Merge from trunk @222673.
[official-gcc.git] / gcc / var-tracking.c
blobd4e0af57e93676c6b087dd2b7b1b5232234b8ebd
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "hash-set.h"
94 #include "machmode.h"
95 #include "vec.h"
96 #include "double-int.h"
97 #include "input.h"
98 #include "alias.h"
99 #include "symtab.h"
100 #include "wide-int.h"
101 #include "inchash.h"
102 #include "tree.h"
103 #include "varasm.h"
104 #include "stor-layout.h"
105 #include "hash-map.h"
106 #include "hash-table.h"
107 #include "predict.h"
108 #include "hard-reg-set.h"
109 #include "function.h"
110 #include "dominance.h"
111 #include "cfg.h"
112 #include "cfgrtl.h"
113 #include "cfganal.h"
114 #include "basic-block.h"
115 #include "tm_p.h"
116 #include "flags.h"
117 #include "insn-config.h"
118 #include "reload.h"
119 #include "sbitmap.h"
120 #include "alloc-pool.h"
121 #include "regs.h"
122 #include "hashtab.h"
123 #include "statistics.h"
124 #include "real.h"
125 #include "fixed-value.h"
126 #include "expmed.h"
127 #include "dojump.h"
128 #include "explow.h"
129 #include "calls.h"
130 #include "emit-rtl.h"
131 #include "stmt.h"
132 #include "expr.h"
133 #include "tree-pass.h"
134 #include "bitmap.h"
135 #include "tree-dfa.h"
136 #include "tree-ssa.h"
137 #include "cselib.h"
138 #include "target.h"
139 #include "params.h"
140 #include "diagnostic.h"
141 #include "tree-pretty-print.h"
142 #include "recog.h"
143 #include "rtl-iter.h"
144 #include "fibonacci_heap.h"
146 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
147 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
149 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
150 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
151 Currently the value is the same as IDENTIFIER_NODE, which has such
152 a property. If this compile time assertion ever fails, make sure that
153 the new tree code that equals (int) VALUE has the same property. */
154 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
156 /* Type of micro operation. */
157 enum micro_operation_type
159 MO_USE, /* Use location (REG or MEM). */
160 MO_USE_NO_VAR,/* Use location which is not associated with a variable
161 or the variable is not trackable. */
162 MO_VAL_USE, /* Use location which is associated with a value. */
163 MO_VAL_LOC, /* Use location which appears in a debug insn. */
164 MO_VAL_SET, /* Set location associated with a value. */
165 MO_SET, /* Set location. */
166 MO_COPY, /* Copy the same portion of a variable from one
167 location to another. */
168 MO_CLOBBER, /* Clobber location. */
169 MO_CALL, /* Call insn. */
170 MO_ADJUST /* Adjust stack pointer. */
174 static const char * const ATTRIBUTE_UNUSED
175 micro_operation_type_name[] = {
176 "MO_USE",
177 "MO_USE_NO_VAR",
178 "MO_VAL_USE",
179 "MO_VAL_LOC",
180 "MO_VAL_SET",
181 "MO_SET",
182 "MO_COPY",
183 "MO_CLOBBER",
184 "MO_CALL",
185 "MO_ADJUST"
188 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
189 Notes emitted as AFTER_CALL are to take effect during the call,
190 rather than after the call. */
191 enum emit_note_where
193 EMIT_NOTE_BEFORE_INSN,
194 EMIT_NOTE_AFTER_INSN,
195 EMIT_NOTE_AFTER_CALL_INSN
198 /* Structure holding information about micro operation. */
199 typedef struct micro_operation_def
201 /* Type of micro operation. */
202 enum micro_operation_type type;
204 /* The instruction which the micro operation is in, for MO_USE,
205 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
206 instruction or note in the original flow (before any var-tracking
207 notes are inserted, to simplify emission of notes), for MO_SET
208 and MO_CLOBBER. */
209 rtx_insn *insn;
211 union {
212 /* Location. For MO_SET and MO_COPY, this is the SET that
213 performs the assignment, if known, otherwise it is the target
214 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
215 CONCAT of the VALUE and the LOC associated with it. For
216 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
217 associated with it. */
218 rtx loc;
220 /* Stack adjustment. */
221 HOST_WIDE_INT adjust;
222 } u;
223 } micro_operation;
226 /* A declaration of a variable, or an RTL value being handled like a
227 declaration. */
228 typedef void *decl_or_value;
230 /* Return true if a decl_or_value DV is a DECL or NULL. */
231 static inline bool
232 dv_is_decl_p (decl_or_value dv)
234 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
237 /* Return true if a decl_or_value is a VALUE rtl. */
238 static inline bool
239 dv_is_value_p (decl_or_value dv)
241 return dv && !dv_is_decl_p (dv);
244 /* Return the decl in the decl_or_value. */
245 static inline tree
246 dv_as_decl (decl_or_value dv)
248 gcc_checking_assert (dv_is_decl_p (dv));
249 return (tree) dv;
252 /* Return the value in the decl_or_value. */
253 static inline rtx
254 dv_as_value (decl_or_value dv)
256 gcc_checking_assert (dv_is_value_p (dv));
257 return (rtx)dv;
260 /* Return the opaque pointer in the decl_or_value. */
261 static inline void *
262 dv_as_opaque (decl_or_value dv)
264 return dv;
268 /* Description of location of a part of a variable. The content of a physical
269 register is described by a chain of these structures.
270 The chains are pretty short (usually 1 or 2 elements) and thus
271 chain is the best data structure. */
272 typedef struct attrs_def
274 /* Pointer to next member of the list. */
275 struct attrs_def *next;
277 /* The rtx of register. */
278 rtx loc;
280 /* The declaration corresponding to LOC. */
281 decl_or_value dv;
283 /* Offset from start of DECL. */
284 HOST_WIDE_INT offset;
285 } *attrs;
287 /* Structure for chaining the locations. */
288 typedef struct location_chain_def
290 /* Next element in the chain. */
291 struct location_chain_def *next;
293 /* The location (REG, MEM or VALUE). */
294 rtx loc;
296 /* The "value" stored in this location. */
297 rtx set_src;
299 /* Initialized? */
300 enum var_init_status init;
301 } *location_chain;
303 /* A vector of loc_exp_dep holds the active dependencies of a one-part
304 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
305 location of DV. Each entry is also part of VALUE' s linked-list of
306 backlinks back to DV. */
307 typedef struct loc_exp_dep_s
309 /* The dependent DV. */
310 decl_or_value dv;
311 /* The dependency VALUE or DECL_DEBUG. */
312 rtx value;
313 /* The next entry in VALUE's backlinks list. */
314 struct loc_exp_dep_s *next;
315 /* A pointer to the pointer to this entry (head or prev's next) in
316 the doubly-linked list. */
317 struct loc_exp_dep_s **pprev;
318 } loc_exp_dep;
321 /* This data structure holds information about the depth of a variable
322 expansion. */
323 typedef struct expand_depth_struct
325 /* This measures the complexity of the expanded expression. It
326 grows by one for each level of expansion that adds more than one
327 operand. */
328 int complexity;
329 /* This counts the number of ENTRY_VALUE expressions in an
330 expansion. We want to minimize their use. */
331 int entryvals;
332 } expand_depth;
334 /* This data structure is allocated for one-part variables at the time
335 of emitting notes. */
336 struct onepart_aux
338 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
339 computation used the expansion of this variable, and that ought
340 to be notified should this variable change. If the DV's cur_loc
341 expanded to NULL, all components of the loc list are regarded as
342 active, so that any changes in them give us a chance to get a
343 location. Otherwise, only components of the loc that expanded to
344 non-NULL are regarded as active dependencies. */
345 loc_exp_dep *backlinks;
346 /* This holds the LOC that was expanded into cur_loc. We need only
347 mark a one-part variable as changed if the FROM loc is removed,
348 or if it has no known location and a loc is added, or if it gets
349 a change notification from any of its active dependencies. */
350 rtx from;
351 /* The depth of the cur_loc expression. */
352 expand_depth depth;
353 /* Dependencies actively used when expand FROM into cur_loc. */
354 vec<loc_exp_dep, va_heap, vl_embed> deps;
357 /* Structure describing one part of variable. */
358 typedef struct variable_part_def
360 /* Chain of locations of the part. */
361 location_chain loc_chain;
363 /* Location which was last emitted to location list. */
364 rtx cur_loc;
366 union variable_aux
368 /* The offset in the variable, if !var->onepart. */
369 HOST_WIDE_INT offset;
371 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
372 struct onepart_aux *onepaux;
373 } aux;
374 } variable_part;
376 /* Maximum number of location parts. */
377 #define MAX_VAR_PARTS 16
379 /* Enumeration type used to discriminate various types of one-part
380 variables. */
381 typedef enum onepart_enum
383 /* Not a one-part variable. */
384 NOT_ONEPART = 0,
385 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
386 ONEPART_VDECL = 1,
387 /* A DEBUG_EXPR_DECL. */
388 ONEPART_DEXPR = 2,
389 /* A VALUE. */
390 ONEPART_VALUE = 3
391 } onepart_enum_t;
393 /* Structure describing where the variable is located. */
394 typedef struct variable_def
396 /* The declaration of the variable, or an RTL value being handled
397 like a declaration. */
398 decl_or_value dv;
400 /* Reference count. */
401 int refcount;
403 /* Number of variable parts. */
404 char n_var_parts;
406 /* What type of DV this is, according to enum onepart_enum. */
407 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
409 /* True if this variable_def struct is currently in the
410 changed_variables hash table. */
411 bool in_changed_variables;
413 /* The variable parts. */
414 variable_part var_part[1];
415 } *variable;
416 typedef const struct variable_def *const_variable;
418 /* Pointer to the BB's information specific to variable tracking pass. */
419 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
421 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
422 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
424 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
426 /* Access VAR's Ith part's offset, checking that it's not a one-part
427 variable. */
428 #define VAR_PART_OFFSET(var, i) __extension__ \
429 (*({ variable const __v = (var); \
430 gcc_checking_assert (!__v->onepart); \
431 &__v->var_part[(i)].aux.offset; }))
433 /* Access VAR's one-part auxiliary data, checking that it is a
434 one-part variable. */
435 #define VAR_LOC_1PAUX(var) __extension__ \
436 (*({ variable const __v = (var); \
437 gcc_checking_assert (__v->onepart); \
438 &__v->var_part[0].aux.onepaux; }))
440 #else
441 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
442 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
443 #endif
445 /* These are accessor macros for the one-part auxiliary data. When
446 convenient for users, they're guarded by tests that the data was
447 allocated. */
448 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
449 ? VAR_LOC_1PAUX (var)->backlinks \
450 : NULL)
451 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
452 ? &VAR_LOC_1PAUX (var)->backlinks \
453 : NULL)
454 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
455 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
456 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
457 ? &VAR_LOC_1PAUX (var)->deps \
458 : NULL)
462 typedef unsigned int dvuid;
464 /* Return the uid of DV. */
466 static inline dvuid
467 dv_uid (decl_or_value dv)
469 if (dv_is_value_p (dv))
470 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
471 else
472 return DECL_UID (dv_as_decl (dv));
475 /* Compute the hash from the uid. */
477 static inline hashval_t
478 dv_uid2hash (dvuid uid)
480 return uid;
483 /* The hash function for a mask table in a shared_htab chain. */
485 static inline hashval_t
486 dv_htab_hash (decl_or_value dv)
488 return dv_uid2hash (dv_uid (dv));
491 static void variable_htab_free (void *);
493 /* Variable hashtable helpers. */
495 struct variable_hasher
497 typedef variable_def *value_type;
498 typedef void *compare_type;
499 static inline hashval_t hash (const variable_def *);
500 static inline bool equal (const variable_def *, const void *);
501 static inline void remove (variable_def *);
504 /* The hash function for variable_htab, computes the hash value
505 from the declaration of variable X. */
507 inline hashval_t
508 variable_hasher::hash (const variable_def *v)
510 return dv_htab_hash (v->dv);
513 /* Compare the declaration of variable X with declaration Y. */
515 inline bool
516 variable_hasher::equal (const variable_def *v, const void *y)
518 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
520 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
523 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
525 inline void
526 variable_hasher::remove (variable_def *var)
528 variable_htab_free (var);
531 typedef hash_table<variable_hasher> variable_table_type;
532 typedef variable_table_type::iterator variable_iterator_type;
534 /* Structure for passing some other parameters to function
535 emit_note_insn_var_location. */
536 typedef struct emit_note_data_def
538 /* The instruction which the note will be emitted before/after. */
539 rtx_insn *insn;
541 /* Where the note will be emitted (before/after insn)? */
542 enum emit_note_where where;
544 /* The variables and values active at this point. */
545 variable_table_type *vars;
546 } emit_note_data;
548 /* Structure holding a refcounted hash table. If refcount > 1,
549 it must be first unshared before modified. */
550 typedef struct shared_hash_def
552 /* Reference count. */
553 int refcount;
555 /* Actual hash table. */
556 variable_table_type *htab;
557 } *shared_hash;
559 /* Structure holding the IN or OUT set for a basic block. */
560 typedef struct dataflow_set_def
562 /* Adjustment of stack offset. */
563 HOST_WIDE_INT stack_adjust;
565 /* Attributes for registers (lists of attrs). */
566 attrs regs[FIRST_PSEUDO_REGISTER];
568 /* Variable locations. */
569 shared_hash vars;
571 /* Vars that is being traversed. */
572 shared_hash traversed_vars;
573 } dataflow_set;
575 /* The structure (one for each basic block) containing the information
576 needed for variable tracking. */
577 typedef struct variable_tracking_info_def
579 /* The vector of micro operations. */
580 vec<micro_operation> mos;
582 /* The IN and OUT set for dataflow analysis. */
583 dataflow_set in;
584 dataflow_set out;
586 /* The permanent-in dataflow set for this block. This is used to
587 hold values for which we had to compute entry values. ??? This
588 should probably be dynamically allocated, to avoid using more
589 memory in non-debug builds. */
590 dataflow_set *permp;
592 /* Has the block been visited in DFS? */
593 bool visited;
595 /* Has the block been flooded in VTA? */
596 bool flooded;
598 } *variable_tracking_info;
600 /* Alloc pool for struct attrs_def. */
601 static alloc_pool attrs_pool;
603 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
604 static alloc_pool var_pool;
606 /* Alloc pool for struct variable_def with a single var_part entry. */
607 static alloc_pool valvar_pool;
609 /* Alloc pool for struct location_chain_def. */
610 static alloc_pool loc_chain_pool;
612 /* Alloc pool for struct shared_hash_def. */
613 static alloc_pool shared_hash_pool;
615 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
616 static alloc_pool loc_exp_dep_pool;
618 /* Changed variables, notes will be emitted for them. */
619 static variable_table_type *changed_variables;
621 /* Shall notes be emitted? */
622 static bool emit_notes;
624 /* Values whose dynamic location lists have gone empty, but whose
625 cselib location lists are still usable. Use this to hold the
626 current location, the backlinks, etc, during emit_notes. */
627 static variable_table_type *dropped_values;
629 /* Empty shared hashtable. */
630 static shared_hash empty_shared_hash;
632 /* Scratch register bitmap used by cselib_expand_value_rtx. */
633 static bitmap scratch_regs = NULL;
635 #ifdef HAVE_window_save
636 typedef struct GTY(()) parm_reg {
637 rtx outgoing;
638 rtx incoming;
639 } parm_reg_t;
642 /* Vector of windowed parameter registers, if any. */
643 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
644 #endif
646 /* Variable used to tell whether cselib_process_insn called our hook. */
647 static bool cselib_hook_called;
649 /* Local function prototypes. */
650 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
651 HOST_WIDE_INT *);
652 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
653 HOST_WIDE_INT *);
654 static bool vt_stack_adjustments (void);
656 static void init_attrs_list_set (attrs *);
657 static void attrs_list_clear (attrs *);
658 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
659 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
660 static void attrs_list_copy (attrs *, attrs);
661 static void attrs_list_union (attrs *, attrs);
663 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
664 variable var, enum var_init_status);
665 static void vars_copy (variable_table_type *, variable_table_type *);
666 static tree var_debug_decl (tree);
667 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
668 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
669 enum var_init_status, rtx);
670 static void var_reg_delete (dataflow_set *, rtx, bool);
671 static void var_regno_delete (dataflow_set *, int);
672 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
673 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
674 enum var_init_status, rtx);
675 static void var_mem_delete (dataflow_set *, rtx, bool);
677 static void dataflow_set_init (dataflow_set *);
678 static void dataflow_set_clear (dataflow_set *);
679 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
680 static int variable_union_info_cmp_pos (const void *, const void *);
681 static void dataflow_set_union (dataflow_set *, dataflow_set *);
682 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type *);
683 static bool canon_value_cmp (rtx, rtx);
684 static int loc_cmp (rtx, rtx);
685 static bool variable_part_different_p (variable_part *, variable_part *);
686 static bool onepart_variable_different_p (variable, variable);
687 static bool variable_different_p (variable, variable);
688 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
689 static void dataflow_set_destroy (dataflow_set *);
691 static bool contains_symbol_ref (rtx);
692 static bool track_expr_p (tree, bool);
693 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
694 static void add_uses_1 (rtx *, void *);
695 static void add_stores (rtx, const_rtx, void *);
696 static bool compute_bb_dataflow (basic_block);
697 static bool vt_find_locations (void);
699 static void dump_attrs_list (attrs);
700 static void dump_var (variable);
701 static void dump_vars (variable_table_type *);
702 static void dump_dataflow_set (dataflow_set *);
703 static void dump_dataflow_sets (void);
705 static void set_dv_changed (decl_or_value, bool);
706 static void variable_was_changed (variable, dataflow_set *);
707 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
708 decl_or_value, HOST_WIDE_INT,
709 enum var_init_status, rtx);
710 static void set_variable_part (dataflow_set *, rtx,
711 decl_or_value, HOST_WIDE_INT,
712 enum var_init_status, rtx, enum insert_option);
713 static variable_def **clobber_slot_part (dataflow_set *, rtx,
714 variable_def **, HOST_WIDE_INT, rtx);
715 static void clobber_variable_part (dataflow_set *, rtx,
716 decl_or_value, HOST_WIDE_INT, rtx);
717 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
718 HOST_WIDE_INT);
719 static void delete_variable_part (dataflow_set *, rtx,
720 decl_or_value, HOST_WIDE_INT);
721 static void emit_notes_in_bb (basic_block, dataflow_set *);
722 static void vt_emit_notes (void);
724 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
725 static void vt_add_function_parameters (void);
726 static bool vt_initialize (void);
727 static void vt_finalize (void);
729 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
731 static int
732 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
733 void *arg)
735 if (dest != stack_pointer_rtx)
736 return 0;
738 switch (GET_CODE (op))
740 case PRE_INC:
741 case PRE_DEC:
742 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
743 return 0;
744 case POST_INC:
745 case POST_DEC:
746 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
747 return 0;
748 case PRE_MODIFY:
749 case POST_MODIFY:
750 /* We handle only adjustments by constant amount. */
751 gcc_assert (GET_CODE (src) == PLUS
752 && CONST_INT_P (XEXP (src, 1))
753 && XEXP (src, 0) == stack_pointer_rtx);
754 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
755 -= INTVAL (XEXP (src, 1));
756 return 0;
757 default:
758 gcc_unreachable ();
762 /* Given a SET, calculate the amount of stack adjustment it contains
763 PRE- and POST-modifying stack pointer.
764 This function is similar to stack_adjust_offset. */
766 static void
767 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
768 HOST_WIDE_INT *post)
770 rtx src = SET_SRC (pattern);
771 rtx dest = SET_DEST (pattern);
772 enum rtx_code code;
774 if (dest == stack_pointer_rtx)
776 /* (set (reg sp) (plus (reg sp) (const_int))) */
777 code = GET_CODE (src);
778 if (! (code == PLUS || code == MINUS)
779 || XEXP (src, 0) != stack_pointer_rtx
780 || !CONST_INT_P (XEXP (src, 1)))
781 return;
783 if (code == MINUS)
784 *post += INTVAL (XEXP (src, 1));
785 else
786 *post -= INTVAL (XEXP (src, 1));
787 return;
789 HOST_WIDE_INT res[2] = { 0, 0 };
790 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
791 *pre += res[0];
792 *post += res[1];
795 /* Given an INSN, calculate the amount of stack adjustment it contains
796 PRE- and POST-modifying stack pointer. */
798 static void
799 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
800 HOST_WIDE_INT *post)
802 rtx pattern;
804 *pre = 0;
805 *post = 0;
807 pattern = PATTERN (insn);
808 if (RTX_FRAME_RELATED_P (insn))
810 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
811 if (expr)
812 pattern = XEXP (expr, 0);
815 if (GET_CODE (pattern) == SET)
816 stack_adjust_offset_pre_post (pattern, pre, post);
817 else if (GET_CODE (pattern) == PARALLEL
818 || GET_CODE (pattern) == SEQUENCE)
820 int i;
822 /* There may be stack adjustments inside compound insns. Search
823 for them. */
824 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
825 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
826 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
830 /* Compute stack adjustments for all blocks by traversing DFS tree.
831 Return true when the adjustments on all incoming edges are consistent.
832 Heavily borrowed from pre_and_rev_post_order_compute. */
834 static bool
835 vt_stack_adjustments (void)
837 edge_iterator *stack;
838 int sp;
840 /* Initialize entry block. */
841 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
842 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
843 = INCOMING_FRAME_SP_OFFSET;
844 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
845 = INCOMING_FRAME_SP_OFFSET;
847 /* Allocate stack for back-tracking up CFG. */
848 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
849 sp = 0;
851 /* Push the first edge on to the stack. */
852 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
854 while (sp)
856 edge_iterator ei;
857 basic_block src;
858 basic_block dest;
860 /* Look at the edge on the top of the stack. */
861 ei = stack[sp - 1];
862 src = ei_edge (ei)->src;
863 dest = ei_edge (ei)->dest;
865 /* Check if the edge destination has been visited yet. */
866 if (!VTI (dest)->visited)
868 rtx_insn *insn;
869 HOST_WIDE_INT pre, post, offset;
870 VTI (dest)->visited = true;
871 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
873 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
874 for (insn = BB_HEAD (dest);
875 insn != NEXT_INSN (BB_END (dest));
876 insn = NEXT_INSN (insn))
877 if (INSN_P (insn))
879 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
880 offset += pre + post;
883 VTI (dest)->out.stack_adjust = offset;
885 if (EDGE_COUNT (dest->succs) > 0)
886 /* Since the DEST node has been visited for the first
887 time, check its successors. */
888 stack[sp++] = ei_start (dest->succs);
890 else
892 /* We can end up with different stack adjustments for the exit block
893 of a shrink-wrapped function if stack_adjust_offset_pre_post
894 doesn't understand the rtx pattern used to restore the stack
895 pointer in the epilogue. For example, on s390(x), the stack
896 pointer is often restored via a load-multiple instruction
897 and so no stack_adjust offset is recorded for it. This means
898 that the stack offset at the end of the epilogue block is the
899 the same as the offset before the epilogue, whereas other paths
900 to the exit block will have the correct stack_adjust.
902 It is safe to ignore these differences because (a) we never
903 use the stack_adjust for the exit block in this pass and
904 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
905 function are correct.
907 We must check whether the adjustments on other edges are
908 the same though. */
909 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
910 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
912 free (stack);
913 return false;
916 if (! ei_one_before_end_p (ei))
917 /* Go to the next edge. */
918 ei_next (&stack[sp - 1]);
919 else
920 /* Return to previous level if there are no more edges. */
921 sp--;
925 free (stack);
926 return true;
929 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
930 hard_frame_pointer_rtx is being mapped to it and offset for it. */
931 static rtx cfa_base_rtx;
932 static HOST_WIDE_INT cfa_base_offset;
934 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
935 or hard_frame_pointer_rtx. */
937 static inline rtx
938 compute_cfa_pointer (HOST_WIDE_INT adjustment)
940 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
943 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
944 or -1 if the replacement shouldn't be done. */
945 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
947 /* Data for adjust_mems callback. */
949 struct adjust_mem_data
951 bool store;
952 machine_mode mem_mode;
953 HOST_WIDE_INT stack_adjust;
954 rtx_expr_list *side_effects;
957 /* Helper for adjust_mems. Return true if X is suitable for
958 transformation of wider mode arithmetics to narrower mode. */
960 static bool
961 use_narrower_mode_test (rtx x, const_rtx subreg)
963 subrtx_var_iterator::array_type array;
964 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
966 rtx x = *iter;
967 if (CONSTANT_P (x))
968 iter.skip_subrtxes ();
969 else
970 switch (GET_CODE (x))
972 case REG:
973 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
974 return false;
975 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
976 subreg_lowpart_offset (GET_MODE (subreg),
977 GET_MODE (x))))
978 return false;
979 break;
980 case PLUS:
981 case MINUS:
982 case MULT:
983 break;
984 case ASHIFT:
985 iter.substitute (XEXP (x, 0));
986 break;
987 default:
988 return false;
991 return true;
994 /* Transform X into narrower mode MODE from wider mode WMODE. */
996 static rtx
997 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
999 rtx op0, op1;
1000 if (CONSTANT_P (x))
1001 return lowpart_subreg (mode, x, wmode);
1002 switch (GET_CODE (x))
1004 case REG:
1005 return lowpart_subreg (mode, x, wmode);
1006 case PLUS:
1007 case MINUS:
1008 case MULT:
1009 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1010 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1011 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1012 case ASHIFT:
1013 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1014 op1 = XEXP (x, 1);
1015 /* Ensure shift amount is not wider than mode. */
1016 if (GET_MODE (op1) == VOIDmode)
1017 op1 = lowpart_subreg (mode, op1, wmode);
1018 else if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (op1)))
1019 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1020 return simplify_gen_binary (ASHIFT, mode, op0, op1);
1021 default:
1022 gcc_unreachable ();
1026 /* Helper function for adjusting used MEMs. */
1028 static rtx
1029 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1031 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1032 rtx mem, addr = loc, tem;
1033 machine_mode mem_mode_save;
1034 bool store_save;
1035 switch (GET_CODE (loc))
1037 case REG:
1038 /* Don't do any sp or fp replacements outside of MEM addresses
1039 on the LHS. */
1040 if (amd->mem_mode == VOIDmode && amd->store)
1041 return loc;
1042 if (loc == stack_pointer_rtx
1043 && !frame_pointer_needed
1044 && cfa_base_rtx)
1045 return compute_cfa_pointer (amd->stack_adjust);
1046 else if (loc == hard_frame_pointer_rtx
1047 && frame_pointer_needed
1048 && hard_frame_pointer_adjustment != -1
1049 && cfa_base_rtx)
1050 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1051 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1052 return loc;
1053 case MEM:
1054 mem = loc;
1055 if (!amd->store)
1057 mem = targetm.delegitimize_address (mem);
1058 if (mem != loc && !MEM_P (mem))
1059 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1062 addr = XEXP (mem, 0);
1063 mem_mode_save = amd->mem_mode;
1064 amd->mem_mode = GET_MODE (mem);
1065 store_save = amd->store;
1066 amd->store = false;
1067 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1068 amd->store = store_save;
1069 amd->mem_mode = mem_mode_save;
1070 if (mem == loc)
1071 addr = targetm.delegitimize_address (addr);
1072 if (addr != XEXP (mem, 0))
1073 mem = replace_equiv_address_nv (mem, addr);
1074 if (!amd->store)
1075 mem = avoid_constant_pool_reference (mem);
1076 return mem;
1077 case PRE_INC:
1078 case PRE_DEC:
1079 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1080 gen_int_mode (GET_CODE (loc) == PRE_INC
1081 ? GET_MODE_SIZE (amd->mem_mode)
1082 : -GET_MODE_SIZE (amd->mem_mode),
1083 GET_MODE (loc)));
1084 case POST_INC:
1085 case POST_DEC:
1086 if (addr == loc)
1087 addr = XEXP (loc, 0);
1088 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1089 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1090 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1091 gen_int_mode ((GET_CODE (loc) == PRE_INC
1092 || GET_CODE (loc) == POST_INC)
1093 ? GET_MODE_SIZE (amd->mem_mode)
1094 : -GET_MODE_SIZE (amd->mem_mode),
1095 GET_MODE (loc)));
1096 store_save = amd->store;
1097 amd->store = false;
1098 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1099 amd->store = store_save;
1100 amd->side_effects = alloc_EXPR_LIST (0,
1101 gen_rtx_SET (VOIDmode,
1102 XEXP (loc, 0), tem),
1103 amd->side_effects);
1104 return addr;
1105 case PRE_MODIFY:
1106 addr = XEXP (loc, 1);
1107 case POST_MODIFY:
1108 if (addr == loc)
1109 addr = XEXP (loc, 0);
1110 gcc_assert (amd->mem_mode != VOIDmode);
1111 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1112 store_save = amd->store;
1113 amd->store = false;
1114 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1115 adjust_mems, data);
1116 amd->store = store_save;
1117 amd->side_effects = alloc_EXPR_LIST (0,
1118 gen_rtx_SET (VOIDmode,
1119 XEXP (loc, 0), tem),
1120 amd->side_effects);
1121 return addr;
1122 case SUBREG:
1123 /* First try without delegitimization of whole MEMs and
1124 avoid_constant_pool_reference, which is more likely to succeed. */
1125 store_save = amd->store;
1126 amd->store = true;
1127 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1128 data);
1129 amd->store = store_save;
1130 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1131 if (mem == SUBREG_REG (loc))
1133 tem = loc;
1134 goto finish_subreg;
1136 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1137 GET_MODE (SUBREG_REG (loc)),
1138 SUBREG_BYTE (loc));
1139 if (tem)
1140 goto finish_subreg;
1141 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1142 GET_MODE (SUBREG_REG (loc)),
1143 SUBREG_BYTE (loc));
1144 if (tem == NULL_RTX)
1145 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1146 finish_subreg:
1147 if (MAY_HAVE_DEBUG_INSNS
1148 && GET_CODE (tem) == SUBREG
1149 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1150 || GET_CODE (SUBREG_REG (tem)) == MINUS
1151 || GET_CODE (SUBREG_REG (tem)) == MULT
1152 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1153 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1154 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1155 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1156 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1157 && GET_MODE_PRECISION (GET_MODE (tem))
1158 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1159 && subreg_lowpart_p (tem)
1160 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1161 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1162 GET_MODE (SUBREG_REG (tem)));
1163 return tem;
1164 case ASM_OPERANDS:
1165 /* Don't do any replacements in second and following
1166 ASM_OPERANDS of inline-asm with multiple sets.
1167 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1168 and ASM_OPERANDS_LABEL_VEC need to be equal between
1169 all the ASM_OPERANDs in the insn and adjust_insn will
1170 fix this up. */
1171 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1172 return loc;
1173 break;
1174 default:
1175 break;
1177 return NULL_RTX;
1180 /* Helper function for replacement of uses. */
1182 static void
1183 adjust_mem_uses (rtx *x, void *data)
1185 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1186 if (new_x != *x)
1187 validate_change (NULL_RTX, x, new_x, true);
1190 /* Helper function for replacement of stores. */
1192 static void
1193 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1195 if (MEM_P (loc))
1197 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1198 adjust_mems, data);
1199 if (new_dest != SET_DEST (expr))
1201 rtx xexpr = CONST_CAST_RTX (expr);
1202 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1207 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1208 replace them with their value in the insn and add the side-effects
1209 as other sets to the insn. */
1211 static void
1212 adjust_insn (basic_block bb, rtx_insn *insn)
1214 struct adjust_mem_data amd;
1215 rtx set;
1217 #ifdef HAVE_window_save
1218 /* If the target machine has an explicit window save instruction, the
1219 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1220 if (RTX_FRAME_RELATED_P (insn)
1221 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1223 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1224 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1225 parm_reg_t *p;
1227 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1229 XVECEXP (rtl, 0, i * 2)
1230 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1231 /* Do not clobber the attached DECL, but only the REG. */
1232 XVECEXP (rtl, 0, i * 2 + 1)
1233 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1234 gen_raw_REG (GET_MODE (p->outgoing),
1235 REGNO (p->outgoing)));
1238 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1239 return;
1241 #endif
1243 amd.mem_mode = VOIDmode;
1244 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1245 amd.side_effects = NULL;
1247 amd.store = true;
1248 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1250 amd.store = false;
1251 if (GET_CODE (PATTERN (insn)) == PARALLEL
1252 && asm_noperands (PATTERN (insn)) > 0
1253 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1255 rtx body, set0;
1256 int i;
1258 /* inline-asm with multiple sets is tiny bit more complicated,
1259 because the 3 vectors in ASM_OPERANDS need to be shared between
1260 all ASM_OPERANDS in the instruction. adjust_mems will
1261 not touch ASM_OPERANDS other than the first one, asm_noperands
1262 test above needs to be called before that (otherwise it would fail)
1263 and afterwards this code fixes it up. */
1264 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1265 body = PATTERN (insn);
1266 set0 = XVECEXP (body, 0, 0);
1267 gcc_checking_assert (GET_CODE (set0) == SET
1268 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1269 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1270 for (i = 1; i < XVECLEN (body, 0); i++)
1271 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1272 break;
1273 else
1275 set = XVECEXP (body, 0, i);
1276 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1277 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1278 == i);
1279 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1280 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1281 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1282 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1283 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1284 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1286 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1287 ASM_OPERANDS_INPUT_VEC (newsrc)
1288 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1289 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1290 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1291 ASM_OPERANDS_LABEL_VEC (newsrc)
1292 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1293 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1297 else
1298 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1300 /* For read-only MEMs containing some constant, prefer those
1301 constants. */
1302 set = single_set (insn);
1303 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1305 rtx note = find_reg_equal_equiv_note (insn);
1307 if (note && CONSTANT_P (XEXP (note, 0)))
1308 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1311 if (amd.side_effects)
1313 rtx *pat, new_pat, s;
1314 int i, oldn, newn;
1316 pat = &PATTERN (insn);
1317 if (GET_CODE (*pat) == COND_EXEC)
1318 pat = &COND_EXEC_CODE (*pat);
1319 if (GET_CODE (*pat) == PARALLEL)
1320 oldn = XVECLEN (*pat, 0);
1321 else
1322 oldn = 1;
1323 for (s = amd.side_effects, newn = 0; s; newn++)
1324 s = XEXP (s, 1);
1325 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1326 if (GET_CODE (*pat) == PARALLEL)
1327 for (i = 0; i < oldn; i++)
1328 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1329 else
1330 XVECEXP (new_pat, 0, 0) = *pat;
1331 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1332 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1333 free_EXPR_LIST_list (&amd.side_effects);
1334 validate_change (NULL_RTX, pat, new_pat, true);
1338 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1339 static inline rtx
1340 dv_as_rtx (decl_or_value dv)
1342 tree decl;
1344 if (dv_is_value_p (dv))
1345 return dv_as_value (dv);
1347 decl = dv_as_decl (dv);
1349 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1350 return DECL_RTL_KNOWN_SET (decl);
1353 /* Return nonzero if a decl_or_value must not have more than one
1354 variable part. The returned value discriminates among various
1355 kinds of one-part DVs ccording to enum onepart_enum. */
1356 static inline onepart_enum_t
1357 dv_onepart_p (decl_or_value dv)
1359 tree decl;
1361 if (!MAY_HAVE_DEBUG_INSNS)
1362 return NOT_ONEPART;
1364 if (dv_is_value_p (dv))
1365 return ONEPART_VALUE;
1367 decl = dv_as_decl (dv);
1369 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1370 return ONEPART_DEXPR;
1372 if (target_for_debug_bind (decl) != NULL_TREE)
1373 return ONEPART_VDECL;
1375 return NOT_ONEPART;
1378 /* Return the variable pool to be used for a dv of type ONEPART. */
1379 static inline alloc_pool
1380 onepart_pool (onepart_enum_t onepart)
1382 return onepart ? valvar_pool : var_pool;
1385 /* Build a decl_or_value out of a decl. */
1386 static inline decl_or_value
1387 dv_from_decl (tree decl)
1389 decl_or_value dv;
1390 dv = decl;
1391 gcc_checking_assert (dv_is_decl_p (dv));
1392 return dv;
1395 /* Build a decl_or_value out of a value. */
1396 static inline decl_or_value
1397 dv_from_value (rtx value)
1399 decl_or_value dv;
1400 dv = value;
1401 gcc_checking_assert (dv_is_value_p (dv));
1402 return dv;
1405 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1406 static inline decl_or_value
1407 dv_from_rtx (rtx x)
1409 decl_or_value dv;
1411 switch (GET_CODE (x))
1413 case DEBUG_EXPR:
1414 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1415 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1416 break;
1418 case VALUE:
1419 dv = dv_from_value (x);
1420 break;
1422 default:
1423 gcc_unreachable ();
1426 return dv;
1429 extern void debug_dv (decl_or_value dv);
1431 DEBUG_FUNCTION void
1432 debug_dv (decl_or_value dv)
1434 if (dv_is_value_p (dv))
1435 debug_rtx (dv_as_value (dv));
1436 else
1437 debug_generic_stmt (dv_as_decl (dv));
1440 static void loc_exp_dep_clear (variable var);
1442 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1444 static void
1445 variable_htab_free (void *elem)
1447 int i;
1448 variable var = (variable) elem;
1449 location_chain node, next;
1451 gcc_checking_assert (var->refcount > 0);
1453 var->refcount--;
1454 if (var->refcount > 0)
1455 return;
1457 for (i = 0; i < var->n_var_parts; i++)
1459 for (node = var->var_part[i].loc_chain; node; node = next)
1461 next = node->next;
1462 pool_free (loc_chain_pool, node);
1464 var->var_part[i].loc_chain = NULL;
1466 if (var->onepart && VAR_LOC_1PAUX (var))
1468 loc_exp_dep_clear (var);
1469 if (VAR_LOC_DEP_LST (var))
1470 VAR_LOC_DEP_LST (var)->pprev = NULL;
1471 XDELETE (VAR_LOC_1PAUX (var));
1472 /* These may be reused across functions, so reset
1473 e.g. NO_LOC_P. */
1474 if (var->onepart == ONEPART_DEXPR)
1475 set_dv_changed (var->dv, true);
1477 pool_free (onepart_pool (var->onepart), var);
1480 /* Initialize the set (array) SET of attrs to empty lists. */
1482 static void
1483 init_attrs_list_set (attrs *set)
1485 int i;
1487 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1488 set[i] = NULL;
1491 /* Make the list *LISTP empty. */
1493 static void
1494 attrs_list_clear (attrs *listp)
1496 attrs list, next;
1498 for (list = *listp; list; list = next)
1500 next = list->next;
1501 pool_free (attrs_pool, list);
1503 *listp = NULL;
1506 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1508 static attrs
1509 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1511 for (; list; list = list->next)
1512 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1513 return list;
1514 return NULL;
1517 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1519 static void
1520 attrs_list_insert (attrs *listp, decl_or_value dv,
1521 HOST_WIDE_INT offset, rtx loc)
1523 attrs list;
1525 list = (attrs) pool_alloc (attrs_pool);
1526 list->loc = loc;
1527 list->dv = dv;
1528 list->offset = offset;
1529 list->next = *listp;
1530 *listp = list;
1533 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1535 static void
1536 attrs_list_copy (attrs *dstp, attrs src)
1538 attrs n;
1540 attrs_list_clear (dstp);
1541 for (; src; src = src->next)
1543 n = (attrs) pool_alloc (attrs_pool);
1544 n->loc = src->loc;
1545 n->dv = src->dv;
1546 n->offset = src->offset;
1547 n->next = *dstp;
1548 *dstp = n;
1552 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1554 static void
1555 attrs_list_union (attrs *dstp, attrs src)
1557 for (; src; src = src->next)
1559 if (!attrs_list_member (*dstp, src->dv, src->offset))
1560 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1564 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1565 *DSTP. */
1567 static void
1568 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1570 gcc_assert (!*dstp);
1571 for (; src; src = src->next)
1573 if (!dv_onepart_p (src->dv))
1574 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1576 for (src = src2; src; src = src->next)
1578 if (!dv_onepart_p (src->dv)
1579 && !attrs_list_member (*dstp, src->dv, src->offset))
1580 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1584 /* Shared hashtable support. */
1586 /* Return true if VARS is shared. */
1588 static inline bool
1589 shared_hash_shared (shared_hash vars)
1591 return vars->refcount > 1;
1594 /* Return the hash table for VARS. */
1596 static inline variable_table_type *
1597 shared_hash_htab (shared_hash vars)
1599 return vars->htab;
1602 /* Return true if VAR is shared, or maybe because VARS is shared. */
1604 static inline bool
1605 shared_var_p (variable var, shared_hash vars)
1607 /* Don't count an entry in the changed_variables table as a duplicate. */
1608 return ((var->refcount > 1 + (int) var->in_changed_variables)
1609 || shared_hash_shared (vars));
1612 /* Copy variables into a new hash table. */
1614 static shared_hash
1615 shared_hash_unshare (shared_hash vars)
1617 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1618 gcc_assert (vars->refcount > 1);
1619 new_vars->refcount = 1;
1620 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1621 vars_copy (new_vars->htab, vars->htab);
1622 vars->refcount--;
1623 return new_vars;
1626 /* Increment reference counter on VARS and return it. */
1628 static inline shared_hash
1629 shared_hash_copy (shared_hash vars)
1631 vars->refcount++;
1632 return vars;
1635 /* Decrement reference counter and destroy hash table if not shared
1636 anymore. */
1638 static void
1639 shared_hash_destroy (shared_hash vars)
1641 gcc_checking_assert (vars->refcount > 0);
1642 if (--vars->refcount == 0)
1644 delete vars->htab;
1645 pool_free (shared_hash_pool, vars);
1649 /* Unshare *PVARS if shared and return slot for DV. If INS is
1650 INSERT, insert it if not already present. */
1652 static inline variable_def **
1653 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1654 hashval_t dvhash, enum insert_option ins)
1656 if (shared_hash_shared (*pvars))
1657 *pvars = shared_hash_unshare (*pvars);
1658 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1661 static inline variable_def **
1662 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1663 enum insert_option ins)
1665 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1668 /* Return slot for DV, if it is already present in the hash table.
1669 If it is not present, insert it only VARS is not shared, otherwise
1670 return NULL. */
1672 static inline variable_def **
1673 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1675 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1676 shared_hash_shared (vars)
1677 ? NO_INSERT : INSERT);
1680 static inline variable_def **
1681 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1683 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1686 /* Return slot for DV only if it is already present in the hash table. */
1688 static inline variable_def **
1689 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1690 hashval_t dvhash)
1692 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1695 static inline variable_def **
1696 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1698 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1701 /* Return variable for DV or NULL if not already present in the hash
1702 table. */
1704 static inline variable
1705 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1707 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1710 static inline variable
1711 shared_hash_find (shared_hash vars, decl_or_value dv)
1713 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1716 /* Return true if TVAL is better than CVAL as a canonival value. We
1717 choose lowest-numbered VALUEs, using the RTX address as a
1718 tie-breaker. The idea is to arrange them into a star topology,
1719 such that all of them are at most one step away from the canonical
1720 value, and the canonical value has backlinks to all of them, in
1721 addition to all the actual locations. We don't enforce this
1722 topology throughout the entire dataflow analysis, though.
1725 static inline bool
1726 canon_value_cmp (rtx tval, rtx cval)
1728 return !cval
1729 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1732 static bool dst_can_be_shared;
1734 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1736 static variable_def **
1737 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1738 enum var_init_status initialized)
1740 variable new_var;
1741 int i;
1743 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1744 new_var->dv = var->dv;
1745 new_var->refcount = 1;
1746 var->refcount--;
1747 new_var->n_var_parts = var->n_var_parts;
1748 new_var->onepart = var->onepart;
1749 new_var->in_changed_variables = false;
1751 if (! flag_var_tracking_uninit)
1752 initialized = VAR_INIT_STATUS_INITIALIZED;
1754 for (i = 0; i < var->n_var_parts; i++)
1756 location_chain node;
1757 location_chain *nextp;
1759 if (i == 0 && var->onepart)
1761 /* One-part auxiliary data is only used while emitting
1762 notes, so propagate it to the new variable in the active
1763 dataflow set. If we're not emitting notes, this will be
1764 a no-op. */
1765 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1766 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1767 VAR_LOC_1PAUX (var) = NULL;
1769 else
1770 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1771 nextp = &new_var->var_part[i].loc_chain;
1772 for (node = var->var_part[i].loc_chain; node; node = node->next)
1774 location_chain new_lc;
1776 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1777 new_lc->next = NULL;
1778 if (node->init > initialized)
1779 new_lc->init = node->init;
1780 else
1781 new_lc->init = initialized;
1782 if (node->set_src && !(MEM_P (node->set_src)))
1783 new_lc->set_src = node->set_src;
1784 else
1785 new_lc->set_src = NULL;
1786 new_lc->loc = node->loc;
1788 *nextp = new_lc;
1789 nextp = &new_lc->next;
1792 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1795 dst_can_be_shared = false;
1796 if (shared_hash_shared (set->vars))
1797 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1798 else if (set->traversed_vars && set->vars != set->traversed_vars)
1799 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1800 *slot = new_var;
1801 if (var->in_changed_variables)
1803 variable_def **cslot
1804 = changed_variables->find_slot_with_hash (var->dv,
1805 dv_htab_hash (var->dv),
1806 NO_INSERT);
1807 gcc_assert (*cslot == (void *) var);
1808 var->in_changed_variables = false;
1809 variable_htab_free (var);
1810 *cslot = new_var;
1811 new_var->in_changed_variables = true;
1813 return slot;
1816 /* Copy all variables from hash table SRC to hash table DST. */
1818 static void
1819 vars_copy (variable_table_type *dst, variable_table_type *src)
1821 variable_iterator_type hi;
1822 variable var;
1824 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1826 variable_def **dstp;
1827 var->refcount++;
1828 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1829 INSERT);
1830 *dstp = var;
1834 /* Map a decl to its main debug decl. */
1836 static inline tree
1837 var_debug_decl (tree decl)
1839 if (decl && TREE_CODE (decl) == VAR_DECL
1840 && DECL_HAS_DEBUG_EXPR_P (decl))
1842 tree debugdecl = DECL_DEBUG_EXPR (decl);
1843 if (DECL_P (debugdecl))
1844 decl = debugdecl;
1847 return decl;
1850 /* Set the register LOC to contain DV, OFFSET. */
1852 static void
1853 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1854 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1855 enum insert_option iopt)
1857 attrs node;
1858 bool decl_p = dv_is_decl_p (dv);
1860 if (decl_p)
1861 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1863 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1864 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1865 && node->offset == offset)
1866 break;
1867 if (!node)
1868 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1869 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1872 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1874 static void
1875 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1876 rtx set_src)
1878 tree decl = REG_EXPR (loc);
1879 HOST_WIDE_INT offset = REG_OFFSET (loc);
1881 var_reg_decl_set (set, loc, initialized,
1882 dv_from_decl (decl), offset, set_src, INSERT);
1885 static enum var_init_status
1886 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1888 variable var;
1889 int i;
1890 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1892 if (! flag_var_tracking_uninit)
1893 return VAR_INIT_STATUS_INITIALIZED;
1895 var = shared_hash_find (set->vars, dv);
1896 if (var)
1898 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1900 location_chain nextp;
1901 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1902 if (rtx_equal_p (nextp->loc, loc))
1904 ret_val = nextp->init;
1905 break;
1910 return ret_val;
1913 /* Delete current content of register LOC in dataflow set SET and set
1914 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1915 MODIFY is true, any other live copies of the same variable part are
1916 also deleted from the dataflow set, otherwise the variable part is
1917 assumed to be copied from another location holding the same
1918 part. */
1920 static void
1921 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1922 enum var_init_status initialized, rtx set_src)
1924 tree decl = REG_EXPR (loc);
1925 HOST_WIDE_INT offset = REG_OFFSET (loc);
1926 attrs node, next;
1927 attrs *nextp;
1929 decl = var_debug_decl (decl);
1931 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1932 initialized = get_init_value (set, loc, dv_from_decl (decl));
1934 nextp = &set->regs[REGNO (loc)];
1935 for (node = *nextp; node; node = next)
1937 next = node->next;
1938 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1940 delete_variable_part (set, node->loc, node->dv, node->offset);
1941 pool_free (attrs_pool, node);
1942 *nextp = next;
1944 else
1946 node->loc = loc;
1947 nextp = &node->next;
1950 if (modify)
1951 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1952 var_reg_set (set, loc, initialized, set_src);
1955 /* Delete the association of register LOC in dataflow set SET with any
1956 variables that aren't onepart. If CLOBBER is true, also delete any
1957 other live copies of the same variable part, and delete the
1958 association with onepart dvs too. */
1960 static void
1961 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1963 attrs *nextp = &set->regs[REGNO (loc)];
1964 attrs node, next;
1966 if (clobber)
1968 tree decl = REG_EXPR (loc);
1969 HOST_WIDE_INT offset = REG_OFFSET (loc);
1971 decl = var_debug_decl (decl);
1973 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1976 for (node = *nextp; node; node = next)
1978 next = node->next;
1979 if (clobber || !dv_onepart_p (node->dv))
1981 delete_variable_part (set, node->loc, node->dv, node->offset);
1982 pool_free (attrs_pool, node);
1983 *nextp = next;
1985 else
1986 nextp = &node->next;
1990 /* Delete content of register with number REGNO in dataflow set SET. */
1992 static void
1993 var_regno_delete (dataflow_set *set, int regno)
1995 attrs *reg = &set->regs[regno];
1996 attrs node, next;
1998 for (node = *reg; node; node = next)
2000 next = node->next;
2001 delete_variable_part (set, node->loc, node->dv, node->offset);
2002 pool_free (attrs_pool, node);
2004 *reg = NULL;
2007 /* Return true if I is the negated value of a power of two. */
2008 static bool
2009 negative_power_of_two_p (HOST_WIDE_INT i)
2011 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2012 return x == (x & -x);
2015 /* Strip constant offsets and alignments off of LOC. Return the base
2016 expression. */
2018 static rtx
2019 vt_get_canonicalize_base (rtx loc)
2021 while ((GET_CODE (loc) == PLUS
2022 || GET_CODE (loc) == AND)
2023 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2024 && (GET_CODE (loc) != AND
2025 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2026 loc = XEXP (loc, 0);
2028 return loc;
2031 /* This caches canonicalized addresses for VALUEs, computed using
2032 information in the global cselib table. */
2033 static hash_map<rtx, rtx> *global_get_addr_cache;
2035 /* This caches canonicalized addresses for VALUEs, computed using
2036 information from the global cache and information pertaining to a
2037 basic block being analyzed. */
2038 static hash_map<rtx, rtx> *local_get_addr_cache;
2040 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2042 /* Return the canonical address for LOC, that must be a VALUE, using a
2043 cached global equivalence or computing it and storing it in the
2044 global cache. */
2046 static rtx
2047 get_addr_from_global_cache (rtx const loc)
2049 rtx x;
2051 gcc_checking_assert (GET_CODE (loc) == VALUE);
2053 bool existed;
2054 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2055 if (existed)
2056 return *slot;
2058 x = canon_rtx (get_addr (loc));
2060 /* Tentative, avoiding infinite recursion. */
2061 *slot = x;
2063 if (x != loc)
2065 rtx nx = vt_canonicalize_addr (NULL, x);
2066 if (nx != x)
2068 /* The table may have moved during recursion, recompute
2069 SLOT. */
2070 *global_get_addr_cache->get (loc) = x = nx;
2074 return x;
2077 /* Return the canonical address for LOC, that must be a VALUE, using a
2078 cached local equivalence or computing it and storing it in the
2079 local cache. */
2081 static rtx
2082 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2084 rtx x;
2085 decl_or_value dv;
2086 variable var;
2087 location_chain l;
2089 gcc_checking_assert (GET_CODE (loc) == VALUE);
2091 bool existed;
2092 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2093 if (existed)
2094 return *slot;
2096 x = get_addr_from_global_cache (loc);
2098 /* Tentative, avoiding infinite recursion. */
2099 *slot = x;
2101 /* Recurse to cache local expansion of X, or if we need to search
2102 for a VALUE in the expansion. */
2103 if (x != loc)
2105 rtx nx = vt_canonicalize_addr (set, x);
2106 if (nx != x)
2108 slot = local_get_addr_cache->get (loc);
2109 *slot = x = nx;
2111 return x;
2114 dv = dv_from_rtx (x);
2115 var = shared_hash_find (set->vars, dv);
2116 if (!var)
2117 return x;
2119 /* Look for an improved equivalent expression. */
2120 for (l = var->var_part[0].loc_chain; l; l = l->next)
2122 rtx base = vt_get_canonicalize_base (l->loc);
2123 if (GET_CODE (base) == VALUE
2124 && canon_value_cmp (base, loc))
2126 rtx nx = vt_canonicalize_addr (set, l->loc);
2127 if (x != nx)
2129 slot = local_get_addr_cache->get (loc);
2130 *slot = x = nx;
2132 break;
2136 return x;
2139 /* Canonicalize LOC using equivalences from SET in addition to those
2140 in the cselib static table. It expects a VALUE-based expression,
2141 and it will only substitute VALUEs with other VALUEs or
2142 function-global equivalences, so that, if two addresses have base
2143 VALUEs that are locally or globally related in ways that
2144 memrefs_conflict_p cares about, they will both canonicalize to
2145 expressions that have the same base VALUE.
2147 The use of VALUEs as canonical base addresses enables the canonical
2148 RTXs to remain unchanged globally, if they resolve to a constant,
2149 or throughout a basic block otherwise, so that they can be cached
2150 and the cache needs not be invalidated when REGs, MEMs or such
2151 change. */
2153 static rtx
2154 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2156 HOST_WIDE_INT ofst = 0;
2157 machine_mode mode = GET_MODE (oloc);
2158 rtx loc = oloc;
2159 rtx x;
2160 bool retry = true;
2162 while (retry)
2164 while (GET_CODE (loc) == PLUS
2165 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2167 ofst += INTVAL (XEXP (loc, 1));
2168 loc = XEXP (loc, 0);
2171 /* Alignment operations can't normally be combined, so just
2172 canonicalize the base and we're done. We'll normally have
2173 only one stack alignment anyway. */
2174 if (GET_CODE (loc) == AND
2175 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2176 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2178 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2179 if (x != XEXP (loc, 0))
2180 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2181 retry = false;
2184 if (GET_CODE (loc) == VALUE)
2186 if (set)
2187 loc = get_addr_from_local_cache (set, loc);
2188 else
2189 loc = get_addr_from_global_cache (loc);
2191 /* Consolidate plus_constants. */
2192 while (ofst && GET_CODE (loc) == PLUS
2193 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2195 ofst += INTVAL (XEXP (loc, 1));
2196 loc = XEXP (loc, 0);
2199 retry = false;
2201 else
2203 x = canon_rtx (loc);
2204 if (retry)
2205 retry = (x != loc);
2206 loc = x;
2210 /* Add OFST back in. */
2211 if (ofst)
2213 /* Don't build new RTL if we can help it. */
2214 if (GET_CODE (oloc) == PLUS
2215 && XEXP (oloc, 0) == loc
2216 && INTVAL (XEXP (oloc, 1)) == ofst)
2217 return oloc;
2219 loc = plus_constant (mode, loc, ofst);
2222 return loc;
2225 /* Return true iff there's a true dependence between MLOC and LOC.
2226 MADDR must be a canonicalized version of MLOC's address. */
2228 static inline bool
2229 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2231 if (GET_CODE (loc) != MEM)
2232 return false;
2234 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2235 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2236 return false;
2238 return true;
2241 /* Hold parameters for the hashtab traversal function
2242 drop_overlapping_mem_locs, see below. */
2244 struct overlapping_mems
2246 dataflow_set *set;
2247 rtx loc, addr;
2250 /* Remove all MEMs that overlap with COMS->LOC from the location list
2251 of a hash table entry for a value. COMS->ADDR must be a
2252 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2253 canonicalized itself. */
2256 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2258 dataflow_set *set = coms->set;
2259 rtx mloc = coms->loc, addr = coms->addr;
2260 variable var = *slot;
2262 if (var->onepart == ONEPART_VALUE)
2264 location_chain loc, *locp;
2265 bool changed = false;
2266 rtx cur_loc;
2268 gcc_assert (var->n_var_parts == 1);
2270 if (shared_var_p (var, set->vars))
2272 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2273 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2274 break;
2276 if (!loc)
2277 return 1;
2279 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2280 var = *slot;
2281 gcc_assert (var->n_var_parts == 1);
2284 if (VAR_LOC_1PAUX (var))
2285 cur_loc = VAR_LOC_FROM (var);
2286 else
2287 cur_loc = var->var_part[0].cur_loc;
2289 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2290 loc; loc = *locp)
2292 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2294 locp = &loc->next;
2295 continue;
2298 *locp = loc->next;
2299 /* If we have deleted the location which was last emitted
2300 we have to emit new location so add the variable to set
2301 of changed variables. */
2302 if (cur_loc == loc->loc)
2304 changed = true;
2305 var->var_part[0].cur_loc = NULL;
2306 if (VAR_LOC_1PAUX (var))
2307 VAR_LOC_FROM (var) = NULL;
2309 pool_free (loc_chain_pool, loc);
2312 if (!var->var_part[0].loc_chain)
2314 var->n_var_parts--;
2315 changed = true;
2317 if (changed)
2318 variable_was_changed (var, set);
2321 return 1;
2324 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2326 static void
2327 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2329 struct overlapping_mems coms;
2331 gcc_checking_assert (GET_CODE (loc) == MEM);
2333 coms.set = set;
2334 coms.loc = canon_rtx (loc);
2335 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2337 set->traversed_vars = set->vars;
2338 shared_hash_htab (set->vars)
2339 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2340 set->traversed_vars = NULL;
2343 /* Set the location of DV, OFFSET as the MEM LOC. */
2345 static void
2346 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2347 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2348 enum insert_option iopt)
2350 if (dv_is_decl_p (dv))
2351 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2353 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2356 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2357 SET to LOC.
2358 Adjust the address first if it is stack pointer based. */
2360 static void
2361 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2362 rtx set_src)
2364 tree decl = MEM_EXPR (loc);
2365 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2367 var_mem_decl_set (set, loc, initialized,
2368 dv_from_decl (decl), offset, set_src, INSERT);
2371 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2372 dataflow set SET to LOC. If MODIFY is true, any other live copies
2373 of the same variable part are also deleted from the dataflow set,
2374 otherwise the variable part is assumed to be copied from another
2375 location holding the same part.
2376 Adjust the address first if it is stack pointer based. */
2378 static void
2379 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2380 enum var_init_status initialized, rtx set_src)
2382 tree decl = MEM_EXPR (loc);
2383 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2385 clobber_overlapping_mems (set, loc);
2386 decl = var_debug_decl (decl);
2388 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2389 initialized = get_init_value (set, loc, dv_from_decl (decl));
2391 if (modify)
2392 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2393 var_mem_set (set, loc, initialized, set_src);
2396 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2397 true, also delete any other live copies of the same variable part.
2398 Adjust the address first if it is stack pointer based. */
2400 static void
2401 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2403 tree decl = MEM_EXPR (loc);
2404 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2406 clobber_overlapping_mems (set, loc);
2407 decl = var_debug_decl (decl);
2408 if (clobber)
2409 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2410 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2413 /* Return true if LOC should not be expanded for location expressions,
2414 or used in them. */
2416 static inline bool
2417 unsuitable_loc (rtx loc)
2419 switch (GET_CODE (loc))
2421 case PC:
2422 case SCRATCH:
2423 case CC0:
2424 case ASM_INPUT:
2425 case ASM_OPERANDS:
2426 return true;
2428 default:
2429 return false;
2433 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2434 bound to it. */
2436 static inline void
2437 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2439 if (REG_P (loc))
2441 if (modified)
2442 var_regno_delete (set, REGNO (loc));
2443 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2444 dv_from_value (val), 0, NULL_RTX, INSERT);
2446 else if (MEM_P (loc))
2448 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2450 if (modified)
2451 clobber_overlapping_mems (set, loc);
2453 if (l && GET_CODE (l->loc) == VALUE)
2454 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2456 /* If this MEM is a global constant, we don't need it in the
2457 dynamic tables. ??? We should test this before emitting the
2458 micro-op in the first place. */
2459 while (l)
2460 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2461 break;
2462 else
2463 l = l->next;
2465 if (!l)
2466 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2467 dv_from_value (val), 0, NULL_RTX, INSERT);
2469 else
2471 /* Other kinds of equivalences are necessarily static, at least
2472 so long as we do not perform substitutions while merging
2473 expressions. */
2474 gcc_unreachable ();
2475 set_variable_part (set, loc, dv_from_value (val), 0,
2476 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2480 /* Bind a value to a location it was just stored in. If MODIFIED
2481 holds, assume the location was modified, detaching it from any
2482 values bound to it. */
2484 static void
2485 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2486 bool modified)
2488 cselib_val *v = CSELIB_VAL_PTR (val);
2490 gcc_assert (cselib_preserved_value_p (v));
2492 if (dump_file)
2494 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2495 print_inline_rtx (dump_file, loc, 0);
2496 fprintf (dump_file, " evaluates to ");
2497 print_inline_rtx (dump_file, val, 0);
2498 if (v->locs)
2500 struct elt_loc_list *l;
2501 for (l = v->locs; l; l = l->next)
2503 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2504 print_inline_rtx (dump_file, l->loc, 0);
2507 fprintf (dump_file, "\n");
2510 gcc_checking_assert (!unsuitable_loc (loc));
2512 val_bind (set, val, loc, modified);
2515 /* Clear (canonical address) slots that reference X. */
2517 bool
2518 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2520 if (vt_get_canonicalize_base (*slot) == x)
2521 *slot = NULL;
2522 return true;
2525 /* Reset this node, detaching all its equivalences. Return the slot
2526 in the variable hash table that holds dv, if there is one. */
2528 static void
2529 val_reset (dataflow_set *set, decl_or_value dv)
2531 variable var = shared_hash_find (set->vars, dv) ;
2532 location_chain node;
2533 rtx cval;
2535 if (!var || !var->n_var_parts)
2536 return;
2538 gcc_assert (var->n_var_parts == 1);
2540 if (var->onepart == ONEPART_VALUE)
2542 rtx x = dv_as_value (dv);
2544 /* Relationships in the global cache don't change, so reset the
2545 local cache entry only. */
2546 rtx *slot = local_get_addr_cache->get (x);
2547 if (slot)
2549 /* If the value resolved back to itself, odds are that other
2550 values may have cached it too. These entries now refer
2551 to the old X, so detach them too. Entries that used the
2552 old X but resolved to something else remain ok as long as
2553 that something else isn't also reset. */
2554 if (*slot == x)
2555 local_get_addr_cache
2556 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2557 *slot = NULL;
2561 cval = NULL;
2562 for (node = var->var_part[0].loc_chain; node; node = node->next)
2563 if (GET_CODE (node->loc) == VALUE
2564 && canon_value_cmp (node->loc, cval))
2565 cval = node->loc;
2567 for (node = var->var_part[0].loc_chain; node; node = node->next)
2568 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2570 /* Redirect the equivalence link to the new canonical
2571 value, or simply remove it if it would point at
2572 itself. */
2573 if (cval)
2574 set_variable_part (set, cval, dv_from_value (node->loc),
2575 0, node->init, node->set_src, NO_INSERT);
2576 delete_variable_part (set, dv_as_value (dv),
2577 dv_from_value (node->loc), 0);
2580 if (cval)
2582 decl_or_value cdv = dv_from_value (cval);
2584 /* Keep the remaining values connected, accummulating links
2585 in the canonical value. */
2586 for (node = var->var_part[0].loc_chain; node; node = node->next)
2588 if (node->loc == cval)
2589 continue;
2590 else if (GET_CODE (node->loc) == REG)
2591 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2592 node->set_src, NO_INSERT);
2593 else if (GET_CODE (node->loc) == MEM)
2594 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2595 node->set_src, NO_INSERT);
2596 else
2597 set_variable_part (set, node->loc, cdv, 0,
2598 node->init, node->set_src, NO_INSERT);
2602 /* We remove this last, to make sure that the canonical value is not
2603 removed to the point of requiring reinsertion. */
2604 if (cval)
2605 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2607 clobber_variable_part (set, NULL, dv, 0, NULL);
2610 /* Find the values in a given location and map the val to another
2611 value, if it is unique, or add the location as one holding the
2612 value. */
2614 static void
2615 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2617 decl_or_value dv = dv_from_value (val);
2619 if (dump_file && (dump_flags & TDF_DETAILS))
2621 if (insn)
2622 fprintf (dump_file, "%i: ", INSN_UID (insn));
2623 else
2624 fprintf (dump_file, "head: ");
2625 print_inline_rtx (dump_file, val, 0);
2626 fputs (" is at ", dump_file);
2627 print_inline_rtx (dump_file, loc, 0);
2628 fputc ('\n', dump_file);
2631 val_reset (set, dv);
2633 gcc_checking_assert (!unsuitable_loc (loc));
2635 if (REG_P (loc))
2637 attrs node, found = NULL;
2639 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2640 if (dv_is_value_p (node->dv)
2641 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2643 found = node;
2645 /* Map incoming equivalences. ??? Wouldn't it be nice if
2646 we just started sharing the location lists? Maybe a
2647 circular list ending at the value itself or some
2648 such. */
2649 set_variable_part (set, dv_as_value (node->dv),
2650 dv_from_value (val), node->offset,
2651 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2652 set_variable_part (set, val, node->dv, node->offset,
2653 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2656 /* If we didn't find any equivalence, we need to remember that
2657 this value is held in the named register. */
2658 if (found)
2659 return;
2661 /* ??? Attempt to find and merge equivalent MEMs or other
2662 expressions too. */
2664 val_bind (set, val, loc, false);
2667 /* Initialize dataflow set SET to be empty.
2668 VARS_SIZE is the initial size of hash table VARS. */
2670 static void
2671 dataflow_set_init (dataflow_set *set)
2673 init_attrs_list_set (set->regs);
2674 set->vars = shared_hash_copy (empty_shared_hash);
2675 set->stack_adjust = 0;
2676 set->traversed_vars = NULL;
2679 /* Delete the contents of dataflow set SET. */
2681 static void
2682 dataflow_set_clear (dataflow_set *set)
2684 int i;
2686 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2687 attrs_list_clear (&set->regs[i]);
2689 shared_hash_destroy (set->vars);
2690 set->vars = shared_hash_copy (empty_shared_hash);
2693 /* Copy the contents of dataflow set SRC to DST. */
2695 static void
2696 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2698 int i;
2700 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2701 attrs_list_copy (&dst->regs[i], src->regs[i]);
2703 shared_hash_destroy (dst->vars);
2704 dst->vars = shared_hash_copy (src->vars);
2705 dst->stack_adjust = src->stack_adjust;
2708 /* Information for merging lists of locations for a given offset of variable.
2710 struct variable_union_info
2712 /* Node of the location chain. */
2713 location_chain lc;
2715 /* The sum of positions in the input chains. */
2716 int pos;
2718 /* The position in the chain of DST dataflow set. */
2719 int pos_dst;
2722 /* Buffer for location list sorting and its allocated size. */
2723 static struct variable_union_info *vui_vec;
2724 static int vui_allocated;
2726 /* Compare function for qsort, order the structures by POS element. */
2728 static int
2729 variable_union_info_cmp_pos (const void *n1, const void *n2)
2731 const struct variable_union_info *const i1 =
2732 (const struct variable_union_info *) n1;
2733 const struct variable_union_info *const i2 =
2734 ( const struct variable_union_info *) n2;
2736 if (i1->pos != i2->pos)
2737 return i1->pos - i2->pos;
2739 return (i1->pos_dst - i2->pos_dst);
2742 /* Compute union of location parts of variable *SLOT and the same variable
2743 from hash table DATA. Compute "sorted" union of the location chains
2744 for common offsets, i.e. the locations of a variable part are sorted by
2745 a priority where the priority is the sum of the positions in the 2 chains
2746 (if a location is only in one list the position in the second list is
2747 defined to be larger than the length of the chains).
2748 When we are updating the location parts the newest location is in the
2749 beginning of the chain, so when we do the described "sorted" union
2750 we keep the newest locations in the beginning. */
2752 static int
2753 variable_union (variable src, dataflow_set *set)
2755 variable dst;
2756 variable_def **dstp;
2757 int i, j, k;
2759 dstp = shared_hash_find_slot (set->vars, src->dv);
2760 if (!dstp || !*dstp)
2762 src->refcount++;
2764 dst_can_be_shared = false;
2765 if (!dstp)
2766 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2768 *dstp = src;
2770 /* Continue traversing the hash table. */
2771 return 1;
2773 else
2774 dst = *dstp;
2776 gcc_assert (src->n_var_parts);
2777 gcc_checking_assert (src->onepart == dst->onepart);
2779 /* We can combine one-part variables very efficiently, because their
2780 entries are in canonical order. */
2781 if (src->onepart)
2783 location_chain *nodep, dnode, snode;
2785 gcc_assert (src->n_var_parts == 1
2786 && dst->n_var_parts == 1);
2788 snode = src->var_part[0].loc_chain;
2789 gcc_assert (snode);
2791 restart_onepart_unshared:
2792 nodep = &dst->var_part[0].loc_chain;
2793 dnode = *nodep;
2794 gcc_assert (dnode);
2796 while (snode)
2798 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2800 if (r > 0)
2802 location_chain nnode;
2804 if (shared_var_p (dst, set->vars))
2806 dstp = unshare_variable (set, dstp, dst,
2807 VAR_INIT_STATUS_INITIALIZED);
2808 dst = *dstp;
2809 goto restart_onepart_unshared;
2812 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2813 nnode->loc = snode->loc;
2814 nnode->init = snode->init;
2815 if (!snode->set_src || MEM_P (snode->set_src))
2816 nnode->set_src = NULL;
2817 else
2818 nnode->set_src = snode->set_src;
2819 nnode->next = dnode;
2820 dnode = nnode;
2822 else if (r == 0)
2823 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2825 if (r >= 0)
2826 snode = snode->next;
2828 nodep = &dnode->next;
2829 dnode = *nodep;
2832 return 1;
2835 gcc_checking_assert (!src->onepart);
2837 /* Count the number of location parts, result is K. */
2838 for (i = 0, j = 0, k = 0;
2839 i < src->n_var_parts && j < dst->n_var_parts; k++)
2841 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2843 i++;
2844 j++;
2846 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2847 i++;
2848 else
2849 j++;
2851 k += src->n_var_parts - i;
2852 k += dst->n_var_parts - j;
2854 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2855 thus there are at most MAX_VAR_PARTS different offsets. */
2856 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2858 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2860 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2861 dst = *dstp;
2864 i = src->n_var_parts - 1;
2865 j = dst->n_var_parts - 1;
2866 dst->n_var_parts = k;
2868 for (k--; k >= 0; k--)
2870 location_chain node, node2;
2872 if (i >= 0 && j >= 0
2873 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2875 /* Compute the "sorted" union of the chains, i.e. the locations which
2876 are in both chains go first, they are sorted by the sum of
2877 positions in the chains. */
2878 int dst_l, src_l;
2879 int ii, jj, n;
2880 struct variable_union_info *vui;
2882 /* If DST is shared compare the location chains.
2883 If they are different we will modify the chain in DST with
2884 high probability so make a copy of DST. */
2885 if (shared_var_p (dst, set->vars))
2887 for (node = src->var_part[i].loc_chain,
2888 node2 = dst->var_part[j].loc_chain; node && node2;
2889 node = node->next, node2 = node2->next)
2891 if (!((REG_P (node2->loc)
2892 && REG_P (node->loc)
2893 && REGNO (node2->loc) == REGNO (node->loc))
2894 || rtx_equal_p (node2->loc, node->loc)))
2896 if (node2->init < node->init)
2897 node2->init = node->init;
2898 break;
2901 if (node || node2)
2903 dstp = unshare_variable (set, dstp, dst,
2904 VAR_INIT_STATUS_UNKNOWN);
2905 dst = (variable)*dstp;
2909 src_l = 0;
2910 for (node = src->var_part[i].loc_chain; node; node = node->next)
2911 src_l++;
2912 dst_l = 0;
2913 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2914 dst_l++;
2916 if (dst_l == 1)
2918 /* The most common case, much simpler, no qsort is needed. */
2919 location_chain dstnode = dst->var_part[j].loc_chain;
2920 dst->var_part[k].loc_chain = dstnode;
2921 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2922 node2 = dstnode;
2923 for (node = src->var_part[i].loc_chain; node; node = node->next)
2924 if (!((REG_P (dstnode->loc)
2925 && REG_P (node->loc)
2926 && REGNO (dstnode->loc) == REGNO (node->loc))
2927 || rtx_equal_p (dstnode->loc, node->loc)))
2929 location_chain new_node;
2931 /* Copy the location from SRC. */
2932 new_node = (location_chain) pool_alloc (loc_chain_pool);
2933 new_node->loc = node->loc;
2934 new_node->init = node->init;
2935 if (!node->set_src || MEM_P (node->set_src))
2936 new_node->set_src = NULL;
2937 else
2938 new_node->set_src = node->set_src;
2939 node2->next = new_node;
2940 node2 = new_node;
2942 node2->next = NULL;
2944 else
2946 if (src_l + dst_l > vui_allocated)
2948 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2949 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2950 vui_allocated);
2952 vui = vui_vec;
2954 /* Fill in the locations from DST. */
2955 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2956 node = node->next, jj++)
2958 vui[jj].lc = node;
2959 vui[jj].pos_dst = jj;
2961 /* Pos plus value larger than a sum of 2 valid positions. */
2962 vui[jj].pos = jj + src_l + dst_l;
2965 /* Fill in the locations from SRC. */
2966 n = dst_l;
2967 for (node = src->var_part[i].loc_chain, ii = 0; node;
2968 node = node->next, ii++)
2970 /* Find location from NODE. */
2971 for (jj = 0; jj < dst_l; jj++)
2973 if ((REG_P (vui[jj].lc->loc)
2974 && REG_P (node->loc)
2975 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2976 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2978 vui[jj].pos = jj + ii;
2979 break;
2982 if (jj >= dst_l) /* The location has not been found. */
2984 location_chain new_node;
2986 /* Copy the location from SRC. */
2987 new_node = (location_chain) pool_alloc (loc_chain_pool);
2988 new_node->loc = node->loc;
2989 new_node->init = node->init;
2990 if (!node->set_src || MEM_P (node->set_src))
2991 new_node->set_src = NULL;
2992 else
2993 new_node->set_src = node->set_src;
2994 vui[n].lc = new_node;
2995 vui[n].pos_dst = src_l + dst_l;
2996 vui[n].pos = ii + src_l + dst_l;
2997 n++;
3001 if (dst_l == 2)
3003 /* Special case still very common case. For dst_l == 2
3004 all entries dst_l ... n-1 are sorted, with for i >= dst_l
3005 vui[i].pos == i + src_l + dst_l. */
3006 if (vui[0].pos > vui[1].pos)
3008 /* Order should be 1, 0, 2... */
3009 dst->var_part[k].loc_chain = vui[1].lc;
3010 vui[1].lc->next = vui[0].lc;
3011 if (n >= 3)
3013 vui[0].lc->next = vui[2].lc;
3014 vui[n - 1].lc->next = NULL;
3016 else
3017 vui[0].lc->next = NULL;
3018 ii = 3;
3020 else
3022 dst->var_part[k].loc_chain = vui[0].lc;
3023 if (n >= 3 && vui[2].pos < vui[1].pos)
3025 /* Order should be 0, 2, 1, 3... */
3026 vui[0].lc->next = vui[2].lc;
3027 vui[2].lc->next = vui[1].lc;
3028 if (n >= 4)
3030 vui[1].lc->next = vui[3].lc;
3031 vui[n - 1].lc->next = NULL;
3033 else
3034 vui[1].lc->next = NULL;
3035 ii = 4;
3037 else
3039 /* Order should be 0, 1, 2... */
3040 ii = 1;
3041 vui[n - 1].lc->next = NULL;
3044 for (; ii < n; ii++)
3045 vui[ii - 1].lc->next = vui[ii].lc;
3047 else
3049 qsort (vui, n, sizeof (struct variable_union_info),
3050 variable_union_info_cmp_pos);
3052 /* Reconnect the nodes in sorted order. */
3053 for (ii = 1; ii < n; ii++)
3054 vui[ii - 1].lc->next = vui[ii].lc;
3055 vui[n - 1].lc->next = NULL;
3056 dst->var_part[k].loc_chain = vui[0].lc;
3059 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3061 i--;
3062 j--;
3064 else if ((i >= 0 && j >= 0
3065 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3066 || i < 0)
3068 dst->var_part[k] = dst->var_part[j];
3069 j--;
3071 else if ((i >= 0 && j >= 0
3072 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3073 || j < 0)
3075 location_chain *nextp;
3077 /* Copy the chain from SRC. */
3078 nextp = &dst->var_part[k].loc_chain;
3079 for (node = src->var_part[i].loc_chain; node; node = node->next)
3081 location_chain new_lc;
3083 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3084 new_lc->next = NULL;
3085 new_lc->init = node->init;
3086 if (!node->set_src || MEM_P (node->set_src))
3087 new_lc->set_src = NULL;
3088 else
3089 new_lc->set_src = node->set_src;
3090 new_lc->loc = node->loc;
3092 *nextp = new_lc;
3093 nextp = &new_lc->next;
3096 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3097 i--;
3099 dst->var_part[k].cur_loc = NULL;
3102 if (flag_var_tracking_uninit)
3103 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3105 location_chain node, node2;
3106 for (node = src->var_part[i].loc_chain; node; node = node->next)
3107 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3108 if (rtx_equal_p (node->loc, node2->loc))
3110 if (node->init > node2->init)
3111 node2->init = node->init;
3115 /* Continue traversing the hash table. */
3116 return 1;
3119 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3121 static void
3122 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3124 int i;
3126 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3127 attrs_list_union (&dst->regs[i], src->regs[i]);
3129 if (dst->vars == empty_shared_hash)
3131 shared_hash_destroy (dst->vars);
3132 dst->vars = shared_hash_copy (src->vars);
3134 else
3136 variable_iterator_type hi;
3137 variable var;
3139 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3140 var, variable, hi)
3141 variable_union (var, dst);
3145 /* Whether the value is currently being expanded. */
3146 #define VALUE_RECURSED_INTO(x) \
3147 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3149 /* Whether no expansion was found, saving useless lookups.
3150 It must only be set when VALUE_CHANGED is clear. */
3151 #define NO_LOC_P(x) \
3152 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3154 /* Whether cur_loc in the value needs to be (re)computed. */
3155 #define VALUE_CHANGED(x) \
3156 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3157 /* Whether cur_loc in the decl needs to be (re)computed. */
3158 #define DECL_CHANGED(x) TREE_VISITED (x)
3160 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3161 user DECLs, this means they're in changed_variables. Values and
3162 debug exprs may be left with this flag set if no user variable
3163 requires them to be evaluated. */
3165 static inline void
3166 set_dv_changed (decl_or_value dv, bool newv)
3168 switch (dv_onepart_p (dv))
3170 case ONEPART_VALUE:
3171 if (newv)
3172 NO_LOC_P (dv_as_value (dv)) = false;
3173 VALUE_CHANGED (dv_as_value (dv)) = newv;
3174 break;
3176 case ONEPART_DEXPR:
3177 if (newv)
3178 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3179 /* Fall through... */
3181 default:
3182 DECL_CHANGED (dv_as_decl (dv)) = newv;
3183 break;
3187 /* Return true if DV needs to have its cur_loc recomputed. */
3189 static inline bool
3190 dv_changed_p (decl_or_value dv)
3192 return (dv_is_value_p (dv)
3193 ? VALUE_CHANGED (dv_as_value (dv))
3194 : DECL_CHANGED (dv_as_decl (dv)));
3197 /* Return a location list node whose loc is rtx_equal to LOC, in the
3198 location list of a one-part variable or value VAR, or in that of
3199 any values recursively mentioned in the location lists. VARS must
3200 be in star-canonical form. */
3202 static location_chain
3203 find_loc_in_1pdv (rtx loc, variable var, variable_table_type *vars)
3205 location_chain node;
3206 enum rtx_code loc_code;
3208 if (!var)
3209 return NULL;
3211 gcc_checking_assert (var->onepart);
3213 if (!var->n_var_parts)
3214 return NULL;
3216 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3218 loc_code = GET_CODE (loc);
3219 for (node = var->var_part[0].loc_chain; node; node = node->next)
3221 decl_or_value dv;
3222 variable rvar;
3224 if (GET_CODE (node->loc) != loc_code)
3226 if (GET_CODE (node->loc) != VALUE)
3227 continue;
3229 else if (loc == node->loc)
3230 return node;
3231 else if (loc_code != VALUE)
3233 if (rtx_equal_p (loc, node->loc))
3234 return node;
3235 continue;
3238 /* Since we're in star-canonical form, we don't need to visit
3239 non-canonical nodes: one-part variables and non-canonical
3240 values would only point back to the canonical node. */
3241 if (dv_is_value_p (var->dv)
3242 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3244 /* Skip all subsequent VALUEs. */
3245 while (node->next && GET_CODE (node->next->loc) == VALUE)
3247 node = node->next;
3248 gcc_checking_assert (!canon_value_cmp (node->loc,
3249 dv_as_value (var->dv)));
3250 if (loc == node->loc)
3251 return node;
3253 continue;
3256 gcc_checking_assert (node == var->var_part[0].loc_chain);
3257 gcc_checking_assert (!node->next);
3259 dv = dv_from_value (node->loc);
3260 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3261 return find_loc_in_1pdv (loc, rvar, vars);
3264 /* ??? Gotta look in cselib_val locations too. */
3266 return NULL;
3269 /* Hash table iteration argument passed to variable_merge. */
3270 struct dfset_merge
3272 /* The set in which the merge is to be inserted. */
3273 dataflow_set *dst;
3274 /* The set that we're iterating in. */
3275 dataflow_set *cur;
3276 /* The set that may contain the other dv we are to merge with. */
3277 dataflow_set *src;
3278 /* Number of onepart dvs in src. */
3279 int src_onepart_cnt;
3282 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3283 loc_cmp order, and it is maintained as such. */
3285 static void
3286 insert_into_intersection (location_chain *nodep, rtx loc,
3287 enum var_init_status status)
3289 location_chain node;
3290 int r;
3292 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3293 if ((r = loc_cmp (node->loc, loc)) == 0)
3295 node->init = MIN (node->init, status);
3296 return;
3298 else if (r > 0)
3299 break;
3301 node = (location_chain) pool_alloc (loc_chain_pool);
3303 node->loc = loc;
3304 node->set_src = NULL;
3305 node->init = status;
3306 node->next = *nodep;
3307 *nodep = node;
3310 /* Insert in DEST the intersection of the locations present in both
3311 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3312 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3313 DSM->dst. */
3315 static void
3316 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3317 location_chain s1node, variable s2var)
3319 dataflow_set *s1set = dsm->cur;
3320 dataflow_set *s2set = dsm->src;
3321 location_chain found;
3323 if (s2var)
3325 location_chain s2node;
3327 gcc_checking_assert (s2var->onepart);
3329 if (s2var->n_var_parts)
3331 s2node = s2var->var_part[0].loc_chain;
3333 for (; s1node && s2node;
3334 s1node = s1node->next, s2node = s2node->next)
3335 if (s1node->loc != s2node->loc)
3336 break;
3337 else if (s1node->loc == val)
3338 continue;
3339 else
3340 insert_into_intersection (dest, s1node->loc,
3341 MIN (s1node->init, s2node->init));
3345 for (; s1node; s1node = s1node->next)
3347 if (s1node->loc == val)
3348 continue;
3350 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3351 shared_hash_htab (s2set->vars))))
3353 insert_into_intersection (dest, s1node->loc,
3354 MIN (s1node->init, found->init));
3355 continue;
3358 if (GET_CODE (s1node->loc) == VALUE
3359 && !VALUE_RECURSED_INTO (s1node->loc))
3361 decl_or_value dv = dv_from_value (s1node->loc);
3362 variable svar = shared_hash_find (s1set->vars, dv);
3363 if (svar)
3365 if (svar->n_var_parts == 1)
3367 VALUE_RECURSED_INTO (s1node->loc) = true;
3368 intersect_loc_chains (val, dest, dsm,
3369 svar->var_part[0].loc_chain,
3370 s2var);
3371 VALUE_RECURSED_INTO (s1node->loc) = false;
3376 /* ??? gotta look in cselib_val locations too. */
3378 /* ??? if the location is equivalent to any location in src,
3379 searched recursively
3381 add to dst the values needed to represent the equivalence
3383 telling whether locations S is equivalent to another dv's
3384 location list:
3386 for each location D in the list
3388 if S and D satisfy rtx_equal_p, then it is present
3390 else if D is a value, recurse without cycles
3392 else if S and D have the same CODE and MODE
3394 for each operand oS and the corresponding oD
3396 if oS and oD are not equivalent, then S an D are not equivalent
3398 else if they are RTX vectors
3400 if any vector oS element is not equivalent to its respective oD,
3401 then S and D are not equivalent
3409 /* Return -1 if X should be before Y in a location list for a 1-part
3410 variable, 1 if Y should be before X, and 0 if they're equivalent
3411 and should not appear in the list. */
3413 static int
3414 loc_cmp (rtx x, rtx y)
3416 int i, j, r;
3417 RTX_CODE code = GET_CODE (x);
3418 const char *fmt;
3420 if (x == y)
3421 return 0;
3423 if (REG_P (x))
3425 if (!REG_P (y))
3426 return -1;
3427 gcc_assert (GET_MODE (x) == GET_MODE (y));
3428 if (REGNO (x) == REGNO (y))
3429 return 0;
3430 else if (REGNO (x) < REGNO (y))
3431 return -1;
3432 else
3433 return 1;
3436 if (REG_P (y))
3437 return 1;
3439 if (MEM_P (x))
3441 if (!MEM_P (y))
3442 return -1;
3443 gcc_assert (GET_MODE (x) == GET_MODE (y));
3444 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3447 if (MEM_P (y))
3448 return 1;
3450 if (GET_CODE (x) == VALUE)
3452 if (GET_CODE (y) != VALUE)
3453 return -1;
3454 /* Don't assert the modes are the same, that is true only
3455 when not recursing. (subreg:QI (value:SI 1:1) 0)
3456 and (subreg:QI (value:DI 2:2) 0) can be compared,
3457 even when the modes are different. */
3458 if (canon_value_cmp (x, y))
3459 return -1;
3460 else
3461 return 1;
3464 if (GET_CODE (y) == VALUE)
3465 return 1;
3467 /* Entry value is the least preferable kind of expression. */
3468 if (GET_CODE (x) == ENTRY_VALUE)
3470 if (GET_CODE (y) != ENTRY_VALUE)
3471 return 1;
3472 gcc_assert (GET_MODE (x) == GET_MODE (y));
3473 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3476 if (GET_CODE (y) == ENTRY_VALUE)
3477 return -1;
3479 if (GET_CODE (x) == GET_CODE (y))
3480 /* Compare operands below. */;
3481 else if (GET_CODE (x) < GET_CODE (y))
3482 return -1;
3483 else
3484 return 1;
3486 gcc_assert (GET_MODE (x) == GET_MODE (y));
3488 if (GET_CODE (x) == DEBUG_EXPR)
3490 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3491 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3492 return -1;
3493 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3494 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3495 return 1;
3498 fmt = GET_RTX_FORMAT (code);
3499 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3500 switch (fmt[i])
3502 case 'w':
3503 if (XWINT (x, i) == XWINT (y, i))
3504 break;
3505 else if (XWINT (x, i) < XWINT (y, i))
3506 return -1;
3507 else
3508 return 1;
3510 case 'n':
3511 case 'i':
3512 if (XINT (x, i) == XINT (y, i))
3513 break;
3514 else if (XINT (x, i) < XINT (y, i))
3515 return -1;
3516 else
3517 return 1;
3519 case 'V':
3520 case 'E':
3521 /* Compare the vector length first. */
3522 if (XVECLEN (x, i) == XVECLEN (y, i))
3523 /* Compare the vectors elements. */;
3524 else if (XVECLEN (x, i) < XVECLEN (y, i))
3525 return -1;
3526 else
3527 return 1;
3529 for (j = 0; j < XVECLEN (x, i); j++)
3530 if ((r = loc_cmp (XVECEXP (x, i, j),
3531 XVECEXP (y, i, j))))
3532 return r;
3533 break;
3535 case 'e':
3536 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3537 return r;
3538 break;
3540 case 'S':
3541 case 's':
3542 if (XSTR (x, i) == XSTR (y, i))
3543 break;
3544 if (!XSTR (x, i))
3545 return -1;
3546 if (!XSTR (y, i))
3547 return 1;
3548 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3549 break;
3550 else if (r < 0)
3551 return -1;
3552 else
3553 return 1;
3555 case 'u':
3556 /* These are just backpointers, so they don't matter. */
3557 break;
3559 case '0':
3560 case 't':
3561 break;
3563 /* It is believed that rtx's at this level will never
3564 contain anything but integers and other rtx's,
3565 except for within LABEL_REFs and SYMBOL_REFs. */
3566 default:
3567 gcc_unreachable ();
3569 if (CONST_WIDE_INT_P (x))
3571 /* Compare the vector length first. */
3572 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3573 return 1;
3574 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3575 return -1;
3577 /* Compare the vectors elements. */;
3578 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3580 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3581 return -1;
3582 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3583 return 1;
3587 return 0;
3590 #if ENABLE_CHECKING
3591 /* Check the order of entries in one-part variables. */
3594 canonicalize_loc_order_check (variable_def **slot,
3595 dataflow_set *data ATTRIBUTE_UNUSED)
3597 variable var = *slot;
3598 location_chain node, next;
3600 #ifdef ENABLE_RTL_CHECKING
3601 int i;
3602 for (i = 0; i < var->n_var_parts; i++)
3603 gcc_assert (var->var_part[0].cur_loc == NULL);
3604 gcc_assert (!var->in_changed_variables);
3605 #endif
3607 if (!var->onepart)
3608 return 1;
3610 gcc_assert (var->n_var_parts == 1);
3611 node = var->var_part[0].loc_chain;
3612 gcc_assert (node);
3614 while ((next = node->next))
3616 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3617 node = next;
3620 return 1;
3622 #endif
3624 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3625 more likely to be chosen as canonical for an equivalence set.
3626 Ensure less likely values can reach more likely neighbors, making
3627 the connections bidirectional. */
3630 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3632 variable var = *slot;
3633 decl_or_value dv = var->dv;
3634 rtx val;
3635 location_chain node;
3637 if (!dv_is_value_p (dv))
3638 return 1;
3640 gcc_checking_assert (var->n_var_parts == 1);
3642 val = dv_as_value (dv);
3644 for (node = var->var_part[0].loc_chain; node; node = node->next)
3645 if (GET_CODE (node->loc) == VALUE)
3647 if (canon_value_cmp (node->loc, val))
3648 VALUE_RECURSED_INTO (val) = true;
3649 else
3651 decl_or_value odv = dv_from_value (node->loc);
3652 variable_def **oslot;
3653 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3655 set_slot_part (set, val, oslot, odv, 0,
3656 node->init, NULL_RTX);
3658 VALUE_RECURSED_INTO (node->loc) = true;
3662 return 1;
3665 /* Remove redundant entries from equivalence lists in onepart
3666 variables, canonicalizing equivalence sets into star shapes. */
3669 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3671 variable var = *slot;
3672 decl_or_value dv = var->dv;
3673 location_chain node;
3674 decl_or_value cdv;
3675 rtx val, cval;
3676 variable_def **cslot;
3677 bool has_value;
3678 bool has_marks;
3680 if (!var->onepart)
3681 return 1;
3683 gcc_checking_assert (var->n_var_parts == 1);
3685 if (dv_is_value_p (dv))
3687 cval = dv_as_value (dv);
3688 if (!VALUE_RECURSED_INTO (cval))
3689 return 1;
3690 VALUE_RECURSED_INTO (cval) = false;
3692 else
3693 cval = NULL_RTX;
3695 restart:
3696 val = cval;
3697 has_value = false;
3698 has_marks = false;
3700 gcc_assert (var->n_var_parts == 1);
3702 for (node = var->var_part[0].loc_chain; node; node = node->next)
3703 if (GET_CODE (node->loc) == VALUE)
3705 has_value = true;
3706 if (VALUE_RECURSED_INTO (node->loc))
3707 has_marks = true;
3708 if (canon_value_cmp (node->loc, cval))
3709 cval = node->loc;
3712 if (!has_value)
3713 return 1;
3715 if (cval == val)
3717 if (!has_marks || dv_is_decl_p (dv))
3718 return 1;
3720 /* Keep it marked so that we revisit it, either after visiting a
3721 child node, or after visiting a new parent that might be
3722 found out. */
3723 VALUE_RECURSED_INTO (val) = true;
3725 for (node = var->var_part[0].loc_chain; node; node = node->next)
3726 if (GET_CODE (node->loc) == VALUE
3727 && VALUE_RECURSED_INTO (node->loc))
3729 cval = node->loc;
3730 restart_with_cval:
3731 VALUE_RECURSED_INTO (cval) = false;
3732 dv = dv_from_value (cval);
3733 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3734 if (!slot)
3736 gcc_assert (dv_is_decl_p (var->dv));
3737 /* The canonical value was reset and dropped.
3738 Remove it. */
3739 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3740 return 1;
3742 var = *slot;
3743 gcc_assert (dv_is_value_p (var->dv));
3744 if (var->n_var_parts == 0)
3745 return 1;
3746 gcc_assert (var->n_var_parts == 1);
3747 goto restart;
3750 VALUE_RECURSED_INTO (val) = false;
3752 return 1;
3755 /* Push values to the canonical one. */
3756 cdv = dv_from_value (cval);
3757 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3759 for (node = var->var_part[0].loc_chain; node; node = node->next)
3760 if (node->loc != cval)
3762 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3763 node->init, NULL_RTX);
3764 if (GET_CODE (node->loc) == VALUE)
3766 decl_or_value ndv = dv_from_value (node->loc);
3768 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3769 NO_INSERT);
3771 if (canon_value_cmp (node->loc, val))
3773 /* If it could have been a local minimum, it's not any more,
3774 since it's now neighbor to cval, so it may have to push
3775 to it. Conversely, if it wouldn't have prevailed over
3776 val, then whatever mark it has is fine: if it was to
3777 push, it will now push to a more canonical node, but if
3778 it wasn't, then it has already pushed any values it might
3779 have to. */
3780 VALUE_RECURSED_INTO (node->loc) = true;
3781 /* Make sure we visit node->loc by ensuring we cval is
3782 visited too. */
3783 VALUE_RECURSED_INTO (cval) = true;
3785 else if (!VALUE_RECURSED_INTO (node->loc))
3786 /* If we have no need to "recurse" into this node, it's
3787 already "canonicalized", so drop the link to the old
3788 parent. */
3789 clobber_variable_part (set, cval, ndv, 0, NULL);
3791 else if (GET_CODE (node->loc) == REG)
3793 attrs list = set->regs[REGNO (node->loc)], *listp;
3795 /* Change an existing attribute referring to dv so that it
3796 refers to cdv, removing any duplicate this might
3797 introduce, and checking that no previous duplicates
3798 existed, all in a single pass. */
3800 while (list)
3802 if (list->offset == 0
3803 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3804 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3805 break;
3807 list = list->next;
3810 gcc_assert (list);
3811 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3813 list->dv = cdv;
3814 for (listp = &list->next; (list = *listp); listp = &list->next)
3816 if (list->offset)
3817 continue;
3819 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3821 *listp = list->next;
3822 pool_free (attrs_pool, list);
3823 list = *listp;
3824 break;
3827 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3830 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3832 for (listp = &list->next; (list = *listp); listp = &list->next)
3834 if (list->offset)
3835 continue;
3837 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3839 *listp = list->next;
3840 pool_free (attrs_pool, list);
3841 list = *listp;
3842 break;
3845 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3848 else
3849 gcc_unreachable ();
3851 #if ENABLE_CHECKING
3852 while (list)
3854 if (list->offset == 0
3855 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3856 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3857 gcc_unreachable ();
3859 list = list->next;
3861 #endif
3865 if (val)
3866 set_slot_part (set, val, cslot, cdv, 0,
3867 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3869 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3871 /* Variable may have been unshared. */
3872 var = *slot;
3873 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3874 && var->var_part[0].loc_chain->next == NULL);
3876 if (VALUE_RECURSED_INTO (cval))
3877 goto restart_with_cval;
3879 return 1;
3882 /* Bind one-part variables to the canonical value in an equivalence
3883 set. Not doing this causes dataflow convergence failure in rare
3884 circumstances, see PR42873. Unfortunately we can't do this
3885 efficiently as part of canonicalize_values_star, since we may not
3886 have determined or even seen the canonical value of a set when we
3887 get to a variable that references another member of the set. */
3890 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3892 variable var = *slot;
3893 decl_or_value dv = var->dv;
3894 location_chain node;
3895 rtx cval;
3896 decl_or_value cdv;
3897 variable_def **cslot;
3898 variable cvar;
3899 location_chain cnode;
3901 if (!var->onepart || var->onepart == ONEPART_VALUE)
3902 return 1;
3904 gcc_assert (var->n_var_parts == 1);
3906 node = var->var_part[0].loc_chain;
3908 if (GET_CODE (node->loc) != VALUE)
3909 return 1;
3911 gcc_assert (!node->next);
3912 cval = node->loc;
3914 /* Push values to the canonical one. */
3915 cdv = dv_from_value (cval);
3916 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3917 if (!cslot)
3918 return 1;
3919 cvar = *cslot;
3920 gcc_assert (cvar->n_var_parts == 1);
3922 cnode = cvar->var_part[0].loc_chain;
3924 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3925 that are not “more canonical” than it. */
3926 if (GET_CODE (cnode->loc) != VALUE
3927 || !canon_value_cmp (cnode->loc, cval))
3928 return 1;
3930 /* CVAL was found to be non-canonical. Change the variable to point
3931 to the canonical VALUE. */
3932 gcc_assert (!cnode->next);
3933 cval = cnode->loc;
3935 slot = set_slot_part (set, cval, slot, dv, 0,
3936 node->init, node->set_src);
3937 clobber_slot_part (set, cval, slot, 0, node->set_src);
3939 return 1;
3942 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3943 corresponding entry in DSM->src. Multi-part variables are combined
3944 with variable_union, whereas onepart dvs are combined with
3945 intersection. */
3947 static int
3948 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3950 dataflow_set *dst = dsm->dst;
3951 variable_def **dstslot;
3952 variable s2var, dvar = NULL;
3953 decl_or_value dv = s1var->dv;
3954 onepart_enum_t onepart = s1var->onepart;
3955 rtx val;
3956 hashval_t dvhash;
3957 location_chain node, *nodep;
3959 /* If the incoming onepart variable has an empty location list, then
3960 the intersection will be just as empty. For other variables,
3961 it's always union. */
3962 gcc_checking_assert (s1var->n_var_parts
3963 && s1var->var_part[0].loc_chain);
3965 if (!onepart)
3966 return variable_union (s1var, dst);
3968 gcc_checking_assert (s1var->n_var_parts == 1);
3970 dvhash = dv_htab_hash (dv);
3971 if (dv_is_value_p (dv))
3972 val = dv_as_value (dv);
3973 else
3974 val = NULL;
3976 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3977 if (!s2var)
3979 dst_can_be_shared = false;
3980 return 1;
3983 dsm->src_onepart_cnt--;
3984 gcc_assert (s2var->var_part[0].loc_chain
3985 && s2var->onepart == onepart
3986 && s2var->n_var_parts == 1);
3988 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3989 if (dstslot)
3991 dvar = *dstslot;
3992 gcc_assert (dvar->refcount == 1
3993 && dvar->onepart == onepart
3994 && dvar->n_var_parts == 1);
3995 nodep = &dvar->var_part[0].loc_chain;
3997 else
3999 nodep = &node;
4000 node = NULL;
4003 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
4005 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
4006 dvhash, INSERT);
4007 *dstslot = dvar = s2var;
4008 dvar->refcount++;
4010 else
4012 dst_can_be_shared = false;
4014 intersect_loc_chains (val, nodep, dsm,
4015 s1var->var_part[0].loc_chain, s2var);
4017 if (!dstslot)
4019 if (node)
4021 dvar = (variable) pool_alloc (onepart_pool (onepart));
4022 dvar->dv = dv;
4023 dvar->refcount = 1;
4024 dvar->n_var_parts = 1;
4025 dvar->onepart = onepart;
4026 dvar->in_changed_variables = false;
4027 dvar->var_part[0].loc_chain = node;
4028 dvar->var_part[0].cur_loc = NULL;
4029 if (onepart)
4030 VAR_LOC_1PAUX (dvar) = NULL;
4031 else
4032 VAR_PART_OFFSET (dvar, 0) = 0;
4034 dstslot
4035 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4036 INSERT);
4037 gcc_assert (!*dstslot);
4038 *dstslot = dvar;
4040 else
4041 return 1;
4045 nodep = &dvar->var_part[0].loc_chain;
4046 while ((node = *nodep))
4048 location_chain *nextp = &node->next;
4050 if (GET_CODE (node->loc) == REG)
4052 attrs list;
4054 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4055 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4056 && dv_is_value_p (list->dv))
4057 break;
4059 if (!list)
4060 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4061 dv, 0, node->loc);
4062 /* If this value became canonical for another value that had
4063 this register, we want to leave it alone. */
4064 else if (dv_as_value (list->dv) != val)
4066 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4067 dstslot, dv, 0,
4068 node->init, NULL_RTX);
4069 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4071 /* Since nextp points into the removed node, we can't
4072 use it. The pointer to the next node moved to nodep.
4073 However, if the variable we're walking is unshared
4074 during our walk, we'll keep walking the location list
4075 of the previously-shared variable, in which case the
4076 node won't have been removed, and we'll want to skip
4077 it. That's why we test *nodep here. */
4078 if (*nodep != node)
4079 nextp = nodep;
4082 else
4083 /* Canonicalization puts registers first, so we don't have to
4084 walk it all. */
4085 break;
4086 nodep = nextp;
4089 if (dvar != *dstslot)
4090 dvar = *dstslot;
4091 nodep = &dvar->var_part[0].loc_chain;
4093 if (val)
4095 /* Mark all referenced nodes for canonicalization, and make sure
4096 we have mutual equivalence links. */
4097 VALUE_RECURSED_INTO (val) = true;
4098 for (node = *nodep; node; node = node->next)
4099 if (GET_CODE (node->loc) == VALUE)
4101 VALUE_RECURSED_INTO (node->loc) = true;
4102 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4103 node->init, NULL, INSERT);
4106 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4107 gcc_assert (*dstslot == dvar);
4108 canonicalize_values_star (dstslot, dst);
4109 gcc_checking_assert (dstslot
4110 == shared_hash_find_slot_noinsert_1 (dst->vars,
4111 dv, dvhash));
4112 dvar = *dstslot;
4114 else
4116 bool has_value = false, has_other = false;
4118 /* If we have one value and anything else, we're going to
4119 canonicalize this, so make sure all values have an entry in
4120 the table and are marked for canonicalization. */
4121 for (node = *nodep; node; node = node->next)
4123 if (GET_CODE (node->loc) == VALUE)
4125 /* If this was marked during register canonicalization,
4126 we know we have to canonicalize values. */
4127 if (has_value)
4128 has_other = true;
4129 has_value = true;
4130 if (has_other)
4131 break;
4133 else
4135 has_other = true;
4136 if (has_value)
4137 break;
4141 if (has_value && has_other)
4143 for (node = *nodep; node; node = node->next)
4145 if (GET_CODE (node->loc) == VALUE)
4147 decl_or_value dv = dv_from_value (node->loc);
4148 variable_def **slot = NULL;
4150 if (shared_hash_shared (dst->vars))
4151 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4152 if (!slot)
4153 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4154 INSERT);
4155 if (!*slot)
4157 variable var = (variable) pool_alloc (onepart_pool
4158 (ONEPART_VALUE));
4159 var->dv = dv;
4160 var->refcount = 1;
4161 var->n_var_parts = 1;
4162 var->onepart = ONEPART_VALUE;
4163 var->in_changed_variables = false;
4164 var->var_part[0].loc_chain = NULL;
4165 var->var_part[0].cur_loc = NULL;
4166 VAR_LOC_1PAUX (var) = NULL;
4167 *slot = var;
4170 VALUE_RECURSED_INTO (node->loc) = true;
4174 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4175 gcc_assert (*dstslot == dvar);
4176 canonicalize_values_star (dstslot, dst);
4177 gcc_checking_assert (dstslot
4178 == shared_hash_find_slot_noinsert_1 (dst->vars,
4179 dv, dvhash));
4180 dvar = *dstslot;
4184 if (!onepart_variable_different_p (dvar, s2var))
4186 variable_htab_free (dvar);
4187 *dstslot = dvar = s2var;
4188 dvar->refcount++;
4190 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4192 variable_htab_free (dvar);
4193 *dstslot = dvar = s1var;
4194 dvar->refcount++;
4195 dst_can_be_shared = false;
4197 else
4198 dst_can_be_shared = false;
4200 return 1;
4203 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4204 multi-part variable. Unions of multi-part variables and
4205 intersections of one-part ones will be handled in
4206 variable_merge_over_cur(). */
4208 static int
4209 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4211 dataflow_set *dst = dsm->dst;
4212 decl_or_value dv = s2var->dv;
4214 if (!s2var->onepart)
4216 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4217 *dstp = s2var;
4218 s2var->refcount++;
4219 return 1;
4222 dsm->src_onepart_cnt++;
4223 return 1;
4226 /* Combine dataflow set information from SRC2 into DST, using PDST
4227 to carry over information across passes. */
4229 static void
4230 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4232 dataflow_set cur = *dst;
4233 dataflow_set *src1 = &cur;
4234 struct dfset_merge dsm;
4235 int i;
4236 size_t src1_elems, src2_elems;
4237 variable_iterator_type hi;
4238 variable var;
4240 src1_elems = shared_hash_htab (src1->vars)->elements ();
4241 src2_elems = shared_hash_htab (src2->vars)->elements ();
4242 dataflow_set_init (dst);
4243 dst->stack_adjust = cur.stack_adjust;
4244 shared_hash_destroy (dst->vars);
4245 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4246 dst->vars->refcount = 1;
4247 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4249 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4250 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4252 dsm.dst = dst;
4253 dsm.src = src2;
4254 dsm.cur = src1;
4255 dsm.src_onepart_cnt = 0;
4257 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4258 var, variable, hi)
4259 variable_merge_over_src (var, &dsm);
4260 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4261 var, variable, hi)
4262 variable_merge_over_cur (var, &dsm);
4264 if (dsm.src_onepart_cnt)
4265 dst_can_be_shared = false;
4267 dataflow_set_destroy (src1);
4270 /* Mark register equivalences. */
4272 static void
4273 dataflow_set_equiv_regs (dataflow_set *set)
4275 int i;
4276 attrs list, *listp;
4278 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4280 rtx canon[NUM_MACHINE_MODES];
4282 /* If the list is empty or one entry, no need to canonicalize
4283 anything. */
4284 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4285 continue;
4287 memset (canon, 0, sizeof (canon));
4289 for (list = set->regs[i]; list; list = list->next)
4290 if (list->offset == 0 && dv_is_value_p (list->dv))
4292 rtx val = dv_as_value (list->dv);
4293 rtx *cvalp = &canon[(int)GET_MODE (val)];
4294 rtx cval = *cvalp;
4296 if (canon_value_cmp (val, cval))
4297 *cvalp = val;
4300 for (list = set->regs[i]; list; list = list->next)
4301 if (list->offset == 0 && dv_onepart_p (list->dv))
4303 rtx cval = canon[(int)GET_MODE (list->loc)];
4305 if (!cval)
4306 continue;
4308 if (dv_is_value_p (list->dv))
4310 rtx val = dv_as_value (list->dv);
4312 if (val == cval)
4313 continue;
4315 VALUE_RECURSED_INTO (val) = true;
4316 set_variable_part (set, val, dv_from_value (cval), 0,
4317 VAR_INIT_STATUS_INITIALIZED,
4318 NULL, NO_INSERT);
4321 VALUE_RECURSED_INTO (cval) = true;
4322 set_variable_part (set, cval, list->dv, 0,
4323 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4326 for (listp = &set->regs[i]; (list = *listp);
4327 listp = list ? &list->next : listp)
4328 if (list->offset == 0 && dv_onepart_p (list->dv))
4330 rtx cval = canon[(int)GET_MODE (list->loc)];
4331 variable_def **slot;
4333 if (!cval)
4334 continue;
4336 if (dv_is_value_p (list->dv))
4338 rtx val = dv_as_value (list->dv);
4339 if (!VALUE_RECURSED_INTO (val))
4340 continue;
4343 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4344 canonicalize_values_star (slot, set);
4345 if (*listp != list)
4346 list = NULL;
4351 /* Remove any redundant values in the location list of VAR, which must
4352 be unshared and 1-part. */
4354 static void
4355 remove_duplicate_values (variable var)
4357 location_chain node, *nodep;
4359 gcc_assert (var->onepart);
4360 gcc_assert (var->n_var_parts == 1);
4361 gcc_assert (var->refcount == 1);
4363 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4365 if (GET_CODE (node->loc) == VALUE)
4367 if (VALUE_RECURSED_INTO (node->loc))
4369 /* Remove duplicate value node. */
4370 *nodep = node->next;
4371 pool_free (loc_chain_pool, node);
4372 continue;
4374 else
4375 VALUE_RECURSED_INTO (node->loc) = true;
4377 nodep = &node->next;
4380 for (node = var->var_part[0].loc_chain; node; node = node->next)
4381 if (GET_CODE (node->loc) == VALUE)
4383 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4384 VALUE_RECURSED_INTO (node->loc) = false;
4389 /* Hash table iteration argument passed to variable_post_merge. */
4390 struct dfset_post_merge
4392 /* The new input set for the current block. */
4393 dataflow_set *set;
4394 /* Pointer to the permanent input set for the current block, or
4395 NULL. */
4396 dataflow_set **permp;
4399 /* Create values for incoming expressions associated with one-part
4400 variables that don't have value numbers for them. */
4403 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4405 dataflow_set *set = dfpm->set;
4406 variable var = *slot;
4407 location_chain node;
4409 if (!var->onepart || !var->n_var_parts)
4410 return 1;
4412 gcc_assert (var->n_var_parts == 1);
4414 if (dv_is_decl_p (var->dv))
4416 bool check_dupes = false;
4418 restart:
4419 for (node = var->var_part[0].loc_chain; node; node = node->next)
4421 if (GET_CODE (node->loc) == VALUE)
4422 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4423 else if (GET_CODE (node->loc) == REG)
4425 attrs att, *attp, *curp = NULL;
4427 if (var->refcount != 1)
4429 slot = unshare_variable (set, slot, var,
4430 VAR_INIT_STATUS_INITIALIZED);
4431 var = *slot;
4432 goto restart;
4435 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4436 attp = &att->next)
4437 if (att->offset == 0
4438 && GET_MODE (att->loc) == GET_MODE (node->loc))
4440 if (dv_is_value_p (att->dv))
4442 rtx cval = dv_as_value (att->dv);
4443 node->loc = cval;
4444 check_dupes = true;
4445 break;
4447 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4448 curp = attp;
4451 if (!curp)
4453 curp = attp;
4454 while (*curp)
4455 if ((*curp)->offset == 0
4456 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4457 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4458 break;
4459 else
4460 curp = &(*curp)->next;
4461 gcc_assert (*curp);
4464 if (!att)
4466 decl_or_value cdv;
4467 rtx cval;
4469 if (!*dfpm->permp)
4471 *dfpm->permp = XNEW (dataflow_set);
4472 dataflow_set_init (*dfpm->permp);
4475 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4476 att; att = att->next)
4477 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4479 gcc_assert (att->offset == 0
4480 && dv_is_value_p (att->dv));
4481 val_reset (set, att->dv);
4482 break;
4485 if (att)
4487 cdv = att->dv;
4488 cval = dv_as_value (cdv);
4490 else
4492 /* Create a unique value to hold this register,
4493 that ought to be found and reused in
4494 subsequent rounds. */
4495 cselib_val *v;
4496 gcc_assert (!cselib_lookup (node->loc,
4497 GET_MODE (node->loc), 0,
4498 VOIDmode));
4499 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4500 VOIDmode);
4501 cselib_preserve_value (v);
4502 cselib_invalidate_rtx (node->loc);
4503 cval = v->val_rtx;
4504 cdv = dv_from_value (cval);
4505 if (dump_file)
4506 fprintf (dump_file,
4507 "Created new value %u:%u for reg %i\n",
4508 v->uid, v->hash, REGNO (node->loc));
4511 var_reg_decl_set (*dfpm->permp, node->loc,
4512 VAR_INIT_STATUS_INITIALIZED,
4513 cdv, 0, NULL, INSERT);
4515 node->loc = cval;
4516 check_dupes = true;
4519 /* Remove attribute referring to the decl, which now
4520 uses the value for the register, already existing or
4521 to be added when we bring perm in. */
4522 att = *curp;
4523 *curp = att->next;
4524 pool_free (attrs_pool, att);
4528 if (check_dupes)
4529 remove_duplicate_values (var);
4532 return 1;
4535 /* Reset values in the permanent set that are not associated with the
4536 chosen expression. */
4539 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4541 dataflow_set *set = dfpm->set;
4542 variable pvar = *pslot, var;
4543 location_chain pnode;
4544 decl_or_value dv;
4545 attrs att;
4547 gcc_assert (dv_is_value_p (pvar->dv)
4548 && pvar->n_var_parts == 1);
4549 pnode = pvar->var_part[0].loc_chain;
4550 gcc_assert (pnode
4551 && !pnode->next
4552 && REG_P (pnode->loc));
4554 dv = pvar->dv;
4556 var = shared_hash_find (set->vars, dv);
4557 if (var)
4559 /* Although variable_post_merge_new_vals may have made decls
4560 non-star-canonical, values that pre-existed in canonical form
4561 remain canonical, and newly-created values reference a single
4562 REG, so they are canonical as well. Since VAR has the
4563 location list for a VALUE, using find_loc_in_1pdv for it is
4564 fine, since VALUEs don't map back to DECLs. */
4565 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4566 return 1;
4567 val_reset (set, dv);
4570 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4571 if (att->offset == 0
4572 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4573 && dv_is_value_p (att->dv))
4574 break;
4576 /* If there is a value associated with this register already, create
4577 an equivalence. */
4578 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4580 rtx cval = dv_as_value (att->dv);
4581 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4582 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4583 NULL, INSERT);
4585 else if (!att)
4587 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4588 dv, 0, pnode->loc);
4589 variable_union (pvar, set);
4592 return 1;
4595 /* Just checking stuff and registering register attributes for
4596 now. */
4598 static void
4599 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4601 struct dfset_post_merge dfpm;
4603 dfpm.set = set;
4604 dfpm.permp = permp;
4606 shared_hash_htab (set->vars)
4607 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4608 if (*permp)
4609 shared_hash_htab ((*permp)->vars)
4610 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4611 shared_hash_htab (set->vars)
4612 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4613 shared_hash_htab (set->vars)
4614 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4617 /* Return a node whose loc is a MEM that refers to EXPR in the
4618 location list of a one-part variable or value VAR, or in that of
4619 any values recursively mentioned in the location lists. */
4621 static location_chain
4622 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4624 location_chain node;
4625 decl_or_value dv;
4626 variable var;
4627 location_chain where = NULL;
4629 if (!val)
4630 return NULL;
4632 gcc_assert (GET_CODE (val) == VALUE
4633 && !VALUE_RECURSED_INTO (val));
4635 dv = dv_from_value (val);
4636 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4638 if (!var)
4639 return NULL;
4641 gcc_assert (var->onepart);
4643 if (!var->n_var_parts)
4644 return NULL;
4646 VALUE_RECURSED_INTO (val) = true;
4648 for (node = var->var_part[0].loc_chain; node; node = node->next)
4649 if (MEM_P (node->loc)
4650 && MEM_EXPR (node->loc) == expr
4651 && INT_MEM_OFFSET (node->loc) == 0)
4653 where = node;
4654 break;
4656 else if (GET_CODE (node->loc) == VALUE
4657 && !VALUE_RECURSED_INTO (node->loc)
4658 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4659 break;
4661 VALUE_RECURSED_INTO (val) = false;
4663 return where;
4666 /* Return TRUE if the value of MEM may vary across a call. */
4668 static bool
4669 mem_dies_at_call (rtx mem)
4671 tree expr = MEM_EXPR (mem);
4672 tree decl;
4674 if (!expr)
4675 return true;
4677 decl = get_base_address (expr);
4679 if (!decl)
4680 return true;
4682 if (!DECL_P (decl))
4683 return true;
4685 return (may_be_aliased (decl)
4686 || (!TREE_READONLY (decl) && is_global_var (decl)));
4689 /* Remove all MEMs from the location list of a hash table entry for a
4690 one-part variable, except those whose MEM attributes map back to
4691 the variable itself, directly or within a VALUE. */
4694 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4696 variable var = *slot;
4698 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4700 tree decl = dv_as_decl (var->dv);
4701 location_chain loc, *locp;
4702 bool changed = false;
4704 if (!var->n_var_parts)
4705 return 1;
4707 gcc_assert (var->n_var_parts == 1);
4709 if (shared_var_p (var, set->vars))
4711 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4713 /* We want to remove dying MEMs that doesn't refer to DECL. */
4714 if (GET_CODE (loc->loc) == MEM
4715 && (MEM_EXPR (loc->loc) != decl
4716 || INT_MEM_OFFSET (loc->loc) != 0)
4717 && !mem_dies_at_call (loc->loc))
4718 break;
4719 /* We want to move here MEMs that do refer to DECL. */
4720 else if (GET_CODE (loc->loc) == VALUE
4721 && find_mem_expr_in_1pdv (decl, loc->loc,
4722 shared_hash_htab (set->vars)))
4723 break;
4726 if (!loc)
4727 return 1;
4729 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4730 var = *slot;
4731 gcc_assert (var->n_var_parts == 1);
4734 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4735 loc; loc = *locp)
4737 rtx old_loc = loc->loc;
4738 if (GET_CODE (old_loc) == VALUE)
4740 location_chain mem_node
4741 = find_mem_expr_in_1pdv (decl, loc->loc,
4742 shared_hash_htab (set->vars));
4744 /* ??? This picks up only one out of multiple MEMs that
4745 refer to the same variable. Do we ever need to be
4746 concerned about dealing with more than one, or, given
4747 that they should all map to the same variable
4748 location, their addresses will have been merged and
4749 they will be regarded as equivalent? */
4750 if (mem_node)
4752 loc->loc = mem_node->loc;
4753 loc->set_src = mem_node->set_src;
4754 loc->init = MIN (loc->init, mem_node->init);
4758 if (GET_CODE (loc->loc) != MEM
4759 || (MEM_EXPR (loc->loc) == decl
4760 && INT_MEM_OFFSET (loc->loc) == 0)
4761 || !mem_dies_at_call (loc->loc))
4763 if (old_loc != loc->loc && emit_notes)
4765 if (old_loc == var->var_part[0].cur_loc)
4767 changed = true;
4768 var->var_part[0].cur_loc = NULL;
4771 locp = &loc->next;
4772 continue;
4775 if (emit_notes)
4777 if (old_loc == var->var_part[0].cur_loc)
4779 changed = true;
4780 var->var_part[0].cur_loc = NULL;
4783 *locp = loc->next;
4784 pool_free (loc_chain_pool, loc);
4787 if (!var->var_part[0].loc_chain)
4789 var->n_var_parts--;
4790 changed = true;
4792 if (changed)
4793 variable_was_changed (var, set);
4796 return 1;
4799 /* Remove all MEMs from the location list of a hash table entry for a
4800 value. */
4803 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4805 variable var = *slot;
4807 if (var->onepart == ONEPART_VALUE)
4809 location_chain loc, *locp;
4810 bool changed = false;
4811 rtx cur_loc;
4813 gcc_assert (var->n_var_parts == 1);
4815 if (shared_var_p (var, set->vars))
4817 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4818 if (GET_CODE (loc->loc) == MEM
4819 && mem_dies_at_call (loc->loc))
4820 break;
4822 if (!loc)
4823 return 1;
4825 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4826 var = *slot;
4827 gcc_assert (var->n_var_parts == 1);
4830 if (VAR_LOC_1PAUX (var))
4831 cur_loc = VAR_LOC_FROM (var);
4832 else
4833 cur_loc = var->var_part[0].cur_loc;
4835 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4836 loc; loc = *locp)
4838 if (GET_CODE (loc->loc) != MEM
4839 || !mem_dies_at_call (loc->loc))
4841 locp = &loc->next;
4842 continue;
4845 *locp = loc->next;
4846 /* If we have deleted the location which was last emitted
4847 we have to emit new location so add the variable to set
4848 of changed variables. */
4849 if (cur_loc == loc->loc)
4851 changed = true;
4852 var->var_part[0].cur_loc = NULL;
4853 if (VAR_LOC_1PAUX (var))
4854 VAR_LOC_FROM (var) = NULL;
4856 pool_free (loc_chain_pool, loc);
4859 if (!var->var_part[0].loc_chain)
4861 var->n_var_parts--;
4862 changed = true;
4864 if (changed)
4865 variable_was_changed (var, set);
4868 return 1;
4871 /* Remove all variable-location information about call-clobbered
4872 registers, as well as associations between MEMs and VALUEs. */
4874 static void
4875 dataflow_set_clear_at_call (dataflow_set *set)
4877 unsigned int r;
4878 hard_reg_set_iterator hrsi;
4880 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4881 var_regno_delete (set, r);
4883 if (MAY_HAVE_DEBUG_INSNS)
4885 set->traversed_vars = set->vars;
4886 shared_hash_htab (set->vars)
4887 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4888 set->traversed_vars = set->vars;
4889 shared_hash_htab (set->vars)
4890 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4891 set->traversed_vars = NULL;
4895 static bool
4896 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4898 location_chain lc1, lc2;
4900 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4902 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4904 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4906 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4907 break;
4909 if (rtx_equal_p (lc1->loc, lc2->loc))
4910 break;
4912 if (!lc2)
4913 return true;
4915 return false;
4918 /* Return true if one-part variables VAR1 and VAR2 are different.
4919 They must be in canonical order. */
4921 static bool
4922 onepart_variable_different_p (variable var1, variable var2)
4924 location_chain lc1, lc2;
4926 if (var1 == var2)
4927 return false;
4929 gcc_assert (var1->n_var_parts == 1
4930 && var2->n_var_parts == 1);
4932 lc1 = var1->var_part[0].loc_chain;
4933 lc2 = var2->var_part[0].loc_chain;
4935 gcc_assert (lc1 && lc2);
4937 while (lc1 && lc2)
4939 if (loc_cmp (lc1->loc, lc2->loc))
4940 return true;
4941 lc1 = lc1->next;
4942 lc2 = lc2->next;
4945 return lc1 != lc2;
4948 /* Return true if variables VAR1 and VAR2 are different. */
4950 static bool
4951 variable_different_p (variable var1, variable var2)
4953 int i;
4955 if (var1 == var2)
4956 return false;
4958 if (var1->onepart != var2->onepart)
4959 return true;
4961 if (var1->n_var_parts != var2->n_var_parts)
4962 return true;
4964 if (var1->onepart && var1->n_var_parts)
4966 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4967 && var1->n_var_parts == 1);
4968 /* One-part values have locations in a canonical order. */
4969 return onepart_variable_different_p (var1, var2);
4972 for (i = 0; i < var1->n_var_parts; i++)
4974 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4975 return true;
4976 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4977 return true;
4978 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4979 return true;
4981 return false;
4984 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4986 static bool
4987 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4989 variable_iterator_type hi;
4990 variable var1;
4992 if (old_set->vars == new_set->vars)
4993 return false;
4995 if (shared_hash_htab (old_set->vars)->elements ()
4996 != shared_hash_htab (new_set->vars)->elements ())
4997 return true;
4999 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5000 var1, variable, hi)
5002 variable_table_type *htab = shared_hash_htab (new_set->vars);
5003 variable var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5004 if (!var2)
5006 if (dump_file && (dump_flags & TDF_DETAILS))
5008 fprintf (dump_file, "dataflow difference found: removal of:\n");
5009 dump_var (var1);
5011 return true;
5014 if (variable_different_p (var1, var2))
5016 if (dump_file && (dump_flags & TDF_DETAILS))
5018 fprintf (dump_file, "dataflow difference found: "
5019 "old and new follow:\n");
5020 dump_var (var1);
5021 dump_var (var2);
5023 return true;
5027 /* No need to traverse the second hashtab, if both have the same number
5028 of elements and the second one had all entries found in the first one,
5029 then it can't have any extra entries. */
5030 return false;
5033 /* Free the contents of dataflow set SET. */
5035 static void
5036 dataflow_set_destroy (dataflow_set *set)
5038 int i;
5040 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5041 attrs_list_clear (&set->regs[i]);
5043 shared_hash_destroy (set->vars);
5044 set->vars = NULL;
5047 /* Return true if RTL X contains a SYMBOL_REF. */
5049 static bool
5050 contains_symbol_ref (rtx x)
5052 const char *fmt;
5053 RTX_CODE code;
5054 int i;
5056 if (!x)
5057 return false;
5059 code = GET_CODE (x);
5060 if (code == SYMBOL_REF)
5061 return true;
5063 fmt = GET_RTX_FORMAT (code);
5064 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5066 if (fmt[i] == 'e')
5068 if (contains_symbol_ref (XEXP (x, i)))
5069 return true;
5071 else if (fmt[i] == 'E')
5073 int j;
5074 for (j = 0; j < XVECLEN (x, i); j++)
5075 if (contains_symbol_ref (XVECEXP (x, i, j)))
5076 return true;
5080 return false;
5083 /* Shall EXPR be tracked? */
5085 static bool
5086 track_expr_p (tree expr, bool need_rtl)
5088 rtx decl_rtl;
5089 tree realdecl;
5091 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5092 return DECL_RTL_SET_P (expr);
5094 /* If EXPR is not a parameter or a variable do not track it. */
5095 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5096 return 0;
5098 /* It also must have a name... */
5099 if (!DECL_NAME (expr) && need_rtl)
5100 return 0;
5102 /* ... and a RTL assigned to it. */
5103 decl_rtl = DECL_RTL_IF_SET (expr);
5104 if (!decl_rtl && need_rtl)
5105 return 0;
5107 /* If this expression is really a debug alias of some other declaration, we
5108 don't need to track this expression if the ultimate declaration is
5109 ignored. */
5110 realdecl = expr;
5111 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5113 realdecl = DECL_DEBUG_EXPR (realdecl);
5114 if (!DECL_P (realdecl))
5116 if (handled_component_p (realdecl)
5117 || (TREE_CODE (realdecl) == MEM_REF
5118 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5120 HOST_WIDE_INT bitsize, bitpos, maxsize;
5121 bool reverse;
5122 tree innerdecl
5123 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5124 &maxsize, &reverse);
5125 if (!DECL_P (innerdecl)
5126 || DECL_IGNORED_P (innerdecl)
5127 /* Do not track declarations for parts of tracked parameters
5128 since we want to track them as a whole instead. */
5129 || (TREE_CODE (innerdecl) == PARM_DECL
5130 && DECL_MODE (innerdecl) != BLKmode
5131 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5132 || TREE_STATIC (innerdecl)
5133 || bitsize <= 0
5134 || bitpos + bitsize > 256
5135 || bitsize != maxsize)
5136 return 0;
5137 else
5138 realdecl = expr;
5140 else
5141 return 0;
5145 /* Do not track EXPR if REALDECL it should be ignored for debugging
5146 purposes. */
5147 if (DECL_IGNORED_P (realdecl))
5148 return 0;
5150 /* Do not track global variables until we are able to emit correct location
5151 list for them. */
5152 if (TREE_STATIC (realdecl))
5153 return 0;
5155 /* When the EXPR is a DECL for alias of some variable (see example)
5156 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5157 DECL_RTL contains SYMBOL_REF.
5159 Example:
5160 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5161 char **_dl_argv;
5163 if (decl_rtl && MEM_P (decl_rtl)
5164 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5165 return 0;
5167 /* If RTX is a memory it should not be very large (because it would be
5168 an array or struct). */
5169 if (decl_rtl && MEM_P (decl_rtl))
5171 /* Do not track structures and arrays. */
5172 if (GET_MODE (decl_rtl) == BLKmode
5173 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5174 return 0;
5175 if (MEM_SIZE_KNOWN_P (decl_rtl)
5176 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5177 return 0;
5180 DECL_CHANGED (expr) = 0;
5181 DECL_CHANGED (realdecl) = 0;
5182 return 1;
5185 /* Determine whether a given LOC refers to the same variable part as
5186 EXPR+OFFSET. */
5188 static bool
5189 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5191 tree expr2;
5192 HOST_WIDE_INT offset2;
5194 if (! DECL_P (expr))
5195 return false;
5197 if (REG_P (loc))
5199 expr2 = REG_EXPR (loc);
5200 offset2 = REG_OFFSET (loc);
5202 else if (MEM_P (loc))
5204 expr2 = MEM_EXPR (loc);
5205 offset2 = INT_MEM_OFFSET (loc);
5207 else
5208 return false;
5210 if (! expr2 || ! DECL_P (expr2))
5211 return false;
5213 expr = var_debug_decl (expr);
5214 expr2 = var_debug_decl (expr2);
5216 return (expr == expr2 && offset == offset2);
5219 /* LOC is a REG or MEM that we would like to track if possible.
5220 If EXPR is null, we don't know what expression LOC refers to,
5221 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5222 LOC is an lvalue register.
5224 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5225 is something we can track. When returning true, store the mode of
5226 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5227 from EXPR in *OFFSET_OUT (if nonnull). */
5229 static bool
5230 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5231 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5233 machine_mode mode;
5235 if (expr == NULL || !track_expr_p (expr, true))
5236 return false;
5238 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5239 whole subreg, but only the old inner part is really relevant. */
5240 mode = GET_MODE (loc);
5241 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5243 machine_mode pseudo_mode;
5245 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5246 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5248 offset += byte_lowpart_offset (pseudo_mode, mode);
5249 mode = pseudo_mode;
5253 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5254 Do the same if we are storing to a register and EXPR occupies
5255 the whole of register LOC; in that case, the whole of EXPR is
5256 being changed. We exclude complex modes from the second case
5257 because the real and imaginary parts are represented as separate
5258 pseudo registers, even if the whole complex value fits into one
5259 hard register. */
5260 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5261 || (store_reg_p
5262 && !COMPLEX_MODE_P (DECL_MODE (expr))
5263 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5264 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5266 mode = DECL_MODE (expr);
5267 offset = 0;
5270 if (offset < 0 || offset >= MAX_VAR_PARTS)
5271 return false;
5273 if (mode_out)
5274 *mode_out = mode;
5275 if (offset_out)
5276 *offset_out = offset;
5277 return true;
5280 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5281 want to track. When returning nonnull, make sure that the attributes
5282 on the returned value are updated. */
5284 static rtx
5285 var_lowpart (machine_mode mode, rtx loc)
5287 unsigned int offset, reg_offset, regno;
5289 if (GET_MODE (loc) == mode)
5290 return loc;
5292 if (!REG_P (loc) && !MEM_P (loc))
5293 return NULL;
5295 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5297 if (MEM_P (loc))
5298 return adjust_address_nv (loc, mode, offset);
5300 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5301 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5302 reg_offset, mode);
5303 return gen_rtx_REG_offset (loc, mode, regno, offset);
5306 /* Carry information about uses and stores while walking rtx. */
5308 struct count_use_info
5310 /* The insn where the RTX is. */
5311 rtx_insn *insn;
5313 /* The basic block where insn is. */
5314 basic_block bb;
5316 /* The array of n_sets sets in the insn, as determined by cselib. */
5317 struct cselib_set *sets;
5318 int n_sets;
5320 /* True if we're counting stores, false otherwise. */
5321 bool store_p;
5324 /* Find a VALUE corresponding to X. */
5326 static inline cselib_val *
5327 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5329 int i;
5331 if (cui->sets)
5333 /* This is called after uses are set up and before stores are
5334 processed by cselib, so it's safe to look up srcs, but not
5335 dsts. So we look up expressions that appear in srcs or in
5336 dest expressions, but we search the sets array for dests of
5337 stores. */
5338 if (cui->store_p)
5340 /* Some targets represent memset and memcpy patterns
5341 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5342 (set (mem:BLK ...) (const_int ...)) or
5343 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5344 in that case, otherwise we end up with mode mismatches. */
5345 if (mode == BLKmode && MEM_P (x))
5346 return NULL;
5347 for (i = 0; i < cui->n_sets; i++)
5348 if (cui->sets[i].dest == x)
5349 return cui->sets[i].src_elt;
5351 else
5352 return cselib_lookup (x, mode, 0, VOIDmode);
5355 return NULL;
5358 /* Replace all registers and addresses in an expression with VALUE
5359 expressions that map back to them, unless the expression is a
5360 register. If no mapping is or can be performed, returns NULL. */
5362 static rtx
5363 replace_expr_with_values (rtx loc)
5365 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5366 return NULL;
5367 else if (MEM_P (loc))
5369 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5370 get_address_mode (loc), 0,
5371 GET_MODE (loc));
5372 if (addr)
5373 return replace_equiv_address_nv (loc, addr->val_rtx);
5374 else
5375 return NULL;
5377 else
5378 return cselib_subst_to_values (loc, VOIDmode);
5381 /* Return true if X contains a DEBUG_EXPR. */
5383 static bool
5384 rtx_debug_expr_p (const_rtx x)
5386 subrtx_iterator::array_type array;
5387 FOR_EACH_SUBRTX (iter, array, x, ALL)
5388 if (GET_CODE (*iter) == DEBUG_EXPR)
5389 return true;
5390 return false;
5393 /* Determine what kind of micro operation to choose for a USE. Return
5394 MO_CLOBBER if no micro operation is to be generated. */
5396 static enum micro_operation_type
5397 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5399 tree expr;
5401 if (cui && cui->sets)
5403 if (GET_CODE (loc) == VAR_LOCATION)
5405 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5407 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5408 if (! VAR_LOC_UNKNOWN_P (ploc))
5410 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5411 VOIDmode);
5413 /* ??? flag_float_store and volatile mems are never
5414 given values, but we could in theory use them for
5415 locations. */
5416 gcc_assert (val || 1);
5418 return MO_VAL_LOC;
5420 else
5421 return MO_CLOBBER;
5424 if (REG_P (loc) || MEM_P (loc))
5426 if (modep)
5427 *modep = GET_MODE (loc);
5428 if (cui->store_p)
5430 if (REG_P (loc)
5431 || (find_use_val (loc, GET_MODE (loc), cui)
5432 && cselib_lookup (XEXP (loc, 0),
5433 get_address_mode (loc), 0,
5434 GET_MODE (loc))))
5435 return MO_VAL_SET;
5437 else
5439 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5441 if (val && !cselib_preserved_value_p (val))
5442 return MO_VAL_USE;
5447 if (REG_P (loc))
5449 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5451 if (loc == cfa_base_rtx)
5452 return MO_CLOBBER;
5453 expr = REG_EXPR (loc);
5455 if (!expr)
5456 return MO_USE_NO_VAR;
5457 else if (target_for_debug_bind (var_debug_decl (expr)))
5458 return MO_CLOBBER;
5459 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5460 false, modep, NULL))
5461 return MO_USE;
5462 else
5463 return MO_USE_NO_VAR;
5465 else if (MEM_P (loc))
5467 expr = MEM_EXPR (loc);
5469 if (!expr)
5470 return MO_CLOBBER;
5471 else if (target_for_debug_bind (var_debug_decl (expr)))
5472 return MO_CLOBBER;
5473 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5474 false, modep, NULL)
5475 /* Multi-part variables shouldn't refer to one-part
5476 variable names such as VALUEs (never happens) or
5477 DEBUG_EXPRs (only happens in the presence of debug
5478 insns). */
5479 && (!MAY_HAVE_DEBUG_INSNS
5480 || !rtx_debug_expr_p (XEXP (loc, 0))))
5481 return MO_USE;
5482 else
5483 return MO_CLOBBER;
5486 return MO_CLOBBER;
5489 /* Log to OUT information about micro-operation MOPT involving X in
5490 INSN of BB. */
5492 static inline void
5493 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5494 enum micro_operation_type mopt, FILE *out)
5496 fprintf (out, "bb %i op %i insn %i %s ",
5497 bb->index, VTI (bb)->mos.length (),
5498 INSN_UID (insn), micro_operation_type_name[mopt]);
5499 print_inline_rtx (out, x, 2);
5500 fputc ('\n', out);
5503 /* Tell whether the CONCAT used to holds a VALUE and its location
5504 needs value resolution, i.e., an attempt of mapping the location
5505 back to other incoming values. */
5506 #define VAL_NEEDS_RESOLUTION(x) \
5507 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5508 /* Whether the location in the CONCAT is a tracked expression, that
5509 should also be handled like a MO_USE. */
5510 #define VAL_HOLDS_TRACK_EXPR(x) \
5511 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5512 /* Whether the location in the CONCAT should be handled like a MO_COPY
5513 as well. */
5514 #define VAL_EXPR_IS_COPIED(x) \
5515 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5516 /* Whether the location in the CONCAT should be handled like a
5517 MO_CLOBBER as well. */
5518 #define VAL_EXPR_IS_CLOBBERED(x) \
5519 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5521 /* All preserved VALUEs. */
5522 static vec<rtx> preserved_values;
5524 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5526 static void
5527 preserve_value (cselib_val *val)
5529 cselib_preserve_value (val);
5530 preserved_values.safe_push (val->val_rtx);
5533 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5534 any rtxes not suitable for CONST use not replaced by VALUEs
5535 are discovered. */
5537 static bool
5538 non_suitable_const (const_rtx x)
5540 subrtx_iterator::array_type array;
5541 FOR_EACH_SUBRTX (iter, array, x, ALL)
5543 const_rtx x = *iter;
5544 switch (GET_CODE (x))
5546 case REG:
5547 case DEBUG_EXPR:
5548 case PC:
5549 case SCRATCH:
5550 case CC0:
5551 case ASM_INPUT:
5552 case ASM_OPERANDS:
5553 return true;
5554 case MEM:
5555 if (!MEM_READONLY_P (x))
5556 return true;
5557 break;
5558 default:
5559 break;
5562 return false;
5565 /* Add uses (register and memory references) LOC which will be tracked
5566 to VTI (bb)->mos. */
5568 static void
5569 add_uses (rtx loc, struct count_use_info *cui)
5571 machine_mode mode = VOIDmode;
5572 enum micro_operation_type type = use_type (loc, cui, &mode);
5574 if (type != MO_CLOBBER)
5576 basic_block bb = cui->bb;
5577 micro_operation mo;
5579 mo.type = type;
5580 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5581 mo.insn = cui->insn;
5583 if (type == MO_VAL_LOC)
5585 rtx oloc = loc;
5586 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5587 cselib_val *val;
5589 gcc_assert (cui->sets);
5591 if (MEM_P (vloc)
5592 && !REG_P (XEXP (vloc, 0))
5593 && !MEM_P (XEXP (vloc, 0)))
5595 rtx mloc = vloc;
5596 machine_mode address_mode = get_address_mode (mloc);
5597 cselib_val *val
5598 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5599 GET_MODE (mloc));
5601 if (val && !cselib_preserved_value_p (val))
5602 preserve_value (val);
5605 if (CONSTANT_P (vloc)
5606 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5607 /* For constants don't look up any value. */;
5608 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5609 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5611 machine_mode mode2;
5612 enum micro_operation_type type2;
5613 rtx nloc = NULL;
5614 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5616 if (resolvable)
5617 nloc = replace_expr_with_values (vloc);
5619 if (nloc)
5621 oloc = shallow_copy_rtx (oloc);
5622 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5625 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5627 type2 = use_type (vloc, 0, &mode2);
5629 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5630 || type2 == MO_CLOBBER);
5632 if (type2 == MO_CLOBBER
5633 && !cselib_preserved_value_p (val))
5635 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5636 preserve_value (val);
5639 else if (!VAR_LOC_UNKNOWN_P (vloc))
5641 oloc = shallow_copy_rtx (oloc);
5642 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5645 mo.u.loc = oloc;
5647 else if (type == MO_VAL_USE)
5649 machine_mode mode2 = VOIDmode;
5650 enum micro_operation_type type2;
5651 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5652 rtx vloc, oloc = loc, nloc;
5654 gcc_assert (cui->sets);
5656 if (MEM_P (oloc)
5657 && !REG_P (XEXP (oloc, 0))
5658 && !MEM_P (XEXP (oloc, 0)))
5660 rtx mloc = oloc;
5661 machine_mode address_mode = get_address_mode (mloc);
5662 cselib_val *val
5663 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5664 GET_MODE (mloc));
5666 if (val && !cselib_preserved_value_p (val))
5667 preserve_value (val);
5670 type2 = use_type (loc, 0, &mode2);
5672 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5673 || type2 == MO_CLOBBER);
5675 if (type2 == MO_USE)
5676 vloc = var_lowpart (mode2, loc);
5677 else
5678 vloc = oloc;
5680 /* The loc of a MO_VAL_USE may have two forms:
5682 (concat val src): val is at src, a value-based
5683 representation.
5685 (concat (concat val use) src): same as above, with use as
5686 the MO_USE tracked value, if it differs from src.
5690 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5691 nloc = replace_expr_with_values (loc);
5692 if (!nloc)
5693 nloc = oloc;
5695 if (vloc != nloc)
5696 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5697 else
5698 oloc = val->val_rtx;
5700 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5702 if (type2 == MO_USE)
5703 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5704 if (!cselib_preserved_value_p (val))
5706 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5707 preserve_value (val);
5710 else
5711 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5713 if (dump_file && (dump_flags & TDF_DETAILS))
5714 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5715 VTI (bb)->mos.safe_push (mo);
5719 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5721 static void
5722 add_uses_1 (rtx *x, void *cui)
5724 subrtx_var_iterator::array_type array;
5725 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5726 add_uses (*iter, (struct count_use_info *) cui);
5729 /* This is the value used during expansion of locations. We want it
5730 to be unbounded, so that variables expanded deep in a recursion
5731 nest are fully evaluated, so that their values are cached
5732 correctly. We avoid recursion cycles through other means, and we
5733 don't unshare RTL, so excess complexity is not a problem. */
5734 #define EXPR_DEPTH (INT_MAX)
5735 /* We use this to keep too-complex expressions from being emitted as
5736 location notes, and then to debug information. Users can trade
5737 compile time for ridiculously complex expressions, although they're
5738 seldom useful, and they may often have to be discarded as not
5739 representable anyway. */
5740 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5742 /* Attempt to reverse the EXPR operation in the debug info and record
5743 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5744 no longer live we can express its value as VAL - 6. */
5746 static void
5747 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5749 rtx src, arg, ret;
5750 cselib_val *v;
5751 struct elt_loc_list *l;
5752 enum rtx_code code;
5753 int count;
5755 if (GET_CODE (expr) != SET)
5756 return;
5758 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5759 return;
5761 src = SET_SRC (expr);
5762 switch (GET_CODE (src))
5764 case PLUS:
5765 case MINUS:
5766 case XOR:
5767 case NOT:
5768 case NEG:
5769 if (!REG_P (XEXP (src, 0)))
5770 return;
5771 break;
5772 case SIGN_EXTEND:
5773 case ZERO_EXTEND:
5774 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5775 return;
5776 break;
5777 default:
5778 return;
5781 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5782 return;
5784 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5785 if (!v || !cselib_preserved_value_p (v))
5786 return;
5788 /* Use canonical V to avoid creating multiple redundant expressions
5789 for different VALUES equivalent to V. */
5790 v = canonical_cselib_val (v);
5792 /* Adding a reverse op isn't useful if V already has an always valid
5793 location. Ignore ENTRY_VALUE, while it is always constant, we should
5794 prefer non-ENTRY_VALUE locations whenever possible. */
5795 for (l = v->locs, count = 0; l; l = l->next, count++)
5796 if (CONSTANT_P (l->loc)
5797 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5798 return;
5799 /* Avoid creating too large locs lists. */
5800 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5801 return;
5803 switch (GET_CODE (src))
5805 case NOT:
5806 case NEG:
5807 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5808 return;
5809 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5810 break;
5811 case SIGN_EXTEND:
5812 case ZERO_EXTEND:
5813 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5814 break;
5815 case XOR:
5816 code = XOR;
5817 goto binary;
5818 case PLUS:
5819 code = MINUS;
5820 goto binary;
5821 case MINUS:
5822 code = PLUS;
5823 goto binary;
5824 binary:
5825 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5826 return;
5827 arg = XEXP (src, 1);
5828 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5830 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5831 if (arg == NULL_RTX)
5832 return;
5833 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5834 return;
5836 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5837 if (ret == val)
5838 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5839 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5840 breaks a lot of routines during var-tracking. */
5841 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5842 break;
5843 default:
5844 gcc_unreachable ();
5847 cselib_add_permanent_equiv (v, ret, insn);
5850 /* Add stores (register and memory references) LOC which will be tracked
5851 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5852 CUIP->insn is instruction which the LOC is part of. */
5854 static void
5855 add_stores (rtx loc, const_rtx expr, void *cuip)
5857 machine_mode mode = VOIDmode, mode2;
5858 struct count_use_info *cui = (struct count_use_info *)cuip;
5859 basic_block bb = cui->bb;
5860 micro_operation mo;
5861 rtx oloc = loc, nloc, src = NULL;
5862 enum micro_operation_type type = use_type (loc, cui, &mode);
5863 bool track_p = false;
5864 cselib_val *v;
5865 bool resolve, preserve;
5867 if (type == MO_CLOBBER)
5868 return;
5870 mode2 = mode;
5872 if (REG_P (loc))
5874 gcc_assert (loc != cfa_base_rtx);
5875 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5876 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5877 || GET_CODE (expr) == CLOBBER)
5879 mo.type = MO_CLOBBER;
5880 mo.u.loc = loc;
5881 if (GET_CODE (expr) == SET
5882 && SET_DEST (expr) == loc
5883 && !unsuitable_loc (SET_SRC (expr))
5884 && find_use_val (loc, mode, cui))
5886 gcc_checking_assert (type == MO_VAL_SET);
5887 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5890 else
5892 if (GET_CODE (expr) == SET
5893 && SET_DEST (expr) == loc
5894 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5895 src = var_lowpart (mode2, SET_SRC (expr));
5896 loc = var_lowpart (mode2, loc);
5898 if (src == NULL)
5900 mo.type = MO_SET;
5901 mo.u.loc = loc;
5903 else
5905 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5906 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5908 /* If this is an instruction copying (part of) a parameter
5909 passed by invisible reference to its register location,
5910 pretend it's a SET so that the initial memory location
5911 is discarded, as the parameter register can be reused
5912 for other purposes and we do not track locations based
5913 on generic registers. */
5914 if (MEM_P (src)
5915 && REG_EXPR (loc)
5916 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5917 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5918 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5919 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5920 != arg_pointer_rtx)
5921 mo.type = MO_SET;
5922 else
5923 mo.type = MO_COPY;
5925 else
5926 mo.type = MO_SET;
5927 mo.u.loc = xexpr;
5930 mo.insn = cui->insn;
5932 else if (MEM_P (loc)
5933 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5934 || cui->sets))
5936 if (MEM_P (loc) && type == MO_VAL_SET
5937 && !REG_P (XEXP (loc, 0))
5938 && !MEM_P (XEXP (loc, 0)))
5940 rtx mloc = loc;
5941 machine_mode address_mode = get_address_mode (mloc);
5942 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5943 address_mode, 0,
5944 GET_MODE (mloc));
5946 if (val && !cselib_preserved_value_p (val))
5947 preserve_value (val);
5950 if (GET_CODE (expr) == CLOBBER || !track_p)
5952 mo.type = MO_CLOBBER;
5953 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5955 else
5957 if (GET_CODE (expr) == SET
5958 && SET_DEST (expr) == loc
5959 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5960 src = var_lowpart (mode2, SET_SRC (expr));
5961 loc = var_lowpart (mode2, loc);
5963 if (src == NULL)
5965 mo.type = MO_SET;
5966 mo.u.loc = loc;
5968 else
5970 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5971 if (same_variable_part_p (SET_SRC (xexpr),
5972 MEM_EXPR (loc),
5973 INT_MEM_OFFSET (loc)))
5974 mo.type = MO_COPY;
5975 else
5976 mo.type = MO_SET;
5977 mo.u.loc = xexpr;
5980 mo.insn = cui->insn;
5982 else
5983 return;
5985 if (type != MO_VAL_SET)
5986 goto log_and_return;
5988 v = find_use_val (oloc, mode, cui);
5990 if (!v)
5991 goto log_and_return;
5993 resolve = preserve = !cselib_preserved_value_p (v);
5995 /* We cannot track values for multiple-part variables, so we track only
5996 locations for tracked parameters passed either by invisible reference
5997 or directly in multiple locations. */
5998 if (track_p
5999 && REG_P (loc)
6000 && REG_EXPR (loc)
6001 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
6002 && DECL_MODE (REG_EXPR (loc)) != BLKmode
6003 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
6004 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
6005 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
6006 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
6007 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
6009 /* Although we don't use the value here, it could be used later by the
6010 mere virtue of its existence as the operand of the reverse operation
6011 that gave rise to it (typically extension/truncation). Make sure it
6012 is preserved as required by vt_expand_var_loc_chain. */
6013 if (preserve)
6014 preserve_value (v);
6015 goto log_and_return;
6018 if (loc == stack_pointer_rtx
6019 && hard_frame_pointer_adjustment != -1
6020 && preserve)
6021 cselib_set_value_sp_based (v);
6023 nloc = replace_expr_with_values (oloc);
6024 if (nloc)
6025 oloc = nloc;
6027 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6029 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6031 if (oval == v)
6032 return;
6033 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6035 if (oval && !cselib_preserved_value_p (oval))
6037 micro_operation moa;
6039 preserve_value (oval);
6041 moa.type = MO_VAL_USE;
6042 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6043 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6044 moa.insn = cui->insn;
6046 if (dump_file && (dump_flags & TDF_DETAILS))
6047 log_op_type (moa.u.loc, cui->bb, cui->insn,
6048 moa.type, dump_file);
6049 VTI (bb)->mos.safe_push (moa);
6052 resolve = false;
6054 else if (resolve && GET_CODE (mo.u.loc) == SET)
6056 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6057 nloc = replace_expr_with_values (SET_SRC (expr));
6058 else
6059 nloc = NULL_RTX;
6061 /* Avoid the mode mismatch between oexpr and expr. */
6062 if (!nloc && mode != mode2)
6064 nloc = SET_SRC (expr);
6065 gcc_assert (oloc == SET_DEST (expr));
6068 if (nloc && nloc != SET_SRC (mo.u.loc))
6069 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
6070 else
6072 if (oloc == SET_DEST (mo.u.loc))
6073 /* No point in duplicating. */
6074 oloc = mo.u.loc;
6075 if (!REG_P (SET_SRC (mo.u.loc)))
6076 resolve = false;
6079 else if (!resolve)
6081 if (GET_CODE (mo.u.loc) == SET
6082 && oloc == SET_DEST (mo.u.loc))
6083 /* No point in duplicating. */
6084 oloc = mo.u.loc;
6086 else
6087 resolve = false;
6089 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6091 if (mo.u.loc != oloc)
6092 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6094 /* The loc of a MO_VAL_SET may have various forms:
6096 (concat val dst): dst now holds val
6098 (concat val (set dst src)): dst now holds val, copied from src
6100 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6101 after replacing mems and non-top-level regs with values.
6103 (concat (concat val dstv) (set dst src)): dst now holds val,
6104 copied from src. dstv is a value-based representation of dst, if
6105 it differs from dst. If resolution is needed, src is a REG, and
6106 its mode is the same as that of val.
6108 (concat (concat val (set dstv srcv)) (set dst src)): src
6109 copied to dst, holding val. dstv and srcv are value-based
6110 representations of dst and src, respectively.
6114 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6115 reverse_op (v->val_rtx, expr, cui->insn);
6117 mo.u.loc = loc;
6119 if (track_p)
6120 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6121 if (preserve)
6123 VAL_NEEDS_RESOLUTION (loc) = resolve;
6124 preserve_value (v);
6126 if (mo.type == MO_CLOBBER)
6127 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6128 if (mo.type == MO_COPY)
6129 VAL_EXPR_IS_COPIED (loc) = 1;
6131 mo.type = MO_VAL_SET;
6133 log_and_return:
6134 if (dump_file && (dump_flags & TDF_DETAILS))
6135 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6136 VTI (bb)->mos.safe_push (mo);
6139 /* Arguments to the call. */
6140 static rtx call_arguments;
6142 /* Compute call_arguments. */
6144 static void
6145 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6147 rtx link, x, call;
6148 rtx prev, cur, next;
6149 rtx this_arg = NULL_RTX;
6150 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6151 tree obj_type_ref = NULL_TREE;
6152 CUMULATIVE_ARGS args_so_far_v;
6153 cumulative_args_t args_so_far;
6155 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6156 args_so_far = pack_cumulative_args (&args_so_far_v);
6157 call = get_call_rtx_from (insn);
6158 if (call)
6160 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6162 rtx symbol = XEXP (XEXP (call, 0), 0);
6163 if (SYMBOL_REF_DECL (symbol))
6164 fndecl = SYMBOL_REF_DECL (symbol);
6166 if (fndecl == NULL_TREE)
6167 fndecl = MEM_EXPR (XEXP (call, 0));
6168 if (fndecl
6169 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6170 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6171 fndecl = NULL_TREE;
6172 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6173 type = TREE_TYPE (fndecl);
6174 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6176 if (TREE_CODE (fndecl) == INDIRECT_REF
6177 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6178 obj_type_ref = TREE_OPERAND (fndecl, 0);
6179 fndecl = NULL_TREE;
6181 if (type)
6183 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6184 t = TREE_CHAIN (t))
6185 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6186 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6187 break;
6188 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6189 type = NULL;
6190 else
6192 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6193 link = CALL_INSN_FUNCTION_USAGE (insn);
6194 #ifndef PCC_STATIC_STRUCT_RETURN
6195 if (aggregate_value_p (TREE_TYPE (type), type)
6196 && targetm.calls.struct_value_rtx (type, 0) == 0)
6198 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6199 machine_mode mode = TYPE_MODE (struct_addr);
6200 rtx reg;
6201 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6202 nargs + 1);
6203 reg = targetm.calls.function_arg (args_so_far, mode,
6204 struct_addr, true);
6205 targetm.calls.function_arg_advance (args_so_far, mode,
6206 struct_addr, true);
6207 if (reg == NULL_RTX)
6209 for (; link; link = XEXP (link, 1))
6210 if (GET_CODE (XEXP (link, 0)) == USE
6211 && MEM_P (XEXP (XEXP (link, 0), 0)))
6213 link = XEXP (link, 1);
6214 break;
6218 else
6219 #endif
6220 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6221 nargs);
6222 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6224 machine_mode mode;
6225 t = TYPE_ARG_TYPES (type);
6226 mode = TYPE_MODE (TREE_VALUE (t));
6227 this_arg = targetm.calls.function_arg (args_so_far, mode,
6228 TREE_VALUE (t), true);
6229 if (this_arg && !REG_P (this_arg))
6230 this_arg = NULL_RTX;
6231 else if (this_arg == NULL_RTX)
6233 for (; link; link = XEXP (link, 1))
6234 if (GET_CODE (XEXP (link, 0)) == USE
6235 && MEM_P (XEXP (XEXP (link, 0), 0)))
6237 this_arg = XEXP (XEXP (link, 0), 0);
6238 break;
6245 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6247 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6248 if (GET_CODE (XEXP (link, 0)) == USE)
6250 rtx item = NULL_RTX;
6251 x = XEXP (XEXP (link, 0), 0);
6252 if (GET_MODE (link) == VOIDmode
6253 || GET_MODE (link) == BLKmode
6254 || (GET_MODE (link) != GET_MODE (x)
6255 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6256 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6257 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6258 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6259 /* Can't do anything for these, if the original type mode
6260 isn't known or can't be converted. */;
6261 else if (REG_P (x))
6263 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6264 if (val && cselib_preserved_value_p (val))
6265 item = val->val_rtx;
6266 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6267 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6269 machine_mode mode = GET_MODE (x);
6271 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6272 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6274 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6276 if (reg == NULL_RTX || !REG_P (reg))
6277 continue;
6278 val = cselib_lookup (reg, mode, 0, VOIDmode);
6279 if (val && cselib_preserved_value_p (val))
6281 item = val->val_rtx;
6282 break;
6287 else if (MEM_P (x))
6289 rtx mem = x;
6290 cselib_val *val;
6292 if (!frame_pointer_needed)
6294 struct adjust_mem_data amd;
6295 amd.mem_mode = VOIDmode;
6296 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6297 amd.side_effects = NULL;
6298 amd.store = true;
6299 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6300 &amd);
6301 gcc_assert (amd.side_effects == NULL_RTX);
6303 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6304 if (val && cselib_preserved_value_p (val))
6305 item = val->val_rtx;
6306 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6307 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6309 /* For non-integer stack argument see also if they weren't
6310 initialized by integers. */
6311 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6312 if (imode != GET_MODE (mem) && imode != BLKmode)
6314 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6315 imode, 0, VOIDmode);
6316 if (val && cselib_preserved_value_p (val))
6317 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6318 imode);
6322 if (item)
6324 rtx x2 = x;
6325 if (GET_MODE (item) != GET_MODE (link))
6326 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6327 if (GET_MODE (x2) != GET_MODE (link))
6328 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6329 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6330 call_arguments
6331 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6333 if (t && t != void_list_node)
6335 tree argtype = TREE_VALUE (t);
6336 machine_mode mode = TYPE_MODE (argtype);
6337 rtx reg;
6338 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6340 argtype = build_pointer_type (argtype);
6341 mode = TYPE_MODE (argtype);
6343 reg = targetm.calls.function_arg (args_so_far, mode,
6344 argtype, true);
6345 if (TREE_CODE (argtype) == REFERENCE_TYPE
6346 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6347 && reg
6348 && REG_P (reg)
6349 && GET_MODE (reg) == mode
6350 && (GET_MODE_CLASS (mode) == MODE_INT
6351 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6352 && REG_P (x)
6353 && REGNO (x) == REGNO (reg)
6354 && GET_MODE (x) == mode
6355 && item)
6357 machine_mode indmode
6358 = TYPE_MODE (TREE_TYPE (argtype));
6359 rtx mem = gen_rtx_MEM (indmode, x);
6360 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6361 if (val && cselib_preserved_value_p (val))
6363 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6364 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6365 call_arguments);
6367 else
6369 struct elt_loc_list *l;
6370 tree initial;
6372 /* Try harder, when passing address of a constant
6373 pool integer it can be easily read back. */
6374 item = XEXP (item, 1);
6375 if (GET_CODE (item) == SUBREG)
6376 item = SUBREG_REG (item);
6377 gcc_assert (GET_CODE (item) == VALUE);
6378 val = CSELIB_VAL_PTR (item);
6379 for (l = val->locs; l; l = l->next)
6380 if (GET_CODE (l->loc) == SYMBOL_REF
6381 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6382 && SYMBOL_REF_DECL (l->loc)
6383 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6385 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6386 if (tree_fits_shwi_p (initial))
6388 item = GEN_INT (tree_to_shwi (initial));
6389 item = gen_rtx_CONCAT (indmode, mem, item);
6390 call_arguments
6391 = gen_rtx_EXPR_LIST (VOIDmode, item,
6392 call_arguments);
6394 break;
6398 targetm.calls.function_arg_advance (args_so_far, mode,
6399 argtype, true);
6400 t = TREE_CHAIN (t);
6404 /* Add debug arguments. */
6405 if (fndecl
6406 && TREE_CODE (fndecl) == FUNCTION_DECL
6407 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6409 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6410 if (debug_args)
6412 unsigned int ix;
6413 tree param;
6414 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6416 rtx item;
6417 tree dtemp = (**debug_args)[ix + 1];
6418 machine_mode mode = DECL_MODE (dtemp);
6419 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6420 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6421 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6422 call_arguments);
6427 /* Reverse call_arguments chain. */
6428 prev = NULL_RTX;
6429 for (cur = call_arguments; cur; cur = next)
6431 next = XEXP (cur, 1);
6432 XEXP (cur, 1) = prev;
6433 prev = cur;
6435 call_arguments = prev;
6437 x = get_call_rtx_from (insn);
6438 if (x)
6440 x = XEXP (XEXP (x, 0), 0);
6441 if (GET_CODE (x) == SYMBOL_REF)
6442 /* Don't record anything. */;
6443 else if (CONSTANT_P (x))
6445 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6446 pc_rtx, x);
6447 call_arguments
6448 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6450 else
6452 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6453 if (val && cselib_preserved_value_p (val))
6455 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6456 call_arguments
6457 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6461 if (this_arg)
6463 machine_mode mode
6464 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6465 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6466 HOST_WIDE_INT token
6467 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6468 if (token)
6469 clobbered = plus_constant (mode, clobbered,
6470 token * GET_MODE_SIZE (mode));
6471 clobbered = gen_rtx_MEM (mode, clobbered);
6472 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6473 call_arguments
6474 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6478 /* Callback for cselib_record_sets_hook, that records as micro
6479 operations uses and stores in an insn after cselib_record_sets has
6480 analyzed the sets in an insn, but before it modifies the stored
6481 values in the internal tables, unless cselib_record_sets doesn't
6482 call it directly (perhaps because we're not doing cselib in the
6483 first place, in which case sets and n_sets will be 0). */
6485 static void
6486 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6488 basic_block bb = BLOCK_FOR_INSN (insn);
6489 int n1, n2;
6490 struct count_use_info cui;
6491 micro_operation *mos;
6493 cselib_hook_called = true;
6495 cui.insn = insn;
6496 cui.bb = bb;
6497 cui.sets = sets;
6498 cui.n_sets = n_sets;
6500 n1 = VTI (bb)->mos.length ();
6501 cui.store_p = false;
6502 note_uses (&PATTERN (insn), add_uses_1, &cui);
6503 n2 = VTI (bb)->mos.length () - 1;
6504 mos = VTI (bb)->mos.address ();
6506 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6507 MO_VAL_LOC last. */
6508 while (n1 < n2)
6510 while (n1 < n2 && mos[n1].type == MO_USE)
6511 n1++;
6512 while (n1 < n2 && mos[n2].type != MO_USE)
6513 n2--;
6514 if (n1 < n2)
6516 micro_operation sw;
6518 sw = mos[n1];
6519 mos[n1] = mos[n2];
6520 mos[n2] = sw;
6524 n2 = VTI (bb)->mos.length () - 1;
6525 while (n1 < n2)
6527 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6528 n1++;
6529 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6530 n2--;
6531 if (n1 < n2)
6533 micro_operation sw;
6535 sw = mos[n1];
6536 mos[n1] = mos[n2];
6537 mos[n2] = sw;
6541 if (CALL_P (insn))
6543 micro_operation mo;
6545 mo.type = MO_CALL;
6546 mo.insn = insn;
6547 mo.u.loc = call_arguments;
6548 call_arguments = NULL_RTX;
6550 if (dump_file && (dump_flags & TDF_DETAILS))
6551 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6552 VTI (bb)->mos.safe_push (mo);
6555 n1 = VTI (bb)->mos.length ();
6556 /* This will record NEXT_INSN (insn), such that we can
6557 insert notes before it without worrying about any
6558 notes that MO_USEs might emit after the insn. */
6559 cui.store_p = true;
6560 note_stores (PATTERN (insn), add_stores, &cui);
6561 n2 = VTI (bb)->mos.length () - 1;
6562 mos = VTI (bb)->mos.address ();
6564 /* Order the MO_VAL_USEs first (note_stores does nothing
6565 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6566 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6567 while (n1 < n2)
6569 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6570 n1++;
6571 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6572 n2--;
6573 if (n1 < n2)
6575 micro_operation sw;
6577 sw = mos[n1];
6578 mos[n1] = mos[n2];
6579 mos[n2] = sw;
6583 n2 = VTI (bb)->mos.length () - 1;
6584 while (n1 < n2)
6586 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6587 n1++;
6588 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6589 n2--;
6590 if (n1 < n2)
6592 micro_operation sw;
6594 sw = mos[n1];
6595 mos[n1] = mos[n2];
6596 mos[n2] = sw;
6601 static enum var_init_status
6602 find_src_status (dataflow_set *in, rtx src)
6604 tree decl = NULL_TREE;
6605 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6607 if (! flag_var_tracking_uninit)
6608 status = VAR_INIT_STATUS_INITIALIZED;
6610 if (src && REG_P (src))
6611 decl = var_debug_decl (REG_EXPR (src));
6612 else if (src && MEM_P (src))
6613 decl = var_debug_decl (MEM_EXPR (src));
6615 if (src && decl)
6616 status = get_init_value (in, src, dv_from_decl (decl));
6618 return status;
6621 /* SRC is the source of an assignment. Use SET to try to find what
6622 was ultimately assigned to SRC. Return that value if known,
6623 otherwise return SRC itself. */
6625 static rtx
6626 find_src_set_src (dataflow_set *set, rtx src)
6628 tree decl = NULL_TREE; /* The variable being copied around. */
6629 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6630 variable var;
6631 location_chain nextp;
6632 int i;
6633 bool found;
6635 if (src && REG_P (src))
6636 decl = var_debug_decl (REG_EXPR (src));
6637 else if (src && MEM_P (src))
6638 decl = var_debug_decl (MEM_EXPR (src));
6640 if (src && decl)
6642 decl_or_value dv = dv_from_decl (decl);
6644 var = shared_hash_find (set->vars, dv);
6645 if (var)
6647 found = false;
6648 for (i = 0; i < var->n_var_parts && !found; i++)
6649 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6650 nextp = nextp->next)
6651 if (rtx_equal_p (nextp->loc, src))
6653 set_src = nextp->set_src;
6654 found = true;
6660 return set_src;
6663 /* Compute the changes of variable locations in the basic block BB. */
6665 static bool
6666 compute_bb_dataflow (basic_block bb)
6668 unsigned int i;
6669 micro_operation *mo;
6670 bool changed;
6671 dataflow_set old_out;
6672 dataflow_set *in = &VTI (bb)->in;
6673 dataflow_set *out = &VTI (bb)->out;
6675 dataflow_set_init (&old_out);
6676 dataflow_set_copy (&old_out, out);
6677 dataflow_set_copy (out, in);
6679 if (MAY_HAVE_DEBUG_INSNS)
6680 local_get_addr_cache = new hash_map<rtx, rtx>;
6682 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6684 rtx_insn *insn = mo->insn;
6686 switch (mo->type)
6688 case MO_CALL:
6689 dataflow_set_clear_at_call (out);
6690 break;
6692 case MO_USE:
6694 rtx loc = mo->u.loc;
6696 if (REG_P (loc))
6697 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6698 else if (MEM_P (loc))
6699 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6701 break;
6703 case MO_VAL_LOC:
6705 rtx loc = mo->u.loc;
6706 rtx val, vloc;
6707 tree var;
6709 if (GET_CODE (loc) == CONCAT)
6711 val = XEXP (loc, 0);
6712 vloc = XEXP (loc, 1);
6714 else
6716 val = NULL_RTX;
6717 vloc = loc;
6720 var = PAT_VAR_LOCATION_DECL (vloc);
6722 clobber_variable_part (out, NULL_RTX,
6723 dv_from_decl (var), 0, NULL_RTX);
6724 if (val)
6726 if (VAL_NEEDS_RESOLUTION (loc))
6727 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6728 set_variable_part (out, val, dv_from_decl (var), 0,
6729 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6730 INSERT);
6732 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6733 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6734 dv_from_decl (var), 0,
6735 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6736 INSERT);
6738 break;
6740 case MO_VAL_USE:
6742 rtx loc = mo->u.loc;
6743 rtx val, vloc, uloc;
6745 vloc = uloc = XEXP (loc, 1);
6746 val = XEXP (loc, 0);
6748 if (GET_CODE (val) == CONCAT)
6750 uloc = XEXP (val, 1);
6751 val = XEXP (val, 0);
6754 if (VAL_NEEDS_RESOLUTION (loc))
6755 val_resolve (out, val, vloc, insn);
6756 else
6757 val_store (out, val, uloc, insn, false);
6759 if (VAL_HOLDS_TRACK_EXPR (loc))
6761 if (GET_CODE (uloc) == REG)
6762 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6763 NULL);
6764 else if (GET_CODE (uloc) == MEM)
6765 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6766 NULL);
6769 break;
6771 case MO_VAL_SET:
6773 rtx loc = mo->u.loc;
6774 rtx val, vloc, uloc;
6775 rtx dstv, srcv;
6777 vloc = loc;
6778 uloc = XEXP (vloc, 1);
6779 val = XEXP (vloc, 0);
6780 vloc = uloc;
6782 if (GET_CODE (uloc) == SET)
6784 dstv = SET_DEST (uloc);
6785 srcv = SET_SRC (uloc);
6787 else
6789 dstv = uloc;
6790 srcv = NULL;
6793 if (GET_CODE (val) == CONCAT)
6795 dstv = vloc = XEXP (val, 1);
6796 val = XEXP (val, 0);
6799 if (GET_CODE (vloc) == SET)
6801 srcv = SET_SRC (vloc);
6803 gcc_assert (val != srcv);
6804 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6806 dstv = vloc = SET_DEST (vloc);
6808 if (VAL_NEEDS_RESOLUTION (loc))
6809 val_resolve (out, val, srcv, insn);
6811 else if (VAL_NEEDS_RESOLUTION (loc))
6813 gcc_assert (GET_CODE (uloc) == SET
6814 && GET_CODE (SET_SRC (uloc)) == REG);
6815 val_resolve (out, val, SET_SRC (uloc), insn);
6818 if (VAL_HOLDS_TRACK_EXPR (loc))
6820 if (VAL_EXPR_IS_CLOBBERED (loc))
6822 if (REG_P (uloc))
6823 var_reg_delete (out, uloc, true);
6824 else if (MEM_P (uloc))
6826 gcc_assert (MEM_P (dstv));
6827 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6828 var_mem_delete (out, dstv, true);
6831 else
6833 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6834 rtx src = NULL, dst = uloc;
6835 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6837 if (GET_CODE (uloc) == SET)
6839 src = SET_SRC (uloc);
6840 dst = SET_DEST (uloc);
6843 if (copied_p)
6845 if (flag_var_tracking_uninit)
6847 status = find_src_status (in, src);
6849 if (status == VAR_INIT_STATUS_UNKNOWN)
6850 status = find_src_status (out, src);
6853 src = find_src_set_src (in, src);
6856 if (REG_P (dst))
6857 var_reg_delete_and_set (out, dst, !copied_p,
6858 status, srcv);
6859 else if (MEM_P (dst))
6861 gcc_assert (MEM_P (dstv));
6862 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6863 var_mem_delete_and_set (out, dstv, !copied_p,
6864 status, srcv);
6868 else if (REG_P (uloc))
6869 var_regno_delete (out, REGNO (uloc));
6870 else if (MEM_P (uloc))
6872 gcc_checking_assert (GET_CODE (vloc) == MEM);
6873 gcc_checking_assert (dstv == vloc);
6874 if (dstv != vloc)
6875 clobber_overlapping_mems (out, vloc);
6878 val_store (out, val, dstv, insn, true);
6880 break;
6882 case MO_SET:
6884 rtx loc = mo->u.loc;
6885 rtx set_src = NULL;
6887 if (GET_CODE (loc) == SET)
6889 set_src = SET_SRC (loc);
6890 loc = SET_DEST (loc);
6893 if (REG_P (loc))
6894 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6895 set_src);
6896 else if (MEM_P (loc))
6897 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6898 set_src);
6900 break;
6902 case MO_COPY:
6904 rtx loc = mo->u.loc;
6905 enum var_init_status src_status;
6906 rtx set_src = NULL;
6908 if (GET_CODE (loc) == SET)
6910 set_src = SET_SRC (loc);
6911 loc = SET_DEST (loc);
6914 if (! flag_var_tracking_uninit)
6915 src_status = VAR_INIT_STATUS_INITIALIZED;
6916 else
6918 src_status = find_src_status (in, set_src);
6920 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6921 src_status = find_src_status (out, set_src);
6924 set_src = find_src_set_src (in, set_src);
6926 if (REG_P (loc))
6927 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6928 else if (MEM_P (loc))
6929 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6931 break;
6933 case MO_USE_NO_VAR:
6935 rtx loc = mo->u.loc;
6937 if (REG_P (loc))
6938 var_reg_delete (out, loc, false);
6939 else if (MEM_P (loc))
6940 var_mem_delete (out, loc, false);
6942 break;
6944 case MO_CLOBBER:
6946 rtx loc = mo->u.loc;
6948 if (REG_P (loc))
6949 var_reg_delete (out, loc, true);
6950 else if (MEM_P (loc))
6951 var_mem_delete (out, loc, true);
6953 break;
6955 case MO_ADJUST:
6956 out->stack_adjust += mo->u.adjust;
6957 break;
6961 if (MAY_HAVE_DEBUG_INSNS)
6963 delete local_get_addr_cache;
6964 local_get_addr_cache = NULL;
6966 dataflow_set_equiv_regs (out);
6967 shared_hash_htab (out->vars)
6968 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6969 shared_hash_htab (out->vars)
6970 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6971 #if ENABLE_CHECKING
6972 shared_hash_htab (out->vars)
6973 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6974 #endif
6976 changed = dataflow_set_different (&old_out, out);
6977 dataflow_set_destroy (&old_out);
6978 return changed;
6981 /* Find the locations of variables in the whole function. */
6983 static bool
6984 vt_find_locations (void)
6986 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
6987 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
6988 bb_heap_t *fibheap_swap = NULL;
6989 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6990 basic_block bb;
6991 edge e;
6992 int *bb_order;
6993 int *rc_order;
6994 int i;
6995 int htabsz = 0;
6996 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6997 bool success = true;
6999 timevar_push (TV_VAR_TRACKING_DATAFLOW);
7000 /* Compute reverse completion order of depth first search of the CFG
7001 so that the data-flow runs faster. */
7002 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
7003 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
7004 pre_and_rev_post_order_compute (NULL, rc_order, false);
7005 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
7006 bb_order[rc_order[i]] = i;
7007 free (rc_order);
7009 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
7010 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7011 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7012 bitmap_clear (in_worklist);
7014 FOR_EACH_BB_FN (bb, cfun)
7015 pending->insert (bb_order[bb->index], bb);
7016 bitmap_ones (in_pending);
7018 while (success && !pending->empty ())
7020 fibheap_swap = pending;
7021 pending = worklist;
7022 worklist = fibheap_swap;
7023 sbitmap_swap = in_pending;
7024 in_pending = in_worklist;
7025 in_worklist = sbitmap_swap;
7027 bitmap_clear (visited);
7029 while (!worklist->empty ())
7031 bb = worklist->extract_min ();
7032 bitmap_clear_bit (in_worklist, bb->index);
7033 gcc_assert (!bitmap_bit_p (visited, bb->index));
7034 if (!bitmap_bit_p (visited, bb->index))
7036 bool changed;
7037 edge_iterator ei;
7038 int oldinsz, oldoutsz;
7040 bitmap_set_bit (visited, bb->index);
7042 if (VTI (bb)->in.vars)
7044 htabsz
7045 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7046 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7047 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7048 oldoutsz
7049 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7051 else
7052 oldinsz = oldoutsz = 0;
7054 if (MAY_HAVE_DEBUG_INSNS)
7056 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7057 bool first = true, adjust = false;
7059 /* Calculate the IN set as the intersection of
7060 predecessor OUT sets. */
7062 dataflow_set_clear (in);
7063 dst_can_be_shared = true;
7065 FOR_EACH_EDGE (e, ei, bb->preds)
7066 if (!VTI (e->src)->flooded)
7067 gcc_assert (bb_order[bb->index]
7068 <= bb_order[e->src->index]);
7069 else if (first)
7071 dataflow_set_copy (in, &VTI (e->src)->out);
7072 first_out = &VTI (e->src)->out;
7073 first = false;
7075 else
7077 dataflow_set_merge (in, &VTI (e->src)->out);
7078 adjust = true;
7081 if (adjust)
7083 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7084 #if ENABLE_CHECKING
7085 /* Merge and merge_adjust should keep entries in
7086 canonical order. */
7087 shared_hash_htab (in->vars)
7088 ->traverse <dataflow_set *,
7089 canonicalize_loc_order_check> (in);
7090 #endif
7091 if (dst_can_be_shared)
7093 shared_hash_destroy (in->vars);
7094 in->vars = shared_hash_copy (first_out->vars);
7098 VTI (bb)->flooded = true;
7100 else
7102 /* Calculate the IN set as union of predecessor OUT sets. */
7103 dataflow_set_clear (&VTI (bb)->in);
7104 FOR_EACH_EDGE (e, ei, bb->preds)
7105 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7108 changed = compute_bb_dataflow (bb);
7109 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7110 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7112 if (htabmax && htabsz > htabmax)
7114 if (MAY_HAVE_DEBUG_INSNS)
7115 inform (DECL_SOURCE_LOCATION (cfun->decl),
7116 "variable tracking size limit exceeded with "
7117 "-fvar-tracking-assignments, retrying without");
7118 else
7119 inform (DECL_SOURCE_LOCATION (cfun->decl),
7120 "variable tracking size limit exceeded");
7121 success = false;
7122 break;
7125 if (changed)
7127 FOR_EACH_EDGE (e, ei, bb->succs)
7129 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7130 continue;
7132 if (bitmap_bit_p (visited, e->dest->index))
7134 if (!bitmap_bit_p (in_pending, e->dest->index))
7136 /* Send E->DEST to next round. */
7137 bitmap_set_bit (in_pending, e->dest->index);
7138 pending->insert (bb_order[e->dest->index],
7139 e->dest);
7142 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7144 /* Add E->DEST to current round. */
7145 bitmap_set_bit (in_worklist, e->dest->index);
7146 worklist->insert (bb_order[e->dest->index],
7147 e->dest);
7152 if (dump_file)
7153 fprintf (dump_file,
7154 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7155 bb->index,
7156 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7157 oldinsz,
7158 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7159 oldoutsz,
7160 (int)worklist->nodes (), (int)pending->nodes (),
7161 htabsz);
7163 if (dump_file && (dump_flags & TDF_DETAILS))
7165 fprintf (dump_file, "BB %i IN:\n", bb->index);
7166 dump_dataflow_set (&VTI (bb)->in);
7167 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7168 dump_dataflow_set (&VTI (bb)->out);
7174 if (success && MAY_HAVE_DEBUG_INSNS)
7175 FOR_EACH_BB_FN (bb, cfun)
7176 gcc_assert (VTI (bb)->flooded);
7178 free (bb_order);
7179 delete worklist;
7180 delete pending;
7181 sbitmap_free (visited);
7182 sbitmap_free (in_worklist);
7183 sbitmap_free (in_pending);
7185 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7186 return success;
7189 /* Print the content of the LIST to dump file. */
7191 static void
7192 dump_attrs_list (attrs list)
7194 for (; list; list = list->next)
7196 if (dv_is_decl_p (list->dv))
7197 print_mem_expr (dump_file, dv_as_decl (list->dv));
7198 else
7199 print_rtl_single (dump_file, dv_as_value (list->dv));
7200 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7202 fprintf (dump_file, "\n");
7205 /* Print the information about variable *SLOT to dump file. */
7208 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7210 variable var = *slot;
7212 dump_var (var);
7214 /* Continue traversing the hash table. */
7215 return 1;
7218 /* Print the information about variable VAR to dump file. */
7220 static void
7221 dump_var (variable var)
7223 int i;
7224 location_chain node;
7226 if (dv_is_decl_p (var->dv))
7228 const_tree decl = dv_as_decl (var->dv);
7230 if (DECL_NAME (decl))
7232 fprintf (dump_file, " name: %s",
7233 IDENTIFIER_POINTER (DECL_NAME (decl)));
7234 if (dump_flags & TDF_UID)
7235 fprintf (dump_file, "D.%u", DECL_UID (decl));
7237 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7238 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7239 else
7240 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7241 fprintf (dump_file, "\n");
7243 else
7245 fputc (' ', dump_file);
7246 print_rtl_single (dump_file, dv_as_value (var->dv));
7249 for (i = 0; i < var->n_var_parts; i++)
7251 fprintf (dump_file, " offset %ld\n",
7252 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7253 for (node = var->var_part[i].loc_chain; node; node = node->next)
7255 fprintf (dump_file, " ");
7256 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7257 fprintf (dump_file, "[uninit]");
7258 print_rtl_single (dump_file, node->loc);
7263 /* Print the information about variables from hash table VARS to dump file. */
7265 static void
7266 dump_vars (variable_table_type *vars)
7268 if (vars->elements () > 0)
7270 fprintf (dump_file, "Variables:\n");
7271 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7275 /* Print the dataflow set SET to dump file. */
7277 static void
7278 dump_dataflow_set (dataflow_set *set)
7280 int i;
7282 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7283 set->stack_adjust);
7284 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7286 if (set->regs[i])
7288 fprintf (dump_file, "Reg %d:", i);
7289 dump_attrs_list (set->regs[i]);
7292 dump_vars (shared_hash_htab (set->vars));
7293 fprintf (dump_file, "\n");
7296 /* Print the IN and OUT sets for each basic block to dump file. */
7298 static void
7299 dump_dataflow_sets (void)
7301 basic_block bb;
7303 FOR_EACH_BB_FN (bb, cfun)
7305 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7306 fprintf (dump_file, "IN:\n");
7307 dump_dataflow_set (&VTI (bb)->in);
7308 fprintf (dump_file, "OUT:\n");
7309 dump_dataflow_set (&VTI (bb)->out);
7313 /* Return the variable for DV in dropped_values, inserting one if
7314 requested with INSERT. */
7316 static inline variable
7317 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7319 variable_def **slot;
7320 variable empty_var;
7321 onepart_enum_t onepart;
7323 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7325 if (!slot)
7326 return NULL;
7328 if (*slot)
7329 return *slot;
7331 gcc_checking_assert (insert == INSERT);
7333 onepart = dv_onepart_p (dv);
7335 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7337 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7338 empty_var->dv = dv;
7339 empty_var->refcount = 1;
7340 empty_var->n_var_parts = 0;
7341 empty_var->onepart = onepart;
7342 empty_var->in_changed_variables = false;
7343 empty_var->var_part[0].loc_chain = NULL;
7344 empty_var->var_part[0].cur_loc = NULL;
7345 VAR_LOC_1PAUX (empty_var) = NULL;
7346 set_dv_changed (dv, true);
7348 *slot = empty_var;
7350 return empty_var;
7353 /* Recover the one-part aux from dropped_values. */
7355 static struct onepart_aux *
7356 recover_dropped_1paux (variable var)
7358 variable dvar;
7360 gcc_checking_assert (var->onepart);
7362 if (VAR_LOC_1PAUX (var))
7363 return VAR_LOC_1PAUX (var);
7365 if (var->onepart == ONEPART_VDECL)
7366 return NULL;
7368 dvar = variable_from_dropped (var->dv, NO_INSERT);
7370 if (!dvar)
7371 return NULL;
7373 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7374 VAR_LOC_1PAUX (dvar) = NULL;
7376 return VAR_LOC_1PAUX (var);
7379 /* Add variable VAR to the hash table of changed variables and
7380 if it has no locations delete it from SET's hash table. */
7382 static void
7383 variable_was_changed (variable var, dataflow_set *set)
7385 hashval_t hash = dv_htab_hash (var->dv);
7387 if (emit_notes)
7389 variable_def **slot;
7391 /* Remember this decl or VALUE has been added to changed_variables. */
7392 set_dv_changed (var->dv, true);
7394 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7396 if (*slot)
7398 variable old_var = *slot;
7399 gcc_assert (old_var->in_changed_variables);
7400 old_var->in_changed_variables = false;
7401 if (var != old_var && var->onepart)
7403 /* Restore the auxiliary info from an empty variable
7404 previously created for changed_variables, so it is
7405 not lost. */
7406 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7407 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7408 VAR_LOC_1PAUX (old_var) = NULL;
7410 variable_htab_free (*slot);
7413 if (set && var->n_var_parts == 0)
7415 onepart_enum_t onepart = var->onepart;
7416 variable empty_var = NULL;
7417 variable_def **dslot = NULL;
7419 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7421 dslot = dropped_values->find_slot_with_hash (var->dv,
7422 dv_htab_hash (var->dv),
7423 INSERT);
7424 empty_var = *dslot;
7426 if (empty_var)
7428 gcc_checking_assert (!empty_var->in_changed_variables);
7429 if (!VAR_LOC_1PAUX (var))
7431 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7432 VAR_LOC_1PAUX (empty_var) = NULL;
7434 else
7435 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7439 if (!empty_var)
7441 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7442 empty_var->dv = var->dv;
7443 empty_var->refcount = 1;
7444 empty_var->n_var_parts = 0;
7445 empty_var->onepart = onepart;
7446 if (dslot)
7448 empty_var->refcount++;
7449 *dslot = empty_var;
7452 else
7453 empty_var->refcount++;
7454 empty_var->in_changed_variables = true;
7455 *slot = empty_var;
7456 if (onepart)
7458 empty_var->var_part[0].loc_chain = NULL;
7459 empty_var->var_part[0].cur_loc = NULL;
7460 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7461 VAR_LOC_1PAUX (var) = NULL;
7463 goto drop_var;
7465 else
7467 if (var->onepart && !VAR_LOC_1PAUX (var))
7468 recover_dropped_1paux (var);
7469 var->refcount++;
7470 var->in_changed_variables = true;
7471 *slot = var;
7474 else
7476 gcc_assert (set);
7477 if (var->n_var_parts == 0)
7479 variable_def **slot;
7481 drop_var:
7482 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7483 if (slot)
7485 if (shared_hash_shared (set->vars))
7486 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7487 NO_INSERT);
7488 shared_hash_htab (set->vars)->clear_slot (slot);
7494 /* Look for the index in VAR->var_part corresponding to OFFSET.
7495 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7496 referenced int will be set to the index that the part has or should
7497 have, if it should be inserted. */
7499 static inline int
7500 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7501 int *insertion_point)
7503 int pos, low, high;
7505 if (var->onepart)
7507 if (offset != 0)
7508 return -1;
7510 if (insertion_point)
7511 *insertion_point = 0;
7513 return var->n_var_parts - 1;
7516 /* Find the location part. */
7517 low = 0;
7518 high = var->n_var_parts;
7519 while (low != high)
7521 pos = (low + high) / 2;
7522 if (VAR_PART_OFFSET (var, pos) < offset)
7523 low = pos + 1;
7524 else
7525 high = pos;
7527 pos = low;
7529 if (insertion_point)
7530 *insertion_point = pos;
7532 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7533 return pos;
7535 return -1;
7538 static variable_def **
7539 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7540 decl_or_value dv, HOST_WIDE_INT offset,
7541 enum var_init_status initialized, rtx set_src)
7543 int pos;
7544 location_chain node, next;
7545 location_chain *nextp;
7546 variable var;
7547 onepart_enum_t onepart;
7549 var = *slot;
7551 if (var)
7552 onepart = var->onepart;
7553 else
7554 onepart = dv_onepart_p (dv);
7556 gcc_checking_assert (offset == 0 || !onepart);
7557 gcc_checking_assert (loc != dv_as_opaque (dv));
7559 if (! flag_var_tracking_uninit)
7560 initialized = VAR_INIT_STATUS_INITIALIZED;
7562 if (!var)
7564 /* Create new variable information. */
7565 var = (variable) pool_alloc (onepart_pool (onepart));
7566 var->dv = dv;
7567 var->refcount = 1;
7568 var->n_var_parts = 1;
7569 var->onepart = onepart;
7570 var->in_changed_variables = false;
7571 if (var->onepart)
7572 VAR_LOC_1PAUX (var) = NULL;
7573 else
7574 VAR_PART_OFFSET (var, 0) = offset;
7575 var->var_part[0].loc_chain = NULL;
7576 var->var_part[0].cur_loc = NULL;
7577 *slot = var;
7578 pos = 0;
7579 nextp = &var->var_part[0].loc_chain;
7581 else if (onepart)
7583 int r = -1, c = 0;
7585 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7587 pos = 0;
7589 if (GET_CODE (loc) == VALUE)
7591 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7592 nextp = &node->next)
7593 if (GET_CODE (node->loc) == VALUE)
7595 if (node->loc == loc)
7597 r = 0;
7598 break;
7600 if (canon_value_cmp (node->loc, loc))
7601 c++;
7602 else
7604 r = 1;
7605 break;
7608 else if (REG_P (node->loc) || MEM_P (node->loc))
7609 c++;
7610 else
7612 r = 1;
7613 break;
7616 else if (REG_P (loc))
7618 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7619 nextp = &node->next)
7620 if (REG_P (node->loc))
7622 if (REGNO (node->loc) < REGNO (loc))
7623 c++;
7624 else
7626 if (REGNO (node->loc) == REGNO (loc))
7627 r = 0;
7628 else
7629 r = 1;
7630 break;
7633 else
7635 r = 1;
7636 break;
7639 else if (MEM_P (loc))
7641 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7642 nextp = &node->next)
7643 if (REG_P (node->loc))
7644 c++;
7645 else if (MEM_P (node->loc))
7647 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7648 break;
7649 else
7650 c++;
7652 else
7654 r = 1;
7655 break;
7658 else
7659 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7660 nextp = &node->next)
7661 if ((r = loc_cmp (node->loc, loc)) >= 0)
7662 break;
7663 else
7664 c++;
7666 if (r == 0)
7667 return slot;
7669 if (shared_var_p (var, set->vars))
7671 slot = unshare_variable (set, slot, var, initialized);
7672 var = *slot;
7673 for (nextp = &var->var_part[0].loc_chain; c;
7674 nextp = &(*nextp)->next)
7675 c--;
7676 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7679 else
7681 int inspos = 0;
7683 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7685 pos = find_variable_location_part (var, offset, &inspos);
7687 if (pos >= 0)
7689 node = var->var_part[pos].loc_chain;
7691 if (node
7692 && ((REG_P (node->loc) && REG_P (loc)
7693 && REGNO (node->loc) == REGNO (loc))
7694 || rtx_equal_p (node->loc, loc)))
7696 /* LOC is in the beginning of the chain so we have nothing
7697 to do. */
7698 if (node->init < initialized)
7699 node->init = initialized;
7700 if (set_src != NULL)
7701 node->set_src = set_src;
7703 return slot;
7705 else
7707 /* We have to make a copy of a shared variable. */
7708 if (shared_var_p (var, set->vars))
7710 slot = unshare_variable (set, slot, var, initialized);
7711 var = *slot;
7715 else
7717 /* We have not found the location part, new one will be created. */
7719 /* We have to make a copy of the shared variable. */
7720 if (shared_var_p (var, set->vars))
7722 slot = unshare_variable (set, slot, var, initialized);
7723 var = *slot;
7726 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7727 thus there are at most MAX_VAR_PARTS different offsets. */
7728 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7729 && (!var->n_var_parts || !onepart));
7731 /* We have to move the elements of array starting at index
7732 inspos to the next position. */
7733 for (pos = var->n_var_parts; pos > inspos; pos--)
7734 var->var_part[pos] = var->var_part[pos - 1];
7736 var->n_var_parts++;
7737 gcc_checking_assert (!onepart);
7738 VAR_PART_OFFSET (var, pos) = offset;
7739 var->var_part[pos].loc_chain = NULL;
7740 var->var_part[pos].cur_loc = NULL;
7743 /* Delete the location from the list. */
7744 nextp = &var->var_part[pos].loc_chain;
7745 for (node = var->var_part[pos].loc_chain; node; node = next)
7747 next = node->next;
7748 if ((REG_P (node->loc) && REG_P (loc)
7749 && REGNO (node->loc) == REGNO (loc))
7750 || rtx_equal_p (node->loc, loc))
7752 /* Save these values, to assign to the new node, before
7753 deleting this one. */
7754 if (node->init > initialized)
7755 initialized = node->init;
7756 if (node->set_src != NULL && set_src == NULL)
7757 set_src = node->set_src;
7758 if (var->var_part[pos].cur_loc == node->loc)
7759 var->var_part[pos].cur_loc = NULL;
7760 pool_free (loc_chain_pool, node);
7761 *nextp = next;
7762 break;
7764 else
7765 nextp = &node->next;
7768 nextp = &var->var_part[pos].loc_chain;
7771 /* Add the location to the beginning. */
7772 node = (location_chain) pool_alloc (loc_chain_pool);
7773 node->loc = loc;
7774 node->init = initialized;
7775 node->set_src = set_src;
7776 node->next = *nextp;
7777 *nextp = node;
7779 /* If no location was emitted do so. */
7780 if (var->var_part[pos].cur_loc == NULL)
7781 variable_was_changed (var, set);
7783 return slot;
7786 /* Set the part of variable's location in the dataflow set SET. The
7787 variable part is specified by variable's declaration in DV and
7788 offset OFFSET and the part's location by LOC. IOPT should be
7789 NO_INSERT if the variable is known to be in SET already and the
7790 variable hash table must not be resized, and INSERT otherwise. */
7792 static void
7793 set_variable_part (dataflow_set *set, rtx loc,
7794 decl_or_value dv, HOST_WIDE_INT offset,
7795 enum var_init_status initialized, rtx set_src,
7796 enum insert_option iopt)
7798 variable_def **slot;
7800 if (iopt == NO_INSERT)
7801 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7802 else
7804 slot = shared_hash_find_slot (set->vars, dv);
7805 if (!slot)
7806 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7808 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7811 /* Remove all recorded register locations for the given variable part
7812 from dataflow set SET, except for those that are identical to loc.
7813 The variable part is specified by variable's declaration or value
7814 DV and offset OFFSET. */
7816 static variable_def **
7817 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7818 HOST_WIDE_INT offset, rtx set_src)
7820 variable var = *slot;
7821 int pos = find_variable_location_part (var, offset, NULL);
7823 if (pos >= 0)
7825 location_chain node, next;
7827 /* Remove the register locations from the dataflow set. */
7828 next = var->var_part[pos].loc_chain;
7829 for (node = next; node; node = next)
7831 next = node->next;
7832 if (node->loc != loc
7833 && (!flag_var_tracking_uninit
7834 || !set_src
7835 || MEM_P (set_src)
7836 || !rtx_equal_p (set_src, node->set_src)))
7838 if (REG_P (node->loc))
7840 attrs anode, anext;
7841 attrs *anextp;
7843 /* Remove the variable part from the register's
7844 list, but preserve any other variable parts
7845 that might be regarded as live in that same
7846 register. */
7847 anextp = &set->regs[REGNO (node->loc)];
7848 for (anode = *anextp; anode; anode = anext)
7850 anext = anode->next;
7851 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7852 && anode->offset == offset)
7854 pool_free (attrs_pool, anode);
7855 *anextp = anext;
7857 else
7858 anextp = &anode->next;
7862 slot = delete_slot_part (set, node->loc, slot, offset);
7867 return slot;
7870 /* Remove all recorded register locations for the given variable part
7871 from dataflow set SET, except for those that are identical to loc.
7872 The variable part is specified by variable's declaration or value
7873 DV and offset OFFSET. */
7875 static void
7876 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7877 HOST_WIDE_INT offset, rtx set_src)
7879 variable_def **slot;
7881 if (!dv_as_opaque (dv)
7882 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7883 return;
7885 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7886 if (!slot)
7887 return;
7889 clobber_slot_part (set, loc, slot, offset, set_src);
7892 /* Delete the part of variable's location from dataflow set SET. The
7893 variable part is specified by its SET->vars slot SLOT and offset
7894 OFFSET and the part's location by LOC. */
7896 static variable_def **
7897 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7898 HOST_WIDE_INT offset)
7900 variable var = *slot;
7901 int pos = find_variable_location_part (var, offset, NULL);
7903 if (pos >= 0)
7905 location_chain node, next;
7906 location_chain *nextp;
7907 bool changed;
7908 rtx cur_loc;
7910 if (shared_var_p (var, set->vars))
7912 /* If the variable contains the location part we have to
7913 make a copy of the variable. */
7914 for (node = var->var_part[pos].loc_chain; node;
7915 node = node->next)
7917 if ((REG_P (node->loc) && REG_P (loc)
7918 && REGNO (node->loc) == REGNO (loc))
7919 || rtx_equal_p (node->loc, loc))
7921 slot = unshare_variable (set, slot, var,
7922 VAR_INIT_STATUS_UNKNOWN);
7923 var = *slot;
7924 break;
7929 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7930 cur_loc = VAR_LOC_FROM (var);
7931 else
7932 cur_loc = var->var_part[pos].cur_loc;
7934 /* Delete the location part. */
7935 changed = false;
7936 nextp = &var->var_part[pos].loc_chain;
7937 for (node = *nextp; node; node = next)
7939 next = node->next;
7940 if ((REG_P (node->loc) && REG_P (loc)
7941 && REGNO (node->loc) == REGNO (loc))
7942 || rtx_equal_p (node->loc, loc))
7944 /* If we have deleted the location which was last emitted
7945 we have to emit new location so add the variable to set
7946 of changed variables. */
7947 if (cur_loc == node->loc)
7949 changed = true;
7950 var->var_part[pos].cur_loc = NULL;
7951 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7952 VAR_LOC_FROM (var) = NULL;
7954 pool_free (loc_chain_pool, node);
7955 *nextp = next;
7956 break;
7958 else
7959 nextp = &node->next;
7962 if (var->var_part[pos].loc_chain == NULL)
7964 changed = true;
7965 var->n_var_parts--;
7966 while (pos < var->n_var_parts)
7968 var->var_part[pos] = var->var_part[pos + 1];
7969 pos++;
7972 if (changed)
7973 variable_was_changed (var, set);
7976 return slot;
7979 /* Delete the part of variable's location from dataflow set SET. The
7980 variable part is specified by variable's declaration or value DV
7981 and offset OFFSET and the part's location by LOC. */
7983 static void
7984 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7985 HOST_WIDE_INT offset)
7987 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7988 if (!slot)
7989 return;
7991 delete_slot_part (set, loc, slot, offset);
7995 /* Structure for passing some other parameters to function
7996 vt_expand_loc_callback. */
7997 struct expand_loc_callback_data
7999 /* The variables and values active at this point. */
8000 variable_table_type *vars;
8002 /* Stack of values and debug_exprs under expansion, and their
8003 children. */
8004 auto_vec<rtx, 4> expanding;
8006 /* Stack of values and debug_exprs whose expansion hit recursion
8007 cycles. They will have VALUE_RECURSED_INTO marked when added to
8008 this list. This flag will be cleared if any of its dependencies
8009 resolves to a valid location. So, if the flag remains set at the
8010 end of the search, we know no valid location for this one can
8011 possibly exist. */
8012 auto_vec<rtx, 4> pending;
8014 /* The maximum depth among the sub-expressions under expansion.
8015 Zero indicates no expansion so far. */
8016 expand_depth depth;
8019 /* Allocate the one-part auxiliary data structure for VAR, with enough
8020 room for COUNT dependencies. */
8022 static void
8023 loc_exp_dep_alloc (variable var, int count)
8025 size_t allocsize;
8027 gcc_checking_assert (var->onepart);
8029 /* We can be called with COUNT == 0 to allocate the data structure
8030 without any dependencies, e.g. for the backlinks only. However,
8031 if we are specifying a COUNT, then the dependency list must have
8032 been emptied before. It would be possible to adjust pointers or
8033 force it empty here, but this is better done at an earlier point
8034 in the algorithm, so we instead leave an assertion to catch
8035 errors. */
8036 gcc_checking_assert (!count
8037 || VAR_LOC_DEP_VEC (var) == NULL
8038 || VAR_LOC_DEP_VEC (var)->is_empty ());
8040 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8041 return;
8043 allocsize = offsetof (struct onepart_aux, deps)
8044 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8046 if (VAR_LOC_1PAUX (var))
8048 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8049 VAR_LOC_1PAUX (var), allocsize);
8050 /* If the reallocation moves the onepaux structure, the
8051 back-pointer to BACKLINKS in the first list member will still
8052 point to its old location. Adjust it. */
8053 if (VAR_LOC_DEP_LST (var))
8054 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8056 else
8058 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8059 *VAR_LOC_DEP_LSTP (var) = NULL;
8060 VAR_LOC_FROM (var) = NULL;
8061 VAR_LOC_DEPTH (var).complexity = 0;
8062 VAR_LOC_DEPTH (var).entryvals = 0;
8064 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8067 /* Remove all entries from the vector of active dependencies of VAR,
8068 removing them from the back-links lists too. */
8070 static void
8071 loc_exp_dep_clear (variable var)
8073 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8075 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8076 if (led->next)
8077 led->next->pprev = led->pprev;
8078 if (led->pprev)
8079 *led->pprev = led->next;
8080 VAR_LOC_DEP_VEC (var)->pop ();
8084 /* Insert an active dependency from VAR on X to the vector of
8085 dependencies, and add the corresponding back-link to X's list of
8086 back-links in VARS. */
8088 static void
8089 loc_exp_insert_dep (variable var, rtx x, variable_table_type *vars)
8091 decl_or_value dv;
8092 variable xvar;
8093 loc_exp_dep *led;
8095 dv = dv_from_rtx (x);
8097 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8098 an additional look up? */
8099 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8101 if (!xvar)
8103 xvar = variable_from_dropped (dv, NO_INSERT);
8104 gcc_checking_assert (xvar);
8107 /* No point in adding the same backlink more than once. This may
8108 arise if say the same value appears in two complex expressions in
8109 the same loc_list, or even more than once in a single
8110 expression. */
8111 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8112 return;
8114 if (var->onepart == NOT_ONEPART)
8115 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8116 else
8118 loc_exp_dep empty;
8119 memset (&empty, 0, sizeof (empty));
8120 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8121 led = &VAR_LOC_DEP_VEC (var)->last ();
8123 led->dv = var->dv;
8124 led->value = x;
8126 loc_exp_dep_alloc (xvar, 0);
8127 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8128 led->next = *led->pprev;
8129 if (led->next)
8130 led->next->pprev = &led->next;
8131 *led->pprev = led;
8134 /* Create active dependencies of VAR on COUNT values starting at
8135 VALUE, and corresponding back-links to the entries in VARS. Return
8136 true if we found any pending-recursion results. */
8138 static bool
8139 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8140 variable_table_type *vars)
8142 bool pending_recursion = false;
8144 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8145 || VAR_LOC_DEP_VEC (var)->is_empty ());
8147 /* Set up all dependencies from last_child (as set up at the end of
8148 the loop above) to the end. */
8149 loc_exp_dep_alloc (var, count);
8151 while (count--)
8153 rtx x = *value++;
8155 if (!pending_recursion)
8156 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8158 loc_exp_insert_dep (var, x, vars);
8161 return pending_recursion;
8164 /* Notify the back-links of IVAR that are pending recursion that we
8165 have found a non-NIL value for it, so they are cleared for another
8166 attempt to compute a current location. */
8168 static void
8169 notify_dependents_of_resolved_value (variable ivar, variable_table_type *vars)
8171 loc_exp_dep *led, *next;
8173 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8175 decl_or_value dv = led->dv;
8176 variable var;
8178 next = led->next;
8180 if (dv_is_value_p (dv))
8182 rtx value = dv_as_value (dv);
8184 /* If we have already resolved it, leave it alone. */
8185 if (!VALUE_RECURSED_INTO (value))
8186 continue;
8188 /* Check that VALUE_RECURSED_INTO, true from the test above,
8189 implies NO_LOC_P. */
8190 gcc_checking_assert (NO_LOC_P (value));
8192 /* We won't notify variables that are being expanded,
8193 because their dependency list is cleared before
8194 recursing. */
8195 NO_LOC_P (value) = false;
8196 VALUE_RECURSED_INTO (value) = false;
8198 gcc_checking_assert (dv_changed_p (dv));
8200 else
8202 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8203 if (!dv_changed_p (dv))
8204 continue;
8207 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8209 if (!var)
8210 var = variable_from_dropped (dv, NO_INSERT);
8212 if (var)
8213 notify_dependents_of_resolved_value (var, vars);
8215 if (next)
8216 next->pprev = led->pprev;
8217 if (led->pprev)
8218 *led->pprev = next;
8219 led->next = NULL;
8220 led->pprev = NULL;
8224 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8225 int max_depth, void *data);
8227 /* Return the combined depth, when one sub-expression evaluated to
8228 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8230 static inline expand_depth
8231 update_depth (expand_depth saved_depth, expand_depth best_depth)
8233 /* If we didn't find anything, stick with what we had. */
8234 if (!best_depth.complexity)
8235 return saved_depth;
8237 /* If we found hadn't found anything, use the depth of the current
8238 expression. Do NOT add one extra level, we want to compute the
8239 maximum depth among sub-expressions. We'll increment it later,
8240 if appropriate. */
8241 if (!saved_depth.complexity)
8242 return best_depth;
8244 /* Combine the entryval count so that regardless of which one we
8245 return, the entryval count is accurate. */
8246 best_depth.entryvals = saved_depth.entryvals
8247 = best_depth.entryvals + saved_depth.entryvals;
8249 if (saved_depth.complexity < best_depth.complexity)
8250 return best_depth;
8251 else
8252 return saved_depth;
8255 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8256 DATA for cselib expand callback. If PENDRECP is given, indicate in
8257 it whether any sub-expression couldn't be fully evaluated because
8258 it is pending recursion resolution. */
8260 static inline rtx
8261 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8263 struct expand_loc_callback_data *elcd
8264 = (struct expand_loc_callback_data *) data;
8265 location_chain loc, next;
8266 rtx result = NULL;
8267 int first_child, result_first_child, last_child;
8268 bool pending_recursion;
8269 rtx loc_from = NULL;
8270 struct elt_loc_list *cloc = NULL;
8271 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8272 int wanted_entryvals, found_entryvals = 0;
8274 /* Clear all backlinks pointing at this, so that we're not notified
8275 while we're active. */
8276 loc_exp_dep_clear (var);
8278 retry:
8279 if (var->onepart == ONEPART_VALUE)
8281 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8283 gcc_checking_assert (cselib_preserved_value_p (val));
8285 cloc = val->locs;
8288 first_child = result_first_child = last_child
8289 = elcd->expanding.length ();
8291 wanted_entryvals = found_entryvals;
8293 /* Attempt to expand each available location in turn. */
8294 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8295 loc || cloc; loc = next)
8297 result_first_child = last_child;
8299 if (!loc)
8301 loc_from = cloc->loc;
8302 next = loc;
8303 cloc = cloc->next;
8304 if (unsuitable_loc (loc_from))
8305 continue;
8307 else
8309 loc_from = loc->loc;
8310 next = loc->next;
8313 gcc_checking_assert (!unsuitable_loc (loc_from));
8315 elcd->depth.complexity = elcd->depth.entryvals = 0;
8316 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8317 vt_expand_loc_callback, data);
8318 last_child = elcd->expanding.length ();
8320 if (result)
8322 depth = elcd->depth;
8324 gcc_checking_assert (depth.complexity
8325 || result_first_child == last_child);
8327 if (last_child - result_first_child != 1)
8329 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8330 depth.entryvals++;
8331 depth.complexity++;
8334 if (depth.complexity <= EXPR_USE_DEPTH)
8336 if (depth.entryvals <= wanted_entryvals)
8337 break;
8338 else if (!found_entryvals || depth.entryvals < found_entryvals)
8339 found_entryvals = depth.entryvals;
8342 result = NULL;
8345 /* Set it up in case we leave the loop. */
8346 depth.complexity = depth.entryvals = 0;
8347 loc_from = NULL;
8348 result_first_child = first_child;
8351 if (!loc_from && wanted_entryvals < found_entryvals)
8353 /* We found entries with ENTRY_VALUEs and skipped them. Since
8354 we could not find any expansions without ENTRY_VALUEs, but we
8355 found at least one with them, go back and get an entry with
8356 the minimum number ENTRY_VALUE count that we found. We could
8357 avoid looping, but since each sub-loc is already resolved,
8358 the re-expansion should be trivial. ??? Should we record all
8359 attempted locs as dependencies, so that we retry the
8360 expansion should any of them change, in the hope it can give
8361 us a new entry without an ENTRY_VALUE? */
8362 elcd->expanding.truncate (first_child);
8363 goto retry;
8366 /* Register all encountered dependencies as active. */
8367 pending_recursion = loc_exp_dep_set
8368 (var, result, elcd->expanding.address () + result_first_child,
8369 last_child - result_first_child, elcd->vars);
8371 elcd->expanding.truncate (first_child);
8373 /* Record where the expansion came from. */
8374 gcc_checking_assert (!result || !pending_recursion);
8375 VAR_LOC_FROM (var) = loc_from;
8376 VAR_LOC_DEPTH (var) = depth;
8378 gcc_checking_assert (!depth.complexity == !result);
8380 elcd->depth = update_depth (saved_depth, depth);
8382 /* Indicate whether any of the dependencies are pending recursion
8383 resolution. */
8384 if (pendrecp)
8385 *pendrecp = pending_recursion;
8387 if (!pendrecp || !pending_recursion)
8388 var->var_part[0].cur_loc = result;
8390 return result;
8393 /* Callback for cselib_expand_value, that looks for expressions
8394 holding the value in the var-tracking hash tables. Return X for
8395 standard processing, anything else is to be used as-is. */
8397 static rtx
8398 vt_expand_loc_callback (rtx x, bitmap regs,
8399 int max_depth ATTRIBUTE_UNUSED,
8400 void *data)
8402 struct expand_loc_callback_data *elcd
8403 = (struct expand_loc_callback_data *) data;
8404 decl_or_value dv;
8405 variable var;
8406 rtx result, subreg;
8407 bool pending_recursion = false;
8408 bool from_empty = false;
8410 switch (GET_CODE (x))
8412 case SUBREG:
8413 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8414 EXPR_DEPTH,
8415 vt_expand_loc_callback, data);
8417 if (!subreg)
8418 return NULL;
8420 result = simplify_gen_subreg (GET_MODE (x), subreg,
8421 GET_MODE (SUBREG_REG (x)),
8422 SUBREG_BYTE (x));
8424 /* Invalid SUBREGs are ok in debug info. ??? We could try
8425 alternate expansions for the VALUE as well. */
8426 if (!result)
8427 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8429 return result;
8431 case DEBUG_EXPR:
8432 case VALUE:
8433 dv = dv_from_rtx (x);
8434 break;
8436 default:
8437 return x;
8440 elcd->expanding.safe_push (x);
8442 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8443 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8445 if (NO_LOC_P (x))
8447 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8448 return NULL;
8451 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8453 if (!var)
8455 from_empty = true;
8456 var = variable_from_dropped (dv, INSERT);
8459 gcc_checking_assert (var);
8461 if (!dv_changed_p (dv))
8463 gcc_checking_assert (!NO_LOC_P (x));
8464 gcc_checking_assert (var->var_part[0].cur_loc);
8465 gcc_checking_assert (VAR_LOC_1PAUX (var));
8466 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8468 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8470 return var->var_part[0].cur_loc;
8473 VALUE_RECURSED_INTO (x) = true;
8474 /* This is tentative, but it makes some tests simpler. */
8475 NO_LOC_P (x) = true;
8477 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8479 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8481 if (pending_recursion)
8483 gcc_checking_assert (!result);
8484 elcd->pending.safe_push (x);
8486 else
8488 NO_LOC_P (x) = !result;
8489 VALUE_RECURSED_INTO (x) = false;
8490 set_dv_changed (dv, false);
8492 if (result)
8493 notify_dependents_of_resolved_value (var, elcd->vars);
8496 return result;
8499 /* While expanding variables, we may encounter recursion cycles
8500 because of mutual (possibly indirect) dependencies between two
8501 particular variables (or values), say A and B. If we're trying to
8502 expand A when we get to B, which in turn attempts to expand A, if
8503 we can't find any other expansion for B, we'll add B to this
8504 pending-recursion stack, and tentatively return NULL for its
8505 location. This tentative value will be used for any other
8506 occurrences of B, unless A gets some other location, in which case
8507 it will notify B that it is worth another try at computing a
8508 location for it, and it will use the location computed for A then.
8509 At the end of the expansion, the tentative NULL locations become
8510 final for all members of PENDING that didn't get a notification.
8511 This function performs this finalization of NULL locations. */
8513 static void
8514 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8516 while (!pending->is_empty ())
8518 rtx x = pending->pop ();
8519 decl_or_value dv;
8521 if (!VALUE_RECURSED_INTO (x))
8522 continue;
8524 gcc_checking_assert (NO_LOC_P (x));
8525 VALUE_RECURSED_INTO (x) = false;
8526 dv = dv_from_rtx (x);
8527 gcc_checking_assert (dv_changed_p (dv));
8528 set_dv_changed (dv, false);
8532 /* Initialize expand_loc_callback_data D with variable hash table V.
8533 It must be a macro because of alloca (vec stack). */
8534 #define INIT_ELCD(d, v) \
8535 do \
8537 (d).vars = (v); \
8538 (d).depth.complexity = (d).depth.entryvals = 0; \
8540 while (0)
8541 /* Finalize expand_loc_callback_data D, resolved to location L. */
8542 #define FINI_ELCD(d, l) \
8543 do \
8545 resolve_expansions_pending_recursion (&(d).pending); \
8546 (d).pending.release (); \
8547 (d).expanding.release (); \
8549 if ((l) && MEM_P (l)) \
8550 (l) = targetm.delegitimize_address (l); \
8552 while (0)
8554 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8555 equivalences in VARS, updating their CUR_LOCs in the process. */
8557 static rtx
8558 vt_expand_loc (rtx loc, variable_table_type *vars)
8560 struct expand_loc_callback_data data;
8561 rtx result;
8563 if (!MAY_HAVE_DEBUG_INSNS)
8564 return loc;
8566 INIT_ELCD (data, vars);
8568 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8569 vt_expand_loc_callback, &data);
8571 FINI_ELCD (data, result);
8573 return result;
8576 /* Expand the one-part VARiable to a location, using the equivalences
8577 in VARS, updating their CUR_LOCs in the process. */
8579 static rtx
8580 vt_expand_1pvar (variable var, variable_table_type *vars)
8582 struct expand_loc_callback_data data;
8583 rtx loc;
8585 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8587 if (!dv_changed_p (var->dv))
8588 return var->var_part[0].cur_loc;
8590 INIT_ELCD (data, vars);
8592 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8594 gcc_checking_assert (data.expanding.is_empty ());
8596 FINI_ELCD (data, loc);
8598 return loc;
8601 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8602 additional parameters: WHERE specifies whether the note shall be emitted
8603 before or after instruction INSN. */
8606 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8608 variable var = *varp;
8609 rtx_insn *insn = data->insn;
8610 enum emit_note_where where = data->where;
8611 variable_table_type *vars = data->vars;
8612 rtx_note *note;
8613 rtx note_vl;
8614 int i, j, n_var_parts;
8615 bool complete;
8616 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8617 HOST_WIDE_INT last_limit;
8618 tree type_size_unit;
8619 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8620 rtx loc[MAX_VAR_PARTS];
8621 tree decl;
8622 location_chain lc;
8624 gcc_checking_assert (var->onepart == NOT_ONEPART
8625 || var->onepart == ONEPART_VDECL);
8627 decl = dv_as_decl (var->dv);
8629 complete = true;
8630 last_limit = 0;
8631 n_var_parts = 0;
8632 if (!var->onepart)
8633 for (i = 0; i < var->n_var_parts; i++)
8634 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8635 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8636 for (i = 0; i < var->n_var_parts; i++)
8638 machine_mode mode, wider_mode;
8639 rtx loc2;
8640 HOST_WIDE_INT offset;
8642 if (i == 0 && var->onepart)
8644 gcc_checking_assert (var->n_var_parts == 1);
8645 offset = 0;
8646 initialized = VAR_INIT_STATUS_INITIALIZED;
8647 loc2 = vt_expand_1pvar (var, vars);
8649 else
8651 if (last_limit < VAR_PART_OFFSET (var, i))
8653 complete = false;
8654 break;
8656 else if (last_limit > VAR_PART_OFFSET (var, i))
8657 continue;
8658 offset = VAR_PART_OFFSET (var, i);
8659 loc2 = var->var_part[i].cur_loc;
8660 if (loc2 && GET_CODE (loc2) == MEM
8661 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8663 rtx depval = XEXP (loc2, 0);
8665 loc2 = vt_expand_loc (loc2, vars);
8667 if (loc2)
8668 loc_exp_insert_dep (var, depval, vars);
8670 if (!loc2)
8672 complete = false;
8673 continue;
8675 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8676 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8677 if (var->var_part[i].cur_loc == lc->loc)
8679 initialized = lc->init;
8680 break;
8682 gcc_assert (lc);
8685 offsets[n_var_parts] = offset;
8686 if (!loc2)
8688 complete = false;
8689 continue;
8691 loc[n_var_parts] = loc2;
8692 mode = GET_MODE (var->var_part[i].cur_loc);
8693 if (mode == VOIDmode && var->onepart)
8694 mode = DECL_MODE (decl);
8695 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8697 /* Attempt to merge adjacent registers or memory. */
8698 wider_mode = GET_MODE_WIDER_MODE (mode);
8699 for (j = i + 1; j < var->n_var_parts; j++)
8700 if (last_limit <= VAR_PART_OFFSET (var, j))
8701 break;
8702 if (j < var->n_var_parts
8703 && wider_mode != VOIDmode
8704 && var->var_part[j].cur_loc
8705 && mode == GET_MODE (var->var_part[j].cur_loc)
8706 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8707 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8708 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8709 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8711 rtx new_loc = NULL;
8713 if (REG_P (loc[n_var_parts])
8714 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8715 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8716 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8717 == REGNO (loc2))
8719 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8720 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8721 mode, 0);
8722 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8723 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8724 if (new_loc)
8726 if (!REG_P (new_loc)
8727 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8728 new_loc = NULL;
8729 else
8730 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8733 else if (MEM_P (loc[n_var_parts])
8734 && GET_CODE (XEXP (loc2, 0)) == PLUS
8735 && REG_P (XEXP (XEXP (loc2, 0), 0))
8736 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8738 if ((REG_P (XEXP (loc[n_var_parts], 0))
8739 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8740 XEXP (XEXP (loc2, 0), 0))
8741 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8742 == GET_MODE_SIZE (mode))
8743 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8744 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8745 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8746 XEXP (XEXP (loc2, 0), 0))
8747 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8748 + GET_MODE_SIZE (mode)
8749 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8750 new_loc = adjust_address_nv (loc[n_var_parts],
8751 wider_mode, 0);
8754 if (new_loc)
8756 loc[n_var_parts] = new_loc;
8757 mode = wider_mode;
8758 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8759 i = j;
8762 ++n_var_parts;
8764 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8765 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8766 complete = false;
8768 if (! flag_var_tracking_uninit)
8769 initialized = VAR_INIT_STATUS_INITIALIZED;
8771 note_vl = NULL_RTX;
8772 if (!complete)
8773 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8774 else if (n_var_parts == 1)
8776 rtx expr_list;
8778 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8779 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8780 else
8781 expr_list = loc[0];
8783 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8785 else if (n_var_parts)
8787 rtx parallel;
8789 for (i = 0; i < n_var_parts; i++)
8790 loc[i]
8791 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8793 parallel = gen_rtx_PARALLEL (VOIDmode,
8794 gen_rtvec_v (n_var_parts, loc));
8795 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8796 parallel, initialized);
8799 if (where != EMIT_NOTE_BEFORE_INSN)
8801 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8802 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8803 NOTE_DURING_CALL_P (note) = true;
8805 else
8807 /* Make sure that the call related notes come first. */
8808 while (NEXT_INSN (insn)
8809 && NOTE_P (insn)
8810 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8811 && NOTE_DURING_CALL_P (insn))
8812 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8813 insn = NEXT_INSN (insn);
8814 if (NOTE_P (insn)
8815 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8816 && NOTE_DURING_CALL_P (insn))
8817 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8818 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8819 else
8820 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8822 NOTE_VAR_LOCATION (note) = note_vl;
8824 set_dv_changed (var->dv, false);
8825 gcc_assert (var->in_changed_variables);
8826 var->in_changed_variables = false;
8827 changed_variables->clear_slot (varp);
8829 /* Continue traversing the hash table. */
8830 return 1;
8833 /* While traversing changed_variables, push onto DATA (a stack of RTX
8834 values) entries that aren't user variables. */
8837 var_track_values_to_stack (variable_def **slot,
8838 vec<rtx, va_heap> *changed_values_stack)
8840 variable var = *slot;
8842 if (var->onepart == ONEPART_VALUE)
8843 changed_values_stack->safe_push (dv_as_value (var->dv));
8844 else if (var->onepart == ONEPART_DEXPR)
8845 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8847 return 1;
8850 /* Remove from changed_variables the entry whose DV corresponds to
8851 value or debug_expr VAL. */
8852 static void
8853 remove_value_from_changed_variables (rtx val)
8855 decl_or_value dv = dv_from_rtx (val);
8856 variable_def **slot;
8857 variable var;
8859 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8860 NO_INSERT);
8861 var = *slot;
8862 var->in_changed_variables = false;
8863 changed_variables->clear_slot (slot);
8866 /* If VAL (a value or debug_expr) has backlinks to variables actively
8867 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8868 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8869 have dependencies of their own to notify. */
8871 static void
8872 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8873 vec<rtx, va_heap> *changed_values_stack)
8875 variable_def **slot;
8876 variable var;
8877 loc_exp_dep *led;
8878 decl_or_value dv = dv_from_rtx (val);
8880 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8881 NO_INSERT);
8882 if (!slot)
8883 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8884 if (!slot)
8885 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8886 NO_INSERT);
8887 var = *slot;
8889 while ((led = VAR_LOC_DEP_LST (var)))
8891 decl_or_value ldv = led->dv;
8892 variable ivar;
8894 /* Deactivate and remove the backlink, as it was “used up”. It
8895 makes no sense to attempt to notify the same entity again:
8896 either it will be recomputed and re-register an active
8897 dependency, or it will still have the changed mark. */
8898 if (led->next)
8899 led->next->pprev = led->pprev;
8900 if (led->pprev)
8901 *led->pprev = led->next;
8902 led->next = NULL;
8903 led->pprev = NULL;
8905 if (dv_changed_p (ldv))
8906 continue;
8908 switch (dv_onepart_p (ldv))
8910 case ONEPART_VALUE:
8911 case ONEPART_DEXPR:
8912 set_dv_changed (ldv, true);
8913 changed_values_stack->safe_push (dv_as_rtx (ldv));
8914 break;
8916 case ONEPART_VDECL:
8917 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8918 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8919 variable_was_changed (ivar, NULL);
8920 break;
8922 case NOT_ONEPART:
8923 pool_free (loc_exp_dep_pool, led);
8924 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8925 if (ivar)
8927 int i = ivar->n_var_parts;
8928 while (i--)
8930 rtx loc = ivar->var_part[i].cur_loc;
8932 if (loc && GET_CODE (loc) == MEM
8933 && XEXP (loc, 0) == val)
8935 variable_was_changed (ivar, NULL);
8936 break;
8940 break;
8942 default:
8943 gcc_unreachable ();
8948 /* Take out of changed_variables any entries that don't refer to use
8949 variables. Back-propagate change notifications from values and
8950 debug_exprs to their active dependencies in HTAB or in
8951 CHANGED_VARIABLES. */
8953 static void
8954 process_changed_values (variable_table_type *htab)
8956 int i, n;
8957 rtx val;
8958 auto_vec<rtx, 20> changed_values_stack;
8960 /* Move values from changed_variables to changed_values_stack. */
8961 changed_variables
8962 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8963 (&changed_values_stack);
8965 /* Back-propagate change notifications in values while popping
8966 them from the stack. */
8967 for (n = i = changed_values_stack.length ();
8968 i > 0; i = changed_values_stack.length ())
8970 val = changed_values_stack.pop ();
8971 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8973 /* This condition will hold when visiting each of the entries
8974 originally in changed_variables. We can't remove them
8975 earlier because this could drop the backlinks before we got a
8976 chance to use them. */
8977 if (i == n)
8979 remove_value_from_changed_variables (val);
8980 n--;
8985 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8986 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8987 the notes shall be emitted before of after instruction INSN. */
8989 static void
8990 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
8991 shared_hash vars)
8993 emit_note_data data;
8994 variable_table_type *htab = shared_hash_htab (vars);
8996 if (!changed_variables->elements ())
8997 return;
8999 if (MAY_HAVE_DEBUG_INSNS)
9000 process_changed_values (htab);
9002 data.insn = insn;
9003 data.where = where;
9004 data.vars = htab;
9006 changed_variables
9007 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9010 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9011 same variable in hash table DATA or is not there at all. */
9014 emit_notes_for_differences_1 (variable_def **slot, variable_table_type *new_vars)
9016 variable old_var, new_var;
9018 old_var = *slot;
9019 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9021 if (!new_var)
9023 /* Variable has disappeared. */
9024 variable empty_var = NULL;
9026 if (old_var->onepart == ONEPART_VALUE
9027 || old_var->onepart == ONEPART_DEXPR)
9029 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9030 if (empty_var)
9032 gcc_checking_assert (!empty_var->in_changed_variables);
9033 if (!VAR_LOC_1PAUX (old_var))
9035 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9036 VAR_LOC_1PAUX (empty_var) = NULL;
9038 else
9039 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9043 if (!empty_var)
9045 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
9046 empty_var->dv = old_var->dv;
9047 empty_var->refcount = 0;
9048 empty_var->n_var_parts = 0;
9049 empty_var->onepart = old_var->onepart;
9050 empty_var->in_changed_variables = false;
9053 if (empty_var->onepart)
9055 /* Propagate the auxiliary data to (ultimately)
9056 changed_variables. */
9057 empty_var->var_part[0].loc_chain = NULL;
9058 empty_var->var_part[0].cur_loc = NULL;
9059 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9060 VAR_LOC_1PAUX (old_var) = NULL;
9062 variable_was_changed (empty_var, NULL);
9063 /* Continue traversing the hash table. */
9064 return 1;
9066 /* Update cur_loc and one-part auxiliary data, before new_var goes
9067 through variable_was_changed. */
9068 if (old_var != new_var && new_var->onepart)
9070 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9071 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9072 VAR_LOC_1PAUX (old_var) = NULL;
9073 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9075 if (variable_different_p (old_var, new_var))
9076 variable_was_changed (new_var, NULL);
9078 /* Continue traversing the hash table. */
9079 return 1;
9082 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9083 table DATA. */
9086 emit_notes_for_differences_2 (variable_def **slot, variable_table_type *old_vars)
9088 variable old_var, new_var;
9090 new_var = *slot;
9091 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9092 if (!old_var)
9094 int i;
9095 for (i = 0; i < new_var->n_var_parts; i++)
9096 new_var->var_part[i].cur_loc = NULL;
9097 variable_was_changed (new_var, NULL);
9100 /* Continue traversing the hash table. */
9101 return 1;
9104 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9105 NEW_SET. */
9107 static void
9108 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9109 dataflow_set *new_set)
9111 shared_hash_htab (old_set->vars)
9112 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9113 (shared_hash_htab (new_set->vars));
9114 shared_hash_htab (new_set->vars)
9115 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9116 (shared_hash_htab (old_set->vars));
9117 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9120 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9122 static rtx_insn *
9123 next_non_note_insn_var_location (rtx_insn *insn)
9125 while (insn)
9127 insn = NEXT_INSN (insn);
9128 if (insn == 0
9129 || !NOTE_P (insn)
9130 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9131 break;
9134 return insn;
9137 /* Emit the notes for changes of location parts in the basic block BB. */
9139 static void
9140 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9142 unsigned int i;
9143 micro_operation *mo;
9145 dataflow_set_clear (set);
9146 dataflow_set_copy (set, &VTI (bb)->in);
9148 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9150 rtx_insn *insn = mo->insn;
9151 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9153 switch (mo->type)
9155 case MO_CALL:
9156 dataflow_set_clear_at_call (set);
9157 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9159 rtx arguments = mo->u.loc, *p = &arguments;
9160 rtx_note *note;
9161 while (*p)
9163 XEXP (XEXP (*p, 0), 1)
9164 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9165 shared_hash_htab (set->vars));
9166 /* If expansion is successful, keep it in the list. */
9167 if (XEXP (XEXP (*p, 0), 1))
9168 p = &XEXP (*p, 1);
9169 /* Otherwise, if the following item is data_value for it,
9170 drop it too too. */
9171 else if (XEXP (*p, 1)
9172 && REG_P (XEXP (XEXP (*p, 0), 0))
9173 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9174 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9176 && REGNO (XEXP (XEXP (*p, 0), 0))
9177 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9178 0), 0)))
9179 *p = XEXP (XEXP (*p, 1), 1);
9180 /* Just drop this item. */
9181 else
9182 *p = XEXP (*p, 1);
9184 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9185 NOTE_VAR_LOCATION (note) = arguments;
9187 break;
9189 case MO_USE:
9191 rtx loc = mo->u.loc;
9193 if (REG_P (loc))
9194 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9195 else
9196 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9198 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9200 break;
9202 case MO_VAL_LOC:
9204 rtx loc = mo->u.loc;
9205 rtx val, vloc;
9206 tree var;
9208 if (GET_CODE (loc) == CONCAT)
9210 val = XEXP (loc, 0);
9211 vloc = XEXP (loc, 1);
9213 else
9215 val = NULL_RTX;
9216 vloc = loc;
9219 var = PAT_VAR_LOCATION_DECL (vloc);
9221 clobber_variable_part (set, NULL_RTX,
9222 dv_from_decl (var), 0, NULL_RTX);
9223 if (val)
9225 if (VAL_NEEDS_RESOLUTION (loc))
9226 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9227 set_variable_part (set, val, dv_from_decl (var), 0,
9228 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9229 INSERT);
9231 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9232 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9233 dv_from_decl (var), 0,
9234 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9235 INSERT);
9237 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9239 break;
9241 case MO_VAL_USE:
9243 rtx loc = mo->u.loc;
9244 rtx val, vloc, uloc;
9246 vloc = uloc = XEXP (loc, 1);
9247 val = XEXP (loc, 0);
9249 if (GET_CODE (val) == CONCAT)
9251 uloc = XEXP (val, 1);
9252 val = XEXP (val, 0);
9255 if (VAL_NEEDS_RESOLUTION (loc))
9256 val_resolve (set, val, vloc, insn);
9257 else
9258 val_store (set, val, uloc, insn, false);
9260 if (VAL_HOLDS_TRACK_EXPR (loc))
9262 if (GET_CODE (uloc) == REG)
9263 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9264 NULL);
9265 else if (GET_CODE (uloc) == MEM)
9266 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9267 NULL);
9270 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9272 break;
9274 case MO_VAL_SET:
9276 rtx loc = mo->u.loc;
9277 rtx val, vloc, uloc;
9278 rtx dstv, srcv;
9280 vloc = loc;
9281 uloc = XEXP (vloc, 1);
9282 val = XEXP (vloc, 0);
9283 vloc = uloc;
9285 if (GET_CODE (uloc) == SET)
9287 dstv = SET_DEST (uloc);
9288 srcv = SET_SRC (uloc);
9290 else
9292 dstv = uloc;
9293 srcv = NULL;
9296 if (GET_CODE (val) == CONCAT)
9298 dstv = vloc = XEXP (val, 1);
9299 val = XEXP (val, 0);
9302 if (GET_CODE (vloc) == SET)
9304 srcv = SET_SRC (vloc);
9306 gcc_assert (val != srcv);
9307 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9309 dstv = vloc = SET_DEST (vloc);
9311 if (VAL_NEEDS_RESOLUTION (loc))
9312 val_resolve (set, val, srcv, insn);
9314 else if (VAL_NEEDS_RESOLUTION (loc))
9316 gcc_assert (GET_CODE (uloc) == SET
9317 && GET_CODE (SET_SRC (uloc)) == REG);
9318 val_resolve (set, val, SET_SRC (uloc), insn);
9321 if (VAL_HOLDS_TRACK_EXPR (loc))
9323 if (VAL_EXPR_IS_CLOBBERED (loc))
9325 if (REG_P (uloc))
9326 var_reg_delete (set, uloc, true);
9327 else if (MEM_P (uloc))
9329 gcc_assert (MEM_P (dstv));
9330 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9331 var_mem_delete (set, dstv, true);
9334 else
9336 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9337 rtx src = NULL, dst = uloc;
9338 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9340 if (GET_CODE (uloc) == SET)
9342 src = SET_SRC (uloc);
9343 dst = SET_DEST (uloc);
9346 if (copied_p)
9348 status = find_src_status (set, src);
9350 src = find_src_set_src (set, src);
9353 if (REG_P (dst))
9354 var_reg_delete_and_set (set, dst, !copied_p,
9355 status, srcv);
9356 else if (MEM_P (dst))
9358 gcc_assert (MEM_P (dstv));
9359 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9360 var_mem_delete_and_set (set, dstv, !copied_p,
9361 status, srcv);
9365 else if (REG_P (uloc))
9366 var_regno_delete (set, REGNO (uloc));
9367 else if (MEM_P (uloc))
9369 gcc_checking_assert (GET_CODE (vloc) == MEM);
9370 gcc_checking_assert (vloc == dstv);
9371 if (vloc != dstv)
9372 clobber_overlapping_mems (set, vloc);
9375 val_store (set, val, dstv, insn, true);
9377 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9378 set->vars);
9380 break;
9382 case MO_SET:
9384 rtx loc = mo->u.loc;
9385 rtx set_src = NULL;
9387 if (GET_CODE (loc) == SET)
9389 set_src = SET_SRC (loc);
9390 loc = SET_DEST (loc);
9393 if (REG_P (loc))
9394 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9395 set_src);
9396 else
9397 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9398 set_src);
9400 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9401 set->vars);
9403 break;
9405 case MO_COPY:
9407 rtx loc = mo->u.loc;
9408 enum var_init_status src_status;
9409 rtx set_src = NULL;
9411 if (GET_CODE (loc) == SET)
9413 set_src = SET_SRC (loc);
9414 loc = SET_DEST (loc);
9417 src_status = find_src_status (set, set_src);
9418 set_src = find_src_set_src (set, set_src);
9420 if (REG_P (loc))
9421 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9422 else
9423 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9425 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9426 set->vars);
9428 break;
9430 case MO_USE_NO_VAR:
9432 rtx loc = mo->u.loc;
9434 if (REG_P (loc))
9435 var_reg_delete (set, loc, false);
9436 else
9437 var_mem_delete (set, loc, false);
9439 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9441 break;
9443 case MO_CLOBBER:
9445 rtx loc = mo->u.loc;
9447 if (REG_P (loc))
9448 var_reg_delete (set, loc, true);
9449 else
9450 var_mem_delete (set, loc, true);
9452 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9453 set->vars);
9455 break;
9457 case MO_ADJUST:
9458 set->stack_adjust += mo->u.adjust;
9459 break;
9464 /* Emit notes for the whole function. */
9466 static void
9467 vt_emit_notes (void)
9469 basic_block bb;
9470 dataflow_set cur;
9472 gcc_assert (!changed_variables->elements ());
9474 /* Free memory occupied by the out hash tables, as they aren't used
9475 anymore. */
9476 FOR_EACH_BB_FN (bb, cfun)
9477 dataflow_set_clear (&VTI (bb)->out);
9479 /* Enable emitting notes by functions (mainly by set_variable_part and
9480 delete_variable_part). */
9481 emit_notes = true;
9483 if (MAY_HAVE_DEBUG_INSNS)
9485 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9486 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9487 sizeof (loc_exp_dep), 64);
9490 dataflow_set_init (&cur);
9492 FOR_EACH_BB_FN (bb, cfun)
9494 /* Emit the notes for changes of variable locations between two
9495 subsequent basic blocks. */
9496 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9498 if (MAY_HAVE_DEBUG_INSNS)
9499 local_get_addr_cache = new hash_map<rtx, rtx>;
9501 /* Emit the notes for the changes in the basic block itself. */
9502 emit_notes_in_bb (bb, &cur);
9504 if (MAY_HAVE_DEBUG_INSNS)
9505 delete local_get_addr_cache;
9506 local_get_addr_cache = NULL;
9508 /* Free memory occupied by the in hash table, we won't need it
9509 again. */
9510 dataflow_set_clear (&VTI (bb)->in);
9512 #ifdef ENABLE_CHECKING
9513 shared_hash_htab (cur.vars)
9514 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9515 (shared_hash_htab (empty_shared_hash));
9516 #endif
9517 dataflow_set_destroy (&cur);
9519 if (MAY_HAVE_DEBUG_INSNS)
9520 delete dropped_values;
9521 dropped_values = NULL;
9523 emit_notes = false;
9526 /* If there is a declaration and offset associated with register/memory RTL
9527 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9529 static bool
9530 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9532 if (REG_P (rtl))
9534 if (REG_ATTRS (rtl))
9536 *declp = REG_EXPR (rtl);
9537 *offsetp = REG_OFFSET (rtl);
9538 return true;
9541 else if (GET_CODE (rtl) == PARALLEL)
9543 tree decl = NULL_TREE;
9544 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9545 int len = XVECLEN (rtl, 0), i;
9547 for (i = 0; i < len; i++)
9549 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9550 if (!REG_P (reg) || !REG_ATTRS (reg))
9551 break;
9552 if (!decl)
9553 decl = REG_EXPR (reg);
9554 if (REG_EXPR (reg) != decl)
9555 break;
9556 if (REG_OFFSET (reg) < offset)
9557 offset = REG_OFFSET (reg);
9560 if (i == len)
9562 *declp = decl;
9563 *offsetp = offset;
9564 return true;
9567 else if (MEM_P (rtl))
9569 if (MEM_ATTRS (rtl))
9571 *declp = MEM_EXPR (rtl);
9572 *offsetp = INT_MEM_OFFSET (rtl);
9573 return true;
9576 return false;
9579 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9580 of VAL. */
9582 static void
9583 record_entry_value (cselib_val *val, rtx rtl)
9585 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9587 ENTRY_VALUE_EXP (ev) = rtl;
9589 cselib_add_permanent_equiv (val, ev, get_insns ());
9592 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9594 static void
9595 vt_add_function_parameter (tree parm)
9597 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9598 rtx incoming = DECL_INCOMING_RTL (parm);
9599 tree decl;
9600 machine_mode mode;
9601 HOST_WIDE_INT offset;
9602 dataflow_set *out;
9603 decl_or_value dv;
9605 if (TREE_CODE (parm) != PARM_DECL)
9606 return;
9608 if (!decl_rtl || !incoming)
9609 return;
9611 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9612 return;
9614 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9615 rewrite the incoming location of parameters passed on the stack
9616 into MEMs based on the argument pointer, so that incoming doesn't
9617 depend on a pseudo. */
9618 if (MEM_P (incoming)
9619 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9620 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9621 && XEXP (XEXP (incoming, 0), 0)
9622 == crtl->args.internal_arg_pointer
9623 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9625 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9626 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9627 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9628 incoming
9629 = replace_equiv_address_nv (incoming,
9630 plus_constant (Pmode,
9631 arg_pointer_rtx, off));
9634 #ifdef HAVE_window_save
9635 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9636 If the target machine has an explicit window save instruction, the
9637 actual entry value is the corresponding OUTGOING_REGNO instead. */
9638 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9640 if (REG_P (incoming)
9641 && HARD_REGISTER_P (incoming)
9642 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9644 parm_reg_t p;
9645 p.incoming = incoming;
9646 incoming
9647 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9648 OUTGOING_REGNO (REGNO (incoming)), 0);
9649 p.outgoing = incoming;
9650 vec_safe_push (windowed_parm_regs, p);
9652 else if (GET_CODE (incoming) == PARALLEL)
9654 rtx outgoing
9655 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9656 int i;
9658 for (i = 0; i < XVECLEN (incoming, 0); i++)
9660 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9661 parm_reg_t p;
9662 p.incoming = reg;
9663 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9664 OUTGOING_REGNO (REGNO (reg)), 0);
9665 p.outgoing = reg;
9666 XVECEXP (outgoing, 0, i)
9667 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9668 XEXP (XVECEXP (incoming, 0, i), 1));
9669 vec_safe_push (windowed_parm_regs, p);
9672 incoming = outgoing;
9674 else if (MEM_P (incoming)
9675 && REG_P (XEXP (incoming, 0))
9676 && HARD_REGISTER_P (XEXP (incoming, 0)))
9678 rtx reg = XEXP (incoming, 0);
9679 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9681 parm_reg_t p;
9682 p.incoming = reg;
9683 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9684 p.outgoing = reg;
9685 vec_safe_push (windowed_parm_regs, p);
9686 incoming = replace_equiv_address_nv (incoming, reg);
9690 #endif
9692 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9694 if (MEM_P (incoming))
9696 /* This means argument is passed by invisible reference. */
9697 offset = 0;
9698 decl = parm;
9700 else
9702 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9703 return;
9704 offset += byte_lowpart_offset (GET_MODE (incoming),
9705 GET_MODE (decl_rtl));
9709 if (!decl)
9710 return;
9712 if (parm != decl)
9714 /* If that DECL_RTL wasn't a pseudo that got spilled to
9715 memory, bail out. Otherwise, the spill slot sharing code
9716 will force the memory to reference spill_slot_decl (%sfp),
9717 so we don't match above. That's ok, the pseudo must have
9718 referenced the entire parameter, so just reset OFFSET. */
9719 if (decl != get_spill_slot_decl (false))
9720 return;
9721 offset = 0;
9724 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9725 return;
9727 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9729 dv = dv_from_decl (parm);
9731 if (target_for_debug_bind (parm)
9732 /* We can't deal with these right now, because this kind of
9733 variable is single-part. ??? We could handle parallels
9734 that describe multiple locations for the same single
9735 value, but ATM we don't. */
9736 && GET_CODE (incoming) != PARALLEL)
9738 cselib_val *val;
9739 rtx lowpart;
9741 /* ??? We shouldn't ever hit this, but it may happen because
9742 arguments passed by invisible reference aren't dealt with
9743 above: incoming-rtl will have Pmode rather than the
9744 expected mode for the type. */
9745 if (offset)
9746 return;
9748 lowpart = var_lowpart (mode, incoming);
9749 if (!lowpart)
9750 return;
9752 val = cselib_lookup_from_insn (lowpart, mode, true,
9753 VOIDmode, get_insns ());
9755 /* ??? Float-typed values in memory are not handled by
9756 cselib. */
9757 if (val)
9759 preserve_value (val);
9760 set_variable_part (out, val->val_rtx, dv, offset,
9761 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9762 dv = dv_from_value (val->val_rtx);
9765 if (MEM_P (incoming))
9767 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9768 VOIDmode, get_insns ());
9769 if (val)
9771 preserve_value (val);
9772 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9777 if (REG_P (incoming))
9779 incoming = var_lowpart (mode, incoming);
9780 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9781 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9782 incoming);
9783 set_variable_part (out, incoming, dv, offset,
9784 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9785 if (dv_is_value_p (dv))
9787 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9788 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9789 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9791 machine_mode indmode
9792 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9793 rtx mem = gen_rtx_MEM (indmode, incoming);
9794 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9795 VOIDmode,
9796 get_insns ());
9797 if (val)
9799 preserve_value (val);
9800 record_entry_value (val, mem);
9801 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9802 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9807 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9809 int i;
9811 for (i = 0; i < XVECLEN (incoming, 0); i++)
9813 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9814 offset = REG_OFFSET (reg);
9815 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9816 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9817 set_variable_part (out, reg, dv, offset,
9818 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9821 else if (MEM_P (incoming))
9823 incoming = var_lowpart (mode, incoming);
9824 set_variable_part (out, incoming, dv, offset,
9825 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9829 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9831 static void
9832 vt_add_function_parameters (void)
9834 tree parm;
9836 for (parm = DECL_ARGUMENTS (current_function_decl);
9837 parm; parm = DECL_CHAIN (parm))
9838 if (!POINTER_BOUNDS_P (parm))
9839 vt_add_function_parameter (parm);
9841 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9843 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9845 if (TREE_CODE (vexpr) == INDIRECT_REF)
9846 vexpr = TREE_OPERAND (vexpr, 0);
9848 if (TREE_CODE (vexpr) == PARM_DECL
9849 && DECL_ARTIFICIAL (vexpr)
9850 && !DECL_IGNORED_P (vexpr)
9851 && DECL_NAMELESS (vexpr))
9852 vt_add_function_parameter (vexpr);
9856 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9857 ensure it isn't flushed during cselib_reset_table.
9858 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9859 has been eliminated. */
9861 static void
9862 vt_init_cfa_base (void)
9864 cselib_val *val;
9866 #ifdef FRAME_POINTER_CFA_OFFSET
9867 cfa_base_rtx = frame_pointer_rtx;
9868 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9869 #else
9870 cfa_base_rtx = arg_pointer_rtx;
9871 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9872 #endif
9873 if (cfa_base_rtx == hard_frame_pointer_rtx
9874 || !fixed_regs[REGNO (cfa_base_rtx)])
9876 cfa_base_rtx = NULL_RTX;
9877 return;
9879 if (!MAY_HAVE_DEBUG_INSNS)
9880 return;
9882 /* Tell alias analysis that cfa_base_rtx should share
9883 find_base_term value with stack pointer or hard frame pointer. */
9884 if (!frame_pointer_needed)
9885 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9886 else if (!crtl->stack_realign_tried)
9887 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9889 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9890 VOIDmode, get_insns ());
9891 preserve_value (val);
9892 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9895 /* Allocate and initialize the data structures for variable tracking
9896 and parse the RTL to get the micro operations. */
9898 static bool
9899 vt_initialize (void)
9901 basic_block bb;
9902 HOST_WIDE_INT fp_cfa_offset = -1;
9904 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9906 attrs_pool = create_alloc_pool ("attrs_def pool",
9907 sizeof (struct attrs_def), 1024);
9908 var_pool = create_alloc_pool ("variable_def pool",
9909 sizeof (struct variable_def)
9910 + (MAX_VAR_PARTS - 1)
9911 * sizeof (((variable)NULL)->var_part[0]), 64);
9912 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9913 sizeof (struct location_chain_def),
9914 1024);
9915 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9916 sizeof (struct shared_hash_def), 256);
9917 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9918 empty_shared_hash->refcount = 1;
9919 empty_shared_hash->htab = new variable_table_type (1);
9920 changed_variables = new variable_table_type (10);
9922 /* Init the IN and OUT sets. */
9923 FOR_ALL_BB_FN (bb, cfun)
9925 VTI (bb)->visited = false;
9926 VTI (bb)->flooded = false;
9927 dataflow_set_init (&VTI (bb)->in);
9928 dataflow_set_init (&VTI (bb)->out);
9929 VTI (bb)->permp = NULL;
9932 if (MAY_HAVE_DEBUG_INSNS)
9934 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9935 scratch_regs = BITMAP_ALLOC (NULL);
9936 valvar_pool = create_alloc_pool ("small variable_def pool",
9937 sizeof (struct variable_def), 256);
9938 preserved_values.create (256);
9939 global_get_addr_cache = new hash_map<rtx, rtx>;
9941 else
9943 scratch_regs = NULL;
9944 valvar_pool = NULL;
9945 global_get_addr_cache = NULL;
9948 if (MAY_HAVE_DEBUG_INSNS)
9950 rtx reg, expr;
9951 int ofst;
9952 cselib_val *val;
9954 #ifdef FRAME_POINTER_CFA_OFFSET
9955 reg = frame_pointer_rtx;
9956 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9957 #else
9958 reg = arg_pointer_rtx;
9959 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9960 #endif
9962 ofst -= INCOMING_FRAME_SP_OFFSET;
9964 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9965 VOIDmode, get_insns ());
9966 preserve_value (val);
9967 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9968 cselib_preserve_cfa_base_value (val, REGNO (reg));
9969 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9970 stack_pointer_rtx, -ofst);
9971 cselib_add_permanent_equiv (val, expr, get_insns ());
9973 if (ofst)
9975 val = cselib_lookup_from_insn (stack_pointer_rtx,
9976 GET_MODE (stack_pointer_rtx), 1,
9977 VOIDmode, get_insns ());
9978 preserve_value (val);
9979 expr = plus_constant (GET_MODE (reg), reg, ofst);
9980 cselib_add_permanent_equiv (val, expr, get_insns ());
9984 /* In order to factor out the adjustments made to the stack pointer or to
9985 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9986 instead of individual location lists, we're going to rewrite MEMs based
9987 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9988 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9989 resp. arg_pointer_rtx. We can do this either when there is no frame
9990 pointer in the function and stack adjustments are consistent for all
9991 basic blocks or when there is a frame pointer and no stack realignment.
9992 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9993 has been eliminated. */
9994 if (!frame_pointer_needed)
9996 rtx reg, elim;
9998 if (!vt_stack_adjustments ())
9999 return false;
10001 #ifdef FRAME_POINTER_CFA_OFFSET
10002 reg = frame_pointer_rtx;
10003 #else
10004 reg = arg_pointer_rtx;
10005 #endif
10006 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10007 if (elim != reg)
10009 if (GET_CODE (elim) == PLUS)
10010 elim = XEXP (elim, 0);
10011 if (elim == stack_pointer_rtx)
10012 vt_init_cfa_base ();
10015 else if (!crtl->stack_realign_tried)
10017 rtx reg, elim;
10019 #ifdef FRAME_POINTER_CFA_OFFSET
10020 reg = frame_pointer_rtx;
10021 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10022 #else
10023 reg = arg_pointer_rtx;
10024 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10025 #endif
10026 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10027 if (elim != reg)
10029 if (GET_CODE (elim) == PLUS)
10031 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10032 elim = XEXP (elim, 0);
10034 if (elim != hard_frame_pointer_rtx)
10035 fp_cfa_offset = -1;
10037 else
10038 fp_cfa_offset = -1;
10041 /* If the stack is realigned and a DRAP register is used, we're going to
10042 rewrite MEMs based on it representing incoming locations of parameters
10043 passed on the stack into MEMs based on the argument pointer. Although
10044 we aren't going to rewrite other MEMs, we still need to initialize the
10045 virtual CFA pointer in order to ensure that the argument pointer will
10046 be seen as a constant throughout the function.
10048 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10049 else if (stack_realign_drap)
10051 rtx reg, elim;
10053 #ifdef FRAME_POINTER_CFA_OFFSET
10054 reg = frame_pointer_rtx;
10055 #else
10056 reg = arg_pointer_rtx;
10057 #endif
10058 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10059 if (elim != reg)
10061 if (GET_CODE (elim) == PLUS)
10062 elim = XEXP (elim, 0);
10063 if (elim == hard_frame_pointer_rtx)
10064 vt_init_cfa_base ();
10068 hard_frame_pointer_adjustment = -1;
10070 vt_add_function_parameters ();
10072 FOR_EACH_BB_FN (bb, cfun)
10074 rtx_insn *insn;
10075 HOST_WIDE_INT pre, post = 0;
10076 basic_block first_bb, last_bb;
10078 if (MAY_HAVE_DEBUG_INSNS)
10080 cselib_record_sets_hook = add_with_sets;
10081 if (dump_file && (dump_flags & TDF_DETAILS))
10082 fprintf (dump_file, "first value: %i\n",
10083 cselib_get_next_uid ());
10086 first_bb = bb;
10087 for (;;)
10089 edge e;
10090 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10091 || ! single_pred_p (bb->next_bb))
10092 break;
10093 e = find_edge (bb, bb->next_bb);
10094 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10095 break;
10096 bb = bb->next_bb;
10098 last_bb = bb;
10100 /* Add the micro-operations to the vector. */
10101 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10103 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10104 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10105 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10106 insn = NEXT_INSN (insn))
10108 if (INSN_P (insn))
10110 if (!frame_pointer_needed)
10112 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10113 if (pre)
10115 micro_operation mo;
10116 mo.type = MO_ADJUST;
10117 mo.u.adjust = pre;
10118 mo.insn = insn;
10119 if (dump_file && (dump_flags & TDF_DETAILS))
10120 log_op_type (PATTERN (insn), bb, insn,
10121 MO_ADJUST, dump_file);
10122 VTI (bb)->mos.safe_push (mo);
10123 VTI (bb)->out.stack_adjust += pre;
10127 cselib_hook_called = false;
10128 adjust_insn (bb, insn);
10129 if (MAY_HAVE_DEBUG_INSNS)
10131 if (CALL_P (insn))
10132 prepare_call_arguments (bb, insn);
10133 cselib_process_insn (insn);
10134 if (dump_file && (dump_flags & TDF_DETAILS))
10136 print_rtl_single (dump_file, insn);
10137 dump_cselib_table (dump_file);
10140 if (!cselib_hook_called)
10141 add_with_sets (insn, 0, 0);
10142 cancel_changes (0);
10144 if (!frame_pointer_needed && post)
10146 micro_operation mo;
10147 mo.type = MO_ADJUST;
10148 mo.u.adjust = post;
10149 mo.insn = insn;
10150 if (dump_file && (dump_flags & TDF_DETAILS))
10151 log_op_type (PATTERN (insn), bb, insn,
10152 MO_ADJUST, dump_file);
10153 VTI (bb)->mos.safe_push (mo);
10154 VTI (bb)->out.stack_adjust += post;
10157 if (fp_cfa_offset != -1
10158 && hard_frame_pointer_adjustment == -1
10159 && fp_setter_insn (insn))
10161 vt_init_cfa_base ();
10162 hard_frame_pointer_adjustment = fp_cfa_offset;
10163 /* Disassociate sp from fp now. */
10164 if (MAY_HAVE_DEBUG_INSNS)
10166 cselib_val *v;
10167 cselib_invalidate_rtx (stack_pointer_rtx);
10168 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10169 VOIDmode);
10170 if (v && !cselib_preserved_value_p (v))
10172 cselib_set_value_sp_based (v);
10173 preserve_value (v);
10179 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10182 bb = last_bb;
10184 if (MAY_HAVE_DEBUG_INSNS)
10186 cselib_preserve_only_values ();
10187 cselib_reset_table (cselib_get_next_uid ());
10188 cselib_record_sets_hook = NULL;
10192 hard_frame_pointer_adjustment = -1;
10193 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10194 cfa_base_rtx = NULL_RTX;
10195 return true;
10198 /* This is *not* reset after each function. It gives each
10199 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10200 a unique label number. */
10202 static int debug_label_num = 1;
10204 /* Get rid of all debug insns from the insn stream. */
10206 static void
10207 delete_debug_insns (void)
10209 basic_block bb;
10210 rtx_insn *insn, *next;
10212 if (!MAY_HAVE_DEBUG_INSNS)
10213 return;
10215 FOR_EACH_BB_FN (bb, cfun)
10217 FOR_BB_INSNS_SAFE (bb, insn, next)
10218 if (DEBUG_INSN_P (insn))
10220 tree decl = INSN_VAR_LOCATION_DECL (insn);
10221 if (TREE_CODE (decl) == LABEL_DECL
10222 && DECL_NAME (decl)
10223 && !DECL_RTL_SET_P (decl))
10225 PUT_CODE (insn, NOTE);
10226 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10227 NOTE_DELETED_LABEL_NAME (insn)
10228 = IDENTIFIER_POINTER (DECL_NAME (decl));
10229 SET_DECL_RTL (decl, insn);
10230 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10232 else
10233 delete_insn (insn);
10238 /* Run a fast, BB-local only version of var tracking, to take care of
10239 information that we don't do global analysis on, such that not all
10240 information is lost. If SKIPPED holds, we're skipping the global
10241 pass entirely, so we should try to use information it would have
10242 handled as well.. */
10244 static void
10245 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10247 /* ??? Just skip it all for now. */
10248 delete_debug_insns ();
10251 /* Free the data structures needed for variable tracking. */
10253 static void
10254 vt_finalize (void)
10256 basic_block bb;
10258 FOR_EACH_BB_FN (bb, cfun)
10260 VTI (bb)->mos.release ();
10263 FOR_ALL_BB_FN (bb, cfun)
10265 dataflow_set_destroy (&VTI (bb)->in);
10266 dataflow_set_destroy (&VTI (bb)->out);
10267 if (VTI (bb)->permp)
10269 dataflow_set_destroy (VTI (bb)->permp);
10270 XDELETE (VTI (bb)->permp);
10273 free_aux_for_blocks ();
10274 delete empty_shared_hash->htab;
10275 empty_shared_hash->htab = NULL;
10276 delete changed_variables;
10277 changed_variables = NULL;
10278 free_alloc_pool (attrs_pool);
10279 free_alloc_pool (var_pool);
10280 free_alloc_pool (loc_chain_pool);
10281 free_alloc_pool (shared_hash_pool);
10283 if (MAY_HAVE_DEBUG_INSNS)
10285 if (global_get_addr_cache)
10286 delete global_get_addr_cache;
10287 global_get_addr_cache = NULL;
10288 if (loc_exp_dep_pool)
10289 free_alloc_pool (loc_exp_dep_pool);
10290 loc_exp_dep_pool = NULL;
10291 free_alloc_pool (valvar_pool);
10292 preserved_values.release ();
10293 cselib_finish ();
10294 BITMAP_FREE (scratch_regs);
10295 scratch_regs = NULL;
10298 #ifdef HAVE_window_save
10299 vec_free (windowed_parm_regs);
10300 #endif
10302 if (vui_vec)
10303 XDELETEVEC (vui_vec);
10304 vui_vec = NULL;
10305 vui_allocated = 0;
10308 /* The entry point to variable tracking pass. */
10310 static inline unsigned int
10311 variable_tracking_main_1 (void)
10313 bool success;
10315 if (flag_var_tracking_assignments < 0
10316 /* Var-tracking right now assumes the IR doesn't contain
10317 any pseudos at this point. */
10318 || targetm.no_register_allocation)
10320 delete_debug_insns ();
10321 return 0;
10324 if (n_basic_blocks_for_fn (cfun) > 500 &&
10325 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10327 vt_debug_insns_local (true);
10328 return 0;
10331 mark_dfs_back_edges ();
10332 if (!vt_initialize ())
10334 vt_finalize ();
10335 vt_debug_insns_local (true);
10336 return 0;
10339 success = vt_find_locations ();
10341 if (!success && flag_var_tracking_assignments > 0)
10343 vt_finalize ();
10345 delete_debug_insns ();
10347 /* This is later restored by our caller. */
10348 flag_var_tracking_assignments = 0;
10350 success = vt_initialize ();
10351 gcc_assert (success);
10353 success = vt_find_locations ();
10356 if (!success)
10358 vt_finalize ();
10359 vt_debug_insns_local (false);
10360 return 0;
10363 if (dump_file && (dump_flags & TDF_DETAILS))
10365 dump_dataflow_sets ();
10366 dump_reg_info (dump_file);
10367 dump_flow_info (dump_file, dump_flags);
10370 timevar_push (TV_VAR_TRACKING_EMIT);
10371 vt_emit_notes ();
10372 timevar_pop (TV_VAR_TRACKING_EMIT);
10374 vt_finalize ();
10375 vt_debug_insns_local (false);
10376 return 0;
10379 unsigned int
10380 variable_tracking_main (void)
10382 unsigned int ret;
10383 int save = flag_var_tracking_assignments;
10385 ret = variable_tracking_main_1 ();
10387 flag_var_tracking_assignments = save;
10389 return ret;
10392 namespace {
10394 const pass_data pass_data_variable_tracking =
10396 RTL_PASS, /* type */
10397 "vartrack", /* name */
10398 OPTGROUP_NONE, /* optinfo_flags */
10399 TV_VAR_TRACKING, /* tv_id */
10400 0, /* properties_required */
10401 0, /* properties_provided */
10402 0, /* properties_destroyed */
10403 0, /* todo_flags_start */
10404 0, /* todo_flags_finish */
10407 class pass_variable_tracking : public rtl_opt_pass
10409 public:
10410 pass_variable_tracking (gcc::context *ctxt)
10411 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10414 /* opt_pass methods: */
10415 virtual bool gate (function *)
10417 return (flag_var_tracking && !targetm.delay_vartrack);
10420 virtual unsigned int execute (function *)
10422 return variable_tracking_main ();
10425 }; // class pass_variable_tracking
10427 } // anon namespace
10429 rtl_opt_pass *
10430 make_pass_variable_tracking (gcc::context *ctxt)
10432 return new pass_variable_tracking (ctxt);