* config/alpha/netbsd.h (SUBTARGET_EXTRA_SPECS): Add
[official-gcc.git] / gcc / ssa.c
blob4c989d764e404e8e1c42da18cc066ceea96575bf
1 /* Static Single Assignment conversion routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 /* References:
23 Building an Optimizing Compiler
24 Robert Morgan
25 Butterworth-Heinemann, 1998
27 Static Single Assignment Construction
28 Preston Briggs, Tim Harvey, Taylor Simpson
29 Technical Report, Rice University, 1995
30 ftp://ftp.cs.rice.edu/public/preston/optimizer/SSA.ps.gz. */
32 #include "config.h"
33 #include "system.h"
35 #include "rtl.h"
36 #include "expr.h"
37 #include "varray.h"
38 #include "partition.h"
39 #include "sbitmap.h"
40 #include "hashtab.h"
41 #include "regs.h"
42 #include "hard-reg-set.h"
43 #include "flags.h"
44 #include "function.h"
45 #include "real.h"
46 #include "insn-config.h"
47 #include "recog.h"
48 #include "basic-block.h"
49 #include "output.h"
50 #include "ssa.h"
52 /* TODO:
54 Handle subregs better, maybe. For now, if a reg that's set in a
55 subreg expression is duplicated going into SSA form, an extra copy
56 is inserted first that copies the entire reg into the duplicate, so
57 that the other bits are preserved. This isn't strictly SSA, since
58 at least part of the reg is assigned in more than one place (though
59 they are adjacent).
61 ??? What to do about strict_low_part. Probably I'll have to split
62 them out of their current instructions first thing.
64 Actually the best solution may be to have a kind of "mid-level rtl"
65 in which the RTL encodes exactly what we want, without exposing a
66 lot of niggling processor details. At some later point we lower
67 the representation, calling back into optabs to finish any necessary
68 expansion. */
70 /* All pseudo-registers and select hard registers are converted to SSA
71 form. When converting out of SSA, these select hard registers are
72 guaranteed to be mapped to their original register number. Each
73 machine's .h file should define CONVERT_HARD_REGISTER_TO_SSA_P
74 indicating which hard registers should be converted.
76 When converting out of SSA, temporaries for all registers are
77 partitioned. The partition is checked to ensure that all uses of
78 the same hard register in the same machine mode are in the same
79 class. */
81 /* If conservative_reg_partition is non-zero, use a conservative
82 register partitioning algorithm (which leaves more regs after
83 emerging from SSA) instead of the coalescing one. This is being
84 left in for a limited time only, as a debugging tool until the
85 coalescing algorithm is validated. */
87 static int conservative_reg_partition;
89 /* This flag is set when the CFG is in SSA form. */
90 int in_ssa_form = 0;
92 /* Element I is the single instruction that sets register I. */
93 varray_type ssa_definition;
95 /* Element I-PSEUDO is the normal register that originated the ssa
96 register in question. */
97 varray_type ssa_rename_from;
99 /* Element I is the normal register that originated the ssa
100 register in question.
102 A hash table stores the (register, rtl) pairs. These are each
103 xmalloc'ed and deleted when the hash table is destroyed. */
104 htab_t ssa_rename_from_ht;
106 /* The running target ssa register for a given pseudo register.
107 (Pseudo registers appear in only one mode.) */
108 static rtx *ssa_rename_to_pseudo;
109 /* Similar, but for hard registers. A hard register can appear in
110 many modes, so we store an equivalent pseudo for each of the
111 modes. */
112 static rtx ssa_rename_to_hard[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
114 /* ssa_rename_from maps pseudo registers to the original corresponding
115 RTL. It is implemented as using a hash table. */
117 typedef struct {
118 unsigned int reg;
119 rtx original;
120 } ssa_rename_from_pair;
122 struct ssa_rename_from_hash_table_data {
123 sbitmap canonical_elements;
124 partition reg_partition;
127 static void ssa_rename_from_initialize
128 PARAMS ((void));
129 static rtx ssa_rename_from_lookup
130 PARAMS ((int reg));
131 static unsigned int original_register
132 PARAMS ((unsigned int regno));
133 static void ssa_rename_from_insert
134 PARAMS ((unsigned int reg, rtx r));
135 static void ssa_rename_from_free
136 PARAMS ((void));
137 typedef int (*srf_trav) PARAMS ((int regno, rtx r, sbitmap canonical_elements, partition reg_partition));
138 static void ssa_rename_from_traverse
139 PARAMS ((htab_trav callback_function, sbitmap canonical_elements, partition reg_partition));
140 /*static Avoid warnign message. */ void ssa_rename_from_print
141 PARAMS ((void));
142 static int ssa_rename_from_print_1
143 PARAMS ((void **slot, void *data));
144 static hashval_t ssa_rename_from_hash_function
145 PARAMS ((const void * srfp));
146 static int ssa_rename_from_equal
147 PARAMS ((const void *srfp1, const void *srfp2));
148 static void ssa_rename_from_delete
149 PARAMS ((void *srfp));
151 static rtx ssa_rename_to_lookup
152 PARAMS ((rtx reg));
153 static void ssa_rename_to_insert
154 PARAMS ((rtx reg, rtx r));
156 /* The number of registers that were live on entry to the SSA routines. */
157 static unsigned int ssa_max_reg_num;
159 /* Local function prototypes. */
161 struct rename_context;
163 static inline rtx * phi_alternative
164 PARAMS ((rtx, int));
165 static void compute_dominance_frontiers_1
166 PARAMS ((sbitmap *frontiers, int *idom, int bb, sbitmap done));
167 static void find_evaluations_1
168 PARAMS ((rtx dest, rtx set, void *data));
169 static void find_evaluations
170 PARAMS ((sbitmap *evals, int nregs));
171 static void compute_iterated_dominance_frontiers
172 PARAMS ((sbitmap *idfs, sbitmap *frontiers, sbitmap *evals, int nregs));
173 static void insert_phi_node
174 PARAMS ((int regno, int b));
175 static void insert_phi_nodes
176 PARAMS ((sbitmap *idfs, sbitmap *evals, int nregs));
177 static void create_delayed_rename
178 PARAMS ((struct rename_context *, rtx *));
179 static void apply_delayed_renames
180 PARAMS ((struct rename_context *));
181 static int rename_insn_1
182 PARAMS ((rtx *ptr, void *data));
183 static void rename_block
184 PARAMS ((int b, int *idom));
185 static void rename_registers
186 PARAMS ((int nregs, int *idom));
188 static inline int ephi_add_node
189 PARAMS ((rtx reg, rtx *nodes, int *n_nodes));
190 static int * ephi_forward
191 PARAMS ((int t, sbitmap visited, sbitmap *succ, int *tstack));
192 static void ephi_backward
193 PARAMS ((int t, sbitmap visited, sbitmap *pred, rtx *nodes));
194 static void ephi_create
195 PARAMS ((int t, sbitmap visited, sbitmap *pred, sbitmap *succ, rtx *nodes));
196 static void eliminate_phi
197 PARAMS ((edge e, partition reg_partition));
198 static int make_regs_equivalent_over_bad_edges
199 PARAMS ((int bb, partition reg_partition));
201 /* These are used only in the conservative register partitioning
202 algorithms. */
203 static int make_equivalent_phi_alternatives_equivalent
204 PARAMS ((int bb, partition reg_partition));
205 static partition compute_conservative_reg_partition
206 PARAMS ((void));
207 static int record_canonical_element_1
208 PARAMS ((void **srfp, void *data));
209 static int check_hard_regs_in_partition
210 PARAMS ((partition reg_partition));
211 static int rename_equivalent_regs_in_insn
212 PARAMS ((rtx *ptr, void *data));
214 /* These are used in the register coalescing algorithm. */
215 static int coalesce_if_unconflicting
216 PARAMS ((partition p, conflict_graph conflicts, int reg1, int reg2));
217 static int coalesce_regs_in_copies
218 PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
219 static int coalesce_reg_in_phi
220 PARAMS ((rtx, int dest_regno, int src_regno, void *data));
221 static int coalesce_regs_in_successor_phi_nodes
222 PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
223 static partition compute_coalesced_reg_partition
224 PARAMS ((void));
225 static int mark_reg_in_phi
226 PARAMS ((rtx *ptr, void *data));
227 static void mark_phi_and_copy_regs
228 PARAMS ((regset phi_set));
230 static int rename_equivalent_regs_in_insn
231 PARAMS ((rtx *ptr, void *data));
232 static void rename_equivalent_regs
233 PARAMS ((partition reg_partition));
235 /* Deal with hard registers. */
236 static int conflicting_hard_regs_p
237 PARAMS ((int reg1, int reg2));
239 /* ssa_rename_to maps registers and machine modes to SSA pseudo registers. */
241 /* Find the register associated with REG in the indicated mode. */
243 static rtx
244 ssa_rename_to_lookup (reg)
245 rtx reg;
247 if (!HARD_REGISTER_P (reg))
248 return ssa_rename_to_pseudo[REGNO (reg) - FIRST_PSEUDO_REGISTER];
249 else
250 return ssa_rename_to_hard[REGNO (reg)][GET_MODE (reg)];
253 /* Store a new value mapping REG to R in ssa_rename_to. */
255 static void
256 ssa_rename_to_insert(reg, r)
257 rtx reg;
258 rtx r;
260 if (!HARD_REGISTER_P (reg))
261 ssa_rename_to_pseudo[REGNO (reg) - FIRST_PSEUDO_REGISTER] = r;
262 else
263 ssa_rename_to_hard[REGNO (reg)][GET_MODE (reg)] = r;
266 /* Prepare ssa_rename_from for use. */
268 static void
269 ssa_rename_from_initialize ()
271 /* We use an arbitrary initial hash table size of 64. */
272 ssa_rename_from_ht = htab_create (64,
273 &ssa_rename_from_hash_function,
274 &ssa_rename_from_equal,
275 &ssa_rename_from_delete);
278 /* Find the REG entry in ssa_rename_from. Return NULL_RTX if no entry is
279 found. */
281 static rtx
282 ssa_rename_from_lookup (reg)
283 int reg;
285 ssa_rename_from_pair srfp;
286 ssa_rename_from_pair *answer;
287 srfp.reg = reg;
288 srfp.original = NULL_RTX;
289 answer = (ssa_rename_from_pair *)
290 htab_find_with_hash (ssa_rename_from_ht, (void *) &srfp, reg);
291 return (answer == 0 ? NULL_RTX : answer->original);
294 /* Find the number of the original register specified by REGNO. If
295 the register is a pseudo, return the original register's number.
296 Otherwise, return this register number REGNO. */
298 static unsigned int
299 original_register (regno)
300 unsigned int regno;
302 rtx original_rtx = ssa_rename_from_lookup (regno);
303 return original_rtx != NULL_RTX ? REGNO (original_rtx) : regno;
306 /* Add mapping from R to REG to ssa_rename_from even if already present. */
308 static void
309 ssa_rename_from_insert (reg, r)
310 unsigned int reg;
311 rtx r;
313 void **slot;
314 ssa_rename_from_pair *srfp = xmalloc (sizeof (ssa_rename_from_pair));
315 srfp->reg = reg;
316 srfp->original = r;
317 slot = htab_find_slot_with_hash (ssa_rename_from_ht, (const void *) srfp,
318 reg, INSERT);
319 if (*slot != 0)
320 free ((void *) *slot);
321 *slot = srfp;
324 /* Apply the CALLBACK_FUNCTION to each element in ssa_rename_from.
325 CANONICAL_ELEMENTS and REG_PARTITION pass data needed by the only
326 current use of this function. */
328 static void
329 ssa_rename_from_traverse (callback_function,
330 canonical_elements, reg_partition)
331 htab_trav callback_function;
332 sbitmap canonical_elements;
333 partition reg_partition;
335 struct ssa_rename_from_hash_table_data srfhd;
336 srfhd.canonical_elements = canonical_elements;
337 srfhd.reg_partition = reg_partition;
338 htab_traverse (ssa_rename_from_ht, callback_function, (void *) &srfhd);
341 /* Destroy ssa_rename_from. */
343 static void
344 ssa_rename_from_free ()
346 htab_delete (ssa_rename_from_ht);
349 /* Print the contents of ssa_rename_from. */
351 /* static Avoid erroneous error message. */
352 void
353 ssa_rename_from_print ()
355 printf ("ssa_rename_from's hash table contents:\n");
356 htab_traverse (ssa_rename_from_ht, &ssa_rename_from_print_1, NULL);
359 /* Print the contents of the hash table entry SLOT, passing the unused
360 sttribute DATA. Used as a callback function with htab_traverse (). */
362 static int
363 ssa_rename_from_print_1 (slot, data)
364 void **slot;
365 void *data ATTRIBUTE_UNUSED;
367 ssa_rename_from_pair * p = *slot;
368 printf ("ssa_rename_from maps pseudo %i to original %i.\n",
369 p->reg, REGNO (p->original));
370 return 1;
373 /* Given a hash entry SRFP, yield a hash value. */
375 static hashval_t
376 ssa_rename_from_hash_function (srfp)
377 const void *srfp;
379 return ((const ssa_rename_from_pair *) srfp)->reg;
382 /* Test whether two hash table entries SRFP1 and SRFP2 are equal. */
384 static int
385 ssa_rename_from_equal (srfp1, srfp2)
386 const void *srfp1;
387 const void *srfp2;
389 return ssa_rename_from_hash_function (srfp1) ==
390 ssa_rename_from_hash_function (srfp2);
393 /* Delete the hash table entry SRFP. */
395 static void
396 ssa_rename_from_delete (srfp)
397 void *srfp;
399 free (srfp);
402 /* Given the SET of a PHI node, return the address of the alternative
403 for predecessor block C. */
405 static inline rtx *
406 phi_alternative (set, c)
407 rtx set;
408 int c;
410 rtvec phi_vec = XVEC (SET_SRC (set), 0);
411 int v;
413 for (v = GET_NUM_ELEM (phi_vec) - 2; v >= 0; v -= 2)
414 if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
415 return &RTVEC_ELT (phi_vec, v);
417 return NULL;
420 /* Given the SET of a phi node, remove the alternative for predecessor
421 block C. Return non-zero on success, or zero if no alternative is
422 found for C. */
425 remove_phi_alternative (set, block)
426 rtx set;
427 basic_block block;
429 rtvec phi_vec = XVEC (SET_SRC (set), 0);
430 int num_elem = GET_NUM_ELEM (phi_vec);
431 int v, c;
433 c = block->index;
434 for (v = num_elem - 2; v >= 0; v -= 2)
435 if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
437 if (v < num_elem - 2)
439 RTVEC_ELT (phi_vec, v) = RTVEC_ELT (phi_vec, num_elem - 2);
440 RTVEC_ELT (phi_vec, v + 1) = RTVEC_ELT (phi_vec, num_elem - 1);
442 PUT_NUM_ELEM (phi_vec, num_elem - 2);
443 return 1;
446 return 0;
449 /* For all registers, find all blocks in which they are set.
451 This is the transform of what would be local kill information that
452 we ought to be getting from flow. */
454 static sbitmap *fe_evals;
455 static int fe_current_bb;
457 static void
458 find_evaluations_1 (dest, set, data)
459 rtx dest;
460 rtx set ATTRIBUTE_UNUSED;
461 void *data ATTRIBUTE_UNUSED;
463 if (GET_CODE (dest) == REG
464 && CONVERT_REGISTER_TO_SSA_P (REGNO (dest)))
465 SET_BIT (fe_evals[REGNO (dest)], fe_current_bb);
468 static void
469 find_evaluations (evals, nregs)
470 sbitmap *evals;
471 int nregs;
473 basic_block bb;
475 sbitmap_vector_zero (evals, nregs);
476 fe_evals = evals;
478 FOR_EACH_BB_REVERSE (bb)
480 rtx p, last;
482 fe_current_bb = bb->index;
483 p = bb->head;
484 last = bb->end;
485 while (1)
487 if (INSN_P (p))
488 note_stores (PATTERN (p), find_evaluations_1, NULL);
490 if (p == last)
491 break;
492 p = NEXT_INSN (p);
497 /* Computing the Dominance Frontier:
499 As decribed in Morgan, section 3.5, this may be done simply by
500 walking the dominator tree bottom-up, computing the frontier for
501 the children before the parent. When considering a block B,
502 there are two cases:
504 (1) A flow graph edge leaving B that does not lead to a child
505 of B in the dominator tree must be a block that is either equal
506 to B or not dominated by B. Such blocks belong in the frontier
507 of B.
509 (2) Consider a block X in the frontier of one of the children C
510 of B. If X is not equal to B and is not dominated by B, it
511 is in the frontier of B.
514 static void
515 compute_dominance_frontiers_1 (frontiers, idom, bb, done)
516 sbitmap *frontiers;
517 int *idom;
518 int bb;
519 sbitmap done;
521 basic_block b = BASIC_BLOCK (bb);
522 edge e;
523 basic_block c;
525 SET_BIT (done, bb);
526 sbitmap_zero (frontiers[bb]);
528 /* Do the frontier of the children first. Not all children in the
529 dominator tree (blocks dominated by this one) are children in the
530 CFG, so check all blocks. */
531 FOR_EACH_BB (c)
532 if (idom[c->index] == bb && ! TEST_BIT (done, c->index))
533 compute_dominance_frontiers_1 (frontiers, idom, c->index, done);
535 /* Find blocks conforming to rule (1) above. */
536 for (e = b->succ; e; e = e->succ_next)
538 if (e->dest == EXIT_BLOCK_PTR)
539 continue;
540 if (idom[e->dest->index] != bb)
541 SET_BIT (frontiers[bb], e->dest->index);
544 /* Find blocks conforming to rule (2). */
545 FOR_EACH_BB (c)
546 if (idom[c->index] == bb)
548 int x;
549 EXECUTE_IF_SET_IN_SBITMAP (frontiers[c->index], 0, x,
551 if (idom[x] != bb)
552 SET_BIT (frontiers[bb], x);
557 void
558 compute_dominance_frontiers (frontiers, idom)
559 sbitmap *frontiers;
560 int *idom;
562 sbitmap done = sbitmap_alloc (last_basic_block);
563 sbitmap_zero (done);
565 compute_dominance_frontiers_1 (frontiers, idom, 0, done);
567 sbitmap_free (done);
570 /* Computing the Iterated Dominance Frontier:
572 This is the set of merge points for a given register.
574 This is not particularly intuitive. See section 7.1 of Morgan, in
575 particular figures 7.3 and 7.4 and the immediately surrounding text.
578 static void
579 compute_iterated_dominance_frontiers (idfs, frontiers, evals, nregs)
580 sbitmap *idfs;
581 sbitmap *frontiers;
582 sbitmap *evals;
583 int nregs;
585 sbitmap worklist;
586 int reg, passes = 0;
588 worklist = sbitmap_alloc (last_basic_block);
590 for (reg = 0; reg < nregs; ++reg)
592 sbitmap idf = idfs[reg];
593 int b, changed;
595 /* Start the iterative process by considering those blocks that
596 evaluate REG. We'll add their dominance frontiers to the
597 IDF, and then consider the blocks we just added. */
598 sbitmap_copy (worklist, evals[reg]);
600 /* Morgan's algorithm is incorrect here. Blocks that evaluate
601 REG aren't necessarily in REG's IDF. Start with an empty IDF. */
602 sbitmap_zero (idf);
604 /* Iterate until the worklist is empty. */
607 changed = 0;
608 passes++;
609 EXECUTE_IF_SET_IN_SBITMAP (worklist, 0, b,
611 RESET_BIT (worklist, b);
612 /* For each block on the worklist, add to the IDF all
613 blocks on its dominance frontier that aren't already
614 on the IDF. Every block that's added is also added
615 to the worklist. */
616 sbitmap_union_of_diff (worklist, worklist, frontiers[b], idf);
617 sbitmap_a_or_b (idf, idf, frontiers[b]);
618 changed = 1;
621 while (changed);
624 sbitmap_free (worklist);
626 if (rtl_dump_file)
628 fprintf (rtl_dump_file,
629 "Iterated dominance frontier: %d passes on %d regs.\n",
630 passes, nregs);
634 /* Insert the phi nodes. */
636 static void
637 insert_phi_node (regno, bb)
638 int regno, bb;
640 basic_block b = BASIC_BLOCK (bb);
641 edge e;
642 int npred, i;
643 rtvec vec;
644 rtx phi, reg;
645 rtx insn;
646 int end_p;
648 /* Find out how many predecessors there are. */
649 for (e = b->pred, npred = 0; e; e = e->pred_next)
650 if (e->src != ENTRY_BLOCK_PTR)
651 npred++;
653 /* If this block has no "interesting" preds, then there is nothing to
654 do. Consider a block that only has the entry block as a pred. */
655 if (npred == 0)
656 return;
658 /* This is the register to which the phi function will be assigned. */
659 reg = regno_reg_rtx[regno];
661 /* Construct the arguments to the PHI node. The use of pc_rtx is just
662 a placeholder; we'll insert the proper value in rename_registers. */
663 vec = rtvec_alloc (npred * 2);
664 for (e = b->pred, i = 0; e ; e = e->pred_next, i += 2)
665 if (e->src != ENTRY_BLOCK_PTR)
667 RTVEC_ELT (vec, i + 0) = pc_rtx;
668 RTVEC_ELT (vec, i + 1) = GEN_INT (e->src->index);
671 phi = gen_rtx_PHI (VOIDmode, vec);
672 phi = gen_rtx_SET (VOIDmode, reg, phi);
674 insn = first_insn_after_basic_block_note (b);
675 end_p = PREV_INSN (insn) == b->end;
676 emit_insn_before (phi, insn);
677 if (end_p)
678 b->end = PREV_INSN (insn);
681 static void
682 insert_phi_nodes (idfs, evals, nregs)
683 sbitmap *idfs;
684 sbitmap *evals ATTRIBUTE_UNUSED;
685 int nregs;
687 int reg;
689 for (reg = 0; reg < nregs; ++reg)
690 if (CONVERT_REGISTER_TO_SSA_P (reg))
692 int b;
693 EXECUTE_IF_SET_IN_SBITMAP (idfs[reg], 0, b,
695 if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, reg))
696 insert_phi_node (reg, b);
701 /* Rename the registers to conform to SSA.
703 This is essentially the algorithm presented in Figure 7.8 of Morgan,
704 with a few changes to reduce pattern search time in favour of a bit
705 more memory usage. */
707 /* One of these is created for each set. It will live in a list local
708 to its basic block for the duration of that block's processing. */
709 struct rename_set_data
711 struct rename_set_data *next;
712 /* This is the SET_DEST of the (first) SET that sets the REG. */
713 rtx *reg_loc;
714 /* This is what used to be at *REG_LOC. */
715 rtx old_reg;
716 /* This is the REG that will replace OLD_REG. It's set only
717 when the rename data is moved onto the DONE_RENAMES queue. */
718 rtx new_reg;
719 /* This is what to restore ssa_rename_to_lookup (old_reg) to. It is
720 usually the previous contents of ssa_rename_to_lookup (old_reg). */
721 rtx prev_reg;
722 /* This is the insn that contains all the SETs of the REG. */
723 rtx set_insn;
726 /* This struct is used to pass information to callback functions while
727 renaming registers. */
728 struct rename_context
730 struct rename_set_data *new_renames;
731 struct rename_set_data *done_renames;
732 rtx current_insn;
735 /* Queue the rename of *REG_LOC. */
736 static void
737 create_delayed_rename (c, reg_loc)
738 struct rename_context *c;
739 rtx *reg_loc;
741 struct rename_set_data *r;
742 r = (struct rename_set_data *) xmalloc (sizeof(*r));
744 if (GET_CODE (*reg_loc) != REG
745 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*reg_loc)))
746 abort ();
748 r->reg_loc = reg_loc;
749 r->old_reg = *reg_loc;
750 r->prev_reg = ssa_rename_to_lookup(r->old_reg);
751 r->set_insn = c->current_insn;
752 r->next = c->new_renames;
753 c->new_renames = r;
756 /* This is part of a rather ugly hack to allow the pre-ssa regno to be
757 reused. If, during processing, a register has not yet been touched,
758 ssa_rename_to[regno][machno] will be NULL. Now, in the course of pushing
759 and popping values from ssa_rename_to, when we would ordinarily
760 pop NULL back in, we pop RENAME_NO_RTX. We treat this exactly the
761 same as NULL, except that it signals that the original regno has
762 already been reused. */
763 #define RENAME_NO_RTX pc_rtx
765 /* Move all the entries from NEW_RENAMES onto DONE_RENAMES by
766 applying all the renames on NEW_RENAMES. */
768 static void
769 apply_delayed_renames (c)
770 struct rename_context *c;
772 struct rename_set_data *r;
773 struct rename_set_data *last_r = NULL;
775 for (r = c->new_renames; r != NULL; r = r->next)
777 int new_regno;
779 /* Failure here means that someone has a PARALLEL that sets
780 a register twice (bad!). */
781 if (ssa_rename_to_lookup (r->old_reg) != r->prev_reg)
782 abort ();
783 /* Failure here means we have changed REG_LOC before applying
784 the rename. */
785 /* For the first set we come across, reuse the original regno. */
786 if (r->prev_reg == NULL_RTX && !HARD_REGISTER_P (r->old_reg))
788 r->new_reg = r->old_reg;
789 /* We want to restore RENAME_NO_RTX rather than NULL_RTX. */
790 r->prev_reg = RENAME_NO_RTX;
792 else
793 r->new_reg = gen_reg_rtx (GET_MODE (r->old_reg));
794 new_regno = REGNO (r->new_reg);
795 ssa_rename_to_insert (r->old_reg, r->new_reg);
797 if (new_regno >= (int) ssa_definition->num_elements)
799 int new_limit = new_regno * 5 / 4;
800 VARRAY_GROW (ssa_definition, new_limit);
803 VARRAY_RTX (ssa_definition, new_regno) = r->set_insn;
804 ssa_rename_from_insert (new_regno, r->old_reg);
805 last_r = r;
807 if (last_r != NULL)
809 last_r->next = c->done_renames;
810 c->done_renames = c->new_renames;
811 c->new_renames = NULL;
815 /* Part one of the first step of rename_block, called through for_each_rtx.
816 Mark pseudos that are set for later update. Transform uses of pseudos. */
818 static int
819 rename_insn_1 (ptr, data)
820 rtx *ptr;
821 void *data;
823 rtx x = *ptr;
824 struct rename_context *context = data;
826 if (x == NULL_RTX)
827 return 0;
829 switch (GET_CODE (x))
831 case SET:
833 rtx *destp = &SET_DEST (x);
834 rtx dest = SET_DEST (x);
836 /* An assignment to a paradoxical SUBREG does not read from
837 the destination operand, and thus does not need to be
838 wrapped into a SEQUENCE when translating into SSA form.
839 We merely strip off the SUBREG and proceed normally for
840 this case. */
841 if (GET_CODE (dest) == SUBREG
842 && (GET_MODE_SIZE (GET_MODE (dest))
843 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
844 && GET_CODE (SUBREG_REG (dest)) == REG
845 && CONVERT_REGISTER_TO_SSA_P (REGNO (SUBREG_REG (dest))))
847 destp = &XEXP (dest, 0);
848 dest = XEXP (dest, 0);
851 /* Some SETs also use the REG specified in their LHS.
852 These can be detected by the presence of
853 STRICT_LOW_PART, SUBREG, SIGN_EXTRACT, and ZERO_EXTRACT
854 in the LHS. Handle these by changing
855 (set (subreg (reg foo)) ...)
856 into
857 (sequence [(set (reg foo_1) (reg foo))
858 (set (subreg (reg foo_1)) ...)])
860 FIXME: Much of the time this is too much. For some constructs
861 we know that the output register is strictly an output
862 (paradoxical SUBREGs and some libcalls for example).
864 For those cases we are better off not making the false
865 dependency. */
866 if (GET_CODE (dest) == STRICT_LOW_PART
867 || GET_CODE (dest) == SUBREG
868 || GET_CODE (dest) == SIGN_EXTRACT
869 || GET_CODE (dest) == ZERO_EXTRACT)
871 rtx i, reg;
872 reg = dest;
874 while (GET_CODE (reg) == STRICT_LOW_PART
875 || GET_CODE (reg) == SUBREG
876 || GET_CODE (reg) == SIGN_EXTRACT
877 || GET_CODE (reg) == ZERO_EXTRACT)
878 reg = XEXP (reg, 0);
880 if (GET_CODE (reg) == REG
881 && CONVERT_REGISTER_TO_SSA_P (REGNO (reg)))
883 /* Generate (set reg reg), and do renaming on it so
884 that it becomes (set reg_1 reg_0), and we will
885 replace reg with reg_1 in the SUBREG. */
887 struct rename_set_data *saved_new_renames;
888 saved_new_renames = context->new_renames;
889 context->new_renames = NULL;
890 i = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
891 for_each_rtx (&i, rename_insn_1, data);
892 apply_delayed_renames (context);
893 context->new_renames = saved_new_renames;
896 else if (GET_CODE (dest) == REG
897 && CONVERT_REGISTER_TO_SSA_P (REGNO (dest)))
899 /* We found a genuine set of an interesting register. Tag
900 it so that we can create a new name for it after we finish
901 processing this insn. */
903 create_delayed_rename (context, destp);
905 /* Since we do not wish to (directly) traverse the
906 SET_DEST, recurse through for_each_rtx for the SET_SRC
907 and return. */
908 if (GET_CODE (x) == SET)
909 for_each_rtx (&SET_SRC (x), rename_insn_1, data);
910 return -1;
913 /* Otherwise, this was not an interesting destination. Continue
914 on, marking uses as normal. */
915 return 0;
918 case REG:
919 if (CONVERT_REGISTER_TO_SSA_P (REGNO (x))
920 && REGNO (x) < ssa_max_reg_num)
922 rtx new_reg = ssa_rename_to_lookup (x);
924 if (new_reg != RENAME_NO_RTX)
926 if (new_reg != NULL_RTX)
928 if (GET_MODE (x) != GET_MODE (new_reg))
929 abort ();
930 *ptr = new_reg;
932 else
934 /* Undefined value used, rename it to a new pseudo register so
935 that it cannot conflict with an existing register */
936 *ptr = gen_reg_rtx (GET_MODE(x));
940 return -1;
942 case CLOBBER:
943 /* There is considerable debate on how CLOBBERs ought to be
944 handled in SSA. For now, we're keeping the CLOBBERs, which
945 means that we don't really have SSA form. There are a couple
946 of proposals for how to fix this problem, but neither is
947 implemented yet. */
949 rtx dest = XCEXP (x, 0, CLOBBER);
950 if (REG_P (dest))
952 if (CONVERT_REGISTER_TO_SSA_P (REGNO (dest))
953 && REGNO (dest) < ssa_max_reg_num)
955 rtx new_reg = ssa_rename_to_lookup (dest);
956 if (new_reg != NULL_RTX && new_reg != RENAME_NO_RTX)
957 XCEXP (x, 0, CLOBBER) = new_reg;
959 /* Stop traversing. */
960 return -1;
962 else
963 /* Continue traversing. */
964 return 0;
967 case PHI:
968 /* Never muck with the phi. We do that elsewhere, special-like. */
969 return -1;
971 default:
972 /* Anything else, continue traversing. */
973 return 0;
977 static void
978 rename_block (bb, idom)
979 int bb;
980 int *idom;
982 basic_block b = BASIC_BLOCK (bb);
983 edge e;
984 rtx insn, next, last;
985 struct rename_set_data *set_data = NULL;
986 basic_block c;
988 /* Step One: Walk the basic block, adding new names for sets and
989 replacing uses. */
991 next = b->head;
992 last = b->end;
995 insn = next;
996 if (INSN_P (insn))
998 struct rename_context context;
999 context.done_renames = set_data;
1000 context.new_renames = NULL;
1001 context.current_insn = insn;
1003 start_sequence ();
1004 for_each_rtx (&PATTERN (insn), rename_insn_1, &context);
1005 for_each_rtx (&REG_NOTES (insn), rename_insn_1, &context);
1007 /* Sometimes, we end up with a sequence of insns that
1008 SSA needs to treat as a single insn. Wrap these in a
1009 SEQUENCE. (Any notes now get attached to the SEQUENCE,
1010 not to the old version inner insn.) */
1011 if (get_insns () != NULL_RTX)
1013 rtx seq;
1014 int i;
1016 emit (PATTERN (insn));
1017 seq = gen_sequence ();
1018 /* We really want a SEQUENCE of SETs, not a SEQUENCE
1019 of INSNs. */
1020 for (i = 0; i < XVECLEN (seq, 0); i++)
1021 XVECEXP (seq, 0, i) = PATTERN (XVECEXP (seq, 0, i));
1022 PATTERN (insn) = seq;
1024 end_sequence ();
1026 apply_delayed_renames (&context);
1027 set_data = context.done_renames;
1030 next = NEXT_INSN (insn);
1032 while (insn != last);
1034 /* Step Two: Update the phi nodes of this block's successors. */
1036 for (e = b->succ; e; e = e->succ_next)
1038 if (e->dest == EXIT_BLOCK_PTR)
1039 continue;
1041 insn = first_insn_after_basic_block_note (e->dest);
1043 while (PHI_NODE_P (insn))
1045 rtx phi = PATTERN (insn);
1046 rtx reg;
1048 /* Find out which of our outgoing registers this node is
1049 intended to replace. Note that if this is not the first PHI
1050 node to have been created for this register, we have to
1051 jump through rename links to figure out which register
1052 we're talking about. This can easily be recognized by
1053 noting that the regno is new to this pass. */
1054 reg = SET_DEST (phi);
1055 if (REGNO (reg) >= ssa_max_reg_num)
1056 reg = ssa_rename_from_lookup (REGNO (reg));
1057 if (reg == NULL_RTX)
1058 abort ();
1059 reg = ssa_rename_to_lookup (reg);
1061 /* It is possible for the variable to be uninitialized on
1062 edges in. Reduce the arity of the PHI so that we don't
1063 consider those edges. */
1064 if (reg == NULL || reg == RENAME_NO_RTX)
1066 if (! remove_phi_alternative (phi, b))
1067 abort ();
1069 else
1071 /* When we created the PHI nodes, we did not know what mode
1072 the register should be. Now that we've found an original,
1073 we can fill that in. */
1074 if (GET_MODE (SET_DEST (phi)) == VOIDmode)
1075 PUT_MODE (SET_DEST (phi), GET_MODE (reg));
1076 else if (GET_MODE (SET_DEST (phi)) != GET_MODE (reg))
1077 abort ();
1079 *phi_alternative (phi, bb) = reg;
1082 insn = NEXT_INSN (insn);
1086 /* Step Three: Do the same to the children of this block in
1087 dominator order. */
1089 FOR_EACH_BB (c)
1090 if (idom[c->index] == bb)
1091 rename_block (c->index, idom);
1093 /* Step Four: Update the sets to refer to their new register,
1094 and restore ssa_rename_to to its previous state. */
1096 while (set_data)
1098 struct rename_set_data *next;
1099 rtx old_reg = *set_data->reg_loc;
1101 if (*set_data->reg_loc != set_data->old_reg)
1102 abort ();
1103 *set_data->reg_loc = set_data->new_reg;
1105 ssa_rename_to_insert (old_reg, set_data->prev_reg);
1107 next = set_data->next;
1108 free (set_data);
1109 set_data = next;
1113 static void
1114 rename_registers (nregs, idom)
1115 int nregs;
1116 int *idom;
1118 VARRAY_RTX_INIT (ssa_definition, nregs * 3, "ssa_definition");
1119 ssa_rename_from_initialize ();
1121 ssa_rename_to_pseudo = (rtx *) alloca (nregs * sizeof(rtx));
1122 memset ((char *) ssa_rename_to_pseudo, 0, nregs * sizeof(rtx));
1123 memset ((char *) ssa_rename_to_hard, 0,
1124 FIRST_PSEUDO_REGISTER * NUM_MACHINE_MODES * sizeof (rtx));
1126 rename_block (0, idom);
1128 /* ??? Update basic_block_live_at_start, and other flow info
1129 as needed. */
1131 ssa_rename_to_pseudo = NULL;
1134 /* The main entry point for moving to SSA. */
1136 void
1137 convert_to_ssa ()
1139 /* Element I is the set of blocks that set register I. */
1140 sbitmap *evals;
1142 /* Dominator bitmaps. */
1143 sbitmap *dfs;
1144 sbitmap *idfs;
1146 /* Element I is the immediate dominator of block I. */
1147 int *idom;
1149 int nregs;
1151 basic_block bb;
1153 /* Don't do it twice. */
1154 if (in_ssa_form)
1155 abort ();
1157 /* Need global_live_at_{start,end} up to date. Do not remove any
1158 dead code. We'll let the SSA optimizers do that. */
1159 life_analysis (get_insns (), NULL, 0);
1161 idom = (int *) alloca (last_basic_block * sizeof (int));
1162 memset ((void *) idom, -1, (size_t) last_basic_block * sizeof (int));
1163 calculate_dominance_info (idom, NULL, CDI_DOMINATORS);
1165 if (rtl_dump_file)
1167 fputs (";; Immediate Dominators:\n", rtl_dump_file);
1168 FOR_EACH_BB (bb)
1169 fprintf (rtl_dump_file, ";\t%3d = %3d\n", bb->index, idom[bb->index]);
1170 fflush (rtl_dump_file);
1173 /* Compute dominance frontiers. */
1175 dfs = sbitmap_vector_alloc (last_basic_block, last_basic_block);
1176 compute_dominance_frontiers (dfs, idom);
1178 if (rtl_dump_file)
1180 dump_sbitmap_vector (rtl_dump_file, ";; Dominance Frontiers:",
1181 "; Basic Block", dfs, last_basic_block);
1182 fflush (rtl_dump_file);
1185 /* Compute register evaluations. */
1187 ssa_max_reg_num = max_reg_num ();
1188 nregs = ssa_max_reg_num;
1189 evals = sbitmap_vector_alloc (nregs, last_basic_block);
1190 find_evaluations (evals, nregs);
1192 /* Compute the iterated dominance frontier for each register. */
1194 idfs = sbitmap_vector_alloc (nregs, last_basic_block);
1195 compute_iterated_dominance_frontiers (idfs, dfs, evals, nregs);
1197 if (rtl_dump_file)
1199 dump_sbitmap_vector (rtl_dump_file, ";; Iterated Dominance Frontiers:",
1200 "; Register", idfs, nregs);
1201 fflush (rtl_dump_file);
1204 /* Insert the phi nodes. */
1206 insert_phi_nodes (idfs, evals, nregs);
1208 /* Rename the registers to satisfy SSA. */
1210 rename_registers (nregs, idom);
1212 /* All done! Clean up and go home. */
1214 sbitmap_vector_free (dfs);
1215 sbitmap_vector_free (evals);
1216 sbitmap_vector_free (idfs);
1217 in_ssa_form = 1;
1219 reg_scan (get_insns (), max_reg_num (), 1);
1222 /* REG is the representative temporary of its partition. Add it to the
1223 set of nodes to be processed, if it hasn't been already. Return the
1224 index of this register in the node set. */
1226 static inline int
1227 ephi_add_node (reg, nodes, n_nodes)
1228 rtx reg, *nodes;
1229 int *n_nodes;
1231 int i;
1232 for (i = *n_nodes - 1; i >= 0; --i)
1233 if (REGNO (reg) == REGNO (nodes[i]))
1234 return i;
1236 nodes[i = (*n_nodes)++] = reg;
1237 return i;
1240 /* Part one of the topological sort. This is a forward (downward) search
1241 through the graph collecting a stack of nodes to process. Assuming no
1242 cycles, the nodes at top of the stack when we are finished will have
1243 no other dependencies. */
1245 static int *
1246 ephi_forward (t, visited, succ, tstack)
1247 int t;
1248 sbitmap visited;
1249 sbitmap *succ;
1250 int *tstack;
1252 int s;
1254 SET_BIT (visited, t);
1256 EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
1258 if (! TEST_BIT (visited, s))
1259 tstack = ephi_forward (s, visited, succ, tstack);
1262 *tstack++ = t;
1263 return tstack;
1266 /* Part two of the topological sort. The is a backward search through
1267 a cycle in the graph, copying the data forward as we go. */
1269 static void
1270 ephi_backward (t, visited, pred, nodes)
1271 int t;
1272 sbitmap visited, *pred;
1273 rtx *nodes;
1275 int p;
1277 SET_BIT (visited, t);
1279 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1281 if (! TEST_BIT (visited, p))
1283 ephi_backward (p, visited, pred, nodes);
1284 emit_move_insn (nodes[p], nodes[t]);
1289 /* Part two of the topological sort. Create the copy for a register
1290 and any cycle of which it is a member. */
1292 static void
1293 ephi_create (t, visited, pred, succ, nodes)
1294 int t;
1295 sbitmap visited, *pred, *succ;
1296 rtx *nodes;
1298 rtx reg_u = NULL_RTX;
1299 int unvisited_predecessors = 0;
1300 int p;
1302 /* Iterate through the predecessor list looking for unvisited nodes.
1303 If there are any, we have a cycle, and must deal with that. At
1304 the same time, look for a visited predecessor. If there is one,
1305 we won't need to create a temporary. */
1307 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1309 if (! TEST_BIT (visited, p))
1310 unvisited_predecessors = 1;
1311 else if (!reg_u)
1312 reg_u = nodes[p];
1315 if (unvisited_predecessors)
1317 /* We found a cycle. Copy out one element of the ring (if necessary),
1318 then traverse the ring copying as we go. */
1320 if (!reg_u)
1322 reg_u = gen_reg_rtx (GET_MODE (nodes[t]));
1323 emit_move_insn (reg_u, nodes[t]);
1326 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1328 if (! TEST_BIT (visited, p))
1330 ephi_backward (p, visited, pred, nodes);
1331 emit_move_insn (nodes[p], reg_u);
1335 else
1337 /* No cycle. Just copy the value from a successor. */
1339 int s;
1340 EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
1342 SET_BIT (visited, t);
1343 emit_move_insn (nodes[t], nodes[s]);
1344 return;
1349 /* Convert the edge to normal form. */
1351 static void
1352 eliminate_phi (e, reg_partition)
1353 edge e;
1354 partition reg_partition;
1356 int n_nodes;
1357 sbitmap *pred, *succ;
1358 sbitmap visited;
1359 rtx *nodes;
1360 int *stack, *tstack;
1361 rtx insn;
1362 int i;
1364 /* Collect an upper bound on the number of registers needing processing. */
1366 insn = first_insn_after_basic_block_note (e->dest);
1368 n_nodes = 0;
1369 while (PHI_NODE_P (insn))
1371 insn = next_nonnote_insn (insn);
1372 n_nodes += 2;
1375 if (n_nodes == 0)
1376 return;
1378 /* Build the auxiliary graph R(B).
1380 The nodes of the graph are the members of the register partition
1381 present in Phi(B). There is an edge from FIND(T0)->FIND(T1) for
1382 each T0 = PHI(...,T1,...), where T1 is for the edge from block C. */
1384 nodes = (rtx *) alloca (n_nodes * sizeof(rtx));
1385 pred = sbitmap_vector_alloc (n_nodes, n_nodes);
1386 succ = sbitmap_vector_alloc (n_nodes, n_nodes);
1387 sbitmap_vector_zero (pred, n_nodes);
1388 sbitmap_vector_zero (succ, n_nodes);
1390 insn = first_insn_after_basic_block_note (e->dest);
1392 n_nodes = 0;
1393 for (; PHI_NODE_P (insn); insn = next_nonnote_insn (insn))
1395 rtx* preg = phi_alternative (PATTERN (insn), e->src->index);
1396 rtx tgt = SET_DEST (PATTERN (insn));
1397 rtx reg;
1399 /* There may be no phi alternative corresponding to this edge.
1400 This indicates that the phi variable is undefined along this
1401 edge. */
1402 if (preg == NULL)
1403 continue;
1404 reg = *preg;
1406 if (GET_CODE (reg) != REG || GET_CODE (tgt) != REG)
1407 abort ();
1409 reg = regno_reg_rtx[partition_find (reg_partition, REGNO (reg))];
1410 tgt = regno_reg_rtx[partition_find (reg_partition, REGNO (tgt))];
1411 /* If the two registers are already in the same partition,
1412 nothing will need to be done. */
1413 if (reg != tgt)
1415 int ireg, itgt;
1417 ireg = ephi_add_node (reg, nodes, &n_nodes);
1418 itgt = ephi_add_node (tgt, nodes, &n_nodes);
1420 SET_BIT (pred[ireg], itgt);
1421 SET_BIT (succ[itgt], ireg);
1425 if (n_nodes == 0)
1426 goto out;
1428 /* Begin a topological sort of the graph. */
1430 visited = sbitmap_alloc (n_nodes);
1431 sbitmap_zero (visited);
1433 tstack = stack = (int *) alloca (n_nodes * sizeof (int));
1435 for (i = 0; i < n_nodes; ++i)
1436 if (! TEST_BIT (visited, i))
1437 tstack = ephi_forward (i, visited, succ, tstack);
1439 sbitmap_zero (visited);
1441 /* As we find a solution to the tsort, collect the implementation
1442 insns in a sequence. */
1443 start_sequence ();
1445 while (tstack != stack)
1447 i = *--tstack;
1448 if (! TEST_BIT (visited, i))
1449 ephi_create (i, visited, pred, succ, nodes);
1452 insn = gen_sequence ();
1453 end_sequence ();
1454 insert_insn_on_edge (insn, e);
1455 if (rtl_dump_file)
1456 fprintf (rtl_dump_file, "Emitting copy on edge (%d,%d)\n",
1457 e->src->index, e->dest->index);
1459 sbitmap_free (visited);
1460 out:
1461 sbitmap_vector_free (pred);
1462 sbitmap_vector_free (succ);
1465 /* For basic block B, consider all phi insns which provide an
1466 alternative corresponding to an incoming abnormal critical edge.
1467 Place the phi alternative corresponding to that abnormal critical
1468 edge in the same register class as the destination of the set.
1470 From Morgan, p. 178:
1472 For each abnormal critical edge (C, B),
1473 if T0 = phi (T1, ..., Ti, ..., Tm) is a phi node in B,
1474 and C is the ith predecessor of B,
1475 then T0 and Ti must be equivalent.
1477 Return non-zero iff any such cases were found for which the two
1478 regs were not already in the same class. */
1480 static int
1481 make_regs_equivalent_over_bad_edges (bb, reg_partition)
1482 int bb;
1483 partition reg_partition;
1485 int changed = 0;
1486 basic_block b = BASIC_BLOCK (bb);
1487 rtx phi;
1489 /* Advance to the first phi node. */
1490 phi = first_insn_after_basic_block_note (b);
1492 /* Scan all the phi nodes. */
1493 for (;
1494 PHI_NODE_P (phi);
1495 phi = next_nonnote_insn (phi))
1497 edge e;
1498 int tgt_regno;
1499 rtx set = PATTERN (phi);
1500 rtx tgt = SET_DEST (set);
1502 /* The set target is expected to be an SSA register. */
1503 if (GET_CODE (tgt) != REG
1504 || !CONVERT_REGISTER_TO_SSA_P (REGNO (tgt)))
1505 abort ();
1506 tgt_regno = REGNO (tgt);
1508 /* Scan incoming abnormal critical edges. */
1509 for (e = b->pred; e; e = e->pred_next)
1510 if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
1512 rtx *alt = phi_alternative (set, e->src->index);
1513 int alt_regno;
1515 /* If there is no alternative corresponding to this edge,
1516 the value is undefined along the edge, so just go on. */
1517 if (alt == 0)
1518 continue;
1520 /* The phi alternative is expected to be an SSA register. */
1521 if (GET_CODE (*alt) != REG
1522 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt)))
1523 abort ();
1524 alt_regno = REGNO (*alt);
1526 /* If the set destination and the phi alternative aren't
1527 already in the same class... */
1528 if (partition_find (reg_partition, tgt_regno)
1529 != partition_find (reg_partition, alt_regno))
1531 /* ... make them such. */
1532 if (conflicting_hard_regs_p (tgt_regno, alt_regno))
1533 /* It is illegal to unify a hard register with a
1534 different register. */
1535 abort ();
1537 partition_union (reg_partition,
1538 tgt_regno, alt_regno);
1539 ++changed;
1544 return changed;
1547 /* Consider phi insns in basic block BB pairwise. If the set target
1548 of both isns are equivalent pseudos, make the corresponding phi
1549 alternatives in each phi corresponding equivalent.
1551 Return nonzero if any new register classes were unioned. */
1553 static int
1554 make_equivalent_phi_alternatives_equivalent (bb, reg_partition)
1555 int bb;
1556 partition reg_partition;
1558 int changed = 0;
1559 basic_block b = BASIC_BLOCK (bb);
1560 rtx phi;
1562 /* Advance to the first phi node. */
1563 phi = first_insn_after_basic_block_note (b);
1565 /* Scan all the phi nodes. */
1566 for (;
1567 PHI_NODE_P (phi);
1568 phi = next_nonnote_insn (phi))
1570 rtx set = PATTERN (phi);
1571 /* The regno of the destination of the set. */
1572 int tgt_regno = REGNO (SET_DEST (PATTERN (phi)));
1574 rtx phi2 = next_nonnote_insn (phi);
1576 /* Scan all phi nodes following this one. */
1577 for (;
1578 PHI_NODE_P (phi2);
1579 phi2 = next_nonnote_insn (phi2))
1581 rtx set2 = PATTERN (phi2);
1582 /* The regno of the destination of the set. */
1583 int tgt2_regno = REGNO (SET_DEST (set2));
1585 /* Are the set destinations equivalent regs? */
1586 if (partition_find (reg_partition, tgt_regno) ==
1587 partition_find (reg_partition, tgt2_regno))
1589 edge e;
1590 /* Scan over edges. */
1591 for (e = b->pred; e; e = e->pred_next)
1593 int pred_block = e->src->index;
1594 /* Identify the phi alternatives from both phi
1595 nodes corresponding to this edge. */
1596 rtx *alt = phi_alternative (set, pred_block);
1597 rtx *alt2 = phi_alternative (set2, pred_block);
1599 /* If one of the phi nodes doesn't have a
1600 corresponding alternative, just skip it. */
1601 if (alt == 0 || alt2 == 0)
1602 continue;
1604 /* Both alternatives should be SSA registers. */
1605 if (GET_CODE (*alt) != REG
1606 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt)))
1607 abort ();
1608 if (GET_CODE (*alt2) != REG
1609 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt2)))
1610 abort ();
1612 /* If the alternatives aren't already in the same
1613 class ... */
1614 if (partition_find (reg_partition, REGNO (*alt))
1615 != partition_find (reg_partition, REGNO (*alt2)))
1617 /* ... make them so. */
1618 if (conflicting_hard_regs_p (REGNO (*alt), REGNO (*alt2)))
1619 /* It is illegal to unify a hard register with
1620 a different register. */
1621 abort ();
1623 partition_union (reg_partition,
1624 REGNO (*alt), REGNO (*alt2));
1625 ++changed;
1632 return changed;
1635 /* Compute a conservative partition of outstanding pseudo registers.
1636 See Morgan 7.3.1. */
1638 static partition
1639 compute_conservative_reg_partition ()
1641 basic_block bb;
1642 int changed = 0;
1644 /* We don't actually work with hard registers, but it's easier to
1645 carry them around anyway rather than constantly doing register
1646 number arithmetic. */
1647 partition p =
1648 partition_new (ssa_definition->num_elements);
1650 /* The first priority is to make sure registers that might have to
1651 be copied on abnormal critical edges are placed in the same
1652 partition. This saves us from having to split abnormal critical
1653 edges. */
1654 FOR_EACH_BB_REVERSE (bb)
1655 changed += make_regs_equivalent_over_bad_edges (bb->index, p);
1657 /* Now we have to insure that corresponding arguments of phi nodes
1658 assigning to corresponding regs are equivalent. Iterate until
1659 nothing changes. */
1660 while (changed > 0)
1662 changed = 0;
1663 FOR_EACH_BB_REVERSE (bb)
1664 changed += make_equivalent_phi_alternatives_equivalent (bb->index, p);
1667 return p;
1670 /* The following functions compute a register partition that attempts
1671 to eliminate as many reg copies and phi node copies as possible by
1672 coalescing registers. This is the strategy:
1674 1. As in the conservative case, the top priority is to coalesce
1675 registers that otherwise would cause copies to be placed on
1676 abnormal critical edges (which isn't possible).
1678 2. Figure out which regs are involved (in the LHS or RHS) of
1679 copies and phi nodes. Compute conflicts among these regs.
1681 3. Walk around the instruction stream, placing two regs in the
1682 same class of the partition if one appears on the LHS and the
1683 other on the RHS of a copy or phi node and the two regs don't
1684 conflict. The conflict information of course needs to be
1685 updated.
1687 4. If anything has changed, there may be new opportunities to
1688 coalesce regs, so go back to 2.
1691 /* If REG1 and REG2 don't conflict in CONFLICTS, place them in the
1692 same class of partition P, if they aren't already. Update
1693 CONFLICTS appropriately.
1695 Returns one if REG1 and REG2 were placed in the same class but were
1696 not previously; zero otherwise.
1698 See Morgan figure 11.15. */
1700 static int
1701 coalesce_if_unconflicting (p, conflicts, reg1, reg2)
1702 partition p;
1703 conflict_graph conflicts;
1704 int reg1;
1705 int reg2;
1707 int reg;
1709 /* Work only on SSA registers. */
1710 if (!CONVERT_REGISTER_TO_SSA_P (reg1) || !CONVERT_REGISTER_TO_SSA_P (reg2))
1711 return 0;
1713 /* Find the canonical regs for the classes containing REG1 and
1714 REG2. */
1715 reg1 = partition_find (p, reg1);
1716 reg2 = partition_find (p, reg2);
1718 /* If they're already in the same class, there's nothing to do. */
1719 if (reg1 == reg2)
1720 return 0;
1722 /* If the regs conflict, our hands are tied. */
1723 if (conflicting_hard_regs_p (reg1, reg2) ||
1724 conflict_graph_conflict_p (conflicts, reg1, reg2))
1725 return 0;
1727 /* We're good to go. Put the regs in the same partition. */
1728 partition_union (p, reg1, reg2);
1730 /* Find the new canonical reg for the merged class. */
1731 reg = partition_find (p, reg1);
1733 /* Merge conflicts from the two previous classes. */
1734 conflict_graph_merge_regs (conflicts, reg, reg1);
1735 conflict_graph_merge_regs (conflicts, reg, reg2);
1737 return 1;
1740 /* For each register copy insn in basic block BB, place the LHS and
1741 RHS regs in the same class in partition P if they do not conflict
1742 according to CONFLICTS.
1744 Returns the number of changes that were made to P.
1746 See Morgan figure 11.14. */
1748 static int
1749 coalesce_regs_in_copies (bb, p, conflicts)
1750 basic_block bb;
1751 partition p;
1752 conflict_graph conflicts;
1754 int changed = 0;
1755 rtx insn;
1756 rtx end = bb->end;
1758 /* Scan the instruction stream of the block. */
1759 for (insn = bb->head; insn != end; insn = NEXT_INSN (insn))
1761 rtx pattern;
1762 rtx src;
1763 rtx dest;
1765 /* If this isn't a set insn, go to the next insn. */
1766 if (GET_CODE (insn) != INSN)
1767 continue;
1768 pattern = PATTERN (insn);
1769 if (GET_CODE (pattern) != SET)
1770 continue;
1772 src = SET_SRC (pattern);
1773 dest = SET_DEST (pattern);
1775 /* We're only looking for copies. */
1776 if (GET_CODE (src) != REG || GET_CODE (dest) != REG)
1777 continue;
1779 /* Coalesce only if the reg modes are the same. As long as
1780 each reg's rtx is unique, it can have only one mode, so two
1781 pseudos of different modes can't be coalesced into one.
1783 FIXME: We can probably get around this by inserting SUBREGs
1784 where appropriate, but for now we don't bother. */
1785 if (GET_MODE (src) != GET_MODE (dest))
1786 continue;
1788 /* Found a copy; see if we can use the same reg for both the
1789 source and destination (and thus eliminate the copy,
1790 ultimately). */
1791 changed += coalesce_if_unconflicting (p, conflicts,
1792 REGNO (src), REGNO (dest));
1795 return changed;
1798 struct phi_coalesce_context
1800 partition p;
1801 conflict_graph conflicts;
1802 int changed;
1805 /* Callback function for for_each_successor_phi. If the set
1806 destination and the phi alternative regs do not conflict, place
1807 them in the same paritition class. DATA is a pointer to a
1808 phi_coalesce_context struct. */
1810 static int
1811 coalesce_reg_in_phi (insn, dest_regno, src_regno, data)
1812 rtx insn ATTRIBUTE_UNUSED;
1813 int dest_regno;
1814 int src_regno;
1815 void *data;
1817 struct phi_coalesce_context *context =
1818 (struct phi_coalesce_context *) data;
1820 /* Attempt to use the same reg, if they don't conflict. */
1821 context->changed
1822 += coalesce_if_unconflicting (context->p, context->conflicts,
1823 dest_regno, src_regno);
1824 return 0;
1827 /* For each alternative in a phi function corresponding to basic block
1828 BB (in phi nodes in successor block to BB), place the reg in the
1829 phi alternative and the reg to which the phi value is set into the
1830 same class in partition P, if allowed by CONFLICTS.
1832 Return the number of changes that were made to P.
1834 See Morgan figure 11.14. */
1836 static int
1837 coalesce_regs_in_successor_phi_nodes (bb, p, conflicts)
1838 basic_block bb;
1839 partition p;
1840 conflict_graph conflicts;
1842 struct phi_coalesce_context context;
1843 context.p = p;
1844 context.conflicts = conflicts;
1845 context.changed = 0;
1847 for_each_successor_phi (bb, &coalesce_reg_in_phi, &context);
1849 return context.changed;
1852 /* Compute and return a partition of pseudos. Where possible,
1853 non-conflicting pseudos are placed in the same class.
1855 The caller is responsible for deallocating the returned partition. */
1857 static partition
1858 compute_coalesced_reg_partition ()
1860 basic_block bb;
1861 int changed = 0;
1862 regset_head phi_set_head;
1863 regset phi_set = &phi_set_head;
1865 partition p =
1866 partition_new (ssa_definition->num_elements);
1868 /* The first priority is to make sure registers that might have to
1869 be copied on abnormal critical edges are placed in the same
1870 partition. This saves us from having to split abnormal critical
1871 edges (which can't be done). */
1872 FOR_EACH_BB_REVERSE (bb)
1873 make_regs_equivalent_over_bad_edges (bb->index, p);
1875 INIT_REG_SET (phi_set);
1879 conflict_graph conflicts;
1881 changed = 0;
1883 /* Build the set of registers involved in phi nodes, either as
1884 arguments to the phi function or as the target of a set. */
1885 CLEAR_REG_SET (phi_set);
1886 mark_phi_and_copy_regs (phi_set);
1888 /* Compute conflicts. */
1889 conflicts = conflict_graph_compute (phi_set, p);
1891 /* FIXME: Better would be to process most frequently executed
1892 blocks first, so that most frequently executed copies would
1893 be more likely to be removed by register coalescing. But any
1894 order will generate correct, if non-optimal, results. */
1895 FOR_EACH_BB_REVERSE (bb)
1897 changed += coalesce_regs_in_copies (bb, p, conflicts);
1898 changed +=
1899 coalesce_regs_in_successor_phi_nodes (bb, p, conflicts);
1902 conflict_graph_delete (conflicts);
1904 while (changed > 0);
1906 FREE_REG_SET (phi_set);
1908 return p;
1911 /* Mark the regs in a phi node. PTR is a phi expression or one of its
1912 components (a REG or a CONST_INT). DATA is a reg set in which to
1913 set all regs. Called from for_each_rtx. */
1915 static int
1916 mark_reg_in_phi (ptr, data)
1917 rtx *ptr;
1918 void *data;
1920 rtx expr = *ptr;
1921 regset set = (regset) data;
1923 switch (GET_CODE (expr))
1925 case REG:
1926 SET_REGNO_REG_SET (set, REGNO (expr));
1927 /* Fall through. */
1928 case CONST_INT:
1929 case PHI:
1930 return 0;
1931 default:
1932 abort ();
1936 /* Mark in PHI_SET all pseudos that are used in a phi node -- either
1937 set from a phi expression, or used as an argument in one. Also
1938 mark regs that are the source or target of a reg copy. Uses
1939 ssa_definition. */
1941 static void
1942 mark_phi_and_copy_regs (phi_set)
1943 regset phi_set;
1945 unsigned int reg;
1947 /* Scan the definitions of all regs. */
1948 for (reg = 0; reg < VARRAY_SIZE (ssa_definition); ++reg)
1949 if (CONVERT_REGISTER_TO_SSA_P (reg))
1951 rtx insn = VARRAY_RTX (ssa_definition, reg);
1952 rtx pattern;
1953 rtx src;
1955 if (insn == NULL
1956 || (GET_CODE (insn) == NOTE
1957 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED))
1958 continue;
1959 pattern = PATTERN (insn);
1960 /* Sometimes we get PARALLEL insns. These aren't phi nodes or
1961 copies. */
1962 if (GET_CODE (pattern) != SET)
1963 continue;
1964 src = SET_SRC (pattern);
1966 if (GET_CODE (src) == REG)
1968 /* It's a reg copy. */
1969 SET_REGNO_REG_SET (phi_set, reg);
1970 SET_REGNO_REG_SET (phi_set, REGNO (src));
1972 else if (GET_CODE (src) == PHI)
1974 /* It's a phi node. Mark the reg being set. */
1975 SET_REGNO_REG_SET (phi_set, reg);
1976 /* Mark the regs used in the phi function. */
1977 for_each_rtx (&src, mark_reg_in_phi, phi_set);
1979 /* ... else nothing to do. */
1983 /* Rename regs in insn PTR that are equivalent. DATA is the register
1984 partition which specifies equivalences. */
1986 static int
1987 rename_equivalent_regs_in_insn (ptr, data)
1988 rtx *ptr;
1989 void* data;
1991 rtx x = *ptr;
1992 partition reg_partition = (partition) data;
1994 if (x == NULL_RTX)
1995 return 0;
1997 switch (GET_CODE (x))
1999 case REG:
2000 if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)))
2002 unsigned int regno = REGNO (x);
2003 unsigned int new_regno = partition_find (reg_partition, regno);
2004 rtx canonical_element_rtx = ssa_rename_from_lookup (new_regno);
2006 if (canonical_element_rtx != NULL_RTX &&
2007 HARD_REGISTER_P (canonical_element_rtx))
2009 if (REGNO (canonical_element_rtx) != regno)
2010 *ptr = canonical_element_rtx;
2012 else if (regno != new_regno)
2014 rtx new_reg = regno_reg_rtx[new_regno];
2015 if (GET_MODE (x) != GET_MODE (new_reg))
2016 abort ();
2017 *ptr = new_reg;
2020 return -1;
2022 case PHI:
2023 /* No need to rename the phi nodes. We'll check equivalence
2024 when inserting copies. */
2025 return -1;
2027 default:
2028 /* Anything else, continue traversing. */
2029 return 0;
2033 /* Record the register's canonical element stored in SRFP in the
2034 canonical_elements sbitmap packaged in DATA. This function is used
2035 as a callback function for traversing ssa_rename_from. */
2037 static int
2038 record_canonical_element_1 (srfp, data)
2039 void **srfp;
2040 void *data;
2042 unsigned int reg = ((ssa_rename_from_pair *) *srfp)->reg;
2043 sbitmap canonical_elements =
2044 ((struct ssa_rename_from_hash_table_data *) data)->canonical_elements;
2045 partition reg_partition =
2046 ((struct ssa_rename_from_hash_table_data *) data)->reg_partition;
2048 SET_BIT (canonical_elements, partition_find (reg_partition, reg));
2049 return 1;
2052 /* For each class in the REG_PARTITION corresponding to a particular
2053 hard register and machine mode, check that there are no other
2054 classes with the same hard register and machine mode. Returns
2055 nonzero if this is the case, i.e., the partition is acceptable. */
2057 static int
2058 check_hard_regs_in_partition (reg_partition)
2059 partition reg_partition;
2061 /* CANONICAL_ELEMENTS has a nonzero bit if a class with the given register
2062 number and machine mode has already been seen. This is a
2063 problem with the partition. */
2064 sbitmap canonical_elements;
2065 int element_index;
2066 int already_seen[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
2067 int reg;
2068 int mach_mode;
2070 /* Collect a list of canonical elements. */
2071 canonical_elements = sbitmap_alloc (max_reg_num ());
2072 sbitmap_zero (canonical_elements);
2073 ssa_rename_from_traverse (&record_canonical_element_1,
2074 canonical_elements, reg_partition);
2076 /* We have not seen any hard register uses. */
2077 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; ++reg)
2078 for (mach_mode = 0; mach_mode < NUM_MACHINE_MODES; ++mach_mode)
2079 already_seen[reg][mach_mode] = 0;
2081 /* Check for classes with the same hard register and machine mode. */
2082 EXECUTE_IF_SET_IN_SBITMAP (canonical_elements, 0, element_index,
2084 rtx hard_reg_rtx = ssa_rename_from_lookup (element_index);
2085 if (hard_reg_rtx != NULL_RTX &&
2086 HARD_REGISTER_P (hard_reg_rtx) &&
2087 already_seen[REGNO (hard_reg_rtx)][GET_MODE (hard_reg_rtx)] != 0)
2088 /* Two distinct partition classes should be mapped to the same
2089 hard register. */
2090 return 0;
2093 sbitmap_free (canonical_elements);
2095 return 1;
2098 /* Rename regs that are equivalent in REG_PARTITION. Also collapse
2099 any SEQUENCE insns. */
2101 static void
2102 rename_equivalent_regs (reg_partition)
2103 partition reg_partition;
2105 basic_block b;
2107 FOR_EACH_BB_REVERSE (b)
2109 rtx next = b->head;
2110 rtx last = b->end;
2111 rtx insn;
2115 insn = next;
2116 if (INSN_P (insn))
2118 for_each_rtx (&PATTERN (insn),
2119 rename_equivalent_regs_in_insn,
2120 reg_partition);
2121 for_each_rtx (&REG_NOTES (insn),
2122 rename_equivalent_regs_in_insn,
2123 reg_partition);
2125 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2127 rtx s = PATTERN (insn);
2128 int slen = XVECLEN (s, 0);
2129 int i;
2131 if (slen <= 1)
2132 abort ();
2134 PATTERN (insn) = XVECEXP (s, 0, slen-1);
2135 for (i = 0; i < slen - 1; i++)
2136 emit_insn_before (XVECEXP (s, 0, i), insn);
2140 next = NEXT_INSN (insn);
2142 while (insn != last);
2146 /* The main entry point for moving from SSA. */
2148 void
2149 convert_from_ssa ()
2151 basic_block b, bb;
2152 partition reg_partition;
2153 rtx insns = get_insns ();
2155 /* Need global_live_at_{start,end} up to date. There should not be
2156 any significant dead code at this point, except perhaps dead
2157 stores. So do not take the time to perform dead code elimination.
2159 Register coalescing needs death notes, so generate them. */
2160 life_analysis (insns, NULL, PROP_DEATH_NOTES);
2162 /* Figure out which regs in copies and phi nodes don't conflict and
2163 therefore can be coalesced. */
2164 if (conservative_reg_partition)
2165 reg_partition = compute_conservative_reg_partition ();
2166 else
2167 reg_partition = compute_coalesced_reg_partition ();
2169 if (!check_hard_regs_in_partition (reg_partition))
2170 /* Two separate partitions should correspond to the same hard
2171 register but do not. */
2172 abort ();
2174 rename_equivalent_regs (reg_partition);
2176 /* Eliminate the PHI nodes. */
2177 FOR_EACH_BB_REVERSE (b)
2179 edge e;
2181 for (e = b->pred; e; e = e->pred_next)
2182 if (e->src != ENTRY_BLOCK_PTR)
2183 eliminate_phi (e, reg_partition);
2186 partition_delete (reg_partition);
2188 /* Actually delete the PHI nodes. */
2189 FOR_EACH_BB_REVERSE (bb)
2191 rtx insn = bb->head;
2193 while (1)
2195 /* If this is a PHI node delete it. */
2196 if (PHI_NODE_P (insn))
2198 if (insn == bb->end)
2199 bb->end = PREV_INSN (insn);
2200 insn = delete_insn (insn);
2202 /* Since all the phi nodes come at the beginning of the
2203 block, if we find an ordinary insn, we can stop looking
2204 for more phi nodes. */
2205 else if (INSN_P (insn))
2206 break;
2207 /* If we've reached the end of the block, stop. */
2208 else if (insn == bb->end)
2209 break;
2210 else
2211 insn = NEXT_INSN (insn);
2215 /* Commit all the copy nodes needed to convert out of SSA form. */
2216 commit_edge_insertions ();
2218 in_ssa_form = 0;
2220 count_or_remove_death_notes (NULL, 1);
2222 /* Deallocate the data structures. */
2223 ssa_definition = 0;
2224 ssa_rename_from_free ();
2227 /* Scan phi nodes in successors to BB. For each such phi node that
2228 has a phi alternative value corresponding to BB, invoke FN. FN
2229 is passed the entire phi node insn, the regno of the set
2230 destination, the regno of the phi argument corresponding to BB,
2231 and DATA.
2233 If FN ever returns non-zero, stops immediately and returns this
2234 value. Otherwise, returns zero. */
2237 for_each_successor_phi (bb, fn, data)
2238 basic_block bb;
2239 successor_phi_fn fn;
2240 void *data;
2242 edge e;
2244 if (bb == EXIT_BLOCK_PTR)
2245 return 0;
2247 /* Scan outgoing edges. */
2248 for (e = bb->succ; e != NULL; e = e->succ_next)
2250 rtx insn;
2252 basic_block successor = e->dest;
2253 if (successor == ENTRY_BLOCK_PTR
2254 || successor == EXIT_BLOCK_PTR)
2255 continue;
2257 /* Advance to the first non-label insn of the successor block. */
2258 insn = first_insn_after_basic_block_note (successor);
2260 if (insn == NULL)
2261 continue;
2263 /* Scan phi nodes in the successor. */
2264 for ( ; PHI_NODE_P (insn); insn = NEXT_INSN (insn))
2266 int result;
2267 rtx phi_set = PATTERN (insn);
2268 rtx *alternative = phi_alternative (phi_set, bb->index);
2269 rtx phi_src;
2271 /* This phi function may not have an alternative
2272 corresponding to the incoming edge, indicating the
2273 assigned variable is not defined along the edge. */
2274 if (alternative == NULL)
2275 continue;
2276 phi_src = *alternative;
2278 /* Invoke the callback. */
2279 result = (*fn) (insn, REGNO (SET_DEST (phi_set)),
2280 REGNO (phi_src), data);
2282 /* Terminate if requested. */
2283 if (result != 0)
2284 return result;
2288 return 0;
2291 /* Assuming the ssa_rename_from mapping has been established, yields
2292 nonzero if 1) only one SSA register of REG1 and REG2 comes from a
2293 hard register or 2) both SSA registers REG1 and REG2 come from
2294 different hard registers. */
2296 static int
2297 conflicting_hard_regs_p (reg1, reg2)
2298 int reg1;
2299 int reg2;
2301 int orig_reg1 = original_register (reg1);
2302 int orig_reg2 = original_register (reg2);
2303 if (HARD_REGISTER_NUM_P (orig_reg1) && HARD_REGISTER_NUM_P (orig_reg2)
2304 && orig_reg1 != orig_reg2)
2305 return 1;
2306 if (HARD_REGISTER_NUM_P (orig_reg1) && !HARD_REGISTER_NUM_P (orig_reg2))
2307 return 1;
2308 if (!HARD_REGISTER_NUM_P (orig_reg1) && HARD_REGISTER_NUM_P (orig_reg2))
2309 return 1;
2311 return 0;