Merge from trunk @222673.
[official-gcc.git] / gcc / ada / sem_ch8.adb
blobab9ee00dc68a301353a841d73f852ed36bbb9a93
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Disp; use Exp_Disp;
32 with Exp_Tss; use Exp_Tss;
33 with Exp_Util; use Exp_Util;
34 with Fname; use Fname;
35 with Freeze; use Freeze;
36 with Ghost; use Ghost;
37 with Impunit; use Impunit;
38 with Lib; use Lib;
39 with Lib.Load; use Lib.Load;
40 with Lib.Xref; use Lib.Xref;
41 with Namet; use Namet;
42 with Namet.Sp; use Namet.Sp;
43 with Nlists; use Nlists;
44 with Nmake; use Nmake;
45 with Opt; use Opt;
46 with Output; use Output;
47 with Restrict; use Restrict;
48 with Rident; use Rident;
49 with Rtsfind; use Rtsfind;
50 with Sem; use Sem;
51 with Sem_Aux; use Sem_Aux;
52 with Sem_Cat; use Sem_Cat;
53 with Sem_Ch3; use Sem_Ch3;
54 with Sem_Ch4; use Sem_Ch4;
55 with Sem_Ch6; use Sem_Ch6;
56 with Sem_Ch12; use Sem_Ch12;
57 with Sem_Ch13; use Sem_Ch13;
58 with Sem_Dim; use Sem_Dim;
59 with Sem_Disp; use Sem_Disp;
60 with Sem_Dist; use Sem_Dist;
61 with Sem_Eval; use Sem_Eval;
62 with Sem_Res; use Sem_Res;
63 with Sem_Util; use Sem_Util;
64 with Sem_Type; use Sem_Type;
65 with Stand; use Stand;
66 with Sinfo; use Sinfo;
67 with Sinfo.CN; use Sinfo.CN;
68 with Snames; use Snames;
69 with Style; use Style;
70 with Table;
71 with Targparm; use Targparm;
72 with Tbuild; use Tbuild;
73 with Uintp; use Uintp;
75 package body Sem_Ch8 is
77 ------------------------------------
78 -- Visibility and Name Resolution --
79 ------------------------------------
81 -- This package handles name resolution and the collection of possible
82 -- interpretations for overloaded names, prior to overload resolution.
84 -- Name resolution is the process that establishes a mapping between source
85 -- identifiers and the entities they denote at each point in the program.
86 -- Each entity is represented by a defining occurrence. Each identifier
87 -- that denotes an entity points to the corresponding defining occurrence.
88 -- This is the entity of the applied occurrence. Each occurrence holds
89 -- an index into the names table, where source identifiers are stored.
91 -- Each entry in the names table for an identifier or designator uses the
92 -- Info pointer to hold a link to the currently visible entity that has
93 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
94 -- in package Sem_Util). The visibility is initialized at the beginning of
95 -- semantic processing to make entities in package Standard immediately
96 -- visible. The visibility table is used in a more subtle way when
97 -- compiling subunits (see below).
99 -- Entities that have the same name (i.e. homonyms) are chained. In the
100 -- case of overloaded entities, this chain holds all the possible meanings
101 -- of a given identifier. The process of overload resolution uses type
102 -- information to select from this chain the unique meaning of a given
103 -- identifier.
105 -- Entities are also chained in their scope, through the Next_Entity link.
106 -- As a consequence, the name space is organized as a sparse matrix, where
107 -- each row corresponds to a scope, and each column to a source identifier.
108 -- Open scopes, that is to say scopes currently being compiled, have their
109 -- corresponding rows of entities in order, innermost scope first.
111 -- The scopes of packages that are mentioned in context clauses appear in
112 -- no particular order, interspersed among open scopes. This is because
113 -- in the course of analyzing the context of a compilation, a package
114 -- declaration is first an open scope, and subsequently an element of the
115 -- context. If subunits or child units are present, a parent unit may
116 -- appear under various guises at various times in the compilation.
118 -- When the compilation of the innermost scope is complete, the entities
119 -- defined therein are no longer visible. If the scope is not a package
120 -- declaration, these entities are never visible subsequently, and can be
121 -- removed from visibility chains. If the scope is a package declaration,
122 -- its visible declarations may still be accessible. Therefore the entities
123 -- defined in such a scope are left on the visibility chains, and only
124 -- their visibility (immediately visibility or potential use-visibility)
125 -- is affected.
127 -- The ordering of homonyms on their chain does not necessarily follow
128 -- the order of their corresponding scopes on the scope stack. For
129 -- example, if package P and the enclosing scope both contain entities
130 -- named E, then when compiling the package body the chain for E will
131 -- hold the global entity first, and the local one (corresponding to
132 -- the current inner scope) next. As a result, name resolution routines
133 -- do not assume any relative ordering of the homonym chains, either
134 -- for scope nesting or to order of appearance of context clauses.
136 -- When compiling a child unit, entities in the parent scope are always
137 -- immediately visible. When compiling the body of a child unit, private
138 -- entities in the parent must also be made immediately visible. There
139 -- are separate routines to make the visible and private declarations
140 -- visible at various times (see package Sem_Ch7).
142 -- +--------+ +-----+
143 -- | In use |-------->| EU1 |-------------------------->
144 -- +--------+ +-----+
145 -- | |
146 -- +--------+ +-----+ +-----+
147 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
148 -- +--------+ +-----+ +-----+
149 -- | |
150 -- +---------+ | +-----+
151 -- | with'ed |------------------------------>| EW2 |--->
152 -- +---------+ | +-----+
153 -- | |
154 -- +--------+ +-----+ +-----+
155 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
156 -- +--------+ +-----+ +-----+
157 -- | |
158 -- +--------+ +-----+ +-----+
159 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
160 -- +--------+ +-----+ +-----+
161 -- ^ | |
162 -- | | |
163 -- | +---------+ | |
164 -- | | with'ed |----------------------------------------->
165 -- | +---------+ | |
166 -- | | |
167 -- Scope stack | |
168 -- (innermost first) | |
169 -- +----------------------------+
170 -- Names table => | Id1 | | | | Id2 |
171 -- +----------------------------+
173 -- Name resolution must deal with several syntactic forms: simple names,
174 -- qualified names, indexed names, and various forms of calls.
176 -- Each identifier points to an entry in the names table. The resolution
177 -- of a simple name consists in traversing the homonym chain, starting
178 -- from the names table. If an entry is immediately visible, it is the one
179 -- designated by the identifier. If only potentially use-visible entities
180 -- are on the chain, we must verify that they do not hide each other. If
181 -- the entity we find is overloadable, we collect all other overloadable
182 -- entities on the chain as long as they are not hidden.
184 -- To resolve expanded names, we must find the entity at the intersection
185 -- of the entity chain for the scope (the prefix) and the homonym chain
186 -- for the selector. In general, homonym chains will be much shorter than
187 -- entity chains, so it is preferable to start from the names table as
188 -- well. If the entity found is overloadable, we must collect all other
189 -- interpretations that are defined in the scope denoted by the prefix.
191 -- For records, protected types, and tasks, their local entities are
192 -- removed from visibility chains on exit from the corresponding scope.
193 -- From the outside, these entities are always accessed by selected
194 -- notation, and the entity chain for the record type, protected type,
195 -- etc. is traversed sequentially in order to find the designated entity.
197 -- The discriminants of a type and the operations of a protected type or
198 -- task are unchained on exit from the first view of the type, (such as
199 -- a private or incomplete type declaration, or a protected type speci-
200 -- fication) and re-chained when compiling the second view.
202 -- In the case of operators, we do not make operators on derived types
203 -- explicit. As a result, the notation P."+" may denote either a user-
204 -- defined function with name "+", or else an implicit declaration of the
205 -- operator "+" in package P. The resolution of expanded names always
206 -- tries to resolve an operator name as such an implicitly defined entity,
207 -- in addition to looking for explicit declarations.
209 -- All forms of names that denote entities (simple names, expanded names,
210 -- character literals in some cases) have a Entity attribute, which
211 -- identifies the entity denoted by the name.
213 ---------------------
214 -- The Scope Stack --
215 ---------------------
217 -- The Scope stack keeps track of the scopes currently been compiled.
218 -- Every entity that contains declarations (including records) is placed
219 -- on the scope stack while it is being processed, and removed at the end.
220 -- Whenever a non-package scope is exited, the entities defined therein
221 -- are removed from the visibility table, so that entities in outer scopes
222 -- become visible (see previous description). On entry to Sem, the scope
223 -- stack only contains the package Standard. As usual, subunits complicate
224 -- this picture ever so slightly.
226 -- The Rtsfind mechanism can force a call to Semantics while another
227 -- compilation is in progress. The unit retrieved by Rtsfind must be
228 -- compiled in its own context, and has no access to the visibility of
229 -- the unit currently being compiled. The procedures Save_Scope_Stack and
230 -- Restore_Scope_Stack make entities in current open scopes invisible
231 -- before compiling the retrieved unit, and restore the compilation
232 -- environment afterwards.
234 ------------------------
235 -- Compiling subunits --
236 ------------------------
238 -- Subunits must be compiled in the environment of the corresponding stub,
239 -- that is to say with the same visibility into the parent (and its
240 -- context) that is available at the point of the stub declaration, but
241 -- with the additional visibility provided by the context clause of the
242 -- subunit itself. As a result, compilation of a subunit forces compilation
243 -- of the parent (see description in lib-). At the point of the stub
244 -- declaration, Analyze is called recursively to compile the proper body of
245 -- the subunit, but without reinitializing the names table, nor the scope
246 -- stack (i.e. standard is not pushed on the stack). In this fashion the
247 -- context of the subunit is added to the context of the parent, and the
248 -- subunit is compiled in the correct environment. Note that in the course
249 -- of processing the context of a subunit, Standard will appear twice on
250 -- the scope stack: once for the parent of the subunit, and once for the
251 -- unit in the context clause being compiled. However, the two sets of
252 -- entities are not linked by homonym chains, so that the compilation of
253 -- any context unit happens in a fresh visibility environment.
255 -------------------------------
256 -- Processing of USE Clauses --
257 -------------------------------
259 -- Every defining occurrence has a flag indicating if it is potentially use
260 -- visible. Resolution of simple names examines this flag. The processing
261 -- of use clauses consists in setting this flag on all visible entities
262 -- defined in the corresponding package. On exit from the scope of the use
263 -- clause, the corresponding flag must be reset. However, a package may
264 -- appear in several nested use clauses (pathological but legal, alas)
265 -- which forces us to use a slightly more involved scheme:
267 -- a) The defining occurrence for a package holds a flag -In_Use- to
268 -- indicate that it is currently in the scope of a use clause. If a
269 -- redundant use clause is encountered, then the corresponding occurrence
270 -- of the package name is flagged -Redundant_Use-.
272 -- b) On exit from a scope, the use clauses in its declarative part are
273 -- scanned. The visibility flag is reset in all entities declared in
274 -- package named in a use clause, as long as the package is not flagged
275 -- as being in a redundant use clause (in which case the outer use
276 -- clause is still in effect, and the direct visibility of its entities
277 -- must be retained).
279 -- Note that entities are not removed from their homonym chains on exit
280 -- from the package specification. A subsequent use clause does not need
281 -- to rechain the visible entities, but only to establish their direct
282 -- visibility.
284 -----------------------------------
285 -- Handling private declarations --
286 -----------------------------------
288 -- The principle that each entity has a single defining occurrence clashes
289 -- with the presence of two separate definitions for private types: the
290 -- first is the private type declaration, and second is the full type
291 -- declaration. It is important that all references to the type point to
292 -- the same defining occurrence, namely the first one. To enforce the two
293 -- separate views of the entity, the corresponding information is swapped
294 -- between the two declarations. Outside of the package, the defining
295 -- occurrence only contains the private declaration information, while in
296 -- the private part and the body of the package the defining occurrence
297 -- contains the full declaration. To simplify the swap, the defining
298 -- occurrence that currently holds the private declaration points to the
299 -- full declaration. During semantic processing the defining occurrence
300 -- also points to a list of private dependents, that is to say access types
301 -- or composite types whose designated types or component types are
302 -- subtypes or derived types of the private type in question. After the
303 -- full declaration has been seen, the private dependents are updated to
304 -- indicate that they have full definitions.
306 ------------------------------------
307 -- Handling of Undefined Messages --
308 ------------------------------------
310 -- In normal mode, only the first use of an undefined identifier generates
311 -- a message. The table Urefs is used to record error messages that have
312 -- been issued so that second and subsequent ones do not generate further
313 -- messages. However, the second reference causes text to be added to the
314 -- original undefined message noting "(more references follow)". The
315 -- full error list option (-gnatf) forces messages to be generated for
316 -- every reference and disconnects the use of this table.
318 type Uref_Entry is record
319 Node : Node_Id;
320 -- Node for identifier for which original message was posted. The
321 -- Chars field of this identifier is used to detect later references
322 -- to the same identifier.
324 Err : Error_Msg_Id;
325 -- Records error message Id of original undefined message. Reset to
326 -- No_Error_Msg after the second occurrence, where it is used to add
327 -- text to the original message as described above.
329 Nvis : Boolean;
330 -- Set if the message is not visible rather than undefined
332 Loc : Source_Ptr;
333 -- Records location of error message. Used to make sure that we do
334 -- not consider a, b : undefined as two separate instances, which
335 -- would otherwise happen, since the parser converts this sequence
336 -- to a : undefined; b : undefined.
338 end record;
340 package Urefs is new Table.Table (
341 Table_Component_Type => Uref_Entry,
342 Table_Index_Type => Nat,
343 Table_Low_Bound => 1,
344 Table_Initial => 10,
345 Table_Increment => 100,
346 Table_Name => "Urefs");
348 Candidate_Renaming : Entity_Id;
349 -- Holds a candidate interpretation that appears in a subprogram renaming
350 -- declaration and does not match the given specification, but matches at
351 -- least on the first formal. Allows better error message when given
352 -- specification omits defaulted parameters, a common error.
354 -----------------------
355 -- Local Subprograms --
356 -----------------------
358 procedure Analyze_Generic_Renaming
359 (N : Node_Id;
360 K : Entity_Kind);
361 -- Common processing for all three kinds of generic renaming declarations.
362 -- Enter new name and indicate that it renames the generic unit.
364 procedure Analyze_Renamed_Character
365 (N : Node_Id;
366 New_S : Entity_Id;
367 Is_Body : Boolean);
368 -- Renamed entity is given by a character literal, which must belong
369 -- to the return type of the new entity. Is_Body indicates whether the
370 -- declaration is a renaming_as_body. If the original declaration has
371 -- already been frozen (because of an intervening body, e.g.) the body of
372 -- the function must be built now. The same applies to the following
373 -- various renaming procedures.
375 procedure Analyze_Renamed_Dereference
376 (N : Node_Id;
377 New_S : Entity_Id;
378 Is_Body : Boolean);
379 -- Renamed entity is given by an explicit dereference. Prefix must be a
380 -- conformant access_to_subprogram type.
382 procedure Analyze_Renamed_Entry
383 (N : Node_Id;
384 New_S : Entity_Id;
385 Is_Body : Boolean);
386 -- If the renamed entity in a subprogram renaming is an entry or protected
387 -- subprogram, build a body for the new entity whose only statement is a
388 -- call to the renamed entity.
390 procedure Analyze_Renamed_Family_Member
391 (N : Node_Id;
392 New_S : Entity_Id;
393 Is_Body : Boolean);
394 -- Used when the renamed entity is an indexed component. The prefix must
395 -- denote an entry family.
397 procedure Analyze_Renamed_Primitive_Operation
398 (N : Node_Id;
399 New_S : Entity_Id;
400 Is_Body : Boolean);
401 -- If the renamed entity in a subprogram renaming is a primitive operation
402 -- or a class-wide operation in prefix form, save the target object,
403 -- which must be added to the list of actuals in any subsequent call.
404 -- The renaming operation is intrinsic because the compiler must in
405 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
407 function Applicable_Use (Pack_Name : Node_Id) return Boolean;
408 -- Common code to Use_One_Package and Set_Use, to determine whether use
409 -- clause must be processed. Pack_Name is an entity name that references
410 -- the package in question.
412 procedure Attribute_Renaming (N : Node_Id);
413 -- Analyze renaming of attribute as subprogram. The renaming declaration N
414 -- is rewritten as a subprogram body that returns the attribute reference
415 -- applied to the formals of the function.
417 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
418 -- Set Entity, with style check if need be. For a discriminant reference,
419 -- replace by the corresponding discriminal, i.e. the parameter of the
420 -- initialization procedure that corresponds to the discriminant.
422 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
423 -- A renaming_as_body may occur after the entity of the original decla-
424 -- ration has been frozen. In that case, the body of the new entity must
425 -- be built now, because the usual mechanism of building the renamed
426 -- body at the point of freezing will not work. Subp is the subprogram
427 -- for which N provides the Renaming_As_Body.
429 procedure Check_In_Previous_With_Clause
430 (N : Node_Id;
431 Nam : Node_Id);
432 -- N is a use_package clause and Nam the package name, or N is a use_type
433 -- clause and Nam is the prefix of the type name. In either case, verify
434 -- that the package is visible at that point in the context: either it
435 -- appears in a previous with_clause, or because it is a fully qualified
436 -- name and the root ancestor appears in a previous with_clause.
438 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
439 -- Verify that the entity in a renaming declaration that is a library unit
440 -- is itself a library unit and not a nested unit or subunit. Also check
441 -- that if the renaming is a child unit of a generic parent, then the
442 -- renamed unit must also be a child unit of that parent. Finally, verify
443 -- that a renamed generic unit is not an implicit child declared within
444 -- an instance of the parent.
446 procedure Chain_Use_Clause (N : Node_Id);
447 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
448 -- the proper scope table entry. This is usually the current scope, but it
449 -- will be an inner scope when installing the use clauses of the private
450 -- declarations of a parent unit prior to compiling the private part of a
451 -- child unit. This chain is traversed when installing/removing use clauses
452 -- when compiling a subunit or instantiating a generic body on the fly,
453 -- when it is necessary to save and restore full environments.
455 function Enclosing_Instance return Entity_Id;
456 -- In an instance nested within another one, several semantic checks are
457 -- unnecessary because the legality of the nested instance has been checked
458 -- in the enclosing generic unit. This applies in particular to legality
459 -- checks on actuals for formal subprograms of the inner instance, which
460 -- are checked as subprogram renamings, and may be complicated by confusion
461 -- in private/full views. This function returns the instance enclosing the
462 -- current one if there is such, else it returns Empty.
464 -- If the renaming determines the entity for the default of a formal
465 -- subprogram nested within another instance, choose the innermost
466 -- candidate. This is because if the formal has a box, and we are within
467 -- an enclosing instance where some candidate interpretations are local
468 -- to this enclosing instance, we know that the default was properly
469 -- resolved when analyzing the generic, so we prefer the local
470 -- candidates to those that are external. This is not always the case
471 -- but is a reasonable heuristic on the use of nested generics. The
472 -- proper solution requires a full renaming model.
474 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
475 -- Find a type derived from Character or Wide_Character in the prefix of N.
476 -- Used to resolved qualified names whose selector is a character literal.
478 function Has_Private_With (E : Entity_Id) return Boolean;
479 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
480 -- private with on E.
482 procedure Find_Expanded_Name (N : Node_Id);
483 -- The input is a selected component known to be an expanded name. Verify
484 -- legality of selector given the scope denoted by prefix, and change node
485 -- N into a expanded name with a properly set Entity field.
487 function Find_Renamed_Entity
488 (N : Node_Id;
489 Nam : Node_Id;
490 New_S : Entity_Id;
491 Is_Actual : Boolean := False) return Entity_Id;
492 -- Find the renamed entity that corresponds to the given parameter profile
493 -- in a subprogram renaming declaration. The renamed entity may be an
494 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
495 -- indicates that the renaming is the one generated for an actual subpro-
496 -- gram in an instance, for which special visibility checks apply.
498 function Has_Implicit_Operator (N : Node_Id) return Boolean;
499 -- N is an expanded name whose selector is an operator name (e.g. P."+").
500 -- declarative part contains an implicit declaration of an operator if it
501 -- has a declaration of a type to which one of the predefined operators
502 -- apply. The existence of this routine is an implementation artifact. A
503 -- more straightforward but more space-consuming choice would be to make
504 -- all inherited operators explicit in the symbol table.
506 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
507 -- A subprogram defined by a renaming declaration inherits the parameter
508 -- profile of the renamed entity. The subtypes given in the subprogram
509 -- specification are discarded and replaced with those of the renamed
510 -- subprogram, which are then used to recheck the default values.
512 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean;
513 -- Prefix is appropriate for record if it is of a record type, or an access
514 -- to such.
516 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean;
517 -- True if it is of a task type, a protected type, or else an access to one
518 -- of these types.
520 procedure Note_Redundant_Use (Clause : Node_Id);
521 -- Mark the name in a use clause as redundant if the corresponding entity
522 -- is already use-visible. Emit a warning if the use clause comes from
523 -- source and the proper warnings are enabled.
525 procedure Premature_Usage (N : Node_Id);
526 -- Diagnose usage of an entity before it is visible
528 procedure Use_One_Package (P : Entity_Id; N : Node_Id);
529 -- Make visible entities declared in package P potentially use-visible
530 -- in the current context. Also used in the analysis of subunits, when
531 -- re-installing use clauses of parent units. N is the use_clause that
532 -- names P (and possibly other packages).
534 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False);
535 -- Id is the subtype mark from a use type clause. This procedure makes
536 -- the primitive operators of the type potentially use-visible. The
537 -- boolean flag Installed indicates that the clause is being reinstalled
538 -- after previous analysis, and primitive operations are already chained
539 -- on the Used_Operations list of the clause.
541 procedure Write_Info;
542 -- Write debugging information on entities declared in current scope
544 --------------------------------
545 -- Analyze_Exception_Renaming --
546 --------------------------------
548 -- The language only allows a single identifier, but the tree holds an
549 -- identifier list. The parser has already issued an error message if
550 -- there is more than one element in the list.
552 procedure Analyze_Exception_Renaming (N : Node_Id) is
553 Id : constant Node_Id := Defining_Identifier (N);
554 Nam : constant Node_Id := Name (N);
556 begin
557 -- The exception renaming declaration may be subject to pragma Ghost
558 -- with policy Ignore. Set the mode now to ensure that any nodes
559 -- generated during analysis and expansion are properly flagged as
560 -- ignored Ghost.
562 Set_Ghost_Mode (N);
563 Check_SPARK_05_Restriction ("exception renaming is not allowed", N);
565 Enter_Name (Id);
566 Analyze (Nam);
568 Set_Ekind (Id, E_Exception);
569 Set_Etype (Id, Standard_Exception_Type);
570 Set_Is_Pure (Id, Is_Pure (Current_Scope));
572 if not Is_Entity_Name (Nam)
573 or else Ekind (Entity (Nam)) /= E_Exception
574 then
575 Error_Msg_N ("invalid exception name in renaming", Nam);
576 else
577 if Present (Renamed_Object (Entity (Nam))) then
578 Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
579 else
580 Set_Renamed_Object (Id, Entity (Nam));
581 end if;
583 -- An exception renaming is Ghost if the renamed entity is Ghost or
584 -- the construct appears within a Ghost scope.
586 if Is_Ghost_Entity (Entity (Nam)) or else Ghost_Mode > None then
587 Set_Is_Ghost_Entity (Id);
588 end if;
589 end if;
591 -- Implementation-defined aspect specifications can appear in a renaming
592 -- declaration, but not language-defined ones. The call to procedure
593 -- Analyze_Aspect_Specifications will take care of this error check.
595 if Has_Aspects (N) then
596 Analyze_Aspect_Specifications (N, Id);
597 end if;
598 end Analyze_Exception_Renaming;
600 ---------------------------
601 -- Analyze_Expanded_Name --
602 ---------------------------
604 procedure Analyze_Expanded_Name (N : Node_Id) is
605 begin
606 -- If the entity pointer is already set, this is an internal node, or a
607 -- node that is analyzed more than once, after a tree modification. In
608 -- such a case there is no resolution to perform, just set the type. For
609 -- completeness, analyze prefix as well.
611 if Present (Entity (N)) then
612 if Is_Type (Entity (N)) then
613 Set_Etype (N, Entity (N));
614 else
615 Set_Etype (N, Etype (Entity (N)));
616 end if;
618 Analyze (Prefix (N));
619 return;
620 else
621 Find_Expanded_Name (N);
622 end if;
624 Analyze_Dimension (N);
625 end Analyze_Expanded_Name;
627 ---------------------------------------
628 -- Analyze_Generic_Function_Renaming --
629 ---------------------------------------
631 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
632 begin
633 Analyze_Generic_Renaming (N, E_Generic_Function);
634 end Analyze_Generic_Function_Renaming;
636 --------------------------------------
637 -- Analyze_Generic_Package_Renaming --
638 --------------------------------------
640 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
641 begin
642 -- Test for the Text_IO special unit case here, since we may be renaming
643 -- one of the subpackages of Text_IO, then join common routine.
645 Check_Text_IO_Special_Unit (Name (N));
647 Analyze_Generic_Renaming (N, E_Generic_Package);
648 end Analyze_Generic_Package_Renaming;
650 ----------------------------------------
651 -- Analyze_Generic_Procedure_Renaming --
652 ----------------------------------------
654 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
655 begin
656 Analyze_Generic_Renaming (N, E_Generic_Procedure);
657 end Analyze_Generic_Procedure_Renaming;
659 ------------------------------
660 -- Analyze_Generic_Renaming --
661 ------------------------------
663 procedure Analyze_Generic_Renaming
664 (N : Node_Id;
665 K : Entity_Kind)
667 New_P : constant Entity_Id := Defining_Entity (N);
668 Old_P : Entity_Id;
669 Inst : Boolean := False; -- prevent junk warning
671 begin
672 if Name (N) = Error then
673 return;
674 end if;
676 -- The generic renaming declaration may be subject to pragma Ghost with
677 -- policy Ignore. Set the mode now to ensure that any nodes generated
678 -- during analysis and expansion are properly flagged as ignored Ghost.
680 Set_Ghost_Mode (N);
681 Check_SPARK_05_Restriction ("generic renaming is not allowed", N);
683 Generate_Definition (New_P);
685 if Current_Scope /= Standard_Standard then
686 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
687 end if;
689 if Nkind (Name (N)) = N_Selected_Component then
690 Check_Generic_Child_Unit (Name (N), Inst);
691 else
692 Analyze (Name (N));
693 end if;
695 if not Is_Entity_Name (Name (N)) then
696 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
697 Old_P := Any_Id;
698 else
699 Old_P := Entity (Name (N));
700 end if;
702 Enter_Name (New_P);
703 Set_Ekind (New_P, K);
705 if Etype (Old_P) = Any_Type then
706 null;
708 elsif Ekind (Old_P) /= K then
709 Error_Msg_N ("invalid generic unit name", Name (N));
711 else
712 if Present (Renamed_Object (Old_P)) then
713 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
714 else
715 Set_Renamed_Object (New_P, Old_P);
716 end if;
718 Set_Is_Pure (New_P, Is_Pure (Old_P));
719 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
721 Set_Etype (New_P, Etype (Old_P));
722 Set_Has_Completion (New_P);
724 -- An generic renaming is Ghost if the renamed entity is Ghost or the
725 -- construct appears within a Ghost scope.
727 if Is_Ghost_Entity (Old_P) or else Ghost_Mode > None then
728 Set_Is_Ghost_Entity (New_P);
729 end if;
731 if In_Open_Scopes (Old_P) then
732 Error_Msg_N ("within its scope, generic denotes its instance", N);
733 end if;
735 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
736 -- renamings and subsequent instantiations of Unchecked_Conversion.
738 if Ekind_In (Old_P, E_Generic_Function, E_Generic_Procedure) then
739 Set_Is_Intrinsic_Subprogram
740 (New_P, Is_Intrinsic_Subprogram (Old_P));
741 end if;
743 Check_Library_Unit_Renaming (N, Old_P);
744 end if;
746 -- Implementation-defined aspect specifications can appear in a renaming
747 -- declaration, but not language-defined ones. The call to procedure
748 -- Analyze_Aspect_Specifications will take care of this error check.
750 if Has_Aspects (N) then
751 Analyze_Aspect_Specifications (N, New_P);
752 end if;
753 end Analyze_Generic_Renaming;
755 -----------------------------
756 -- Analyze_Object_Renaming --
757 -----------------------------
759 procedure Analyze_Object_Renaming (N : Node_Id) is
760 Loc : constant Source_Ptr := Sloc (N);
761 Id : constant Entity_Id := Defining_Identifier (N);
762 Dec : Node_Id;
763 Nam : constant Node_Id := Name (N);
764 T : Entity_Id;
765 T2 : Entity_Id;
767 procedure Check_Constrained_Object;
768 -- If the nominal type is unconstrained but the renamed object is
769 -- constrained, as can happen with renaming an explicit dereference or
770 -- a function return, build a constrained subtype from the object. If
771 -- the renaming is for a formal in an accept statement, the analysis
772 -- has already established its actual subtype. This is only relevant
773 -- if the renamed object is an explicit dereference.
775 function In_Generic_Scope (E : Entity_Id) return Boolean;
776 -- Determine whether entity E is inside a generic cope
778 ------------------------------
779 -- Check_Constrained_Object --
780 ------------------------------
782 procedure Check_Constrained_Object is
783 Typ : constant Entity_Id := Etype (Nam);
784 Subt : Entity_Id;
786 begin
787 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference)
788 and then Is_Composite_Type (Etype (Nam))
789 and then not Is_Constrained (Etype (Nam))
790 and then not Has_Unknown_Discriminants (Etype (Nam))
791 and then Expander_Active
792 then
793 -- If Actual_Subtype is already set, nothing to do
795 if Ekind_In (Id, E_Variable, E_Constant)
796 and then Present (Actual_Subtype (Id))
797 then
798 null;
800 -- A renaming of an unchecked union has no actual subtype
802 elsif Is_Unchecked_Union (Typ) then
803 null;
805 -- If a record is limited its size is invariant. This is the case
806 -- in particular with record types with an access discirminant
807 -- that are used in iterators. This is an optimization, but it
808 -- also prevents typing anomalies when the prefix is further
809 -- expanded. Limited types with discriminants are included.
811 elsif Is_Limited_Record (Typ)
812 or else
813 (Ekind (Typ) = E_Limited_Private_Type
814 and then Has_Discriminants (Typ)
815 and then Is_Access_Type (Etype (First_Discriminant (Typ))))
816 then
817 null;
819 else
820 Subt := Make_Temporary (Loc, 'T');
821 Remove_Side_Effects (Nam);
822 Insert_Action (N,
823 Make_Subtype_Declaration (Loc,
824 Defining_Identifier => Subt,
825 Subtype_Indication =>
826 Make_Subtype_From_Expr (Nam, Typ)));
827 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
828 Set_Etype (Nam, Subt);
830 -- Freeze subtype at once, to prevent order of elaboration
831 -- issues in the backend. The renamed object exists, so its
832 -- type is already frozen in any case.
834 Freeze_Before (N, Subt);
835 end if;
836 end if;
837 end Check_Constrained_Object;
839 ----------------------
840 -- In_Generic_Scope --
841 ----------------------
843 function In_Generic_Scope (E : Entity_Id) return Boolean is
844 S : Entity_Id;
846 begin
847 S := Scope (E);
848 while Present (S) and then S /= Standard_Standard loop
849 if Is_Generic_Unit (S) then
850 return True;
851 end if;
853 S := Scope (S);
854 end loop;
856 return False;
857 end In_Generic_Scope;
859 -- Start of processing for Analyze_Object_Renaming
861 begin
862 if Nam = Error then
863 return;
864 end if;
866 -- The object renaming declaration may be subject to pragma Ghost with
867 -- policy Ignore. Set the mode now to ensure that any nodes generated
868 -- during analysis and expansion are properly flagged as ignored Ghost.
870 Set_Ghost_Mode (N);
871 Check_SPARK_05_Restriction ("object renaming is not allowed", N);
873 Set_Is_Pure (Id, Is_Pure (Current_Scope));
874 Enter_Name (Id);
876 -- The renaming of a component that depends on a discriminant requires
877 -- an actual subtype, because in subsequent use of the object Gigi will
878 -- be unable to locate the actual bounds. This explicit step is required
879 -- when the renaming is generated in removing side effects of an
880 -- already-analyzed expression.
882 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
883 T := Etype (Nam);
884 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
886 if Present (Dec) then
887 Insert_Action (N, Dec);
888 T := Defining_Identifier (Dec);
889 Set_Etype (Nam, T);
890 end if;
892 -- Complete analysis of the subtype mark in any case, for ASIS use
894 if Present (Subtype_Mark (N)) then
895 Find_Type (Subtype_Mark (N));
896 end if;
898 elsif Present (Subtype_Mark (N)) then
899 Find_Type (Subtype_Mark (N));
900 T := Entity (Subtype_Mark (N));
901 Analyze (Nam);
903 -- Reject renamings of conversions unless the type is tagged, or
904 -- the conversion is implicit (which can occur for cases of anonymous
905 -- access types in Ada 2012).
907 if Nkind (Nam) = N_Type_Conversion
908 and then Comes_From_Source (Nam)
909 and then not Is_Tagged_Type (T)
910 then
911 Error_Msg_N
912 ("renaming of conversion only allowed for tagged types", Nam);
913 end if;
915 Resolve (Nam, T);
917 -- If the renamed object is a function call of a limited type,
918 -- the expansion of the renaming is complicated by the presence
919 -- of various temporaries and subtypes that capture constraints
920 -- of the renamed object. Rewrite node as an object declaration,
921 -- whose expansion is simpler. Given that the object is limited
922 -- there is no copy involved and no performance hit.
924 if Nkind (Nam) = N_Function_Call
925 and then Is_Limited_View (Etype (Nam))
926 and then not Is_Constrained (Etype (Nam))
927 and then Comes_From_Source (N)
928 then
929 Set_Etype (Id, T);
930 Set_Ekind (Id, E_Constant);
931 Rewrite (N,
932 Make_Object_Declaration (Loc,
933 Defining_Identifier => Id,
934 Constant_Present => True,
935 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
936 Expression => Relocate_Node (Nam)));
937 return;
938 end if;
940 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
941 -- when renaming declaration has a named access type. The Ada 2012
942 -- coverage rules allow an anonymous access type in the context of
943 -- an expected named general access type, but the renaming rules
944 -- require the types to be the same. (An exception is when the type
945 -- of the renaming is also an anonymous access type, which can only
946 -- happen due to a renaming created by the expander.)
948 if Nkind (Nam) = N_Type_Conversion
949 and then not Comes_From_Source (Nam)
950 and then Ekind (Etype (Expression (Nam))) = E_Anonymous_Access_Type
951 and then Ekind (T) /= E_Anonymous_Access_Type
952 then
953 Wrong_Type (Expression (Nam), T); -- Should we give better error???
954 end if;
956 -- Check that a class-wide object is not being renamed as an object
957 -- of a specific type. The test for access types is needed to exclude
958 -- cases where the renamed object is a dynamically tagged access
959 -- result, such as occurs in certain expansions.
961 if Is_Tagged_Type (T) then
962 Check_Dynamically_Tagged_Expression
963 (Expr => Nam,
964 Typ => T,
965 Related_Nod => N);
966 end if;
968 -- Ada 2005 (AI-230/AI-254): Access renaming
970 else pragma Assert (Present (Access_Definition (N)));
971 T := Access_Definition
972 (Related_Nod => N,
973 N => Access_Definition (N));
975 Analyze (Nam);
977 -- Ada 2005 AI05-105: if the declaration has an anonymous access
978 -- type, the renamed object must also have an anonymous type, and
979 -- this is a name resolution rule. This was implicit in the last part
980 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
981 -- recent AI.
983 if not Is_Overloaded (Nam) then
984 if Ekind (Etype (Nam)) /= Ekind (T) then
985 Error_Msg_N
986 ("expect anonymous access type in object renaming", N);
987 end if;
989 else
990 declare
991 I : Interp_Index;
992 It : Interp;
993 Typ : Entity_Id := Empty;
994 Seen : Boolean := False;
996 begin
997 Get_First_Interp (Nam, I, It);
998 while Present (It.Typ) loop
1000 -- Renaming is ambiguous if more than one candidate
1001 -- interpretation is type-conformant with the context.
1003 if Ekind (It.Typ) = Ekind (T) then
1004 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
1005 and then
1006 Type_Conformant
1007 (Designated_Type (T), Designated_Type (It.Typ))
1008 then
1009 if not Seen then
1010 Seen := True;
1011 else
1012 Error_Msg_N
1013 ("ambiguous expression in renaming", Nam);
1014 end if;
1016 elsif Ekind (T) = E_Anonymous_Access_Type
1017 and then
1018 Covers (Designated_Type (T), Designated_Type (It.Typ))
1019 then
1020 if not Seen then
1021 Seen := True;
1022 else
1023 Error_Msg_N
1024 ("ambiguous expression in renaming", Nam);
1025 end if;
1026 end if;
1028 if Covers (T, It.Typ) then
1029 Typ := It.Typ;
1030 Set_Etype (Nam, Typ);
1031 Set_Is_Overloaded (Nam, False);
1032 end if;
1033 end if;
1035 Get_Next_Interp (I, It);
1036 end loop;
1037 end;
1038 end if;
1040 Resolve (Nam, T);
1042 -- Ada 2005 (AI-231): In the case where the type is defined by an
1043 -- access_definition, the renamed entity shall be of an access-to-
1044 -- constant type if and only if the access_definition defines an
1045 -- access-to-constant type. ARM 8.5.1(4)
1047 if Constant_Present (Access_Definition (N))
1048 and then not Is_Access_Constant (Etype (Nam))
1049 then
1050 Error_Msg_N ("(Ada 2005): the renamed object is not "
1051 & "access-to-constant (RM 8.5.1(6))", N);
1053 elsif not Constant_Present (Access_Definition (N))
1054 and then Is_Access_Constant (Etype (Nam))
1055 then
1056 Error_Msg_N ("(Ada 2005): the renamed object is not "
1057 & "access-to-variable (RM 8.5.1(6))", N);
1058 end if;
1060 if Is_Access_Subprogram_Type (Etype (Nam)) then
1061 Check_Subtype_Conformant
1062 (Designated_Type (T), Designated_Type (Etype (Nam)));
1064 elsif not Subtypes_Statically_Match
1065 (Designated_Type (T),
1066 Available_View (Designated_Type (Etype (Nam))))
1067 then
1068 Error_Msg_N
1069 ("subtype of renamed object does not statically match", N);
1070 end if;
1071 end if;
1073 -- Special processing for renaming function return object. Some errors
1074 -- and warnings are produced only for calls that come from source.
1076 if Nkind (Nam) = N_Function_Call then
1077 case Ada_Version is
1079 -- Usage is illegal in Ada 83, but renamings are also introduced
1080 -- during expansion, and error does not apply to those.
1082 when Ada_83 =>
1083 if Comes_From_Source (N) then
1084 Error_Msg_N
1085 ("(Ada 83) cannot rename function return object", Nam);
1086 end if;
1088 -- In Ada 95, warn for odd case of renaming parameterless function
1089 -- call if this is not a limited type (where this is useful).
1091 when others =>
1092 if Warn_On_Object_Renames_Function
1093 and then No (Parameter_Associations (Nam))
1094 and then not Is_Limited_Type (Etype (Nam))
1095 and then Comes_From_Source (Nam)
1096 then
1097 Error_Msg_N
1098 ("renaming function result object is suspicious?R?", Nam);
1099 Error_Msg_NE
1100 ("\function & will be called only once?R?", Nam,
1101 Entity (Name (Nam)));
1102 Error_Msg_N -- CODEFIX
1103 ("\suggest using an initialized constant "
1104 & "object instead?R?", Nam);
1105 end if;
1107 end case;
1108 end if;
1110 Check_Constrained_Object;
1112 -- An object renaming requires an exact match of the type. Class-wide
1113 -- matching is not allowed.
1115 if Is_Class_Wide_Type (T)
1116 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1117 then
1118 Wrong_Type (Nam, T);
1119 end if;
1121 T2 := Etype (Nam);
1123 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1125 if Nkind (Nam) = N_Explicit_Dereference
1126 and then Ekind (Etype (T2)) = E_Incomplete_Type
1127 then
1128 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1129 return;
1131 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1132 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1133 return;
1134 end if;
1136 -- Ada 2005 (AI-327)
1138 if Ada_Version >= Ada_2005
1139 and then Nkind (Nam) = N_Attribute_Reference
1140 and then Attribute_Name (Nam) = Name_Priority
1141 then
1142 null;
1144 elsif Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1145 declare
1146 Nam_Decl : Node_Id;
1147 Nam_Ent : Entity_Id;
1149 begin
1150 if Nkind (Nam) = N_Attribute_Reference then
1151 Nam_Ent := Entity (Prefix (Nam));
1152 else
1153 Nam_Ent := Entity (Nam);
1154 end if;
1156 Nam_Decl := Parent (Nam_Ent);
1158 if Has_Null_Exclusion (N)
1159 and then not Has_Null_Exclusion (Nam_Decl)
1160 then
1161 -- Ada 2005 (AI-423): If the object name denotes a generic
1162 -- formal object of a generic unit G, and the object renaming
1163 -- declaration occurs within the body of G or within the body
1164 -- of a generic unit declared within the declarative region
1165 -- of G, then the declaration of the formal object of G must
1166 -- have a null exclusion or a null-excluding subtype.
1168 if Is_Formal_Object (Nam_Ent)
1169 and then In_Generic_Scope (Id)
1170 then
1171 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1172 Error_Msg_N
1173 ("renamed formal does not exclude `NULL` "
1174 & "(RM 8.5.1(4.6/2))", N);
1176 elsif In_Package_Body (Scope (Id)) then
1177 Error_Msg_N
1178 ("formal object does not have a null exclusion"
1179 & "(RM 8.5.1(4.6/2))", N);
1180 end if;
1182 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1183 -- shall exclude null.
1185 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1186 Error_Msg_N
1187 ("renamed object does not exclude `NULL` "
1188 & "(RM 8.5.1(4.6/2))", N);
1190 -- An instance is illegal if it contains a renaming that
1191 -- excludes null, and the actual does not. The renaming
1192 -- declaration has already indicated that the declaration
1193 -- of the renamed actual in the instance will raise
1194 -- constraint_error.
1196 elsif Nkind (Nam_Decl) = N_Object_Declaration
1197 and then In_Instance
1198 and then
1199 Present (Corresponding_Generic_Association (Nam_Decl))
1200 and then Nkind (Expression (Nam_Decl)) =
1201 N_Raise_Constraint_Error
1202 then
1203 Error_Msg_N
1204 ("renamed actual does not exclude `NULL` "
1205 & "(RM 8.5.1(4.6/2))", N);
1207 -- Finally, if there is a null exclusion, the subtype mark
1208 -- must not be null-excluding.
1210 elsif No (Access_Definition (N))
1211 and then Can_Never_Be_Null (T)
1212 then
1213 Error_Msg_NE
1214 ("`NOT NULL` not allowed (& already excludes null)",
1215 N, T);
1217 end if;
1219 elsif Can_Never_Be_Null (T)
1220 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1221 then
1222 Error_Msg_N
1223 ("renamed object does not exclude `NULL` "
1224 & "(RM 8.5.1(4.6/2))", N);
1226 elsif Has_Null_Exclusion (N)
1227 and then No (Access_Definition (N))
1228 and then Can_Never_Be_Null (T)
1229 then
1230 Error_Msg_NE
1231 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1232 end if;
1233 end;
1234 end if;
1236 -- Set the Ekind of the entity, unless it has been set already, as is
1237 -- the case for the iteration object over a container with no variable
1238 -- indexing. In that case it's been marked as a constant, and we do not
1239 -- want to change it to a variable.
1241 if Ekind (Id) /= E_Constant then
1242 Set_Ekind (Id, E_Variable);
1243 end if;
1245 -- Initialize the object size and alignment. Note that we used to call
1246 -- Init_Size_Align here, but that's wrong for objects which have only
1247 -- an Esize, not an RM_Size field.
1249 Init_Object_Size_Align (Id);
1251 if T = Any_Type or else Etype (Nam) = Any_Type then
1252 return;
1254 -- Verify that the renamed entity is an object or a function call. It
1255 -- may have been rewritten in several ways.
1257 elsif Is_Object_Reference (Nam) then
1258 if Comes_From_Source (N) then
1259 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1260 Error_Msg_N
1261 ("illegal renaming of discriminant-dependent component", Nam);
1262 end if;
1264 -- If the renaming comes from source and the renamed object is a
1265 -- dereference, then mark the prefix as needing debug information,
1266 -- since it might have been rewritten hence internally generated
1267 -- and Debug_Renaming_Declaration will link the renaming to it.
1269 if Nkind (Nam) = N_Explicit_Dereference
1270 and then Is_Entity_Name (Prefix (Nam))
1271 then
1272 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1273 end if;
1274 end if;
1276 -- A static function call may have been folded into a literal
1278 elsif Nkind (Original_Node (Nam)) = N_Function_Call
1280 -- When expansion is disabled, attribute reference is not rewritten
1281 -- as function call. Otherwise it may be rewritten as a conversion,
1282 -- so check original node.
1284 or else (Nkind (Original_Node (Nam)) = N_Attribute_Reference
1285 and then Is_Function_Attribute_Name
1286 (Attribute_Name (Original_Node (Nam))))
1288 -- Weird but legal, equivalent to renaming a function call. Illegal
1289 -- if the literal is the result of constant-folding an attribute
1290 -- reference that is not a function.
1292 or else (Is_Entity_Name (Nam)
1293 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1294 and then
1295 Nkind (Original_Node (Nam)) /= N_Attribute_Reference)
1297 or else (Nkind (Nam) = N_Type_Conversion
1298 and then Is_Tagged_Type (Entity (Subtype_Mark (Nam))))
1299 then
1300 null;
1302 elsif Nkind (Nam) = N_Type_Conversion then
1303 Error_Msg_N
1304 ("renaming of conversion only allowed for tagged types", Nam);
1306 -- Ada 2005 (AI-327)
1308 elsif Ada_Version >= Ada_2005
1309 and then Nkind (Nam) = N_Attribute_Reference
1310 and then Attribute_Name (Nam) = Name_Priority
1311 then
1312 null;
1314 -- Allow internally generated x'Reference expression
1316 elsif Nkind (Nam) = N_Reference then
1317 null;
1319 else
1320 Error_Msg_N ("expect object name in renaming", Nam);
1321 end if;
1323 Set_Etype (Id, T2);
1325 if not Is_Variable (Nam) then
1326 Set_Ekind (Id, E_Constant);
1327 Set_Never_Set_In_Source (Id, True);
1328 Set_Is_True_Constant (Id, True);
1329 end if;
1331 -- An object renaming is Ghost if the renamed entity is Ghost or the
1332 -- construct appears within a Ghost scope.
1334 if (Is_Entity_Name (Nam)
1335 and then Is_Ghost_Entity (Entity (Nam)))
1336 or else Ghost_Mode > None
1337 then
1338 Set_Is_Ghost_Entity (Id);
1339 end if;
1341 -- The entity of the renaming declaration needs to reflect whether the
1342 -- renamed object is volatile. Is_Volatile is set if the renamed object
1343 -- is volatile in the RM legality sense.
1345 Set_Is_Volatile (Id, Is_Volatile_Object (Nam));
1347 -- Treat as volatile if we just set the Volatile flag
1349 if Is_Volatile (Id)
1351 -- Or if we are renaming an entity which was marked this way
1353 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1355 or else (Is_Entity_Name (Nam)
1356 and then Treat_As_Volatile (Entity (Nam)))
1357 then
1358 Set_Treat_As_Volatile (Id, True);
1359 end if;
1361 -- Now make the link to the renamed object
1363 Set_Renamed_Object (Id, Nam);
1365 -- Implementation-defined aspect specifications can appear in a renaming
1366 -- declaration, but not language-defined ones. The call to procedure
1367 -- Analyze_Aspect_Specifications will take care of this error check.
1369 if Has_Aspects (N) then
1370 Analyze_Aspect_Specifications (N, Id);
1371 end if;
1373 -- Deal with dimensions
1375 Analyze_Dimension (N);
1376 end Analyze_Object_Renaming;
1378 ------------------------------
1379 -- Analyze_Package_Renaming --
1380 ------------------------------
1382 procedure Analyze_Package_Renaming (N : Node_Id) is
1383 New_P : constant Entity_Id := Defining_Entity (N);
1384 Old_P : Entity_Id;
1385 Spec : Node_Id;
1387 begin
1388 if Name (N) = Error then
1389 return;
1390 end if;
1392 -- The package renaming declaration may be subject to pragma Ghost with
1393 -- policy Ignore. Set the mode now to ensure that any nodes generated
1394 -- during analysis and expansion are properly flagged as ignored Ghost.
1396 Set_Ghost_Mode (N);
1398 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1400 Check_Text_IO_Special_Unit (Name (N));
1402 if Current_Scope /= Standard_Standard then
1403 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1404 end if;
1406 Enter_Name (New_P);
1407 Analyze (Name (N));
1409 if Is_Entity_Name (Name (N)) then
1410 Old_P := Entity (Name (N));
1411 else
1412 Old_P := Any_Id;
1413 end if;
1415 if Etype (Old_P) = Any_Type then
1416 Error_Msg_N ("expect package name in renaming", Name (N));
1418 elsif Ekind (Old_P) /= E_Package
1419 and then not (Ekind (Old_P) = E_Generic_Package
1420 and then In_Open_Scopes (Old_P))
1421 then
1422 if Ekind (Old_P) = E_Generic_Package then
1423 Error_Msg_N
1424 ("generic package cannot be renamed as a package", Name (N));
1425 else
1426 Error_Msg_Sloc := Sloc (Old_P);
1427 Error_Msg_NE
1428 ("expect package name in renaming, found& declared#",
1429 Name (N), Old_P);
1430 end if;
1432 -- Set basic attributes to minimize cascaded errors
1434 Set_Ekind (New_P, E_Package);
1435 Set_Etype (New_P, Standard_Void_Type);
1437 -- Here for OK package renaming
1439 else
1440 -- Entities in the old package are accessible through the renaming
1441 -- entity. The simplest implementation is to have both packages share
1442 -- the entity list.
1444 Set_Ekind (New_P, E_Package);
1445 Set_Etype (New_P, Standard_Void_Type);
1447 if Present (Renamed_Object (Old_P)) then
1448 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
1449 else
1450 Set_Renamed_Object (New_P, Old_P);
1451 end if;
1453 Set_Has_Completion (New_P);
1455 Set_First_Entity (New_P, First_Entity (Old_P));
1456 Set_Last_Entity (New_P, Last_Entity (Old_P));
1457 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1458 Check_Library_Unit_Renaming (N, Old_P);
1459 Generate_Reference (Old_P, Name (N));
1461 -- A package renaming is Ghost if the renamed entity is Ghost or
1462 -- the construct appears within a Ghost scope.
1464 if Is_Ghost_Entity (Old_P) or else Ghost_Mode > None then
1465 Set_Is_Ghost_Entity (New_P);
1466 end if;
1468 -- If the renaming is in the visible part of a package, then we set
1469 -- Renamed_In_Spec for the renamed package, to prevent giving
1470 -- warnings about no entities referenced. Such a warning would be
1471 -- overenthusiastic, since clients can see entities in the renamed
1472 -- package via the visible package renaming.
1474 declare
1475 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1476 begin
1477 if Ekind (Ent) = E_Package
1478 and then not In_Private_Part (Ent)
1479 and then In_Extended_Main_Source_Unit (N)
1480 and then Ekind (Old_P) = E_Package
1481 then
1482 Set_Renamed_In_Spec (Old_P);
1483 end if;
1484 end;
1486 -- If this is the renaming declaration of a package instantiation
1487 -- within itself, it is the declaration that ends the list of actuals
1488 -- for the instantiation. At this point, the subtypes that rename
1489 -- the actuals are flagged as generic, to avoid spurious ambiguities
1490 -- if the actuals for two distinct formals happen to coincide. If
1491 -- the actual is a private type, the subtype has a private completion
1492 -- that is flagged in the same fashion.
1494 -- Resolution is identical to what is was in the original generic.
1495 -- On exit from the generic instance, these are turned into regular
1496 -- subtypes again, so they are compatible with types in their class.
1498 if not Is_Generic_Instance (Old_P) then
1499 return;
1500 else
1501 Spec := Specification (Unit_Declaration_Node (Old_P));
1502 end if;
1504 if Nkind (Spec) = N_Package_Specification
1505 and then Present (Generic_Parent (Spec))
1506 and then Old_P = Current_Scope
1507 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1508 then
1509 declare
1510 E : Entity_Id;
1512 begin
1513 E := First_Entity (Old_P);
1514 while Present (E) and then E /= New_P loop
1515 if Is_Type (E)
1516 and then Nkind (Parent (E)) = N_Subtype_Declaration
1517 then
1518 Set_Is_Generic_Actual_Type (E);
1520 if Is_Private_Type (E)
1521 and then Present (Full_View (E))
1522 then
1523 Set_Is_Generic_Actual_Type (Full_View (E));
1524 end if;
1525 end if;
1527 Next_Entity (E);
1528 end loop;
1529 end;
1530 end if;
1531 end if;
1533 -- Implementation-defined aspect specifications can appear in a renaming
1534 -- declaration, but not language-defined ones. The call to procedure
1535 -- Analyze_Aspect_Specifications will take care of this error check.
1537 if Has_Aspects (N) then
1538 Analyze_Aspect_Specifications (N, New_P);
1539 end if;
1540 end Analyze_Package_Renaming;
1542 -------------------------------
1543 -- Analyze_Renamed_Character --
1544 -------------------------------
1546 procedure Analyze_Renamed_Character
1547 (N : Node_Id;
1548 New_S : Entity_Id;
1549 Is_Body : Boolean)
1551 C : constant Node_Id := Name (N);
1553 begin
1554 if Ekind (New_S) = E_Function then
1555 Resolve (C, Etype (New_S));
1557 if Is_Body then
1558 Check_Frozen_Renaming (N, New_S);
1559 end if;
1561 else
1562 Error_Msg_N ("character literal can only be renamed as function", N);
1563 end if;
1564 end Analyze_Renamed_Character;
1566 ---------------------------------
1567 -- Analyze_Renamed_Dereference --
1568 ---------------------------------
1570 procedure Analyze_Renamed_Dereference
1571 (N : Node_Id;
1572 New_S : Entity_Id;
1573 Is_Body : Boolean)
1575 Nam : constant Node_Id := Name (N);
1576 P : constant Node_Id := Prefix (Nam);
1577 Typ : Entity_Id;
1578 Ind : Interp_Index;
1579 It : Interp;
1581 begin
1582 if not Is_Overloaded (P) then
1583 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1584 or else not Type_Conformant (Etype (Nam), New_S)
1585 then
1586 Error_Msg_N ("designated type does not match specification", P);
1587 else
1588 Resolve (P);
1589 end if;
1591 return;
1593 else
1594 Typ := Any_Type;
1595 Get_First_Interp (Nam, Ind, It);
1597 while Present (It.Nam) loop
1599 if Ekind (It.Nam) = E_Subprogram_Type
1600 and then Type_Conformant (It.Nam, New_S)
1601 then
1602 if Typ /= Any_Id then
1603 Error_Msg_N ("ambiguous renaming", P);
1604 return;
1605 else
1606 Typ := It.Nam;
1607 end if;
1608 end if;
1610 Get_Next_Interp (Ind, It);
1611 end loop;
1613 if Typ = Any_Type then
1614 Error_Msg_N ("designated type does not match specification", P);
1615 else
1616 Resolve (N, Typ);
1618 if Is_Body then
1619 Check_Frozen_Renaming (N, New_S);
1620 end if;
1621 end if;
1622 end if;
1623 end Analyze_Renamed_Dereference;
1625 ---------------------------
1626 -- Analyze_Renamed_Entry --
1627 ---------------------------
1629 procedure Analyze_Renamed_Entry
1630 (N : Node_Id;
1631 New_S : Entity_Id;
1632 Is_Body : Boolean)
1634 Nam : constant Node_Id := Name (N);
1635 Sel : constant Node_Id := Selector_Name (Nam);
1636 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1637 Old_S : Entity_Id;
1639 begin
1640 if Entity (Sel) = Any_Id then
1642 -- Selector is undefined on prefix. Error emitted already
1644 Set_Has_Completion (New_S);
1645 return;
1646 end if;
1648 -- Otherwise find renamed entity and build body of New_S as a call to it
1650 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1652 if Old_S = Any_Id then
1653 Error_Msg_N (" no subprogram or entry matches specification", N);
1654 else
1655 if Is_Body then
1656 Check_Subtype_Conformant (New_S, Old_S, N);
1657 Generate_Reference (New_S, Defining_Entity (N), 'b');
1658 Style.Check_Identifier (Defining_Entity (N), New_S);
1660 else
1661 -- Only mode conformance required for a renaming_as_declaration
1663 Check_Mode_Conformant (New_S, Old_S, N);
1664 end if;
1666 Inherit_Renamed_Profile (New_S, Old_S);
1668 -- The prefix can be an arbitrary expression that yields a task or
1669 -- protected object, so it must be resolved.
1671 Resolve (Prefix (Nam), Scope (Old_S));
1672 end if;
1674 Set_Convention (New_S, Convention (Old_S));
1675 Set_Has_Completion (New_S, Inside_A_Generic);
1677 -- AI05-0225: If the renamed entity is a procedure or entry of a
1678 -- protected object, the target object must be a variable.
1680 if Ekind (Scope (Old_S)) in Protected_Kind
1681 and then Ekind (New_S) = E_Procedure
1682 and then not Is_Variable (Prefix (Nam))
1683 then
1684 if Is_Actual then
1685 Error_Msg_N
1686 ("target object of protected operation used as actual for "
1687 & "formal procedure must be a variable", Nam);
1688 else
1689 Error_Msg_N
1690 ("target object of protected operation renamed as procedure, "
1691 & "must be a variable", Nam);
1692 end if;
1693 end if;
1695 if Is_Body then
1696 Check_Frozen_Renaming (N, New_S);
1697 end if;
1698 end Analyze_Renamed_Entry;
1700 -----------------------------------
1701 -- Analyze_Renamed_Family_Member --
1702 -----------------------------------
1704 procedure Analyze_Renamed_Family_Member
1705 (N : Node_Id;
1706 New_S : Entity_Id;
1707 Is_Body : Boolean)
1709 Nam : constant Node_Id := Name (N);
1710 P : constant Node_Id := Prefix (Nam);
1711 Old_S : Entity_Id;
1713 begin
1714 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1715 or else (Nkind (P) = N_Selected_Component
1716 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1717 then
1718 if Is_Entity_Name (P) then
1719 Old_S := Entity (P);
1720 else
1721 Old_S := Entity (Selector_Name (P));
1722 end if;
1724 if not Entity_Matches_Spec (Old_S, New_S) then
1725 Error_Msg_N ("entry family does not match specification", N);
1727 elsif Is_Body then
1728 Check_Subtype_Conformant (New_S, Old_S, N);
1729 Generate_Reference (New_S, Defining_Entity (N), 'b');
1730 Style.Check_Identifier (Defining_Entity (N), New_S);
1731 end if;
1733 else
1734 Error_Msg_N ("no entry family matches specification", N);
1735 end if;
1737 Set_Has_Completion (New_S, Inside_A_Generic);
1739 if Is_Body then
1740 Check_Frozen_Renaming (N, New_S);
1741 end if;
1742 end Analyze_Renamed_Family_Member;
1744 -----------------------------------------
1745 -- Analyze_Renamed_Primitive_Operation --
1746 -----------------------------------------
1748 procedure Analyze_Renamed_Primitive_Operation
1749 (N : Node_Id;
1750 New_S : Entity_Id;
1751 Is_Body : Boolean)
1753 Old_S : Entity_Id;
1755 function Conforms
1756 (Subp : Entity_Id;
1757 Ctyp : Conformance_Type) return Boolean;
1758 -- Verify that the signatures of the renamed entity and the new entity
1759 -- match. The first formal of the renamed entity is skipped because it
1760 -- is the target object in any subsequent call.
1762 --------------
1763 -- Conforms --
1764 --------------
1766 function Conforms
1767 (Subp : Entity_Id;
1768 Ctyp : Conformance_Type) return Boolean
1770 Old_F : Entity_Id;
1771 New_F : Entity_Id;
1773 begin
1774 if Ekind (Subp) /= Ekind (New_S) then
1775 return False;
1776 end if;
1778 Old_F := Next_Formal (First_Formal (Subp));
1779 New_F := First_Formal (New_S);
1780 while Present (Old_F) and then Present (New_F) loop
1781 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
1782 return False;
1783 end if;
1785 if Ctyp >= Mode_Conformant
1786 and then Ekind (Old_F) /= Ekind (New_F)
1787 then
1788 return False;
1789 end if;
1791 Next_Formal (New_F);
1792 Next_Formal (Old_F);
1793 end loop;
1795 return True;
1796 end Conforms;
1798 -- Start of processing for Analyze_Renamed_Primitive_Operation
1800 begin
1801 if not Is_Overloaded (Selector_Name (Name (N))) then
1802 Old_S := Entity (Selector_Name (Name (N)));
1804 if not Conforms (Old_S, Type_Conformant) then
1805 Old_S := Any_Id;
1806 end if;
1808 else
1809 -- Find the operation that matches the given signature
1811 declare
1812 It : Interp;
1813 Ind : Interp_Index;
1815 begin
1816 Old_S := Any_Id;
1817 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
1819 while Present (It.Nam) loop
1820 if Conforms (It.Nam, Type_Conformant) then
1821 Old_S := It.Nam;
1822 end if;
1824 Get_Next_Interp (Ind, It);
1825 end loop;
1826 end;
1827 end if;
1829 if Old_S = Any_Id then
1830 Error_Msg_N (" no subprogram or entry matches specification", N);
1832 else
1833 if Is_Body then
1834 if not Conforms (Old_S, Subtype_Conformant) then
1835 Error_Msg_N ("subtype conformance error in renaming", N);
1836 end if;
1838 Generate_Reference (New_S, Defining_Entity (N), 'b');
1839 Style.Check_Identifier (Defining_Entity (N), New_S);
1841 else
1842 -- Only mode conformance required for a renaming_as_declaration
1844 if not Conforms (Old_S, Mode_Conformant) then
1845 Error_Msg_N ("mode conformance error in renaming", N);
1846 end if;
1848 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1849 -- view of a subprogram is intrinsic, because the compiler has
1850 -- to generate a wrapper for any call to it. If the name in a
1851 -- subprogram renaming is a prefixed view, the entity is thus
1852 -- intrinsic, and 'Access cannot be applied to it.
1854 Set_Convention (New_S, Convention_Intrinsic);
1855 end if;
1857 -- Inherit_Renamed_Profile (New_S, Old_S);
1859 -- The prefix can be an arbitrary expression that yields an
1860 -- object, so it must be resolved.
1862 Resolve (Prefix (Name (N)));
1863 end if;
1864 end Analyze_Renamed_Primitive_Operation;
1866 ---------------------------------
1867 -- Analyze_Subprogram_Renaming --
1868 ---------------------------------
1870 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
1871 Formal_Spec : constant Entity_Id := Corresponding_Formal_Spec (N);
1872 Is_Actual : constant Boolean := Present (Formal_Spec);
1873 Nam : constant Node_Id := Name (N);
1874 Save_AV : constant Ada_Version_Type := Ada_Version;
1875 Save_AVP : constant Node_Id := Ada_Version_Pragma;
1876 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
1877 Spec : constant Node_Id := Specification (N);
1879 Old_S : Entity_Id := Empty;
1880 Rename_Spec : Entity_Id;
1882 procedure Build_Class_Wide_Wrapper
1883 (Ren_Id : out Entity_Id;
1884 Wrap_Id : out Entity_Id);
1885 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1886 -- type with unknown discriminants and a generic primitive operation of
1887 -- the said type with a box require special processing when the actual
1888 -- is a class-wide type:
1890 -- generic
1891 -- type Formal_Typ (<>) is private;
1892 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1893 -- package Gen is ...
1895 -- package Inst is new Gen (Actual_Typ'Class);
1897 -- In this case the general renaming mechanism used in the prologue of
1898 -- an instance no longer applies:
1900 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1902 -- The above is replaced the following wrapper/renaming combination:
1904 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1905 -- begin
1906 -- Prim_Op (Param); -- primitive
1907 -- end Wrapper;
1909 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1911 -- This transformation applies only if there is no explicit visible
1912 -- class-wide operation at the point of the instantiation. Ren_Id is
1913 -- the entity of the renaming declaration. Wrap_Id is the entity of
1914 -- the generated class-wide wrapper (or Any_Id).
1916 procedure Check_Null_Exclusion
1917 (Ren : Entity_Id;
1918 Sub : Entity_Id);
1919 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1920 -- following AI rules:
1922 -- If Ren is a renaming of a formal subprogram and one of its
1923 -- parameters has a null exclusion, then the corresponding formal
1924 -- in Sub must also have one. Otherwise the subtype of the Sub's
1925 -- formal parameter must exclude null.
1927 -- If Ren is a renaming of a formal function and its return
1928 -- profile has a null exclusion, then Sub's return profile must
1929 -- have one. Otherwise the subtype of Sub's return profile must
1930 -- exclude null.
1932 procedure Freeze_Actual_Profile;
1933 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1934 -- types: a callable entity freezes its profile, unless it has an
1935 -- incomplete untagged formal (RM 13.14(10.2/3)).
1937 function Has_Class_Wide_Actual return Boolean;
1938 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1939 -- defaulted formal subprogram where the actual for the controlling
1940 -- formal type is class-wide.
1942 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
1943 -- Find renamed entity when the declaration is a renaming_as_body and
1944 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1945 -- rule that a renaming_as_body is illegal if the declaration occurs
1946 -- before the subprogram it completes is frozen, and renaming indirectly
1947 -- renames the subprogram itself.(Defect Report 8652/0027).
1949 ------------------------------
1950 -- Build_Class_Wide_Wrapper --
1951 ------------------------------
1953 procedure Build_Class_Wide_Wrapper
1954 (Ren_Id : out Entity_Id;
1955 Wrap_Id : out Entity_Id)
1957 Loc : constant Source_Ptr := Sloc (N);
1959 function Build_Call
1960 (Subp_Id : Entity_Id;
1961 Params : List_Id) return Node_Id;
1962 -- Create a dispatching call to invoke routine Subp_Id with actuals
1963 -- built from the parameter specifications of list Params.
1965 function Build_Spec (Subp_Id : Entity_Id) return Node_Id;
1966 -- Create a subprogram specification based on the subprogram profile
1967 -- of Subp_Id.
1969 function Find_Primitive (Typ : Entity_Id) return Entity_Id;
1970 -- Find a primitive subprogram of type Typ which matches the profile
1971 -- of the renaming declaration.
1973 procedure Interpretation_Error (Subp_Id : Entity_Id);
1974 -- Emit a continuation error message suggesting subprogram Subp_Id as
1975 -- a possible interpretation.
1977 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean;
1978 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
1979 -- operator.
1981 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean;
1982 -- Determine whether subprogram Subp_Id is a suitable candidate for
1983 -- the role of a wrapped subprogram.
1985 ----------------
1986 -- Build_Call --
1987 ----------------
1989 function Build_Call
1990 (Subp_Id : Entity_Id;
1991 Params : List_Id) return Node_Id
1993 Actuals : constant List_Id := New_List;
1994 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
1995 Formal : Node_Id;
1997 begin
1998 -- Build the actual parameters of the call
2000 Formal := First (Params);
2001 while Present (Formal) loop
2002 Append_To (Actuals,
2003 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2004 Next (Formal);
2005 end loop;
2007 -- Generate:
2008 -- return Subp_Id (Actuals);
2010 if Ekind_In (Subp_Id, E_Function, E_Operator) then
2011 return
2012 Make_Simple_Return_Statement (Loc,
2013 Expression =>
2014 Make_Function_Call (Loc,
2015 Name => Call_Ref,
2016 Parameter_Associations => Actuals));
2018 -- Generate:
2019 -- Subp_Id (Actuals);
2021 else
2022 return
2023 Make_Procedure_Call_Statement (Loc,
2024 Name => Call_Ref,
2025 Parameter_Associations => Actuals);
2026 end if;
2027 end Build_Call;
2029 ----------------
2030 -- Build_Spec --
2031 ----------------
2033 function Build_Spec (Subp_Id : Entity_Id) return Node_Id is
2034 Params : constant List_Id := Copy_Parameter_List (Subp_Id);
2035 Spec_Id : constant Entity_Id :=
2036 Make_Defining_Identifier (Loc,
2037 Chars => New_External_Name (Chars (Subp_Id), 'R'));
2039 begin
2040 if Ekind (Formal_Spec) = E_Procedure then
2041 return
2042 Make_Procedure_Specification (Loc,
2043 Defining_Unit_Name => Spec_Id,
2044 Parameter_Specifications => Params);
2045 else
2046 return
2047 Make_Function_Specification (Loc,
2048 Defining_Unit_Name => Spec_Id,
2049 Parameter_Specifications => Params,
2050 Result_Definition =>
2051 New_Copy_Tree (Result_Definition (Spec)));
2052 end if;
2053 end Build_Spec;
2055 --------------------
2056 -- Find_Primitive --
2057 --------------------
2059 function Find_Primitive (Typ : Entity_Id) return Entity_Id is
2060 procedure Replace_Parameter_Types (Spec : Node_Id);
2061 -- Given a specification Spec, replace all class-wide parameter
2062 -- types with reference to type Typ.
2064 -----------------------------
2065 -- Replace_Parameter_Types --
2066 -----------------------------
2068 procedure Replace_Parameter_Types (Spec : Node_Id) is
2069 Formal : Node_Id;
2070 Formal_Id : Entity_Id;
2071 Formal_Typ : Node_Id;
2073 begin
2074 Formal := First (Parameter_Specifications (Spec));
2075 while Present (Formal) loop
2076 Formal_Id := Defining_Identifier (Formal);
2077 Formal_Typ := Parameter_Type (Formal);
2079 -- Create a new entity for each class-wide formal to prevent
2080 -- aliasing with the original renaming. Replace the type of
2081 -- such a parameter with the candidate type.
2083 if Nkind (Formal_Typ) = N_Identifier
2084 and then Is_Class_Wide_Type (Etype (Formal_Typ))
2085 then
2086 Set_Defining_Identifier (Formal,
2087 Make_Defining_Identifier (Loc, Chars (Formal_Id)));
2089 Set_Parameter_Type (Formal, New_Occurrence_Of (Typ, Loc));
2090 end if;
2092 Next (Formal);
2093 end loop;
2094 end Replace_Parameter_Types;
2096 -- Local variables
2098 Alt_Ren : constant Node_Id := New_Copy_Tree (N);
2099 Alt_Nam : constant Node_Id := Name (Alt_Ren);
2100 Alt_Spec : constant Node_Id := Specification (Alt_Ren);
2101 Subp_Id : Entity_Id;
2103 -- Start of processing for Find_Primitive
2105 begin
2106 -- Each attempt to find a suitable primitive of a particular type
2107 -- operates on its own copy of the original renaming. As a result
2108 -- the original renaming is kept decoration and side-effect free.
2110 -- Inherit the overloaded status of the renamed subprogram name
2112 if Is_Overloaded (Nam) then
2113 Set_Is_Overloaded (Alt_Nam);
2114 Save_Interps (Nam, Alt_Nam);
2115 end if;
2117 -- The copied renaming is hidden from visibility to prevent the
2118 -- pollution of the enclosing context.
2120 Set_Defining_Unit_Name (Alt_Spec, Make_Temporary (Loc, 'R'));
2122 -- The types of all class-wide parameters must be changed to the
2123 -- candidate type.
2125 Replace_Parameter_Types (Alt_Spec);
2127 -- Try to find a suitable primitive which matches the altered
2128 -- profile of the renaming specification.
2130 Subp_Id :=
2131 Find_Renamed_Entity
2132 (N => Alt_Ren,
2133 Nam => Name (Alt_Ren),
2134 New_S => Analyze_Subprogram_Specification (Alt_Spec),
2135 Is_Actual => Is_Actual);
2137 -- Do not return Any_Id if the resolion of the altered profile
2138 -- failed as this complicates further checks on the caller side,
2139 -- return Empty instead.
2141 if Subp_Id = Any_Id then
2142 return Empty;
2143 else
2144 return Subp_Id;
2145 end if;
2146 end Find_Primitive;
2148 --------------------------
2149 -- Interpretation_Error --
2150 --------------------------
2152 procedure Interpretation_Error (Subp_Id : Entity_Id) is
2153 begin
2154 Error_Msg_Sloc := Sloc (Subp_Id);
2156 if Is_Internal (Subp_Id) then
2157 Error_Msg_NE
2158 ("\\possible interpretation: predefined & #",
2159 Spec, Formal_Spec);
2160 else
2161 Error_Msg_NE
2162 ("\\possible interpretation: & defined #", Spec, Formal_Spec);
2163 end if;
2164 end Interpretation_Error;
2166 ---------------------------
2167 -- Is_Intrinsic_Equality --
2168 ---------------------------
2170 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean is
2171 begin
2172 return
2173 Ekind (Subp_Id) = E_Operator
2174 and then Chars (Subp_Id) = Name_Op_Eq
2175 and then Is_Intrinsic_Subprogram (Subp_Id);
2176 end Is_Intrinsic_Equality;
2178 ---------------------------
2179 -- Is_Suitable_Candidate --
2180 ---------------------------
2182 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean is
2183 begin
2184 if No (Subp_Id) then
2185 return False;
2187 -- An intrinsic subprogram is never a good candidate. This is an
2188 -- indication of a missing primitive, either defined directly or
2189 -- inherited from a parent tagged type.
2191 elsif Is_Intrinsic_Subprogram (Subp_Id) then
2192 return False;
2194 else
2195 return True;
2196 end if;
2197 end Is_Suitable_Candidate;
2199 -- Local variables
2201 Actual_Typ : Entity_Id := Empty;
2202 -- The actual class-wide type for Formal_Typ
2204 CW_Prim_OK : Boolean;
2205 CW_Prim_Op : Entity_Id;
2206 -- The class-wide subprogram (if available) which corresponds to the
2207 -- renamed generic formal subprogram.
2209 Formal_Typ : Entity_Id := Empty;
2210 -- The generic formal type with unknown discriminants
2212 Root_Prim_OK : Boolean;
2213 Root_Prim_Op : Entity_Id;
2214 -- The root type primitive (if available) which corresponds to the
2215 -- renamed generic formal subprogram.
2217 Root_Typ : Entity_Id := Empty;
2218 -- The root type of Actual_Typ
2220 Body_Decl : Node_Id;
2221 Formal : Node_Id;
2222 Prim_Op : Entity_Id;
2223 Spec_Decl : Node_Id;
2225 -- Start of processing for Build_Class_Wide_Wrapper
2227 begin
2228 -- Analyze the specification of the renaming in case the generation
2229 -- of the class-wide wrapper fails.
2231 Ren_Id := Analyze_Subprogram_Specification (Spec);
2232 Wrap_Id := Any_Id;
2234 -- Do not attempt to build a wrapper if the renaming is in error
2236 if Error_Posted (Nam) then
2237 return;
2238 end if;
2240 -- Analyze the renamed name, but do not resolve it. The resolution is
2241 -- completed once a suitable subprogram is found.
2243 Analyze (Nam);
2245 -- When the renamed name denotes the intrinsic operator equals, the
2246 -- name must be treated as overloaded. This allows for a potential
2247 -- match against the root type's predefined equality function.
2249 if Is_Intrinsic_Equality (Entity (Nam)) then
2250 Set_Is_Overloaded (Nam);
2251 Collect_Interps (Nam);
2252 end if;
2254 -- Step 1: Find the generic formal type with unknown discriminants
2255 -- and its corresponding class-wide actual type from the renamed
2256 -- generic formal subprogram.
2258 Formal := First_Formal (Formal_Spec);
2259 while Present (Formal) loop
2260 if Has_Unknown_Discriminants (Etype (Formal))
2261 and then not Is_Class_Wide_Type (Etype (Formal))
2262 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (Formal)))
2263 then
2264 Formal_Typ := Etype (Formal);
2265 Actual_Typ := Get_Instance_Of (Formal_Typ);
2266 Root_Typ := Etype (Actual_Typ);
2267 exit;
2268 end if;
2270 Next_Formal (Formal);
2271 end loop;
2273 -- The specification of the generic formal subprogram should always
2274 -- contain a formal type with unknown discriminants whose actual is
2275 -- a class-wide type, otherwise this indicates a failure in routine
2276 -- Has_Class_Wide_Actual.
2278 pragma Assert (Present (Formal_Typ));
2280 -- Step 2: Find the proper class-wide subprogram or primitive which
2281 -- corresponds to the renamed generic formal subprogram.
2283 CW_Prim_Op := Find_Primitive (Actual_Typ);
2284 CW_Prim_OK := Is_Suitable_Candidate (CW_Prim_Op);
2285 Root_Prim_Op := Find_Primitive (Root_Typ);
2286 Root_Prim_OK := Is_Suitable_Candidate (Root_Prim_Op);
2288 -- The class-wide actual type has two subprograms which correspond to
2289 -- the renamed generic formal subprogram:
2291 -- with procedure Prim_Op (Param : Formal_Typ);
2293 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2294 -- procedure Prim_Op (Param : Actual_Typ'Class);
2296 -- Even though the declaration of the two subprograms is legal, a
2297 -- call to either one is ambiguous and therefore illegal.
2299 if CW_Prim_OK and Root_Prim_OK then
2301 -- A user-defined primitive has precedence over a predefined one
2303 if Is_Internal (CW_Prim_Op)
2304 and then not Is_Internal (Root_Prim_Op)
2305 then
2306 Prim_Op := Root_Prim_Op;
2308 elsif Is_Internal (Root_Prim_Op)
2309 and then not Is_Internal (CW_Prim_Op)
2310 then
2311 Prim_Op := CW_Prim_Op;
2313 elsif CW_Prim_Op = Root_Prim_Op then
2314 Prim_Op := Root_Prim_Op;
2316 -- Otherwise both candidate subprograms are user-defined and
2317 -- ambiguous.
2319 else
2320 Error_Msg_NE
2321 ("ambiguous actual for generic subprogram &",
2322 Spec, Formal_Spec);
2323 Interpretation_Error (Root_Prim_Op);
2324 Interpretation_Error (CW_Prim_Op);
2325 return;
2326 end if;
2328 elsif CW_Prim_OK and not Root_Prim_OK then
2329 Prim_Op := CW_Prim_Op;
2331 elsif not CW_Prim_OK and Root_Prim_OK then
2332 Prim_Op := Root_Prim_Op;
2334 -- An intrinsic equality may act as a suitable candidate in the case
2335 -- of a null type extension where the parent's equality is hidden. A
2336 -- call to an intrinsic equality is expanded as dispatching.
2338 elsif Present (Root_Prim_Op)
2339 and then Is_Intrinsic_Equality (Root_Prim_Op)
2340 then
2341 Prim_Op := Root_Prim_Op;
2343 -- Otherwise there are no candidate subprograms. Let the caller
2344 -- diagnose the error.
2346 else
2347 return;
2348 end if;
2350 -- At this point resolution has taken place and the name is no longer
2351 -- overloaded. Mark the primitive as referenced.
2353 Set_Is_Overloaded (Name (N), False);
2354 Set_Referenced (Prim_Op);
2356 -- Step 3: Create the declaration and the body of the wrapper, insert
2357 -- all the pieces into the tree.
2359 Spec_Decl :=
2360 Make_Subprogram_Declaration (Loc,
2361 Specification => Build_Spec (Ren_Id));
2362 Insert_Before_And_Analyze (N, Spec_Decl);
2364 -- If the operator carries an Eliminated pragma, indicate that the
2365 -- wrapper is also to be eliminated, to prevent spurious error when
2366 -- using gnatelim on programs that include box-initialization of
2367 -- equality operators.
2369 Wrap_Id := Defining_Entity (Spec_Decl);
2370 Set_Is_Eliminated (Wrap_Id, Is_Eliminated (Prim_Op));
2372 Body_Decl :=
2373 Make_Subprogram_Body (Loc,
2374 Specification => Build_Spec (Ren_Id),
2375 Declarations => New_List,
2376 Handled_Statement_Sequence =>
2377 Make_Handled_Sequence_Of_Statements (Loc,
2378 Statements => New_List (
2379 Build_Call
2380 (Subp_Id => Prim_Op,
2381 Params =>
2382 Parameter_Specifications
2383 (Specification (Spec_Decl))))));
2385 -- The generated body does not freeze and must be analyzed when the
2386 -- class-wide wrapper is frozen. The body is only needed if expansion
2387 -- is enabled.
2389 if Expander_Active then
2390 Append_Freeze_Action (Wrap_Id, Body_Decl);
2391 end if;
2393 -- Step 4: The subprogram renaming aliases the wrapper
2395 Rewrite (Nam, New_Occurrence_Of (Wrap_Id, Loc));
2396 end Build_Class_Wide_Wrapper;
2398 --------------------------
2399 -- Check_Null_Exclusion --
2400 --------------------------
2402 procedure Check_Null_Exclusion
2403 (Ren : Entity_Id;
2404 Sub : Entity_Id)
2406 Ren_Formal : Entity_Id;
2407 Sub_Formal : Entity_Id;
2409 begin
2410 -- Parameter check
2412 Ren_Formal := First_Formal (Ren);
2413 Sub_Formal := First_Formal (Sub);
2414 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2415 if Has_Null_Exclusion (Parent (Ren_Formal))
2416 and then
2417 not (Has_Null_Exclusion (Parent (Sub_Formal))
2418 or else Can_Never_Be_Null (Etype (Sub_Formal)))
2419 then
2420 Error_Msg_NE
2421 ("`NOT NULL` required for parameter &",
2422 Parent (Sub_Formal), Sub_Formal);
2423 end if;
2425 Next_Formal (Ren_Formal);
2426 Next_Formal (Sub_Formal);
2427 end loop;
2429 -- Return profile check
2431 if Nkind (Parent (Ren)) = N_Function_Specification
2432 and then Nkind (Parent (Sub)) = N_Function_Specification
2433 and then Has_Null_Exclusion (Parent (Ren))
2434 and then not (Has_Null_Exclusion (Parent (Sub))
2435 or else Can_Never_Be_Null (Etype (Sub)))
2436 then
2437 Error_Msg_N
2438 ("return must specify `NOT NULL`",
2439 Result_Definition (Parent (Sub)));
2440 end if;
2441 end Check_Null_Exclusion;
2443 ---------------------------
2444 -- Freeze_Actual_Profile --
2445 ---------------------------
2447 procedure Freeze_Actual_Profile is
2448 F : Entity_Id;
2449 Has_Untagged_Inc : Boolean;
2450 Instantiation_Node : constant Node_Id := Parent (N);
2452 begin
2453 if Ada_Version >= Ada_2012 then
2454 F := First_Formal (Formal_Spec);
2455 Has_Untagged_Inc := False;
2456 while Present (F) loop
2457 if Ekind (Etype (F)) = E_Incomplete_Type
2458 and then not Is_Tagged_Type (Etype (F))
2459 then
2460 Has_Untagged_Inc := True;
2461 exit;
2462 end if;
2464 F := Next_Formal (F);
2465 end loop;
2467 if Ekind (Formal_Spec) = E_Function
2468 and then Ekind (Etype (Formal_Spec)) = E_Incomplete_Type
2469 and then not Is_Tagged_Type (Etype (F))
2470 then
2471 Has_Untagged_Inc := True;
2472 end if;
2474 if not Has_Untagged_Inc then
2475 F := First_Formal (Old_S);
2476 while Present (F) loop
2477 Freeze_Before (Instantiation_Node, Etype (F));
2479 if Is_Incomplete_Or_Private_Type (Etype (F))
2480 and then No (Underlying_Type (Etype (F)))
2481 then
2482 -- Exclude generic types, or types derived from them.
2483 -- They will be frozen in the enclosing instance.
2485 if Is_Generic_Type (Etype (F))
2486 or else Is_Generic_Type (Root_Type (Etype (F)))
2487 then
2488 null;
2489 else
2490 Error_Msg_NE
2491 ("type& must be frozen before this point",
2492 Instantiation_Node, Etype (F));
2493 end if;
2494 end if;
2496 F := Next_Formal (F);
2497 end loop;
2498 end if;
2499 end if;
2500 end Freeze_Actual_Profile;
2502 ---------------------------
2503 -- Has_Class_Wide_Actual --
2504 ---------------------------
2506 function Has_Class_Wide_Actual return Boolean is
2507 Formal : Entity_Id;
2508 Formal_Typ : Entity_Id;
2510 begin
2511 if Is_Actual then
2512 Formal := First_Formal (Formal_Spec);
2513 while Present (Formal) loop
2514 Formal_Typ := Etype (Formal);
2516 if Has_Unknown_Discriminants (Formal_Typ)
2517 and then not Is_Class_Wide_Type (Formal_Typ)
2518 and then Is_Class_Wide_Type (Get_Instance_Of (Formal_Typ))
2519 then
2520 return True;
2521 end if;
2523 Next_Formal (Formal);
2524 end loop;
2525 end if;
2527 return False;
2528 end Has_Class_Wide_Actual;
2530 -------------------------
2531 -- Original_Subprogram --
2532 -------------------------
2534 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
2535 Orig_Decl : Node_Id;
2536 Orig_Subp : Entity_Id;
2538 begin
2539 -- First case: renamed entity is itself a renaming
2541 if Present (Alias (Subp)) then
2542 return Alias (Subp);
2544 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
2545 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
2546 then
2547 -- Check if renamed entity is a renaming_as_body
2549 Orig_Decl :=
2550 Unit_Declaration_Node
2551 (Corresponding_Body (Unit_Declaration_Node (Subp)));
2553 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
2554 Orig_Subp := Entity (Name (Orig_Decl));
2556 if Orig_Subp = Rename_Spec then
2558 -- Circularity detected
2560 return Orig_Subp;
2562 else
2563 return (Original_Subprogram (Orig_Subp));
2564 end if;
2565 else
2566 return Subp;
2567 end if;
2568 else
2569 return Subp;
2570 end if;
2571 end Original_Subprogram;
2573 -- Local variables
2575 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
2576 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2577 -- defaulted formal subprogram when the actual for a related formal
2578 -- type is class-wide.
2580 Inst_Node : Node_Id := Empty;
2581 New_S : Entity_Id;
2583 -- Start of processing for Analyze_Subprogram_Renaming
2585 begin
2586 -- The subprogram renaming declaration may be subject to pragma Ghost
2587 -- with policy Ignore. Set the mode now to ensure that any nodes
2588 -- generated during analysis and expansion are properly flagged as
2589 -- ignored Ghost.
2591 Set_Ghost_Mode (N);
2593 -- We must test for the attribute renaming case before the Analyze
2594 -- call because otherwise Sem_Attr will complain that the attribute
2595 -- is missing an argument when it is analyzed.
2597 if Nkind (Nam) = N_Attribute_Reference then
2599 -- In the case of an abstract formal subprogram association, rewrite
2600 -- an actual given by a stream attribute as the name of the
2601 -- corresponding stream primitive of the type.
2603 -- In a generic context the stream operations are not generated, and
2604 -- this must be treated as a normal attribute reference, to be
2605 -- expanded in subsequent instantiations.
2607 if Is_Actual
2608 and then Is_Abstract_Subprogram (Formal_Spec)
2609 and then Expander_Active
2610 then
2611 declare
2612 Stream_Prim : Entity_Id;
2613 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
2615 begin
2616 -- The class-wide forms of the stream attributes are not
2617 -- primitive dispatching operations (even though they
2618 -- internally dispatch to a stream attribute).
2620 if Is_Class_Wide_Type (Prefix_Type) then
2621 Error_Msg_N
2622 ("attribute must be a primitive dispatching operation",
2623 Nam);
2624 return;
2625 end if;
2627 -- Retrieve the primitive subprogram associated with the
2628 -- attribute. This can only be a stream attribute, since those
2629 -- are the only ones that are dispatching (and the actual for
2630 -- an abstract formal subprogram must be dispatching
2631 -- operation).
2633 begin
2634 case Attribute_Name (Nam) is
2635 when Name_Input =>
2636 Stream_Prim :=
2637 Find_Prim_Op (Prefix_Type, TSS_Stream_Input);
2638 when Name_Output =>
2639 Stream_Prim :=
2640 Find_Prim_Op (Prefix_Type, TSS_Stream_Output);
2641 when Name_Read =>
2642 Stream_Prim :=
2643 Find_Prim_Op (Prefix_Type, TSS_Stream_Read);
2644 when Name_Write =>
2645 Stream_Prim :=
2646 Find_Prim_Op (Prefix_Type, TSS_Stream_Write);
2647 when others =>
2648 Error_Msg_N
2649 ("attribute must be a primitive"
2650 & " dispatching operation", Nam);
2651 return;
2652 end case;
2654 exception
2656 -- If no operation was found, and the type is limited,
2657 -- the user should have defined one.
2659 when Program_Error =>
2660 if Is_Limited_Type (Prefix_Type) then
2661 Error_Msg_NE
2662 ("stream operation not defined for type&",
2663 N, Prefix_Type);
2664 return;
2666 -- Otherwise, compiler should have generated default
2668 else
2669 raise;
2670 end if;
2671 end;
2673 -- Rewrite the attribute into the name of its corresponding
2674 -- primitive dispatching subprogram. We can then proceed with
2675 -- the usual processing for subprogram renamings.
2677 declare
2678 Prim_Name : constant Node_Id :=
2679 Make_Identifier (Sloc (Nam),
2680 Chars => Chars (Stream_Prim));
2681 begin
2682 Set_Entity (Prim_Name, Stream_Prim);
2683 Rewrite (Nam, Prim_Name);
2684 Analyze (Nam);
2685 end;
2686 end;
2688 -- Normal processing for a renaming of an attribute
2690 else
2691 Attribute_Renaming (N);
2692 return;
2693 end if;
2694 end if;
2696 -- Check whether this declaration corresponds to the instantiation
2697 -- of a formal subprogram.
2699 -- If this is an instantiation, the corresponding actual is frozen and
2700 -- error messages can be made more precise. If this is a default
2701 -- subprogram, the entity is already established in the generic, and is
2702 -- not retrieved by visibility. If it is a default with a box, the
2703 -- candidate interpretations, if any, have been collected when building
2704 -- the renaming declaration. If overloaded, the proper interpretation is
2705 -- determined in Find_Renamed_Entity. If the entity is an operator,
2706 -- Find_Renamed_Entity applies additional visibility checks.
2708 if Is_Actual then
2709 Inst_Node := Unit_Declaration_Node (Formal_Spec);
2711 -- Check whether the renaming is for a defaulted actual subprogram
2712 -- with a class-wide actual.
2714 -- The class-wide wrapper is not needed in GNATprove_Mode and there
2715 -- is an external axiomatization on the package.
2717 if CW_Actual
2718 and then Box_Present (Inst_Node)
2719 and then not
2720 (GNATprove_Mode
2721 and then
2722 Present (Containing_Package_With_Ext_Axioms (Formal_Spec)))
2723 then
2724 Build_Class_Wide_Wrapper (New_S, Old_S);
2726 elsif Is_Entity_Name (Nam)
2727 and then Present (Entity (Nam))
2728 and then not Comes_From_Source (Nam)
2729 and then not Is_Overloaded (Nam)
2730 then
2731 Old_S := Entity (Nam);
2732 New_S := Analyze_Subprogram_Specification (Spec);
2734 -- Operator case
2736 if Ekind (Entity (Nam)) = E_Operator then
2738 -- Box present
2740 if Box_Present (Inst_Node) then
2741 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2743 -- If there is an immediately visible homonym of the operator
2744 -- and the declaration has a default, this is worth a warning
2745 -- because the user probably did not intend to get the pre-
2746 -- defined operator, visible in the generic declaration. To
2747 -- find if there is an intended candidate, analyze the renaming
2748 -- again in the current context.
2750 elsif Scope (Old_S) = Standard_Standard
2751 and then Present (Default_Name (Inst_Node))
2752 then
2753 declare
2754 Decl : constant Node_Id := New_Copy_Tree (N);
2755 Hidden : Entity_Id;
2757 begin
2758 Set_Entity (Name (Decl), Empty);
2759 Analyze (Name (Decl));
2760 Hidden :=
2761 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
2763 if Present (Hidden)
2764 and then In_Open_Scopes (Scope (Hidden))
2765 and then Is_Immediately_Visible (Hidden)
2766 and then Comes_From_Source (Hidden)
2767 and then Hidden /= Old_S
2768 then
2769 Error_Msg_Sloc := Sloc (Hidden);
2770 Error_Msg_N ("default subprogram is resolved " &
2771 "in the generic declaration " &
2772 "(RM 12.6(17))??", N);
2773 Error_Msg_NE ("\and will not use & #??", N, Hidden);
2774 end if;
2775 end;
2776 end if;
2777 end if;
2779 else
2780 Analyze (Nam);
2781 New_S := Analyze_Subprogram_Specification (Spec);
2782 end if;
2784 else
2785 -- Renamed entity must be analyzed first, to avoid being hidden by
2786 -- new name (which might be the same in a generic instance).
2788 Analyze (Nam);
2790 -- The renaming defines a new overloaded entity, which is analyzed
2791 -- like a subprogram declaration.
2793 New_S := Analyze_Subprogram_Specification (Spec);
2794 end if;
2796 if Current_Scope /= Standard_Standard then
2797 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
2798 end if;
2800 -- Set SPARK mode from current context
2802 Set_SPARK_Pragma (New_S, SPARK_Mode_Pragma);
2803 Set_SPARK_Pragma_Inherited (New_S, True);
2805 Rename_Spec := Find_Corresponding_Spec (N);
2807 -- Case of Renaming_As_Body
2809 if Present (Rename_Spec) then
2811 -- Renaming declaration is the completion of the declaration of
2812 -- Rename_Spec. We build an actual body for it at the freezing point.
2814 Set_Corresponding_Spec (N, Rename_Spec);
2816 -- Deal with special case of stream functions of abstract types
2817 -- and interfaces.
2819 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
2820 N_Abstract_Subprogram_Declaration
2821 then
2822 -- Input stream functions are abstract if the object type is
2823 -- abstract. Similarly, all default stream functions for an
2824 -- interface type are abstract. However, these subprograms may
2825 -- receive explicit declarations in representation clauses, making
2826 -- the attribute subprograms usable as defaults in subsequent
2827 -- type extensions.
2828 -- In this case we rewrite the declaration to make the subprogram
2829 -- non-abstract. We remove the previous declaration, and insert
2830 -- the new one at the point of the renaming, to prevent premature
2831 -- access to unfrozen types. The new declaration reuses the
2832 -- specification of the previous one, and must not be analyzed.
2834 pragma Assert
2835 (Is_Primitive (Entity (Nam))
2836 and then
2837 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
2838 declare
2839 Old_Decl : constant Node_Id :=
2840 Unit_Declaration_Node (Rename_Spec);
2841 New_Decl : constant Node_Id :=
2842 Make_Subprogram_Declaration (Sloc (N),
2843 Specification =>
2844 Relocate_Node (Specification (Old_Decl)));
2845 begin
2846 Remove (Old_Decl);
2847 Insert_After (N, New_Decl);
2848 Set_Is_Abstract_Subprogram (Rename_Spec, False);
2849 Set_Analyzed (New_Decl);
2850 end;
2851 end if;
2853 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
2855 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2856 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
2857 end if;
2859 Set_Convention (New_S, Convention (Rename_Spec));
2860 Check_Fully_Conformant (New_S, Rename_Spec);
2861 Set_Public_Status (New_S);
2863 -- The specification does not introduce new formals, but only
2864 -- repeats the formals of the original subprogram declaration.
2865 -- For cross-reference purposes, and for refactoring tools, we
2866 -- treat the formals of the renaming declaration as body formals.
2868 Reference_Body_Formals (Rename_Spec, New_S);
2870 -- Indicate that the entity in the declaration functions like the
2871 -- corresponding body, and is not a new entity. The body will be
2872 -- constructed later at the freeze point, so indicate that the
2873 -- completion has not been seen yet.
2875 Set_Ekind (New_S, E_Subprogram_Body);
2876 New_S := Rename_Spec;
2877 Set_Has_Completion (Rename_Spec, False);
2879 -- Ada 2005: check overriding indicator
2881 if Present (Overridden_Operation (Rename_Spec)) then
2882 if Must_Not_Override (Specification (N)) then
2883 Error_Msg_NE
2884 ("subprogram& overrides inherited operation",
2885 N, Rename_Spec);
2886 elsif
2887 Style_Check and then not Must_Override (Specification (N))
2888 then
2889 Style.Missing_Overriding (N, Rename_Spec);
2890 end if;
2892 elsif Must_Override (Specification (N)) then
2893 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
2894 end if;
2896 -- Normal subprogram renaming (not renaming as body)
2898 else
2899 Generate_Definition (New_S);
2900 New_Overloaded_Entity (New_S);
2902 if Is_Entity_Name (Nam)
2903 and then Is_Intrinsic_Subprogram (Entity (Nam))
2904 then
2905 null;
2906 else
2907 Check_Delayed_Subprogram (New_S);
2908 end if;
2909 end if;
2911 -- There is no need for elaboration checks on the new entity, which may
2912 -- be called before the next freezing point where the body will appear.
2913 -- Elaboration checks refer to the real entity, not the one created by
2914 -- the renaming declaration.
2916 Set_Kill_Elaboration_Checks (New_S, True);
2918 -- If we had a previous error, indicate a completely is present to stop
2919 -- junk cascaded messages, but don't take any further action.
2921 if Etype (Nam) = Any_Type then
2922 Set_Has_Completion (New_S);
2923 return;
2925 -- Case where name has the form of a selected component
2927 elsif Nkind (Nam) = N_Selected_Component then
2929 -- A name which has the form A.B can designate an entry of task A, a
2930 -- protected operation of protected object A, or finally a primitive
2931 -- operation of object A. In the later case, A is an object of some
2932 -- tagged type, or an access type that denotes one such. To further
2933 -- distinguish these cases, note that the scope of a task entry or
2934 -- protected operation is type of the prefix.
2936 -- The prefix could be an overloaded function call that returns both
2937 -- kinds of operations. This overloading pathology is left to the
2938 -- dedicated reader ???
2940 declare
2941 T : constant Entity_Id := Etype (Prefix (Nam));
2943 begin
2944 if Present (T)
2945 and then
2946 (Is_Tagged_Type (T)
2947 or else
2948 (Is_Access_Type (T)
2949 and then Is_Tagged_Type (Designated_Type (T))))
2950 and then Scope (Entity (Selector_Name (Nam))) /= T
2951 then
2952 Analyze_Renamed_Primitive_Operation
2953 (N, New_S, Present (Rename_Spec));
2954 return;
2956 else
2957 -- Renamed entity is an entry or protected operation. For those
2958 -- cases an explicit body is built (at the point of freezing of
2959 -- this entity) that contains a call to the renamed entity.
2961 -- This is not allowed for renaming as body if the renamed
2962 -- spec is already frozen (see RM 8.5.4(5) for details).
2964 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
2965 Error_Msg_N
2966 ("renaming-as-body cannot rename entry as subprogram", N);
2967 Error_Msg_NE
2968 ("\since & is already frozen (RM 8.5.4(5))",
2969 N, Rename_Spec);
2970 else
2971 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
2972 end if;
2974 return;
2975 end if;
2976 end;
2978 -- Case where name is an explicit dereference X.all
2980 elsif Nkind (Nam) = N_Explicit_Dereference then
2982 -- Renamed entity is designated by access_to_subprogram expression.
2983 -- Must build body to encapsulate call, as in the entry case.
2985 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
2986 return;
2988 -- Indexed component
2990 elsif Nkind (Nam) = N_Indexed_Component then
2991 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
2992 return;
2994 -- Character literal
2996 elsif Nkind (Nam) = N_Character_Literal then
2997 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
2998 return;
3000 -- Only remaining case is where we have a non-entity name, or a renaming
3001 -- of some other non-overloadable entity.
3003 elsif not Is_Entity_Name (Nam)
3004 or else not Is_Overloadable (Entity (Nam))
3005 then
3006 -- Do not mention the renaming if it comes from an instance
3008 if not Is_Actual then
3009 Error_Msg_N ("expect valid subprogram name in renaming", N);
3010 else
3011 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
3012 end if;
3014 return;
3015 end if;
3017 -- Find the renamed entity that matches the given specification. Disable
3018 -- Ada_83 because there is no requirement of full conformance between
3019 -- renamed entity and new entity, even though the same circuit is used.
3021 -- This is a bit of an odd case, which introduces a really irregular use
3022 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
3023 -- this. ???
3025 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
3026 Ada_Version_Pragma := Empty;
3027 Ada_Version_Explicit := Ada_Version;
3029 if No (Old_S) then
3030 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
3032 -- The visible operation may be an inherited abstract operation that
3033 -- was overridden in the private part, in which case a call will
3034 -- dispatch to the overriding operation. Use the overriding one in
3035 -- the renaming declaration, to prevent spurious errors below.
3037 if Is_Overloadable (Old_S)
3038 and then Is_Abstract_Subprogram (Old_S)
3039 and then No (DTC_Entity (Old_S))
3040 and then Present (Alias (Old_S))
3041 and then not Is_Abstract_Subprogram (Alias (Old_S))
3042 and then Present (Overridden_Operation (Alias (Old_S)))
3043 then
3044 Old_S := Alias (Old_S);
3045 end if;
3047 -- When the renamed subprogram is overloaded and used as an actual
3048 -- of a generic, its entity is set to the first available homonym.
3049 -- We must first disambiguate the name, then set the proper entity.
3051 if Is_Actual and then Is_Overloaded (Nam) then
3052 Set_Entity (Nam, Old_S);
3053 end if;
3054 end if;
3056 -- Most common case: subprogram renames subprogram. No body is generated
3057 -- in this case, so we must indicate the declaration is complete as is.
3058 -- and inherit various attributes of the renamed subprogram.
3060 if No (Rename_Spec) then
3061 Set_Has_Completion (New_S);
3062 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
3063 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
3064 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
3066 -- A subprogram renaming is Ghost if the renamed entity is Ghost or
3067 -- the construct appears within a Ghost scope.
3069 if Is_Ghost_Entity (Entity (Nam)) or else Ghost_Mode > None then
3070 Set_Is_Ghost_Entity (New_S);
3071 end if;
3073 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3074 -- between a subprogram and its correct renaming.
3076 -- Note: the Any_Id check is a guard that prevents compiler crashes
3077 -- when performing a null exclusion check between a renaming and a
3078 -- renamed subprogram that has been found to be illegal.
3080 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
3081 Check_Null_Exclusion
3082 (Ren => New_S,
3083 Sub => Entity (Nam));
3084 end if;
3086 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3087 -- overriding. The flag Requires_Overriding is set very selectively
3088 -- and misses some other illegal cases. The additional conditions
3089 -- checked below are sufficient but not necessary ???
3091 -- The rule does not apply to the renaming generated for an actual
3092 -- subprogram in an instance.
3094 if Is_Actual then
3095 null;
3097 -- Guard against previous errors, and omit renamings of predefined
3098 -- operators.
3100 elsif not Ekind_In (Old_S, E_Function, E_Procedure) then
3101 null;
3103 elsif Requires_Overriding (Old_S)
3104 or else
3105 (Is_Abstract_Subprogram (Old_S)
3106 and then Present (Find_Dispatching_Type (Old_S))
3107 and then
3108 not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
3109 then
3110 Error_Msg_N
3111 ("renamed entity cannot be "
3112 & "subprogram that requires overriding (RM 8.5.4 (5.1))", N);
3113 end if;
3114 end if;
3116 if Old_S /= Any_Id then
3117 if Is_Actual and then From_Default (N) then
3119 -- This is an implicit reference to the default actual
3121 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
3123 else
3124 Generate_Reference (Old_S, Nam);
3125 end if;
3127 Check_Internal_Protected_Use (N, Old_S);
3129 -- For a renaming-as-body, require subtype conformance, but if the
3130 -- declaration being completed has not been frozen, then inherit the
3131 -- convention of the renamed subprogram prior to checking conformance
3132 -- (unless the renaming has an explicit convention established; the
3133 -- rule stated in the RM doesn't seem to address this ???).
3135 if Present (Rename_Spec) then
3136 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
3137 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
3139 if not Is_Frozen (Rename_Spec) then
3140 if not Has_Convention_Pragma (Rename_Spec) then
3141 Set_Convention (New_S, Convention (Old_S));
3142 end if;
3144 if Ekind (Old_S) /= E_Operator then
3145 Check_Mode_Conformant (New_S, Old_S, Spec);
3146 end if;
3148 if Original_Subprogram (Old_S) = Rename_Spec then
3149 Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
3150 end if;
3151 else
3152 Check_Subtype_Conformant (New_S, Old_S, Spec);
3153 end if;
3155 Check_Frozen_Renaming (N, Rename_Spec);
3157 -- Check explicitly that renamed entity is not intrinsic, because
3158 -- in a generic the renamed body is not built. In this case,
3159 -- the renaming_as_body is a completion.
3161 if Inside_A_Generic then
3162 if Is_Frozen (Rename_Spec)
3163 and then Is_Intrinsic_Subprogram (Old_S)
3164 then
3165 Error_Msg_N
3166 ("subprogram in renaming_as_body cannot be intrinsic",
3167 Name (N));
3168 end if;
3170 Set_Has_Completion (Rename_Spec);
3171 end if;
3173 elsif Ekind (Old_S) /= E_Operator then
3175 -- If this a defaulted subprogram for a class-wide actual there is
3176 -- no check for mode conformance, given that the signatures don't
3177 -- match (the source mentions T but the actual mentions T'Class).
3179 if CW_Actual then
3180 null;
3181 elsif not Is_Actual or else No (Enclosing_Instance) then
3182 Check_Mode_Conformant (New_S, Old_S);
3183 end if;
3185 if Is_Actual and then Error_Posted (New_S) then
3186 Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
3187 end if;
3188 end if;
3190 if No (Rename_Spec) then
3192 -- The parameter profile of the new entity is that of the renamed
3193 -- entity: the subtypes given in the specification are irrelevant.
3195 Inherit_Renamed_Profile (New_S, Old_S);
3197 -- A call to the subprogram is transformed into a call to the
3198 -- renamed entity. This is transitive if the renamed entity is
3199 -- itself a renaming.
3201 if Present (Alias (Old_S)) then
3202 Set_Alias (New_S, Alias (Old_S));
3203 else
3204 Set_Alias (New_S, Old_S);
3205 end if;
3207 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3208 -- renaming as body, since the entity in this case is not an
3209 -- intrinsic (it calls an intrinsic, but we have a real body for
3210 -- this call, and it is in this body that the required intrinsic
3211 -- processing will take place).
3213 -- Also, if this is a renaming of inequality, the renamed operator
3214 -- is intrinsic, but what matters is the corresponding equality
3215 -- operator, which may be user-defined.
3217 Set_Is_Intrinsic_Subprogram
3218 (New_S,
3219 Is_Intrinsic_Subprogram (Old_S)
3220 and then
3221 (Chars (Old_S) /= Name_Op_Ne
3222 or else Ekind (Old_S) = E_Operator
3223 or else Is_Intrinsic_Subprogram
3224 (Corresponding_Equality (Old_S))));
3226 if Ekind (Alias (New_S)) = E_Operator then
3227 Set_Has_Delayed_Freeze (New_S, False);
3228 end if;
3230 -- If the renaming corresponds to an association for an abstract
3231 -- formal subprogram, then various attributes must be set to
3232 -- indicate that the renaming is an abstract dispatching operation
3233 -- with a controlling type.
3235 if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
3237 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3238 -- see it as corresponding to a generic association for a
3239 -- formal abstract subprogram
3241 Set_Is_Abstract_Subprogram (New_S);
3243 declare
3244 New_S_Ctrl_Type : constant Entity_Id :=
3245 Find_Dispatching_Type (New_S);
3246 Old_S_Ctrl_Type : constant Entity_Id :=
3247 Find_Dispatching_Type (Old_S);
3249 begin
3250 if Old_S_Ctrl_Type /= New_S_Ctrl_Type then
3251 Error_Msg_NE
3252 ("actual must be dispatching subprogram for type&",
3253 Nam, New_S_Ctrl_Type);
3255 else
3256 Set_Is_Dispatching_Operation (New_S);
3257 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
3259 -- If the actual in the formal subprogram is itself a
3260 -- formal abstract subprogram association, there's no
3261 -- dispatch table component or position to inherit.
3263 if Present (DTC_Entity (Old_S)) then
3264 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
3265 Set_DT_Position_Value (New_S, DT_Position (Old_S));
3266 end if;
3267 end if;
3268 end;
3269 end if;
3270 end if;
3272 if Is_Actual then
3273 null;
3275 -- The following is illegal, because F hides whatever other F may
3276 -- be around:
3277 -- function F (...) renames F;
3279 elsif Old_S = New_S
3280 or else (Nkind (Nam) /= N_Expanded_Name
3281 and then Chars (Old_S) = Chars (New_S))
3282 then
3283 Error_Msg_N ("subprogram cannot rename itself", N);
3285 -- This is illegal even if we use a selector:
3286 -- function F (...) renames Pkg.F;
3287 -- because F is still hidden.
3289 elsif Nkind (Nam) = N_Expanded_Name
3290 and then Entity (Prefix (Nam)) = Current_Scope
3291 and then Chars (Selector_Name (Nam)) = Chars (New_S)
3292 then
3293 -- This is an error, but we overlook the error and accept the
3294 -- renaming if the special Overriding_Renamings mode is in effect.
3296 if not Overriding_Renamings then
3297 Error_Msg_NE
3298 ("implicit operation& is not visible (RM 8.3 (15))",
3299 Nam, Old_S);
3300 end if;
3301 end if;
3303 Set_Convention (New_S, Convention (Old_S));
3305 if Is_Abstract_Subprogram (Old_S) then
3306 if Present (Rename_Spec) then
3307 Error_Msg_N
3308 ("a renaming-as-body cannot rename an abstract subprogram",
3310 Set_Has_Completion (Rename_Spec);
3311 else
3312 Set_Is_Abstract_Subprogram (New_S);
3313 end if;
3314 end if;
3316 Check_Library_Unit_Renaming (N, Old_S);
3318 -- Pathological case: procedure renames entry in the scope of its
3319 -- task. Entry is given by simple name, but body must be built for
3320 -- procedure. Of course if called it will deadlock.
3322 if Ekind (Old_S) = E_Entry then
3323 Set_Has_Completion (New_S, False);
3324 Set_Alias (New_S, Empty);
3325 end if;
3327 if Is_Actual then
3328 Freeze_Before (N, Old_S);
3329 Freeze_Actual_Profile;
3330 Set_Has_Delayed_Freeze (New_S, False);
3331 Freeze_Before (N, New_S);
3333 -- An abstract subprogram is only allowed as an actual in the case
3334 -- where the formal subprogram is also abstract.
3336 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
3337 and then Is_Abstract_Subprogram (Old_S)
3338 and then not Is_Abstract_Subprogram (Formal_Spec)
3339 then
3340 Error_Msg_N
3341 ("abstract subprogram not allowed as generic actual", Nam);
3342 end if;
3343 end if;
3345 else
3346 -- A common error is to assume that implicit operators for types are
3347 -- defined in Standard, or in the scope of a subtype. In those cases
3348 -- where the renamed entity is given with an expanded name, it is
3349 -- worth mentioning that operators for the type are not declared in
3350 -- the scope given by the prefix.
3352 if Nkind (Nam) = N_Expanded_Name
3353 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
3354 and then Scope (Entity (Nam)) = Standard_Standard
3355 then
3356 declare
3357 T : constant Entity_Id :=
3358 Base_Type (Etype (First_Formal (New_S)));
3359 begin
3360 Error_Msg_Node_2 := Prefix (Nam);
3361 Error_Msg_NE
3362 ("operator for type& is not declared in&", Prefix (Nam), T);
3363 end;
3365 else
3366 Error_Msg_NE
3367 ("no visible subprogram matches the specification for&",
3368 Spec, New_S);
3369 end if;
3371 if Present (Candidate_Renaming) then
3372 declare
3373 F1 : Entity_Id;
3374 F2 : Entity_Id;
3375 T1 : Entity_Id;
3377 begin
3378 F1 := First_Formal (Candidate_Renaming);
3379 F2 := First_Formal (New_S);
3380 T1 := First_Subtype (Etype (F1));
3381 while Present (F1) and then Present (F2) loop
3382 Next_Formal (F1);
3383 Next_Formal (F2);
3384 end loop;
3386 if Present (F1) and then Present (Default_Value (F1)) then
3387 if Present (Next_Formal (F1)) then
3388 Error_Msg_NE
3389 ("\missing specification for &" &
3390 " and other formals with defaults", Spec, F1);
3391 else
3392 Error_Msg_NE
3393 ("\missing specification for &", Spec, F1);
3394 end if;
3395 end if;
3397 if Nkind (Nam) = N_Operator_Symbol
3398 and then From_Default (N)
3399 then
3400 Error_Msg_Node_2 := T1;
3401 Error_Msg_NE
3402 ("default & on & is not directly visible",
3403 Nam, Nam);
3404 end if;
3405 end;
3406 end if;
3407 end if;
3409 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3410 -- controlling access parameters are known non-null for the renamed
3411 -- subprogram. Test also applies to a subprogram instantiation that
3412 -- is dispatching. Test is skipped if some previous error was detected
3413 -- that set Old_S to Any_Id.
3415 if Ada_Version >= Ada_2005
3416 and then Old_S /= Any_Id
3417 and then not Is_Dispatching_Operation (Old_S)
3418 and then Is_Dispatching_Operation (New_S)
3419 then
3420 declare
3421 Old_F : Entity_Id;
3422 New_F : Entity_Id;
3424 begin
3425 Old_F := First_Formal (Old_S);
3426 New_F := First_Formal (New_S);
3427 while Present (Old_F) loop
3428 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
3429 and then Is_Controlling_Formal (New_F)
3430 and then not Can_Never_Be_Null (Old_F)
3431 then
3432 Error_Msg_N ("access parameter is controlling,", New_F);
3433 Error_Msg_NE
3434 ("\corresponding parameter of& "
3435 & "must be explicitly null excluding", New_F, Old_S);
3436 end if;
3438 Next_Formal (Old_F);
3439 Next_Formal (New_F);
3440 end loop;
3441 end;
3442 end if;
3444 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3445 -- is to warn if an operator is being renamed as a different operator.
3446 -- If the operator is predefined, examine the kind of the entity, not
3447 -- the abbreviated declaration in Standard.
3449 if Comes_From_Source (N)
3450 and then Present (Old_S)
3451 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
3452 or else Ekind (Old_S) = E_Operator)
3453 and then Nkind (New_S) = N_Defining_Operator_Symbol
3454 and then Chars (Old_S) /= Chars (New_S)
3455 then
3456 Error_Msg_NE
3457 ("& is being renamed as a different operator??", N, Old_S);
3458 end if;
3460 -- Check for renaming of obsolescent subprogram
3462 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
3464 -- Another warning or some utility: if the new subprogram as the same
3465 -- name as the old one, the old one is not hidden by an outer homograph,
3466 -- the new one is not a public symbol, and the old one is otherwise
3467 -- directly visible, the renaming is superfluous.
3469 if Chars (Old_S) = Chars (New_S)
3470 and then Comes_From_Source (N)
3471 and then Scope (Old_S) /= Standard_Standard
3472 and then Warn_On_Redundant_Constructs
3473 and then (Is_Immediately_Visible (Old_S)
3474 or else Is_Potentially_Use_Visible (Old_S))
3475 and then Is_Overloadable (Current_Scope)
3476 and then Chars (Current_Scope) /= Chars (Old_S)
3477 then
3478 Error_Msg_N
3479 ("redundant renaming, entity is directly visible?r?", Name (N));
3480 end if;
3482 -- Implementation-defined aspect specifications can appear in a renaming
3483 -- declaration, but not language-defined ones. The call to procedure
3484 -- Analyze_Aspect_Specifications will take care of this error check.
3486 if Has_Aspects (N) then
3487 Analyze_Aspect_Specifications (N, New_S);
3488 end if;
3490 Ada_Version := Save_AV;
3491 Ada_Version_Pragma := Save_AVP;
3492 Ada_Version_Explicit := Save_AV_Exp;
3494 -- In GNATprove mode, the renamings of actual subprograms are replaced
3495 -- with wrapper functions that make it easier to propagate axioms to the
3496 -- points of call within an instance. Wrappers are generated if formal
3497 -- subprogram is subject to axiomatization.
3499 -- The types in the wrapper profiles are obtained from (instances of)
3500 -- the types of the formal subprogram.
3502 if Is_Actual
3503 and then GNATprove_Mode
3504 and then Present (Containing_Package_With_Ext_Axioms (Formal_Spec))
3505 and then not Inside_A_Generic
3506 then
3507 if Ekind (Old_S) = E_Function then
3508 Rewrite (N, Build_Function_Wrapper (Formal_Spec, Old_S));
3509 Analyze (N);
3511 elsif Ekind (Old_S) = E_Operator then
3512 Rewrite (N, Build_Operator_Wrapper (Formal_Spec, Old_S));
3513 Analyze (N);
3514 end if;
3515 end if;
3516 end Analyze_Subprogram_Renaming;
3518 -------------------------
3519 -- Analyze_Use_Package --
3520 -------------------------
3522 -- Resolve the package names in the use clause, and make all the visible
3523 -- entities defined in the package potentially use-visible. If the package
3524 -- is already in use from a previous use clause, its visible entities are
3525 -- already use-visible. In that case, mark the occurrence as a redundant
3526 -- use. If the package is an open scope, i.e. if the use clause occurs
3527 -- within the package itself, ignore it.
3529 procedure Analyze_Use_Package (N : Node_Id) is
3530 Pack_Name : Node_Id;
3531 Pack : Entity_Id;
3533 -- Start of processing for Analyze_Use_Package
3535 begin
3536 Check_SPARK_05_Restriction ("use clause is not allowed", N);
3538 Set_Hidden_By_Use_Clause (N, No_Elist);
3540 -- Use clause not allowed in a spec of a predefined package declaration
3541 -- except that packages whose file name starts a-n are OK (these are
3542 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3544 if Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
3545 and then Name_Buffer (1 .. 3) /= "a-n"
3546 and then
3547 Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
3548 then
3549 Error_Msg_N ("use clause not allowed in predefined spec", N);
3550 end if;
3552 -- Chain clause to list of use clauses in current scope
3554 if Nkind (Parent (N)) /= N_Compilation_Unit then
3555 Chain_Use_Clause (N);
3556 end if;
3558 -- Loop through package names to identify referenced packages
3560 Pack_Name := First (Names (N));
3561 while Present (Pack_Name) loop
3562 Analyze (Pack_Name);
3564 if Nkind (Parent (N)) = N_Compilation_Unit
3565 and then Nkind (Pack_Name) = N_Expanded_Name
3566 then
3567 declare
3568 Pref : Node_Id;
3570 begin
3571 Pref := Prefix (Pack_Name);
3572 while Nkind (Pref) = N_Expanded_Name loop
3573 Pref := Prefix (Pref);
3574 end loop;
3576 if Entity (Pref) = Standard_Standard then
3577 Error_Msg_N
3578 ("predefined package Standard cannot appear"
3579 & " in a context clause", Pref);
3580 end if;
3581 end;
3582 end if;
3584 Next (Pack_Name);
3585 end loop;
3587 -- Loop through package names to mark all entities as potentially
3588 -- use visible.
3590 Pack_Name := First (Names (N));
3591 while Present (Pack_Name) loop
3592 if Is_Entity_Name (Pack_Name) then
3593 Pack := Entity (Pack_Name);
3595 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
3596 if Ekind (Pack) = E_Generic_Package then
3597 Error_Msg_N -- CODEFIX
3598 ("a generic package is not allowed in a use clause",
3599 Pack_Name);
3601 elsif Ekind_In (Pack, E_Generic_Function, E_Generic_Package)
3602 then
3603 Error_Msg_N -- CODEFIX
3604 ("a generic subprogram is not allowed in a use clause",
3605 Pack_Name);
3607 elsif Ekind_In (Pack, E_Function, E_Procedure, E_Operator) then
3608 Error_Msg_N -- CODEFIX
3609 ("a subprogram is not allowed in a use clause",
3610 Pack_Name);
3612 else
3613 Error_Msg_N ("& is not allowed in a use clause", Pack_Name);
3614 end if;
3616 else
3617 if Nkind (Parent (N)) = N_Compilation_Unit then
3618 Check_In_Previous_With_Clause (N, Pack_Name);
3619 end if;
3621 if Applicable_Use (Pack_Name) then
3622 Use_One_Package (Pack, N);
3623 end if;
3624 end if;
3626 -- Report error because name denotes something other than a package
3628 else
3629 Error_Msg_N ("& is not a package", Pack_Name);
3630 end if;
3632 Next (Pack_Name);
3633 end loop;
3634 end Analyze_Use_Package;
3636 ----------------------
3637 -- Analyze_Use_Type --
3638 ----------------------
3640 procedure Analyze_Use_Type (N : Node_Id) is
3641 E : Entity_Id;
3642 Id : Node_Id;
3644 begin
3645 Set_Hidden_By_Use_Clause (N, No_Elist);
3647 -- Chain clause to list of use clauses in current scope
3649 if Nkind (Parent (N)) /= N_Compilation_Unit then
3650 Chain_Use_Clause (N);
3651 end if;
3653 -- If the Used_Operations list is already initialized, the clause has
3654 -- been analyzed previously, and it is begin reinstalled, for example
3655 -- when the clause appears in a package spec and we are compiling the
3656 -- corresponding package body. In that case, make the entities on the
3657 -- existing list use_visible, and mark the corresponding types In_Use.
3659 if Present (Used_Operations (N)) then
3660 declare
3661 Mark : Node_Id;
3662 Elmt : Elmt_Id;
3664 begin
3665 Mark := First (Subtype_Marks (N));
3666 while Present (Mark) loop
3667 Use_One_Type (Mark, Installed => True);
3668 Next (Mark);
3669 end loop;
3671 Elmt := First_Elmt (Used_Operations (N));
3672 while Present (Elmt) loop
3673 Set_Is_Potentially_Use_Visible (Node (Elmt));
3674 Next_Elmt (Elmt);
3675 end loop;
3676 end;
3678 return;
3679 end if;
3681 -- Otherwise, create new list and attach to it the operations that
3682 -- are made use-visible by the clause.
3684 Set_Used_Operations (N, New_Elmt_List);
3685 Id := First (Subtype_Marks (N));
3686 while Present (Id) loop
3687 Find_Type (Id);
3688 E := Entity (Id);
3690 if E /= Any_Type then
3691 Use_One_Type (Id);
3693 if Nkind (Parent (N)) = N_Compilation_Unit then
3694 if Nkind (Id) = N_Identifier then
3695 Error_Msg_N ("type is not directly visible", Id);
3697 elsif Is_Child_Unit (Scope (E))
3698 and then Scope (E) /= System_Aux_Id
3699 then
3700 Check_In_Previous_With_Clause (N, Prefix (Id));
3701 end if;
3702 end if;
3704 else
3705 -- If the use_type_clause appears in a compilation unit context,
3706 -- check whether it comes from a unit that may appear in a
3707 -- limited_with_clause, for a better error message.
3709 if Nkind (Parent (N)) = N_Compilation_Unit
3710 and then Nkind (Id) /= N_Identifier
3711 then
3712 declare
3713 Item : Node_Id;
3714 Pref : Node_Id;
3716 function Mentioned (Nam : Node_Id) return Boolean;
3717 -- Check whether the prefix of expanded name for the type
3718 -- appears in the prefix of some limited_with_clause.
3720 ---------------
3721 -- Mentioned --
3722 ---------------
3724 function Mentioned (Nam : Node_Id) return Boolean is
3725 begin
3726 return Nkind (Name (Item)) = N_Selected_Component
3727 and then Chars (Prefix (Name (Item))) = Chars (Nam);
3728 end Mentioned;
3730 begin
3731 Pref := Prefix (Id);
3732 Item := First (Context_Items (Parent (N)));
3733 while Present (Item) and then Item /= N loop
3734 if Nkind (Item) = N_With_Clause
3735 and then Limited_Present (Item)
3736 and then Mentioned (Pref)
3737 then
3738 Change_Error_Text
3739 (Get_Msg_Id, "premature usage of incomplete type");
3740 end if;
3742 Next (Item);
3743 end loop;
3744 end;
3745 end if;
3746 end if;
3748 Next (Id);
3749 end loop;
3750 end Analyze_Use_Type;
3752 --------------------
3753 -- Applicable_Use --
3754 --------------------
3756 function Applicable_Use (Pack_Name : Node_Id) return Boolean is
3757 Pack : constant Entity_Id := Entity (Pack_Name);
3759 begin
3760 if In_Open_Scopes (Pack) then
3761 if Warn_On_Redundant_Constructs and then Pack = Current_Scope then
3762 Error_Msg_NE -- CODEFIX
3763 ("& is already use-visible within itself?r?", Pack_Name, Pack);
3764 end if;
3766 return False;
3768 elsif In_Use (Pack) then
3769 Note_Redundant_Use (Pack_Name);
3770 return False;
3772 elsif Present (Renamed_Object (Pack))
3773 and then In_Use (Renamed_Object (Pack))
3774 then
3775 Note_Redundant_Use (Pack_Name);
3776 return False;
3778 else
3779 return True;
3780 end if;
3781 end Applicable_Use;
3783 ------------------------
3784 -- Attribute_Renaming --
3785 ------------------------
3787 procedure Attribute_Renaming (N : Node_Id) is
3788 Loc : constant Source_Ptr := Sloc (N);
3789 Nam : constant Node_Id := Name (N);
3790 Spec : constant Node_Id := Specification (N);
3791 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
3792 Aname : constant Name_Id := Attribute_Name (Nam);
3794 Form_Num : Nat := 0;
3795 Expr_List : List_Id := No_List;
3797 Attr_Node : Node_Id;
3798 Body_Node : Node_Id;
3799 Param_Spec : Node_Id;
3801 begin
3802 Generate_Definition (New_S);
3804 -- This procedure is called in the context of subprogram renaming, and
3805 -- thus the attribute must be one that is a subprogram. All of those
3806 -- have at least one formal parameter, with the exceptions of the GNAT
3807 -- attribute 'Img, which GNAT treats as renameable.
3809 if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
3810 if Aname /= Name_Img then
3811 Error_Msg_N
3812 ("subprogram renaming an attribute must have formals", N);
3813 return;
3814 end if;
3816 else
3817 Param_Spec := First (Parameter_Specifications (Spec));
3818 while Present (Param_Spec) loop
3819 Form_Num := Form_Num + 1;
3821 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
3822 Find_Type (Parameter_Type (Param_Spec));
3824 -- The profile of the new entity denotes the base type (s) of
3825 -- the types given in the specification. For access parameters
3826 -- there are no subtypes involved.
3828 Rewrite (Parameter_Type (Param_Spec),
3829 New_Occurrence_Of
3830 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
3831 end if;
3833 if No (Expr_List) then
3834 Expr_List := New_List;
3835 end if;
3837 Append_To (Expr_List,
3838 Make_Identifier (Loc,
3839 Chars => Chars (Defining_Identifier (Param_Spec))));
3841 -- The expressions in the attribute reference are not freeze
3842 -- points. Neither is the attribute as a whole, see below.
3844 Set_Must_Not_Freeze (Last (Expr_List));
3845 Next (Param_Spec);
3846 end loop;
3847 end if;
3849 -- Immediate error if too many formals. Other mismatches in number or
3850 -- types of parameters are detected when we analyze the body of the
3851 -- subprogram that we construct.
3853 if Form_Num > 2 then
3854 Error_Msg_N ("too many formals for attribute", N);
3856 -- Error if the attribute reference has expressions that look like
3857 -- formal parameters.
3859 elsif Present (Expressions (Nam)) then
3860 Error_Msg_N ("illegal expressions in attribute reference", Nam);
3862 elsif
3863 Nam_In (Aname, Name_Compose, Name_Exponent, Name_Leading_Part,
3864 Name_Pos, Name_Round, Name_Scaling,
3865 Name_Val)
3866 then
3867 if Nkind (N) = N_Subprogram_Renaming_Declaration
3868 and then Present (Corresponding_Formal_Spec (N))
3869 then
3870 Error_Msg_N
3871 ("generic actual cannot be attribute involving universal type",
3872 Nam);
3873 else
3874 Error_Msg_N
3875 ("attribute involving a universal type cannot be renamed",
3876 Nam);
3877 end if;
3878 end if;
3880 -- Rewrite attribute node to have a list of expressions corresponding to
3881 -- the subprogram formals. A renaming declaration is not a freeze point,
3882 -- and the analysis of the attribute reference should not freeze the
3883 -- type of the prefix. We use the original node in the renaming so that
3884 -- its source location is preserved, and checks on stream attributes are
3885 -- properly applied.
3887 Attr_Node := Relocate_Node (Nam);
3888 Set_Expressions (Attr_Node, Expr_List);
3890 Set_Must_Not_Freeze (Attr_Node);
3891 Set_Must_Not_Freeze (Prefix (Nam));
3893 -- Case of renaming a function
3895 if Nkind (Spec) = N_Function_Specification then
3896 if Is_Procedure_Attribute_Name (Aname) then
3897 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
3898 return;
3899 end if;
3901 Find_Type (Result_Definition (Spec));
3902 Rewrite (Result_Definition (Spec),
3903 New_Occurrence_Of
3904 (Base_Type (Entity (Result_Definition (Spec))), Loc));
3906 Body_Node :=
3907 Make_Subprogram_Body (Loc,
3908 Specification => Spec,
3909 Declarations => New_List,
3910 Handled_Statement_Sequence =>
3911 Make_Handled_Sequence_Of_Statements (Loc,
3912 Statements => New_List (
3913 Make_Simple_Return_Statement (Loc,
3914 Expression => Attr_Node))));
3916 -- Case of renaming a procedure
3918 else
3919 if not Is_Procedure_Attribute_Name (Aname) then
3920 Error_Msg_N ("attribute can only be renamed as function", Nam);
3921 return;
3922 end if;
3924 Body_Node :=
3925 Make_Subprogram_Body (Loc,
3926 Specification => Spec,
3927 Declarations => New_List,
3928 Handled_Statement_Sequence =>
3929 Make_Handled_Sequence_Of_Statements (Loc,
3930 Statements => New_List (Attr_Node)));
3931 end if;
3933 -- In case of tagged types we add the body of the generated function to
3934 -- the freezing actions of the type (because in the general case such
3935 -- type is still not frozen). We exclude from this processing generic
3936 -- formal subprograms found in instantiations.
3938 -- We must exclude VM targets and restricted run-time libraries because
3939 -- entity AST_Handler is defined in package System.Aux_Dec which is not
3940 -- available in those platforms. Note that we cannot use the function
3941 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
3942 -- the ZFP run-time library is not defined as a profile, and we do not
3943 -- want to deal with AST_Handler in ZFP mode.
3945 if VM_Target = No_VM
3946 and then not Configurable_Run_Time_Mode
3947 and then not Present (Corresponding_Formal_Spec (N))
3948 and then Etype (Nam) /= RTE (RE_AST_Handler)
3949 then
3950 declare
3951 P : constant Node_Id := Prefix (Nam);
3953 begin
3954 -- The prefix of 'Img is an object that is evaluated for each call
3955 -- of the function that renames it.
3957 if Aname = Name_Img then
3958 Preanalyze_And_Resolve (P);
3960 -- For all other attribute renamings, the prefix is a subtype
3962 else
3963 Find_Type (P);
3964 end if;
3966 -- If the target type is not yet frozen, add the body to the
3967 -- actions to be elaborated at freeze time.
3969 if Is_Tagged_Type (Etype (P))
3970 and then In_Open_Scopes (Scope (Etype (P)))
3971 then
3972 Ensure_Freeze_Node (Etype (P));
3973 Append_Freeze_Action (Etype (P), Body_Node);
3974 else
3975 Rewrite (N, Body_Node);
3976 Analyze (N);
3977 Set_Etype (New_S, Base_Type (Etype (New_S)));
3978 end if;
3979 end;
3981 -- Generic formal subprograms or AST_Handler renaming
3983 else
3984 Rewrite (N, Body_Node);
3985 Analyze (N);
3986 Set_Etype (New_S, Base_Type (Etype (New_S)));
3987 end if;
3989 if Is_Compilation_Unit (New_S) then
3990 Error_Msg_N
3991 ("a library unit can only rename another library unit", N);
3992 end if;
3994 -- We suppress elaboration warnings for the resulting entity, since
3995 -- clearly they are not needed, and more particularly, in the case
3996 -- of a generic formal subprogram, the resulting entity can appear
3997 -- after the instantiation itself, and thus look like a bogus case
3998 -- of access before elaboration.
4000 Set_Suppress_Elaboration_Warnings (New_S);
4002 end Attribute_Renaming;
4004 ----------------------
4005 -- Chain_Use_Clause --
4006 ----------------------
4008 procedure Chain_Use_Clause (N : Node_Id) is
4009 Pack : Entity_Id;
4010 Level : Int := Scope_Stack.Last;
4012 begin
4013 if not Is_Compilation_Unit (Current_Scope)
4014 or else not Is_Child_Unit (Current_Scope)
4015 then
4016 null; -- Common case
4018 elsif Defining_Entity (Parent (N)) = Current_Scope then
4019 null; -- Common case for compilation unit
4021 else
4022 -- If declaration appears in some other scope, it must be in some
4023 -- parent unit when compiling a child.
4025 Pack := Defining_Entity (Parent (N));
4026 if not In_Open_Scopes (Pack) then
4027 null; -- default as well
4029 -- If the use clause appears in an ancestor and we are in the
4030 -- private part of the immediate parent, the use clauses are
4031 -- already installed.
4033 elsif Pack /= Scope (Current_Scope)
4034 and then In_Private_Part (Scope (Current_Scope))
4035 then
4036 null;
4038 else
4039 -- Find entry for parent unit in scope stack
4041 while Scope_Stack.Table (Level).Entity /= Pack loop
4042 Level := Level - 1;
4043 end loop;
4044 end if;
4045 end if;
4047 Set_Next_Use_Clause (N,
4048 Scope_Stack.Table (Level).First_Use_Clause);
4049 Scope_Stack.Table (Level).First_Use_Clause := N;
4050 end Chain_Use_Clause;
4052 ---------------------------
4053 -- Check_Frozen_Renaming --
4054 ---------------------------
4056 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
4057 B_Node : Node_Id;
4058 Old_S : Entity_Id;
4060 begin
4061 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
4062 B_Node :=
4063 Build_Renamed_Body
4064 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
4066 if Is_Entity_Name (Name (N)) then
4067 Old_S := Entity (Name (N));
4069 if not Is_Frozen (Old_S)
4070 and then Operating_Mode /= Check_Semantics
4071 then
4072 Append_Freeze_Action (Old_S, B_Node);
4073 else
4074 Insert_After (N, B_Node);
4075 Analyze (B_Node);
4076 end if;
4078 if Is_Intrinsic_Subprogram (Old_S) and then not In_Instance then
4079 Error_Msg_N
4080 ("subprogram used in renaming_as_body cannot be intrinsic",
4081 Name (N));
4082 end if;
4084 else
4085 Insert_After (N, B_Node);
4086 Analyze (B_Node);
4087 end if;
4088 end if;
4089 end Check_Frozen_Renaming;
4091 -------------------------------
4092 -- Set_Entity_Or_Discriminal --
4093 -------------------------------
4095 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
4096 P : Node_Id;
4098 begin
4099 -- If the entity is not a discriminant, or else expansion is disabled,
4100 -- simply set the entity.
4102 if not In_Spec_Expression
4103 or else Ekind (E) /= E_Discriminant
4104 or else Inside_A_Generic
4105 then
4106 Set_Entity_With_Checks (N, E);
4108 -- The replacement of a discriminant by the corresponding discriminal
4109 -- is not done for a task discriminant that appears in a default
4110 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4111 -- for details on their handling.
4113 elsif Is_Concurrent_Type (Scope (E)) then
4114 P := Parent (N);
4115 while Present (P)
4116 and then not Nkind_In (P, N_Parameter_Specification,
4117 N_Component_Declaration)
4118 loop
4119 P := Parent (P);
4120 end loop;
4122 if Present (P)
4123 and then Nkind (P) = N_Parameter_Specification
4124 then
4125 null;
4127 else
4128 Set_Entity (N, Discriminal (E));
4129 end if;
4131 -- Otherwise, this is a discriminant in a context in which
4132 -- it is a reference to the corresponding parameter of the
4133 -- init proc for the enclosing type.
4135 else
4136 Set_Entity (N, Discriminal (E));
4137 end if;
4138 end Set_Entity_Or_Discriminal;
4140 -----------------------------------
4141 -- Check_In_Previous_With_Clause --
4142 -----------------------------------
4144 procedure Check_In_Previous_With_Clause
4145 (N : Node_Id;
4146 Nam : Entity_Id)
4148 Pack : constant Entity_Id := Entity (Original_Node (Nam));
4149 Item : Node_Id;
4150 Par : Node_Id;
4152 begin
4153 Item := First (Context_Items (Parent (N)));
4154 while Present (Item) and then Item /= N loop
4155 if Nkind (Item) = N_With_Clause
4157 -- Protect the frontend against previous critical errors
4159 and then Nkind (Name (Item)) /= N_Selected_Component
4160 and then Entity (Name (Item)) = Pack
4161 then
4162 Par := Nam;
4164 -- Find root library unit in with_clause
4166 while Nkind (Par) = N_Expanded_Name loop
4167 Par := Prefix (Par);
4168 end loop;
4170 if Is_Child_Unit (Entity (Original_Node (Par))) then
4171 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
4172 else
4173 return;
4174 end if;
4175 end if;
4177 Next (Item);
4178 end loop;
4180 -- On exit, package is not mentioned in a previous with_clause.
4181 -- Check if its prefix is.
4183 if Nkind (Nam) = N_Expanded_Name then
4184 Check_In_Previous_With_Clause (N, Prefix (Nam));
4186 elsif Pack /= Any_Id then
4187 Error_Msg_NE ("& is not visible", Nam, Pack);
4188 end if;
4189 end Check_In_Previous_With_Clause;
4191 ---------------------------------
4192 -- Check_Library_Unit_Renaming --
4193 ---------------------------------
4195 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
4196 New_E : Entity_Id;
4198 begin
4199 if Nkind (Parent (N)) /= N_Compilation_Unit then
4200 return;
4202 -- Check for library unit. Note that we used to check for the scope
4203 -- being Standard here, but that was wrong for Standard itself.
4205 elsif not Is_Compilation_Unit (Old_E)
4206 and then not Is_Child_Unit (Old_E)
4207 then
4208 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4210 -- Entities defined in Standard (operators and boolean literals) cannot
4211 -- be renamed as library units.
4213 elsif Scope (Old_E) = Standard_Standard
4214 and then Sloc (Old_E) = Standard_Location
4215 then
4216 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4218 elsif Present (Parent_Spec (N))
4219 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
4220 and then not Is_Child_Unit (Old_E)
4221 then
4222 Error_Msg_N
4223 ("renamed unit must be a child unit of generic parent", Name (N));
4225 elsif Nkind (N) in N_Generic_Renaming_Declaration
4226 and then Nkind (Name (N)) = N_Expanded_Name
4227 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
4228 and then Is_Generic_Unit (Old_E)
4229 then
4230 Error_Msg_N
4231 ("renamed generic unit must be a library unit", Name (N));
4233 elsif Is_Package_Or_Generic_Package (Old_E) then
4235 -- Inherit categorization flags
4237 New_E := Defining_Entity (N);
4238 Set_Is_Pure (New_E, Is_Pure (Old_E));
4239 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
4240 Set_Is_Remote_Call_Interface (New_E,
4241 Is_Remote_Call_Interface (Old_E));
4242 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
4243 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
4244 end if;
4245 end Check_Library_Unit_Renaming;
4247 ------------------------
4248 -- Enclosing_Instance --
4249 ------------------------
4251 function Enclosing_Instance return Entity_Id is
4252 S : Entity_Id;
4254 begin
4255 if not Is_Generic_Instance (Current_Scope) then
4256 return Empty;
4257 end if;
4259 S := Scope (Current_Scope);
4260 while S /= Standard_Standard loop
4261 if Is_Generic_Instance (S) then
4262 return S;
4263 end if;
4265 S := Scope (S);
4266 end loop;
4268 return Empty;
4269 end Enclosing_Instance;
4271 ---------------
4272 -- End_Scope --
4273 ---------------
4275 procedure End_Scope is
4276 Id : Entity_Id;
4277 Prev : Entity_Id;
4278 Outer : Entity_Id;
4280 begin
4281 Id := First_Entity (Current_Scope);
4282 while Present (Id) loop
4283 -- An entity in the current scope is not necessarily the first one
4284 -- on its homonym chain. Find its predecessor if any,
4285 -- If it is an internal entity, it will not be in the visibility
4286 -- chain altogether, and there is nothing to unchain.
4288 if Id /= Current_Entity (Id) then
4289 Prev := Current_Entity (Id);
4290 while Present (Prev)
4291 and then Present (Homonym (Prev))
4292 and then Homonym (Prev) /= Id
4293 loop
4294 Prev := Homonym (Prev);
4295 end loop;
4297 -- Skip to end of loop if Id is not in the visibility chain
4299 if No (Prev) or else Homonym (Prev) /= Id then
4300 goto Next_Ent;
4301 end if;
4303 else
4304 Prev := Empty;
4305 end if;
4307 Set_Is_Immediately_Visible (Id, False);
4309 Outer := Homonym (Id);
4310 while Present (Outer) and then Scope (Outer) = Current_Scope loop
4311 Outer := Homonym (Outer);
4312 end loop;
4314 -- Reset homonym link of other entities, but do not modify link
4315 -- between entities in current scope, so that the back-end can have
4316 -- a proper count of local overloadings.
4318 if No (Prev) then
4319 Set_Name_Entity_Id (Chars (Id), Outer);
4321 elsif Scope (Prev) /= Scope (Id) then
4322 Set_Homonym (Prev, Outer);
4323 end if;
4325 <<Next_Ent>>
4326 Next_Entity (Id);
4327 end loop;
4329 -- If the scope generated freeze actions, place them before the
4330 -- current declaration and analyze them. Type declarations and
4331 -- the bodies of initialization procedures can generate such nodes.
4332 -- We follow the parent chain until we reach a list node, which is
4333 -- the enclosing list of declarations. If the list appears within
4334 -- a protected definition, move freeze nodes outside the protected
4335 -- type altogether.
4337 if Present
4338 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
4339 then
4340 declare
4341 Decl : Node_Id;
4342 L : constant List_Id := Scope_Stack.Table
4343 (Scope_Stack.Last).Pending_Freeze_Actions;
4345 begin
4346 if Is_Itype (Current_Scope) then
4347 Decl := Associated_Node_For_Itype (Current_Scope);
4348 else
4349 Decl := Parent (Current_Scope);
4350 end if;
4352 Pop_Scope;
4354 while not (Is_List_Member (Decl))
4355 or else Nkind_In (Parent (Decl), N_Protected_Definition,
4356 N_Task_Definition)
4357 loop
4358 Decl := Parent (Decl);
4359 end loop;
4361 Insert_List_Before_And_Analyze (Decl, L);
4362 end;
4364 else
4365 Pop_Scope;
4366 end if;
4367 end End_Scope;
4369 ---------------------
4370 -- End_Use_Clauses --
4371 ---------------------
4373 procedure End_Use_Clauses (Clause : Node_Id) is
4374 U : Node_Id;
4376 begin
4377 -- Remove Use_Type clauses first, because they affect the
4378 -- visibility of operators in subsequent used packages.
4380 U := Clause;
4381 while Present (U) loop
4382 if Nkind (U) = N_Use_Type_Clause then
4383 End_Use_Type (U);
4384 end if;
4386 Next_Use_Clause (U);
4387 end loop;
4389 U := Clause;
4390 while Present (U) loop
4391 if Nkind (U) = N_Use_Package_Clause then
4392 End_Use_Package (U);
4393 end if;
4395 Next_Use_Clause (U);
4396 end loop;
4397 end End_Use_Clauses;
4399 ---------------------
4400 -- End_Use_Package --
4401 ---------------------
4403 procedure End_Use_Package (N : Node_Id) is
4404 Pack_Name : Node_Id;
4405 Pack : Entity_Id;
4406 Id : Entity_Id;
4407 Elmt : Elmt_Id;
4409 function Is_Primitive_Operator_In_Use
4410 (Op : Entity_Id;
4411 F : Entity_Id) return Boolean;
4412 -- Check whether Op is a primitive operator of a use-visible type
4414 ----------------------------------
4415 -- Is_Primitive_Operator_In_Use --
4416 ----------------------------------
4418 function Is_Primitive_Operator_In_Use
4419 (Op : Entity_Id;
4420 F : Entity_Id) return Boolean
4422 T : constant Entity_Id := Base_Type (Etype (F));
4423 begin
4424 return In_Use (T) and then Scope (T) = Scope (Op);
4425 end Is_Primitive_Operator_In_Use;
4427 -- Start of processing for End_Use_Package
4429 begin
4430 Pack_Name := First (Names (N));
4431 while Present (Pack_Name) loop
4433 -- Test that Pack_Name actually denotes a package before processing
4435 if Is_Entity_Name (Pack_Name)
4436 and then Ekind (Entity (Pack_Name)) = E_Package
4437 then
4438 Pack := Entity (Pack_Name);
4440 if In_Open_Scopes (Pack) then
4441 null;
4443 elsif not Redundant_Use (Pack_Name) then
4444 Set_In_Use (Pack, False);
4445 Set_Current_Use_Clause (Pack, Empty);
4447 Id := First_Entity (Pack);
4448 while Present (Id) loop
4450 -- Preserve use-visibility of operators that are primitive
4451 -- operators of a type that is use-visible through an active
4452 -- use_type clause.
4454 if Nkind (Id) = N_Defining_Operator_Symbol
4455 and then
4456 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
4457 or else
4458 (Present (Next_Formal (First_Formal (Id)))
4459 and then
4460 Is_Primitive_Operator_In_Use
4461 (Id, Next_Formal (First_Formal (Id)))))
4462 then
4463 null;
4464 else
4465 Set_Is_Potentially_Use_Visible (Id, False);
4466 end if;
4468 if Is_Private_Type (Id)
4469 and then Present (Full_View (Id))
4470 then
4471 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4472 end if;
4474 Next_Entity (Id);
4475 end loop;
4477 if Present (Renamed_Object (Pack)) then
4478 Set_In_Use (Renamed_Object (Pack), False);
4479 Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
4480 end if;
4482 if Chars (Pack) = Name_System
4483 and then Scope (Pack) = Standard_Standard
4484 and then Present_System_Aux
4485 then
4486 Id := First_Entity (System_Aux_Id);
4487 while Present (Id) loop
4488 Set_Is_Potentially_Use_Visible (Id, False);
4490 if Is_Private_Type (Id)
4491 and then Present (Full_View (Id))
4492 then
4493 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4494 end if;
4496 Next_Entity (Id);
4497 end loop;
4499 Set_In_Use (System_Aux_Id, False);
4500 end if;
4502 else
4503 Set_Redundant_Use (Pack_Name, False);
4504 end if;
4505 end if;
4507 Next (Pack_Name);
4508 end loop;
4510 if Present (Hidden_By_Use_Clause (N)) then
4511 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
4512 while Present (Elmt) loop
4513 declare
4514 E : constant Entity_Id := Node (Elmt);
4516 begin
4517 -- Reset either Use_Visibility or Direct_Visibility, depending
4518 -- on how the entity was hidden by the use clause.
4520 if In_Use (Scope (E))
4521 and then Used_As_Generic_Actual (Scope (E))
4522 then
4523 Set_Is_Potentially_Use_Visible (Node (Elmt));
4524 else
4525 Set_Is_Immediately_Visible (Node (Elmt));
4526 end if;
4528 Next_Elmt (Elmt);
4529 end;
4530 end loop;
4532 Set_Hidden_By_Use_Clause (N, No_Elist);
4533 end if;
4534 end End_Use_Package;
4536 ------------------
4537 -- End_Use_Type --
4538 ------------------
4540 procedure End_Use_Type (N : Node_Id) is
4541 Elmt : Elmt_Id;
4542 Id : Entity_Id;
4543 T : Entity_Id;
4545 -- Start of processing for End_Use_Type
4547 begin
4548 Id := First (Subtype_Marks (N));
4549 while Present (Id) loop
4551 -- A call to Rtsfind may occur while analyzing a use_type clause,
4552 -- in which case the type marks are not resolved yet, and there is
4553 -- nothing to remove.
4555 if not Is_Entity_Name (Id) or else No (Entity (Id)) then
4556 goto Continue;
4557 end if;
4559 T := Entity (Id);
4561 if T = Any_Type or else From_Limited_With (T) then
4562 null;
4564 -- Note that the use_type clause may mention a subtype of the type
4565 -- whose primitive operations have been made visible. Here as
4566 -- elsewhere, it is the base type that matters for visibility.
4568 elsif In_Open_Scopes (Scope (Base_Type (T))) then
4569 null;
4571 elsif not Redundant_Use (Id) then
4572 Set_In_Use (T, False);
4573 Set_In_Use (Base_Type (T), False);
4574 Set_Current_Use_Clause (T, Empty);
4575 Set_Current_Use_Clause (Base_Type (T), Empty);
4576 end if;
4578 <<Continue>>
4579 Next (Id);
4580 end loop;
4582 if Is_Empty_Elmt_List (Used_Operations (N)) then
4583 return;
4585 else
4586 Elmt := First_Elmt (Used_Operations (N));
4587 while Present (Elmt) loop
4588 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
4589 Next_Elmt (Elmt);
4590 end loop;
4591 end if;
4592 end End_Use_Type;
4594 ----------------------
4595 -- Find_Direct_Name --
4596 ----------------------
4598 procedure Find_Direct_Name (N : Node_Id) is
4599 E : Entity_Id;
4600 E2 : Entity_Id;
4601 Msg : Boolean;
4603 Inst : Entity_Id := Empty;
4604 -- Enclosing instance, if any
4606 Homonyms : Entity_Id;
4607 -- Saves start of homonym chain
4609 Nvis_Entity : Boolean;
4610 -- Set True to indicate that there is at least one entity on the homonym
4611 -- chain which, while not visible, is visible enough from the user point
4612 -- of view to warrant an error message of "not visible" rather than
4613 -- undefined.
4615 Nvis_Is_Private_Subprg : Boolean := False;
4616 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4617 -- effect concerning library subprograms has been detected. Used to
4618 -- generate the precise error message.
4620 function From_Actual_Package (E : Entity_Id) return Boolean;
4621 -- Returns true if the entity is an actual for a package that is itself
4622 -- an actual for a formal package of the current instance. Such an
4623 -- entity requires special handling because it may be use-visible but
4624 -- hides directly visible entities defined outside the instance, because
4625 -- the corresponding formal did so in the generic.
4627 function Is_Actual_Parameter return Boolean;
4628 -- This function checks if the node N is an identifier that is an actual
4629 -- parameter of a procedure call. If so it returns True, otherwise it
4630 -- return False. The reason for this check is that at this stage we do
4631 -- not know what procedure is being called if the procedure might be
4632 -- overloaded, so it is premature to go setting referenced flags or
4633 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4634 -- for that processing
4636 function Known_But_Invisible (E : Entity_Id) return Boolean;
4637 -- This function determines whether a reference to the entity E, which
4638 -- is not visible, can reasonably be considered to be known to the
4639 -- writer of the reference. This is a heuristic test, used only for
4640 -- the purposes of figuring out whether we prefer to complain that an
4641 -- entity is undefined or invisible (and identify the declaration of
4642 -- the invisible entity in the latter case). The point here is that we
4643 -- don't want to complain that something is invisible and then point to
4644 -- something entirely mysterious to the writer.
4646 procedure Nvis_Messages;
4647 -- Called if there are no visible entries for N, but there is at least
4648 -- one non-directly visible, or hidden declaration. This procedure
4649 -- outputs an appropriate set of error messages.
4651 procedure Undefined (Nvis : Boolean);
4652 -- This function is called if the current node has no corresponding
4653 -- visible entity or entities. The value set in Msg indicates whether
4654 -- an error message was generated (multiple error messages for the
4655 -- same variable are generally suppressed, see body for details).
4656 -- Msg is True if an error message was generated, False if not. This
4657 -- value is used by the caller to determine whether or not to output
4658 -- additional messages where appropriate. The parameter is set False
4659 -- to get the message "X is undefined", and True to get the message
4660 -- "X is not visible".
4662 -------------------------
4663 -- From_Actual_Package --
4664 -------------------------
4666 function From_Actual_Package (E : Entity_Id) return Boolean is
4667 Scop : constant Entity_Id := Scope (E);
4668 -- Declared scope of candidate entity
4670 Act : Entity_Id;
4672 function Declared_In_Actual (Pack : Entity_Id) return Boolean;
4673 -- Recursive function that does the work and examines actuals of
4674 -- actual packages of current instance.
4676 ------------------------
4677 -- Declared_In_Actual --
4678 ------------------------
4680 function Declared_In_Actual (Pack : Entity_Id) return Boolean is
4681 Act : Entity_Id;
4683 begin
4684 if No (Associated_Formal_Package (Pack)) then
4685 return False;
4687 else
4688 Act := First_Entity (Pack);
4689 while Present (Act) loop
4690 if Renamed_Object (Pack) = Scop then
4691 return True;
4693 -- Check for end of list of actuals.
4695 elsif Ekind (Act) = E_Package
4696 and then Renamed_Object (Act) = Pack
4697 then
4698 return False;
4700 elsif Ekind (Act) = E_Package
4701 and then Declared_In_Actual (Act)
4702 then
4703 return True;
4704 end if;
4706 Next_Entity (Act);
4707 end loop;
4709 return False;
4710 end if;
4711 end Declared_In_Actual;
4713 -- Start of processing for From_Actual_Package
4715 begin
4716 if not In_Instance then
4717 return False;
4719 else
4720 Inst := Current_Scope;
4721 while Present (Inst)
4722 and then Ekind (Inst) /= E_Package
4723 and then not Is_Generic_Instance (Inst)
4724 loop
4725 Inst := Scope (Inst);
4726 end loop;
4728 if No (Inst) then
4729 return False;
4730 end if;
4732 Act := First_Entity (Inst);
4733 while Present (Act) loop
4734 if Ekind (Act) = E_Package
4735 and then Declared_In_Actual (Act)
4736 then
4737 return True;
4738 end if;
4740 Next_Entity (Act);
4741 end loop;
4743 return False;
4744 end if;
4745 end From_Actual_Package;
4747 -------------------------
4748 -- Is_Actual_Parameter --
4749 -------------------------
4751 function Is_Actual_Parameter return Boolean is
4752 begin
4753 return
4754 Nkind (N) = N_Identifier
4755 and then
4756 (Nkind (Parent (N)) = N_Procedure_Call_Statement
4757 or else
4758 (Nkind (Parent (N)) = N_Parameter_Association
4759 and then N = Explicit_Actual_Parameter (Parent (N))
4760 and then Nkind (Parent (Parent (N))) =
4761 N_Procedure_Call_Statement));
4762 end Is_Actual_Parameter;
4764 -------------------------
4765 -- Known_But_Invisible --
4766 -------------------------
4768 function Known_But_Invisible (E : Entity_Id) return Boolean is
4769 Fname : File_Name_Type;
4771 begin
4772 -- Entities in Standard are always considered to be known
4774 if Sloc (E) <= Standard_Location then
4775 return True;
4777 -- An entity that does not come from source is always considered
4778 -- to be unknown, since it is an artifact of code expansion.
4780 elsif not Comes_From_Source (E) then
4781 return False;
4783 -- In gnat internal mode, we consider all entities known. The
4784 -- historical reason behind this discrepancy is not known??? But the
4785 -- only effect is to modify the error message given, so it is not
4786 -- critical. Since it only affects the exact wording of error
4787 -- messages in illegal programs, we do not mention this as an
4788 -- effect of -gnatg, since it is not a language modification.
4790 elsif GNAT_Mode then
4791 return True;
4792 end if;
4794 -- Here we have an entity that is not from package Standard, and
4795 -- which comes from Source. See if it comes from an internal file.
4797 Fname := Unit_File_Name (Get_Source_Unit (E));
4799 -- Case of from internal file
4801 if Is_Internal_File_Name (Fname) then
4803 -- Private part entities in internal files are never considered
4804 -- to be known to the writer of normal application code.
4806 if Is_Hidden (E) then
4807 return False;
4808 end if;
4810 -- Entities from System packages other than System and
4811 -- System.Storage_Elements are not considered to be known.
4812 -- System.Auxxxx files are also considered known to the user.
4814 -- Should refine this at some point to generally distinguish
4815 -- between known and unknown internal files ???
4817 Get_Name_String (Fname);
4819 return
4820 Name_Len < 2
4821 or else
4822 Name_Buffer (1 .. 2) /= "s-"
4823 or else
4824 Name_Buffer (3 .. 8) = "stoele"
4825 or else
4826 Name_Buffer (3 .. 5) = "aux";
4828 -- If not an internal file, then entity is definitely known,
4829 -- even if it is in a private part (the message generated will
4830 -- note that it is in a private part)
4832 else
4833 return True;
4834 end if;
4835 end Known_But_Invisible;
4837 -------------------
4838 -- Nvis_Messages --
4839 -------------------
4841 procedure Nvis_Messages is
4842 Comp_Unit : Node_Id;
4843 Ent : Entity_Id;
4844 Found : Boolean := False;
4845 Hidden : Boolean := False;
4846 Item : Node_Id;
4848 begin
4849 -- Ada 2005 (AI-262): Generate a precise error concerning the
4850 -- Beaujolais effect that was previously detected
4852 if Nvis_Is_Private_Subprg then
4854 pragma Assert (Nkind (E2) = N_Defining_Identifier
4855 and then Ekind (E2) = E_Function
4856 and then Scope (E2) = Standard_Standard
4857 and then Has_Private_With (E2));
4859 -- Find the sloc corresponding to the private with'ed unit
4861 Comp_Unit := Cunit (Current_Sem_Unit);
4862 Error_Msg_Sloc := No_Location;
4864 Item := First (Context_Items (Comp_Unit));
4865 while Present (Item) loop
4866 if Nkind (Item) = N_With_Clause
4867 and then Private_Present (Item)
4868 and then Entity (Name (Item)) = E2
4869 then
4870 Error_Msg_Sloc := Sloc (Item);
4871 exit;
4872 end if;
4874 Next (Item);
4875 end loop;
4877 pragma Assert (Error_Msg_Sloc /= No_Location);
4879 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
4880 return;
4881 end if;
4883 Undefined (Nvis => True);
4885 if Msg then
4887 -- First loop does hidden declarations
4889 Ent := Homonyms;
4890 while Present (Ent) loop
4891 if Is_Potentially_Use_Visible (Ent) then
4892 if not Hidden then
4893 Error_Msg_N -- CODEFIX
4894 ("multiple use clauses cause hiding!", N);
4895 Hidden := True;
4896 end if;
4898 Error_Msg_Sloc := Sloc (Ent);
4899 Error_Msg_N -- CODEFIX
4900 ("hidden declaration#!", N);
4901 end if;
4903 Ent := Homonym (Ent);
4904 end loop;
4906 -- If we found hidden declarations, then that's enough, don't
4907 -- bother looking for non-visible declarations as well.
4909 if Hidden then
4910 return;
4911 end if;
4913 -- Second loop does non-directly visible declarations
4915 Ent := Homonyms;
4916 while Present (Ent) loop
4917 if not Is_Potentially_Use_Visible (Ent) then
4919 -- Do not bother the user with unknown entities
4921 if not Known_But_Invisible (Ent) then
4922 goto Continue;
4923 end if;
4925 Error_Msg_Sloc := Sloc (Ent);
4927 -- Output message noting that there is a non-visible
4928 -- declaration, distinguishing the private part case.
4930 if Is_Hidden (Ent) then
4931 Error_Msg_N ("non-visible (private) declaration#!", N);
4933 -- If the entity is declared in a generic package, it
4934 -- cannot be visible, so there is no point in adding it
4935 -- to the list of candidates if another homograph from a
4936 -- non-generic package has been seen.
4938 elsif Ekind (Scope (Ent)) = E_Generic_Package
4939 and then Found
4940 then
4941 null;
4943 else
4944 Error_Msg_N -- CODEFIX
4945 ("non-visible declaration#!", N);
4947 if Ekind (Scope (Ent)) /= E_Generic_Package then
4948 Found := True;
4949 end if;
4951 if Is_Compilation_Unit (Ent)
4952 and then
4953 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
4954 then
4955 Error_Msg_Qual_Level := 99;
4956 Error_Msg_NE -- CODEFIX
4957 ("\\missing `WITH &;`", N, Ent);
4958 Error_Msg_Qual_Level := 0;
4959 end if;
4961 if Ekind (Ent) = E_Discriminant
4962 and then Present (Corresponding_Discriminant (Ent))
4963 and then Scope (Corresponding_Discriminant (Ent)) =
4964 Etype (Scope (Ent))
4965 then
4966 Error_Msg_N
4967 ("inherited discriminant not allowed here" &
4968 " (RM 3.8 (12), 3.8.1 (6))!", N);
4969 end if;
4970 end if;
4972 -- Set entity and its containing package as referenced. We
4973 -- can't be sure of this, but this seems a better choice
4974 -- to avoid unused entity messages.
4976 if Comes_From_Source (Ent) then
4977 Set_Referenced (Ent);
4978 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
4979 end if;
4980 end if;
4982 <<Continue>>
4983 Ent := Homonym (Ent);
4984 end loop;
4985 end if;
4986 end Nvis_Messages;
4988 ---------------
4989 -- Undefined --
4990 ---------------
4992 procedure Undefined (Nvis : Boolean) is
4993 Emsg : Error_Msg_Id;
4995 begin
4996 -- We should never find an undefined internal name. If we do, then
4997 -- see if we have previous errors. If so, ignore on the grounds that
4998 -- it is probably a cascaded message (e.g. a block label from a badly
4999 -- formed block). If no previous errors, then we have a real internal
5000 -- error of some kind so raise an exception.
5002 if Is_Internal_Name (Chars (N)) then
5003 if Total_Errors_Detected /= 0 then
5004 return;
5005 else
5006 raise Program_Error;
5007 end if;
5008 end if;
5010 -- A very specialized error check, if the undefined variable is
5011 -- a case tag, and the case type is an enumeration type, check
5012 -- for a possible misspelling, and if so, modify the identifier
5014 -- Named aggregate should also be handled similarly ???
5016 if Nkind (N) = N_Identifier
5017 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
5018 then
5019 declare
5020 Case_Stm : constant Node_Id := Parent (Parent (N));
5021 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
5023 Lit : Node_Id;
5025 begin
5026 if Is_Enumeration_Type (Case_Typ)
5027 and then not Is_Standard_Character_Type (Case_Typ)
5028 then
5029 Lit := First_Literal (Case_Typ);
5030 Get_Name_String (Chars (Lit));
5032 if Chars (Lit) /= Chars (N)
5033 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit))
5034 then
5035 Error_Msg_Node_2 := Lit;
5036 Error_Msg_N -- CODEFIX
5037 ("& is undefined, assume misspelling of &", N);
5038 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
5039 return;
5040 end if;
5042 Lit := Next_Literal (Lit);
5043 end if;
5044 end;
5045 end if;
5047 -- Normal processing
5049 Set_Entity (N, Any_Id);
5050 Set_Etype (N, Any_Type);
5052 -- We use the table Urefs to keep track of entities for which we
5053 -- have issued errors for undefined references. Multiple errors
5054 -- for a single name are normally suppressed, however we modify
5055 -- the error message to alert the programmer to this effect.
5057 for J in Urefs.First .. Urefs.Last loop
5058 if Chars (N) = Chars (Urefs.Table (J).Node) then
5059 if Urefs.Table (J).Err /= No_Error_Msg
5060 and then Sloc (N) /= Urefs.Table (J).Loc
5061 then
5062 Error_Msg_Node_1 := Urefs.Table (J).Node;
5064 if Urefs.Table (J).Nvis then
5065 Change_Error_Text (Urefs.Table (J).Err,
5066 "& is not visible (more references follow)");
5067 else
5068 Change_Error_Text (Urefs.Table (J).Err,
5069 "& is undefined (more references follow)");
5070 end if;
5072 Urefs.Table (J).Err := No_Error_Msg;
5073 end if;
5075 -- Although we will set Msg False, and thus suppress the
5076 -- message, we also set Error_Posted True, to avoid any
5077 -- cascaded messages resulting from the undefined reference.
5079 Msg := False;
5080 Set_Error_Posted (N, True);
5081 return;
5082 end if;
5083 end loop;
5085 -- If entry not found, this is first undefined occurrence
5087 if Nvis then
5088 Error_Msg_N ("& is not visible!", N);
5089 Emsg := Get_Msg_Id;
5091 else
5092 Error_Msg_N ("& is undefined!", N);
5093 Emsg := Get_Msg_Id;
5095 -- A very bizarre special check, if the undefined identifier
5096 -- is put or put_line, then add a special error message (since
5097 -- this is a very common error for beginners to make).
5099 if Nam_In (Chars (N), Name_Put, Name_Put_Line) then
5100 Error_Msg_N -- CODEFIX
5101 ("\\possible missing `WITH Ada.Text_'I'O; " &
5102 "USE Ada.Text_'I'O`!", N);
5104 -- Another special check if N is the prefix of a selected
5105 -- component which is a known unit, add message complaining
5106 -- about missing with for this unit.
5108 elsif Nkind (Parent (N)) = N_Selected_Component
5109 and then N = Prefix (Parent (N))
5110 and then Is_Known_Unit (Parent (N))
5111 then
5112 Error_Msg_Node_2 := Selector_Name (Parent (N));
5113 Error_Msg_N -- CODEFIX
5114 ("\\missing `WITH &.&;`", Prefix (Parent (N)));
5115 end if;
5117 -- Now check for possible misspellings
5119 declare
5120 E : Entity_Id;
5121 Ematch : Entity_Id := Empty;
5123 Last_Name_Id : constant Name_Id :=
5124 Name_Id (Nat (First_Name_Id) +
5125 Name_Entries_Count - 1);
5127 begin
5128 for Nam in First_Name_Id .. Last_Name_Id loop
5129 E := Get_Name_Entity_Id (Nam);
5131 if Present (E)
5132 and then (Is_Immediately_Visible (E)
5133 or else
5134 Is_Potentially_Use_Visible (E))
5135 then
5136 if Is_Bad_Spelling_Of (Chars (N), Nam) then
5137 Ematch := E;
5138 exit;
5139 end if;
5140 end if;
5141 end loop;
5143 if Present (Ematch) then
5144 Error_Msg_NE -- CODEFIX
5145 ("\possible misspelling of&", N, Ematch);
5146 end if;
5147 end;
5148 end if;
5150 -- Make entry in undefined references table unless the full errors
5151 -- switch is set, in which case by refraining from generating the
5152 -- table entry, we guarantee that we get an error message for every
5153 -- undefined reference.
5155 if not All_Errors_Mode then
5156 Urefs.Append (
5157 (Node => N,
5158 Err => Emsg,
5159 Nvis => Nvis,
5160 Loc => Sloc (N)));
5161 end if;
5163 Msg := True;
5164 end Undefined;
5166 -- Start of processing for Find_Direct_Name
5168 begin
5169 -- If the entity pointer is already set, this is an internal node, or
5170 -- a node that is analyzed more than once, after a tree modification.
5171 -- In such a case there is no resolution to perform, just set the type.
5173 if Present (Entity (N)) then
5174 if Is_Type (Entity (N)) then
5175 Set_Etype (N, Entity (N));
5177 else
5178 declare
5179 Entyp : constant Entity_Id := Etype (Entity (N));
5181 begin
5182 -- One special case here. If the Etype field is already set,
5183 -- and references the packed array type corresponding to the
5184 -- etype of the referenced entity, then leave it alone. This
5185 -- happens for trees generated from Exp_Pakd, where expressions
5186 -- can be deliberately "mis-typed" to the packed array type.
5188 if Is_Array_Type (Entyp)
5189 and then Is_Packed (Entyp)
5190 and then Present (Etype (N))
5191 and then Etype (N) = Packed_Array_Impl_Type (Entyp)
5192 then
5193 null;
5195 -- If not that special case, then just reset the Etype
5197 else
5198 Set_Etype (N, Etype (Entity (N)));
5199 end if;
5200 end;
5201 end if;
5203 return;
5204 end if;
5206 -- Here if Entity pointer was not set, we need full visibility analysis
5207 -- First we generate debugging output if the debug E flag is set.
5209 if Debug_Flag_E then
5210 Write_Str ("Looking for ");
5211 Write_Name (Chars (N));
5212 Write_Eol;
5213 end if;
5215 Homonyms := Current_Entity (N);
5216 Nvis_Entity := False;
5218 E := Homonyms;
5219 while Present (E) loop
5221 -- If entity is immediately visible or potentially use visible, then
5222 -- process the entity and we are done.
5224 if Is_Immediately_Visible (E) then
5225 goto Immediately_Visible_Entity;
5227 elsif Is_Potentially_Use_Visible (E) then
5228 goto Potentially_Use_Visible_Entity;
5230 -- Note if a known but invisible entity encountered
5232 elsif Known_But_Invisible (E) then
5233 Nvis_Entity := True;
5234 end if;
5236 -- Move to next entity in chain and continue search
5238 E := Homonym (E);
5239 end loop;
5241 -- If no entries on homonym chain that were potentially visible,
5242 -- and no entities reasonably considered as non-visible, then
5243 -- we have a plain undefined reference, with no additional
5244 -- explanation required.
5246 if not Nvis_Entity then
5247 Undefined (Nvis => False);
5249 -- Otherwise there is at least one entry on the homonym chain that
5250 -- is reasonably considered as being known and non-visible.
5252 else
5253 Nvis_Messages;
5254 end if;
5256 goto Done;
5258 -- Processing for a potentially use visible entry found. We must search
5259 -- the rest of the homonym chain for two reasons. First, if there is a
5260 -- directly visible entry, then none of the potentially use-visible
5261 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5262 -- for the case of multiple potentially use-visible entries hiding one
5263 -- another and as a result being non-directly visible (RM 8.4(11)).
5265 <<Potentially_Use_Visible_Entity>> declare
5266 Only_One_Visible : Boolean := True;
5267 All_Overloadable : Boolean := Is_Overloadable (E);
5269 begin
5270 E2 := Homonym (E);
5271 while Present (E2) loop
5272 if Is_Immediately_Visible (E2) then
5274 -- If the use-visible entity comes from the actual for a
5275 -- formal package, it hides a directly visible entity from
5276 -- outside the instance.
5278 if From_Actual_Package (E)
5279 and then Scope_Depth (E2) < Scope_Depth (Inst)
5280 then
5281 goto Found;
5282 else
5283 E := E2;
5284 goto Immediately_Visible_Entity;
5285 end if;
5287 elsif Is_Potentially_Use_Visible (E2) then
5288 Only_One_Visible := False;
5289 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
5291 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5292 -- that can occur in private_with clauses. Example:
5294 -- with A;
5295 -- private with B; package A is
5296 -- package C is function B return Integer;
5297 -- use A; end A;
5298 -- V1 : Integer := B;
5299 -- private function B return Integer;
5300 -- V2 : Integer := B;
5301 -- end C;
5303 -- V1 resolves to A.B, but V2 resolves to library unit B
5305 elsif Ekind (E2) = E_Function
5306 and then Scope (E2) = Standard_Standard
5307 and then Has_Private_With (E2)
5308 then
5309 Only_One_Visible := False;
5310 All_Overloadable := False;
5311 Nvis_Is_Private_Subprg := True;
5312 exit;
5313 end if;
5315 E2 := Homonym (E2);
5316 end loop;
5318 -- On falling through this loop, we have checked that there are no
5319 -- immediately visible entities. Only_One_Visible is set if exactly
5320 -- one potentially use visible entity exists. All_Overloadable is
5321 -- set if all the potentially use visible entities are overloadable.
5322 -- The condition for legality is that either there is one potentially
5323 -- use visible entity, or if there is more than one, then all of them
5324 -- are overloadable.
5326 if Only_One_Visible or All_Overloadable then
5327 goto Found;
5329 -- If there is more than one potentially use-visible entity and at
5330 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5331 -- Note that E points to the first such entity on the homonym list.
5332 -- Special case: if one of the entities is declared in an actual
5333 -- package, it was visible in the generic, and takes precedence over
5334 -- other entities that are potentially use-visible. Same if it is
5335 -- declared in a local instantiation of the current instance.
5337 else
5338 if In_Instance then
5340 -- Find current instance
5342 Inst := Current_Scope;
5343 while Present (Inst) and then Inst /= Standard_Standard loop
5344 if Is_Generic_Instance (Inst) then
5345 exit;
5346 end if;
5348 Inst := Scope (Inst);
5349 end loop;
5351 E2 := E;
5352 while Present (E2) loop
5353 if From_Actual_Package (E2)
5354 or else
5355 (Is_Generic_Instance (Scope (E2))
5356 and then Scope_Depth (Scope (E2)) > Scope_Depth (Inst))
5357 then
5358 E := E2;
5359 goto Found;
5360 end if;
5362 E2 := Homonym (E2);
5363 end loop;
5365 Nvis_Messages;
5366 goto Done;
5368 elsif
5369 Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
5370 then
5371 -- A use-clause in the body of a system file creates conflict
5372 -- with some entity in a user scope, while rtsfind is active.
5373 -- Keep only the entity coming from another predefined unit.
5375 E2 := E;
5376 while Present (E2) loop
5377 if Is_Predefined_File_Name
5378 (Unit_File_Name (Get_Source_Unit (Sloc (E2))))
5379 then
5380 E := E2;
5381 goto Found;
5382 end if;
5384 E2 := Homonym (E2);
5385 end loop;
5387 -- Entity must exist because predefined unit is correct
5389 raise Program_Error;
5391 else
5392 Nvis_Messages;
5393 goto Done;
5394 end if;
5395 end if;
5396 end;
5398 -- Come here with E set to the first immediately visible entity on
5399 -- the homonym chain. This is the one we want unless there is another
5400 -- immediately visible entity further on in the chain for an inner
5401 -- scope (RM 8.3(8)).
5403 <<Immediately_Visible_Entity>> declare
5404 Level : Int;
5405 Scop : Entity_Id;
5407 begin
5408 -- Find scope level of initial entity. When compiling through
5409 -- Rtsfind, the previous context is not completely invisible, and
5410 -- an outer entity may appear on the chain, whose scope is below
5411 -- the entry for Standard that delimits the current scope stack.
5412 -- Indicate that the level for this spurious entry is outside of
5413 -- the current scope stack.
5415 Level := Scope_Stack.Last;
5416 loop
5417 Scop := Scope_Stack.Table (Level).Entity;
5418 exit when Scop = Scope (E);
5419 Level := Level - 1;
5420 exit when Scop = Standard_Standard;
5421 end loop;
5423 -- Now search remainder of homonym chain for more inner entry
5424 -- If the entity is Standard itself, it has no scope, and we
5425 -- compare it with the stack entry directly.
5427 E2 := Homonym (E);
5428 while Present (E2) loop
5429 if Is_Immediately_Visible (E2) then
5431 -- If a generic package contains a local declaration that
5432 -- has the same name as the generic, there may be a visibility
5433 -- conflict in an instance, where the local declaration must
5434 -- also hide the name of the corresponding package renaming.
5435 -- We check explicitly for a package declared by a renaming,
5436 -- whose renamed entity is an instance that is on the scope
5437 -- stack, and that contains a homonym in the same scope. Once
5438 -- we have found it, we know that the package renaming is not
5439 -- immediately visible, and that the identifier denotes the
5440 -- other entity (and its homonyms if overloaded).
5442 if Scope (E) = Scope (E2)
5443 and then Ekind (E) = E_Package
5444 and then Present (Renamed_Object (E))
5445 and then Is_Generic_Instance (Renamed_Object (E))
5446 and then In_Open_Scopes (Renamed_Object (E))
5447 and then Comes_From_Source (N)
5448 then
5449 Set_Is_Immediately_Visible (E, False);
5450 E := E2;
5452 else
5453 for J in Level + 1 .. Scope_Stack.Last loop
5454 if Scope_Stack.Table (J).Entity = Scope (E2)
5455 or else Scope_Stack.Table (J).Entity = E2
5456 then
5457 Level := J;
5458 E := E2;
5459 exit;
5460 end if;
5461 end loop;
5462 end if;
5463 end if;
5465 E2 := Homonym (E2);
5466 end loop;
5468 -- At the end of that loop, E is the innermost immediately
5469 -- visible entity, so we are all set.
5470 end;
5472 -- Come here with entity found, and stored in E
5474 <<Found>> begin
5476 -- Check violation of No_Wide_Characters restriction
5478 Check_Wide_Character_Restriction (E, N);
5480 -- When distribution features are available (Get_PCS_Name /=
5481 -- Name_No_DSA), a remote access-to-subprogram type is converted
5482 -- into a record type holding whatever information is needed to
5483 -- perform a remote call on an RCI subprogram. In that case we
5484 -- rewrite any occurrence of the RAS type into the equivalent record
5485 -- type here. 'Access attribute references and RAS dereferences are
5486 -- then implemented using specific TSSs. However when distribution is
5487 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5488 -- generation of these TSSs, and we must keep the RAS type in its
5489 -- original access-to-subprogram form (since all calls through a
5490 -- value of such type will be local anyway in the absence of a PCS).
5492 if Comes_From_Source (N)
5493 and then Is_Remote_Access_To_Subprogram_Type (E)
5494 and then Ekind (E) = E_Access_Subprogram_Type
5495 and then Expander_Active
5496 and then Get_PCS_Name /= Name_No_DSA
5497 then
5498 Rewrite (N, New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
5499 goto Done;
5500 end if;
5502 -- Set the entity. Note that the reason we call Set_Entity for the
5503 -- overloadable case, as opposed to Set_Entity_With_Checks is
5504 -- that in the overloaded case, the initial call can set the wrong
5505 -- homonym. The call that sets the right homonym is in Sem_Res and
5506 -- that call does use Set_Entity_With_Checks, so we don't miss
5507 -- a style check.
5509 if Is_Overloadable (E) then
5510 Set_Entity (N, E);
5511 else
5512 Set_Entity_With_Checks (N, E);
5513 end if;
5515 if Is_Type (E) then
5516 Set_Etype (N, E);
5517 else
5518 Set_Etype (N, Get_Full_View (Etype (E)));
5519 end if;
5521 if Debug_Flag_E then
5522 Write_Str (" found ");
5523 Write_Entity_Info (E, " ");
5524 end if;
5526 -- If the Ekind of the entity is Void, it means that all homonyms
5527 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5528 -- test is skipped if the current scope is a record and the name is
5529 -- a pragma argument expression (case of Atomic and Volatile pragmas
5530 -- and possibly other similar pragmas added later, which are allowed
5531 -- to reference components in the current record).
5533 if Ekind (E) = E_Void
5534 and then
5535 (not Is_Record_Type (Current_Scope)
5536 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
5537 then
5538 Premature_Usage (N);
5540 -- If the entity is overloadable, collect all interpretations of the
5541 -- name for subsequent overload resolution. We optimize a bit here to
5542 -- do this only if we have an overloadable entity that is not on its
5543 -- own on the homonym chain.
5545 elsif Is_Overloadable (E)
5546 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
5547 then
5548 Collect_Interps (N);
5550 -- If no homonyms were visible, the entity is unambiguous
5552 if not Is_Overloaded (N) then
5553 if not Is_Actual_Parameter then
5554 Generate_Reference (E, N);
5555 end if;
5556 end if;
5558 -- Case of non-overloadable entity, set the entity providing that
5559 -- we do not have the case of a discriminant reference within a
5560 -- default expression. Such references are replaced with the
5561 -- corresponding discriminal, which is the formal corresponding to
5562 -- to the discriminant in the initialization procedure.
5564 else
5565 -- Entity is unambiguous, indicate that it is referenced here
5567 -- For a renaming of an object, always generate simple reference,
5568 -- we don't try to keep track of assignments in this case, except
5569 -- in SPARK mode where renamings are traversed for generating
5570 -- local effects of subprograms.
5572 if Is_Object (E)
5573 and then Present (Renamed_Object (E))
5574 and then not GNATprove_Mode
5575 then
5576 Generate_Reference (E, N);
5578 -- If the renamed entity is a private protected component,
5579 -- reference the original component as well. This needs to be
5580 -- done because the private renamings are installed before any
5581 -- analysis has occurred. Reference to a private component will
5582 -- resolve to the renaming and the original component will be
5583 -- left unreferenced, hence the following.
5585 if Is_Prival (E) then
5586 Generate_Reference (Prival_Link (E), N);
5587 end if;
5589 -- One odd case is that we do not want to set the Referenced flag
5590 -- if the entity is a label, and the identifier is the label in
5591 -- the source, since this is not a reference from the point of
5592 -- view of the user.
5594 elsif Nkind (Parent (N)) = N_Label then
5595 declare
5596 R : constant Boolean := Referenced (E);
5598 begin
5599 -- Generate reference unless this is an actual parameter
5600 -- (see comment below)
5602 if Is_Actual_Parameter then
5603 Generate_Reference (E, N);
5604 Set_Referenced (E, R);
5605 end if;
5606 end;
5608 -- Normal case, not a label: generate reference
5610 else
5611 if not Is_Actual_Parameter then
5613 -- Package or generic package is always a simple reference
5615 if Ekind_In (E, E_Package, E_Generic_Package) then
5616 Generate_Reference (E, N, 'r');
5618 -- Else see if we have a left hand side
5620 else
5621 case Is_LHS (N) is
5622 when Yes =>
5623 Generate_Reference (E, N, 'm');
5625 when No =>
5626 Generate_Reference (E, N, 'r');
5628 -- If we don't know now, generate reference later
5630 when Unknown =>
5631 Deferred_References.Append ((E, N));
5632 end case;
5633 end if;
5634 end if;
5636 Check_Nested_Access (N, E);
5637 end if;
5639 Set_Entity_Or_Discriminal (N, E);
5641 -- The name may designate a generalized reference, in which case
5642 -- the dereference interpretation will be included.
5644 if Ada_Version >= Ada_2012
5645 and then
5646 (Nkind (Parent (N)) in N_Subexpr
5647 or else Nkind_In (Parent (N), N_Object_Declaration,
5648 N_Assignment_Statement))
5649 then
5650 Check_Implicit_Dereference (N, Etype (E));
5651 end if;
5652 end if;
5653 end;
5655 -- Come here with entity set
5657 <<Done>>
5658 Check_Restriction_No_Use_Of_Entity (N);
5659 end Find_Direct_Name;
5661 ------------------------
5662 -- Find_Expanded_Name --
5663 ------------------------
5665 -- This routine searches the homonym chain of the entity until it finds
5666 -- an entity declared in the scope denoted by the prefix. If the entity
5667 -- is private, it may nevertheless be immediately visible, if we are in
5668 -- the scope of its declaration.
5670 procedure Find_Expanded_Name (N : Node_Id) is
5671 function In_Pragmas_Depends_Or_Global (N : Node_Id) return Boolean;
5672 -- Determine whether an arbitrary node N appears in pragmas [Refined_]
5673 -- Depends or [Refined_]Global.
5675 ----------------------------------
5676 -- In_Pragmas_Depends_Or_Global --
5677 ----------------------------------
5679 function In_Pragmas_Depends_Or_Global (N : Node_Id) return Boolean is
5680 Par : Node_Id;
5682 begin
5683 -- Climb the parent chain looking for a pragma
5685 Par := N;
5686 while Present (Par) loop
5687 if Nkind (Par) = N_Pragma
5688 and then Nam_In (Pragma_Name (Par), Name_Depends,
5689 Name_Global,
5690 Name_Refined_Depends,
5691 Name_Refined_Global)
5692 then
5693 return True;
5695 -- Prevent the search from going too far
5697 elsif Is_Body_Or_Package_Declaration (Par) then
5698 return False;
5699 end if;
5701 Par := Parent (Par);
5702 end loop;
5704 return False;
5705 end In_Pragmas_Depends_Or_Global;
5707 -- Local variables
5709 Selector : constant Node_Id := Selector_Name (N);
5710 Candidate : Entity_Id := Empty;
5711 P_Name : Entity_Id;
5712 Id : Entity_Id;
5714 -- Start of processing for Find_Expanded_Name
5716 begin
5717 P_Name := Entity (Prefix (N));
5719 -- If the prefix is a renamed package, look for the entity in the
5720 -- original package.
5722 if Ekind (P_Name) = E_Package
5723 and then Present (Renamed_Object (P_Name))
5724 then
5725 P_Name := Renamed_Object (P_Name);
5727 -- Rewrite node with entity field pointing to renamed object
5729 Rewrite (Prefix (N), New_Copy (Prefix (N)));
5730 Set_Entity (Prefix (N), P_Name);
5732 -- If the prefix is an object of a concurrent type, look for
5733 -- the entity in the associated task or protected type.
5735 elsif Is_Concurrent_Type (Etype (P_Name)) then
5736 P_Name := Etype (P_Name);
5737 end if;
5739 Id := Current_Entity (Selector);
5741 declare
5742 Is_New_Candidate : Boolean;
5744 begin
5745 while Present (Id) loop
5746 if Scope (Id) = P_Name then
5747 Candidate := Id;
5748 Is_New_Candidate := True;
5750 -- Handle abstract views of states and variables. These are
5751 -- acceptable only when the reference to the view appears in
5752 -- pragmas [Refined_]Depends and [Refined_]Global.
5754 if Ekind (Id) = E_Abstract_State
5755 and then From_Limited_With (Id)
5756 and then Present (Non_Limited_View (Id))
5757 then
5758 if In_Pragmas_Depends_Or_Global (N) then
5759 Candidate := Non_Limited_View (Id);
5760 Is_New_Candidate := True;
5762 -- Hide candidate because it is not used in a proper context
5764 else
5765 Candidate := Empty;
5766 Is_New_Candidate := False;
5767 end if;
5768 end if;
5770 -- Ada 2005 (AI-217): Handle shadow entities associated with types
5771 -- declared in limited-withed nested packages. We don't need to
5772 -- handle E_Incomplete_Subtype entities because the entities in
5773 -- the limited view are always E_Incomplete_Type entities (see
5774 -- Build_Limited_Views). Regarding the expression used to evaluate
5775 -- the scope, it is important to note that the limited view also
5776 -- has shadow entities associated nested packages. For this reason
5777 -- the correct scope of the entity is the scope of the real entity
5778 -- The non-limited view may itself be incomplete, in which case
5779 -- get the full view if available.
5781 elsif Ekind (Id) = E_Incomplete_Type
5782 and then From_Limited_With (Id)
5783 and then Present (Non_Limited_View (Id))
5784 and then Scope (Non_Limited_View (Id)) = P_Name
5785 then
5786 Candidate := Get_Full_View (Non_Limited_View (Id));
5787 Is_New_Candidate := True;
5789 else
5790 Is_New_Candidate := False;
5791 end if;
5793 if Is_New_Candidate then
5794 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
5795 exit when Is_Visible_Lib_Unit (Id);
5796 else
5797 exit when not Is_Hidden (Id);
5798 end if;
5800 exit when Is_Immediately_Visible (Id);
5801 end if;
5803 Id := Homonym (Id);
5804 end loop;
5805 end;
5807 if No (Id)
5808 and then Ekind_In (P_Name, E_Procedure, E_Function)
5809 and then Is_Generic_Instance (P_Name)
5810 then
5811 -- Expanded name denotes entity in (instance of) generic subprogram.
5812 -- The entity may be in the subprogram instance, or may denote one of
5813 -- the formals, which is declared in the enclosing wrapper package.
5815 P_Name := Scope (P_Name);
5817 Id := Current_Entity (Selector);
5818 while Present (Id) loop
5819 exit when Scope (Id) = P_Name;
5820 Id := Homonym (Id);
5821 end loop;
5822 end if;
5824 if No (Id) or else Chars (Id) /= Chars (Selector) then
5825 Set_Etype (N, Any_Type);
5827 -- If we are looking for an entity defined in System, try to find it
5828 -- in the child package that may have been provided as an extension
5829 -- to System. The Extend_System pragma will have supplied the name of
5830 -- the extension, which may have to be loaded.
5832 if Chars (P_Name) = Name_System
5833 and then Scope (P_Name) = Standard_Standard
5834 and then Present (System_Extend_Unit)
5835 and then Present_System_Aux (N)
5836 then
5837 Set_Entity (Prefix (N), System_Aux_Id);
5838 Find_Expanded_Name (N);
5839 return;
5841 elsif Nkind (Selector) = N_Operator_Symbol
5842 and then Has_Implicit_Operator (N)
5843 then
5844 -- There is an implicit instance of the predefined operator in
5845 -- the given scope. The operator entity is defined in Standard.
5846 -- Has_Implicit_Operator makes the node into an Expanded_Name.
5848 return;
5850 elsif Nkind (Selector) = N_Character_Literal
5851 and then Has_Implicit_Character_Literal (N)
5852 then
5853 -- If there is no literal defined in the scope denoted by the
5854 -- prefix, the literal may belong to (a type derived from)
5855 -- Standard_Character, for which we have no explicit literals.
5857 return;
5859 else
5860 -- If the prefix is a single concurrent object, use its name in
5861 -- the error message, rather than that of the anonymous type.
5863 if Is_Concurrent_Type (P_Name)
5864 and then Is_Internal_Name (Chars (P_Name))
5865 then
5866 Error_Msg_Node_2 := Entity (Prefix (N));
5867 else
5868 Error_Msg_Node_2 := P_Name;
5869 end if;
5871 if P_Name = System_Aux_Id then
5872 P_Name := Scope (P_Name);
5873 Set_Entity (Prefix (N), P_Name);
5874 end if;
5876 if Present (Candidate) then
5878 -- If we know that the unit is a child unit we can give a more
5879 -- accurate error message.
5881 if Is_Child_Unit (Candidate) then
5883 -- If the candidate is a private child unit and we are in
5884 -- the visible part of a public unit, specialize the error
5885 -- message. There might be a private with_clause for it,
5886 -- but it is not currently active.
5888 if Is_Private_Descendant (Candidate)
5889 and then Ekind (Current_Scope) = E_Package
5890 and then not In_Private_Part (Current_Scope)
5891 and then not Is_Private_Descendant (Current_Scope)
5892 then
5893 Error_Msg_N ("private child unit& is not visible here",
5894 Selector);
5896 -- Normal case where we have a missing with for a child unit
5898 else
5899 Error_Msg_Qual_Level := 99;
5900 Error_Msg_NE -- CODEFIX
5901 ("missing `WITH &;`", Selector, Candidate);
5902 Error_Msg_Qual_Level := 0;
5903 end if;
5905 -- Here we don't know that this is a child unit
5907 else
5908 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
5909 end if;
5911 else
5912 -- Within the instantiation of a child unit, the prefix may
5913 -- denote the parent instance, but the selector has the name
5914 -- of the original child. That is to say, when A.B appears
5915 -- within an instantiation of generic child unit B, the scope
5916 -- stack includes an instance of A (P_Name) and an instance
5917 -- of B under some other name. We scan the scope to find this
5918 -- child instance, which is the desired entity.
5919 -- Note that the parent may itself be a child instance, if
5920 -- the reference is of the form A.B.C, in which case A.B has
5921 -- already been rewritten with the proper entity.
5923 if In_Open_Scopes (P_Name)
5924 and then Is_Generic_Instance (P_Name)
5925 then
5926 declare
5927 Gen_Par : constant Entity_Id :=
5928 Generic_Parent (Specification
5929 (Unit_Declaration_Node (P_Name)));
5930 S : Entity_Id := Current_Scope;
5931 P : Entity_Id;
5933 begin
5934 for J in reverse 0 .. Scope_Stack.Last loop
5935 S := Scope_Stack.Table (J).Entity;
5937 exit when S = Standard_Standard;
5939 if Ekind_In (S, E_Function,
5940 E_Package,
5941 E_Procedure)
5942 then
5943 P := Generic_Parent (Specification
5944 (Unit_Declaration_Node (S)));
5946 -- Check that P is a generic child of the generic
5947 -- parent of the prefix.
5949 if Present (P)
5950 and then Chars (P) = Chars (Selector)
5951 and then Scope (P) = Gen_Par
5952 then
5953 Id := S;
5954 goto Found;
5955 end if;
5956 end if;
5958 end loop;
5959 end;
5960 end if;
5962 -- If this is a selection from Ada, System or Interfaces, then
5963 -- we assume a missing with for the corresponding package.
5965 if Is_Known_Unit (N) then
5966 if not Error_Posted (N) then
5967 Error_Msg_Node_2 := Selector;
5968 Error_Msg_N -- CODEFIX
5969 ("missing `WITH &.&;`", Prefix (N));
5970 end if;
5972 -- If this is a selection from a dummy package, then suppress
5973 -- the error message, of course the entity is missing if the
5974 -- package is missing.
5976 elsif Sloc (Error_Msg_Node_2) = No_Location then
5977 null;
5979 -- Here we have the case of an undefined component
5981 else
5983 -- The prefix may hide a homonym in the context that
5984 -- declares the desired entity. This error can use a
5985 -- specialized message.
5987 if In_Open_Scopes (P_Name) then
5988 declare
5989 H : constant Entity_Id := Homonym (P_Name);
5991 begin
5992 if Present (H)
5993 and then Is_Compilation_Unit (H)
5994 and then
5995 (Is_Immediately_Visible (H)
5996 or else Is_Visible_Lib_Unit (H))
5997 then
5998 Id := First_Entity (H);
5999 while Present (Id) loop
6000 if Chars (Id) = Chars (Selector) then
6001 Error_Msg_Qual_Level := 99;
6002 Error_Msg_Name_1 := Chars (Selector);
6003 Error_Msg_NE
6004 ("% not declared in&", N, P_Name);
6005 Error_Msg_NE
6006 ("\use fully qualified name starting with "
6007 & "Standard to make& visible", N, H);
6008 Error_Msg_Qual_Level := 0;
6009 goto Done;
6010 end if;
6012 Next_Entity (Id);
6013 end loop;
6014 end if;
6016 -- If not found, standard error message
6018 Error_Msg_NE ("& not declared in&", N, Selector);
6020 <<Done>> null;
6021 end;
6023 else
6024 Error_Msg_NE ("& not declared in&", N, Selector);
6025 end if;
6027 -- Check for misspelling of some entity in prefix
6029 Id := First_Entity (P_Name);
6030 while Present (Id) loop
6031 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
6032 and then not Is_Internal_Name (Chars (Id))
6033 then
6034 Error_Msg_NE -- CODEFIX
6035 ("possible misspelling of&", Selector, Id);
6036 exit;
6037 end if;
6039 Next_Entity (Id);
6040 end loop;
6042 -- Specialize the message if this may be an instantiation
6043 -- of a child unit that was not mentioned in the context.
6045 if Nkind (Parent (N)) = N_Package_Instantiation
6046 and then Is_Generic_Instance (Entity (Prefix (N)))
6047 and then Is_Compilation_Unit
6048 (Generic_Parent (Parent (Entity (Prefix (N)))))
6049 then
6050 Error_Msg_Node_2 := Selector;
6051 Error_Msg_N -- CODEFIX
6052 ("\missing `WITH &.&;`", Prefix (N));
6053 end if;
6054 end if;
6055 end if;
6057 Id := Any_Id;
6058 end if;
6059 end if;
6061 <<Found>>
6062 if Comes_From_Source (N)
6063 and then Is_Remote_Access_To_Subprogram_Type (Id)
6064 and then Ekind (Id) = E_Access_Subprogram_Type
6065 and then Present (Equivalent_Type (Id))
6066 then
6067 -- If we are not actually generating distribution code (i.e. the
6068 -- current PCS is the dummy non-distributed version), then the
6069 -- Equivalent_Type will be missing, and Id should be treated as
6070 -- a regular access-to-subprogram type.
6072 Id := Equivalent_Type (Id);
6073 Set_Chars (Selector, Chars (Id));
6074 end if;
6076 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
6078 if Ekind (P_Name) = E_Package and then From_Limited_With (P_Name) then
6079 if From_Limited_With (Id)
6080 or else Is_Type (Id)
6081 or else Ekind (Id) = E_Package
6082 then
6083 null;
6084 else
6085 Error_Msg_N
6086 ("limited withed package can only be used to access "
6087 & "incomplete types", N);
6088 end if;
6089 end if;
6091 if Is_Task_Type (P_Name)
6092 and then ((Ekind (Id) = E_Entry
6093 and then Nkind (Parent (N)) /= N_Attribute_Reference)
6094 or else
6095 (Ekind (Id) = E_Entry_Family
6096 and then
6097 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
6098 then
6099 -- If both the task type and the entry are in scope, this may still
6100 -- be the expanded name of an entry formal.
6102 if In_Open_Scopes (Id)
6103 and then Nkind (Parent (N)) = N_Selected_Component
6104 then
6105 null;
6107 else
6108 -- It is an entry call after all, either to the current task
6109 -- (which will deadlock) or to an enclosing task.
6111 Analyze_Selected_Component (N);
6112 return;
6113 end if;
6114 end if;
6116 Change_Selected_Component_To_Expanded_Name (N);
6118 -- Set appropriate type
6120 if Is_Type (Id) then
6121 Set_Etype (N, Id);
6122 else
6123 Set_Etype (N, Get_Full_View (Etype (Id)));
6124 end if;
6126 -- Do style check and generate reference, but skip both steps if this
6127 -- entity has homonyms, since we may not have the right homonym set yet.
6128 -- The proper homonym will be set during the resolve phase.
6130 if Has_Homonym (Id) then
6131 Set_Entity (N, Id);
6133 else
6134 Set_Entity_Or_Discriminal (N, Id);
6136 case Is_LHS (N) is
6137 when Yes =>
6138 Generate_Reference (Id, N, 'm');
6139 when No =>
6140 Generate_Reference (Id, N, 'r');
6141 when Unknown =>
6142 Deferred_References.Append ((Id, N));
6143 end case;
6144 end if;
6146 -- Check for violation of No_Wide_Characters
6148 Check_Wide_Character_Restriction (Id, N);
6150 -- If the Ekind of the entity is Void, it means that all homonyms are
6151 -- hidden from all visibility (RM 8.3(5,14-20)).
6153 if Ekind (Id) = E_Void then
6154 Premature_Usage (N);
6156 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
6157 declare
6158 H : Entity_Id := Homonym (Id);
6160 begin
6161 while Present (H) loop
6162 if Scope (H) = Scope (Id)
6163 and then (not Is_Hidden (H)
6164 or else Is_Immediately_Visible (H))
6165 then
6166 Collect_Interps (N);
6167 exit;
6168 end if;
6170 H := Homonym (H);
6171 end loop;
6173 -- If an extension of System is present, collect possible explicit
6174 -- overloadings declared in the extension.
6176 if Chars (P_Name) = Name_System
6177 and then Scope (P_Name) = Standard_Standard
6178 and then Present (System_Extend_Unit)
6179 and then Present_System_Aux (N)
6180 then
6181 H := Current_Entity (Id);
6183 while Present (H) loop
6184 if Scope (H) = System_Aux_Id then
6185 Add_One_Interp (N, H, Etype (H));
6186 end if;
6188 H := Homonym (H);
6189 end loop;
6190 end if;
6191 end;
6192 end if;
6194 if Nkind (Selector_Name (N)) = N_Operator_Symbol
6195 and then Scope (Id) /= Standard_Standard
6196 then
6197 -- In addition to user-defined operators in the given scope, there
6198 -- may be an implicit instance of the predefined operator. The
6199 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6200 -- and added to the interpretations. Procedure Add_One_Interp will
6201 -- determine which hides which.
6203 if Has_Implicit_Operator (N) then
6204 null;
6205 end if;
6206 end if;
6208 -- If there is a single interpretation for N we can generate a
6209 -- reference to the unique entity found.
6211 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
6212 Generate_Reference (Id, N);
6213 end if;
6214 end Find_Expanded_Name;
6216 -------------------------
6217 -- Find_Renamed_Entity --
6218 -------------------------
6220 function Find_Renamed_Entity
6221 (N : Node_Id;
6222 Nam : Node_Id;
6223 New_S : Entity_Id;
6224 Is_Actual : Boolean := False) return Entity_Id
6226 Ind : Interp_Index;
6227 I1 : Interp_Index := 0; -- Suppress junk warnings
6228 It : Interp;
6229 It1 : Interp;
6230 Old_S : Entity_Id;
6231 Inst : Entity_Id;
6233 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
6234 -- If the renamed entity is an implicit operator, check whether it is
6235 -- visible because its operand type is properly visible. This check
6236 -- applies to explicit renamed entities that appear in the source in a
6237 -- renaming declaration or a formal subprogram instance, but not to
6238 -- default generic actuals with a name.
6240 function Report_Overload return Entity_Id;
6241 -- List possible interpretations, and specialize message in the
6242 -- case of a generic actual.
6244 function Within (Inner, Outer : Entity_Id) return Boolean;
6245 -- Determine whether a candidate subprogram is defined within the
6246 -- enclosing instance. If yes, it has precedence over outer candidates.
6248 --------------------------
6249 -- Is_Visible_Operation --
6250 --------------------------
6252 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
6253 Scop : Entity_Id;
6254 Typ : Entity_Id;
6255 Btyp : Entity_Id;
6257 begin
6258 if Ekind (Op) /= E_Operator
6259 or else Scope (Op) /= Standard_Standard
6260 or else (In_Instance
6261 and then (not Is_Actual
6262 or else Present (Enclosing_Instance)))
6263 then
6264 return True;
6266 else
6267 -- For a fixed point type operator, check the resulting type,
6268 -- because it may be a mixed mode integer * fixed operation.
6270 if Present (Next_Formal (First_Formal (New_S)))
6271 and then Is_Fixed_Point_Type (Etype (New_S))
6272 then
6273 Typ := Etype (New_S);
6274 else
6275 Typ := Etype (First_Formal (New_S));
6276 end if;
6278 Btyp := Base_Type (Typ);
6280 if Nkind (Nam) /= N_Expanded_Name then
6281 return (In_Open_Scopes (Scope (Btyp))
6282 or else Is_Potentially_Use_Visible (Btyp)
6283 or else In_Use (Btyp)
6284 or else In_Use (Scope (Btyp)));
6286 else
6287 Scop := Entity (Prefix (Nam));
6289 if Ekind (Scop) = E_Package
6290 and then Present (Renamed_Object (Scop))
6291 then
6292 Scop := Renamed_Object (Scop);
6293 end if;
6295 -- Operator is visible if prefix of expanded name denotes
6296 -- scope of type, or else type is defined in System_Aux
6297 -- and the prefix denotes System.
6299 return Scope (Btyp) = Scop
6300 or else (Scope (Btyp) = System_Aux_Id
6301 and then Scope (Scope (Btyp)) = Scop);
6302 end if;
6303 end if;
6304 end Is_Visible_Operation;
6306 ------------
6307 -- Within --
6308 ------------
6310 function Within (Inner, Outer : Entity_Id) return Boolean is
6311 Sc : Entity_Id;
6313 begin
6314 Sc := Scope (Inner);
6315 while Sc /= Standard_Standard loop
6316 if Sc = Outer then
6317 return True;
6318 else
6319 Sc := Scope (Sc);
6320 end if;
6321 end loop;
6323 return False;
6324 end Within;
6326 ---------------------
6327 -- Report_Overload --
6328 ---------------------
6330 function Report_Overload return Entity_Id is
6331 begin
6332 if Is_Actual then
6333 Error_Msg_NE -- CODEFIX
6334 ("ambiguous actual subprogram&, " &
6335 "possible interpretations:", N, Nam);
6336 else
6337 Error_Msg_N -- CODEFIX
6338 ("ambiguous subprogram, " &
6339 "possible interpretations:", N);
6340 end if;
6342 List_Interps (Nam, N);
6343 return Old_S;
6344 end Report_Overload;
6346 -- Start of processing for Find_Renamed_Entity
6348 begin
6349 Old_S := Any_Id;
6350 Candidate_Renaming := Empty;
6352 if Is_Overloaded (Nam) then
6353 Get_First_Interp (Nam, Ind, It);
6354 while Present (It.Nam) loop
6355 if Entity_Matches_Spec (It.Nam, New_S)
6356 and then Is_Visible_Operation (It.Nam)
6357 then
6358 if Old_S /= Any_Id then
6360 -- Note: The call to Disambiguate only happens if a
6361 -- previous interpretation was found, in which case I1
6362 -- has received a value.
6364 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
6366 if It1 = No_Interp then
6367 Inst := Enclosing_Instance;
6369 if Present (Inst) then
6370 if Within (It.Nam, Inst) then
6371 if Within (Old_S, Inst) then
6373 -- Choose the innermost subprogram, which would
6374 -- have hidden the outer one in the generic.
6376 if Scope_Depth (It.Nam) <
6377 Scope_Depth (Old_S)
6378 then
6379 return Old_S;
6380 else
6381 return It.Nam;
6382 end if;
6383 end if;
6385 elsif Within (Old_S, Inst) then
6386 return (Old_S);
6388 else
6389 return Report_Overload;
6390 end if;
6392 -- If not within an instance, ambiguity is real
6394 else
6395 return Report_Overload;
6396 end if;
6398 else
6399 Old_S := It1.Nam;
6400 exit;
6401 end if;
6403 else
6404 I1 := Ind;
6405 Old_S := It.Nam;
6406 end if;
6408 elsif
6409 Present (First_Formal (It.Nam))
6410 and then Present (First_Formal (New_S))
6411 and then (Base_Type (Etype (First_Formal (It.Nam))) =
6412 Base_Type (Etype (First_Formal (New_S))))
6413 then
6414 Candidate_Renaming := It.Nam;
6415 end if;
6417 Get_Next_Interp (Ind, It);
6418 end loop;
6420 Set_Entity (Nam, Old_S);
6422 if Old_S /= Any_Id then
6423 Set_Is_Overloaded (Nam, False);
6424 end if;
6426 -- Non-overloaded case
6428 else
6429 if Is_Actual and then Present (Enclosing_Instance) then
6430 Old_S := Entity (Nam);
6432 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
6433 Candidate_Renaming := New_S;
6435 if Is_Visible_Operation (Entity (Nam)) then
6436 Old_S := Entity (Nam);
6437 end if;
6439 elsif Present (First_Formal (Entity (Nam)))
6440 and then Present (First_Formal (New_S))
6441 and then (Base_Type (Etype (First_Formal (Entity (Nam)))) =
6442 Base_Type (Etype (First_Formal (New_S))))
6443 then
6444 Candidate_Renaming := Entity (Nam);
6445 end if;
6446 end if;
6448 return Old_S;
6449 end Find_Renamed_Entity;
6451 -----------------------------
6452 -- Find_Selected_Component --
6453 -----------------------------
6455 procedure Find_Selected_Component (N : Node_Id) is
6456 P : constant Node_Id := Prefix (N);
6458 P_Name : Entity_Id;
6459 -- Entity denoted by prefix
6461 P_Type : Entity_Id;
6462 -- and its type
6464 Nam : Node_Id;
6466 function Available_Subtype return Boolean;
6467 -- A small optimization: if the prefix is constrained and the component
6468 -- is an array type we may already have a usable subtype for it, so we
6469 -- can use it rather than generating a new one, because the bounds
6470 -- will be the values of the discriminants and not discriminant refs.
6471 -- This simplifies value tracing in GNATProve. For consistency, both
6472 -- the entity name and the subtype come from the constrained component.
6474 function Is_Reference_In_Subunit return Boolean;
6475 -- In a subunit, the scope depth is not a proper measure of hiding,
6476 -- because the context of the proper body may itself hide entities in
6477 -- parent units. This rare case requires inspecting the tree directly
6478 -- because the proper body is inserted in the main unit and its context
6479 -- is simply added to that of the parent.
6481 -----------------------
6482 -- Available_Subtype --
6483 -----------------------
6485 function Available_Subtype return Boolean is
6486 Comp : Entity_Id;
6488 begin
6489 Comp := First_Entity (Etype (P));
6490 while Present (Comp) loop
6491 if Chars (Comp) = Chars (Selector_Name (N)) then
6492 Set_Etype (N, Etype (Comp));
6493 Set_Entity (Selector_Name (N), Comp);
6494 Set_Etype (Selector_Name (N), Etype (Comp));
6495 return True;
6496 end if;
6498 Next_Component (Comp);
6499 end loop;
6501 return False;
6502 end Available_Subtype;
6504 -----------------------------
6505 -- Is_Reference_In_Subunit --
6506 -----------------------------
6508 function Is_Reference_In_Subunit return Boolean is
6509 Clause : Node_Id;
6510 Comp_Unit : Node_Id;
6512 begin
6513 Comp_Unit := N;
6514 while Present (Comp_Unit)
6515 and then Nkind (Comp_Unit) /= N_Compilation_Unit
6516 loop
6517 Comp_Unit := Parent (Comp_Unit);
6518 end loop;
6520 if No (Comp_Unit) or else Nkind (Unit (Comp_Unit)) /= N_Subunit then
6521 return False;
6522 end if;
6524 -- Now check whether the package is in the context of the subunit
6526 Clause := First (Context_Items (Comp_Unit));
6527 while Present (Clause) loop
6528 if Nkind (Clause) = N_With_Clause
6529 and then Entity (Name (Clause)) = P_Name
6530 then
6531 return True;
6532 end if;
6534 Clause := Next (Clause);
6535 end loop;
6537 return False;
6538 end Is_Reference_In_Subunit;
6540 -- Start of processing for Find_Selected_Component
6542 begin
6543 Analyze (P);
6545 if Nkind (P) = N_Error then
6546 return;
6547 end if;
6549 -- Selector name cannot be a character literal or an operator symbol in
6550 -- SPARK, except for the operator symbol in a renaming.
6552 if Restriction_Check_Required (SPARK_05) then
6553 if Nkind (Selector_Name (N)) = N_Character_Literal then
6554 Check_SPARK_05_Restriction
6555 ("character literal cannot be prefixed", N);
6556 elsif Nkind (Selector_Name (N)) = N_Operator_Symbol
6557 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
6558 then
6559 Check_SPARK_05_Restriction
6560 ("operator symbol cannot be prefixed", N);
6561 end if;
6562 end if;
6564 -- If the selector already has an entity, the node has been constructed
6565 -- in the course of expansion, and is known to be valid. Do not verify
6566 -- that it is defined for the type (it may be a private component used
6567 -- in the expansion of record equality).
6569 if Present (Entity (Selector_Name (N))) then
6570 if No (Etype (N)) or else Etype (N) = Any_Type then
6571 declare
6572 Sel_Name : constant Node_Id := Selector_Name (N);
6573 Selector : constant Entity_Id := Entity (Sel_Name);
6574 C_Etype : Node_Id;
6576 begin
6577 Set_Etype (Sel_Name, Etype (Selector));
6579 if not Is_Entity_Name (P) then
6580 Resolve (P);
6581 end if;
6583 -- Build an actual subtype except for the first parameter
6584 -- of an init proc, where this actual subtype is by
6585 -- definition incorrect, since the object is uninitialized
6586 -- (and does not even have defined discriminants etc.)
6588 if Is_Entity_Name (P)
6589 and then Ekind (Entity (P)) = E_Function
6590 then
6591 Nam := New_Copy (P);
6593 if Is_Overloaded (P) then
6594 Save_Interps (P, Nam);
6595 end if;
6597 Rewrite (P, Make_Function_Call (Sloc (P), Name => Nam));
6598 Analyze_Call (P);
6599 Analyze_Selected_Component (N);
6600 return;
6602 elsif Ekind (Selector) = E_Component
6603 and then (not Is_Entity_Name (P)
6604 or else Chars (Entity (P)) /= Name_uInit)
6605 then
6606 -- Check if we already have an available subtype we can use
6608 if Ekind (Etype (P)) = E_Record_Subtype
6609 and then Nkind (Parent (Etype (P))) = N_Subtype_Declaration
6610 and then Is_Array_Type (Etype (Selector))
6611 and then not Is_Packed (Etype (Selector))
6612 and then Available_Subtype
6613 then
6614 return;
6616 -- Do not build the subtype when referencing components of
6617 -- dispatch table wrappers. Required to avoid generating
6618 -- elaboration code with HI runtimes. JVM and .NET use a
6619 -- modified version of Ada.Tags which does not contain RE_
6620 -- Dispatch_Table_Wrapper and RE_No_Dispatch_Table_Wrapper.
6621 -- Avoid raising RE_Not_Available exception in those cases.
6623 elsif VM_Target = No_VM
6624 and then RTU_Loaded (Ada_Tags)
6625 and then
6626 ((RTE_Available (RE_Dispatch_Table_Wrapper)
6627 and then Scope (Selector) =
6628 RTE (RE_Dispatch_Table_Wrapper))
6629 or else
6630 (RTE_Available (RE_No_Dispatch_Table_Wrapper)
6631 and then Scope (Selector) =
6632 RTE (RE_No_Dispatch_Table_Wrapper)))
6633 then
6634 C_Etype := Empty;
6635 else
6636 C_Etype :=
6637 Build_Actual_Subtype_Of_Component
6638 (Etype (Selector), N);
6639 end if;
6641 else
6642 C_Etype := Empty;
6643 end if;
6645 if No (C_Etype) then
6646 C_Etype := Etype (Selector);
6647 else
6648 Insert_Action (N, C_Etype);
6649 C_Etype := Defining_Identifier (C_Etype);
6650 end if;
6652 Set_Etype (N, C_Etype);
6653 end;
6655 -- If this is the name of an entry or protected operation, and
6656 -- the prefix is an access type, insert an explicit dereference,
6657 -- so that entry calls are treated uniformly.
6659 if Is_Access_Type (Etype (P))
6660 and then Is_Concurrent_Type (Designated_Type (Etype (P)))
6661 then
6662 declare
6663 New_P : constant Node_Id :=
6664 Make_Explicit_Dereference (Sloc (P),
6665 Prefix => Relocate_Node (P));
6666 begin
6667 Rewrite (P, New_P);
6668 Set_Etype (P, Designated_Type (Etype (Prefix (P))));
6669 end;
6670 end if;
6672 -- If the selected component appears within a default expression
6673 -- and it has an actual subtype, the pre-analysis has not yet
6674 -- completed its analysis, because Insert_Actions is disabled in
6675 -- that context. Within the init proc of the enclosing type we
6676 -- must complete this analysis, if an actual subtype was created.
6678 elsif Inside_Init_Proc then
6679 declare
6680 Typ : constant Entity_Id := Etype (N);
6681 Decl : constant Node_Id := Declaration_Node (Typ);
6682 begin
6683 if Nkind (Decl) = N_Subtype_Declaration
6684 and then not Analyzed (Decl)
6685 and then Is_List_Member (Decl)
6686 and then No (Parent (Decl))
6687 then
6688 Remove (Decl);
6689 Insert_Action (N, Decl);
6690 end if;
6691 end;
6692 end if;
6694 return;
6696 elsif Is_Entity_Name (P) then
6697 P_Name := Entity (P);
6699 -- The prefix may denote an enclosing type which is the completion
6700 -- of an incomplete type declaration.
6702 if Is_Type (P_Name) then
6703 Set_Entity (P, Get_Full_View (P_Name));
6704 Set_Etype (P, Entity (P));
6705 P_Name := Entity (P);
6706 end if;
6708 P_Type := Base_Type (Etype (P));
6710 if Debug_Flag_E then
6711 Write_Str ("Found prefix type to be ");
6712 Write_Entity_Info (P_Type, " "); Write_Eol;
6713 end if;
6715 -- The designated type may be a limited view with no components.
6716 -- Check whether the non-limited view is available, because in some
6717 -- cases this will not be set when instlling the context.
6719 if Is_Access_Type (P_Type) then
6720 declare
6721 D : constant Entity_Id := Directly_Designated_Type (P_Type);
6722 begin
6723 if Is_Incomplete_Type (D)
6724 and then not Is_Class_Wide_Type (D)
6725 and then From_Limited_With (D)
6726 and then Present (Non_Limited_View (D))
6727 and then not Is_Class_Wide_Type (Non_Limited_View (D))
6728 then
6729 Set_Directly_Designated_Type (P_Type, Non_Limited_View (D));
6730 end if;
6731 end;
6732 end if;
6734 -- First check for components of a record object (not the
6735 -- result of a call, which is handled below).
6737 if Is_Appropriate_For_Record (P_Type)
6738 and then not Is_Overloadable (P_Name)
6739 and then not Is_Type (P_Name)
6740 then
6741 -- Selected component of record. Type checking will validate
6742 -- name of selector.
6744 -- ??? Could we rewrite an implicit dereference into an explicit
6745 -- one here?
6747 Analyze_Selected_Component (N);
6749 -- Reference to type name in predicate/invariant expression
6751 elsif Is_Appropriate_For_Entry_Prefix (P_Type)
6752 and then not In_Open_Scopes (P_Name)
6753 and then (not Is_Concurrent_Type (Etype (P_Name))
6754 or else not In_Open_Scopes (Etype (P_Name)))
6755 then
6756 -- Call to protected operation or entry. Type checking is
6757 -- needed on the prefix.
6759 Analyze_Selected_Component (N);
6761 elsif (In_Open_Scopes (P_Name)
6762 and then Ekind (P_Name) /= E_Void
6763 and then not Is_Overloadable (P_Name))
6764 or else (Is_Concurrent_Type (Etype (P_Name))
6765 and then In_Open_Scopes (Etype (P_Name)))
6766 then
6767 -- Prefix denotes an enclosing loop, block, or task, i.e. an
6768 -- enclosing construct that is not a subprogram or accept.
6770 Find_Expanded_Name (N);
6772 elsif Ekind (P_Name) = E_Package then
6773 Find_Expanded_Name (N);
6775 elsif Is_Overloadable (P_Name) then
6777 -- The subprogram may be a renaming (of an enclosing scope) as
6778 -- in the case of the name of the generic within an instantiation.
6780 if Ekind_In (P_Name, E_Procedure, E_Function)
6781 and then Present (Alias (P_Name))
6782 and then Is_Generic_Instance (Alias (P_Name))
6783 then
6784 P_Name := Alias (P_Name);
6785 end if;
6787 if Is_Overloaded (P) then
6789 -- The prefix must resolve to a unique enclosing construct
6791 declare
6792 Found : Boolean := False;
6793 Ind : Interp_Index;
6794 It : Interp;
6796 begin
6797 Get_First_Interp (P, Ind, It);
6798 while Present (It.Nam) loop
6799 if In_Open_Scopes (It.Nam) then
6800 if Found then
6801 Error_Msg_N (
6802 "prefix must be unique enclosing scope", N);
6803 Set_Entity (N, Any_Id);
6804 Set_Etype (N, Any_Type);
6805 return;
6807 else
6808 Found := True;
6809 P_Name := It.Nam;
6810 end if;
6811 end if;
6813 Get_Next_Interp (Ind, It);
6814 end loop;
6815 end;
6816 end if;
6818 if In_Open_Scopes (P_Name) then
6819 Set_Entity (P, P_Name);
6820 Set_Is_Overloaded (P, False);
6821 Find_Expanded_Name (N);
6823 else
6824 -- If no interpretation as an expanded name is possible, it
6825 -- must be a selected component of a record returned by a
6826 -- function call. Reformat prefix as a function call, the rest
6827 -- is done by type resolution.
6829 -- Error if the prefix is procedure or entry, as is P.X
6831 if Ekind (P_Name) /= E_Function
6832 and then
6833 (not Is_Overloaded (P)
6834 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
6835 then
6836 -- Prefix may mention a package that is hidden by a local
6837 -- declaration: let the user know. Scan the full homonym
6838 -- chain, the candidate package may be anywhere on it.
6840 if Present (Homonym (Current_Entity (P_Name))) then
6841 P_Name := Current_Entity (P_Name);
6843 while Present (P_Name) loop
6844 exit when Ekind (P_Name) = E_Package;
6845 P_Name := Homonym (P_Name);
6846 end loop;
6848 if Present (P_Name) then
6849 if not Is_Reference_In_Subunit then
6850 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
6851 Error_Msg_NE
6852 ("package& is hidden by declaration#", N, P_Name);
6853 end if;
6855 Set_Entity (Prefix (N), P_Name);
6856 Find_Expanded_Name (N);
6857 return;
6859 else
6860 P_Name := Entity (Prefix (N));
6861 end if;
6862 end if;
6864 Error_Msg_NE
6865 ("invalid prefix in selected component&", N, P_Name);
6866 Change_Selected_Component_To_Expanded_Name (N);
6867 Set_Entity (N, Any_Id);
6868 Set_Etype (N, Any_Type);
6870 -- Here we have a function call, so do the reformatting
6872 else
6873 Nam := New_Copy (P);
6874 Save_Interps (P, Nam);
6876 -- We use Replace here because this is one of those cases
6877 -- where the parser has missclassified the node, and we
6878 -- fix things up and then do the semantic analysis on the
6879 -- fixed up node. Normally we do this using one of the
6880 -- Sinfo.CN routines, but this is too tricky for that.
6882 -- Note that using Rewrite would be wrong, because we
6883 -- would have a tree where the original node is unanalyzed,
6884 -- and this violates the required interface for ASIS.
6886 Replace (P,
6887 Make_Function_Call (Sloc (P), Name => Nam));
6889 -- Now analyze the reformatted node
6891 Analyze_Call (P);
6892 Analyze_Selected_Component (N);
6893 end if;
6894 end if;
6896 -- Remaining cases generate various error messages
6898 else
6899 -- Format node as expanded name, to avoid cascaded errors
6901 Change_Selected_Component_To_Expanded_Name (N);
6902 Set_Entity (N, Any_Id);
6903 Set_Etype (N, Any_Type);
6905 -- Issue error message, but avoid this if error issued already.
6906 -- Use identifier of prefix if one is available.
6908 if P_Name = Any_Id then
6909 null;
6911 elsif Ekind (P_Name) = E_Void then
6912 Premature_Usage (P);
6914 elsif Nkind (P) /= N_Attribute_Reference then
6916 -- This may have been meant as a prefixed call to a primitive
6917 -- of an untagged type.
6919 declare
6920 F : constant Entity_Id :=
6921 Current_Entity (Selector_Name (N));
6922 begin
6923 if Present (F)
6924 and then Is_Overloadable (F)
6925 and then Present (First_Entity (F))
6926 and then Etype (First_Entity (F)) = Etype (P)
6927 and then not Is_Tagged_Type (Etype (P))
6928 then
6929 Error_Msg_N
6930 ("prefixed call is only allowed for objects "
6931 & "of a tagged type", N);
6932 end if;
6933 end;
6935 Error_Msg_N ("invalid prefix in selected component&", P);
6937 if Is_Access_Type (P_Type)
6938 and then Ekind (Designated_Type (P_Type)) = E_Incomplete_Type
6939 then
6940 Error_Msg_N
6941 ("\dereference must not be of an incomplete type "
6942 & "(RM 3.10.1)", P);
6943 end if;
6945 else
6946 Error_Msg_N ("invalid prefix in selected component", P);
6947 end if;
6948 end if;
6950 -- Selector name is restricted in SPARK
6952 if Nkind (N) = N_Expanded_Name
6953 and then Restriction_Check_Required (SPARK_05)
6954 then
6955 if Is_Subprogram (P_Name) then
6956 Check_SPARK_05_Restriction
6957 ("prefix of expanded name cannot be a subprogram", P);
6958 elsif Ekind (P_Name) = E_Loop then
6959 Check_SPARK_05_Restriction
6960 ("prefix of expanded name cannot be a loop statement", P);
6961 end if;
6962 end if;
6964 else
6965 -- If prefix is not the name of an entity, it must be an expression,
6966 -- whose type is appropriate for a record. This is determined by
6967 -- type resolution.
6969 Analyze_Selected_Component (N);
6970 end if;
6972 Analyze_Dimension (N);
6973 end Find_Selected_Component;
6975 ---------------
6976 -- Find_Type --
6977 ---------------
6979 procedure Find_Type (N : Node_Id) is
6980 C : Entity_Id;
6981 Typ : Entity_Id;
6982 T : Entity_Id;
6983 T_Name : Entity_Id;
6985 begin
6986 if N = Error then
6987 return;
6989 elsif Nkind (N) = N_Attribute_Reference then
6991 -- Class attribute. This is not valid in Ada 83 mode, but we do not
6992 -- need to enforce that at this point, since the declaration of the
6993 -- tagged type in the prefix would have been flagged already.
6995 if Attribute_Name (N) = Name_Class then
6996 Check_Restriction (No_Dispatch, N);
6997 Find_Type (Prefix (N));
6999 -- Propagate error from bad prefix
7001 if Etype (Prefix (N)) = Any_Type then
7002 Set_Entity (N, Any_Type);
7003 Set_Etype (N, Any_Type);
7004 return;
7005 end if;
7007 T := Base_Type (Entity (Prefix (N)));
7009 -- Case where type is not known to be tagged. Its appearance in
7010 -- the prefix of the 'Class attribute indicates that the full view
7011 -- will be tagged.
7013 if not Is_Tagged_Type (T) then
7014 if Ekind (T) = E_Incomplete_Type then
7016 -- It is legal to denote the class type of an incomplete
7017 -- type. The full type will have to be tagged, of course.
7018 -- In Ada 2005 this usage is declared obsolescent, so we
7019 -- warn accordingly. This usage is only legal if the type
7020 -- is completed in the current scope, and not for a limited
7021 -- view of a type.
7023 if Ada_Version >= Ada_2005 then
7025 -- Test whether the Available_View of a limited type view
7026 -- is tagged, since the limited view may not be marked as
7027 -- tagged if the type itself has an untagged incomplete
7028 -- type view in its package.
7030 if From_Limited_With (T)
7031 and then not Is_Tagged_Type (Available_View (T))
7032 then
7033 Error_Msg_N
7034 ("prefix of Class attribute must be tagged", N);
7035 Set_Etype (N, Any_Type);
7036 Set_Entity (N, Any_Type);
7037 return;
7039 -- ??? This test is temporarily disabled (always
7040 -- False) because it causes an unwanted warning on
7041 -- GNAT sources (built with -gnatg, which includes
7042 -- Warn_On_Obsolescent_ Feature). Once this issue
7043 -- is cleared in the sources, it can be enabled.
7045 elsif Warn_On_Obsolescent_Feature and then False then
7046 Error_Msg_N
7047 ("applying 'Class to an untagged incomplete type"
7048 & " is an obsolescent feature (RM J.11)?r?", N);
7049 end if;
7050 end if;
7052 Set_Is_Tagged_Type (T);
7053 Set_Direct_Primitive_Operations (T, New_Elmt_List);
7054 Make_Class_Wide_Type (T);
7055 Set_Entity (N, Class_Wide_Type (T));
7056 Set_Etype (N, Class_Wide_Type (T));
7058 elsif Ekind (T) = E_Private_Type
7059 and then not Is_Generic_Type (T)
7060 and then In_Private_Part (Scope (T))
7061 then
7062 -- The Class attribute can be applied to an untagged private
7063 -- type fulfilled by a tagged type prior to the full type
7064 -- declaration (but only within the parent package's private
7065 -- part). Create the class-wide type now and check that the
7066 -- full type is tagged later during its analysis. Note that
7067 -- we do not mark the private type as tagged, unlike the
7068 -- case of incomplete types, because the type must still
7069 -- appear untagged to outside units.
7071 if No (Class_Wide_Type (T)) then
7072 Make_Class_Wide_Type (T);
7073 end if;
7075 Set_Entity (N, Class_Wide_Type (T));
7076 Set_Etype (N, Class_Wide_Type (T));
7078 else
7079 -- Should we introduce a type Any_Tagged and use Wrong_Type
7080 -- here, it would be a bit more consistent???
7082 Error_Msg_NE
7083 ("tagged type required, found}",
7084 Prefix (N), First_Subtype (T));
7085 Set_Entity (N, Any_Type);
7086 return;
7087 end if;
7089 -- Case of tagged type
7091 else
7092 if Is_Concurrent_Type (T) then
7093 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
7095 -- Previous error. Use current type, which at least
7096 -- provides some operations.
7098 C := Entity (Prefix (N));
7100 else
7101 C := Class_Wide_Type
7102 (Corresponding_Record_Type (Entity (Prefix (N))));
7103 end if;
7105 else
7106 C := Class_Wide_Type (Entity (Prefix (N)));
7107 end if;
7109 Set_Entity_With_Checks (N, C);
7110 Generate_Reference (C, N);
7111 Set_Etype (N, C);
7112 end if;
7114 -- Base attribute, not allowed in Ada 83
7116 elsif Attribute_Name (N) = Name_Base then
7117 Error_Msg_Name_1 := Name_Base;
7118 Check_SPARK_05_Restriction
7119 ("attribute% is only allowed as prefix of another attribute", N);
7121 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
7122 Error_Msg_N
7123 ("(Ada 83) Base attribute not allowed in subtype mark", N);
7125 else
7126 Find_Type (Prefix (N));
7127 Typ := Entity (Prefix (N));
7129 if Ada_Version >= Ada_95
7130 and then not Is_Scalar_Type (Typ)
7131 and then not Is_Generic_Type (Typ)
7132 then
7133 Error_Msg_N
7134 ("prefix of Base attribute must be scalar type",
7135 Prefix (N));
7137 elsif Warn_On_Redundant_Constructs
7138 and then Base_Type (Typ) = Typ
7139 then
7140 Error_Msg_NE -- CODEFIX
7141 ("redundant attribute, & is its own base type?r?", N, Typ);
7142 end if;
7144 T := Base_Type (Typ);
7146 -- Rewrite attribute reference with type itself (see similar
7147 -- processing in Analyze_Attribute, case Base). Preserve prefix
7148 -- if present, for other legality checks.
7150 if Nkind (Prefix (N)) = N_Expanded_Name then
7151 Rewrite (N,
7152 Make_Expanded_Name (Sloc (N),
7153 Chars => Chars (T),
7154 Prefix => New_Copy (Prefix (Prefix (N))),
7155 Selector_Name => New_Occurrence_Of (T, Sloc (N))));
7157 else
7158 Rewrite (N, New_Occurrence_Of (T, Sloc (N)));
7159 end if;
7161 Set_Entity (N, T);
7162 Set_Etype (N, T);
7163 end if;
7165 elsif Attribute_Name (N) = Name_Stub_Type then
7167 -- This is handled in Analyze_Attribute
7169 Analyze (N);
7171 -- All other attributes are invalid in a subtype mark
7173 else
7174 Error_Msg_N ("invalid attribute in subtype mark", N);
7175 end if;
7177 else
7178 Analyze (N);
7180 if Is_Entity_Name (N) then
7181 T_Name := Entity (N);
7182 else
7183 Error_Msg_N ("subtype mark required in this context", N);
7184 Set_Etype (N, Any_Type);
7185 return;
7186 end if;
7188 if T_Name = Any_Id or else Etype (N) = Any_Type then
7190 -- Undefined id. Make it into a valid type
7192 Set_Entity (N, Any_Type);
7194 elsif not Is_Type (T_Name)
7195 and then T_Name /= Standard_Void_Type
7196 then
7197 Error_Msg_Sloc := Sloc (T_Name);
7198 Error_Msg_N ("subtype mark required in this context", N);
7199 Error_Msg_NE ("\\found & declared#", N, T_Name);
7200 Set_Entity (N, Any_Type);
7202 else
7203 -- If the type is an incomplete type created to handle
7204 -- anonymous access components of a record type, then the
7205 -- incomplete type is the visible entity and subsequent
7206 -- references will point to it. Mark the original full
7207 -- type as referenced, to prevent spurious warnings.
7209 if Is_Incomplete_Type (T_Name)
7210 and then Present (Full_View (T_Name))
7211 and then not Comes_From_Source (T_Name)
7212 then
7213 Set_Referenced (Full_View (T_Name));
7214 end if;
7216 T_Name := Get_Full_View (T_Name);
7218 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7219 -- limited-with clauses
7221 if From_Limited_With (T_Name)
7222 and then Ekind (T_Name) in Incomplete_Kind
7223 and then Present (Non_Limited_View (T_Name))
7224 and then Is_Interface (Non_Limited_View (T_Name))
7225 then
7226 T_Name := Non_Limited_View (T_Name);
7227 end if;
7229 if In_Open_Scopes (T_Name) then
7230 if Ekind (Base_Type (T_Name)) = E_Task_Type then
7232 -- In Ada 2005, a task name can be used in an access
7233 -- definition within its own body. It cannot be used
7234 -- in the discriminant part of the task declaration,
7235 -- nor anywhere else in the declaration because entries
7236 -- cannot have access parameters.
7238 if Ada_Version >= Ada_2005
7239 and then Nkind (Parent (N)) = N_Access_Definition
7240 then
7241 Set_Entity (N, T_Name);
7242 Set_Etype (N, T_Name);
7244 if Has_Completion (T_Name) then
7245 return;
7247 else
7248 Error_Msg_N
7249 ("task type cannot be used as type mark " &
7250 "within its own declaration", N);
7251 end if;
7253 else
7254 Error_Msg_N
7255 ("task type cannot be used as type mark " &
7256 "within its own spec or body", N);
7257 end if;
7259 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
7261 -- In Ada 2005, a protected name can be used in an access
7262 -- definition within its own body.
7264 if Ada_Version >= Ada_2005
7265 and then Nkind (Parent (N)) = N_Access_Definition
7266 then
7267 Set_Entity (N, T_Name);
7268 Set_Etype (N, T_Name);
7269 return;
7271 else
7272 Error_Msg_N
7273 ("protected type cannot be used as type mark " &
7274 "within its own spec or body", N);
7275 end if;
7277 else
7278 Error_Msg_N ("type declaration cannot refer to itself", N);
7279 end if;
7281 Set_Etype (N, Any_Type);
7282 Set_Entity (N, Any_Type);
7283 Set_Error_Posted (T_Name);
7284 return;
7285 end if;
7287 Set_Entity (N, T_Name);
7288 Set_Etype (N, T_Name);
7289 end if;
7290 end if;
7292 if Present (Etype (N)) and then Comes_From_Source (N) then
7293 if Is_Fixed_Point_Type (Etype (N)) then
7294 Check_Restriction (No_Fixed_Point, N);
7295 elsif Is_Floating_Point_Type (Etype (N)) then
7296 Check_Restriction (No_Floating_Point, N);
7297 end if;
7299 -- A Ghost type must appear in a specific context
7301 if Is_Ghost_Entity (Etype (N)) then
7302 Check_Ghost_Context (Etype (N), N);
7303 end if;
7304 end if;
7305 end Find_Type;
7307 ------------------------------------
7308 -- Has_Implicit_Character_Literal --
7309 ------------------------------------
7311 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
7312 Id : Entity_Id;
7313 Found : Boolean := False;
7314 P : constant Entity_Id := Entity (Prefix (N));
7315 Priv_Id : Entity_Id := Empty;
7317 begin
7318 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7319 Priv_Id := First_Private_Entity (P);
7320 end if;
7322 if P = Standard_Standard then
7323 Change_Selected_Component_To_Expanded_Name (N);
7324 Rewrite (N, Selector_Name (N));
7325 Analyze (N);
7326 Set_Etype (Original_Node (N), Standard_Character);
7327 return True;
7328 end if;
7330 Id := First_Entity (P);
7331 while Present (Id) and then Id /= Priv_Id loop
7332 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
7334 -- We replace the node with the literal itself, resolve as a
7335 -- character, and set the type correctly.
7337 if not Found then
7338 Change_Selected_Component_To_Expanded_Name (N);
7339 Rewrite (N, Selector_Name (N));
7340 Analyze (N);
7341 Set_Etype (N, Id);
7342 Set_Etype (Original_Node (N), Id);
7343 Found := True;
7345 else
7346 -- More than one type derived from Character in given scope.
7347 -- Collect all possible interpretations.
7349 Add_One_Interp (N, Id, Id);
7350 end if;
7351 end if;
7353 Next_Entity (Id);
7354 end loop;
7356 return Found;
7357 end Has_Implicit_Character_Literal;
7359 ----------------------
7360 -- Has_Private_With --
7361 ----------------------
7363 function Has_Private_With (E : Entity_Id) return Boolean is
7364 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
7365 Item : Node_Id;
7367 begin
7368 Item := First (Context_Items (Comp_Unit));
7369 while Present (Item) loop
7370 if Nkind (Item) = N_With_Clause
7371 and then Private_Present (Item)
7372 and then Entity (Name (Item)) = E
7373 then
7374 return True;
7375 end if;
7377 Next (Item);
7378 end loop;
7380 return False;
7381 end Has_Private_With;
7383 ---------------------------
7384 -- Has_Implicit_Operator --
7385 ---------------------------
7387 function Has_Implicit_Operator (N : Node_Id) return Boolean is
7388 Op_Id : constant Name_Id := Chars (Selector_Name (N));
7389 P : constant Entity_Id := Entity (Prefix (N));
7390 Id : Entity_Id;
7391 Priv_Id : Entity_Id := Empty;
7393 procedure Add_Implicit_Operator
7394 (T : Entity_Id;
7395 Op_Type : Entity_Id := Empty);
7396 -- Add implicit interpretation to node N, using the type for which a
7397 -- predefined operator exists. If the operator yields a boolean type,
7398 -- the Operand_Type is implicitly referenced by the operator, and a
7399 -- reference to it must be generated.
7401 ---------------------------
7402 -- Add_Implicit_Operator --
7403 ---------------------------
7405 procedure Add_Implicit_Operator
7406 (T : Entity_Id;
7407 Op_Type : Entity_Id := Empty)
7409 Predef_Op : Entity_Id;
7411 begin
7412 Predef_Op := Current_Entity (Selector_Name (N));
7413 while Present (Predef_Op)
7414 and then Scope (Predef_Op) /= Standard_Standard
7415 loop
7416 Predef_Op := Homonym (Predef_Op);
7417 end loop;
7419 if Nkind (N) = N_Selected_Component then
7420 Change_Selected_Component_To_Expanded_Name (N);
7421 end if;
7423 -- If the context is an unanalyzed function call, determine whether
7424 -- a binary or unary interpretation is required.
7426 if Nkind (Parent (N)) = N_Indexed_Component then
7427 declare
7428 Is_Binary_Call : constant Boolean :=
7429 Present
7430 (Next (First (Expressions (Parent (N)))));
7431 Is_Binary_Op : constant Boolean :=
7432 First_Entity
7433 (Predef_Op) /= Last_Entity (Predef_Op);
7434 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
7436 begin
7437 if Is_Binary_Call then
7438 if Is_Binary_Op then
7439 Add_One_Interp (N, Predef_Op, T);
7440 else
7441 Add_One_Interp (N, Predef_Op2, T);
7442 end if;
7444 else
7445 if not Is_Binary_Op then
7446 Add_One_Interp (N, Predef_Op, T);
7447 else
7448 Add_One_Interp (N, Predef_Op2, T);
7449 end if;
7450 end if;
7451 end;
7453 else
7454 Add_One_Interp (N, Predef_Op, T);
7456 -- For operators with unary and binary interpretations, if
7457 -- context is not a call, add both
7459 if Present (Homonym (Predef_Op)) then
7460 Add_One_Interp (N, Homonym (Predef_Op), T);
7461 end if;
7462 end if;
7464 -- The node is a reference to a predefined operator, and
7465 -- an implicit reference to the type of its operands.
7467 if Present (Op_Type) then
7468 Generate_Operator_Reference (N, Op_Type);
7469 else
7470 Generate_Operator_Reference (N, T);
7471 end if;
7472 end Add_Implicit_Operator;
7474 -- Start of processing for Has_Implicit_Operator
7476 begin
7477 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7478 Priv_Id := First_Private_Entity (P);
7479 end if;
7481 Id := First_Entity (P);
7483 case Op_Id is
7485 -- Boolean operators: an implicit declaration exists if the scope
7486 -- contains a declaration for a derived Boolean type, or for an
7487 -- array of Boolean type.
7489 when Name_Op_And | Name_Op_Not | Name_Op_Or | Name_Op_Xor =>
7490 while Id /= Priv_Id loop
7491 if Valid_Boolean_Arg (Id) and then Is_Base_Type (Id) then
7492 Add_Implicit_Operator (Id);
7493 return True;
7494 end if;
7496 Next_Entity (Id);
7497 end loop;
7499 -- Equality: look for any non-limited type (result is Boolean)
7501 when Name_Op_Eq | Name_Op_Ne =>
7502 while Id /= Priv_Id loop
7503 if Is_Type (Id)
7504 and then not Is_Limited_Type (Id)
7505 and then Is_Base_Type (Id)
7506 then
7507 Add_Implicit_Operator (Standard_Boolean, Id);
7508 return True;
7509 end if;
7511 Next_Entity (Id);
7512 end loop;
7514 -- Comparison operators: scalar type, or array of scalar
7516 when Name_Op_Lt | Name_Op_Le | Name_Op_Gt | Name_Op_Ge =>
7517 while Id /= Priv_Id loop
7518 if (Is_Scalar_Type (Id)
7519 or else (Is_Array_Type (Id)
7520 and then Is_Scalar_Type (Component_Type (Id))))
7521 and then Is_Base_Type (Id)
7522 then
7523 Add_Implicit_Operator (Standard_Boolean, Id);
7524 return True;
7525 end if;
7527 Next_Entity (Id);
7528 end loop;
7530 -- Arithmetic operators: any numeric type
7532 when Name_Op_Abs |
7533 Name_Op_Add |
7534 Name_Op_Mod |
7535 Name_Op_Rem |
7536 Name_Op_Subtract |
7537 Name_Op_Multiply |
7538 Name_Op_Divide |
7539 Name_Op_Expon =>
7540 while Id /= Priv_Id loop
7541 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
7542 Add_Implicit_Operator (Id);
7543 return True;
7544 end if;
7546 Next_Entity (Id);
7547 end loop;
7549 -- Concatenation: any one-dimensional array type
7551 when Name_Op_Concat =>
7552 while Id /= Priv_Id loop
7553 if Is_Array_Type (Id)
7554 and then Number_Dimensions (Id) = 1
7555 and then Is_Base_Type (Id)
7556 then
7557 Add_Implicit_Operator (Id);
7558 return True;
7559 end if;
7561 Next_Entity (Id);
7562 end loop;
7564 -- What is the others condition here? Should we be using a
7565 -- subtype of Name_Id that would restrict to operators ???
7567 when others => null;
7568 end case;
7570 -- If we fall through, then we do not have an implicit operator
7572 return False;
7574 end Has_Implicit_Operator;
7576 -----------------------------------
7577 -- Has_Loop_In_Inner_Open_Scopes --
7578 -----------------------------------
7580 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
7581 begin
7582 -- Several scope stacks are maintained by Scope_Stack. The base of the
7583 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7584 -- flag in the scope stack entry. Note that the scope stacks used to
7585 -- simply be delimited implicitly by the presence of Standard_Standard
7586 -- at their base, but there now are cases where this is not sufficient
7587 -- because Standard_Standard actually may appear in the middle of the
7588 -- active set of scopes.
7590 for J in reverse 0 .. Scope_Stack.Last loop
7592 -- S was reached without seing a loop scope first
7594 if Scope_Stack.Table (J).Entity = S then
7595 return False;
7597 -- S was not yet reached, so it contains at least one inner loop
7599 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
7600 return True;
7601 end if;
7603 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7604 -- cases where Standard_Standard appears in the middle of the active
7605 -- set of scopes. This affects the declaration and overriding of
7606 -- private inherited operations in instantiations of generic child
7607 -- units.
7609 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
7610 end loop;
7612 raise Program_Error; -- unreachable
7613 end Has_Loop_In_Inner_Open_Scopes;
7615 --------------------
7616 -- In_Open_Scopes --
7617 --------------------
7619 function In_Open_Scopes (S : Entity_Id) return Boolean is
7620 begin
7621 -- Several scope stacks are maintained by Scope_Stack. The base of the
7622 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7623 -- flag in the scope stack entry. Note that the scope stacks used to
7624 -- simply be delimited implicitly by the presence of Standard_Standard
7625 -- at their base, but there now are cases where this is not sufficient
7626 -- because Standard_Standard actually may appear in the middle of the
7627 -- active set of scopes.
7629 for J in reverse 0 .. Scope_Stack.Last loop
7630 if Scope_Stack.Table (J).Entity = S then
7631 return True;
7632 end if;
7634 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7635 -- cases where Standard_Standard appears in the middle of the active
7636 -- set of scopes. This affects the declaration and overriding of
7637 -- private inherited operations in instantiations of generic child
7638 -- units.
7640 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
7641 end loop;
7643 return False;
7644 end In_Open_Scopes;
7646 -----------------------------
7647 -- Inherit_Renamed_Profile --
7648 -----------------------------
7650 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
7651 New_F : Entity_Id;
7652 Old_F : Entity_Id;
7653 Old_T : Entity_Id;
7654 New_T : Entity_Id;
7656 begin
7657 if Ekind (Old_S) = E_Operator then
7658 New_F := First_Formal (New_S);
7660 while Present (New_F) loop
7661 Set_Etype (New_F, Base_Type (Etype (New_F)));
7662 Next_Formal (New_F);
7663 end loop;
7665 Set_Etype (New_S, Base_Type (Etype (New_S)));
7667 else
7668 New_F := First_Formal (New_S);
7669 Old_F := First_Formal (Old_S);
7671 while Present (New_F) loop
7672 New_T := Etype (New_F);
7673 Old_T := Etype (Old_F);
7675 -- If the new type is a renaming of the old one, as is the
7676 -- case for actuals in instances, retain its name, to simplify
7677 -- later disambiguation.
7679 if Nkind (Parent (New_T)) = N_Subtype_Declaration
7680 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
7681 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
7682 then
7683 null;
7684 else
7685 Set_Etype (New_F, Old_T);
7686 end if;
7688 Next_Formal (New_F);
7689 Next_Formal (Old_F);
7690 end loop;
7692 if Ekind_In (Old_S, E_Function, E_Enumeration_Literal) then
7693 Set_Etype (New_S, Etype (Old_S));
7694 end if;
7695 end if;
7696 end Inherit_Renamed_Profile;
7698 ----------------
7699 -- Initialize --
7700 ----------------
7702 procedure Initialize is
7703 begin
7704 Urefs.Init;
7705 end Initialize;
7707 -------------------------
7708 -- Install_Use_Clauses --
7709 -------------------------
7711 procedure Install_Use_Clauses
7712 (Clause : Node_Id;
7713 Force_Installation : Boolean := False)
7715 U : Node_Id;
7716 P : Node_Id;
7717 Id : Entity_Id;
7719 begin
7720 U := Clause;
7721 while Present (U) loop
7723 -- Case of USE package
7725 if Nkind (U) = N_Use_Package_Clause then
7726 P := First (Names (U));
7727 while Present (P) loop
7728 Id := Entity (P);
7730 if Ekind (Id) = E_Package then
7731 if In_Use (Id) then
7732 Note_Redundant_Use (P);
7734 elsif Present (Renamed_Object (Id))
7735 and then In_Use (Renamed_Object (Id))
7736 then
7737 Note_Redundant_Use (P);
7739 elsif Force_Installation or else Applicable_Use (P) then
7740 Use_One_Package (Id, U);
7742 end if;
7743 end if;
7745 Next (P);
7746 end loop;
7748 -- Case of USE TYPE
7750 else
7751 P := First (Subtype_Marks (U));
7752 while Present (P) loop
7753 if not Is_Entity_Name (P)
7754 or else No (Entity (P))
7755 then
7756 null;
7758 elsif Entity (P) /= Any_Type then
7759 Use_One_Type (P);
7760 end if;
7762 Next (P);
7763 end loop;
7764 end if;
7766 Next_Use_Clause (U);
7767 end loop;
7768 end Install_Use_Clauses;
7770 -------------------------------------
7771 -- Is_Appropriate_For_Entry_Prefix --
7772 -------------------------------------
7774 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean is
7775 P_Type : Entity_Id := T;
7777 begin
7778 if Is_Access_Type (P_Type) then
7779 P_Type := Designated_Type (P_Type);
7780 end if;
7782 return Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type);
7783 end Is_Appropriate_For_Entry_Prefix;
7785 -------------------------------
7786 -- Is_Appropriate_For_Record --
7787 -------------------------------
7789 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean is
7791 function Has_Components (T1 : Entity_Id) return Boolean;
7792 -- Determine if given type has components (i.e. is either a record
7793 -- type or a type that has discriminants).
7795 --------------------
7796 -- Has_Components --
7797 --------------------
7799 function Has_Components (T1 : Entity_Id) return Boolean is
7800 begin
7801 return Is_Record_Type (T1)
7802 or else (Is_Private_Type (T1) and then Has_Discriminants (T1))
7803 or else (Is_Task_Type (T1) and then Has_Discriminants (T1))
7804 or else (Is_Incomplete_Type (T1)
7805 and then From_Limited_With (T1)
7806 and then Present (Non_Limited_View (T1))
7807 and then Is_Record_Type
7808 (Get_Full_View (Non_Limited_View (T1))));
7809 end Has_Components;
7811 -- Start of processing for Is_Appropriate_For_Record
7813 begin
7814 return
7815 Present (T)
7816 and then (Has_Components (T)
7817 or else (Is_Access_Type (T)
7818 and then Has_Components (Designated_Type (T))));
7819 end Is_Appropriate_For_Record;
7821 ------------------------
7822 -- Note_Redundant_Use --
7823 ------------------------
7825 procedure Note_Redundant_Use (Clause : Node_Id) is
7826 Pack_Name : constant Entity_Id := Entity (Clause);
7827 Cur_Use : constant Node_Id := Current_Use_Clause (Pack_Name);
7828 Decl : constant Node_Id := Parent (Clause);
7830 Prev_Use : Node_Id := Empty;
7831 Redundant : Node_Id := Empty;
7832 -- The Use_Clause which is actually redundant. In the simplest case it
7833 -- is Pack itself, but when we compile a body we install its context
7834 -- before that of its spec, in which case it is the use_clause in the
7835 -- spec that will appear to be redundant, and we want the warning to be
7836 -- placed on the body. Similar complications appear when the redundancy
7837 -- is between a child unit and one of its ancestors.
7839 begin
7840 Set_Redundant_Use (Clause, True);
7842 if not Comes_From_Source (Clause)
7843 or else In_Instance
7844 or else not Warn_On_Redundant_Constructs
7845 then
7846 return;
7847 end if;
7849 if not Is_Compilation_Unit (Current_Scope) then
7851 -- If the use_clause is in an inner scope, it is made redundant by
7852 -- some clause in the current context, with one exception: If we're
7853 -- compiling a nested package body, and the use_clause comes from the
7854 -- corresponding spec, the clause is not necessarily fully redundant,
7855 -- so we should not warn. If a warning was warranted, it would have
7856 -- been given when the spec was processed.
7858 if Nkind (Parent (Decl)) = N_Package_Specification then
7859 declare
7860 Package_Spec_Entity : constant Entity_Id :=
7861 Defining_Unit_Name (Parent (Decl));
7862 begin
7863 if In_Package_Body (Package_Spec_Entity) then
7864 return;
7865 end if;
7866 end;
7867 end if;
7869 Redundant := Clause;
7870 Prev_Use := Cur_Use;
7872 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
7873 declare
7874 Cur_Unit : constant Unit_Number_Type := Get_Source_Unit (Cur_Use);
7875 New_Unit : constant Unit_Number_Type := Get_Source_Unit (Clause);
7876 Scop : Entity_Id;
7878 begin
7879 if Cur_Unit = New_Unit then
7881 -- Redundant clause in same body
7883 Redundant := Clause;
7884 Prev_Use := Cur_Use;
7886 elsif Cur_Unit = Current_Sem_Unit then
7888 -- If the new clause is not in the current unit it has been
7889 -- analyzed first, and it makes the other one redundant.
7890 -- However, if the new clause appears in a subunit, Cur_Unit
7891 -- is still the parent, and in that case the redundant one
7892 -- is the one appearing in the subunit.
7894 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
7895 Redundant := Clause;
7896 Prev_Use := Cur_Use;
7898 -- Most common case: redundant clause in body,
7899 -- original clause in spec. Current scope is spec entity.
7901 elsif
7902 Current_Scope =
7903 Defining_Entity (
7904 Unit (Library_Unit (Cunit (Current_Sem_Unit))))
7905 then
7906 Redundant := Cur_Use;
7907 Prev_Use := Clause;
7909 else
7910 -- The new clause may appear in an unrelated unit, when
7911 -- the parents of a generic are being installed prior to
7912 -- instantiation. In this case there must be no warning.
7913 -- We detect this case by checking whether the current top
7914 -- of the stack is related to the current compilation.
7916 Scop := Current_Scope;
7917 while Present (Scop) and then Scop /= Standard_Standard loop
7918 if Is_Compilation_Unit (Scop)
7919 and then not Is_Child_Unit (Scop)
7920 then
7921 return;
7923 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
7924 exit;
7925 end if;
7927 Scop := Scope (Scop);
7928 end loop;
7930 Redundant := Cur_Use;
7931 Prev_Use := Clause;
7932 end if;
7934 elsif New_Unit = Current_Sem_Unit then
7935 Redundant := Clause;
7936 Prev_Use := Cur_Use;
7938 else
7939 -- Neither is the current unit, so they appear in parent or
7940 -- sibling units. Warning will be emitted elsewhere.
7942 return;
7943 end if;
7944 end;
7946 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
7947 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
7948 then
7949 -- Use_clause is in child unit of current unit, and the child unit
7950 -- appears in the context of the body of the parent, so it has been
7951 -- installed first, even though it is the redundant one. Depending on
7952 -- their placement in the context, the visible or the private parts
7953 -- of the two units, either might appear as redundant, but the
7954 -- message has to be on the current unit.
7956 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
7957 Redundant := Cur_Use;
7958 Prev_Use := Clause;
7959 else
7960 Redundant := Clause;
7961 Prev_Use := Cur_Use;
7962 end if;
7964 -- If the new use clause appears in the private part of a parent unit
7965 -- it may appear to be redundant w.r.t. a use clause in a child unit,
7966 -- but the previous use clause was needed in the visible part of the
7967 -- child, and no warning should be emitted.
7969 if Nkind (Parent (Decl)) = N_Package_Specification
7970 and then
7971 List_Containing (Decl) = Private_Declarations (Parent (Decl))
7972 then
7973 declare
7974 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
7975 Spec : constant Node_Id :=
7976 Specification (Unit (Cunit (Current_Sem_Unit)));
7978 begin
7979 if Is_Compilation_Unit (Par)
7980 and then Par /= Cunit_Entity (Current_Sem_Unit)
7981 and then Parent (Cur_Use) = Spec
7982 and then
7983 List_Containing (Cur_Use) = Visible_Declarations (Spec)
7984 then
7985 return;
7986 end if;
7987 end;
7988 end if;
7990 -- Finally, if the current use clause is in the context then
7991 -- the clause is redundant when it is nested within the unit.
7993 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
7994 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
7995 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
7996 then
7997 Redundant := Clause;
7998 Prev_Use := Cur_Use;
8000 else
8001 null;
8002 end if;
8004 if Present (Redundant) then
8005 Error_Msg_Sloc := Sloc (Prev_Use);
8006 Error_Msg_NE -- CODEFIX
8007 ("& is already use-visible through previous use clause #??",
8008 Redundant, Pack_Name);
8009 end if;
8010 end Note_Redundant_Use;
8012 ---------------
8013 -- Pop_Scope --
8014 ---------------
8016 procedure Pop_Scope is
8017 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8018 S : constant Entity_Id := SST.Entity;
8020 begin
8021 if Debug_Flag_E then
8022 Write_Info;
8023 end if;
8025 -- Set Default_Storage_Pool field of the library unit if necessary
8027 if Ekind_In (S, E_Package, E_Generic_Package)
8028 and then
8029 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
8030 then
8031 declare
8032 Aux : constant Node_Id :=
8033 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
8034 begin
8035 if No (Default_Storage_Pool (Aux)) then
8036 Set_Default_Storage_Pool (Aux, Default_Pool);
8037 end if;
8038 end;
8039 end if;
8041 Scope_Suppress := SST.Save_Scope_Suppress;
8042 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
8043 Check_Policy_List := SST.Save_Check_Policy_List;
8044 Default_Pool := SST.Save_Default_Storage_Pool;
8045 No_Tagged_Streams := SST.Save_No_Tagged_Streams;
8046 SPARK_Mode := SST.Save_SPARK_Mode;
8047 SPARK_Mode_Pragma := SST.Save_SPARK_Mode_Pragma;
8048 Default_SSO := SST.Save_Default_SSO;
8049 Uneval_Old := SST.Save_Uneval_Old;
8051 if Debug_Flag_W then
8052 Write_Str ("<-- exiting scope: ");
8053 Write_Name (Chars (Current_Scope));
8054 Write_Str (", Depth=");
8055 Write_Int (Int (Scope_Stack.Last));
8056 Write_Eol;
8057 end if;
8059 End_Use_Clauses (SST.First_Use_Clause);
8061 -- If the actions to be wrapped are still there they will get lost
8062 -- causing incomplete code to be generated. It is better to abort in
8063 -- this case (and we do the abort even with assertions off since the
8064 -- penalty is incorrect code generation).
8066 if SST.Actions_To_Be_Wrapped /= Scope_Actions'(others => No_List) then
8067 raise Program_Error;
8068 end if;
8070 -- Free last subprogram name if allocated, and pop scope
8072 Free (SST.Last_Subprogram_Name);
8073 Scope_Stack.Decrement_Last;
8074 end Pop_Scope;
8076 ---------------
8077 -- Push_Scope --
8078 ---------------
8080 procedure Push_Scope (S : Entity_Id) is
8081 E : constant Entity_Id := Scope (S);
8083 begin
8084 if Ekind (S) = E_Void then
8085 null;
8087 -- Set scope depth if not a non-concurrent type, and we have not yet set
8088 -- the scope depth. This means that we have the first occurrence of the
8089 -- scope, and this is where the depth is set.
8091 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
8092 and then not Scope_Depth_Set (S)
8093 then
8094 if S = Standard_Standard then
8095 Set_Scope_Depth_Value (S, Uint_0);
8097 elsif Is_Child_Unit (S) then
8098 Set_Scope_Depth_Value (S, Uint_1);
8100 elsif not Is_Record_Type (Current_Scope) then
8101 if Ekind (S) = E_Loop then
8102 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
8103 else
8104 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
8105 end if;
8106 end if;
8107 end if;
8109 Scope_Stack.Increment_Last;
8111 declare
8112 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8114 begin
8115 SST.Entity := S;
8116 SST.Save_Scope_Suppress := Scope_Suppress;
8117 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
8118 SST.Save_Check_Policy_List := Check_Policy_List;
8119 SST.Save_Default_Storage_Pool := Default_Pool;
8120 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
8121 SST.Save_SPARK_Mode := SPARK_Mode;
8122 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
8123 SST.Save_Default_SSO := Default_SSO;
8124 SST.Save_Uneval_Old := Uneval_Old;
8126 if Scope_Stack.Last > Scope_Stack.First then
8127 SST.Component_Alignment_Default := Scope_Stack.Table
8128 (Scope_Stack.Last - 1).
8129 Component_Alignment_Default;
8130 end if;
8132 SST.Last_Subprogram_Name := null;
8133 SST.Is_Transient := False;
8134 SST.Node_To_Be_Wrapped := Empty;
8135 SST.Pending_Freeze_Actions := No_List;
8136 SST.Actions_To_Be_Wrapped := (others => No_List);
8137 SST.First_Use_Clause := Empty;
8138 SST.Is_Active_Stack_Base := False;
8139 SST.Previous_Visibility := False;
8140 SST.Locked_Shared_Objects := No_Elist;
8141 end;
8143 if Debug_Flag_W then
8144 Write_Str ("--> new scope: ");
8145 Write_Name (Chars (Current_Scope));
8146 Write_Str (", Id=");
8147 Write_Int (Int (Current_Scope));
8148 Write_Str (", Depth=");
8149 Write_Int (Int (Scope_Stack.Last));
8150 Write_Eol;
8151 end if;
8153 -- Deal with copying flags from the previous scope to this one. This is
8154 -- not necessary if either scope is standard, or if the new scope is a
8155 -- child unit.
8157 if S /= Standard_Standard
8158 and then Scope (S) /= Standard_Standard
8159 and then not Is_Child_Unit (S)
8160 then
8161 if Nkind (E) not in N_Entity then
8162 return;
8163 end if;
8165 -- Copy categorization flags from Scope (S) to S, this is not done
8166 -- when Scope (S) is Standard_Standard since propagation is from
8167 -- library unit entity inwards. Copy other relevant attributes as
8168 -- well (Discard_Names in particular).
8170 -- We only propagate inwards for library level entities,
8171 -- inner level subprograms do not inherit the categorization.
8173 if Is_Library_Level_Entity (S) then
8174 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8175 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8176 Set_Discard_Names (S, Discard_Names (E));
8177 Set_Suppress_Value_Tracking_On_Call
8178 (S, Suppress_Value_Tracking_On_Call (E));
8179 Set_Categorization_From_Scope (E => S, Scop => E);
8180 end if;
8181 end if;
8183 if Is_Child_Unit (S)
8184 and then Present (E)
8185 and then Ekind_In (E, E_Package, E_Generic_Package)
8186 and then
8187 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8188 then
8189 declare
8190 Aux : constant Node_Id :=
8191 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8192 begin
8193 if Present (Default_Storage_Pool (Aux)) then
8194 Default_Pool := Default_Storage_Pool (Aux);
8195 end if;
8196 end;
8197 end if;
8198 end Push_Scope;
8200 ---------------------
8201 -- Premature_Usage --
8202 ---------------------
8204 procedure Premature_Usage (N : Node_Id) is
8205 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8206 E : Entity_Id := Entity (N);
8208 begin
8209 -- Within an instance, the analysis of the actual for a formal object
8210 -- does not see the name of the object itself. This is significant only
8211 -- if the object is an aggregate, where its analysis does not do any
8212 -- name resolution on component associations. (see 4717-008). In such a
8213 -- case, look for the visible homonym on the chain.
8215 if In_Instance and then Present (Homonym (E)) then
8216 E := Homonym (E);
8217 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8218 E := Homonym (E);
8219 end loop;
8221 if Present (E) then
8222 Set_Entity (N, E);
8223 Set_Etype (N, Etype (E));
8224 return;
8225 end if;
8226 end if;
8228 if Kind = N_Component_Declaration then
8229 Error_Msg_N
8230 ("component&! cannot be used before end of record declaration", N);
8232 elsif Kind = N_Parameter_Specification then
8233 Error_Msg_N
8234 ("formal parameter&! cannot be used before end of specification",
8237 elsif Kind = N_Discriminant_Specification then
8238 Error_Msg_N
8239 ("discriminant&! cannot be used before end of discriminant part",
8242 elsif Kind = N_Procedure_Specification
8243 or else Kind = N_Function_Specification
8244 then
8245 Error_Msg_N
8246 ("subprogram&! cannot be used before end of its declaration",
8249 elsif Kind = N_Full_Type_Declaration then
8250 Error_Msg_N
8251 ("type& cannot be used before end of its declaration!", N);
8253 else
8254 Error_Msg_N
8255 ("object& cannot be used before end of its declaration!", N);
8256 end if;
8257 end Premature_Usage;
8259 ------------------------
8260 -- Present_System_Aux --
8261 ------------------------
8263 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8264 Loc : Source_Ptr;
8265 Aux_Name : Unit_Name_Type;
8266 Unum : Unit_Number_Type;
8267 Withn : Node_Id;
8268 With_Sys : Node_Id;
8269 The_Unit : Node_Id;
8271 function Find_System (C_Unit : Node_Id) return Entity_Id;
8272 -- Scan context clause of compilation unit to find with_clause
8273 -- for System.
8275 -----------------
8276 -- Find_System --
8277 -----------------
8279 function Find_System (C_Unit : Node_Id) return Entity_Id is
8280 With_Clause : Node_Id;
8282 begin
8283 With_Clause := First (Context_Items (C_Unit));
8284 while Present (With_Clause) loop
8285 if (Nkind (With_Clause) = N_With_Clause
8286 and then Chars (Name (With_Clause)) = Name_System)
8287 and then Comes_From_Source (With_Clause)
8288 then
8289 return With_Clause;
8290 end if;
8292 Next (With_Clause);
8293 end loop;
8295 return Empty;
8296 end Find_System;
8298 -- Start of processing for Present_System_Aux
8300 begin
8301 -- The child unit may have been loaded and analyzed already
8303 if Present (System_Aux_Id) then
8304 return True;
8306 -- If no previous pragma for System.Aux, nothing to load
8308 elsif No (System_Extend_Unit) then
8309 return False;
8311 -- Use the unit name given in the pragma to retrieve the unit.
8312 -- Verify that System itself appears in the context clause of the
8313 -- current compilation. If System is not present, an error will
8314 -- have been reported already.
8316 else
8317 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8319 The_Unit := Unit (Cunit (Current_Sem_Unit));
8321 if No (With_Sys)
8322 and then
8323 (Nkind (The_Unit) = N_Package_Body
8324 or else (Nkind (The_Unit) = N_Subprogram_Body
8325 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8326 then
8327 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8328 end if;
8330 if No (With_Sys) and then Present (N) then
8332 -- If we are compiling a subunit, we need to examine its
8333 -- context as well (Current_Sem_Unit is the parent unit);
8335 The_Unit := Parent (N);
8336 while Nkind (The_Unit) /= N_Compilation_Unit loop
8337 The_Unit := Parent (The_Unit);
8338 end loop;
8340 if Nkind (Unit (The_Unit)) = N_Subunit then
8341 With_Sys := Find_System (The_Unit);
8342 end if;
8343 end if;
8345 if No (With_Sys) then
8346 return False;
8347 end if;
8349 Loc := Sloc (With_Sys);
8350 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8351 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8352 Name_Buffer (1 .. 7) := "system.";
8353 Name_Buffer (Name_Len + 8) := '%';
8354 Name_Buffer (Name_Len + 9) := 's';
8355 Name_Len := Name_Len + 9;
8356 Aux_Name := Name_Find;
8358 Unum :=
8359 Load_Unit
8360 (Load_Name => Aux_Name,
8361 Required => False,
8362 Subunit => False,
8363 Error_Node => With_Sys);
8365 if Unum /= No_Unit then
8366 Semantics (Cunit (Unum));
8367 System_Aux_Id :=
8368 Defining_Entity (Specification (Unit (Cunit (Unum))));
8370 Withn :=
8371 Make_With_Clause (Loc,
8372 Name =>
8373 Make_Expanded_Name (Loc,
8374 Chars => Chars (System_Aux_Id),
8375 Prefix => New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8376 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8378 Set_Entity (Name (Withn), System_Aux_Id);
8380 Set_Library_Unit (Withn, Cunit (Unum));
8381 Set_Corresponding_Spec (Withn, System_Aux_Id);
8382 Set_First_Name (Withn, True);
8383 Set_Implicit_With (Withn, True);
8385 Insert_After (With_Sys, Withn);
8386 Mark_Rewrite_Insertion (Withn);
8387 Set_Context_Installed (Withn);
8389 return True;
8391 -- Here if unit load failed
8393 else
8394 Error_Msg_Name_1 := Name_System;
8395 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8396 Error_Msg_N
8397 ("extension package `%.%` does not exist",
8398 Opt.System_Extend_Unit);
8399 return False;
8400 end if;
8401 end if;
8402 end Present_System_Aux;
8404 -------------------------
8405 -- Restore_Scope_Stack --
8406 -------------------------
8408 procedure Restore_Scope_Stack
8409 (List : Elist_Id;
8410 Handle_Use : Boolean := True)
8412 SS_Last : constant Int := Scope_Stack.Last;
8413 Elmt : Elmt_Id;
8415 begin
8416 -- Restore visibility of previous scope stack, if any, using the list
8417 -- we saved (we use Remove, since this list will not be used again).
8419 loop
8420 Elmt := Last_Elmt (List);
8421 exit when Elmt = No_Elmt;
8422 Set_Is_Immediately_Visible (Node (Elmt));
8423 Remove_Last_Elmt (List);
8424 end loop;
8426 -- Restore use clauses
8428 if SS_Last >= Scope_Stack.First
8429 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8430 and then Handle_Use
8431 then
8432 Install_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8433 end if;
8434 end Restore_Scope_Stack;
8436 ----------------------
8437 -- Save_Scope_Stack --
8438 ----------------------
8440 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
8441 -- consuming any memory. That is, Save_Scope_Stack took care of removing
8442 -- from immediate visibility entities and Restore_Scope_Stack took care
8443 -- of restoring their visibility analyzing the context of each entity. The
8444 -- problem of such approach is that it was fragile and caused unexpected
8445 -- visibility problems, and indeed one test was found where there was a
8446 -- real problem.
8448 -- Furthermore, the following experiment was carried out:
8450 -- - Save_Scope_Stack was modified to store in an Elist1 all those
8451 -- entities whose attribute Is_Immediately_Visible is modified
8452 -- from True to False.
8454 -- - Restore_Scope_Stack was modified to store in another Elist2
8455 -- all the entities whose attribute Is_Immediately_Visible is
8456 -- modified from False to True.
8458 -- - Extra code was added to verify that all the elements of Elist1
8459 -- are found in Elist2
8461 -- This test shows that there may be more occurrences of this problem which
8462 -- have not yet been detected. As a result, we replaced that approach by
8463 -- the current one in which Save_Scope_Stack returns the list of entities
8464 -- whose visibility is changed, and that list is passed to Restore_Scope_
8465 -- Stack to undo that change. This approach is simpler and safer, although
8466 -- it consumes more memory.
8468 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
8469 Result : constant Elist_Id := New_Elmt_List;
8470 E : Entity_Id;
8471 S : Entity_Id;
8472 SS_Last : constant Int := Scope_Stack.Last;
8474 procedure Remove_From_Visibility (E : Entity_Id);
8475 -- If E is immediately visible then append it to the result and remove
8476 -- it temporarily from visibility.
8478 ----------------------------
8479 -- Remove_From_Visibility --
8480 ----------------------------
8482 procedure Remove_From_Visibility (E : Entity_Id) is
8483 begin
8484 if Is_Immediately_Visible (E) then
8485 Append_Elmt (E, Result);
8486 Set_Is_Immediately_Visible (E, False);
8487 end if;
8488 end Remove_From_Visibility;
8490 -- Start of processing for Save_Scope_Stack
8492 begin
8493 if SS_Last >= Scope_Stack.First
8494 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8495 then
8496 if Handle_Use then
8497 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8498 end if;
8500 -- If the call is from within a compilation unit, as when called from
8501 -- Rtsfind, make current entries in scope stack invisible while we
8502 -- analyze the new unit.
8504 for J in reverse 0 .. SS_Last loop
8505 exit when Scope_Stack.Table (J).Entity = Standard_Standard
8506 or else No (Scope_Stack.Table (J).Entity);
8508 S := Scope_Stack.Table (J).Entity;
8510 Remove_From_Visibility (S);
8512 E := First_Entity (S);
8513 while Present (E) loop
8514 Remove_From_Visibility (E);
8515 Next_Entity (E);
8516 end loop;
8517 end loop;
8519 end if;
8521 return Result;
8522 end Save_Scope_Stack;
8524 -------------
8525 -- Set_Use --
8526 -------------
8528 procedure Set_Use (L : List_Id) is
8529 Decl : Node_Id;
8530 Pack_Name : Node_Id;
8531 Pack : Entity_Id;
8532 Id : Entity_Id;
8534 begin
8535 if Present (L) then
8536 Decl := First (L);
8537 while Present (Decl) loop
8538 if Nkind (Decl) = N_Use_Package_Clause then
8539 Chain_Use_Clause (Decl);
8541 Pack_Name := First (Names (Decl));
8542 while Present (Pack_Name) loop
8543 Pack := Entity (Pack_Name);
8545 if Ekind (Pack) = E_Package
8546 and then Applicable_Use (Pack_Name)
8547 then
8548 Use_One_Package (Pack, Decl);
8549 end if;
8551 Next (Pack_Name);
8552 end loop;
8554 elsif Nkind (Decl) = N_Use_Type_Clause then
8555 Chain_Use_Clause (Decl);
8557 Id := First (Subtype_Marks (Decl));
8558 while Present (Id) loop
8559 if Entity (Id) /= Any_Type then
8560 Use_One_Type (Id);
8561 end if;
8563 Next (Id);
8564 end loop;
8565 end if;
8567 Next (Decl);
8568 end loop;
8569 end if;
8570 end Set_Use;
8572 ---------------------
8573 -- Use_One_Package --
8574 ---------------------
8576 procedure Use_One_Package (P : Entity_Id; N : Node_Id) is
8577 Id : Entity_Id;
8578 Prev : Entity_Id;
8579 Current_Instance : Entity_Id := Empty;
8580 Real_P : Entity_Id;
8581 Private_With_OK : Boolean := False;
8583 begin
8584 if Ekind (P) /= E_Package then
8585 return;
8586 end if;
8588 Set_In_Use (P);
8589 Set_Current_Use_Clause (P, N);
8591 -- Ada 2005 (AI-50217): Check restriction
8593 if From_Limited_With (P) then
8594 Error_Msg_N ("limited withed package cannot appear in use clause", N);
8595 end if;
8597 -- Find enclosing instance, if any
8599 if In_Instance then
8600 Current_Instance := Current_Scope;
8601 while not Is_Generic_Instance (Current_Instance) loop
8602 Current_Instance := Scope (Current_Instance);
8603 end loop;
8605 if No (Hidden_By_Use_Clause (N)) then
8606 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
8607 end if;
8608 end if;
8610 -- If unit is a package renaming, indicate that the renamed
8611 -- package is also in use (the flags on both entities must
8612 -- remain consistent, and a subsequent use of either of them
8613 -- should be recognized as redundant).
8615 if Present (Renamed_Object (P)) then
8616 Set_In_Use (Renamed_Object (P));
8617 Set_Current_Use_Clause (Renamed_Object (P), N);
8618 Real_P := Renamed_Object (P);
8619 else
8620 Real_P := P;
8621 end if;
8623 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
8624 -- found in the private part of a package specification
8626 if In_Private_Part (Current_Scope)
8627 and then Has_Private_With (P)
8628 and then Is_Child_Unit (Current_Scope)
8629 and then Is_Child_Unit (P)
8630 and then Is_Ancestor_Package (Scope (Current_Scope), P)
8631 then
8632 Private_With_OK := True;
8633 end if;
8635 -- Loop through entities in one package making them potentially
8636 -- use-visible.
8638 Id := First_Entity (P);
8639 while Present (Id)
8640 and then (Id /= First_Private_Entity (P)
8641 or else Private_With_OK) -- Ada 2005 (AI-262)
8642 loop
8643 Prev := Current_Entity (Id);
8644 while Present (Prev) loop
8645 if Is_Immediately_Visible (Prev)
8646 and then (not Is_Overloadable (Prev)
8647 or else not Is_Overloadable (Id)
8648 or else (Type_Conformant (Id, Prev)))
8649 then
8650 if No (Current_Instance) then
8652 -- Potentially use-visible entity remains hidden
8654 goto Next_Usable_Entity;
8656 -- A use clause within an instance hides outer global entities,
8657 -- which are not used to resolve local entities in the
8658 -- instance. Note that the predefined entities in Standard
8659 -- could not have been hidden in the generic by a use clause,
8660 -- and therefore remain visible. Other compilation units whose
8661 -- entities appear in Standard must be hidden in an instance.
8663 -- To determine whether an entity is external to the instance
8664 -- we compare the scope depth of its scope with that of the
8665 -- current instance. However, a generic actual of a subprogram
8666 -- instance is declared in the wrapper package but will not be
8667 -- hidden by a use-visible entity. similarly, an entity that is
8668 -- declared in an enclosing instance will not be hidden by an
8669 -- an entity declared in a generic actual, which can only have
8670 -- been use-visible in the generic and will not have hidden the
8671 -- entity in the generic parent.
8673 -- If Id is called Standard, the predefined package with the
8674 -- same name is in the homonym chain. It has to be ignored
8675 -- because it has no defined scope (being the only entity in
8676 -- the system with this mandated behavior).
8678 elsif not Is_Hidden (Id)
8679 and then Present (Scope (Prev))
8680 and then not Is_Wrapper_Package (Scope (Prev))
8681 and then Scope_Depth (Scope (Prev)) <
8682 Scope_Depth (Current_Instance)
8683 and then (Scope (Prev) /= Standard_Standard
8684 or else Sloc (Prev) > Standard_Location)
8685 then
8686 if In_Open_Scopes (Scope (Prev))
8687 and then Is_Generic_Instance (Scope (Prev))
8688 and then Present (Associated_Formal_Package (P))
8689 then
8690 null;
8692 else
8693 Set_Is_Potentially_Use_Visible (Id);
8694 Set_Is_Immediately_Visible (Prev, False);
8695 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8696 end if;
8697 end if;
8699 -- A user-defined operator is not use-visible if the predefined
8700 -- operator for the type is immediately visible, which is the case
8701 -- if the type of the operand is in an open scope. This does not
8702 -- apply to user-defined operators that have operands of different
8703 -- types, because the predefined mixed mode operations (multiply
8704 -- and divide) apply to universal types and do not hide anything.
8706 elsif Ekind (Prev) = E_Operator
8707 and then Operator_Matches_Spec (Prev, Id)
8708 and then In_Open_Scopes
8709 (Scope (Base_Type (Etype (First_Formal (Id)))))
8710 and then (No (Next_Formal (First_Formal (Id)))
8711 or else Etype (First_Formal (Id)) =
8712 Etype (Next_Formal (First_Formal (Id)))
8713 or else Chars (Prev) = Name_Op_Expon)
8714 then
8715 goto Next_Usable_Entity;
8717 -- In an instance, two homonyms may become use_visible through the
8718 -- actuals of distinct formal packages. In the generic, only the
8719 -- current one would have been visible, so make the other one
8720 -- not use_visible.
8722 elsif Present (Current_Instance)
8723 and then Is_Potentially_Use_Visible (Prev)
8724 and then not Is_Overloadable (Prev)
8725 and then Scope (Id) /= Scope (Prev)
8726 and then Used_As_Generic_Actual (Scope (Prev))
8727 and then Used_As_Generic_Actual (Scope (Id))
8728 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
8729 Current_Use_Clause (Scope (Id)))
8730 then
8731 Set_Is_Potentially_Use_Visible (Prev, False);
8732 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8733 end if;
8735 Prev := Homonym (Prev);
8736 end loop;
8738 -- On exit, we know entity is not hidden, unless it is private
8740 if not Is_Hidden (Id)
8741 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
8742 then
8743 Set_Is_Potentially_Use_Visible (Id);
8745 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
8746 Set_Is_Potentially_Use_Visible (Full_View (Id));
8747 end if;
8748 end if;
8750 <<Next_Usable_Entity>>
8751 Next_Entity (Id);
8752 end loop;
8754 -- Child units are also made use-visible by a use clause, but they may
8755 -- appear after all visible declarations in the parent entity list.
8757 while Present (Id) loop
8758 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
8759 Set_Is_Potentially_Use_Visible (Id);
8760 end if;
8762 Next_Entity (Id);
8763 end loop;
8765 if Chars (Real_P) = Name_System
8766 and then Scope (Real_P) = Standard_Standard
8767 and then Present_System_Aux (N)
8768 then
8769 Use_One_Package (System_Aux_Id, N);
8770 end if;
8772 end Use_One_Package;
8774 ------------------
8775 -- Use_One_Type --
8776 ------------------
8778 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False) is
8779 Elmt : Elmt_Id;
8780 Is_Known_Used : Boolean;
8781 Op_List : Elist_Id;
8782 T : Entity_Id;
8784 function Spec_Reloaded_For_Body return Boolean;
8785 -- Determine whether the compilation unit is a package body and the use
8786 -- type clause is in the spec of the same package. Even though the spec
8787 -- was analyzed first, its context is reloaded when analysing the body.
8789 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
8790 -- AI05-150: if the use_type_clause carries the "all" qualifier,
8791 -- class-wide operations of ancestor types are use-visible if the
8792 -- ancestor type is visible.
8794 ----------------------------
8795 -- Spec_Reloaded_For_Body --
8796 ----------------------------
8798 function Spec_Reloaded_For_Body return Boolean is
8799 begin
8800 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
8801 declare
8802 Spec : constant Node_Id :=
8803 Parent (List_Containing (Parent (Id)));
8805 begin
8806 -- Check whether type is declared in a package specification,
8807 -- and current unit is the corresponding package body. The
8808 -- use clauses themselves may be within a nested package.
8810 return
8811 Nkind (Spec) = N_Package_Specification
8812 and then
8813 In_Same_Source_Unit (Corresponding_Body (Parent (Spec)),
8814 Cunit_Entity (Current_Sem_Unit));
8815 end;
8816 end if;
8818 return False;
8819 end Spec_Reloaded_For_Body;
8821 -------------------------------
8822 -- Use_Class_Wide_Operations --
8823 -------------------------------
8825 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
8826 Scop : Entity_Id;
8827 Ent : Entity_Id;
8829 function Is_Class_Wide_Operation_Of
8830 (Op : Entity_Id;
8831 T : Entity_Id) return Boolean;
8832 -- Determine whether a subprogram has a class-wide parameter or
8833 -- result that is T'Class.
8835 ---------------------------------
8836 -- Is_Class_Wide_Operation_Of --
8837 ---------------------------------
8839 function Is_Class_Wide_Operation_Of
8840 (Op : Entity_Id;
8841 T : Entity_Id) return Boolean
8843 Formal : Entity_Id;
8845 begin
8846 Formal := First_Formal (Op);
8847 while Present (Formal) loop
8848 if Etype (Formal) = Class_Wide_Type (T) then
8849 return True;
8850 end if;
8851 Next_Formal (Formal);
8852 end loop;
8854 if Etype (Op) = Class_Wide_Type (T) then
8855 return True;
8856 end if;
8858 return False;
8859 end Is_Class_Wide_Operation_Of;
8861 -- Start of processing for Use_Class_Wide_Operations
8863 begin
8864 Scop := Scope (Typ);
8865 if not Is_Hidden (Scop) then
8866 Ent := First_Entity (Scop);
8867 while Present (Ent) loop
8868 if Is_Overloadable (Ent)
8869 and then Is_Class_Wide_Operation_Of (Ent, Typ)
8870 and then not Is_Potentially_Use_Visible (Ent)
8871 then
8872 Set_Is_Potentially_Use_Visible (Ent);
8873 Append_Elmt (Ent, Used_Operations (Parent (Id)));
8874 end if;
8876 Next_Entity (Ent);
8877 end loop;
8878 end if;
8880 if Is_Derived_Type (Typ) then
8881 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
8882 end if;
8883 end Use_Class_Wide_Operations;
8885 -- Start of processing for Use_One_Type
8887 begin
8888 -- It is the type determined by the subtype mark (8.4(8)) whose
8889 -- operations become potentially use-visible.
8891 T := Base_Type (Entity (Id));
8893 -- Either the type itself is used, the package where it is declared
8894 -- is in use or the entity is declared in the current package, thus
8895 -- use-visible.
8897 Is_Known_Used :=
8898 In_Use (T)
8899 or else In_Use (Scope (T))
8900 or else Scope (T) = Current_Scope;
8902 Set_Redundant_Use (Id,
8903 Is_Known_Used or else Is_Potentially_Use_Visible (T));
8905 if Ekind (T) = E_Incomplete_Type then
8906 Error_Msg_N ("premature usage of incomplete type", Id);
8908 elsif In_Open_Scopes (Scope (T)) then
8909 null;
8911 -- A limited view cannot appear in a use_type clause. However, an access
8912 -- type whose designated type is limited has the flag but is not itself
8913 -- a limited view unless we only have a limited view of its enclosing
8914 -- package.
8916 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
8917 Error_Msg_N
8918 ("incomplete type from limited view "
8919 & "cannot appear in use clause", Id);
8921 -- If the subtype mark designates a subtype in a different package,
8922 -- we have to check that the parent type is visible, otherwise the
8923 -- use type clause is a noop. Not clear how to do that???
8925 elsif not Redundant_Use (Id) then
8926 Set_In_Use (T);
8928 -- If T is tagged, primitive operators on class-wide operands
8929 -- are also available.
8931 if Is_Tagged_Type (T) then
8932 Set_In_Use (Class_Wide_Type (T));
8933 end if;
8935 Set_Current_Use_Clause (T, Parent (Id));
8937 -- Iterate over primitive operations of the type. If an operation is
8938 -- already use_visible, it is the result of a previous use_clause,
8939 -- and already appears on the corresponding entity chain. If the
8940 -- clause is being reinstalled, operations are already use-visible.
8942 if Installed then
8943 null;
8945 else
8946 Op_List := Collect_Primitive_Operations (T);
8947 Elmt := First_Elmt (Op_List);
8948 while Present (Elmt) loop
8949 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
8950 or else Chars (Node (Elmt)) in Any_Operator_Name)
8951 and then not Is_Hidden (Node (Elmt))
8952 and then not Is_Potentially_Use_Visible (Node (Elmt))
8953 then
8954 Set_Is_Potentially_Use_Visible (Node (Elmt));
8955 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8957 elsif Ada_Version >= Ada_2012
8958 and then All_Present (Parent (Id))
8959 and then not Is_Hidden (Node (Elmt))
8960 and then not Is_Potentially_Use_Visible (Node (Elmt))
8961 then
8962 Set_Is_Potentially_Use_Visible (Node (Elmt));
8963 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8964 end if;
8966 Next_Elmt (Elmt);
8967 end loop;
8968 end if;
8970 if Ada_Version >= Ada_2012
8971 and then All_Present (Parent (Id))
8972 and then Is_Tagged_Type (T)
8973 then
8974 Use_Class_Wide_Operations (T);
8975 end if;
8976 end if;
8978 -- If warning on redundant constructs, check for unnecessary WITH
8980 if Warn_On_Redundant_Constructs
8981 and then Is_Known_Used
8983 -- with P; with P; use P;
8984 -- package P is package X is package body X is
8985 -- type T ... use P.T;
8987 -- The compilation unit is the body of X. GNAT first compiles the
8988 -- spec of X, then proceeds to the body. At that point P is marked
8989 -- as use visible. The analysis then reinstalls the spec along with
8990 -- its context. The use clause P.T is now recognized as redundant,
8991 -- but in the wrong context. Do not emit a warning in such cases.
8992 -- Do not emit a warning either if we are in an instance, there is
8993 -- no redundancy between an outer use_clause and one that appears
8994 -- within the generic.
8996 and then not Spec_Reloaded_For_Body
8997 and then not In_Instance
8998 then
8999 -- The type already has a use clause
9001 if In_Use (T) then
9003 -- Case where we know the current use clause for the type
9005 if Present (Current_Use_Clause (T)) then
9006 Use_Clause_Known : declare
9007 Clause1 : constant Node_Id := Parent (Id);
9008 Clause2 : constant Node_Id := Current_Use_Clause (T);
9009 Ent1 : Entity_Id;
9010 Ent2 : Entity_Id;
9011 Err_No : Node_Id;
9012 Unit1 : Node_Id;
9013 Unit2 : Node_Id;
9015 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
9016 -- Return the appropriate entity for determining which unit
9017 -- has a deeper scope: the defining entity for U, unless U
9018 -- is a package instance, in which case we retrieve the
9019 -- entity of the instance spec.
9021 --------------------
9022 -- Entity_Of_Unit --
9023 --------------------
9025 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
9026 begin
9027 if Nkind (U) = N_Package_Instantiation
9028 and then Analyzed (U)
9029 then
9030 return Defining_Entity (Instance_Spec (U));
9031 else
9032 return Defining_Entity (U);
9033 end if;
9034 end Entity_Of_Unit;
9036 -- Start of processing for Use_Clause_Known
9038 begin
9039 -- If both current use type clause and the use type clause
9040 -- for the type are at the compilation unit level, one of
9041 -- the units must be an ancestor of the other, and the
9042 -- warning belongs on the descendant.
9044 if Nkind (Parent (Clause1)) = N_Compilation_Unit
9045 and then
9046 Nkind (Parent (Clause2)) = N_Compilation_Unit
9047 then
9048 -- If the unit is a subprogram body that acts as spec,
9049 -- the context clause is shared with the constructed
9050 -- subprogram spec. Clearly there is no redundancy.
9052 if Clause1 = Clause2 then
9053 return;
9054 end if;
9056 Unit1 := Unit (Parent (Clause1));
9057 Unit2 := Unit (Parent (Clause2));
9059 -- If both clauses are on same unit, or one is the body
9060 -- of the other, or one of them is in a subunit, report
9061 -- redundancy on the later one.
9063 if Unit1 = Unit2 then
9064 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9065 Error_Msg_NE -- CODEFIX
9066 ("& is already use-visible through previous "
9067 & "use_type_clause #??", Clause1, T);
9068 return;
9070 elsif Nkind (Unit1) = N_Subunit then
9071 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9072 Error_Msg_NE -- CODEFIX
9073 ("& is already use-visible through previous "
9074 & "use_type_clause #??", Clause1, T);
9075 return;
9077 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
9078 and then Nkind (Unit1) /= Nkind (Unit2)
9079 and then Nkind (Unit1) /= N_Subunit
9080 then
9081 Error_Msg_Sloc := Sloc (Clause1);
9082 Error_Msg_NE -- CODEFIX
9083 ("& is already use-visible through previous "
9084 & "use_type_clause #??", Current_Use_Clause (T), T);
9085 return;
9086 end if;
9088 -- There is a redundant use type clause in a child unit.
9089 -- Determine which of the units is more deeply nested.
9090 -- If a unit is a package instance, retrieve the entity
9091 -- and its scope from the instance spec.
9093 Ent1 := Entity_Of_Unit (Unit1);
9094 Ent2 := Entity_Of_Unit (Unit2);
9096 if Scope (Ent2) = Standard_Standard then
9097 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9098 Err_No := Clause1;
9100 elsif Scope (Ent1) = Standard_Standard then
9101 Error_Msg_Sloc := Sloc (Id);
9102 Err_No := Clause2;
9104 -- If both units are child units, we determine which one
9105 -- is the descendant by the scope distance to the
9106 -- ultimate parent unit.
9108 else
9109 declare
9110 S1, S2 : Entity_Id;
9112 begin
9113 S1 := Scope (Ent1);
9114 S2 := Scope (Ent2);
9115 while Present (S1)
9116 and then Present (S2)
9117 and then S1 /= Standard_Standard
9118 and then S2 /= Standard_Standard
9119 loop
9120 S1 := Scope (S1);
9121 S2 := Scope (S2);
9122 end loop;
9124 if S1 = Standard_Standard then
9125 Error_Msg_Sloc := Sloc (Id);
9126 Err_No := Clause2;
9127 else
9128 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
9129 Err_No := Clause1;
9130 end if;
9131 end;
9132 end if;
9134 Error_Msg_NE -- CODEFIX
9135 ("& is already use-visible through previous "
9136 & "use_type_clause #??", Err_No, Id);
9138 -- Case where current use type clause and the use type
9139 -- clause for the type are not both at the compilation unit
9140 -- level. In this case we don't have location information.
9142 else
9143 Error_Msg_NE -- CODEFIX
9144 ("& is already use-visible through previous "
9145 & "use type clause??", Id, T);
9146 end if;
9147 end Use_Clause_Known;
9149 -- Here if Current_Use_Clause is not set for T, another case
9150 -- where we do not have the location information available.
9152 else
9153 Error_Msg_NE -- CODEFIX
9154 ("& is already use-visible through previous "
9155 & "use type clause??", Id, T);
9156 end if;
9158 -- The package where T is declared is already used
9160 elsif In_Use (Scope (T)) then
9161 Error_Msg_Sloc := Sloc (Current_Use_Clause (Scope (T)));
9162 Error_Msg_NE -- CODEFIX
9163 ("& is already use-visible through package use clause #??",
9164 Id, T);
9166 -- The current scope is the package where T is declared
9168 else
9169 Error_Msg_Node_2 := Scope (T);
9170 Error_Msg_NE -- CODEFIX
9171 ("& is already use-visible inside package &??", Id, T);
9172 end if;
9173 end if;
9174 end Use_One_Type;
9176 ----------------
9177 -- Write_Info --
9178 ----------------
9180 procedure Write_Info is
9181 Id : Entity_Id := First_Entity (Current_Scope);
9183 begin
9184 -- No point in dumping standard entities
9186 if Current_Scope = Standard_Standard then
9187 return;
9188 end if;
9190 Write_Str ("========================================================");
9191 Write_Eol;
9192 Write_Str (" Defined Entities in ");
9193 Write_Name (Chars (Current_Scope));
9194 Write_Eol;
9195 Write_Str ("========================================================");
9196 Write_Eol;
9198 if No (Id) then
9199 Write_Str ("-- none --");
9200 Write_Eol;
9202 else
9203 while Present (Id) loop
9204 Write_Entity_Info (Id, " ");
9205 Next_Entity (Id);
9206 end loop;
9207 end if;
9209 if Scope (Current_Scope) = Standard_Standard then
9211 -- Print information on the current unit itself
9213 Write_Entity_Info (Current_Scope, " ");
9214 end if;
9216 Write_Eol;
9217 end Write_Info;
9219 --------
9220 -- ws --
9221 --------
9223 procedure ws is
9224 S : Entity_Id;
9225 begin
9226 for J in reverse 1 .. Scope_Stack.Last loop
9227 S := Scope_Stack.Table (J).Entity;
9228 Write_Int (Int (S));
9229 Write_Str (" === ");
9230 Write_Name (Chars (S));
9231 Write_Eol;
9232 end loop;
9233 end ws;
9235 --------
9236 -- we --
9237 --------
9239 procedure we (S : Entity_Id) is
9240 E : Entity_Id;
9241 begin
9242 E := First_Entity (S);
9243 while Present (E) loop
9244 Write_Int (Int (E));
9245 Write_Str (" === ");
9246 Write_Name (Chars (E));
9247 Write_Eol;
9248 Next_Entity (E);
9249 end loop;
9250 end we;
9251 end Sem_Ch8;