a constant declaration of an unconstrained type and
4711 -- the initialization is an aggregate, we can use the subtype of the
4712 -- aggregate for the declared entity because it is immutable.
4714 elsif not Is_Constrained (T)
4715 and then Has_Discriminants (T)
4716 and then Constant_Present (N)
4717 and then not Has_Unchecked_Union (T)
4718 and then Nkind (E) = N_Aggregate
4719 then
4720 Act_T := Etype (E);
4721 end if;
4723 -- Check No_Wide_Characters restriction
4725 Check_Wide_Character_Restriction (T, Object_Definition (N));
4727 -- Indicate this is not set in source. Certainly true for constants, and
4728 -- true for variables so far (will be reset for a variable if and when
4729 -- we encounter a modification in the source).
4731 Set_Never_Set_In_Source (Id);
4733 -- Now establish the proper kind and type of the object
4735 if Constant_Present (N) then
4736 Set_Ekind (Id, E_Constant);
4737 Set_Is_True_Constant (Id);
4739 else
4740 Set_Ekind (Id, E_Variable);
4742 -- A variable is set as shared passive if it appears in a shared
4743 -- passive package, and is at the outer level. This is not done for
4744 -- entities generated during expansion, because those are always
4745 -- manipulated locally.
4747 if Is_Shared_Passive (Current_Scope)
4748 and then Is_Library_Level_Entity (Id)
4749 and then Comes_From_Source (Id)
4750 then
4751 Set_Is_Shared_Passive (Id);
4752 Check_Shared_Var (Id, T, N);
4753 end if;
4755 -- Set Has_Initial_Value if initializing expression present. Note
4756 -- that if there is no initializing expression, we leave the state
4757 -- of this flag unchanged (usually it will be False, but notably in
4758 -- the case of exception choice variables, it will already be true).
4760 if Present (E) then
4761 Set_Has_Initial_Value (Id);
4762 end if;
4763 end if;
4765 -- Set the SPARK mode from the current context (may be overwritten later
4766 -- with explicit pragma).
4768 Set_SPARK_Pragma (Id, SPARK_Mode_Pragma);
4769 Set_SPARK_Pragma_Inherited (Id);
4771 -- Preserve relevant elaboration-related attributes of the context which
4772 -- are no longer available or very expensive to recompute once analysis,
4773 -- resolution, and expansion are over.
4775 Mark_Elaboration_Attributes
4776 (N_Id => Id,
4777 Checks => True,
4778 Warnings => True);
4780 -- Initialize alignment and size and capture alignment setting
4782 Init_Alignment (Id);
4783 Init_Esize (Id);
4784 Set_Optimize_Alignment_Flags (Id);
4786 -- Deal with aliased case
4788 if Aliased_Present (N) then
4789 Set_Is_Aliased (Id);
4791 -- If the object is aliased and the type is unconstrained with
4792 -- defaulted discriminants and there is no expression, then the
4793 -- object is constrained by the defaults, so it is worthwhile
4794 -- building the corresponding subtype.
4796 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4797 -- unconstrained, then only establish an actual subtype if the
4798 -- nominal subtype is indefinite. In definite cases the object is
4799 -- unconstrained in Ada 2005.
4801 if No (E)
4802 and then Is_Record_Type (T)
4803 and then not Is_Constrained (T)
4804 and then Has_Discriminants (T)
4805 and then (Ada_Version < Ada_2005
4806 or else not Is_Definite_Subtype (T))
4807 then
4808 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4809 end if;
4810 end if;
4812 -- Now we can set the type of the object
4814 Set_Etype (Id, Act_T);
4816 -- Non-constant object is marked to be treated as volatile if type is
4817 -- volatile and we clear the Current_Value setting that may have been
4818 -- set above. Doing so for constants isn't required and might interfere
4819 -- with possible uses of the object as a static expression in contexts
4820 -- incompatible with volatility (e.g. as a case-statement alternative).
4822 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4823 Set_Treat_As_Volatile (Id);
4824 Set_Current_Value (Id, Empty);
4825 end if;
4827 -- Deal with controlled types
4829 if Has_Controlled_Component (Etype (Id))
4830 or else Is_Controlled (Etype (Id))
4831 then
4832 if not Is_Library_Level_Entity (Id) then
4833 Check_Restriction (No_Nested_Finalization, N);
4834 else
4835 Validate_Controlled_Object (Id);
4836 end if;
4837 end if;
4839 if Has_Task (Etype (Id)) then
4840 Check_Restriction (No_Tasking, N);
4842 -- Deal with counting max tasks
4844 -- Nothing to do if inside a generic
4846 if Inside_A_Generic then
4847 null;
4849 -- If library level entity, then count tasks
4851 elsif Is_Library_Level_Entity (Id) then
4852 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4854 -- If not library level entity, then indicate we don't know max
4855 -- tasks and also check task hierarchy restriction and blocking
4856 -- operation (since starting a task is definitely blocking).
4858 else
4859 Check_Restriction (Max_Tasks, N);
4860 Check_Restriction (No_Task_Hierarchy, N);
4861 Check_Potentially_Blocking_Operation (N);
4862 end if;
4864 -- A rather specialized test. If we see two tasks being declared
4865 -- of the same type in the same object declaration, and the task
4866 -- has an entry with an address clause, we know that program error
4867 -- will be raised at run time since we can't have two tasks with
4868 -- entries at the same address.
4870 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4871 declare
4872 E : Entity_Id;
4874 begin
4875 E := First_Entity (Etype (Id));
4876 while Present (E) loop
4877 if Ekind (E) = E_Entry
4878 and then Present (Get_Attribute_Definition_Clause
4879 (E, Attribute_Address))
4880 then
4881 Error_Msg_Warn := SPARK_Mode /= On;
4882 Error_Msg_N
4883 ("more than one task with same entry address<<", N);
4884 Error_Msg_N ("\Program_Error [<<", N);
4885 Insert_Action (N,
4886 Make_Raise_Program_Error (Loc,
4887 Reason => PE_Duplicated_Entry_Address));
4888 exit;
4889 end if;
4891 Next_Entity (E);
4892 end loop;
4893 end;
4894 end if;
4895 end if;
4897 -- Some simple constant-propagation: if the expression is a constant
4898 -- string initialized with a literal, share the literal. This avoids
4899 -- a run-time copy.
4901 if Present (E)
4902 and then Is_Entity_Name (E)
4903 and then Ekind (Entity (E)) = E_Constant
4904 and then Base_Type (Etype (E)) = Standard_String
4905 then
4906 declare
4907 Val : constant Node_Id := Constant_Value (Entity (E));
4908 begin
4909 if Present (Val) and then Nkind (Val) = N_String_Literal then
4910 Rewrite (E, New_Copy (Val));
4911 end if;
4912 end;
4913 end if;
4915 -- Another optimization: if the nominal subtype is unconstrained and
4916 -- the expression is a function call that returns an unconstrained
4917 -- type, rewrite the declaration as a renaming of the result of the
4918 -- call. The exceptions below are cases where the copy is expected,
4919 -- either by the back end (Aliased case) or by the semantics, as for
4920 -- initializing controlled types or copying tags for class-wide types.
4922 if Present (E)
4923 and then Nkind (E) = N_Explicit_Dereference
4924 and then Nkind (Original_Node (E)) = N_Function_Call
4925 and then not Is_Library_Level_Entity (Id)
4926 and then not Is_Constrained (Underlying_Type (T))
4927 and then not Is_Aliased (Id)
4928 and then not Is_Class_Wide_Type (T)
4929 and then not Is_Controlled (T)
4930 and then not Has_Controlled_Component (Base_Type (T))
4931 and then Expander_Active
4932 then
4933 Rewrite (N,
4934 Make_Object_Renaming_Declaration (Loc,
4935 Defining_Identifier => Id,
4936 Access_Definition => Empty,
4937 Subtype_Mark => New_Occurrence_Of
4938 (Base_Type (Etype (Id)), Loc),
4939 Name => E));
4941 Set_Renamed_Object (Id, E);
4943 -- Force generation of debugging information for the constant and for
4944 -- the renamed function call.
4946 Set_Debug_Info_Needed (Id);
4947 Set_Debug_Info_Needed (Entity (Prefix (E)));
4948 end if;
4950 if Present (Prev_Entity)
4951 and then Is_Frozen (Prev_Entity)
4952 and then not Error_Posted (Id)
4953 then
4954 Error_Msg_N ("full constant declaration appears too late", N);
4955 end if;
4957 Check_Eliminated (Id);
4959 -- Deal with setting In_Private_Part flag if in private part
4961 if Ekind (Scope (Id)) = E_Package
4962 and then In_Private_Part (Scope (Id))
4963 then
4964 Set_In_Private_Part (Id);
4965 end if;
4967 <<Leave>>
4968 -- Initialize the refined state of a variable here because this is a
4969 -- common destination for legal and illegal object declarations.
4971 if Ekind (Id) = E_Variable then
4972 Set_Encapsulating_State (Id, Empty);
4973 end if;
4975 if Has_Aspects (N) then
4976 Analyze_Aspect_Specifications (N, Id);
4977 end if;
4979 Analyze_Dimension (N);
4981 -- Verify whether the object declaration introduces an illegal hidden
4982 -- state within a package subject to a null abstract state.
4984 if Ekind (Id) = E_Variable then
4985 Check_No_Hidden_State (Id);
4986 end if;
4988 Restore_Ghost_Region (Saved_GM, Saved_IGR);
4989 end Analyze_Object_Declaration;
4991 ---------------------------
4992 -- Analyze_Others_Choice --
4993 ---------------------------
4995 -- Nothing to do for the others choice node itself, the semantic analysis
4996 -- of the others choice will occur as part of the processing of the parent
4998 procedure Analyze_Others_Choice (N : Node_Id) is
4999 pragma Warnings (Off, N);
5000 begin
5001 null;
5002 end Analyze_Others_Choice;
5004 -------------------------------------------
5005 -- Analyze_Private_Extension_Declaration --
5006 -------------------------------------------
5008 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
5009 Indic : constant Node_Id := Subtype_Indication (N);
5010 T : constant Entity_Id := Defining_Identifier (N);
5011 Iface : Entity_Id;
5012 Iface_Elmt : Elmt_Id;
5013 Parent_Base : Entity_Id;
5014 Parent_Type : Entity_Id;
5016 begin
5017 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
5019 if Is_Non_Empty_List (Interface_List (N)) then
5020 declare
5021 Intf : Node_Id;
5022 T : Entity_Id;
5024 begin
5025 Intf := First (Interface_List (N));
5026 while Present (Intf) loop
5027 T := Find_Type_Of_Subtype_Indic (Intf);
5029 Diagnose_Interface (Intf, T);
5030 Next (Intf);
5031 end loop;
5032 end;
5033 end if;
5035 Generate_Definition (T);
5037 -- For other than Ada 2012, just enter the name in the current scope
5039 if Ada_Version < Ada_2012 then
5040 Enter_Name (T);
5042 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
5043 -- case of private type that completes an incomplete type.
5045 else
5046 declare
5047 Prev : Entity_Id;
5049 begin
5050 Prev := Find_Type_Name (N);
5052 pragma Assert (Prev = T
5053 or else (Ekind (Prev) = E_Incomplete_Type
5054 and then Present (Full_View (Prev))
5055 and then Full_View (Prev) = T));
5056 end;
5057 end if;
5059 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
5060 Parent_Base := Base_Type (Parent_Type);
5062 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
5063 Set_Ekind (T, Ekind (Parent_Type));
5064 Set_Etype (T, Any_Type);
5065 goto Leave;
5067 elsif not Is_Tagged_Type (Parent_Type) then
5068 Error_Msg_N
5069 ("parent of type extension must be a tagged type ", Indic);
5070 goto Leave;
5072 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
5073 Error_Msg_N ("premature derivation of incomplete type", Indic);
5074 goto Leave;
5076 elsif Is_Concurrent_Type (Parent_Type) then
5077 Error_Msg_N
5078 ("parent type of a private extension cannot be a synchronized "
5079 & "tagged type (RM 3.9.1 (3/1))", N);
5081 Set_Etype (T, Any_Type);
5082 Set_Ekind (T, E_Limited_Private_Type);
5083 Set_Private_Dependents (T, New_Elmt_List);
5084 Set_Error_Posted (T);
5085 goto Leave;
5086 end if;
5088 -- Perhaps the parent type should be changed to the class-wide type's
5089 -- specific type in this case to prevent cascading errors ???
5091 if Is_Class_Wide_Type (Parent_Type) then
5092 Error_Msg_N
5093 ("parent of type extension must not be a class-wide type", Indic);
5094 goto Leave;
5095 end if;
5097 if (not Is_Package_Or_Generic_Package (Current_Scope)
5098 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
5099 or else In_Private_Part (Current_Scope)
5100 then
5101 Error_Msg_N ("invalid context for private extension", N);
5102 end if;
5104 -- Set common attributes
5106 Set_Is_Pure (T, Is_Pure (Current_Scope));
5107 Set_Scope (T, Current_Scope);
5108 Set_Ekind (T, E_Record_Type_With_Private);
5109 Init_Size_Align (T);
5110 Set_Default_SSO (T);
5111 Set_No_Reordering (T, No_Component_Reordering);
5113 Set_Etype (T, Parent_Base);
5114 Propagate_Concurrent_Flags (T, Parent_Base);
5116 Set_Convention (T, Convention (Parent_Type));
5117 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
5118 Set_Is_First_Subtype (T);
5119 Make_Class_Wide_Type (T);
5121 -- Set the SPARK mode from the current context
5123 Set_SPARK_Pragma (T, SPARK_Mode_Pragma);
5124 Set_SPARK_Pragma_Inherited (T);
5126 if Unknown_Discriminants_Present (N) then
5127 Set_Discriminant_Constraint (T, No_Elist);
5128 end if;
5130 Build_Derived_Record_Type (N, Parent_Type, T);
5132 -- A private extension inherits the Default_Initial_Condition pragma
5133 -- coming from any parent type within the derivation chain.
5135 if Has_DIC (Parent_Type) then
5136 Set_Has_Inherited_DIC (T);
5137 end if;
5139 -- A private extension inherits any class-wide invariants coming from a
5140 -- parent type or an interface. Note that the invariant procedure of the
5141 -- parent type should not be inherited because the private extension may
5142 -- define invariants of its own.
5144 if Has_Inherited_Invariants (Parent_Type)
5145 or else Has_Inheritable_Invariants (Parent_Type)
5146 then
5147 Set_Has_Inherited_Invariants (T);
5149 elsif Present (Interfaces (T)) then
5150 Iface_Elmt := First_Elmt (Interfaces (T));
5151 while Present (Iface_Elmt) loop
5152 Iface := Node (Iface_Elmt);
5154 if Has_Inheritable_Invariants (Iface) then
5155 Set_Has_Inherited_Invariants (T);
5156 exit;
5157 end if;
5159 Next_Elmt (Iface_Elmt);
5160 end loop;
5161 end if;
5163 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5164 -- synchronized formal derived type.
5166 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
5167 Set_Is_Limited_Record (T);
5169 -- Formal derived type case
5171 if Is_Generic_Type (T) then
5173 -- The parent must be a tagged limited type or a synchronized
5174 -- interface.
5176 if (not Is_Tagged_Type (Parent_Type)
5177 or else not Is_Limited_Type (Parent_Type))
5178 and then
5179 (not Is_Interface (Parent_Type)
5180 or else not Is_Synchronized_Interface (Parent_Type))
5181 then
5182 Error_Msg_NE
5183 ("parent type of & must be tagged limited or synchronized",
5184 N, T);
5185 end if;
5187 -- The progenitors (if any) must be limited or synchronized
5188 -- interfaces.
5190 if Present (Interfaces (T)) then
5191 Iface_Elmt := First_Elmt (Interfaces (T));
5192 while Present (Iface_Elmt) loop
5193 Iface := Node (Iface_Elmt);
5195 if not Is_Limited_Interface (Iface)
5196 and then not Is_Synchronized_Interface (Iface)
5197 then
5198 Error_Msg_NE
5199 ("progenitor & must be limited or synchronized",
5200 N, Iface);
5201 end if;
5203 Next_Elmt (Iface_Elmt);
5204 end loop;
5205 end if;
5207 -- Regular derived extension, the parent must be a limited or
5208 -- synchronized interface.
5210 else
5211 if not Is_Interface (Parent_Type)
5212 or else (not Is_Limited_Interface (Parent_Type)
5213 and then not Is_Synchronized_Interface (Parent_Type))
5214 then
5215 Error_Msg_NE
5216 ("parent type of & must be limited interface", N, T);
5217 end if;
5218 end if;
5220 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5221 -- extension with a synchronized parent must be explicitly declared
5222 -- synchronized, because the full view will be a synchronized type.
5223 -- This must be checked before the check for limited types below,
5224 -- to ensure that types declared limited are not allowed to extend
5225 -- synchronized interfaces.
5227 elsif Is_Interface (Parent_Type)
5228 and then Is_Synchronized_Interface (Parent_Type)
5229 and then not Synchronized_Present (N)
5230 then
5231 Error_Msg_NE
5232 ("private extension of& must be explicitly synchronized",
5233 N, Parent_Type);
5235 elsif Limited_Present (N) then
5236 Set_Is_Limited_Record (T);
5238 if not Is_Limited_Type (Parent_Type)
5239 and then
5240 (not Is_Interface (Parent_Type)
5241 or else not Is_Limited_Interface (Parent_Type))
5242 then
5243 Error_Msg_NE ("parent type& of limited extension must be limited",
5244 N, Parent_Type);
5245 end if;
5246 end if;
5248 -- Remember that its parent type has a private extension. Used to warn
5249 -- on public primitives of the parent type defined after its private
5250 -- extensions (see Check_Dispatching_Operation).
5252 Set_Has_Private_Extension (Parent_Type);
5254 <<Leave>>
5255 if Has_Aspects (N) then
5256 Analyze_Aspect_Specifications (N, T);
5257 end if;
5258 end Analyze_Private_Extension_Declaration;
5260 ---------------------------------
5261 -- Analyze_Subtype_Declaration --
5262 ---------------------------------
5264 procedure Analyze_Subtype_Declaration
5265 (N : Node_Id;
5266 Skip : Boolean := False)
5268 Id : constant Entity_Id := Defining_Identifier (N);
5269 R_Checks : Check_Result;
5270 T : Entity_Id;
5272 begin
5273 Generate_Definition (Id);
5274 Set_Is_Pure (Id, Is_Pure (Current_Scope));
5275 Init_Size_Align (Id);
5277 -- The following guard condition on Enter_Name is to handle cases where
5278 -- the defining identifier has already been entered into the scope but
5279 -- the declaration as a whole needs to be analyzed.
5281 -- This case in particular happens for derived enumeration types. The
5282 -- derived enumeration type is processed as an inserted enumeration type
5283 -- declaration followed by a rewritten subtype declaration. The defining
5284 -- identifier, however, is entered into the name scope very early in the
5285 -- processing of the original type declaration and therefore needs to be
5286 -- avoided here, when the created subtype declaration is analyzed. (See
5287 -- Build_Derived_Types)
5289 -- This also happens when the full view of a private type is derived
5290 -- type with constraints. In this case the entity has been introduced
5291 -- in the private declaration.
5293 -- Finally this happens in some complex cases when validity checks are
5294 -- enabled, where the same subtype declaration may be analyzed twice.
5295 -- This can happen if the subtype is created by the preanalysis of
5296 -- an attribute tht gives the range of a loop statement, and the loop
5297 -- itself appears within an if_statement that will be rewritten during
5298 -- expansion.
5300 if Skip
5301 or else (Present (Etype (Id))
5302 and then (Is_Private_Type (Etype (Id))
5303 or else Is_Task_Type (Etype (Id))
5304 or else Is_Rewrite_Substitution (N)))
5305 then
5306 null;
5308 elsif Current_Entity (Id) = Id then
5309 null;
5311 else
5312 Enter_Name (Id);
5313 end if;
5315 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
5317 -- Class-wide equivalent types of records with unknown discriminants
5318 -- involve the generation of an itype which serves as the private view
5319 -- of a constrained record subtype. In such cases the base type of the
5320 -- current subtype we are processing is the private itype. Use the full
5321 -- of the private itype when decorating various attributes.
5323 if Is_Itype (T)
5324 and then Is_Private_Type (T)
5325 and then Present (Full_View (T))
5326 then
5327 T := Full_View (T);
5328 end if;
5330 -- Inherit common attributes
5332 Set_Is_Volatile (Id, Is_Volatile (T));
5333 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
5334 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
5335 Set_Convention (Id, Convention (T));
5337 -- If ancestor has predicates then so does the subtype, and in addition
5338 -- we must delay the freeze to properly arrange predicate inheritance.
5340 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5341 -- in which T = ID, so the above tests and assignments do nothing???
5343 if Has_Predicates (T)
5344 or else (Present (Ancestor_Subtype (T))
5345 and then Has_Predicates (Ancestor_Subtype (T)))
5346 then
5347 Set_Has_Predicates (Id);
5348 Set_Has_Delayed_Freeze (Id);
5350 -- Generated subtypes inherit the predicate function from the parent
5351 -- (no aspects to examine on the generated declaration).
5353 if not Comes_From_Source (N) then
5354 Set_Ekind (Id, Ekind (T));
5356 if Present (Predicate_Function (Id)) then
5357 null;
5359 elsif Present (Predicate_Function (T)) then
5360 Set_Predicate_Function (Id, Predicate_Function (T));
5362 elsif Present (Ancestor_Subtype (T))
5363 and then Present (Predicate_Function (Ancestor_Subtype (T)))
5364 then
5365 Set_Predicate_Function (Id,
5366 Predicate_Function (Ancestor_Subtype (T)));
5367 end if;
5368 end if;
5369 end if;
5371 -- Subtype of Boolean cannot have a constraint in SPARK
5373 if Is_Boolean_Type (T)
5374 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
5375 then
5376 Check_SPARK_05_Restriction
5377 ("subtype of Boolean cannot have constraint", N);
5378 end if;
5380 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5381 declare
5382 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5383 One_Cstr : Node_Id;
5384 Low : Node_Id;
5385 High : Node_Id;
5387 begin
5388 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
5389 One_Cstr := First (Constraints (Cstr));
5390 while Present (One_Cstr) loop
5392 -- Index or discriminant constraint in SPARK must be a
5393 -- subtype mark.
5395 if not
5396 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
5397 then
5398 Check_SPARK_05_Restriction
5399 ("subtype mark required", One_Cstr);
5401 -- String subtype must have a lower bound of 1 in SPARK.
5402 -- Note that we do not need to test for the non-static case
5403 -- here, since that was already taken care of in
5404 -- Process_Range_Expr_In_Decl.
5406 elsif Base_Type (T) = Standard_String then
5407 Get_Index_Bounds (One_Cstr, Low, High);
5409 if Is_OK_Static_Expression (Low)
5410 and then Expr_Value (Low) /= 1
5411 then
5412 Check_SPARK_05_Restriction
5413 ("String subtype must have lower bound of 1", N);
5414 end if;
5415 end if;
5417 Next (One_Cstr);
5418 end loop;
5419 end if;
5420 end;
5421 end if;
5423 -- In the case where there is no constraint given in the subtype
5424 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5425 -- semantic attributes must be established here.
5427 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
5428 Set_Etype (Id, Base_Type (T));
5430 -- Subtype of unconstrained array without constraint is not allowed
5431 -- in SPARK.
5433 if Is_Array_Type (T) and then not Is_Constrained (T) then
5434 Check_SPARK_05_Restriction
5435 ("subtype of unconstrained array must have constraint", N);
5436 end if;
5438 case Ekind (T) is
5439 when Array_Kind =>
5440 Set_Ekind (Id, E_Array_Subtype);
5441 Copy_Array_Subtype_Attributes (Id, T);
5443 when Decimal_Fixed_Point_Kind =>
5444 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
5445 Set_Digits_Value (Id, Digits_Value (T));
5446 Set_Delta_Value (Id, Delta_Value (T));
5447 Set_Scale_Value (Id, Scale_Value (T));
5448 Set_Small_Value (Id, Small_Value (T));
5449 Set_Scalar_Range (Id, Scalar_Range (T));
5450 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
5451 Set_Is_Constrained (Id, Is_Constrained (T));
5452 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5453 Set_RM_Size (Id, RM_Size (T));
5455 when Enumeration_Kind =>
5456 Set_Ekind (Id, E_Enumeration_Subtype);
5457 Set_First_Literal (Id, First_Literal (Base_Type (T)));
5458 Set_Scalar_Range (Id, Scalar_Range (T));
5459 Set_Is_Character_Type (Id, Is_Character_Type (T));
5460 Set_Is_Constrained (Id, Is_Constrained (T));
5461 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5462 Set_RM_Size (Id, RM_Size (T));
5464 when Ordinary_Fixed_Point_Kind =>
5465 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
5466 Set_Scalar_Range (Id, Scalar_Range (T));
5467 Set_Small_Value (Id, Small_Value (T));
5468 Set_Delta_Value (Id, Delta_Value (T));
5469 Set_Is_Constrained (Id, Is_Constrained (T));
5470 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5471 Set_RM_Size (Id, RM_Size (T));
5473 when Float_Kind =>
5474 Set_Ekind (Id, E_Floating_Point_Subtype);
5475 Set_Scalar_Range (Id, Scalar_Range (T));
5476 Set_Digits_Value (Id, Digits_Value (T));
5477 Set_Is_Constrained (Id, Is_Constrained (T));
5479 -- If the floating point type has dimensions, these will be
5480 -- inherited subsequently when Analyze_Dimensions is called.
5482 when Signed_Integer_Kind =>
5483 Set_Ekind (Id, E_Signed_Integer_Subtype);
5484 Set_Scalar_Range (Id, Scalar_Range (T));
5485 Set_Is_Constrained (Id, Is_Constrained (T));
5486 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5487 Set_RM_Size (Id, RM_Size (T));
5489 when Modular_Integer_Kind =>
5490 Set_Ekind (Id, E_Modular_Integer_Subtype);
5491 Set_Scalar_Range (Id, Scalar_Range (T));
5492 Set_Is_Constrained (Id, Is_Constrained (T));
5493 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5494 Set_RM_Size (Id, RM_Size (T));
5496 when Class_Wide_Kind =>
5497 Set_Ekind (Id, E_Class_Wide_Subtype);
5498 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5499 Set_Cloned_Subtype (Id, T);
5500 Set_Is_Tagged_Type (Id, True);
5501 Set_Has_Unknown_Discriminants
5502 (Id, True);
5503 Set_No_Tagged_Streams_Pragma
5504 (Id, No_Tagged_Streams_Pragma (T));
5506 if Ekind (T) = E_Class_Wide_Subtype then
5507 Set_Equivalent_Type (Id, Equivalent_Type (T));
5508 end if;
5510 when E_Record_Subtype
5511 | E_Record_Type
5513 Set_Ekind (Id, E_Record_Subtype);
5515 if Ekind (T) = E_Record_Subtype
5516 and then Present (Cloned_Subtype (T))
5517 then
5518 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
5519 else
5520 Set_Cloned_Subtype (Id, T);
5521 end if;
5523 Set_First_Entity (Id, First_Entity (T));
5524 Set_Last_Entity (Id, Last_Entity (T));
5525 Set_Has_Discriminants (Id, Has_Discriminants (T));
5526 Set_Is_Constrained (Id, Is_Constrained (T));
5527 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5528 Set_Has_Implicit_Dereference
5529 (Id, Has_Implicit_Dereference (T));
5530 Set_Has_Unknown_Discriminants
5531 (Id, Has_Unknown_Discriminants (T));
5533 if Has_Discriminants (T) then
5534 Set_Discriminant_Constraint
5535 (Id, Discriminant_Constraint (T));
5536 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5538 elsif Has_Unknown_Discriminants (Id) then
5539 Set_Discriminant_Constraint (Id, No_Elist);
5540 end if;
5542 if Is_Tagged_Type (T) then
5543 Set_Is_Tagged_Type (Id, True);
5544 Set_No_Tagged_Streams_Pragma
5545 (Id, No_Tagged_Streams_Pragma (T));
5546 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5547 Set_Direct_Primitive_Operations
5548 (Id, Direct_Primitive_Operations (T));
5549 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5551 if Is_Interface (T) then
5552 Set_Is_Interface (Id);
5553 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5554 end if;
5555 end if;
5557 when Private_Kind =>
5558 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5559 Set_Has_Discriminants (Id, Has_Discriminants (T));
5560 Set_Is_Constrained (Id, Is_Constrained (T));
5561 Set_First_Entity (Id, First_Entity (T));
5562 Set_Last_Entity (Id, Last_Entity (T));
5563 Set_Private_Dependents (Id, New_Elmt_List);
5564 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5565 Set_Has_Implicit_Dereference
5566 (Id, Has_Implicit_Dereference (T));
5567 Set_Has_Unknown_Discriminants
5568 (Id, Has_Unknown_Discriminants (T));
5569 Set_Known_To_Have_Preelab_Init
5570 (Id, Known_To_Have_Preelab_Init (T));
5572 if Is_Tagged_Type (T) then
5573 Set_Is_Tagged_Type (Id);
5574 Set_No_Tagged_Streams_Pragma (Id,
5575 No_Tagged_Streams_Pragma (T));
5576 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5577 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5578 Set_Direct_Primitive_Operations (Id,
5579 Direct_Primitive_Operations (T));
5580 end if;
5582 -- In general the attributes of the subtype of a private type
5583 -- are the attributes of the partial view of parent. However,
5584 -- the full view may be a discriminated type, and the subtype
5585 -- must share the discriminant constraint to generate correct
5586 -- calls to initialization procedures.
5588 if Has_Discriminants (T) then
5589 Set_Discriminant_Constraint
5590 (Id, Discriminant_Constraint (T));
5591 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5593 elsif Present (Full_View (T))
5594 and then Has_Discriminants (Full_View (T))
5595 then
5596 Set_Discriminant_Constraint
5597 (Id, Discriminant_Constraint (Full_View (T)));
5598 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5600 -- This would seem semantically correct, but apparently
5601 -- generates spurious errors about missing components ???
5603 -- Set_Has_Discriminants (Id);
5604 end if;
5606 Prepare_Private_Subtype_Completion (Id, N);
5608 -- If this is the subtype of a constrained private type with
5609 -- discriminants that has got a full view and we also have
5610 -- built a completion just above, show that the completion
5611 -- is a clone of the full view to the back-end.
5613 if Has_Discriminants (T)
5614 and then not Has_Unknown_Discriminants (T)
5615 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5616 and then Present (Full_View (T))
5617 and then Present (Full_View (Id))
5618 then
5619 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5620 end if;
5622 when Access_Kind =>
5623 Set_Ekind (Id, E_Access_Subtype);
5624 Set_Is_Constrained (Id, Is_Constrained (T));
5625 Set_Is_Access_Constant
5626 (Id, Is_Access_Constant (T));
5627 Set_Directly_Designated_Type
5628 (Id, Designated_Type (T));
5629 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5631 -- A Pure library_item must not contain the declaration of a
5632 -- named access type, except within a subprogram, generic
5633 -- subprogram, task unit, or protected unit, or if it has
5634 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5636 if Comes_From_Source (Id)
5637 and then In_Pure_Unit
5638 and then not In_Subprogram_Task_Protected_Unit
5639 and then not No_Pool_Assigned (Id)
5640 then
5641 Error_Msg_N
5642 ("named access types not allowed in pure unit", N);
5643 end if;
5645 when Concurrent_Kind =>
5646 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5647 Set_Corresponding_Record_Type (Id,
5648 Corresponding_Record_Type (T));
5649 Set_First_Entity (Id, First_Entity (T));
5650 Set_First_Private_Entity (Id, First_Private_Entity (T));
5651 Set_Has_Discriminants (Id, Has_Discriminants (T));
5652 Set_Is_Constrained (Id, Is_Constrained (T));
5653 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5654 Set_Last_Entity (Id, Last_Entity (T));
5656 if Is_Tagged_Type (T) then
5657 Set_No_Tagged_Streams_Pragma
5658 (Id, No_Tagged_Streams_Pragma (T));
5659 end if;
5661 if Has_Discriminants (T) then
5662 Set_Discriminant_Constraint
5663 (Id, Discriminant_Constraint (T));
5664 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5665 end if;
5667 when Incomplete_Kind =>
5668 if Ada_Version >= Ada_2005 then
5670 -- In Ada 2005 an incomplete type can be explicitly tagged:
5671 -- propagate indication. Note that we also have to include
5672 -- subtypes for Ada 2012 extended use of incomplete types.
5674 Set_Ekind (Id, E_Incomplete_Subtype);
5675 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5676 Set_Private_Dependents (Id, New_Elmt_List);
5678 if Is_Tagged_Type (Id) then
5679 Set_No_Tagged_Streams_Pragma
5680 (Id, No_Tagged_Streams_Pragma (T));
5681 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5682 end if;
5684 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5685 -- incomplete type visible through a limited with clause.
5687 if From_Limited_With (T)
5688 and then Present (Non_Limited_View (T))
5689 then
5690 Set_From_Limited_With (Id);
5691 Set_Non_Limited_View (Id, Non_Limited_View (T));
5693 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5694 -- to the private dependents of the original incomplete
5695 -- type for future transformation.
5697 else
5698 Append_Elmt (Id, Private_Dependents (T));
5699 end if;
5701 -- If the subtype name denotes an incomplete type an error
5702 -- was already reported by Process_Subtype.
5704 else
5705 Set_Etype (Id, Any_Type);
5706 end if;
5708 when others =>
5709 raise Program_Error;
5710 end case;
5712 -- If there is no constraint in the subtype indication, the
5713 -- declared entity inherits predicates from the parent.
5715 Inherit_Predicate_Flags (Id, T);
5716 end if;
5718 if Etype (Id) = Any_Type then
5719 goto Leave;
5720 end if;
5722 -- Some common processing on all types
5724 Set_Size_Info (Id, T);
5725 Set_First_Rep_Item (Id, First_Rep_Item (T));
5727 -- If the parent type is a generic actual, so is the subtype. This may
5728 -- happen in a nested instance. Why Comes_From_Source test???
5730 if not Comes_From_Source (N) then
5731 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5732 end if;
5734 -- If this is a subtype declaration for an actual in an instance,
5735 -- inherit static and dynamic predicates if any.
5737 -- If declaration has no aspect specifications, inherit predicate
5738 -- info as well. Unclear how to handle the case of both specified
5739 -- and inherited predicates ??? Other inherited aspects, such as
5740 -- invariants, should be OK, but the combination with later pragmas
5741 -- may also require special merging.
5743 if Has_Predicates (T)
5744 and then Present (Predicate_Function (T))
5745 and then
5746 ((In_Instance and then not Comes_From_Source (N))
5747 or else No (Aspect_Specifications (N)))
5748 then
5749 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5751 if Has_Static_Predicate (T) then
5752 Set_Has_Static_Predicate (Id);
5753 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5754 end if;
5755 end if;
5757 -- Remaining processing depends on characteristics of base type
5759 T := Etype (Id);
5761 Set_Is_Immediately_Visible (Id, True);
5762 Set_Depends_On_Private (Id, Has_Private_Component (T));
5763 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5765 if Is_Interface (T) then
5766 Set_Is_Interface (Id);
5767 end if;
5769 if Present (Generic_Parent_Type (N))
5770 and then
5771 (Nkind (Parent (Generic_Parent_Type (N))) /=
5772 N_Formal_Type_Declaration
5773 or else Nkind (Formal_Type_Definition
5774 (Parent (Generic_Parent_Type (N)))) /=
5775 N_Formal_Private_Type_Definition)
5776 then
5777 if Is_Tagged_Type (Id) then
5779 -- If this is a generic actual subtype for a synchronized type,
5780 -- the primitive operations are those of the corresponding record
5781 -- for which there is a separate subtype declaration.
5783 if Is_Concurrent_Type (Id) then
5784 null;
5785 elsif Is_Class_Wide_Type (Id) then
5786 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5787 else
5788 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5789 end if;
5791 elsif Scope (Etype (Id)) /= Standard_Standard then
5792 Derive_Subprograms (Generic_Parent_Type (N), Id);
5793 end if;
5794 end if;
5796 if Is_Private_Type (T) and then Present (Full_View (T)) then
5797 Conditional_Delay (Id, Full_View (T));
5799 -- The subtypes of components or subcomponents of protected types
5800 -- do not need freeze nodes, which would otherwise appear in the
5801 -- wrong scope (before the freeze node for the protected type). The
5802 -- proper subtypes are those of the subcomponents of the corresponding
5803 -- record.
5805 elsif Ekind (Scope (Id)) /= E_Protected_Type
5806 and then Present (Scope (Scope (Id))) -- error defense
5807 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5808 then
5809 Conditional_Delay (Id, T);
5810 end if;
5812 -- If we have a subtype of an incomplete type whose full type is a
5813 -- derived numeric type, we need to have a freeze node for the subtype.
5814 -- Otherwise gigi will complain while computing the (static) bounds of
5815 -- the subtype.
5817 if Is_Itype (T)
5818 and then Is_Elementary_Type (Id)
5819 and then Etype (Id) /= Id
5820 then
5821 declare
5822 Partial : constant Entity_Id :=
5823 Incomplete_Or_Partial_View (First_Subtype (Id));
5824 begin
5825 if Present (Partial)
5826 and then Ekind (Partial) = E_Incomplete_Type
5827 then
5828 Set_Has_Delayed_Freeze (Id);
5829 end if;
5830 end;
5831 end if;
5833 -- Check that Constraint_Error is raised for a scalar subtype indication
5834 -- when the lower or upper bound of a non-null range lies outside the
5835 -- range of the type mark.
5837 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5838 if Is_Scalar_Type (Etype (Id))
5839 and then Scalar_Range (Id) /=
5840 Scalar_Range
5841 (Etype (Subtype_Mark (Subtype_Indication (N))))
5842 then
5843 Apply_Range_Check
5844 (Scalar_Range (Id),
5845 Etype (Subtype_Mark (Subtype_Indication (N))));
5847 -- In the array case, check compatibility for each index
5849 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5850 then
5851 -- This really should be a subprogram that finds the indications
5852 -- to check???
5854 declare
5855 Subt_Index : Node_Id := First_Index (Id);
5856 Target_Index : Node_Id :=
5857 First_Index (Etype
5858 (Subtype_Mark (Subtype_Indication (N))));
5859 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5861 begin
5862 while Present (Subt_Index) loop
5863 if ((Nkind (Subt_Index) = N_Identifier
5864 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5865 or else Nkind (Subt_Index) = N_Subtype_Indication)
5866 and then
5867 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5868 then
5869 declare
5870 Target_Typ : constant Entity_Id :=
5871 Etype (Target_Index);
5872 begin
5873 R_Checks :=
5874 Get_Range_Checks
5875 (Scalar_Range (Etype (Subt_Index)),
5876 Target_Typ,
5877 Etype (Subt_Index),
5878 Defining_Identifier (N));
5880 -- Reset Has_Dynamic_Range_Check on the subtype to
5881 -- prevent elision of the index check due to a dynamic
5882 -- check generated for a preceding index (needed since
5883 -- Insert_Range_Checks tries to avoid generating
5884 -- redundant checks on a given declaration).
5886 Set_Has_Dynamic_Range_Check (N, False);
5888 Insert_Range_Checks
5889 (R_Checks,
5891 Target_Typ,
5892 Sloc (Defining_Identifier (N)));
5894 -- Record whether this index involved a dynamic check
5896 Has_Dyn_Chk :=
5897 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5898 end;
5899 end if;
5901 Next_Index (Subt_Index);
5902 Next_Index (Target_Index);
5903 end loop;
5905 -- Finally, mark whether the subtype involves dynamic checks
5907 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5908 end;
5909 end if;
5910 end if;
5912 Set_Optimize_Alignment_Flags (Id);
5913 Check_Eliminated (Id);
5915 <<Leave>>
5916 if Has_Aspects (N) then
5917 Analyze_Aspect_Specifications (N, Id);
5918 end if;
5920 Analyze_Dimension (N);
5922 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5923 -- indications on composite types where the constraints are dynamic.
5924 -- Note that object declarations and aggregates generate implicit
5925 -- subtype declarations, which this covers. One special case is that the
5926 -- implicitly generated "=" for discriminated types includes an
5927 -- offending subtype declaration, which is harmless, so we ignore it
5928 -- here.
5930 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5931 declare
5932 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5933 begin
5934 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5935 and then not (Is_Internal (Id)
5936 and then Is_TSS (Scope (Id),
5937 TSS_Composite_Equality))
5938 and then not Within_Init_Proc
5939 and then not All_Composite_Constraints_Static (Cstr)
5940 then
5941 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5942 end if;
5943 end;
5944 end if;
5945 end Analyze_Subtype_Declaration;
5947 --------------------------------
5948 -- Analyze_Subtype_Indication --
5949 --------------------------------
5951 procedure Analyze_Subtype_Indication (N : Node_Id) is
5952 T : constant Entity_Id := Subtype_Mark (N);
5953 R : constant Node_Id := Range_Expression (Constraint (N));
5955 begin
5956 Analyze (T);
5958 if R /= Error then
5959 Analyze (R);
5960 Set_Etype (N, Etype (R));
5961 Resolve (R, Entity (T));
5962 else
5963 Set_Error_Posted (R);
5964 Set_Error_Posted (T);
5965 end if;
5966 end Analyze_Subtype_Indication;
5968 --------------------------
5969 -- Analyze_Variant_Part --
5970 --------------------------
5972 procedure Analyze_Variant_Part (N : Node_Id) is
5973 Discr_Name : Node_Id;
5974 Discr_Type : Entity_Id;
5976 procedure Process_Variant (A : Node_Id);
5977 -- Analyze declarations for a single variant
5979 package Analyze_Variant_Choices is
5980 new Generic_Analyze_Choices (Process_Variant);
5981 use Analyze_Variant_Choices;
5983 ---------------------
5984 -- Process_Variant --
5985 ---------------------
5987 procedure Process_Variant (A : Node_Id) is
5988 CL : constant Node_Id := Component_List (A);
5989 begin
5990 if not Null_Present (CL) then
5991 Analyze_Declarations (Component_Items (CL));
5993 if Present (Variant_Part (CL)) then
5994 Analyze (Variant_Part (CL));
5995 end if;
5996 end if;
5997 end Process_Variant;
5999 -- Start of processing for Analyze_Variant_Part
6001 begin
6002 Discr_Name := Name (N);
6003 Analyze (Discr_Name);
6005 -- If Discr_Name bad, get out (prevent cascaded errors)
6007 if Etype (Discr_Name) = Any_Type then
6008 return;
6009 end if;
6011 -- Check invalid discriminant in variant part
6013 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
6014 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
6015 end if;
6017 Discr_Type := Etype (Entity (Discr_Name));
6019 if not Is_Discrete_Type (Discr_Type) then
6020 Error_Msg_N
6021 ("discriminant in a variant part must be of a discrete type",
6022 Name (N));
6023 return;
6024 end if;
6026 -- Now analyze the choices, which also analyzes the declarations that
6027 -- are associated with each choice.
6029 Analyze_Choices (Variants (N), Discr_Type);
6031 -- Note: we used to instantiate and call Check_Choices here to check
6032 -- that the choices covered the discriminant, but it's too early to do
6033 -- that because of statically predicated subtypes, whose analysis may
6034 -- be deferred to their freeze point which may be as late as the freeze
6035 -- point of the containing record. So this call is now to be found in
6036 -- Freeze_Record_Declaration.
6038 end Analyze_Variant_Part;
6040 ----------------------------
6041 -- Array_Type_Declaration --
6042 ----------------------------
6044 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
6045 Component_Def : constant Node_Id := Component_Definition (Def);
6046 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
6047 P : constant Node_Id := Parent (Def);
6048 Element_Type : Entity_Id;
6049 Implicit_Base : Entity_Id;
6050 Index : Node_Id;
6051 Nb_Index : Nat;
6052 Priv : Entity_Id;
6053 Related_Id : Entity_Id := Empty;
6055 begin
6056 if Nkind (Def) = N_Constrained_Array_Definition then
6057 Index := First (Discrete_Subtype_Definitions (Def));
6058 else
6059 Index := First (Subtype_Marks (Def));
6060 end if;
6062 -- Find proper names for the implicit types which may be public. In case
6063 -- of anonymous arrays we use the name of the first object of that type
6064 -- as prefix.
6066 if No (T) then
6067 Related_Id := Defining_Identifier (P);
6068 else
6069 Related_Id := T;
6070 end if;
6072 Nb_Index := 1;
6073 while Present (Index) loop
6074 Analyze (Index);
6076 -- Test for odd case of trying to index a type by the type itself
6078 if Is_Entity_Name (Index) and then Entity (Index) = T then
6079 Error_Msg_N ("type& cannot be indexed by itself", Index);
6080 Set_Entity (Index, Standard_Boolean);
6081 Set_Etype (Index, Standard_Boolean);
6082 end if;
6084 -- Check SPARK restriction requiring a subtype mark
6086 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
6087 Check_SPARK_05_Restriction ("subtype mark required", Index);
6088 end if;
6090 -- Add a subtype declaration for each index of private array type
6091 -- declaration whose etype is also private. For example:
6093 -- package Pkg is
6094 -- type Index is private;
6095 -- private
6096 -- type Table is array (Index) of ...
6097 -- end;
6099 -- This is currently required by the expander for the internally
6100 -- generated equality subprogram of records with variant parts in
6101 -- which the etype of some component is such private type.
6103 if Ekind (Current_Scope) = E_Package
6104 and then In_Private_Part (Current_Scope)
6105 and then Has_Private_Declaration (Etype (Index))
6106 then
6107 declare
6108 Loc : constant Source_Ptr := Sloc (Def);
6109 Decl : Entity_Id;
6110 New_E : Entity_Id;
6112 begin
6113 New_E := Make_Temporary (Loc, 'T');
6114 Set_Is_Internal (New_E);
6116 Decl :=
6117 Make_Subtype_Declaration (Loc,
6118 Defining_Identifier => New_E,
6119 Subtype_Indication =>
6120 New_Occurrence_Of (Etype (Index), Loc));
6122 Insert_Before (Parent (Def), Decl);
6123 Analyze (Decl);
6124 Set_Etype (Index, New_E);
6126 -- If the index is a range or a subtype indication it carries
6127 -- no entity. Example:
6129 -- package Pkg is
6130 -- type T is private;
6131 -- private
6132 -- type T is new Natural;
6133 -- Table : array (T(1) .. T(10)) of Boolean;
6134 -- end Pkg;
6136 -- Otherwise the type of the reference is its entity.
6138 if Is_Entity_Name (Index) then
6139 Set_Entity (Index, New_E);
6140 end if;
6141 end;
6142 end if;
6144 Make_Index (Index, P, Related_Id, Nb_Index);
6146 -- Check error of subtype with predicate for index type
6148 Bad_Predicated_Subtype_Use
6149 ("subtype& has predicate, not allowed as index subtype",
6150 Index, Etype (Index));
6152 -- Move to next index
6154 Next_Index (Index);
6155 Nb_Index := Nb_Index + 1;
6156 end loop;
6158 -- Process subtype indication if one is present
6160 if Present (Component_Typ) then
6161 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
6163 Set_Etype (Component_Typ, Element_Type);
6165 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
6166 Check_SPARK_05_Restriction
6167 ("subtype mark required", Component_Typ);
6168 end if;
6170 -- Ada 2005 (AI-230): Access Definition case
6172 else pragma Assert (Present (Access_Definition (Component_Def)));
6174 -- Indicate that the anonymous access type is created by the
6175 -- array type declaration.
6177 Element_Type := Access_Definition
6178 (Related_Nod => P,
6179 N => Access_Definition (Component_Def));
6180 Set_Is_Local_Anonymous_Access (Element_Type);
6182 -- Propagate the parent. This field is needed if we have to generate
6183 -- the master_id associated with an anonymous access to task type
6184 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6186 Set_Parent (Element_Type, Parent (T));
6188 -- Ada 2005 (AI-230): In case of components that are anonymous access
6189 -- types the level of accessibility depends on the enclosing type
6190 -- declaration
6192 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
6194 -- Ada 2005 (AI-254)
6196 declare
6197 CD : constant Node_Id :=
6198 Access_To_Subprogram_Definition
6199 (Access_Definition (Component_Def));
6200 begin
6201 if Present (CD) and then Protected_Present (CD) then
6202 Element_Type :=
6203 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
6204 end if;
6205 end;
6206 end if;
6208 -- Constrained array case
6210 if No (T) then
6211 T := Create_Itype (E_Void, P, Related_Id, 'T');
6212 end if;
6214 if Nkind (Def) = N_Constrained_Array_Definition then
6216 -- Establish Implicit_Base as unconstrained base type
6218 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
6220 Set_Etype (Implicit_Base, Implicit_Base);
6221 Set_Scope (Implicit_Base, Current_Scope);
6222 Set_Has_Delayed_Freeze (Implicit_Base);
6223 Set_Default_SSO (Implicit_Base);
6225 -- The constrained array type is a subtype of the unconstrained one
6227 Set_Ekind (T, E_Array_Subtype);
6228 Init_Size_Align (T);
6229 Set_Etype (T, Implicit_Base);
6230 Set_Scope (T, Current_Scope);
6231 Set_Is_Constrained (T);
6232 Set_First_Index (T,
6233 First (Discrete_Subtype_Definitions (Def)));
6234 Set_Has_Delayed_Freeze (T);
6236 -- Complete setup of implicit base type
6238 Set_Component_Size (Implicit_Base, Uint_0);
6239 Set_Component_Type (Implicit_Base, Element_Type);
6240 Set_Finalize_Storage_Only
6241 (Implicit_Base,
6242 Finalize_Storage_Only (Element_Type));
6243 Set_First_Index (Implicit_Base, First_Index (T));
6244 Set_Has_Controlled_Component
6245 (Implicit_Base,
6246 Has_Controlled_Component (Element_Type)
6247 or else Is_Controlled (Element_Type));
6248 Set_Packed_Array_Impl_Type
6249 (Implicit_Base, Empty);
6251 Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
6253 -- Unconstrained array case
6255 else
6256 Set_Ekind (T, E_Array_Type);
6257 Init_Size_Align (T);
6258 Set_Etype (T, T);
6259 Set_Scope (T, Current_Scope);
6260 Set_Component_Size (T, Uint_0);
6261 Set_Is_Constrained (T, False);
6262 Set_First_Index (T, First (Subtype_Marks (Def)));
6263 Set_Has_Delayed_Freeze (T, True);
6264 Propagate_Concurrent_Flags (T, Element_Type);
6265 Set_Has_Controlled_Component (T, Has_Controlled_Component
6266 (Element_Type)
6267 or else
6268 Is_Controlled (Element_Type));
6269 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
6270 (Element_Type));
6271 Set_Default_SSO (T);
6272 end if;
6274 -- Common attributes for both cases
6276 Set_Component_Type (Base_Type (T), Element_Type);
6277 Set_Packed_Array_Impl_Type (T, Empty);
6279 if Aliased_Present (Component_Definition (Def)) then
6280 Check_SPARK_05_Restriction
6281 ("aliased is not allowed", Component_Definition (Def));
6282 Set_Has_Aliased_Components (Etype (T));
6283 end if;
6285 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6286 -- array type to ensure that objects of this type are initialized.
6288 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
6289 Set_Can_Never_Be_Null (T);
6291 if Null_Exclusion_Present (Component_Definition (Def))
6293 -- No need to check itypes because in their case this check was
6294 -- done at their point of creation
6296 and then not Is_Itype (Element_Type)
6297 then
6298 Error_Msg_N
6299 ("`NOT NULL` not allowed (null already excluded)",
6300 Subtype_Indication (Component_Definition (Def)));
6301 end if;
6302 end if;
6304 Priv := Private_Component (Element_Type);
6306 if Present (Priv) then
6308 -- Check for circular definitions
6310 if Priv = Any_Type then
6311 Set_Component_Type (Etype (T), Any_Type);
6313 -- There is a gap in the visibility of operations on the composite
6314 -- type only if the component type is defined in a different scope.
6316 elsif Scope (Priv) = Current_Scope then
6317 null;
6319 elsif Is_Limited_Type (Priv) then
6320 Set_Is_Limited_Composite (Etype (T));
6321 Set_Is_Limited_Composite (T);
6322 else
6323 Set_Is_Private_Composite (Etype (T));
6324 Set_Is_Private_Composite (T);
6325 end if;
6326 end if;
6328 -- A syntax error in the declaration itself may lead to an empty index
6329 -- list, in which case do a minimal patch.
6331 if No (First_Index (T)) then
6332 Error_Msg_N ("missing index definition in array type declaration", T);
6334 declare
6335 Indexes : constant List_Id :=
6336 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
6337 begin
6338 Set_Discrete_Subtype_Definitions (Def, Indexes);
6339 Set_First_Index (T, First (Indexes));
6340 return;
6341 end;
6342 end if;
6344 -- Create a concatenation operator for the new type. Internal array
6345 -- types created for packed entities do not need such, they are
6346 -- compatible with the user-defined type.
6348 if Number_Dimensions (T) = 1
6349 and then not Is_Packed_Array_Impl_Type (T)
6350 then
6351 New_Concatenation_Op (T);
6352 end if;
6354 -- In the case of an unconstrained array the parser has already verified
6355 -- that all the indexes are unconstrained but we still need to make sure
6356 -- that the element type is constrained.
6358 if not Is_Definite_Subtype (Element_Type) then
6359 Error_Msg_N
6360 ("unconstrained element type in array declaration",
6361 Subtype_Indication (Component_Def));
6363 elsif Is_Abstract_Type (Element_Type) then
6364 Error_Msg_N
6365 ("the type of a component cannot be abstract",
6366 Subtype_Indication (Component_Def));
6367 end if;
6369 -- There may be an invariant declared for the component type, but
6370 -- the construction of the component invariant checking procedure
6371 -- takes place during expansion.
6372 end Array_Type_Declaration;
6374 ------------------------------------------------------
6375 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6376 ------------------------------------------------------
6378 function Replace_Anonymous_Access_To_Protected_Subprogram
6379 (N : Node_Id) return Entity_Id
6381 Loc : constant Source_Ptr := Sloc (N);
6383 Curr_Scope : constant Scope_Stack_Entry :=
6384 Scope_Stack.Table (Scope_Stack.Last);
6386 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
6388 Acc : Node_Id;
6389 -- Access definition in declaration
6391 Comp : Node_Id;
6392 -- Object definition or formal definition with an access definition
6394 Decl : Node_Id;
6395 -- Declaration of anonymous access to subprogram type
6397 Spec : Node_Id;
6398 -- Original specification in access to subprogram
6400 P : Node_Id;
6402 begin
6403 Set_Is_Internal (Anon);
6405 case Nkind (N) is
6406 when N_Constrained_Array_Definition
6407 | N_Component_Declaration
6408 | N_Unconstrained_Array_Definition
6410 Comp := Component_Definition (N);
6411 Acc := Access_Definition (Comp);
6413 when N_Discriminant_Specification =>
6414 Comp := Discriminant_Type (N);
6415 Acc := Comp;
6417 when N_Parameter_Specification =>
6418 Comp := Parameter_Type (N);
6419 Acc := Comp;
6421 when N_Access_Function_Definition =>
6422 Comp := Result_Definition (N);
6423 Acc := Comp;
6425 when N_Object_Declaration =>
6426 Comp := Object_Definition (N);
6427 Acc := Comp;
6429 when N_Function_Specification =>
6430 Comp := Result_Definition (N);
6431 Acc := Comp;
6433 when others =>
6434 raise Program_Error;
6435 end case;
6437 Spec := Access_To_Subprogram_Definition (Acc);
6439 Decl :=
6440 Make_Full_Type_Declaration (Loc,
6441 Defining_Identifier => Anon,
6442 Type_Definition => Copy_Separate_Tree (Spec));
6444 Mark_Rewrite_Insertion (Decl);
6446 -- In ASIS mode, analyze the profile on the original node, because
6447 -- the separate copy does not provide enough links to recover the
6448 -- original tree. Analysis is limited to type annotations, within
6449 -- a temporary scope that serves as an anonymous subprogram to collect
6450 -- otherwise useless temporaries and itypes.
6452 if ASIS_Mode then
6453 declare
6454 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
6456 begin
6457 if Nkind (Spec) = N_Access_Function_Definition then
6458 Set_Ekind (Typ, E_Function);
6459 else
6460 Set_Ekind (Typ, E_Procedure);
6461 end if;
6463 Set_Parent (Typ, N);
6464 Set_Scope (Typ, Current_Scope);
6465 Push_Scope (Typ);
6467 -- Nothing to do if procedure is parameterless
6469 if Present (Parameter_Specifications (Spec)) then
6470 Process_Formals (Parameter_Specifications (Spec), Spec);
6471 end if;
6473 if Nkind (Spec) = N_Access_Function_Definition then
6474 declare
6475 Def : constant Node_Id := Result_Definition (Spec);
6477 begin
6478 -- The result might itself be an anonymous access type, so
6479 -- have to recurse.
6481 if Nkind (Def) = N_Access_Definition then
6482 if Present (Access_To_Subprogram_Definition (Def)) then
6483 Set_Etype
6484 (Def,
6485 Replace_Anonymous_Access_To_Protected_Subprogram
6486 (Spec));
6487 else
6488 Find_Type (Subtype_Mark (Def));
6489 end if;
6491 else
6492 Find_Type (Def);
6493 end if;
6494 end;
6495 end if;
6497 End_Scope;
6498 end;
6499 end if;
6501 -- Insert the new declaration in the nearest enclosing scope. If the
6502 -- parent is a body and N is its return type, the declaration belongs
6503 -- in the enclosing scope. Likewise if N is the type of a parameter.
6505 P := Parent (N);
6507 if Nkind (N) = N_Function_Specification
6508 and then Nkind (P) = N_Subprogram_Body
6509 then
6510 P := Parent (P);
6511 elsif Nkind (N) = N_Parameter_Specification
6512 and then Nkind (P) in N_Subprogram_Specification
6513 and then Nkind (Parent (P)) = N_Subprogram_Body
6514 then
6515 P := Parent (Parent (P));
6516 end if;
6518 while Present (P) and then not Has_Declarations (P) loop
6519 P := Parent (P);
6520 end loop;
6522 pragma Assert (Present (P));
6524 if Nkind (P) = N_Package_Specification then
6525 Prepend (Decl, Visible_Declarations (P));
6526 else
6527 Prepend (Decl, Declarations (P));
6528 end if;
6530 -- Replace the anonymous type with an occurrence of the new declaration.
6531 -- In all cases the rewritten node does not have the null-exclusion
6532 -- attribute because (if present) it was already inherited by the
6533 -- anonymous entity (Anon). Thus, in case of components we do not
6534 -- inherit this attribute.
6536 if Nkind (N) = N_Parameter_Specification then
6537 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6538 Set_Etype (Defining_Identifier (N), Anon);
6539 Set_Null_Exclusion_Present (N, False);
6541 elsif Nkind (N) = N_Object_Declaration then
6542 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6543 Set_Etype (Defining_Identifier (N), Anon);
6545 elsif Nkind (N) = N_Access_Function_Definition then
6546 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6548 elsif Nkind (N) = N_Function_Specification then
6549 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6550 Set_Etype (Defining_Unit_Name (N), Anon);
6552 else
6553 Rewrite (Comp,
6554 Make_Component_Definition (Loc,
6555 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
6556 end if;
6558 Mark_Rewrite_Insertion (Comp);
6560 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
6561 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
6562 and then not Is_Type (Current_Scope))
6563 then
6565 -- Declaration can be analyzed in the current scope.
6567 Analyze (Decl);
6569 else
6570 -- Temporarily remove the current scope (record or subprogram) from
6571 -- the stack to add the new declarations to the enclosing scope.
6572 -- The anonymous entity is an Itype with the proper attributes.
6574 Scope_Stack.Decrement_Last;
6575 Analyze (Decl);
6576 Set_Is_Itype (Anon);
6577 Set_Associated_Node_For_Itype (Anon, N);
6578 Scope_Stack.Append (Curr_Scope);
6579 end if;
6581 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6582 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6583 return Anon;
6584 end Replace_Anonymous_Access_To_Protected_Subprogram;
6586 -------------------------------
6587 -- Build_Derived_Access_Type --
6588 -------------------------------
6590 procedure Build_Derived_Access_Type
6591 (N : Node_Id;
6592 Parent_Type : Entity_Id;
6593 Derived_Type : Entity_Id)
6595 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6597 Desig_Type : Entity_Id;
6598 Discr : Entity_Id;
6599 Discr_Con_Elist : Elist_Id;
6600 Discr_Con_El : Elmt_Id;
6601 Subt : Entity_Id;
6603 begin
6604 -- Set the designated type so it is available in case this is an access
6605 -- to a self-referential type, e.g. a standard list type with a next
6606 -- pointer. Will be reset after subtype is built.
6608 Set_Directly_Designated_Type
6609 (Derived_Type, Designated_Type (Parent_Type));
6611 Subt := Process_Subtype (S, N);
6613 if Nkind (S) /= N_Subtype_Indication
6614 and then Subt /= Base_Type (Subt)
6615 then
6616 Set_Ekind (Derived_Type, E_Access_Subtype);
6617 end if;
6619 if Ekind (Derived_Type) = E_Access_Subtype then
6620 declare
6621 Pbase : constant Entity_Id := Base_Type (Parent_Type);
6622 Ibase : constant Entity_Id :=
6623 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6624 Svg_Chars : constant Name_Id := Chars (Ibase);
6625 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6626 Svg_Prev_E : constant Entity_Id := Prev_Entity (Ibase);
6628 begin
6629 Copy_Node (Pbase, Ibase);
6631 -- Restore Itype status after Copy_Node
6633 Set_Is_Itype (Ibase);
6634 Set_Associated_Node_For_Itype (Ibase, N);
6636 Set_Chars (Ibase, Svg_Chars);
6637 Set_Prev_Entity (Ibase, Svg_Prev_E);
6638 Set_Next_Entity (Ibase, Svg_Next_E);
6639 Set_Sloc (Ibase, Sloc (Derived_Type));
6640 Set_Scope (Ibase, Scope (Derived_Type));
6641 Set_Freeze_Node (Ibase, Empty);
6642 Set_Is_Frozen (Ibase, False);
6643 Set_Comes_From_Source (Ibase, False);
6644 Set_Is_First_Subtype (Ibase, False);
6646 Set_Etype (Ibase, Pbase);
6647 Set_Etype (Derived_Type, Ibase);
6648 end;
6649 end if;
6651 Set_Directly_Designated_Type
6652 (Derived_Type, Designated_Type (Subt));
6654 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
6655 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6656 Set_Size_Info (Derived_Type, Parent_Type);
6657 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6658 Set_Depends_On_Private (Derived_Type,
6659 Has_Private_Component (Derived_Type));
6660 Conditional_Delay (Derived_Type, Subt);
6662 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6663 -- that it is not redundant.
6665 if Null_Exclusion_Present (Type_Definition (N)) then
6666 Set_Can_Never_Be_Null (Derived_Type);
6668 elsif Can_Never_Be_Null (Parent_Type) then
6669 Set_Can_Never_Be_Null (Derived_Type);
6670 end if;
6672 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6673 -- the root type for this information.
6675 -- Apply range checks to discriminants for derived record case
6676 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6678 Desig_Type := Designated_Type (Derived_Type);
6680 if Is_Composite_Type (Desig_Type)
6681 and then (not Is_Array_Type (Desig_Type))
6682 and then Has_Discriminants (Desig_Type)
6683 and then Base_Type (Desig_Type) /= Desig_Type
6684 then
6685 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6686 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6688 Discr := First_Discriminant (Base_Type (Desig_Type));
6689 while Present (Discr_Con_El) loop
6690 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6691 Next_Elmt (Discr_Con_El);
6692 Next_Discriminant (Discr);
6693 end loop;
6694 end if;
6695 end Build_Derived_Access_Type;
6697 ------------------------------
6698 -- Build_Derived_Array_Type --
6699 ------------------------------
6701 procedure Build_Derived_Array_Type
6702 (N : Node_Id;
6703 Parent_Type : Entity_Id;
6704 Derived_Type : Entity_Id)
6706 Loc : constant Source_Ptr := Sloc (N);
6707 Tdef : constant Node_Id := Type_Definition (N);
6708 Indic : constant Node_Id := Subtype_Indication (Tdef);
6709 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6710 Implicit_Base : Entity_Id := Empty;
6711 New_Indic : Node_Id;
6713 procedure Make_Implicit_Base;
6714 -- If the parent subtype is constrained, the derived type is a subtype
6715 -- of an implicit base type derived from the parent base.
6717 ------------------------
6718 -- Make_Implicit_Base --
6719 ------------------------
6721 procedure Make_Implicit_Base is
6722 begin
6723 Implicit_Base :=
6724 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6726 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6727 Set_Etype (Implicit_Base, Parent_Base);
6729 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6730 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6732 Set_Has_Delayed_Freeze (Implicit_Base, True);
6733 end Make_Implicit_Base;
6735 -- Start of processing for Build_Derived_Array_Type
6737 begin
6738 if not Is_Constrained (Parent_Type) then
6739 if Nkind (Indic) /= N_Subtype_Indication then
6740 Set_Ekind (Derived_Type, E_Array_Type);
6742 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6743 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6745 Set_Has_Delayed_Freeze (Derived_Type, True);
6747 else
6748 Make_Implicit_Base;
6749 Set_Etype (Derived_Type, Implicit_Base);
6751 New_Indic :=
6752 Make_Subtype_Declaration (Loc,
6753 Defining_Identifier => Derived_Type,
6754 Subtype_Indication =>
6755 Make_Subtype_Indication (Loc,
6756 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6757 Constraint => Constraint (Indic)));
6759 Rewrite (N, New_Indic);
6760 Analyze (N);
6761 end if;
6763 else
6764 if Nkind (Indic) /= N_Subtype_Indication then
6765 Make_Implicit_Base;
6767 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6768 Set_Etype (Derived_Type, Implicit_Base);
6769 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6771 else
6772 Error_Msg_N ("illegal constraint on constrained type", Indic);
6773 end if;
6774 end if;
6776 -- If parent type is not a derived type itself, and is declared in
6777 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6778 -- the new type's concatenation operator since Derive_Subprograms
6779 -- will not inherit the parent's operator. If the parent type is
6780 -- unconstrained, the operator is of the unconstrained base type.
6782 if Number_Dimensions (Parent_Type) = 1
6783 and then not Is_Limited_Type (Parent_Type)
6784 and then not Is_Derived_Type (Parent_Type)
6785 and then not Is_Package_Or_Generic_Package
6786 (Scope (Base_Type (Parent_Type)))
6787 then
6788 if not Is_Constrained (Parent_Type)
6789 and then Is_Constrained (Derived_Type)
6790 then
6791 New_Concatenation_Op (Implicit_Base);
6792 else
6793 New_Concatenation_Op (Derived_Type);
6794 end if;
6795 end if;
6796 end Build_Derived_Array_Type;
6798 -----------------------------------
6799 -- Build_Derived_Concurrent_Type --
6800 -----------------------------------
6802 procedure Build_Derived_Concurrent_Type
6803 (N : Node_Id;
6804 Parent_Type : Entity_Id;
6805 Derived_Type : Entity_Id)
6807 Loc : constant Source_Ptr := Sloc (N);
6809 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6810 Corr_Decl : Node_Id;
6811 Corr_Decl_Needed : Boolean;
6812 -- If the derived type has fewer discriminants than its parent, the
6813 -- corresponding record is also a derived type, in order to account for
6814 -- the bound discriminants. We create a full type declaration for it in
6815 -- this case.
6817 Constraint_Present : constant Boolean :=
6818 Nkind (Subtype_Indication (Type_Definition (N))) =
6819 N_Subtype_Indication;
6821 D_Constraint : Node_Id;
6822 New_Constraint : Elist_Id := No_Elist;
6823 Old_Disc : Entity_Id;
6824 New_Disc : Entity_Id;
6825 New_N : Node_Id;
6827 begin
6828 Set_Stored_Constraint (Derived_Type, No_Elist);
6829 Corr_Decl_Needed := False;
6830 Old_Disc := Empty;
6832 if Present (Discriminant_Specifications (N))
6833 and then Constraint_Present
6834 then
6835 Old_Disc := First_Discriminant (Parent_Type);
6836 New_Disc := First (Discriminant_Specifications (N));
6837 while Present (New_Disc) and then Present (Old_Disc) loop
6838 Next_Discriminant (Old_Disc);
6839 Next (New_Disc);
6840 end loop;
6841 end if;
6843 if Present (Old_Disc) and then Expander_Active then
6845 -- The new type has fewer discriminants, so we need to create a new
6846 -- corresponding record, which is derived from the corresponding
6847 -- record of the parent, and has a stored constraint that captures
6848 -- the values of the discriminant constraints. The corresponding
6849 -- record is needed only if expander is active and code generation is
6850 -- enabled.
6852 -- The type declaration for the derived corresponding record has the
6853 -- same discriminant part and constraints as the current declaration.
6854 -- Copy the unanalyzed tree to build declaration.
6856 Corr_Decl_Needed := True;
6857 New_N := Copy_Separate_Tree (N);
6859 Corr_Decl :=
6860 Make_Full_Type_Declaration (Loc,
6861 Defining_Identifier => Corr_Record,
6862 Discriminant_Specifications =>
6863 Discriminant_Specifications (New_N),
6864 Type_Definition =>
6865 Make_Derived_Type_Definition (Loc,
6866 Subtype_Indication =>
6867 Make_Subtype_Indication (Loc,
6868 Subtype_Mark =>
6869 New_Occurrence_Of
6870 (Corresponding_Record_Type (Parent_Type), Loc),
6871 Constraint =>
6872 Constraint
6873 (Subtype_Indication (Type_Definition (New_N))))));
6874 end if;
6876 -- Copy Storage_Size and Relative_Deadline variables if task case
6878 if Is_Task_Type (Parent_Type) then
6879 Set_Storage_Size_Variable (Derived_Type,
6880 Storage_Size_Variable (Parent_Type));
6881 Set_Relative_Deadline_Variable (Derived_Type,
6882 Relative_Deadline_Variable (Parent_Type));
6883 end if;
6885 if Present (Discriminant_Specifications (N)) then
6886 Push_Scope (Derived_Type);
6887 Check_Or_Process_Discriminants (N, Derived_Type);
6889 if Constraint_Present then
6890 New_Constraint :=
6891 Expand_To_Stored_Constraint
6892 (Parent_Type,
6893 Build_Discriminant_Constraints
6894 (Parent_Type,
6895 Subtype_Indication (Type_Definition (N)), True));
6896 end if;
6898 End_Scope;
6900 elsif Constraint_Present then
6902 -- Build constrained subtype, copying the constraint, and derive
6903 -- from it to create a derived constrained type.
6905 declare
6906 Loc : constant Source_Ptr := Sloc (N);
6907 Anon : constant Entity_Id :=
6908 Make_Defining_Identifier (Loc,
6909 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6910 Decl : Node_Id;
6912 begin
6913 Decl :=
6914 Make_Subtype_Declaration (Loc,
6915 Defining_Identifier => Anon,
6916 Subtype_Indication =>
6917 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6918 Insert_Before (N, Decl);
6919 Analyze (Decl);
6921 Rewrite (Subtype_Indication (Type_Definition (N)),
6922 New_Occurrence_Of (Anon, Loc));
6923 Set_Analyzed (Derived_Type, False);
6924 Analyze (N);
6925 return;
6926 end;
6927 end if;
6929 -- By default, operations and private data are inherited from parent.
6930 -- However, in the presence of bound discriminants, a new corresponding
6931 -- record will be created, see below.
6933 Set_Has_Discriminants
6934 (Derived_Type, Has_Discriminants (Parent_Type));
6935 Set_Corresponding_Record_Type
6936 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6938 -- Is_Constrained is set according the parent subtype, but is set to
6939 -- False if the derived type is declared with new discriminants.
6941 Set_Is_Constrained
6942 (Derived_Type,
6943 (Is_Constrained (Parent_Type) or else Constraint_Present)
6944 and then not Present (Discriminant_Specifications (N)));
6946 if Constraint_Present then
6947 if not Has_Discriminants (Parent_Type) then
6948 Error_Msg_N ("untagged parent must have discriminants", N);
6950 elsif Present (Discriminant_Specifications (N)) then
6952 -- Verify that new discriminants are used to constrain old ones
6954 D_Constraint :=
6955 First
6956 (Constraints
6957 (Constraint (Subtype_Indication (Type_Definition (N)))));
6959 Old_Disc := First_Discriminant (Parent_Type);
6961 while Present (D_Constraint) loop
6962 if Nkind (D_Constraint) /= N_Discriminant_Association then
6964 -- Positional constraint. If it is a reference to a new
6965 -- discriminant, it constrains the corresponding old one.
6967 if Nkind (D_Constraint) = N_Identifier then
6968 New_Disc := First_Discriminant (Derived_Type);
6969 while Present (New_Disc) loop
6970 exit when Chars (New_Disc) = Chars (D_Constraint);
6971 Next_Discriminant (New_Disc);
6972 end loop;
6974 if Present (New_Disc) then
6975 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6976 end if;
6977 end if;
6979 Next_Discriminant (Old_Disc);
6981 -- if this is a named constraint, search by name for the old
6982 -- discriminants constrained by the new one.
6984 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6986 -- Find new discriminant with that name
6988 New_Disc := First_Discriminant (Derived_Type);
6989 while Present (New_Disc) loop
6990 exit when
6991 Chars (New_Disc) = Chars (Expression (D_Constraint));
6992 Next_Discriminant (New_Disc);
6993 end loop;
6995 if Present (New_Disc) then
6997 -- Verify that new discriminant renames some discriminant
6998 -- of the parent type, and associate the new discriminant
6999 -- with one or more old ones that it renames.
7001 declare
7002 Selector : Node_Id;
7004 begin
7005 Selector := First (Selector_Names (D_Constraint));
7006 while Present (Selector) loop
7007 Old_Disc := First_Discriminant (Parent_Type);
7008 while Present (Old_Disc) loop
7009 exit when Chars (Old_Disc) = Chars (Selector);
7010 Next_Discriminant (Old_Disc);
7011 end loop;
7013 if Present (Old_Disc) then
7014 Set_Corresponding_Discriminant
7015 (New_Disc, Old_Disc);
7016 end if;
7018 Next (Selector);
7019 end loop;
7020 end;
7021 end if;
7022 end if;
7024 Next (D_Constraint);
7025 end loop;
7027 New_Disc := First_Discriminant (Derived_Type);
7028 while Present (New_Disc) loop
7029 if No (Corresponding_Discriminant (New_Disc)) then
7030 Error_Msg_NE
7031 ("new discriminant& must constrain old one", N, New_Disc);
7033 elsif not
7034 Subtypes_Statically_Compatible
7035 (Etype (New_Disc),
7036 Etype (Corresponding_Discriminant (New_Disc)))
7037 then
7038 Error_Msg_NE
7039 ("& not statically compatible with parent discriminant",
7040 N, New_Disc);
7041 end if;
7043 Next_Discriminant (New_Disc);
7044 end loop;
7045 end if;
7047 elsif Present (Discriminant_Specifications (N)) then
7048 Error_Msg_N
7049 ("missing discriminant constraint in untagged derivation", N);
7050 end if;
7052 -- The entity chain of the derived type includes the new discriminants
7053 -- but shares operations with the parent.
7055 if Present (Discriminant_Specifications (N)) then
7056 Old_Disc := First_Discriminant (Parent_Type);
7057 while Present (Old_Disc) loop
7058 if No (Next_Entity (Old_Disc))
7059 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
7060 then
7061 Link_Entities
7062 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
7063 exit;
7064 end if;
7066 Next_Discriminant (Old_Disc);
7067 end loop;
7069 else
7070 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
7071 if Has_Discriminants (Parent_Type) then
7072 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7073 Set_Discriminant_Constraint (
7074 Derived_Type, Discriminant_Constraint (Parent_Type));
7075 end if;
7076 end if;
7078 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
7080 Set_Has_Completion (Derived_Type);
7082 if Corr_Decl_Needed then
7083 Set_Stored_Constraint (Derived_Type, New_Constraint);
7084 Insert_After (N, Corr_Decl);
7085 Analyze (Corr_Decl);
7086 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
7087 end if;
7088 end Build_Derived_Concurrent_Type;
7090 ------------------------------------
7091 -- Build_Derived_Enumeration_Type --
7092 ------------------------------------
7094 procedure Build_Derived_Enumeration_Type
7095 (N : Node_Id;
7096 Parent_Type : Entity_Id;
7097 Derived_Type : Entity_Id)
7099 Loc : constant Source_Ptr := Sloc (N);
7100 Def : constant Node_Id := Type_Definition (N);
7101 Indic : constant Node_Id := Subtype_Indication (Def);
7102 Implicit_Base : Entity_Id;
7103 Literal : Entity_Id;
7104 New_Lit : Entity_Id;
7105 Literals_List : List_Id;
7106 Type_Decl : Node_Id;
7107 Hi, Lo : Node_Id;
7108 Rang_Expr : Node_Id;
7110 begin
7111 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
7112 -- not have explicit literals lists we need to process types derived
7113 -- from them specially. This is handled by Derived_Standard_Character.
7114 -- If the parent type is a generic type, there are no literals either,
7115 -- and we construct the same skeletal representation as for the generic
7116 -- parent type.
7118 if Is_Standard_Character_Type (Parent_Type) then
7119 Derived_Standard_Character (N, Parent_Type, Derived_Type);
7121 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
7122 declare
7123 Lo : Node_Id;
7124 Hi : Node_Id;
7126 begin
7127 if Nkind (Indic) /= N_Subtype_Indication then
7128 Lo :=
7129 Make_Attribute_Reference (Loc,
7130 Attribute_Name => Name_First,
7131 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7132 Set_Etype (Lo, Derived_Type);
7134 Hi :=
7135 Make_Attribute_Reference (Loc,
7136 Attribute_Name => Name_Last,
7137 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7138 Set_Etype (Hi, Derived_Type);
7140 Set_Scalar_Range (Derived_Type,
7141 Make_Range (Loc,
7142 Low_Bound => Lo,
7143 High_Bound => Hi));
7144 else
7146 -- Analyze subtype indication and verify compatibility
7147 -- with parent type.
7149 if Base_Type (Process_Subtype (Indic, N)) /=
7150 Base_Type (Parent_Type)
7151 then
7152 Error_Msg_N
7153 ("illegal constraint for formal discrete type", N);
7154 end if;
7155 end if;
7156 end;
7158 else
7159 -- If a constraint is present, analyze the bounds to catch
7160 -- premature usage of the derived literals.
7162 if Nkind (Indic) = N_Subtype_Indication
7163 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
7164 then
7165 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
7166 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
7167 end if;
7169 -- Introduce an implicit base type for the derived type even if there
7170 -- is no constraint attached to it, since this seems closer to the
7171 -- Ada semantics. Build a full type declaration tree for the derived
7172 -- type using the implicit base type as the defining identifier. The
7173 -- build a subtype declaration tree which applies the constraint (if
7174 -- any) have it replace the derived type declaration.
7176 Literal := First_Literal (Parent_Type);
7177 Literals_List := New_List;
7178 while Present (Literal)
7179 and then Ekind (Literal) = E_Enumeration_Literal
7180 loop
7181 -- Literals of the derived type have the same representation as
7182 -- those of the parent type, but this representation can be
7183 -- overridden by an explicit representation clause. Indicate
7184 -- that there is no explicit representation given yet. These
7185 -- derived literals are implicit operations of the new type,
7186 -- and can be overridden by explicit ones.
7188 if Nkind (Literal) = N_Defining_Character_Literal then
7189 New_Lit :=
7190 Make_Defining_Character_Literal (Loc, Chars (Literal));
7191 else
7192 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
7193 end if;
7195 Set_Ekind (New_Lit, E_Enumeration_Literal);
7196 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
7197 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
7198 Set_Enumeration_Rep_Expr (New_Lit, Empty);
7199 Set_Alias (New_Lit, Literal);
7200 Set_Is_Known_Valid (New_Lit, True);
7202 Append (New_Lit, Literals_List);
7203 Next_Literal (Literal);
7204 end loop;
7206 Implicit_Base :=
7207 Make_Defining_Identifier (Sloc (Derived_Type),
7208 Chars => New_External_Name (Chars (Derived_Type), 'B'));
7210 -- Indicate the proper nature of the derived type. This must be done
7211 -- before analysis of the literals, to recognize cases when a literal
7212 -- may be hidden by a previous explicit function definition (cf.
7213 -- c83031a).
7215 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
7216 Set_Etype (Derived_Type, Implicit_Base);
7218 Type_Decl :=
7219 Make_Full_Type_Declaration (Loc,
7220 Defining_Identifier => Implicit_Base,
7221 Discriminant_Specifications => No_List,
7222 Type_Definition =>
7223 Make_Enumeration_Type_Definition (Loc, Literals_List));
7225 Mark_Rewrite_Insertion (Type_Decl);
7226 Insert_Before (N, Type_Decl);
7227 Analyze (Type_Decl);
7229 -- The anonymous base now has a full declaration, but this base
7230 -- is not a first subtype.
7232 Set_Is_First_Subtype (Implicit_Base, False);
7234 -- After the implicit base is analyzed its Etype needs to be changed
7235 -- to reflect the fact that it is derived from the parent type which
7236 -- was ignored during analysis. We also set the size at this point.
7238 Set_Etype (Implicit_Base, Parent_Type);
7240 Set_Size_Info (Implicit_Base, Parent_Type);
7241 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
7242 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
7244 -- Copy other flags from parent type
7246 Set_Has_Non_Standard_Rep
7247 (Implicit_Base, Has_Non_Standard_Rep
7248 (Parent_Type));
7249 Set_Has_Pragma_Ordered
7250 (Implicit_Base, Has_Pragma_Ordered
7251 (Parent_Type));
7252 Set_Has_Delayed_Freeze (Implicit_Base);
7254 -- Process the subtype indication including a validation check on the
7255 -- constraint, if any. If a constraint is given, its bounds must be
7256 -- implicitly converted to the new type.
7258 if Nkind (Indic) = N_Subtype_Indication then
7259 declare
7260 R : constant Node_Id :=
7261 Range_Expression (Constraint (Indic));
7263 begin
7264 if Nkind (R) = N_Range then
7265 Hi := Build_Scalar_Bound
7266 (High_Bound (R), Parent_Type, Implicit_Base);
7267 Lo := Build_Scalar_Bound
7268 (Low_Bound (R), Parent_Type, Implicit_Base);
7270 else
7271 -- Constraint is a Range attribute. Replace with explicit
7272 -- mention of the bounds of the prefix, which must be a
7273 -- subtype.
7275 Analyze (Prefix (R));
7276 Hi :=
7277 Convert_To (Implicit_Base,
7278 Make_Attribute_Reference (Loc,
7279 Attribute_Name => Name_Last,
7280 Prefix =>
7281 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7283 Lo :=
7284 Convert_To (Implicit_Base,
7285 Make_Attribute_Reference (Loc,
7286 Attribute_Name => Name_First,
7287 Prefix =>
7288 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7289 end if;
7290 end;
7292 else
7293 Hi :=
7294 Build_Scalar_Bound
7295 (Type_High_Bound (Parent_Type),
7296 Parent_Type, Implicit_Base);
7297 Lo :=
7298 Build_Scalar_Bound
7299 (Type_Low_Bound (Parent_Type),
7300 Parent_Type, Implicit_Base);
7301 end if;
7303 Rang_Expr :=
7304 Make_Range (Loc,
7305 Low_Bound => Lo,
7306 High_Bound => Hi);
7308 -- If we constructed a default range for the case where no range
7309 -- was given, then the expressions in the range must not freeze
7310 -- since they do not correspond to expressions in the source.
7311 -- However, if the type inherits predicates the expressions will
7312 -- be elaborated earlier and must freeze.
7314 if Nkind (Indic) /= N_Subtype_Indication
7315 and then not Has_Predicates (Derived_Type)
7316 then
7317 Set_Must_Not_Freeze (Lo);
7318 Set_Must_Not_Freeze (Hi);
7319 Set_Must_Not_Freeze (Rang_Expr);
7320 end if;
7322 Rewrite (N,
7323 Make_Subtype_Declaration (Loc,
7324 Defining_Identifier => Derived_Type,
7325 Subtype_Indication =>
7326 Make_Subtype_Indication (Loc,
7327 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7328 Constraint =>
7329 Make_Range_Constraint (Loc,
7330 Range_Expression => Rang_Expr))));
7332 Analyze (N);
7334 -- Propagate the aspects from the original type declaration to the
7335 -- declaration of the implicit base.
7337 Move_Aspects (From => Original_Node (N), To => Type_Decl);
7339 -- Apply a range check. Since this range expression doesn't have an
7340 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7341 -- this right???
7343 if Nkind (Indic) = N_Subtype_Indication then
7344 Apply_Range_Check
7345 (Range_Expression (Constraint (Indic)), Parent_Type,
7346 Source_Typ => Entity (Subtype_Mark (Indic)));
7347 end if;
7348 end if;
7349 end Build_Derived_Enumeration_Type;
7351 --------------------------------
7352 -- Build_Derived_Numeric_Type --
7353 --------------------------------
7355 procedure Build_Derived_Numeric_Type
7356 (N : Node_Id;
7357 Parent_Type : Entity_Id;
7358 Derived_Type : Entity_Id)
7360 Loc : constant Source_Ptr := Sloc (N);
7361 Tdef : constant Node_Id := Type_Definition (N);
7362 Indic : constant Node_Id := Subtype_Indication (Tdef);
7363 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7364 No_Constraint : constant Boolean := Nkind (Indic) /=
7365 N_Subtype_Indication;
7366 Implicit_Base : Entity_Id;
7368 Lo : Node_Id;
7369 Hi : Node_Id;
7371 begin
7372 -- Process the subtype indication including a validation check on
7373 -- the constraint if any.
7375 Discard_Node (Process_Subtype (Indic, N));
7377 -- Introduce an implicit base type for the derived type even if there
7378 -- is no constraint attached to it, since this seems closer to the Ada
7379 -- semantics.
7381 Implicit_Base :=
7382 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
7384 Set_Etype (Implicit_Base, Parent_Base);
7385 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
7386 Set_Size_Info (Implicit_Base, Parent_Base);
7387 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
7388 Set_Parent (Implicit_Base, Parent (Derived_Type));
7389 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
7391 -- Set RM Size for discrete type or decimal fixed-point type
7392 -- Ordinary fixed-point is excluded, why???
7394 if Is_Discrete_Type (Parent_Base)
7395 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
7396 then
7397 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
7398 end if;
7400 Set_Has_Delayed_Freeze (Implicit_Base);
7402 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
7403 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
7405 Set_Scalar_Range (Implicit_Base,
7406 Make_Range (Loc,
7407 Low_Bound => Lo,
7408 High_Bound => Hi));
7410 if Has_Infinities (Parent_Base) then
7411 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
7412 end if;
7414 -- The Derived_Type, which is the entity of the declaration, is a
7415 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7416 -- absence of an explicit constraint.
7418 Set_Etype (Derived_Type, Implicit_Base);
7420 -- If we did not have a constraint, then the Ekind is set from the
7421 -- parent type (otherwise Process_Subtype has set the bounds)
7423 if No_Constraint then
7424 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
7425 end if;
7427 -- If we did not have a range constraint, then set the range from the
7428 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7430 if No_Constraint or else not Has_Range_Constraint (Indic) then
7431 Set_Scalar_Range (Derived_Type,
7432 Make_Range (Loc,
7433 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
7434 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
7435 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7437 if Has_Infinities (Parent_Type) then
7438 Set_Includes_Infinities (Scalar_Range (Derived_Type));
7439 end if;
7441 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
7442 end if;
7444 Set_Is_Descendant_Of_Address (Derived_Type,
7445 Is_Descendant_Of_Address (Parent_Type));
7446 Set_Is_Descendant_Of_Address (Implicit_Base,
7447 Is_Descendant_Of_Address (Parent_Type));
7449 -- Set remaining type-specific fields, depending on numeric type
7451 if Is_Modular_Integer_Type (Parent_Type) then
7452 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
7454 Set_Non_Binary_Modulus
7455 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
7457 Set_Is_Known_Valid
7458 (Implicit_Base, Is_Known_Valid (Parent_Base));
7460 elsif Is_Floating_Point_Type (Parent_Type) then
7462 -- Digits of base type is always copied from the digits value of
7463 -- the parent base type, but the digits of the derived type will
7464 -- already have been set if there was a constraint present.
7466 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7467 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
7469 if No_Constraint then
7470 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
7471 end if;
7473 elsif Is_Fixed_Point_Type (Parent_Type) then
7475 -- Small of base type and derived type are always copied from the
7476 -- parent base type, since smalls never change. The delta of the
7477 -- base type is also copied from the parent base type. However the
7478 -- delta of the derived type will have been set already if a
7479 -- constraint was present.
7481 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
7482 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
7483 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
7485 if No_Constraint then
7486 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
7487 end if;
7489 -- The scale and machine radix in the decimal case are always
7490 -- copied from the parent base type.
7492 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
7493 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
7494 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
7496 Set_Machine_Radix_10
7497 (Derived_Type, Machine_Radix_10 (Parent_Base));
7498 Set_Machine_Radix_10
7499 (Implicit_Base, Machine_Radix_10 (Parent_Base));
7501 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7503 if No_Constraint then
7504 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
7506 else
7507 -- the analysis of the subtype_indication sets the
7508 -- digits value of the derived type.
7510 null;
7511 end if;
7512 end if;
7513 end if;
7515 if Is_Integer_Type (Parent_Type) then
7516 Set_Has_Shift_Operator
7517 (Implicit_Base, Has_Shift_Operator (Parent_Type));
7518 end if;
7520 -- The type of the bounds is that of the parent type, and they
7521 -- must be converted to the derived type.
7523 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
7525 -- The implicit_base should be frozen when the derived type is frozen,
7526 -- but note that it is used in the conversions of the bounds. For fixed
7527 -- types we delay the determination of the bounds until the proper
7528 -- freezing point. For other numeric types this is rejected by GCC, for
7529 -- reasons that are currently unclear (???), so we choose to freeze the
7530 -- implicit base now. In the case of integers and floating point types
7531 -- this is harmless because subsequent representation clauses cannot
7532 -- affect anything, but it is still baffling that we cannot use the
7533 -- same mechanism for all derived numeric types.
7535 -- There is a further complication: actually some representation
7536 -- clauses can affect the implicit base type. For example, attribute
7537 -- definition clauses for stream-oriented attributes need to set the
7538 -- corresponding TSS entries on the base type, and this normally
7539 -- cannot be done after the base type is frozen, so the circuitry in
7540 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7541 -- and not use Set_TSS in this case.
7543 -- There are also consequences for the case of delayed representation
7544 -- aspects for some cases. For example, a Size aspect is delayed and
7545 -- should not be evaluated to the freeze point. This early freezing
7546 -- means that the size attribute evaluation happens too early???
7548 if Is_Fixed_Point_Type (Parent_Type) then
7549 Conditional_Delay (Implicit_Base, Parent_Type);
7550 else
7551 Freeze_Before (N, Implicit_Base);
7552 end if;
7553 end Build_Derived_Numeric_Type;
7555 --------------------------------
7556 -- Build_Derived_Private_Type --
7557 --------------------------------
7559 procedure Build_Derived_Private_Type
7560 (N : Node_Id;
7561 Parent_Type : Entity_Id;
7562 Derived_Type : Entity_Id;
7563 Is_Completion : Boolean;
7564 Derive_Subps : Boolean := True)
7566 Loc : constant Source_Ptr := Sloc (N);
7567 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
7568 Par_Scope : constant Entity_Id := Scope (Par_Base);
7569 Full_N : constant Node_Id := New_Copy_Tree (N);
7570 Full_Der : Entity_Id := New_Copy (Derived_Type);
7571 Full_P : Entity_Id;
7573 procedure Build_Full_Derivation;
7574 -- Build full derivation, i.e. derive from the full view
7576 procedure Copy_And_Build;
7577 -- Copy derived type declaration, replace parent with its full view,
7578 -- and build derivation
7580 ---------------------------
7581 -- Build_Full_Derivation --
7582 ---------------------------
7584 procedure Build_Full_Derivation is
7585 begin
7586 -- If parent scope is not open, install the declarations
7588 if not In_Open_Scopes (Par_Scope) then
7589 Install_Private_Declarations (Par_Scope);
7590 Install_Visible_Declarations (Par_Scope);
7591 Copy_And_Build;
7592 Uninstall_Declarations (Par_Scope);
7594 -- If parent scope is open and in another unit, and parent has a
7595 -- completion, then the derivation is taking place in the visible
7596 -- part of a child unit. In that case retrieve the full view of
7597 -- the parent momentarily.
7599 elsif not In_Same_Source_Unit (N, Parent_Type) then
7600 Full_P := Full_View (Parent_Type);
7601 Exchange_Declarations (Parent_Type);
7602 Copy_And_Build;
7603 Exchange_Declarations (Full_P);
7605 -- Otherwise it is a local derivation
7607 else
7608 Copy_And_Build;
7609 end if;
7610 end Build_Full_Derivation;
7612 --------------------
7613 -- Copy_And_Build --
7614 --------------------
7616 procedure Copy_And_Build is
7617 Full_Parent : Entity_Id := Parent_Type;
7619 begin
7620 -- If the parent is itself derived from another private type,
7621 -- installing the private declarations has not affected its
7622 -- privacy status, so use its own full view explicitly.
7624 if Is_Private_Type (Full_Parent)
7625 and then Present (Full_View (Full_Parent))
7626 then
7627 Full_Parent := Full_View (Full_Parent);
7628 end if;
7630 -- And its underlying full view if necessary
7632 if Is_Private_Type (Full_Parent)
7633 and then Present (Underlying_Full_View (Full_Parent))
7634 then
7635 Full_Parent := Underlying_Full_View (Full_Parent);
7636 end if;
7638 -- For record, access and most enumeration types, derivation from
7639 -- the full view requires a fully-fledged declaration. In the other
7640 -- cases, just use an itype.
7642 if Ekind (Full_Parent) in Record_Kind
7643 or else Ekind (Full_Parent) in Access_Kind
7644 or else
7645 (Ekind (Full_Parent) in Enumeration_Kind
7646 and then not Is_Standard_Character_Type (Full_Parent)
7647 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7648 then
7649 -- Copy and adjust declaration to provide a completion for what
7650 -- is originally a private declaration. Indicate that full view
7651 -- is internally generated.
7653 Set_Comes_From_Source (Full_N, False);
7654 Set_Comes_From_Source (Full_Der, False);
7655 Set_Parent (Full_Der, Full_N);
7656 Set_Defining_Identifier (Full_N, Full_Der);
7658 -- If there are no constraints, adjust the subtype mark
7660 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7661 N_Subtype_Indication
7662 then
7663 Set_Subtype_Indication
7664 (Type_Definition (Full_N),
7665 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7666 end if;
7668 Insert_After (N, Full_N);
7670 -- Build full view of derived type from full view of parent which
7671 -- is now installed. Subprograms have been derived on the partial
7672 -- view, the completion does not derive them anew.
7674 if Ekind (Full_Parent) in Record_Kind then
7676 -- If parent type is tagged, the completion inherits the proper
7677 -- primitive operations.
7679 if Is_Tagged_Type (Parent_Type) then
7680 Build_Derived_Record_Type
7681 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7682 else
7683 Build_Derived_Record_Type
7684 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7685 end if;
7687 else
7688 Build_Derived_Type
7689 (Full_N, Full_Parent, Full_Der,
7690 Is_Completion => False, Derive_Subps => False);
7691 end if;
7693 -- The full declaration has been introduced into the tree and
7694 -- processed in the step above. It should not be analyzed again
7695 -- (when encountered later in the current list of declarations)
7696 -- to prevent spurious name conflicts. The full entity remains
7697 -- invisible.
7699 Set_Analyzed (Full_N);
7701 else
7702 Full_Der :=
7703 Make_Defining_Identifier (Sloc (Derived_Type),
7704 Chars => Chars (Derived_Type));
7705 Set_Is_Itype (Full_Der);
7706 Set_Associated_Node_For_Itype (Full_Der, N);
7707 Set_Parent (Full_Der, N);
7708 Build_Derived_Type
7709 (N, Full_Parent, Full_Der,
7710 Is_Completion => False, Derive_Subps => False);
7711 end if;
7713 Set_Has_Private_Declaration (Full_Der);
7714 Set_Has_Private_Declaration (Derived_Type);
7716 Set_Scope (Full_Der, Scope (Derived_Type));
7717 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7718 Set_Has_Size_Clause (Full_Der, False);
7719 Set_Has_Alignment_Clause (Full_Der, False);
7720 Set_Has_Delayed_Freeze (Full_Der);
7721 Set_Is_Frozen (Full_Der, False);
7722 Set_Freeze_Node (Full_Der, Empty);
7723 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7724 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7726 -- The convention on the base type may be set in the private part
7727 -- and not propagated to the subtype until later, so we obtain the
7728 -- convention from the base type of the parent.
7730 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7731 end Copy_And_Build;
7733 -- Start of processing for Build_Derived_Private_Type
7735 begin
7736 if Is_Tagged_Type (Parent_Type) then
7737 Full_P := Full_View (Parent_Type);
7739 -- A type extension of a type with unknown discriminants is an
7740 -- indefinite type that the back-end cannot handle directly.
7741 -- We treat it as a private type, and build a completion that is
7742 -- derived from the full view of the parent, and hopefully has
7743 -- known discriminants.
7745 -- If the full view of the parent type has an underlying record view,
7746 -- use it to generate the underlying record view of this derived type
7747 -- (required for chains of derivations with unknown discriminants).
7749 -- Minor optimization: we avoid the generation of useless underlying
7750 -- record view entities if the private type declaration has unknown
7751 -- discriminants but its corresponding full view has no
7752 -- discriminants.
7754 if Has_Unknown_Discriminants (Parent_Type)
7755 and then Present (Full_P)
7756 and then (Has_Discriminants (Full_P)
7757 or else Present (Underlying_Record_View (Full_P)))
7758 and then not In_Open_Scopes (Par_Scope)
7759 and then Expander_Active
7760 then
7761 declare
7762 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7763 New_Ext : constant Node_Id :=
7764 Copy_Separate_Tree
7765 (Record_Extension_Part (Type_Definition (N)));
7766 Decl : Node_Id;
7768 begin
7769 Build_Derived_Record_Type
7770 (N, Parent_Type, Derived_Type, Derive_Subps);
7772 -- Build anonymous completion, as a derivation from the full
7773 -- view of the parent. This is not a completion in the usual
7774 -- sense, because the current type is not private.
7776 Decl :=
7777 Make_Full_Type_Declaration (Loc,
7778 Defining_Identifier => Full_Der,
7779 Type_Definition =>
7780 Make_Derived_Type_Definition (Loc,
7781 Subtype_Indication =>
7782 New_Copy_Tree
7783 (Subtype_Indication (Type_Definition (N))),
7784 Record_Extension_Part => New_Ext));
7786 -- If the parent type has an underlying record view, use it
7787 -- here to build the new underlying record view.
7789 if Present (Underlying_Record_View (Full_P)) then
7790 pragma Assert
7791 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7792 = N_Identifier);
7793 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7794 Underlying_Record_View (Full_P));
7795 end if;
7797 Install_Private_Declarations (Par_Scope);
7798 Install_Visible_Declarations (Par_Scope);
7799 Insert_Before (N, Decl);
7801 -- Mark entity as an underlying record view before analysis,
7802 -- to avoid generating the list of its primitive operations
7803 -- (which is not really required for this entity) and thus
7804 -- prevent spurious errors associated with missing overriding
7805 -- of abstract primitives (overridden only for Derived_Type).
7807 Set_Ekind (Full_Der, E_Record_Type);
7808 Set_Is_Underlying_Record_View (Full_Der);
7809 Set_Default_SSO (Full_Der);
7810 Set_No_Reordering (Full_Der, No_Component_Reordering);
7812 Analyze (Decl);
7814 pragma Assert (Has_Discriminants (Full_Der)
7815 and then not Has_Unknown_Discriminants (Full_Der));
7817 Uninstall_Declarations (Par_Scope);
7819 -- Freeze the underlying record view, to prevent generation of
7820 -- useless dispatching information, which is simply shared with
7821 -- the real derived type.
7823 Set_Is_Frozen (Full_Der);
7825 -- If the derived type has access discriminants, create
7826 -- references to their anonymous types now, to prevent
7827 -- back-end problems when their first use is in generated
7828 -- bodies of primitives.
7830 declare
7831 E : Entity_Id;
7833 begin
7834 E := First_Entity (Full_Der);
7836 while Present (E) loop
7837 if Ekind (E) = E_Discriminant
7838 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7839 then
7840 Build_Itype_Reference (Etype (E), Decl);
7841 end if;
7843 Next_Entity (E);
7844 end loop;
7845 end;
7847 -- Set up links between real entity and underlying record view
7849 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7850 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7851 end;
7853 -- If discriminants are known, build derived record
7855 else
7856 Build_Derived_Record_Type
7857 (N, Parent_Type, Derived_Type, Derive_Subps);
7858 end if;
7860 return;
7862 elsif Has_Discriminants (Parent_Type) then
7864 -- Build partial view of derived type from partial view of parent.
7865 -- This must be done before building the full derivation because the
7866 -- second derivation will modify the discriminants of the first and
7867 -- the discriminants are chained with the rest of the components in
7868 -- the full derivation.
7870 Build_Derived_Record_Type
7871 (N, Parent_Type, Derived_Type, Derive_Subps);
7873 -- Build the full derivation if this is not the anonymous derived
7874 -- base type created by Build_Derived_Record_Type in the constrained
7875 -- case (see point 5. of its head comment) since we build it for the
7876 -- derived subtype. And skip it for synchronized types altogether, as
7877 -- gigi does not use these types directly.
7879 if Present (Full_View (Parent_Type))
7880 and then not Is_Itype (Derived_Type)
7881 and then not Is_Concurrent_Type (Full_View (Parent_Type))
7882 then
7883 declare
7884 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7885 Discr : Entity_Id;
7886 Last_Discr : Entity_Id;
7888 begin
7889 -- If this is not a completion, construct the implicit full
7890 -- view by deriving from the full view of the parent type.
7891 -- But if this is a completion, the derived private type
7892 -- being built is a full view and the full derivation can
7893 -- only be its underlying full view.
7895 Build_Full_Derivation;
7897 if not Is_Completion then
7898 Set_Full_View (Derived_Type, Full_Der);
7899 else
7900 Set_Underlying_Full_View (Derived_Type, Full_Der);
7901 Set_Is_Underlying_Full_View (Full_Der);
7902 end if;
7904 if not Is_Base_Type (Derived_Type) then
7905 Set_Full_View (Der_Base, Base_Type (Full_Der));
7906 end if;
7908 -- Copy the discriminant list from full view to the partial
7909 -- view (base type and its subtype). Gigi requires that the
7910 -- partial and full views have the same discriminants.
7912 -- Note that since the partial view points to discriminants
7913 -- in the full view, their scope will be that of the full
7914 -- view. This might cause some front end problems and need
7915 -- adjustment???
7917 Discr := First_Discriminant (Base_Type (Full_Der));
7918 Set_First_Entity (Der_Base, Discr);
7920 loop
7921 Last_Discr := Discr;
7922 Next_Discriminant (Discr);
7923 exit when No (Discr);
7924 end loop;
7926 Set_Last_Entity (Der_Base, Last_Discr);
7927 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7928 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7929 end;
7930 end if;
7932 elsif Present (Full_View (Parent_Type))
7933 and then Has_Discriminants (Full_View (Parent_Type))
7934 then
7935 if Has_Unknown_Discriminants (Parent_Type)
7936 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7937 N_Subtype_Indication
7938 then
7939 Error_Msg_N
7940 ("cannot constrain type with unknown discriminants",
7941 Subtype_Indication (Type_Definition (N)));
7942 return;
7943 end if;
7945 -- If this is not a completion, construct the implicit full view by
7946 -- deriving from the full view of the parent type. But if this is a
7947 -- completion, the derived private type being built is a full view
7948 -- and the full derivation can only be its underlying full view.
7950 Build_Full_Derivation;
7952 if not Is_Completion then
7953 Set_Full_View (Derived_Type, Full_Der);
7954 else
7955 Set_Underlying_Full_View (Derived_Type, Full_Der);
7956 Set_Is_Underlying_Full_View (Full_Der);
7957 end if;
7959 -- In any case, the primitive operations are inherited from the
7960 -- parent type, not from the internal full view.
7962 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7964 if Derive_Subps then
7965 Derive_Subprograms (Parent_Type, Derived_Type);
7966 end if;
7968 Set_Stored_Constraint (Derived_Type, No_Elist);
7969 Set_Is_Constrained
7970 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7972 else
7973 -- Untagged type, No discriminants on either view
7975 if Nkind (Subtype_Indication (Type_Definition (N))) =
7976 N_Subtype_Indication
7977 then
7978 Error_Msg_N
7979 ("illegal constraint on type without discriminants", N);
7980 end if;
7982 if Present (Discriminant_Specifications (N))
7983 and then Present (Full_View (Parent_Type))
7984 and then not Is_Tagged_Type (Full_View (Parent_Type))
7985 then
7986 Error_Msg_N ("cannot add discriminants to untagged type", N);
7987 end if;
7989 Set_Stored_Constraint (Derived_Type, No_Elist);
7990 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7992 Set_Is_Controlled_Active
7993 (Derived_Type, Is_Controlled_Active (Parent_Type));
7995 Set_Disable_Controlled
7996 (Derived_Type, Disable_Controlled (Parent_Type));
7998 Set_Has_Controlled_Component
7999 (Derived_Type, Has_Controlled_Component (Parent_Type));
8001 -- Direct controlled types do not inherit Finalize_Storage_Only flag
8003 if not Is_Controlled (Parent_Type) then
8004 Set_Finalize_Storage_Only
8005 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
8006 end if;
8008 -- If this is not a completion, construct the implicit full view by
8009 -- deriving from the full view of the parent type.
8011 -- ??? If the parent is untagged private and its completion is
8012 -- tagged, this mechanism will not work because we cannot derive from
8013 -- the tagged full view unless we have an extension.
8015 if Present (Full_View (Parent_Type))
8016 and then not Is_Tagged_Type (Full_View (Parent_Type))
8017 and then not Is_Completion
8018 then
8019 Build_Full_Derivation;
8020 Set_Full_View (Derived_Type, Full_Der);
8021 end if;
8022 end if;
8024 Set_Has_Unknown_Discriminants (Derived_Type,
8025 Has_Unknown_Discriminants (Parent_Type));
8027 if Is_Private_Type (Derived_Type) then
8028 Set_Private_Dependents (Derived_Type, New_Elmt_List);
8029 end if;
8031 -- If the parent base type is in scope, add the derived type to its
8032 -- list of private dependents, because its full view may become
8033 -- visible subsequently (in a nested private part, a body, or in a
8034 -- further child unit).
8036 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
8037 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
8039 -- Check for unusual case where a type completed by a private
8040 -- derivation occurs within a package nested in a child unit, and
8041 -- the parent is declared in an ancestor.
8043 if Is_Child_Unit (Scope (Current_Scope))
8044 and then Is_Completion
8045 and then In_Private_Part (Current_Scope)
8046 and then Scope (Parent_Type) /= Current_Scope
8048 -- Note that if the parent has a completion in the private part,
8049 -- (which is itself a derivation from some other private type)
8050 -- it is that completion that is visible, there is no full view
8051 -- available, and no special processing is needed.
8053 and then Present (Full_View (Parent_Type))
8054 then
8055 -- In this case, the full view of the parent type will become
8056 -- visible in the body of the enclosing child, and only then will
8057 -- the current type be possibly non-private. Build an underlying
8058 -- full view that will be installed when the enclosing child body
8059 -- is compiled.
8061 if Present (Underlying_Full_View (Derived_Type)) then
8062 Full_Der := Underlying_Full_View (Derived_Type);
8063 else
8064 Build_Full_Derivation;
8065 Set_Underlying_Full_View (Derived_Type, Full_Der);
8066 Set_Is_Underlying_Full_View (Full_Der);
8067 end if;
8069 -- The full view will be used to swap entities on entry/exit to
8070 -- the body, and must appear in the entity list for the package.
8072 Append_Entity (Full_Der, Scope (Derived_Type));
8073 end if;
8074 end if;
8075 end Build_Derived_Private_Type;
8077 -------------------------------
8078 -- Build_Derived_Record_Type --
8079 -------------------------------
8081 -- 1. INTRODUCTION
8083 -- Ideally we would like to use the same model of type derivation for
8084 -- tagged and untagged record types. Unfortunately this is not quite
8085 -- possible because the semantics of representation clauses is different
8086 -- for tagged and untagged records under inheritance. Consider the
8087 -- following:
8089 -- type R (...) is [tagged] record ... end record;
8090 -- type T (...) is new R (...) [with ...];
8092 -- The representation clauses for T can specify a completely different
8093 -- record layout from R's. Hence the same component can be placed in two
8094 -- very different positions in objects of type T and R. If R and T are
8095 -- tagged types, representation clauses for T can only specify the layout
8096 -- of non inherited components, thus components that are common in R and T
8097 -- have the same position in objects of type R and T.
8099 -- This has two implications. The first is that the entire tree for R's
8100 -- declaration needs to be copied for T in the untagged case, so that T
8101 -- can be viewed as a record type of its own with its own representation
8102 -- clauses. The second implication is the way we handle discriminants.
8103 -- Specifically, in the untagged case we need a way to communicate to Gigi
8104 -- what are the real discriminants in the record, while for the semantics
8105 -- we need to consider those introduced by the user to rename the
8106 -- discriminants in the parent type. This is handled by introducing the
8107 -- notion of stored discriminants. See below for more.
8109 -- Fortunately the way regular components are inherited can be handled in
8110 -- the same way in tagged and untagged types.
8112 -- To complicate things a bit more the private view of a private extension
8113 -- cannot be handled in the same way as the full view (for one thing the
8114 -- semantic rules are somewhat different). We will explain what differs
8115 -- below.
8117 -- 2. DISCRIMINANTS UNDER INHERITANCE
8119 -- The semantic rules governing the discriminants of derived types are
8120 -- quite subtle.
8122 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
8123 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
8125 -- If parent type has discriminants, then the discriminants that are
8126 -- declared in the derived type are [3.4 (11)]:
8128 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
8129 -- there is one;
8131 -- o Otherwise, each discriminant of the parent type (implicitly declared
8132 -- in the same order with the same specifications). In this case, the
8133 -- discriminants are said to be "inherited", or if unknown in the parent
8134 -- are also unknown in the derived type.
8136 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8138 -- o The parent subtype must be constrained;
8140 -- o If the parent type is not a tagged type, then each discriminant of
8141 -- the derived type must be used in the constraint defining a parent
8142 -- subtype. [Implementation note: This ensures that the new discriminant
8143 -- can share storage with an existing discriminant.]
8145 -- For the derived type each discriminant of the parent type is either
8146 -- inherited, constrained to equal some new discriminant of the derived
8147 -- type, or constrained to the value of an expression.
8149 -- When inherited or constrained to equal some new discriminant, the
8150 -- parent discriminant and the discriminant of the derived type are said
8151 -- to "correspond".
8153 -- If a discriminant of the parent type is constrained to a specific value
8154 -- in the derived type definition, then the discriminant is said to be
8155 -- "specified" by that derived type definition.
8157 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8159 -- We have spoken about stored discriminants in point 1 (introduction)
8160 -- above. There are two sorts of stored discriminants: implicit and
8161 -- explicit. As long as the derived type inherits the same discriminants as
8162 -- the root record type, stored discriminants are the same as regular
8163 -- discriminants, and are said to be implicit. However, if any discriminant
8164 -- in the root type was renamed in the derived type, then the derived
8165 -- type will contain explicit stored discriminants. Explicit stored
8166 -- discriminants are discriminants in addition to the semantically visible
8167 -- discriminants defined for the derived type. Stored discriminants are
8168 -- used by Gigi to figure out what are the physical discriminants in
8169 -- objects of the derived type (see precise definition in einfo.ads).
8170 -- As an example, consider the following:
8172 -- type R (D1, D2, D3 : Int) is record ... end record;
8173 -- type T1 is new R;
8174 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8175 -- type T3 is new T2;
8176 -- type T4 (Y : Int) is new T3 (Y, 99);
8178 -- The following table summarizes the discriminants and stored
8179 -- discriminants in R and T1 through T4:
8181 -- Type Discrim Stored Discrim Comment
8182 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
8183 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
8184 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
8185 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
8186 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
8188 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8189 -- find the corresponding discriminant in the parent type, while
8190 -- Original_Record_Component (abbreviated ORC below) the actual physical
8191 -- component that is renamed. Finally the field Is_Completely_Hidden
8192 -- (abbreviated ICH below) is set for all explicit stored discriminants
8193 -- (see einfo.ads for more info). For the above example this gives:
8195 -- Discrim CD ORC ICH
8196 -- ^^^^^^^ ^^ ^^^ ^^^
8197 -- D1 in R empty itself no
8198 -- D2 in R empty itself no
8199 -- D3 in R empty itself no
8201 -- D1 in T1 D1 in R itself no
8202 -- D2 in T1 D2 in R itself no
8203 -- D3 in T1 D3 in R itself no
8205 -- X1 in T2 D3 in T1 D3 in T2 no
8206 -- X2 in T2 D1 in T1 D1 in T2 no
8207 -- D1 in T2 empty itself yes
8208 -- D2 in T2 empty itself yes
8209 -- D3 in T2 empty itself yes
8211 -- X1 in T3 X1 in T2 D3 in T3 no
8212 -- X2 in T3 X2 in T2 D1 in T3 no
8213 -- D1 in T3 empty itself yes
8214 -- D2 in T3 empty itself yes
8215 -- D3 in T3 empty itself yes
8217 -- Y in T4 X1 in T3 D3 in T4 no
8218 -- D1 in T4 empty itself yes
8219 -- D2 in T4 empty itself yes
8220 -- D3 in T4 empty itself yes
8222 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8224 -- Type derivation for tagged types is fairly straightforward. If no
8225 -- discriminants are specified by the derived type, these are inherited
8226 -- from the parent. No explicit stored discriminants are ever necessary.
8227 -- The only manipulation that is done to the tree is that of adding a
8228 -- _parent field with parent type and constrained to the same constraint
8229 -- specified for the parent in the derived type definition. For instance:
8231 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8232 -- type T1 is new R with null record;
8233 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8235 -- are changed into:
8237 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8238 -- _parent : R (D1, D2, D3);
8239 -- end record;
8241 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8242 -- _parent : T1 (X2, 88, X1);
8243 -- end record;
8245 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8246 -- ORC and ICH fields are:
8248 -- Discrim CD ORC ICH
8249 -- ^^^^^^^ ^^ ^^^ ^^^
8250 -- D1 in R empty itself no
8251 -- D2 in R empty itself no
8252 -- D3 in R empty itself no
8254 -- D1 in T1 D1 in R D1 in R no
8255 -- D2 in T1 D2 in R D2 in R no
8256 -- D3 in T1 D3 in R D3 in R no
8258 -- X1 in T2 D3 in T1 D3 in R no
8259 -- X2 in T2 D1 in T1 D1 in R no
8261 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8263 -- Regardless of whether we dealing with a tagged or untagged type
8264 -- we will transform all derived type declarations of the form
8266 -- type T is new R (...) [with ...];
8267 -- or
8268 -- subtype S is R (...);
8269 -- type T is new S [with ...];
8270 -- into
8271 -- type BT is new R [with ...];
8272 -- subtype T is BT (...);
8274 -- That is, the base derived type is constrained only if it has no
8275 -- discriminants. The reason for doing this is that GNAT's semantic model
8276 -- assumes that a base type with discriminants is unconstrained.
8278 -- Note that, strictly speaking, the above transformation is not always
8279 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8281 -- procedure B34011A is
8282 -- type REC (D : integer := 0) is record
8283 -- I : Integer;
8284 -- end record;
8286 -- package P is
8287 -- type T6 is new Rec;
8288 -- function F return T6;
8289 -- end P;
8291 -- use P;
8292 -- package Q6 is
8293 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8294 -- end Q6;
8296 -- The definition of Q6.U is illegal. However transforming Q6.U into
8298 -- type BaseU is new T6;
8299 -- subtype U is BaseU (Q6.F.I)
8301 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8302 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8303 -- the transformation described above.
8305 -- There is another instance where the above transformation is incorrect.
8306 -- Consider:
8308 -- package Pack is
8309 -- type Base (D : Integer) is tagged null record;
8310 -- procedure P (X : Base);
8312 -- type Der is new Base (2) with null record;
8313 -- procedure P (X : Der);
8314 -- end Pack;
8316 -- Then the above transformation turns this into
8318 -- type Der_Base is new Base with null record;
8319 -- -- procedure P (X : Base) is implicitly inherited here
8320 -- -- as procedure P (X : Der_Base).
8322 -- subtype Der is Der_Base (2);
8323 -- procedure P (X : Der);
8324 -- -- The overriding of P (X : Der_Base) is illegal since we
8325 -- -- have a parameter conformance problem.
8327 -- To get around this problem, after having semantically processed Der_Base
8328 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8329 -- Discriminant_Constraint from Der so that when parameter conformance is
8330 -- checked when P is overridden, no semantic errors are flagged.
8332 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8334 -- Regardless of whether we are dealing with a tagged or untagged type
8335 -- we will transform all derived type declarations of the form
8337 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8338 -- type T is new R [with ...];
8339 -- into
8340 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8342 -- The reason for such transformation is that it allows us to implement a
8343 -- very clean form of component inheritance as explained below.
8345 -- Note that this transformation is not achieved by direct tree rewriting
8346 -- and manipulation, but rather by redoing the semantic actions that the
8347 -- above transformation will entail. This is done directly in routine
8348 -- Inherit_Components.
8350 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8352 -- In both tagged and untagged derived types, regular non discriminant
8353 -- components are inherited in the derived type from the parent type. In
8354 -- the absence of discriminants component, inheritance is straightforward
8355 -- as components can simply be copied from the parent.
8357 -- If the parent has discriminants, inheriting components constrained with
8358 -- these discriminants requires caution. Consider the following example:
8360 -- type R (D1, D2 : Positive) is [tagged] record
8361 -- S : String (D1 .. D2);
8362 -- end record;
8364 -- type T1 is new R [with null record];
8365 -- type T2 (X : positive) is new R (1, X) [with null record];
8367 -- As explained in 6. above, T1 is rewritten as
8368 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8369 -- which makes the treatment for T1 and T2 identical.
8371 -- What we want when inheriting S, is that references to D1 and D2 in R are
8372 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8373 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8374 -- with either discriminant references in the derived type or expressions.
8375 -- This replacement is achieved as follows: before inheriting R's
8376 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8377 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8378 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8379 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8380 -- by String (1 .. X).
8382 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8384 -- We explain here the rules governing private type extensions relevant to
8385 -- type derivation. These rules are explained on the following example:
8387 -- type D [(...)] is new A [(...)] with private; <-- partial view
8388 -- type D [(...)] is new P [(...)] with null record; <-- full view
8390 -- Type A is called the ancestor subtype of the private extension.
8391 -- Type P is the parent type of the full view of the private extension. It
8392 -- must be A or a type derived from A.
8394 -- The rules concerning the discriminants of private type extensions are
8395 -- [7.3(10-13)]:
8397 -- o If a private extension inherits known discriminants from the ancestor
8398 -- subtype, then the full view must also inherit its discriminants from
8399 -- the ancestor subtype and the parent subtype of the full view must be
8400 -- constrained if and only if the ancestor subtype is constrained.
8402 -- o If a partial view has unknown discriminants, then the full view may
8403 -- define a definite or an indefinite subtype, with or without
8404 -- discriminants.
8406 -- o If a partial view has neither known nor unknown discriminants, then
8407 -- the full view must define a definite subtype.
8409 -- o If the ancestor subtype of a private extension has constrained
8410 -- discriminants, then the parent subtype of the full view must impose a
8411 -- statically matching constraint on those discriminants.
8413 -- This means that only the following forms of private extensions are
8414 -- allowed:
8416 -- type D is new A with private; <-- partial view
8417 -- type D is new P with null record; <-- full view
8419 -- If A has no discriminants than P has no discriminants, otherwise P must
8420 -- inherit A's discriminants.
8422 -- type D is new A (...) with private; <-- partial view
8423 -- type D is new P (:::) with null record; <-- full view
8425 -- P must inherit A's discriminants and (...) and (:::) must statically
8426 -- match.
8428 -- subtype A is R (...);
8429 -- type D is new A with private; <-- partial view
8430 -- type D is new P with null record; <-- full view
8432 -- P must have inherited R's discriminants and must be derived from A or
8433 -- any of its subtypes.
8435 -- type D (..) is new A with private; <-- partial view
8436 -- type D (..) is new P [(:::)] with null record; <-- full view
8438 -- No specific constraints on P's discriminants or constraint (:::).
8439 -- Note that A can be unconstrained, but the parent subtype P must either
8440 -- be constrained or (:::) must be present.
8442 -- type D (..) is new A [(...)] with private; <-- partial view
8443 -- type D (..) is new P [(:::)] with null record; <-- full view
8445 -- P's constraints on A's discriminants must statically match those
8446 -- imposed by (...).
8448 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8450 -- The full view of a private extension is handled exactly as described
8451 -- above. The model chose for the private view of a private extension is
8452 -- the same for what concerns discriminants (i.e. they receive the same
8453 -- treatment as in the tagged case). However, the private view of the
8454 -- private extension always inherits the components of the parent base,
8455 -- without replacing any discriminant reference. Strictly speaking this is
8456 -- incorrect. However, Gigi never uses this view to generate code so this
8457 -- is a purely semantic issue. In theory, a set of transformations similar
8458 -- to those given in 5. and 6. above could be applied to private views of
8459 -- private extensions to have the same model of component inheritance as
8460 -- for non private extensions. However, this is not done because it would
8461 -- further complicate private type processing. Semantically speaking, this
8462 -- leaves us in an uncomfortable situation. As an example consider:
8464 -- package Pack is
8465 -- type R (D : integer) is tagged record
8466 -- S : String (1 .. D);
8467 -- end record;
8468 -- procedure P (X : R);
8469 -- type T is new R (1) with private;
8470 -- private
8471 -- type T is new R (1) with null record;
8472 -- end;
8474 -- This is transformed into:
8476 -- package Pack is
8477 -- type R (D : integer) is tagged record
8478 -- S : String (1 .. D);
8479 -- end record;
8480 -- procedure P (X : R);
8481 -- type T is new R (1) with private;
8482 -- private
8483 -- type BaseT is new R with null record;
8484 -- subtype T is BaseT (1);
8485 -- end;
8487 -- (strictly speaking the above is incorrect Ada)
8489 -- From the semantic standpoint the private view of private extension T
8490 -- should be flagged as constrained since one can clearly have
8492 -- Obj : T;
8494 -- in a unit withing Pack. However, when deriving subprograms for the
8495 -- private view of private extension T, T must be seen as unconstrained
8496 -- since T has discriminants (this is a constraint of the current
8497 -- subprogram derivation model). Thus, when processing the private view of
8498 -- a private extension such as T, we first mark T as unconstrained, we
8499 -- process it, we perform program derivation and just before returning from
8500 -- Build_Derived_Record_Type we mark T as constrained.
8502 -- ??? Are there are other uncomfortable cases that we will have to
8503 -- deal with.
8505 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8507 -- Types that are derived from a visible record type and have a private
8508 -- extension present other peculiarities. They behave mostly like private
8509 -- types, but if they have primitive operations defined, these will not
8510 -- have the proper signatures for further inheritance, because other
8511 -- primitive operations will use the implicit base that we define for
8512 -- private derivations below. This affect subprogram inheritance (see
8513 -- Derive_Subprograms for details). We also derive the implicit base from
8514 -- the base type of the full view, so that the implicit base is a record
8515 -- type and not another private type, This avoids infinite loops.
8517 procedure Build_Derived_Record_Type
8518 (N : Node_Id;
8519 Parent_Type : Entity_Id;
8520 Derived_Type : Entity_Id;
8521 Derive_Subps : Boolean := True)
8523 Discriminant_Specs : constant Boolean :=
8524 Present (Discriminant_Specifications (N));
8525 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
8526 Loc : constant Source_Ptr := Sloc (N);
8527 Private_Extension : constant Boolean :=
8528 Nkind (N) = N_Private_Extension_Declaration;
8529 Assoc_List : Elist_Id;
8530 Constraint_Present : Boolean;
8531 Constrs : Elist_Id;
8532 Discrim : Entity_Id;
8533 Indic : Node_Id;
8534 Inherit_Discrims : Boolean := False;
8535 Last_Discrim : Entity_Id;
8536 New_Base : Entity_Id;
8537 New_Decl : Node_Id;
8538 New_Discrs : Elist_Id;
8539 New_Indic : Node_Id;
8540 Parent_Base : Entity_Id;
8541 Save_Etype : Entity_Id;
8542 Save_Discr_Constr : Elist_Id;
8543 Save_Next_Entity : Entity_Id;
8544 Type_Def : Node_Id;
8546 Discs : Elist_Id := New_Elmt_List;
8547 -- An empty Discs list means that there were no constraints in the
8548 -- subtype indication or that there was an error processing it.
8550 begin
8551 if Ekind (Parent_Type) = E_Record_Type_With_Private
8552 and then Present (Full_View (Parent_Type))
8553 and then Has_Discriminants (Parent_Type)
8554 then
8555 Parent_Base := Base_Type (Full_View (Parent_Type));
8556 else
8557 Parent_Base := Base_Type (Parent_Type);
8558 end if;
8560 -- AI05-0115: if this is a derivation from a private type in some
8561 -- other scope that may lead to invisible components for the derived
8562 -- type, mark it accordingly.
8564 if Is_Private_Type (Parent_Type) then
8565 if Scope (Parent_Base) = Scope (Derived_Type) then
8566 null;
8568 elsif In_Open_Scopes (Scope (Parent_Base))
8569 and then In_Private_Part (Scope (Parent_Base))
8570 then
8571 null;
8573 else
8574 Set_Has_Private_Ancestor (Derived_Type);
8575 end if;
8577 else
8578 Set_Has_Private_Ancestor
8579 (Derived_Type, Has_Private_Ancestor (Parent_Type));
8580 end if;
8582 -- Before we start the previously documented transformations, here is
8583 -- little fix for size and alignment of tagged types. Normally when we
8584 -- derive type D from type P, we copy the size and alignment of P as the
8585 -- default for D, and in the absence of explicit representation clauses
8586 -- for D, the size and alignment are indeed the same as the parent.
8588 -- But this is wrong for tagged types, since fields may be added, and
8589 -- the default size may need to be larger, and the default alignment may
8590 -- need to be larger.
8592 -- We therefore reset the size and alignment fields in the tagged case.
8593 -- Note that the size and alignment will in any case be at least as
8594 -- large as the parent type (since the derived type has a copy of the
8595 -- parent type in the _parent field)
8597 -- The type is also marked as being tagged here, which is needed when
8598 -- processing components with a self-referential anonymous access type
8599 -- in the call to Check_Anonymous_Access_Components below. Note that
8600 -- this flag is also set later on for completeness.
8602 if Is_Tagged then
8603 Set_Is_Tagged_Type (Derived_Type);
8604 Init_Size_Align (Derived_Type);
8605 end if;
8607 -- STEP 0a: figure out what kind of derived type declaration we have
8609 if Private_Extension then
8610 Type_Def := N;
8611 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
8612 Set_Default_SSO (Derived_Type);
8613 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8615 else
8616 Type_Def := Type_Definition (N);
8618 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8619 -- Parent_Base can be a private type or private extension. However,
8620 -- for tagged types with an extension the newly added fields are
8621 -- visible and hence the Derived_Type is always an E_Record_Type.
8622 -- (except that the parent may have its own private fields).
8623 -- For untagged types we preserve the Ekind of the Parent_Base.
8625 if Present (Record_Extension_Part (Type_Def)) then
8626 Set_Ekind (Derived_Type, E_Record_Type);
8627 Set_Default_SSO (Derived_Type);
8628 Set_No_Reordering (Derived_Type, No_Component_Reordering);
8630 -- Create internal access types for components with anonymous
8631 -- access types.
8633 if Ada_Version >= Ada_2005 then
8634 Check_Anonymous_Access_Components
8635 (N, Derived_Type, Derived_Type,
8636 Component_List (Record_Extension_Part (Type_Def)));
8637 end if;
8639 else
8640 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8641 end if;
8642 end if;
8644 -- Indic can either be an N_Identifier if the subtype indication
8645 -- contains no constraint or an N_Subtype_Indication if the subtype
8646 -- indication has a constraint.
8648 Indic := Subtype_Indication (Type_Def);
8649 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
8651 -- Check that the type has visible discriminants. The type may be
8652 -- a private type with unknown discriminants whose full view has
8653 -- discriminants which are invisible.
8655 if Constraint_Present then
8656 if not Has_Discriminants (Parent_Base)
8657 or else
8658 (Has_Unknown_Discriminants (Parent_Base)
8659 and then Is_Private_Type (Parent_Base))
8660 then
8661 Error_Msg_N
8662 ("invalid constraint: type has no discriminant",
8663 Constraint (Indic));
8665 Constraint_Present := False;
8666 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8668 elsif Is_Constrained (Parent_Type) then
8669 Error_Msg_N
8670 ("invalid constraint: parent type is already constrained",
8671 Constraint (Indic));
8673 Constraint_Present := False;
8674 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8675 end if;
8676 end if;
8678 -- STEP 0b: If needed, apply transformation given in point 5. above
8680 if not Private_Extension
8681 and then Has_Discriminants (Parent_Type)
8682 and then not Discriminant_Specs
8683 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8684 then
8685 -- First, we must analyze the constraint (see comment in point 5.)
8686 -- The constraint may come from the subtype indication of the full
8687 -- declaration.
8689 if Constraint_Present then
8690 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8692 -- If there is no explicit constraint, there might be one that is
8693 -- inherited from a constrained parent type. In that case verify that
8694 -- it conforms to the constraint in the partial view. In perverse
8695 -- cases the parent subtypes of the partial and full view can have
8696 -- different constraints.
8698 elsif Present (Stored_Constraint (Parent_Type)) then
8699 New_Discrs := Stored_Constraint (Parent_Type);
8701 else
8702 New_Discrs := No_Elist;
8703 end if;
8705 if Has_Discriminants (Derived_Type)
8706 and then Has_Private_Declaration (Derived_Type)
8707 and then Present (Discriminant_Constraint (Derived_Type))
8708 and then Present (New_Discrs)
8709 then
8710 -- Verify that constraints of the full view statically match
8711 -- those given in the partial view.
8713 declare
8714 C1, C2 : Elmt_Id;
8716 begin
8717 C1 := First_Elmt (New_Discrs);
8718 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8719 while Present (C1) and then Present (C2) loop
8720 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8721 or else
8722 (Is_OK_Static_Expression (Node (C1))
8723 and then Is_OK_Static_Expression (Node (C2))
8724 and then
8725 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8726 then
8727 null;
8729 else
8730 if Constraint_Present then
8731 Error_Msg_N
8732 ("constraint not conformant to previous declaration",
8733 Node (C1));
8734 else
8735 Error_Msg_N
8736 ("constraint of full view is incompatible "
8737 & "with partial view", N);
8738 end if;
8739 end if;
8741 Next_Elmt (C1);
8742 Next_Elmt (C2);
8743 end loop;
8744 end;
8745 end if;
8747 -- Insert and analyze the declaration for the unconstrained base type
8749 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8751 New_Decl :=
8752 Make_Full_Type_Declaration (Loc,
8753 Defining_Identifier => New_Base,
8754 Type_Definition =>
8755 Make_Derived_Type_Definition (Loc,
8756 Abstract_Present => Abstract_Present (Type_Def),
8757 Limited_Present => Limited_Present (Type_Def),
8758 Subtype_Indication =>
8759 New_Occurrence_Of (Parent_Base, Loc),
8760 Record_Extension_Part =>
8761 Relocate_Node (Record_Extension_Part (Type_Def)),
8762 Interface_List => Interface_List (Type_Def)));
8764 Set_Parent (New_Decl, Parent (N));
8765 Mark_Rewrite_Insertion (New_Decl);
8766 Insert_Before (N, New_Decl);
8768 -- In the extension case, make sure ancestor is frozen appropriately
8769 -- (see also non-discriminated case below).
8771 if Present (Record_Extension_Part (Type_Def))
8772 or else Is_Interface (Parent_Base)
8773 then
8774 Freeze_Before (New_Decl, Parent_Type);
8775 end if;
8777 -- Note that this call passes False for the Derive_Subps parameter
8778 -- because subprogram derivation is deferred until after creating
8779 -- the subtype (see below).
8781 Build_Derived_Type
8782 (New_Decl, Parent_Base, New_Base,
8783 Is_Completion => False, Derive_Subps => False);
8785 -- ??? This needs re-examination to determine whether the
8786 -- above call can simply be replaced by a call to Analyze.
8788 Set_Analyzed (New_Decl);
8790 -- Insert and analyze the declaration for the constrained subtype
8792 if Constraint_Present then
8793 New_Indic :=
8794 Make_Subtype_Indication (Loc,
8795 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8796 Constraint => Relocate_Node (Constraint (Indic)));
8798 else
8799 declare
8800 Constr_List : constant List_Id := New_List;
8801 C : Elmt_Id;
8802 Expr : Node_Id;
8804 begin
8805 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8806 while Present (C) loop
8807 Expr := Node (C);
8809 -- It is safe here to call New_Copy_Tree since we called
8810 -- Force_Evaluation on each constraint previously
8811 -- in Build_Discriminant_Constraints.
8813 Append (New_Copy_Tree (Expr), To => Constr_List);
8815 Next_Elmt (C);
8816 end loop;
8818 New_Indic :=
8819 Make_Subtype_Indication (Loc,
8820 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8821 Constraint =>
8822 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8823 end;
8824 end if;
8826 Rewrite (N,
8827 Make_Subtype_Declaration (Loc,
8828 Defining_Identifier => Derived_Type,
8829 Subtype_Indication => New_Indic));
8831 Analyze (N);
8833 -- Derivation of subprograms must be delayed until the full subtype
8834 -- has been established, to ensure proper overriding of subprograms
8835 -- inherited by full types. If the derivations occurred as part of
8836 -- the call to Build_Derived_Type above, then the check for type
8837 -- conformance would fail because earlier primitive subprograms
8838 -- could still refer to the full type prior the change to the new
8839 -- subtype and hence would not match the new base type created here.
8840 -- Subprograms are not derived, however, when Derive_Subps is False
8841 -- (since otherwise there could be redundant derivations).
8843 if Derive_Subps then
8844 Derive_Subprograms (Parent_Type, Derived_Type);
8845 end if;
8847 -- For tagged types the Discriminant_Constraint of the new base itype
8848 -- is inherited from the first subtype so that no subtype conformance
8849 -- problem arise when the first subtype overrides primitive
8850 -- operations inherited by the implicit base type.
8852 if Is_Tagged then
8853 Set_Discriminant_Constraint
8854 (New_Base, Discriminant_Constraint (Derived_Type));
8855 end if;
8857 return;
8858 end if;
8860 -- If we get here Derived_Type will have no discriminants or it will be
8861 -- a discriminated unconstrained base type.
8863 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8865 if Is_Tagged then
8867 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8868 -- The declaration of a specific descendant of an interface type
8869 -- freezes the interface type (RM 13.14).
8871 if not Private_Extension or else Is_Interface (Parent_Base) then
8872 Freeze_Before (N, Parent_Type);
8873 end if;
8875 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8876 -- cannot be declared at a deeper level than its parent type is
8877 -- removed. The check on derivation within a generic body is also
8878 -- relaxed, but there's a restriction that a derived tagged type
8879 -- cannot be declared in a generic body if it's derived directly
8880 -- or indirectly from a formal type of that generic.
8882 if Ada_Version >= Ada_2005 then
8883 if Present (Enclosing_Generic_Body (Derived_Type)) then
8884 declare
8885 Ancestor_Type : Entity_Id;
8887 begin
8888 -- Check to see if any ancestor of the derived type is a
8889 -- formal type.
8891 Ancestor_Type := Parent_Type;
8892 while not Is_Generic_Type (Ancestor_Type)
8893 and then Etype (Ancestor_Type) /= Ancestor_Type
8894 loop
8895 Ancestor_Type := Etype (Ancestor_Type);
8896 end loop;
8898 -- If the derived type does have a formal type as an
8899 -- ancestor, then it's an error if the derived type is
8900 -- declared within the body of the generic unit that
8901 -- declares the formal type in its generic formal part. It's
8902 -- sufficient to check whether the ancestor type is declared
8903 -- inside the same generic body as the derived type (such as
8904 -- within a nested generic spec), in which case the
8905 -- derivation is legal. If the formal type is declared
8906 -- outside of that generic body, then it's guaranteed that
8907 -- the derived type is declared within the generic body of
8908 -- the generic unit declaring the formal type.
8910 if Is_Generic_Type (Ancestor_Type)
8911 and then Enclosing_Generic_Body (Ancestor_Type) /=
8912 Enclosing_Generic_Body (Derived_Type)
8913 then
8914 Error_Msg_NE
8915 ("parent type of& must not be descendant of formal type"
8916 & " of an enclosing generic body",
8917 Indic, Derived_Type);
8918 end if;
8919 end;
8920 end if;
8922 elsif Type_Access_Level (Derived_Type) /=
8923 Type_Access_Level (Parent_Type)
8924 and then not Is_Generic_Type (Derived_Type)
8925 then
8926 if Is_Controlled (Parent_Type) then
8927 Error_Msg_N
8928 ("controlled type must be declared at the library level",
8929 Indic);
8930 else
8931 Error_Msg_N
8932 ("type extension at deeper accessibility level than parent",
8933 Indic);
8934 end if;
8936 else
8937 declare
8938 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8939 begin
8940 if Present (GB)
8941 and then GB /= Enclosing_Generic_Body (Parent_Base)
8942 then
8943 Error_Msg_NE
8944 ("parent type of& must not be outside generic body"
8945 & " (RM 3.9.1(4))",
8946 Indic, Derived_Type);
8947 end if;
8948 end;
8949 end if;
8950 end if;
8952 -- Ada 2005 (AI-251)
8954 if Ada_Version >= Ada_2005 and then Is_Tagged then
8956 -- "The declaration of a specific descendant of an interface type
8957 -- freezes the interface type" (RM 13.14).
8959 declare
8960 Iface : Node_Id;
8961 begin
8962 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8963 Iface := First (Interface_List (Type_Def));
8964 while Present (Iface) loop
8965 Freeze_Before (N, Etype (Iface));
8966 Next (Iface);
8967 end loop;
8968 end if;
8969 end;
8970 end if;
8972 -- STEP 1b : preliminary cleanup of the full view of private types
8974 -- If the type is already marked as having discriminants, then it's the
8975 -- completion of a private type or private extension and we need to
8976 -- retain the discriminants from the partial view if the current
8977 -- declaration has Discriminant_Specifications so that we can verify
8978 -- conformance. However, we must remove any existing components that
8979 -- were inherited from the parent (and attached in Copy_And_Swap)
8980 -- because the full type inherits all appropriate components anyway, and
8981 -- we do not want the partial view's components interfering.
8983 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8984 Discrim := First_Discriminant (Derived_Type);
8985 loop
8986 Last_Discrim := Discrim;
8987 Next_Discriminant (Discrim);
8988 exit when No (Discrim);
8989 end loop;
8991 Set_Last_Entity (Derived_Type, Last_Discrim);
8993 -- In all other cases wipe out the list of inherited components (even
8994 -- inherited discriminants), it will be properly rebuilt here.
8996 else
8997 Set_First_Entity (Derived_Type, Empty);
8998 Set_Last_Entity (Derived_Type, Empty);
8999 end if;
9001 -- STEP 1c: Initialize some flags for the Derived_Type
9003 -- The following flags must be initialized here so that
9004 -- Process_Discriminants can check that discriminants of tagged types do
9005 -- not have a default initial value and that access discriminants are
9006 -- only specified for limited records. For completeness, these flags are
9007 -- also initialized along with all the other flags below.
9009 -- AI-419: Limitedness is not inherited from an interface parent, so to
9010 -- be limited in that case the type must be explicitly declared as
9011 -- limited. However, task and protected interfaces are always limited.
9013 if Limited_Present (Type_Def) then
9014 Set_Is_Limited_Record (Derived_Type);
9016 elsif Is_Limited_Record (Parent_Type)
9017 or else (Present (Full_View (Parent_Type))
9018 and then Is_Limited_Record (Full_View (Parent_Type)))
9019 then
9020 if not Is_Interface (Parent_Type)
9021 or else Is_Synchronized_Interface (Parent_Type)
9022 or else Is_Protected_Interface (Parent_Type)
9023 or else Is_Task_Interface (Parent_Type)
9024 then
9025 Set_Is_Limited_Record (Derived_Type);
9026 end if;
9027 end if;
9029 -- STEP 2a: process discriminants of derived type if any
9031 Push_Scope (Derived_Type);
9033 if Discriminant_Specs then
9034 Set_Has_Unknown_Discriminants (Derived_Type, False);
9036 -- The following call initializes fields Has_Discriminants and
9037 -- Discriminant_Constraint, unless we are processing the completion
9038 -- of a private type declaration.
9040 Check_Or_Process_Discriminants (N, Derived_Type);
9042 -- For untagged types, the constraint on the Parent_Type must be
9043 -- present and is used to rename the discriminants.
9045 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
9046 Error_Msg_N ("untagged parent must have discriminants", Indic);
9048 elsif not Is_Tagged and then not Constraint_Present then
9049 Error_Msg_N
9050 ("discriminant constraint needed for derived untagged records",
9051 Indic);
9053 -- Otherwise the parent subtype must be constrained unless we have a
9054 -- private extension.
9056 elsif not Constraint_Present
9057 and then not Private_Extension
9058 and then not Is_Constrained (Parent_Type)
9059 then
9060 Error_Msg_N
9061 ("unconstrained type not allowed in this context", Indic);
9063 elsif Constraint_Present then
9064 -- The following call sets the field Corresponding_Discriminant
9065 -- for the discriminants in the Derived_Type.
9067 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
9069 -- For untagged types all new discriminants must rename
9070 -- discriminants in the parent. For private extensions new
9071 -- discriminants cannot rename old ones (implied by [7.3(13)]).
9073 Discrim := First_Discriminant (Derived_Type);
9074 while Present (Discrim) loop
9075 if not Is_Tagged
9076 and then No (Corresponding_Discriminant (Discrim))
9077 then
9078 Error_Msg_N
9079 ("new discriminants must constrain old ones", Discrim);
9081 elsif Private_Extension
9082 and then Present (Corresponding_Discriminant (Discrim))
9083 then
9084 Error_Msg_N
9085 ("only static constraints allowed for parent"
9086 & " discriminants in the partial view", Indic);
9087 exit;
9088 end if;
9090 -- If a new discriminant is used in the constraint, then its
9091 -- subtype must be statically compatible with the parent
9092 -- discriminant's subtype (3.7(15)).
9094 -- However, if the record contains an array constrained by
9095 -- the discriminant but with some different bound, the compiler
9096 -- tries to create a smaller range for the discriminant type.
9097 -- (See exp_ch3.Adjust_Discriminants). In this case, where
9098 -- the discriminant type is a scalar type, the check must use
9099 -- the original discriminant type in the parent declaration.
9101 declare
9102 Corr_Disc : constant Entity_Id :=
9103 Corresponding_Discriminant (Discrim);
9104 Disc_Type : constant Entity_Id := Etype (Discrim);
9105 Corr_Type : Entity_Id;
9107 begin
9108 if Present (Corr_Disc) then
9109 if Is_Scalar_Type (Disc_Type) then
9110 Corr_Type :=
9111 Entity (Discriminant_Type (Parent (Corr_Disc)));
9112 else
9113 Corr_Type := Etype (Corr_Disc);
9114 end if;
9116 if not
9117 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
9118 then
9119 Error_Msg_N
9120 ("subtype must be compatible "
9121 & "with parent discriminant",
9122 Discrim);
9123 end if;
9124 end if;
9125 end;
9127 Next_Discriminant (Discrim);
9128 end loop;
9130 -- Check whether the constraints of the full view statically
9131 -- match those imposed by the parent subtype [7.3(13)].
9133 if Present (Stored_Constraint (Derived_Type)) then
9134 declare
9135 C1, C2 : Elmt_Id;
9137 begin
9138 C1 := First_Elmt (Discs);
9139 C2 := First_Elmt (Stored_Constraint (Derived_Type));
9140 while Present (C1) and then Present (C2) loop
9141 if not
9142 Fully_Conformant_Expressions (Node (C1), Node (C2))
9143 then
9144 Error_Msg_N
9145 ("not conformant with previous declaration",
9146 Node (C1));
9147 end if;
9149 Next_Elmt (C1);
9150 Next_Elmt (C2);
9151 end loop;
9152 end;
9153 end if;
9154 end if;
9156 -- STEP 2b: No new discriminants, inherit discriminants if any
9158 else
9159 if Private_Extension then
9160 Set_Has_Unknown_Discriminants
9161 (Derived_Type,
9162 Has_Unknown_Discriminants (Parent_Type)
9163 or else Unknown_Discriminants_Present (N));
9165 -- The partial view of the parent may have unknown discriminants,
9166 -- but if the full view has discriminants and the parent type is
9167 -- in scope they must be inherited.
9169 elsif Has_Unknown_Discriminants (Parent_Type)
9170 and then
9171 (not Has_Discriminants (Parent_Type)
9172 or else not In_Open_Scopes (Scope (Parent_Base)))
9173 then
9174 Set_Has_Unknown_Discriminants (Derived_Type);
9175 end if;
9177 if not Has_Unknown_Discriminants (Derived_Type)
9178 and then not Has_Unknown_Discriminants (Parent_Base)
9179 and then Has_Discriminants (Parent_Type)
9180 then
9181 Inherit_Discrims := True;
9182 Set_Has_Discriminants
9183 (Derived_Type, True);
9184 Set_Discriminant_Constraint
9185 (Derived_Type, Discriminant_Constraint (Parent_Base));
9186 end if;
9188 -- The following test is true for private types (remember
9189 -- transformation 5. is not applied to those) and in an error
9190 -- situation.
9192 if Constraint_Present then
9193 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
9194 end if;
9196 -- For now mark a new derived type as constrained only if it has no
9197 -- discriminants. At the end of Build_Derived_Record_Type we properly
9198 -- set this flag in the case of private extensions. See comments in
9199 -- point 9. just before body of Build_Derived_Record_Type.
9201 Set_Is_Constrained
9202 (Derived_Type,
9203 not (Inherit_Discrims
9204 or else Has_Unknown_Discriminants (Derived_Type)));
9205 end if;
9207 -- STEP 3: initialize fields of derived type
9209 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
9210 Set_Stored_Constraint (Derived_Type, No_Elist);
9212 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9213 -- but cannot be interfaces
9215 if not Private_Extension
9216 and then Ekind (Derived_Type) /= E_Private_Type
9217 and then Ekind (Derived_Type) /= E_Limited_Private_Type
9218 then
9219 if Interface_Present (Type_Def) then
9220 Analyze_Interface_Declaration (Derived_Type, Type_Def);
9221 end if;
9223 Set_Interfaces (Derived_Type, No_Elist);
9224 end if;
9226 -- Fields inherited from the Parent_Type
9228 Set_Has_Specified_Layout
9229 (Derived_Type, Has_Specified_Layout (Parent_Type));
9230 Set_Is_Limited_Composite
9231 (Derived_Type, Is_Limited_Composite (Parent_Type));
9232 Set_Is_Private_Composite
9233 (Derived_Type, Is_Private_Composite (Parent_Type));
9235 if Is_Tagged_Type (Parent_Type) then
9236 Set_No_Tagged_Streams_Pragma
9237 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9238 end if;
9240 -- Fields inherited from the Parent_Base
9242 Set_Has_Controlled_Component
9243 (Derived_Type, Has_Controlled_Component (Parent_Base));
9244 Set_Has_Non_Standard_Rep
9245 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9246 Set_Has_Primitive_Operations
9247 (Derived_Type, Has_Primitive_Operations (Parent_Base));
9249 -- Set fields for private derived types
9251 if Is_Private_Type (Derived_Type) then
9252 Set_Depends_On_Private (Derived_Type, True);
9253 Set_Private_Dependents (Derived_Type, New_Elmt_List);
9254 end if;
9256 -- Inherit fields for non-private types. If this is the completion of a
9257 -- derivation from a private type, the parent itself is private and the
9258 -- attributes come from its full view, which must be present.
9260 if Is_Record_Type (Derived_Type) then
9261 declare
9262 Parent_Full : Entity_Id;
9264 begin
9265 if Is_Private_Type (Parent_Base)
9266 and then not Is_Record_Type (Parent_Base)
9267 then
9268 Parent_Full := Full_View (Parent_Base);
9269 else
9270 Parent_Full := Parent_Base;
9271 end if;
9273 Set_Component_Alignment
9274 (Derived_Type, Component_Alignment (Parent_Full));
9275 Set_C_Pass_By_Copy
9276 (Derived_Type, C_Pass_By_Copy (Parent_Full));
9277 Set_Has_Complex_Representation
9278 (Derived_Type, Has_Complex_Representation (Parent_Full));
9280 -- For untagged types, inherit the layout by default to avoid
9281 -- costly changes of representation for type conversions.
9283 if not Is_Tagged then
9284 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Full));
9285 Set_No_Reordering (Derived_Type, No_Reordering (Parent_Full));
9286 end if;
9287 end;
9288 end if;
9290 -- Set fields for tagged types
9292 if Is_Tagged then
9293 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9295 -- All tagged types defined in Ada.Finalization are controlled
9297 if Chars (Scope (Derived_Type)) = Name_Finalization
9298 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
9299 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
9300 then
9301 Set_Is_Controlled_Active (Derived_Type);
9302 else
9303 Set_Is_Controlled_Active
9304 (Derived_Type, Is_Controlled_Active (Parent_Base));
9305 end if;
9307 -- Minor optimization: there is no need to generate the class-wide
9308 -- entity associated with an underlying record view.
9310 if not Is_Underlying_Record_View (Derived_Type) then
9311 Make_Class_Wide_Type (Derived_Type);
9312 end if;
9314 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
9316 if Has_Discriminants (Derived_Type)
9317 and then Constraint_Present
9318 then
9319 Set_Stored_Constraint
9320 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
9321 end if;
9323 if Ada_Version >= Ada_2005 then
9324 declare
9325 Ifaces_List : Elist_Id;
9327 begin
9328 -- Checks rules 3.9.4 (13/2 and 14/2)
9330 if Comes_From_Source (Derived_Type)
9331 and then not Is_Private_Type (Derived_Type)
9332 and then Is_Interface (Parent_Type)
9333 and then not Is_Interface (Derived_Type)
9334 then
9335 if Is_Task_Interface (Parent_Type) then
9336 Error_Msg_N
9337 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9338 Derived_Type);
9340 elsif Is_Protected_Interface (Parent_Type) then
9341 Error_Msg_N
9342 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9343 Derived_Type);
9344 end if;
9345 end if;
9347 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9349 Check_Interfaces (N, Type_Def);
9351 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9352 -- not already in the parents.
9354 Collect_Interfaces
9355 (T => Derived_Type,
9356 Ifaces_List => Ifaces_List,
9357 Exclude_Parents => True);
9359 Set_Interfaces (Derived_Type, Ifaces_List);
9361 -- If the derived type is the anonymous type created for
9362 -- a declaration whose parent has a constraint, propagate
9363 -- the interface list to the source type. This must be done
9364 -- prior to the completion of the analysis of the source type
9365 -- because the components in the extension may contain current
9366 -- instances whose legality depends on some ancestor.
9368 if Is_Itype (Derived_Type) then
9369 declare
9370 Def : constant Node_Id :=
9371 Associated_Node_For_Itype (Derived_Type);
9372 begin
9373 if Present (Def)
9374 and then Nkind (Def) = N_Full_Type_Declaration
9375 then
9376 Set_Interfaces
9377 (Defining_Identifier (Def), Ifaces_List);
9378 end if;
9379 end;
9380 end if;
9382 -- A type extension is automatically Ghost when one of its
9383 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9384 -- also inherited when the parent type is Ghost, but this is
9385 -- done in Build_Derived_Type as the mechanism also handles
9386 -- untagged derivations.
9388 if Implements_Ghost_Interface (Derived_Type) then
9389 Set_Is_Ghost_Entity (Derived_Type);
9390 end if;
9391 end;
9392 end if;
9393 end if;
9395 -- STEP 4: Inherit components from the parent base and constrain them.
9396 -- Apply the second transformation described in point 6. above.
9398 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
9399 or else not Has_Discriminants (Parent_Type)
9400 or else not Is_Constrained (Parent_Type)
9401 then
9402 Constrs := Discs;
9403 else
9404 Constrs := Discriminant_Constraint (Parent_Type);
9405 end if;
9407 Assoc_List :=
9408 Inherit_Components
9409 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
9411 -- STEP 5a: Copy the parent record declaration for untagged types
9413 Set_Has_Implicit_Dereference
9414 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
9416 if not Is_Tagged then
9418 -- Discriminant_Constraint (Derived_Type) has been properly
9419 -- constructed. Save it and temporarily set it to Empty because we
9420 -- do not want the call to New_Copy_Tree below to mess this list.
9422 if Has_Discriminants (Derived_Type) then
9423 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
9424 Set_Discriminant_Constraint (Derived_Type, No_Elist);
9425 else
9426 Save_Discr_Constr := No_Elist;
9427 end if;
9429 -- Save the Etype field of Derived_Type. It is correctly set now,
9430 -- but the call to New_Copy tree may remap it to point to itself,
9431 -- which is not what we want. Ditto for the Next_Entity field.
9433 Save_Etype := Etype (Derived_Type);
9434 Save_Next_Entity := Next_Entity (Derived_Type);
9436 -- Assoc_List maps all stored discriminants in the Parent_Base to
9437 -- stored discriminants in the Derived_Type. It is fundamental that
9438 -- no types or itypes with discriminants other than the stored
9439 -- discriminants appear in the entities declared inside
9440 -- Derived_Type, since the back end cannot deal with it.
9442 New_Decl :=
9443 New_Copy_Tree
9444 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
9445 Copy_Dimensions_Of_Components (Derived_Type);
9447 -- Restore the fields saved prior to the New_Copy_Tree call
9448 -- and compute the stored constraint.
9450 Set_Etype (Derived_Type, Save_Etype);
9451 Link_Entities (Derived_Type, Save_Next_Entity);
9453 if Has_Discriminants (Derived_Type) then
9454 Set_Discriminant_Constraint
9455 (Derived_Type, Save_Discr_Constr);
9456 Set_Stored_Constraint
9457 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
9459 Replace_Components (Derived_Type, New_Decl);
9460 end if;
9462 -- Insert the new derived type declaration
9464 Rewrite (N, New_Decl);
9466 -- STEP 5b: Complete the processing for record extensions in generics
9468 -- There is no completion for record extensions declared in the
9469 -- parameter part of a generic, so we need to complete processing for
9470 -- these generic record extensions here. The Record_Type_Definition call
9471 -- will change the Ekind of the components from E_Void to E_Component.
9473 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
9474 Record_Type_Definition (Empty, Derived_Type);
9476 -- STEP 5c: Process the record extension for non private tagged types
9478 elsif not Private_Extension then
9479 Expand_Record_Extension (Derived_Type, Type_Def);
9481 -- Note : previously in ASIS mode we set the Parent_Subtype of the
9482 -- derived type to propagate some semantic information. This led
9483 -- to other ASIS failures and has been removed.
9485 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9486 -- implemented interfaces if we are in expansion mode
9488 if Expander_Active
9489 and then Has_Interfaces (Derived_Type)
9490 then
9491 Add_Interface_Tag_Components (N, Derived_Type);
9492 end if;
9494 -- Analyze the record extension
9496 Record_Type_Definition
9497 (Record_Extension_Part (Type_Def), Derived_Type);
9498 end if;
9500 End_Scope;
9502 -- Nothing else to do if there is an error in the derivation.
9503 -- An unusual case: the full view may be derived from a type in an
9504 -- instance, when the partial view was used illegally as an actual
9505 -- in that instance, leading to a circular definition.
9507 if Etype (Derived_Type) = Any_Type
9508 or else Etype (Parent_Type) = Derived_Type
9509 then
9510 return;
9511 end if;
9513 -- Set delayed freeze and then derive subprograms, we need to do
9514 -- this in this order so that derived subprograms inherit the
9515 -- derived freeze if necessary.
9517 Set_Has_Delayed_Freeze (Derived_Type);
9519 if Derive_Subps then
9520 Derive_Subprograms (Parent_Type, Derived_Type);
9521 end if;
9523 -- If we have a private extension which defines a constrained derived
9524 -- type mark as constrained here after we have derived subprograms. See
9525 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9527 if Private_Extension and then Inherit_Discrims then
9528 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9529 Set_Is_Constrained (Derived_Type, True);
9530 Set_Discriminant_Constraint (Derived_Type, Discs);
9532 elsif Is_Constrained (Parent_Type) then
9533 Set_Is_Constrained
9534 (Derived_Type, True);
9535 Set_Discriminant_Constraint
9536 (Derived_Type, Discriminant_Constraint (Parent_Type));
9537 end if;
9538 end if;
9540 -- Update the class-wide type, which shares the now-completed entity
9541 -- list with its specific type. In case of underlying record views,
9542 -- we do not generate the corresponding class wide entity.
9544 if Is_Tagged
9545 and then not Is_Underlying_Record_View (Derived_Type)
9546 then
9547 Set_First_Entity
9548 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9549 Set_Last_Entity
9550 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9551 end if;
9553 Check_Function_Writable_Actuals (N);
9554 end Build_Derived_Record_Type;
9556 ------------------------
9557 -- Build_Derived_Type --
9558 ------------------------
9560 procedure Build_Derived_Type
9561 (N : Node_Id;
9562 Parent_Type : Entity_Id;
9563 Derived_Type : Entity_Id;
9564 Is_Completion : Boolean;
9565 Derive_Subps : Boolean := True)
9567 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9569 begin
9570 -- Set common attributes
9572 Set_Scope (Derived_Type, Current_Scope);
9573 Set_Etype (Derived_Type, Parent_Base);
9574 Set_Ekind (Derived_Type, Ekind (Parent_Base));
9575 Propagate_Concurrent_Flags (Derived_Type, Parent_Base);
9577 Set_Size_Info (Derived_Type, Parent_Type);
9578 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9580 Set_Is_Controlled_Active
9581 (Derived_Type, Is_Controlled_Active (Parent_Type));
9583 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9584 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
9585 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
9587 if Is_Tagged_Type (Derived_Type) then
9588 Set_No_Tagged_Streams_Pragma
9589 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9590 end if;
9592 -- If the parent has primitive routines, set the derived type link
9594 if Has_Primitive_Operations (Parent_Type) then
9595 Set_Derived_Type_Link (Parent_Base, Derived_Type);
9596 end if;
9598 -- If the parent type is a private subtype, the convention on the base
9599 -- type may be set in the private part, and not propagated to the
9600 -- subtype until later, so we obtain the convention from the base type.
9602 Set_Convention (Derived_Type, Convention (Parent_Base));
9604 -- Set SSO default for record or array type
9606 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9607 and then Is_Base_Type (Derived_Type)
9608 then
9609 Set_Default_SSO (Derived_Type);
9610 end if;
9612 -- A derived type inherits the Default_Initial_Condition pragma coming
9613 -- from any parent type within the derivation chain.
9615 if Has_DIC (Parent_Type) then
9616 Set_Has_Inherited_DIC (Derived_Type);
9617 end if;
9619 -- A derived type inherits any class-wide invariants coming from a
9620 -- parent type or an interface. Note that the invariant procedure of
9621 -- the parent type should not be inherited because the derived type may
9622 -- define invariants of its own.
9624 if not Is_Interface (Derived_Type) then
9625 if Has_Inherited_Invariants (Parent_Type)
9626 or else Has_Inheritable_Invariants (Parent_Type)
9627 then
9628 Set_Has_Inherited_Invariants (Derived_Type);
9630 elsif Is_Concurrent_Type (Derived_Type)
9631 or else Is_Tagged_Type (Derived_Type)
9632 then
9633 declare
9634 Iface : Entity_Id;
9635 Ifaces : Elist_Id;
9636 Iface_Elmt : Elmt_Id;
9638 begin
9639 Collect_Interfaces
9640 (T => Derived_Type,
9641 Ifaces_List => Ifaces,
9642 Exclude_Parents => True);
9644 if Present (Ifaces) then
9645 Iface_Elmt := First_Elmt (Ifaces);
9646 while Present (Iface_Elmt) loop
9647 Iface := Node (Iface_Elmt);
9649 if Has_Inheritable_Invariants (Iface) then
9650 Set_Has_Inherited_Invariants (Derived_Type);
9651 exit;
9652 end if;
9654 Next_Elmt (Iface_Elmt);
9655 end loop;
9656 end if;
9657 end;
9658 end if;
9659 end if;
9661 -- We similarly inherit predicates. Note that for scalar derived types
9662 -- the predicate is inherited from the first subtype, and not from its
9663 -- (anonymous) base type.
9665 if Has_Predicates (Parent_Type)
9666 or else Has_Predicates (First_Subtype (Parent_Type))
9667 then
9668 Set_Has_Predicates (Derived_Type);
9669 end if;
9671 -- The derived type inherits representation clauses from the parent
9672 -- type, and from any interfaces.
9674 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9676 declare
9677 Iface : Node_Id := First (Abstract_Interface_List (Derived_Type));
9678 begin
9679 while Present (Iface) loop
9680 Inherit_Rep_Item_Chain (Derived_Type, Entity (Iface));
9681 Next (Iface);
9682 end loop;
9683 end;
9685 -- If the parent type has delayed rep aspects, then mark the derived
9686 -- type as possibly inheriting a delayed rep aspect.
9688 if Has_Delayed_Rep_Aspects (Parent_Type) then
9689 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9690 end if;
9692 -- A derived type becomes Ghost when its parent type is also Ghost
9693 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9694 -- directly inherited because the Ghost policy in effect may differ.
9696 if Is_Ghost_Entity (Parent_Type) then
9697 Set_Is_Ghost_Entity (Derived_Type);
9698 end if;
9700 -- Type dependent processing
9702 case Ekind (Parent_Type) is
9703 when Numeric_Kind =>
9704 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9706 when Array_Kind =>
9707 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9709 when Class_Wide_Kind
9710 | E_Record_Subtype
9711 | E_Record_Type
9713 Build_Derived_Record_Type
9714 (N, Parent_Type, Derived_Type, Derive_Subps);
9715 return;
9717 when Enumeration_Kind =>
9718 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9720 when Access_Kind =>
9721 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9723 when Incomplete_Or_Private_Kind =>
9724 Build_Derived_Private_Type
9725 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9727 -- For discriminated types, the derivation includes deriving
9728 -- primitive operations. For others it is done below.
9730 if Is_Tagged_Type (Parent_Type)
9731 or else Has_Discriminants (Parent_Type)
9732 or else (Present (Full_View (Parent_Type))
9733 and then Has_Discriminants (Full_View (Parent_Type)))
9734 then
9735 return;
9736 end if;
9738 when Concurrent_Kind =>
9739 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9741 when others =>
9742 raise Program_Error;
9743 end case;
9745 -- Nothing more to do if some error occurred
9747 if Etype (Derived_Type) = Any_Type then
9748 return;
9749 end if;
9751 -- Set delayed freeze and then derive subprograms, we need to do this
9752 -- in this order so that derived subprograms inherit the derived freeze
9753 -- if necessary.
9755 Set_Has_Delayed_Freeze (Derived_Type);
9757 if Derive_Subps then
9758 Derive_Subprograms (Parent_Type, Derived_Type);
9759 end if;
9761 Set_Has_Primitive_Operations
9762 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9763 end Build_Derived_Type;
9765 -----------------------
9766 -- Build_Discriminal --
9767 -----------------------
9769 procedure Build_Discriminal (Discrim : Entity_Id) is
9770 D_Minal : Entity_Id;
9771 CR_Disc : Entity_Id;
9773 begin
9774 -- A discriminal has the same name as the discriminant
9776 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9778 Set_Ekind (D_Minal, E_In_Parameter);
9779 Set_Mechanism (D_Minal, Default_Mechanism);
9780 Set_Etype (D_Minal, Etype (Discrim));
9781 Set_Scope (D_Minal, Current_Scope);
9782 Set_Parent (D_Minal, Parent (Discrim));
9784 Set_Discriminal (Discrim, D_Minal);
9785 Set_Discriminal_Link (D_Minal, Discrim);
9787 -- For task types, build at once the discriminants of the corresponding
9788 -- record, which are needed if discriminants are used in entry defaults
9789 -- and in family bounds.
9791 if Is_Concurrent_Type (Current_Scope)
9792 or else
9793 Is_Limited_Type (Current_Scope)
9794 then
9795 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9797 Set_Ekind (CR_Disc, E_In_Parameter);
9798 Set_Mechanism (CR_Disc, Default_Mechanism);
9799 Set_Etype (CR_Disc, Etype (Discrim));
9800 Set_Scope (CR_Disc, Current_Scope);
9801 Set_Discriminal_Link (CR_Disc, Discrim);
9802 Set_CR_Discriminant (Discrim, CR_Disc);
9803 end if;
9804 end Build_Discriminal;
9806 ------------------------------------
9807 -- Build_Discriminant_Constraints --
9808 ------------------------------------
9810 function Build_Discriminant_Constraints
9811 (T : Entity_Id;
9812 Def : Node_Id;
9813 Derived_Def : Boolean := False) return Elist_Id
9815 C : constant Node_Id := Constraint (Def);
9816 Nb_Discr : constant Nat := Number_Discriminants (T);
9818 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9819 -- Saves the expression corresponding to a given discriminant in T
9821 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9822 -- Return the Position number within array Discr_Expr of a discriminant
9823 -- D within the discriminant list of the discriminated type T.
9825 procedure Process_Discriminant_Expression
9826 (Expr : Node_Id;
9827 D : Entity_Id);
9828 -- If this is a discriminant constraint on a partial view, do not
9829 -- generate an overflow check on the discriminant expression. The check
9830 -- will be generated when constraining the full view. Otherwise the
9831 -- backend creates duplicate symbols for the temporaries corresponding
9832 -- to the expressions to be checked, causing spurious assembler errors.
9834 ------------------
9835 -- Pos_Of_Discr --
9836 ------------------
9838 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9839 Disc : Entity_Id;
9841 begin
9842 Disc := First_Discriminant (T);
9843 for J in Discr_Expr'Range loop
9844 if Disc = D then
9845 return J;
9846 end if;
9848 Next_Discriminant (Disc);
9849 end loop;
9851 -- Note: Since this function is called on discriminants that are
9852 -- known to belong to the discriminated type, falling through the
9853 -- loop with no match signals an internal compiler error.
9855 raise Program_Error;
9856 end Pos_Of_Discr;
9858 -------------------------------------
9859 -- Process_Discriminant_Expression --
9860 -------------------------------------
9862 procedure Process_Discriminant_Expression
9863 (Expr : Node_Id;
9864 D : Entity_Id)
9866 BDT : constant Entity_Id := Base_Type (Etype (D));
9868 begin
9869 -- If this is a discriminant constraint on a partial view, do
9870 -- not generate an overflow on the discriminant expression. The
9871 -- check will be generated when constraining the full view.
9873 if Is_Private_Type (T)
9874 and then Present (Full_View (T))
9875 then
9876 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9877 else
9878 Analyze_And_Resolve (Expr, BDT);
9879 end if;
9880 end Process_Discriminant_Expression;
9882 -- Declarations local to Build_Discriminant_Constraints
9884 Discr : Entity_Id;
9885 E : Entity_Id;
9886 Elist : constant Elist_Id := New_Elmt_List;
9888 Constr : Node_Id;
9889 Expr : Node_Id;
9890 Id : Node_Id;
9891 Position : Nat;
9892 Found : Boolean;
9894 Discrim_Present : Boolean := False;
9896 -- Start of processing for Build_Discriminant_Constraints
9898 begin
9899 -- The following loop will process positional associations only.
9900 -- For a positional association, the (single) discriminant is
9901 -- implicitly specified by position, in textual order (RM 3.7.2).
9903 Discr := First_Discriminant (T);
9904 Constr := First (Constraints (C));
9905 for D in Discr_Expr'Range loop
9906 exit when Nkind (Constr) = N_Discriminant_Association;
9908 if No (Constr) then
9909 Error_Msg_N ("too few discriminants given in constraint", C);
9910 return New_Elmt_List;
9912 elsif Nkind (Constr) = N_Range
9913 or else (Nkind (Constr) = N_Attribute_Reference
9914 and then Attribute_Name (Constr) = Name_Range)
9915 then
9916 Error_Msg_N
9917 ("a range is not a valid discriminant constraint", Constr);
9918 Discr_Expr (D) := Error;
9920 elsif Nkind (Constr) = N_Subtype_Indication then
9921 Error_Msg_N
9922 ("a subtype indication is not a valid discriminant constraint",
9923 Constr);
9924 Discr_Expr (D) := Error;
9926 else
9927 Process_Discriminant_Expression (Constr, Discr);
9928 Discr_Expr (D) := Constr;
9929 end if;
9931 Next_Discriminant (Discr);
9932 Next (Constr);
9933 end loop;
9935 if No (Discr) and then Present (Constr) then
9936 Error_Msg_N ("too many discriminants given in constraint", Constr);
9937 return New_Elmt_List;
9938 end if;
9940 -- Named associations can be given in any order, but if both positional
9941 -- and named associations are used in the same discriminant constraint,
9942 -- then positional associations must occur first, at their normal
9943 -- position. Hence once a named association is used, the rest of the
9944 -- discriminant constraint must use only named associations.
9946 while Present (Constr) loop
9948 -- Positional association forbidden after a named association
9950 if Nkind (Constr) /= N_Discriminant_Association then
9951 Error_Msg_N ("positional association follows named one", Constr);
9952 return New_Elmt_List;
9954 -- Otherwise it is a named association
9956 else
9957 -- E records the type of the discriminants in the named
9958 -- association. All the discriminants specified in the same name
9959 -- association must have the same type.
9961 E := Empty;
9963 -- Search the list of discriminants in T to see if the simple name
9964 -- given in the constraint matches any of them.
9966 Id := First (Selector_Names (Constr));
9967 while Present (Id) loop
9968 Found := False;
9970 -- If Original_Discriminant is present, we are processing a
9971 -- generic instantiation and this is an instance node. We need
9972 -- to find the name of the corresponding discriminant in the
9973 -- actual record type T and not the name of the discriminant in
9974 -- the generic formal. Example:
9976 -- generic
9977 -- type G (D : int) is private;
9978 -- package P is
9979 -- subtype W is G (D => 1);
9980 -- end package;
9981 -- type Rec (X : int) is record ... end record;
9982 -- package Q is new P (G => Rec);
9984 -- At the point of the instantiation, formal type G is Rec
9985 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9986 -- which really looks like "subtype W is Rec (D => 1);" at
9987 -- the point of instantiation, we want to find the discriminant
9988 -- that corresponds to D in Rec, i.e. X.
9990 if Present (Original_Discriminant (Id))
9991 and then In_Instance
9992 then
9993 Discr := Find_Corresponding_Discriminant (Id, T);
9994 Found := True;
9996 else
9997 Discr := First_Discriminant (T);
9998 while Present (Discr) loop
9999 if Chars (Discr) = Chars (Id) then
10000 Found := True;
10001 exit;
10002 end if;
10004 Next_Discriminant (Discr);
10005 end loop;
10007 if not Found then
10008 Error_Msg_N ("& does not match any discriminant", Id);
10009 return New_Elmt_List;
10011 -- If the parent type is a generic formal, preserve the
10012 -- name of the discriminant for subsequent instances.
10013 -- see comment at the beginning of this if statement.
10015 elsif Is_Generic_Type (Root_Type (T)) then
10016 Set_Original_Discriminant (Id, Discr);
10017 end if;
10018 end if;
10020 Position := Pos_Of_Discr (T, Discr);
10022 if Present (Discr_Expr (Position)) then
10023 Error_Msg_N ("duplicate constraint for discriminant&", Id);
10025 else
10026 -- Each discriminant specified in the same named association
10027 -- must be associated with a separate copy of the
10028 -- corresponding expression.
10030 if Present (Next (Id)) then
10031 Expr := New_Copy_Tree (Expression (Constr));
10032 Set_Parent (Expr, Parent (Expression (Constr)));
10033 else
10034 Expr := Expression (Constr);
10035 end if;
10037 Discr_Expr (Position) := Expr;
10038 Process_Discriminant_Expression (Expr, Discr);
10039 end if;
10041 -- A discriminant association with more than one discriminant
10042 -- name is only allowed if the named discriminants are all of
10043 -- the same type (RM 3.7.1(8)).
10045 if E = Empty then
10046 E := Base_Type (Etype (Discr));
10048 elsif Base_Type (Etype (Discr)) /= E then
10049 Error_Msg_N
10050 ("all discriminants in an association " &
10051 "must have the same type", Id);
10052 end if;
10054 Next (Id);
10055 end loop;
10056 end if;
10058 Next (Constr);
10059 end loop;
10061 -- A discriminant constraint must provide exactly one value for each
10062 -- discriminant of the type (RM 3.7.1(8)).
10064 for J in Discr_Expr'Range loop
10065 if No (Discr_Expr (J)) then
10066 Error_Msg_N ("too few discriminants given in constraint", C);
10067 return New_Elmt_List;
10068 end if;
10069 end loop;
10071 -- Determine if there are discriminant expressions in the constraint
10073 for J in Discr_Expr'Range loop
10074 if Denotes_Discriminant
10075 (Discr_Expr (J), Check_Concurrent => True)
10076 then
10077 Discrim_Present := True;
10078 end if;
10079 end loop;
10081 -- Build an element list consisting of the expressions given in the
10082 -- discriminant constraint and apply the appropriate checks. The list
10083 -- is constructed after resolving any named discriminant associations
10084 -- and therefore the expressions appear in the textual order of the
10085 -- discriminants.
10087 Discr := First_Discriminant (T);
10088 for J in Discr_Expr'Range loop
10089 if Discr_Expr (J) /= Error then
10090 Append_Elmt (Discr_Expr (J), Elist);
10092 -- If any of the discriminant constraints is given by a
10093 -- discriminant and we are in a derived type declaration we
10094 -- have a discriminant renaming. Establish link between new
10095 -- and old discriminant. The new discriminant has an implicit
10096 -- dereference if the old one does.
10098 if Denotes_Discriminant (Discr_Expr (J)) then
10099 if Derived_Def then
10100 declare
10101 New_Discr : constant Entity_Id := Entity (Discr_Expr (J));
10103 begin
10104 Set_Corresponding_Discriminant (New_Discr, Discr);
10105 Set_Has_Implicit_Dereference (New_Discr,
10106 Has_Implicit_Dereference (Discr));
10107 end;
10108 end if;
10110 -- Force the evaluation of non-discriminant expressions.
10111 -- If we have found a discriminant in the constraint 3.4(26)
10112 -- and 3.8(18) demand that no range checks are performed are
10113 -- after evaluation. If the constraint is for a component
10114 -- definition that has a per-object constraint, expressions are
10115 -- evaluated but not checked either. In all other cases perform
10116 -- a range check.
10118 else
10119 if Discrim_Present then
10120 null;
10122 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
10123 and then Has_Per_Object_Constraint
10124 (Defining_Identifier (Parent (Parent (Def))))
10125 then
10126 null;
10128 elsif Is_Access_Type (Etype (Discr)) then
10129 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
10131 else
10132 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
10133 end if;
10135 Force_Evaluation (Discr_Expr (J));
10136 end if;
10138 -- Check that the designated type of an access discriminant's
10139 -- expression is not a class-wide type unless the discriminant's
10140 -- designated type is also class-wide.
10142 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
10143 and then not Is_Class_Wide_Type
10144 (Designated_Type (Etype (Discr)))
10145 and then Etype (Discr_Expr (J)) /= Any_Type
10146 and then Is_Class_Wide_Type
10147 (Designated_Type (Etype (Discr_Expr (J))))
10148 then
10149 Wrong_Type (Discr_Expr (J), Etype (Discr));
10151 elsif Is_Access_Type (Etype (Discr))
10152 and then not Is_Access_Constant (Etype (Discr))
10153 and then Is_Access_Type (Etype (Discr_Expr (J)))
10154 and then Is_Access_Constant (Etype (Discr_Expr (J)))
10155 then
10156 Error_Msg_NE
10157 ("constraint for discriminant& must be access to variable",
10158 Def, Discr);
10159 end if;
10160 end if;
10162 Next_Discriminant (Discr);
10163 end loop;
10165 return Elist;
10166 end Build_Discriminant_Constraints;
10168 ---------------------------------
10169 -- Build_Discriminated_Subtype --
10170 ---------------------------------
10172 procedure Build_Discriminated_Subtype
10173 (T : Entity_Id;
10174 Def_Id : Entity_Id;
10175 Elist : Elist_Id;
10176 Related_Nod : Node_Id;
10177 For_Access : Boolean := False)
10179 Has_Discrs : constant Boolean := Has_Discriminants (T);
10180 Constrained : constant Boolean :=
10181 (Has_Discrs
10182 and then not Is_Empty_Elmt_List (Elist)
10183 and then not Is_Class_Wide_Type (T))
10184 or else Is_Constrained (T);
10186 begin
10187 if Ekind (T) = E_Record_Type then
10188 if For_Access then
10189 Set_Ekind (Def_Id, E_Private_Subtype);
10190 Set_Is_For_Access_Subtype (Def_Id, True);
10191 else
10192 Set_Ekind (Def_Id, E_Record_Subtype);
10193 end if;
10195 -- Inherit preelaboration flag from base, for types for which it
10196 -- may have been set: records, private types, protected types.
10198 Set_Known_To_Have_Preelab_Init
10199 (Def_Id, Known_To_Have_Preelab_Init (T));
10201 elsif Ekind (T) = E_Task_Type then
10202 Set_Ekind (Def_Id, E_Task_Subtype);
10204 elsif Ekind (T) = E_Protected_Type then
10205 Set_Ekind (Def_Id, E_Protected_Subtype);
10206 Set_Known_To_Have_Preelab_Init
10207 (Def_Id, Known_To_Have_Preelab_Init (T));
10209 elsif Is_Private_Type (T) then
10210 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10211 Set_Known_To_Have_Preelab_Init
10212 (Def_Id, Known_To_Have_Preelab_Init (T));
10214 -- Private subtypes may have private dependents
10216 Set_Private_Dependents (Def_Id, New_Elmt_List);
10218 elsif Is_Class_Wide_Type (T) then
10219 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
10221 else
10222 -- Incomplete type. Attach subtype to list of dependents, to be
10223 -- completed with full view of parent type, unless is it the
10224 -- designated subtype of a record component within an init_proc.
10225 -- This last case arises for a component of an access type whose
10226 -- designated type is incomplete (e.g. a Taft Amendment type).
10227 -- The designated subtype is within an inner scope, and needs no
10228 -- elaboration, because only the access type is needed in the
10229 -- initialization procedure.
10231 if Ekind (T) = E_Incomplete_Type then
10232 Set_Ekind (Def_Id, E_Incomplete_Subtype);
10233 else
10234 Set_Ekind (Def_Id, Ekind (T));
10235 end if;
10237 if For_Access and then Within_Init_Proc then
10238 null;
10239 else
10240 Append_Elmt (Def_Id, Private_Dependents (T));
10241 end if;
10242 end if;
10244 Set_Etype (Def_Id, T);
10245 Init_Size_Align (Def_Id);
10246 Set_Has_Discriminants (Def_Id, Has_Discrs);
10247 Set_Is_Constrained (Def_Id, Constrained);
10249 Set_First_Entity (Def_Id, First_Entity (T));
10250 Set_Last_Entity (Def_Id, Last_Entity (T));
10251 Set_Has_Implicit_Dereference
10252 (Def_Id, Has_Implicit_Dereference (T));
10253 Set_Has_Pragma_Unreferenced_Objects
10254 (Def_Id, Has_Pragma_Unreferenced_Objects (T));
10256 -- If the subtype is the completion of a private declaration, there may
10257 -- have been representation clauses for the partial view, and they must
10258 -- be preserved. Build_Derived_Type chains the inherited clauses with
10259 -- the ones appearing on the extension. If this comes from a subtype
10260 -- declaration, all clauses are inherited.
10262 if No (First_Rep_Item (Def_Id)) then
10263 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10264 end if;
10266 if Is_Tagged_Type (T) then
10267 Set_Is_Tagged_Type (Def_Id);
10268 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
10269 Make_Class_Wide_Type (Def_Id);
10270 end if;
10272 Set_Stored_Constraint (Def_Id, No_Elist);
10274 if Has_Discrs then
10275 Set_Discriminant_Constraint (Def_Id, Elist);
10276 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
10277 end if;
10279 if Is_Tagged_Type (T) then
10281 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10282 -- concurrent record type (which has the list of primitive
10283 -- operations).
10285 if Ada_Version >= Ada_2005
10286 and then Is_Concurrent_Type (T)
10287 then
10288 Set_Corresponding_Record_Type (Def_Id,
10289 Corresponding_Record_Type (T));
10290 else
10291 Set_Direct_Primitive_Operations (Def_Id,
10292 Direct_Primitive_Operations (T));
10293 end if;
10295 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
10296 end if;
10298 -- Subtypes introduced by component declarations do not need to be
10299 -- marked as delayed, and do not get freeze nodes, because the semantics
10300 -- verifies that the parents of the subtypes are frozen before the
10301 -- enclosing record is frozen.
10303 if not Is_Type (Scope (Def_Id)) then
10304 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10306 if Is_Private_Type (T)
10307 and then Present (Full_View (T))
10308 then
10309 Conditional_Delay (Def_Id, Full_View (T));
10310 else
10311 Conditional_Delay (Def_Id, T);
10312 end if;
10313 end if;
10315 if Is_Record_Type (T) then
10316 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
10318 if Has_Discrs
10319 and then not Is_Empty_Elmt_List (Elist)
10320 and then not For_Access
10321 then
10322 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
10324 elsif not For_Access then
10325 Set_Cloned_Subtype (Def_Id, T);
10326 end if;
10327 end if;
10328 end Build_Discriminated_Subtype;
10330 ---------------------------
10331 -- Build_Itype_Reference --
10332 ---------------------------
10334 procedure Build_Itype_Reference
10335 (Ityp : Entity_Id;
10336 Nod : Node_Id)
10338 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
10339 begin
10341 -- Itype references are only created for use by the back-end
10343 if Inside_A_Generic then
10344 return;
10345 else
10346 Set_Itype (IR, Ityp);
10348 -- If Nod is a library unit entity, then Insert_After won't work,
10349 -- because Nod is not a member of any list. Therefore, we use
10350 -- Add_Global_Declaration in this case. This can happen if we have a
10351 -- build-in-place library function.
10353 if (Nkind (Nod) in N_Entity and then Is_Compilation_Unit (Nod))
10354 or else
10355 (Nkind (Nod) = N_Defining_Program_Unit_Name
10356 and then Is_Compilation_Unit (Defining_Identifier (Nod)))
10357 then
10358 Add_Global_Declaration (IR);
10359 else
10360 Insert_After (Nod, IR);
10361 end if;
10362 end if;
10363 end Build_Itype_Reference;
10365 ------------------------
10366 -- Build_Scalar_Bound --
10367 ------------------------
10369 function Build_Scalar_Bound
10370 (Bound : Node_Id;
10371 Par_T : Entity_Id;
10372 Der_T : Entity_Id) return Node_Id
10374 New_Bound : Entity_Id;
10376 begin
10377 -- Note: not clear why this is needed, how can the original bound
10378 -- be unanalyzed at this point? and if it is, what business do we
10379 -- have messing around with it? and why is the base type of the
10380 -- parent type the right type for the resolution. It probably is
10381 -- not. It is OK for the new bound we are creating, but not for
10382 -- the old one??? Still if it never happens, no problem.
10384 Analyze_And_Resolve (Bound, Base_Type (Par_T));
10386 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
10387 New_Bound := New_Copy (Bound);
10388 Set_Etype (New_Bound, Der_T);
10389 Set_Analyzed (New_Bound);
10391 elsif Is_Entity_Name (Bound) then
10392 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
10394 -- The following is almost certainly wrong. What business do we have
10395 -- relocating a node (Bound) that is presumably still attached to
10396 -- the tree elsewhere???
10398 else
10399 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
10400 end if;
10402 Set_Etype (New_Bound, Der_T);
10403 return New_Bound;
10404 end Build_Scalar_Bound;
10406 --------------------------------
10407 -- Build_Underlying_Full_View --
10408 --------------------------------
10410 procedure Build_Underlying_Full_View
10411 (N : Node_Id;
10412 Typ : Entity_Id;
10413 Par : Entity_Id)
10415 Loc : constant Source_Ptr := Sloc (N);
10416 Subt : constant Entity_Id :=
10417 Make_Defining_Identifier
10418 (Loc, New_External_Name (Chars (Typ), 'S'));
10420 Constr : Node_Id;
10421 Indic : Node_Id;
10422 C : Node_Id;
10423 Id : Node_Id;
10425 procedure Set_Discriminant_Name (Id : Node_Id);
10426 -- If the derived type has discriminants, they may rename discriminants
10427 -- of the parent. When building the full view of the parent, we need to
10428 -- recover the names of the original discriminants if the constraint is
10429 -- given by named associations.
10431 ---------------------------
10432 -- Set_Discriminant_Name --
10433 ---------------------------
10435 procedure Set_Discriminant_Name (Id : Node_Id) is
10436 Disc : Entity_Id;
10438 begin
10439 Set_Original_Discriminant (Id, Empty);
10441 if Has_Discriminants (Typ) then
10442 Disc := First_Discriminant (Typ);
10443 while Present (Disc) loop
10444 if Chars (Disc) = Chars (Id)
10445 and then Present (Corresponding_Discriminant (Disc))
10446 then
10447 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
10448 end if;
10449 Next_Discriminant (Disc);
10450 end loop;
10451 end if;
10452 end Set_Discriminant_Name;
10454 -- Start of processing for Build_Underlying_Full_View
10456 begin
10457 if Nkind (N) = N_Full_Type_Declaration then
10458 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
10460 elsif Nkind (N) = N_Subtype_Declaration then
10461 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
10463 elsif Nkind (N) = N_Component_Declaration then
10464 Constr :=
10465 New_Copy_Tree
10466 (Constraint (Subtype_Indication (Component_Definition (N))));
10468 else
10469 raise Program_Error;
10470 end if;
10472 C := First (Constraints (Constr));
10473 while Present (C) loop
10474 if Nkind (C) = N_Discriminant_Association then
10475 Id := First (Selector_Names (C));
10476 while Present (Id) loop
10477 Set_Discriminant_Name (Id);
10478 Next (Id);
10479 end loop;
10480 end if;
10482 Next (C);
10483 end loop;
10485 Indic :=
10486 Make_Subtype_Declaration (Loc,
10487 Defining_Identifier => Subt,
10488 Subtype_Indication =>
10489 Make_Subtype_Indication (Loc,
10490 Subtype_Mark => New_Occurrence_Of (Par, Loc),
10491 Constraint => New_Copy_Tree (Constr)));
10493 -- If this is a component subtype for an outer itype, it is not
10494 -- a list member, so simply set the parent link for analysis: if
10495 -- the enclosing type does not need to be in a declarative list,
10496 -- neither do the components.
10498 if Is_List_Member (N)
10499 and then Nkind (N) /= N_Component_Declaration
10500 then
10501 Insert_Before (N, Indic);
10502 else
10503 Set_Parent (Indic, Parent (N));
10504 end if;
10506 Analyze (Indic);
10507 Set_Underlying_Full_View (Typ, Full_View (Subt));
10508 Set_Is_Underlying_Full_View (Full_View (Subt));
10509 end Build_Underlying_Full_View;
10511 -------------------------------
10512 -- Check_Abstract_Overriding --
10513 -------------------------------
10515 procedure Check_Abstract_Overriding (T : Entity_Id) is
10516 Alias_Subp : Entity_Id;
10517 Elmt : Elmt_Id;
10518 Op_List : Elist_Id;
10519 Subp : Entity_Id;
10520 Type_Def : Node_Id;
10522 procedure Check_Pragma_Implemented (Subp : Entity_Id);
10523 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10524 -- which has pragma Implemented already set. Check whether Subp's entity
10525 -- kind conforms to the implementation kind of the overridden routine.
10527 procedure Check_Pragma_Implemented
10528 (Subp : Entity_Id;
10529 Iface_Subp : Entity_Id);
10530 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10531 -- Iface_Subp and both entities have pragma Implemented already set on
10532 -- them. Check whether the two implementation kinds are conforming.
10534 procedure Inherit_Pragma_Implemented
10535 (Subp : Entity_Id;
10536 Iface_Subp : Entity_Id);
10537 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10538 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10539 -- Propagate the implementation kind of Iface_Subp to Subp.
10541 ------------------------------
10542 -- Check_Pragma_Implemented --
10543 ------------------------------
10545 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
10546 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
10547 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
10548 Subp_Alias : constant Entity_Id := Alias (Subp);
10549 Contr_Typ : Entity_Id;
10550 Impl_Subp : Entity_Id;
10552 begin
10553 -- Subp must have an alias since it is a hidden entity used to link
10554 -- an interface subprogram to its overriding counterpart.
10556 pragma Assert (Present (Subp_Alias));
10558 -- Handle aliases to synchronized wrappers
10560 Impl_Subp := Subp_Alias;
10562 if Is_Primitive_Wrapper (Impl_Subp) then
10563 Impl_Subp := Wrapped_Entity (Impl_Subp);
10564 end if;
10566 -- Extract the type of the controlling formal
10568 Contr_Typ := Etype (First_Formal (Subp_Alias));
10570 if Is_Concurrent_Record_Type (Contr_Typ) then
10571 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
10572 end if;
10574 -- An interface subprogram whose implementation kind is By_Entry must
10575 -- be implemented by an entry.
10577 if Impl_Kind = Name_By_Entry
10578 and then Ekind (Impl_Subp) /= E_Entry
10579 then
10580 Error_Msg_Node_2 := Iface_Alias;
10581 Error_Msg_NE
10582 ("type & must implement abstract subprogram & with an entry",
10583 Subp_Alias, Contr_Typ);
10585 elsif Impl_Kind = Name_By_Protected_Procedure then
10587 -- An interface subprogram whose implementation kind is By_
10588 -- Protected_Procedure cannot be implemented by a primitive
10589 -- procedure of a task type.
10591 if Ekind (Contr_Typ) /= E_Protected_Type then
10592 Error_Msg_Node_2 := Contr_Typ;
10593 Error_Msg_NE
10594 ("interface subprogram & cannot be implemented by a " &
10595 "primitive procedure of task type &", Subp_Alias,
10596 Iface_Alias);
10598 -- An interface subprogram whose implementation kind is By_
10599 -- Protected_Procedure must be implemented by a procedure.
10601 elsif Ekind (Impl_Subp) /= E_Procedure then
10602 Error_Msg_Node_2 := Iface_Alias;
10603 Error_Msg_NE
10604 ("type & must implement abstract subprogram & with a " &
10605 "procedure", Subp_Alias, Contr_Typ);
10607 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10608 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10609 then
10610 Error_Msg_Name_1 := Impl_Kind;
10611 Error_Msg_N
10612 ("overriding operation& must have synchronization%",
10613 Subp_Alias);
10614 end if;
10616 -- If primitive has Optional synchronization, overriding operation
10617 -- must match if it has an explicit synchronization..
10619 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10620 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10621 then
10622 Error_Msg_Name_1 := Impl_Kind;
10623 Error_Msg_N
10624 ("overriding operation& must have syncrhonization%",
10625 Subp_Alias);
10626 end if;
10627 end Check_Pragma_Implemented;
10629 ------------------------------
10630 -- Check_Pragma_Implemented --
10631 ------------------------------
10633 procedure Check_Pragma_Implemented
10634 (Subp : Entity_Id;
10635 Iface_Subp : Entity_Id)
10637 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10638 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
10640 begin
10641 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10642 -- and overriding subprogram are different. In general this is an
10643 -- error except when the implementation kind of the overridden
10644 -- subprograms is By_Any or Optional.
10646 if Iface_Kind /= Subp_Kind
10647 and then Iface_Kind /= Name_By_Any
10648 and then Iface_Kind /= Name_Optional
10649 then
10650 if Iface_Kind = Name_By_Entry then
10651 Error_Msg_N
10652 ("incompatible implementation kind, overridden subprogram " &
10653 "is marked By_Entry", Subp);
10654 else
10655 Error_Msg_N
10656 ("incompatible implementation kind, overridden subprogram " &
10657 "is marked By_Protected_Procedure", Subp);
10658 end if;
10659 end if;
10660 end Check_Pragma_Implemented;
10662 --------------------------------
10663 -- Inherit_Pragma_Implemented --
10664 --------------------------------
10666 procedure Inherit_Pragma_Implemented
10667 (Subp : Entity_Id;
10668 Iface_Subp : Entity_Id)
10670 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10671 Loc : constant Source_Ptr := Sloc (Subp);
10672 Impl_Prag : Node_Id;
10674 begin
10675 -- Since the implementation kind is stored as a representation item
10676 -- rather than a flag, create a pragma node.
10678 Impl_Prag :=
10679 Make_Pragma (Loc,
10680 Chars => Name_Implemented,
10681 Pragma_Argument_Associations => New_List (
10682 Make_Pragma_Argument_Association (Loc,
10683 Expression => New_Occurrence_Of (Subp, Loc)),
10685 Make_Pragma_Argument_Association (Loc,
10686 Expression => Make_Identifier (Loc, Iface_Kind))));
10688 -- The pragma doesn't need to be analyzed because it is internally
10689 -- built. It is safe to directly register it as a rep item since we
10690 -- are only interested in the characters of the implementation kind.
10692 Record_Rep_Item (Subp, Impl_Prag);
10693 end Inherit_Pragma_Implemented;
10695 -- Start of processing for Check_Abstract_Overriding
10697 begin
10698 Op_List := Primitive_Operations (T);
10700 -- Loop to check primitive operations
10702 Elmt := First_Elmt (Op_List);
10703 while Present (Elmt) loop
10704 Subp := Node (Elmt);
10705 Alias_Subp := Alias (Subp);
10707 -- Inherited subprograms are identified by the fact that they do not
10708 -- come from source, and the associated source location is the
10709 -- location of the first subtype of the derived type.
10711 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10712 -- subprograms that "require overriding".
10714 -- Special exception, do not complain about failure to override the
10715 -- stream routines _Input and _Output, as well as the primitive
10716 -- operations used in dispatching selects since we always provide
10717 -- automatic overridings for these subprograms.
10719 -- The partial view of T may have been a private extension, for
10720 -- which inherited functions dispatching on result are abstract.
10721 -- If the full view is a null extension, there is no need for
10722 -- overriding in Ada 2005, but wrappers need to be built for them
10723 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10725 if Is_Null_Extension (T)
10726 and then Has_Controlling_Result (Subp)
10727 and then Ada_Version >= Ada_2005
10728 and then Present (Alias_Subp)
10729 and then not Comes_From_Source (Subp)
10730 and then not Is_Abstract_Subprogram (Alias_Subp)
10731 and then not Is_Access_Type (Etype (Subp))
10732 then
10733 null;
10735 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10736 -- processing because this check is done with the aliased
10737 -- entity
10739 elsif Present (Interface_Alias (Subp)) then
10740 null;
10742 elsif (Is_Abstract_Subprogram (Subp)
10743 or else Requires_Overriding (Subp)
10744 or else
10745 (Has_Controlling_Result (Subp)
10746 and then Present (Alias_Subp)
10747 and then not Comes_From_Source (Subp)
10748 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10749 and then not Is_TSS (Subp, TSS_Stream_Input)
10750 and then not Is_TSS (Subp, TSS_Stream_Output)
10751 and then not Is_Abstract_Type (T)
10752 and then not Is_Predefined_Interface_Primitive (Subp)
10754 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10755 -- with abstract interface types because the check will be done
10756 -- with the aliased entity (otherwise we generate a duplicated
10757 -- error message).
10759 and then not Present (Interface_Alias (Subp))
10760 then
10761 if Present (Alias_Subp) then
10763 -- Only perform the check for a derived subprogram when the
10764 -- type has an explicit record extension. This avoids incorrect
10765 -- flagging of abstract subprograms for the case of a type
10766 -- without an extension that is derived from a formal type
10767 -- with a tagged actual (can occur within a private part).
10769 -- Ada 2005 (AI-391): In the case of an inherited function with
10770 -- a controlling result of the type, the rule does not apply if
10771 -- the type is a null extension (unless the parent function
10772 -- itself is abstract, in which case the function must still be
10773 -- be overridden). The expander will generate an overriding
10774 -- wrapper function calling the parent subprogram (see
10775 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10777 Type_Def := Type_Definition (Parent (T));
10779 if Nkind (Type_Def) = N_Derived_Type_Definition
10780 and then Present (Record_Extension_Part (Type_Def))
10781 and then
10782 (Ada_Version < Ada_2005
10783 or else not Is_Null_Extension (T)
10784 or else Ekind (Subp) = E_Procedure
10785 or else not Has_Controlling_Result (Subp)
10786 or else Is_Abstract_Subprogram (Alias_Subp)
10787 or else Requires_Overriding (Subp)
10788 or else Is_Access_Type (Etype (Subp)))
10789 then
10790 -- Avoid reporting error in case of abstract predefined
10791 -- primitive inherited from interface type because the
10792 -- body of internally generated predefined primitives
10793 -- of tagged types are generated later by Freeze_Type
10795 if Is_Interface (Root_Type (T))
10796 and then Is_Abstract_Subprogram (Subp)
10797 and then Is_Predefined_Dispatching_Operation (Subp)
10798 and then not Comes_From_Source (Ultimate_Alias (Subp))
10799 then
10800 null;
10802 -- A null extension is not obliged to override an inherited
10803 -- procedure subject to pragma Extensions_Visible with value
10804 -- False and at least one controlling OUT parameter
10805 -- (SPARK RM 6.1.7(6)).
10807 elsif Is_Null_Extension (T)
10808 and then Is_EVF_Procedure (Subp)
10809 then
10810 null;
10812 else
10813 Error_Msg_NE
10814 ("type must be declared abstract or & overridden",
10815 T, Subp);
10817 -- Traverse the whole chain of aliased subprograms to
10818 -- complete the error notification. This is especially
10819 -- useful for traceability of the chain of entities when
10820 -- the subprogram corresponds with an interface
10821 -- subprogram (which may be defined in another package).
10823 if Present (Alias_Subp) then
10824 declare
10825 E : Entity_Id;
10827 begin
10828 E := Subp;
10829 while Present (Alias (E)) loop
10831 -- Avoid reporting redundant errors on entities
10832 -- inherited from interfaces
10834 if Sloc (E) /= Sloc (T) then
10835 Error_Msg_Sloc := Sloc (E);
10836 Error_Msg_NE
10837 ("\& has been inherited #", T, Subp);
10838 end if;
10840 E := Alias (E);
10841 end loop;
10843 Error_Msg_Sloc := Sloc (E);
10845 -- AI05-0068: report if there is an overriding
10846 -- non-abstract subprogram that is invisible.
10848 if Is_Hidden (E)
10849 and then not Is_Abstract_Subprogram (E)
10850 then
10851 Error_Msg_NE
10852 ("\& subprogram# is not visible",
10853 T, Subp);
10855 -- Clarify the case where a non-null extension must
10856 -- override inherited procedure subject to pragma
10857 -- Extensions_Visible with value False and at least
10858 -- one controlling OUT param.
10860 elsif Is_EVF_Procedure (E) then
10861 Error_Msg_NE
10862 ("\& # is subject to Extensions_Visible False",
10863 T, Subp);
10865 else
10866 Error_Msg_NE
10867 ("\& has been inherited from subprogram #",
10868 T, Subp);
10869 end if;
10870 end;
10871 end if;
10872 end if;
10874 -- Ada 2005 (AI-345): Protected or task type implementing
10875 -- abstract interfaces.
10877 elsif Is_Concurrent_Record_Type (T)
10878 and then Present (Interfaces (T))
10879 then
10880 -- There is no need to check here RM 9.4(11.9/3) since we
10881 -- are processing the corresponding record type and the
10882 -- mode of the overriding subprograms was verified by
10883 -- Check_Conformance when the corresponding concurrent
10884 -- type declaration was analyzed.
10886 Error_Msg_NE
10887 ("interface subprogram & must be overridden", T, Subp);
10889 -- Examine primitive operations of synchronized type to find
10890 -- homonyms that have the wrong profile.
10892 declare
10893 Prim : Entity_Id;
10895 begin
10896 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10897 while Present (Prim) loop
10898 if Chars (Prim) = Chars (Subp) then
10899 Error_Msg_NE
10900 ("profile is not type conformant with prefixed "
10901 & "view profile of inherited operation&",
10902 Prim, Subp);
10903 end if;
10905 Next_Entity (Prim);
10906 end loop;
10907 end;
10908 end if;
10910 else
10911 Error_Msg_Node_2 := T;
10912 Error_Msg_N
10913 ("abstract subprogram& not allowed for type&", Subp);
10915 -- Also post unconditional warning on the type (unconditional
10916 -- so that if there are more than one of these cases, we get
10917 -- them all, and not just the first one).
10919 Error_Msg_Node_2 := Subp;
10920 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10921 end if;
10923 -- A subprogram subject to pragma Extensions_Visible with value
10924 -- "True" cannot override a subprogram subject to the same pragma
10925 -- with value "False" (SPARK RM 6.1.7(5)).
10927 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10928 and then Present (Overridden_Operation (Subp))
10929 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10930 Extensions_Visible_False
10931 then
10932 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10933 Error_Msg_N
10934 ("subprogram & with Extensions_Visible True cannot override "
10935 & "subprogram # with Extensions_Visible False", Subp);
10936 end if;
10938 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10940 -- Subp is an expander-generated procedure which maps an interface
10941 -- alias to a protected wrapper. The interface alias is flagged by
10942 -- pragma Implemented. Ensure that Subp is a procedure when the
10943 -- implementation kind is By_Protected_Procedure or an entry when
10944 -- By_Entry.
10946 if Ada_Version >= Ada_2012
10947 and then Is_Hidden (Subp)
10948 and then Present (Interface_Alias (Subp))
10949 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10950 then
10951 Check_Pragma_Implemented (Subp);
10952 end if;
10954 -- Subp is an interface primitive which overrides another interface
10955 -- primitive marked with pragma Implemented.
10957 if Ada_Version >= Ada_2012
10958 and then Present (Overridden_Operation (Subp))
10959 and then Has_Rep_Pragma
10960 (Overridden_Operation (Subp), Name_Implemented)
10961 then
10962 -- If the overriding routine is also marked by Implemented, check
10963 -- that the two implementation kinds are conforming.
10965 if Has_Rep_Pragma (Subp, Name_Implemented) then
10966 Check_Pragma_Implemented
10967 (Subp => Subp,
10968 Iface_Subp => Overridden_Operation (Subp));
10970 -- Otherwise the overriding routine inherits the implementation
10971 -- kind from the overridden subprogram.
10973 else
10974 Inherit_Pragma_Implemented
10975 (Subp => Subp,
10976 Iface_Subp => Overridden_Operation (Subp));
10977 end if;
10978 end if;
10980 -- If the operation is a wrapper for a synchronized primitive, it
10981 -- may be called indirectly through a dispatching select. We assume
10982 -- that it will be referenced elsewhere indirectly, and suppress
10983 -- warnings about an unused entity.
10985 if Is_Primitive_Wrapper (Subp)
10986 and then Present (Wrapped_Entity (Subp))
10987 then
10988 Set_Referenced (Wrapped_Entity (Subp));
10989 end if;
10991 Next_Elmt (Elmt);
10992 end loop;
10993 end Check_Abstract_Overriding;
10995 ------------------------------------------------
10996 -- Check_Access_Discriminant_Requires_Limited --
10997 ------------------------------------------------
10999 procedure Check_Access_Discriminant_Requires_Limited
11000 (D : Node_Id;
11001 Loc : Node_Id)
11003 begin
11004 -- A discriminant_specification for an access discriminant shall appear
11005 -- only in the declaration for a task or protected type, or for a type
11006 -- with the reserved word 'limited' in its definition or in one of its
11007 -- ancestors (RM 3.7(10)).
11009 -- AI-0063: The proper condition is that type must be immutably limited,
11010 -- or else be a partial view.
11012 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
11013 if Is_Limited_View (Current_Scope)
11014 or else
11015 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
11016 and then Limited_Present (Parent (Current_Scope)))
11017 then
11018 null;
11020 else
11021 Error_Msg_N
11022 ("access discriminants allowed only for limited types", Loc);
11023 end if;
11024 end if;
11025 end Check_Access_Discriminant_Requires_Limited;
11027 -----------------------------------
11028 -- Check_Aliased_Component_Types --
11029 -----------------------------------
11031 procedure Check_Aliased_Component_Types (T : Entity_Id) is
11032 C : Entity_Id;
11034 begin
11035 -- ??? Also need to check components of record extensions, but not
11036 -- components of protected types (which are always limited).
11038 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
11039 -- types to be unconstrained. This is safe because it is illegal to
11040 -- create access subtypes to such types with explicit discriminant
11041 -- constraints.
11043 if not Is_Limited_Type (T) then
11044 if Ekind (T) = E_Record_Type then
11045 C := First_Component (T);
11046 while Present (C) loop
11047 if Is_Aliased (C)
11048 and then Has_Discriminants (Etype (C))
11049 and then not Is_Constrained (Etype (C))
11050 and then not In_Instance_Body
11051 and then Ada_Version < Ada_2005
11052 then
11053 Error_Msg_N
11054 ("aliased component must be constrained (RM 3.6(11))",
11056 end if;
11058 Next_Component (C);
11059 end loop;
11061 elsif Ekind (T) = E_Array_Type then
11062 if Has_Aliased_Components (T)
11063 and then Has_Discriminants (Component_Type (T))
11064 and then not Is_Constrained (Component_Type (T))
11065 and then not In_Instance_Body
11066 and then Ada_Version < Ada_2005
11067 then
11068 Error_Msg_N
11069 ("aliased component type must be constrained (RM 3.6(11))",
11071 end if;
11072 end if;
11073 end if;
11074 end Check_Aliased_Component_Types;
11076 ---------------------------------------
11077 -- Check_Anonymous_Access_Components --
11078 ---------------------------------------
11080 procedure Check_Anonymous_Access_Components
11081 (Typ_Decl : Node_Id;
11082 Typ : Entity_Id;
11083 Prev : Entity_Id;
11084 Comp_List : Node_Id)
11086 Loc : constant Source_Ptr := Sloc (Typ_Decl);
11087 Anon_Access : Entity_Id;
11088 Acc_Def : Node_Id;
11089 Comp : Node_Id;
11090 Comp_Def : Node_Id;
11091 Decl : Node_Id;
11092 Type_Def : Node_Id;
11094 procedure Build_Incomplete_Type_Declaration;
11095 -- If the record type contains components that include an access to the
11096 -- current record, then create an incomplete type declaration for the
11097 -- record, to be used as the designated type of the anonymous access.
11098 -- This is done only once, and only if there is no previous partial
11099 -- view of the type.
11101 function Designates_T (Subt : Node_Id) return Boolean;
11102 -- Check whether a node designates the enclosing record type, or 'Class
11103 -- of that type
11105 function Mentions_T (Acc_Def : Node_Id) return Boolean;
11106 -- Check whether an access definition includes a reference to
11107 -- the enclosing record type. The reference can be a subtype mark
11108 -- in the access definition itself, a 'Class attribute reference, or
11109 -- recursively a reference appearing in a parameter specification
11110 -- or result definition of an access_to_subprogram definition.
11112 --------------------------------------
11113 -- Build_Incomplete_Type_Declaration --
11114 --------------------------------------
11116 procedure Build_Incomplete_Type_Declaration is
11117 Decl : Node_Id;
11118 Inc_T : Entity_Id;
11119 H : Entity_Id;
11121 -- Is_Tagged indicates whether the type is tagged. It is tagged if
11122 -- it's "is new ... with record" or else "is tagged record ...".
11124 Is_Tagged : constant Boolean :=
11125 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
11126 and then
11127 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
11128 or else
11129 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
11130 and then Tagged_Present (Type_Definition (Typ_Decl)));
11132 begin
11133 -- If there is a previous partial view, no need to create a new one
11134 -- If the partial view, given by Prev, is incomplete, If Prev is
11135 -- a private declaration, full declaration is flagged accordingly.
11137 if Prev /= Typ then
11138 if Is_Tagged then
11139 Make_Class_Wide_Type (Prev);
11140 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
11141 Set_Etype (Class_Wide_Type (Typ), Typ);
11142 end if;
11144 return;
11146 elsif Has_Private_Declaration (Typ) then
11148 -- If we refer to T'Class inside T, and T is the completion of a
11149 -- private type, then make sure the class-wide type exists.
11151 if Is_Tagged then
11152 Make_Class_Wide_Type (Typ);
11153 end if;
11155 return;
11157 -- If there was a previous anonymous access type, the incomplete
11158 -- type declaration will have been created already.
11160 elsif Present (Current_Entity (Typ))
11161 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
11162 and then Full_View (Current_Entity (Typ)) = Typ
11163 then
11164 if Is_Tagged
11165 and then Comes_From_Source (Current_Entity (Typ))
11166 and then not Is_Tagged_Type (Current_Entity (Typ))
11167 then
11168 Make_Class_Wide_Type (Typ);
11169 Error_Msg_N
11170 ("incomplete view of tagged type should be declared tagged??",
11171 Parent (Current_Entity (Typ)));
11172 end if;
11173 return;
11175 else
11176 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
11177 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
11179 -- Type has already been inserted into the current scope. Remove
11180 -- it, and add incomplete declaration for type, so that subsequent
11181 -- anonymous access types can use it. The entity is unchained from
11182 -- the homonym list and from immediate visibility. After analysis,
11183 -- the entity in the incomplete declaration becomes immediately
11184 -- visible in the record declaration that follows.
11186 H := Current_Entity (Typ);
11188 if H = Typ then
11189 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
11190 else
11191 while Present (H)
11192 and then Homonym (H) /= Typ
11193 loop
11194 H := Homonym (Typ);
11195 end loop;
11197 Set_Homonym (H, Homonym (Typ));
11198 end if;
11200 Insert_Before (Typ_Decl, Decl);
11201 Analyze (Decl);
11202 Set_Full_View (Inc_T, Typ);
11204 if Is_Tagged then
11206 -- Create a common class-wide type for both views, and set the
11207 -- Etype of the class-wide type to the full view.
11209 Make_Class_Wide_Type (Inc_T);
11210 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
11211 Set_Etype (Class_Wide_Type (Typ), Typ);
11212 end if;
11213 end if;
11214 end Build_Incomplete_Type_Declaration;
11216 ------------------
11217 -- Designates_T --
11218 ------------------
11220 function Designates_T (Subt : Node_Id) return Boolean is
11221 Type_Id : constant Name_Id := Chars (Typ);
11223 function Names_T (Nam : Node_Id) return Boolean;
11224 -- The record type has not been introduced in the current scope
11225 -- yet, so we must examine the name of the type itself, either
11226 -- an identifier T, or an expanded name of the form P.T, where
11227 -- P denotes the current scope.
11229 -------------
11230 -- Names_T --
11231 -------------
11233 function Names_T (Nam : Node_Id) return Boolean is
11234 begin
11235 if Nkind (Nam) = N_Identifier then
11236 return Chars (Nam) = Type_Id;
11238 elsif Nkind (Nam) = N_Selected_Component then
11239 if Chars (Selector_Name (Nam)) = Type_Id then
11240 if Nkind (Prefix (Nam)) = N_Identifier then
11241 return Chars (Prefix (Nam)) = Chars (Current_Scope);
11243 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
11244 return Chars (Selector_Name (Prefix (Nam))) =
11245 Chars (Current_Scope);
11246 else
11247 return False;
11248 end if;
11250 else
11251 return False;
11252 end if;
11254 else
11255 return False;
11256 end if;
11257 end Names_T;
11259 -- Start of processing for Designates_T
11261 begin
11262 if Nkind (Subt) = N_Identifier then
11263 return Chars (Subt) = Type_Id;
11265 -- Reference can be through an expanded name which has not been
11266 -- analyzed yet, and which designates enclosing scopes.
11268 elsif Nkind (Subt) = N_Selected_Component then
11269 if Names_T (Subt) then
11270 return True;
11272 -- Otherwise it must denote an entity that is already visible.
11273 -- The access definition may name a subtype of the enclosing
11274 -- type, if there is a previous incomplete declaration for it.
11276 else
11277 Find_Selected_Component (Subt);
11278 return
11279 Is_Entity_Name (Subt)
11280 and then Scope (Entity (Subt)) = Current_Scope
11281 and then
11282 (Chars (Base_Type (Entity (Subt))) = Type_Id
11283 or else
11284 (Is_Class_Wide_Type (Entity (Subt))
11285 and then
11286 Chars (Etype (Base_Type (Entity (Subt)))) =
11287 Type_Id));
11288 end if;
11290 -- A reference to the current type may appear as the prefix of
11291 -- a 'Class attribute.
11293 elsif Nkind (Subt) = N_Attribute_Reference
11294 and then Attribute_Name (Subt) = Name_Class
11295 then
11296 return Names_T (Prefix (Subt));
11298 else
11299 return False;
11300 end if;
11301 end Designates_T;
11303 ----------------
11304 -- Mentions_T --
11305 ----------------
11307 function Mentions_T (Acc_Def : Node_Id) return Boolean is
11308 Param_Spec : Node_Id;
11310 Acc_Subprg : constant Node_Id :=
11311 Access_To_Subprogram_Definition (Acc_Def);
11313 begin
11314 if No (Acc_Subprg) then
11315 return Designates_T (Subtype_Mark (Acc_Def));
11316 end if;
11318 -- Component is an access_to_subprogram: examine its formals,
11319 -- and result definition in the case of an access_to_function.
11321 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
11322 while Present (Param_Spec) loop
11323 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
11324 and then Mentions_T (Parameter_Type (Param_Spec))
11325 then
11326 return True;
11328 elsif Designates_T (Parameter_Type (Param_Spec)) then
11329 return True;
11330 end if;
11332 Next (Param_Spec);
11333 end loop;
11335 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
11336 if Nkind (Result_Definition (Acc_Subprg)) =
11337 N_Access_Definition
11338 then
11339 return Mentions_T (Result_Definition (Acc_Subprg));
11340 else
11341 return Designates_T (Result_Definition (Acc_Subprg));
11342 end if;
11343 end if;
11345 return False;
11346 end Mentions_T;
11348 -- Start of processing for Check_Anonymous_Access_Components
11350 begin
11351 if No (Comp_List) then
11352 return;
11353 end if;
11355 Comp := First (Component_Items (Comp_List));
11356 while Present (Comp) loop
11357 if Nkind (Comp) = N_Component_Declaration
11358 and then Present
11359 (Access_Definition (Component_Definition (Comp)))
11360 and then
11361 Mentions_T (Access_Definition (Component_Definition (Comp)))
11362 then
11363 Comp_Def := Component_Definition (Comp);
11364 Acc_Def :=
11365 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
11367 Build_Incomplete_Type_Declaration;
11368 Anon_Access := Make_Temporary (Loc, 'S');
11370 -- Create a declaration for the anonymous access type: either
11371 -- an access_to_object or an access_to_subprogram.
11373 if Present (Acc_Def) then
11374 if Nkind (Acc_Def) = N_Access_Function_Definition then
11375 Type_Def :=
11376 Make_Access_Function_Definition (Loc,
11377 Parameter_Specifications =>
11378 Parameter_Specifications (Acc_Def),
11379 Result_Definition => Result_Definition (Acc_Def));
11380 else
11381 Type_Def :=
11382 Make_Access_Procedure_Definition (Loc,
11383 Parameter_Specifications =>
11384 Parameter_Specifications (Acc_Def));
11385 end if;
11387 else
11388 Type_Def :=
11389 Make_Access_To_Object_Definition (Loc,
11390 Subtype_Indication =>
11391 Relocate_Node
11392 (Subtype_Mark (Access_Definition (Comp_Def))));
11394 Set_Constant_Present
11395 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
11396 Set_All_Present
11397 (Type_Def, All_Present (Access_Definition (Comp_Def)));
11398 end if;
11400 Set_Null_Exclusion_Present
11401 (Type_Def,
11402 Null_Exclusion_Present (Access_Definition (Comp_Def)));
11404 Decl :=
11405 Make_Full_Type_Declaration (Loc,
11406 Defining_Identifier => Anon_Access,
11407 Type_Definition => Type_Def);
11409 Insert_Before (Typ_Decl, Decl);
11410 Analyze (Decl);
11412 -- If an access to subprogram, create the extra formals
11414 if Present (Acc_Def) then
11415 Create_Extra_Formals (Designated_Type (Anon_Access));
11417 -- If an access to object, preserve entity of designated type,
11418 -- for ASIS use, before rewriting the component definition.
11420 else
11421 declare
11422 Desig : Entity_Id;
11424 begin
11425 Desig := Entity (Subtype_Indication (Type_Def));
11427 -- If the access definition is to the current record,
11428 -- the visible entity at this point is an incomplete
11429 -- type. Retrieve the full view to simplify ASIS queries
11431 if Ekind (Desig) = E_Incomplete_Type then
11432 Desig := Full_View (Desig);
11433 end if;
11435 Set_Entity
11436 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
11437 end;
11438 end if;
11440 Rewrite (Comp_Def,
11441 Make_Component_Definition (Loc,
11442 Subtype_Indication =>
11443 New_Occurrence_Of (Anon_Access, Loc)));
11445 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
11446 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
11447 else
11448 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
11449 end if;
11451 Set_Is_Local_Anonymous_Access (Anon_Access);
11452 end if;
11454 Next (Comp);
11455 end loop;
11457 if Present (Variant_Part (Comp_List)) then
11458 declare
11459 V : Node_Id;
11460 begin
11461 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
11462 while Present (V) loop
11463 Check_Anonymous_Access_Components
11464 (Typ_Decl, Typ, Prev, Component_List (V));
11465 Next_Non_Pragma (V);
11466 end loop;
11467 end;
11468 end if;
11469 end Check_Anonymous_Access_Components;
11471 ----------------------
11472 -- Check_Completion --
11473 ----------------------
11475 procedure Check_Completion (Body_Id : Node_Id := Empty) is
11476 E : Entity_Id;
11478 procedure Post_Error;
11479 -- Post error message for lack of completion for entity E
11481 ----------------
11482 -- Post_Error --
11483 ----------------
11485 procedure Post_Error is
11486 procedure Missing_Body;
11487 -- Output missing body message
11489 ------------------
11490 -- Missing_Body --
11491 ------------------
11493 procedure Missing_Body is
11494 begin
11495 -- Spec is in same unit, so we can post on spec
11497 if In_Same_Source_Unit (Body_Id, E) then
11498 Error_Msg_N ("missing body for &", E);
11500 -- Spec is in a separate unit, so we have to post on the body
11502 else
11503 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
11504 end if;
11505 end Missing_Body;
11507 -- Start of processing for Post_Error
11509 begin
11510 if not Comes_From_Source (E) then
11511 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
11513 -- It may be an anonymous protected type created for a
11514 -- single variable. Post error on variable, if present.
11516 declare
11517 Var : Entity_Id;
11519 begin
11520 Var := First_Entity (Current_Scope);
11521 while Present (Var) loop
11522 exit when Etype (Var) = E
11523 and then Comes_From_Source (Var);
11525 Next_Entity (Var);
11526 end loop;
11528 if Present (Var) then
11529 E := Var;
11530 end if;
11531 end;
11532 end if;
11533 end if;
11535 -- If a generated entity has no completion, then either previous
11536 -- semantic errors have disabled the expansion phase, or else we had
11537 -- missing subunits, or else we are compiling without expansion,
11538 -- or else something is very wrong.
11540 if not Comes_From_Source (E) then
11541 pragma Assert
11542 (Serious_Errors_Detected > 0
11543 or else Configurable_Run_Time_Violations > 0
11544 or else Subunits_Missing
11545 or else not Expander_Active);
11546 return;
11548 -- Here for source entity
11550 else
11551 -- Here if no body to post the error message, so we post the error
11552 -- on the declaration that has no completion. This is not really
11553 -- the right place to post it, think about this later ???
11555 if No (Body_Id) then
11556 if Is_Type (E) then
11557 Error_Msg_NE
11558 ("missing full declaration for }", Parent (E), E);
11559 else
11560 Error_Msg_NE ("missing body for &", Parent (E), E);
11561 end if;
11563 -- Package body has no completion for a declaration that appears
11564 -- in the corresponding spec. Post error on the body, with a
11565 -- reference to the non-completed declaration.
11567 else
11568 Error_Msg_Sloc := Sloc (E);
11570 if Is_Type (E) then
11571 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
11573 elsif Is_Overloadable (E)
11574 and then Current_Entity_In_Scope (E) /= E
11575 then
11576 -- It may be that the completion is mistyped and appears as
11577 -- a distinct overloading of the entity.
11579 declare
11580 Candidate : constant Entity_Id :=
11581 Current_Entity_In_Scope (E);
11582 Decl : constant Node_Id :=
11583 Unit_Declaration_Node (Candidate);
11585 begin
11586 if Is_Overloadable (Candidate)
11587 and then Ekind (Candidate) = Ekind (E)
11588 and then Nkind (Decl) = N_Subprogram_Body
11589 and then Acts_As_Spec (Decl)
11590 then
11591 Check_Type_Conformant (Candidate, E);
11593 else
11594 Missing_Body;
11595 end if;
11596 end;
11598 else
11599 Missing_Body;
11600 end if;
11601 end if;
11602 end if;
11603 end Post_Error;
11605 -- Local variables
11607 Pack_Id : constant Entity_Id := Current_Scope;
11609 -- Start of processing for Check_Completion
11611 begin
11612 E := First_Entity (Pack_Id);
11613 while Present (E) loop
11614 if Is_Intrinsic_Subprogram (E) then
11615 null;
11617 -- The following situation requires special handling: a child unit
11618 -- that appears in the context clause of the body of its parent:
11620 -- procedure Parent.Child (...);
11622 -- with Parent.Child;
11623 -- package body Parent is
11625 -- Here Parent.Child appears as a local entity, but should not be
11626 -- flagged as requiring completion, because it is a compilation
11627 -- unit.
11629 -- Ignore missing completion for a subprogram that does not come from
11630 -- source (including the _Call primitive operation of RAS types,
11631 -- which has to have the flag Comes_From_Source for other purposes):
11632 -- we assume that the expander will provide the missing completion.
11633 -- In case of previous errors, other expansion actions that provide
11634 -- bodies for null procedures with not be invoked, so inhibit message
11635 -- in those cases.
11637 -- Note that E_Operator is not in the list that follows, because
11638 -- this kind is reserved for predefined operators, that are
11639 -- intrinsic and do not need completion.
11641 elsif Ekind_In (E, E_Function,
11642 E_Procedure,
11643 E_Generic_Function,
11644 E_Generic_Procedure)
11645 then
11646 if Has_Completion (E) then
11647 null;
11649 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
11650 null;
11652 elsif Is_Subprogram (E)
11653 and then (not Comes_From_Source (E)
11654 or else Chars (E) = Name_uCall)
11655 then
11656 null;
11658 elsif
11659 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
11660 then
11661 null;
11663 elsif Nkind (Parent (E)) = N_Procedure_Specification
11664 and then Null_Present (Parent (E))
11665 and then Serious_Errors_Detected > 0
11666 then
11667 null;
11669 else
11670 Post_Error;
11671 end if;
11673 elsif Is_Entry (E) then
11674 if not Has_Completion (E) and then
11675 (Ekind (Scope (E)) = E_Protected_Object
11676 or else Ekind (Scope (E)) = E_Protected_Type)
11677 then
11678 Post_Error;
11679 end if;
11681 elsif Is_Package_Or_Generic_Package (E) then
11682 if Unit_Requires_Body (E) then
11683 if not Has_Completion (E)
11684 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
11685 N_Compilation_Unit
11686 then
11687 Post_Error;
11688 end if;
11690 elsif not Is_Child_Unit (E) then
11691 May_Need_Implicit_Body (E);
11692 end if;
11694 -- A formal incomplete type (Ada 2012) does not require a completion;
11695 -- other incomplete type declarations do.
11697 elsif Ekind (E) = E_Incomplete_Type
11698 and then No (Underlying_Type (E))
11699 and then not Is_Generic_Type (E)
11700 then
11701 Post_Error;
11703 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11704 and then not Has_Completion (E)
11705 then
11706 Post_Error;
11708 -- A single task declared in the current scope is a constant, verify
11709 -- that the body of its anonymous type is in the same scope. If the
11710 -- task is defined elsewhere, this may be a renaming declaration for
11711 -- which no completion is needed.
11713 elsif Ekind (E) = E_Constant
11714 and then Ekind (Etype (E)) = E_Task_Type
11715 and then not Has_Completion (Etype (E))
11716 and then Scope (Etype (E)) = Current_Scope
11717 then
11718 Post_Error;
11720 elsif Ekind (E) = E_Protected_Object
11721 and then not Has_Completion (Etype (E))
11722 then
11723 Post_Error;
11725 elsif Ekind (E) = E_Record_Type then
11726 if Is_Tagged_Type (E) then
11727 Check_Abstract_Overriding (E);
11728 Check_Conventions (E);
11729 end if;
11731 Check_Aliased_Component_Types (E);
11733 elsif Ekind (E) = E_Array_Type then
11734 Check_Aliased_Component_Types (E);
11736 end if;
11738 Next_Entity (E);
11739 end loop;
11740 end Check_Completion;
11742 ------------------------------------
11743 -- Check_CPP_Type_Has_No_Defaults --
11744 ------------------------------------
11746 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11747 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11748 Clist : Node_Id;
11749 Comp : Node_Id;
11751 begin
11752 -- Obtain the component list
11754 if Nkind (Tdef) = N_Record_Definition then
11755 Clist := Component_List (Tdef);
11756 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11757 Clist := Component_List (Record_Extension_Part (Tdef));
11758 end if;
11760 -- Check all components to ensure no default expressions
11762 if Present (Clist) then
11763 Comp := First (Component_Items (Clist));
11764 while Present (Comp) loop
11765 if Present (Expression (Comp)) then
11766 Error_Msg_N
11767 ("component of imported 'C'P'P type cannot have "
11768 & "default expression", Expression (Comp));
11769 end if;
11771 Next (Comp);
11772 end loop;
11773 end if;
11774 end Check_CPP_Type_Has_No_Defaults;
11776 ----------------------------
11777 -- Check_Delta_Expression --
11778 ----------------------------
11780 procedure Check_Delta_Expression (E : Node_Id) is
11781 begin
11782 if not (Is_Real_Type (Etype (E))) then
11783 Wrong_Type (E, Any_Real);
11785 elsif not Is_OK_Static_Expression (E) then
11786 Flag_Non_Static_Expr
11787 ("non-static expression used for delta value!", E);
11789 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11790 Error_Msg_N ("delta expression must be positive", E);
11792 else
11793 return;
11794 end if;
11796 -- If any of above errors occurred, then replace the incorrect
11797 -- expression by the real 0.1, which should prevent further errors.
11799 Rewrite (E,
11800 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11801 Analyze_And_Resolve (E, Standard_Float);
11802 end Check_Delta_Expression;
11804 -----------------------------
11805 -- Check_Digits_Expression --
11806 -----------------------------
11808 procedure Check_Digits_Expression (E : Node_Id) is
11809 begin
11810 if not (Is_Integer_Type (Etype (E))) then
11811 Wrong_Type (E, Any_Integer);
11813 elsif not Is_OK_Static_Expression (E) then
11814 Flag_Non_Static_Expr
11815 ("non-static expression used for digits value!", E);
11817 elsif Expr_Value (E) <= 0 then
11818 Error_Msg_N ("digits value must be greater than zero", E);
11820 else
11821 return;
11822 end if;
11824 -- If any of above errors occurred, then replace the incorrect
11825 -- expression by the integer 1, which should prevent further errors.
11827 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11828 Analyze_And_Resolve (E, Standard_Integer);
11830 end Check_Digits_Expression;
11832 --------------------------
11833 -- Check_Initialization --
11834 --------------------------
11836 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11837 begin
11838 -- Special processing for limited types
11840 if Is_Limited_Type (T)
11841 and then not In_Instance
11842 and then not In_Inlined_Body
11843 then
11844 if not OK_For_Limited_Init (T, Exp) then
11846 -- In GNAT mode, this is just a warning, to allow it to be evilly
11847 -- turned off. Otherwise it is a real error.
11849 if GNAT_Mode then
11850 Error_Msg_N
11851 ("??cannot initialize entities of limited type!", Exp);
11853 elsif Ada_Version < Ada_2005 then
11855 -- The side effect removal machinery may generate illegal Ada
11856 -- code to avoid the usage of access types and 'reference in
11857 -- SPARK mode. Since this is legal code with respect to theorem
11858 -- proving, do not emit the error.
11860 if GNATprove_Mode
11861 and then Nkind (Exp) = N_Function_Call
11862 and then Nkind (Parent (Exp)) = N_Object_Declaration
11863 and then not Comes_From_Source
11864 (Defining_Identifier (Parent (Exp)))
11865 then
11866 null;
11868 else
11869 Error_Msg_N
11870 ("cannot initialize entities of limited type", Exp);
11871 Explain_Limited_Type (T, Exp);
11872 end if;
11874 else
11875 -- Specialize error message according to kind of illegal
11876 -- initial expression.
11878 if Nkind (Exp) = N_Type_Conversion
11879 and then Nkind (Expression (Exp)) = N_Function_Call
11880 then
11881 -- No error for internally-generated object declarations,
11882 -- which can come from build-in-place assignment statements.
11884 if Nkind (Parent (Exp)) = N_Object_Declaration
11885 and then not Comes_From_Source
11886 (Defining_Identifier (Parent (Exp)))
11887 then
11888 null;
11890 else
11891 Error_Msg_N
11892 ("illegal context for call to function with limited "
11893 & "result", Exp);
11894 end if;
11896 else
11897 Error_Msg_N
11898 ("initialization of limited object requires aggregate or "
11899 & "function call", Exp);
11900 end if;
11901 end if;
11902 end if;
11903 end if;
11905 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11906 -- set unless we can be sure that no range check is required.
11908 if (GNATprove_Mode or not Expander_Active)
11909 and then Is_Scalar_Type (T)
11910 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11911 then
11912 Set_Do_Range_Check (Exp);
11913 end if;
11914 end Check_Initialization;
11916 ----------------------
11917 -- Check_Interfaces --
11918 ----------------------
11920 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11921 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11923 Iface : Node_Id;
11924 Iface_Def : Node_Id;
11925 Iface_Typ : Entity_Id;
11926 Parent_Node : Node_Id;
11928 Is_Task : Boolean := False;
11929 -- Set True if parent type or any progenitor is a task interface
11931 Is_Protected : Boolean := False;
11932 -- Set True if parent type or any progenitor is a protected interface
11934 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11935 -- Check that a progenitor is compatible with declaration. If an error
11936 -- message is output, it is posted on Error_Node.
11938 ------------------
11939 -- Check_Ifaces --
11940 ------------------
11942 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11943 Iface_Id : constant Entity_Id :=
11944 Defining_Identifier (Parent (Iface_Def));
11945 Type_Def : Node_Id;
11947 begin
11948 if Nkind (N) = N_Private_Extension_Declaration then
11949 Type_Def := N;
11950 else
11951 Type_Def := Type_Definition (N);
11952 end if;
11954 if Is_Task_Interface (Iface_Id) then
11955 Is_Task := True;
11957 elsif Is_Protected_Interface (Iface_Id) then
11958 Is_Protected := True;
11959 end if;
11961 if Is_Synchronized_Interface (Iface_Id) then
11963 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11964 -- extension derived from a synchronized interface must explicitly
11965 -- be declared synchronized, because the full view will be a
11966 -- synchronized type.
11968 if Nkind (N) = N_Private_Extension_Declaration then
11969 if not Synchronized_Present (N) then
11970 Error_Msg_NE
11971 ("private extension of& must be explicitly synchronized",
11972 N, Iface_Id);
11973 end if;
11975 -- However, by 3.9.4(16/2), a full type that is a record extension
11976 -- is never allowed to derive from a synchronized interface (note
11977 -- that interfaces must be excluded from this check, because those
11978 -- are represented by derived type definitions in some cases).
11980 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11981 and then not Interface_Present (Type_Definition (N))
11982 then
11983 Error_Msg_N ("record extension cannot derive from synchronized "
11984 & "interface", Error_Node);
11985 end if;
11986 end if;
11988 -- Check that the characteristics of the progenitor are compatible
11989 -- with the explicit qualifier in the declaration.
11990 -- The check only applies to qualifiers that come from source.
11991 -- Limited_Present also appears in the declaration of corresponding
11992 -- records, and the check does not apply to them.
11994 if Limited_Present (Type_Def)
11995 and then not
11996 Is_Concurrent_Record_Type (Defining_Identifier (N))
11997 then
11998 if Is_Limited_Interface (Parent_Type)
11999 and then not Is_Limited_Interface (Iface_Id)
12000 then
12001 Error_Msg_NE
12002 ("progenitor & must be limited interface",
12003 Error_Node, Iface_Id);
12005 elsif
12006 (Task_Present (Iface_Def)
12007 or else Protected_Present (Iface_Def)
12008 or else Synchronized_Present (Iface_Def))
12009 and then Nkind (N) /= N_Private_Extension_Declaration
12010 and then not Error_Posted (N)
12011 then
12012 Error_Msg_NE
12013 ("progenitor & must be limited interface",
12014 Error_Node, Iface_Id);
12015 end if;
12017 -- Protected interfaces can only inherit from limited, synchronized
12018 -- or protected interfaces.
12020 elsif Nkind (N) = N_Full_Type_Declaration
12021 and then Protected_Present (Type_Def)
12022 then
12023 if Limited_Present (Iface_Def)
12024 or else Synchronized_Present (Iface_Def)
12025 or else Protected_Present (Iface_Def)
12026 then
12027 null;
12029 elsif Task_Present (Iface_Def) then
12030 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12031 & "from task interface", Error_Node);
12033 else
12034 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
12035 & "from non-limited interface", Error_Node);
12036 end if;
12038 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
12039 -- limited and synchronized.
12041 elsif Synchronized_Present (Type_Def) then
12042 if Limited_Present (Iface_Def)
12043 or else Synchronized_Present (Iface_Def)
12044 then
12045 null;
12047 elsif Protected_Present (Iface_Def)
12048 and then Nkind (N) /= N_Private_Extension_Declaration
12049 then
12050 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12051 & "from protected interface", Error_Node);
12053 elsif Task_Present (Iface_Def)
12054 and then Nkind (N) /= N_Private_Extension_Declaration
12055 then
12056 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12057 & "from task interface", Error_Node);
12059 elsif not Is_Limited_Interface (Iface_Id) then
12060 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
12061 & "from non-limited interface", Error_Node);
12062 end if;
12064 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
12065 -- synchronized or task interfaces.
12067 elsif Nkind (N) = N_Full_Type_Declaration
12068 and then Task_Present (Type_Def)
12069 then
12070 if Limited_Present (Iface_Def)
12071 or else Synchronized_Present (Iface_Def)
12072 or else Task_Present (Iface_Def)
12073 then
12074 null;
12076 elsif Protected_Present (Iface_Def) then
12077 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12078 & "protected interface", Error_Node);
12080 else
12081 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
12082 & "non-limited interface", Error_Node);
12083 end if;
12084 end if;
12085 end Check_Ifaces;
12087 -- Start of processing for Check_Interfaces
12089 begin
12090 if Is_Interface (Parent_Type) then
12091 if Is_Task_Interface (Parent_Type) then
12092 Is_Task := True;
12094 elsif Is_Protected_Interface (Parent_Type) then
12095 Is_Protected := True;
12096 end if;
12097 end if;
12099 if Nkind (N) = N_Private_Extension_Declaration then
12101 -- Check that progenitors are compatible with declaration
12103 Iface := First (Interface_List (Def));
12104 while Present (Iface) loop
12105 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12107 Parent_Node := Parent (Base_Type (Iface_Typ));
12108 Iface_Def := Type_Definition (Parent_Node);
12110 if not Is_Interface (Iface_Typ) then
12111 Diagnose_Interface (Iface, Iface_Typ);
12112 else
12113 Check_Ifaces (Iface_Def, Iface);
12114 end if;
12116 Next (Iface);
12117 end loop;
12119 if Is_Task and Is_Protected then
12120 Error_Msg_N
12121 ("type cannot derive from task and protected interface", N);
12122 end if;
12124 return;
12125 end if;
12127 -- Full type declaration of derived type.
12128 -- Check compatibility with parent if it is interface type
12130 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
12131 and then Is_Interface (Parent_Type)
12132 then
12133 Parent_Node := Parent (Parent_Type);
12135 -- More detailed checks for interface varieties
12137 Check_Ifaces
12138 (Iface_Def => Type_Definition (Parent_Node),
12139 Error_Node => Subtype_Indication (Type_Definition (N)));
12140 end if;
12142 Iface := First (Interface_List (Def));
12143 while Present (Iface) loop
12144 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
12146 Parent_Node := Parent (Base_Type (Iface_Typ));
12147 Iface_Def := Type_Definition (Parent_Node);
12149 if not Is_Interface (Iface_Typ) then
12150 Diagnose_Interface (Iface, Iface_Typ);
12152 else
12153 -- "The declaration of a specific descendant of an interface
12154 -- type freezes the interface type" RM 13.14
12156 Freeze_Before (N, Iface_Typ);
12157 Check_Ifaces (Iface_Def, Error_Node => Iface);
12158 end if;
12160 Next (Iface);
12161 end loop;
12163 if Is_Task and Is_Protected then
12164 Error_Msg_N
12165 ("type cannot derive from task and protected interface", N);
12166 end if;
12167 end Check_Interfaces;
12169 ------------------------------------
12170 -- Check_Or_Process_Discriminants --
12171 ------------------------------------
12173 -- If an incomplete or private type declaration was already given for the
12174 -- type, the discriminants may have already been processed if they were
12175 -- present on the incomplete declaration. In this case a full conformance
12176 -- check has been performed in Find_Type_Name, and we then recheck here
12177 -- some properties that can't be checked on the partial view alone.
12178 -- Otherwise we call Process_Discriminants.
12180 procedure Check_Or_Process_Discriminants
12181 (N : Node_Id;
12182 T : Entity_Id;
12183 Prev : Entity_Id := Empty)
12185 begin
12186 if Has_Discriminants (T) then
12188 -- Discriminants are already set on T if they were already present
12189 -- on the partial view. Make them visible to component declarations.
12191 declare
12192 D : Entity_Id;
12193 -- Discriminant on T (full view) referencing expr on partial view
12195 Prev_D : Entity_Id;
12196 -- Entity of corresponding discriminant on partial view
12198 New_D : Node_Id;
12199 -- Discriminant specification for full view, expression is
12200 -- the syntactic copy on full view (which has been checked for
12201 -- conformance with partial view), only used here to post error
12202 -- message.
12204 begin
12205 D := First_Discriminant (T);
12206 New_D := First (Discriminant_Specifications (N));
12207 while Present (D) loop
12208 Prev_D := Current_Entity (D);
12209 Set_Current_Entity (D);
12210 Set_Is_Immediately_Visible (D);
12211 Set_Homonym (D, Prev_D);
12213 -- Handle the case where there is an untagged partial view and
12214 -- the full view is tagged: must disallow discriminants with
12215 -- defaults, unless compiling for Ada 2012, which allows a
12216 -- limited tagged type to have defaulted discriminants (see
12217 -- AI05-0214). However, suppress error here if it was already
12218 -- reported on the default expression of the partial view.
12220 if Is_Tagged_Type (T)
12221 and then Present (Expression (Parent (D)))
12222 and then (not Is_Limited_Type (Current_Scope)
12223 or else Ada_Version < Ada_2012)
12224 and then not Error_Posted (Expression (Parent (D)))
12225 then
12226 if Ada_Version >= Ada_2012 then
12227 Error_Msg_N
12228 ("discriminants of nonlimited tagged type cannot have "
12229 & "defaults",
12230 Expression (New_D));
12231 else
12232 Error_Msg_N
12233 ("discriminants of tagged type cannot have defaults",
12234 Expression (New_D));
12235 end if;
12236 end if;
12238 -- Ada 2005 (AI-230): Access discriminant allowed in
12239 -- non-limited record types.
12241 if Ada_Version < Ada_2005 then
12243 -- This restriction gets applied to the full type here. It
12244 -- has already been applied earlier to the partial view.
12246 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
12247 end if;
12249 Next_Discriminant (D);
12250 Next (New_D);
12251 end loop;
12252 end;
12254 elsif Present (Discriminant_Specifications (N)) then
12255 Process_Discriminants (N, Prev);
12256 end if;
12257 end Check_Or_Process_Discriminants;
12259 ----------------------
12260 -- Check_Real_Bound --
12261 ----------------------
12263 procedure Check_Real_Bound (Bound : Node_Id) is
12264 begin
12265 if not Is_Real_Type (Etype (Bound)) then
12266 Error_Msg_N
12267 ("bound in real type definition must be of real type", Bound);
12269 elsif not Is_OK_Static_Expression (Bound) then
12270 Flag_Non_Static_Expr
12271 ("non-static expression used for real type bound!", Bound);
12273 else
12274 return;
12275 end if;
12277 Rewrite
12278 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
12279 Analyze (Bound);
12280 Resolve (Bound, Standard_Float);
12281 end Check_Real_Bound;
12283 ------------------------------
12284 -- Complete_Private_Subtype --
12285 ------------------------------
12287 procedure Complete_Private_Subtype
12288 (Priv : Entity_Id;
12289 Full : Entity_Id;
12290 Full_Base : Entity_Id;
12291 Related_Nod : Node_Id)
12293 Save_Next_Entity : Entity_Id;
12294 Save_Homonym : Entity_Id;
12296 begin
12297 -- Set semantic attributes for (implicit) private subtype completion.
12298 -- If the full type has no discriminants, then it is a copy of the
12299 -- full view of the base. Otherwise, it is a subtype of the base with
12300 -- a possible discriminant constraint. Save and restore the original
12301 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12302 -- not corrupt the entity chain.
12304 -- Note that the type of the full view is the same entity as the type
12305 -- of the partial view. In this fashion, the subtype has access to the
12306 -- correct view of the parent.
12308 Save_Next_Entity := Next_Entity (Full);
12309 Save_Homonym := Homonym (Priv);
12311 case Ekind (Full_Base) is
12312 when Class_Wide_Kind
12313 | Private_Kind
12314 | Protected_Kind
12315 | Task_Kind
12316 | E_Record_Subtype
12317 | E_Record_Type
12319 Copy_Node (Priv, Full);
12321 Set_Has_Discriminants
12322 (Full, Has_Discriminants (Full_Base));
12323 Set_Has_Unknown_Discriminants
12324 (Full, Has_Unknown_Discriminants (Full_Base));
12325 Set_First_Entity (Full, First_Entity (Full_Base));
12326 Set_Last_Entity (Full, Last_Entity (Full_Base));
12328 -- If the underlying base type is constrained, we know that the
12329 -- full view of the subtype is constrained as well (the converse
12330 -- is not necessarily true).
12332 if Is_Constrained (Full_Base) then
12333 Set_Is_Constrained (Full);
12334 end if;
12336 when others =>
12337 Copy_Node (Full_Base, Full);
12339 Set_Chars (Full, Chars (Priv));
12340 Conditional_Delay (Full, Priv);
12341 Set_Sloc (Full, Sloc (Priv));
12342 end case;
12344 Link_Entities (Full, Save_Next_Entity);
12345 Set_Homonym (Full, Save_Homonym);
12346 Set_Associated_Node_For_Itype (Full, Related_Nod);
12348 -- Set common attributes for all subtypes: kind, convention, etc.
12350 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
12351 Set_Convention (Full, Convention (Full_Base));
12353 -- The Etype of the full view is inconsistent. Gigi needs to see the
12354 -- structural full view, which is what the current scheme gives: the
12355 -- Etype of the full view is the etype of the full base. However, if the
12356 -- full base is a derived type, the full view then looks like a subtype
12357 -- of the parent, not a subtype of the full base. If instead we write:
12359 -- Set_Etype (Full, Full_Base);
12361 -- then we get inconsistencies in the front-end (confusion between
12362 -- views). Several outstanding bugs are related to this ???
12364 Set_Is_First_Subtype (Full, False);
12365 Set_Scope (Full, Scope (Priv));
12366 Set_Size_Info (Full, Full_Base);
12367 Set_RM_Size (Full, RM_Size (Full_Base));
12368 Set_Is_Itype (Full);
12370 -- For the unusual case of a type with unknown discriminants whose
12371 -- completion is an array, use the proper full base.
12373 if Is_Array_Type (Full_Base)
12374 and then Has_Unknown_Discriminants (Priv)
12375 then
12376 Set_Etype (Full, Full_Base);
12377 end if;
12379 -- A subtype of a private-type-without-discriminants, whose full-view
12380 -- has discriminants with default expressions, is not constrained.
12382 if not Has_Discriminants (Priv) then
12383 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
12385 if Has_Discriminants (Full_Base) then
12386 Set_Discriminant_Constraint
12387 (Full, Discriminant_Constraint (Full_Base));
12389 -- The partial view may have been indefinite, the full view
12390 -- might not be.
12392 Set_Has_Unknown_Discriminants
12393 (Full, Has_Unknown_Discriminants (Full_Base));
12394 end if;
12395 end if;
12397 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
12398 Set_Depends_On_Private (Full, Has_Private_Component (Full));
12400 -- Freeze the private subtype entity if its parent is delayed, and not
12401 -- already frozen. We skip this processing if the type is an anonymous
12402 -- subtype of a record component, or is the corresponding record of a
12403 -- protected type, since these are processed when the enclosing type
12404 -- is frozen. If the parent type is declared in a nested package then
12405 -- the freezing of the private and full views also happens later.
12407 if not Is_Type (Scope (Full)) then
12408 if Is_Itype (Priv)
12409 and then In_Same_Source_Unit (Full, Full_Base)
12410 and then Scope (Full_Base) /= Scope (Full)
12411 then
12412 Set_Has_Delayed_Freeze (Full);
12413 Set_Has_Delayed_Freeze (Priv);
12415 else
12416 Set_Has_Delayed_Freeze (Full,
12417 Has_Delayed_Freeze (Full_Base)
12418 and then not Is_Frozen (Full_Base));
12419 end if;
12420 end if;
12422 Set_Freeze_Node (Full, Empty);
12423 Set_Is_Frozen (Full, False);
12424 Set_Full_View (Priv, Full);
12426 if Has_Discriminants (Full) then
12427 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
12428 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
12430 if Has_Unknown_Discriminants (Full) then
12431 Set_Discriminant_Constraint (Full, No_Elist);
12432 end if;
12433 end if;
12435 if Ekind (Full_Base) = E_Record_Type
12436 and then Has_Discriminants (Full_Base)
12437 and then Has_Discriminants (Priv) -- might not, if errors
12438 and then not Has_Unknown_Discriminants (Priv)
12439 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
12440 then
12441 Create_Constrained_Components
12442 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
12444 -- If the full base is itself derived from private, build a congruent
12445 -- subtype of its underlying type, for use by the back end. For a
12446 -- constrained record component, the declaration cannot be placed on
12447 -- the component list, but it must nevertheless be built an analyzed, to
12448 -- supply enough information for Gigi to compute the size of component.
12450 elsif Ekind (Full_Base) in Private_Kind
12451 and then Is_Derived_Type (Full_Base)
12452 and then Has_Discriminants (Full_Base)
12453 and then (Ekind (Current_Scope) /= E_Record_Subtype)
12454 then
12455 if not Is_Itype (Priv)
12456 and then
12457 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
12458 then
12459 Build_Underlying_Full_View
12460 (Parent (Priv), Full, Etype (Full_Base));
12462 elsif Nkind (Related_Nod) = N_Component_Declaration then
12463 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
12464 end if;
12466 elsif Is_Record_Type (Full_Base) then
12468 -- Show Full is simply a renaming of Full_Base
12470 Set_Cloned_Subtype (Full, Full_Base);
12471 end if;
12473 -- It is unsafe to share the bounds of a scalar type, because the Itype
12474 -- is elaborated on demand, and if a bound is non-static then different
12475 -- orders of elaboration in different units will lead to different
12476 -- external symbols.
12478 if Is_Scalar_Type (Full_Base) then
12479 Set_Scalar_Range (Full,
12480 Make_Range (Sloc (Related_Nod),
12481 Low_Bound =>
12482 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
12483 High_Bound =>
12484 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
12486 -- This completion inherits the bounds of the full parent, but if
12487 -- the parent is an unconstrained floating point type, so is the
12488 -- completion.
12490 if Is_Floating_Point_Type (Full_Base) then
12491 Set_Includes_Infinities
12492 (Scalar_Range (Full), Has_Infinities (Full_Base));
12493 end if;
12494 end if;
12496 -- ??? It seems that a lot of fields are missing that should be copied
12497 -- from Full_Base to Full. Here are some that are introduced in a
12498 -- non-disruptive way but a cleanup is necessary.
12500 if Is_Tagged_Type (Full_Base) then
12501 Set_Is_Tagged_Type (Full);
12502 Set_Direct_Primitive_Operations
12503 (Full, Direct_Primitive_Operations (Full_Base));
12504 Set_No_Tagged_Streams_Pragma
12505 (Full, No_Tagged_Streams_Pragma (Full_Base));
12507 -- Inherit class_wide type of full_base in case the partial view was
12508 -- not tagged. Otherwise it has already been created when the private
12509 -- subtype was analyzed.
12511 if No (Class_Wide_Type (Full)) then
12512 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
12513 end if;
12515 -- If this is a subtype of a protected or task type, constrain its
12516 -- corresponding record, unless this is a subtype without constraints,
12517 -- i.e. a simple renaming as with an actual subtype in an instance.
12519 elsif Is_Concurrent_Type (Full_Base) then
12520 if Has_Discriminants (Full)
12521 and then Present (Corresponding_Record_Type (Full_Base))
12522 and then
12523 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
12524 then
12525 Set_Corresponding_Record_Type (Full,
12526 Constrain_Corresponding_Record
12527 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
12529 else
12530 Set_Corresponding_Record_Type (Full,
12531 Corresponding_Record_Type (Full_Base));
12532 end if;
12533 end if;
12535 -- Link rep item chain, and also setting of Has_Predicates from private
12536 -- subtype to full subtype, since we will need these on the full subtype
12537 -- to create the predicate function. Note that the full subtype may
12538 -- already have rep items, inherited from the full view of the base
12539 -- type, so we must be sure not to overwrite these entries.
12541 declare
12542 Append : Boolean;
12543 Item : Node_Id;
12544 Next_Item : Node_Id;
12545 Priv_Item : Node_Id;
12547 begin
12548 Item := First_Rep_Item (Full);
12549 Priv_Item := First_Rep_Item (Priv);
12551 -- If no existing rep items on full type, we can just link directly
12552 -- to the list of items on the private type, if any exist.. Same if
12553 -- the rep items are only those inherited from the base
12555 if (No (Item)
12556 or else Nkind (Item) /= N_Aspect_Specification
12557 or else Entity (Item) = Full_Base)
12558 and then Present (First_Rep_Item (Priv))
12559 then
12560 Set_First_Rep_Item (Full, Priv_Item);
12562 -- Otherwise, search to the end of items currently linked to the full
12563 -- subtype and append the private items to the end. However, if Priv
12564 -- and Full already have the same list of rep items, then the append
12565 -- is not done, as that would create a circularity.
12567 -- The partial view may have a predicate and the rep item lists of
12568 -- both views agree when inherited from the same ancestor. In that
12569 -- case, simply propagate the list from one view to the other.
12570 -- A more complex analysis needed here ???
12572 elsif Present (Priv_Item)
12573 and then Item = Next_Rep_Item (Priv_Item)
12574 then
12575 Set_First_Rep_Item (Full, Priv_Item);
12577 elsif Item /= Priv_Item then
12578 Append := True;
12579 loop
12580 Next_Item := Next_Rep_Item (Item);
12581 exit when No (Next_Item);
12582 Item := Next_Item;
12584 -- If the private view has aspect specifications, the full view
12585 -- inherits them. Since these aspects may already have been
12586 -- attached to the full view during derivation, do not append
12587 -- them if already present.
12589 if Item = First_Rep_Item (Priv) then
12590 Append := False;
12591 exit;
12592 end if;
12593 end loop;
12595 -- And link the private type items at the end of the chain
12597 if Append then
12598 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
12599 end if;
12600 end if;
12601 end;
12603 -- Make sure Has_Predicates is set on full type if it is set on the
12604 -- private type. Note that it may already be set on the full type and
12605 -- if so, we don't want to unset it. Similarly, propagate information
12606 -- about delayed aspects, because the corresponding pragmas must be
12607 -- analyzed when one of the views is frozen. This last step is needed
12608 -- in particular when the full type is a scalar type for which an
12609 -- anonymous base type is constructed.
12611 -- The predicate functions are generated either at the freeze point
12612 -- of the type or at the end of the visible part, and we must avoid
12613 -- generating them twice.
12615 if Has_Predicates (Priv) then
12616 Set_Has_Predicates (Full);
12618 if Present (Predicate_Function (Priv))
12619 and then No (Predicate_Function (Full))
12620 then
12621 Set_Predicate_Function (Full, Predicate_Function (Priv));
12622 end if;
12623 end if;
12625 if Has_Delayed_Aspects (Priv) then
12626 Set_Has_Delayed_Aspects (Full);
12627 end if;
12628 end Complete_Private_Subtype;
12630 ----------------------------
12631 -- Constant_Redeclaration --
12632 ----------------------------
12634 procedure Constant_Redeclaration
12635 (Id : Entity_Id;
12636 N : Node_Id;
12637 T : out Entity_Id)
12639 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
12640 Obj_Def : constant Node_Id := Object_Definition (N);
12641 New_T : Entity_Id;
12643 procedure Check_Possible_Deferred_Completion
12644 (Prev_Id : Entity_Id;
12645 Prev_Obj_Def : Node_Id;
12646 Curr_Obj_Def : Node_Id);
12647 -- Determine whether the two object definitions describe the partial
12648 -- and the full view of a constrained deferred constant. Generate
12649 -- a subtype for the full view and verify that it statically matches
12650 -- the subtype of the partial view.
12652 procedure Check_Recursive_Declaration (Typ : Entity_Id);
12653 -- If deferred constant is an access type initialized with an allocator,
12654 -- check whether there is an illegal recursion in the definition,
12655 -- through a default value of some record subcomponent. This is normally
12656 -- detected when generating init procs, but requires this additional
12657 -- mechanism when expansion is disabled.
12659 ----------------------------------------
12660 -- Check_Possible_Deferred_Completion --
12661 ----------------------------------------
12663 procedure Check_Possible_Deferred_Completion
12664 (Prev_Id : Entity_Id;
12665 Prev_Obj_Def : Node_Id;
12666 Curr_Obj_Def : Node_Id)
12668 begin
12669 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
12670 and then Present (Constraint (Prev_Obj_Def))
12671 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
12672 and then Present (Constraint (Curr_Obj_Def))
12673 then
12674 declare
12675 Loc : constant Source_Ptr := Sloc (N);
12676 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
12677 Decl : constant Node_Id :=
12678 Make_Subtype_Declaration (Loc,
12679 Defining_Identifier => Def_Id,
12680 Subtype_Indication =>
12681 Relocate_Node (Curr_Obj_Def));
12683 begin
12684 Insert_Before_And_Analyze (N, Decl);
12685 Set_Etype (Id, Def_Id);
12687 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
12688 Error_Msg_Sloc := Sloc (Prev_Id);
12689 Error_Msg_N ("subtype does not statically match deferred "
12690 & "declaration #", N);
12691 end if;
12692 end;
12693 end if;
12694 end Check_Possible_Deferred_Completion;
12696 ---------------------------------
12697 -- Check_Recursive_Declaration --
12698 ---------------------------------
12700 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
12701 Comp : Entity_Id;
12703 begin
12704 if Is_Record_Type (Typ) then
12705 Comp := First_Component (Typ);
12706 while Present (Comp) loop
12707 if Comes_From_Source (Comp) then
12708 if Present (Expression (Parent (Comp)))
12709 and then Is_Entity_Name (Expression (Parent (Comp)))
12710 and then Entity (Expression (Parent (Comp))) = Prev
12711 then
12712 Error_Msg_Sloc := Sloc (Parent (Comp));
12713 Error_Msg_NE
12714 ("illegal circularity with declaration for & #",
12715 N, Comp);
12716 return;
12718 elsif Is_Record_Type (Etype (Comp)) then
12719 Check_Recursive_Declaration (Etype (Comp));
12720 end if;
12721 end if;
12723 Next_Component (Comp);
12724 end loop;
12725 end if;
12726 end Check_Recursive_Declaration;
12728 -- Start of processing for Constant_Redeclaration
12730 begin
12731 if Nkind (Parent (Prev)) = N_Object_Declaration then
12732 if Nkind (Object_Definition
12733 (Parent (Prev))) = N_Subtype_Indication
12734 then
12735 -- Find type of new declaration. The constraints of the two
12736 -- views must match statically, but there is no point in
12737 -- creating an itype for the full view.
12739 if Nkind (Obj_Def) = N_Subtype_Indication then
12740 Find_Type (Subtype_Mark (Obj_Def));
12741 New_T := Entity (Subtype_Mark (Obj_Def));
12743 else
12744 Find_Type (Obj_Def);
12745 New_T := Entity (Obj_Def);
12746 end if;
12748 T := Etype (Prev);
12750 else
12751 -- The full view may impose a constraint, even if the partial
12752 -- view does not, so construct the subtype.
12754 New_T := Find_Type_Of_Object (Obj_Def, N);
12755 T := New_T;
12756 end if;
12758 else
12759 -- Current declaration is illegal, diagnosed below in Enter_Name
12761 T := Empty;
12762 New_T := Any_Type;
12763 end if;
12765 -- If previous full declaration or a renaming declaration exists, or if
12766 -- a homograph is present, let Enter_Name handle it, either with an
12767 -- error or with the removal of an overridden implicit subprogram.
12768 -- The previous one is a full declaration if it has an expression
12769 -- (which in the case of an aggregate is indicated by the Init flag).
12771 if Ekind (Prev) /= E_Constant
12772 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12773 or else Present (Expression (Parent (Prev)))
12774 or else Has_Init_Expression (Parent (Prev))
12775 or else Present (Full_View (Prev))
12776 then
12777 Enter_Name (Id);
12779 -- Verify that types of both declarations match, or else that both types
12780 -- are anonymous access types whose designated subtypes statically match
12781 -- (as allowed in Ada 2005 by AI-385).
12783 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12784 and then
12785 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12786 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12787 or else Is_Access_Constant (Etype (New_T)) /=
12788 Is_Access_Constant (Etype (Prev))
12789 or else Can_Never_Be_Null (Etype (New_T)) /=
12790 Can_Never_Be_Null (Etype (Prev))
12791 or else Null_Exclusion_Present (Parent (Prev)) /=
12792 Null_Exclusion_Present (Parent (Id))
12793 or else not Subtypes_Statically_Match
12794 (Designated_Type (Etype (Prev)),
12795 Designated_Type (Etype (New_T))))
12796 then
12797 Error_Msg_Sloc := Sloc (Prev);
12798 Error_Msg_N ("type does not match declaration#", N);
12799 Set_Full_View (Prev, Id);
12800 Set_Etype (Id, Any_Type);
12802 -- A deferred constant whose type is an anonymous array is always
12803 -- illegal (unless imported). A detailed error message might be
12804 -- helpful for Ada beginners.
12806 if Nkind (Object_Definition (Parent (Prev)))
12807 = N_Constrained_Array_Definition
12808 and then Nkind (Object_Definition (N))
12809 = N_Constrained_Array_Definition
12810 then
12811 Error_Msg_N ("\each anonymous array is a distinct type", N);
12812 Error_Msg_N ("a deferred constant must have a named type",
12813 Object_Definition (Parent (Prev)));
12814 end if;
12816 elsif
12817 Null_Exclusion_Present (Parent (Prev))
12818 and then not Null_Exclusion_Present (N)
12819 then
12820 Error_Msg_Sloc := Sloc (Prev);
12821 Error_Msg_N ("null-exclusion does not match declaration#", N);
12822 Set_Full_View (Prev, Id);
12823 Set_Etype (Id, Any_Type);
12825 -- If so, process the full constant declaration
12827 else
12828 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12829 -- the deferred declaration is constrained, then the subtype defined
12830 -- by the subtype_indication in the full declaration shall match it
12831 -- statically.
12833 Check_Possible_Deferred_Completion
12834 (Prev_Id => Prev,
12835 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12836 Curr_Obj_Def => Obj_Def);
12838 Set_Full_View (Prev, Id);
12839 Set_Is_Public (Id, Is_Public (Prev));
12840 Set_Is_Internal (Id);
12841 Append_Entity (Id, Current_Scope);
12843 -- Check ALIASED present if present before (RM 7.4(7))
12845 if Is_Aliased (Prev)
12846 and then not Aliased_Present (N)
12847 then
12848 Error_Msg_Sloc := Sloc (Prev);
12849 Error_Msg_N ("ALIASED required (see declaration #)", N);
12850 end if;
12852 -- Check that placement is in private part and that the incomplete
12853 -- declaration appeared in the visible part.
12855 if Ekind (Current_Scope) = E_Package
12856 and then not In_Private_Part (Current_Scope)
12857 then
12858 Error_Msg_Sloc := Sloc (Prev);
12859 Error_Msg_N
12860 ("full constant for declaration # must be in private part", N);
12862 elsif Ekind (Current_Scope) = E_Package
12863 and then
12864 List_Containing (Parent (Prev)) /=
12865 Visible_Declarations (Package_Specification (Current_Scope))
12866 then
12867 Error_Msg_N
12868 ("deferred constant must be declared in visible part",
12869 Parent (Prev));
12870 end if;
12872 if Is_Access_Type (T)
12873 and then Nkind (Expression (N)) = N_Allocator
12874 then
12875 Check_Recursive_Declaration (Designated_Type (T));
12876 end if;
12878 -- A deferred constant is a visible entity. If type has invariants,
12879 -- verify that the initial value satisfies them. This is not done in
12880 -- GNATprove mode, as GNATprove handles invariant checks itself.
12882 if Has_Invariants (T)
12883 and then Present (Invariant_Procedure (T))
12884 and then not GNATprove_Mode
12885 then
12886 Insert_After (N,
12887 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12888 end if;
12889 end if;
12890 end Constant_Redeclaration;
12892 ----------------------
12893 -- Constrain_Access --
12894 ----------------------
12896 procedure Constrain_Access
12897 (Def_Id : in out Entity_Id;
12898 S : Node_Id;
12899 Related_Nod : Node_Id)
12901 T : constant Entity_Id := Entity (Subtype_Mark (S));
12902 Desig_Type : constant Entity_Id := Designated_Type (T);
12903 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12904 Constraint_OK : Boolean := True;
12906 begin
12907 if Is_Array_Type (Desig_Type) then
12908 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12910 elsif (Is_Record_Type (Desig_Type)
12911 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12912 and then not Is_Constrained (Desig_Type)
12913 then
12914 -- ??? The following code is a temporary bypass to ignore a
12915 -- discriminant constraint on access type if it is constraining
12916 -- the current record. Avoid creating the implicit subtype of the
12917 -- record we are currently compiling since right now, we cannot
12918 -- handle these. For now, just return the access type itself.
12920 if Desig_Type = Current_Scope
12921 and then No (Def_Id)
12922 then
12923 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12924 Def_Id := Entity (Subtype_Mark (S));
12926 -- This call added to ensure that the constraint is analyzed
12927 -- (needed for a B test). Note that we still return early from
12928 -- this procedure to avoid recursive processing. ???
12930 Constrain_Discriminated_Type
12931 (Desig_Subtype, S, Related_Nod, For_Access => True);
12932 return;
12933 end if;
12935 -- Enforce rule that the constraint is illegal if there is an
12936 -- unconstrained view of the designated type. This means that the
12937 -- partial view (either a private type declaration or a derivation
12938 -- from a private type) has no discriminants. (Defect Report
12939 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12941 -- Rule updated for Ada 2005: The private type is said to have
12942 -- a constrained partial view, given that objects of the type
12943 -- can be declared. Furthermore, the rule applies to all access
12944 -- types, unlike the rule concerning default discriminants (see
12945 -- RM 3.7.1(7/3))
12947 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12948 and then Has_Private_Declaration (Desig_Type)
12949 and then In_Open_Scopes (Scope (Desig_Type))
12950 and then Has_Discriminants (Desig_Type)
12951 then
12952 declare
12953 Pack : constant Node_Id :=
12954 Unit_Declaration_Node (Scope (Desig_Type));
12955 Decls : List_Id;
12956 Decl : Node_Id;
12958 begin
12959 if Nkind (Pack) = N_Package_Declaration then
12960 Decls := Visible_Declarations (Specification (Pack));
12961 Decl := First (Decls);
12962 while Present (Decl) loop
12963 if (Nkind (Decl) = N_Private_Type_Declaration
12964 and then Chars (Defining_Identifier (Decl)) =
12965 Chars (Desig_Type))
12967 or else
12968 (Nkind (Decl) = N_Full_Type_Declaration
12969 and then
12970 Chars (Defining_Identifier (Decl)) =
12971 Chars (Desig_Type)
12972 and then Is_Derived_Type (Desig_Type)
12973 and then
12974 Has_Private_Declaration (Etype (Desig_Type)))
12975 then
12976 if No (Discriminant_Specifications (Decl)) then
12977 Error_Msg_N
12978 ("cannot constrain access type if designated "
12979 & "type has constrained partial view", S);
12980 end if;
12982 exit;
12983 end if;
12985 Next (Decl);
12986 end loop;
12987 end if;
12988 end;
12989 end if;
12991 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12992 For_Access => True);
12994 elsif Is_Concurrent_Type (Desig_Type)
12995 and then not Is_Constrained (Desig_Type)
12996 then
12997 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12999 else
13000 Error_Msg_N ("invalid constraint on access type", S);
13002 -- We simply ignore an invalid constraint
13004 Desig_Subtype := Desig_Type;
13005 Constraint_OK := False;
13006 end if;
13008 if No (Def_Id) then
13009 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
13010 else
13011 Set_Ekind (Def_Id, E_Access_Subtype);
13012 end if;
13014 if Constraint_OK then
13015 Set_Etype (Def_Id, Base_Type (T));
13017 if Is_Private_Type (Desig_Type) then
13018 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
13019 end if;
13020 else
13021 Set_Etype (Def_Id, Any_Type);
13022 end if;
13024 Set_Size_Info (Def_Id, T);
13025 Set_Is_Constrained (Def_Id, Constraint_OK);
13026 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
13027 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13028 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
13030 Conditional_Delay (Def_Id, T);
13032 -- AI-363 : Subtypes of general access types whose designated types have
13033 -- default discriminants are disallowed. In instances, the rule has to
13034 -- be checked against the actual, of which T is the subtype. In a
13035 -- generic body, the rule is checked assuming that the actual type has
13036 -- defaulted discriminants.
13038 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
13039 if Ekind (Base_Type (T)) = E_General_Access_Type
13040 and then Has_Defaulted_Discriminants (Desig_Type)
13041 then
13042 if Ada_Version < Ada_2005 then
13043 Error_Msg_N
13044 ("access subtype of general access type would not " &
13045 "be allowed in Ada 2005?y?", S);
13046 else
13047 Error_Msg_N
13048 ("access subtype of general access type not allowed", S);
13049 end if;
13051 Error_Msg_N ("\discriminants have defaults", S);
13053 elsif Is_Access_Type (T)
13054 and then Is_Generic_Type (Desig_Type)
13055 and then Has_Discriminants (Desig_Type)
13056 and then In_Package_Body (Current_Scope)
13057 then
13058 if Ada_Version < Ada_2005 then
13059 Error_Msg_N
13060 ("access subtype would not be allowed in generic body "
13061 & "in Ada 2005?y?", S);
13062 else
13063 Error_Msg_N
13064 ("access subtype not allowed in generic body", S);
13065 end if;
13067 Error_Msg_N
13068 ("\designated type is a discriminated formal", S);
13069 end if;
13070 end if;
13071 end Constrain_Access;
13073 ---------------------
13074 -- Constrain_Array --
13075 ---------------------
13077 procedure Constrain_Array
13078 (Def_Id : in out Entity_Id;
13079 SI : Node_Id;
13080 Related_Nod : Node_Id;
13081 Related_Id : Entity_Id;
13082 Suffix : Character)
13084 C : constant Node_Id := Constraint (SI);
13085 Number_Of_Constraints : Nat := 0;
13086 Index : Node_Id;
13087 S, T : Entity_Id;
13088 Constraint_OK : Boolean := True;
13090 begin
13091 T := Entity (Subtype_Mark (SI));
13093 if Is_Access_Type (T) then
13094 T := Designated_Type (T);
13095 end if;
13097 -- If an index constraint follows a subtype mark in a subtype indication
13098 -- then the type or subtype denoted by the subtype mark must not already
13099 -- impose an index constraint. The subtype mark must denote either an
13100 -- unconstrained array type or an access type whose designated type
13101 -- is such an array type... (RM 3.6.1)
13103 if Is_Constrained (T) then
13104 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
13105 Constraint_OK := False;
13107 else
13108 S := First (Constraints (C));
13109 while Present (S) loop
13110 Number_Of_Constraints := Number_Of_Constraints + 1;
13111 Next (S);
13112 end loop;
13114 -- In either case, the index constraint must provide a discrete
13115 -- range for each index of the array type and the type of each
13116 -- discrete range must be the same as that of the corresponding
13117 -- index. (RM 3.6.1)
13119 if Number_Of_Constraints /= Number_Dimensions (T) then
13120 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
13121 Constraint_OK := False;
13123 else
13124 S := First (Constraints (C));
13125 Index := First_Index (T);
13126 Analyze (Index);
13128 -- Apply constraints to each index type
13130 for J in 1 .. Number_Of_Constraints loop
13131 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
13132 Next (Index);
13133 Next (S);
13134 end loop;
13136 end if;
13137 end if;
13139 if No (Def_Id) then
13140 Def_Id :=
13141 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
13142 Set_Parent (Def_Id, Related_Nod);
13144 else
13145 Set_Ekind (Def_Id, E_Array_Subtype);
13146 end if;
13148 Set_Size_Info (Def_Id, (T));
13149 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13150 Set_Etype (Def_Id, Base_Type (T));
13152 if Constraint_OK then
13153 Set_First_Index (Def_Id, First (Constraints (C)));
13154 else
13155 Set_First_Index (Def_Id, First_Index (T));
13156 end if;
13158 Set_Is_Constrained (Def_Id, True);
13159 Set_Is_Aliased (Def_Id, Is_Aliased (T));
13160 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13162 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
13163 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
13165 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
13166 -- We need to initialize the attribute because if Def_Id is previously
13167 -- analyzed through a limited_with clause, it will have the attributes
13168 -- of an incomplete type, one of which is an Elist that overlaps the
13169 -- Packed_Array_Impl_Type field.
13171 Set_Packed_Array_Impl_Type (Def_Id, Empty);
13173 -- Build a freeze node if parent still needs one. Also make sure that
13174 -- the Depends_On_Private status is set because the subtype will need
13175 -- reprocessing at the time the base type does, and also we must set a
13176 -- conditional delay.
13178 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
13179 Conditional_Delay (Def_Id, T);
13180 end Constrain_Array;
13182 ------------------------------
13183 -- Constrain_Component_Type --
13184 ------------------------------
13186 function Constrain_Component_Type
13187 (Comp : Entity_Id;
13188 Constrained_Typ : Entity_Id;
13189 Related_Node : Node_Id;
13190 Typ : Entity_Id;
13191 Constraints : Elist_Id) return Entity_Id
13193 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
13194 Compon_Type : constant Entity_Id := Etype (Comp);
13196 function Build_Constrained_Array_Type
13197 (Old_Type : Entity_Id) return Entity_Id;
13198 -- If Old_Type is an array type, one of whose indexes is constrained
13199 -- by a discriminant, build an Itype whose constraint replaces the
13200 -- discriminant with its value in the constraint.
13202 function Build_Constrained_Discriminated_Type
13203 (Old_Type : Entity_Id) return Entity_Id;
13204 -- Ditto for record components
13206 function Build_Constrained_Access_Type
13207 (Old_Type : Entity_Id) return Entity_Id;
13208 -- Ditto for access types. Makes use of previous two functions, to
13209 -- constrain designated type.
13211 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
13212 -- T is an array or discriminated type, C is a list of constraints
13213 -- that apply to T. This routine builds the constrained subtype.
13215 function Is_Discriminant (Expr : Node_Id) return Boolean;
13216 -- Returns True if Expr is a discriminant
13218 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
13219 -- Find the value of discriminant Discrim in Constraint
13221 -----------------------------------
13222 -- Build_Constrained_Access_Type --
13223 -----------------------------------
13225 function Build_Constrained_Access_Type
13226 (Old_Type : Entity_Id) return Entity_Id
13228 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
13229 Itype : Entity_Id;
13230 Desig_Subtype : Entity_Id;
13231 Scop : Entity_Id;
13233 begin
13234 -- if the original access type was not embedded in the enclosing
13235 -- type definition, there is no need to produce a new access
13236 -- subtype. In fact every access type with an explicit constraint
13237 -- generates an itype whose scope is the enclosing record.
13239 if not Is_Type (Scope (Old_Type)) then
13240 return Old_Type;
13242 elsif Is_Array_Type (Desig_Type) then
13243 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
13245 elsif Has_Discriminants (Desig_Type) then
13247 -- This may be an access type to an enclosing record type for
13248 -- which we are constructing the constrained components. Return
13249 -- the enclosing record subtype. This is not always correct,
13250 -- but avoids infinite recursion. ???
13252 Desig_Subtype := Any_Type;
13254 for J in reverse 0 .. Scope_Stack.Last loop
13255 Scop := Scope_Stack.Table (J).Entity;
13257 if Is_Type (Scop)
13258 and then Base_Type (Scop) = Base_Type (Desig_Type)
13259 then
13260 Desig_Subtype := Scop;
13261 end if;
13263 exit when not Is_Type (Scop);
13264 end loop;
13266 if Desig_Subtype = Any_Type then
13267 Desig_Subtype :=
13268 Build_Constrained_Discriminated_Type (Desig_Type);
13269 end if;
13271 else
13272 return Old_Type;
13273 end if;
13275 if Desig_Subtype /= Desig_Type then
13277 -- The Related_Node better be here or else we won't be able
13278 -- to attach new itypes to a node in the tree.
13280 pragma Assert (Present (Related_Node));
13282 Itype := Create_Itype (E_Access_Subtype, Related_Node);
13284 Set_Etype (Itype, Base_Type (Old_Type));
13285 Set_Size_Info (Itype, (Old_Type));
13286 Set_Directly_Designated_Type (Itype, Desig_Subtype);
13287 Set_Depends_On_Private (Itype, Has_Private_Component
13288 (Old_Type));
13289 Set_Is_Access_Constant (Itype, Is_Access_Constant
13290 (Old_Type));
13292 -- The new itype needs freezing when it depends on a not frozen
13293 -- type and the enclosing subtype needs freezing.
13295 if Has_Delayed_Freeze (Constrained_Typ)
13296 and then not Is_Frozen (Constrained_Typ)
13297 then
13298 Conditional_Delay (Itype, Base_Type (Old_Type));
13299 end if;
13301 return Itype;
13303 else
13304 return Old_Type;
13305 end if;
13306 end Build_Constrained_Access_Type;
13308 ----------------------------------
13309 -- Build_Constrained_Array_Type --
13310 ----------------------------------
13312 function Build_Constrained_Array_Type
13313 (Old_Type : Entity_Id) return Entity_Id
13315 Lo_Expr : Node_Id;
13316 Hi_Expr : Node_Id;
13317 Old_Index : Node_Id;
13318 Range_Node : Node_Id;
13319 Constr_List : List_Id;
13321 Need_To_Create_Itype : Boolean := False;
13323 begin
13324 Old_Index := First_Index (Old_Type);
13325 while Present (Old_Index) loop
13326 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13328 if Is_Discriminant (Lo_Expr)
13329 or else
13330 Is_Discriminant (Hi_Expr)
13331 then
13332 Need_To_Create_Itype := True;
13333 end if;
13335 Next_Index (Old_Index);
13336 end loop;
13338 if Need_To_Create_Itype then
13339 Constr_List := New_List;
13341 Old_Index := First_Index (Old_Type);
13342 while Present (Old_Index) loop
13343 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13345 if Is_Discriminant (Lo_Expr) then
13346 Lo_Expr := Get_Discr_Value (Lo_Expr);
13347 end if;
13349 if Is_Discriminant (Hi_Expr) then
13350 Hi_Expr := Get_Discr_Value (Hi_Expr);
13351 end if;
13353 Range_Node :=
13354 Make_Range
13355 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
13357 Append (Range_Node, To => Constr_List);
13359 Next_Index (Old_Index);
13360 end loop;
13362 return Build_Subtype (Old_Type, Constr_List);
13364 else
13365 return Old_Type;
13366 end if;
13367 end Build_Constrained_Array_Type;
13369 ------------------------------------------
13370 -- Build_Constrained_Discriminated_Type --
13371 ------------------------------------------
13373 function Build_Constrained_Discriminated_Type
13374 (Old_Type : Entity_Id) return Entity_Id
13376 Expr : Node_Id;
13377 Constr_List : List_Id;
13378 Old_Constraint : Elmt_Id;
13380 Need_To_Create_Itype : Boolean := False;
13382 begin
13383 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13384 while Present (Old_Constraint) loop
13385 Expr := Node (Old_Constraint);
13387 if Is_Discriminant (Expr) then
13388 Need_To_Create_Itype := True;
13389 end if;
13391 Next_Elmt (Old_Constraint);
13392 end loop;
13394 if Need_To_Create_Itype then
13395 Constr_List := New_List;
13397 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13398 while Present (Old_Constraint) loop
13399 Expr := Node (Old_Constraint);
13401 if Is_Discriminant (Expr) then
13402 Expr := Get_Discr_Value (Expr);
13403 end if;
13405 Append (New_Copy_Tree (Expr), To => Constr_List);
13407 Next_Elmt (Old_Constraint);
13408 end loop;
13410 return Build_Subtype (Old_Type, Constr_List);
13412 else
13413 return Old_Type;
13414 end if;
13415 end Build_Constrained_Discriminated_Type;
13417 -------------------
13418 -- Build_Subtype --
13419 -------------------
13421 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
13422 Indic : Node_Id;
13423 Subtyp_Decl : Node_Id;
13424 Def_Id : Entity_Id;
13425 Btyp : Entity_Id := Base_Type (T);
13427 begin
13428 -- The Related_Node better be here or else we won't be able to
13429 -- attach new itypes to a node in the tree.
13431 pragma Assert (Present (Related_Node));
13433 -- If the view of the component's type is incomplete or private
13434 -- with unknown discriminants, then the constraint must be applied
13435 -- to the full type.
13437 if Has_Unknown_Discriminants (Btyp)
13438 and then Present (Underlying_Type (Btyp))
13439 then
13440 Btyp := Underlying_Type (Btyp);
13441 end if;
13443 Indic :=
13444 Make_Subtype_Indication (Loc,
13445 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
13446 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
13448 Def_Id := Create_Itype (Ekind (T), Related_Node);
13450 Subtyp_Decl :=
13451 Make_Subtype_Declaration (Loc,
13452 Defining_Identifier => Def_Id,
13453 Subtype_Indication => Indic);
13455 Set_Parent (Subtyp_Decl, Parent (Related_Node));
13457 -- Itypes must be analyzed with checks off (see package Itypes)
13459 Analyze (Subtyp_Decl, Suppress => All_Checks);
13461 if Is_Itype (Def_Id) and then Has_Predicates (T) then
13462 Inherit_Predicate_Flags (Def_Id, T);
13464 -- Indicate where the predicate function may be found
13466 if Is_Itype (T) then
13467 if Present (Predicate_Function (Def_Id)) then
13468 null;
13470 elsif Present (Predicate_Function (T)) then
13471 Set_Predicate_Function (Def_Id, Predicate_Function (T));
13473 else
13474 Set_Predicated_Parent (Def_Id, Predicated_Parent (T));
13475 end if;
13477 elsif No (Predicate_Function (Def_Id)) then
13478 Set_Predicated_Parent (Def_Id, T);
13479 end if;
13480 end if;
13482 return Def_Id;
13483 end Build_Subtype;
13485 ---------------------
13486 -- Get_Discr_Value --
13487 ---------------------
13489 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
13490 D : Entity_Id;
13491 E : Elmt_Id;
13493 begin
13494 -- The discriminant may be declared for the type, in which case we
13495 -- find it by iterating over the list of discriminants. If the
13496 -- discriminant is inherited from a parent type, it appears as the
13497 -- corresponding discriminant of the current type. This will be the
13498 -- case when constraining an inherited component whose constraint is
13499 -- given by a discriminant of the parent.
13501 D := First_Discriminant (Typ);
13502 E := First_Elmt (Constraints);
13504 while Present (D) loop
13505 if D = Entity (Discrim)
13506 or else D = CR_Discriminant (Entity (Discrim))
13507 or else Corresponding_Discriminant (D) = Entity (Discrim)
13508 then
13509 return Node (E);
13510 end if;
13512 Next_Discriminant (D);
13513 Next_Elmt (E);
13514 end loop;
13516 -- The Corresponding_Discriminant mechanism is incomplete, because
13517 -- the correspondence between new and old discriminants is not one
13518 -- to one: one new discriminant can constrain several old ones. In
13519 -- that case, scan sequentially the stored_constraint, the list of
13520 -- discriminants of the parents, and the constraints.
13522 -- Previous code checked for the present of the Stored_Constraint
13523 -- list for the derived type, but did not use it at all. Should it
13524 -- be present when the component is a discriminated task type?
13526 if Is_Derived_Type (Typ)
13527 and then Scope (Entity (Discrim)) = Etype (Typ)
13528 then
13529 D := First_Discriminant (Etype (Typ));
13530 E := First_Elmt (Constraints);
13531 while Present (D) loop
13532 if D = Entity (Discrim) then
13533 return Node (E);
13534 end if;
13536 Next_Discriminant (D);
13537 Next_Elmt (E);
13538 end loop;
13539 end if;
13541 -- Something is wrong if we did not find the value
13543 raise Program_Error;
13544 end Get_Discr_Value;
13546 ---------------------
13547 -- Is_Discriminant --
13548 ---------------------
13550 function Is_Discriminant (Expr : Node_Id) return Boolean is
13551 Discrim_Scope : Entity_Id;
13553 begin
13554 if Denotes_Discriminant (Expr) then
13555 Discrim_Scope := Scope (Entity (Expr));
13557 -- Either we have a reference to one of Typ's discriminants,
13559 pragma Assert (Discrim_Scope = Typ
13561 -- or to the discriminants of the parent type, in the case
13562 -- of a derivation of a tagged type with variants.
13564 or else Discrim_Scope = Etype (Typ)
13565 or else Full_View (Discrim_Scope) = Etype (Typ)
13567 -- or same as above for the case where the discriminants
13568 -- were declared in Typ's private view.
13570 or else (Is_Private_Type (Discrim_Scope)
13571 and then Chars (Discrim_Scope) = Chars (Typ))
13573 -- or else we are deriving from the full view and the
13574 -- discriminant is declared in the private entity.
13576 or else (Is_Private_Type (Typ)
13577 and then Chars (Discrim_Scope) = Chars (Typ))
13579 -- Or we are constrained the corresponding record of a
13580 -- synchronized type that completes a private declaration.
13582 or else (Is_Concurrent_Record_Type (Typ)
13583 and then
13584 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
13586 -- or we have a class-wide type, in which case make sure the
13587 -- discriminant found belongs to the root type.
13589 or else (Is_Class_Wide_Type (Typ)
13590 and then Etype (Typ) = Discrim_Scope));
13592 return True;
13593 end if;
13595 -- In all other cases we have something wrong
13597 return False;
13598 end Is_Discriminant;
13600 -- Start of processing for Constrain_Component_Type
13602 begin
13603 if Nkind (Parent (Comp)) = N_Component_Declaration
13604 and then Comes_From_Source (Parent (Comp))
13605 and then Comes_From_Source
13606 (Subtype_Indication (Component_Definition (Parent (Comp))))
13607 and then
13608 Is_Entity_Name
13609 (Subtype_Indication (Component_Definition (Parent (Comp))))
13610 then
13611 return Compon_Type;
13613 elsif Is_Array_Type (Compon_Type) then
13614 return Build_Constrained_Array_Type (Compon_Type);
13616 elsif Has_Discriminants (Compon_Type) then
13617 return Build_Constrained_Discriminated_Type (Compon_Type);
13619 elsif Is_Access_Type (Compon_Type) then
13620 return Build_Constrained_Access_Type (Compon_Type);
13622 else
13623 return Compon_Type;
13624 end if;
13625 end Constrain_Component_Type;
13627 --------------------------
13628 -- Constrain_Concurrent --
13629 --------------------------
13631 -- For concurrent types, the associated record value type carries the same
13632 -- discriminants, so when we constrain a concurrent type, we must constrain
13633 -- the corresponding record type as well.
13635 procedure Constrain_Concurrent
13636 (Def_Id : in out Entity_Id;
13637 SI : Node_Id;
13638 Related_Nod : Node_Id;
13639 Related_Id : Entity_Id;
13640 Suffix : Character)
13642 -- Retrieve Base_Type to ensure getting to the concurrent type in the
13643 -- case of a private subtype (needed when only doing semantic analysis).
13645 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
13646 T_Val : Entity_Id;
13648 begin
13649 if Is_Access_Type (T_Ent) then
13650 T_Ent := Designated_Type (T_Ent);
13651 end if;
13653 T_Val := Corresponding_Record_Type (T_Ent);
13655 if Present (T_Val) then
13657 if No (Def_Id) then
13658 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13660 -- Elaborate itype now, as it may be used in a subsequent
13661 -- synchronized operation in another scope.
13663 if Nkind (Related_Nod) = N_Full_Type_Declaration then
13664 Build_Itype_Reference (Def_Id, Related_Nod);
13665 end if;
13666 end if;
13668 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13669 Set_First_Private_Entity (Def_Id, First_Private_Entity (T_Ent));
13671 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13672 Set_Corresponding_Record_Type (Def_Id,
13673 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
13675 else
13676 -- If there is no associated record, expansion is disabled and this
13677 -- is a generic context. Create a subtype in any case, so that
13678 -- semantic analysis can proceed.
13680 if No (Def_Id) then
13681 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13682 end if;
13684 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13685 end if;
13686 end Constrain_Concurrent;
13688 ------------------------------------
13689 -- Constrain_Corresponding_Record --
13690 ------------------------------------
13692 function Constrain_Corresponding_Record
13693 (Prot_Subt : Entity_Id;
13694 Corr_Rec : Entity_Id;
13695 Related_Nod : Node_Id) return Entity_Id
13697 T_Sub : constant Entity_Id :=
13698 Create_Itype
13699 (Ekind => E_Record_Subtype,
13700 Related_Nod => Related_Nod,
13701 Related_Id => Corr_Rec,
13702 Suffix => 'C',
13703 Suffix_Index => -1);
13705 begin
13706 Set_Etype (T_Sub, Corr_Rec);
13707 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
13708 Set_Is_Constrained (T_Sub, True);
13709 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
13710 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
13712 if Has_Discriminants (Prot_Subt) then -- False only if errors.
13713 Set_Discriminant_Constraint
13714 (T_Sub, Discriminant_Constraint (Prot_Subt));
13715 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
13716 Create_Constrained_Components
13717 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
13718 end if;
13720 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
13722 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
13723 Conditional_Delay (T_Sub, Corr_Rec);
13725 else
13726 -- This is a component subtype: it will be frozen in the context of
13727 -- the enclosing record's init_proc, so that discriminant references
13728 -- are resolved to discriminals. (Note: we used to skip freezing
13729 -- altogether in that case, which caused errors downstream for
13730 -- components of a bit packed array type).
13732 Set_Has_Delayed_Freeze (T_Sub);
13733 end if;
13735 return T_Sub;
13736 end Constrain_Corresponding_Record;
13738 -----------------------
13739 -- Constrain_Decimal --
13740 -----------------------
13742 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
13743 T : constant Entity_Id := Entity (Subtype_Mark (S));
13744 C : constant Node_Id := Constraint (S);
13745 Loc : constant Source_Ptr := Sloc (C);
13746 Range_Expr : Node_Id;
13747 Digits_Expr : Node_Id;
13748 Digits_Val : Uint;
13749 Bound_Val : Ureal;
13751 begin
13752 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
13754 if Nkind (C) = N_Range_Constraint then
13755 Range_Expr := Range_Expression (C);
13756 Digits_Val := Digits_Value (T);
13758 else
13759 pragma Assert (Nkind (C) = N_Digits_Constraint);
13761 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13763 Digits_Expr := Digits_Expression (C);
13764 Analyze_And_Resolve (Digits_Expr, Any_Integer);
13766 Check_Digits_Expression (Digits_Expr);
13767 Digits_Val := Expr_Value (Digits_Expr);
13769 if Digits_Val > Digits_Value (T) then
13770 Error_Msg_N
13771 ("digits expression is incompatible with subtype", C);
13772 Digits_Val := Digits_Value (T);
13773 end if;
13775 if Present (Range_Constraint (C)) then
13776 Range_Expr := Range_Expression (Range_Constraint (C));
13777 else
13778 Range_Expr := Empty;
13779 end if;
13780 end if;
13782 Set_Etype (Def_Id, Base_Type (T));
13783 Set_Size_Info (Def_Id, (T));
13784 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13785 Set_Delta_Value (Def_Id, Delta_Value (T));
13786 Set_Scale_Value (Def_Id, Scale_Value (T));
13787 Set_Small_Value (Def_Id, Small_Value (T));
13788 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13789 Set_Digits_Value (Def_Id, Digits_Val);
13791 -- Manufacture range from given digits value if no range present
13793 if No (Range_Expr) then
13794 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13795 Range_Expr :=
13796 Make_Range (Loc,
13797 Low_Bound =>
13798 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13799 High_Bound =>
13800 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13801 end if;
13803 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13804 Set_Discrete_RM_Size (Def_Id);
13806 -- Unconditionally delay the freeze, since we cannot set size
13807 -- information in all cases correctly until the freeze point.
13809 Set_Has_Delayed_Freeze (Def_Id);
13810 end Constrain_Decimal;
13812 ----------------------------------
13813 -- Constrain_Discriminated_Type --
13814 ----------------------------------
13816 procedure Constrain_Discriminated_Type
13817 (Def_Id : Entity_Id;
13818 S : Node_Id;
13819 Related_Nod : Node_Id;
13820 For_Access : Boolean := False)
13822 E : Entity_Id := Entity (Subtype_Mark (S));
13823 T : Entity_Id;
13825 procedure Fixup_Bad_Constraint;
13826 -- Called after finding a bad constraint, and after having posted an
13827 -- appropriate error message. The goal is to leave type Def_Id in as
13828 -- reasonable state as possible.
13830 --------------------------
13831 -- Fixup_Bad_Constraint --
13832 --------------------------
13834 procedure Fixup_Bad_Constraint is
13835 begin
13836 -- Set a reasonable Ekind for the entity, including incomplete types.
13838 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13840 -- Set Etype to the known type, to reduce chances of cascaded errors
13842 Set_Etype (Def_Id, E);
13843 Set_Error_Posted (Def_Id);
13844 end Fixup_Bad_Constraint;
13846 -- Local variables
13848 C : Node_Id;
13849 Constr : Elist_Id := New_Elmt_List;
13851 -- Start of processing for Constrain_Discriminated_Type
13853 begin
13854 C := Constraint (S);
13856 -- A discriminant constraint is only allowed in a subtype indication,
13857 -- after a subtype mark. This subtype mark must denote either a type
13858 -- with discriminants, or an access type whose designated type is a
13859 -- type with discriminants. A discriminant constraint specifies the
13860 -- values of these discriminants (RM 3.7.2(5)).
13862 T := Base_Type (Entity (Subtype_Mark (S)));
13864 if Is_Access_Type (T) then
13865 T := Designated_Type (T);
13866 end if;
13868 -- In an instance it may be necessary to retrieve the full view of a
13869 -- type with unknown discriminants, or a full view with defaulted
13870 -- discriminants. In other contexts the constraint is illegal.
13872 if In_Instance
13873 and then Is_Private_Type (T)
13874 and then Present (Full_View (T))
13875 and then
13876 (Has_Unknown_Discriminants (T)
13877 or else
13878 (not Has_Discriminants (T)
13879 and then Has_Discriminants (Full_View (T))
13880 and then Present (Discriminant_Default_Value
13881 (First_Discriminant (Full_View (T))))))
13882 then
13883 T := Full_View (T);
13884 E := Full_View (E);
13885 end if;
13887 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13888 -- generating an error for access-to-incomplete subtypes.
13890 if Ada_Version >= Ada_2005
13891 and then Ekind (T) = E_Incomplete_Type
13892 and then Nkind (Parent (S)) = N_Subtype_Declaration
13893 and then not Is_Itype (Def_Id)
13894 then
13895 -- A little sanity check: emit an error message if the type has
13896 -- discriminants to begin with. Type T may be a regular incomplete
13897 -- type or imported via a limited with clause.
13899 if Has_Discriminants (T)
13900 or else (From_Limited_With (T)
13901 and then Present (Non_Limited_View (T))
13902 and then Nkind (Parent (Non_Limited_View (T))) =
13903 N_Full_Type_Declaration
13904 and then Present (Discriminant_Specifications
13905 (Parent (Non_Limited_View (T)))))
13906 then
13907 Error_Msg_N
13908 ("(Ada 2005) incomplete subtype may not be constrained", C);
13909 else
13910 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13911 end if;
13913 Fixup_Bad_Constraint;
13914 return;
13916 -- Check that the type has visible discriminants. The type may be
13917 -- a private type with unknown discriminants whose full view has
13918 -- discriminants which are invisible.
13920 elsif not Has_Discriminants (T)
13921 or else
13922 (Has_Unknown_Discriminants (T)
13923 and then Is_Private_Type (T))
13924 then
13925 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13926 Fixup_Bad_Constraint;
13927 return;
13929 elsif Is_Constrained (E)
13930 or else (Ekind (E) = E_Class_Wide_Subtype
13931 and then Present (Discriminant_Constraint (E)))
13932 then
13933 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13934 Fixup_Bad_Constraint;
13935 return;
13936 end if;
13938 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13939 -- applies to the base type.
13941 T := Base_Type (T);
13943 Constr := Build_Discriminant_Constraints (T, S);
13945 -- If the list returned was empty we had an error in building the
13946 -- discriminant constraint. We have also already signalled an error
13947 -- in the incomplete type case
13949 if Is_Empty_Elmt_List (Constr) then
13950 Fixup_Bad_Constraint;
13951 return;
13952 end if;
13954 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
13955 end Constrain_Discriminated_Type;
13957 ---------------------------
13958 -- Constrain_Enumeration --
13959 ---------------------------
13961 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13962 T : constant Entity_Id := Entity (Subtype_Mark (S));
13963 C : constant Node_Id := Constraint (S);
13965 begin
13966 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13968 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13970 Set_Etype (Def_Id, Base_Type (T));
13971 Set_Size_Info (Def_Id, (T));
13972 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13973 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13975 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13977 Set_Discrete_RM_Size (Def_Id);
13978 end Constrain_Enumeration;
13980 ----------------------
13981 -- Constrain_Float --
13982 ----------------------
13984 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13985 T : constant Entity_Id := Entity (Subtype_Mark (S));
13986 C : Node_Id;
13987 D : Node_Id;
13988 Rais : Node_Id;
13990 begin
13991 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13993 Set_Etype (Def_Id, Base_Type (T));
13994 Set_Size_Info (Def_Id, (T));
13995 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13997 -- Process the constraint
13999 C := Constraint (S);
14001 -- Digits constraint present
14003 if Nkind (C) = N_Digits_Constraint then
14005 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
14006 Check_Restriction (No_Obsolescent_Features, C);
14008 if Warn_On_Obsolescent_Feature then
14009 Error_Msg_N
14010 ("subtype digits constraint is an " &
14011 "obsolescent feature (RM J.3(8))?j?", C);
14012 end if;
14014 D := Digits_Expression (C);
14015 Analyze_And_Resolve (D, Any_Integer);
14016 Check_Digits_Expression (D);
14017 Set_Digits_Value (Def_Id, Expr_Value (D));
14019 -- Check that digits value is in range. Obviously we can do this
14020 -- at compile time, but it is strictly a runtime check, and of
14021 -- course there is an ACVC test that checks this.
14023 if Digits_Value (Def_Id) > Digits_Value (T) then
14024 Error_Msg_Uint_1 := Digits_Value (T);
14025 Error_Msg_N ("??digits value is too large, maximum is ^", D);
14026 Rais :=
14027 Make_Raise_Constraint_Error (Sloc (D),
14028 Reason => CE_Range_Check_Failed);
14029 Insert_Action (Declaration_Node (Def_Id), Rais);
14030 end if;
14032 C := Range_Constraint (C);
14034 -- No digits constraint present
14036 else
14037 Set_Digits_Value (Def_Id, Digits_Value (T));
14038 end if;
14040 -- Range constraint present
14042 if Nkind (C) = N_Range_Constraint then
14043 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14045 -- No range constraint present
14047 else
14048 pragma Assert (No (C));
14049 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14050 end if;
14052 Set_Is_Constrained (Def_Id);
14053 end Constrain_Float;
14055 ---------------------
14056 -- Constrain_Index --
14057 ---------------------
14059 procedure Constrain_Index
14060 (Index : Node_Id;
14061 S : Node_Id;
14062 Related_Nod : Node_Id;
14063 Related_Id : Entity_Id;
14064 Suffix : Character;
14065 Suffix_Index : Nat)
14067 Def_Id : Entity_Id;
14068 R : Node_Id := Empty;
14069 T : constant Entity_Id := Etype (Index);
14071 begin
14072 Def_Id :=
14073 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
14074 Set_Etype (Def_Id, Base_Type (T));
14076 if Nkind (S) = N_Range
14077 or else
14078 (Nkind (S) = N_Attribute_Reference
14079 and then Attribute_Name (S) = Name_Range)
14080 then
14081 -- A Range attribute will be transformed into N_Range by Resolve
14083 Analyze (S);
14084 Set_Etype (S, T);
14085 R := S;
14087 Process_Range_Expr_In_Decl (R, T);
14089 if not Error_Posted (S)
14090 and then
14091 (Nkind (S) /= N_Range
14092 or else not Covers (T, (Etype (Low_Bound (S))))
14093 or else not Covers (T, (Etype (High_Bound (S)))))
14094 then
14095 if Base_Type (T) /= Any_Type
14096 and then Etype (Low_Bound (S)) /= Any_Type
14097 and then Etype (High_Bound (S)) /= Any_Type
14098 then
14099 Error_Msg_N ("range expected", S);
14100 end if;
14101 end if;
14103 elsif Nkind (S) = N_Subtype_Indication then
14105 -- The parser has verified that this is a discrete indication
14107 Resolve_Discrete_Subtype_Indication (S, T);
14108 Bad_Predicated_Subtype_Use
14109 ("subtype& has predicate, not allowed in index constraint",
14110 S, Entity (Subtype_Mark (S)));
14112 R := Range_Expression (Constraint (S));
14114 -- Capture values of bounds and generate temporaries for them if
14115 -- needed, since checks may cause duplication of the expressions
14116 -- which must not be reevaluated.
14118 -- The forced evaluation removes side effects from expressions, which
14119 -- should occur also in GNATprove mode. Otherwise, we end up with
14120 -- unexpected insertions of actions at places where this is not
14121 -- supposed to occur, e.g. on default parameters of a call.
14123 if Expander_Active or GNATprove_Mode then
14124 Force_Evaluation
14125 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
14126 Force_Evaluation
14127 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
14128 end if;
14130 elsif Nkind (S) = N_Discriminant_Association then
14132 -- Syntactically valid in subtype indication
14134 Error_Msg_N ("invalid index constraint", S);
14135 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14136 return;
14138 -- Subtype_Mark case, no anonymous subtypes to construct
14140 else
14141 Analyze (S);
14143 if Is_Entity_Name (S) then
14144 if not Is_Type (Entity (S)) then
14145 Error_Msg_N ("expect subtype mark for index constraint", S);
14147 elsif Base_Type (Entity (S)) /= Base_Type (T) then
14148 Wrong_Type (S, Base_Type (T));
14150 -- Check error of subtype with predicate in index constraint
14152 else
14153 Bad_Predicated_Subtype_Use
14154 ("subtype& has predicate, not allowed in index constraint",
14155 S, Entity (S));
14156 end if;
14158 return;
14160 else
14161 Error_Msg_N ("invalid index constraint", S);
14162 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
14163 return;
14164 end if;
14165 end if;
14167 -- Complete construction of the Itype
14169 if Is_Modular_Integer_Type (T) then
14170 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14172 elsif Is_Integer_Type (T) then
14173 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14175 else
14176 Set_Ekind (Def_Id, E_Enumeration_Subtype);
14177 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
14178 Set_First_Literal (Def_Id, First_Literal (T));
14179 end if;
14181 Set_Size_Info (Def_Id, (T));
14182 Set_RM_Size (Def_Id, RM_Size (T));
14183 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14185 Set_Scalar_Range (Def_Id, R);
14187 Set_Etype (S, Def_Id);
14188 Set_Discrete_RM_Size (Def_Id);
14189 end Constrain_Index;
14191 -----------------------
14192 -- Constrain_Integer --
14193 -----------------------
14195 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
14196 T : constant Entity_Id := Entity (Subtype_Mark (S));
14197 C : constant Node_Id := Constraint (S);
14199 begin
14200 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14202 if Is_Modular_Integer_Type (T) then
14203 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14204 else
14205 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14206 end if;
14208 Set_Etype (Def_Id, Base_Type (T));
14209 Set_Size_Info (Def_Id, (T));
14210 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14211 Set_Discrete_RM_Size (Def_Id);
14212 end Constrain_Integer;
14214 ------------------------------
14215 -- Constrain_Ordinary_Fixed --
14216 ------------------------------
14218 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
14219 T : constant Entity_Id := Entity (Subtype_Mark (S));
14220 C : Node_Id;
14221 D : Node_Id;
14222 Rais : Node_Id;
14224 begin
14225 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
14226 Set_Etype (Def_Id, Base_Type (T));
14227 Set_Size_Info (Def_Id, (T));
14228 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14229 Set_Small_Value (Def_Id, Small_Value (T));
14231 -- Process the constraint
14233 C := Constraint (S);
14235 -- Delta constraint present
14237 if Nkind (C) = N_Delta_Constraint then
14239 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
14240 Check_Restriction (No_Obsolescent_Features, C);
14242 if Warn_On_Obsolescent_Feature then
14243 Error_Msg_S
14244 ("subtype delta constraint is an " &
14245 "obsolescent feature (RM J.3(7))?j?");
14246 end if;
14248 D := Delta_Expression (C);
14249 Analyze_And_Resolve (D, Any_Real);
14250 Check_Delta_Expression (D);
14251 Set_Delta_Value (Def_Id, Expr_Value_R (D));
14253 -- Check that delta value is in range. Obviously we can do this
14254 -- at compile time, but it is strictly a runtime check, and of
14255 -- course there is an ACVC test that checks this.
14257 if Delta_Value (Def_Id) < Delta_Value (T) then
14258 Error_Msg_N ("??delta value is too small", D);
14259 Rais :=
14260 Make_Raise_Constraint_Error (Sloc (D),
14261 Reason => CE_Range_Check_Failed);
14262 Insert_Action (Declaration_Node (Def_Id), Rais);
14263 end if;
14265 C := Range_Constraint (C);
14267 -- No delta constraint present
14269 else
14270 Set_Delta_Value (Def_Id, Delta_Value (T));
14271 end if;
14273 -- Range constraint present
14275 if Nkind (C) = N_Range_Constraint then
14276 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14278 -- No range constraint present
14280 else
14281 pragma Assert (No (C));
14282 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14283 end if;
14285 Set_Discrete_RM_Size (Def_Id);
14287 -- Unconditionally delay the freeze, since we cannot set size
14288 -- information in all cases correctly until the freeze point.
14290 Set_Has_Delayed_Freeze (Def_Id);
14291 end Constrain_Ordinary_Fixed;
14293 -----------------------
14294 -- Contain_Interface --
14295 -----------------------
14297 function Contain_Interface
14298 (Iface : Entity_Id;
14299 Ifaces : Elist_Id) return Boolean
14301 Iface_Elmt : Elmt_Id;
14303 begin
14304 if Present (Ifaces) then
14305 Iface_Elmt := First_Elmt (Ifaces);
14306 while Present (Iface_Elmt) loop
14307 if Node (Iface_Elmt) = Iface then
14308 return True;
14309 end if;
14311 Next_Elmt (Iface_Elmt);
14312 end loop;
14313 end if;
14315 return False;
14316 end Contain_Interface;
14318 ---------------------------
14319 -- Convert_Scalar_Bounds --
14320 ---------------------------
14322 procedure Convert_Scalar_Bounds
14323 (N : Node_Id;
14324 Parent_Type : Entity_Id;
14325 Derived_Type : Entity_Id;
14326 Loc : Source_Ptr)
14328 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
14330 Lo : Node_Id;
14331 Hi : Node_Id;
14332 Rng : Node_Id;
14334 begin
14335 -- Defend against previous errors
14337 if No (Scalar_Range (Derived_Type)) then
14338 Check_Error_Detected;
14339 return;
14340 end if;
14342 Lo := Build_Scalar_Bound
14343 (Type_Low_Bound (Derived_Type),
14344 Parent_Type, Implicit_Base);
14346 Hi := Build_Scalar_Bound
14347 (Type_High_Bound (Derived_Type),
14348 Parent_Type, Implicit_Base);
14350 Rng :=
14351 Make_Range (Loc,
14352 Low_Bound => Lo,
14353 High_Bound => Hi);
14355 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
14357 Set_Parent (Rng, N);
14358 Set_Scalar_Range (Derived_Type, Rng);
14360 -- Analyze the bounds
14362 Analyze_And_Resolve (Lo, Implicit_Base);
14363 Analyze_And_Resolve (Hi, Implicit_Base);
14365 -- Analyze the range itself, except that we do not analyze it if
14366 -- the bounds are real literals, and we have a fixed-point type.
14367 -- The reason for this is that we delay setting the bounds in this
14368 -- case till we know the final Small and Size values (see circuit
14369 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14371 if Is_Fixed_Point_Type (Parent_Type)
14372 and then Nkind (Lo) = N_Real_Literal
14373 and then Nkind (Hi) = N_Real_Literal
14374 then
14375 return;
14377 -- Here we do the analysis of the range
14379 -- Note: we do this manually, since if we do a normal Analyze and
14380 -- Resolve call, there are problems with the conversions used for
14381 -- the derived type range.
14383 else
14384 Set_Etype (Rng, Implicit_Base);
14385 Set_Analyzed (Rng, True);
14386 end if;
14387 end Convert_Scalar_Bounds;
14389 -------------------
14390 -- Copy_And_Swap --
14391 -------------------
14393 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
14394 begin
14395 -- Initialize new full declaration entity by copying the pertinent
14396 -- fields of the corresponding private declaration entity.
14398 -- We temporarily set Ekind to a value appropriate for a type to
14399 -- avoid assert failures in Einfo from checking for setting type
14400 -- attributes on something that is not a type. Ekind (Priv) is an
14401 -- appropriate choice, since it allowed the attributes to be set
14402 -- in the first place. This Ekind value will be modified later.
14404 Set_Ekind (Full, Ekind (Priv));
14406 -- Also set Etype temporarily to Any_Type, again, in the absence
14407 -- of errors, it will be properly reset, and if there are errors,
14408 -- then we want a value of Any_Type to remain.
14410 Set_Etype (Full, Any_Type);
14412 -- Now start copying attributes
14414 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
14416 if Has_Discriminants (Full) then
14417 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
14418 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
14419 end if;
14421 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
14422 Set_Homonym (Full, Homonym (Priv));
14423 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
14424 Set_Is_Public (Full, Is_Public (Priv));
14425 Set_Is_Pure (Full, Is_Pure (Priv));
14426 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
14427 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
14428 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
14429 Set_Has_Pragma_Unreferenced_Objects
14430 (Full, Has_Pragma_Unreferenced_Objects
14431 (Priv));
14433 Conditional_Delay (Full, Priv);
14435 if Is_Tagged_Type (Full) then
14436 Set_Direct_Primitive_Operations
14437 (Full, Direct_Primitive_Operations (Priv));
14438 Set_No_Tagged_Streams_Pragma
14439 (Full, No_Tagged_Streams_Pragma (Priv));
14441 if Is_Base_Type (Priv) then
14442 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
14443 end if;
14444 end if;
14446 Set_Is_Volatile (Full, Is_Volatile (Priv));
14447 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
14448 Set_Scope (Full, Scope (Priv));
14449 Set_Prev_Entity (Full, Prev_Entity (Priv));
14450 Set_Next_Entity (Full, Next_Entity (Priv));
14451 Set_First_Entity (Full, First_Entity (Priv));
14452 Set_Last_Entity (Full, Last_Entity (Priv));
14454 -- If access types have been recorded for later handling, keep them in
14455 -- the full view so that they get handled when the full view freeze
14456 -- node is expanded.
14458 if Present (Freeze_Node (Priv))
14459 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
14460 then
14461 Ensure_Freeze_Node (Full);
14462 Set_Access_Types_To_Process
14463 (Freeze_Node (Full),
14464 Access_Types_To_Process (Freeze_Node (Priv)));
14465 end if;
14467 -- Swap the two entities. Now Private is the full type entity and Full
14468 -- is the private one. They will be swapped back at the end of the
14469 -- private part. This swapping ensures that the entity that is visible
14470 -- in the private part is the full declaration.
14472 Exchange_Entities (Priv, Full);
14473 Append_Entity (Full, Scope (Full));
14474 end Copy_And_Swap;
14476 -------------------------------------
14477 -- Copy_Array_Base_Type_Attributes --
14478 -------------------------------------
14480 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
14481 begin
14482 Set_Component_Alignment (T1, Component_Alignment (T2));
14483 Set_Component_Type (T1, Component_Type (T2));
14484 Set_Component_Size (T1, Component_Size (T2));
14485 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
14486 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
14487 Propagate_Concurrent_Flags (T1, T2);
14488 Set_Is_Packed (T1, Is_Packed (T2));
14489 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
14490 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
14491 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
14492 end Copy_Array_Base_Type_Attributes;
14494 -----------------------------------
14495 -- Copy_Array_Subtype_Attributes --
14496 -----------------------------------
14498 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
14499 begin
14500 Set_Size_Info (T1, T2);
14502 Set_First_Index (T1, First_Index (T2));
14503 Set_Is_Aliased (T1, Is_Aliased (T2));
14504 Set_Is_Volatile (T1, Is_Volatile (T2));
14505 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
14506 Set_Is_Constrained (T1, Is_Constrained (T2));
14507 Set_Depends_On_Private (T1, Has_Private_Component (T2));
14508 Inherit_Rep_Item_Chain (T1, T2);
14509 Set_Convention (T1, Convention (T2));
14510 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
14511 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
14512 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
14513 end Copy_Array_Subtype_Attributes;
14515 -----------------------------------
14516 -- Create_Constrained_Components --
14517 -----------------------------------
14519 procedure Create_Constrained_Components
14520 (Subt : Entity_Id;
14521 Decl_Node : Node_Id;
14522 Typ : Entity_Id;
14523 Constraints : Elist_Id)
14525 Loc : constant Source_Ptr := Sloc (Subt);
14526 Comp_List : constant Elist_Id := New_Elmt_List;
14527 Parent_Type : constant Entity_Id := Etype (Typ);
14528 Assoc_List : constant List_Id := New_List;
14529 Discr_Val : Elmt_Id;
14530 Errors : Boolean;
14531 New_C : Entity_Id;
14532 Old_C : Entity_Id;
14533 Is_Static : Boolean := True;
14535 procedure Collect_Fixed_Components (Typ : Entity_Id);
14536 -- Collect parent type components that do not appear in a variant part
14538 procedure Create_All_Components;
14539 -- Iterate over Comp_List to create the components of the subtype
14541 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
14542 -- Creates a new component from Old_Compon, copying all the fields from
14543 -- it, including its Etype, inserts the new component in the Subt entity
14544 -- chain and returns the new component.
14546 function Is_Variant_Record (T : Entity_Id) return Boolean;
14547 -- If true, and discriminants are static, collect only components from
14548 -- variants selected by discriminant values.
14550 ------------------------------
14551 -- Collect_Fixed_Components --
14552 ------------------------------
14554 procedure Collect_Fixed_Components (Typ : Entity_Id) is
14555 begin
14556 -- Build association list for discriminants, and find components of the
14557 -- variant part selected by the values of the discriminants.
14559 Old_C := First_Discriminant (Typ);
14560 Discr_Val := First_Elmt (Constraints);
14561 while Present (Old_C) loop
14562 Append_To (Assoc_List,
14563 Make_Component_Association (Loc,
14564 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
14565 Expression => New_Copy (Node (Discr_Val))));
14567 Next_Elmt (Discr_Val);
14568 Next_Discriminant (Old_C);
14569 end loop;
14571 -- The tag and the possible parent component are unconditionally in
14572 -- the subtype.
14574 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
14575 Old_C := First_Component (Typ);
14576 while Present (Old_C) loop
14577 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
14578 Append_Elmt (Old_C, Comp_List);
14579 end if;
14581 Next_Component (Old_C);
14582 end loop;
14583 end if;
14584 end Collect_Fixed_Components;
14586 ---------------------------
14587 -- Create_All_Components --
14588 ---------------------------
14590 procedure Create_All_Components is
14591 Comp : Elmt_Id;
14593 begin
14594 Comp := First_Elmt (Comp_List);
14595 while Present (Comp) loop
14596 Old_C := Node (Comp);
14597 New_C := Create_Component (Old_C);
14599 Set_Etype
14600 (New_C,
14601 Constrain_Component_Type
14602 (Old_C, Subt, Decl_Node, Typ, Constraints));
14603 Set_Is_Public (New_C, Is_Public (Subt));
14605 Next_Elmt (Comp);
14606 end loop;
14607 end Create_All_Components;
14609 ----------------------
14610 -- Create_Component --
14611 ----------------------
14613 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
14614 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
14616 begin
14617 if Ekind (Old_Compon) = E_Discriminant
14618 and then Is_Completely_Hidden (Old_Compon)
14619 then
14620 -- This is a shadow discriminant created for a discriminant of
14621 -- the parent type, which needs to be present in the subtype.
14622 -- Give the shadow discriminant an internal name that cannot
14623 -- conflict with that of visible components.
14625 Set_Chars (New_Compon, New_Internal_Name ('C'));
14626 end if;
14628 -- Set the parent so we have a proper link for freezing etc. This is
14629 -- not a real parent pointer, since of course our parent does not own
14630 -- up to us and reference us, we are an illegitimate child of the
14631 -- original parent.
14633 Set_Parent (New_Compon, Parent (Old_Compon));
14635 -- We do not want this node marked as Comes_From_Source, since
14636 -- otherwise it would get first class status and a separate cross-
14637 -- reference line would be generated. Illegitimate children do not
14638 -- rate such recognition.
14640 Set_Comes_From_Source (New_Compon, False);
14642 -- But it is a real entity, and a birth certificate must be properly
14643 -- registered by entering it into the entity list, and setting its
14644 -- scope to the given subtype. This turns out to be useful for the
14645 -- LLVM code generator, but that scope is not used otherwise.
14647 Enter_Name (New_Compon);
14648 Set_Scope (New_Compon, Subt);
14650 return New_Compon;
14651 end Create_Component;
14653 -----------------------
14654 -- Is_Variant_Record --
14655 -----------------------
14657 function Is_Variant_Record (T : Entity_Id) return Boolean is
14658 begin
14659 return Nkind (Parent (T)) = N_Full_Type_Declaration
14660 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
14661 and then Present (Component_List (Type_Definition (Parent (T))))
14662 and then
14663 Present
14664 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
14665 end Is_Variant_Record;
14667 -- Start of processing for Create_Constrained_Components
14669 begin
14670 pragma Assert (Subt /= Base_Type (Subt));
14671 pragma Assert (Typ = Base_Type (Typ));
14673 Set_First_Entity (Subt, Empty);
14674 Set_Last_Entity (Subt, Empty);
14676 -- Check whether constraint is fully static, in which case we can
14677 -- optimize the list of components.
14679 Discr_Val := First_Elmt (Constraints);
14680 while Present (Discr_Val) loop
14681 if not Is_OK_Static_Expression (Node (Discr_Val)) then
14682 Is_Static := False;
14683 exit;
14684 end if;
14686 Next_Elmt (Discr_Val);
14687 end loop;
14689 Set_Has_Static_Discriminants (Subt, Is_Static);
14691 Push_Scope (Subt);
14693 -- Inherit the discriminants of the parent type
14695 Add_Discriminants : declare
14696 Num_Disc : Nat;
14697 Num_Gird : Nat;
14699 begin
14700 Num_Disc := 0;
14701 Old_C := First_Discriminant (Typ);
14703 while Present (Old_C) loop
14704 Num_Disc := Num_Disc + 1;
14705 New_C := Create_Component (Old_C);
14706 Set_Is_Public (New_C, Is_Public (Subt));
14707 Next_Discriminant (Old_C);
14708 end loop;
14710 -- For an untagged derived subtype, the number of discriminants may
14711 -- be smaller than the number of inherited discriminants, because
14712 -- several of them may be renamed by a single new discriminant or
14713 -- constrained. In this case, add the hidden discriminants back into
14714 -- the subtype, because they need to be present if the optimizer of
14715 -- the GCC 4.x back-end decides to break apart assignments between
14716 -- objects using the parent view into member-wise assignments.
14718 Num_Gird := 0;
14720 if Is_Derived_Type (Typ)
14721 and then not Is_Tagged_Type (Typ)
14722 then
14723 Old_C := First_Stored_Discriminant (Typ);
14725 while Present (Old_C) loop
14726 Num_Gird := Num_Gird + 1;
14727 Next_Stored_Discriminant (Old_C);
14728 end loop;
14729 end if;
14731 if Num_Gird > Num_Disc then
14733 -- Find out multiple uses of new discriminants, and add hidden
14734 -- components for the extra renamed discriminants. We recognize
14735 -- multiple uses through the Corresponding_Discriminant of a
14736 -- new discriminant: if it constrains several old discriminants,
14737 -- this field points to the last one in the parent type. The
14738 -- stored discriminants of the derived type have the same name
14739 -- as those of the parent.
14741 declare
14742 Constr : Elmt_Id;
14743 New_Discr : Entity_Id;
14744 Old_Discr : Entity_Id;
14746 begin
14747 Constr := First_Elmt (Stored_Constraint (Typ));
14748 Old_Discr := First_Stored_Discriminant (Typ);
14749 while Present (Constr) loop
14750 if Is_Entity_Name (Node (Constr))
14751 and then Ekind (Entity (Node (Constr))) = E_Discriminant
14752 then
14753 New_Discr := Entity (Node (Constr));
14755 if Chars (Corresponding_Discriminant (New_Discr)) /=
14756 Chars (Old_Discr)
14757 then
14758 -- The new discriminant has been used to rename a
14759 -- subsequent old discriminant. Introduce a shadow
14760 -- component for the current old discriminant.
14762 New_C := Create_Component (Old_Discr);
14763 Set_Original_Record_Component (New_C, Old_Discr);
14764 end if;
14766 else
14767 -- The constraint has eliminated the old discriminant.
14768 -- Introduce a shadow component.
14770 New_C := Create_Component (Old_Discr);
14771 Set_Original_Record_Component (New_C, Old_Discr);
14772 end if;
14774 Next_Elmt (Constr);
14775 Next_Stored_Discriminant (Old_Discr);
14776 end loop;
14777 end;
14778 end if;
14779 end Add_Discriminants;
14781 if Is_Static
14782 and then Is_Variant_Record (Typ)
14783 then
14784 Collect_Fixed_Components (Typ);
14786 Gather_Components (
14787 Typ,
14788 Component_List (Type_Definition (Parent (Typ))),
14789 Governed_By => Assoc_List,
14790 Into => Comp_List,
14791 Report_Errors => Errors);
14792 pragma Assert (not Errors
14793 or else Serious_Errors_Detected > 0);
14795 Create_All_Components;
14797 -- If the subtype declaration is created for a tagged type derivation
14798 -- with constraints, we retrieve the record definition of the parent
14799 -- type to select the components of the proper variant.
14801 elsif Is_Static
14802 and then Is_Tagged_Type (Typ)
14803 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14804 and then
14805 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14806 and then Is_Variant_Record (Parent_Type)
14807 then
14808 Collect_Fixed_Components (Typ);
14810 Gather_Components
14811 (Typ,
14812 Component_List (Type_Definition (Parent (Parent_Type))),
14813 Governed_By => Assoc_List,
14814 Into => Comp_List,
14815 Report_Errors => Errors);
14817 -- Note: previously there was a check at this point that no errors
14818 -- were detected. As a consequence of AI05-220 there may be an error
14819 -- if an inherited discriminant that controls a variant has a non-
14820 -- static constraint.
14822 -- If the tagged derivation has a type extension, collect all the
14823 -- new components therein.
14825 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14826 then
14827 Old_C := First_Component (Typ);
14828 while Present (Old_C) loop
14829 if Original_Record_Component (Old_C) = Old_C
14830 and then Chars (Old_C) /= Name_uTag
14831 and then Chars (Old_C) /= Name_uParent
14832 then
14833 Append_Elmt (Old_C, Comp_List);
14834 end if;
14836 Next_Component (Old_C);
14837 end loop;
14838 end if;
14840 Create_All_Components;
14842 else
14843 -- If discriminants are not static, or if this is a multi-level type
14844 -- extension, we have to include all components of the parent type.
14846 Old_C := First_Component (Typ);
14847 while Present (Old_C) loop
14848 New_C := Create_Component (Old_C);
14850 Set_Etype
14851 (New_C,
14852 Constrain_Component_Type
14853 (Old_C, Subt, Decl_Node, Typ, Constraints));
14854 Set_Is_Public (New_C, Is_Public (Subt));
14856 Next_Component (Old_C);
14857 end loop;
14858 end if;
14860 End_Scope;
14861 end Create_Constrained_Components;
14863 ------------------------------------------
14864 -- Decimal_Fixed_Point_Type_Declaration --
14865 ------------------------------------------
14867 procedure Decimal_Fixed_Point_Type_Declaration
14868 (T : Entity_Id;
14869 Def : Node_Id)
14871 Loc : constant Source_Ptr := Sloc (Def);
14872 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14873 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14874 Implicit_Base : Entity_Id;
14875 Digs_Val : Uint;
14876 Delta_Val : Ureal;
14877 Scale_Val : Uint;
14878 Bound_Val : Ureal;
14880 begin
14881 Check_SPARK_05_Restriction
14882 ("decimal fixed point type is not allowed", Def);
14883 Check_Restriction (No_Fixed_Point, Def);
14885 -- Create implicit base type
14887 Implicit_Base :=
14888 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14889 Set_Etype (Implicit_Base, Implicit_Base);
14891 -- Analyze and process delta expression
14893 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14895 Check_Delta_Expression (Delta_Expr);
14896 Delta_Val := Expr_Value_R (Delta_Expr);
14898 -- Check delta is power of 10, and determine scale value from it
14900 declare
14901 Val : Ureal;
14903 begin
14904 Scale_Val := Uint_0;
14905 Val := Delta_Val;
14907 if Val < Ureal_1 then
14908 while Val < Ureal_1 loop
14909 Val := Val * Ureal_10;
14910 Scale_Val := Scale_Val + 1;
14911 end loop;
14913 if Scale_Val > 18 then
14914 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14915 Scale_Val := UI_From_Int (+18);
14916 end if;
14918 else
14919 while Val > Ureal_1 loop
14920 Val := Val / Ureal_10;
14921 Scale_Val := Scale_Val - 1;
14922 end loop;
14924 if Scale_Val < -18 then
14925 Error_Msg_N ("scale is less than minimum value of -18", Def);
14926 Scale_Val := UI_From_Int (-18);
14927 end if;
14928 end if;
14930 if Val /= Ureal_1 then
14931 Error_Msg_N ("delta expression must be a power of 10", Def);
14932 Delta_Val := Ureal_10 ** (-Scale_Val);
14933 end if;
14934 end;
14936 -- Set delta, scale and small (small = delta for decimal type)
14938 Set_Delta_Value (Implicit_Base, Delta_Val);
14939 Set_Scale_Value (Implicit_Base, Scale_Val);
14940 Set_Small_Value (Implicit_Base, Delta_Val);
14942 -- Analyze and process digits expression
14944 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14945 Check_Digits_Expression (Digs_Expr);
14946 Digs_Val := Expr_Value (Digs_Expr);
14948 if Digs_Val > 18 then
14949 Digs_Val := UI_From_Int (+18);
14950 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14951 end if;
14953 Set_Digits_Value (Implicit_Base, Digs_Val);
14954 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14956 -- Set range of base type from digits value for now. This will be
14957 -- expanded to represent the true underlying base range by Freeze.
14959 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14961 -- Note: We leave size as zero for now, size will be set at freeze
14962 -- time. We have to do this for ordinary fixed-point, because the size
14963 -- depends on the specified small, and we might as well do the same for
14964 -- decimal fixed-point.
14966 pragma Assert (Esize (Implicit_Base) = Uint_0);
14968 -- If there are bounds given in the declaration use them as the
14969 -- bounds of the first named subtype.
14971 if Present (Real_Range_Specification (Def)) then
14972 declare
14973 RRS : constant Node_Id := Real_Range_Specification (Def);
14974 Low : constant Node_Id := Low_Bound (RRS);
14975 High : constant Node_Id := High_Bound (RRS);
14976 Low_Val : Ureal;
14977 High_Val : Ureal;
14979 begin
14980 Analyze_And_Resolve (Low, Any_Real);
14981 Analyze_And_Resolve (High, Any_Real);
14982 Check_Real_Bound (Low);
14983 Check_Real_Bound (High);
14984 Low_Val := Expr_Value_R (Low);
14985 High_Val := Expr_Value_R (High);
14987 if Low_Val < (-Bound_Val) then
14988 Error_Msg_N
14989 ("range low bound too small for digits value", Low);
14990 Low_Val := -Bound_Val;
14991 end if;
14993 if High_Val > Bound_Val then
14994 Error_Msg_N
14995 ("range high bound too large for digits value", High);
14996 High_Val := Bound_Val;
14997 end if;
14999 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
15000 end;
15002 -- If no explicit range, use range that corresponds to given
15003 -- digits value. This will end up as the final range for the
15004 -- first subtype.
15006 else
15007 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
15008 end if;
15010 -- Complete entity for first subtype. The inheritance of the rep item
15011 -- chain ensures that SPARK-related pragmas are not clobbered when the
15012 -- decimal fixed point type acts as a full view of a private type.
15014 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
15015 Set_Etype (T, Implicit_Base);
15016 Set_Size_Info (T, Implicit_Base);
15017 Inherit_Rep_Item_Chain (T, Implicit_Base);
15018 Set_Digits_Value (T, Digs_Val);
15019 Set_Delta_Value (T, Delta_Val);
15020 Set_Small_Value (T, Delta_Val);
15021 Set_Scale_Value (T, Scale_Val);
15022 Set_Is_Constrained (T);
15023 end Decimal_Fixed_Point_Type_Declaration;
15025 -----------------------------------
15026 -- Derive_Progenitor_Subprograms --
15027 -----------------------------------
15029 procedure Derive_Progenitor_Subprograms
15030 (Parent_Type : Entity_Id;
15031 Tagged_Type : Entity_Id)
15033 E : Entity_Id;
15034 Elmt : Elmt_Id;
15035 Iface : Entity_Id;
15036 Iface_Alias : Entity_Id;
15037 Iface_Elmt : Elmt_Id;
15038 Iface_Subp : Entity_Id;
15039 New_Subp : Entity_Id := Empty;
15040 Prim_Elmt : Elmt_Id;
15041 Subp : Entity_Id;
15042 Typ : Entity_Id;
15044 begin
15045 pragma Assert (Ada_Version >= Ada_2005
15046 and then Is_Record_Type (Tagged_Type)
15047 and then Is_Tagged_Type (Tagged_Type)
15048 and then Has_Interfaces (Tagged_Type));
15050 -- Step 1: Transfer to the full-view primitives associated with the
15051 -- partial-view that cover interface primitives. Conceptually this
15052 -- work should be done later by Process_Full_View; done here to
15053 -- simplify its implementation at later stages. It can be safely
15054 -- done here because interfaces must be visible in the partial and
15055 -- private view (RM 7.3(7.3/2)).
15057 -- Small optimization: This work is only required if the parent may
15058 -- have entities whose Alias attribute reference an interface primitive.
15059 -- Such a situation may occur if the parent is an abstract type and the
15060 -- primitive has not been yet overridden or if the parent is a generic
15061 -- formal type covering interfaces.
15063 -- If the tagged type is not abstract, it cannot have abstract
15064 -- primitives (the only entities in the list of primitives of
15065 -- non-abstract tagged types that can reference abstract primitives
15066 -- through its Alias attribute are the internal entities that have
15067 -- attribute Interface_Alias, and these entities are generated later
15068 -- by Add_Internal_Interface_Entities).
15070 if In_Private_Part (Current_Scope)
15071 and then (Is_Abstract_Type (Parent_Type)
15072 or else
15073 Is_Generic_Type (Parent_Type))
15074 then
15075 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
15076 while Present (Elmt) loop
15077 Subp := Node (Elmt);
15079 -- At this stage it is not possible to have entities in the list
15080 -- of primitives that have attribute Interface_Alias.
15082 pragma Assert (No (Interface_Alias (Subp)));
15084 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
15086 if Is_Interface (Typ) then
15087 E := Find_Primitive_Covering_Interface
15088 (Tagged_Type => Tagged_Type,
15089 Iface_Prim => Subp);
15091 if Present (E)
15092 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
15093 then
15094 Replace_Elmt (Elmt, E);
15095 Remove_Homonym (Subp);
15096 end if;
15097 end if;
15099 Next_Elmt (Elmt);
15100 end loop;
15101 end if;
15103 -- Step 2: Add primitives of progenitors that are not implemented by
15104 -- parents of Tagged_Type.
15106 if Present (Interfaces (Base_Type (Tagged_Type))) then
15107 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
15108 while Present (Iface_Elmt) loop
15109 Iface := Node (Iface_Elmt);
15111 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
15112 while Present (Prim_Elmt) loop
15113 Iface_Subp := Node (Prim_Elmt);
15114 Iface_Alias := Ultimate_Alias (Iface_Subp);
15116 -- Exclude derivation of predefined primitives except those
15117 -- that come from source, or are inherited from one that comes
15118 -- from source. Required to catch declarations of equality
15119 -- operators of interfaces. For example:
15121 -- type Iface is interface;
15122 -- function "=" (Left, Right : Iface) return Boolean;
15124 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
15125 or else Comes_From_Source (Iface_Alias)
15126 then
15127 E :=
15128 Find_Primitive_Covering_Interface
15129 (Tagged_Type => Tagged_Type,
15130 Iface_Prim => Iface_Subp);
15132 -- If not found we derive a new primitive leaving its alias
15133 -- attribute referencing the interface primitive.
15135 if No (E) then
15136 Derive_Subprogram
15137 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15139 -- Ada 2012 (AI05-0197): If the covering primitive's name
15140 -- differs from the name of the interface primitive then it
15141 -- is a private primitive inherited from a parent type. In
15142 -- such case, given that Tagged_Type covers the interface,
15143 -- the inherited private primitive becomes visible. For such
15144 -- purpose we add a new entity that renames the inherited
15145 -- private primitive.
15147 elsif Chars (E) /= Chars (Iface_Subp) then
15148 pragma Assert (Has_Suffix (E, 'P'));
15149 Derive_Subprogram
15150 (New_Subp, Iface_Subp, Tagged_Type, Iface);
15151 Set_Alias (New_Subp, E);
15152 Set_Is_Abstract_Subprogram (New_Subp,
15153 Is_Abstract_Subprogram (E));
15155 -- Propagate to the full view interface entities associated
15156 -- with the partial view.
15158 elsif In_Private_Part (Current_Scope)
15159 and then Present (Alias (E))
15160 and then Alias (E) = Iface_Subp
15161 and then
15162 List_Containing (Parent (E)) /=
15163 Private_Declarations
15164 (Specification
15165 (Unit_Declaration_Node (Current_Scope)))
15166 then
15167 Append_Elmt (E, Primitive_Operations (Tagged_Type));
15168 end if;
15169 end if;
15171 Next_Elmt (Prim_Elmt);
15172 end loop;
15174 Next_Elmt (Iface_Elmt);
15175 end loop;
15176 end if;
15177 end Derive_Progenitor_Subprograms;
15179 -----------------------
15180 -- Derive_Subprogram --
15181 -----------------------
15183 procedure Derive_Subprogram
15184 (New_Subp : out Entity_Id;
15185 Parent_Subp : Entity_Id;
15186 Derived_Type : Entity_Id;
15187 Parent_Type : Entity_Id;
15188 Actual_Subp : Entity_Id := Empty)
15190 Formal : Entity_Id;
15191 -- Formal parameter of parent primitive operation
15193 Formal_Of_Actual : Entity_Id;
15194 -- Formal parameter of actual operation, when the derivation is to
15195 -- create a renaming for a primitive operation of an actual in an
15196 -- instantiation.
15198 New_Formal : Entity_Id;
15199 -- Formal of inherited operation
15201 Visible_Subp : Entity_Id := Parent_Subp;
15203 function Is_Private_Overriding return Boolean;
15204 -- If Subp is a private overriding of a visible operation, the inherited
15205 -- operation derives from the overridden op (even though its body is the
15206 -- overriding one) and the inherited operation is visible now. See
15207 -- sem_disp to see the full details of the handling of the overridden
15208 -- subprogram, which is removed from the list of primitive operations of
15209 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15210 -- and used to diagnose abstract operations that need overriding in the
15211 -- derived type.
15213 procedure Replace_Type (Id, New_Id : Entity_Id);
15214 -- When the type is an anonymous access type, create a new access type
15215 -- designating the derived type.
15217 procedure Set_Derived_Name;
15218 -- This procedure sets the appropriate Chars name for New_Subp. This
15219 -- is normally just a copy of the parent name. An exception arises for
15220 -- type support subprograms, where the name is changed to reflect the
15221 -- name of the derived type, e.g. if type foo is derived from type bar,
15222 -- then a procedure barDA is derived with a name fooDA.
15224 ---------------------------
15225 -- Is_Private_Overriding --
15226 ---------------------------
15228 function Is_Private_Overriding return Boolean is
15229 Prev : Entity_Id;
15231 begin
15232 -- If the parent is not a dispatching operation there is no
15233 -- need to investigate overridings
15235 if not Is_Dispatching_Operation (Parent_Subp) then
15236 return False;
15237 end if;
15239 -- The visible operation that is overridden is a homonym of the
15240 -- parent subprogram. We scan the homonym chain to find the one
15241 -- whose alias is the subprogram we are deriving.
15243 Prev := Current_Entity (Parent_Subp);
15244 while Present (Prev) loop
15245 if Ekind (Prev) = Ekind (Parent_Subp)
15246 and then Alias (Prev) = Parent_Subp
15247 and then Scope (Parent_Subp) = Scope (Prev)
15248 and then not Is_Hidden (Prev)
15249 then
15250 Visible_Subp := Prev;
15251 return True;
15252 end if;
15254 Prev := Homonym (Prev);
15255 end loop;
15257 return False;
15258 end Is_Private_Overriding;
15260 ------------------
15261 -- Replace_Type --
15262 ------------------
15264 procedure Replace_Type (Id, New_Id : Entity_Id) is
15265 Id_Type : constant Entity_Id := Etype (Id);
15266 Acc_Type : Entity_Id;
15267 Par : constant Node_Id := Parent (Derived_Type);
15269 begin
15270 -- When the type is an anonymous access type, create a new access
15271 -- type designating the derived type. This itype must be elaborated
15272 -- at the point of the derivation, not on subsequent calls that may
15273 -- be out of the proper scope for Gigi, so we insert a reference to
15274 -- it after the derivation.
15276 if Ekind (Id_Type) = E_Anonymous_Access_Type then
15277 declare
15278 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
15280 begin
15281 if Ekind (Desig_Typ) = E_Record_Type_With_Private
15282 and then Present (Full_View (Desig_Typ))
15283 and then not Is_Private_Type (Parent_Type)
15284 then
15285 Desig_Typ := Full_View (Desig_Typ);
15286 end if;
15288 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
15290 -- Ada 2005 (AI-251): Handle also derivations of abstract
15291 -- interface primitives.
15293 or else (Is_Interface (Desig_Typ)
15294 and then not Is_Class_Wide_Type (Desig_Typ))
15295 then
15296 Acc_Type := New_Copy (Id_Type);
15297 Set_Etype (Acc_Type, Acc_Type);
15298 Set_Scope (Acc_Type, New_Subp);
15300 -- Set size of anonymous access type. If we have an access
15301 -- to an unconstrained array, this is a fat pointer, so it
15302 -- is sizes at twice addtress size.
15304 if Is_Array_Type (Desig_Typ)
15305 and then not Is_Constrained (Desig_Typ)
15306 then
15307 Init_Size (Acc_Type, 2 * System_Address_Size);
15309 -- Other cases use a thin pointer
15311 else
15312 Init_Size (Acc_Type, System_Address_Size);
15313 end if;
15315 -- Set remaining characterstics of anonymous access type
15317 Init_Alignment (Acc_Type);
15318 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
15320 Set_Etype (New_Id, Acc_Type);
15321 Set_Scope (New_Id, New_Subp);
15323 -- Create a reference to it
15325 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
15327 else
15328 Set_Etype (New_Id, Id_Type);
15329 end if;
15330 end;
15332 -- In Ada2012, a formal may have an incomplete type but the type
15333 -- derivation that inherits the primitive follows the full view.
15335 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
15336 or else
15337 (Ekind (Id_Type) = E_Record_Type_With_Private
15338 and then Present (Full_View (Id_Type))
15339 and then
15340 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
15341 or else
15342 (Ada_Version >= Ada_2012
15343 and then Ekind (Id_Type) = E_Incomplete_Type
15344 and then Full_View (Id_Type) = Parent_Type)
15345 then
15346 -- Constraint checks on formals are generated during expansion,
15347 -- based on the signature of the original subprogram. The bounds
15348 -- of the derived type are not relevant, and thus we can use
15349 -- the base type for the formals. However, the return type may be
15350 -- used in a context that requires that the proper static bounds
15351 -- be used (a case statement, for example) and for those cases
15352 -- we must use the derived type (first subtype), not its base.
15354 -- If the derived_type_definition has no constraints, we know that
15355 -- the derived type has the same constraints as the first subtype
15356 -- of the parent, and we can also use it rather than its base,
15357 -- which can lead to more efficient code.
15359 if Etype (Id) = Parent_Type then
15360 if Is_Scalar_Type (Parent_Type)
15361 and then
15362 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
15363 then
15364 Set_Etype (New_Id, Derived_Type);
15366 elsif Nkind (Par) = N_Full_Type_Declaration
15367 and then
15368 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
15369 and then
15370 Is_Entity_Name
15371 (Subtype_Indication (Type_Definition (Par)))
15372 then
15373 Set_Etype (New_Id, Derived_Type);
15375 else
15376 Set_Etype (New_Id, Base_Type (Derived_Type));
15377 end if;
15379 else
15380 Set_Etype (New_Id, Base_Type (Derived_Type));
15381 end if;
15383 else
15384 Set_Etype (New_Id, Etype (Id));
15385 end if;
15386 end Replace_Type;
15388 ----------------------
15389 -- Set_Derived_Name --
15390 ----------------------
15392 procedure Set_Derived_Name is
15393 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
15394 begin
15395 if Nm = TSS_Null then
15396 Set_Chars (New_Subp, Chars (Parent_Subp));
15397 else
15398 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
15399 end if;
15400 end Set_Derived_Name;
15402 -- Start of processing for Derive_Subprogram
15404 begin
15405 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
15406 Set_Ekind (New_Subp, Ekind (Parent_Subp));
15408 -- Check whether the inherited subprogram is a private operation that
15409 -- should be inherited but not yet made visible. Such subprograms can
15410 -- become visible at a later point (e.g., the private part of a public
15411 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15412 -- following predicate is true, then this is not such a private
15413 -- operation and the subprogram simply inherits the name of the parent
15414 -- subprogram. Note the special check for the names of controlled
15415 -- operations, which are currently exempted from being inherited with
15416 -- a hidden name because they must be findable for generation of
15417 -- implicit run-time calls.
15419 if not Is_Hidden (Parent_Subp)
15420 or else Is_Internal (Parent_Subp)
15421 or else Is_Private_Overriding
15422 or else Is_Internal_Name (Chars (Parent_Subp))
15423 or else (Is_Controlled (Parent_Type)
15424 and then Nam_In (Chars (Parent_Subp), Name_Adjust,
15425 Name_Finalize,
15426 Name_Initialize))
15427 then
15428 Set_Derived_Name;
15430 -- An inherited dispatching equality will be overridden by an internally
15431 -- generated one, or by an explicit one, so preserve its name and thus
15432 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15433 -- private operation it may become invisible if the full view has
15434 -- progenitors, and the dispatch table will be malformed.
15435 -- We check that the type is limited to handle the anomalous declaration
15436 -- of Limited_Controlled, which is derived from a non-limited type, and
15437 -- which is handled specially elsewhere as well.
15439 elsif Chars (Parent_Subp) = Name_Op_Eq
15440 and then Is_Dispatching_Operation (Parent_Subp)
15441 and then Etype (Parent_Subp) = Standard_Boolean
15442 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
15443 and then
15444 Etype (First_Formal (Parent_Subp)) =
15445 Etype (Next_Formal (First_Formal (Parent_Subp)))
15446 then
15447 Set_Derived_Name;
15449 -- If parent is hidden, this can be a regular derivation if the
15450 -- parent is immediately visible in a non-instantiating context,
15451 -- or if we are in the private part of an instance. This test
15452 -- should still be refined ???
15454 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15455 -- operation as a non-visible operation in cases where the parent
15456 -- subprogram might not be visible now, but was visible within the
15457 -- original generic, so it would be wrong to make the inherited
15458 -- subprogram non-visible now. (Not clear if this test is fully
15459 -- correct; are there any cases where we should declare the inherited
15460 -- operation as not visible to avoid it being overridden, e.g., when
15461 -- the parent type is a generic actual with private primitives ???)
15463 -- (they should be treated the same as other private inherited
15464 -- subprograms, but it's not clear how to do this cleanly). ???
15466 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15467 and then Is_Immediately_Visible (Parent_Subp)
15468 and then not In_Instance)
15469 or else In_Instance_Not_Visible
15470 then
15471 Set_Derived_Name;
15473 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15474 -- overrides an interface primitive because interface primitives
15475 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15477 elsif Ada_Version >= Ada_2005
15478 and then Is_Dispatching_Operation (Parent_Subp)
15479 and then Present (Covered_Interface_Op (Parent_Subp))
15480 then
15481 Set_Derived_Name;
15483 -- Otherwise, the type is inheriting a private operation, so enter it
15484 -- with a special name so it can't be overridden.
15486 else
15487 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
15488 end if;
15490 Set_Parent (New_Subp, Parent (Derived_Type));
15492 if Present (Actual_Subp) then
15493 Replace_Type (Actual_Subp, New_Subp);
15494 else
15495 Replace_Type (Parent_Subp, New_Subp);
15496 end if;
15498 Conditional_Delay (New_Subp, Parent_Subp);
15500 -- If we are creating a renaming for a primitive operation of an
15501 -- actual of a generic derived type, we must examine the signature
15502 -- of the actual primitive, not that of the generic formal, which for
15503 -- example may be an interface. However the name and initial value
15504 -- of the inherited operation are those of the formal primitive.
15506 Formal := First_Formal (Parent_Subp);
15508 if Present (Actual_Subp) then
15509 Formal_Of_Actual := First_Formal (Actual_Subp);
15510 else
15511 Formal_Of_Actual := Empty;
15512 end if;
15514 while Present (Formal) loop
15515 New_Formal := New_Copy (Formal);
15517 -- Normally we do not go copying parents, but in the case of
15518 -- formals, we need to link up to the declaration (which is the
15519 -- parameter specification), and it is fine to link up to the
15520 -- original formal's parameter specification in this case.
15522 Set_Parent (New_Formal, Parent (Formal));
15523 Append_Entity (New_Formal, New_Subp);
15525 if Present (Formal_Of_Actual) then
15526 Replace_Type (Formal_Of_Actual, New_Formal);
15527 Next_Formal (Formal_Of_Actual);
15528 else
15529 Replace_Type (Formal, New_Formal);
15530 end if;
15532 Next_Formal (Formal);
15533 end loop;
15535 -- If this derivation corresponds to a tagged generic actual, then
15536 -- primitive operations rename those of the actual. Otherwise the
15537 -- primitive operations rename those of the parent type, If the parent
15538 -- renames an intrinsic operator, so does the new subprogram. We except
15539 -- concatenation, which is always properly typed, and does not get
15540 -- expanded as other intrinsic operations.
15542 if No (Actual_Subp) then
15543 if Is_Intrinsic_Subprogram (Parent_Subp) then
15544 Set_Is_Intrinsic_Subprogram (New_Subp);
15546 if Present (Alias (Parent_Subp))
15547 and then Chars (Parent_Subp) /= Name_Op_Concat
15548 then
15549 Set_Alias (New_Subp, Alias (Parent_Subp));
15550 else
15551 Set_Alias (New_Subp, Parent_Subp);
15552 end if;
15554 else
15555 Set_Alias (New_Subp, Parent_Subp);
15556 end if;
15558 else
15559 Set_Alias (New_Subp, Actual_Subp);
15560 end if;
15562 -- Derived subprograms of a tagged type must inherit the convention
15563 -- of the parent subprogram (a requirement of AI-117). Derived
15564 -- subprograms of untagged types simply get convention Ada by default.
15566 -- If the derived type is a tagged generic formal type with unknown
15567 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15569 -- However, if the type is derived from a generic formal, the further
15570 -- inherited subprogram has the convention of the non-generic ancestor.
15571 -- Otherwise there would be no way to override the operation.
15572 -- (This is subject to forthcoming ARG discussions).
15574 if Is_Tagged_Type (Derived_Type) then
15575 if Is_Generic_Type (Derived_Type)
15576 and then Has_Unknown_Discriminants (Derived_Type)
15577 then
15578 Set_Convention (New_Subp, Convention_Intrinsic);
15580 else
15581 if Is_Generic_Type (Parent_Type)
15582 and then Has_Unknown_Discriminants (Parent_Type)
15583 then
15584 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
15585 else
15586 Set_Convention (New_Subp, Convention (Parent_Subp));
15587 end if;
15588 end if;
15589 end if;
15591 -- Predefined controlled operations retain their name even if the parent
15592 -- is hidden (see above), but they are not primitive operations if the
15593 -- ancestor is not visible, for example if the parent is a private
15594 -- extension completed with a controlled extension. Note that a full
15595 -- type that is controlled can break privacy: the flag Is_Controlled is
15596 -- set on both views of the type.
15598 if Is_Controlled (Parent_Type)
15599 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
15600 Name_Adjust,
15601 Name_Finalize)
15602 and then Is_Hidden (Parent_Subp)
15603 and then not Is_Visibly_Controlled (Parent_Type)
15604 then
15605 Set_Is_Hidden (New_Subp);
15606 end if;
15608 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
15609 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
15611 if Ekind (Parent_Subp) = E_Procedure then
15612 Set_Is_Valued_Procedure
15613 (New_Subp, Is_Valued_Procedure (Parent_Subp));
15614 else
15615 Set_Has_Controlling_Result
15616 (New_Subp, Has_Controlling_Result (Parent_Subp));
15617 end if;
15619 -- No_Return must be inherited properly. If this is overridden in the
15620 -- case of a dispatching operation, then a check is made in Sem_Disp
15621 -- that the overriding operation is also No_Return (no such check is
15622 -- required for the case of non-dispatching operation.
15624 Set_No_Return (New_Subp, No_Return (Parent_Subp));
15626 -- A derived function with a controlling result is abstract. If the
15627 -- Derived_Type is a nonabstract formal generic derived type, then
15628 -- inherited operations are not abstract: the required check is done at
15629 -- instantiation time. If the derivation is for a generic actual, the
15630 -- function is not abstract unless the actual is.
15632 if Is_Generic_Type (Derived_Type)
15633 and then not Is_Abstract_Type (Derived_Type)
15634 then
15635 null;
15637 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15638 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15640 -- A subprogram subject to pragma Extensions_Visible with value False
15641 -- requires overriding if the subprogram has at least one controlling
15642 -- OUT parameter (SPARK RM 6.1.7(6)).
15644 elsif Ada_Version >= Ada_2005
15645 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15646 or else (Is_Tagged_Type (Derived_Type)
15647 and then Etype (New_Subp) = Derived_Type
15648 and then not Is_Null_Extension (Derived_Type))
15649 or else (Is_Tagged_Type (Derived_Type)
15650 and then Ekind (Etype (New_Subp)) =
15651 E_Anonymous_Access_Type
15652 and then Designated_Type (Etype (New_Subp)) =
15653 Derived_Type
15654 and then not Is_Null_Extension (Derived_Type))
15655 or else (Comes_From_Source (Alias (New_Subp))
15656 and then Is_EVF_Procedure (Alias (New_Subp))))
15657 and then No (Actual_Subp)
15658 then
15659 if not Is_Tagged_Type (Derived_Type)
15660 or else Is_Abstract_Type (Derived_Type)
15661 or else Is_Abstract_Subprogram (Alias (New_Subp))
15662 then
15663 Set_Is_Abstract_Subprogram (New_Subp);
15664 else
15665 Set_Requires_Overriding (New_Subp);
15666 end if;
15668 elsif Ada_Version < Ada_2005
15669 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15670 or else (Is_Tagged_Type (Derived_Type)
15671 and then Etype (New_Subp) = Derived_Type
15672 and then No (Actual_Subp)))
15673 then
15674 Set_Is_Abstract_Subprogram (New_Subp);
15676 -- AI05-0097 : an inherited operation that dispatches on result is
15677 -- abstract if the derived type is abstract, even if the parent type
15678 -- is concrete and the derived type is a null extension.
15680 elsif Has_Controlling_Result (Alias (New_Subp))
15681 and then Is_Abstract_Type (Etype (New_Subp))
15682 then
15683 Set_Is_Abstract_Subprogram (New_Subp);
15685 -- Finally, if the parent type is abstract we must verify that all
15686 -- inherited operations are either non-abstract or overridden, or that
15687 -- the derived type itself is abstract (this check is performed at the
15688 -- end of a package declaration, in Check_Abstract_Overriding). A
15689 -- private overriding in the parent type will not be visible in the
15690 -- derivation if we are not in an inner package or in a child unit of
15691 -- the parent type, in which case the abstractness of the inherited
15692 -- operation is carried to the new subprogram.
15694 elsif Is_Abstract_Type (Parent_Type)
15695 and then not In_Open_Scopes (Scope (Parent_Type))
15696 and then Is_Private_Overriding
15697 and then Is_Abstract_Subprogram (Visible_Subp)
15698 then
15699 if No (Actual_Subp) then
15700 Set_Alias (New_Subp, Visible_Subp);
15701 Set_Is_Abstract_Subprogram (New_Subp, True);
15703 else
15704 -- If this is a derivation for an instance of a formal derived
15705 -- type, abstractness comes from the primitive operation of the
15706 -- actual, not from the operation inherited from the ancestor.
15708 Set_Is_Abstract_Subprogram
15709 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
15710 end if;
15711 end if;
15713 New_Overloaded_Entity (New_Subp, Derived_Type);
15715 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15716 -- preconditions and the derived type is abstract, the derived operation
15717 -- is abstract as well if parent subprogram is not abstract or null.
15719 if Is_Abstract_Type (Derived_Type)
15720 and then Has_Non_Trivial_Precondition (Parent_Subp)
15721 and then Present (Interfaces (Derived_Type))
15722 then
15724 -- Add useful attributes of subprogram before the freeze point,
15725 -- in case freezing is delayed or there are previous errors.
15727 Set_Is_Dispatching_Operation (New_Subp);
15729 declare
15730 Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp);
15732 begin
15733 if Present (Iface_Prim)
15734 and then Has_Non_Trivial_Precondition (Iface_Prim)
15735 then
15736 Set_Is_Abstract_Subprogram (New_Subp);
15737 end if;
15738 end;
15739 end if;
15741 -- Check for case of a derived subprogram for the instantiation of a
15742 -- formal derived tagged type, if so mark the subprogram as dispatching
15743 -- and inherit the dispatching attributes of the actual subprogram. The
15744 -- derived subprogram is effectively renaming of the actual subprogram,
15745 -- so it needs to have the same attributes as the actual.
15747 if Present (Actual_Subp)
15748 and then Is_Dispatching_Operation (Actual_Subp)
15749 then
15750 Set_Is_Dispatching_Operation (New_Subp);
15752 if Present (DTC_Entity (Actual_Subp)) then
15753 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
15754 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
15755 end if;
15756 end if;
15758 -- Indicate that a derived subprogram does not require a body and that
15759 -- it does not require processing of default expressions.
15761 Set_Has_Completion (New_Subp);
15762 Set_Default_Expressions_Processed (New_Subp);
15764 if Ekind (New_Subp) = E_Function then
15765 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
15766 end if;
15767 end Derive_Subprogram;
15769 ------------------------
15770 -- Derive_Subprograms --
15771 ------------------------
15773 procedure Derive_Subprograms
15774 (Parent_Type : Entity_Id;
15775 Derived_Type : Entity_Id;
15776 Generic_Actual : Entity_Id := Empty)
15778 Op_List : constant Elist_Id :=
15779 Collect_Primitive_Operations (Parent_Type);
15781 function Check_Derived_Type return Boolean;
15782 -- Check that all the entities derived from Parent_Type are found in
15783 -- the list of primitives of Derived_Type exactly in the same order.
15785 procedure Derive_Interface_Subprogram
15786 (New_Subp : out Entity_Id;
15787 Subp : Entity_Id;
15788 Actual_Subp : Entity_Id);
15789 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15790 -- (which is an interface primitive). If Generic_Actual is present then
15791 -- Actual_Subp is the actual subprogram corresponding with the generic
15792 -- subprogram Subp.
15794 ------------------------
15795 -- Check_Derived_Type --
15796 ------------------------
15798 function Check_Derived_Type return Boolean is
15799 E : Entity_Id;
15800 Elmt : Elmt_Id;
15801 List : Elist_Id;
15802 New_Subp : Entity_Id;
15803 Op_Elmt : Elmt_Id;
15804 Subp : Entity_Id;
15806 begin
15807 -- Traverse list of entities in the current scope searching for
15808 -- an incomplete type whose full-view is derived type.
15810 E := First_Entity (Scope (Derived_Type));
15811 while Present (E) and then E /= Derived_Type loop
15812 if Ekind (E) = E_Incomplete_Type
15813 and then Present (Full_View (E))
15814 and then Full_View (E) = Derived_Type
15815 then
15816 -- Disable this test if Derived_Type completes an incomplete
15817 -- type because in such case more primitives can be added
15818 -- later to the list of primitives of Derived_Type by routine
15819 -- Process_Incomplete_Dependents
15821 return True;
15822 end if;
15824 E := Next_Entity (E);
15825 end loop;
15827 List := Collect_Primitive_Operations (Derived_Type);
15828 Elmt := First_Elmt (List);
15830 Op_Elmt := First_Elmt (Op_List);
15831 while Present (Op_Elmt) loop
15832 Subp := Node (Op_Elmt);
15833 New_Subp := Node (Elmt);
15835 -- At this early stage Derived_Type has no entities with attribute
15836 -- Interface_Alias. In addition, such primitives are always
15837 -- located at the end of the list of primitives of Parent_Type.
15838 -- Therefore, if found we can safely stop processing pending
15839 -- entities.
15841 exit when Present (Interface_Alias (Subp));
15843 -- Handle hidden entities
15845 if not Is_Predefined_Dispatching_Operation (Subp)
15846 and then Is_Hidden (Subp)
15847 then
15848 if Present (New_Subp)
15849 and then Primitive_Names_Match (Subp, New_Subp)
15850 then
15851 Next_Elmt (Elmt);
15852 end if;
15854 else
15855 if not Present (New_Subp)
15856 or else Ekind (Subp) /= Ekind (New_Subp)
15857 or else not Primitive_Names_Match (Subp, New_Subp)
15858 then
15859 return False;
15860 end if;
15862 Next_Elmt (Elmt);
15863 end if;
15865 Next_Elmt (Op_Elmt);
15866 end loop;
15868 return True;
15869 end Check_Derived_Type;
15871 ---------------------------------
15872 -- Derive_Interface_Subprogram --
15873 ---------------------------------
15875 procedure Derive_Interface_Subprogram
15876 (New_Subp : out Entity_Id;
15877 Subp : Entity_Id;
15878 Actual_Subp : Entity_Id)
15880 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15881 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15883 begin
15884 pragma Assert (Is_Interface (Iface_Type));
15886 Derive_Subprogram
15887 (New_Subp => New_Subp,
15888 Parent_Subp => Iface_Subp,
15889 Derived_Type => Derived_Type,
15890 Parent_Type => Iface_Type,
15891 Actual_Subp => Actual_Subp);
15893 -- Given that this new interface entity corresponds with a primitive
15894 -- of the parent that was not overridden we must leave it associated
15895 -- with its parent primitive to ensure that it will share the same
15896 -- dispatch table slot when overridden. We must set the Alias to Subp
15897 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15898 -- (in case we inherited Subp from Iface_Type via a nonabstract
15899 -- generic formal type).
15901 if No (Actual_Subp) then
15902 Set_Alias (New_Subp, Subp);
15904 declare
15905 T : Entity_Id := Find_Dispatching_Type (Subp);
15906 begin
15907 while Etype (T) /= T loop
15908 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15909 Set_Is_Abstract_Subprogram (New_Subp, False);
15910 exit;
15911 end if;
15913 T := Etype (T);
15914 end loop;
15915 end;
15917 -- For instantiations this is not needed since the previous call to
15918 -- Derive_Subprogram leaves the entity well decorated.
15920 else
15921 pragma Assert (Alias (New_Subp) = Actual_Subp);
15922 null;
15923 end if;
15924 end Derive_Interface_Subprogram;
15926 -- Local variables
15928 Alias_Subp : Entity_Id;
15929 Act_List : Elist_Id;
15930 Act_Elmt : Elmt_Id;
15931 Act_Subp : Entity_Id := Empty;
15932 Elmt : Elmt_Id;
15933 Need_Search : Boolean := False;
15934 New_Subp : Entity_Id := Empty;
15935 Parent_Base : Entity_Id;
15936 Subp : Entity_Id;
15938 -- Start of processing for Derive_Subprograms
15940 begin
15941 if Ekind (Parent_Type) = E_Record_Type_With_Private
15942 and then Has_Discriminants (Parent_Type)
15943 and then Present (Full_View (Parent_Type))
15944 then
15945 Parent_Base := Full_View (Parent_Type);
15946 else
15947 Parent_Base := Parent_Type;
15948 end if;
15950 if Present (Generic_Actual) then
15951 Act_List := Collect_Primitive_Operations (Generic_Actual);
15952 Act_Elmt := First_Elmt (Act_List);
15953 else
15954 Act_List := No_Elist;
15955 Act_Elmt := No_Elmt;
15956 end if;
15958 -- Derive primitives inherited from the parent. Note that if the generic
15959 -- actual is present, this is not really a type derivation, it is a
15960 -- completion within an instance.
15962 -- Case 1: Derived_Type does not implement interfaces
15964 if not Is_Tagged_Type (Derived_Type)
15965 or else (not Has_Interfaces (Derived_Type)
15966 and then not (Present (Generic_Actual)
15967 and then Has_Interfaces (Generic_Actual)))
15968 then
15969 Elmt := First_Elmt (Op_List);
15970 while Present (Elmt) loop
15971 Subp := Node (Elmt);
15973 -- Literals are derived earlier in the process of building the
15974 -- derived type, and are skipped here.
15976 if Ekind (Subp) = E_Enumeration_Literal then
15977 null;
15979 -- The actual is a direct descendant and the common primitive
15980 -- operations appear in the same order.
15982 -- If the generic parent type is present, the derived type is an
15983 -- instance of a formal derived type, and within the instance its
15984 -- operations are those of the actual. We derive from the formal
15985 -- type but make the inherited operations aliases of the
15986 -- corresponding operations of the actual.
15988 else
15989 pragma Assert (No (Node (Act_Elmt))
15990 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15991 and then
15992 Type_Conformant
15993 (Subp, Node (Act_Elmt),
15994 Skip_Controlling_Formals => True)));
15996 Derive_Subprogram
15997 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15999 if Present (Act_Elmt) then
16000 Next_Elmt (Act_Elmt);
16001 end if;
16002 end if;
16004 Next_Elmt (Elmt);
16005 end loop;
16007 -- Case 2: Derived_Type implements interfaces
16009 else
16010 -- If the parent type has no predefined primitives we remove
16011 -- predefined primitives from the list of primitives of generic
16012 -- actual to simplify the complexity of this algorithm.
16014 if Present (Generic_Actual) then
16015 declare
16016 Has_Predefined_Primitives : Boolean := False;
16018 begin
16019 -- Check if the parent type has predefined primitives
16021 Elmt := First_Elmt (Op_List);
16022 while Present (Elmt) loop
16023 Subp := Node (Elmt);
16025 if Is_Predefined_Dispatching_Operation (Subp)
16026 and then not Comes_From_Source (Ultimate_Alias (Subp))
16027 then
16028 Has_Predefined_Primitives := True;
16029 exit;
16030 end if;
16032 Next_Elmt (Elmt);
16033 end loop;
16035 -- Remove predefined primitives of Generic_Actual. We must use
16036 -- an auxiliary list because in case of tagged types the value
16037 -- returned by Collect_Primitive_Operations is the value stored
16038 -- in its Primitive_Operations attribute (and we don't want to
16039 -- modify its current contents).
16041 if not Has_Predefined_Primitives then
16042 declare
16043 Aux_List : constant Elist_Id := New_Elmt_List;
16045 begin
16046 Elmt := First_Elmt (Act_List);
16047 while Present (Elmt) loop
16048 Subp := Node (Elmt);
16050 if not Is_Predefined_Dispatching_Operation (Subp)
16051 or else Comes_From_Source (Subp)
16052 then
16053 Append_Elmt (Subp, Aux_List);
16054 end if;
16056 Next_Elmt (Elmt);
16057 end loop;
16059 Act_List := Aux_List;
16060 end;
16061 end if;
16063 Act_Elmt := First_Elmt (Act_List);
16064 Act_Subp := Node (Act_Elmt);
16065 end;
16066 end if;
16068 -- Stage 1: If the generic actual is not present we derive the
16069 -- primitives inherited from the parent type. If the generic parent
16070 -- type is present, the derived type is an instance of a formal
16071 -- derived type, and within the instance its operations are those of
16072 -- the actual. We derive from the formal type but make the inherited
16073 -- operations aliases of the corresponding operations of the actual.
16075 Elmt := First_Elmt (Op_List);
16076 while Present (Elmt) loop
16077 Subp := Node (Elmt);
16078 Alias_Subp := Ultimate_Alias (Subp);
16080 -- Do not derive internal entities of the parent that link
16081 -- interface primitives with their covering primitive. These
16082 -- entities will be added to this type when frozen.
16084 if Present (Interface_Alias (Subp)) then
16085 goto Continue;
16086 end if;
16088 -- If the generic actual is present find the corresponding
16089 -- operation in the generic actual. If the parent type is a
16090 -- direct ancestor of the derived type then, even if it is an
16091 -- interface, the operations are inherited from the primary
16092 -- dispatch table and are in the proper order. If we detect here
16093 -- that primitives are not in the same order we traverse the list
16094 -- of primitive operations of the actual to find the one that
16095 -- implements the interface primitive.
16097 if Need_Search
16098 or else
16099 (Present (Generic_Actual)
16100 and then Present (Act_Subp)
16101 and then not
16102 (Primitive_Names_Match (Subp, Act_Subp)
16103 and then
16104 Type_Conformant (Subp, Act_Subp,
16105 Skip_Controlling_Formals => True)))
16106 then
16107 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
16108 Use_Full_View => True));
16110 -- Remember that we need searching for all pending primitives
16112 Need_Search := True;
16114 -- Handle entities associated with interface primitives
16116 if Present (Alias_Subp)
16117 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16118 and then not Is_Predefined_Dispatching_Operation (Subp)
16119 then
16120 -- Search for the primitive in the homonym chain
16122 Act_Subp :=
16123 Find_Primitive_Covering_Interface
16124 (Tagged_Type => Generic_Actual,
16125 Iface_Prim => Alias_Subp);
16127 -- Previous search may not locate primitives covering
16128 -- interfaces defined in generics units or instantiations.
16129 -- (it fails if the covering primitive has formals whose
16130 -- type is also defined in generics or instantiations).
16131 -- In such case we search in the list of primitives of the
16132 -- generic actual for the internal entity that links the
16133 -- interface primitive and the covering primitive.
16135 if No (Act_Subp)
16136 and then Is_Generic_Type (Parent_Type)
16137 then
16138 -- This code has been designed to handle only generic
16139 -- formals that implement interfaces that are defined
16140 -- in a generic unit or instantiation. If this code is
16141 -- needed for other cases we must review it because
16142 -- (given that it relies on Original_Location to locate
16143 -- the primitive of Generic_Actual that covers the
16144 -- interface) it could leave linked through attribute
16145 -- Alias entities of unrelated instantiations).
16147 pragma Assert
16148 (Is_Generic_Unit
16149 (Scope (Find_Dispatching_Type (Alias_Subp)))
16150 or else
16151 Instantiation_Depth
16152 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
16154 declare
16155 Iface_Prim_Loc : constant Source_Ptr :=
16156 Original_Location (Sloc (Alias_Subp));
16158 Elmt : Elmt_Id;
16159 Prim : Entity_Id;
16161 begin
16162 Elmt :=
16163 First_Elmt (Primitive_Operations (Generic_Actual));
16165 Search : while Present (Elmt) loop
16166 Prim := Node (Elmt);
16168 if Present (Interface_Alias (Prim))
16169 and then Original_Location
16170 (Sloc (Interface_Alias (Prim))) =
16171 Iface_Prim_Loc
16172 then
16173 Act_Subp := Alias (Prim);
16174 exit Search;
16175 end if;
16177 Next_Elmt (Elmt);
16178 end loop Search;
16179 end;
16180 end if;
16182 pragma Assert (Present (Act_Subp)
16183 or else Is_Abstract_Type (Generic_Actual)
16184 or else Serious_Errors_Detected > 0);
16186 -- Handle predefined primitives plus the rest of user-defined
16187 -- primitives
16189 else
16190 Act_Elmt := First_Elmt (Act_List);
16191 while Present (Act_Elmt) loop
16192 Act_Subp := Node (Act_Elmt);
16194 exit when Primitive_Names_Match (Subp, Act_Subp)
16195 and then Type_Conformant
16196 (Subp, Act_Subp,
16197 Skip_Controlling_Formals => True)
16198 and then No (Interface_Alias (Act_Subp));
16200 Next_Elmt (Act_Elmt);
16201 end loop;
16203 if No (Act_Elmt) then
16204 Act_Subp := Empty;
16205 end if;
16206 end if;
16207 end if;
16209 -- Case 1: If the parent is a limited interface then it has the
16210 -- predefined primitives of synchronized interfaces. However, the
16211 -- actual type may be a non-limited type and hence it does not
16212 -- have such primitives.
16214 if Present (Generic_Actual)
16215 and then not Present (Act_Subp)
16216 and then Is_Limited_Interface (Parent_Base)
16217 and then Is_Predefined_Interface_Primitive (Subp)
16218 then
16219 null;
16221 -- Case 2: Inherit entities associated with interfaces that were
16222 -- not covered by the parent type. We exclude here null interface
16223 -- primitives because they do not need special management.
16225 -- We also exclude interface operations that are renamings. If the
16226 -- subprogram is an explicit renaming of an interface primitive,
16227 -- it is a regular primitive operation, and the presence of its
16228 -- alias is not relevant: it has to be derived like any other
16229 -- primitive.
16231 elsif Present (Alias (Subp))
16232 and then Nkind (Unit_Declaration_Node (Subp)) /=
16233 N_Subprogram_Renaming_Declaration
16234 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16235 and then not
16236 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
16237 and then Null_Present (Parent (Alias_Subp)))
16238 then
16239 -- If this is an abstract private type then we transfer the
16240 -- derivation of the interface primitive from the partial view
16241 -- to the full view. This is safe because all the interfaces
16242 -- must be visible in the partial view. Done to avoid adding
16243 -- a new interface derivation to the private part of the
16244 -- enclosing package; otherwise this new derivation would be
16245 -- decorated as hidden when the analysis of the enclosing
16246 -- package completes.
16248 if Is_Abstract_Type (Derived_Type)
16249 and then In_Private_Part (Current_Scope)
16250 and then Has_Private_Declaration (Derived_Type)
16251 then
16252 declare
16253 Partial_View : Entity_Id;
16254 Elmt : Elmt_Id;
16255 Ent : Entity_Id;
16257 begin
16258 Partial_View := First_Entity (Current_Scope);
16259 loop
16260 exit when No (Partial_View)
16261 or else (Has_Private_Declaration (Partial_View)
16262 and then
16263 Full_View (Partial_View) = Derived_Type);
16265 Next_Entity (Partial_View);
16266 end loop;
16268 -- If the partial view was not found then the source code
16269 -- has errors and the derivation is not needed.
16271 if Present (Partial_View) then
16272 Elmt :=
16273 First_Elmt (Primitive_Operations (Partial_View));
16274 while Present (Elmt) loop
16275 Ent := Node (Elmt);
16277 if Present (Alias (Ent))
16278 and then Ultimate_Alias (Ent) = Alias (Subp)
16279 then
16280 Append_Elmt
16281 (Ent, Primitive_Operations (Derived_Type));
16282 exit;
16283 end if;
16285 Next_Elmt (Elmt);
16286 end loop;
16288 -- If the interface primitive was not found in the
16289 -- partial view then this interface primitive was
16290 -- overridden. We add a derivation to activate in
16291 -- Derive_Progenitor_Subprograms the machinery to
16292 -- search for it.
16294 if No (Elmt) then
16295 Derive_Interface_Subprogram
16296 (New_Subp => New_Subp,
16297 Subp => Subp,
16298 Actual_Subp => Act_Subp);
16299 end if;
16300 end if;
16301 end;
16302 else
16303 Derive_Interface_Subprogram
16304 (New_Subp => New_Subp,
16305 Subp => Subp,
16306 Actual_Subp => Act_Subp);
16307 end if;
16309 -- Case 3: Common derivation
16311 else
16312 Derive_Subprogram
16313 (New_Subp => New_Subp,
16314 Parent_Subp => Subp,
16315 Derived_Type => Derived_Type,
16316 Parent_Type => Parent_Base,
16317 Actual_Subp => Act_Subp);
16318 end if;
16320 -- No need to update Act_Elm if we must search for the
16321 -- corresponding operation in the generic actual
16323 if not Need_Search
16324 and then Present (Act_Elmt)
16325 then
16326 Next_Elmt (Act_Elmt);
16327 Act_Subp := Node (Act_Elmt);
16328 end if;
16330 <<Continue>>
16331 Next_Elmt (Elmt);
16332 end loop;
16334 -- Inherit additional operations from progenitors. If the derived
16335 -- type is a generic actual, there are not new primitive operations
16336 -- for the type because it has those of the actual, and therefore
16337 -- nothing needs to be done. The renamings generated above are not
16338 -- primitive operations, and their purpose is simply to make the
16339 -- proper operations visible within an instantiation.
16341 if No (Generic_Actual) then
16342 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
16343 end if;
16344 end if;
16346 -- Final check: Direct descendants must have their primitives in the
16347 -- same order. We exclude from this test untagged types and instances
16348 -- of formal derived types. We skip this test if we have already
16349 -- reported serious errors in the sources.
16351 pragma Assert (not Is_Tagged_Type (Derived_Type)
16352 or else Present (Generic_Actual)
16353 or else Serious_Errors_Detected > 0
16354 or else Check_Derived_Type);
16355 end Derive_Subprograms;
16357 --------------------------------
16358 -- Derived_Standard_Character --
16359 --------------------------------
16361 procedure Derived_Standard_Character
16362 (N : Node_Id;
16363 Parent_Type : Entity_Id;
16364 Derived_Type : Entity_Id)
16366 Loc : constant Source_Ptr := Sloc (N);
16367 Def : constant Node_Id := Type_Definition (N);
16368 Indic : constant Node_Id := Subtype_Indication (Def);
16369 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
16370 Implicit_Base : constant Entity_Id :=
16371 Create_Itype
16372 (E_Enumeration_Type, N, Derived_Type, 'B');
16374 Lo : Node_Id;
16375 Hi : Node_Id;
16377 begin
16378 Discard_Node (Process_Subtype (Indic, N));
16380 Set_Etype (Implicit_Base, Parent_Base);
16381 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
16382 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
16384 Set_Is_Character_Type (Implicit_Base, True);
16385 Set_Has_Delayed_Freeze (Implicit_Base);
16387 -- The bounds of the implicit base are the bounds of the parent base.
16388 -- Note that their type is the parent base.
16390 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
16391 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
16393 Set_Scalar_Range (Implicit_Base,
16394 Make_Range (Loc,
16395 Low_Bound => Lo,
16396 High_Bound => Hi));
16398 Conditional_Delay (Derived_Type, Parent_Type);
16400 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
16401 Set_Etype (Derived_Type, Implicit_Base);
16402 Set_Size_Info (Derived_Type, Parent_Type);
16404 if Unknown_RM_Size (Derived_Type) then
16405 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
16406 end if;
16408 Set_Is_Character_Type (Derived_Type, True);
16410 if Nkind (Indic) /= N_Subtype_Indication then
16412 -- If no explicit constraint, the bounds are those
16413 -- of the parent type.
16415 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
16416 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
16417 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
16418 end if;
16420 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
16422 -- Because the implicit base is used in the conversion of the bounds, we
16423 -- have to freeze it now. This is similar to what is done for numeric
16424 -- types, and it equally suspicious, but otherwise a non-static bound
16425 -- will have a reference to an unfrozen type, which is rejected by Gigi
16426 -- (???). This requires specific care for definition of stream
16427 -- attributes. For details, see comments at the end of
16428 -- Build_Derived_Numeric_Type.
16430 Freeze_Before (N, Implicit_Base);
16431 end Derived_Standard_Character;
16433 ------------------------------
16434 -- Derived_Type_Declaration --
16435 ------------------------------
16437 procedure Derived_Type_Declaration
16438 (T : Entity_Id;
16439 N : Node_Id;
16440 Is_Completion : Boolean)
16442 Parent_Type : Entity_Id;
16444 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
16445 -- Check whether the parent type is a generic formal, or derives
16446 -- directly or indirectly from one.
16448 ------------------------
16449 -- Comes_From_Generic --
16450 ------------------------
16452 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
16453 begin
16454 if Is_Generic_Type (Typ) then
16455 return True;
16457 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
16458 return True;
16460 elsif Is_Private_Type (Typ)
16461 and then Present (Full_View (Typ))
16462 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
16463 then
16464 return True;
16466 elsif Is_Generic_Actual_Type (Typ) then
16467 return True;
16469 else
16470 return False;
16471 end if;
16472 end Comes_From_Generic;
16474 -- Local variables
16476 Def : constant Node_Id := Type_Definition (N);
16477 Iface_Def : Node_Id;
16478 Indic : constant Node_Id := Subtype_Indication (Def);
16479 Extension : constant Node_Id := Record_Extension_Part (Def);
16480 Parent_Node : Node_Id;
16481 Taggd : Boolean;
16483 -- Start of processing for Derived_Type_Declaration
16485 begin
16486 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
16488 if SPARK_Mode = On
16489 and then Is_Tagged_Type (Parent_Type)
16490 then
16491 declare
16492 Partial_View : constant Entity_Id :=
16493 Incomplete_Or_Partial_View (Parent_Type);
16495 begin
16496 -- If the partial view was not found then the parent type is not
16497 -- a private type. Otherwise check if the partial view is a tagged
16498 -- private type.
16500 if Present (Partial_View)
16501 and then Is_Private_Type (Partial_View)
16502 and then not Is_Tagged_Type (Partial_View)
16503 then
16504 Error_Msg_NE
16505 ("cannot derive from & declared as untagged private "
16506 & "(SPARK RM 3.4(1))", N, Partial_View);
16507 end if;
16508 end;
16509 end if;
16511 -- Ada 2005 (AI-251): In case of interface derivation check that the
16512 -- parent is also an interface.
16514 if Interface_Present (Def) then
16515 Check_SPARK_05_Restriction ("interface is not allowed", Def);
16517 if not Is_Interface (Parent_Type) then
16518 Diagnose_Interface (Indic, Parent_Type);
16520 else
16521 Parent_Node := Parent (Base_Type (Parent_Type));
16522 Iface_Def := Type_Definition (Parent_Node);
16524 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
16525 -- other limited interfaces.
16527 if Limited_Present (Def) then
16528 if Limited_Present (Iface_Def) then
16529 null;
16531 elsif Protected_Present (Iface_Def) then
16532 Error_Msg_NE
16533 ("descendant of & must be declared as a protected "
16534 & "interface", N, Parent_Type);
16536 elsif Synchronized_Present (Iface_Def) then
16537 Error_Msg_NE
16538 ("descendant of & must be declared as a synchronized "
16539 & "interface", N, Parent_Type);
16541 elsif Task_Present (Iface_Def) then
16542 Error_Msg_NE
16543 ("descendant of & must be declared as a task interface",
16544 N, Parent_Type);
16546 else
16547 Error_Msg_N
16548 ("(Ada 2005) limited interface cannot inherit from "
16549 & "non-limited interface", Indic);
16550 end if;
16552 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
16553 -- from non-limited or limited interfaces.
16555 elsif not Protected_Present (Def)
16556 and then not Synchronized_Present (Def)
16557 and then not Task_Present (Def)
16558 then
16559 if Limited_Present (Iface_Def) then
16560 null;
16562 elsif Protected_Present (Iface_Def) then
16563 Error_Msg_NE
16564 ("descendant of & must be declared as a protected "
16565 & "interface", N, Parent_Type);
16567 elsif Synchronized_Present (Iface_Def) then
16568 Error_Msg_NE
16569 ("descendant of & must be declared as a synchronized "
16570 & "interface", N, Parent_Type);
16572 elsif Task_Present (Iface_Def) then
16573 Error_Msg_NE
16574 ("descendant of & must be declared as a task interface",
16575 N, Parent_Type);
16576 else
16577 null;
16578 end if;
16579 end if;
16580 end if;
16581 end if;
16583 if Is_Tagged_Type (Parent_Type)
16584 and then Is_Concurrent_Type (Parent_Type)
16585 and then not Is_Interface (Parent_Type)
16586 then
16587 Error_Msg_N
16588 ("parent type of a record extension cannot be a synchronized "
16589 & "tagged type (RM 3.9.1 (3/1))", N);
16590 Set_Etype (T, Any_Type);
16591 return;
16592 end if;
16594 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16595 -- interfaces
16597 if Is_Tagged_Type (Parent_Type)
16598 and then Is_Non_Empty_List (Interface_List (Def))
16599 then
16600 declare
16601 Intf : Node_Id;
16602 T : Entity_Id;
16604 begin
16605 Intf := First (Interface_List (Def));
16606 while Present (Intf) loop
16607 T := Find_Type_Of_Subtype_Indic (Intf);
16609 if not Is_Interface (T) then
16610 Diagnose_Interface (Intf, T);
16612 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16613 -- a limited type from having a nonlimited progenitor.
16615 elsif (Limited_Present (Def)
16616 or else (not Is_Interface (Parent_Type)
16617 and then Is_Limited_Type (Parent_Type)))
16618 and then not Is_Limited_Interface (T)
16619 then
16620 Error_Msg_NE
16621 ("progenitor interface& of limited type must be limited",
16622 N, T);
16623 end if;
16625 Next (Intf);
16626 end loop;
16627 end;
16628 end if;
16630 if Parent_Type = Any_Type
16631 or else Etype (Parent_Type) = Any_Type
16632 or else (Is_Class_Wide_Type (Parent_Type)
16633 and then Etype (Parent_Type) = T)
16634 then
16635 -- If Parent_Type is undefined or illegal, make new type into a
16636 -- subtype of Any_Type, and set a few attributes to prevent cascaded
16637 -- errors. If this is a self-definition, emit error now.
16639 if T = Parent_Type or else T = Etype (Parent_Type) then
16640 Error_Msg_N ("type cannot be used in its own definition", Indic);
16641 end if;
16643 Set_Ekind (T, Ekind (Parent_Type));
16644 Set_Etype (T, Any_Type);
16645 Set_Scalar_Range (T, Scalar_Range (Any_Type));
16647 if Is_Tagged_Type (T)
16648 and then Is_Record_Type (T)
16649 then
16650 Set_Direct_Primitive_Operations (T, New_Elmt_List);
16651 end if;
16653 return;
16654 end if;
16656 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
16657 -- an interface is special because the list of interfaces in the full
16658 -- view can be given in any order. For example:
16660 -- type A is interface;
16661 -- type B is interface and A;
16662 -- type D is new B with private;
16663 -- private
16664 -- type D is new A and B with null record; -- 1 --
16666 -- In this case we perform the following transformation of -1-:
16668 -- type D is new B and A with null record;
16670 -- If the parent of the full-view covers the parent of the partial-view
16671 -- we have two possible cases:
16673 -- 1) They have the same parent
16674 -- 2) The parent of the full-view implements some further interfaces
16676 -- In both cases we do not need to perform the transformation. In the
16677 -- first case the source program is correct and the transformation is
16678 -- not needed; in the second case the source program does not fulfill
16679 -- the no-hidden interfaces rule (AI-396) and the error will be reported
16680 -- later.
16682 -- This transformation not only simplifies the rest of the analysis of
16683 -- this type declaration but also simplifies the correct generation of
16684 -- the object layout to the expander.
16686 if In_Private_Part (Current_Scope)
16687 and then Is_Interface (Parent_Type)
16688 then
16689 declare
16690 Iface : Node_Id;
16691 Partial_View : Entity_Id;
16692 Partial_View_Parent : Entity_Id;
16693 New_Iface : Node_Id;
16695 begin
16696 -- Look for the associated private type declaration
16698 Partial_View := Incomplete_Or_Partial_View (T);
16700 -- If the partial view was not found then the source code has
16701 -- errors and the transformation is not needed.
16703 if Present (Partial_View) then
16704 Partial_View_Parent := Etype (Partial_View);
16706 -- If the parent of the full-view covers the parent of the
16707 -- partial-view we have nothing else to do.
16709 if Interface_Present_In_Ancestor
16710 (Parent_Type, Partial_View_Parent)
16711 then
16712 null;
16714 -- Traverse the list of interfaces of the full-view to look
16715 -- for the parent of the partial-view and perform the tree
16716 -- transformation.
16718 else
16719 Iface := First (Interface_List (Def));
16720 while Present (Iface) loop
16721 if Etype (Iface) = Etype (Partial_View) then
16722 Rewrite (Subtype_Indication (Def),
16723 New_Copy (Subtype_Indication
16724 (Parent (Partial_View))));
16726 New_Iface :=
16727 Make_Identifier (Sloc (N), Chars (Parent_Type));
16728 Append (New_Iface, Interface_List (Def));
16730 -- Analyze the transformed code
16732 Derived_Type_Declaration (T, N, Is_Completion);
16733 return;
16734 end if;
16736 Next (Iface);
16737 end loop;
16738 end if;
16739 end if;
16740 end;
16741 end if;
16743 -- Only composite types other than array types are allowed to have
16744 -- discriminants.
16746 if Present (Discriminant_Specifications (N)) then
16747 if (Is_Elementary_Type (Parent_Type)
16748 or else
16749 Is_Array_Type (Parent_Type))
16750 and then not Error_Posted (N)
16751 then
16752 Error_Msg_N
16753 ("elementary or array type cannot have discriminants",
16754 Defining_Identifier (First (Discriminant_Specifications (N))));
16756 -- Unset Has_Discriminants flag to prevent cascaded errors, but
16757 -- only if we are not already processing a malformed syntax tree.
16759 if Is_Type (T) then
16760 Set_Has_Discriminants (T, False);
16761 end if;
16763 -- The type is allowed to have discriminants
16765 else
16766 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
16767 end if;
16768 end if;
16770 -- In Ada 83, a derived type defined in a package specification cannot
16771 -- be used for further derivation until the end of its visible part.
16772 -- Note that derivation in the private part of the package is allowed.
16774 if Ada_Version = Ada_83
16775 and then Is_Derived_Type (Parent_Type)
16776 and then In_Visible_Part (Scope (Parent_Type))
16777 then
16778 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
16779 Error_Msg_N
16780 ("(Ada 83): premature use of type for derivation", Indic);
16781 end if;
16782 end if;
16784 -- Check for early use of incomplete or private type
16786 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
16787 Error_Msg_N ("premature derivation of incomplete type", Indic);
16788 return;
16790 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
16791 and then not Comes_From_Generic (Parent_Type))
16792 or else Has_Private_Component (Parent_Type)
16793 then
16794 -- The ancestor type of a formal type can be incomplete, in which
16795 -- case only the operations of the partial view are available in the
16796 -- generic. Subsequent checks may be required when the full view is
16797 -- analyzed to verify that a derivation from a tagged type has an
16798 -- extension.
16800 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
16801 null;
16803 elsif No (Underlying_Type (Parent_Type))
16804 or else Has_Private_Component (Parent_Type)
16805 then
16806 Error_Msg_N
16807 ("premature derivation of derived or private type", Indic);
16809 -- Flag the type itself as being in error, this prevents some
16810 -- nasty problems with subsequent uses of the malformed type.
16812 Set_Error_Posted (T);
16814 -- Check that within the immediate scope of an untagged partial
16815 -- view it's illegal to derive from the partial view if the
16816 -- full view is tagged. (7.3(7))
16818 -- We verify that the Parent_Type is a partial view by checking
16819 -- that it is not a Full_Type_Declaration (i.e. a private type or
16820 -- private extension declaration), to distinguish a partial view
16821 -- from a derivation from a private type which also appears as
16822 -- E_Private_Type. If the parent base type is not declared in an
16823 -- enclosing scope there is no need to check.
16825 elsif Present (Full_View (Parent_Type))
16826 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
16827 and then not Is_Tagged_Type (Parent_Type)
16828 and then Is_Tagged_Type (Full_View (Parent_Type))
16829 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
16830 then
16831 Error_Msg_N
16832 ("premature derivation from type with tagged full view",
16833 Indic);
16834 end if;
16835 end if;
16837 -- Check that form of derivation is appropriate
16839 Taggd := Is_Tagged_Type (Parent_Type);
16841 -- Set the parent type to the class-wide type's specific type in this
16842 -- case to prevent cascading errors
16844 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16845 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16846 Set_Etype (T, Etype (Parent_Type));
16847 return;
16848 end if;
16850 if Present (Extension) and then not Taggd then
16851 Error_Msg_N
16852 ("type derived from untagged type cannot have extension", Indic);
16854 elsif No (Extension) and then Taggd then
16856 -- If this declaration is within a private part (or body) of a
16857 -- generic instantiation then the derivation is allowed (the parent
16858 -- type can only appear tagged in this case if it's a generic actual
16859 -- type, since it would otherwise have been rejected in the analysis
16860 -- of the generic template).
16862 if not Is_Generic_Actual_Type (Parent_Type)
16863 or else In_Visible_Part (Scope (Parent_Type))
16864 then
16865 if Is_Class_Wide_Type (Parent_Type) then
16866 Error_Msg_N
16867 ("parent type must not be a class-wide type", Indic);
16869 -- Use specific type to prevent cascaded errors.
16871 Parent_Type := Etype (Parent_Type);
16873 else
16874 Error_Msg_N
16875 ("type derived from tagged type must have extension", Indic);
16876 end if;
16877 end if;
16878 end if;
16880 -- AI-443: Synchronized formal derived types require a private
16881 -- extension. There is no point in checking the ancestor type or
16882 -- the progenitors since the construct is wrong to begin with.
16884 if Ada_Version >= Ada_2005
16885 and then Is_Generic_Type (T)
16886 and then Present (Original_Node (N))
16887 then
16888 declare
16889 Decl : constant Node_Id := Original_Node (N);
16891 begin
16892 if Nkind (Decl) = N_Formal_Type_Declaration
16893 and then Nkind (Formal_Type_Definition (Decl)) =
16894 N_Formal_Derived_Type_Definition
16895 and then Synchronized_Present (Formal_Type_Definition (Decl))
16896 and then No (Extension)
16898 -- Avoid emitting a duplicate error message
16900 and then not Error_Posted (Indic)
16901 then
16902 Error_Msg_N
16903 ("synchronized derived type must have extension", N);
16904 end if;
16905 end;
16906 end if;
16908 if Null_Exclusion_Present (Def)
16909 and then not Is_Access_Type (Parent_Type)
16910 then
16911 Error_Msg_N ("null exclusion can only apply to an access type", N);
16912 end if;
16914 -- Avoid deriving parent primitives of underlying record views
16916 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16917 Derive_Subps => not Is_Underlying_Record_View (T));
16919 -- AI-419: The parent type of an explicitly limited derived type must
16920 -- be a limited type or a limited interface.
16922 if Limited_Present (Def) then
16923 Set_Is_Limited_Record (T);
16925 if Is_Interface (T) then
16926 Set_Is_Limited_Interface (T);
16927 end if;
16929 if not Is_Limited_Type (Parent_Type)
16930 and then
16931 (not Is_Interface (Parent_Type)
16932 or else not Is_Limited_Interface (Parent_Type))
16933 then
16934 -- AI05-0096: a derivation in the private part of an instance is
16935 -- legal if the generic formal is untagged limited, and the actual
16936 -- is non-limited.
16938 if Is_Generic_Actual_Type (Parent_Type)
16939 and then In_Private_Part (Current_Scope)
16940 and then
16941 not Is_Tagged_Type
16942 (Generic_Parent_Type (Parent (Parent_Type)))
16943 then
16944 null;
16946 else
16947 Error_Msg_NE
16948 ("parent type& of limited type must be limited",
16949 N, Parent_Type);
16950 end if;
16951 end if;
16952 end if;
16954 -- In SPARK, there are no derived type definitions other than type
16955 -- extensions of tagged record types.
16957 if No (Extension) then
16958 Check_SPARK_05_Restriction
16959 ("derived type is not allowed", Original_Node (N));
16960 end if;
16961 end Derived_Type_Declaration;
16963 ------------------------
16964 -- Diagnose_Interface --
16965 ------------------------
16967 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16968 begin
16969 if not Is_Interface (E) and then E /= Any_Type then
16970 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16971 end if;
16972 end Diagnose_Interface;
16974 ----------------------------------
16975 -- Enumeration_Type_Declaration --
16976 ----------------------------------
16978 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16979 Ev : Uint;
16980 L : Node_Id;
16981 R_Node : Node_Id;
16982 B_Node : Node_Id;
16984 begin
16985 -- Create identifier node representing lower bound
16987 B_Node := New_Node (N_Identifier, Sloc (Def));
16988 L := First (Literals (Def));
16989 Set_Chars (B_Node, Chars (L));
16990 Set_Entity (B_Node, L);
16991 Set_Etype (B_Node, T);
16992 Set_Is_Static_Expression (B_Node, True);
16994 R_Node := New_Node (N_Range, Sloc (Def));
16995 Set_Low_Bound (R_Node, B_Node);
16997 Set_Ekind (T, E_Enumeration_Type);
16998 Set_First_Literal (T, L);
16999 Set_Etype (T, T);
17000 Set_Is_Constrained (T);
17002 Ev := Uint_0;
17004 -- Loop through literals of enumeration type setting pos and rep values
17005 -- except that if the Ekind is already set, then it means the literal
17006 -- was already constructed (case of a derived type declaration and we
17007 -- should not disturb the Pos and Rep values.
17009 while Present (L) loop
17010 if Ekind (L) /= E_Enumeration_Literal then
17011 Set_Ekind (L, E_Enumeration_Literal);
17012 Set_Enumeration_Pos (L, Ev);
17013 Set_Enumeration_Rep (L, Ev);
17014 Set_Is_Known_Valid (L, True);
17015 end if;
17017 Set_Etype (L, T);
17018 New_Overloaded_Entity (L);
17019 Generate_Definition (L);
17020 Set_Convention (L, Convention_Intrinsic);
17022 -- Case of character literal
17024 if Nkind (L) = N_Defining_Character_Literal then
17025 Set_Is_Character_Type (T, True);
17027 -- Check violation of No_Wide_Characters
17029 if Restriction_Check_Required (No_Wide_Characters) then
17030 Get_Name_String (Chars (L));
17032 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
17033 Check_Restriction (No_Wide_Characters, L);
17034 end if;
17035 end if;
17036 end if;
17038 Ev := Ev + 1;
17039 Next (L);
17040 end loop;
17042 -- Now create a node representing upper bound
17044 B_Node := New_Node (N_Identifier, Sloc (Def));
17045 Set_Chars (B_Node, Chars (Last (Literals (Def))));
17046 Set_Entity (B_Node, Last (Literals (Def)));
17047 Set_Etype (B_Node, T);
17048 Set_Is_Static_Expression (B_Node, True);
17050 Set_High_Bound (R_Node, B_Node);
17052 -- Initialize various fields of the type. Some of this information
17053 -- may be overwritten later through rep.clauses.
17055 Set_Scalar_Range (T, R_Node);
17056 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
17057 Set_Enum_Esize (T);
17058 Set_Enum_Pos_To_Rep (T, Empty);
17060 -- Set Discard_Names if configuration pragma set, or if there is
17061 -- a parameterless pragma in the current declarative region
17063 if Global_Discard_Names or else Discard_Names (Scope (T)) then
17064 Set_Discard_Names (T);
17065 end if;
17067 -- Process end label if there is one
17069 if Present (Def) then
17070 Process_End_Label (Def, 'e', T);
17071 end if;
17072 end Enumeration_Type_Declaration;
17074 ---------------------------------
17075 -- Expand_To_Stored_Constraint --
17076 ---------------------------------
17078 function Expand_To_Stored_Constraint
17079 (Typ : Entity_Id;
17080 Constraint : Elist_Id) return Elist_Id
17082 Explicitly_Discriminated_Type : Entity_Id;
17083 Expansion : Elist_Id;
17084 Discriminant : Entity_Id;
17086 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
17087 -- Find the nearest type that actually specifies discriminants
17089 ---------------------------------
17090 -- Type_With_Explicit_Discrims --
17091 ---------------------------------
17093 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
17094 Typ : constant E := Base_Type (Id);
17096 begin
17097 if Ekind (Typ) in Incomplete_Or_Private_Kind then
17098 if Present (Full_View (Typ)) then
17099 return Type_With_Explicit_Discrims (Full_View (Typ));
17100 end if;
17102 else
17103 if Has_Discriminants (Typ) then
17104 return Typ;
17105 end if;
17106 end if;
17108 if Etype (Typ) = Typ then
17109 return Empty;
17110 elsif Has_Discriminants (Typ) then
17111 return Typ;
17112 else
17113 return Type_With_Explicit_Discrims (Etype (Typ));
17114 end if;
17116 end Type_With_Explicit_Discrims;
17118 -- Start of processing for Expand_To_Stored_Constraint
17120 begin
17121 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
17122 return No_Elist;
17123 end if;
17125 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
17127 if No (Explicitly_Discriminated_Type) then
17128 return No_Elist;
17129 end if;
17131 Expansion := New_Elmt_List;
17133 Discriminant :=
17134 First_Stored_Discriminant (Explicitly_Discriminated_Type);
17135 while Present (Discriminant) loop
17136 Append_Elmt
17137 (Get_Discriminant_Value
17138 (Discriminant, Explicitly_Discriminated_Type, Constraint),
17139 To => Expansion);
17140 Next_Stored_Discriminant (Discriminant);
17141 end loop;
17143 return Expansion;
17144 end Expand_To_Stored_Constraint;
17146 ---------------------------
17147 -- Find_Hidden_Interface --
17148 ---------------------------
17150 function Find_Hidden_Interface
17151 (Src : Elist_Id;
17152 Dest : Elist_Id) return Entity_Id
17154 Iface : Entity_Id;
17155 Iface_Elmt : Elmt_Id;
17157 begin
17158 if Present (Src) and then Present (Dest) then
17159 Iface_Elmt := First_Elmt (Src);
17160 while Present (Iface_Elmt) loop
17161 Iface := Node (Iface_Elmt);
17163 if Is_Interface (Iface)
17164 and then not Contain_Interface (Iface, Dest)
17165 then
17166 return Iface;
17167 end if;
17169 Next_Elmt (Iface_Elmt);
17170 end loop;
17171 end if;
17173 return Empty;
17174 end Find_Hidden_Interface;
17176 --------------------
17177 -- Find_Type_Name --
17178 --------------------
17180 function Find_Type_Name (N : Node_Id) return Entity_Id is
17181 Id : constant Entity_Id := Defining_Identifier (N);
17182 New_Id : Entity_Id;
17183 Prev : Entity_Id;
17184 Prev_Par : Node_Id;
17186 procedure Check_Duplicate_Aspects;
17187 -- Check that aspects specified in a completion have not been specified
17188 -- already in the partial view.
17190 procedure Tag_Mismatch;
17191 -- Diagnose a tagged partial view whose full view is untagged. We post
17192 -- the message on the full view, with a reference to the previous
17193 -- partial view. The partial view can be private or incomplete, and
17194 -- these are handled in a different manner, so we determine the position
17195 -- of the error message from the respective slocs of both.
17197 -----------------------------
17198 -- Check_Duplicate_Aspects --
17199 -----------------------------
17201 procedure Check_Duplicate_Aspects is
17202 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
17203 -- Return the corresponding aspect of the partial view which matches
17204 -- the aspect id of Asp. Return Empty is no such aspect exists.
17206 -----------------------------
17207 -- Get_Partial_View_Aspect --
17208 -----------------------------
17210 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
17211 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
17212 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par);
17213 Prev_Asp : Node_Id;
17215 begin
17216 if Present (Prev_Asps) then
17217 Prev_Asp := First (Prev_Asps);
17218 while Present (Prev_Asp) loop
17219 if Get_Aspect_Id (Prev_Asp) = Asp_Id then
17220 return Prev_Asp;
17221 end if;
17223 Next (Prev_Asp);
17224 end loop;
17225 end if;
17227 return Empty;
17228 end Get_Partial_View_Aspect;
17230 -- Local variables
17232 Full_Asps : constant List_Id := Aspect_Specifications (N);
17233 Full_Asp : Node_Id;
17234 Part_Asp : Node_Id;
17236 -- Start of processing for Check_Duplicate_Aspects
17238 begin
17239 if Present (Full_Asps) then
17240 Full_Asp := First (Full_Asps);
17241 while Present (Full_Asp) loop
17242 Part_Asp := Get_Partial_View_Aspect (Full_Asp);
17244 -- An aspect and its class-wide counterpart are two distinct
17245 -- aspects and may apply to both views of an entity.
17247 if Present (Part_Asp)
17248 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
17249 then
17250 Error_Msg_N
17251 ("aspect already specified in private declaration",
17252 Full_Asp);
17254 Remove (Full_Asp);
17255 return;
17256 end if;
17258 if Has_Discriminants (Prev)
17259 and then not Has_Unknown_Discriminants (Prev)
17260 and then Get_Aspect_Id (Full_Asp) =
17261 Aspect_Implicit_Dereference
17262 then
17263 Error_Msg_N
17264 ("cannot specify aspect if partial view has known "
17265 & "discriminants", Full_Asp);
17266 end if;
17268 Next (Full_Asp);
17269 end loop;
17270 end if;
17271 end Check_Duplicate_Aspects;
17273 ------------------
17274 -- Tag_Mismatch --
17275 ------------------
17277 procedure Tag_Mismatch is
17278 begin
17279 if Sloc (Prev) < Sloc (Id) then
17280 if Ada_Version >= Ada_2012
17281 and then Nkind (N) = N_Private_Type_Declaration
17282 then
17283 Error_Msg_NE
17284 ("declaration of private } must be a tagged type ", Id, Prev);
17285 else
17286 Error_Msg_NE
17287 ("full declaration of } must be a tagged type ", Id, Prev);
17288 end if;
17290 else
17291 if Ada_Version >= Ada_2012
17292 and then Nkind (N) = N_Private_Type_Declaration
17293 then
17294 Error_Msg_NE
17295 ("declaration of private } must be a tagged type ", Prev, Id);
17296 else
17297 Error_Msg_NE
17298 ("full declaration of } must be a tagged type ", Prev, Id);
17299 end if;
17300 end if;
17301 end Tag_Mismatch;
17303 -- Start of processing for Find_Type_Name
17305 begin
17306 -- Find incomplete declaration, if one was given
17308 Prev := Current_Entity_In_Scope (Id);
17310 -- New type declaration
17312 if No (Prev) then
17313 Enter_Name (Id);
17314 return Id;
17316 -- Previous declaration exists
17318 else
17319 Prev_Par := Parent (Prev);
17321 -- Error if not incomplete/private case except if previous
17322 -- declaration is implicit, etc. Enter_Name will emit error if
17323 -- appropriate.
17325 if not Is_Incomplete_Or_Private_Type (Prev) then
17326 Enter_Name (Id);
17327 New_Id := Id;
17329 -- Check invalid completion of private or incomplete type
17331 elsif not Nkind_In (N, N_Full_Type_Declaration,
17332 N_Task_Type_Declaration,
17333 N_Protected_Type_Declaration)
17334 and then
17335 (Ada_Version < Ada_2012
17336 or else not Is_Incomplete_Type (Prev)
17337 or else not Nkind_In (N, N_Private_Type_Declaration,
17338 N_Private_Extension_Declaration))
17339 then
17340 -- Completion must be a full type declarations (RM 7.3(4))
17342 Error_Msg_Sloc := Sloc (Prev);
17343 Error_Msg_NE ("invalid completion of }", Id, Prev);
17345 -- Set scope of Id to avoid cascaded errors. Entity is never
17346 -- examined again, except when saving globals in generics.
17348 Set_Scope (Id, Current_Scope);
17349 New_Id := Id;
17351 -- If this is a repeated incomplete declaration, no further
17352 -- checks are possible.
17354 if Nkind (N) = N_Incomplete_Type_Declaration then
17355 return Prev;
17356 end if;
17358 -- Case of full declaration of incomplete type
17360 elsif Ekind (Prev) = E_Incomplete_Type
17361 and then (Ada_Version < Ada_2012
17362 or else No (Full_View (Prev))
17363 or else not Is_Private_Type (Full_View (Prev)))
17364 then
17365 -- Indicate that the incomplete declaration has a matching full
17366 -- declaration. The defining occurrence of the incomplete
17367 -- declaration remains the visible one, and the procedure
17368 -- Get_Full_View dereferences it whenever the type is used.
17370 if Present (Full_View (Prev)) then
17371 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17372 end if;
17374 Set_Full_View (Prev, Id);
17375 Append_Entity (Id, Current_Scope);
17376 Set_Is_Public (Id, Is_Public (Prev));
17377 Set_Is_Internal (Id);
17378 New_Id := Prev;
17380 -- If the incomplete view is tagged, a class_wide type has been
17381 -- created already. Use it for the private type as well, in order
17382 -- to prevent multiple incompatible class-wide types that may be
17383 -- created for self-referential anonymous access components.
17385 if Is_Tagged_Type (Prev)
17386 and then Present (Class_Wide_Type (Prev))
17387 then
17388 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
17389 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
17391 -- Type of the class-wide type is the current Id. Previously
17392 -- this was not done for private declarations because of order-
17393 -- of-elaboration issues in the back end, but gigi now handles
17394 -- this properly.
17396 Set_Etype (Class_Wide_Type (Id), Id);
17397 end if;
17399 -- Case of full declaration of private type
17401 else
17402 -- If the private type was a completion of an incomplete type then
17403 -- update Prev to reference the private type
17405 if Ada_Version >= Ada_2012
17406 and then Ekind (Prev) = E_Incomplete_Type
17407 and then Present (Full_View (Prev))
17408 and then Is_Private_Type (Full_View (Prev))
17409 then
17410 Prev := Full_View (Prev);
17411 Prev_Par := Parent (Prev);
17412 end if;
17414 if Nkind (N) = N_Full_Type_Declaration
17415 and then Nkind_In
17416 (Type_Definition (N), N_Record_Definition,
17417 N_Derived_Type_Definition)
17418 and then Interface_Present (Type_Definition (N))
17419 then
17420 Error_Msg_N
17421 ("completion of private type cannot be an interface", N);
17422 end if;
17424 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
17425 if Etype (Prev) /= Prev then
17427 -- Prev is a private subtype or a derived type, and needs
17428 -- no completion.
17430 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17431 New_Id := Id;
17433 elsif Ekind (Prev) = E_Private_Type
17434 and then Nkind_In (N, N_Task_Type_Declaration,
17435 N_Protected_Type_Declaration)
17436 then
17437 Error_Msg_N
17438 ("completion of nonlimited type cannot be limited", N);
17440 elsif Ekind (Prev) = E_Record_Type_With_Private
17441 and then Nkind_In (N, N_Task_Type_Declaration,
17442 N_Protected_Type_Declaration)
17443 then
17444 if not Is_Limited_Record (Prev) then
17445 Error_Msg_N
17446 ("completion of nonlimited type cannot be limited", N);
17448 elsif No (Interface_List (N)) then
17449 Error_Msg_N
17450 ("completion of tagged private type must be tagged",
17452 end if;
17453 end if;
17455 -- Ada 2005 (AI-251): Private extension declaration of a task
17456 -- type or a protected type. This case arises when covering
17457 -- interface types.
17459 elsif Nkind_In (N, N_Task_Type_Declaration,
17460 N_Protected_Type_Declaration)
17461 then
17462 null;
17464 elsif Nkind (N) /= N_Full_Type_Declaration
17465 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
17466 then
17467 Error_Msg_N
17468 ("full view of private extension must be an extension", N);
17470 elsif not (Abstract_Present (Parent (Prev)))
17471 and then Abstract_Present (Type_Definition (N))
17472 then
17473 Error_Msg_N
17474 ("full view of non-abstract extension cannot be abstract", N);
17475 end if;
17477 if not In_Private_Part (Current_Scope) then
17478 Error_Msg_N
17479 ("declaration of full view must appear in private part", N);
17480 end if;
17482 if Ada_Version >= Ada_2012 then
17483 Check_Duplicate_Aspects;
17484 end if;
17486 Copy_And_Swap (Prev, Id);
17487 Set_Has_Private_Declaration (Prev);
17488 Set_Has_Private_Declaration (Id);
17490 -- AI12-0133: Indicate whether we have a partial view with
17491 -- unknown discriminants, in which case initialization of objects
17492 -- of the type do not receive an invariant check.
17494 Set_Partial_View_Has_Unknown_Discr
17495 (Prev, Has_Unknown_Discriminants (Id));
17497 -- Preserve aspect and iterator flags that may have been set on
17498 -- the partial view.
17500 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
17501 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
17503 -- If no error, propagate freeze_node from private to full view.
17504 -- It may have been generated for an early operational item.
17506 if Present (Freeze_Node (Id))
17507 and then Serious_Errors_Detected = 0
17508 and then No (Full_View (Id))
17509 then
17510 Set_Freeze_Node (Prev, Freeze_Node (Id));
17511 Set_Freeze_Node (Id, Empty);
17512 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
17513 end if;
17515 Set_Full_View (Id, Prev);
17516 New_Id := Prev;
17517 end if;
17519 -- Verify that full declaration conforms to partial one
17521 if Is_Incomplete_Or_Private_Type (Prev)
17522 and then Present (Discriminant_Specifications (Prev_Par))
17523 then
17524 if Present (Discriminant_Specifications (N)) then
17525 if Ekind (Prev) = E_Incomplete_Type then
17526 Check_Discriminant_Conformance (N, Prev, Prev);
17527 else
17528 Check_Discriminant_Conformance (N, Prev, Id);
17529 end if;
17531 else
17532 Error_Msg_N
17533 ("missing discriminants in full type declaration", N);
17535 -- To avoid cascaded errors on subsequent use, share the
17536 -- discriminants of the partial view.
17538 Set_Discriminant_Specifications (N,
17539 Discriminant_Specifications (Prev_Par));
17540 end if;
17541 end if;
17543 -- A prior untagged partial view can have an associated class-wide
17544 -- type due to use of the class attribute, and in this case the full
17545 -- type must also be tagged. This Ada 95 usage is deprecated in favor
17546 -- of incomplete tagged declarations, but we check for it.
17548 if Is_Type (Prev)
17549 and then (Is_Tagged_Type (Prev)
17550 or else Present (Class_Wide_Type (Prev)))
17551 then
17552 -- Ada 2012 (AI05-0162): A private type may be the completion of
17553 -- an incomplete type.
17555 if Ada_Version >= Ada_2012
17556 and then Is_Incomplete_Type (Prev)
17557 and then Nkind_In (N, N_Private_Type_Declaration,
17558 N_Private_Extension_Declaration)
17559 then
17560 -- No need to check private extensions since they are tagged
17562 if Nkind (N) = N_Private_Type_Declaration
17563 and then not Tagged_Present (N)
17564 then
17565 Tag_Mismatch;
17566 end if;
17568 -- The full declaration is either a tagged type (including
17569 -- a synchronized type that implements interfaces) or a
17570 -- type extension, otherwise this is an error.
17572 elsif Nkind_In (N, N_Task_Type_Declaration,
17573 N_Protected_Type_Declaration)
17574 then
17575 if No (Interface_List (N)) and then not Error_Posted (N) then
17576 Tag_Mismatch;
17577 end if;
17579 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
17581 -- Indicate that the previous declaration (tagged incomplete
17582 -- or private declaration) requires the same on the full one.
17584 if not Tagged_Present (Type_Definition (N)) then
17585 Tag_Mismatch;
17586 Set_Is_Tagged_Type (Id);
17587 end if;
17589 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
17590 if No (Record_Extension_Part (Type_Definition (N))) then
17591 Error_Msg_NE
17592 ("full declaration of } must be a record extension",
17593 Prev, Id);
17595 -- Set some attributes to produce a usable full view
17597 Set_Is_Tagged_Type (Id);
17598 end if;
17600 else
17601 Tag_Mismatch;
17602 end if;
17603 end if;
17605 if Present (Prev)
17606 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
17607 and then Present (Premature_Use (Parent (Prev)))
17608 then
17609 Error_Msg_Sloc := Sloc (N);
17610 Error_Msg_N
17611 ("\full declaration #", Premature_Use (Parent (Prev)));
17612 end if;
17614 return New_Id;
17615 end if;
17616 end Find_Type_Name;
17618 -------------------------
17619 -- Find_Type_Of_Object --
17620 -------------------------
17622 function Find_Type_Of_Object
17623 (Obj_Def : Node_Id;
17624 Related_Nod : Node_Id) return Entity_Id
17626 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
17627 P : Node_Id := Parent (Obj_Def);
17628 T : Entity_Id;
17629 Nam : Name_Id;
17631 begin
17632 -- If the parent is a component_definition node we climb to the
17633 -- component_declaration node
17635 if Nkind (P) = N_Component_Definition then
17636 P := Parent (P);
17637 end if;
17639 -- Case of an anonymous array subtype
17641 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
17642 N_Unconstrained_Array_Definition)
17643 then
17644 T := Empty;
17645 Array_Type_Declaration (T, Obj_Def);
17647 -- Create an explicit subtype whenever possible
17649 elsif Nkind (P) /= N_Component_Declaration
17650 and then Def_Kind = N_Subtype_Indication
17651 then
17652 -- Base name of subtype on object name, which will be unique in
17653 -- the current scope.
17655 -- If this is a duplicate declaration, return base type, to avoid
17656 -- generating duplicate anonymous types.
17658 if Error_Posted (P) then
17659 Analyze (Subtype_Mark (Obj_Def));
17660 return Entity (Subtype_Mark (Obj_Def));
17661 end if;
17663 Nam :=
17664 New_External_Name
17665 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
17667 T := Make_Defining_Identifier (Sloc (P), Nam);
17669 Insert_Action (Obj_Def,
17670 Make_Subtype_Declaration (Sloc (P),
17671 Defining_Identifier => T,
17672 Subtype_Indication => Relocate_Node (Obj_Def)));
17674 -- This subtype may need freezing, and this will not be done
17675 -- automatically if the object declaration is not in declarative
17676 -- part. Since this is an object declaration, the type cannot always
17677 -- be frozen here. Deferred constants do not freeze their type
17678 -- (which often enough will be private).
17680 if Nkind (P) = N_Object_Declaration
17681 and then Constant_Present (P)
17682 and then No (Expression (P))
17683 then
17684 null;
17686 -- Here we freeze the base type of object type to catch premature use
17687 -- of discriminated private type without a full view.
17689 else
17690 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
17691 end if;
17693 -- Ada 2005 AI-406: the object definition in an object declaration
17694 -- can be an access definition.
17696 elsif Def_Kind = N_Access_Definition then
17697 T := Access_Definition (Related_Nod, Obj_Def);
17699 Set_Is_Local_Anonymous_Access
17701 V => (Ada_Version < Ada_2012)
17702 or else (Nkind (P) /= N_Object_Declaration)
17703 or else Is_Library_Level_Entity (Defining_Identifier (P)));
17705 -- Otherwise, the object definition is just a subtype_mark
17707 else
17708 T := Process_Subtype (Obj_Def, Related_Nod);
17710 -- If expansion is disabled an object definition that is an aggregate
17711 -- will not get expanded and may lead to scoping problems in the back
17712 -- end, if the object is referenced in an inner scope. In that case
17713 -- create an itype reference for the object definition now. This
17714 -- may be redundant in some cases, but harmless.
17716 if Is_Itype (T)
17717 and then Nkind (Related_Nod) = N_Object_Declaration
17718 and then ASIS_Mode
17719 then
17720 Build_Itype_Reference (T, Related_Nod);
17721 end if;
17722 end if;
17724 return T;
17725 end Find_Type_Of_Object;
17727 --------------------------------
17728 -- Find_Type_Of_Subtype_Indic --
17729 --------------------------------
17731 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
17732 Typ : Entity_Id;
17734 begin
17735 -- Case of subtype mark with a constraint
17737 if Nkind (S) = N_Subtype_Indication then
17738 Find_Type (Subtype_Mark (S));
17739 Typ := Entity (Subtype_Mark (S));
17741 if not
17742 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
17743 then
17744 Error_Msg_N
17745 ("incorrect constraint for this kind of type", Constraint (S));
17746 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17747 end if;
17749 -- Otherwise we have a subtype mark without a constraint
17751 elsif Error_Posted (S) then
17752 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
17753 return Any_Type;
17755 else
17756 Find_Type (S);
17757 Typ := Entity (S);
17758 end if;
17760 -- Check No_Wide_Characters restriction
17762 Check_Wide_Character_Restriction (Typ, S);
17764 return Typ;
17765 end Find_Type_Of_Subtype_Indic;
17767 -------------------------------------
17768 -- Floating_Point_Type_Declaration --
17769 -------------------------------------
17771 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17772 Digs : constant Node_Id := Digits_Expression (Def);
17773 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
17774 Digs_Val : Uint;
17775 Base_Typ : Entity_Id;
17776 Implicit_Base : Entity_Id;
17777 Bound : Node_Id;
17779 function Can_Derive_From (E : Entity_Id) return Boolean;
17780 -- Find if given digits value, and possibly a specified range, allows
17781 -- derivation from specified type
17783 function Find_Base_Type return Entity_Id;
17784 -- Find a predefined base type that Def can derive from, or generate
17785 -- an error and substitute Long_Long_Float if none exists.
17787 ---------------------
17788 -- Can_Derive_From --
17789 ---------------------
17791 function Can_Derive_From (E : Entity_Id) return Boolean is
17792 Spec : constant Entity_Id := Real_Range_Specification (Def);
17794 begin
17795 -- Check specified "digits" constraint
17797 if Digs_Val > Digits_Value (E) then
17798 return False;
17799 end if;
17801 -- Check for matching range, if specified
17803 if Present (Spec) then
17804 if Expr_Value_R (Type_Low_Bound (E)) >
17805 Expr_Value_R (Low_Bound (Spec))
17806 then
17807 return False;
17808 end if;
17810 if Expr_Value_R (Type_High_Bound (E)) <
17811 Expr_Value_R (High_Bound (Spec))
17812 then
17813 return False;
17814 end if;
17815 end if;
17817 return True;
17818 end Can_Derive_From;
17820 --------------------
17821 -- Find_Base_Type --
17822 --------------------
17824 function Find_Base_Type return Entity_Id is
17825 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
17827 begin
17828 -- Iterate over the predefined types in order, returning the first
17829 -- one that Def can derive from.
17831 while Present (Choice) loop
17832 if Can_Derive_From (Node (Choice)) then
17833 return Node (Choice);
17834 end if;
17836 Next_Elmt (Choice);
17837 end loop;
17839 -- If we can't derive from any existing type, use Long_Long_Float
17840 -- and give appropriate message explaining the problem.
17842 if Digs_Val > Max_Digs_Val then
17843 -- It might be the case that there is a type with the requested
17844 -- range, just not the combination of digits and range.
17846 Error_Msg_N
17847 ("no predefined type has requested range and precision",
17848 Real_Range_Specification (Def));
17850 else
17851 Error_Msg_N
17852 ("range too large for any predefined type",
17853 Real_Range_Specification (Def));
17854 end if;
17856 return Standard_Long_Long_Float;
17857 end Find_Base_Type;
17859 -- Start of processing for Floating_Point_Type_Declaration
17861 begin
17862 Check_Restriction (No_Floating_Point, Def);
17864 -- Create an implicit base type
17866 Implicit_Base :=
17867 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17869 -- Analyze and verify digits value
17871 Analyze_And_Resolve (Digs, Any_Integer);
17872 Check_Digits_Expression (Digs);
17873 Digs_Val := Expr_Value (Digs);
17875 -- Process possible range spec and find correct type to derive from
17877 Process_Real_Range_Specification (Def);
17879 -- Check that requested number of digits is not too high.
17881 if Digs_Val > Max_Digs_Val then
17883 -- The check for Max_Base_Digits may be somewhat expensive, as it
17884 -- requires reading System, so only do it when necessary.
17886 declare
17887 Max_Base_Digits : constant Uint :=
17888 Expr_Value
17889 (Expression
17890 (Parent (RTE (RE_Max_Base_Digits))));
17892 begin
17893 if Digs_Val > Max_Base_Digits then
17894 Error_Msg_Uint_1 := Max_Base_Digits;
17895 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17897 elsif No (Real_Range_Specification (Def)) then
17898 Error_Msg_Uint_1 := Max_Digs_Val;
17899 Error_Msg_N ("types with more than ^ digits need range spec "
17900 & "(RM 3.5.7(6))", Digs);
17901 end if;
17902 end;
17903 end if;
17905 -- Find a suitable type to derive from or complain and use a substitute
17907 Base_Typ := Find_Base_Type;
17909 -- If there are bounds given in the declaration use them as the bounds
17910 -- of the type, otherwise use the bounds of the predefined base type
17911 -- that was chosen based on the Digits value.
17913 if Present (Real_Range_Specification (Def)) then
17914 Set_Scalar_Range (T, Real_Range_Specification (Def));
17915 Set_Is_Constrained (T);
17917 -- The bounds of this range must be converted to machine numbers
17918 -- in accordance with RM 4.9(38).
17920 Bound := Type_Low_Bound (T);
17922 if Nkind (Bound) = N_Real_Literal then
17923 Set_Realval
17924 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17925 Set_Is_Machine_Number (Bound);
17926 end if;
17928 Bound := Type_High_Bound (T);
17930 if Nkind (Bound) = N_Real_Literal then
17931 Set_Realval
17932 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17933 Set_Is_Machine_Number (Bound);
17934 end if;
17936 else
17937 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17938 end if;
17940 -- Complete definition of implicit base and declared first subtype. The
17941 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17942 -- are not clobbered when the floating point type acts as a full view of
17943 -- a private type.
17945 Set_Etype (Implicit_Base, Base_Typ);
17946 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17947 Set_Size_Info (Implicit_Base, Base_Typ);
17948 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17949 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17950 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17951 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17953 Set_Ekind (T, E_Floating_Point_Subtype);
17954 Set_Etype (T, Implicit_Base);
17955 Set_Size_Info (T, Implicit_Base);
17956 Set_RM_Size (T, RM_Size (Implicit_Base));
17957 Inherit_Rep_Item_Chain (T, Implicit_Base);
17958 Set_Digits_Value (T, Digs_Val);
17959 end Floating_Point_Type_Declaration;
17961 ----------------------------
17962 -- Get_Discriminant_Value --
17963 ----------------------------
17965 -- This is the situation:
17967 -- There is a non-derived type
17969 -- type T0 (Dx, Dy, Dz...)
17971 -- There are zero or more levels of derivation, with each derivation
17972 -- either purely inheriting the discriminants, or defining its own.
17974 -- type Ti is new Ti-1
17975 -- or
17976 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17977 -- or
17978 -- subtype Ti is ...
17980 -- The subtype issue is avoided by the use of Original_Record_Component,
17981 -- and the fact that derived subtypes also derive the constraints.
17983 -- This chain leads back from
17985 -- Typ_For_Constraint
17987 -- Typ_For_Constraint has discriminants, and the value for each
17988 -- discriminant is given by its corresponding Elmt of Constraints.
17990 -- Discriminant is some discriminant in this hierarchy
17992 -- We need to return its value
17994 -- We do this by recursively searching each level, and looking for
17995 -- Discriminant. Once we get to the bottom, we start backing up
17996 -- returning the value for it which may in turn be a discriminant
17997 -- further up, so on the backup we continue the substitution.
17999 function Get_Discriminant_Value
18000 (Discriminant : Entity_Id;
18001 Typ_For_Constraint : Entity_Id;
18002 Constraint : Elist_Id) return Node_Id
18004 function Root_Corresponding_Discriminant
18005 (Discr : Entity_Id) return Entity_Id;
18006 -- Given a discriminant, traverse the chain of inherited discriminants
18007 -- and return the topmost discriminant.
18009 function Search_Derivation_Levels
18010 (Ti : Entity_Id;
18011 Discrim_Values : Elist_Id;
18012 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
18013 -- This is the routine that performs the recursive search of levels
18014 -- as described above.
18016 -------------------------------------
18017 -- Root_Corresponding_Discriminant --
18018 -------------------------------------
18020 function Root_Corresponding_Discriminant
18021 (Discr : Entity_Id) return Entity_Id
18023 D : Entity_Id;
18025 begin
18026 D := Discr;
18027 while Present (Corresponding_Discriminant (D)) loop
18028 D := Corresponding_Discriminant (D);
18029 end loop;
18031 return D;
18032 end Root_Corresponding_Discriminant;
18034 ------------------------------
18035 -- Search_Derivation_Levels --
18036 ------------------------------
18038 function Search_Derivation_Levels
18039 (Ti : Entity_Id;
18040 Discrim_Values : Elist_Id;
18041 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
18043 Assoc : Elmt_Id;
18044 Disc : Entity_Id;
18045 Result : Node_Or_Entity_Id;
18046 Result_Entity : Node_Id;
18048 begin
18049 -- If inappropriate type, return Error, this happens only in
18050 -- cascaded error situations, and we want to avoid a blow up.
18052 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
18053 return Error;
18054 end if;
18056 -- Look deeper if possible. Use Stored_Constraints only for
18057 -- untagged types. For tagged types use the given constraint.
18058 -- This asymmetry needs explanation???
18060 if not Stored_Discrim_Values
18061 and then Present (Stored_Constraint (Ti))
18062 and then not Is_Tagged_Type (Ti)
18063 then
18064 Result :=
18065 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
18067 else
18068 declare
18069 Td : Entity_Id := Etype (Ti);
18071 begin
18072 -- If the parent type is private, the full view may include
18073 -- renamed discriminants, and it is those stored values that
18074 -- may be needed (the partial view never has more information
18075 -- than the full view).
18077 if Is_Private_Type (Td) and then Present (Full_View (Td)) then
18078 Td := Full_View (Td);
18079 end if;
18081 if Td = Ti then
18082 Result := Discriminant;
18084 else
18085 if Present (Stored_Constraint (Ti)) then
18086 Result :=
18087 Search_Derivation_Levels
18088 (Td, Stored_Constraint (Ti), True);
18089 else
18090 Result :=
18091 Search_Derivation_Levels
18092 (Td, Discrim_Values, Stored_Discrim_Values);
18093 end if;
18094 end if;
18095 end;
18096 end if;
18098 -- Extra underlying places to search, if not found above. For
18099 -- concurrent types, the relevant discriminant appears in the
18100 -- corresponding record. For a type derived from a private type
18101 -- without discriminant, the full view inherits the discriminants
18102 -- of the full view of the parent.
18104 if Result = Discriminant then
18105 if Is_Concurrent_Type (Ti)
18106 and then Present (Corresponding_Record_Type (Ti))
18107 then
18108 Result :=
18109 Search_Derivation_Levels (
18110 Corresponding_Record_Type (Ti),
18111 Discrim_Values,
18112 Stored_Discrim_Values);
18114 elsif Is_Private_Type (Ti)
18115 and then not Has_Discriminants (Ti)
18116 and then Present (Full_View (Ti))
18117 and then Etype (Full_View (Ti)) /= Ti
18118 then
18119 Result :=
18120 Search_Derivation_Levels (
18121 Full_View (Ti),
18122 Discrim_Values,
18123 Stored_Discrim_Values);
18124 end if;
18125 end if;
18127 -- If Result is not a (reference to a) discriminant, return it,
18128 -- otherwise set Result_Entity to the discriminant.
18130 if Nkind (Result) = N_Defining_Identifier then
18131 pragma Assert (Result = Discriminant);
18132 Result_Entity := Result;
18134 else
18135 if not Denotes_Discriminant (Result) then
18136 return Result;
18137 end if;
18139 Result_Entity := Entity (Result);
18140 end if;
18142 -- See if this level of derivation actually has discriminants because
18143 -- tagged derivations can add them, hence the lower levels need not
18144 -- have any.
18146 if not Has_Discriminants (Ti) then
18147 return Result;
18148 end if;
18150 -- Scan Ti's discriminants for Result_Entity, and return its
18151 -- corresponding value, if any.
18153 Result_Entity := Original_Record_Component (Result_Entity);
18155 Assoc := First_Elmt (Discrim_Values);
18157 if Stored_Discrim_Values then
18158 Disc := First_Stored_Discriminant (Ti);
18159 else
18160 Disc := First_Discriminant (Ti);
18161 end if;
18163 while Present (Disc) loop
18165 -- If no further associations return the discriminant, value will
18166 -- be found on the second pass.
18168 if No (Assoc) then
18169 return Result;
18170 end if;
18172 if Original_Record_Component (Disc) = Result_Entity then
18173 return Node (Assoc);
18174 end if;
18176 Next_Elmt (Assoc);
18178 if Stored_Discrim_Values then
18179 Next_Stored_Discriminant (Disc);
18180 else
18181 Next_Discriminant (Disc);
18182 end if;
18183 end loop;
18185 -- Could not find it
18187 return Result;
18188 end Search_Derivation_Levels;
18190 -- Local Variables
18192 Result : Node_Or_Entity_Id;
18194 -- Start of processing for Get_Discriminant_Value
18196 begin
18197 -- ??? This routine is a gigantic mess and will be deleted. For the
18198 -- time being just test for the trivial case before calling recurse.
18200 -- We are now celebrating the 20th anniversary of this comment!
18202 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
18203 declare
18204 D : Entity_Id;
18205 E : Elmt_Id;
18207 begin
18208 D := First_Discriminant (Typ_For_Constraint);
18209 E := First_Elmt (Constraint);
18210 while Present (D) loop
18211 if Chars (D) = Chars (Discriminant) then
18212 return Node (E);
18213 end if;
18215 Next_Discriminant (D);
18216 Next_Elmt (E);
18217 end loop;
18218 end;
18219 end if;
18221 Result := Search_Derivation_Levels
18222 (Typ_For_Constraint, Constraint, False);
18224 -- ??? hack to disappear when this routine is gone
18226 if Nkind (Result) = N_Defining_Identifier then
18227 declare
18228 D : Entity_Id;
18229 E : Elmt_Id;
18231 begin
18232 D := First_Discriminant (Typ_For_Constraint);
18233 E := First_Elmt (Constraint);
18234 while Present (D) loop
18235 if Root_Corresponding_Discriminant (D) = Discriminant then
18236 return Node (E);
18237 end if;
18239 Next_Discriminant (D);
18240 Next_Elmt (E);
18241 end loop;
18242 end;
18243 end if;
18245 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
18246 return Result;
18247 end Get_Discriminant_Value;
18249 --------------------------
18250 -- Has_Range_Constraint --
18251 --------------------------
18253 function Has_Range_Constraint (N : Node_Id) return Boolean is
18254 C : constant Node_Id := Constraint (N);
18256 begin
18257 if Nkind (C) = N_Range_Constraint then
18258 return True;
18260 elsif Nkind (C) = N_Digits_Constraint then
18261 return
18262 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
18263 or else Present (Range_Constraint (C));
18265 elsif Nkind (C) = N_Delta_Constraint then
18266 return Present (Range_Constraint (C));
18268 else
18269 return False;
18270 end if;
18271 end Has_Range_Constraint;
18273 ------------------------
18274 -- Inherit_Components --
18275 ------------------------
18277 function Inherit_Components
18278 (N : Node_Id;
18279 Parent_Base : Entity_Id;
18280 Derived_Base : Entity_Id;
18281 Is_Tagged : Boolean;
18282 Inherit_Discr : Boolean;
18283 Discs : Elist_Id) return Elist_Id
18285 Assoc_List : constant Elist_Id := New_Elmt_List;
18287 procedure Inherit_Component
18288 (Old_C : Entity_Id;
18289 Plain_Discrim : Boolean := False;
18290 Stored_Discrim : Boolean := False);
18291 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18292 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18293 -- True, Old_C is a stored discriminant. If they are both false then
18294 -- Old_C is a regular component.
18296 -----------------------
18297 -- Inherit_Component --
18298 -----------------------
18300 procedure Inherit_Component
18301 (Old_C : Entity_Id;
18302 Plain_Discrim : Boolean := False;
18303 Stored_Discrim : Boolean := False)
18305 procedure Set_Anonymous_Type (Id : Entity_Id);
18306 -- Id denotes the entity of an access discriminant or anonymous
18307 -- access component. Set the type of Id to either the same type of
18308 -- Old_C or create a new one depending on whether the parent and
18309 -- the child types are in the same scope.
18311 ------------------------
18312 -- Set_Anonymous_Type --
18313 ------------------------
18315 procedure Set_Anonymous_Type (Id : Entity_Id) is
18316 Old_Typ : constant Entity_Id := Etype (Old_C);
18318 begin
18319 if Scope (Parent_Base) = Scope (Derived_Base) then
18320 Set_Etype (Id, Old_Typ);
18322 -- The parent and the derived type are in two different scopes.
18323 -- Reuse the type of the original discriminant / component by
18324 -- copying it in order to preserve all attributes.
18326 else
18327 declare
18328 Typ : constant Entity_Id := New_Copy (Old_Typ);
18330 begin
18331 Set_Etype (Id, Typ);
18333 -- Since we do not generate component declarations for
18334 -- inherited components, associate the itype with the
18335 -- derived type.
18337 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
18338 Set_Scope (Typ, Derived_Base);
18339 end;
18340 end if;
18341 end Set_Anonymous_Type;
18343 -- Local variables and constants
18345 New_C : constant Entity_Id := New_Copy (Old_C);
18347 Corr_Discrim : Entity_Id;
18348 Discrim : Entity_Id;
18350 -- Start of processing for Inherit_Component
18352 begin
18353 pragma Assert (not Is_Tagged or not Stored_Discrim);
18355 Set_Parent (New_C, Parent (Old_C));
18357 -- Regular discriminants and components must be inserted in the scope
18358 -- of the Derived_Base. Do it here.
18360 if not Stored_Discrim then
18361 Enter_Name (New_C);
18362 end if;
18364 -- For tagged types the Original_Record_Component must point to
18365 -- whatever this field was pointing to in the parent type. This has
18366 -- already been achieved by the call to New_Copy above.
18368 if not Is_Tagged then
18369 Set_Original_Record_Component (New_C, New_C);
18370 Set_Corresponding_Record_Component (New_C, Old_C);
18371 end if;
18373 -- Set the proper type of an access discriminant
18375 if Ekind (New_C) = E_Discriminant
18376 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
18377 then
18378 Set_Anonymous_Type (New_C);
18379 end if;
18381 -- If we have inherited a component then see if its Etype contains
18382 -- references to Parent_Base discriminants. In this case, replace
18383 -- these references with the constraints given in Discs. We do not
18384 -- do this for the partial view of private types because this is
18385 -- not needed (only the components of the full view will be used
18386 -- for code generation) and cause problem. We also avoid this
18387 -- transformation in some error situations.
18389 if Ekind (New_C) = E_Component then
18391 -- Set the proper type of an anonymous access component
18393 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
18394 Set_Anonymous_Type (New_C);
18396 elsif (Is_Private_Type (Derived_Base)
18397 and then not Is_Generic_Type (Derived_Base))
18398 or else (Is_Empty_Elmt_List (Discs)
18399 and then not Expander_Active)
18400 then
18401 Set_Etype (New_C, Etype (Old_C));
18403 else
18404 -- The current component introduces a circularity of the
18405 -- following kind:
18407 -- limited with Pack_2;
18408 -- package Pack_1 is
18409 -- type T_1 is tagged record
18410 -- Comp : access Pack_2.T_2;
18411 -- ...
18412 -- end record;
18413 -- end Pack_1;
18415 -- with Pack_1;
18416 -- package Pack_2 is
18417 -- type T_2 is new Pack_1.T_1 with ...;
18418 -- end Pack_2;
18420 Set_Etype
18421 (New_C,
18422 Constrain_Component_Type
18423 (Old_C, Derived_Base, N, Parent_Base, Discs));
18424 end if;
18425 end if;
18427 -- In derived tagged types it is illegal to reference a non
18428 -- discriminant component in the parent type. To catch this, mark
18429 -- these components with an Ekind of E_Void. This will be reset in
18430 -- Record_Type_Definition after processing the record extension of
18431 -- the derived type.
18433 -- If the declaration is a private extension, there is no further
18434 -- record extension to process, and the components retain their
18435 -- current kind, because they are visible at this point.
18437 if Is_Tagged and then Ekind (New_C) = E_Component
18438 and then Nkind (N) /= N_Private_Extension_Declaration
18439 then
18440 Set_Ekind (New_C, E_Void);
18441 end if;
18443 if Plain_Discrim then
18444 Set_Corresponding_Discriminant (New_C, Old_C);
18445 Build_Discriminal (New_C);
18447 -- If we are explicitly inheriting a stored discriminant it will be
18448 -- completely hidden.
18450 elsif Stored_Discrim then
18451 Set_Corresponding_Discriminant (New_C, Empty);
18452 Set_Discriminal (New_C, Empty);
18453 Set_Is_Completely_Hidden (New_C);
18455 -- Set the Original_Record_Component of each discriminant in the
18456 -- derived base to point to the corresponding stored that we just
18457 -- created.
18459 Discrim := First_Discriminant (Derived_Base);
18460 while Present (Discrim) loop
18461 Corr_Discrim := Corresponding_Discriminant (Discrim);
18463 -- Corr_Discrim could be missing in an error situation
18465 if Present (Corr_Discrim)
18466 and then Original_Record_Component (Corr_Discrim) = Old_C
18467 then
18468 Set_Original_Record_Component (Discrim, New_C);
18469 Set_Corresponding_Record_Component (Discrim, Empty);
18470 end if;
18472 Next_Discriminant (Discrim);
18473 end loop;
18475 Append_Entity (New_C, Derived_Base);
18476 end if;
18478 if not Is_Tagged then
18479 Append_Elmt (Old_C, Assoc_List);
18480 Append_Elmt (New_C, Assoc_List);
18481 end if;
18482 end Inherit_Component;
18484 -- Variables local to Inherit_Component
18486 Loc : constant Source_Ptr := Sloc (N);
18488 Parent_Discrim : Entity_Id;
18489 Stored_Discrim : Entity_Id;
18490 D : Entity_Id;
18491 Component : Entity_Id;
18493 -- Start of processing for Inherit_Components
18495 begin
18496 if not Is_Tagged then
18497 Append_Elmt (Parent_Base, Assoc_List);
18498 Append_Elmt (Derived_Base, Assoc_List);
18499 end if;
18501 -- Inherit parent discriminants if needed
18503 if Inherit_Discr then
18504 Parent_Discrim := First_Discriminant (Parent_Base);
18505 while Present (Parent_Discrim) loop
18506 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
18507 Next_Discriminant (Parent_Discrim);
18508 end loop;
18509 end if;
18511 -- Create explicit stored discrims for untagged types when necessary
18513 if not Has_Unknown_Discriminants (Derived_Base)
18514 and then Has_Discriminants (Parent_Base)
18515 and then not Is_Tagged
18516 and then
18517 (not Inherit_Discr
18518 or else First_Discriminant (Parent_Base) /=
18519 First_Stored_Discriminant (Parent_Base))
18520 then
18521 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
18522 while Present (Stored_Discrim) loop
18523 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
18524 Next_Stored_Discriminant (Stored_Discrim);
18525 end loop;
18526 end if;
18528 -- See if we can apply the second transformation for derived types, as
18529 -- explained in point 6. in the comments above Build_Derived_Record_Type
18530 -- This is achieved by appending Derived_Base discriminants into Discs,
18531 -- which has the side effect of returning a non empty Discs list to the
18532 -- caller of Inherit_Components, which is what we want. This must be
18533 -- done for private derived types if there are explicit stored
18534 -- discriminants, to ensure that we can retrieve the values of the
18535 -- constraints provided in the ancestors.
18537 if Inherit_Discr
18538 and then Is_Empty_Elmt_List (Discs)
18539 and then Present (First_Discriminant (Derived_Base))
18540 and then
18541 (not Is_Private_Type (Derived_Base)
18542 or else Is_Completely_Hidden
18543 (First_Stored_Discriminant (Derived_Base))
18544 or else Is_Generic_Type (Derived_Base))
18545 then
18546 D := First_Discriminant (Derived_Base);
18547 while Present (D) loop
18548 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
18549 Next_Discriminant (D);
18550 end loop;
18551 end if;
18553 -- Finally, inherit non-discriminant components unless they are not
18554 -- visible because defined or inherited from the full view of the
18555 -- parent. Don't inherit the _parent field of the parent type.
18557 Component := First_Entity (Parent_Base);
18558 while Present (Component) loop
18560 -- Ada 2005 (AI-251): Do not inherit components associated with
18561 -- secondary tags of the parent.
18563 if Ekind (Component) = E_Component
18564 and then Present (Related_Type (Component))
18565 then
18566 null;
18568 elsif Ekind (Component) /= E_Component
18569 or else Chars (Component) = Name_uParent
18570 then
18571 null;
18573 -- If the derived type is within the parent type's declarative
18574 -- region, then the components can still be inherited even though
18575 -- they aren't visible at this point. This can occur for cases
18576 -- such as within public child units where the components must
18577 -- become visible upon entering the child unit's private part.
18579 elsif not Is_Visible_Component (Component)
18580 and then not In_Open_Scopes (Scope (Parent_Base))
18581 then
18582 null;
18584 elsif Ekind_In (Derived_Base, E_Private_Type,
18585 E_Limited_Private_Type)
18586 then
18587 null;
18589 else
18590 Inherit_Component (Component);
18591 end if;
18593 Next_Entity (Component);
18594 end loop;
18596 -- For tagged derived types, inherited discriminants cannot be used in
18597 -- component declarations of the record extension part. To achieve this
18598 -- we mark the inherited discriminants as not visible.
18600 if Is_Tagged and then Inherit_Discr then
18601 D := First_Discriminant (Derived_Base);
18602 while Present (D) loop
18603 Set_Is_Immediately_Visible (D, False);
18604 Next_Discriminant (D);
18605 end loop;
18606 end if;
18608 return Assoc_List;
18609 end Inherit_Components;
18611 -----------------------------
18612 -- Inherit_Predicate_Flags --
18613 -----------------------------
18615 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
18616 begin
18617 if Present (Predicate_Function (Subt)) then
18618 return;
18619 end if;
18621 Set_Has_Predicates (Subt, Has_Predicates (Par));
18622 Set_Has_Static_Predicate_Aspect
18623 (Subt, Has_Static_Predicate_Aspect (Par));
18624 Set_Has_Dynamic_Predicate_Aspect
18625 (Subt, Has_Dynamic_Predicate_Aspect (Par));
18627 -- A named subtype does not inherit the predicate function of its
18628 -- parent but an itype declared for a loop index needs the discrete
18629 -- predicate information of its parent to execute the loop properly.
18630 -- A non-discrete type may has a static predicate (for example True)
18631 -- but has no static_discrete_predicate.
18633 if Is_Itype (Subt) and then Present (Predicate_Function (Par)) then
18634 Set_Subprograms_For_Type (Subt, Subprograms_For_Type (Par));
18636 if Has_Static_Predicate (Par) and then Is_Discrete_Type (Par) then
18637 Set_Static_Discrete_Predicate
18638 (Subt, Static_Discrete_Predicate (Par));
18639 end if;
18640 end if;
18641 end Inherit_Predicate_Flags;
18643 ----------------------
18644 -- Is_EVF_Procedure --
18645 ----------------------
18647 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
18648 Formal : Entity_Id;
18650 begin
18651 -- Examine the formals of an Extensions_Visible False procedure looking
18652 -- for a controlling OUT parameter.
18654 if Ekind (Subp) = E_Procedure
18655 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
18656 then
18657 Formal := First_Formal (Subp);
18658 while Present (Formal) loop
18659 if Ekind (Formal) = E_Out_Parameter
18660 and then Is_Controlling_Formal (Formal)
18661 then
18662 return True;
18663 end if;
18665 Next_Formal (Formal);
18666 end loop;
18667 end if;
18669 return False;
18670 end Is_EVF_Procedure;
18672 -----------------------
18673 -- Is_Null_Extension --
18674 -----------------------
18676 function Is_Null_Extension (T : Entity_Id) return Boolean is
18677 Type_Decl : constant Node_Id := Parent (Base_Type (T));
18678 Comp_List : Node_Id;
18679 Comp : Node_Id;
18681 begin
18682 if Nkind (Type_Decl) /= N_Full_Type_Declaration
18683 or else not Is_Tagged_Type (T)
18684 or else Nkind (Type_Definition (Type_Decl)) /=
18685 N_Derived_Type_Definition
18686 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
18687 then
18688 return False;
18689 end if;
18691 Comp_List :=
18692 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
18694 if Present (Discriminant_Specifications (Type_Decl)) then
18695 return False;
18697 elsif Present (Comp_List)
18698 and then Is_Non_Empty_List (Component_Items (Comp_List))
18699 then
18700 Comp := First (Component_Items (Comp_List));
18702 -- Only user-defined components are relevant. The component list
18703 -- may also contain a parent component and internal components
18704 -- corresponding to secondary tags, but these do not determine
18705 -- whether this is a null extension.
18707 while Present (Comp) loop
18708 if Comes_From_Source (Comp) then
18709 return False;
18710 end if;
18712 Next (Comp);
18713 end loop;
18715 return True;
18717 else
18718 return True;
18719 end if;
18720 end Is_Null_Extension;
18722 ------------------------------
18723 -- Is_Valid_Constraint_Kind --
18724 ------------------------------
18726 function Is_Valid_Constraint_Kind
18727 (T_Kind : Type_Kind;
18728 Constraint_Kind : Node_Kind) return Boolean
18730 begin
18731 case T_Kind is
18732 when Enumeration_Kind
18733 | Integer_Kind
18735 return Constraint_Kind = N_Range_Constraint;
18737 when Decimal_Fixed_Point_Kind =>
18738 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18739 N_Range_Constraint);
18741 when Ordinary_Fixed_Point_Kind =>
18742 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
18743 N_Range_Constraint);
18745 when Float_Kind =>
18746 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18747 N_Range_Constraint);
18749 when Access_Kind
18750 | Array_Kind
18751 | Class_Wide_Kind
18752 | Concurrent_Kind
18753 | Private_Kind
18754 | E_Incomplete_Type
18755 | E_Record_Subtype
18756 | E_Record_Type
18758 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
18760 when others =>
18761 return True; -- Error will be detected later
18762 end case;
18763 end Is_Valid_Constraint_Kind;
18765 --------------------------
18766 -- Is_Visible_Component --
18767 --------------------------
18769 function Is_Visible_Component
18770 (C : Entity_Id;
18771 N : Node_Id := Empty) return Boolean
18773 Original_Comp : Entity_Id := Empty;
18774 Original_Type : Entity_Id;
18775 Type_Scope : Entity_Id;
18777 function Is_Local_Type (Typ : Entity_Id) return Boolean;
18778 -- Check whether parent type of inherited component is declared locally,
18779 -- possibly within a nested package or instance. The current scope is
18780 -- the derived record itself.
18782 -------------------
18783 -- Is_Local_Type --
18784 -------------------
18786 function Is_Local_Type (Typ : Entity_Id) return Boolean is
18787 Scop : Entity_Id;
18789 begin
18790 Scop := Scope (Typ);
18791 while Present (Scop)
18792 and then Scop /= Standard_Standard
18793 loop
18794 if Scop = Scope (Current_Scope) then
18795 return True;
18796 end if;
18798 Scop := Scope (Scop);
18799 end loop;
18801 return False;
18802 end Is_Local_Type;
18804 -- Start of processing for Is_Visible_Component
18806 begin
18807 if Ekind_In (C, E_Component, E_Discriminant) then
18808 Original_Comp := Original_Record_Component (C);
18809 end if;
18811 if No (Original_Comp) then
18813 -- Premature usage, or previous error
18815 return False;
18817 else
18818 Original_Type := Scope (Original_Comp);
18819 Type_Scope := Scope (Base_Type (Scope (C)));
18820 end if;
18822 -- This test only concerns tagged types
18824 if not Is_Tagged_Type (Original_Type) then
18826 -- Check if this is a renamed discriminant (hidden either by the
18827 -- derived type or by some ancestor), unless we are analyzing code
18828 -- generated by the expander since it may reference such components
18829 -- (for example see the expansion of Deep_Adjust).
18831 if Ekind (C) = E_Discriminant and then Present (N) then
18832 return
18833 not Comes_From_Source (N)
18834 or else not Is_Completely_Hidden (C);
18835 else
18836 return True;
18837 end if;
18839 -- If it is _Parent or _Tag, there is no visibility issue
18841 elsif not Comes_From_Source (Original_Comp) then
18842 return True;
18844 -- Discriminants are visible unless the (private) type has unknown
18845 -- discriminants. If the discriminant reference is inserted for a
18846 -- discriminant check on a full view it is also visible.
18848 elsif Ekind (Original_Comp) = E_Discriminant
18849 and then
18850 (not Has_Unknown_Discriminants (Original_Type)
18851 or else (Present (N)
18852 and then Nkind (N) = N_Selected_Component
18853 and then Nkind (Prefix (N)) = N_Type_Conversion
18854 and then not Comes_From_Source (Prefix (N))))
18855 then
18856 return True;
18858 -- In the body of an instantiation, check the visibility of a component
18859 -- in case it has a homograph that is a primitive operation of a private
18860 -- type which was not visible in the generic unit.
18862 -- Should Is_Prefixed_Call be propagated from template to instance???
18864 elsif In_Instance_Body then
18865 if not Is_Tagged_Type (Original_Type)
18866 or else not Is_Private_Type (Original_Type)
18867 then
18868 return True;
18870 else
18871 declare
18872 Subp_Elmt : Elmt_Id;
18874 begin
18875 Subp_Elmt := First_Elmt (Primitive_Operations (Original_Type));
18876 while Present (Subp_Elmt) loop
18878 -- The component is hidden by a primitive operation
18880 if Chars (Node (Subp_Elmt)) = Chars (C) then
18881 return False;
18882 end if;
18884 Next_Elmt (Subp_Elmt);
18885 end loop;
18887 return True;
18888 end;
18889 end if;
18891 -- If the component has been declared in an ancestor which is currently
18892 -- a private type, then it is not visible. The same applies if the
18893 -- component's containing type is not in an open scope and the original
18894 -- component's enclosing type is a visible full view of a private type
18895 -- (which can occur in cases where an attempt is being made to reference
18896 -- a component in a sibling package that is inherited from a visible
18897 -- component of a type in an ancestor package; the component in the
18898 -- sibling package should not be visible even though the component it
18899 -- inherited from is visible). This does not apply however in the case
18900 -- where the scope of the type is a private child unit, or when the
18901 -- parent comes from a local package in which the ancestor is currently
18902 -- visible. The latter suppression of visibility is needed for cases
18903 -- that are tested in B730006.
18905 elsif Is_Private_Type (Original_Type)
18906 or else
18907 (not Is_Private_Descendant (Type_Scope)
18908 and then not In_Open_Scopes (Type_Scope)
18909 and then Has_Private_Declaration (Original_Type))
18910 then
18911 -- If the type derives from an entity in a formal package, there
18912 -- are no additional visible components.
18914 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
18915 N_Formal_Package_Declaration
18916 then
18917 return False;
18919 -- if we are not in the private part of the current package, there
18920 -- are no additional visible components.
18922 elsif Ekind (Scope (Current_Scope)) = E_Package
18923 and then not In_Private_Part (Scope (Current_Scope))
18924 then
18925 return False;
18926 else
18927 return
18928 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
18929 and then In_Open_Scopes (Scope (Original_Type))
18930 and then Is_Local_Type (Type_Scope);
18931 end if;
18933 -- There is another weird way in which a component may be invisible when
18934 -- the private and the full view are not derived from the same ancestor.
18935 -- Here is an example :
18937 -- type A1 is tagged record F1 : integer; end record;
18938 -- type A2 is new A1 with record F2 : integer; end record;
18939 -- type T is new A1 with private;
18940 -- private
18941 -- type T is new A2 with null record;
18943 -- In this case, the full view of T inherits F1 and F2 but the private
18944 -- view inherits only F1
18946 else
18947 declare
18948 Ancestor : Entity_Id := Scope (C);
18950 begin
18951 loop
18952 if Ancestor = Original_Type then
18953 return True;
18955 -- The ancestor may have a partial view of the original type,
18956 -- but if the full view is in scope, as in a child body, the
18957 -- component is visible.
18959 elsif In_Private_Part (Scope (Original_Type))
18960 and then Full_View (Ancestor) = Original_Type
18961 then
18962 return True;
18964 elsif Ancestor = Etype (Ancestor) then
18966 -- No further ancestors to examine
18968 return False;
18969 end if;
18971 Ancestor := Etype (Ancestor);
18972 end loop;
18973 end;
18974 end if;
18975 end Is_Visible_Component;
18977 --------------------------
18978 -- Make_Class_Wide_Type --
18979 --------------------------
18981 procedure Make_Class_Wide_Type (T : Entity_Id) is
18982 CW_Type : Entity_Id;
18983 CW_Name : Name_Id;
18984 Next_E : Entity_Id;
18985 Prev_E : Entity_Id;
18987 begin
18988 if Present (Class_Wide_Type (T)) then
18990 -- The class-wide type is a partially decorated entity created for a
18991 -- unanalyzed tagged type referenced through a limited with clause.
18992 -- When the tagged type is analyzed, its class-wide type needs to be
18993 -- redecorated. Note that we reuse the entity created by Decorate_
18994 -- Tagged_Type in order to preserve all links.
18996 if Materialize_Entity (Class_Wide_Type (T)) then
18997 CW_Type := Class_Wide_Type (T);
18998 Set_Materialize_Entity (CW_Type, False);
19000 -- The class wide type can have been defined by the partial view, in
19001 -- which case everything is already done.
19003 else
19004 return;
19005 end if;
19007 -- Default case, we need to create a new class-wide type
19009 else
19010 CW_Type :=
19011 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
19012 end if;
19014 -- Inherit root type characteristics
19016 CW_Name := Chars (CW_Type);
19017 Next_E := Next_Entity (CW_Type);
19018 Prev_E := Prev_Entity (CW_Type);
19019 Copy_Node (T, CW_Type);
19020 Set_Comes_From_Source (CW_Type, False);
19021 Set_Chars (CW_Type, CW_Name);
19022 Set_Parent (CW_Type, Parent (T));
19023 Set_Prev_Entity (CW_Type, Prev_E);
19024 Set_Next_Entity (CW_Type, Next_E);
19026 -- Ensure we have a new freeze node for the class-wide type. The partial
19027 -- view may have freeze action of its own, requiring a proper freeze
19028 -- node, and the same freeze node cannot be shared between the two
19029 -- types.
19031 Set_Has_Delayed_Freeze (CW_Type);
19032 Set_Freeze_Node (CW_Type, Empty);
19034 -- Customize the class-wide type: It has no prim. op., it cannot be
19035 -- abstract, its Etype points back to the specific root type, and it
19036 -- cannot have any invariants.
19038 Set_Ekind (CW_Type, E_Class_Wide_Type);
19039 Set_Is_Tagged_Type (CW_Type, True);
19040 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
19041 Set_Is_Abstract_Type (CW_Type, False);
19042 Set_Is_Constrained (CW_Type, False);
19043 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
19044 Set_Default_SSO (CW_Type);
19045 Set_Has_Inheritable_Invariants (CW_Type, False);
19046 Set_Has_Inherited_Invariants (CW_Type, False);
19047 Set_Has_Own_Invariants (CW_Type, False);
19049 if Ekind (T) = E_Class_Wide_Subtype then
19050 Set_Etype (CW_Type, Etype (Base_Type (T)));
19051 else
19052 Set_Etype (CW_Type, T);
19053 end if;
19055 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
19057 -- If this is the class_wide type of a constrained subtype, it does
19058 -- not have discriminants.
19060 Set_Has_Discriminants (CW_Type,
19061 Has_Discriminants (T) and then not Is_Constrained (T));
19063 Set_Has_Unknown_Discriminants (CW_Type, True);
19064 Set_Class_Wide_Type (T, CW_Type);
19065 Set_Equivalent_Type (CW_Type, Empty);
19067 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
19069 Set_Class_Wide_Type (CW_Type, CW_Type);
19070 end Make_Class_Wide_Type;
19072 ----------------
19073 -- Make_Index --
19074 ----------------
19076 procedure Make_Index
19077 (N : Node_Id;
19078 Related_Nod : Node_Id;
19079 Related_Id : Entity_Id := Empty;
19080 Suffix_Index : Nat := 1;
19081 In_Iter_Schm : Boolean := False)
19083 R : Node_Id;
19084 T : Entity_Id;
19085 Def_Id : Entity_Id := Empty;
19086 Found : Boolean := False;
19088 begin
19089 -- For a discrete range used in a constrained array definition and
19090 -- defined by a range, an implicit conversion to the predefined type
19091 -- INTEGER is assumed if each bound is either a numeric literal, a named
19092 -- number, or an attribute, and the type of both bounds (prior to the
19093 -- implicit conversion) is the type universal_integer. Otherwise, both
19094 -- bounds must be of the same discrete type, other than universal
19095 -- integer; this type must be determinable independently of the
19096 -- context, but using the fact that the type must be discrete and that
19097 -- both bounds must have the same type.
19099 -- Character literals also have a universal type in the absence of
19100 -- of additional context, and are resolved to Standard_Character.
19102 if Nkind (N) = N_Range then
19104 -- The index is given by a range constraint. The bounds are known
19105 -- to be of a consistent type.
19107 if not Is_Overloaded (N) then
19108 T := Etype (N);
19110 -- For universal bounds, choose the specific predefined type
19112 if T = Universal_Integer then
19113 T := Standard_Integer;
19115 elsif T = Any_Character then
19116 Ambiguous_Character (Low_Bound (N));
19118 T := Standard_Character;
19119 end if;
19121 -- The node may be overloaded because some user-defined operators
19122 -- are available, but if a universal interpretation exists it is
19123 -- also the selected one.
19125 elsif Universal_Interpretation (N) = Universal_Integer then
19126 T := Standard_Integer;
19128 else
19129 T := Any_Type;
19131 declare
19132 Ind : Interp_Index;
19133 It : Interp;
19135 begin
19136 Get_First_Interp (N, Ind, It);
19137 while Present (It.Typ) loop
19138 if Is_Discrete_Type (It.Typ) then
19140 if Found
19141 and then not Covers (It.Typ, T)
19142 and then not Covers (T, It.Typ)
19143 then
19144 Error_Msg_N ("ambiguous bounds in discrete range", N);
19145 exit;
19146 else
19147 T := It.Typ;
19148 Found := True;
19149 end if;
19150 end if;
19152 Get_Next_Interp (Ind, It);
19153 end loop;
19155 if T = Any_Type then
19156 Error_Msg_N ("discrete type required for range", N);
19157 Set_Etype (N, Any_Type);
19158 return;
19160 elsif T = Universal_Integer then
19161 T := Standard_Integer;
19162 end if;
19163 end;
19164 end if;
19166 if not Is_Discrete_Type (T) then
19167 Error_Msg_N ("discrete type required for range", N);
19168 Set_Etype (N, Any_Type);
19169 return;
19170 end if;
19172 if Nkind (Low_Bound (N)) = N_Attribute_Reference
19173 and then Attribute_Name (Low_Bound (N)) = Name_First
19174 and then Is_Entity_Name (Prefix (Low_Bound (N)))
19175 and then Is_Type (Entity (Prefix (Low_Bound (N))))
19176 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
19177 then
19178 -- The type of the index will be the type of the prefix, as long
19179 -- as the upper bound is 'Last of the same type.
19181 Def_Id := Entity (Prefix (Low_Bound (N)));
19183 if Nkind (High_Bound (N)) /= N_Attribute_Reference
19184 or else Attribute_Name (High_Bound (N)) /= Name_Last
19185 or else not Is_Entity_Name (Prefix (High_Bound (N)))
19186 or else Entity (Prefix (High_Bound (N))) /= Def_Id
19187 then
19188 Def_Id := Empty;
19189 end if;
19190 end if;
19192 R := N;
19193 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
19195 elsif Nkind (N) = N_Subtype_Indication then
19197 -- The index is given by a subtype with a range constraint
19199 T := Base_Type (Entity (Subtype_Mark (N)));
19201 if not Is_Discrete_Type (T) then
19202 Error_Msg_N ("discrete type required for range", N);
19203 Set_Etype (N, Any_Type);
19204 return;
19205 end if;
19207 R := Range_Expression (Constraint (N));
19209 Resolve (R, T);
19210 Process_Range_Expr_In_Decl
19211 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
19213 elsif Nkind (N) = N_Attribute_Reference then
19215 -- Catch beginner's error (use of attribute other than 'Range)
19217 if Attribute_Name (N) /= Name_Range then
19218 Error_Msg_N ("expect attribute ''Range", N);
19219 Set_Etype (N, Any_Type);
19220 return;
19221 end if;
19223 -- If the node denotes the range of a type mark, that is also the
19224 -- resulting type, and we do not need to create an Itype for it.
19226 if Is_Entity_Name (Prefix (N))
19227 and then Comes_From_Source (N)
19228 and then Is_Type (Entity (Prefix (N)))
19229 and then Is_Discrete_Type (Entity (Prefix (N)))
19230 then
19231 Def_Id := Entity (Prefix (N));
19232 end if;
19234 Analyze_And_Resolve (N);
19235 T := Etype (N);
19236 R := N;
19238 -- If none of the above, must be a subtype. We convert this to a
19239 -- range attribute reference because in the case of declared first
19240 -- named subtypes, the types in the range reference can be different
19241 -- from the type of the entity. A range attribute normalizes the
19242 -- reference and obtains the correct types for the bounds.
19244 -- This transformation is in the nature of an expansion, is only
19245 -- done if expansion is active. In particular, it is not done on
19246 -- formal generic types, because we need to retain the name of the
19247 -- original index for instantiation purposes.
19249 else
19250 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
19251 Error_Msg_N ("invalid subtype mark in discrete range ", N);
19252 Set_Etype (N, Any_Integer);
19253 return;
19255 else
19256 -- The type mark may be that of an incomplete type. It is only
19257 -- now that we can get the full view, previous analysis does
19258 -- not look specifically for a type mark.
19260 Set_Entity (N, Get_Full_View (Entity (N)));
19261 Set_Etype (N, Entity (N));
19262 Def_Id := Entity (N);
19264 if not Is_Discrete_Type (Def_Id) then
19265 Error_Msg_N ("discrete type required for index", N);
19266 Set_Etype (N, Any_Type);
19267 return;
19268 end if;
19269 end if;
19271 if Expander_Active then
19272 Rewrite (N,
19273 Make_Attribute_Reference (Sloc (N),
19274 Attribute_Name => Name_Range,
19275 Prefix => Relocate_Node (N)));
19277 -- The original was a subtype mark that does not freeze. This
19278 -- means that the rewritten version must not freeze either.
19280 Set_Must_Not_Freeze (N);
19281 Set_Must_Not_Freeze (Prefix (N));
19282 Analyze_And_Resolve (N);
19283 T := Etype (N);
19284 R := N;
19286 -- If expander is inactive, type is legal, nothing else to construct
19288 else
19289 return;
19290 end if;
19291 end if;
19293 if not Is_Discrete_Type (T) then
19294 Error_Msg_N ("discrete type required for range", N);
19295 Set_Etype (N, Any_Type);
19296 return;
19298 elsif T = Any_Type then
19299 Set_Etype (N, Any_Type);
19300 return;
19301 end if;
19303 -- We will now create the appropriate Itype to describe the range, but
19304 -- first a check. If we originally had a subtype, then we just label
19305 -- the range with this subtype. Not only is there no need to construct
19306 -- a new subtype, but it is wrong to do so for two reasons:
19308 -- 1. A legality concern, if we have a subtype, it must not freeze,
19309 -- and the Itype would cause freezing incorrectly
19311 -- 2. An efficiency concern, if we created an Itype, it would not be
19312 -- recognized as the same type for the purposes of eliminating
19313 -- checks in some circumstances.
19315 -- We signal this case by setting the subtype entity in Def_Id
19317 if No (Def_Id) then
19318 Def_Id :=
19319 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
19320 Set_Etype (Def_Id, Base_Type (T));
19322 if Is_Signed_Integer_Type (T) then
19323 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
19325 elsif Is_Modular_Integer_Type (T) then
19326 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
19328 else
19329 Set_Ekind (Def_Id, E_Enumeration_Subtype);
19330 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
19331 Set_First_Literal (Def_Id, First_Literal (T));
19332 end if;
19334 Set_Size_Info (Def_Id, (T));
19335 Set_RM_Size (Def_Id, RM_Size (T));
19336 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
19338 Set_Scalar_Range (Def_Id, R);
19339 Conditional_Delay (Def_Id, T);
19341 if Nkind (N) = N_Subtype_Indication then
19342 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
19343 end if;
19345 -- In the subtype indication case, if the immediate parent of the
19346 -- new subtype is non-static, then the subtype we create is non-
19347 -- static, even if its bounds are static.
19349 if Nkind (N) = N_Subtype_Indication
19350 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
19351 then
19352 Set_Is_Non_Static_Subtype (Def_Id);
19353 end if;
19354 end if;
19356 -- Final step is to label the index with this constructed type
19358 Set_Etype (N, Def_Id);
19359 end Make_Index;
19361 ------------------------------
19362 -- Modular_Type_Declaration --
19363 ------------------------------
19365 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19366 Mod_Expr : constant Node_Id := Expression (Def);
19367 M_Val : Uint;
19369 procedure Set_Modular_Size (Bits : Int);
19370 -- Sets RM_Size to Bits, and Esize to normal word size above this
19372 ----------------------
19373 -- Set_Modular_Size --
19374 ----------------------
19376 procedure Set_Modular_Size (Bits : Int) is
19377 begin
19378 Set_RM_Size (T, UI_From_Int (Bits));
19380 if Bits <= 8 then
19381 Init_Esize (T, 8);
19383 elsif Bits <= 16 then
19384 Init_Esize (T, 16);
19386 elsif Bits <= 32 then
19387 Init_Esize (T, 32);
19389 else
19390 Init_Esize (T, System_Max_Binary_Modulus_Power);
19391 end if;
19393 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
19394 Set_Is_Known_Valid (T);
19395 end if;
19396 end Set_Modular_Size;
19398 -- Start of processing for Modular_Type_Declaration
19400 begin
19401 -- If the mod expression is (exactly) 2 * literal, where literal is
19402 -- 64 or less,then almost certainly the * was meant to be **. Warn.
19404 if Warn_On_Suspicious_Modulus_Value
19405 and then Nkind (Mod_Expr) = N_Op_Multiply
19406 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
19407 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
19408 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
19409 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
19410 then
19411 Error_Msg_N
19412 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
19413 end if;
19415 -- Proceed with analysis of mod expression
19417 Analyze_And_Resolve (Mod_Expr, Any_Integer);
19418 Set_Etype (T, T);
19419 Set_Ekind (T, E_Modular_Integer_Type);
19420 Init_Alignment (T);
19421 Set_Is_Constrained (T);
19423 if not Is_OK_Static_Expression (Mod_Expr) then
19424 Flag_Non_Static_Expr
19425 ("non-static expression used for modular type bound!", Mod_Expr);
19426 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19427 else
19428 M_Val := Expr_Value (Mod_Expr);
19429 end if;
19431 if M_Val < 1 then
19432 Error_Msg_N ("modulus value must be positive", Mod_Expr);
19433 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19434 end if;
19436 if M_Val > 2 ** Standard_Long_Integer_Size then
19437 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
19438 end if;
19440 Set_Modulus (T, M_Val);
19442 -- Create bounds for the modular type based on the modulus given in
19443 -- the type declaration and then analyze and resolve those bounds.
19445 Set_Scalar_Range (T,
19446 Make_Range (Sloc (Mod_Expr),
19447 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
19448 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
19450 -- Properly analyze the literals for the range. We do this manually
19451 -- because we can't go calling Resolve, since we are resolving these
19452 -- bounds with the type, and this type is certainly not complete yet.
19454 Set_Etype (Low_Bound (Scalar_Range (T)), T);
19455 Set_Etype (High_Bound (Scalar_Range (T)), T);
19456 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
19457 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
19459 -- Loop through powers of two to find number of bits required
19461 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
19463 -- Binary case
19465 if M_Val = 2 ** Bits then
19466 Set_Modular_Size (Bits);
19467 return;
19469 -- Nonbinary case
19471 elsif M_Val < 2 ** Bits then
19472 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
19473 Set_Non_Binary_Modulus (T);
19475 if Bits > System_Max_Nonbinary_Modulus_Power then
19476 Error_Msg_Uint_1 :=
19477 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
19478 Error_Msg_F
19479 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
19480 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19481 return;
19483 else
19484 -- In the nonbinary case, set size as per RM 13.3(55)
19486 Set_Modular_Size (Bits);
19487 return;
19488 end if;
19489 end if;
19491 end loop;
19493 -- If we fall through, then the size exceed System.Max_Binary_Modulus
19494 -- so we just signal an error and set the maximum size.
19496 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
19497 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
19499 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19500 Init_Alignment (T);
19502 end Modular_Type_Declaration;
19504 --------------------------
19505 -- New_Concatenation_Op --
19506 --------------------------
19508 procedure New_Concatenation_Op (Typ : Entity_Id) is
19509 Loc : constant Source_Ptr := Sloc (Typ);
19510 Op : Entity_Id;
19512 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
19513 -- Create abbreviated declaration for the formal of a predefined
19514 -- Operator 'Op' of type 'Typ'
19516 --------------------
19517 -- Make_Op_Formal --
19518 --------------------
19520 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
19521 Formal : Entity_Id;
19522 begin
19523 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
19524 Set_Etype (Formal, Typ);
19525 Set_Mechanism (Formal, Default_Mechanism);
19526 return Formal;
19527 end Make_Op_Formal;
19529 -- Start of processing for New_Concatenation_Op
19531 begin
19532 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
19534 Set_Ekind (Op, E_Operator);
19535 Set_Scope (Op, Current_Scope);
19536 Set_Etype (Op, Typ);
19537 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
19538 Set_Is_Immediately_Visible (Op);
19539 Set_Is_Intrinsic_Subprogram (Op);
19540 Set_Has_Completion (Op);
19541 Append_Entity (Op, Current_Scope);
19543 Set_Name_Entity_Id (Name_Op_Concat, Op);
19545 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19546 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19547 end New_Concatenation_Op;
19549 -------------------------
19550 -- OK_For_Limited_Init --
19551 -------------------------
19553 -- ???Check all calls of this, and compare the conditions under which it's
19554 -- called.
19556 function OK_For_Limited_Init
19557 (Typ : Entity_Id;
19558 Exp : Node_Id) return Boolean
19560 begin
19561 return Is_CPP_Constructor_Call (Exp)
19562 or else (Ada_Version >= Ada_2005
19563 and then not Debug_Flag_Dot_L
19564 and then OK_For_Limited_Init_In_05 (Typ, Exp));
19565 end OK_For_Limited_Init;
19567 -------------------------------
19568 -- OK_For_Limited_Init_In_05 --
19569 -------------------------------
19571 function OK_For_Limited_Init_In_05
19572 (Typ : Entity_Id;
19573 Exp : Node_Id) return Boolean
19575 begin
19576 -- An object of a limited interface type can be initialized with any
19577 -- expression of a nonlimited descendant type. However this does not
19578 -- apply if this is a view conversion of some other expression. This
19579 -- is checked below.
19581 if Is_Class_Wide_Type (Typ)
19582 and then Is_Limited_Interface (Typ)
19583 and then not Is_Limited_Type (Etype (Exp))
19584 and then Nkind (Exp) /= N_Type_Conversion
19585 then
19586 return True;
19587 end if;
19589 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19590 -- case of limited aggregates (including extension aggregates), and
19591 -- function calls. The function call may have been given in prefixed
19592 -- notation, in which case the original node is an indexed component.
19593 -- If the function is parameterless, the original node was an explicit
19594 -- dereference. The function may also be parameterless, in which case
19595 -- the source node is just an identifier.
19597 -- A branch of a conditional expression may have been removed if the
19598 -- condition is statically known. This happens during expansion, and
19599 -- thus will not happen if previous errors were encountered. The check
19600 -- will have been performed on the chosen branch, which replaces the
19601 -- original conditional expression.
19603 if No (Exp) then
19604 return True;
19605 end if;
19607 case Nkind (Original_Node (Exp)) is
19608 when N_Aggregate
19609 | N_Extension_Aggregate
19610 | N_Function_Call
19611 | N_Op
19613 return True;
19615 when N_Identifier =>
19616 return Present (Entity (Original_Node (Exp)))
19617 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
19619 when N_Qualified_Expression =>
19620 return
19621 OK_For_Limited_Init_In_05
19622 (Typ, Expression (Original_Node (Exp)));
19624 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
19625 -- with a function call, the expander has rewritten the call into an
19626 -- N_Type_Conversion node to force displacement of the pointer to
19627 -- reference the component containing the secondary dispatch table.
19628 -- Otherwise a type conversion is not a legal context.
19629 -- A return statement for a build-in-place function returning a
19630 -- synchronized type also introduces an unchecked conversion.
19632 when N_Type_Conversion
19633 | N_Unchecked_Type_Conversion
19635 return not Comes_From_Source (Exp)
19636 and then
19637 OK_For_Limited_Init_In_05
19638 (Typ, Expression (Original_Node (Exp)));
19640 when N_Explicit_Dereference
19641 | N_Indexed_Component
19642 | N_Selected_Component
19644 return Nkind (Exp) = N_Function_Call;
19646 -- A use of 'Input is a function call, hence allowed. Normally the
19647 -- attribute will be changed to a call, but the attribute by itself
19648 -- can occur with -gnatc.
19650 when N_Attribute_Reference =>
19651 return Attribute_Name (Original_Node (Exp)) = Name_Input;
19653 -- "return raise ..." is OK
19655 when N_Raise_Expression =>
19656 return True;
19658 -- For a case expression, all dependent expressions must be legal
19660 when N_Case_Expression =>
19661 declare
19662 Alt : Node_Id;
19664 begin
19665 Alt := First (Alternatives (Original_Node (Exp)));
19666 while Present (Alt) loop
19667 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
19668 return False;
19669 end if;
19671 Next (Alt);
19672 end loop;
19674 return True;
19675 end;
19677 -- For an if expression, all dependent expressions must be legal
19679 when N_If_Expression =>
19680 declare
19681 Then_Expr : constant Node_Id :=
19682 Next (First (Expressions (Original_Node (Exp))));
19683 Else_Expr : constant Node_Id := Next (Then_Expr);
19684 begin
19685 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
19686 and then
19687 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
19688 end;
19690 when others =>
19691 return False;
19692 end case;
19693 end OK_For_Limited_Init_In_05;
19695 -------------------------------------------
19696 -- Ordinary_Fixed_Point_Type_Declaration --
19697 -------------------------------------------
19699 procedure Ordinary_Fixed_Point_Type_Declaration
19700 (T : Entity_Id;
19701 Def : Node_Id)
19703 Loc : constant Source_Ptr := Sloc (Def);
19704 Delta_Expr : constant Node_Id := Delta_Expression (Def);
19705 RRS : constant Node_Id := Real_Range_Specification (Def);
19706 Implicit_Base : Entity_Id;
19707 Delta_Val : Ureal;
19708 Small_Val : Ureal;
19709 Low_Val : Ureal;
19710 High_Val : Ureal;
19712 begin
19713 Check_Restriction (No_Fixed_Point, Def);
19715 -- Create implicit base type
19717 Implicit_Base :=
19718 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
19719 Set_Etype (Implicit_Base, Implicit_Base);
19721 -- Analyze and process delta expression
19723 Analyze_And_Resolve (Delta_Expr, Any_Real);
19725 Check_Delta_Expression (Delta_Expr);
19726 Delta_Val := Expr_Value_R (Delta_Expr);
19728 Set_Delta_Value (Implicit_Base, Delta_Val);
19730 -- Compute default small from given delta, which is the largest power
19731 -- of two that does not exceed the given delta value.
19733 declare
19734 Tmp : Ureal;
19735 Scale : Int;
19737 begin
19738 Tmp := Ureal_1;
19739 Scale := 0;
19741 if Delta_Val < Ureal_1 then
19742 while Delta_Val < Tmp loop
19743 Tmp := Tmp / Ureal_2;
19744 Scale := Scale + 1;
19745 end loop;
19747 else
19748 loop
19749 Tmp := Tmp * Ureal_2;
19750 exit when Tmp > Delta_Val;
19751 Scale := Scale - 1;
19752 end loop;
19753 end if;
19755 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
19756 end;
19758 Set_Small_Value (Implicit_Base, Small_Val);
19760 -- If no range was given, set a dummy range
19762 if RRS <= Empty_Or_Error then
19763 Low_Val := -Small_Val;
19764 High_Val := Small_Val;
19766 -- Otherwise analyze and process given range
19768 else
19769 declare
19770 Low : constant Node_Id := Low_Bound (RRS);
19771 High : constant Node_Id := High_Bound (RRS);
19773 begin
19774 Analyze_And_Resolve (Low, Any_Real);
19775 Analyze_And_Resolve (High, Any_Real);
19776 Check_Real_Bound (Low);
19777 Check_Real_Bound (High);
19779 -- Obtain and set the range
19781 Low_Val := Expr_Value_R (Low);
19782 High_Val := Expr_Value_R (High);
19784 if Low_Val > High_Val then
19785 Error_Msg_NE ("??fixed point type& has null range", Def, T);
19786 end if;
19787 end;
19788 end if;
19790 -- The range for both the implicit base and the declared first subtype
19791 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
19792 -- set a temporary range in place. Note that the bounds of the base
19793 -- type will be widened to be symmetrical and to fill the available
19794 -- bits when the type is frozen.
19796 -- We could do this with all discrete types, and probably should, but
19797 -- we absolutely have to do it for fixed-point, since the end-points
19798 -- of the range and the size are determined by the small value, which
19799 -- could be reset before the freeze point.
19801 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
19802 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
19804 -- Complete definition of first subtype. The inheritance of the rep item
19805 -- chain ensures that SPARK-related pragmas are not clobbered when the
19806 -- ordinary fixed point type acts as a full view of a private type.
19808 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
19809 Set_Etype (T, Implicit_Base);
19810 Init_Size_Align (T);
19811 Inherit_Rep_Item_Chain (T, Implicit_Base);
19812 Set_Small_Value (T, Small_Val);
19813 Set_Delta_Value (T, Delta_Val);
19814 Set_Is_Constrained (T);
19815 end Ordinary_Fixed_Point_Type_Declaration;
19817 ----------------------------------
19818 -- Preanalyze_Assert_Expression --
19819 ----------------------------------
19821 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19822 begin
19823 In_Assertion_Expr := In_Assertion_Expr + 1;
19824 Preanalyze_Spec_Expression (N, T);
19825 In_Assertion_Expr := In_Assertion_Expr - 1;
19826 end Preanalyze_Assert_Expression;
19828 -----------------------------------
19829 -- Preanalyze_Default_Expression --
19830 -----------------------------------
19832 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
19833 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
19834 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19836 begin
19837 In_Default_Expr := True;
19838 In_Spec_Expression := True;
19840 Preanalyze_With_Freezing_And_Resolve (N, T);
19842 In_Default_Expr := Save_In_Default_Expr;
19843 In_Spec_Expression := Save_In_Spec_Expression;
19844 end Preanalyze_Default_Expression;
19846 --------------------------------
19847 -- Preanalyze_Spec_Expression --
19848 --------------------------------
19850 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19851 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19852 begin
19853 In_Spec_Expression := True;
19854 Preanalyze_And_Resolve (N, T);
19855 In_Spec_Expression := Save_In_Spec_Expression;
19856 end Preanalyze_Spec_Expression;
19858 ----------------------------------------
19859 -- Prepare_Private_Subtype_Completion --
19860 ----------------------------------------
19862 procedure Prepare_Private_Subtype_Completion
19863 (Id : Entity_Id;
19864 Related_Nod : Node_Id)
19866 Id_B : constant Entity_Id := Base_Type (Id);
19867 Full_B : Entity_Id := Full_View (Id_B);
19868 Full : Entity_Id;
19870 begin
19871 if Present (Full_B) then
19873 -- Get to the underlying full view if necessary
19875 if Is_Private_Type (Full_B)
19876 and then Present (Underlying_Full_View (Full_B))
19877 then
19878 Full_B := Underlying_Full_View (Full_B);
19879 end if;
19881 -- The Base_Type is already completed, we can complete the subtype
19882 -- now. We have to create a new entity with the same name, Thus we
19883 -- can't use Create_Itype.
19885 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
19886 Set_Is_Itype (Full);
19887 Set_Associated_Node_For_Itype (Full, Related_Nod);
19888 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
19889 end if;
19891 -- The parent subtype may be private, but the base might not, in some
19892 -- nested instances. In that case, the subtype does not need to be
19893 -- exchanged. It would still be nice to make private subtypes and their
19894 -- bases consistent at all times ???
19896 if Is_Private_Type (Id_B) then
19897 Append_Elmt (Id, Private_Dependents (Id_B));
19898 end if;
19899 end Prepare_Private_Subtype_Completion;
19901 ---------------------------
19902 -- Process_Discriminants --
19903 ---------------------------
19905 procedure Process_Discriminants
19906 (N : Node_Id;
19907 Prev : Entity_Id := Empty)
19909 Elist : constant Elist_Id := New_Elmt_List;
19910 Id : Node_Id;
19911 Discr : Node_Id;
19912 Discr_Number : Uint;
19913 Discr_Type : Entity_Id;
19914 Default_Present : Boolean := False;
19915 Default_Not_Present : Boolean := False;
19917 begin
19918 -- A composite type other than an array type can have discriminants.
19919 -- On entry, the current scope is the composite type.
19921 -- The discriminants are initially entered into the scope of the type
19922 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19923 -- use, as explained at the end of this procedure.
19925 Discr := First (Discriminant_Specifications (N));
19926 while Present (Discr) loop
19927 Enter_Name (Defining_Identifier (Discr));
19929 -- For navigation purposes we add a reference to the discriminant
19930 -- in the entity for the type. If the current declaration is a
19931 -- completion, place references on the partial view. Otherwise the
19932 -- type is the current scope.
19934 if Present (Prev) then
19936 -- The references go on the partial view, if present. If the
19937 -- partial view has discriminants, the references have been
19938 -- generated already.
19940 if not Has_Discriminants (Prev) then
19941 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
19942 end if;
19943 else
19944 Generate_Reference
19945 (Current_Scope, Defining_Identifier (Discr), 'd');
19946 end if;
19948 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
19949 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
19951 -- Ada 2005 (AI-254)
19953 if Present (Access_To_Subprogram_Definition
19954 (Discriminant_Type (Discr)))
19955 and then Protected_Present (Access_To_Subprogram_Definition
19956 (Discriminant_Type (Discr)))
19957 then
19958 Discr_Type :=
19959 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
19960 end if;
19962 else
19963 Find_Type (Discriminant_Type (Discr));
19964 Discr_Type := Etype (Discriminant_Type (Discr));
19966 if Error_Posted (Discriminant_Type (Discr)) then
19967 Discr_Type := Any_Type;
19968 end if;
19969 end if;
19971 -- Handling of discriminants that are access types
19973 if Is_Access_Type (Discr_Type) then
19975 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19976 -- limited record types
19978 if Ada_Version < Ada_2005 then
19979 Check_Access_Discriminant_Requires_Limited
19980 (Discr, Discriminant_Type (Discr));
19981 end if;
19983 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
19984 Error_Msg_N
19985 ("(Ada 83) access discriminant not allowed", Discr);
19986 end if;
19988 -- If not access type, must be a discrete type
19990 elsif not Is_Discrete_Type (Discr_Type) then
19991 Error_Msg_N
19992 ("discriminants must have a discrete or access type",
19993 Discriminant_Type (Discr));
19994 end if;
19996 Set_Etype (Defining_Identifier (Discr), Discr_Type);
19998 -- If a discriminant specification includes the assignment compound
19999 -- delimiter followed by an expression, the expression is the default
20000 -- expression of the discriminant; the default expression must be of
20001 -- the type of the discriminant. (RM 3.7.1) Since this expression is
20002 -- a default expression, we do the special preanalysis, since this
20003 -- expression does not freeze (see section "Handling of Default and
20004 -- Per-Object Expressions" in spec of package Sem).
20006 if Present (Expression (Discr)) then
20007 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
20009 -- Legaity checks
20011 if Nkind (N) = N_Formal_Type_Declaration then
20012 Error_Msg_N
20013 ("discriminant defaults not allowed for formal type",
20014 Expression (Discr));
20016 -- Flag an error for a tagged type with defaulted discriminants,
20017 -- excluding limited tagged types when compiling for Ada 2012
20018 -- (see AI05-0214).
20020 elsif Is_Tagged_Type (Current_Scope)
20021 and then (not Is_Limited_Type (Current_Scope)
20022 or else Ada_Version < Ada_2012)
20023 and then Comes_From_Source (N)
20024 then
20025 -- Note: see similar test in Check_Or_Process_Discriminants, to
20026 -- handle the (illegal) case of the completion of an untagged
20027 -- view with discriminants with defaults by a tagged full view.
20028 -- We skip the check if Discr does not come from source, to
20029 -- account for the case of an untagged derived type providing
20030 -- defaults for a renamed discriminant from a private untagged
20031 -- ancestor with a tagged full view (ACATS B460006).
20033 if Ada_Version >= Ada_2012 then
20034 Error_Msg_N
20035 ("discriminants of nonlimited tagged type cannot have"
20036 & " defaults",
20037 Expression (Discr));
20038 else
20039 Error_Msg_N
20040 ("discriminants of tagged type cannot have defaults",
20041 Expression (Discr));
20042 end if;
20044 else
20045 Default_Present := True;
20046 Append_Elmt (Expression (Discr), Elist);
20048 -- Tag the defining identifiers for the discriminants with
20049 -- their corresponding default expressions from the tree.
20051 Set_Discriminant_Default_Value
20052 (Defining_Identifier (Discr), Expression (Discr));
20053 end if;
20055 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
20056 -- gets set unless we can be sure that no range check is required.
20058 if (GNATprove_Mode or not Expander_Active)
20059 and then not
20060 Is_In_Range
20061 (Expression (Discr), Discr_Type, Assume_Valid => True)
20062 then
20063 Set_Do_Range_Check (Expression (Discr));
20064 end if;
20066 -- No default discriminant value given
20068 else
20069 Default_Not_Present := True;
20070 end if;
20072 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
20073 -- Discr_Type but with the null-exclusion attribute
20075 if Ada_Version >= Ada_2005 then
20077 -- Ada 2005 (AI-231): Static checks
20079 if Can_Never_Be_Null (Discr_Type) then
20080 Null_Exclusion_Static_Checks (Discr);
20082 elsif Is_Access_Type (Discr_Type)
20083 and then Null_Exclusion_Present (Discr)
20085 -- No need to check itypes because in their case this check
20086 -- was done at their point of creation
20088 and then not Is_Itype (Discr_Type)
20089 then
20090 if Can_Never_Be_Null (Discr_Type) then
20091 Error_Msg_NE
20092 ("`NOT NULL` not allowed (& already excludes null)",
20093 Discr,
20094 Discr_Type);
20095 end if;
20097 Set_Etype (Defining_Identifier (Discr),
20098 Create_Null_Excluding_Itype
20099 (T => Discr_Type,
20100 Related_Nod => Discr));
20102 -- Check for improper null exclusion if the type is otherwise
20103 -- legal for a discriminant.
20105 elsif Null_Exclusion_Present (Discr)
20106 and then Is_Discrete_Type (Discr_Type)
20107 then
20108 Error_Msg_N
20109 ("null exclusion can only apply to an access type", Discr);
20110 end if;
20112 -- Ada 2005 (AI-402): access discriminants of nonlimited types
20113 -- can't have defaults. Synchronized types, or types that are
20114 -- explicitly limited are fine, but special tests apply to derived
20115 -- types in generics: in a generic body we have to assume the
20116 -- worst, and therefore defaults are not allowed if the parent is
20117 -- a generic formal private type (see ACATS B370001).
20119 if Is_Access_Type (Discr_Type) and then Default_Present then
20120 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
20121 or else Is_Limited_Record (Current_Scope)
20122 or else Is_Concurrent_Type (Current_Scope)
20123 or else Is_Concurrent_Record_Type (Current_Scope)
20124 or else Ekind (Current_Scope) = E_Limited_Private_Type
20125 then
20126 if not Is_Derived_Type (Current_Scope)
20127 or else not Is_Generic_Type (Etype (Current_Scope))
20128 or else not In_Package_Body (Scope (Etype (Current_Scope)))
20129 or else Limited_Present
20130 (Type_Definition (Parent (Current_Scope)))
20131 then
20132 null;
20134 else
20135 Error_Msg_N
20136 ("access discriminants of nonlimited types cannot "
20137 & "have defaults", Expression (Discr));
20138 end if;
20140 elsif Present (Expression (Discr)) then
20141 Error_Msg_N
20142 ("(Ada 2005) access discriminants of nonlimited types "
20143 & "cannot have defaults", Expression (Discr));
20144 end if;
20145 end if;
20146 end if;
20148 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(4)).
20149 -- This check is relevant only when SPARK_Mode is on as it is not a
20150 -- standard Ada legality rule.
20152 if SPARK_Mode = On
20153 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
20154 then
20155 Error_Msg_N ("discriminant cannot be volatile", Discr);
20156 end if;
20158 Next (Discr);
20159 end loop;
20161 -- An element list consisting of the default expressions of the
20162 -- discriminants is constructed in the above loop and used to set
20163 -- the Discriminant_Constraint attribute for the type. If an object
20164 -- is declared of this (record or task) type without any explicit
20165 -- discriminant constraint given, this element list will form the
20166 -- actual parameters for the corresponding initialization procedure
20167 -- for the type.
20169 Set_Discriminant_Constraint (Current_Scope, Elist);
20170 Set_Stored_Constraint (Current_Scope, No_Elist);
20172 -- Default expressions must be provided either for all or for none
20173 -- of the discriminants of a discriminant part. (RM 3.7.1)
20175 if Default_Present and then Default_Not_Present then
20176 Error_Msg_N
20177 ("incomplete specification of defaults for discriminants", N);
20178 end if;
20180 -- The use of the name of a discriminant is not allowed in default
20181 -- expressions of a discriminant part if the specification of the
20182 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
20184 -- To detect this, the discriminant names are entered initially with an
20185 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
20186 -- attempt to use a void entity (for example in an expression that is
20187 -- type-checked) produces the error message: premature usage. Now after
20188 -- completing the semantic analysis of the discriminant part, we can set
20189 -- the Ekind of all the discriminants appropriately.
20191 Discr := First (Discriminant_Specifications (N));
20192 Discr_Number := Uint_1;
20193 while Present (Discr) loop
20194 Id := Defining_Identifier (Discr);
20195 Set_Ekind (Id, E_Discriminant);
20196 Init_Component_Location (Id);
20197 Init_Esize (Id);
20198 Set_Discriminant_Number (Id, Discr_Number);
20200 -- Make sure this is always set, even in illegal programs
20202 Set_Corresponding_Discriminant (Id, Empty);
20204 -- Initialize the Original_Record_Component to the entity itself.
20205 -- Inherit_Components will propagate the right value to
20206 -- discriminants in derived record types.
20208 Set_Original_Record_Component (Id, Id);
20210 -- Create the discriminal for the discriminant
20212 Build_Discriminal (Id);
20214 Next (Discr);
20215 Discr_Number := Discr_Number + 1;
20216 end loop;
20218 Set_Has_Discriminants (Current_Scope);
20219 end Process_Discriminants;
20221 -----------------------
20222 -- Process_Full_View --
20223 -----------------------
20225 -- WARNING: This routine manages Ghost regions. Return statements must be
20226 -- replaced by gotos which jump to the end of the routine and restore the
20227 -- Ghost mode.
20229 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
20230 procedure Collect_Implemented_Interfaces
20231 (Typ : Entity_Id;
20232 Ifaces : Elist_Id);
20233 -- Ada 2005: Gather all the interfaces that Typ directly or
20234 -- inherently implements. Duplicate entries are not added to
20235 -- the list Ifaces.
20237 ------------------------------------
20238 -- Collect_Implemented_Interfaces --
20239 ------------------------------------
20241 procedure Collect_Implemented_Interfaces
20242 (Typ : Entity_Id;
20243 Ifaces : Elist_Id)
20245 Iface : Entity_Id;
20246 Iface_Elmt : Elmt_Id;
20248 begin
20249 -- Abstract interfaces are only associated with tagged record types
20251 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
20252 return;
20253 end if;
20255 -- Recursively climb to the ancestors
20257 if Etype (Typ) /= Typ
20259 -- Protect the frontend against wrong cyclic declarations like:
20261 -- type B is new A with private;
20262 -- type C is new A with private;
20263 -- private
20264 -- type B is new C with null record;
20265 -- type C is new B with null record;
20267 and then Etype (Typ) /= Priv_T
20268 and then Etype (Typ) /= Full_T
20269 then
20270 -- Keep separate the management of private type declarations
20272 if Ekind (Typ) = E_Record_Type_With_Private then
20274 -- Handle the following illegal usage:
20275 -- type Private_Type is tagged private;
20276 -- private
20277 -- type Private_Type is new Type_Implementing_Iface;
20279 if Present (Full_View (Typ))
20280 and then Etype (Typ) /= Full_View (Typ)
20281 then
20282 if Is_Interface (Etype (Typ)) then
20283 Append_Unique_Elmt (Etype (Typ), Ifaces);
20284 end if;
20286 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20287 end if;
20289 -- Non-private types
20291 else
20292 if Is_Interface (Etype (Typ)) then
20293 Append_Unique_Elmt (Etype (Typ), Ifaces);
20294 end if;
20296 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20297 end if;
20298 end if;
20300 -- Handle entities in the list of abstract interfaces
20302 if Present (Interfaces (Typ)) then
20303 Iface_Elmt := First_Elmt (Interfaces (Typ));
20304 while Present (Iface_Elmt) loop
20305 Iface := Node (Iface_Elmt);
20307 pragma Assert (Is_Interface (Iface));
20309 if not Contain_Interface (Iface, Ifaces) then
20310 Append_Elmt (Iface, Ifaces);
20311 Collect_Implemented_Interfaces (Iface, Ifaces);
20312 end if;
20314 Next_Elmt (Iface_Elmt);
20315 end loop;
20316 end if;
20317 end Collect_Implemented_Interfaces;
20319 -- Local variables
20321 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
20322 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
20323 -- Save the Ghost-related attributes to restore on exit
20325 Full_Indic : Node_Id;
20326 Full_Parent : Entity_Id;
20327 Priv_Parent : Entity_Id;
20329 -- Start of processing for Process_Full_View
20331 begin
20332 Mark_And_Set_Ghost_Completion (N, Priv_T);
20334 -- First some sanity checks that must be done after semantic
20335 -- decoration of the full view and thus cannot be placed with other
20336 -- similar checks in Find_Type_Name
20338 if not Is_Limited_Type (Priv_T)
20339 and then (Is_Limited_Type (Full_T)
20340 or else Is_Limited_Composite (Full_T))
20341 then
20342 if In_Instance then
20343 null;
20344 else
20345 Error_Msg_N
20346 ("completion of nonlimited type cannot be limited", Full_T);
20347 Explain_Limited_Type (Full_T, Full_T);
20348 end if;
20350 elsif Is_Abstract_Type (Full_T)
20351 and then not Is_Abstract_Type (Priv_T)
20352 then
20353 Error_Msg_N
20354 ("completion of nonabstract type cannot be abstract", Full_T);
20356 elsif Is_Tagged_Type (Priv_T)
20357 and then Is_Limited_Type (Priv_T)
20358 and then not Is_Limited_Type (Full_T)
20359 then
20360 -- If pragma CPP_Class was applied to the private declaration
20361 -- propagate the limitedness to the full-view
20363 if Is_CPP_Class (Priv_T) then
20364 Set_Is_Limited_Record (Full_T);
20366 -- GNAT allow its own definition of Limited_Controlled to disobey
20367 -- this rule in order in ease the implementation. This test is safe
20368 -- because Root_Controlled is defined in a child of System that
20369 -- normal programs are not supposed to use.
20371 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
20372 Set_Is_Limited_Composite (Full_T);
20373 else
20374 Error_Msg_N
20375 ("completion of limited tagged type must be limited", Full_T);
20376 end if;
20378 elsif Is_Generic_Type (Priv_T) then
20379 Error_Msg_N ("generic type cannot have a completion", Full_T);
20380 end if;
20382 -- Check that ancestor interfaces of private and full views are
20383 -- consistent. We omit this check for synchronized types because
20384 -- they are performed on the corresponding record type when frozen.
20386 if Ada_Version >= Ada_2005
20387 and then Is_Tagged_Type (Priv_T)
20388 and then Is_Tagged_Type (Full_T)
20389 and then not Is_Concurrent_Type (Full_T)
20390 then
20391 declare
20392 Iface : Entity_Id;
20393 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
20394 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
20396 begin
20397 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
20398 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
20400 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20401 -- an interface type if and only if the full type is descendant
20402 -- of the interface type (AARM 7.3 (7.3/2)).
20404 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
20406 if Present (Iface) then
20407 Error_Msg_NE
20408 ("interface in partial view& not implemented by full type "
20409 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20410 end if;
20412 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
20414 if Present (Iface) then
20415 Error_Msg_NE
20416 ("interface & not implemented by partial view "
20417 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20418 end if;
20419 end;
20420 end if;
20422 if Is_Tagged_Type (Priv_T)
20423 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20424 and then Is_Derived_Type (Full_T)
20425 then
20426 Priv_Parent := Etype (Priv_T);
20428 -- The full view of a private extension may have been transformed
20429 -- into an unconstrained derived type declaration and a subtype
20430 -- declaration (see build_derived_record_type for details).
20432 if Nkind (N) = N_Subtype_Declaration then
20433 Full_Indic := Subtype_Indication (N);
20434 Full_Parent := Etype (Base_Type (Full_T));
20435 else
20436 Full_Indic := Subtype_Indication (Type_Definition (N));
20437 Full_Parent := Etype (Full_T);
20438 end if;
20440 -- Check that the parent type of the full type is a descendant of
20441 -- the ancestor subtype given in the private extension. If either
20442 -- entity has an Etype equal to Any_Type then we had some previous
20443 -- error situation [7.3(8)].
20445 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
20446 goto Leave;
20448 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20449 -- any order. Therefore we don't have to check that its parent must
20450 -- be a descendant of the parent of the private type declaration.
20452 elsif Is_Interface (Priv_Parent)
20453 and then Is_Interface (Full_Parent)
20454 then
20455 null;
20457 -- Ada 2005 (AI-251): If the parent of the private type declaration
20458 -- is an interface there is no need to check that it is an ancestor
20459 -- of the associated full type declaration. The required tests for
20460 -- this case are performed by Build_Derived_Record_Type.
20462 elsif not Is_Interface (Base_Type (Priv_Parent))
20463 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
20464 then
20465 Error_Msg_N
20466 ("parent of full type must descend from parent of private "
20467 & "extension", Full_Indic);
20469 -- First check a formal restriction, and then proceed with checking
20470 -- Ada rules. Since the formal restriction is not a serious error, we
20471 -- don't prevent further error detection for this check, hence the
20472 -- ELSE.
20474 else
20475 -- In formal mode, when completing a private extension the type
20476 -- named in the private part must be exactly the same as that
20477 -- named in the visible part.
20479 if Priv_Parent /= Full_Parent then
20480 Error_Msg_Name_1 := Chars (Priv_Parent);
20481 Check_SPARK_05_Restriction ("% expected", Full_Indic);
20482 end if;
20484 -- Check the rules of 7.3(10): if the private extension inherits
20485 -- known discriminants, then the full type must also inherit those
20486 -- discriminants from the same (ancestor) type, and the parent
20487 -- subtype of the full type must be constrained if and only if
20488 -- the ancestor subtype of the private extension is constrained.
20490 if No (Discriminant_Specifications (Parent (Priv_T)))
20491 and then not Has_Unknown_Discriminants (Priv_T)
20492 and then Has_Discriminants (Base_Type (Priv_Parent))
20493 then
20494 declare
20495 Priv_Indic : constant Node_Id :=
20496 Subtype_Indication (Parent (Priv_T));
20498 Priv_Constr : constant Boolean :=
20499 Is_Constrained (Priv_Parent)
20500 or else
20501 Nkind (Priv_Indic) = N_Subtype_Indication
20502 or else
20503 Is_Constrained (Entity (Priv_Indic));
20505 Full_Constr : constant Boolean :=
20506 Is_Constrained (Full_Parent)
20507 or else
20508 Nkind (Full_Indic) = N_Subtype_Indication
20509 or else
20510 Is_Constrained (Entity (Full_Indic));
20512 Priv_Discr : Entity_Id;
20513 Full_Discr : Entity_Id;
20515 begin
20516 Priv_Discr := First_Discriminant (Priv_Parent);
20517 Full_Discr := First_Discriminant (Full_Parent);
20518 while Present (Priv_Discr) and then Present (Full_Discr) loop
20519 if Original_Record_Component (Priv_Discr) =
20520 Original_Record_Component (Full_Discr)
20521 or else
20522 Corresponding_Discriminant (Priv_Discr) =
20523 Corresponding_Discriminant (Full_Discr)
20524 then
20525 null;
20526 else
20527 exit;
20528 end if;
20530 Next_Discriminant (Priv_Discr);
20531 Next_Discriminant (Full_Discr);
20532 end loop;
20534 if Present (Priv_Discr) or else Present (Full_Discr) then
20535 Error_Msg_N
20536 ("full view must inherit discriminants of the parent "
20537 & "type used in the private extension", Full_Indic);
20539 elsif Priv_Constr and then not Full_Constr then
20540 Error_Msg_N
20541 ("parent subtype of full type must be constrained",
20542 Full_Indic);
20544 elsif Full_Constr and then not Priv_Constr then
20545 Error_Msg_N
20546 ("parent subtype of full type must be unconstrained",
20547 Full_Indic);
20548 end if;
20549 end;
20551 -- Check the rules of 7.3(12): if a partial view has neither
20552 -- known or unknown discriminants, then the full type
20553 -- declaration shall define a definite subtype.
20555 elsif not Has_Unknown_Discriminants (Priv_T)
20556 and then not Has_Discriminants (Priv_T)
20557 and then not Is_Constrained (Full_T)
20558 then
20559 Error_Msg_N
20560 ("full view must define a constrained type if partial view "
20561 & "has no discriminants", Full_T);
20562 end if;
20564 -- ??????? Do we implement the following properly ?????
20565 -- If the ancestor subtype of a private extension has constrained
20566 -- discriminants, then the parent subtype of the full view shall
20567 -- impose a statically matching constraint on those discriminants
20568 -- [7.3(13)].
20569 end if;
20571 else
20572 -- For untagged types, verify that a type without discriminants is
20573 -- not completed with an unconstrained type. A separate error message
20574 -- is produced if the full type has defaulted discriminants.
20576 if Is_Definite_Subtype (Priv_T)
20577 and then not Is_Definite_Subtype (Full_T)
20578 then
20579 Error_Msg_Sloc := Sloc (Parent (Priv_T));
20580 Error_Msg_NE
20581 ("full view of& not compatible with declaration#",
20582 Full_T, Priv_T);
20584 if not Is_Tagged_Type (Full_T) then
20585 Error_Msg_N
20586 ("\one is constrained, the other unconstrained", Full_T);
20587 end if;
20588 end if;
20589 end if;
20591 -- AI-419: verify that the use of "limited" is consistent
20593 declare
20594 Orig_Decl : constant Node_Id := Original_Node (N);
20596 begin
20597 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20598 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
20599 and then Nkind
20600 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
20601 then
20602 if not Limited_Present (Parent (Priv_T))
20603 and then not Synchronized_Present (Parent (Priv_T))
20604 and then Limited_Present (Type_Definition (Orig_Decl))
20605 then
20606 Error_Msg_N
20607 ("full view of non-limited extension cannot be limited", N);
20609 -- Conversely, if the partial view carries the limited keyword,
20610 -- the full view must as well, even if it may be redundant.
20612 elsif Limited_Present (Parent (Priv_T))
20613 and then not Limited_Present (Type_Definition (Orig_Decl))
20614 then
20615 Error_Msg_N
20616 ("full view of limited extension must be explicitly limited",
20618 end if;
20619 end if;
20620 end;
20622 -- Ada 2005 (AI-443): A synchronized private extension must be
20623 -- completed by a task or protected type.
20625 if Ada_Version >= Ada_2005
20626 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20627 and then Synchronized_Present (Parent (Priv_T))
20628 and then not Is_Concurrent_Type (Full_T)
20629 then
20630 Error_Msg_N ("full view of synchronized extension must " &
20631 "be synchronized type", N);
20632 end if;
20634 -- Ada 2005 AI-363: if the full view has discriminants with
20635 -- defaults, it is illegal to declare constrained access subtypes
20636 -- whose designated type is the current type. This allows objects
20637 -- of the type that are declared in the heap to be unconstrained.
20639 if not Has_Unknown_Discriminants (Priv_T)
20640 and then not Has_Discriminants (Priv_T)
20641 and then Has_Discriminants (Full_T)
20642 and then
20643 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
20644 then
20645 Set_Has_Constrained_Partial_View (Full_T);
20646 Set_Has_Constrained_Partial_View (Priv_T);
20647 end if;
20649 -- Create a full declaration for all its subtypes recorded in
20650 -- Private_Dependents and swap them similarly to the base type. These
20651 -- are subtypes that have been define before the full declaration of
20652 -- the private type. We also swap the entry in Private_Dependents list
20653 -- so we can properly restore the private view on exit from the scope.
20655 declare
20656 Priv_Elmt : Elmt_Id;
20657 Priv_Scop : Entity_Id;
20658 Priv : Entity_Id;
20659 Full : Entity_Id;
20661 begin
20662 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
20663 while Present (Priv_Elmt) loop
20664 Priv := Node (Priv_Elmt);
20665 Priv_Scop := Scope (Priv);
20667 if Ekind_In (Priv, E_Private_Subtype,
20668 E_Limited_Private_Subtype,
20669 E_Record_Subtype_With_Private)
20670 then
20671 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
20672 Set_Is_Itype (Full);
20673 Set_Parent (Full, Parent (Priv));
20674 Set_Associated_Node_For_Itype (Full, N);
20676 -- Now we need to complete the private subtype, but since the
20677 -- base type has already been swapped, we must also swap the
20678 -- subtypes (and thus, reverse the arguments in the call to
20679 -- Complete_Private_Subtype). Also note that we may need to
20680 -- re-establish the scope of the private subtype.
20682 Copy_And_Swap (Priv, Full);
20684 if not In_Open_Scopes (Priv_Scop) then
20685 Push_Scope (Priv_Scop);
20687 else
20688 -- Reset Priv_Scop to Empty to indicate no scope was pushed
20690 Priv_Scop := Empty;
20691 end if;
20693 Complete_Private_Subtype (Full, Priv, Full_T, N);
20695 if Present (Priv_Scop) then
20696 Pop_Scope;
20697 end if;
20699 Replace_Elmt (Priv_Elmt, Full);
20700 end if;
20702 Next_Elmt (Priv_Elmt);
20703 end loop;
20704 end;
20706 -- If the private view was tagged, copy the new primitive operations
20707 -- from the private view to the full view.
20709 if Is_Tagged_Type (Full_T) then
20710 declare
20711 Disp_Typ : Entity_Id;
20712 Full_List : Elist_Id;
20713 Prim : Entity_Id;
20714 Prim_Elmt : Elmt_Id;
20715 Priv_List : Elist_Id;
20717 function Contains
20718 (E : Entity_Id;
20719 L : Elist_Id) return Boolean;
20720 -- Determine whether list L contains element E
20722 --------------
20723 -- Contains --
20724 --------------
20726 function Contains
20727 (E : Entity_Id;
20728 L : Elist_Id) return Boolean
20730 List_Elmt : Elmt_Id;
20732 begin
20733 List_Elmt := First_Elmt (L);
20734 while Present (List_Elmt) loop
20735 if Node (List_Elmt) = E then
20736 return True;
20737 end if;
20739 Next_Elmt (List_Elmt);
20740 end loop;
20742 return False;
20743 end Contains;
20745 -- Start of processing
20747 begin
20748 if Is_Tagged_Type (Priv_T) then
20749 Priv_List := Primitive_Operations (Priv_T);
20750 Prim_Elmt := First_Elmt (Priv_List);
20752 -- In the case of a concurrent type completing a private tagged
20753 -- type, primitives may have been declared in between the two
20754 -- views. These subprograms need to be wrapped the same way
20755 -- entries and protected procedures are handled because they
20756 -- cannot be directly shared by the two views.
20758 if Is_Concurrent_Type (Full_T) then
20759 declare
20760 Conc_Typ : constant Entity_Id :=
20761 Corresponding_Record_Type (Full_T);
20762 Curr_Nod : Node_Id := Parent (Conc_Typ);
20763 Wrap_Spec : Node_Id;
20765 begin
20766 while Present (Prim_Elmt) loop
20767 Prim := Node (Prim_Elmt);
20769 if Comes_From_Source (Prim)
20770 and then not Is_Abstract_Subprogram (Prim)
20771 then
20772 Wrap_Spec :=
20773 Make_Subprogram_Declaration (Sloc (Prim),
20774 Specification =>
20775 Build_Wrapper_Spec
20776 (Subp_Id => Prim,
20777 Obj_Typ => Conc_Typ,
20778 Formals =>
20779 Parameter_Specifications
20780 (Parent (Prim))));
20782 Insert_After (Curr_Nod, Wrap_Spec);
20783 Curr_Nod := Wrap_Spec;
20785 Analyze (Wrap_Spec);
20787 -- Remove the wrapper from visibility to avoid
20788 -- spurious conflict with the wrapped entity.
20790 Set_Is_Immediately_Visible
20791 (Defining_Entity (Specification (Wrap_Spec)),
20792 False);
20793 end if;
20795 Next_Elmt (Prim_Elmt);
20796 end loop;
20798 goto Leave;
20799 end;
20801 -- For non-concurrent types, transfer explicit primitives, but
20802 -- omit those inherited from the parent of the private view
20803 -- since they will be re-inherited later on.
20805 else
20806 Full_List := Primitive_Operations (Full_T);
20807 while Present (Prim_Elmt) loop
20808 Prim := Node (Prim_Elmt);
20810 if Comes_From_Source (Prim)
20811 and then not Contains (Prim, Full_List)
20812 then
20813 Append_Elmt (Prim, Full_List);
20814 end if;
20816 Next_Elmt (Prim_Elmt);
20817 end loop;
20818 end if;
20820 -- Untagged private view
20822 else
20823 Full_List := Primitive_Operations (Full_T);
20825 -- In this case the partial view is untagged, so here we locate
20826 -- all of the earlier primitives that need to be treated as
20827 -- dispatching (those that appear between the two views). Note
20828 -- that these additional operations must all be new operations
20829 -- (any earlier operations that override inherited operations
20830 -- of the full view will already have been inserted in the
20831 -- primitives list, marked by Check_Operation_From_Private_View
20832 -- as dispatching. Note that implicit "/=" operators are
20833 -- excluded from being added to the primitives list since they
20834 -- shouldn't be treated as dispatching (tagged "/=" is handled
20835 -- specially).
20837 Prim := Next_Entity (Full_T);
20838 while Present (Prim) and then Prim /= Priv_T loop
20839 if Ekind_In (Prim, E_Procedure, E_Function) then
20840 Disp_Typ := Find_Dispatching_Type (Prim);
20842 if Disp_Typ = Full_T
20843 and then (Chars (Prim) /= Name_Op_Ne
20844 or else Comes_From_Source (Prim))
20845 then
20846 Check_Controlling_Formals (Full_T, Prim);
20848 if Is_Suitable_Primitive (Prim)
20849 and then not Is_Dispatching_Operation (Prim)
20850 then
20851 Append_Elmt (Prim, Full_List);
20852 Set_Is_Dispatching_Operation (Prim);
20853 Set_DT_Position_Value (Prim, No_Uint);
20854 end if;
20856 elsif Is_Dispatching_Operation (Prim)
20857 and then Disp_Typ /= Full_T
20858 then
20859 -- Verify that it is not otherwise controlled by a
20860 -- formal or a return value of type T.
20862 Check_Controlling_Formals (Disp_Typ, Prim);
20863 end if;
20864 end if;
20866 Next_Entity (Prim);
20867 end loop;
20868 end if;
20870 -- For the tagged case, the two views can share the same primitive
20871 -- operations list and the same class-wide type. Update attributes
20872 -- of the class-wide type which depend on the full declaration.
20874 if Is_Tagged_Type (Priv_T) then
20875 Set_Direct_Primitive_Operations (Priv_T, Full_List);
20876 Set_Class_Wide_Type
20877 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
20879 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
20880 end if;
20881 end;
20882 end if;
20884 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20886 if Known_To_Have_Preelab_Init (Priv_T) then
20888 -- Case where there is a pragma Preelaborable_Initialization. We
20889 -- always allow this in predefined units, which is cheating a bit,
20890 -- but it means we don't have to struggle to meet the requirements in
20891 -- the RM for having Preelaborable Initialization. Otherwise we
20892 -- require that the type meets the RM rules. But we can't check that
20893 -- yet, because of the rule about overriding Initialize, so we simply
20894 -- set a flag that will be checked at freeze time.
20896 if not In_Predefined_Unit (Full_T) then
20897 Set_Must_Have_Preelab_Init (Full_T);
20898 end if;
20899 end if;
20901 -- If pragma CPP_Class was applied to the private type declaration,
20902 -- propagate it now to the full type declaration.
20904 if Is_CPP_Class (Priv_T) then
20905 Set_Is_CPP_Class (Full_T);
20906 Set_Convention (Full_T, Convention_CPP);
20908 -- Check that components of imported CPP types do not have default
20909 -- expressions.
20911 Check_CPP_Type_Has_No_Defaults (Full_T);
20912 end if;
20914 -- If the private view has user specified stream attributes, then so has
20915 -- the full view.
20917 -- Why the test, how could these flags be already set in Full_T ???
20919 if Has_Specified_Stream_Read (Priv_T) then
20920 Set_Has_Specified_Stream_Read (Full_T);
20921 end if;
20923 if Has_Specified_Stream_Write (Priv_T) then
20924 Set_Has_Specified_Stream_Write (Full_T);
20925 end if;
20927 if Has_Specified_Stream_Input (Priv_T) then
20928 Set_Has_Specified_Stream_Input (Full_T);
20929 end if;
20931 if Has_Specified_Stream_Output (Priv_T) then
20932 Set_Has_Specified_Stream_Output (Full_T);
20933 end if;
20935 -- Propagate Default_Initial_Condition-related attributes from the
20936 -- partial view to the full view and its base type.
20938 Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T);
20939 Propagate_DIC_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20941 -- Propagate invariant-related attributes from the partial view to the
20942 -- full view and its base type.
20944 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
20945 Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20947 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20948 -- in the full view without advertising the inheritance in the partial
20949 -- view. This can only occur when the partial view has no parent type
20950 -- and the full view has an interface as a parent. Any other scenarios
20951 -- are illegal because implemented interfaces must match between the
20952 -- two views.
20954 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
20955 declare
20956 Full_Par : constant Entity_Id := Etype (Full_T);
20957 Priv_Par : constant Entity_Id := Etype (Priv_T);
20959 begin
20960 if not Is_Interface (Priv_Par)
20961 and then Is_Interface (Full_Par)
20962 and then Has_Inheritable_Invariants (Full_Par)
20963 then
20964 Error_Msg_N
20965 ("hidden inheritance of class-wide type invariants not "
20966 & "allowed", N);
20967 end if;
20968 end;
20969 end if;
20971 -- Propagate predicates to full type, and predicate function if already
20972 -- defined. It is not clear that this can actually happen? the partial
20973 -- view cannot be frozen yet, and the predicate function has not been
20974 -- built. Still it is a cheap check and seems safer to make it.
20976 if Has_Predicates (Priv_T) then
20977 Set_Has_Predicates (Full_T);
20979 if Present (Predicate_Function (Priv_T)) then
20980 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20981 end if;
20982 end if;
20984 <<Leave>>
20985 Restore_Ghost_Region (Saved_GM, Saved_IGR);
20986 end Process_Full_View;
20988 -----------------------------------
20989 -- Process_Incomplete_Dependents --
20990 -----------------------------------
20992 procedure Process_Incomplete_Dependents
20993 (N : Node_Id;
20994 Full_T : Entity_Id;
20995 Inc_T : Entity_Id)
20997 Inc_Elmt : Elmt_Id;
20998 Priv_Dep : Entity_Id;
20999 New_Subt : Entity_Id;
21001 Disc_Constraint : Elist_Id;
21003 begin
21004 if No (Private_Dependents (Inc_T)) then
21005 return;
21006 end if;
21008 -- Itypes that may be generated by the completion of an incomplete
21009 -- subtype are not used by the back-end and not attached to the tree.
21010 -- They are created only for constraint-checking purposes.
21012 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
21013 while Present (Inc_Elmt) loop
21014 Priv_Dep := Node (Inc_Elmt);
21016 if Ekind (Priv_Dep) = E_Subprogram_Type then
21018 -- An Access_To_Subprogram type may have a return type or a
21019 -- parameter type that is incomplete. Replace with the full view.
21021 if Etype (Priv_Dep) = Inc_T then
21022 Set_Etype (Priv_Dep, Full_T);
21023 end if;
21025 declare
21026 Formal : Entity_Id;
21028 begin
21029 Formal := First_Formal (Priv_Dep);
21030 while Present (Formal) loop
21031 if Etype (Formal) = Inc_T then
21032 Set_Etype (Formal, Full_T);
21033 end if;
21035 Next_Formal (Formal);
21036 end loop;
21037 end;
21039 elsif Is_Overloadable (Priv_Dep) then
21041 -- If a subprogram in the incomplete dependents list is primitive
21042 -- for a tagged full type then mark it as a dispatching operation,
21043 -- check whether it overrides an inherited subprogram, and check
21044 -- restrictions on its controlling formals. Note that a protected
21045 -- operation is never dispatching: only its wrapper operation
21046 -- (which has convention Ada) is.
21048 if Is_Tagged_Type (Full_T)
21049 and then Is_Primitive (Priv_Dep)
21050 and then Convention (Priv_Dep) /= Convention_Protected
21051 then
21052 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
21053 Set_Is_Dispatching_Operation (Priv_Dep);
21054 Check_Controlling_Formals (Full_T, Priv_Dep);
21055 end if;
21057 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
21059 -- Can happen during processing of a body before the completion
21060 -- of a TA type. Ignore, because spec is also on dependent list.
21062 return;
21064 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
21065 -- corresponding subtype of the full view.
21067 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype
21068 and then Comes_From_Source (Priv_Dep)
21069 then
21070 Set_Subtype_Indication
21071 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
21072 Set_Etype (Priv_Dep, Full_T);
21073 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
21074 Set_Analyzed (Parent (Priv_Dep), False);
21076 -- Reanalyze the declaration, suppressing the call to Enter_Name
21077 -- to avoid duplicate names.
21079 Analyze_Subtype_Declaration
21080 (N => Parent (Priv_Dep),
21081 Skip => True);
21083 -- Dependent is a subtype
21085 else
21086 -- We build a new subtype indication using the full view of the
21087 -- incomplete parent. The discriminant constraints have been
21088 -- elaborated already at the point of the subtype declaration.
21090 New_Subt := Create_Itype (E_Void, N);
21092 if Has_Discriminants (Full_T) then
21093 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
21094 else
21095 Disc_Constraint := No_Elist;
21096 end if;
21098 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
21099 Set_Full_View (Priv_Dep, New_Subt);
21100 end if;
21102 Next_Elmt (Inc_Elmt);
21103 end loop;
21104 end Process_Incomplete_Dependents;
21106 --------------------------------
21107 -- Process_Range_Expr_In_Decl --
21108 --------------------------------
21110 procedure Process_Range_Expr_In_Decl
21111 (R : Node_Id;
21112 T : Entity_Id;
21113 Subtyp : Entity_Id := Empty;
21114 Check_List : List_Id := Empty_List;
21115 R_Check_Off : Boolean := False;
21116 In_Iter_Schm : Boolean := False)
21118 Lo, Hi : Node_Id;
21119 R_Checks : Check_Result;
21120 Insert_Node : Node_Id;
21121 Def_Id : Entity_Id;
21123 begin
21124 Analyze_And_Resolve (R, Base_Type (T));
21126 if Nkind (R) = N_Range then
21128 -- In SPARK, all ranges should be static, with the exception of the
21129 -- discrete type definition of a loop parameter specification.
21131 if not In_Iter_Schm
21132 and then not Is_OK_Static_Range (R)
21133 then
21134 Check_SPARK_05_Restriction ("range should be static", R);
21135 end if;
21137 Lo := Low_Bound (R);
21138 Hi := High_Bound (R);
21140 -- Validity checks on the range of a quantified expression are
21141 -- delayed until the construct is transformed into a loop.
21143 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
21144 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
21145 then
21146 null;
21148 -- We need to ensure validity of the bounds here, because if we
21149 -- go ahead and do the expansion, then the expanded code will get
21150 -- analyzed with range checks suppressed and we miss the check.
21152 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
21153 -- the temporaries generated by routine Remove_Side_Effects by means
21154 -- of validity checks must use the same names. When a range appears
21155 -- in the parent of a generic, the range is processed with checks
21156 -- disabled as part of the generic context and with checks enabled
21157 -- for code generation purposes. This leads to link issues as the
21158 -- generic contains references to xxx_FIRST/_LAST, but the inlined
21159 -- template sees the temporaries generated by Remove_Side_Effects.
21161 else
21162 Validity_Check_Range (R, Subtyp);
21163 end if;
21165 -- If there were errors in the declaration, try and patch up some
21166 -- common mistakes in the bounds. The cases handled are literals
21167 -- which are Integer where the expected type is Real and vice versa.
21168 -- These corrections allow the compilation process to proceed further
21169 -- along since some basic assumptions of the format of the bounds
21170 -- are guaranteed.
21172 if Etype (R) = Any_Type then
21173 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
21174 Rewrite (Lo,
21175 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
21177 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
21178 Rewrite (Hi,
21179 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
21181 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
21182 Rewrite (Lo,
21183 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
21185 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
21186 Rewrite (Hi,
21187 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
21188 end if;
21190 Set_Etype (Lo, T);
21191 Set_Etype (Hi, T);
21192 end if;
21194 -- If the bounds of the range have been mistakenly given as string
21195 -- literals (perhaps in place of character literals), then an error
21196 -- has already been reported, but we rewrite the string literal as a
21197 -- bound of the range's type to avoid blowups in later processing
21198 -- that looks at static values.
21200 if Nkind (Lo) = N_String_Literal then
21201 Rewrite (Lo,
21202 Make_Attribute_Reference (Sloc (Lo),
21203 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
21204 Attribute_Name => Name_First));
21205 Analyze_And_Resolve (Lo);
21206 end if;
21208 if Nkind (Hi) = N_String_Literal then
21209 Rewrite (Hi,
21210 Make_Attribute_Reference (Sloc (Hi),
21211 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
21212 Attribute_Name => Name_First));
21213 Analyze_And_Resolve (Hi);
21214 end if;
21216 -- If bounds aren't scalar at this point then exit, avoiding
21217 -- problems with further processing of the range in this procedure.
21219 if not Is_Scalar_Type (Etype (Lo)) then
21220 return;
21221 end if;
21223 -- Resolve (actually Sem_Eval) has checked that the bounds are in
21224 -- then range of the base type. Here we check whether the bounds
21225 -- are in the range of the subtype itself. Note that if the bounds
21226 -- represent the null range the Constraint_Error exception should
21227 -- not be raised.
21229 -- ??? The following code should be cleaned up as follows
21231 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
21232 -- is done in the call to Range_Check (R, T); below
21234 -- 2. The use of R_Check_Off should be investigated and possibly
21235 -- removed, this would clean up things a bit.
21237 if Is_Null_Range (Lo, Hi) then
21238 null;
21240 else
21241 -- Capture values of bounds and generate temporaries for them
21242 -- if needed, before applying checks, since checks may cause
21243 -- duplication of the expression without forcing evaluation.
21245 -- The forced evaluation removes side effects from expressions,
21246 -- which should occur also in GNATprove mode. Otherwise, we end up
21247 -- with unexpected insertions of actions at places where this is
21248 -- not supposed to occur, e.g. on default parameters of a call.
21250 if Expander_Active or GNATprove_Mode then
21252 -- Call Force_Evaluation to create declarations as needed to
21253 -- deal with side effects, and also create typ_FIRST/LAST
21254 -- entities for bounds if we have a subtype name.
21256 -- Note: we do this transformation even if expansion is not
21257 -- active if we are in GNATprove_Mode since the transformation
21258 -- is in general required to ensure that the resulting tree has
21259 -- proper Ada semantics.
21261 Force_Evaluation
21262 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
21263 Force_Evaluation
21264 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
21265 end if;
21267 -- We use a flag here instead of suppressing checks on the type
21268 -- because the type we check against isn't necessarily the place
21269 -- where we put the check.
21271 if not R_Check_Off then
21272 R_Checks := Get_Range_Checks (R, T);
21274 -- Look up tree to find an appropriate insertion point. We
21275 -- can't just use insert_actions because later processing
21276 -- depends on the insertion node. Prior to Ada 2012 the
21277 -- insertion point could only be a declaration or a loop, but
21278 -- quantified expressions can appear within any context in an
21279 -- expression, and the insertion point can be any statement,
21280 -- pragma, or declaration.
21282 Insert_Node := Parent (R);
21283 while Present (Insert_Node) loop
21284 exit when
21285 Nkind (Insert_Node) in N_Declaration
21286 and then
21287 not Nkind_In
21288 (Insert_Node, N_Component_Declaration,
21289 N_Loop_Parameter_Specification,
21290 N_Function_Specification,
21291 N_Procedure_Specification);
21293 exit when Nkind (Insert_Node) in N_Later_Decl_Item
21294 or else Nkind (Insert_Node) in
21295 N_Statement_Other_Than_Procedure_Call
21296 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
21297 N_Pragma);
21299 Insert_Node := Parent (Insert_Node);
21300 end loop;
21302 -- Why would Type_Decl not be present??? Without this test,
21303 -- short regression tests fail.
21305 if Present (Insert_Node) then
21307 -- Case of loop statement. Verify that the range is part
21308 -- of the subtype indication of the iteration scheme.
21310 if Nkind (Insert_Node) = N_Loop_Statement then
21311 declare
21312 Indic : Node_Id;
21314 begin
21315 Indic := Parent (R);
21316 while Present (Indic)
21317 and then Nkind (Indic) /= N_Subtype_Indication
21318 loop
21319 Indic := Parent (Indic);
21320 end loop;
21322 if Present (Indic) then
21323 Def_Id := Etype (Subtype_Mark (Indic));
21325 Insert_Range_Checks
21326 (R_Checks,
21327 Insert_Node,
21328 Def_Id,
21329 Sloc (Insert_Node),
21331 Do_Before => True);
21332 end if;
21333 end;
21335 -- Insertion before a declaration. If the declaration
21336 -- includes discriminants, the list of applicable checks
21337 -- is given by the caller.
21339 elsif Nkind (Insert_Node) in N_Declaration then
21340 Def_Id := Defining_Identifier (Insert_Node);
21342 if (Ekind (Def_Id) = E_Record_Type
21343 and then Depends_On_Discriminant (R))
21344 or else
21345 (Ekind (Def_Id) = E_Protected_Type
21346 and then Has_Discriminants (Def_Id))
21347 then
21348 Append_Range_Checks
21349 (R_Checks,
21350 Check_List, Def_Id, Sloc (Insert_Node), R);
21352 else
21353 Insert_Range_Checks
21354 (R_Checks,
21355 Insert_Node, Def_Id, Sloc (Insert_Node), R);
21357 end if;
21359 -- Insertion before a statement. Range appears in the
21360 -- context of a quantified expression. Insertion will
21361 -- take place when expression is expanded.
21363 else
21364 null;
21365 end if;
21366 end if;
21367 end if;
21368 end if;
21370 -- Case of other than an explicit N_Range node
21372 -- The forced evaluation removes side effects from expressions, which
21373 -- should occur also in GNATprove mode. Otherwise, we end up with
21374 -- unexpected insertions of actions at places where this is not
21375 -- supposed to occur, e.g. on default parameters of a call.
21377 elsif Expander_Active or GNATprove_Mode then
21378 Get_Index_Bounds (R, Lo, Hi);
21379 Force_Evaluation (Lo);
21380 Force_Evaluation (Hi);
21381 end if;
21382 end Process_Range_Expr_In_Decl;
21384 --------------------------------------
21385 -- Process_Real_Range_Specification --
21386 --------------------------------------
21388 procedure Process_Real_Range_Specification (Def : Node_Id) is
21389 Spec : constant Node_Id := Real_Range_Specification (Def);
21390 Lo : Node_Id;
21391 Hi : Node_Id;
21392 Err : Boolean := False;
21394 procedure Analyze_Bound (N : Node_Id);
21395 -- Analyze and check one bound
21397 -------------------
21398 -- Analyze_Bound --
21399 -------------------
21401 procedure Analyze_Bound (N : Node_Id) is
21402 begin
21403 Analyze_And_Resolve (N, Any_Real);
21405 if not Is_OK_Static_Expression (N) then
21406 Flag_Non_Static_Expr
21407 ("bound in real type definition is not static!", N);
21408 Err := True;
21409 end if;
21410 end Analyze_Bound;
21412 -- Start of processing for Process_Real_Range_Specification
21414 begin
21415 if Present (Spec) then
21416 Lo := Low_Bound (Spec);
21417 Hi := High_Bound (Spec);
21418 Analyze_Bound (Lo);
21419 Analyze_Bound (Hi);
21421 -- If error, clear away junk range specification
21423 if Err then
21424 Set_Real_Range_Specification (Def, Empty);
21425 end if;
21426 end if;
21427 end Process_Real_Range_Specification;
21429 ---------------------
21430 -- Process_Subtype --
21431 ---------------------
21433 function Process_Subtype
21434 (S : Node_Id;
21435 Related_Nod : Node_Id;
21436 Related_Id : Entity_Id := Empty;
21437 Suffix : Character := ' ') return Entity_Id
21439 P : Node_Id;
21440 Def_Id : Entity_Id;
21441 Error_Node : Node_Id;
21442 Full_View_Id : Entity_Id;
21443 Subtype_Mark_Id : Entity_Id;
21445 May_Have_Null_Exclusion : Boolean;
21447 procedure Check_Incomplete (T : Node_Id);
21448 -- Called to verify that an incomplete type is not used prematurely
21450 ----------------------
21451 -- Check_Incomplete --
21452 ----------------------
21454 procedure Check_Incomplete (T : Node_Id) is
21455 begin
21456 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21458 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
21459 and then
21460 not (Ada_Version >= Ada_2005
21461 and then
21462 (Nkind (Parent (T)) = N_Subtype_Declaration
21463 or else (Nkind (Parent (T)) = N_Subtype_Indication
21464 and then Nkind (Parent (Parent (T))) =
21465 N_Subtype_Declaration)))
21466 then
21467 Error_Msg_N ("invalid use of type before its full declaration", T);
21468 end if;
21469 end Check_Incomplete;
21471 -- Start of processing for Process_Subtype
21473 begin
21474 -- Case of no constraints present
21476 if Nkind (S) /= N_Subtype_Indication then
21477 Find_Type (S);
21479 -- No way to proceed if the subtype indication is malformed. This
21480 -- will happen for example when the subtype indication in an object
21481 -- declaration is missing altogether and the expression is analyzed
21482 -- as if it were that indication.
21484 if not Is_Entity_Name (S) then
21485 return Any_Type;
21486 end if;
21488 Check_Incomplete (S);
21489 P := Parent (S);
21491 -- Ada 2005 (AI-231): Static check
21493 if Ada_Version >= Ada_2005
21494 and then Present (P)
21495 and then Null_Exclusion_Present (P)
21496 and then Nkind (P) /= N_Access_To_Object_Definition
21497 and then not Is_Access_Type (Entity (S))
21498 then
21499 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
21500 end if;
21502 -- The following is ugly, can't we have a range or even a flag???
21504 May_Have_Null_Exclusion :=
21505 Nkind_In (P, N_Access_Definition,
21506 N_Access_Function_Definition,
21507 N_Access_Procedure_Definition,
21508 N_Access_To_Object_Definition,
21509 N_Allocator,
21510 N_Component_Definition)
21511 or else
21512 Nkind_In (P, N_Derived_Type_Definition,
21513 N_Discriminant_Specification,
21514 N_Formal_Object_Declaration,
21515 N_Object_Declaration,
21516 N_Object_Renaming_Declaration,
21517 N_Parameter_Specification,
21518 N_Subtype_Declaration);
21520 -- Create an Itype that is a duplicate of Entity (S) but with the
21521 -- null-exclusion attribute.
21523 if May_Have_Null_Exclusion
21524 and then Is_Access_Type (Entity (S))
21525 and then Null_Exclusion_Present (P)
21527 -- No need to check the case of an access to object definition.
21528 -- It is correct to define double not-null pointers.
21530 -- Example:
21531 -- type Not_Null_Int_Ptr is not null access Integer;
21532 -- type Acc is not null access Not_Null_Int_Ptr;
21534 and then Nkind (P) /= N_Access_To_Object_Definition
21535 then
21536 if Can_Never_Be_Null (Entity (S)) then
21537 case Nkind (Related_Nod) is
21538 when N_Full_Type_Declaration =>
21539 if Nkind (Type_Definition (Related_Nod))
21540 in N_Array_Type_Definition
21541 then
21542 Error_Node :=
21543 Subtype_Indication
21544 (Component_Definition
21545 (Type_Definition (Related_Nod)));
21546 else
21547 Error_Node :=
21548 Subtype_Indication (Type_Definition (Related_Nod));
21549 end if;
21551 when N_Subtype_Declaration =>
21552 Error_Node := Subtype_Indication (Related_Nod);
21554 when N_Object_Declaration =>
21555 Error_Node := Object_Definition (Related_Nod);
21557 when N_Component_Declaration =>
21558 Error_Node :=
21559 Subtype_Indication (Component_Definition (Related_Nod));
21561 when N_Allocator =>
21562 Error_Node := Expression (Related_Nod);
21564 when others =>
21565 pragma Assert (False);
21566 Error_Node := Related_Nod;
21567 end case;
21569 Error_Msg_NE
21570 ("`NOT NULL` not allowed (& already excludes null)",
21571 Error_Node,
21572 Entity (S));
21573 end if;
21575 Set_Etype (S,
21576 Create_Null_Excluding_Itype
21577 (T => Entity (S),
21578 Related_Nod => P));
21579 Set_Entity (S, Etype (S));
21580 end if;
21582 return Entity (S);
21584 -- Case of constraint present, so that we have an N_Subtype_Indication
21585 -- node (this node is created only if constraints are present).
21587 else
21588 Find_Type (Subtype_Mark (S));
21590 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
21591 and then not
21592 (Nkind (Parent (S)) = N_Subtype_Declaration
21593 and then Is_Itype (Defining_Identifier (Parent (S))))
21594 then
21595 Check_Incomplete (Subtype_Mark (S));
21596 end if;
21598 P := Parent (S);
21599 Subtype_Mark_Id := Entity (Subtype_Mark (S));
21601 -- Explicit subtype declaration case
21603 if Nkind (P) = N_Subtype_Declaration then
21604 Def_Id := Defining_Identifier (P);
21606 -- Explicit derived type definition case
21608 elsif Nkind (P) = N_Derived_Type_Definition then
21609 Def_Id := Defining_Identifier (Parent (P));
21611 -- Implicit case, the Def_Id must be created as an implicit type.
21612 -- The one exception arises in the case of concurrent types, array
21613 -- and access types, where other subsidiary implicit types may be
21614 -- created and must appear before the main implicit type. In these
21615 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
21616 -- has not yet been called to create Def_Id.
21618 else
21619 if Is_Array_Type (Subtype_Mark_Id)
21620 or else Is_Concurrent_Type (Subtype_Mark_Id)
21621 or else Is_Access_Type (Subtype_Mark_Id)
21622 then
21623 Def_Id := Empty;
21625 -- For the other cases, we create a new unattached Itype,
21626 -- and set the indication to ensure it gets attached later.
21628 else
21629 Def_Id :=
21630 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21631 end if;
21632 end if;
21634 -- If the kind of constraint is invalid for this kind of type,
21635 -- then give an error, and then pretend no constraint was given.
21637 if not Is_Valid_Constraint_Kind
21638 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
21639 then
21640 Error_Msg_N
21641 ("incorrect constraint for this kind of type", Constraint (S));
21643 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
21645 -- Set Ekind of orphan itype, to prevent cascaded errors
21647 if Present (Def_Id) then
21648 Set_Ekind (Def_Id, Ekind (Any_Type));
21649 end if;
21651 -- Make recursive call, having got rid of the bogus constraint
21653 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
21654 end if;
21656 -- Remaining processing depends on type. Select on Base_Type kind to
21657 -- ensure getting to the concrete type kind in the case of a private
21658 -- subtype (needed when only doing semantic analysis).
21660 case Ekind (Base_Type (Subtype_Mark_Id)) is
21661 when Access_Kind =>
21663 -- If this is a constraint on a class-wide type, discard it.
21664 -- There is currently no way to express a partial discriminant
21665 -- constraint on a type with unknown discriminants. This is
21666 -- a pathology that the ACATS wisely decides not to test.
21668 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
21669 if Comes_From_Source (S) then
21670 Error_Msg_N
21671 ("constraint on class-wide type ignored??",
21672 Constraint (S));
21673 end if;
21675 if Nkind (P) = N_Subtype_Declaration then
21676 Set_Subtype_Indication (P,
21677 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
21678 end if;
21680 return Subtype_Mark_Id;
21681 end if;
21683 Constrain_Access (Def_Id, S, Related_Nod);
21685 if Expander_Active
21686 and then Is_Itype (Designated_Type (Def_Id))
21687 and then Nkind (Related_Nod) = N_Subtype_Declaration
21688 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
21689 then
21690 Build_Itype_Reference
21691 (Designated_Type (Def_Id), Related_Nod);
21692 end if;
21694 when Array_Kind =>
21695 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21697 when Decimal_Fixed_Point_Kind =>
21698 Constrain_Decimal (Def_Id, S);
21700 when Enumeration_Kind =>
21701 Constrain_Enumeration (Def_Id, S);
21703 when Ordinary_Fixed_Point_Kind =>
21704 Constrain_Ordinary_Fixed (Def_Id, S);
21706 when Float_Kind =>
21707 Constrain_Float (Def_Id, S);
21709 when Integer_Kind =>
21710 Constrain_Integer (Def_Id, S);
21712 when Class_Wide_Kind
21713 | E_Incomplete_Type
21714 | E_Record_Subtype
21715 | E_Record_Type
21717 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21719 if Ekind (Def_Id) = E_Incomplete_Type then
21720 Set_Private_Dependents (Def_Id, New_Elmt_List);
21721 end if;
21723 when Private_Kind =>
21725 -- A private type with unknown discriminants may be completed
21726 -- by an unconstrained array type.
21728 if Has_Unknown_Discriminants (Subtype_Mark_Id)
21729 and then Present (Full_View (Subtype_Mark_Id))
21730 and then Is_Array_Type (Full_View (Subtype_Mark_Id))
21731 then
21732 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21734 -- ... but more commonly is completed by a discriminated record
21735 -- type.
21737 else
21738 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21739 end if;
21741 -- The base type may be private but Def_Id may be a full view
21742 -- in an instance.
21744 if Is_Private_Type (Def_Id) then
21745 Set_Private_Dependents (Def_Id, New_Elmt_List);
21746 end if;
21748 -- In case of an invalid constraint prevent further processing
21749 -- since the type constructed is missing expected fields.
21751 if Etype (Def_Id) = Any_Type then
21752 return Def_Id;
21753 end if;
21755 -- If the full view is that of a task with discriminants,
21756 -- we must constrain both the concurrent type and its
21757 -- corresponding record type. Otherwise we will just propagate
21758 -- the constraint to the full view, if available.
21760 if Present (Full_View (Subtype_Mark_Id))
21761 and then Has_Discriminants (Subtype_Mark_Id)
21762 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
21763 then
21764 Full_View_Id :=
21765 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21767 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
21768 Constrain_Concurrent (Full_View_Id, S,
21769 Related_Nod, Related_Id, Suffix);
21770 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
21771 Set_Full_View (Def_Id, Full_View_Id);
21773 -- Introduce an explicit reference to the private subtype,
21774 -- to prevent scope anomalies in gigi if first use appears
21775 -- in a nested context, e.g. a later function body.
21776 -- Should this be generated in other contexts than a full
21777 -- type declaration?
21779 if Is_Itype (Def_Id)
21780 and then
21781 Nkind (Parent (P)) = N_Full_Type_Declaration
21782 then
21783 Build_Itype_Reference (Def_Id, Parent (P));
21784 end if;
21786 else
21787 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
21788 end if;
21790 when Concurrent_Kind =>
21791 Constrain_Concurrent (Def_Id, S,
21792 Related_Nod, Related_Id, Suffix);
21794 when others =>
21795 Error_Msg_N ("invalid subtype mark in subtype indication", S);
21796 end case;
21798 -- Size, Alignment, Representation aspects and Convention are always
21799 -- inherited from the base type.
21801 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
21802 Set_Rep_Info (Def_Id, (Subtype_Mark_Id));
21803 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
21805 -- The anonymous subtype created for the subtype indication
21806 -- inherits the predicates of the parent.
21808 if Has_Predicates (Subtype_Mark_Id) then
21809 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21811 -- Indicate where the predicate function may be found
21813 if No (Predicate_Function (Def_Id)) and then Is_Itype (Def_Id) then
21814 Set_Predicated_Parent (Def_Id, Subtype_Mark_Id);
21815 end if;
21816 end if;
21818 return Def_Id;
21819 end if;
21820 end Process_Subtype;
21822 -----------------------------
21823 -- Record_Type_Declaration --
21824 -----------------------------
21826 procedure Record_Type_Declaration
21827 (T : Entity_Id;
21828 N : Node_Id;
21829 Prev : Entity_Id)
21831 Def : constant Node_Id := Type_Definition (N);
21832 Is_Tagged : Boolean;
21833 Tag_Comp : Entity_Id;
21835 begin
21836 -- These flags must be initialized before calling Process_Discriminants
21837 -- because this routine makes use of them.
21839 Set_Ekind (T, E_Record_Type);
21840 Set_Etype (T, T);
21841 Init_Size_Align (T);
21842 Set_Interfaces (T, No_Elist);
21843 Set_Stored_Constraint (T, No_Elist);
21844 Set_Default_SSO (T);
21845 Set_No_Reordering (T, No_Component_Reordering);
21847 -- Normal case
21849 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
21850 if Limited_Present (Def) then
21851 Check_SPARK_05_Restriction ("limited is not allowed", N);
21852 end if;
21854 if Abstract_Present (Def) then
21855 Check_SPARK_05_Restriction ("abstract is not allowed", N);
21856 end if;
21858 -- The flag Is_Tagged_Type might have already been set by
21859 -- Find_Type_Name if it detected an error for declaration T. This
21860 -- arises in the case of private tagged types where the full view
21861 -- omits the word tagged.
21863 Is_Tagged :=
21864 Tagged_Present (Def)
21865 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21867 Set_Is_Limited_Record (T, Limited_Present (Def));
21869 if Is_Tagged then
21870 Set_Is_Tagged_Type (T, True);
21871 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21872 end if;
21874 -- Type is abstract if full declaration carries keyword, or if
21875 -- previous partial view did.
21877 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
21878 or else Abstract_Present (Def));
21880 else
21881 Check_SPARK_05_Restriction ("interface is not allowed", N);
21883 Is_Tagged := True;
21884 Analyze_Interface_Declaration (T, Def);
21886 if Present (Discriminant_Specifications (N)) then
21887 Error_Msg_N
21888 ("interface types cannot have discriminants",
21889 Defining_Identifier
21890 (First (Discriminant_Specifications (N))));
21891 end if;
21892 end if;
21894 -- First pass: if there are self-referential access components,
21895 -- create the required anonymous access type declarations, and if
21896 -- need be an incomplete type declaration for T itself.
21898 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21900 if Ada_Version >= Ada_2005
21901 and then Present (Interface_List (Def))
21902 then
21903 Check_Interfaces (N, Def);
21905 declare
21906 Ifaces_List : Elist_Id;
21908 begin
21909 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21910 -- already in the parents.
21912 Collect_Interfaces
21913 (T => T,
21914 Ifaces_List => Ifaces_List,
21915 Exclude_Parents => True);
21917 Set_Interfaces (T, Ifaces_List);
21918 end;
21919 end if;
21921 -- Records constitute a scope for the component declarations within.
21922 -- The scope is created prior to the processing of these declarations.
21923 -- Discriminants are processed first, so that they are visible when
21924 -- processing the other components. The Ekind of the record type itself
21925 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21927 -- Enter record scope
21929 Push_Scope (T);
21931 -- If an incomplete or private type declaration was already given for
21932 -- the type, then this scope already exists, and the discriminants have
21933 -- been declared within. We must verify that the full declaration
21934 -- matches the incomplete one.
21936 Check_Or_Process_Discriminants (N, T, Prev);
21938 Set_Is_Constrained (T, not Has_Discriminants (T));
21939 Set_Has_Delayed_Freeze (T, True);
21941 -- For tagged types add a manually analyzed component corresponding
21942 -- to the component _tag, the corresponding piece of tree will be
21943 -- expanded as part of the freezing actions if it is not a CPP_Class.
21945 if Is_Tagged then
21947 -- Do not add the tag unless we are in expansion mode
21949 if Expander_Active then
21950 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21951 Enter_Name (Tag_Comp);
21953 Set_Ekind (Tag_Comp, E_Component);
21954 Set_Is_Tag (Tag_Comp);
21955 Set_Is_Aliased (Tag_Comp);
21956 Set_Etype (Tag_Comp, RTE (RE_Tag));
21957 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21958 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21959 Init_Component_Location (Tag_Comp);
21961 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21962 -- implemented interfaces.
21964 if Has_Interfaces (T) then
21965 Add_Interface_Tag_Components (N, T);
21966 end if;
21967 end if;
21969 Make_Class_Wide_Type (T);
21970 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21971 end if;
21973 -- We must suppress range checks when processing record components in
21974 -- the presence of discriminants, since we don't want spurious checks to
21975 -- be generated during their analysis, but Suppress_Range_Checks flags
21976 -- must be reset the after processing the record definition.
21978 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21979 -- couldn't we just use the normal range check suppression method here.
21980 -- That would seem cleaner ???
21982 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21983 Set_Kill_Range_Checks (T, True);
21984 Record_Type_Definition (Def, Prev);
21985 Set_Kill_Range_Checks (T, False);
21986 else
21987 Record_Type_Definition (Def, Prev);
21988 end if;
21990 -- Exit from record scope
21992 End_Scope;
21994 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21995 -- the implemented interfaces and associate them an aliased entity.
21997 if Is_Tagged
21998 and then not Is_Empty_List (Interface_List (Def))
21999 then
22000 Derive_Progenitor_Subprograms (T, T);
22001 end if;
22003 Check_Function_Writable_Actuals (N);
22004 end Record_Type_Declaration;
22006 ----------------------------
22007 -- Record_Type_Definition --
22008 ----------------------------
22010 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
22011 Component : Entity_Id;
22012 Ctrl_Components : Boolean := False;
22013 Final_Storage_Only : Boolean;
22014 T : Entity_Id;
22016 begin
22017 if Ekind (Prev_T) = E_Incomplete_Type then
22018 T := Full_View (Prev_T);
22019 else
22020 T := Prev_T;
22021 end if;
22023 -- In SPARK, tagged types and type extensions may only be declared in
22024 -- the specification of library unit packages.
22026 if Present (Def) and then Is_Tagged_Type (T) then
22027 declare
22028 Typ : Node_Id;
22029 Ctxt : Node_Id;
22031 begin
22032 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
22033 Typ := Parent (Def);
22034 else
22035 pragma Assert
22036 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
22037 Typ := Parent (Parent (Def));
22038 end if;
22040 Ctxt := Parent (Typ);
22042 if Nkind (Ctxt) = N_Package_Body
22043 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
22044 then
22045 Check_SPARK_05_Restriction
22046 ("type should be defined in package specification", Typ);
22048 elsif Nkind (Ctxt) /= N_Package_Specification
22049 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
22050 then
22051 Check_SPARK_05_Restriction
22052 ("type should be defined in library unit package", Typ);
22053 end if;
22054 end;
22055 end if;
22057 Final_Storage_Only := not Is_Controlled (T);
22059 -- Ada 2005: Check whether an explicit Limited is present in a derived
22060 -- type declaration.
22062 if Nkind (Parent (Def)) = N_Derived_Type_Definition
22063 and then Limited_Present (Parent (Def))
22064 then
22065 Set_Is_Limited_Record (T);
22066 end if;
22068 -- If the component list of a record type is defined by the reserved
22069 -- word null and there is no discriminant part, then the record type has
22070 -- no components and all records of the type are null records (RM 3.7)
22071 -- This procedure is also called to process the extension part of a
22072 -- record extension, in which case the current scope may have inherited
22073 -- components.
22075 if No (Def)
22076 or else No (Component_List (Def))
22077 or else Null_Present (Component_List (Def))
22078 then
22079 if not Is_Tagged_Type (T) then
22080 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
22081 end if;
22083 else
22084 Analyze_Declarations (Component_Items (Component_List (Def)));
22086 if Present (Variant_Part (Component_List (Def))) then
22087 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
22088 Analyze (Variant_Part (Component_List (Def)));
22089 end if;
22090 end if;
22092 -- After completing the semantic analysis of the record definition,
22093 -- record components, both new and inherited, are accessible. Set their
22094 -- kind accordingly. Exclude malformed itypes from illegal declarations,
22095 -- whose Ekind may be void.
22097 Component := First_Entity (Current_Scope);
22098 while Present (Component) loop
22099 if Ekind (Component) = E_Void
22100 and then not Is_Itype (Component)
22101 then
22102 Set_Ekind (Component, E_Component);
22103 Init_Component_Location (Component);
22104 end if;
22106 Propagate_Concurrent_Flags (T, Etype (Component));
22108 if Ekind (Component) /= E_Component then
22109 null;
22111 -- Do not set Has_Controlled_Component on a class-wide equivalent
22112 -- type. See Make_CW_Equivalent_Type.
22114 elsif not Is_Class_Wide_Equivalent_Type (T)
22115 and then (Has_Controlled_Component (Etype (Component))
22116 or else (Chars (Component) /= Name_uParent
22117 and then Is_Controlled (Etype (Component))))
22118 then
22119 Set_Has_Controlled_Component (T, True);
22120 Final_Storage_Only :=
22121 Final_Storage_Only
22122 and then Finalize_Storage_Only (Etype (Component));
22123 Ctrl_Components := True;
22124 end if;
22126 Next_Entity (Component);
22127 end loop;
22129 -- A Type is Finalize_Storage_Only only if all its controlled components
22130 -- are also.
22132 if Ctrl_Components then
22133 Set_Finalize_Storage_Only (T, Final_Storage_Only);
22134 end if;
22136 -- Place reference to end record on the proper entity, which may
22137 -- be a partial view.
22139 if Present (Def) then
22140 Process_End_Label (Def, 'e', Prev_T);
22141 end if;
22142 end Record_Type_Definition;
22144 ------------------------
22145 -- Replace_Components --
22146 ------------------------
22148 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
22149 function Process (N : Node_Id) return Traverse_Result;
22151 -------------
22152 -- Process --
22153 -------------
22155 function Process (N : Node_Id) return Traverse_Result is
22156 Comp : Entity_Id;
22158 begin
22159 if Nkind (N) = N_Discriminant_Specification then
22160 Comp := First_Discriminant (Typ);
22161 while Present (Comp) loop
22162 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22163 Set_Defining_Identifier (N, Comp);
22164 exit;
22165 end if;
22167 Next_Discriminant (Comp);
22168 end loop;
22170 elsif Nkind (N) = N_Variant_Part then
22171 Comp := First_Discriminant (Typ);
22172 while Present (Comp) loop
22173 if Chars (Comp) = Chars (Name (N)) then
22174 Set_Entity (Name (N), Comp);
22175 exit;
22176 end if;
22178 Next_Discriminant (Comp);
22179 end loop;
22181 elsif Nkind (N) = N_Component_Declaration then
22182 Comp := First_Component (Typ);
22183 while Present (Comp) loop
22184 if Chars (Comp) = Chars (Defining_Identifier (N)) then
22185 Set_Defining_Identifier (N, Comp);
22186 exit;
22187 end if;
22189 Next_Component (Comp);
22190 end loop;
22191 end if;
22193 return OK;
22194 end Process;
22196 procedure Replace is new Traverse_Proc (Process);
22198 -- Start of processing for Replace_Components
22200 begin
22201 Replace (Decl);
22202 end Replace_Components;
22204 -------------------------------
22205 -- Set_Completion_Referenced --
22206 -------------------------------
22208 procedure Set_Completion_Referenced (E : Entity_Id) is
22209 begin
22210 -- If in main unit, mark entity that is a completion as referenced,
22211 -- warnings go on the partial view when needed.
22213 if In_Extended_Main_Source_Unit (E) then
22214 Set_Referenced (E);
22215 end if;
22216 end Set_Completion_Referenced;
22218 ---------------------
22219 -- Set_Default_SSO --
22220 ---------------------
22222 procedure Set_Default_SSO (T : Entity_Id) is
22223 begin
22224 case Opt.Default_SSO is
22225 when ' ' =>
22226 null;
22227 when 'L' =>
22228 Set_SSO_Set_Low_By_Default (T, True);
22229 when 'H' =>
22230 Set_SSO_Set_High_By_Default (T, True);
22231 when others =>
22232 raise Program_Error;
22233 end case;
22234 end Set_Default_SSO;
22236 ---------------------
22237 -- Set_Fixed_Range --
22238 ---------------------
22240 -- The range for fixed-point types is complicated by the fact that we
22241 -- do not know the exact end points at the time of the declaration. This
22242 -- is true for three reasons:
22244 -- A size clause may affect the fudging of the end-points.
22245 -- A small clause may affect the values of the end-points.
22246 -- We try to include the end-points if it does not affect the size.
22248 -- This means that the actual end-points must be established at the
22249 -- point when the type is frozen. Meanwhile, we first narrow the range
22250 -- as permitted (so that it will fit if necessary in a small specified
22251 -- size), and then build a range subtree with these narrowed bounds.
22252 -- Set_Fixed_Range constructs the range from real literal values, and
22253 -- sets the range as the Scalar_Range of the given fixed-point type entity.
22255 -- The parent of this range is set to point to the entity so that it is
22256 -- properly hooked into the tree (unlike normal Scalar_Range entries for
22257 -- other scalar types, which are just pointers to the range in the
22258 -- original tree, this would otherwise be an orphan).
22260 -- The tree is left unanalyzed. When the type is frozen, the processing
22261 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
22262 -- analyzed, and uses this as an indication that it should complete
22263 -- work on the range (it will know the final small and size values).
22265 procedure Set_Fixed_Range
22266 (E : Entity_Id;
22267 Loc : Source_Ptr;
22268 Lo : Ureal;
22269 Hi : Ureal)
22271 S : constant Node_Id :=
22272 Make_Range (Loc,
22273 Low_Bound => Make_Real_Literal (Loc, Lo),
22274 High_Bound => Make_Real_Literal (Loc, Hi));
22275 begin
22276 Set_Scalar_Range (E, S);
22277 Set_Parent (S, E);
22279 -- Before the freeze point, the bounds of a fixed point are universal
22280 -- and carry the corresponding type.
22282 Set_Etype (Low_Bound (S), Universal_Real);
22283 Set_Etype (High_Bound (S), Universal_Real);
22284 end Set_Fixed_Range;
22286 ----------------------------------
22287 -- Set_Scalar_Range_For_Subtype --
22288 ----------------------------------
22290 procedure Set_Scalar_Range_For_Subtype
22291 (Def_Id : Entity_Id;
22292 R : Node_Id;
22293 Subt : Entity_Id)
22295 Kind : constant Entity_Kind := Ekind (Def_Id);
22297 begin
22298 -- Defend against previous error
22300 if Nkind (R) = N_Error then
22301 return;
22302 end if;
22304 Set_Scalar_Range (Def_Id, R);
22306 -- We need to link the range into the tree before resolving it so
22307 -- that types that are referenced, including importantly the subtype
22308 -- itself, are properly frozen (Freeze_Expression requires that the
22309 -- expression be properly linked into the tree). Of course if it is
22310 -- already linked in, then we do not disturb the current link.
22312 if No (Parent (R)) then
22313 Set_Parent (R, Def_Id);
22314 end if;
22316 -- Reset the kind of the subtype during analysis of the range, to
22317 -- catch possible premature use in the bounds themselves.
22319 Set_Ekind (Def_Id, E_Void);
22320 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
22321 Set_Ekind (Def_Id, Kind);
22322 end Set_Scalar_Range_For_Subtype;
22324 --------------------------------------------------------
22325 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22326 --------------------------------------------------------
22328 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22329 (E : Entity_Id)
22331 begin
22332 -- Make sure set if encountered during Expand_To_Stored_Constraint
22334 Set_Stored_Constraint (E, No_Elist);
22336 -- Give it the right value
22338 if Is_Constrained (E) and then Has_Discriminants (E) then
22339 Set_Stored_Constraint (E,
22340 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
22341 end if;
22342 end Set_Stored_Constraint_From_Discriminant_Constraint;
22344 -------------------------------------
22345 -- Signed_Integer_Type_Declaration --
22346 -------------------------------------
22348 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
22349 Implicit_Base : Entity_Id;
22350 Base_Typ : Entity_Id;
22351 Lo_Val : Uint;
22352 Hi_Val : Uint;
22353 Errs : Boolean := False;
22354 Lo : Node_Id;
22355 Hi : Node_Id;
22357 function Can_Derive_From (E : Entity_Id) return Boolean;
22358 -- Determine whether given bounds allow derivation from specified type
22360 procedure Check_Bound (Expr : Node_Id);
22361 -- Check bound to make sure it is integral and static. If not, post
22362 -- appropriate error message and set Errs flag
22364 ---------------------
22365 -- Can_Derive_From --
22366 ---------------------
22368 -- Note we check both bounds against both end values, to deal with
22369 -- strange types like ones with a range of 0 .. -12341234.
22371 function Can_Derive_From (E : Entity_Id) return Boolean is
22372 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
22373 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
22374 begin
22375 return Lo <= Lo_Val and then Lo_Val <= Hi
22376 and then
22377 Lo <= Hi_Val and then Hi_Val <= Hi;
22378 end Can_Derive_From;
22380 -----------------
22381 -- Check_Bound --
22382 -----------------
22384 procedure Check_Bound (Expr : Node_Id) is
22385 begin
22386 -- If a range constraint is used as an integer type definition, each
22387 -- bound of the range must be defined by a static expression of some
22388 -- integer type, but the two bounds need not have the same integer
22389 -- type (Negative bounds are allowed.) (RM 3.5.4)
22391 if not Is_Integer_Type (Etype (Expr)) then
22392 Error_Msg_N
22393 ("integer type definition bounds must be of integer type", Expr);
22394 Errs := True;
22396 elsif not Is_OK_Static_Expression (Expr) then
22397 Flag_Non_Static_Expr
22398 ("non-static expression used for integer type bound!", Expr);
22399 Errs := True;
22401 -- The bounds are folded into literals, and we set their type to be
22402 -- universal, to avoid typing difficulties: we cannot set the type
22403 -- of the literal to the new type, because this would be a forward
22404 -- reference for the back end, and if the original type is user-
22405 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
22407 else
22408 if Is_Entity_Name (Expr) then
22409 Fold_Uint (Expr, Expr_Value (Expr), True);
22410 end if;
22412 Set_Etype (Expr, Universal_Integer);
22413 end if;
22414 end Check_Bound;
22416 -- Start of processing for Signed_Integer_Type_Declaration
22418 begin
22419 -- Create an anonymous base type
22421 Implicit_Base :=
22422 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
22424 -- Analyze and check the bounds, they can be of any integer type
22426 Lo := Low_Bound (Def);
22427 Hi := High_Bound (Def);
22429 -- Arbitrarily use Integer as the type if either bound had an error
22431 if Hi = Error or else Lo = Error then
22432 Base_Typ := Any_Integer;
22433 Set_Error_Posted (T, True);
22435 -- Here both bounds are OK expressions
22437 else
22438 Analyze_And_Resolve (Lo, Any_Integer);
22439 Analyze_And_Resolve (Hi, Any_Integer);
22441 Check_Bound (Lo);
22442 Check_Bound (Hi);
22444 if Errs then
22445 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22446 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22447 end if;
22449 -- Find type to derive from
22451 Lo_Val := Expr_Value (Lo);
22452 Hi_Val := Expr_Value (Hi);
22454 if Can_Derive_From (Standard_Short_Short_Integer) then
22455 Base_Typ := Base_Type (Standard_Short_Short_Integer);
22457 elsif Can_Derive_From (Standard_Short_Integer) then
22458 Base_Typ := Base_Type (Standard_Short_Integer);
22460 elsif Can_Derive_From (Standard_Integer) then
22461 Base_Typ := Base_Type (Standard_Integer);
22463 elsif Can_Derive_From (Standard_Long_Integer) then
22464 Base_Typ := Base_Type (Standard_Long_Integer);
22466 elsif Can_Derive_From (Standard_Long_Long_Integer) then
22467 Check_Restriction (No_Long_Long_Integers, Def);
22468 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22470 else
22471 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22472 Error_Msg_N ("integer type definition bounds out of range", Def);
22473 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22474 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22475 end if;
22476 end if;
22478 -- Complete both implicit base and declared first subtype entities. The
22479 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22480 -- are not clobbered when the signed integer type acts as a full view of
22481 -- a private type.
22483 Set_Etype (Implicit_Base, Base_Typ);
22484 Set_Size_Info (Implicit_Base, Base_Typ);
22485 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
22486 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
22487 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
22489 Set_Ekind (T, E_Signed_Integer_Subtype);
22490 Set_Etype (T, Implicit_Base);
22491 Set_Size_Info (T, Implicit_Base);
22492 Inherit_Rep_Item_Chain (T, Implicit_Base);
22493 Set_Scalar_Range (T, Def);
22494 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
22495 Set_Is_Constrained (T);
22496 end Signed_Integer_Type_Declaration;
22498 end Sem_Ch3;