Merge from trunk @222673.
[official-gcc.git] / gcc / ada / sem_type.adb
blobd9f4e53aa616ff0ae28a91163523a7cf375bc68c
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ T Y P E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Alloc;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Nlists; use Nlists;
32 with Errout; use Errout;
33 with Lib; use Lib;
34 with Namet; use Namet;
35 with Opt; use Opt;
36 with Output; use Output;
37 with Sem; use Sem;
38 with Sem_Aux; use Sem_Aux;
39 with Sem_Ch6; use Sem_Ch6;
40 with Sem_Ch8; use Sem_Ch8;
41 with Sem_Ch12; use Sem_Ch12;
42 with Sem_Disp; use Sem_Disp;
43 with Sem_Dist; use Sem_Dist;
44 with Sem_Util; use Sem_Util;
45 with Stand; use Stand;
46 with Sinfo; use Sinfo;
47 with Snames; use Snames;
48 with Table;
49 with Treepr; use Treepr;
50 with Uintp; use Uintp;
52 package body Sem_Type is
54 ---------------------
55 -- Data Structures --
56 ---------------------
58 -- The following data structures establish a mapping between nodes and
59 -- their interpretations. An overloaded node has an entry in Interp_Map,
60 -- which in turn contains a pointer into the All_Interp array. The
61 -- interpretations of a given node are contiguous in All_Interp. Each set
62 -- of interpretations is terminated with the marker No_Interp. In order to
63 -- speed up the retrieval of the interpretations of an overloaded node, the
64 -- Interp_Map table is accessed by means of a simple hashing scheme, and
65 -- the entries in Interp_Map are chained. The heads of clash lists are
66 -- stored in array Headers.
68 -- Headers Interp_Map All_Interp
70 -- _ +-----+ +--------+
71 -- |_| |_____| --->|interp1 |
72 -- |_|---------->|node | | |interp2 |
73 -- |_| |index|---------| |nointerp|
74 -- |_| |next | | |
75 -- |-----| | |
76 -- +-----+ +--------+
78 -- This scheme does not currently reclaim interpretations. In principle,
79 -- after a unit is compiled, all overloadings have been resolved, and the
80 -- candidate interpretations should be deleted. This should be easier
81 -- now than with the previous scheme???
83 package All_Interp is new Table.Table (
84 Table_Component_Type => Interp,
85 Table_Index_Type => Interp_Index,
86 Table_Low_Bound => 0,
87 Table_Initial => Alloc.All_Interp_Initial,
88 Table_Increment => Alloc.All_Interp_Increment,
89 Table_Name => "All_Interp");
91 type Interp_Ref is record
92 Node : Node_Id;
93 Index : Interp_Index;
94 Next : Int;
95 end record;
97 Header_Size : constant Int := 2 ** 12;
98 No_Entry : constant Int := -1;
99 Headers : array (0 .. Header_Size) of Int := (others => No_Entry);
101 package Interp_Map is new Table.Table (
102 Table_Component_Type => Interp_Ref,
103 Table_Index_Type => Int,
104 Table_Low_Bound => 0,
105 Table_Initial => Alloc.Interp_Map_Initial,
106 Table_Increment => Alloc.Interp_Map_Increment,
107 Table_Name => "Interp_Map");
109 function Hash (N : Node_Id) return Int;
110 -- A trivial hashing function for nodes, used to insert an overloaded
111 -- node into the Interp_Map table.
113 -------------------------------------
114 -- Handling of Overload Resolution --
115 -------------------------------------
117 -- Overload resolution uses two passes over the syntax tree of a complete
118 -- context. In the first, bottom-up pass, the types of actuals in calls
119 -- are used to resolve possibly overloaded subprogram and operator names.
120 -- In the second top-down pass, the type of the context (for example the
121 -- condition in a while statement) is used to resolve a possibly ambiguous
122 -- call, and the unique subprogram name in turn imposes a specific context
123 -- on each of its actuals.
125 -- Most expressions are in fact unambiguous, and the bottom-up pass is
126 -- sufficient to resolve most everything. To simplify the common case,
127 -- names and expressions carry a flag Is_Overloaded to indicate whether
128 -- they have more than one interpretation. If the flag is off, then each
129 -- name has already a unique meaning and type, and the bottom-up pass is
130 -- sufficient (and much simpler).
132 --------------------------
133 -- Operator Overloading --
134 --------------------------
136 -- The visibility of operators is handled differently from that of other
137 -- entities. We do not introduce explicit versions of primitive operators
138 -- for each type definition. As a result, there is only one entity
139 -- corresponding to predefined addition on all numeric types, etc. The
140 -- back-end resolves predefined operators according to their type. The
141 -- visibility of primitive operations then reduces to the visibility of the
142 -- resulting type: (a + b) is a legal interpretation of some primitive
143 -- operator + if the type of the result (which must also be the type of a
144 -- and b) is directly visible (either immediately visible or use-visible).
146 -- User-defined operators are treated like other functions, but the
147 -- visibility of these user-defined operations must be special-cased
148 -- to determine whether they hide or are hidden by predefined operators.
149 -- The form P."+" (x, y) requires additional handling.
151 -- Concatenation is treated more conventionally: for every one-dimensional
152 -- array type we introduce a explicit concatenation operator. This is
153 -- necessary to handle the case of (element & element => array) which
154 -- cannot be handled conveniently if there is no explicit instance of
155 -- resulting type of the operation.
157 -----------------------
158 -- Local Subprograms --
159 -----------------------
161 procedure All_Overloads;
162 pragma Warnings (Off, All_Overloads);
163 -- Debugging procedure: list full contents of Overloads table
165 function Binary_Op_Interp_Has_Abstract_Op
166 (N : Node_Id;
167 E : Entity_Id) return Entity_Id;
168 -- Given the node and entity of a binary operator, determine whether the
169 -- actuals of E contain an abstract interpretation with regards to the
170 -- types of their corresponding formals. Return the abstract operation or
171 -- Empty.
173 function Function_Interp_Has_Abstract_Op
174 (N : Node_Id;
175 E : Entity_Id) return Entity_Id;
176 -- Given the node and entity of a function call, determine whether the
177 -- actuals of E contain an abstract interpretation with regards to the
178 -- types of their corresponding formals. Return the abstract operation or
179 -- Empty.
181 function Has_Abstract_Op
182 (N : Node_Id;
183 Typ : Entity_Id) return Entity_Id;
184 -- Subsidiary routine to Binary_Op_Interp_Has_Abstract_Op and Function_
185 -- Interp_Has_Abstract_Op. Determine whether an overloaded node has an
186 -- abstract interpretation which yields type Typ.
188 procedure New_Interps (N : Node_Id);
189 -- Initialize collection of interpretations for the given node, which is
190 -- either an overloaded entity, or an operation whose arguments have
191 -- multiple interpretations. Interpretations can be added to only one
192 -- node at a time.
194 function Specific_Type (Typ_1, Typ_2 : Entity_Id) return Entity_Id;
195 -- If Typ_1 and Typ_2 are compatible, return the one that is not universal
196 -- or is not a "class" type (any_character, etc).
198 --------------------
199 -- Add_One_Interp --
200 --------------------
202 procedure Add_One_Interp
203 (N : Node_Id;
204 E : Entity_Id;
205 T : Entity_Id;
206 Opnd_Type : Entity_Id := Empty)
208 Vis_Type : Entity_Id;
210 procedure Add_Entry (Name : Entity_Id; Typ : Entity_Id);
211 -- Add one interpretation to an overloaded node. Add a new entry if
212 -- not hidden by previous one, and remove previous one if hidden by
213 -- new one.
215 function Is_Universal_Operation (Op : Entity_Id) return Boolean;
216 -- True if the entity is a predefined operator and the operands have
217 -- a universal Interpretation.
219 ---------------
220 -- Add_Entry --
221 ---------------
223 procedure Add_Entry (Name : Entity_Id; Typ : Entity_Id) is
224 Abstr_Op : Entity_Id := Empty;
225 I : Interp_Index;
226 It : Interp;
228 -- Start of processing for Add_Entry
230 begin
231 -- Find out whether the new entry references interpretations that
232 -- are abstract or disabled by abstract operators.
234 if Ada_Version >= Ada_2005 then
235 if Nkind (N) in N_Binary_Op then
236 Abstr_Op := Binary_Op_Interp_Has_Abstract_Op (N, Name);
237 elsif Nkind (N) = N_Function_Call then
238 Abstr_Op := Function_Interp_Has_Abstract_Op (N, Name);
239 end if;
240 end if;
242 Get_First_Interp (N, I, It);
243 while Present (It.Nam) loop
245 -- A user-defined subprogram hides another declared at an outer
246 -- level, or one that is use-visible. So return if previous
247 -- definition hides new one (which is either in an outer
248 -- scope, or use-visible). Note that for functions use-visible
249 -- is the same as potentially use-visible. If new one hides
250 -- previous one, replace entry in table of interpretations.
251 -- If this is a universal operation, retain the operator in case
252 -- preference rule applies.
254 if (((Ekind (Name) = E_Function or else Ekind (Name) = E_Procedure)
255 and then Ekind (Name) = Ekind (It.Nam))
256 or else (Ekind (Name) = E_Operator
257 and then Ekind (It.Nam) = E_Function))
258 and then Is_Immediately_Visible (It.Nam)
259 and then Type_Conformant (Name, It.Nam)
260 and then Base_Type (It.Typ) = Base_Type (T)
261 then
262 if Is_Universal_Operation (Name) then
263 exit;
265 -- If node is an operator symbol, we have no actuals with
266 -- which to check hiding, and this is done in full in the
267 -- caller (Analyze_Subprogram_Renaming) so we include the
268 -- predefined operator in any case.
270 elsif Nkind (N) = N_Operator_Symbol
271 or else
272 (Nkind (N) = N_Expanded_Name
273 and then Nkind (Selector_Name (N)) = N_Operator_Symbol)
274 then
275 exit;
277 elsif not In_Open_Scopes (Scope (Name))
278 or else Scope_Depth (Scope (Name)) <=
279 Scope_Depth (Scope (It.Nam))
280 then
281 -- If ambiguity within instance, and entity is not an
282 -- implicit operation, save for later disambiguation.
284 if Scope (Name) = Scope (It.Nam)
285 and then not Is_Inherited_Operation (Name)
286 and then In_Instance
287 then
288 exit;
289 else
290 return;
291 end if;
293 else
294 All_Interp.Table (I).Nam := Name;
295 return;
296 end if;
298 -- Avoid making duplicate entries in overloads
300 elsif Name = It.Nam
301 and then Base_Type (It.Typ) = Base_Type (T)
302 then
303 return;
305 -- Otherwise keep going
307 else
308 Get_Next_Interp (I, It);
309 end if;
311 end loop;
313 All_Interp.Table (All_Interp.Last) := (Name, Typ, Abstr_Op);
314 All_Interp.Append (No_Interp);
315 end Add_Entry;
317 ----------------------------
318 -- Is_Universal_Operation --
319 ----------------------------
321 function Is_Universal_Operation (Op : Entity_Id) return Boolean is
322 Arg : Node_Id;
324 begin
325 if Ekind (Op) /= E_Operator then
326 return False;
328 elsif Nkind (N) in N_Binary_Op then
329 return Present (Universal_Interpretation (Left_Opnd (N)))
330 and then Present (Universal_Interpretation (Right_Opnd (N)));
332 elsif Nkind (N) in N_Unary_Op then
333 return Present (Universal_Interpretation (Right_Opnd (N)));
335 elsif Nkind (N) = N_Function_Call then
336 Arg := First_Actual (N);
337 while Present (Arg) loop
338 if No (Universal_Interpretation (Arg)) then
339 return False;
340 end if;
342 Next_Actual (Arg);
343 end loop;
345 return True;
347 else
348 return False;
349 end if;
350 end Is_Universal_Operation;
352 -- Start of processing for Add_One_Interp
354 begin
355 -- If the interpretation is a predefined operator, verify that the
356 -- result type is visible, or that the entity has already been
357 -- resolved (case of an instantiation node that refers to a predefined
358 -- operation, or an internally generated operator node, or an operator
359 -- given as an expanded name). If the operator is a comparison or
360 -- equality, it is the type of the operand that matters to determine
361 -- whether the operator is visible. In an instance, the check is not
362 -- performed, given that the operator was visible in the generic.
364 if Ekind (E) = E_Operator then
365 if Present (Opnd_Type) then
366 Vis_Type := Opnd_Type;
367 else
368 Vis_Type := Base_Type (T);
369 end if;
371 if In_Open_Scopes (Scope (Vis_Type))
372 or else Is_Potentially_Use_Visible (Vis_Type)
373 or else In_Use (Vis_Type)
374 or else (In_Use (Scope (Vis_Type))
375 and then not Is_Hidden (Vis_Type))
376 or else Nkind (N) = N_Expanded_Name
377 or else (Nkind (N) in N_Op and then E = Entity (N))
378 or else In_Instance
379 or else Ekind (Vis_Type) = E_Anonymous_Access_Type
380 then
381 null;
383 -- If the node is given in functional notation and the prefix
384 -- is an expanded name, then the operator is visible if the
385 -- prefix is the scope of the result type as well. If the
386 -- operator is (implicitly) defined in an extension of system,
387 -- it is know to be valid (see Defined_In_Scope, sem_ch4.adb).
389 elsif Nkind (N) = N_Function_Call
390 and then Nkind (Name (N)) = N_Expanded_Name
391 and then (Entity (Prefix (Name (N))) = Scope (Base_Type (T))
392 or else Entity (Prefix (Name (N))) = Scope (Vis_Type)
393 or else Scope (Vis_Type) = System_Aux_Id)
394 then
395 null;
397 -- Save type for subsequent error message, in case no other
398 -- interpretation is found.
400 else
401 Candidate_Type := Vis_Type;
402 return;
403 end if;
405 -- In an instance, an abstract non-dispatching operation cannot be a
406 -- candidate interpretation, because it could not have been one in the
407 -- generic (it may be a spurious overloading in the instance).
409 elsif In_Instance
410 and then Is_Overloadable (E)
411 and then Is_Abstract_Subprogram (E)
412 and then not Is_Dispatching_Operation (E)
413 then
414 return;
416 -- An inherited interface operation that is implemented by some derived
417 -- type does not participate in overload resolution, only the
418 -- implementation operation does.
420 elsif Is_Hidden (E)
421 and then Is_Subprogram (E)
422 and then Present (Interface_Alias (E))
423 then
424 -- Ada 2005 (AI-251): If this primitive operation corresponds with
425 -- an immediate ancestor interface there is no need to add it to the
426 -- list of interpretations. The corresponding aliased primitive is
427 -- also in this list of primitive operations and will be used instead
428 -- because otherwise we have a dummy ambiguity between the two
429 -- subprograms which are in fact the same.
431 if not Is_Ancestor
432 (Find_Dispatching_Type (Interface_Alias (E)),
433 Find_Dispatching_Type (E))
434 then
435 Add_One_Interp (N, Interface_Alias (E), T);
436 end if;
438 return;
440 -- Calling stubs for an RACW operation never participate in resolution,
441 -- they are executed only through dispatching calls.
443 elsif Is_RACW_Stub_Type_Operation (E) then
444 return;
445 end if;
447 -- If this is the first interpretation of N, N has type Any_Type.
448 -- In that case place the new type on the node. If one interpretation
449 -- already exists, indicate that the node is overloaded, and store
450 -- both the previous and the new interpretation in All_Interp. If
451 -- this is a later interpretation, just add it to the set.
453 if Etype (N) = Any_Type then
454 if Is_Type (E) then
455 Set_Etype (N, T);
457 else
458 -- Record both the operator or subprogram name, and its type
460 if Nkind (N) in N_Op or else Is_Entity_Name (N) then
461 Set_Entity (N, E);
462 end if;
464 Set_Etype (N, T);
465 end if;
467 -- Either there is no current interpretation in the table for any
468 -- node or the interpretation that is present is for a different
469 -- node. In both cases add a new interpretation to the table.
471 elsif Interp_Map.Last < 0
472 or else
473 (Interp_Map.Table (Interp_Map.Last).Node /= N
474 and then not Is_Overloaded (N))
475 then
476 New_Interps (N);
478 if (Nkind (N) in N_Op or else Is_Entity_Name (N))
479 and then Present (Entity (N))
480 then
481 Add_Entry (Entity (N), Etype (N));
483 elsif Nkind (N) in N_Subprogram_Call
484 and then Is_Entity_Name (Name (N))
485 then
486 Add_Entry (Entity (Name (N)), Etype (N));
488 -- If this is an indirect call there will be no name associated
489 -- with the previous entry. To make diagnostics clearer, save
490 -- Subprogram_Type of first interpretation, so that the error will
491 -- point to the anonymous access to subprogram, not to the result
492 -- type of the call itself.
494 elsif (Nkind (N)) = N_Function_Call
495 and then Nkind (Name (N)) = N_Explicit_Dereference
496 and then Is_Overloaded (Name (N))
497 then
498 declare
499 It : Interp;
501 Itn : Interp_Index;
502 pragma Warnings (Off, Itn);
504 begin
505 Get_First_Interp (Name (N), Itn, It);
506 Add_Entry (It.Nam, Etype (N));
507 end;
509 else
510 -- Overloaded prefix in indexed or selected component, or call
511 -- whose name is an expression or another call.
513 Add_Entry (Etype (N), Etype (N));
514 end if;
516 Add_Entry (E, T);
518 else
519 Add_Entry (E, T);
520 end if;
521 end Add_One_Interp;
523 -------------------
524 -- All_Overloads --
525 -------------------
527 procedure All_Overloads is
528 begin
529 for J in All_Interp.First .. All_Interp.Last loop
531 if Present (All_Interp.Table (J).Nam) then
532 Write_Entity_Info (All_Interp.Table (J). Nam, " ");
533 else
534 Write_Str ("No Interp");
535 Write_Eol;
536 end if;
538 Write_Str ("=================");
539 Write_Eol;
540 end loop;
541 end All_Overloads;
543 --------------------------------------
544 -- Binary_Op_Interp_Has_Abstract_Op --
545 --------------------------------------
547 function Binary_Op_Interp_Has_Abstract_Op
548 (N : Node_Id;
549 E : Entity_Id) return Entity_Id
551 Abstr_Op : Entity_Id;
552 E_Left : constant Node_Id := First_Formal (E);
553 E_Right : constant Node_Id := Next_Formal (E_Left);
555 begin
556 Abstr_Op := Has_Abstract_Op (Left_Opnd (N), Etype (E_Left));
557 if Present (Abstr_Op) then
558 return Abstr_Op;
559 end if;
561 return Has_Abstract_Op (Right_Opnd (N), Etype (E_Right));
562 end Binary_Op_Interp_Has_Abstract_Op;
564 ---------------------
565 -- Collect_Interps --
566 ---------------------
568 procedure Collect_Interps (N : Node_Id) is
569 Ent : constant Entity_Id := Entity (N);
570 H : Entity_Id;
571 First_Interp : Interp_Index;
573 function Within_Instance (E : Entity_Id) return Boolean;
574 -- Within an instance there can be spurious ambiguities between a local
575 -- entity and one declared outside of the instance. This can only happen
576 -- for subprograms, because otherwise the local entity hides the outer
577 -- one. For an overloadable entity, this predicate determines whether it
578 -- is a candidate within the instance, or must be ignored.
580 ---------------------
581 -- Within_Instance --
582 ---------------------
584 function Within_Instance (E : Entity_Id) return Boolean is
585 Inst : Entity_Id;
586 Scop : Entity_Id;
588 begin
589 if not In_Instance then
590 return False;
591 end if;
593 Inst := Current_Scope;
594 while Present (Inst) and then not Is_Generic_Instance (Inst) loop
595 Inst := Scope (Inst);
596 end loop;
598 Scop := Scope (E);
599 while Present (Scop) and then Scop /= Standard_Standard loop
600 if Scop = Inst then
601 return True;
602 end if;
604 Scop := Scope (Scop);
605 end loop;
607 return False;
608 end Within_Instance;
610 -- Start of processing for Collect_Interps
612 begin
613 New_Interps (N);
615 -- Unconditionally add the entity that was initially matched
617 First_Interp := All_Interp.Last;
618 Add_One_Interp (N, Ent, Etype (N));
620 -- For expanded name, pick up all additional entities from the
621 -- same scope, since these are obviously also visible. Note that
622 -- these are not necessarily contiguous on the homonym chain.
624 if Nkind (N) = N_Expanded_Name then
625 H := Homonym (Ent);
626 while Present (H) loop
627 if Scope (H) = Scope (Entity (N)) then
628 Add_One_Interp (N, H, Etype (H));
629 end if;
631 H := Homonym (H);
632 end loop;
634 -- Case of direct name
636 else
637 -- First, search the homonym chain for directly visible entities
639 H := Current_Entity (Ent);
640 while Present (H) loop
641 exit when (not Is_Overloadable (H))
642 and then Is_Immediately_Visible (H);
644 if Is_Immediately_Visible (H) and then H /= Ent then
646 -- Only add interpretation if not hidden by an inner
647 -- immediately visible one.
649 for J in First_Interp .. All_Interp.Last - 1 loop
651 -- Current homograph is not hidden. Add to overloads
653 if not Is_Immediately_Visible (All_Interp.Table (J).Nam) then
654 exit;
656 -- Homograph is hidden, unless it is a predefined operator
658 elsif Type_Conformant (H, All_Interp.Table (J).Nam) then
660 -- A homograph in the same scope can occur within an
661 -- instantiation, the resulting ambiguity has to be
662 -- resolved later. The homographs may both be local
663 -- functions or actuals, or may be declared at different
664 -- levels within the instance. The renaming of an actual
665 -- within the instance must not be included.
667 if Within_Instance (H)
668 and then H /= Renamed_Entity (Ent)
669 and then not Is_Inherited_Operation (H)
670 then
671 All_Interp.Table (All_Interp.Last) :=
672 (H, Etype (H), Empty);
673 All_Interp.Append (No_Interp);
674 goto Next_Homograph;
676 elsif Scope (H) /= Standard_Standard then
677 goto Next_Homograph;
678 end if;
679 end if;
680 end loop;
682 -- On exit, we know that current homograph is not hidden
684 Add_One_Interp (N, H, Etype (H));
686 if Debug_Flag_E then
687 Write_Str ("Add overloaded interpretation ");
688 Write_Int (Int (H));
689 Write_Eol;
690 end if;
691 end if;
693 <<Next_Homograph>>
694 H := Homonym (H);
695 end loop;
697 -- Scan list of homographs for use-visible entities only
699 H := Current_Entity (Ent);
701 while Present (H) loop
702 if Is_Potentially_Use_Visible (H)
703 and then H /= Ent
704 and then Is_Overloadable (H)
705 then
706 for J in First_Interp .. All_Interp.Last - 1 loop
708 if not Is_Immediately_Visible (All_Interp.Table (J).Nam) then
709 exit;
711 elsif Type_Conformant (H, All_Interp.Table (J).Nam) then
712 goto Next_Use_Homograph;
713 end if;
714 end loop;
716 Add_One_Interp (N, H, Etype (H));
717 end if;
719 <<Next_Use_Homograph>>
720 H := Homonym (H);
721 end loop;
722 end if;
724 if All_Interp.Last = First_Interp + 1 then
726 -- The final interpretation is in fact not overloaded. Note that the
727 -- unique legal interpretation may or may not be the original one,
728 -- so we need to update N's entity and etype now, because once N
729 -- is marked as not overloaded it is also expected to carry the
730 -- proper interpretation.
732 Set_Is_Overloaded (N, False);
733 Set_Entity (N, All_Interp.Table (First_Interp).Nam);
734 Set_Etype (N, All_Interp.Table (First_Interp).Typ);
735 end if;
736 end Collect_Interps;
738 ------------
739 -- Covers --
740 ------------
742 function Covers (T1, T2 : Entity_Id) return Boolean is
743 BT1 : Entity_Id;
744 BT2 : Entity_Id;
746 function Full_View_Covers (Typ1, Typ2 : Entity_Id) return Boolean;
747 -- In an instance the proper view may not always be correct for
748 -- private types, but private and full view are compatible. This
749 -- removes spurious errors from nested instantiations that involve,
750 -- among other things, types derived from private types.
752 function Real_Actual (T : Entity_Id) return Entity_Id;
753 -- If an actual in an inner instance is the formal of an enclosing
754 -- generic, the actual in the enclosing instance is the one that can
755 -- create an accidental ambiguity, and the check on compatibily of
756 -- generic actual types must use this enclosing actual.
758 ----------------------
759 -- Full_View_Covers --
760 ----------------------
762 function Full_View_Covers (Typ1, Typ2 : Entity_Id) return Boolean is
763 begin
764 return
765 Is_Private_Type (Typ1)
766 and then
767 ((Present (Full_View (Typ1))
768 and then Covers (Full_View (Typ1), Typ2))
769 or else (Present (Underlying_Full_View (Typ1))
770 and then Covers (Underlying_Full_View (Typ1), Typ2))
771 or else Base_Type (Typ1) = Typ2
772 or else Base_Type (Typ2) = Typ1);
773 end Full_View_Covers;
775 -----------------
776 -- Real_Actual --
777 -----------------
779 function Real_Actual (T : Entity_Id) return Entity_Id is
780 Par : constant Node_Id := Parent (T);
781 RA : Entity_Id;
783 begin
784 -- Retrieve parent subtype from subtype declaration for actual
786 if Nkind (Par) = N_Subtype_Declaration
787 and then not Comes_From_Source (Par)
788 and then Is_Entity_Name (Subtype_Indication (Par))
789 then
790 RA := Entity (Subtype_Indication (Par));
792 if Is_Generic_Actual_Type (RA) then
793 return RA;
794 end if;
795 end if;
797 -- Otherwise actual is not the actual of an enclosing instance
799 return T;
800 end Real_Actual;
802 -- Start of processing for Covers
804 begin
805 -- If either operand missing, then this is an error, but ignore it (and
806 -- pretend we have a cover) if errors already detected, since this may
807 -- simply mean we have malformed trees or a semantic error upstream.
809 if No (T1) or else No (T2) then
810 if Total_Errors_Detected /= 0 then
811 return True;
812 else
813 raise Program_Error;
814 end if;
815 end if;
817 -- Trivial case: same types are always compatible
819 if T1 = T2 then
820 return True;
821 end if;
823 -- First check for Standard_Void_Type, which is special. Subsequent
824 -- processing in this routine assumes T1 and T2 are bona fide types;
825 -- Standard_Void_Type is a special entity that has some, but not all,
826 -- properties of types.
828 if (T1 = Standard_Void_Type) /= (T2 = Standard_Void_Type) then
829 return False;
830 end if;
832 BT1 := Base_Type (T1);
833 BT2 := Base_Type (T2);
835 -- Handle underlying view of records with unknown discriminants
836 -- using the original entity that motivated the construction of
837 -- this underlying record view (see Build_Derived_Private_Type).
839 if Is_Underlying_Record_View (BT1) then
840 BT1 := Underlying_Record_View (BT1);
841 end if;
843 if Is_Underlying_Record_View (BT2) then
844 BT2 := Underlying_Record_View (BT2);
845 end if;
847 -- Simplest case: types that have the same base type and are not generic
848 -- actuals are compatible. Generic actuals belong to their class but are
849 -- not compatible with other types of their class, and in particular
850 -- with other generic actuals. They are however compatible with their
851 -- own subtypes, and itypes with the same base are compatible as well.
852 -- Similarly, constrained subtypes obtained from expressions of an
853 -- unconstrained nominal type are compatible with the base type (may
854 -- lead to spurious ambiguities in obscure cases ???)
856 -- Generic actuals require special treatment to avoid spurious ambi-
857 -- guities in an instance, when two formal types are instantiated with
858 -- the same actual, so that different subprograms end up with the same
859 -- signature in the instance. If a generic actual is the actual of an
860 -- enclosing instance, it is that actual that we must compare: generic
861 -- actuals are only incompatible if they appear in the same instance.
863 if BT1 = BT2
864 or else BT1 = T2
865 or else BT2 = T1
866 then
867 if not Is_Generic_Actual_Type (T1)
868 or else
869 not Is_Generic_Actual_Type (T2)
870 then
871 return True;
873 -- Both T1 and T2 are generic actual types
875 else
876 declare
877 RT1 : constant Entity_Id := Real_Actual (T1);
878 RT2 : constant Entity_Id := Real_Actual (T2);
879 begin
880 return RT1 = RT2
881 or else Is_Itype (T1)
882 or else Is_Itype (T2)
883 or else Is_Constr_Subt_For_U_Nominal (T1)
884 or else Is_Constr_Subt_For_U_Nominal (T2)
885 or else Scope (RT1) /= Scope (RT2);
886 end;
887 end if;
889 -- Literals are compatible with types in a given "class"
891 elsif (T2 = Universal_Integer and then Is_Integer_Type (T1))
892 or else (T2 = Universal_Real and then Is_Real_Type (T1))
893 or else (T2 = Universal_Fixed and then Is_Fixed_Point_Type (T1))
894 or else (T2 = Any_Fixed and then Is_Fixed_Point_Type (T1))
895 or else (T2 = Any_String and then Is_String_Type (T1))
896 or else (T2 = Any_Character and then Is_Character_Type (T1))
897 or else (T2 = Any_Access and then Is_Access_Type (T1))
898 then
899 return True;
901 -- The context may be class wide, and a class-wide type is compatible
902 -- with any member of the class.
904 elsif Is_Class_Wide_Type (T1)
905 and then Is_Ancestor (Root_Type (T1), T2)
906 then
907 return True;
909 elsif Is_Class_Wide_Type (T1)
910 and then Is_Class_Wide_Type (T2)
911 and then Base_Type (Etype (T1)) = Base_Type (Etype (T2))
912 then
913 return True;
915 -- Ada 2005 (AI-345): A class-wide abstract interface type covers a
916 -- task_type or protected_type that implements the interface.
918 elsif Ada_Version >= Ada_2005
919 and then Is_Class_Wide_Type (T1)
920 and then Is_Interface (Etype (T1))
921 and then Is_Concurrent_Type (T2)
922 and then Interface_Present_In_Ancestor
923 (Typ => BT2, Iface => Etype (T1))
924 then
925 return True;
927 -- Ada 2005 (AI-251): A class-wide abstract interface type T1 covers an
928 -- object T2 implementing T1.
930 elsif Ada_Version >= Ada_2005
931 and then Is_Class_Wide_Type (T1)
932 and then Is_Interface (Etype (T1))
933 and then Is_Tagged_Type (T2)
934 then
935 if Interface_Present_In_Ancestor (Typ => T2,
936 Iface => Etype (T1))
937 then
938 return True;
939 end if;
941 declare
942 E : Entity_Id;
943 Elmt : Elmt_Id;
945 begin
946 if Is_Concurrent_Type (BT2) then
947 E := Corresponding_Record_Type (BT2);
948 else
949 E := BT2;
950 end if;
952 -- Ada 2005 (AI-251): A class-wide abstract interface type T1
953 -- covers an object T2 that implements a direct derivation of T1.
954 -- Note: test for presence of E is defense against previous error.
956 if No (E) then
958 -- If expansion is disabled the Corresponding_Record_Type may
959 -- not be available yet, so use the interface list in the
960 -- declaration directly.
962 if ASIS_Mode
963 and then Nkind (Parent (BT2)) = N_Protected_Type_Declaration
964 and then Present (Interface_List (Parent (BT2)))
965 then
966 declare
967 Intf : Node_Id := First (Interface_List (Parent (BT2)));
968 begin
969 while Present (Intf) loop
970 if Is_Ancestor (Etype (T1), Entity (Intf)) then
971 return True;
972 else
973 Next (Intf);
974 end if;
975 end loop;
976 end;
978 return False;
980 else
981 Check_Error_Detected;
982 end if;
984 -- Here we have a corresponding record type
986 elsif Present (Interfaces (E)) then
987 Elmt := First_Elmt (Interfaces (E));
988 while Present (Elmt) loop
989 if Is_Ancestor (Etype (T1), Node (Elmt)) then
990 return True;
991 else
992 Next_Elmt (Elmt);
993 end if;
994 end loop;
995 end if;
997 -- We should also check the case in which T1 is an ancestor of
998 -- some implemented interface???
1000 return False;
1001 end;
1003 -- In a dispatching call, the formal is of some specific type, and the
1004 -- actual is of the corresponding class-wide type, including a subtype
1005 -- of the class-wide type.
1007 elsif Is_Class_Wide_Type (T2)
1008 and then
1009 (Class_Wide_Type (T1) = Class_Wide_Type (T2)
1010 or else Base_Type (Root_Type (T2)) = BT1)
1011 then
1012 return True;
1014 -- Some contexts require a class of types rather than a specific type.
1015 -- For example, conditions require any boolean type, fixed point
1016 -- attributes require some real type, etc. The built-in types Any_XXX
1017 -- represent these classes.
1019 elsif (T1 = Any_Integer and then Is_Integer_Type (T2))
1020 or else (T1 = Any_Boolean and then Is_Boolean_Type (T2))
1021 or else (T1 = Any_Real and then Is_Real_Type (T2))
1022 or else (T1 = Any_Fixed and then Is_Fixed_Point_Type (T2))
1023 or else (T1 = Any_Discrete and then Is_Discrete_Type (T2))
1024 then
1025 return True;
1027 -- An aggregate is compatible with an array or record type
1029 elsif T2 = Any_Composite and then Is_Aggregate_Type (T1) then
1030 return True;
1032 -- If the expected type is an anonymous access, the designated type must
1033 -- cover that of the expression. Use the base type for this check: even
1034 -- though access subtypes are rare in sources, they are generated for
1035 -- actuals in instantiations.
1037 elsif Ekind (BT1) = E_Anonymous_Access_Type
1038 and then Is_Access_Type (T2)
1039 and then Covers (Designated_Type (T1), Designated_Type (T2))
1040 then
1041 return True;
1043 -- Ada 2012 (AI05-0149): Allow an anonymous access type in the context
1044 -- of a named general access type. An implicit conversion will be
1045 -- applied. For the resolution, one designated type must cover the
1046 -- other.
1048 elsif Ada_Version >= Ada_2012
1049 and then Ekind (BT1) = E_General_Access_Type
1050 and then Ekind (BT2) = E_Anonymous_Access_Type
1051 and then (Covers (Designated_Type (T1), Designated_Type (T2))
1052 or else
1053 Covers (Designated_Type (T2), Designated_Type (T1)))
1054 then
1055 return True;
1057 -- An Access_To_Subprogram is compatible with itself, or with an
1058 -- anonymous type created for an attribute reference Access.
1060 elsif Ekind_In (BT1, E_Access_Subprogram_Type,
1061 E_Access_Protected_Subprogram_Type)
1062 and then Is_Access_Type (T2)
1063 and then (not Comes_From_Source (T1)
1064 or else not Comes_From_Source (T2))
1065 and then (Is_Overloadable (Designated_Type (T2))
1066 or else Ekind (Designated_Type (T2)) = E_Subprogram_Type)
1067 and then Type_Conformant (Designated_Type (T1), Designated_Type (T2))
1068 and then Mode_Conformant (Designated_Type (T1), Designated_Type (T2))
1069 then
1070 return True;
1072 -- Ada 2005 (AI-254): An Anonymous_Access_To_Subprogram is compatible
1073 -- with itself, or with an anonymous type created for an attribute
1074 -- reference Access.
1076 elsif Ekind_In (BT1, E_Anonymous_Access_Subprogram_Type,
1077 E_Anonymous_Access_Protected_Subprogram_Type)
1078 and then Is_Access_Type (T2)
1079 and then (not Comes_From_Source (T1)
1080 or else not Comes_From_Source (T2))
1081 and then (Is_Overloadable (Designated_Type (T2))
1082 or else Ekind (Designated_Type (T2)) = E_Subprogram_Type)
1083 and then Type_Conformant (Designated_Type (T1), Designated_Type (T2))
1084 and then Mode_Conformant (Designated_Type (T1), Designated_Type (T2))
1085 then
1086 return True;
1088 -- The context can be a remote access type, and the expression the
1089 -- corresponding source type declared in a categorized package, or
1090 -- vice versa.
1092 elsif Is_Record_Type (T1)
1093 and then (Is_Remote_Call_Interface (T1) or else Is_Remote_Types (T1))
1094 and then Present (Corresponding_Remote_Type (T1))
1095 then
1096 return Covers (Corresponding_Remote_Type (T1), T2);
1098 -- and conversely.
1100 elsif Is_Record_Type (T2)
1101 and then (Is_Remote_Call_Interface (T2) or else Is_Remote_Types (T2))
1102 and then Present (Corresponding_Remote_Type (T2))
1103 then
1104 return Covers (Corresponding_Remote_Type (T2), T1);
1106 -- Synchronized types are represented at run time by their corresponding
1107 -- record type. During expansion one is replaced with the other, but
1108 -- they are compatible views of the same type.
1110 elsif Is_Record_Type (T1)
1111 and then Is_Concurrent_Type (T2)
1112 and then Present (Corresponding_Record_Type (T2))
1113 then
1114 return Covers (T1, Corresponding_Record_Type (T2));
1116 elsif Is_Concurrent_Type (T1)
1117 and then Present (Corresponding_Record_Type (T1))
1118 and then Is_Record_Type (T2)
1119 then
1120 return Covers (Corresponding_Record_Type (T1), T2);
1122 -- During analysis, an attribute reference 'Access has a special type
1123 -- kind: Access_Attribute_Type, to be replaced eventually with the type
1124 -- imposed by context.
1126 elsif Ekind (T2) = E_Access_Attribute_Type
1127 and then Ekind_In (BT1, E_General_Access_Type, E_Access_Type)
1128 and then Covers (Designated_Type (T1), Designated_Type (T2))
1129 then
1130 -- If the target type is a RACW type while the source is an access
1131 -- attribute type, we are building a RACW that may be exported.
1133 if Is_Remote_Access_To_Class_Wide_Type (BT1) then
1134 Set_Has_RACW (Current_Sem_Unit);
1135 end if;
1137 return True;
1139 -- Ditto for allocators, which eventually resolve to the context type
1141 elsif Ekind (T2) = E_Allocator_Type and then Is_Access_Type (T1) then
1142 return Covers (Designated_Type (T1), Designated_Type (T2))
1143 or else
1144 (From_Limited_With (Designated_Type (T1))
1145 and then Covers (Designated_Type (T2), Designated_Type (T1)));
1147 -- A boolean operation on integer literals is compatible with modular
1148 -- context.
1150 elsif T2 = Any_Modular and then Is_Modular_Integer_Type (T1) then
1151 return True;
1153 -- The actual type may be the result of a previous error
1155 elsif BT2 = Any_Type then
1156 return True;
1158 -- A Raise_Expressions is legal in any expression context
1160 elsif BT2 = Raise_Type then
1161 return True;
1163 -- A packed array type covers its corresponding non-packed type. This is
1164 -- not legitimate Ada, but allows the omission of a number of otherwise
1165 -- useless unchecked conversions, and since this can only arise in
1166 -- (known correct) expanded code, no harm is done.
1168 elsif Is_Array_Type (T2)
1169 and then Is_Packed (T2)
1170 and then T1 = Packed_Array_Impl_Type (T2)
1171 then
1172 return True;
1174 -- Similarly an array type covers its corresponding packed array type
1176 elsif Is_Array_Type (T1)
1177 and then Is_Packed (T1)
1178 and then T2 = Packed_Array_Impl_Type (T1)
1179 then
1180 return True;
1182 -- In instances, or with types exported from instantiations, check
1183 -- whether a partial and a full view match. Verify that types are
1184 -- legal, to prevent cascaded errors.
1186 elsif In_Instance
1187 and then (Full_View_Covers (T1, T2) or else Full_View_Covers (T2, T1))
1188 then
1189 return True;
1191 elsif Is_Type (T2)
1192 and then Is_Generic_Actual_Type (T2)
1193 and then Full_View_Covers (T1, T2)
1194 then
1195 return True;
1197 elsif Is_Type (T1)
1198 and then Is_Generic_Actual_Type (T1)
1199 and then Full_View_Covers (T2, T1)
1200 then
1201 return True;
1203 -- In the expansion of inlined bodies, types are compatible if they
1204 -- are structurally equivalent.
1206 elsif In_Inlined_Body
1207 and then (Underlying_Type (T1) = Underlying_Type (T2)
1208 or else
1209 (Is_Access_Type (T1)
1210 and then Is_Access_Type (T2)
1211 and then Designated_Type (T1) = Designated_Type (T2))
1212 or else
1213 (T1 = Any_Access
1214 and then Is_Access_Type (Underlying_Type (T2)))
1215 or else
1216 (T2 = Any_Composite
1217 and then Is_Composite_Type (Underlying_Type (T1))))
1218 then
1219 return True;
1221 -- Ada 2005 (AI-50217): Additional branches to make the shadow entity
1222 -- obtained through a limited_with compatible with its real entity.
1224 elsif From_Limited_With (T1) then
1226 -- If the expected type is the non-limited view of a type, the
1227 -- expression may have the limited view. If that one in turn is
1228 -- incomplete, get full view if available.
1230 if Is_Incomplete_Type (T1) then
1231 return Covers (Get_Full_View (Non_Limited_View (T1)), T2);
1233 elsif Ekind (T1) = E_Class_Wide_Type then
1234 return
1235 Covers (Class_Wide_Type (Non_Limited_View (Etype (T1))), T2);
1236 else
1237 return False;
1238 end if;
1240 elsif From_Limited_With (T2) then
1242 -- If units in the context have Limited_With clauses on each other,
1243 -- either type might have a limited view. Checks performed elsewhere
1244 -- verify that the context type is the nonlimited view.
1246 if Is_Incomplete_Type (T2) then
1247 return Covers (T1, Get_Full_View (Non_Limited_View (T2)));
1249 elsif Ekind (T2) = E_Class_Wide_Type then
1250 return
1251 Present (Non_Limited_View (Etype (T2)))
1252 and then
1253 Covers (T1, Class_Wide_Type (Non_Limited_View (Etype (T2))));
1254 else
1255 return False;
1256 end if;
1258 -- Ada 2005 (AI-412): Coverage for regular incomplete subtypes
1260 elsif Ekind (T1) = E_Incomplete_Subtype then
1261 return Covers (Full_View (Etype (T1)), T2);
1263 elsif Ekind (T2) = E_Incomplete_Subtype then
1264 return Covers (T1, Full_View (Etype (T2)));
1266 -- Ada 2005 (AI-423): Coverage of formal anonymous access types
1267 -- and actual anonymous access types in the context of generic
1268 -- instantiations. We have the following situation:
1270 -- generic
1271 -- type Formal is private;
1272 -- Formal_Obj : access Formal; -- T1
1273 -- package G is ...
1275 -- package P is
1276 -- type Actual is ...
1277 -- Actual_Obj : access Actual; -- T2
1278 -- package Instance is new G (Formal => Actual,
1279 -- Formal_Obj => Actual_Obj);
1281 elsif Ada_Version >= Ada_2005
1282 and then Ekind (T1) = E_Anonymous_Access_Type
1283 and then Ekind (T2) = E_Anonymous_Access_Type
1284 and then Is_Generic_Type (Directly_Designated_Type (T1))
1285 and then Get_Instance_Of (Directly_Designated_Type (T1)) =
1286 Directly_Designated_Type (T2)
1287 then
1288 return True;
1290 -- Otherwise, types are not compatible
1292 else
1293 return False;
1294 end if;
1295 end Covers;
1297 ------------------
1298 -- Disambiguate --
1299 ------------------
1301 function Disambiguate
1302 (N : Node_Id;
1303 I1, I2 : Interp_Index;
1304 Typ : Entity_Id) return Interp
1306 I : Interp_Index;
1307 It : Interp;
1308 It1, It2 : Interp;
1309 Nam1, Nam2 : Entity_Id;
1310 Predef_Subp : Entity_Id;
1311 User_Subp : Entity_Id;
1313 function Inherited_From_Actual (S : Entity_Id) return Boolean;
1314 -- Determine whether one of the candidates is an operation inherited by
1315 -- a type that is derived from an actual in an instantiation.
1317 function In_Same_Declaration_List
1318 (Typ : Entity_Id;
1319 Op_Decl : Entity_Id) return Boolean;
1320 -- AI05-0020: a spurious ambiguity may arise when equality on anonymous
1321 -- access types is declared on the partial view of a designated type, so
1322 -- that the type declaration and equality are not in the same list of
1323 -- declarations. This AI gives a preference rule for the user-defined
1324 -- operation. Same rule applies for arithmetic operations on private
1325 -- types completed with fixed-point types: the predefined operation is
1326 -- hidden; this is already handled properly in GNAT.
1328 function Is_Actual_Subprogram (S : Entity_Id) return Boolean;
1329 -- Determine whether a subprogram is an actual in an enclosing instance.
1330 -- An overloading between such a subprogram and one declared outside the
1331 -- instance is resolved in favor of the first, because it resolved in
1332 -- the generic. Within the instance the actual is represented by a
1333 -- constructed subprogram renaming.
1335 function Matches (Actual, Formal : Node_Id) return Boolean;
1336 -- Look for exact type match in an instance, to remove spurious
1337 -- ambiguities when two formal types have the same actual.
1339 function Operand_Type return Entity_Id;
1340 -- Determine type of operand for an equality operation, to apply
1341 -- Ada 2005 rules to equality on anonymous access types.
1343 function Standard_Operator return Boolean;
1344 -- Check whether subprogram is predefined operator declared in Standard.
1345 -- It may given by an operator name, or by an expanded name whose prefix
1346 -- is Standard.
1348 function Remove_Conversions return Interp;
1349 -- Last chance for pathological cases involving comparisons on literals,
1350 -- and user overloadings of the same operator. Such pathologies have
1351 -- been removed from the ACVC, but still appear in two DEC tests, with
1352 -- the following notable quote from Ben Brosgol:
1354 -- [Note: I disclaim all credit/responsibility/blame for coming up with
1355 -- this example; Robert Dewar brought it to our attention, since it is
1356 -- apparently found in the ACVC 1.5. I did not attempt to find the
1357 -- reason in the Reference Manual that makes the example legal, since I
1358 -- was too nauseated by it to want to pursue it further.]
1360 -- Accordingly, this is not a fully recursive solution, but it handles
1361 -- DEC tests c460vsa, c460vsb. It also handles ai00136a, which pushes
1362 -- pathology in the other direction with calls whose multiple overloaded
1363 -- actuals make them truly unresolvable.
1365 -- The new rules concerning abstract operations create additional need
1366 -- for special handling of expressions with universal operands, see
1367 -- comments to Has_Abstract_Interpretation below.
1369 ---------------------------
1370 -- Inherited_From_Actual --
1371 ---------------------------
1373 function Inherited_From_Actual (S : Entity_Id) return Boolean is
1374 Par : constant Node_Id := Parent (S);
1375 begin
1376 if Nkind (Par) /= N_Full_Type_Declaration
1377 or else Nkind (Type_Definition (Par)) /= N_Derived_Type_Definition
1378 then
1379 return False;
1380 else
1381 return Is_Entity_Name (Subtype_Indication (Type_Definition (Par)))
1382 and then
1383 Is_Generic_Actual_Type (
1384 Entity (Subtype_Indication (Type_Definition (Par))));
1385 end if;
1386 end Inherited_From_Actual;
1388 ------------------------------
1389 -- In_Same_Declaration_List --
1390 ------------------------------
1392 function In_Same_Declaration_List
1393 (Typ : Entity_Id;
1394 Op_Decl : Entity_Id) return Boolean
1396 Scop : constant Entity_Id := Scope (Typ);
1398 begin
1399 return In_Same_List (Parent (Typ), Op_Decl)
1400 or else
1401 (Ekind_In (Scop, E_Package, E_Generic_Package)
1402 and then List_Containing (Op_Decl) =
1403 Visible_Declarations (Parent (Scop))
1404 and then List_Containing (Parent (Typ)) =
1405 Private_Declarations (Parent (Scop)));
1406 end In_Same_Declaration_List;
1408 --------------------------
1409 -- Is_Actual_Subprogram --
1410 --------------------------
1412 function Is_Actual_Subprogram (S : Entity_Id) return Boolean is
1413 begin
1414 return In_Open_Scopes (Scope (S))
1415 and then Nkind (Unit_Declaration_Node (S)) =
1416 N_Subprogram_Renaming_Declaration
1418 -- Why the Comes_From_Source test here???
1420 and then not Comes_From_Source (Unit_Declaration_Node (S))
1422 and then
1423 (Is_Generic_Instance (Scope (S))
1424 or else Is_Wrapper_Package (Scope (S)));
1425 end Is_Actual_Subprogram;
1427 -------------
1428 -- Matches --
1429 -------------
1431 function Matches (Actual, Formal : Node_Id) return Boolean is
1432 T1 : constant Entity_Id := Etype (Actual);
1433 T2 : constant Entity_Id := Etype (Formal);
1434 begin
1435 return T1 = T2
1436 or else
1437 (Is_Numeric_Type (T2)
1438 and then (T1 = Universal_Real or else T1 = Universal_Integer));
1439 end Matches;
1441 ------------------
1442 -- Operand_Type --
1443 ------------------
1445 function Operand_Type return Entity_Id is
1446 Opnd : Node_Id;
1448 begin
1449 if Nkind (N) = N_Function_Call then
1450 Opnd := First_Actual (N);
1451 else
1452 Opnd := Left_Opnd (N);
1453 end if;
1455 return Etype (Opnd);
1456 end Operand_Type;
1458 ------------------------
1459 -- Remove_Conversions --
1460 ------------------------
1462 function Remove_Conversions return Interp is
1463 I : Interp_Index;
1464 It : Interp;
1465 It1 : Interp;
1466 F1 : Entity_Id;
1467 Act1 : Node_Id;
1468 Act2 : Node_Id;
1470 function Has_Abstract_Interpretation (N : Node_Id) return Boolean;
1471 -- If an operation has universal operands the universal operation
1472 -- is present among its interpretations. If there is an abstract
1473 -- interpretation for the operator, with a numeric result, this
1474 -- interpretation was already removed in sem_ch4, but the universal
1475 -- one is still visible. We must rescan the list of operators and
1476 -- remove the universal interpretation to resolve the ambiguity.
1478 ---------------------------------
1479 -- Has_Abstract_Interpretation --
1480 ---------------------------------
1482 function Has_Abstract_Interpretation (N : Node_Id) return Boolean is
1483 E : Entity_Id;
1485 begin
1486 if Nkind (N) not in N_Op
1487 or else Ada_Version < Ada_2005
1488 or else not Is_Overloaded (N)
1489 or else No (Universal_Interpretation (N))
1490 then
1491 return False;
1493 else
1494 E := Get_Name_Entity_Id (Chars (N));
1495 while Present (E) loop
1496 if Is_Overloadable (E)
1497 and then Is_Abstract_Subprogram (E)
1498 and then Is_Numeric_Type (Etype (E))
1499 then
1500 return True;
1501 else
1502 E := Homonym (E);
1503 end if;
1504 end loop;
1506 -- Finally, if an operand of the binary operator is itself
1507 -- an operator, recurse to see whether its own abstract
1508 -- interpretation is responsible for the spurious ambiguity.
1510 if Nkind (N) in N_Binary_Op then
1511 return Has_Abstract_Interpretation (Left_Opnd (N))
1512 or else Has_Abstract_Interpretation (Right_Opnd (N));
1514 elsif Nkind (N) in N_Unary_Op then
1515 return Has_Abstract_Interpretation (Right_Opnd (N));
1517 else
1518 return False;
1519 end if;
1520 end if;
1521 end Has_Abstract_Interpretation;
1523 -- Start of processing for Remove_Conversions
1525 begin
1526 It1 := No_Interp;
1528 Get_First_Interp (N, I, It);
1529 while Present (It.Typ) loop
1530 if not Is_Overloadable (It.Nam) then
1531 return No_Interp;
1532 end if;
1534 F1 := First_Formal (It.Nam);
1536 if No (F1) then
1537 return It1;
1539 else
1540 if Nkind (N) in N_Subprogram_Call then
1541 Act1 := First_Actual (N);
1543 if Present (Act1) then
1544 Act2 := Next_Actual (Act1);
1545 else
1546 Act2 := Empty;
1547 end if;
1549 elsif Nkind (N) in N_Unary_Op then
1550 Act1 := Right_Opnd (N);
1551 Act2 := Empty;
1553 elsif Nkind (N) in N_Binary_Op then
1554 Act1 := Left_Opnd (N);
1555 Act2 := Right_Opnd (N);
1557 -- Use type of second formal, so as to include
1558 -- exponentiation, where the exponent may be
1559 -- ambiguous and the result non-universal.
1561 Next_Formal (F1);
1563 else
1564 return It1;
1565 end if;
1567 if Nkind (Act1) in N_Op
1568 and then Is_Overloaded (Act1)
1569 and then Nkind_In (Left_Opnd (Act1), N_Integer_Literal,
1570 N_Real_Literal)
1571 and then Nkind_In (Right_Opnd (Act1), N_Integer_Literal,
1572 N_Real_Literal)
1573 and then Has_Compatible_Type (Act1, Standard_Boolean)
1574 and then Etype (F1) = Standard_Boolean
1575 then
1576 -- If the two candidates are the original ones, the
1577 -- ambiguity is real. Otherwise keep the original, further
1578 -- calls to Disambiguate will take care of others in the
1579 -- list of candidates.
1581 if It1 /= No_Interp then
1582 if It = Disambiguate.It1
1583 or else It = Disambiguate.It2
1584 then
1585 if It1 = Disambiguate.It1
1586 or else It1 = Disambiguate.It2
1587 then
1588 return No_Interp;
1589 else
1590 It1 := It;
1591 end if;
1592 end if;
1594 elsif Present (Act2)
1595 and then Nkind (Act2) in N_Op
1596 and then Is_Overloaded (Act2)
1597 and then Nkind_In (Right_Opnd (Act2), N_Integer_Literal,
1598 N_Real_Literal)
1599 and then Has_Compatible_Type (Act2, Standard_Boolean)
1600 then
1601 -- The preference rule on the first actual is not
1602 -- sufficient to disambiguate.
1604 goto Next_Interp;
1606 else
1607 It1 := It;
1608 end if;
1610 elsif Is_Numeric_Type (Etype (F1))
1611 and then Has_Abstract_Interpretation (Act1)
1612 then
1613 -- Current interpretation is not the right one because it
1614 -- expects a numeric operand. Examine all the other ones.
1616 declare
1617 I : Interp_Index;
1618 It : Interp;
1620 begin
1621 Get_First_Interp (N, I, It);
1622 while Present (It.Typ) loop
1624 not Is_Numeric_Type (Etype (First_Formal (It.Nam)))
1625 then
1626 if No (Act2)
1627 or else not Has_Abstract_Interpretation (Act2)
1628 or else not
1629 Is_Numeric_Type
1630 (Etype (Next_Formal (First_Formal (It.Nam))))
1631 then
1632 return It;
1633 end if;
1634 end if;
1636 Get_Next_Interp (I, It);
1637 end loop;
1639 return No_Interp;
1640 end;
1641 end if;
1642 end if;
1644 <<Next_Interp>>
1645 Get_Next_Interp (I, It);
1646 end loop;
1648 -- After some error, a formal may have Any_Type and yield a spurious
1649 -- match. To avoid cascaded errors if possible, check for such a
1650 -- formal in either candidate.
1652 if Serious_Errors_Detected > 0 then
1653 declare
1654 Formal : Entity_Id;
1656 begin
1657 Formal := First_Formal (Nam1);
1658 while Present (Formal) loop
1659 if Etype (Formal) = Any_Type then
1660 return Disambiguate.It2;
1661 end if;
1663 Next_Formal (Formal);
1664 end loop;
1666 Formal := First_Formal (Nam2);
1667 while Present (Formal) loop
1668 if Etype (Formal) = Any_Type then
1669 return Disambiguate.It1;
1670 end if;
1672 Next_Formal (Formal);
1673 end loop;
1674 end;
1675 end if;
1677 return It1;
1678 end Remove_Conversions;
1680 -----------------------
1681 -- Standard_Operator --
1682 -----------------------
1684 function Standard_Operator return Boolean is
1685 Nam : Node_Id;
1687 begin
1688 if Nkind (N) in N_Op then
1689 return True;
1691 elsif Nkind (N) = N_Function_Call then
1692 Nam := Name (N);
1694 if Nkind (Nam) /= N_Expanded_Name then
1695 return True;
1696 else
1697 return Entity (Prefix (Nam)) = Standard_Standard;
1698 end if;
1699 else
1700 return False;
1701 end if;
1702 end Standard_Operator;
1704 -- Start of processing for Disambiguate
1706 begin
1707 -- Recover the two legal interpretations
1709 Get_First_Interp (N, I, It);
1710 while I /= I1 loop
1711 Get_Next_Interp (I, It);
1712 end loop;
1714 It1 := It;
1715 Nam1 := It.Nam;
1716 while I /= I2 loop
1717 Get_Next_Interp (I, It);
1718 end loop;
1720 It2 := It;
1721 Nam2 := It.Nam;
1723 -- Check whether one of the entities is an Ada 2005/2012 and we are
1724 -- operating in an earlier mode, in which case we discard the Ada
1725 -- 2005/2012 entity, so that we get proper Ada 95 overload resolution.
1727 if Ada_Version < Ada_2005 then
1728 if Is_Ada_2005_Only (Nam1) or else Is_Ada_2012_Only (Nam1) then
1729 return It2;
1730 elsif Is_Ada_2005_Only (Nam2) or else Is_Ada_2012_Only (Nam1) then
1731 return It1;
1732 end if;
1733 end if;
1735 -- Check whether one of the entities is an Ada 2012 entity and we are
1736 -- operating in Ada 2005 mode, in which case we discard the Ada 2012
1737 -- entity, so that we get proper Ada 2005 overload resolution.
1739 if Ada_Version = Ada_2005 then
1740 if Is_Ada_2012_Only (Nam1) then
1741 return It2;
1742 elsif Is_Ada_2012_Only (Nam2) then
1743 return It1;
1744 end if;
1745 end if;
1747 -- Check for overloaded CIL convention stuff because the CIL libraries
1748 -- do sick things like Console.Write_Line where it matches two different
1749 -- overloads, so just pick the first ???
1751 if Convention (Nam1) = Convention_CIL
1752 and then Convention (Nam2) = Convention_CIL
1753 and then Ekind (Nam1) = Ekind (Nam2)
1754 and then Ekind_In (Nam1, E_Procedure, E_Function)
1755 then
1756 return It2;
1757 end if;
1759 -- If the context is universal, the predefined operator is preferred.
1760 -- This includes bounds in numeric type declarations, and expressions
1761 -- in type conversions. If no interpretation yields a universal type,
1762 -- then we must check whether the user-defined entity hides the prede-
1763 -- fined one.
1765 if Chars (Nam1) in Any_Operator_Name and then Standard_Operator then
1766 if Typ = Universal_Integer
1767 or else Typ = Universal_Real
1768 or else Typ = Any_Integer
1769 or else Typ = Any_Discrete
1770 or else Typ = Any_Real
1771 or else Typ = Any_Type
1772 then
1773 -- Find an interpretation that yields the universal type, or else
1774 -- a predefined operator that yields a predefined numeric type.
1776 declare
1777 Candidate : Interp := No_Interp;
1779 begin
1780 Get_First_Interp (N, I, It);
1781 while Present (It.Typ) loop
1782 if (Covers (Typ, It.Typ) or else Typ = Any_Type)
1783 and then
1784 (It.Typ = Universal_Integer
1785 or else It.Typ = Universal_Real)
1786 then
1787 return It;
1789 elsif Covers (Typ, It.Typ)
1790 and then Scope (It.Typ) = Standard_Standard
1791 and then Scope (It.Nam) = Standard_Standard
1792 and then Is_Numeric_Type (It.Typ)
1793 then
1794 Candidate := It;
1795 end if;
1797 Get_Next_Interp (I, It);
1798 end loop;
1800 if Candidate /= No_Interp then
1801 return Candidate;
1802 end if;
1803 end;
1805 elsif Chars (Nam1) /= Name_Op_Not
1806 and then (Typ = Standard_Boolean or else Typ = Any_Boolean)
1807 then
1808 -- Equality or comparison operation. Choose predefined operator if
1809 -- arguments are universal. The node may be an operator, name, or
1810 -- a function call, so unpack arguments accordingly.
1812 declare
1813 Arg1, Arg2 : Node_Id;
1815 begin
1816 if Nkind (N) in N_Op then
1817 Arg1 := Left_Opnd (N);
1818 Arg2 := Right_Opnd (N);
1820 elsif Is_Entity_Name (N) then
1821 Arg1 := First_Entity (Entity (N));
1822 Arg2 := Next_Entity (Arg1);
1824 else
1825 Arg1 := First_Actual (N);
1826 Arg2 := Next_Actual (Arg1);
1827 end if;
1829 if Present (Arg2)
1830 and then Present (Universal_Interpretation (Arg1))
1831 and then Universal_Interpretation (Arg2) =
1832 Universal_Interpretation (Arg1)
1833 then
1834 Get_First_Interp (N, I, It);
1835 while Scope (It.Nam) /= Standard_Standard loop
1836 Get_Next_Interp (I, It);
1837 end loop;
1839 return It;
1840 end if;
1841 end;
1842 end if;
1843 end if;
1845 -- If no universal interpretation, check whether user-defined operator
1846 -- hides predefined one, as well as other special cases. If the node
1847 -- is a range, then one or both bounds are ambiguous. Each will have
1848 -- to be disambiguated w.r.t. the context type. The type of the range
1849 -- itself is imposed by the context, so we can return either legal
1850 -- interpretation.
1852 if Ekind (Nam1) = E_Operator then
1853 Predef_Subp := Nam1;
1854 User_Subp := Nam2;
1856 elsif Ekind (Nam2) = E_Operator then
1857 Predef_Subp := Nam2;
1858 User_Subp := Nam1;
1860 elsif Nkind (N) = N_Range then
1861 return It1;
1863 -- Implement AI05-105: A renaming declaration with an access
1864 -- definition must resolve to an anonymous access type. This
1865 -- is a resolution rule and can be used to disambiguate.
1867 elsif Nkind (Parent (N)) = N_Object_Renaming_Declaration
1868 and then Present (Access_Definition (Parent (N)))
1869 then
1870 if Ekind_In (It1.Typ, E_Anonymous_Access_Type,
1871 E_Anonymous_Access_Subprogram_Type)
1872 then
1873 if Ekind (It2.Typ) = Ekind (It1.Typ) then
1875 -- True ambiguity
1877 return No_Interp;
1879 else
1880 return It1;
1881 end if;
1883 elsif Ekind_In (It2.Typ, E_Anonymous_Access_Type,
1884 E_Anonymous_Access_Subprogram_Type)
1885 then
1886 return It2;
1888 -- No legal interpretation
1890 else
1891 return No_Interp;
1892 end if;
1894 -- If two user defined-subprograms are visible, it is a true ambiguity,
1895 -- unless one of them is an entry and the context is a conditional or
1896 -- timed entry call, or unless we are within an instance and this is
1897 -- results from two formals types with the same actual.
1899 else
1900 if Nkind (N) = N_Procedure_Call_Statement
1901 and then Nkind (Parent (N)) = N_Entry_Call_Alternative
1902 and then N = Entry_Call_Statement (Parent (N))
1903 then
1904 if Ekind (Nam2) = E_Entry then
1905 return It2;
1906 elsif Ekind (Nam1) = E_Entry then
1907 return It1;
1908 else
1909 return No_Interp;
1910 end if;
1912 -- If the ambiguity occurs within an instance, it is due to several
1913 -- formal types with the same actual. Look for an exact match between
1914 -- the types of the formals of the overloadable entities, and the
1915 -- actuals in the call, to recover the unambiguous match in the
1916 -- original generic.
1918 -- The ambiguity can also be due to an overloading between a formal
1919 -- subprogram and a subprogram declared outside the generic. If the
1920 -- node is overloaded, it did not resolve to the global entity in
1921 -- the generic, and we choose the formal subprogram.
1923 -- Finally, the ambiguity can be between an explicit subprogram and
1924 -- one inherited (with different defaults) from an actual. In this
1925 -- case the resolution was to the explicit declaration in the
1926 -- generic, and remains so in the instance.
1928 -- The same sort of disambiguation needed for calls is also required
1929 -- for the name given in a subprogram renaming, and that case is
1930 -- handled here as well. We test Comes_From_Source to exclude this
1931 -- treatment for implicit renamings created for formal subprograms.
1933 elsif In_Instance and then not In_Generic_Actual (N) then
1934 if Nkind (N) in N_Subprogram_Call
1935 or else
1936 (Nkind (N) in N_Has_Entity
1937 and then
1938 Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
1939 and then Comes_From_Source (Parent (N)))
1940 then
1941 declare
1942 Actual : Node_Id;
1943 Formal : Entity_Id;
1944 Renam : Entity_Id := Empty;
1945 Is_Act1 : constant Boolean := Is_Actual_Subprogram (Nam1);
1946 Is_Act2 : constant Boolean := Is_Actual_Subprogram (Nam2);
1948 begin
1949 if Is_Act1 and then not Is_Act2 then
1950 return It1;
1952 elsif Is_Act2 and then not Is_Act1 then
1953 return It2;
1955 elsif Inherited_From_Actual (Nam1)
1956 and then Comes_From_Source (Nam2)
1957 then
1958 return It2;
1960 elsif Inherited_From_Actual (Nam2)
1961 and then Comes_From_Source (Nam1)
1962 then
1963 return It1;
1964 end if;
1966 -- In the case of a renamed subprogram, pick up the entity
1967 -- of the renaming declaration so we can traverse its
1968 -- formal parameters.
1970 if Nkind (N) in N_Has_Entity then
1971 Renam := Defining_Unit_Name (Specification (Parent (N)));
1972 end if;
1974 if Present (Renam) then
1975 Actual := First_Formal (Renam);
1976 else
1977 Actual := First_Actual (N);
1978 end if;
1980 Formal := First_Formal (Nam1);
1981 while Present (Actual) loop
1982 if Etype (Actual) /= Etype (Formal) then
1983 return It2;
1984 end if;
1986 if Present (Renam) then
1987 Next_Formal (Actual);
1988 else
1989 Next_Actual (Actual);
1990 end if;
1992 Next_Formal (Formal);
1993 end loop;
1995 return It1;
1996 end;
1998 elsif Nkind (N) in N_Binary_Op then
1999 if Matches (Left_Opnd (N), First_Formal (Nam1))
2000 and then
2001 Matches (Right_Opnd (N), Next_Formal (First_Formal (Nam1)))
2002 then
2003 return It1;
2004 else
2005 return It2;
2006 end if;
2008 elsif Nkind (N) in N_Unary_Op then
2009 if Etype (Right_Opnd (N)) = Etype (First_Formal (Nam1)) then
2010 return It1;
2011 else
2012 return It2;
2013 end if;
2015 else
2016 return Remove_Conversions;
2017 end if;
2018 else
2019 return Remove_Conversions;
2020 end if;
2021 end if;
2023 -- An implicit concatenation operator on a string type cannot be
2024 -- disambiguated from the predefined concatenation. This can only
2025 -- happen with concatenation of string literals.
2027 if Chars (User_Subp) = Name_Op_Concat
2028 and then Ekind (User_Subp) = E_Operator
2029 and then Is_String_Type (Etype (First_Formal (User_Subp)))
2030 then
2031 return No_Interp;
2033 -- If the user-defined operator is in an open scope, or in the scope
2034 -- of the resulting type, or given by an expanded name that names its
2035 -- scope, it hides the predefined operator for the type. Exponentiation
2036 -- has to be special-cased because the implicit operator does not have
2037 -- a symmetric signature, and may not be hidden by the explicit one.
2039 elsif (Nkind (N) = N_Function_Call
2040 and then Nkind (Name (N)) = N_Expanded_Name
2041 and then (Chars (Predef_Subp) /= Name_Op_Expon
2042 or else Hides_Op (User_Subp, Predef_Subp))
2043 and then Scope (User_Subp) = Entity (Prefix (Name (N))))
2044 or else Hides_Op (User_Subp, Predef_Subp)
2045 then
2046 if It1.Nam = User_Subp then
2047 return It1;
2048 else
2049 return It2;
2050 end if;
2052 -- Otherwise, the predefined operator has precedence, or if the user-
2053 -- defined operation is directly visible we have a true ambiguity.
2055 -- If this is a fixed-point multiplication and division in Ada 83 mode,
2056 -- exclude the universal_fixed operator, which often causes ambiguities
2057 -- in legacy code.
2059 -- Ditto in Ada 2012, where an ambiguity may arise for an operation
2060 -- on a partial view that is completed with a fixed point type. See
2061 -- AI05-0020 and AI05-0209. The ambiguity is resolved in favor of the
2062 -- user-defined type and subprogram, so that a client of the package
2063 -- has the same resolution as the body of the package.
2065 else
2066 if (In_Open_Scopes (Scope (User_Subp))
2067 or else Is_Potentially_Use_Visible (User_Subp))
2068 and then not In_Instance
2069 then
2070 if Is_Fixed_Point_Type (Typ)
2071 and then Nam_In (Chars (Nam1), Name_Op_Multiply, Name_Op_Divide)
2072 and then
2073 (Ada_Version = Ada_83
2074 or else (Ada_Version >= Ada_2012
2075 and then In_Same_Declaration_List
2076 (First_Subtype (Typ),
2077 Unit_Declaration_Node (User_Subp))))
2078 then
2079 if It2.Nam = Predef_Subp then
2080 return It1;
2081 else
2082 return It2;
2083 end if;
2085 -- Ada 2005, AI-420: preference rule for "=" on Universal_Access
2086 -- states that the operator defined in Standard is not available
2087 -- if there is a user-defined equality with the proper signature,
2088 -- declared in the same declarative list as the type. The node
2089 -- may be an operator or a function call.
2091 elsif Nam_In (Chars (Nam1), Name_Op_Eq, Name_Op_Ne)
2092 and then Ada_Version >= Ada_2005
2093 and then Etype (User_Subp) = Standard_Boolean
2094 and then Ekind (Operand_Type) = E_Anonymous_Access_Type
2095 and then
2096 In_Same_Declaration_List
2097 (Designated_Type (Operand_Type),
2098 Unit_Declaration_Node (User_Subp))
2099 then
2100 if It2.Nam = Predef_Subp then
2101 return It1;
2102 else
2103 return It2;
2104 end if;
2106 -- An immediately visible operator hides a use-visible user-
2107 -- defined operation. This disambiguation cannot take place
2108 -- earlier because the visibility of the predefined operator
2109 -- can only be established when operand types are known.
2111 elsif Ekind (User_Subp) = E_Function
2112 and then Ekind (Predef_Subp) = E_Operator
2113 and then Nkind (N) in N_Op
2114 and then not Is_Overloaded (Right_Opnd (N))
2115 and then
2116 Is_Immediately_Visible (Base_Type (Etype (Right_Opnd (N))))
2117 and then Is_Potentially_Use_Visible (User_Subp)
2118 then
2119 if It2.Nam = Predef_Subp then
2120 return It1;
2121 else
2122 return It2;
2123 end if;
2125 else
2126 return No_Interp;
2127 end if;
2129 elsif It1.Nam = Predef_Subp then
2130 return It1;
2132 else
2133 return It2;
2134 end if;
2135 end if;
2136 end Disambiguate;
2138 ---------------------
2139 -- End_Interp_List --
2140 ---------------------
2142 procedure End_Interp_List is
2143 begin
2144 All_Interp.Table (All_Interp.Last) := No_Interp;
2145 All_Interp.Increment_Last;
2146 end End_Interp_List;
2148 -------------------------
2149 -- Entity_Matches_Spec --
2150 -------------------------
2152 function Entity_Matches_Spec (Old_S, New_S : Entity_Id) return Boolean is
2153 begin
2154 -- Simple case: same entity kinds, type conformance is required. A
2155 -- parameterless function can also rename a literal.
2157 if Ekind (Old_S) = Ekind (New_S)
2158 or else (Ekind (New_S) = E_Function
2159 and then Ekind (Old_S) = E_Enumeration_Literal)
2160 then
2161 return Type_Conformant (New_S, Old_S);
2163 elsif Ekind (New_S) = E_Function and then Ekind (Old_S) = E_Operator then
2164 return Operator_Matches_Spec (Old_S, New_S);
2166 elsif Ekind (New_S) = E_Procedure and then Is_Entry (Old_S) then
2167 return Type_Conformant (New_S, Old_S);
2169 else
2170 return False;
2171 end if;
2172 end Entity_Matches_Spec;
2174 ----------------------
2175 -- Find_Unique_Type --
2176 ----------------------
2178 function Find_Unique_Type (L : Node_Id; R : Node_Id) return Entity_Id is
2179 T : constant Entity_Id := Etype (L);
2180 I : Interp_Index;
2181 It : Interp;
2182 TR : Entity_Id := Any_Type;
2184 begin
2185 if Is_Overloaded (R) then
2186 Get_First_Interp (R, I, It);
2187 while Present (It.Typ) loop
2188 if Covers (T, It.Typ) or else Covers (It.Typ, T) then
2190 -- If several interpretations are possible and L is universal,
2191 -- apply preference rule.
2193 if TR /= Any_Type then
2194 if (T = Universal_Integer or else T = Universal_Real)
2195 and then It.Typ = T
2196 then
2197 TR := It.Typ;
2198 end if;
2200 else
2201 TR := It.Typ;
2202 end if;
2203 end if;
2205 Get_Next_Interp (I, It);
2206 end loop;
2208 Set_Etype (R, TR);
2210 -- In the non-overloaded case, the Etype of R is already set correctly
2212 else
2213 null;
2214 end if;
2216 -- If one of the operands is Universal_Fixed, the type of the other
2217 -- operand provides the context.
2219 if Etype (R) = Universal_Fixed then
2220 return T;
2222 elsif T = Universal_Fixed then
2223 return Etype (R);
2225 -- Ada 2005 (AI-230): Support the following operators:
2227 -- function "=" (L, R : universal_access) return Boolean;
2228 -- function "/=" (L, R : universal_access) return Boolean;
2230 -- Pool specific access types (E_Access_Type) are not covered by these
2231 -- operators because of the legality rule of 4.5.2(9.2): "The operands
2232 -- of the equality operators for universal_access shall be convertible
2233 -- to one another (see 4.6)". For example, considering the type decla-
2234 -- ration "type P is access Integer" and an anonymous access to Integer,
2235 -- P is convertible to "access Integer" by 4.6 (24.11-24.15), but there
2236 -- is no rule in 4.6 that allows "access Integer" to be converted to P.
2238 elsif Ada_Version >= Ada_2005
2239 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
2240 E_Anonymous_Access_Subprogram_Type)
2241 and then Is_Access_Type (Etype (R))
2242 and then Ekind (Etype (R)) /= E_Access_Type
2243 then
2244 return Etype (L);
2246 elsif Ada_Version >= Ada_2005
2247 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
2248 E_Anonymous_Access_Subprogram_Type)
2249 and then Is_Access_Type (Etype (L))
2250 and then Ekind (Etype (L)) /= E_Access_Type
2251 then
2252 return Etype (R);
2254 -- If one operand is a raise_expression, use type of other operand
2256 elsif Nkind (L) = N_Raise_Expression then
2257 return Etype (R);
2259 else
2260 return Specific_Type (T, Etype (R));
2261 end if;
2262 end Find_Unique_Type;
2264 -------------------------------------
2265 -- Function_Interp_Has_Abstract_Op --
2266 -------------------------------------
2268 function Function_Interp_Has_Abstract_Op
2269 (N : Node_Id;
2270 E : Entity_Id) return Entity_Id
2272 Abstr_Op : Entity_Id;
2273 Act : Node_Id;
2274 Act_Parm : Node_Id;
2275 Form_Parm : Node_Id;
2277 begin
2278 -- Why is check on E needed below ???
2279 -- In any case this para needs comments ???
2281 if Is_Overloaded (N) and then Is_Overloadable (E) then
2282 Act_Parm := First_Actual (N);
2283 Form_Parm := First_Formal (E);
2284 while Present (Act_Parm) and then Present (Form_Parm) loop
2285 Act := Act_Parm;
2287 if Nkind (Act) = N_Parameter_Association then
2288 Act := Explicit_Actual_Parameter (Act);
2289 end if;
2291 Abstr_Op := Has_Abstract_Op (Act, Etype (Form_Parm));
2293 if Present (Abstr_Op) then
2294 return Abstr_Op;
2295 end if;
2297 Next_Actual (Act_Parm);
2298 Next_Formal (Form_Parm);
2299 end loop;
2300 end if;
2302 return Empty;
2303 end Function_Interp_Has_Abstract_Op;
2305 ----------------------
2306 -- Get_First_Interp --
2307 ----------------------
2309 procedure Get_First_Interp
2310 (N : Node_Id;
2311 I : out Interp_Index;
2312 It : out Interp)
2314 Int_Ind : Interp_Index;
2315 Map_Ptr : Int;
2316 O_N : Node_Id;
2318 begin
2319 -- If a selected component is overloaded because the selector has
2320 -- multiple interpretations, the node is a call to a protected
2321 -- operation or an indirect call. Retrieve the interpretation from
2322 -- the selector name. The selected component may be overloaded as well
2323 -- if the prefix is overloaded. That case is unchanged.
2325 if Nkind (N) = N_Selected_Component
2326 and then Is_Overloaded (Selector_Name (N))
2327 then
2328 O_N := Selector_Name (N);
2329 else
2330 O_N := N;
2331 end if;
2333 Map_Ptr := Headers (Hash (O_N));
2334 while Map_Ptr /= No_Entry loop
2335 if Interp_Map.Table (Map_Ptr).Node = O_N then
2336 Int_Ind := Interp_Map.Table (Map_Ptr).Index;
2337 It := All_Interp.Table (Int_Ind);
2338 I := Int_Ind;
2339 return;
2340 else
2341 Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
2342 end if;
2343 end loop;
2345 -- Procedure should never be called if the node has no interpretations
2347 raise Program_Error;
2348 end Get_First_Interp;
2350 ---------------------
2351 -- Get_Next_Interp --
2352 ---------------------
2354 procedure Get_Next_Interp (I : in out Interp_Index; It : out Interp) is
2355 begin
2356 I := I + 1;
2357 It := All_Interp.Table (I);
2358 end Get_Next_Interp;
2360 -------------------------
2361 -- Has_Compatible_Type --
2362 -------------------------
2364 function Has_Compatible_Type
2365 (N : Node_Id;
2366 Typ : Entity_Id) return Boolean
2368 I : Interp_Index;
2369 It : Interp;
2371 begin
2372 if N = Error then
2373 return False;
2374 end if;
2376 if Nkind (N) = N_Subtype_Indication
2377 or else not Is_Overloaded (N)
2378 then
2379 return
2380 Covers (Typ, Etype (N))
2382 -- Ada 2005 (AI-345): The context may be a synchronized interface.
2383 -- If the type is already frozen use the corresponding_record
2384 -- to check whether it is a proper descendant.
2386 or else
2387 (Is_Record_Type (Typ)
2388 and then Is_Concurrent_Type (Etype (N))
2389 and then Present (Corresponding_Record_Type (Etype (N)))
2390 and then Covers (Typ, Corresponding_Record_Type (Etype (N))))
2392 or else
2393 (Is_Concurrent_Type (Typ)
2394 and then Is_Record_Type (Etype (N))
2395 and then Present (Corresponding_Record_Type (Typ))
2396 and then Covers (Corresponding_Record_Type (Typ), Etype (N)))
2398 or else
2399 (not Is_Tagged_Type (Typ)
2400 and then Ekind (Typ) /= E_Anonymous_Access_Type
2401 and then Covers (Etype (N), Typ));
2403 -- Overloaded case
2405 else
2406 Get_First_Interp (N, I, It);
2407 while Present (It.Typ) loop
2408 if (Covers (Typ, It.Typ)
2409 and then
2410 (Scope (It.Nam) /= Standard_Standard
2411 or else not Is_Invisible_Operator (N, Base_Type (Typ))))
2413 -- Ada 2005 (AI-345)
2415 or else
2416 (Is_Concurrent_Type (It.Typ)
2417 and then Present (Corresponding_Record_Type
2418 (Etype (It.Typ)))
2419 and then Covers (Typ, Corresponding_Record_Type
2420 (Etype (It.Typ))))
2422 or else (not Is_Tagged_Type (Typ)
2423 and then Ekind (Typ) /= E_Anonymous_Access_Type
2424 and then Covers (It.Typ, Typ))
2425 then
2426 return True;
2427 end if;
2429 Get_Next_Interp (I, It);
2430 end loop;
2432 return False;
2433 end if;
2434 end Has_Compatible_Type;
2436 ---------------------
2437 -- Has_Abstract_Op --
2438 ---------------------
2440 function Has_Abstract_Op
2441 (N : Node_Id;
2442 Typ : Entity_Id) return Entity_Id
2444 I : Interp_Index;
2445 It : Interp;
2447 begin
2448 if Is_Overloaded (N) then
2449 Get_First_Interp (N, I, It);
2450 while Present (It.Nam) loop
2451 if Present (It.Abstract_Op)
2452 and then Etype (It.Abstract_Op) = Typ
2453 then
2454 return It.Abstract_Op;
2455 end if;
2457 Get_Next_Interp (I, It);
2458 end loop;
2459 end if;
2461 return Empty;
2462 end Has_Abstract_Op;
2464 ----------
2465 -- Hash --
2466 ----------
2468 function Hash (N : Node_Id) return Int is
2469 begin
2470 -- Nodes have a size that is power of two, so to select significant
2471 -- bits only we remove the low-order bits.
2473 return ((Int (N) / 2 ** 5) mod Header_Size);
2474 end Hash;
2476 --------------
2477 -- Hides_Op --
2478 --------------
2480 function Hides_Op (F : Entity_Id; Op : Entity_Id) return Boolean is
2481 Btyp : constant Entity_Id := Base_Type (Etype (First_Formal (F)));
2482 begin
2483 return Operator_Matches_Spec (Op, F)
2484 and then (In_Open_Scopes (Scope (F))
2485 or else Scope (F) = Scope (Btyp)
2486 or else (not In_Open_Scopes (Scope (Btyp))
2487 and then not In_Use (Btyp)
2488 and then not In_Use (Scope (Btyp))));
2489 end Hides_Op;
2491 ------------------------
2492 -- Init_Interp_Tables --
2493 ------------------------
2495 procedure Init_Interp_Tables is
2496 begin
2497 All_Interp.Init;
2498 Interp_Map.Init;
2499 Headers := (others => No_Entry);
2500 end Init_Interp_Tables;
2502 -----------------------------------
2503 -- Interface_Present_In_Ancestor --
2504 -----------------------------------
2506 function Interface_Present_In_Ancestor
2507 (Typ : Entity_Id;
2508 Iface : Entity_Id) return Boolean
2510 Target_Typ : Entity_Id;
2511 Iface_Typ : Entity_Id;
2513 function Iface_Present_In_Ancestor (Typ : Entity_Id) return Boolean;
2514 -- Returns True if Typ or some ancestor of Typ implements Iface
2516 -------------------------------
2517 -- Iface_Present_In_Ancestor --
2518 -------------------------------
2520 function Iface_Present_In_Ancestor (Typ : Entity_Id) return Boolean is
2521 E : Entity_Id;
2522 AI : Entity_Id;
2523 Elmt : Elmt_Id;
2525 begin
2526 if Typ = Iface_Typ then
2527 return True;
2528 end if;
2530 -- Handle private types
2532 if Present (Full_View (Typ))
2533 and then not Is_Concurrent_Type (Full_View (Typ))
2534 then
2535 E := Full_View (Typ);
2536 else
2537 E := Typ;
2538 end if;
2540 loop
2541 if Present (Interfaces (E))
2542 and then Present (Interfaces (E))
2543 and then not Is_Empty_Elmt_List (Interfaces (E))
2544 then
2545 Elmt := First_Elmt (Interfaces (E));
2546 while Present (Elmt) loop
2547 AI := Node (Elmt);
2549 if AI = Iface_Typ or else Is_Ancestor (Iface_Typ, AI) then
2550 return True;
2551 end if;
2553 Next_Elmt (Elmt);
2554 end loop;
2555 end if;
2557 exit when Etype (E) = E
2559 -- Handle private types
2561 or else (Present (Full_View (Etype (E)))
2562 and then Full_View (Etype (E)) = E);
2564 -- Check if the current type is a direct derivation of the
2565 -- interface
2567 if Etype (E) = Iface_Typ then
2568 return True;
2569 end if;
2571 -- Climb to the immediate ancestor handling private types
2573 if Present (Full_View (Etype (E))) then
2574 E := Full_View (Etype (E));
2575 else
2576 E := Etype (E);
2577 end if;
2578 end loop;
2580 return False;
2581 end Iface_Present_In_Ancestor;
2583 -- Start of processing for Interface_Present_In_Ancestor
2585 begin
2586 -- Iface might be a class-wide subtype, so we have to apply Base_Type
2588 if Is_Class_Wide_Type (Iface) then
2589 Iface_Typ := Etype (Base_Type (Iface));
2590 else
2591 Iface_Typ := Iface;
2592 end if;
2594 -- Handle subtypes
2596 Iface_Typ := Base_Type (Iface_Typ);
2598 if Is_Access_Type (Typ) then
2599 Target_Typ := Etype (Directly_Designated_Type (Typ));
2600 else
2601 Target_Typ := Typ;
2602 end if;
2604 if Is_Concurrent_Record_Type (Target_Typ) then
2605 Target_Typ := Corresponding_Concurrent_Type (Target_Typ);
2606 end if;
2608 Target_Typ := Base_Type (Target_Typ);
2610 -- In case of concurrent types we can't use the Corresponding Record_Typ
2611 -- to look for the interface because it is built by the expander (and
2612 -- hence it is not always available). For this reason we traverse the
2613 -- list of interfaces (available in the parent of the concurrent type)
2615 if Is_Concurrent_Type (Target_Typ) then
2616 if Present (Interface_List (Parent (Target_Typ))) then
2617 declare
2618 AI : Node_Id;
2620 begin
2621 AI := First (Interface_List (Parent (Target_Typ)));
2623 -- The progenitor itself may be a subtype of an interface type.
2625 while Present (AI) loop
2626 if Etype (AI) = Iface_Typ
2627 or else Base_Type (Etype (AI)) = Iface_Typ
2628 then
2629 return True;
2631 elsif Present (Interfaces (Etype (AI)))
2632 and then Iface_Present_In_Ancestor (Etype (AI))
2633 then
2634 return True;
2635 end if;
2637 Next (AI);
2638 end loop;
2639 end;
2640 end if;
2642 return False;
2643 end if;
2645 if Is_Class_Wide_Type (Target_Typ) then
2646 Target_Typ := Etype (Target_Typ);
2647 end if;
2649 if Ekind (Target_Typ) = E_Incomplete_Type then
2650 pragma Assert (Present (Non_Limited_View (Target_Typ)));
2651 Target_Typ := Non_Limited_View (Target_Typ);
2653 -- Protect the frontend against previously detected errors
2655 if Ekind (Target_Typ) = E_Incomplete_Type then
2656 return False;
2657 end if;
2658 end if;
2660 return Iface_Present_In_Ancestor (Target_Typ);
2661 end Interface_Present_In_Ancestor;
2663 ---------------------
2664 -- Intersect_Types --
2665 ---------------------
2667 function Intersect_Types (L, R : Node_Id) return Entity_Id is
2668 Index : Interp_Index;
2669 It : Interp;
2670 Typ : Entity_Id;
2672 function Check_Right_Argument (T : Entity_Id) return Entity_Id;
2673 -- Find interpretation of right arg that has type compatible with T
2675 --------------------------
2676 -- Check_Right_Argument --
2677 --------------------------
2679 function Check_Right_Argument (T : Entity_Id) return Entity_Id is
2680 Index : Interp_Index;
2681 It : Interp;
2682 T2 : Entity_Id;
2684 begin
2685 if not Is_Overloaded (R) then
2686 return Specific_Type (T, Etype (R));
2688 else
2689 Get_First_Interp (R, Index, It);
2690 loop
2691 T2 := Specific_Type (T, It.Typ);
2693 if T2 /= Any_Type then
2694 return T2;
2695 end if;
2697 Get_Next_Interp (Index, It);
2698 exit when No (It.Typ);
2699 end loop;
2701 return Any_Type;
2702 end if;
2703 end Check_Right_Argument;
2705 -- Start of processing for Intersect_Types
2707 begin
2708 if Etype (L) = Any_Type or else Etype (R) = Any_Type then
2709 return Any_Type;
2710 end if;
2712 if not Is_Overloaded (L) then
2713 Typ := Check_Right_Argument (Etype (L));
2715 else
2716 Typ := Any_Type;
2717 Get_First_Interp (L, Index, It);
2718 while Present (It.Typ) loop
2719 Typ := Check_Right_Argument (It.Typ);
2720 exit when Typ /= Any_Type;
2721 Get_Next_Interp (Index, It);
2722 end loop;
2724 end if;
2726 -- If Typ is Any_Type, it means no compatible pair of types was found
2728 if Typ = Any_Type then
2729 if Nkind (Parent (L)) in N_Op then
2730 Error_Msg_N ("incompatible types for operator", Parent (L));
2732 elsif Nkind (Parent (L)) = N_Range then
2733 Error_Msg_N ("incompatible types given in constraint", Parent (L));
2735 -- Ada 2005 (AI-251): Complete the error notification
2737 elsif Is_Class_Wide_Type (Etype (R))
2738 and then Is_Interface (Etype (Class_Wide_Type (Etype (R))))
2739 then
2740 Error_Msg_NE ("(Ada 2005) does not implement interface }",
2741 L, Etype (Class_Wide_Type (Etype (R))));
2742 else
2743 Error_Msg_N ("incompatible types", Parent (L));
2744 end if;
2745 end if;
2747 return Typ;
2748 end Intersect_Types;
2750 -----------------------
2751 -- In_Generic_Actual --
2752 -----------------------
2754 function In_Generic_Actual (Exp : Node_Id) return Boolean is
2755 Par : constant Node_Id := Parent (Exp);
2757 begin
2758 if No (Par) then
2759 return False;
2761 elsif Nkind (Par) in N_Declaration then
2762 if Nkind (Par) = N_Object_Declaration then
2763 return Present (Corresponding_Generic_Association (Par));
2764 else
2765 return False;
2766 end if;
2768 elsif Nkind (Par) = N_Object_Renaming_Declaration then
2769 return Present (Corresponding_Generic_Association (Par));
2771 elsif Nkind (Par) in N_Statement_Other_Than_Procedure_Call then
2772 return False;
2774 else
2775 return In_Generic_Actual (Parent (Par));
2776 end if;
2777 end In_Generic_Actual;
2779 -----------------
2780 -- Is_Ancestor --
2781 -----------------
2783 function Is_Ancestor
2784 (T1 : Entity_Id;
2785 T2 : Entity_Id;
2786 Use_Full_View : Boolean := False) return Boolean
2788 BT1 : Entity_Id;
2789 BT2 : Entity_Id;
2790 Par : Entity_Id;
2792 begin
2793 BT1 := Base_Type (T1);
2794 BT2 := Base_Type (T2);
2796 -- Handle underlying view of records with unknown discriminants using
2797 -- the original entity that motivated the construction of this
2798 -- underlying record view (see Build_Derived_Private_Type).
2800 if Is_Underlying_Record_View (BT1) then
2801 BT1 := Underlying_Record_View (BT1);
2802 end if;
2804 if Is_Underlying_Record_View (BT2) then
2805 BT2 := Underlying_Record_View (BT2);
2806 end if;
2808 if BT1 = BT2 then
2809 return True;
2811 -- The predicate must look past privacy
2813 elsif Is_Private_Type (T1)
2814 and then Present (Full_View (T1))
2815 and then BT2 = Base_Type (Full_View (T1))
2816 then
2817 return True;
2819 elsif Is_Private_Type (T2)
2820 and then Present (Full_View (T2))
2821 and then BT1 = Base_Type (Full_View (T2))
2822 then
2823 return True;
2825 else
2826 -- Obtain the parent of the base type of T2 (use the full view if
2827 -- allowed).
2829 if Use_Full_View
2830 and then Is_Private_Type (BT2)
2831 and then Present (Full_View (BT2))
2832 then
2833 -- No climbing needed if its full view is the root type
2835 if Full_View (BT2) = Root_Type (Full_View (BT2)) then
2836 return False;
2837 end if;
2839 Par := Etype (Full_View (BT2));
2841 else
2842 Par := Etype (BT2);
2843 end if;
2845 loop
2846 -- If there was a error on the type declaration, do not recurse
2848 if Error_Posted (Par) then
2849 return False;
2851 elsif BT1 = Base_Type (Par)
2852 or else (Is_Private_Type (T1)
2853 and then Present (Full_View (T1))
2854 and then Base_Type (Par) = Base_Type (Full_View (T1)))
2855 then
2856 return True;
2858 elsif Is_Private_Type (Par)
2859 and then Present (Full_View (Par))
2860 and then Full_View (Par) = BT1
2861 then
2862 return True;
2864 -- Root type found
2866 elsif Par = Root_Type (Par) then
2867 return False;
2869 -- Continue climbing
2871 else
2872 -- Use the full-view of private types (if allowed)
2874 if Use_Full_View
2875 and then Is_Private_Type (Par)
2876 and then Present (Full_View (Par))
2877 then
2878 Par := Etype (Full_View (Par));
2879 else
2880 Par := Etype (Par);
2881 end if;
2882 end if;
2883 end loop;
2884 end if;
2885 end Is_Ancestor;
2887 ---------------------------
2888 -- Is_Invisible_Operator --
2889 ---------------------------
2891 function Is_Invisible_Operator
2892 (N : Node_Id;
2893 T : Entity_Id) return Boolean
2895 Orig_Node : constant Node_Id := Original_Node (N);
2897 begin
2898 if Nkind (N) not in N_Op then
2899 return False;
2901 elsif not Comes_From_Source (N) then
2902 return False;
2904 elsif No (Universal_Interpretation (Right_Opnd (N))) then
2905 return False;
2907 elsif Nkind (N) in N_Binary_Op
2908 and then No (Universal_Interpretation (Left_Opnd (N)))
2909 then
2910 return False;
2912 else
2913 return Is_Numeric_Type (T)
2914 and then not In_Open_Scopes (Scope (T))
2915 and then not Is_Potentially_Use_Visible (T)
2916 and then not In_Use (T)
2917 and then not In_Use (Scope (T))
2918 and then
2919 (Nkind (Orig_Node) /= N_Function_Call
2920 or else Nkind (Name (Orig_Node)) /= N_Expanded_Name
2921 or else Entity (Prefix (Name (Orig_Node))) /= Scope (T))
2922 and then not In_Instance;
2923 end if;
2924 end Is_Invisible_Operator;
2926 --------------------
2927 -- Is_Progenitor --
2928 --------------------
2930 function Is_Progenitor
2931 (Iface : Entity_Id;
2932 Typ : Entity_Id) return Boolean
2934 begin
2935 return Implements_Interface (Typ, Iface, Exclude_Parents => True);
2936 end Is_Progenitor;
2938 -------------------
2939 -- Is_Subtype_Of --
2940 -------------------
2942 function Is_Subtype_Of (T1 : Entity_Id; T2 : Entity_Id) return Boolean is
2943 S : Entity_Id;
2945 begin
2946 S := Ancestor_Subtype (T1);
2947 while Present (S) loop
2948 if S = T2 then
2949 return True;
2950 else
2951 S := Ancestor_Subtype (S);
2952 end if;
2953 end loop;
2955 return False;
2956 end Is_Subtype_Of;
2958 ------------------
2959 -- List_Interps --
2960 ------------------
2962 procedure List_Interps (Nam : Node_Id; Err : Node_Id) is
2963 Index : Interp_Index;
2964 It : Interp;
2966 begin
2967 Get_First_Interp (Nam, Index, It);
2968 while Present (It.Nam) loop
2969 if Scope (It.Nam) = Standard_Standard
2970 and then Scope (It.Typ) /= Standard_Standard
2971 then
2972 Error_Msg_Sloc := Sloc (Parent (It.Typ));
2973 Error_Msg_NE ("\\& (inherited) declared#!", Err, It.Nam);
2975 else
2976 Error_Msg_Sloc := Sloc (It.Nam);
2977 Error_Msg_NE ("\\& declared#!", Err, It.Nam);
2978 end if;
2980 Get_Next_Interp (Index, It);
2981 end loop;
2982 end List_Interps;
2984 -----------------
2985 -- New_Interps --
2986 -----------------
2988 procedure New_Interps (N : Node_Id) is
2989 Map_Ptr : Int;
2991 begin
2992 All_Interp.Append (No_Interp);
2994 Map_Ptr := Headers (Hash (N));
2996 if Map_Ptr = No_Entry then
2998 -- Place new node at end of table
3000 Interp_Map.Increment_Last;
3001 Headers (Hash (N)) := Interp_Map.Last;
3003 else
3004 -- Place node at end of chain, or locate its previous entry
3006 loop
3007 if Interp_Map.Table (Map_Ptr).Node = N then
3009 -- Node is already in the table, and is being rewritten.
3010 -- Start a new interp section, retain hash link.
3012 Interp_Map.Table (Map_Ptr).Node := N;
3013 Interp_Map.Table (Map_Ptr).Index := All_Interp.Last;
3014 Set_Is_Overloaded (N, True);
3015 return;
3017 else
3018 exit when Interp_Map.Table (Map_Ptr).Next = No_Entry;
3019 Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
3020 end if;
3021 end loop;
3023 -- Chain the new node
3025 Interp_Map.Increment_Last;
3026 Interp_Map.Table (Map_Ptr).Next := Interp_Map.Last;
3027 end if;
3029 Interp_Map.Table (Interp_Map.Last) := (N, All_Interp.Last, No_Entry);
3030 Set_Is_Overloaded (N, True);
3031 end New_Interps;
3033 ---------------------------
3034 -- Operator_Matches_Spec --
3035 ---------------------------
3037 function Operator_Matches_Spec (Op, New_S : Entity_Id) return Boolean is
3038 Op_Name : constant Name_Id := Chars (Op);
3039 T : constant Entity_Id := Etype (New_S);
3040 New_F : Entity_Id;
3041 Old_F : Entity_Id;
3042 Num : Int;
3043 T1 : Entity_Id;
3044 T2 : Entity_Id;
3046 begin
3047 -- To verify that a predefined operator matches a given signature,
3048 -- do a case analysis of the operator classes. Function can have one
3049 -- or two formals and must have the proper result type.
3051 New_F := First_Formal (New_S);
3052 Old_F := First_Formal (Op);
3053 Num := 0;
3054 while Present (New_F) and then Present (Old_F) loop
3055 Num := Num + 1;
3056 Next_Formal (New_F);
3057 Next_Formal (Old_F);
3058 end loop;
3060 -- Definite mismatch if different number of parameters
3062 if Present (Old_F) or else Present (New_F) then
3063 return False;
3065 -- Unary operators
3067 elsif Num = 1 then
3068 T1 := Etype (First_Formal (New_S));
3070 if Nam_In (Op_Name, Name_Op_Subtract, Name_Op_Add, Name_Op_Abs) then
3071 return Base_Type (T1) = Base_Type (T)
3072 and then Is_Numeric_Type (T);
3074 elsif Op_Name = Name_Op_Not then
3075 return Base_Type (T1) = Base_Type (T)
3076 and then Valid_Boolean_Arg (Base_Type (T));
3078 else
3079 return False;
3080 end if;
3082 -- Binary operators
3084 else
3085 T1 := Etype (First_Formal (New_S));
3086 T2 := Etype (Next_Formal (First_Formal (New_S)));
3088 if Nam_In (Op_Name, Name_Op_And, Name_Op_Or, Name_Op_Xor) then
3089 return Base_Type (T1) = Base_Type (T2)
3090 and then Base_Type (T1) = Base_Type (T)
3091 and then Valid_Boolean_Arg (Base_Type (T));
3093 elsif Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne) then
3094 return Base_Type (T1) = Base_Type (T2)
3095 and then not Is_Limited_Type (T1)
3096 and then Is_Boolean_Type (T);
3098 elsif Nam_In (Op_Name, Name_Op_Lt, Name_Op_Le,
3099 Name_Op_Gt, Name_Op_Ge)
3100 then
3101 return Base_Type (T1) = Base_Type (T2)
3102 and then Valid_Comparison_Arg (T1)
3103 and then Is_Boolean_Type (T);
3105 elsif Nam_In (Op_Name, Name_Op_Add, Name_Op_Subtract) then
3106 return Base_Type (T1) = Base_Type (T2)
3107 and then Base_Type (T1) = Base_Type (T)
3108 and then Is_Numeric_Type (T);
3110 -- For division and multiplication, a user-defined function does not
3111 -- match the predefined universal_fixed operation, except in Ada 83.
3113 elsif Op_Name = Name_Op_Divide then
3114 return (Base_Type (T1) = Base_Type (T2)
3115 and then Base_Type (T1) = Base_Type (T)
3116 and then Is_Numeric_Type (T)
3117 and then (not Is_Fixed_Point_Type (T)
3118 or else Ada_Version = Ada_83))
3120 -- Mixed_Mode operations on fixed-point types
3122 or else (Base_Type (T1) = Base_Type (T)
3123 and then Base_Type (T2) = Base_Type (Standard_Integer)
3124 and then Is_Fixed_Point_Type (T))
3126 -- A user defined operator can also match (and hide) a mixed
3127 -- operation on universal literals.
3129 or else (Is_Integer_Type (T2)
3130 and then Is_Floating_Point_Type (T1)
3131 and then Base_Type (T1) = Base_Type (T));
3133 elsif Op_Name = Name_Op_Multiply then
3134 return (Base_Type (T1) = Base_Type (T2)
3135 and then Base_Type (T1) = Base_Type (T)
3136 and then Is_Numeric_Type (T)
3137 and then (not Is_Fixed_Point_Type (T)
3138 or else Ada_Version = Ada_83))
3140 -- Mixed_Mode operations on fixed-point types
3142 or else (Base_Type (T1) = Base_Type (T)
3143 and then Base_Type (T2) = Base_Type (Standard_Integer)
3144 and then Is_Fixed_Point_Type (T))
3146 or else (Base_Type (T2) = Base_Type (T)
3147 and then Base_Type (T1) = Base_Type (Standard_Integer)
3148 and then Is_Fixed_Point_Type (T))
3150 or else (Is_Integer_Type (T2)
3151 and then Is_Floating_Point_Type (T1)
3152 and then Base_Type (T1) = Base_Type (T))
3154 or else (Is_Integer_Type (T1)
3155 and then Is_Floating_Point_Type (T2)
3156 and then Base_Type (T2) = Base_Type (T));
3158 elsif Nam_In (Op_Name, Name_Op_Mod, Name_Op_Rem) then
3159 return Base_Type (T1) = Base_Type (T2)
3160 and then Base_Type (T1) = Base_Type (T)
3161 and then Is_Integer_Type (T);
3163 elsif Op_Name = Name_Op_Expon then
3164 return Base_Type (T1) = Base_Type (T)
3165 and then Is_Numeric_Type (T)
3166 and then Base_Type (T2) = Base_Type (Standard_Integer);
3168 elsif Op_Name = Name_Op_Concat then
3169 return Is_Array_Type (T)
3170 and then (Base_Type (T) = Base_Type (Etype (Op)))
3171 and then (Base_Type (T1) = Base_Type (T)
3172 or else
3173 Base_Type (T1) = Base_Type (Component_Type (T)))
3174 and then (Base_Type (T2) = Base_Type (T)
3175 or else
3176 Base_Type (T2) = Base_Type (Component_Type (T)));
3178 else
3179 return False;
3180 end if;
3181 end if;
3182 end Operator_Matches_Spec;
3184 -------------------
3185 -- Remove_Interp --
3186 -------------------
3188 procedure Remove_Interp (I : in out Interp_Index) is
3189 II : Interp_Index;
3191 begin
3192 -- Find end of interp list and copy downward to erase the discarded one
3194 II := I + 1;
3195 while Present (All_Interp.Table (II).Typ) loop
3196 II := II + 1;
3197 end loop;
3199 for J in I + 1 .. II loop
3200 All_Interp.Table (J - 1) := All_Interp.Table (J);
3201 end loop;
3203 -- Back up interp index to insure that iterator will pick up next
3204 -- available interpretation.
3206 I := I - 1;
3207 end Remove_Interp;
3209 ------------------
3210 -- Save_Interps --
3211 ------------------
3213 procedure Save_Interps (Old_N : Node_Id; New_N : Node_Id) is
3214 Map_Ptr : Int;
3215 O_N : Node_Id := Old_N;
3217 begin
3218 if Is_Overloaded (Old_N) then
3219 Set_Is_Overloaded (New_N);
3221 if Nkind (Old_N) = N_Selected_Component
3222 and then Is_Overloaded (Selector_Name (Old_N))
3223 then
3224 O_N := Selector_Name (Old_N);
3225 end if;
3227 Map_Ptr := Headers (Hash (O_N));
3229 while Interp_Map.Table (Map_Ptr).Node /= O_N loop
3230 Map_Ptr := Interp_Map.Table (Map_Ptr).Next;
3231 pragma Assert (Map_Ptr /= No_Entry);
3232 end loop;
3234 New_Interps (New_N);
3235 Interp_Map.Table (Interp_Map.Last).Index :=
3236 Interp_Map.Table (Map_Ptr).Index;
3237 end if;
3238 end Save_Interps;
3240 -------------------
3241 -- Specific_Type --
3242 -------------------
3244 function Specific_Type (Typ_1, Typ_2 : Entity_Id) return Entity_Id is
3245 T1 : constant Entity_Id := Available_View (Typ_1);
3246 T2 : constant Entity_Id := Available_View (Typ_2);
3247 B1 : constant Entity_Id := Base_Type (T1);
3248 B2 : constant Entity_Id := Base_Type (T2);
3250 function Is_Remote_Access (T : Entity_Id) return Boolean;
3251 -- Check whether T is the equivalent type of a remote access type.
3252 -- If distribution is enabled, T is a legal context for Null.
3254 ----------------------
3255 -- Is_Remote_Access --
3256 ----------------------
3258 function Is_Remote_Access (T : Entity_Id) return Boolean is
3259 begin
3260 return Is_Record_Type (T)
3261 and then (Is_Remote_Call_Interface (T)
3262 or else Is_Remote_Types (T))
3263 and then Present (Corresponding_Remote_Type (T))
3264 and then Is_Access_Type (Corresponding_Remote_Type (T));
3265 end Is_Remote_Access;
3267 -- Start of processing for Specific_Type
3269 begin
3270 if T1 = Any_Type or else T2 = Any_Type then
3271 return Any_Type;
3272 end if;
3274 if B1 = B2 then
3275 return B1;
3277 elsif (T1 = Universal_Integer and then Is_Integer_Type (T2))
3278 or else (T1 = Universal_Real and then Is_Real_Type (T2))
3279 or else (T1 = Universal_Fixed and then Is_Fixed_Point_Type (T2))
3280 or else (T1 = Any_Fixed and then Is_Fixed_Point_Type (T2))
3281 then
3282 return B2;
3284 elsif (T2 = Universal_Integer and then Is_Integer_Type (T1))
3285 or else (T2 = Universal_Real and then Is_Real_Type (T1))
3286 or else (T2 = Universal_Fixed and then Is_Fixed_Point_Type (T1))
3287 or else (T2 = Any_Fixed and then Is_Fixed_Point_Type (T1))
3288 then
3289 return B1;
3291 elsif T2 = Any_String and then Is_String_Type (T1) then
3292 return B1;
3294 elsif T1 = Any_String and then Is_String_Type (T2) then
3295 return B2;
3297 elsif T2 = Any_Character and then Is_Character_Type (T1) then
3298 return B1;
3300 elsif T1 = Any_Character and then Is_Character_Type (T2) then
3301 return B2;
3303 elsif T1 = Any_Access
3304 and then (Is_Access_Type (T2) or else Is_Remote_Access (T2))
3305 then
3306 return T2;
3308 elsif T2 = Any_Access
3309 and then (Is_Access_Type (T1) or else Is_Remote_Access (T1))
3310 then
3311 return T1;
3313 -- In an instance, the specific type may have a private view. Use full
3314 -- view to check legality.
3316 elsif T2 = Any_Access
3317 and then Is_Private_Type (T1)
3318 and then Present (Full_View (T1))
3319 and then Is_Access_Type (Full_View (T1))
3320 and then In_Instance
3321 then
3322 return T1;
3324 elsif T2 = Any_Composite and then Is_Aggregate_Type (T1) then
3325 return T1;
3327 elsif T1 = Any_Composite and then Is_Aggregate_Type (T2) then
3328 return T2;
3330 elsif T1 = Any_Modular and then Is_Modular_Integer_Type (T2) then
3331 return T2;
3333 elsif T2 = Any_Modular and then Is_Modular_Integer_Type (T1) then
3334 return T1;
3336 -- ----------------------------------------------------------
3337 -- Special cases for equality operators (all other predefined
3338 -- operators can never apply to tagged types)
3339 -- ----------------------------------------------------------
3341 -- Ada 2005 (AI-251): T1 and T2 are class-wide types, and T2 is an
3342 -- interface
3344 elsif Is_Class_Wide_Type (T1)
3345 and then Is_Class_Wide_Type (T2)
3346 and then Is_Interface (Etype (T2))
3347 then
3348 return T1;
3350 -- Ada 2005 (AI-251): T1 is a concrete type that implements the
3351 -- class-wide interface T2
3353 elsif Is_Class_Wide_Type (T2)
3354 and then Is_Interface (Etype (T2))
3355 and then Interface_Present_In_Ancestor (Typ => T1,
3356 Iface => Etype (T2))
3357 then
3358 return T1;
3360 elsif Is_Class_Wide_Type (T1)
3361 and then Is_Ancestor (Root_Type (T1), T2)
3362 then
3363 return T1;
3365 elsif Is_Class_Wide_Type (T2)
3366 and then Is_Ancestor (Root_Type (T2), T1)
3367 then
3368 return T2;
3370 elsif Ekind_In (B1, E_Access_Subprogram_Type,
3371 E_Access_Protected_Subprogram_Type)
3372 and then Ekind (Designated_Type (B1)) /= E_Subprogram_Type
3373 and then Is_Access_Type (T2)
3374 then
3375 return T2;
3377 elsif Ekind_In (B2, E_Access_Subprogram_Type,
3378 E_Access_Protected_Subprogram_Type)
3379 and then Ekind (Designated_Type (B2)) /= E_Subprogram_Type
3380 and then Is_Access_Type (T1)
3381 then
3382 return T1;
3384 elsif Ekind_In (T1, E_Allocator_Type,
3385 E_Access_Attribute_Type,
3386 E_Anonymous_Access_Type)
3387 and then Is_Access_Type (T2)
3388 then
3389 return T2;
3391 elsif Ekind_In (T2, E_Allocator_Type,
3392 E_Access_Attribute_Type,
3393 E_Anonymous_Access_Type)
3394 and then Is_Access_Type (T1)
3395 then
3396 return T1;
3398 -- If none of the above cases applies, types are not compatible
3400 else
3401 return Any_Type;
3402 end if;
3403 end Specific_Type;
3405 ---------------------
3406 -- Set_Abstract_Op --
3407 ---------------------
3409 procedure Set_Abstract_Op (I : Interp_Index; V : Entity_Id) is
3410 begin
3411 All_Interp.Table (I).Abstract_Op := V;
3412 end Set_Abstract_Op;
3414 -----------------------
3415 -- Valid_Boolean_Arg --
3416 -----------------------
3418 -- In addition to booleans and arrays of booleans, we must include
3419 -- aggregates as valid boolean arguments, because in the first pass of
3420 -- resolution their components are not examined. If it turns out not to be
3421 -- an aggregate of booleans, this will be diagnosed in Resolve.
3422 -- Any_Composite must be checked for prior to the array type checks because
3423 -- Any_Composite does not have any associated indexes.
3425 function Valid_Boolean_Arg (T : Entity_Id) return Boolean is
3426 begin
3427 if Is_Boolean_Type (T)
3428 or else Is_Modular_Integer_Type (T)
3429 or else T = Universal_Integer
3430 or else T = Any_Composite
3431 then
3432 return True;
3434 elsif Is_Array_Type (T)
3435 and then T /= Any_String
3436 and then Number_Dimensions (T) = 1
3437 and then Is_Boolean_Type (Component_Type (T))
3438 and then
3439 ((not Is_Private_Composite (T) and then not Is_Limited_Composite (T))
3440 or else In_Instance
3441 or else Available_Full_View_Of_Component (T))
3442 then
3443 return True;
3445 else
3446 return False;
3447 end if;
3448 end Valid_Boolean_Arg;
3450 --------------------------
3451 -- Valid_Comparison_Arg --
3452 --------------------------
3454 function Valid_Comparison_Arg (T : Entity_Id) return Boolean is
3455 begin
3457 if T = Any_Composite then
3458 return False;
3460 elsif Is_Discrete_Type (T)
3461 or else Is_Real_Type (T)
3462 then
3463 return True;
3465 elsif Is_Array_Type (T)
3466 and then Number_Dimensions (T) = 1
3467 and then Is_Discrete_Type (Component_Type (T))
3468 and then (not Is_Private_Composite (T) or else In_Instance)
3469 and then (not Is_Limited_Composite (T) or else In_Instance)
3470 then
3471 return True;
3473 elsif Is_Array_Type (T)
3474 and then Number_Dimensions (T) = 1
3475 and then Is_Discrete_Type (Component_Type (T))
3476 and then Available_Full_View_Of_Component (T)
3477 then
3478 return True;
3480 elsif Is_String_Type (T) then
3481 return True;
3482 else
3483 return False;
3484 end if;
3485 end Valid_Comparison_Arg;
3487 ------------------
3488 -- Write_Interp --
3489 ------------------
3491 procedure Write_Interp (It : Interp) is
3492 begin
3493 Write_Str ("Nam: ");
3494 Print_Tree_Node (It.Nam);
3495 Write_Str ("Typ: ");
3496 Print_Tree_Node (It.Typ);
3497 Write_Str ("Abstract_Op: ");
3498 Print_Tree_Node (It.Abstract_Op);
3499 end Write_Interp;
3501 ----------------------
3502 -- Write_Interp_Ref --
3503 ----------------------
3505 procedure Write_Interp_Ref (Map_Ptr : Int) is
3506 begin
3507 Write_Str (" Node: ");
3508 Write_Int (Int (Interp_Map.Table (Map_Ptr).Node));
3509 Write_Str (" Index: ");
3510 Write_Int (Int (Interp_Map.Table (Map_Ptr).Index));
3511 Write_Str (" Next: ");
3512 Write_Int (Interp_Map.Table (Map_Ptr).Next);
3513 Write_Eol;
3514 end Write_Interp_Ref;
3516 ---------------------
3517 -- Write_Overloads --
3518 ---------------------
3520 procedure Write_Overloads (N : Node_Id) is
3521 I : Interp_Index;
3522 It : Interp;
3523 Nam : Entity_Id;
3525 begin
3526 Write_Str ("Overloads: ");
3527 Print_Node_Briefly (N);
3529 if not Is_Overloaded (N) then
3530 Write_Line ("Non-overloaded entity ");
3531 Write_Entity_Info (Entity (N), " ");
3533 elsif Nkind (N) not in N_Has_Entity then
3534 Get_First_Interp (N, I, It);
3535 while Present (It.Nam) loop
3536 Write_Int (Int (It.Typ));
3537 Write_Str (" ");
3538 Write_Name (Chars (It.Typ));
3539 Write_Eol;
3540 Get_Next_Interp (I, It);
3541 end loop;
3543 else
3544 Get_First_Interp (N, I, It);
3545 Write_Line ("Overloaded entity ");
3546 Write_Line (" Name Type Abstract Op");
3547 Write_Line ("===============================================");
3548 Nam := It.Nam;
3550 while Present (Nam) loop
3551 Write_Int (Int (Nam));
3552 Write_Str (" ");
3553 Write_Name (Chars (Nam));
3554 Write_Str (" ");
3555 Write_Int (Int (It.Typ));
3556 Write_Str (" ");
3557 Write_Name (Chars (It.Typ));
3559 if Present (It.Abstract_Op) then
3560 Write_Str (" ");
3561 Write_Int (Int (It.Abstract_Op));
3562 Write_Str (" ");
3563 Write_Name (Chars (It.Abstract_Op));
3564 end if;
3566 Write_Eol;
3567 Get_Next_Interp (I, It);
3568 Nam := It.Nam;
3569 end loop;
3570 end if;
3571 end Write_Overloads;
3573 end Sem_Type;