exp_imgv.adb (Expand_Image_Attribute): Disable the optimized expansion of user-define...
[official-gcc.git] / gcc / ada / sem_ch13.adb
bloba352f3c8bde03cfffeb57f435b5b982e04d92650
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Freeze; use Freeze;
38 with Ghost; use Ghost;
39 with Lib; use Lib;
40 with Lib.Xref; use Lib.Xref;
41 with Namet; use Namet;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Par_SCO; use Par_SCO;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Case; use Sem_Case;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch7; use Sem_Ch7;
55 with Sem_Ch8; use Sem_Ch8;
56 with Sem_Dim; use Sem_Dim;
57 with Sem_Disp; use Sem_Disp;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Prag; use Sem_Prag;
60 with Sem_Res; use Sem_Res;
61 with Sem_Type; use Sem_Type;
62 with Sem_Util; use Sem_Util;
63 with Sem_Warn; use Sem_Warn;
64 with Sinfo; use Sinfo;
65 with Sinput; use Sinput;
66 with Snames; use Snames;
67 with Stand; use Stand;
68 with Targparm; use Targparm;
69 with Ttypes; use Ttypes;
70 with Tbuild; use Tbuild;
71 with Urealp; use Urealp;
72 with Warnsw; use Warnsw;
74 with GNAT.Heap_Sort_G;
76 package body Sem_Ch13 is
78 SSU : constant Pos := System_Storage_Unit;
79 -- Convenient short hand for commonly used constant
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id);
86 -- Helper routine providing the original (pre-AI95-0133) behavior for
87 -- Adjust_Record_For_Reverse_Bit_Order.
89 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
90 -- This routine is called after setting one of the sizes of type entity
91 -- Typ to Size. The purpose is to deal with the situation of a derived
92 -- type whose inherited alignment is no longer appropriate for the new
93 -- size value. In this case, we reset the Alignment to unknown.
95 procedure Build_Discrete_Static_Predicate
96 (Typ : Entity_Id;
97 Expr : Node_Id;
98 Nam : Name_Id);
99 -- Given a predicated type Typ, where Typ is a discrete static subtype,
100 -- whose predicate expression is Expr, tests if Expr is a static predicate,
101 -- and if so, builds the predicate range list. Nam is the name of the one
102 -- argument to the predicate function. Occurrences of the type name in the
103 -- predicate expression have been replaced by identifier references to this
104 -- name, which is unique, so any identifier with Chars matching Nam must be
105 -- a reference to the type. If the predicate is non-static, this procedure
106 -- returns doing nothing. If the predicate is static, then the predicate
107 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
108 -- rewritten as a canonicalized membership operation.
110 function Build_Export_Import_Pragma
111 (Asp : Node_Id;
112 Id : Entity_Id) return Node_Id;
113 -- Create the corresponding pragma for aspect Export or Import denoted by
114 -- Asp. Id is the related entity subject to the aspect. Return Empty when
115 -- the expression of aspect Asp evaluates to False or is erroneous.
117 function Build_Predicate_Function_Declaration
118 (Typ : Entity_Id) return Node_Id;
119 -- Build the declaration for a predicate function. The declaration is built
120 -- at the end of the declarative part containing the type definition, which
121 -- may be before the freeze point of the type. The predicate expression is
122 -- pre-analyzed at this point, to catch visibility errors.
124 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
125 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
126 -- then either there are pragma Predicate entries on the rep chain for the
127 -- type (note that Predicate aspects are converted to pragma Predicate), or
128 -- there are inherited aspects from a parent type, or ancestor subtypes.
129 -- This procedure builds body for the Predicate function that tests these
130 -- predicates. N is the freeze node for the type. The spec of the function
131 -- is inserted before the freeze node, and the body of the function is
132 -- inserted after the freeze node. If the predicate expression has a least
133 -- one Raise_Expression, then this procedure also builds the M version of
134 -- the predicate function for use in membership tests.
136 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
137 -- Called if both Storage_Pool and Storage_Size attribute definition
138 -- clauses (SP and SS) are present for entity Ent. Issue error message.
140 procedure Freeze_Entity_Checks (N : Node_Id);
141 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
142 -- to generate appropriate semantic checks that are delayed until this
143 -- point (they had to be delayed this long for cases of delayed aspects,
144 -- e.g. analysis of statically predicated subtypes in choices, for which
145 -- we have to be sure the subtypes in question are frozen before checking).
147 function Get_Alignment_Value (Expr : Node_Id) return Uint;
148 -- Given the expression for an alignment value, returns the corresponding
149 -- Uint value. If the value is inappropriate, then error messages are
150 -- posted as required, and a value of No_Uint is returned.
152 function Is_Operational_Item (N : Node_Id) return Boolean;
153 -- A specification for a stream attribute is allowed before the full type
154 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
155 -- that do not specify a representation characteristic are operational
156 -- attributes.
158 function Is_Predicate_Static
159 (Expr : Node_Id;
160 Nam : Name_Id) return Boolean;
161 -- Given predicate expression Expr, tests if Expr is predicate-static in
162 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
163 -- name in the predicate expression have been replaced by references to
164 -- an identifier whose Chars field is Nam. This name is unique, so any
165 -- identifier with Chars matching Nam must be a reference to the type.
166 -- Returns True if the expression is predicate-static and False otherwise,
167 -- but is not in the business of setting flags or issuing error messages.
169 -- Only scalar types can have static predicates, so False is always
170 -- returned for non-scalar types.
172 -- Note: the RM seems to suggest that string types can also have static
173 -- predicates. But that really makes lttle sense as very few useful
174 -- predicates can be constructed for strings. Remember that:
176 -- "ABC" < "DEF"
178 -- is not a static expression. So even though the clearly faulty RM wording
179 -- allows the following:
181 -- subtype S is String with Static_Predicate => S < "DEF"
183 -- We can't allow this, otherwise we have predicate-static applying to a
184 -- larger class than static expressions, which was never intended.
186 procedure New_Stream_Subprogram
187 (N : Node_Id;
188 Ent : Entity_Id;
189 Subp : Entity_Id;
190 Nam : TSS_Name_Type);
191 -- Create a subprogram renaming of a given stream attribute to the
192 -- designated subprogram and then in the tagged case, provide this as a
193 -- primitive operation, or in the untagged case make an appropriate TSS
194 -- entry. This is more properly an expansion activity than just semantics,
195 -- but the presence of user-defined stream functions for limited types
196 -- is a legality check, which is why this takes place here rather than in
197 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
198 -- function to be generated.
200 -- To avoid elaboration anomalies with freeze nodes, for untagged types
201 -- we generate both a subprogram declaration and a subprogram renaming
202 -- declaration, so that the attribute specification is handled as a
203 -- renaming_as_body. For tagged types, the specification is one of the
204 -- primitive specs.
206 procedure Register_Address_Clause_Check
207 (N : Node_Id;
208 X : Entity_Id;
209 A : Uint;
210 Y : Entity_Id;
211 Off : Boolean);
212 -- Register a check for the address clause N. The rest of the parameters
213 -- are in keeping with the components of Address_Clause_Check_Record below.
215 procedure Resolve_Iterable_Operation
216 (N : Node_Id;
217 Cursor : Entity_Id;
218 Typ : Entity_Id;
219 Nam : Name_Id);
220 -- If the name of a primitive operation for an Iterable aspect is
221 -- overloaded, resolve according to required signature.
223 procedure Set_Biased
224 (E : Entity_Id;
225 N : Node_Id;
226 Msg : String;
227 Biased : Boolean := True);
228 -- If Biased is True, sets Has_Biased_Representation flag for E, and
229 -- outputs a warning message at node N if Warn_On_Biased_Representation is
230 -- is True. This warning inserts the string Msg to describe the construct
231 -- causing biasing.
233 ---------------------------------------------------
234 -- Table for Validate_Compile_Time_Warning_Error --
235 ---------------------------------------------------
237 -- The following table collects pragmas Compile_Time_Error and Compile_
238 -- Time_Warning for validation. Entries are made by calls to subprogram
239 -- Validate_Compile_Time_Warning_Error, and the call to the procedure
240 -- Validate_Compile_Time_Warning_Errors does the actual error checking
241 -- and posting of warning and error messages. The reason for this delayed
242 -- processing is to take advantage of back-annotations of attributes size
243 -- and alignment values performed by the back end.
245 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
246 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
247 -- already have modified all Sloc values if the -gnatD option is set.
249 type CTWE_Entry is record
250 Eloc : Source_Ptr;
251 -- Source location used in warnings and error messages
253 Prag : Node_Id;
254 -- Pragma Compile_Time_Error or Compile_Time_Warning
256 Scope : Node_Id;
257 -- The scope which encloses the pragma
258 end record;
260 package Compile_Time_Warnings_Errors is new Table.Table (
261 Table_Component_Type => CTWE_Entry,
262 Table_Index_Type => Int,
263 Table_Low_Bound => 1,
264 Table_Initial => 50,
265 Table_Increment => 200,
266 Table_Name => "Compile_Time_Warnings_Errors");
268 ----------------------------------------------
269 -- Table for Validate_Unchecked_Conversions --
270 ----------------------------------------------
272 -- The following table collects unchecked conversions for validation.
273 -- Entries are made by Validate_Unchecked_Conversion and then the call
274 -- to Validate_Unchecked_Conversions does the actual error checking and
275 -- posting of warnings. The reason for this delayed processing is to take
276 -- advantage of back-annotations of size and alignment values performed by
277 -- the back end.
279 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
280 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
281 -- already have modified all Sloc values if the -gnatD option is set.
283 type UC_Entry is record
284 Eloc : Source_Ptr; -- node used for posting warnings
285 Source : Entity_Id; -- source type for unchecked conversion
286 Target : Entity_Id; -- target type for unchecked conversion
287 Act_Unit : Entity_Id; -- actual function instantiated
288 end record;
290 package Unchecked_Conversions is new Table.Table (
291 Table_Component_Type => UC_Entry,
292 Table_Index_Type => Int,
293 Table_Low_Bound => 1,
294 Table_Initial => 50,
295 Table_Increment => 200,
296 Table_Name => "Unchecked_Conversions");
298 ----------------------------------------
299 -- Table for Validate_Address_Clauses --
300 ----------------------------------------
302 -- If an address clause has the form
304 -- for X'Address use Expr
306 -- where Expr has a value known at compile time or is of the form Y'Address
307 -- or recursively is a reference to a constant initialized with either of
308 -- these forms, and the value of Expr is not a multiple of X's alignment,
309 -- or if Y has a smaller alignment than X, then that merits a warning about
310 -- possible bad alignment. The following table collects address clauses of
311 -- this kind. We put these in a table so that they can be checked after the
312 -- back end has completed annotation of the alignments of objects, since we
313 -- can catch more cases that way.
315 type Address_Clause_Check_Record is record
316 N : Node_Id;
317 -- The address clause
319 X : Entity_Id;
320 -- The entity of the object subject to the address clause
322 A : Uint;
323 -- The value of the address in the first case
325 Y : Entity_Id;
326 -- The entity of the object being overlaid in the second case
328 Off : Boolean;
329 -- Whether the address is offset within Y in the second case
331 Alignment_Checks_Suppressed : Boolean;
332 -- Whether alignment checks are suppressed by an active scope suppress
333 -- setting. We need to save the value in order to be able to reuse it
334 -- after the back end has been run.
335 end record;
337 package Address_Clause_Checks is new Table.Table (
338 Table_Component_Type => Address_Clause_Check_Record,
339 Table_Index_Type => Int,
340 Table_Low_Bound => 1,
341 Table_Initial => 20,
342 Table_Increment => 200,
343 Table_Name => "Address_Clause_Checks");
345 function Alignment_Checks_Suppressed
346 (ACCR : Address_Clause_Check_Record) return Boolean;
347 -- Return whether the alignment check generated for the address clause
348 -- is suppressed.
350 ---------------------------------
351 -- Alignment_Checks_Suppressed --
352 ---------------------------------
354 function Alignment_Checks_Suppressed
355 (ACCR : Address_Clause_Check_Record) return Boolean
357 begin
358 if Checks_May_Be_Suppressed (ACCR.X) then
359 return Is_Check_Suppressed (ACCR.X, Alignment_Check);
360 else
361 return ACCR.Alignment_Checks_Suppressed;
362 end if;
363 end Alignment_Checks_Suppressed;
365 -----------------------------------------
366 -- Adjust_Record_For_Reverse_Bit_Order --
367 -----------------------------------------
369 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
370 Max_Machine_Scalar_Size : constant Uint :=
371 UI_From_Int
372 (Standard_Long_Long_Integer_Size);
373 -- We use this as the maximum machine scalar size
375 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
377 CC : Node_Id;
378 Comp : Node_Id;
379 Num_CC : Natural;
381 begin
382 -- Processing here used to depend on Ada version: the behavior was
383 -- changed by AI95-0133. However this AI is a Binding interpretation,
384 -- so we now implement it even in Ada 95 mode. The original behavior
385 -- from unamended Ada 95 is still available for compatibility under
386 -- debugging switch -gnatd.
388 if Ada_Version < Ada_2005 and then Debug_Flag_Dot_P then
389 Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R);
390 return;
391 end if;
393 -- For Ada 2005, we do machine scalar processing, as fully described In
394 -- AI-133. This involves gathering all components which start at the
395 -- same byte offset and processing them together. Same approach is still
396 -- valid in later versions including Ada 2012.
398 -- This first loop through components does two things. First it deals
399 -- with the case of components with component clauses whose length is
400 -- greater than the maximum machine scalar size (either accepting them
401 -- or rejecting as needed). Second, it counts the number of components
402 -- with component clauses whose length does not exceed this maximum for
403 -- later processing.
405 Num_CC := 0;
406 Comp := First_Component_Or_Discriminant (R);
407 while Present (Comp) loop
408 CC := Component_Clause (Comp);
410 if Present (CC) then
411 declare
412 Fbit : constant Uint := Static_Integer (First_Bit (CC));
413 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
415 begin
416 -- Case of component with last bit >= max machine scalar
418 if Lbit >= Max_Machine_Scalar_Size then
420 -- This is allowed only if first bit is zero, and last bit
421 -- + 1 is a multiple of storage unit size.
423 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
425 -- This is the case to give a warning if enabled
427 if Warn_On_Reverse_Bit_Order then
428 Error_Msg_N
429 ("info: multi-byte field specified with "
430 & "non-standard Bit_Order?V?", CC);
432 if Bytes_Big_Endian then
433 Error_Msg_N
434 ("\bytes are not reversed "
435 & "(component is big-endian)?V?", CC);
436 else
437 Error_Msg_N
438 ("\bytes are not reversed "
439 & "(component is little-endian)?V?", CC);
440 end if;
441 end if;
443 -- Give error message for RM 13.5.1(10) violation
445 else
446 Error_Msg_FE
447 ("machine scalar rules not followed for&",
448 First_Bit (CC), Comp);
450 Error_Msg_Uint_1 := Lbit + 1;
451 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
452 Error_Msg_F
453 ("\last bit + 1 (^) exceeds maximum machine scalar "
454 & "size (^)", First_Bit (CC));
456 if (Lbit + 1) mod SSU /= 0 then
457 Error_Msg_Uint_1 := SSU;
458 Error_Msg_F
459 ("\and is not a multiple of Storage_Unit (^) "
460 & "(RM 13.5.1(10))", First_Bit (CC));
462 else
463 Error_Msg_Uint_1 := Fbit;
464 Error_Msg_F
465 ("\and first bit (^) is non-zero "
466 & "(RM 13.4.1(10))", First_Bit (CC));
467 end if;
468 end if;
470 -- OK case of machine scalar related component clause. For now,
471 -- just count them.
473 else
474 Num_CC := Num_CC + 1;
475 end if;
476 end;
477 end if;
479 Next_Component_Or_Discriminant (Comp);
480 end loop;
482 -- We need to sort the component clauses on the basis of the Position
483 -- values in the clause, so we can group clauses with the same Position
484 -- together to determine the relevant machine scalar size.
486 Sort_CC : declare
487 Comps : array (0 .. Num_CC) of Entity_Id;
488 -- Array to collect component and discriminant entities. The data
489 -- starts at index 1, the 0'th entry is for the sort routine.
491 function CP_Lt (Op1, Op2 : Natural) return Boolean;
492 -- Compare routine for Sort
494 procedure CP_Move (From : Natural; To : Natural);
495 -- Move routine for Sort
497 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
499 MaxL : Uint;
500 -- Maximum last bit value of any component in this set
502 MSS : Uint;
503 -- Corresponding machine scalar size
505 Start : Natural;
506 Stop : Natural;
507 -- Start and stop positions in the component list of the set of
508 -- components with the same starting position (that constitute
509 -- components in a single machine scalar).
511 -----------
512 -- CP_Lt --
513 -----------
515 function CP_Lt (Op1, Op2 : Natural) return Boolean is
516 begin
517 return
518 Position (Component_Clause (Comps (Op1))) <
519 Position (Component_Clause (Comps (Op2)));
520 end CP_Lt;
522 -------------
523 -- CP_Move --
524 -------------
526 procedure CP_Move (From : Natural; To : Natural) is
527 begin
528 Comps (To) := Comps (From);
529 end CP_Move;
531 -- Start of processing for Sort_CC
533 begin
534 -- Collect the machine scalar relevant component clauses
536 Num_CC := 0;
537 Comp := First_Component_Or_Discriminant (R);
538 while Present (Comp) loop
539 declare
540 CC : constant Node_Id := Component_Clause (Comp);
542 begin
543 -- Collect only component clauses whose last bit is less than
544 -- machine scalar size. Any component clause whose last bit
545 -- exceeds this value does not take part in machine scalar
546 -- layout considerations. The test for Error_Posted makes sure
547 -- we exclude component clauses for which we already posted an
548 -- error.
550 if Present (CC)
551 and then not Error_Posted (Last_Bit (CC))
552 and then Static_Integer (Last_Bit (CC)) <
553 Max_Machine_Scalar_Size
554 then
555 Num_CC := Num_CC + 1;
556 Comps (Num_CC) := Comp;
557 end if;
558 end;
560 Next_Component_Or_Discriminant (Comp);
561 end loop;
563 -- Sort by ascending position number
565 Sorting.Sort (Num_CC);
567 -- We now have all the components whose size does not exceed the max
568 -- machine scalar value, sorted by starting position. In this loop we
569 -- gather groups of clauses starting at the same position, to process
570 -- them in accordance with AI-133.
572 Stop := 0;
573 while Stop < Num_CC loop
574 Start := Stop + 1;
575 Stop := Start;
576 MaxL :=
577 Static_Integer
578 (Last_Bit (Component_Clause (Comps (Start))));
579 while Stop < Num_CC loop
580 if Static_Integer
581 (Position (Component_Clause (Comps (Stop + 1)))) =
582 Static_Integer
583 (Position (Component_Clause (Comps (Stop))))
584 then
585 Stop := Stop + 1;
586 MaxL :=
587 UI_Max
588 (MaxL,
589 Static_Integer
590 (Last_Bit
591 (Component_Clause (Comps (Stop)))));
592 else
593 exit;
594 end if;
595 end loop;
597 -- Now we have a group of component clauses from Start to Stop
598 -- whose positions are identical, and MaxL is the maximum last
599 -- bit value of any of these components.
601 -- We need to determine the corresponding machine scalar size.
602 -- This loop assumes that machine scalar sizes are even, and that
603 -- each possible machine scalar has twice as many bits as the next
604 -- smaller one.
606 MSS := Max_Machine_Scalar_Size;
607 while MSS mod 2 = 0
608 and then (MSS / 2) >= SSU
609 and then (MSS / 2) > MaxL
610 loop
611 MSS := MSS / 2;
612 end loop;
614 -- Here is where we fix up the Component_Bit_Offset value to
615 -- account for the reverse bit order. Some examples of what needs
616 -- to be done for the case of a machine scalar size of 8 are:
618 -- First_Bit .. Last_Bit Component_Bit_Offset
619 -- old new old new
621 -- 0 .. 0 7 .. 7 0 7
622 -- 0 .. 1 6 .. 7 0 6
623 -- 0 .. 2 5 .. 7 0 5
624 -- 0 .. 7 0 .. 7 0 4
626 -- 1 .. 1 6 .. 6 1 6
627 -- 1 .. 4 3 .. 6 1 3
628 -- 4 .. 7 0 .. 3 4 0
630 -- The rule is that the first bit is obtained by subtracting the
631 -- old ending bit from machine scalar size - 1.
633 for C in Start .. Stop loop
634 declare
635 Comp : constant Entity_Id := Comps (C);
636 CC : constant Node_Id := Component_Clause (Comp);
638 LB : constant Uint := Static_Integer (Last_Bit (CC));
639 NFB : constant Uint := MSS - Uint_1 - LB;
640 NLB : constant Uint := NFB + Esize (Comp) - 1;
641 Pos : constant Uint := Static_Integer (Position (CC));
643 begin
644 if Warn_On_Reverse_Bit_Order then
645 Error_Msg_Uint_1 := MSS;
646 Error_Msg_N
647 ("info: reverse bit order in machine scalar of "
648 & "length^?V?", First_Bit (CC));
649 Error_Msg_Uint_1 := NFB;
650 Error_Msg_Uint_2 := NLB;
652 if Bytes_Big_Endian then
653 Error_Msg_NE
654 ("\big-endian range for component & is ^ .. ^?V?",
655 First_Bit (CC), Comp);
656 else
657 Error_Msg_NE
658 ("\little-endian range for component & is ^ .. ^?V?",
659 First_Bit (CC), Comp);
660 end if;
661 end if;
663 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
664 Set_Normalized_Position (Comp, Pos + NFB / SSU);
665 Set_Normalized_First_Bit (Comp, NFB mod SSU);
666 end;
667 end loop;
668 end loop;
669 end Sort_CC;
670 end Adjust_Record_For_Reverse_Bit_Order;
672 ------------------------------------------------
673 -- Adjust_Record_For_Reverse_Bit_Order_Ada_95 --
674 ------------------------------------------------
676 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id) is
677 CC : Node_Id;
678 Comp : Node_Id;
680 begin
681 -- For Ada 95, we just renumber bits within a storage unit. We do the
682 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
683 -- Ada 83, and are free to add this extension.
685 Comp := First_Component_Or_Discriminant (R);
686 while Present (Comp) loop
687 CC := Component_Clause (Comp);
689 -- If component clause is present, then deal with the non-default
690 -- bit order case for Ada 95 mode.
692 -- We only do this processing for the base type, and in fact that
693 -- is important, since otherwise if there are record subtypes, we
694 -- could reverse the bits once for each subtype, which is wrong.
696 if Present (CC) and then Ekind (R) = E_Record_Type then
697 declare
698 CFB : constant Uint := Component_Bit_Offset (Comp);
699 CSZ : constant Uint := Esize (Comp);
700 CLC : constant Node_Id := Component_Clause (Comp);
701 Pos : constant Node_Id := Position (CLC);
702 FB : constant Node_Id := First_Bit (CLC);
704 Storage_Unit_Offset : constant Uint :=
705 CFB / System_Storage_Unit;
707 Start_Bit : constant Uint :=
708 CFB mod System_Storage_Unit;
710 begin
711 -- Cases where field goes over storage unit boundary
713 if Start_Bit + CSZ > System_Storage_Unit then
715 -- Allow multi-byte field but generate warning
717 if Start_Bit mod System_Storage_Unit = 0
718 and then CSZ mod System_Storage_Unit = 0
719 then
720 Error_Msg_N
721 ("info: multi-byte field specified with non-standard "
722 & "Bit_Order?V?", CLC);
724 if Bytes_Big_Endian then
725 Error_Msg_N
726 ("\bytes are not reversed "
727 & "(component is big-endian)?V?", CLC);
728 else
729 Error_Msg_N
730 ("\bytes are not reversed "
731 & "(component is little-endian)?V?", CLC);
732 end if;
734 -- Do not allow non-contiguous field
736 else
737 Error_Msg_N
738 ("attempt to specify non-contiguous field not "
739 & "permitted", CLC);
740 Error_Msg_N
741 ("\caused by non-standard Bit_Order specified in "
742 & "legacy Ada 95 mode", CLC);
743 end if;
745 -- Case where field fits in one storage unit
747 else
748 -- Give warning if suspicious component clause
750 if Intval (FB) >= System_Storage_Unit
751 and then Warn_On_Reverse_Bit_Order
752 then
753 Error_Msg_N
754 ("info: Bit_Order clause does not affect byte "
755 & "ordering?V?", Pos);
756 Error_Msg_Uint_1 :=
757 Intval (Pos) + Intval (FB) /
758 System_Storage_Unit;
759 Error_Msg_N
760 ("info: position normalized to ^ before bit order "
761 & "interpreted?V?", Pos);
762 end if;
764 -- Here is where we fix up the Component_Bit_Offset value
765 -- to account for the reverse bit order. Some examples of
766 -- what needs to be done are:
768 -- First_Bit .. Last_Bit Component_Bit_Offset
769 -- old new old new
771 -- 0 .. 0 7 .. 7 0 7
772 -- 0 .. 1 6 .. 7 0 6
773 -- 0 .. 2 5 .. 7 0 5
774 -- 0 .. 7 0 .. 7 0 4
776 -- 1 .. 1 6 .. 6 1 6
777 -- 1 .. 4 3 .. 6 1 3
778 -- 4 .. 7 0 .. 3 4 0
780 -- The rule is that the first bit is is obtained by
781 -- subtracting the old ending bit from storage_unit - 1.
783 Set_Component_Bit_Offset (Comp,
784 (Storage_Unit_Offset * System_Storage_Unit) +
785 (System_Storage_Unit - 1) -
786 (Start_Bit + CSZ - 1));
788 Set_Normalized_Position (Comp,
789 Component_Bit_Offset (Comp) / System_Storage_Unit);
791 Set_Normalized_First_Bit (Comp,
792 Component_Bit_Offset (Comp) mod System_Storage_Unit);
793 end if;
794 end;
795 end if;
797 Next_Component_Or_Discriminant (Comp);
798 end loop;
799 end Adjust_Record_For_Reverse_Bit_Order_Ada_95;
801 -------------------------------------
802 -- Alignment_Check_For_Size_Change --
803 -------------------------------------
805 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
806 begin
807 -- If the alignment is known, and not set by a rep clause, and is
808 -- inconsistent with the size being set, then reset it to unknown,
809 -- we assume in this case that the size overrides the inherited
810 -- alignment, and that the alignment must be recomputed.
812 if Known_Alignment (Typ)
813 and then not Has_Alignment_Clause (Typ)
814 and then Size mod (Alignment (Typ) * SSU) /= 0
815 then
816 Init_Alignment (Typ);
817 end if;
818 end Alignment_Check_For_Size_Change;
820 -------------------------------------
821 -- Analyze_Aspects_At_Freeze_Point --
822 -------------------------------------
824 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
825 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
826 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
827 -- the aspect specification node ASN.
829 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
830 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
831 -- a derived type can inherit aspects from its parent which have been
832 -- specified at the time of the derivation using an aspect, as in:
834 -- type A is range 1 .. 10
835 -- with Size => Not_Defined_Yet;
836 -- ..
837 -- type B is new A;
838 -- ..
839 -- Not_Defined_Yet : constant := 64;
841 -- In this example, the Size of A is considered to be specified prior
842 -- to the derivation, and thus inherited, even though the value is not
843 -- known at the time of derivation. To deal with this, we use two entity
844 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
845 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
846 -- the derived type (B here). If this flag is set when the derived type
847 -- is frozen, then this procedure is called to ensure proper inheritance
848 -- of all delayed aspects from the parent type. The derived type is E,
849 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
850 -- aspect specification node in the Rep_Item chain for the parent type.
852 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
853 -- Given an aspect specification node ASN whose expression is an
854 -- optional Boolean, this routines creates the corresponding pragma
855 -- at the freezing point.
857 ----------------------------------
858 -- Analyze_Aspect_Default_Value --
859 ----------------------------------
861 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
862 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
863 Ent : constant Entity_Id := Entity (ASN);
864 Expr : constant Node_Id := Expression (ASN);
865 Id : constant Node_Id := Identifier (ASN);
867 begin
868 Error_Msg_Name_1 := Chars (Id);
870 if not Is_Type (Ent) then
871 Error_Msg_N ("aspect% can only apply to a type", Id);
872 return;
874 elsif not Is_First_Subtype (Ent) then
875 Error_Msg_N ("aspect% cannot apply to subtype", Id);
876 return;
878 elsif A_Id = Aspect_Default_Value
879 and then not Is_Scalar_Type (Ent)
880 then
881 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
882 return;
884 elsif A_Id = Aspect_Default_Component_Value then
885 if not Is_Array_Type (Ent) then
886 Error_Msg_N ("aspect% can only be applied to array type", Id);
887 return;
889 elsif not Is_Scalar_Type (Component_Type (Ent)) then
890 Error_Msg_N ("aspect% requires scalar components", Id);
891 return;
892 end if;
893 end if;
895 Set_Has_Default_Aspect (Base_Type (Ent));
897 if Is_Scalar_Type (Ent) then
898 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
899 else
900 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
901 end if;
902 end Analyze_Aspect_Default_Value;
904 ---------------------------------
905 -- Inherit_Delayed_Rep_Aspects --
906 ---------------------------------
908 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
909 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
910 P : constant Entity_Id := Entity (ASN);
911 -- Entithy for parent type
913 N : Node_Id;
914 -- Item from Rep_Item chain
916 A : Aspect_Id;
918 begin
919 -- Loop through delayed aspects for the parent type
921 N := ASN;
922 while Present (N) loop
923 if Nkind (N) = N_Aspect_Specification then
924 exit when Entity (N) /= P;
926 if Is_Delayed_Aspect (N) then
927 A := Get_Aspect_Id (Chars (Identifier (N)));
929 -- Process delayed rep aspect. For Boolean attributes it is
930 -- not possible to cancel an attribute once set (the attempt
931 -- to use an aspect with xxx => False is an error) for a
932 -- derived type. So for those cases, we do not have to check
933 -- if a clause has been given for the derived type, since it
934 -- is harmless to set it again if it is already set.
936 case A is
938 -- Alignment
940 when Aspect_Alignment =>
941 if not Has_Alignment_Clause (E) then
942 Set_Alignment (E, Alignment (P));
943 end if;
945 -- Atomic
947 when Aspect_Atomic =>
948 if Is_Atomic (P) then
949 Set_Is_Atomic (E);
950 end if;
952 -- Atomic_Components
954 when Aspect_Atomic_Components =>
955 if Has_Atomic_Components (P) then
956 Set_Has_Atomic_Components (Base_Type (E));
957 end if;
959 -- Bit_Order
961 when Aspect_Bit_Order =>
962 if Is_Record_Type (E)
963 and then No (Get_Attribute_Definition_Clause
964 (E, Attribute_Bit_Order))
965 and then Reverse_Bit_Order (P)
966 then
967 Set_Reverse_Bit_Order (Base_Type (E));
968 end if;
970 -- Component_Size
972 when Aspect_Component_Size =>
973 if Is_Array_Type (E)
974 and then not Has_Component_Size_Clause (E)
975 then
976 Set_Component_Size
977 (Base_Type (E), Component_Size (P));
978 end if;
980 -- Machine_Radix
982 when Aspect_Machine_Radix =>
983 if Is_Decimal_Fixed_Point_Type (E)
984 and then not Has_Machine_Radix_Clause (E)
985 then
986 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
987 end if;
989 -- Object_Size (also Size which also sets Object_Size)
991 when Aspect_Object_Size
992 | Aspect_Size
994 if not Has_Size_Clause (E)
995 and then
996 No (Get_Attribute_Definition_Clause
997 (E, Attribute_Object_Size))
998 then
999 Set_Esize (E, Esize (P));
1000 end if;
1002 -- Pack
1004 when Aspect_Pack =>
1005 if not Is_Packed (E) then
1006 Set_Is_Packed (Base_Type (E));
1008 if Is_Bit_Packed_Array (P) then
1009 Set_Is_Bit_Packed_Array (Base_Type (E));
1010 Set_Packed_Array_Impl_Type
1011 (E, Packed_Array_Impl_Type (P));
1012 end if;
1013 end if;
1015 -- Scalar_Storage_Order
1017 when Aspect_Scalar_Storage_Order =>
1018 if (Is_Record_Type (E) or else Is_Array_Type (E))
1019 and then No (Get_Attribute_Definition_Clause
1020 (E, Attribute_Scalar_Storage_Order))
1021 and then Reverse_Storage_Order (P)
1022 then
1023 Set_Reverse_Storage_Order (Base_Type (E));
1025 -- Clear default SSO indications, since the aspect
1026 -- overrides the default.
1028 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
1029 Set_SSO_Set_High_By_Default (Base_Type (E), False);
1030 end if;
1032 -- Small
1034 when Aspect_Small =>
1035 if Is_Fixed_Point_Type (E)
1036 and then not Has_Small_Clause (E)
1037 then
1038 Set_Small_Value (E, Small_Value (P));
1039 end if;
1041 -- Storage_Size
1043 when Aspect_Storage_Size =>
1044 if (Is_Access_Type (E) or else Is_Task_Type (E))
1045 and then not Has_Storage_Size_Clause (E)
1046 then
1047 Set_Storage_Size_Variable
1048 (Base_Type (E), Storage_Size_Variable (P));
1049 end if;
1051 -- Value_Size
1053 when Aspect_Value_Size =>
1055 -- Value_Size is never inherited, it is either set by
1056 -- default, or it is explicitly set for the derived
1057 -- type. So nothing to do here.
1059 null;
1061 -- Volatile
1063 when Aspect_Volatile =>
1064 if Is_Volatile (P) then
1065 Set_Is_Volatile (E);
1066 end if;
1068 -- Volatile_Full_Access
1070 when Aspect_Volatile_Full_Access =>
1071 if Is_Volatile_Full_Access (P) then
1072 Set_Is_Volatile_Full_Access (E);
1073 end if;
1075 -- Volatile_Components
1077 when Aspect_Volatile_Components =>
1078 if Has_Volatile_Components (P) then
1079 Set_Has_Volatile_Components (Base_Type (E));
1080 end if;
1082 -- That should be all the Rep Aspects
1084 when others =>
1085 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
1086 null;
1087 end case;
1088 end if;
1089 end if;
1091 N := Next_Rep_Item (N);
1092 end loop;
1093 end Inherit_Delayed_Rep_Aspects;
1095 -------------------------------------
1096 -- Make_Pragma_From_Boolean_Aspect --
1097 -------------------------------------
1099 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
1100 Ident : constant Node_Id := Identifier (ASN);
1101 A_Name : constant Name_Id := Chars (Ident);
1102 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
1103 Ent : constant Entity_Id := Entity (ASN);
1104 Expr : constant Node_Id := Expression (ASN);
1105 Loc : constant Source_Ptr := Sloc (ASN);
1107 procedure Check_False_Aspect_For_Derived_Type;
1108 -- This procedure checks for the case of a false aspect for a derived
1109 -- type, which improperly tries to cancel an aspect inherited from
1110 -- the parent.
1112 -----------------------------------------
1113 -- Check_False_Aspect_For_Derived_Type --
1114 -----------------------------------------
1116 procedure Check_False_Aspect_For_Derived_Type is
1117 Par : Node_Id;
1119 begin
1120 -- We are only checking derived types
1122 if not Is_Derived_Type (E) then
1123 return;
1124 end if;
1126 Par := Nearest_Ancestor (E);
1128 case A_Id is
1129 when Aspect_Atomic
1130 | Aspect_Shared
1132 if not Is_Atomic (Par) then
1133 return;
1134 end if;
1136 when Aspect_Atomic_Components =>
1137 if not Has_Atomic_Components (Par) then
1138 return;
1139 end if;
1141 when Aspect_Discard_Names =>
1142 if not Discard_Names (Par) then
1143 return;
1144 end if;
1146 when Aspect_Pack =>
1147 if not Is_Packed (Par) then
1148 return;
1149 end if;
1151 when Aspect_Unchecked_Union =>
1152 if not Is_Unchecked_Union (Par) then
1153 return;
1154 end if;
1156 when Aspect_Volatile =>
1157 if not Is_Volatile (Par) then
1158 return;
1159 end if;
1161 when Aspect_Volatile_Components =>
1162 if not Has_Volatile_Components (Par) then
1163 return;
1164 end if;
1166 when Aspect_Volatile_Full_Access =>
1167 if not Is_Volatile_Full_Access (Par) then
1168 return;
1169 end if;
1171 when others =>
1172 return;
1173 end case;
1175 -- Fall through means we are canceling an inherited aspect
1177 Error_Msg_Name_1 := A_Name;
1178 Error_Msg_NE
1179 ("derived type& inherits aspect%, cannot cancel", Expr, E);
1180 end Check_False_Aspect_For_Derived_Type;
1182 -- Local variables
1184 Prag : Node_Id;
1186 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1188 begin
1189 -- Note that we know Expr is present, because for a missing Expr
1190 -- argument, we knew it was True and did not need to delay the
1191 -- evaluation to the freeze point.
1193 if Is_False (Static_Boolean (Expr)) then
1194 Check_False_Aspect_For_Derived_Type;
1196 else
1197 Prag :=
1198 Make_Pragma (Loc,
1199 Pragma_Identifier =>
1200 Make_Identifier (Sloc (Ident), Chars (Ident)),
1201 Pragma_Argument_Associations => New_List (
1202 Make_Pragma_Argument_Association (Sloc (Ident),
1203 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))));
1205 Set_From_Aspect_Specification (Prag, True);
1206 Set_Corresponding_Aspect (Prag, ASN);
1207 Set_Aspect_Rep_Item (ASN, Prag);
1208 Set_Is_Delayed_Aspect (Prag);
1209 Set_Parent (Prag, ASN);
1210 end if;
1211 end Make_Pragma_From_Boolean_Aspect;
1213 -- Local variables
1215 A_Id : Aspect_Id;
1216 ASN : Node_Id;
1217 Ritem : Node_Id;
1219 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1221 begin
1222 -- Must be visible in current scope, but if this is a type from a nested
1223 -- package it may be frozen from an object declaration in the enclosing
1224 -- scope, so install the package declarations to complete the analysis
1225 -- of the aspects, if any. If the package itself is frozen the type will
1226 -- have been frozen as well.
1228 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
1229 if Is_Type (E) and then From_Nested_Package (E) then
1230 declare
1231 Pack : constant Entity_Id := Scope (E);
1233 begin
1234 Push_Scope (Pack);
1235 Install_Visible_Declarations (Pack);
1236 Install_Private_Declarations (Pack);
1237 Analyze_Aspects_At_Freeze_Point (E);
1239 if Is_Private_Type (E)
1240 and then Present (Full_View (E))
1241 then
1242 Analyze_Aspects_At_Freeze_Point (Full_View (E));
1243 end if;
1245 End_Package_Scope (Pack);
1246 return;
1247 end;
1249 -- Aspects from other entities in different contexts are analyzed
1250 -- elsewhere.
1252 else
1253 return;
1254 end if;
1255 end if;
1257 -- Look for aspect specification entries for this entity
1259 ASN := First_Rep_Item (E);
1260 while Present (ASN) loop
1261 if Nkind (ASN) = N_Aspect_Specification then
1262 exit when Entity (ASN) /= E;
1264 if Is_Delayed_Aspect (ASN) then
1265 A_Id := Get_Aspect_Id (ASN);
1267 case A_Id is
1269 -- For aspects whose expression is an optional Boolean, make
1270 -- the corresponding pragma at the freeze point.
1272 when Boolean_Aspects
1273 | Library_Unit_Aspects
1275 -- Aspects Export and Import require special handling.
1276 -- Both are by definition Boolean and may benefit from
1277 -- forward references, however their expressions are
1278 -- treated as static. In addition, the syntax of their
1279 -- corresponding pragmas requires extra "pieces" which
1280 -- may also contain forward references. To account for
1281 -- all of this, the corresponding pragma is created by
1282 -- Analyze_Aspect_Export_Import, but is not analyzed as
1283 -- the complete analysis must happen now.
1285 if A_Id = Aspect_Export or else A_Id = Aspect_Import then
1286 null;
1288 -- Otherwise create a corresponding pragma
1290 else
1291 Make_Pragma_From_Boolean_Aspect (ASN);
1292 end if;
1294 -- Special handling for aspects that don't correspond to
1295 -- pragmas/attributes.
1297 when Aspect_Default_Value
1298 | Aspect_Default_Component_Value
1300 -- Do not inherit aspect for anonymous base type of a
1301 -- scalar or array type, because they apply to the first
1302 -- subtype of the type, and will be processed when that
1303 -- first subtype is frozen.
1305 if Is_Derived_Type (E)
1306 and then not Comes_From_Source (E)
1307 and then E /= First_Subtype (E)
1308 then
1309 null;
1310 else
1311 Analyze_Aspect_Default_Value (ASN);
1312 end if;
1314 -- Ditto for iterator aspects, because the corresponding
1315 -- attributes may not have been analyzed yet.
1317 when Aspect_Constant_Indexing
1318 | Aspect_Default_Iterator
1319 | Aspect_Iterator_Element
1320 | Aspect_Variable_Indexing
1322 Analyze (Expression (ASN));
1324 if Etype (Expression (ASN)) = Any_Type then
1325 Error_Msg_NE
1326 ("\aspect must be fully defined before & is frozen",
1327 ASN, E);
1328 end if;
1330 when Aspect_Iterable =>
1331 Validate_Iterable_Aspect (E, ASN);
1333 when others =>
1334 null;
1335 end case;
1337 Ritem := Aspect_Rep_Item (ASN);
1339 if Present (Ritem) then
1340 Analyze (Ritem);
1341 end if;
1342 end if;
1343 end if;
1345 Next_Rep_Item (ASN);
1346 end loop;
1348 -- This is where we inherit delayed rep aspects from our parent. Note
1349 -- that if we fell out of the above loop with ASN non-empty, it means
1350 -- we hit an aspect for an entity other than E, and it must be the
1351 -- type from which we were derived.
1353 if May_Inherit_Delayed_Rep_Aspects (E) then
1354 Inherit_Delayed_Rep_Aspects (ASN);
1355 end if;
1356 end Analyze_Aspects_At_Freeze_Point;
1358 -----------------------------------
1359 -- Analyze_Aspect_Specifications --
1360 -----------------------------------
1362 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
1363 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
1364 -- Establish linkages between an aspect and its corresponding pragma
1366 procedure Insert_Pragma
1367 (Prag : Node_Id;
1368 Is_Instance : Boolean := False);
1369 -- Subsidiary to the analysis of aspects
1370 -- Abstract_State
1371 -- Attach_Handler
1372 -- Contract_Cases
1373 -- Depends
1374 -- Ghost
1375 -- Global
1376 -- Initial_Condition
1377 -- Initializes
1378 -- Post
1379 -- Pre
1380 -- Refined_Depends
1381 -- Refined_Global
1382 -- Refined_State
1383 -- SPARK_Mode
1384 -- Warnings
1385 -- Insert pragma Prag such that it mimics the placement of a source
1386 -- pragma of the same kind. Flag Is_Generic should be set when the
1387 -- context denotes a generic instance.
1389 --------------
1390 -- Decorate --
1391 --------------
1393 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
1394 begin
1395 Set_Aspect_Rep_Item (Asp, Prag);
1396 Set_Corresponding_Aspect (Prag, Asp);
1397 Set_From_Aspect_Specification (Prag);
1398 Set_Parent (Prag, Asp);
1399 end Decorate;
1401 -------------------
1402 -- Insert_Pragma --
1403 -------------------
1405 procedure Insert_Pragma
1406 (Prag : Node_Id;
1407 Is_Instance : Boolean := False)
1409 Aux : Node_Id;
1410 Decl : Node_Id;
1411 Decls : List_Id;
1412 Def : Node_Id;
1413 Inserted : Boolean := False;
1415 begin
1416 -- When the aspect appears on an entry, package, protected unit,
1417 -- subprogram, or task unit body, insert the generated pragma at the
1418 -- top of the body declarations to emulate the behavior of a source
1419 -- pragma.
1421 -- package body Pack with Aspect is
1423 -- package body Pack is
1424 -- pragma Prag;
1426 if Nkind_In (N, N_Entry_Body,
1427 N_Package_Body,
1428 N_Protected_Body,
1429 N_Subprogram_Body,
1430 N_Task_Body)
1431 then
1432 Decls := Declarations (N);
1434 if No (Decls) then
1435 Decls := New_List;
1436 Set_Declarations (N, Decls);
1437 end if;
1439 Prepend_To (Decls, Prag);
1441 -- When the aspect is associated with a [generic] package declaration
1442 -- insert the generated pragma at the top of the visible declarations
1443 -- to emulate the behavior of a source pragma.
1445 -- package Pack with Aspect is
1447 -- package Pack is
1448 -- pragma Prag;
1450 elsif Nkind_In (N, N_Generic_Package_Declaration,
1451 N_Package_Declaration)
1452 then
1453 Decls := Visible_Declarations (Specification (N));
1455 if No (Decls) then
1456 Decls := New_List;
1457 Set_Visible_Declarations (Specification (N), Decls);
1458 end if;
1460 -- The visible declarations of a generic instance have the
1461 -- following structure:
1463 -- <renamings of generic formals>
1464 -- <renamings of internally-generated spec and body>
1465 -- <first source declaration>
1467 -- Insert the pragma before the first source declaration by
1468 -- skipping the instance "header" to ensure proper visibility of
1469 -- all formals.
1471 if Is_Instance then
1472 Decl := First (Decls);
1473 while Present (Decl) loop
1474 if Comes_From_Source (Decl) then
1475 Insert_Before (Decl, Prag);
1476 Inserted := True;
1477 exit;
1478 else
1479 Next (Decl);
1480 end if;
1481 end loop;
1483 -- The pragma is placed after the instance "header"
1485 if not Inserted then
1486 Append_To (Decls, Prag);
1487 end if;
1489 -- Otherwise this is not a generic instance
1491 else
1492 Prepend_To (Decls, Prag);
1493 end if;
1495 -- When the aspect is associated with a protected unit declaration,
1496 -- insert the generated pragma at the top of the visible declarations
1497 -- the emulate the behavior of a source pragma.
1499 -- protected [type] Prot with Aspect is
1501 -- protected [type] Prot is
1502 -- pragma Prag;
1504 elsif Nkind (N) = N_Protected_Type_Declaration then
1505 Def := Protected_Definition (N);
1507 if No (Def) then
1508 Def :=
1509 Make_Protected_Definition (Sloc (N),
1510 Visible_Declarations => New_List,
1511 End_Label => Empty);
1513 Set_Protected_Definition (N, Def);
1514 end if;
1516 Decls := Visible_Declarations (Def);
1518 if No (Decls) then
1519 Decls := New_List;
1520 Set_Visible_Declarations (Def, Decls);
1521 end if;
1523 Prepend_To (Decls, Prag);
1525 -- When the aspect is associated with a task unit declaration, insert
1526 -- insert the generated pragma at the top of the visible declarations
1527 -- the emulate the behavior of a source pragma.
1529 -- task [type] Prot with Aspect is
1531 -- task [type] Prot is
1532 -- pragma Prag;
1534 elsif Nkind (N) = N_Task_Type_Declaration then
1535 Def := Task_Definition (N);
1537 if No (Def) then
1538 Def :=
1539 Make_Task_Definition (Sloc (N),
1540 Visible_Declarations => New_List,
1541 End_Label => Empty);
1543 Set_Task_Definition (N, Def);
1544 end if;
1546 Decls := Visible_Declarations (Def);
1548 if No (Decls) then
1549 Decls := New_List;
1550 Set_Visible_Declarations (Def, Decls);
1551 end if;
1553 Prepend_To (Decls, Prag);
1555 -- When the context is a library unit, the pragma is added to the
1556 -- Pragmas_After list.
1558 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1559 Aux := Aux_Decls_Node (Parent (N));
1561 if No (Pragmas_After (Aux)) then
1562 Set_Pragmas_After (Aux, New_List);
1563 end if;
1565 Prepend (Prag, Pragmas_After (Aux));
1567 -- Default, the pragma is inserted after the context
1569 else
1570 Insert_After (N, Prag);
1571 end if;
1572 end Insert_Pragma;
1574 -- Local variables
1576 Aspect : Node_Id;
1577 Aitem : Node_Id;
1578 Ent : Node_Id;
1580 L : constant List_Id := Aspect_Specifications (N);
1582 Ins_Node : Node_Id := N;
1583 -- Insert pragmas/attribute definition clause after this node when no
1584 -- delayed analysis is required.
1586 -- Start of processing for Analyze_Aspect_Specifications
1588 begin
1589 -- The general processing involves building an attribute definition
1590 -- clause or a pragma node that corresponds to the aspect. Then in order
1591 -- to delay the evaluation of this aspect to the freeze point, we attach
1592 -- the corresponding pragma/attribute definition clause to the aspect
1593 -- specification node, which is then placed in the Rep Item chain. In
1594 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1595 -- and we evaluate the rep item at the freeze point. When the aspect
1596 -- doesn't have a corresponding pragma/attribute definition clause, then
1597 -- its analysis is simply delayed at the freeze point.
1599 -- Some special cases don't require delay analysis, thus the aspect is
1600 -- analyzed right now.
1602 -- Note that there is a special handling for Pre, Post, Test_Case,
1603 -- Contract_Cases aspects. In these cases, we do not have to worry
1604 -- about delay issues, since the pragmas themselves deal with delay
1605 -- of visibility for the expression analysis. Thus, we just insert
1606 -- the pragma after the node N.
1608 pragma Assert (Present (L));
1610 -- Loop through aspects
1612 Aspect := First (L);
1613 Aspect_Loop : while Present (Aspect) loop
1614 Analyze_One_Aspect : declare
1615 Expr : constant Node_Id := Expression (Aspect);
1616 Id : constant Node_Id := Identifier (Aspect);
1617 Loc : constant Source_Ptr := Sloc (Aspect);
1618 Nam : constant Name_Id := Chars (Id);
1619 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
1620 Anod : Node_Id;
1622 Delay_Required : Boolean;
1623 -- Set False if delay is not required
1625 Eloc : Source_Ptr := No_Location;
1626 -- Source location of expression, modified when we split PPC's. It
1627 -- is set below when Expr is present.
1629 procedure Analyze_Aspect_Convention;
1630 -- Perform analysis of aspect Convention
1632 procedure Analyze_Aspect_Disable_Controlled;
1633 -- Perform analysis of aspect Disable_Controlled
1635 procedure Analyze_Aspect_Export_Import;
1636 -- Perform analysis of aspects Export or Import
1638 procedure Analyze_Aspect_External_Link_Name;
1639 -- Perform analysis of aspects External_Name or Link_Name
1641 procedure Analyze_Aspect_Implicit_Dereference;
1642 -- Perform analysis of the Implicit_Dereference aspects
1644 procedure Make_Aitem_Pragma
1645 (Pragma_Argument_Associations : List_Id;
1646 Pragma_Name : Name_Id);
1647 -- This is a wrapper for Make_Pragma used for converting aspects
1648 -- to pragmas. It takes care of Sloc (set from Loc) and building
1649 -- the pragma identifier from the given name. In addition the
1650 -- flags Class_Present and Split_PPC are set from the aspect
1651 -- node, as well as Is_Ignored. This routine also sets the
1652 -- From_Aspect_Specification in the resulting pragma node to
1653 -- True, and sets Corresponding_Aspect to point to the aspect.
1654 -- The resulting pragma is assigned to Aitem.
1656 -------------------------------
1657 -- Analyze_Aspect_Convention --
1658 -------------------------------
1660 procedure Analyze_Aspect_Convention is
1661 Conv : Node_Id;
1662 Dummy_1 : Node_Id;
1663 Dummy_2 : Node_Id;
1664 Dummy_3 : Node_Id;
1665 Expo : Node_Id;
1666 Imp : Node_Id;
1668 begin
1669 -- Obtain all interfacing aspects that apply to the related
1670 -- entity.
1672 Get_Interfacing_Aspects
1673 (Iface_Asp => Aspect,
1674 Conv_Asp => Dummy_1,
1675 EN_Asp => Dummy_2,
1676 Expo_Asp => Expo,
1677 Imp_Asp => Imp,
1678 LN_Asp => Dummy_3,
1679 Do_Checks => True);
1681 -- The related entity is subject to aspect Export or Import.
1682 -- Do not process Convention now because it must be analysed
1683 -- as part of Export or Import.
1685 if Present (Expo) or else Present (Imp) then
1686 return;
1688 -- Otherwise Convention appears by itself
1690 else
1691 -- The aspect specifies a particular convention
1693 if Present (Expr) then
1694 Conv := New_Copy_Tree (Expr);
1696 -- Otherwise assume convention Ada
1698 else
1699 Conv := Make_Identifier (Loc, Name_Ada);
1700 end if;
1702 -- Generate:
1703 -- pragma Convention (<Conv>, <E>);
1705 Make_Aitem_Pragma
1706 (Pragma_Name => Name_Convention,
1707 Pragma_Argument_Associations => New_List (
1708 Make_Pragma_Argument_Association (Loc,
1709 Expression => Conv),
1710 Make_Pragma_Argument_Association (Loc,
1711 Expression => New_Occurrence_Of (E, Loc))));
1713 Decorate (Aspect, Aitem);
1714 Insert_Pragma (Aitem);
1715 end if;
1716 end Analyze_Aspect_Convention;
1718 ---------------------------------------
1719 -- Analyze_Aspect_Disable_Controlled --
1720 ---------------------------------------
1722 procedure Analyze_Aspect_Disable_Controlled is
1723 begin
1724 -- The aspect applies only to controlled records
1726 if not (Ekind (E) = E_Record_Type
1727 and then Is_Controlled_Active (E))
1728 then
1729 Error_Msg_N
1730 ("aspect % requires controlled record type", Aspect);
1731 return;
1732 end if;
1734 -- Preanalyze the expression (if any) when the aspect resides
1735 -- in a generic unit.
1737 if Inside_A_Generic then
1738 if Present (Expr) then
1739 Preanalyze_And_Resolve (Expr, Any_Boolean);
1740 end if;
1742 -- Otherwise the aspect resides in a nongeneric context
1744 else
1745 -- A controlled record type loses its controlled semantics
1746 -- when the expression statically evaluates to True.
1748 if Present (Expr) then
1749 Analyze_And_Resolve (Expr, Any_Boolean);
1751 if Is_OK_Static_Expression (Expr) then
1752 if Is_True (Static_Boolean (Expr)) then
1753 Set_Disable_Controlled (E);
1754 end if;
1756 -- Otherwise the expression is not static
1758 else
1759 Error_Msg_N
1760 ("expression of aspect % must be static", Aspect);
1761 end if;
1763 -- Otherwise the aspect appears without an expression and
1764 -- defaults to True.
1766 else
1767 Set_Disable_Controlled (E);
1768 end if;
1769 end if;
1770 end Analyze_Aspect_Disable_Controlled;
1772 ----------------------------------
1773 -- Analyze_Aspect_Export_Import --
1774 ----------------------------------
1776 procedure Analyze_Aspect_Export_Import is
1777 Dummy_1 : Node_Id;
1778 Dummy_2 : Node_Id;
1779 Dummy_3 : Node_Id;
1780 Expo : Node_Id;
1781 Imp : Node_Id;
1783 begin
1784 -- Obtain all interfacing aspects that apply to the related
1785 -- entity.
1787 Get_Interfacing_Aspects
1788 (Iface_Asp => Aspect,
1789 Conv_Asp => Dummy_1,
1790 EN_Asp => Dummy_2,
1791 Expo_Asp => Expo,
1792 Imp_Asp => Imp,
1793 LN_Asp => Dummy_3,
1794 Do_Checks => True);
1796 -- The related entity cannot be subject to both aspects Export
1797 -- and Import.
1799 if Present (Expo) and then Present (Imp) then
1800 Error_Msg_N
1801 ("incompatible interfacing aspects given for &", E);
1802 Error_Msg_Sloc := Sloc (Expo);
1803 Error_Msg_N ("\aspect `Export` #", E);
1804 Error_Msg_Sloc := Sloc (Imp);
1805 Error_Msg_N ("\aspect `Import` #", E);
1806 end if;
1808 -- A variable is most likely modified from the outside. Take
1809 -- the optimistic approach to avoid spurious errors.
1811 if Ekind (E) = E_Variable then
1812 Set_Never_Set_In_Source (E, False);
1813 end if;
1815 -- Resolve the expression of an Import or Export here, and
1816 -- require it to be of type Boolean and static. This is not
1817 -- quite right, because in general this should be delayed,
1818 -- but that seems tricky for these, because normally Boolean
1819 -- aspects are replaced with pragmas at the freeze point in
1820 -- Make_Pragma_From_Boolean_Aspect.
1822 if not Present (Expr)
1823 or else Is_True (Static_Boolean (Expr))
1824 then
1825 if A_Id = Aspect_Import then
1826 Set_Has_Completion (E);
1827 Set_Is_Imported (E);
1829 -- An imported object cannot be explicitly initialized
1831 if Nkind (N) = N_Object_Declaration
1832 and then Present (Expression (N))
1833 then
1834 Error_Msg_N
1835 ("imported entities cannot be initialized "
1836 & "(RM B.1(24))", Expression (N));
1837 end if;
1839 else
1840 pragma Assert (A_Id = Aspect_Export);
1841 Set_Is_Exported (E);
1842 end if;
1844 -- Create the proper form of pragma Export or Import taking
1845 -- into account Conversion, External_Name, and Link_Name.
1847 Aitem := Build_Export_Import_Pragma (Aspect, E);
1849 -- Otherwise the expression is either False or erroneous. There
1850 -- is no corresponding pragma.
1852 else
1853 Aitem := Empty;
1854 end if;
1855 end Analyze_Aspect_Export_Import;
1857 ---------------------------------------
1858 -- Analyze_Aspect_External_Link_Name --
1859 ---------------------------------------
1861 procedure Analyze_Aspect_External_Link_Name is
1862 Dummy_1 : Node_Id;
1863 Dummy_2 : Node_Id;
1864 Dummy_3 : Node_Id;
1865 Expo : Node_Id;
1866 Imp : Node_Id;
1868 begin
1869 -- Obtain all interfacing aspects that apply to the related
1870 -- entity.
1872 Get_Interfacing_Aspects
1873 (Iface_Asp => Aspect,
1874 Conv_Asp => Dummy_1,
1875 EN_Asp => Dummy_2,
1876 Expo_Asp => Expo,
1877 Imp_Asp => Imp,
1878 LN_Asp => Dummy_3,
1879 Do_Checks => True);
1881 -- Ensure that aspect External_Name applies to aspect Export or
1882 -- Import.
1884 if A_Id = Aspect_External_Name then
1885 if No (Expo) and then No (Imp) then
1886 Error_Msg_N
1887 ("aspect `External_Name` requires aspect `Import` or "
1888 & "`Export`", Aspect);
1889 end if;
1891 -- Otherwise ensure that aspect Link_Name applies to aspect
1892 -- Export or Import.
1894 else
1895 pragma Assert (A_Id = Aspect_Link_Name);
1896 if No (Expo) and then No (Imp) then
1897 Error_Msg_N
1898 ("aspect `Link_Name` requires aspect `Import` or "
1899 & "`Export`", Aspect);
1900 end if;
1901 end if;
1902 end Analyze_Aspect_External_Link_Name;
1904 -----------------------------------------
1905 -- Analyze_Aspect_Implicit_Dereference --
1906 -----------------------------------------
1908 procedure Analyze_Aspect_Implicit_Dereference is
1909 Disc : Entity_Id;
1910 Parent_Disc : Entity_Id;
1912 begin
1913 if not Is_Type (E) or else not Has_Discriminants (E) then
1914 Error_Msg_N
1915 ("aspect must apply to a type with discriminants", Expr);
1917 elsif not Is_Entity_Name (Expr) then
1918 Error_Msg_N
1919 ("aspect must name a discriminant of current type", Expr);
1921 else
1922 -- Discriminant type be an anonymous access type or an
1923 -- anonymous access to subprogram.
1925 -- Missing synchronized types???
1927 Disc := First_Discriminant (E);
1928 while Present (Disc) loop
1929 if Chars (Expr) = Chars (Disc)
1930 and then Ekind_In (Etype (Disc),
1931 E_Anonymous_Access_Subprogram_Type,
1932 E_Anonymous_Access_Type)
1933 then
1934 Set_Has_Implicit_Dereference (E);
1935 Set_Has_Implicit_Dereference (Disc);
1936 exit;
1937 end if;
1939 Next_Discriminant (Disc);
1940 end loop;
1942 -- Error if no proper access discriminant
1944 if No (Disc) then
1945 Error_Msg_NE ("not an access discriminant of&", Expr, E);
1946 return;
1947 end if;
1948 end if;
1950 -- For a type extension, check whether parent has a
1951 -- reference discriminant, to verify that use is proper.
1953 if Is_Derived_Type (E)
1954 and then Has_Discriminants (Etype (E))
1955 then
1956 Parent_Disc := Get_Reference_Discriminant (Etype (E));
1958 if Present (Parent_Disc)
1959 and then Corresponding_Discriminant (Disc) /= Parent_Disc
1960 then
1961 Error_Msg_N
1962 ("reference discriminant does not match discriminant "
1963 & "of parent type", Expr);
1964 end if;
1965 end if;
1966 end Analyze_Aspect_Implicit_Dereference;
1968 -----------------------
1969 -- Make_Aitem_Pragma --
1970 -----------------------
1972 procedure Make_Aitem_Pragma
1973 (Pragma_Argument_Associations : List_Id;
1974 Pragma_Name : Name_Id)
1976 Args : List_Id := Pragma_Argument_Associations;
1978 begin
1979 -- We should never get here if aspect was disabled
1981 pragma Assert (not Is_Disabled (Aspect));
1983 -- Certain aspects allow for an optional name or expression. Do
1984 -- not generate a pragma with empty argument association list.
1986 if No (Args) or else No (Expression (First (Args))) then
1987 Args := No_List;
1988 end if;
1990 -- Build the pragma
1992 Aitem :=
1993 Make_Pragma (Loc,
1994 Pragma_Argument_Associations => Args,
1995 Pragma_Identifier =>
1996 Make_Identifier (Sloc (Id), Pragma_Name),
1997 Class_Present => Class_Present (Aspect),
1998 Split_PPC => Split_PPC (Aspect));
2000 -- Set additional semantic fields
2002 if Is_Ignored (Aspect) then
2003 Set_Is_Ignored (Aitem);
2004 elsif Is_Checked (Aspect) then
2005 Set_Is_Checked (Aitem);
2006 end if;
2008 Set_Corresponding_Aspect (Aitem, Aspect);
2009 Set_From_Aspect_Specification (Aitem);
2010 end Make_Aitem_Pragma;
2012 -- Start of processing for Analyze_One_Aspect
2014 begin
2015 -- Skip aspect if already analyzed, to avoid looping in some cases
2017 if Analyzed (Aspect) then
2018 goto Continue;
2019 end if;
2021 -- Skip looking at aspect if it is totally disabled. Just mark it
2022 -- as such for later reference in the tree. This also sets the
2023 -- Is_Ignored and Is_Checked flags appropriately.
2025 Check_Applicable_Policy (Aspect);
2027 if Is_Disabled (Aspect) then
2028 goto Continue;
2029 end if;
2031 -- Set the source location of expression, used in the case of
2032 -- a failed precondition/postcondition or invariant. Note that
2033 -- the source location of the expression is not usually the best
2034 -- choice here. For example, it gets located on the last AND
2035 -- keyword in a chain of boolean expressiond AND'ed together.
2036 -- It is best to put the message on the first character of the
2037 -- assertion, which is the effect of the First_Node call here.
2039 if Present (Expr) then
2040 Eloc := Sloc (First_Node (Expr));
2041 end if;
2043 -- Check restriction No_Implementation_Aspect_Specifications
2045 if Implementation_Defined_Aspect (A_Id) then
2046 Check_Restriction
2047 (No_Implementation_Aspect_Specifications, Aspect);
2048 end if;
2050 -- Check restriction No_Specification_Of_Aspect
2052 Check_Restriction_No_Specification_Of_Aspect (Aspect);
2054 -- Mark aspect analyzed (actual analysis is delayed till later)
2056 Set_Analyzed (Aspect);
2057 Set_Entity (Aspect, E);
2059 -- Build the reference to E that will be used in the built pragmas
2061 Ent := New_Occurrence_Of (E, Sloc (Id));
2063 if A_Id = Aspect_Attach_Handler
2064 or else A_Id = Aspect_Interrupt_Handler
2065 then
2067 -- Treat the specification as a reference to the protected
2068 -- operation, which might otherwise appear unreferenced and
2069 -- generate spurious warnings.
2071 Generate_Reference (E, Id);
2072 end if;
2074 -- Check for duplicate aspect. Note that the Comes_From_Source
2075 -- test allows duplicate Pre/Post's that we generate internally
2076 -- to escape being flagged here.
2078 if No_Duplicates_Allowed (A_Id) then
2079 Anod := First (L);
2080 while Anod /= Aspect loop
2081 if Comes_From_Source (Aspect)
2082 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
2083 then
2084 Error_Msg_Name_1 := Nam;
2085 Error_Msg_Sloc := Sloc (Anod);
2087 -- Case of same aspect specified twice
2089 if Class_Present (Anod) = Class_Present (Aspect) then
2090 if not Class_Present (Anod) then
2091 Error_Msg_NE
2092 ("aspect% for & previously given#",
2093 Id, E);
2094 else
2095 Error_Msg_NE
2096 ("aspect `%''Class` for & previously given#",
2097 Id, E);
2098 end if;
2099 end if;
2100 end if;
2102 Next (Anod);
2103 end loop;
2104 end if;
2106 -- Check some general restrictions on language defined aspects
2108 if not Implementation_Defined_Aspect (A_Id) then
2109 Error_Msg_Name_1 := Nam;
2111 -- Not allowed for renaming declarations. Examine the original
2112 -- node because a subprogram renaming may have been rewritten
2113 -- as a body.
2115 if Nkind (Original_Node (N)) in N_Renaming_Declaration then
2116 Error_Msg_N
2117 ("aspect % not allowed for renaming declaration",
2118 Aspect);
2119 end if;
2121 -- Not allowed for formal type declarations
2123 if Nkind (N) = N_Formal_Type_Declaration then
2124 Error_Msg_N
2125 ("aspect % not allowed for formal type declaration",
2126 Aspect);
2127 end if;
2128 end if;
2130 -- Copy expression for later processing by the procedures
2131 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
2133 Set_Entity (Id, New_Copy_Tree (Expr));
2135 -- Set Delay_Required as appropriate to aspect
2137 case Aspect_Delay (A_Id) is
2138 when Always_Delay =>
2139 Delay_Required := True;
2141 when Never_Delay =>
2142 Delay_Required := False;
2144 when Rep_Aspect =>
2146 -- If expression has the form of an integer literal, then
2147 -- do not delay, since we know the value cannot change.
2148 -- This optimization catches most rep clause cases.
2150 -- For Boolean aspects, don't delay if no expression
2152 if A_Id in Boolean_Aspects and then No (Expr) then
2153 Delay_Required := False;
2155 -- For non-Boolean aspects, don't delay if integer literal,
2156 -- unless the aspect is Alignment, which affects the
2157 -- freezing of an initialized object.
2159 elsif A_Id not in Boolean_Aspects
2160 and then A_Id /= Aspect_Alignment
2161 and then Present (Expr)
2162 and then Nkind (Expr) = N_Integer_Literal
2163 then
2164 Delay_Required := False;
2166 -- All other cases are delayed
2168 else
2169 Delay_Required := True;
2170 Set_Has_Delayed_Rep_Aspects (E);
2171 end if;
2172 end case;
2174 -- Processing based on specific aspect
2176 case A_Id is
2177 when Aspect_Unimplemented =>
2178 null; -- ??? temp for now
2180 -- No_Aspect should be impossible
2182 when No_Aspect =>
2183 raise Program_Error;
2185 -- Case 1: Aspects corresponding to attribute definition
2186 -- clauses.
2188 when Aspect_Address
2189 | Aspect_Alignment
2190 | Aspect_Bit_Order
2191 | Aspect_Component_Size
2192 | Aspect_Constant_Indexing
2193 | Aspect_Default_Iterator
2194 | Aspect_Dispatching_Domain
2195 | Aspect_External_Tag
2196 | Aspect_Input
2197 | Aspect_Iterable
2198 | Aspect_Iterator_Element
2199 | Aspect_Machine_Radix
2200 | Aspect_Object_Size
2201 | Aspect_Output
2202 | Aspect_Read
2203 | Aspect_Scalar_Storage_Order
2204 | Aspect_Secondary_Stack_Size
2205 | Aspect_Simple_Storage_Pool
2206 | Aspect_Size
2207 | Aspect_Small
2208 | Aspect_Storage_Pool
2209 | Aspect_Stream_Size
2210 | Aspect_Value_Size
2211 | Aspect_Variable_Indexing
2212 | Aspect_Write
2214 -- Indexing aspects apply only to tagged type
2216 if (A_Id = Aspect_Constant_Indexing
2217 or else
2218 A_Id = Aspect_Variable_Indexing)
2219 and then not (Is_Type (E)
2220 and then Is_Tagged_Type (E))
2221 then
2222 Error_Msg_N
2223 ("indexing aspect can only apply to a tagged type",
2224 Aspect);
2225 goto Continue;
2226 end if;
2228 -- For the case of aspect Address, we don't consider that we
2229 -- know the entity is never set in the source, since it is
2230 -- is likely aliasing is occurring.
2232 -- Note: one might think that the analysis of the resulting
2233 -- attribute definition clause would take care of that, but
2234 -- that's not the case since it won't be from source.
2236 if A_Id = Aspect_Address then
2237 Set_Never_Set_In_Source (E, False);
2238 end if;
2240 -- Correctness of the profile of a stream operation is
2241 -- verified at the freeze point, but we must detect the
2242 -- illegal specification of this aspect for a subtype now,
2243 -- to prevent malformed rep_item chains.
2245 if A_Id = Aspect_Input or else
2246 A_Id = Aspect_Output or else
2247 A_Id = Aspect_Read or else
2248 A_Id = Aspect_Write
2249 then
2250 if not Is_First_Subtype (E) then
2251 Error_Msg_N
2252 ("local name must be a first subtype", Aspect);
2253 goto Continue;
2255 -- If stream aspect applies to the class-wide type,
2256 -- the generated attribute definition applies to the
2257 -- class-wide type as well.
2259 elsif Class_Present (Aspect) then
2260 Ent :=
2261 Make_Attribute_Reference (Loc,
2262 Prefix => Ent,
2263 Attribute_Name => Name_Class);
2264 end if;
2265 end if;
2267 -- Construct the attribute definition clause
2269 Aitem :=
2270 Make_Attribute_Definition_Clause (Loc,
2271 Name => Ent,
2272 Chars => Chars (Id),
2273 Expression => Relocate_Node (Expr));
2275 -- If the address is specified, then we treat the entity as
2276 -- referenced, to avoid spurious warnings. This is analogous
2277 -- to what is done with an attribute definition clause, but
2278 -- here we don't want to generate a reference because this
2279 -- is the point of definition of the entity.
2281 if A_Id = Aspect_Address then
2282 Set_Referenced (E);
2283 end if;
2285 -- Case 2: Aspects corresponding to pragmas
2287 -- Case 2a: Aspects corresponding to pragmas with two
2288 -- arguments, where the first argument is a local name
2289 -- referring to the entity, and the second argument is the
2290 -- aspect definition expression.
2292 -- Linker_Section/Suppress/Unsuppress
2294 when Aspect_Linker_Section
2295 | Aspect_Suppress
2296 | Aspect_Unsuppress
2298 Make_Aitem_Pragma
2299 (Pragma_Argument_Associations => New_List (
2300 Make_Pragma_Argument_Association (Loc,
2301 Expression => New_Occurrence_Of (E, Loc)),
2302 Make_Pragma_Argument_Association (Sloc (Expr),
2303 Expression => Relocate_Node (Expr))),
2304 Pragma_Name => Chars (Id));
2306 -- Linker_Section does not need delaying, as its argument
2307 -- must be a static string. Furthermore, if applied to
2308 -- an object with an explicit initialization, the object
2309 -- must be frozen in order to elaborate the initialization
2310 -- code. (This is already done for types with implicit
2311 -- initialization, such as protected types.)
2313 if A_Id = Aspect_Linker_Section
2314 and then Nkind (N) = N_Object_Declaration
2315 and then Has_Init_Expression (N)
2316 then
2317 Delay_Required := False;
2318 end if;
2320 -- Synchronization
2322 -- Corresponds to pragma Implemented, construct the pragma
2324 when Aspect_Synchronization =>
2325 Make_Aitem_Pragma
2326 (Pragma_Argument_Associations => New_List (
2327 Make_Pragma_Argument_Association (Loc,
2328 Expression => New_Occurrence_Of (E, Loc)),
2329 Make_Pragma_Argument_Association (Sloc (Expr),
2330 Expression => Relocate_Node (Expr))),
2331 Pragma_Name => Name_Implemented);
2333 -- Attach_Handler
2335 when Aspect_Attach_Handler =>
2336 Make_Aitem_Pragma
2337 (Pragma_Argument_Associations => New_List (
2338 Make_Pragma_Argument_Association (Sloc (Ent),
2339 Expression => Ent),
2340 Make_Pragma_Argument_Association (Sloc (Expr),
2341 Expression => Relocate_Node (Expr))),
2342 Pragma_Name => Name_Attach_Handler);
2344 -- We need to insert this pragma into the tree to get proper
2345 -- processing and to look valid from a placement viewpoint.
2347 Insert_Pragma (Aitem);
2348 goto Continue;
2350 -- Dynamic_Predicate, Predicate, Static_Predicate
2352 when Aspect_Dynamic_Predicate
2353 | Aspect_Predicate
2354 | Aspect_Static_Predicate
2356 -- These aspects apply only to subtypes
2358 if not Is_Type (E) then
2359 Error_Msg_N
2360 ("predicate can only be specified for a subtype",
2361 Aspect);
2362 goto Continue;
2364 elsif Is_Incomplete_Type (E) then
2365 Error_Msg_N
2366 ("predicate cannot apply to incomplete view", Aspect);
2367 goto Continue;
2368 end if;
2370 -- Construct the pragma (always a pragma Predicate, with
2371 -- flags recording whether it is static/dynamic). We also
2372 -- set flags recording this in the type itself.
2374 Make_Aitem_Pragma
2375 (Pragma_Argument_Associations => New_List (
2376 Make_Pragma_Argument_Association (Sloc (Ent),
2377 Expression => Ent),
2378 Make_Pragma_Argument_Association (Sloc (Expr),
2379 Expression => Relocate_Node (Expr))),
2380 Pragma_Name => Name_Predicate);
2382 -- Mark type has predicates, and remember what kind of
2383 -- aspect lead to this predicate (we need this to access
2384 -- the right set of check policies later on).
2386 Set_Has_Predicates (E);
2388 if A_Id = Aspect_Dynamic_Predicate then
2389 Set_Has_Dynamic_Predicate_Aspect (E);
2391 -- If the entity has a dynamic predicate, any inherited
2392 -- static predicate becomes dynamic as well, and the
2393 -- predicate function includes the conjunction of both.
2395 Set_Has_Static_Predicate_Aspect (E, False);
2397 elsif A_Id = Aspect_Static_Predicate then
2398 Set_Has_Static_Predicate_Aspect (E);
2399 end if;
2401 -- If the type is private, indicate that its completion
2402 -- has a freeze node, because that is the one that will
2403 -- be visible at freeze time.
2405 if Is_Private_Type (E) and then Present (Full_View (E)) then
2406 Set_Has_Predicates (Full_View (E));
2408 if A_Id = Aspect_Dynamic_Predicate then
2409 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
2410 elsif A_Id = Aspect_Static_Predicate then
2411 Set_Has_Static_Predicate_Aspect (Full_View (E));
2412 end if;
2414 Set_Has_Delayed_Aspects (Full_View (E));
2415 Ensure_Freeze_Node (Full_View (E));
2416 end if;
2418 -- Predicate_Failure
2420 when Aspect_Predicate_Failure =>
2422 -- This aspect applies only to subtypes
2424 if not Is_Type (E) then
2425 Error_Msg_N
2426 ("predicate can only be specified for a subtype",
2427 Aspect);
2428 goto Continue;
2430 elsif Is_Incomplete_Type (E) then
2431 Error_Msg_N
2432 ("predicate cannot apply to incomplete view", Aspect);
2433 goto Continue;
2434 end if;
2436 -- Construct the pragma
2438 Make_Aitem_Pragma
2439 (Pragma_Argument_Associations => New_List (
2440 Make_Pragma_Argument_Association (Sloc (Ent),
2441 Expression => Ent),
2442 Make_Pragma_Argument_Association (Sloc (Expr),
2443 Expression => Relocate_Node (Expr))),
2444 Pragma_Name => Name_Predicate_Failure);
2446 Set_Has_Predicates (E);
2448 -- If the type is private, indicate that its completion
2449 -- has a freeze node, because that is the one that will
2450 -- be visible at freeze time.
2452 if Is_Private_Type (E) and then Present (Full_View (E)) then
2453 Set_Has_Predicates (Full_View (E));
2454 Set_Has_Delayed_Aspects (Full_View (E));
2455 Ensure_Freeze_Node (Full_View (E));
2456 end if;
2458 -- Case 2b: Aspects corresponding to pragmas with two
2459 -- arguments, where the second argument is a local name
2460 -- referring to the entity, and the first argument is the
2461 -- aspect definition expression.
2463 -- Convention
2465 when Aspect_Convention =>
2466 Analyze_Aspect_Convention;
2467 goto Continue;
2469 -- External_Name, Link_Name
2471 when Aspect_External_Name
2472 | Aspect_Link_Name
2474 Analyze_Aspect_External_Link_Name;
2475 goto Continue;
2477 -- CPU, Interrupt_Priority, Priority
2479 -- These three aspects can be specified for a subprogram spec
2480 -- or body, in which case we analyze the expression and export
2481 -- the value of the aspect.
2483 -- Previously, we generated an equivalent pragma for bodies
2484 -- (note that the specs cannot contain these pragmas). The
2485 -- pragma was inserted ahead of local declarations, rather than
2486 -- after the body. This leads to a certain duplication between
2487 -- the processing performed for the aspect and the pragma, but
2488 -- given the straightforward handling required it is simpler
2489 -- to duplicate than to translate the aspect in the spec into
2490 -- a pragma in the declarative part of the body.
2492 when Aspect_CPU
2493 | Aspect_Interrupt_Priority
2494 | Aspect_Priority
2496 if Nkind_In (N, N_Subprogram_Body,
2497 N_Subprogram_Declaration)
2498 then
2499 -- Analyze the aspect expression
2501 Analyze_And_Resolve (Expr, Standard_Integer);
2503 -- Interrupt_Priority aspect not allowed for main
2504 -- subprograms. RM D.1 does not forbid this explicitly,
2505 -- but RM J.15.11(6/3) does not permit pragma
2506 -- Interrupt_Priority for subprograms.
2508 if A_Id = Aspect_Interrupt_Priority then
2509 Error_Msg_N
2510 ("Interrupt_Priority aspect cannot apply to "
2511 & "subprogram", Expr);
2513 -- The expression must be static
2515 elsif not Is_OK_Static_Expression (Expr) then
2516 Flag_Non_Static_Expr
2517 ("aspect requires static expression!", Expr);
2519 -- Check whether this is the main subprogram. Issue a
2520 -- warning only if it is obviously not a main program
2521 -- (when it has parameters or when the subprogram is
2522 -- within a package).
2524 elsif Present (Parameter_Specifications
2525 (Specification (N)))
2526 or else not Is_Compilation_Unit (Defining_Entity (N))
2527 then
2528 -- See RM D.1(14/3) and D.16(12/3)
2530 Error_Msg_N
2531 ("aspect applied to subprogram other than the "
2532 & "main subprogram has no effect??", Expr);
2534 -- Otherwise check in range and export the value
2536 -- For the CPU aspect
2538 elsif A_Id = Aspect_CPU then
2539 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2541 -- Value is correct so we export the value to make
2542 -- it available at execution time.
2544 Set_Main_CPU
2545 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2547 else
2548 Error_Msg_N
2549 ("main subprogram CPU is out of range", Expr);
2550 end if;
2552 -- For the Priority aspect
2554 elsif A_Id = Aspect_Priority then
2555 if Is_In_Range (Expr, RTE (RE_Priority)) then
2557 -- Value is correct so we export the value to make
2558 -- it available at execution time.
2560 Set_Main_Priority
2561 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2563 -- Ignore pragma if Relaxed_RM_Semantics to support
2564 -- other targets/non GNAT compilers.
2566 elsif not Relaxed_RM_Semantics then
2567 Error_Msg_N
2568 ("main subprogram priority is out of range",
2569 Expr);
2570 end if;
2571 end if;
2573 -- Load an arbitrary entity from System.Tasking.Stages
2574 -- or System.Tasking.Restricted.Stages (depending on
2575 -- the supported profile) to make sure that one of these
2576 -- packages is implicitly with'ed, since we need to have
2577 -- the tasking run time active for the pragma Priority to
2578 -- have any effect. Previously we with'ed the package
2579 -- System.Tasking, but this package does not trigger the
2580 -- required initialization of the run-time library.
2582 declare
2583 Discard : Entity_Id;
2584 begin
2585 if Restricted_Profile then
2586 Discard := RTE (RE_Activate_Restricted_Tasks);
2587 else
2588 Discard := RTE (RE_Activate_Tasks);
2589 end if;
2590 end;
2592 -- Handling for these aspects in subprograms is complete
2594 goto Continue;
2596 -- For task and protected types pass the aspect as an
2597 -- attribute.
2599 else
2600 Aitem :=
2601 Make_Attribute_Definition_Clause (Loc,
2602 Name => Ent,
2603 Chars => Chars (Id),
2604 Expression => Relocate_Node (Expr));
2605 end if;
2607 -- Warnings
2609 when Aspect_Warnings =>
2610 Make_Aitem_Pragma
2611 (Pragma_Argument_Associations => New_List (
2612 Make_Pragma_Argument_Association (Sloc (Expr),
2613 Expression => Relocate_Node (Expr)),
2614 Make_Pragma_Argument_Association (Loc,
2615 Expression => New_Occurrence_Of (E, Loc))),
2616 Pragma_Name => Chars (Id));
2618 Decorate (Aspect, Aitem);
2619 Insert_Pragma (Aitem);
2620 goto Continue;
2622 -- Case 2c: Aspects corresponding to pragmas with three
2623 -- arguments.
2625 -- Invariant aspects have a first argument that references the
2626 -- entity, a second argument that is the expression and a third
2627 -- argument that is an appropriate message.
2629 -- Invariant, Type_Invariant
2631 when Aspect_Invariant
2632 | Aspect_Type_Invariant
2634 -- Analysis of the pragma will verify placement legality:
2635 -- an invariant must apply to a private type, or appear in
2636 -- the private part of a spec and apply to a completion.
2638 Make_Aitem_Pragma
2639 (Pragma_Argument_Associations => New_List (
2640 Make_Pragma_Argument_Association (Sloc (Ent),
2641 Expression => Ent),
2642 Make_Pragma_Argument_Association (Sloc (Expr),
2643 Expression => Relocate_Node (Expr))),
2644 Pragma_Name => Name_Invariant);
2646 -- Add message unless exception messages are suppressed
2648 if not Opt.Exception_Locations_Suppressed then
2649 Append_To (Pragma_Argument_Associations (Aitem),
2650 Make_Pragma_Argument_Association (Eloc,
2651 Chars => Name_Message,
2652 Expression =>
2653 Make_String_Literal (Eloc,
2654 Strval => "failed invariant from "
2655 & Build_Location_String (Eloc))));
2656 end if;
2658 -- For Invariant case, insert immediately after the entity
2659 -- declaration. We do not have to worry about delay issues
2660 -- since the pragma processing takes care of this.
2662 Delay_Required := False;
2664 -- Case 2d : Aspects that correspond to a pragma with one
2665 -- argument.
2667 -- Abstract_State
2669 -- Aspect Abstract_State introduces implicit declarations for
2670 -- all state abstraction entities it defines. To emulate this
2671 -- behavior, insert the pragma at the beginning of the visible
2672 -- declarations of the related package so that it is analyzed
2673 -- immediately.
2675 when Aspect_Abstract_State => Abstract_State : declare
2676 Context : Node_Id := N;
2678 begin
2679 -- When aspect Abstract_State appears on a generic package,
2680 -- it is propageted to the package instance. The context in
2681 -- this case is the instance spec.
2683 if Nkind (Context) = N_Package_Instantiation then
2684 Context := Instance_Spec (Context);
2685 end if;
2687 if Nkind_In (Context, N_Generic_Package_Declaration,
2688 N_Package_Declaration)
2689 then
2690 Make_Aitem_Pragma
2691 (Pragma_Argument_Associations => New_List (
2692 Make_Pragma_Argument_Association (Loc,
2693 Expression => Relocate_Node (Expr))),
2694 Pragma_Name => Name_Abstract_State);
2696 Decorate (Aspect, Aitem);
2697 Insert_Pragma
2698 (Prag => Aitem,
2699 Is_Instance =>
2700 Is_Generic_Instance (Defining_Entity (Context)));
2702 else
2703 Error_Msg_NE
2704 ("aspect & must apply to a package declaration",
2705 Aspect, Id);
2706 end if;
2708 goto Continue;
2709 end Abstract_State;
2711 -- Aspect Async_Readers is never delayed because it is
2712 -- equivalent to a source pragma which appears after the
2713 -- related object declaration.
2715 when Aspect_Async_Readers =>
2716 Make_Aitem_Pragma
2717 (Pragma_Argument_Associations => New_List (
2718 Make_Pragma_Argument_Association (Loc,
2719 Expression => Relocate_Node (Expr))),
2720 Pragma_Name => Name_Async_Readers);
2722 Decorate (Aspect, Aitem);
2723 Insert_Pragma (Aitem);
2724 goto Continue;
2726 -- Aspect Async_Writers is never delayed because it is
2727 -- equivalent to a source pragma which appears after the
2728 -- related object declaration.
2730 when Aspect_Async_Writers =>
2731 Make_Aitem_Pragma
2732 (Pragma_Argument_Associations => New_List (
2733 Make_Pragma_Argument_Association (Loc,
2734 Expression => Relocate_Node (Expr))),
2735 Pragma_Name => Name_Async_Writers);
2737 Decorate (Aspect, Aitem);
2738 Insert_Pragma (Aitem);
2739 goto Continue;
2741 -- Aspect Constant_After_Elaboration is never delayed because
2742 -- it is equivalent to a source pragma which appears after the
2743 -- related object declaration.
2745 when Aspect_Constant_After_Elaboration =>
2746 Make_Aitem_Pragma
2747 (Pragma_Argument_Associations => New_List (
2748 Make_Pragma_Argument_Association (Loc,
2749 Expression => Relocate_Node (Expr))),
2750 Pragma_Name =>
2751 Name_Constant_After_Elaboration);
2753 Decorate (Aspect, Aitem);
2754 Insert_Pragma (Aitem);
2755 goto Continue;
2757 -- Aspect Default_Internal_Condition is never delayed because
2758 -- it is equivalent to a source pragma which appears after the
2759 -- related private type. To deal with forward references, the
2760 -- generated pragma is stored in the rep chain of the related
2761 -- private type as types do not carry contracts. The pragma is
2762 -- wrapped inside of a procedure at the freeze point of the
2763 -- private type's full view.
2765 when Aspect_Default_Initial_Condition =>
2766 Make_Aitem_Pragma
2767 (Pragma_Argument_Associations => New_List (
2768 Make_Pragma_Argument_Association (Loc,
2769 Expression => Relocate_Node (Expr))),
2770 Pragma_Name =>
2771 Name_Default_Initial_Condition);
2773 Decorate (Aspect, Aitem);
2774 Insert_Pragma (Aitem);
2775 goto Continue;
2777 -- Default_Storage_Pool
2779 when Aspect_Default_Storage_Pool =>
2780 Make_Aitem_Pragma
2781 (Pragma_Argument_Associations => New_List (
2782 Make_Pragma_Argument_Association (Loc,
2783 Expression => Relocate_Node (Expr))),
2784 Pragma_Name =>
2785 Name_Default_Storage_Pool);
2787 Decorate (Aspect, Aitem);
2788 Insert_Pragma (Aitem);
2789 goto Continue;
2791 -- Depends
2793 -- Aspect Depends is never delayed because it is equivalent to
2794 -- a source pragma which appears after the related subprogram.
2795 -- To deal with forward references, the generated pragma is
2796 -- stored in the contract of the related subprogram and later
2797 -- analyzed at the end of the declarative region. See routine
2798 -- Analyze_Depends_In_Decl_Part for details.
2800 when Aspect_Depends =>
2801 Make_Aitem_Pragma
2802 (Pragma_Argument_Associations => New_List (
2803 Make_Pragma_Argument_Association (Loc,
2804 Expression => Relocate_Node (Expr))),
2805 Pragma_Name => Name_Depends);
2807 Decorate (Aspect, Aitem);
2808 Insert_Pragma (Aitem);
2809 goto Continue;
2811 -- Aspect Effecitve_Reads is never delayed because it is
2812 -- equivalent to a source pragma which appears after the
2813 -- related object declaration.
2815 when Aspect_Effective_Reads =>
2816 Make_Aitem_Pragma
2817 (Pragma_Argument_Associations => New_List (
2818 Make_Pragma_Argument_Association (Loc,
2819 Expression => Relocate_Node (Expr))),
2820 Pragma_Name => Name_Effective_Reads);
2822 Decorate (Aspect, Aitem);
2823 Insert_Pragma (Aitem);
2824 goto Continue;
2826 -- Aspect Effective_Writes is never delayed because it is
2827 -- equivalent to a source pragma which appears after the
2828 -- related object declaration.
2830 when Aspect_Effective_Writes =>
2831 Make_Aitem_Pragma
2832 (Pragma_Argument_Associations => New_List (
2833 Make_Pragma_Argument_Association (Loc,
2834 Expression => Relocate_Node (Expr))),
2835 Pragma_Name => Name_Effective_Writes);
2837 Decorate (Aspect, Aitem);
2838 Insert_Pragma (Aitem);
2839 goto Continue;
2841 -- Aspect Extensions_Visible is never delayed because it is
2842 -- equivalent to a source pragma which appears after the
2843 -- related subprogram.
2845 when Aspect_Extensions_Visible =>
2846 Make_Aitem_Pragma
2847 (Pragma_Argument_Associations => New_List (
2848 Make_Pragma_Argument_Association (Loc,
2849 Expression => Relocate_Node (Expr))),
2850 Pragma_Name => Name_Extensions_Visible);
2852 Decorate (Aspect, Aitem);
2853 Insert_Pragma (Aitem);
2854 goto Continue;
2856 -- Aspect Ghost is never delayed because it is equivalent to a
2857 -- source pragma which appears at the top of [generic] package
2858 -- declarations or after an object, a [generic] subprogram, or
2859 -- a type declaration.
2861 when Aspect_Ghost =>
2862 Make_Aitem_Pragma
2863 (Pragma_Argument_Associations => New_List (
2864 Make_Pragma_Argument_Association (Loc,
2865 Expression => Relocate_Node (Expr))),
2866 Pragma_Name => Name_Ghost);
2868 Decorate (Aspect, Aitem);
2869 Insert_Pragma (Aitem);
2870 goto Continue;
2872 -- Global
2874 -- Aspect Global is never delayed because it is equivalent to
2875 -- a source pragma which appears after the related subprogram.
2876 -- To deal with forward references, the generated pragma is
2877 -- stored in the contract of the related subprogram and later
2878 -- analyzed at the end of the declarative region. See routine
2879 -- Analyze_Global_In_Decl_Part for details.
2881 when Aspect_Global =>
2882 Make_Aitem_Pragma
2883 (Pragma_Argument_Associations => New_List (
2884 Make_Pragma_Argument_Association (Loc,
2885 Expression => Relocate_Node (Expr))),
2886 Pragma_Name => Name_Global);
2888 Decorate (Aspect, Aitem);
2889 Insert_Pragma (Aitem);
2890 goto Continue;
2892 -- Initial_Condition
2894 -- Aspect Initial_Condition is never delayed because it is
2895 -- equivalent to a source pragma which appears after the
2896 -- related package. To deal with forward references, the
2897 -- generated pragma is stored in the contract of the related
2898 -- package and later analyzed at the end of the declarative
2899 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2900 -- for details.
2902 when Aspect_Initial_Condition => Initial_Condition : declare
2903 Context : Node_Id := N;
2905 begin
2906 -- When aspect Initial_Condition appears on a generic
2907 -- package, it is propageted to the package instance. The
2908 -- context in this case is the instance spec.
2910 if Nkind (Context) = N_Package_Instantiation then
2911 Context := Instance_Spec (Context);
2912 end if;
2914 if Nkind_In (Context, N_Generic_Package_Declaration,
2915 N_Package_Declaration)
2916 then
2917 Make_Aitem_Pragma
2918 (Pragma_Argument_Associations => New_List (
2919 Make_Pragma_Argument_Association (Loc,
2920 Expression => Relocate_Node (Expr))),
2921 Pragma_Name =>
2922 Name_Initial_Condition);
2924 Decorate (Aspect, Aitem);
2925 Insert_Pragma
2926 (Prag => Aitem,
2927 Is_Instance =>
2928 Is_Generic_Instance (Defining_Entity (Context)));
2930 -- Otherwise the context is illegal
2932 else
2933 Error_Msg_NE
2934 ("aspect & must apply to a package declaration",
2935 Aspect, Id);
2936 end if;
2938 goto Continue;
2939 end Initial_Condition;
2941 -- Initializes
2943 -- Aspect Initializes is never delayed because it is equivalent
2944 -- to a source pragma appearing after the related package. To
2945 -- deal with forward references, the generated pragma is stored
2946 -- in the contract of the related package and later analyzed at
2947 -- the end of the declarative region. For details, see routine
2948 -- Analyze_Initializes_In_Decl_Part.
2950 when Aspect_Initializes => Initializes : declare
2951 Context : Node_Id := N;
2953 begin
2954 -- When aspect Initializes appears on a generic package,
2955 -- it is propageted to the package instance. The context
2956 -- in this case is the instance spec.
2958 if Nkind (Context) = N_Package_Instantiation then
2959 Context := Instance_Spec (Context);
2960 end if;
2962 if Nkind_In (Context, N_Generic_Package_Declaration,
2963 N_Package_Declaration)
2964 then
2965 Make_Aitem_Pragma
2966 (Pragma_Argument_Associations => New_List (
2967 Make_Pragma_Argument_Association (Loc,
2968 Expression => Relocate_Node (Expr))),
2969 Pragma_Name => Name_Initializes);
2971 Decorate (Aspect, Aitem);
2972 Insert_Pragma
2973 (Prag => Aitem,
2974 Is_Instance =>
2975 Is_Generic_Instance (Defining_Entity (Context)));
2977 -- Otherwise the context is illegal
2979 else
2980 Error_Msg_NE
2981 ("aspect & must apply to a package declaration",
2982 Aspect, Id);
2983 end if;
2985 goto Continue;
2986 end Initializes;
2988 -- Max_Queue_Length
2990 when Aspect_Max_Queue_Length =>
2991 Make_Aitem_Pragma
2992 (Pragma_Argument_Associations => New_List (
2993 Make_Pragma_Argument_Association (Loc,
2994 Expression => Relocate_Node (Expr))),
2995 Pragma_Name => Name_Max_Queue_Length);
2997 Decorate (Aspect, Aitem);
2998 Insert_Pragma (Aitem);
2999 goto Continue;
3001 -- Obsolescent
3003 when Aspect_Obsolescent => declare
3004 Args : List_Id;
3006 begin
3007 if No (Expr) then
3008 Args := No_List;
3009 else
3010 Args := New_List (
3011 Make_Pragma_Argument_Association (Sloc (Expr),
3012 Expression => Relocate_Node (Expr)));
3013 end if;
3015 Make_Aitem_Pragma
3016 (Pragma_Argument_Associations => Args,
3017 Pragma_Name => Chars (Id));
3018 end;
3020 -- Part_Of
3022 when Aspect_Part_Of =>
3023 if Nkind_In (N, N_Object_Declaration,
3024 N_Package_Instantiation)
3025 or else Is_Single_Concurrent_Type_Declaration (N)
3026 then
3027 Make_Aitem_Pragma
3028 (Pragma_Argument_Associations => New_List (
3029 Make_Pragma_Argument_Association (Loc,
3030 Expression => Relocate_Node (Expr))),
3031 Pragma_Name => Name_Part_Of);
3033 Decorate (Aspect, Aitem);
3034 Insert_Pragma (Aitem);
3036 else
3037 Error_Msg_NE
3038 ("aspect & must apply to package instantiation, "
3039 & "object, single protected type or single task type",
3040 Aspect, Id);
3041 end if;
3043 goto Continue;
3045 -- SPARK_Mode
3047 when Aspect_SPARK_Mode =>
3048 Make_Aitem_Pragma
3049 (Pragma_Argument_Associations => New_List (
3050 Make_Pragma_Argument_Association (Loc,
3051 Expression => Relocate_Node (Expr))),
3052 Pragma_Name => Name_SPARK_Mode);
3054 Decorate (Aspect, Aitem);
3055 Insert_Pragma (Aitem);
3056 goto Continue;
3058 -- Refined_Depends
3060 -- Aspect Refined_Depends is never delayed because it is
3061 -- equivalent to a source pragma which appears in the
3062 -- declarations of the related subprogram body. To deal with
3063 -- forward references, the generated pragma is stored in the
3064 -- contract of the related subprogram body and later analyzed
3065 -- at the end of the declarative region. For details, see
3066 -- routine Analyze_Refined_Depends_In_Decl_Part.
3068 when Aspect_Refined_Depends =>
3069 Make_Aitem_Pragma
3070 (Pragma_Argument_Associations => New_List (
3071 Make_Pragma_Argument_Association (Loc,
3072 Expression => Relocate_Node (Expr))),
3073 Pragma_Name => Name_Refined_Depends);
3075 Decorate (Aspect, Aitem);
3076 Insert_Pragma (Aitem);
3077 goto Continue;
3079 -- Refined_Global
3081 -- Aspect Refined_Global is never delayed because it is
3082 -- equivalent to a source pragma which appears in the
3083 -- declarations of the related subprogram body. To deal with
3084 -- forward references, the generated pragma is stored in the
3085 -- contract of the related subprogram body and later analyzed
3086 -- at the end of the declarative region. For details, see
3087 -- routine Analyze_Refined_Global_In_Decl_Part.
3089 when Aspect_Refined_Global =>
3090 Make_Aitem_Pragma
3091 (Pragma_Argument_Associations => New_List (
3092 Make_Pragma_Argument_Association (Loc,
3093 Expression => Relocate_Node (Expr))),
3094 Pragma_Name => Name_Refined_Global);
3096 Decorate (Aspect, Aitem);
3097 Insert_Pragma (Aitem);
3098 goto Continue;
3100 -- Refined_Post
3102 when Aspect_Refined_Post =>
3103 Make_Aitem_Pragma
3104 (Pragma_Argument_Associations => New_List (
3105 Make_Pragma_Argument_Association (Loc,
3106 Expression => Relocate_Node (Expr))),
3107 Pragma_Name => Name_Refined_Post);
3109 Decorate (Aspect, Aitem);
3110 Insert_Pragma (Aitem);
3111 goto Continue;
3113 -- Refined_State
3115 when Aspect_Refined_State =>
3117 -- The corresponding pragma for Refined_State is inserted in
3118 -- the declarations of the related package body. This action
3119 -- synchronizes both the source and from-aspect versions of
3120 -- the pragma.
3122 if Nkind (N) = N_Package_Body then
3123 Make_Aitem_Pragma
3124 (Pragma_Argument_Associations => New_List (
3125 Make_Pragma_Argument_Association (Loc,
3126 Expression => Relocate_Node (Expr))),
3127 Pragma_Name => Name_Refined_State);
3129 Decorate (Aspect, Aitem);
3130 Insert_Pragma (Aitem);
3132 -- Otherwise the context is illegal
3134 else
3135 Error_Msg_NE
3136 ("aspect & must apply to a package body", Aspect, Id);
3137 end if;
3139 goto Continue;
3141 -- Relative_Deadline
3143 when Aspect_Relative_Deadline =>
3144 Make_Aitem_Pragma
3145 (Pragma_Argument_Associations => New_List (
3146 Make_Pragma_Argument_Association (Loc,
3147 Expression => Relocate_Node (Expr))),
3148 Pragma_Name => Name_Relative_Deadline);
3150 -- If the aspect applies to a task, the corresponding pragma
3151 -- must appear within its declarations, not after.
3153 if Nkind (N) = N_Task_Type_Declaration then
3154 declare
3155 Def : Node_Id;
3156 V : List_Id;
3158 begin
3159 if No (Task_Definition (N)) then
3160 Set_Task_Definition (N,
3161 Make_Task_Definition (Loc,
3162 Visible_Declarations => New_List,
3163 End_Label => Empty));
3164 end if;
3166 Def := Task_Definition (N);
3167 V := Visible_Declarations (Def);
3168 if not Is_Empty_List (V) then
3169 Insert_Before (First (V), Aitem);
3171 else
3172 Set_Visible_Declarations (Def, New_List (Aitem));
3173 end if;
3175 goto Continue;
3176 end;
3177 end if;
3179 -- Aspect Volatile_Function is never delayed because it is
3180 -- equivalent to a source pragma which appears after the
3181 -- related subprogram.
3183 when Aspect_Volatile_Function =>
3184 Make_Aitem_Pragma
3185 (Pragma_Argument_Associations => New_List (
3186 Make_Pragma_Argument_Association (Loc,
3187 Expression => Relocate_Node (Expr))),
3188 Pragma_Name => Name_Volatile_Function);
3190 Decorate (Aspect, Aitem);
3191 Insert_Pragma (Aitem);
3192 goto Continue;
3194 -- Case 2e: Annotate aspect
3196 when Aspect_Annotate =>
3197 declare
3198 Args : List_Id;
3199 Pargs : List_Id;
3200 Arg : Node_Id;
3202 begin
3203 -- The argument can be a single identifier
3205 if Nkind (Expr) = N_Identifier then
3207 -- One level of parens is allowed
3209 if Paren_Count (Expr) > 1 then
3210 Error_Msg_F ("extra parentheses ignored", Expr);
3211 end if;
3213 Set_Paren_Count (Expr, 0);
3215 -- Add the single item to the list
3217 Args := New_List (Expr);
3219 -- Otherwise we must have an aggregate
3221 elsif Nkind (Expr) = N_Aggregate then
3223 -- Must be positional
3225 if Present (Component_Associations (Expr)) then
3226 Error_Msg_F
3227 ("purely positional aggregate required", Expr);
3228 goto Continue;
3229 end if;
3231 -- Must not be parenthesized
3233 if Paren_Count (Expr) /= 0 then
3234 Error_Msg_F ("extra parentheses ignored", Expr);
3235 end if;
3237 -- List of arguments is list of aggregate expressions
3239 Args := Expressions (Expr);
3241 -- Anything else is illegal
3243 else
3244 Error_Msg_F ("wrong form for Annotate aspect", Expr);
3245 goto Continue;
3246 end if;
3248 -- Prepare pragma arguments
3250 Pargs := New_List;
3251 Arg := First (Args);
3252 while Present (Arg) loop
3253 Append_To (Pargs,
3254 Make_Pragma_Argument_Association (Sloc (Arg),
3255 Expression => Relocate_Node (Arg)));
3256 Next (Arg);
3257 end loop;
3259 Append_To (Pargs,
3260 Make_Pragma_Argument_Association (Sloc (Ent),
3261 Chars => Name_Entity,
3262 Expression => Ent));
3264 Make_Aitem_Pragma
3265 (Pragma_Argument_Associations => Pargs,
3266 Pragma_Name => Name_Annotate);
3267 end;
3269 -- Case 3 : Aspects that don't correspond to pragma/attribute
3270 -- definition clause.
3272 -- Case 3a: The aspects listed below don't correspond to
3273 -- pragmas/attributes but do require delayed analysis.
3275 -- Default_Value can only apply to a scalar type
3277 when Aspect_Default_Value =>
3278 if not Is_Scalar_Type (E) then
3279 Error_Msg_N
3280 ("aspect Default_Value must apply to a scalar type", N);
3281 end if;
3283 Aitem := Empty;
3285 -- Default_Component_Value can only apply to an array type
3286 -- with scalar components.
3288 when Aspect_Default_Component_Value =>
3289 if not (Is_Array_Type (E)
3290 and then Is_Scalar_Type (Component_Type (E)))
3291 then
3292 Error_Msg_N
3293 ("aspect Default_Component_Value can only apply to an "
3294 & "array of scalar components", N);
3295 end if;
3297 Aitem := Empty;
3299 -- Case 3b: The aspects listed below don't correspond to
3300 -- pragmas/attributes and don't need delayed analysis.
3302 -- Implicit_Dereference
3304 -- For Implicit_Dereference, External_Name and Link_Name, only
3305 -- the legality checks are done during the analysis, thus no
3306 -- delay is required.
3308 when Aspect_Implicit_Dereference =>
3309 Analyze_Aspect_Implicit_Dereference;
3310 goto Continue;
3312 -- Dimension
3314 when Aspect_Dimension =>
3315 Analyze_Aspect_Dimension (N, Id, Expr);
3316 goto Continue;
3318 -- Dimension_System
3320 when Aspect_Dimension_System =>
3321 Analyze_Aspect_Dimension_System (N, Id, Expr);
3322 goto Continue;
3324 -- Case 4: Aspects requiring special handling
3326 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
3327 -- pragmas take care of the delay.
3329 -- Pre/Post
3331 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
3332 -- with a first argument that is the expression, and a second
3333 -- argument that is an informative message if the test fails.
3334 -- This is inserted right after the declaration, to get the
3335 -- required pragma placement. The processing for the pragmas
3336 -- takes care of the required delay.
3338 when Pre_Post_Aspects => Pre_Post : declare
3339 Pname : Name_Id;
3341 begin
3342 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
3343 Pname := Name_Precondition;
3344 else
3345 Pname := Name_Postcondition;
3346 end if;
3348 -- Check that the class-wide predicate cannot be applied to
3349 -- an operation of a synchronized type. AI12-0182 forbids
3350 -- these altogether, while earlier language semantics made
3351 -- them legal on tagged synchronized types.
3353 -- Other legality checks are performed when analyzing the
3354 -- contract of the operation.
3356 if Class_Present (Aspect)
3357 and then Is_Concurrent_Type (Current_Scope)
3358 and then Ekind_In (E, E_Entry, E_Function, E_Procedure)
3359 then
3360 Error_Msg_Name_1 := Original_Aspect_Pragma_Name (Aspect);
3361 Error_Msg_N
3362 ("aspect % can only be specified for a primitive "
3363 & "operation of a tagged type", Aspect);
3365 goto Continue;
3366 end if;
3368 -- If the expressions is of the form A and then B, then
3369 -- we generate separate Pre/Post aspects for the separate
3370 -- clauses. Since we allow multiple pragmas, there is no
3371 -- problem in allowing multiple Pre/Post aspects internally.
3372 -- These should be treated in reverse order (B first and
3373 -- A second) since they are later inserted just after N in
3374 -- the order they are treated. This way, the pragma for A
3375 -- ends up preceding the pragma for B, which may have an
3376 -- importance for the error raised (either constraint error
3377 -- or precondition error).
3379 -- We do not do this for Pre'Class, since we have to put
3380 -- these conditions together in a complex OR expression.
3382 -- We do not do this in ASIS mode, as ASIS relies on the
3383 -- original node representing the complete expression, when
3384 -- retrieving it through the source aspect table.
3386 if not ASIS_Mode
3387 and then (Pname = Name_Postcondition
3388 or else not Class_Present (Aspect))
3389 then
3390 while Nkind (Expr) = N_And_Then loop
3391 Insert_After (Aspect,
3392 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
3393 Identifier => Identifier (Aspect),
3394 Expression => Relocate_Node (Left_Opnd (Expr)),
3395 Class_Present => Class_Present (Aspect),
3396 Split_PPC => True));
3397 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
3398 Eloc := Sloc (Expr);
3399 end loop;
3400 end if;
3402 -- Build the precondition/postcondition pragma
3404 -- Add note about why we do NOT need Copy_Tree here???
3406 Make_Aitem_Pragma
3407 (Pragma_Argument_Associations => New_List (
3408 Make_Pragma_Argument_Association (Eloc,
3409 Chars => Name_Check,
3410 Expression => Relocate_Node (Expr))),
3411 Pragma_Name => Pname);
3413 -- Add message unless exception messages are suppressed
3415 if not Opt.Exception_Locations_Suppressed then
3416 Append_To (Pragma_Argument_Associations (Aitem),
3417 Make_Pragma_Argument_Association (Eloc,
3418 Chars => Name_Message,
3419 Expression =>
3420 Make_String_Literal (Eloc,
3421 Strval => "failed "
3422 & Get_Name_String (Pname)
3423 & " from "
3424 & Build_Location_String (Eloc))));
3425 end if;
3427 Set_Is_Delayed_Aspect (Aspect);
3429 -- For Pre/Post cases, insert immediately after the entity
3430 -- declaration, since that is the required pragma placement.
3431 -- Note that for these aspects, we do not have to worry
3432 -- about delay issues, since the pragmas themselves deal
3433 -- with delay of visibility for the expression analysis.
3435 Insert_Pragma (Aitem);
3437 goto Continue;
3438 end Pre_Post;
3440 -- Test_Case
3442 when Aspect_Test_Case => Test_Case : declare
3443 Args : List_Id;
3444 Comp_Expr : Node_Id;
3445 Comp_Assn : Node_Id;
3446 New_Expr : Node_Id;
3448 begin
3449 Args := New_List;
3451 if Nkind (Parent (N)) = N_Compilation_Unit then
3452 Error_Msg_Name_1 := Nam;
3453 Error_Msg_N ("incorrect placement of aspect `%`", E);
3454 goto Continue;
3455 end if;
3457 if Nkind (Expr) /= N_Aggregate then
3458 Error_Msg_Name_1 := Nam;
3459 Error_Msg_NE
3460 ("wrong syntax for aspect `%` for &", Id, E);
3461 goto Continue;
3462 end if;
3464 -- Make pragma expressions refer to the original aspect
3465 -- expressions through the Original_Node link. This is used
3466 -- in semantic analysis for ASIS mode, so that the original
3467 -- expression also gets analyzed.
3469 Comp_Expr := First (Expressions (Expr));
3470 while Present (Comp_Expr) loop
3471 New_Expr := Relocate_Node (Comp_Expr);
3472 Append_To (Args,
3473 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
3474 Expression => New_Expr));
3475 Next (Comp_Expr);
3476 end loop;
3478 Comp_Assn := First (Component_Associations (Expr));
3479 while Present (Comp_Assn) loop
3480 if List_Length (Choices (Comp_Assn)) /= 1
3481 or else
3482 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
3483 then
3484 Error_Msg_Name_1 := Nam;
3485 Error_Msg_NE
3486 ("wrong syntax for aspect `%` for &", Id, E);
3487 goto Continue;
3488 end if;
3490 Append_To (Args,
3491 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
3492 Chars => Chars (First (Choices (Comp_Assn))),
3493 Expression =>
3494 Relocate_Node (Expression (Comp_Assn))));
3495 Next (Comp_Assn);
3496 end loop;
3498 -- Build the test-case pragma
3500 Make_Aitem_Pragma
3501 (Pragma_Argument_Associations => Args,
3502 Pragma_Name => Nam);
3503 end Test_Case;
3505 -- Contract_Cases
3507 when Aspect_Contract_Cases =>
3508 Make_Aitem_Pragma
3509 (Pragma_Argument_Associations => New_List (
3510 Make_Pragma_Argument_Association (Loc,
3511 Expression => Relocate_Node (Expr))),
3512 Pragma_Name => Nam);
3514 Decorate (Aspect, Aitem);
3515 Insert_Pragma (Aitem);
3516 goto Continue;
3518 -- Case 5: Special handling for aspects with an optional
3519 -- boolean argument.
3521 -- In the delayed case, the corresponding pragma cannot be
3522 -- generated yet because the evaluation of the boolean needs
3523 -- to be delayed till the freeze point.
3525 when Boolean_Aspects
3526 | Library_Unit_Aspects
3528 Set_Is_Boolean_Aspect (Aspect);
3530 -- Lock_Free aspect only apply to protected objects
3532 if A_Id = Aspect_Lock_Free then
3533 if Ekind (E) /= E_Protected_Type then
3534 Error_Msg_Name_1 := Nam;
3535 Error_Msg_N
3536 ("aspect % only applies to a protected object",
3537 Aspect);
3539 else
3540 -- Set the Uses_Lock_Free flag to True if there is no
3541 -- expression or if the expression is True. The
3542 -- evaluation of this aspect should be delayed to the
3543 -- freeze point (why???)
3545 if No (Expr)
3546 or else Is_True (Static_Boolean (Expr))
3547 then
3548 Set_Uses_Lock_Free (E);
3549 end if;
3551 Record_Rep_Item (E, Aspect);
3552 end if;
3554 goto Continue;
3556 elsif A_Id = Aspect_Export or else A_Id = Aspect_Import then
3557 Analyze_Aspect_Export_Import;
3559 -- Disable_Controlled
3561 elsif A_Id = Aspect_Disable_Controlled then
3562 Analyze_Aspect_Disable_Controlled;
3563 goto Continue;
3564 end if;
3566 -- Library unit aspects require special handling in the case
3567 -- of a package declaration, the pragma needs to be inserted
3568 -- in the list of declarations for the associated package.
3569 -- There is no issue of visibility delay for these aspects.
3571 if A_Id in Library_Unit_Aspects
3572 and then
3573 Nkind_In (N, N_Package_Declaration,
3574 N_Generic_Package_Declaration)
3575 and then Nkind (Parent (N)) /= N_Compilation_Unit
3577 -- Aspect is legal on a local instantiation of a library-
3578 -- level generic unit.
3580 and then not Is_Generic_Instance (Defining_Entity (N))
3581 then
3582 Error_Msg_N
3583 ("incorrect context for library unit aspect&", Id);
3584 goto Continue;
3585 end if;
3587 -- Cases where we do not delay, includes all cases where the
3588 -- expression is missing other than the above cases.
3590 if not Delay_Required or else No (Expr) then
3592 -- Exclude aspects Export and Import because their pragma
3593 -- syntax does not map directly to a Boolean aspect.
3595 if A_Id /= Aspect_Export
3596 and then A_Id /= Aspect_Import
3597 then
3598 Make_Aitem_Pragma
3599 (Pragma_Argument_Associations => New_List (
3600 Make_Pragma_Argument_Association (Sloc (Ent),
3601 Expression => Ent)),
3602 Pragma_Name => Chars (Id));
3603 end if;
3605 Delay_Required := False;
3607 -- In general cases, the corresponding pragma/attribute
3608 -- definition clause will be inserted later at the freezing
3609 -- point, and we do not need to build it now.
3611 else
3612 Aitem := Empty;
3613 end if;
3615 -- Storage_Size
3617 -- This is special because for access types we need to generate
3618 -- an attribute definition clause. This also works for single
3619 -- task declarations, but it does not work for task type
3620 -- declarations, because we have the case where the expression
3621 -- references a discriminant of the task type. That can't use
3622 -- an attribute definition clause because we would not have
3623 -- visibility on the discriminant. For that case we must
3624 -- generate a pragma in the task definition.
3626 when Aspect_Storage_Size =>
3628 -- Task type case
3630 if Ekind (E) = E_Task_Type then
3631 declare
3632 Decl : constant Node_Id := Declaration_Node (E);
3634 begin
3635 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3637 -- If no task definition, create one
3639 if No (Task_Definition (Decl)) then
3640 Set_Task_Definition (Decl,
3641 Make_Task_Definition (Loc,
3642 Visible_Declarations => Empty_List,
3643 End_Label => Empty));
3644 end if;
3646 -- Create a pragma and put it at the start of the task
3647 -- definition for the task type declaration.
3649 Make_Aitem_Pragma
3650 (Pragma_Argument_Associations => New_List (
3651 Make_Pragma_Argument_Association (Loc,
3652 Expression => Relocate_Node (Expr))),
3653 Pragma_Name => Name_Storage_Size);
3655 Prepend
3656 (Aitem,
3657 Visible_Declarations (Task_Definition (Decl)));
3658 goto Continue;
3659 end;
3661 -- All other cases, generate attribute definition
3663 else
3664 Aitem :=
3665 Make_Attribute_Definition_Clause (Loc,
3666 Name => Ent,
3667 Chars => Chars (Id),
3668 Expression => Relocate_Node (Expr));
3669 end if;
3670 end case;
3672 -- Attach the corresponding pragma/attribute definition clause to
3673 -- the aspect specification node.
3675 if Present (Aitem) then
3676 Set_From_Aspect_Specification (Aitem);
3677 end if;
3679 -- In the context of a compilation unit, we directly put the
3680 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3681 -- node (no delay is required here) except for aspects on a
3682 -- subprogram body (see below) and a generic package, for which we
3683 -- need to introduce the pragma before building the generic copy
3684 -- (see sem_ch12), and for package instantiations, where the
3685 -- library unit pragmas are better handled early.
3687 if Nkind (Parent (N)) = N_Compilation_Unit
3688 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3689 then
3690 declare
3691 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
3693 begin
3694 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
3696 -- For a Boolean aspect, create the corresponding pragma if
3697 -- no expression or if the value is True.
3699 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
3700 if Is_True (Static_Boolean (Expr)) then
3701 Make_Aitem_Pragma
3702 (Pragma_Argument_Associations => New_List (
3703 Make_Pragma_Argument_Association (Sloc (Ent),
3704 Expression => Ent)),
3705 Pragma_Name => Chars (Id));
3707 Set_From_Aspect_Specification (Aitem, True);
3708 Set_Corresponding_Aspect (Aitem, Aspect);
3710 else
3711 goto Continue;
3712 end if;
3713 end if;
3715 -- If the aspect is on a subprogram body (relevant aspect
3716 -- is Inline), add the pragma in front of the declarations.
3718 if Nkind (N) = N_Subprogram_Body then
3719 if No (Declarations (N)) then
3720 Set_Declarations (N, New_List);
3721 end if;
3723 Prepend (Aitem, Declarations (N));
3725 elsif Nkind (N) = N_Generic_Package_Declaration then
3726 if No (Visible_Declarations (Specification (N))) then
3727 Set_Visible_Declarations (Specification (N), New_List);
3728 end if;
3730 Prepend (Aitem,
3731 Visible_Declarations (Specification (N)));
3733 elsif Nkind (N) = N_Package_Instantiation then
3734 declare
3735 Spec : constant Node_Id :=
3736 Specification (Instance_Spec (N));
3737 begin
3738 if No (Visible_Declarations (Spec)) then
3739 Set_Visible_Declarations (Spec, New_List);
3740 end if;
3742 Prepend (Aitem, Visible_Declarations (Spec));
3743 end;
3745 else
3746 if No (Pragmas_After (Aux)) then
3747 Set_Pragmas_After (Aux, New_List);
3748 end if;
3750 Append (Aitem, Pragmas_After (Aux));
3751 end if;
3753 goto Continue;
3754 end;
3755 end if;
3757 -- The evaluation of the aspect is delayed to the freezing point.
3758 -- The pragma or attribute clause if there is one is then attached
3759 -- to the aspect specification which is put in the rep item list.
3761 if Delay_Required then
3762 if Present (Aitem) then
3763 Set_Is_Delayed_Aspect (Aitem);
3764 Set_Aspect_Rep_Item (Aspect, Aitem);
3765 Set_Parent (Aitem, Aspect);
3766 end if;
3768 Set_Is_Delayed_Aspect (Aspect);
3770 -- In the case of Default_Value, link the aspect to base type
3771 -- as well, even though it appears on a first subtype. This is
3772 -- mandated by the semantics of the aspect. Do not establish
3773 -- the link when processing the base type itself as this leads
3774 -- to a rep item circularity. Verify that we are dealing with
3775 -- a scalar type to prevent cascaded errors.
3777 if A_Id = Aspect_Default_Value
3778 and then Is_Scalar_Type (E)
3779 and then Base_Type (E) /= E
3780 then
3781 Set_Has_Delayed_Aspects (Base_Type (E));
3782 Record_Rep_Item (Base_Type (E), Aspect);
3783 end if;
3785 Set_Has_Delayed_Aspects (E);
3786 Record_Rep_Item (E, Aspect);
3788 -- When delay is not required and the context is a package or a
3789 -- subprogram body, insert the pragma in the body declarations.
3791 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
3792 if No (Declarations (N)) then
3793 Set_Declarations (N, New_List);
3794 end if;
3796 -- The pragma is added before source declarations
3798 Prepend_To (Declarations (N), Aitem);
3800 -- When delay is not required and the context is not a compilation
3801 -- unit, we simply insert the pragma/attribute definition clause
3802 -- in sequence.
3804 elsif Present (Aitem) then
3805 Insert_After (Ins_Node, Aitem);
3806 Ins_Node := Aitem;
3807 end if;
3808 end Analyze_One_Aspect;
3810 <<Continue>>
3811 Next (Aspect);
3812 end loop Aspect_Loop;
3814 if Has_Delayed_Aspects (E) then
3815 Ensure_Freeze_Node (E);
3816 end if;
3817 end Analyze_Aspect_Specifications;
3819 ---------------------------------------------------
3820 -- Analyze_Aspect_Specifications_On_Body_Or_Stub --
3821 ---------------------------------------------------
3823 procedure Analyze_Aspect_Specifications_On_Body_Or_Stub (N : Node_Id) is
3824 Body_Id : constant Entity_Id := Defining_Entity (N);
3826 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id);
3827 -- Body [stub] N has aspects, but they are not properly placed. Emit an
3828 -- error message depending on the aspects involved. Spec_Id denotes the
3829 -- entity of the corresponding spec.
3831 --------------------------------
3832 -- Diagnose_Misplaced_Aspects --
3833 --------------------------------
3835 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id) is
3836 procedure Misplaced_Aspect_Error
3837 (Asp : Node_Id;
3838 Ref_Nam : Name_Id);
3839 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3840 -- the name of the refined version of the aspect.
3842 ----------------------------
3843 -- Misplaced_Aspect_Error --
3844 ----------------------------
3846 procedure Misplaced_Aspect_Error
3847 (Asp : Node_Id;
3848 Ref_Nam : Name_Id)
3850 Asp_Nam : constant Name_Id := Chars (Identifier (Asp));
3851 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp_Nam);
3853 begin
3854 -- The corresponding spec already contains the aspect in question
3855 -- and the one appearing on the body must be the refined form:
3857 -- procedure P with Global ...;
3858 -- procedure P with Global ... is ... end P;
3859 -- ^
3860 -- Refined_Global
3862 if Has_Aspect (Spec_Id, Asp_Id) then
3863 Error_Msg_Name_1 := Asp_Nam;
3865 -- Subunits cannot carry aspects that apply to a subprogram
3866 -- declaration.
3868 if Nkind (Parent (N)) = N_Subunit then
3869 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
3871 -- Otherwise suggest the refined form
3873 else
3874 Error_Msg_Name_2 := Ref_Nam;
3875 Error_Msg_N ("aspect % should be %", Asp);
3876 end if;
3878 -- Otherwise the aspect must appear on the spec, not on the body
3880 -- procedure P;
3881 -- procedure P with Global ... is ... end P;
3883 else
3884 Error_Msg_N
3885 ("aspect specification must appear on initial declaration",
3886 Asp);
3887 end if;
3888 end Misplaced_Aspect_Error;
3890 -- Local variables
3892 Asp : Node_Id;
3893 Asp_Nam : Name_Id;
3895 -- Start of processing for Diagnose_Misplaced_Aspects
3897 begin
3898 -- Iterate over the aspect specifications and emit specific errors
3899 -- where applicable.
3901 Asp := First (Aspect_Specifications (N));
3902 while Present (Asp) loop
3903 Asp_Nam := Chars (Identifier (Asp));
3905 -- Do not emit errors on aspects that can appear on a subprogram
3906 -- body. This scenario occurs when the aspect specification list
3907 -- contains both misplaced and properly placed aspects.
3909 if Aspect_On_Body_Or_Stub_OK (Get_Aspect_Id (Asp_Nam)) then
3910 null;
3912 -- Special diagnostics for SPARK aspects
3914 elsif Asp_Nam = Name_Depends then
3915 Misplaced_Aspect_Error (Asp, Name_Refined_Depends);
3917 elsif Asp_Nam = Name_Global then
3918 Misplaced_Aspect_Error (Asp, Name_Refined_Global);
3920 elsif Asp_Nam = Name_Post then
3921 Misplaced_Aspect_Error (Asp, Name_Refined_Post);
3923 -- Otherwise a language-defined aspect is misplaced
3925 else
3926 Error_Msg_N
3927 ("aspect specification must appear on initial declaration",
3928 Asp);
3929 end if;
3931 Next (Asp);
3932 end loop;
3933 end Diagnose_Misplaced_Aspects;
3935 -- Local variables
3937 Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
3939 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
3941 begin
3942 -- Language-defined aspects cannot be associated with a subprogram body
3943 -- [stub] if the subprogram has a spec. Certain implementation defined
3944 -- aspects are allowed to break this rule (for all applicable cases, see
3945 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
3947 if Spec_Id /= Body_Id and then not Aspects_On_Body_Or_Stub_OK (N) then
3948 Diagnose_Misplaced_Aspects (Spec_Id);
3949 else
3950 Analyze_Aspect_Specifications (N, Body_Id);
3951 end if;
3952 end Analyze_Aspect_Specifications_On_Body_Or_Stub;
3954 -----------------------
3955 -- Analyze_At_Clause --
3956 -----------------------
3958 -- An at clause is replaced by the corresponding Address attribute
3959 -- definition clause that is the preferred approach in Ada 95.
3961 procedure Analyze_At_Clause (N : Node_Id) is
3962 CS : constant Boolean := Comes_From_Source (N);
3964 begin
3965 -- This is an obsolescent feature
3967 Check_Restriction (No_Obsolescent_Features, N);
3969 if Warn_On_Obsolescent_Feature then
3970 Error_Msg_N
3971 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
3972 Error_Msg_N
3973 ("\?j?use address attribute definition clause instead", N);
3974 end if;
3976 -- Rewrite as address clause
3978 Rewrite (N,
3979 Make_Attribute_Definition_Clause (Sloc (N),
3980 Name => Identifier (N),
3981 Chars => Name_Address,
3982 Expression => Expression (N)));
3984 -- We preserve Comes_From_Source, since logically the clause still comes
3985 -- from the source program even though it is changed in form.
3987 Set_Comes_From_Source (N, CS);
3989 -- Analyze rewritten clause
3991 Analyze_Attribute_Definition_Clause (N);
3992 end Analyze_At_Clause;
3994 -----------------------------------------
3995 -- Analyze_Attribute_Definition_Clause --
3996 -----------------------------------------
3998 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
3999 Loc : constant Source_Ptr := Sloc (N);
4000 Nam : constant Node_Id := Name (N);
4001 Attr : constant Name_Id := Chars (N);
4002 Expr : constant Node_Id := Expression (N);
4003 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
4005 Ent : Entity_Id;
4006 -- The entity of Nam after it is analyzed. In the case of an incomplete
4007 -- type, this is the underlying type.
4009 U_Ent : Entity_Id;
4010 -- The underlying entity to which the attribute applies. Generally this
4011 -- is the Underlying_Type of Ent, except in the case where the clause
4012 -- applies to the full view of an incomplete or private type, in which
4013 -- case U_Ent is just a copy of Ent.
4015 FOnly : Boolean := False;
4016 -- Reset to True for subtype specific attribute (Alignment, Size)
4017 -- and for stream attributes, i.e. those cases where in the call to
4018 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
4019 -- are checked. Note that the case of stream attributes is not clear
4020 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
4021 -- Storage_Size for derived task types, but that is also clearly
4022 -- unintentional.
4024 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
4025 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
4026 -- definition clauses.
4028 function Duplicate_Clause return Boolean;
4029 -- This routine checks if the aspect for U_Ent being given by attribute
4030 -- definition clause N is for an aspect that has already been specified,
4031 -- and if so gives an error message. If there is a duplicate, True is
4032 -- returned, otherwise if there is no error, False is returned.
4034 procedure Check_Indexing_Functions;
4035 -- Check that the function in Constant_Indexing or Variable_Indexing
4036 -- attribute has the proper type structure. If the name is overloaded,
4037 -- check that some interpretation is legal.
4039 procedure Check_Iterator_Functions;
4040 -- Check that there is a single function in Default_Iterator attribute
4041 -- that has the proper type structure.
4043 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
4044 -- Common legality check for the previous two
4046 -----------------------------------
4047 -- Analyze_Stream_TSS_Definition --
4048 -----------------------------------
4050 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
4051 Subp : Entity_Id := Empty;
4052 I : Interp_Index;
4053 It : Interp;
4054 Pnam : Entity_Id;
4056 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
4057 -- True for Read attribute, False for other attributes
4059 function Has_Good_Profile
4060 (Subp : Entity_Id;
4061 Report : Boolean := False) return Boolean;
4062 -- Return true if the entity is a subprogram with an appropriate
4063 -- profile for the attribute being defined. If result is False and
4064 -- Report is True, function emits appropriate error.
4066 ----------------------
4067 -- Has_Good_Profile --
4068 ----------------------
4070 function Has_Good_Profile
4071 (Subp : Entity_Id;
4072 Report : Boolean := False) return Boolean
4074 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
4075 (False => E_Procedure, True => E_Function);
4076 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
4077 F : Entity_Id;
4078 Typ : Entity_Id;
4080 begin
4081 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
4082 return False;
4083 end if;
4085 F := First_Formal (Subp);
4087 if No (F)
4088 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
4089 or else Designated_Type (Etype (F)) /=
4090 Class_Wide_Type (RTE (RE_Root_Stream_Type))
4091 then
4092 return False;
4093 end if;
4095 if not Is_Function then
4096 Next_Formal (F);
4098 declare
4099 Expected_Mode : constant array (Boolean) of Entity_Kind :=
4100 (False => E_In_Parameter,
4101 True => E_Out_Parameter);
4102 begin
4103 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
4104 return False;
4105 end if;
4106 end;
4108 Typ := Etype (F);
4110 -- If the attribute specification comes from an aspect
4111 -- specification for a class-wide stream, the parameter must be
4112 -- a class-wide type of the entity to which the aspect applies.
4114 if From_Aspect_Specification (N)
4115 and then Class_Present (Parent (N))
4116 and then Is_Class_Wide_Type (Typ)
4117 then
4118 Typ := Etype (Typ);
4119 end if;
4121 else
4122 Typ := Etype (Subp);
4123 end if;
4125 -- Verify that the prefix of the attribute and the local name for
4126 -- the type of the formal match, or one is the class-wide of the
4127 -- other, in the case of a class-wide stream operation.
4129 if Base_Type (Typ) = Base_Type (Ent)
4130 or else (Is_Class_Wide_Type (Typ)
4131 and then Typ = Class_Wide_Type (Base_Type (Ent)))
4132 or else (Is_Class_Wide_Type (Ent)
4133 and then Ent = Class_Wide_Type (Base_Type (Typ)))
4134 then
4135 null;
4136 else
4137 return False;
4138 end if;
4140 if Present (Next_Formal (F)) then
4141 return False;
4143 elsif not Is_Scalar_Type (Typ)
4144 and then not Is_First_Subtype (Typ)
4145 and then not Is_Class_Wide_Type (Typ)
4146 then
4147 if Report and not Is_First_Subtype (Typ) then
4148 Error_Msg_N
4149 ("subtype of formal in stream operation must be a first "
4150 & "subtype", Parameter_Type (Parent (F)));
4151 end if;
4153 return False;
4155 else
4156 return True;
4157 end if;
4158 end Has_Good_Profile;
4160 -- Start of processing for Analyze_Stream_TSS_Definition
4162 begin
4163 FOnly := True;
4165 if not Is_Type (U_Ent) then
4166 Error_Msg_N ("local name must be a subtype", Nam);
4167 return;
4169 elsif not Is_First_Subtype (U_Ent) then
4170 Error_Msg_N ("local name must be a first subtype", Nam);
4171 return;
4172 end if;
4174 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
4176 -- If Pnam is present, it can be either inherited from an ancestor
4177 -- type (in which case it is legal to redefine it for this type), or
4178 -- be a previous definition of the attribute for the same type (in
4179 -- which case it is illegal).
4181 -- In the first case, it will have been analyzed already, and we
4182 -- can check that its profile does not match the expected profile
4183 -- for a stream attribute of U_Ent. In the second case, either Pnam
4184 -- has been analyzed (and has the expected profile), or it has not
4185 -- been analyzed yet (case of a type that has not been frozen yet
4186 -- and for which the stream attribute has been set using Set_TSS).
4188 if Present (Pnam)
4189 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
4190 then
4191 Error_Msg_Sloc := Sloc (Pnam);
4192 Error_Msg_Name_1 := Attr;
4193 Error_Msg_N ("% attribute already defined #", Nam);
4194 return;
4195 end if;
4197 Analyze (Expr);
4199 if Is_Entity_Name (Expr) then
4200 if not Is_Overloaded (Expr) then
4201 if Has_Good_Profile (Entity (Expr), Report => True) then
4202 Subp := Entity (Expr);
4203 end if;
4205 else
4206 Get_First_Interp (Expr, I, It);
4207 while Present (It.Nam) loop
4208 if Has_Good_Profile (It.Nam) then
4209 Subp := It.Nam;
4210 exit;
4211 end if;
4213 Get_Next_Interp (I, It);
4214 end loop;
4215 end if;
4216 end if;
4218 if Present (Subp) then
4219 if Is_Abstract_Subprogram (Subp) then
4220 Error_Msg_N ("stream subprogram must not be abstract", Expr);
4221 return;
4223 -- A stream subprogram for an interface type must be a null
4224 -- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
4225 -- of an interface is not an interface type (3.9.4 (6.b/2)).
4227 elsif Is_Interface (U_Ent)
4228 and then not Is_Class_Wide_Type (U_Ent)
4229 and then not Inside_A_Generic
4230 and then
4231 (Ekind (Subp) = E_Function
4232 or else
4233 not Null_Present
4234 (Specification
4235 (Unit_Declaration_Node (Ultimate_Alias (Subp)))))
4236 then
4237 Error_Msg_N
4238 ("stream subprogram for interface type must be null "
4239 & "procedure", Expr);
4240 end if;
4242 Set_Entity (Expr, Subp);
4243 Set_Etype (Expr, Etype (Subp));
4245 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
4247 else
4248 Error_Msg_Name_1 := Attr;
4249 Error_Msg_N ("incorrect expression for% attribute", Expr);
4250 end if;
4251 end Analyze_Stream_TSS_Definition;
4253 ------------------------------
4254 -- Check_Indexing_Functions --
4255 ------------------------------
4257 procedure Check_Indexing_Functions is
4258 Indexing_Found : Boolean := False;
4260 procedure Check_Inherited_Indexing;
4261 -- For a derived type, check that no indexing aspect is specified
4262 -- for the type if it is also inherited
4264 procedure Check_One_Function (Subp : Entity_Id);
4265 -- Check one possible interpretation. Sets Indexing_Found True if a
4266 -- legal indexing function is found.
4268 procedure Illegal_Indexing (Msg : String);
4269 -- Diagnose illegal indexing function if not overloaded. In the
4270 -- overloaded case indicate that no legal interpretation exists.
4272 ------------------------------
4273 -- Check_Inherited_Indexing --
4274 ------------------------------
4276 procedure Check_Inherited_Indexing is
4277 Inherited : Node_Id;
4279 begin
4280 if Attr = Name_Constant_Indexing then
4281 Inherited :=
4282 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
4283 else pragma Assert (Attr = Name_Variable_Indexing);
4284 Inherited :=
4285 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
4286 end if;
4288 if Present (Inherited) then
4289 if Debug_Flag_Dot_XX then
4290 null;
4292 -- OK if current attribute_definition_clause is expansion of
4293 -- inherited aspect.
4295 elsif Aspect_Rep_Item (Inherited) = N then
4296 null;
4298 -- Indicate the operation that must be overridden, rather than
4299 -- redefining the indexing aspect.
4301 else
4302 Illegal_Indexing
4303 ("indexing function already inherited from parent type");
4304 Error_Msg_NE
4305 ("!override & instead",
4306 N, Entity (Expression (Inherited)));
4307 end if;
4308 end if;
4309 end Check_Inherited_Indexing;
4311 ------------------------
4312 -- Check_One_Function --
4313 ------------------------
4315 procedure Check_One_Function (Subp : Entity_Id) is
4316 Default_Element : Node_Id;
4317 Ret_Type : constant Entity_Id := Etype (Subp);
4319 begin
4320 if not Is_Overloadable (Subp) then
4321 Illegal_Indexing ("illegal indexing function for type&");
4322 return;
4324 elsif Scope (Subp) /= Scope (Ent) then
4325 if Nkind (Expr) = N_Expanded_Name then
4327 -- Indexing function can't be declared elsewhere
4329 Illegal_Indexing
4330 ("indexing function must be declared in scope of type&");
4331 end if;
4333 return;
4335 elsif No (First_Formal (Subp)) then
4336 Illegal_Indexing
4337 ("Indexing requires a function that applies to type&");
4338 return;
4340 elsif No (Next_Formal (First_Formal (Subp))) then
4341 Illegal_Indexing
4342 ("indexing function must have at least two parameters");
4343 return;
4345 elsif Is_Derived_Type (Ent) then
4346 Check_Inherited_Indexing;
4347 end if;
4349 if not Check_Primitive_Function (Subp) then
4350 Illegal_Indexing
4351 ("Indexing aspect requires a function that applies to type&");
4352 return;
4353 end if;
4355 -- If partial declaration exists, verify that it is not tagged.
4357 if Ekind (Current_Scope) = E_Package
4358 and then Has_Private_Declaration (Ent)
4359 and then From_Aspect_Specification (N)
4360 and then
4361 List_Containing (Parent (Ent)) =
4362 Private_Declarations
4363 (Specification (Unit_Declaration_Node (Current_Scope)))
4364 and then Nkind (N) = N_Attribute_Definition_Clause
4365 then
4366 declare
4367 Decl : Node_Id;
4369 begin
4370 Decl :=
4371 First (Visible_Declarations
4372 (Specification
4373 (Unit_Declaration_Node (Current_Scope))));
4375 while Present (Decl) loop
4376 if Nkind (Decl) = N_Private_Type_Declaration
4377 and then Ent = Full_View (Defining_Identifier (Decl))
4378 and then Tagged_Present (Decl)
4379 and then No (Aspect_Specifications (Decl))
4380 then
4381 Illegal_Indexing
4382 ("Indexing aspect cannot be specified on full view "
4383 & "if partial view is tagged");
4384 return;
4385 end if;
4387 Next (Decl);
4388 end loop;
4389 end;
4390 end if;
4392 -- An indexing function must return either the default element of
4393 -- the container, or a reference type. For variable indexing it
4394 -- must be the latter.
4396 Default_Element :=
4397 Find_Value_Of_Aspect
4398 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
4400 if Present (Default_Element) then
4401 Analyze (Default_Element);
4403 if Is_Entity_Name (Default_Element)
4404 and then not Covers (Entity (Default_Element), Ret_Type)
4405 and then False
4406 then
4407 Illegal_Indexing
4408 ("wrong return type for indexing function");
4409 return;
4410 end if;
4411 end if;
4413 -- For variable_indexing the return type must be a reference type
4415 if Attr = Name_Variable_Indexing then
4416 if not Has_Implicit_Dereference (Ret_Type) then
4417 Illegal_Indexing
4418 ("variable indexing must return a reference type");
4419 return;
4421 elsif Is_Access_Constant
4422 (Etype (First_Discriminant (Ret_Type)))
4423 then
4424 Illegal_Indexing
4425 ("variable indexing must return an access to variable");
4426 return;
4427 end if;
4429 else
4430 if Has_Implicit_Dereference (Ret_Type)
4431 and then not
4432 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
4433 then
4434 Illegal_Indexing
4435 ("constant indexing must return an access to constant");
4436 return;
4438 elsif Is_Access_Type (Etype (First_Formal (Subp)))
4439 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
4440 then
4441 Illegal_Indexing
4442 ("constant indexing must apply to an access to constant");
4443 return;
4444 end if;
4445 end if;
4447 -- All checks succeeded.
4449 Indexing_Found := True;
4450 end Check_One_Function;
4452 -----------------------
4453 -- Illegal_Indexing --
4454 -----------------------
4456 procedure Illegal_Indexing (Msg : String) is
4457 begin
4458 Error_Msg_NE (Msg, N, Ent);
4459 end Illegal_Indexing;
4461 -- Start of processing for Check_Indexing_Functions
4463 begin
4464 if In_Instance then
4465 Check_Inherited_Indexing;
4466 end if;
4468 Analyze (Expr);
4470 if not Is_Overloaded (Expr) then
4471 Check_One_Function (Entity (Expr));
4473 else
4474 declare
4475 I : Interp_Index;
4476 It : Interp;
4478 begin
4479 Indexing_Found := False;
4480 Get_First_Interp (Expr, I, It);
4481 while Present (It.Nam) loop
4483 -- Note that analysis will have added the interpretation
4484 -- that corresponds to the dereference. We only check the
4485 -- subprogram itself. Ignore homonyms that may come from
4486 -- derived types in the context.
4488 if Is_Overloadable (It.Nam)
4489 and then Comes_From_Source (It.Nam)
4490 then
4491 Check_One_Function (It.Nam);
4492 end if;
4494 Get_Next_Interp (I, It);
4495 end loop;
4496 end;
4497 end if;
4499 if not Indexing_Found and then not Error_Posted (N) then
4500 Error_Msg_NE
4501 ("aspect Indexing requires a local function that applies to "
4502 & "type&", Expr, Ent);
4503 end if;
4504 end Check_Indexing_Functions;
4506 ------------------------------
4507 -- Check_Iterator_Functions --
4508 ------------------------------
4510 procedure Check_Iterator_Functions is
4511 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
4512 -- Check one possible interpretation for validity
4514 ----------------------------
4515 -- Valid_Default_Iterator --
4516 ----------------------------
4518 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
4519 Root_T : constant Entity_Id := Root_Type (Etype (Etype (Subp)));
4520 Formal : Entity_Id;
4522 begin
4523 if not Check_Primitive_Function (Subp) then
4524 return False;
4526 -- The return type must be derived from a type in an instance
4527 -- of Iterator.Interfaces, and thus its root type must have a
4528 -- predefined name.
4530 elsif Chars (Root_T) /= Name_Forward_Iterator
4531 and then Chars (Root_T) /= Name_Reversible_Iterator
4532 then
4533 return False;
4535 else
4536 Formal := First_Formal (Subp);
4537 end if;
4539 -- False if any subsequent formal has no default expression
4541 Formal := Next_Formal (Formal);
4542 while Present (Formal) loop
4543 if No (Expression (Parent (Formal))) then
4544 return False;
4545 end if;
4547 Next_Formal (Formal);
4548 end loop;
4550 -- True if all subsequent formals have default expressions
4552 return True;
4553 end Valid_Default_Iterator;
4555 -- Start of processing for Check_Iterator_Functions
4557 begin
4558 Analyze (Expr);
4560 if not Is_Entity_Name (Expr) then
4561 Error_Msg_N ("aspect Iterator must be a function name", Expr);
4562 end if;
4564 if not Is_Overloaded (Expr) then
4565 if not Check_Primitive_Function (Entity (Expr)) then
4566 Error_Msg_NE
4567 ("aspect Indexing requires a function that applies to type&",
4568 Entity (Expr), Ent);
4569 end if;
4571 -- Flag the default_iterator as well as the denoted function.
4573 if not Valid_Default_Iterator (Entity (Expr)) then
4574 Error_Msg_N ("improper function for default iterator!", Expr);
4575 end if;
4577 else
4578 declare
4579 Default : Entity_Id := Empty;
4580 I : Interp_Index;
4581 It : Interp;
4583 begin
4584 Get_First_Interp (Expr, I, It);
4585 while Present (It.Nam) loop
4586 if not Check_Primitive_Function (It.Nam)
4587 or else not Valid_Default_Iterator (It.Nam)
4588 then
4589 Remove_Interp (I);
4591 elsif Present (Default) then
4593 -- An explicit one should override an implicit one
4595 if Comes_From_Source (Default) =
4596 Comes_From_Source (It.Nam)
4597 then
4598 Error_Msg_N ("default iterator must be unique", Expr);
4599 Error_Msg_Sloc := Sloc (Default);
4600 Error_Msg_N ("\\possible interpretation#", Expr);
4601 Error_Msg_Sloc := Sloc (It.Nam);
4602 Error_Msg_N ("\\possible interpretation#", Expr);
4604 elsif Comes_From_Source (It.Nam) then
4605 Default := It.Nam;
4606 end if;
4607 else
4608 Default := It.Nam;
4609 end if;
4611 Get_Next_Interp (I, It);
4612 end loop;
4614 if Present (Default) then
4615 Set_Entity (Expr, Default);
4616 Set_Is_Overloaded (Expr, False);
4617 else
4618 Error_Msg_N
4619 ("no interpretation is a valid default iterator!", Expr);
4620 end if;
4621 end;
4622 end if;
4623 end Check_Iterator_Functions;
4625 -------------------------------
4626 -- Check_Primitive_Function --
4627 -------------------------------
4629 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
4630 Ctrl : Entity_Id;
4632 begin
4633 if Ekind (Subp) /= E_Function then
4634 return False;
4635 end if;
4637 if No (First_Formal (Subp)) then
4638 return False;
4639 else
4640 Ctrl := Etype (First_Formal (Subp));
4641 end if;
4643 -- To be a primitive operation subprogram has to be in same scope.
4645 if Scope (Ctrl) /= Scope (Subp) then
4646 return False;
4647 end if;
4649 -- Type of formal may be the class-wide type, an access to such,
4650 -- or an incomplete view.
4652 if Ctrl = Ent
4653 or else Ctrl = Class_Wide_Type (Ent)
4654 or else
4655 (Ekind (Ctrl) = E_Anonymous_Access_Type
4656 and then (Designated_Type (Ctrl) = Ent
4657 or else
4658 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
4659 or else
4660 (Ekind (Ctrl) = E_Incomplete_Type
4661 and then Full_View (Ctrl) = Ent)
4662 then
4663 null;
4664 else
4665 return False;
4666 end if;
4668 return True;
4669 end Check_Primitive_Function;
4671 ----------------------
4672 -- Duplicate_Clause --
4673 ----------------------
4675 function Duplicate_Clause return Boolean is
4676 A : Node_Id;
4678 begin
4679 -- Nothing to do if this attribute definition clause comes from
4680 -- an aspect specification, since we could not be duplicating an
4681 -- explicit clause, and we dealt with the case of duplicated aspects
4682 -- in Analyze_Aspect_Specifications.
4684 if From_Aspect_Specification (N) then
4685 return False;
4686 end if;
4688 -- Otherwise current clause may duplicate previous clause, or a
4689 -- previously given pragma or aspect specification for the same
4690 -- aspect.
4692 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
4694 if Present (A) then
4695 Error_Msg_Name_1 := Chars (N);
4696 Error_Msg_Sloc := Sloc (A);
4698 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
4699 return True;
4700 end if;
4702 return False;
4703 end Duplicate_Clause;
4705 -- Start of processing for Analyze_Attribute_Definition_Clause
4707 begin
4708 -- The following code is a defense against recursion. Not clear that
4709 -- this can happen legitimately, but perhaps some error situations can
4710 -- cause it, and we did see this recursion during testing.
4712 if Analyzed (N) then
4713 return;
4714 else
4715 Set_Analyzed (N, True);
4716 end if;
4718 Check_Restriction_No_Use_Of_Attribute (N);
4720 -- Ignore some selected attributes in CodePeer mode since they are not
4721 -- relevant in this context.
4723 if CodePeer_Mode then
4724 case Id is
4726 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4727 -- internal representation of types by implicitly packing them.
4729 when Attribute_Component_Size =>
4730 Rewrite (N, Make_Null_Statement (Sloc (N)));
4731 return;
4733 when others =>
4734 null;
4735 end case;
4736 end if;
4738 -- Process Ignore_Rep_Clauses option
4740 if Ignore_Rep_Clauses then
4741 case Id is
4743 -- The following should be ignored. They do not affect legality
4744 -- and may be target dependent. The basic idea of -gnatI is to
4745 -- ignore any rep clauses that may be target dependent but do not
4746 -- affect legality (except possibly to be rejected because they
4747 -- are incompatible with the compilation target).
4749 when Attribute_Alignment
4750 | Attribute_Bit_Order
4751 | Attribute_Component_Size
4752 | Attribute_Default_Scalar_Storage_Order
4753 | Attribute_Machine_Radix
4754 | Attribute_Object_Size
4755 | Attribute_Scalar_Storage_Order
4756 | Attribute_Size
4757 | Attribute_Small
4758 | Attribute_Stream_Size
4759 | Attribute_Value_Size
4761 Kill_Rep_Clause (N);
4762 return;
4764 -- The following should not be ignored, because in the first place
4765 -- they are reasonably portable, and should not cause problems
4766 -- in compiling code from another target, and also they do affect
4767 -- legality, e.g. failing to provide a stream attribute for a type
4768 -- may make a program illegal.
4770 when Attribute_External_Tag
4771 | Attribute_Input
4772 | Attribute_Output
4773 | Attribute_Read
4774 | Attribute_Simple_Storage_Pool
4775 | Attribute_Storage_Pool
4776 | Attribute_Storage_Size
4777 | Attribute_Write
4779 null;
4781 -- We do not do anything here with address clauses, they will be
4782 -- removed by Freeze later on, but for now, it works better to
4783 -- keep them in the tree.
4785 when Attribute_Address =>
4786 null;
4788 -- Other cases are errors ("attribute& cannot be set with
4789 -- definition clause"), which will be caught below.
4791 when others =>
4792 null;
4793 end case;
4794 end if;
4796 Analyze (Nam);
4797 Ent := Entity (Nam);
4799 if Rep_Item_Too_Early (Ent, N) then
4800 return;
4801 end if;
4803 -- Rep clause applies to full view of incomplete type or private type if
4804 -- we have one (if not, this is a premature use of the type). However,
4805 -- certain semantic checks need to be done on the specified entity (i.e.
4806 -- the private view), so we save it in Ent.
4808 if Is_Private_Type (Ent)
4809 and then Is_Derived_Type (Ent)
4810 and then not Is_Tagged_Type (Ent)
4811 and then No (Full_View (Ent))
4812 then
4813 -- If this is a private type whose completion is a derivation from
4814 -- another private type, there is no full view, and the attribute
4815 -- belongs to the type itself, not its underlying parent.
4817 U_Ent := Ent;
4819 elsif Ekind (Ent) = E_Incomplete_Type then
4821 -- The attribute applies to the full view, set the entity of the
4822 -- attribute definition accordingly.
4824 Ent := Underlying_Type (Ent);
4825 U_Ent := Ent;
4826 Set_Entity (Nam, Ent);
4828 else
4829 U_Ent := Underlying_Type (Ent);
4830 end if;
4832 -- Avoid cascaded error
4834 if Etype (Nam) = Any_Type then
4835 return;
4837 -- Must be declared in current scope or in case of an aspect
4838 -- specification, must be visible in current scope.
4840 elsif Scope (Ent) /= Current_Scope
4841 and then
4842 not (From_Aspect_Specification (N)
4843 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
4844 then
4845 Error_Msg_N ("entity must be declared in this scope", Nam);
4846 return;
4848 -- Must not be a source renaming (we do have some cases where the
4849 -- expander generates a renaming, and those cases are OK, in such
4850 -- cases any attribute applies to the renamed object as well).
4852 elsif Is_Object (Ent)
4853 and then Present (Renamed_Object (Ent))
4854 then
4855 -- Case of renamed object from source, this is an error
4857 if Comes_From_Source (Renamed_Object (Ent)) then
4858 Get_Name_String (Chars (N));
4859 Error_Msg_Strlen := Name_Len;
4860 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4861 Error_Msg_N
4862 ("~ clause not allowed for a renaming declaration "
4863 & "(RM 13.1(6))", Nam);
4864 return;
4866 -- For the case of a compiler generated renaming, the attribute
4867 -- definition clause applies to the renamed object created by the
4868 -- expander. The easiest general way to handle this is to create a
4869 -- copy of the attribute definition clause for this object.
4871 elsif Is_Entity_Name (Renamed_Object (Ent)) then
4872 Insert_Action (N,
4873 Make_Attribute_Definition_Clause (Loc,
4874 Name =>
4875 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4876 Chars => Chars (N),
4877 Expression => Duplicate_Subexpr (Expression (N))));
4879 -- If the renamed object is not an entity, it must be a dereference
4880 -- of an unconstrained function call, and we must introduce a new
4881 -- declaration to capture the expression. This is needed in the case
4882 -- of 'Alignment, where the original declaration must be rewritten.
4884 else
4885 pragma Assert
4886 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4887 null;
4888 end if;
4890 -- If no underlying entity, use entity itself, applies to some
4891 -- previously detected error cases ???
4893 elsif No (U_Ent) then
4894 U_Ent := Ent;
4896 -- Cannot specify for a subtype (exception Object/Value_Size)
4898 elsif Is_Type (U_Ent)
4899 and then not Is_First_Subtype (U_Ent)
4900 and then Id /= Attribute_Object_Size
4901 and then Id /= Attribute_Value_Size
4902 and then not From_At_Mod (N)
4903 then
4904 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4905 return;
4906 end if;
4908 Set_Entity (N, U_Ent);
4910 -- Switch on particular attribute
4912 case Id is
4914 -------------
4915 -- Address --
4916 -------------
4918 -- Address attribute definition clause
4920 when Attribute_Address => Address : begin
4922 -- A little error check, catch for X'Address use X'Address;
4924 if Nkind (Nam) = N_Identifier
4925 and then Nkind (Expr) = N_Attribute_Reference
4926 and then Attribute_Name (Expr) = Name_Address
4927 and then Nkind (Prefix (Expr)) = N_Identifier
4928 and then Chars (Nam) = Chars (Prefix (Expr))
4929 then
4930 Error_Msg_NE
4931 ("address for & is self-referencing", Prefix (Expr), Ent);
4932 return;
4933 end if;
4935 -- Not that special case, carry on with analysis of expression
4937 Analyze_And_Resolve (Expr, RTE (RE_Address));
4939 -- Even when ignoring rep clauses we need to indicate that the
4940 -- entity has an address clause and thus it is legal to declare
4941 -- it imported. Freeze will get rid of the address clause later.
4942 -- Also call Set_Address_Taken to indicate that an address clause
4943 -- was present, even if we are about to remove it.
4945 if Ignore_Rep_Clauses then
4946 Set_Address_Taken (U_Ent);
4948 if Ekind_In (U_Ent, E_Variable, E_Constant) then
4949 Record_Rep_Item (U_Ent, N);
4950 end if;
4952 return;
4953 end if;
4955 if Duplicate_Clause then
4956 null;
4958 -- Case of address clause for subprogram
4960 elsif Is_Subprogram (U_Ent) then
4961 if Has_Homonym (U_Ent) then
4962 Error_Msg_N
4963 ("address clause cannot be given for overloaded "
4964 & "subprogram", Nam);
4965 return;
4966 end if;
4968 -- For subprograms, all address clauses are permitted, and we
4969 -- mark the subprogram as having a deferred freeze so that Gigi
4970 -- will not elaborate it too soon.
4972 -- Above needs more comments, what is too soon about???
4974 Set_Has_Delayed_Freeze (U_Ent);
4976 -- Case of address clause for entry
4978 elsif Ekind (U_Ent) = E_Entry then
4979 if Nkind (Parent (N)) = N_Task_Body then
4980 Error_Msg_N
4981 ("entry address must be specified in task spec", Nam);
4982 return;
4983 end if;
4985 -- For entries, we require a constant address
4987 Check_Constant_Address_Clause (Expr, U_Ent);
4989 -- Special checks for task types
4991 if Is_Task_Type (Scope (U_Ent))
4992 and then Comes_From_Source (Scope (U_Ent))
4993 then
4994 Error_Msg_N
4995 ("??entry address declared for entry in task type", N);
4996 Error_Msg_N
4997 ("\??only one task can be declared of this type", N);
4998 end if;
5000 -- Entry address clauses are obsolescent
5002 Check_Restriction (No_Obsolescent_Features, N);
5004 if Warn_On_Obsolescent_Feature then
5005 Error_Msg_N
5006 ("?j?attaching interrupt to task entry is an obsolescent "
5007 & "feature (RM J.7.1)", N);
5008 Error_Msg_N
5009 ("\?j?use interrupt procedure instead", N);
5010 end if;
5012 -- Case of an address clause for a class-wide object, which is
5013 -- considered erroneous.
5015 elsif Is_Class_Wide_Type (Etype (U_Ent)) then
5016 Error_Msg_NE
5017 ("??class-wide object & must not be overlaid", Nam, U_Ent);
5018 Error_Msg_N
5019 ("\??Program_Error will be raised at run time", Nam);
5020 Insert_Action (Declaration_Node (U_Ent),
5021 Make_Raise_Program_Error (Loc,
5022 Reason => PE_Overlaid_Controlled_Object));
5023 return;
5025 -- Case of address clause for an object
5027 elsif Ekind_In (U_Ent, E_Constant, E_Variable) then
5028 declare
5029 Expr : constant Node_Id := Expression (N);
5030 O_Ent : Entity_Id;
5031 Off : Boolean;
5033 begin
5034 -- Exported variables cannot have an address clause, because
5035 -- this cancels the effect of the pragma Export.
5037 if Is_Exported (U_Ent) then
5038 Error_Msg_N
5039 ("cannot export object with address clause", Nam);
5040 return;
5041 end if;
5043 Find_Overlaid_Entity (N, O_Ent, Off);
5045 if Present (O_Ent) then
5047 -- If the object overlays a constant object, mark it so
5049 if Is_Constant_Object (O_Ent) then
5050 Set_Overlays_Constant (U_Ent);
5051 end if;
5053 -- If the address clause is of the form:
5055 -- for X'Address use Y'Address;
5057 -- or
5059 -- C : constant Address := Y'Address;
5060 -- ...
5061 -- for X'Address use C;
5063 -- then we make an entry in the table to check the size
5064 -- and alignment of the overlaying variable. But we defer
5065 -- this check till after code generation to take full
5066 -- advantage of the annotation done by the back end.
5068 -- If the entity has a generic type, the check will be
5069 -- performed in the instance if the actual type justifies
5070 -- it, and we do not insert the clause in the table to
5071 -- prevent spurious warnings.
5073 -- Note: we used to test Comes_From_Source and only give
5074 -- this warning for source entities, but we have removed
5075 -- this test. It really seems bogus to generate overlays
5076 -- that would trigger this warning in generated code.
5077 -- Furthermore, by removing the test, we handle the
5078 -- aspect case properly.
5080 if Is_Object (O_Ent)
5081 and then not Is_Generic_Type (Etype (U_Ent))
5082 and then Address_Clause_Overlay_Warnings
5083 then
5084 Register_Address_Clause_Check
5085 (N, U_Ent, No_Uint, O_Ent, Off);
5086 end if;
5088 -- If the overlay changes the storage order, mark the
5089 -- entity as being volatile to block any optimization
5090 -- for it since the construct is not really supported
5091 -- by the back end.
5093 if (Is_Record_Type (Etype (U_Ent))
5094 or else Is_Array_Type (Etype (U_Ent)))
5095 and then (Is_Record_Type (Etype (O_Ent))
5096 or else Is_Array_Type (Etype (O_Ent)))
5097 and then Reverse_Storage_Order (Etype (U_Ent)) /=
5098 Reverse_Storage_Order (Etype (O_Ent))
5099 then
5100 Set_Treat_As_Volatile (U_Ent);
5101 end if;
5103 else
5104 -- If this is not an overlay, mark a variable as being
5105 -- volatile to prevent unwanted optimizations. It's a
5106 -- conservative interpretation of RM 13.3(19) for the
5107 -- cases where the compiler cannot detect potential
5108 -- aliasing issues easily and it also covers the case
5109 -- of an absolute address where the volatile aspect is
5110 -- kind of implicit.
5112 if Ekind (U_Ent) = E_Variable then
5113 Set_Treat_As_Volatile (U_Ent);
5114 end if;
5116 -- Make an entry in the table for an absolute address as
5117 -- above to check that the value is compatible with the
5118 -- alignment of the object.
5120 declare
5121 Addr : constant Node_Id := Address_Value (Expr);
5122 begin
5123 if Compile_Time_Known_Value (Addr)
5124 and then Address_Clause_Overlay_Warnings
5125 then
5126 Register_Address_Clause_Check
5127 (N, U_Ent, Expr_Value (Addr), Empty, False);
5128 end if;
5129 end;
5130 end if;
5132 -- Issue an unconditional warning for a constant overlaying
5133 -- a variable. For the reverse case, we will issue it only
5134 -- if the variable is modified.
5136 if Ekind (U_Ent) = E_Constant
5137 and then Present (O_Ent)
5138 and then not Overlays_Constant (U_Ent)
5139 and then Address_Clause_Overlay_Warnings
5140 then
5141 Error_Msg_N ("??constant overlays a variable", Expr);
5143 -- Imported variables can have an address clause, but then
5144 -- the import is pretty meaningless except to suppress
5145 -- initializations, so we do not need such variables to
5146 -- be statically allocated (and in fact it causes trouble
5147 -- if the address clause is a local value).
5149 elsif Is_Imported (U_Ent) then
5150 Set_Is_Statically_Allocated (U_Ent, False);
5151 end if;
5153 -- We mark a possible modification of a variable with an
5154 -- address clause, since it is likely aliasing is occurring.
5156 Note_Possible_Modification (Nam, Sure => False);
5158 -- Legality checks on the address clause for initialized
5159 -- objects is deferred until the freeze point, because
5160 -- a subsequent pragma might indicate that the object
5161 -- is imported and thus not initialized. Also, the address
5162 -- clause might involve entities that have yet to be
5163 -- elaborated.
5165 Set_Has_Delayed_Freeze (U_Ent);
5167 -- If an initialization call has been generated for this
5168 -- object, it needs to be deferred to after the freeze node
5169 -- we have just now added, otherwise GIGI will see a
5170 -- reference to the variable (as actual to the IP call)
5171 -- before its definition.
5173 declare
5174 Init_Call : constant Node_Id :=
5175 Remove_Init_Call (U_Ent, N);
5177 begin
5178 if Present (Init_Call) then
5179 Append_Freeze_Action (U_Ent, Init_Call);
5181 -- Reset Initialization_Statements pointer so that
5182 -- if there is a pragma Import further down, it can
5183 -- clear any default initialization.
5185 Set_Initialization_Statements (U_Ent, Init_Call);
5186 end if;
5187 end;
5189 -- Entity has delayed freeze, so we will generate an
5190 -- alignment check at the freeze point unless suppressed.
5192 if not Range_Checks_Suppressed (U_Ent)
5193 and then not Alignment_Checks_Suppressed (U_Ent)
5194 then
5195 Set_Check_Address_Alignment (N);
5196 end if;
5198 -- Kill the size check code, since we are not allocating
5199 -- the variable, it is somewhere else.
5201 Kill_Size_Check_Code (U_Ent);
5202 end;
5204 -- Not a valid entity for an address clause
5206 else
5207 Error_Msg_N ("address cannot be given for &", Nam);
5208 end if;
5209 end Address;
5211 ---------------
5212 -- Alignment --
5213 ---------------
5215 -- Alignment attribute definition clause
5217 when Attribute_Alignment => Alignment : declare
5218 Align : constant Uint := Get_Alignment_Value (Expr);
5219 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
5221 begin
5222 FOnly := True;
5224 if not Is_Type (U_Ent)
5225 and then Ekind (U_Ent) /= E_Variable
5226 and then Ekind (U_Ent) /= E_Constant
5227 then
5228 Error_Msg_N ("alignment cannot be given for &", Nam);
5230 elsif Duplicate_Clause then
5231 null;
5233 elsif Align /= No_Uint then
5234 Set_Has_Alignment_Clause (U_Ent);
5236 -- Tagged type case, check for attempt to set alignment to a
5237 -- value greater than Max_Align, and reset if so. This error
5238 -- is suppressed in ASIS mode to allow for different ASIS
5239 -- back ends or ASIS-based tools to query the illegal clause.
5241 if Is_Tagged_Type (U_Ent)
5242 and then Align > Max_Align
5243 and then not ASIS_Mode
5244 then
5245 Error_Msg_N
5246 ("alignment for & set to Maximum_Aligment??", Nam);
5247 Set_Alignment (U_Ent, Max_Align);
5249 -- All other cases
5251 else
5252 Set_Alignment (U_Ent, Align);
5253 end if;
5255 -- For an array type, U_Ent is the first subtype. In that case,
5256 -- also set the alignment of the anonymous base type so that
5257 -- other subtypes (such as the itypes for aggregates of the
5258 -- type) also receive the expected alignment.
5260 if Is_Array_Type (U_Ent) then
5261 Set_Alignment (Base_Type (U_Ent), Align);
5262 end if;
5263 end if;
5264 end Alignment;
5266 ---------------
5267 -- Bit_Order --
5268 ---------------
5270 -- Bit_Order attribute definition clause
5272 when Attribute_Bit_Order =>
5273 if not Is_Record_Type (U_Ent) then
5274 Error_Msg_N
5275 ("Bit_Order can only be defined for record type", Nam);
5277 elsif Duplicate_Clause then
5278 null;
5280 else
5281 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5283 if Etype (Expr) = Any_Type then
5284 return;
5286 elsif not Is_OK_Static_Expression (Expr) then
5287 Flag_Non_Static_Expr
5288 ("Bit_Order requires static expression!", Expr);
5290 else
5291 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5292 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
5293 end if;
5294 end if;
5295 end if;
5297 --------------------
5298 -- Component_Size --
5299 --------------------
5301 -- Component_Size attribute definition clause
5303 when Attribute_Component_Size => Component_Size_Case : declare
5304 Csize : constant Uint := Static_Integer (Expr);
5305 Ctyp : Entity_Id;
5306 Btype : Entity_Id;
5307 Biased : Boolean;
5308 New_Ctyp : Entity_Id;
5309 Decl : Node_Id;
5311 begin
5312 if not Is_Array_Type (U_Ent) then
5313 Error_Msg_N ("component size requires array type", Nam);
5314 return;
5315 end if;
5317 Btype := Base_Type (U_Ent);
5318 Ctyp := Component_Type (Btype);
5320 if Duplicate_Clause then
5321 null;
5323 elsif Rep_Item_Too_Early (Btype, N) then
5324 null;
5326 elsif Csize /= No_Uint then
5327 Check_Size (Expr, Ctyp, Csize, Biased);
5329 -- For the biased case, build a declaration for a subtype that
5330 -- will be used to represent the biased subtype that reflects
5331 -- the biased representation of components. We need the subtype
5332 -- to get proper conversions on referencing elements of the
5333 -- array.
5335 if Biased then
5336 New_Ctyp :=
5337 Make_Defining_Identifier (Loc,
5338 Chars =>
5339 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
5341 Decl :=
5342 Make_Subtype_Declaration (Loc,
5343 Defining_Identifier => New_Ctyp,
5344 Subtype_Indication =>
5345 New_Occurrence_Of (Component_Type (Btype), Loc));
5347 Set_Parent (Decl, N);
5348 Analyze (Decl, Suppress => All_Checks);
5350 Set_Has_Delayed_Freeze (New_Ctyp, False);
5351 Set_Esize (New_Ctyp, Csize);
5352 Set_RM_Size (New_Ctyp, Csize);
5353 Init_Alignment (New_Ctyp);
5354 Set_Is_Itype (New_Ctyp, True);
5355 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
5357 Set_Component_Type (Btype, New_Ctyp);
5358 Set_Biased (New_Ctyp, N, "component size clause");
5359 end if;
5361 Set_Component_Size (Btype, Csize);
5363 -- Deal with warning on overridden size
5365 if Warn_On_Overridden_Size
5366 and then Has_Size_Clause (Ctyp)
5367 and then RM_Size (Ctyp) /= Csize
5368 then
5369 Error_Msg_NE
5370 ("component size overrides size clause for&?S?", N, Ctyp);
5371 end if;
5373 Set_Has_Component_Size_Clause (Btype, True);
5374 Set_Has_Non_Standard_Rep (Btype, True);
5375 end if;
5376 end Component_Size_Case;
5378 -----------------------
5379 -- Constant_Indexing --
5380 -----------------------
5382 when Attribute_Constant_Indexing =>
5383 Check_Indexing_Functions;
5385 ---------
5386 -- CPU --
5387 ---------
5389 when Attribute_CPU =>
5391 -- CPU attribute definition clause not allowed except from aspect
5392 -- specification.
5394 if From_Aspect_Specification (N) then
5395 if not Is_Task_Type (U_Ent) then
5396 Error_Msg_N ("CPU can only be defined for task", Nam);
5398 elsif Duplicate_Clause then
5399 null;
5401 else
5402 -- The expression must be analyzed in the special manner
5403 -- described in "Handling of Default and Per-Object
5404 -- Expressions" in sem.ads.
5406 -- The visibility to the discriminants must be restored
5408 Push_Scope_And_Install_Discriminants (U_Ent);
5409 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
5410 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5412 if not Is_OK_Static_Expression (Expr) then
5413 Check_Restriction (Static_Priorities, Expr);
5414 end if;
5415 end if;
5417 else
5418 Error_Msg_N
5419 ("attribute& cannot be set with definition clause", N);
5420 end if;
5422 ----------------------
5423 -- Default_Iterator --
5424 ----------------------
5426 when Attribute_Default_Iterator => Default_Iterator : declare
5427 Func : Entity_Id;
5428 Typ : Entity_Id;
5430 begin
5431 -- If target type is untagged, further checks are irrelevant
5433 if not Is_Tagged_Type (U_Ent) then
5434 Error_Msg_N
5435 ("aspect Default_Iterator applies to tagged type", Nam);
5436 return;
5437 end if;
5439 Check_Iterator_Functions;
5441 Analyze (Expr);
5443 if not Is_Entity_Name (Expr)
5444 or else Ekind (Entity (Expr)) /= E_Function
5445 then
5446 Error_Msg_N ("aspect Iterator must be a function", Expr);
5447 return;
5448 else
5449 Func := Entity (Expr);
5450 end if;
5452 -- The type of the first parameter must be T, T'class, or a
5453 -- corresponding access type (5.5.1 (8/3). If function is
5454 -- parameterless label type accordingly.
5456 if No (First_Formal (Func)) then
5457 Typ := Any_Type;
5458 else
5459 Typ := Etype (First_Formal (Func));
5460 end if;
5462 if Typ = U_Ent
5463 or else Typ = Class_Wide_Type (U_Ent)
5464 or else (Is_Access_Type (Typ)
5465 and then Designated_Type (Typ) = U_Ent)
5466 or else (Is_Access_Type (Typ)
5467 and then Designated_Type (Typ) =
5468 Class_Wide_Type (U_Ent))
5469 then
5470 null;
5472 else
5473 Error_Msg_NE
5474 ("Default Iterator must be a primitive of&", Func, U_Ent);
5475 end if;
5476 end Default_Iterator;
5478 ------------------------
5479 -- Dispatching_Domain --
5480 ------------------------
5482 when Attribute_Dispatching_Domain =>
5484 -- Dispatching_Domain attribute definition clause not allowed
5485 -- except from aspect specification.
5487 if From_Aspect_Specification (N) then
5488 if not Is_Task_Type (U_Ent) then
5489 Error_Msg_N
5490 ("Dispatching_Domain can only be defined for task", Nam);
5492 elsif Duplicate_Clause then
5493 null;
5495 else
5496 -- The expression must be analyzed in the special manner
5497 -- described in "Handling of Default and Per-Object
5498 -- Expressions" in sem.ads.
5500 -- The visibility to the discriminants must be restored
5502 Push_Scope_And_Install_Discriminants (U_Ent);
5504 Preanalyze_Spec_Expression
5505 (Expr, RTE (RE_Dispatching_Domain));
5507 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5508 end if;
5510 else
5511 Error_Msg_N
5512 ("attribute& cannot be set with definition clause", N);
5513 end if;
5515 ------------------
5516 -- External_Tag --
5517 ------------------
5519 when Attribute_External_Tag =>
5520 if not Is_Tagged_Type (U_Ent) then
5521 Error_Msg_N ("should be a tagged type", Nam);
5522 end if;
5524 if Duplicate_Clause then
5525 null;
5527 else
5528 Analyze_And_Resolve (Expr, Standard_String);
5530 if not Is_OK_Static_Expression (Expr) then
5531 Flag_Non_Static_Expr
5532 ("static string required for tag name!", Nam);
5533 end if;
5535 if not Is_Library_Level_Entity (U_Ent) then
5536 Error_Msg_NE
5537 ("??non-unique external tag supplied for &", N, U_Ent);
5538 Error_Msg_N
5539 ("\??same external tag applies to all subprogram calls",
5541 Error_Msg_N
5542 ("\??corresponding internal tag cannot be obtained", N);
5543 end if;
5544 end if;
5546 --------------------------
5547 -- Implicit_Dereference --
5548 --------------------------
5550 when Attribute_Implicit_Dereference =>
5552 -- Legality checks already performed at the point of the type
5553 -- declaration, aspect is not delayed.
5555 null;
5557 -----------
5558 -- Input --
5559 -----------
5561 when Attribute_Input =>
5562 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
5563 Set_Has_Specified_Stream_Input (Ent);
5565 ------------------------
5566 -- Interrupt_Priority --
5567 ------------------------
5569 when Attribute_Interrupt_Priority =>
5571 -- Interrupt_Priority attribute definition clause not allowed
5572 -- except from aspect specification.
5574 if From_Aspect_Specification (N) then
5575 if not Is_Concurrent_Type (U_Ent) then
5576 Error_Msg_N
5577 ("Interrupt_Priority can only be defined for task and "
5578 & "protected object", Nam);
5580 elsif Duplicate_Clause then
5581 null;
5583 else
5584 -- The expression must be analyzed in the special manner
5585 -- described in "Handling of Default and Per-Object
5586 -- Expressions" in sem.ads.
5588 -- The visibility to the discriminants must be restored
5590 Push_Scope_And_Install_Discriminants (U_Ent);
5592 Preanalyze_Spec_Expression
5593 (Expr, RTE (RE_Interrupt_Priority));
5595 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5597 -- Check the No_Task_At_Interrupt_Priority restriction
5599 if Is_Task_Type (U_Ent) then
5600 Check_Restriction (No_Task_At_Interrupt_Priority, N);
5601 end if;
5602 end if;
5604 else
5605 Error_Msg_N
5606 ("attribute& cannot be set with definition clause", N);
5607 end if;
5609 --------------
5610 -- Iterable --
5611 --------------
5613 when Attribute_Iterable =>
5614 Analyze (Expr);
5616 if Nkind (Expr) /= N_Aggregate then
5617 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
5618 end if;
5620 declare
5621 Assoc : Node_Id;
5623 begin
5624 Assoc := First (Component_Associations (Expr));
5625 while Present (Assoc) loop
5626 if not Is_Entity_Name (Expression (Assoc)) then
5627 Error_Msg_N ("value must be a function", Assoc);
5628 end if;
5630 Next (Assoc);
5631 end loop;
5632 end;
5634 ----------------------
5635 -- Iterator_Element --
5636 ----------------------
5638 when Attribute_Iterator_Element =>
5639 Analyze (Expr);
5641 if not Is_Entity_Name (Expr)
5642 or else not Is_Type (Entity (Expr))
5643 then
5644 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
5645 end if;
5647 -------------------
5648 -- Machine_Radix --
5649 -------------------
5651 -- Machine radix attribute definition clause
5653 when Attribute_Machine_Radix => Machine_Radix : declare
5654 Radix : constant Uint := Static_Integer (Expr);
5656 begin
5657 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
5658 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
5660 elsif Duplicate_Clause then
5661 null;
5663 elsif Radix /= No_Uint then
5664 Set_Has_Machine_Radix_Clause (U_Ent);
5665 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
5667 if Radix = 2 then
5668 null;
5670 elsif Radix = 10 then
5671 Set_Machine_Radix_10 (U_Ent);
5673 -- The following error is suppressed in ASIS mode to allow for
5674 -- different ASIS back ends or ASIS-based tools to query the
5675 -- illegal clause.
5677 elsif not ASIS_Mode then
5678 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
5679 end if;
5680 end if;
5681 end Machine_Radix;
5683 -----------------
5684 -- Object_Size --
5685 -----------------
5687 -- Object_Size attribute definition clause
5689 when Attribute_Object_Size => Object_Size : declare
5690 Size : constant Uint := Static_Integer (Expr);
5692 Biased : Boolean;
5693 pragma Warnings (Off, Biased);
5695 begin
5696 if not Is_Type (U_Ent) then
5697 Error_Msg_N ("Object_Size cannot be given for &", Nam);
5699 elsif Duplicate_Clause then
5700 null;
5702 else
5703 Check_Size (Expr, U_Ent, Size, Biased);
5705 -- The following errors are suppressed in ASIS mode to allow
5706 -- for different ASIS back ends or ASIS-based tools to query
5707 -- the illegal clause.
5709 if ASIS_Mode then
5710 null;
5712 elsif Is_Scalar_Type (U_Ent) then
5713 if Size /= 8 and then Size /= 16 and then Size /= 32
5714 and then UI_Mod (Size, 64) /= 0
5715 then
5716 Error_Msg_N
5717 ("Object_Size must be 8, 16, 32, or multiple of 64",
5718 Expr);
5719 end if;
5721 elsif Size mod 8 /= 0 then
5722 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
5723 end if;
5725 Set_Esize (U_Ent, Size);
5726 Set_Has_Object_Size_Clause (U_Ent);
5727 Alignment_Check_For_Size_Change (U_Ent, Size);
5728 end if;
5729 end Object_Size;
5731 ------------
5732 -- Output --
5733 ------------
5735 when Attribute_Output =>
5736 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
5737 Set_Has_Specified_Stream_Output (Ent);
5739 --------------
5740 -- Priority --
5741 --------------
5743 when Attribute_Priority =>
5745 -- Priority attribute definition clause not allowed except from
5746 -- aspect specification.
5748 if From_Aspect_Specification (N) then
5749 if not (Is_Concurrent_Type (U_Ent)
5750 or else Ekind (U_Ent) = E_Procedure)
5751 then
5752 Error_Msg_N
5753 ("Priority can only be defined for task and protected "
5754 & "object", Nam);
5756 elsif Duplicate_Clause then
5757 null;
5759 else
5760 -- The expression must be analyzed in the special manner
5761 -- described in "Handling of Default and Per-Object
5762 -- Expressions" in sem.ads.
5764 -- The visibility to the discriminants must be restored
5766 Push_Scope_And_Install_Discriminants (U_Ent);
5767 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5768 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5770 if not Is_OK_Static_Expression (Expr) then
5771 Check_Restriction (Static_Priorities, Expr);
5772 end if;
5773 end if;
5775 else
5776 Error_Msg_N
5777 ("attribute& cannot be set with definition clause", N);
5778 end if;
5780 ----------
5781 -- Read --
5782 ----------
5784 when Attribute_Read =>
5785 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5786 Set_Has_Specified_Stream_Read (Ent);
5788 --------------------------
5789 -- Scalar_Storage_Order --
5790 --------------------------
5792 -- Scalar_Storage_Order attribute definition clause
5794 when Attribute_Scalar_Storage_Order =>
5795 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
5796 Error_Msg_N
5797 ("Scalar_Storage_Order can only be defined for record or "
5798 & "array type", Nam);
5800 elsif Duplicate_Clause then
5801 null;
5803 else
5804 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5806 if Etype (Expr) = Any_Type then
5807 return;
5809 elsif not Is_OK_Static_Expression (Expr) then
5810 Flag_Non_Static_Expr
5811 ("Scalar_Storage_Order requires static expression!", Expr);
5813 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5815 -- Here for the case of a non-default (i.e. non-confirming)
5816 -- Scalar_Storage_Order attribute definition.
5818 if Support_Nondefault_SSO_On_Target then
5819 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
5820 else
5821 Error_Msg_N
5822 ("non-default Scalar_Storage_Order not supported on "
5823 & "target", Expr);
5824 end if;
5825 end if;
5827 -- Clear SSO default indications since explicit setting of the
5828 -- order overrides the defaults.
5830 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5831 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
5832 end if;
5834 --------------------------
5835 -- Secondary_Stack_Size --
5836 --------------------------
5838 when Attribute_Secondary_Stack_Size =>
5840 -- Secondary_Stack_Size attribute definition clause not allowed
5841 -- except from aspect specification.
5843 if From_Aspect_Specification (N) then
5844 if not Is_Task_Type (U_Ent) then
5845 Error_Msg_N
5846 ("Secondary Stack Size can only be defined for task", Nam);
5848 elsif Duplicate_Clause then
5849 null;
5851 else
5852 Check_Restriction (No_Secondary_Stack, Expr);
5854 -- The expression must be analyzed in the special manner
5855 -- described in "Handling of Default and Per-Object
5856 -- Expressions" in sem.ads.
5858 -- The visibility to the discriminants must be restored
5860 Push_Scope_And_Install_Discriminants (U_Ent);
5861 Preanalyze_Spec_Expression (Expr, Any_Integer);
5862 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5864 if not Is_OK_Static_Expression (Expr) then
5865 Check_Restriction (Static_Storage_Size, Expr);
5866 end if;
5867 end if;
5869 else
5870 Error_Msg_N
5871 ("attribute& cannot be set with definition clause", N);
5872 end if;
5874 ----------
5875 -- Size --
5876 ----------
5878 -- Size attribute definition clause
5880 when Attribute_Size => Size : declare
5881 Size : constant Uint := Static_Integer (Expr);
5882 Etyp : Entity_Id;
5883 Biased : Boolean;
5885 begin
5886 FOnly := True;
5888 if Duplicate_Clause then
5889 null;
5891 elsif not Is_Type (U_Ent)
5892 and then Ekind (U_Ent) /= E_Variable
5893 and then Ekind (U_Ent) /= E_Constant
5894 then
5895 Error_Msg_N ("size cannot be given for &", Nam);
5897 elsif Is_Array_Type (U_Ent)
5898 and then not Is_Constrained (U_Ent)
5899 then
5900 Error_Msg_N
5901 ("size cannot be given for unconstrained array", Nam);
5903 elsif Size /= No_Uint then
5904 if Is_Type (U_Ent) then
5905 Etyp := U_Ent;
5906 else
5907 Etyp := Etype (U_Ent);
5908 end if;
5910 -- Check size, note that Gigi is in charge of checking that the
5911 -- size of an array or record type is OK. Also we do not check
5912 -- the size in the ordinary fixed-point case, since it is too
5913 -- early to do so (there may be subsequent small clause that
5914 -- affects the size). We can check the size if a small clause
5915 -- has already been given.
5917 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5918 or else Has_Small_Clause (U_Ent)
5919 then
5920 Check_Size (Expr, Etyp, Size, Biased);
5921 Set_Biased (U_Ent, N, "size clause", Biased);
5922 end if;
5924 -- For types set RM_Size and Esize if possible
5926 if Is_Type (U_Ent) then
5927 Set_RM_Size (U_Ent, Size);
5929 -- For elementary types, increase Object_Size to power of 2,
5930 -- but not less than a storage unit in any case (normally
5931 -- this means it will be byte addressable).
5933 -- For all other types, nothing else to do, we leave Esize
5934 -- (object size) unset, the back end will set it from the
5935 -- size and alignment in an appropriate manner.
5937 -- In both cases, we check whether the alignment must be
5938 -- reset in the wake of the size change.
5940 if Is_Elementary_Type (U_Ent) then
5941 if Size <= System_Storage_Unit then
5942 Init_Esize (U_Ent, System_Storage_Unit);
5943 elsif Size <= 16 then
5944 Init_Esize (U_Ent, 16);
5945 elsif Size <= 32 then
5946 Init_Esize (U_Ent, 32);
5947 else
5948 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5949 end if;
5951 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5952 else
5953 Alignment_Check_For_Size_Change (U_Ent, Size);
5954 end if;
5956 -- For objects, set Esize only
5958 else
5959 -- The following error is suppressed in ASIS mode to allow
5960 -- for different ASIS back ends or ASIS-based tools to query
5961 -- the illegal clause.
5963 if Is_Elementary_Type (Etyp)
5964 and then Size /= System_Storage_Unit
5965 and then Size /= System_Storage_Unit * 2
5966 and then Size /= System_Storage_Unit * 4
5967 and then Size /= System_Storage_Unit * 8
5968 and then not ASIS_Mode
5969 then
5970 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5971 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
5972 Error_Msg_N
5973 ("size for primitive object must be a power of 2 in "
5974 & "the range ^-^", N);
5975 end if;
5977 Set_Esize (U_Ent, Size);
5978 end if;
5980 Set_Has_Size_Clause (U_Ent);
5981 end if;
5982 end Size;
5984 -----------
5985 -- Small --
5986 -----------
5988 -- Small attribute definition clause
5990 when Attribute_Small => Small : declare
5991 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
5992 Small : Ureal;
5994 begin
5995 Analyze_And_Resolve (Expr, Any_Real);
5997 if Etype (Expr) = Any_Type then
5998 return;
6000 elsif not Is_OK_Static_Expression (Expr) then
6001 Flag_Non_Static_Expr
6002 ("small requires static expression!", Expr);
6003 return;
6005 else
6006 Small := Expr_Value_R (Expr);
6008 if Small <= Ureal_0 then
6009 Error_Msg_N ("small value must be greater than zero", Expr);
6010 return;
6011 end if;
6013 end if;
6015 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
6016 Error_Msg_N
6017 ("small requires an ordinary fixed point type", Nam);
6019 elsif Has_Small_Clause (U_Ent) then
6020 Error_Msg_N ("small already given for &", Nam);
6022 elsif Small > Delta_Value (U_Ent) then
6023 Error_Msg_N
6024 ("small value must not be greater than delta value", Nam);
6026 else
6027 Set_Small_Value (U_Ent, Small);
6028 Set_Small_Value (Implicit_Base, Small);
6029 Set_Has_Small_Clause (U_Ent);
6030 Set_Has_Small_Clause (Implicit_Base);
6031 Set_Has_Non_Standard_Rep (Implicit_Base);
6032 end if;
6033 end Small;
6035 ------------------
6036 -- Storage_Pool --
6037 ------------------
6039 -- Storage_Pool attribute definition clause
6041 when Attribute_Simple_Storage_Pool
6042 | Attribute_Storage_Pool
6044 Storage_Pool : declare
6045 Pool : Entity_Id;
6046 T : Entity_Id;
6048 begin
6049 if Ekind (U_Ent) = E_Access_Subprogram_Type then
6050 Error_Msg_N
6051 ("storage pool cannot be given for access-to-subprogram type",
6052 Nam);
6053 return;
6055 elsif not Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
6056 then
6057 Error_Msg_N
6058 ("storage pool can only be given for access types", Nam);
6059 return;
6061 elsif Is_Derived_Type (U_Ent) then
6062 Error_Msg_N
6063 ("storage pool cannot be given for a derived access type",
6064 Nam);
6066 elsif Duplicate_Clause then
6067 return;
6069 elsif Present (Associated_Storage_Pool (U_Ent)) then
6070 Error_Msg_N ("storage pool already given for &", Nam);
6071 return;
6072 end if;
6074 -- Check for Storage_Size previously given
6076 declare
6077 SS : constant Node_Id :=
6078 Get_Attribute_Definition_Clause
6079 (U_Ent, Attribute_Storage_Size);
6080 begin
6081 if Present (SS) then
6082 Check_Pool_Size_Clash (U_Ent, N, SS);
6083 end if;
6084 end;
6086 -- Storage_Pool case
6088 if Id = Attribute_Storage_Pool then
6089 Analyze_And_Resolve
6090 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
6092 -- In the Simple_Storage_Pool case, we allow a variable of any
6093 -- simple storage pool type, so we Resolve without imposing an
6094 -- expected type.
6096 else
6097 Analyze_And_Resolve (Expr);
6099 if not Present (Get_Rep_Pragma
6100 (Etype (Expr), Name_Simple_Storage_Pool_Type))
6101 then
6102 Error_Msg_N
6103 ("expression must be of a simple storage pool type", Expr);
6104 end if;
6105 end if;
6107 if not Denotes_Variable (Expr) then
6108 Error_Msg_N ("storage pool must be a variable", Expr);
6109 return;
6110 end if;
6112 if Nkind (Expr) = N_Type_Conversion then
6113 T := Etype (Expression (Expr));
6114 else
6115 T := Etype (Expr);
6116 end if;
6118 -- The Stack_Bounded_Pool is used internally for implementing
6119 -- access types with a Storage_Size. Since it only work properly
6120 -- when used on one specific type, we need to check that it is not
6121 -- hijacked improperly:
6123 -- type T is access Integer;
6124 -- for T'Storage_Size use n;
6125 -- type Q is access Float;
6126 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
6128 if RTE_Available (RE_Stack_Bounded_Pool)
6129 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
6130 then
6131 Error_Msg_N ("non-shareable internal Pool", Expr);
6132 return;
6133 end if;
6135 -- If the argument is a name that is not an entity name, then
6136 -- we construct a renaming operation to define an entity of
6137 -- type storage pool.
6139 if not Is_Entity_Name (Expr)
6140 and then Is_Object_Reference (Expr)
6141 then
6142 Pool := Make_Temporary (Loc, 'P', Expr);
6144 declare
6145 Rnode : constant Node_Id :=
6146 Make_Object_Renaming_Declaration (Loc,
6147 Defining_Identifier => Pool,
6148 Subtype_Mark =>
6149 New_Occurrence_Of (Etype (Expr), Loc),
6150 Name => Expr);
6152 begin
6153 -- If the attribute definition clause comes from an aspect
6154 -- clause, then insert the renaming before the associated
6155 -- entity's declaration, since the attribute clause has
6156 -- not yet been appended to the declaration list.
6158 if From_Aspect_Specification (N) then
6159 Insert_Before (Parent (Entity (N)), Rnode);
6160 else
6161 Insert_Before (N, Rnode);
6162 end if;
6164 Analyze (Rnode);
6165 Set_Associated_Storage_Pool (U_Ent, Pool);
6166 end;
6168 elsif Is_Entity_Name (Expr) then
6169 Pool := Entity (Expr);
6171 -- If pool is a renamed object, get original one. This can
6172 -- happen with an explicit renaming, and within instances.
6174 while Present (Renamed_Object (Pool))
6175 and then Is_Entity_Name (Renamed_Object (Pool))
6176 loop
6177 Pool := Entity (Renamed_Object (Pool));
6178 end loop;
6180 if Present (Renamed_Object (Pool))
6181 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
6182 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
6183 then
6184 Pool := Entity (Expression (Renamed_Object (Pool)));
6185 end if;
6187 Set_Associated_Storage_Pool (U_Ent, Pool);
6189 elsif Nkind (Expr) = N_Type_Conversion
6190 and then Is_Entity_Name (Expression (Expr))
6191 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
6192 then
6193 Pool := Entity (Expression (Expr));
6194 Set_Associated_Storage_Pool (U_Ent, Pool);
6196 else
6197 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
6198 return;
6199 end if;
6200 end Storage_Pool;
6202 ------------------
6203 -- Storage_Size --
6204 ------------------
6206 -- Storage_Size attribute definition clause
6208 when Attribute_Storage_Size => Storage_Size : declare
6209 Btype : constant Entity_Id := Base_Type (U_Ent);
6211 begin
6212 if Is_Task_Type (U_Ent) then
6214 -- Check obsolescent (but never obsolescent if from aspect)
6216 if not From_Aspect_Specification (N) then
6217 Check_Restriction (No_Obsolescent_Features, N);
6219 if Warn_On_Obsolescent_Feature then
6220 Error_Msg_N
6221 ("?j?storage size clause for task is an obsolescent "
6222 & "feature (RM J.9)", N);
6223 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
6224 end if;
6225 end if;
6227 FOnly := True;
6228 end if;
6230 if not Is_Access_Type (U_Ent)
6231 and then Ekind (U_Ent) /= E_Task_Type
6232 then
6233 Error_Msg_N ("storage size cannot be given for &", Nam);
6235 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
6236 Error_Msg_N
6237 ("storage size cannot be given for a derived access type",
6238 Nam);
6240 elsif Duplicate_Clause then
6241 null;
6243 else
6244 Analyze_And_Resolve (Expr, Any_Integer);
6246 if Is_Access_Type (U_Ent) then
6248 -- Check for Storage_Pool previously given
6250 declare
6251 SP : constant Node_Id :=
6252 Get_Attribute_Definition_Clause
6253 (U_Ent, Attribute_Storage_Pool);
6255 begin
6256 if Present (SP) then
6257 Check_Pool_Size_Clash (U_Ent, SP, N);
6258 end if;
6259 end;
6261 -- Special case of for x'Storage_Size use 0
6263 if Is_OK_Static_Expression (Expr)
6264 and then Expr_Value (Expr) = 0
6265 then
6266 Set_No_Pool_Assigned (Btype);
6267 end if;
6268 end if;
6270 Set_Has_Storage_Size_Clause (Btype);
6271 end if;
6272 end Storage_Size;
6274 -----------------
6275 -- Stream_Size --
6276 -----------------
6278 when Attribute_Stream_Size => Stream_Size : declare
6279 Size : constant Uint := Static_Integer (Expr);
6281 begin
6282 if Ada_Version <= Ada_95 then
6283 Check_Restriction (No_Implementation_Attributes, N);
6284 end if;
6286 if Duplicate_Clause then
6287 null;
6289 elsif Is_Elementary_Type (U_Ent) then
6291 -- The following errors are suppressed in ASIS mode to allow
6292 -- for different ASIS back ends or ASIS-based tools to query
6293 -- the illegal clause.
6295 if ASIS_Mode then
6296 null;
6298 elsif Size /= System_Storage_Unit
6299 and then Size /= System_Storage_Unit * 2
6300 and then Size /= System_Storage_Unit * 4
6301 and then Size /= System_Storage_Unit * 8
6302 then
6303 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
6304 Error_Msg_N
6305 ("stream size for elementary type must be a power of 2 "
6306 & "and at least ^", N);
6308 elsif RM_Size (U_Ent) > Size then
6309 Error_Msg_Uint_1 := RM_Size (U_Ent);
6310 Error_Msg_N
6311 ("stream size for elementary type must be a power of 2 "
6312 & "and at least ^", N);
6313 end if;
6315 Set_Has_Stream_Size_Clause (U_Ent);
6317 else
6318 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
6319 end if;
6320 end Stream_Size;
6322 ----------------
6323 -- Value_Size --
6324 ----------------
6326 -- Value_Size attribute definition clause
6328 when Attribute_Value_Size => Value_Size : declare
6329 Size : constant Uint := Static_Integer (Expr);
6330 Biased : Boolean;
6332 begin
6333 if not Is_Type (U_Ent) then
6334 Error_Msg_N ("Value_Size cannot be given for &", Nam);
6336 elsif Duplicate_Clause then
6337 null;
6339 elsif Is_Array_Type (U_Ent)
6340 and then not Is_Constrained (U_Ent)
6341 then
6342 Error_Msg_N
6343 ("Value_Size cannot be given for unconstrained array", Nam);
6345 else
6346 if Is_Elementary_Type (U_Ent) then
6347 Check_Size (Expr, U_Ent, Size, Biased);
6348 Set_Biased (U_Ent, N, "value size clause", Biased);
6349 end if;
6351 Set_RM_Size (U_Ent, Size);
6352 end if;
6353 end Value_Size;
6355 -----------------------
6356 -- Variable_Indexing --
6357 -----------------------
6359 when Attribute_Variable_Indexing =>
6360 Check_Indexing_Functions;
6362 -----------
6363 -- Write --
6364 -----------
6366 when Attribute_Write =>
6367 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
6368 Set_Has_Specified_Stream_Write (Ent);
6370 -- All other attributes cannot be set
6372 when others =>
6373 Error_Msg_N
6374 ("attribute& cannot be set with definition clause", N);
6375 end case;
6377 -- The test for the type being frozen must be performed after any
6378 -- expression the clause has been analyzed since the expression itself
6379 -- might cause freezing that makes the clause illegal.
6381 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
6382 return;
6383 end if;
6384 end Analyze_Attribute_Definition_Clause;
6386 ----------------------------
6387 -- Analyze_Code_Statement --
6388 ----------------------------
6390 procedure Analyze_Code_Statement (N : Node_Id) is
6391 HSS : constant Node_Id := Parent (N);
6392 SBody : constant Node_Id := Parent (HSS);
6393 Subp : constant Entity_Id := Current_Scope;
6394 Stmt : Node_Id;
6395 Decl : Node_Id;
6396 StmtO : Node_Id;
6397 DeclO : Node_Id;
6399 begin
6400 -- Accept foreign code statements for CodePeer. The analysis is skipped
6401 -- to avoid rejecting unrecognized constructs.
6403 if CodePeer_Mode then
6404 Set_Analyzed (N);
6405 return;
6406 end if;
6408 -- Analyze and check we get right type, note that this implements the
6409 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
6410 -- the only way that Asm_Insn could possibly be visible.
6412 Analyze_And_Resolve (Expression (N));
6414 if Etype (Expression (N)) = Any_Type then
6415 return;
6416 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
6417 Error_Msg_N ("incorrect type for code statement", N);
6418 return;
6419 end if;
6421 Check_Code_Statement (N);
6423 -- Make sure we appear in the handled statement sequence of a subprogram
6424 -- (RM 13.8(3)).
6426 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
6427 or else Nkind (SBody) /= N_Subprogram_Body
6428 then
6429 Error_Msg_N
6430 ("code statement can only appear in body of subprogram", N);
6431 return;
6432 end if;
6434 -- Do remaining checks (RM 13.8(3)) if not already done
6436 if not Is_Machine_Code_Subprogram (Subp) then
6437 Set_Is_Machine_Code_Subprogram (Subp);
6439 -- No exception handlers allowed
6441 if Present (Exception_Handlers (HSS)) then
6442 Error_Msg_N
6443 ("exception handlers not permitted in machine code subprogram",
6444 First (Exception_Handlers (HSS)));
6445 end if;
6447 -- No declarations other than use clauses and pragmas (we allow
6448 -- certain internally generated declarations as well).
6450 Decl := First (Declarations (SBody));
6451 while Present (Decl) loop
6452 DeclO := Original_Node (Decl);
6453 if Comes_From_Source (DeclO)
6454 and not Nkind_In (DeclO, N_Pragma,
6455 N_Use_Package_Clause,
6456 N_Use_Type_Clause,
6457 N_Implicit_Label_Declaration)
6458 then
6459 Error_Msg_N
6460 ("this declaration not allowed in machine code subprogram",
6461 DeclO);
6462 end if;
6464 Next (Decl);
6465 end loop;
6467 -- No statements other than code statements, pragmas, and labels.
6468 -- Again we allow certain internally generated statements.
6470 -- In Ada 2012, qualified expressions are names, and the code
6471 -- statement is initially parsed as a procedure call.
6473 Stmt := First (Statements (HSS));
6474 while Present (Stmt) loop
6475 StmtO := Original_Node (Stmt);
6477 -- A procedure call transformed into a code statement is OK
6479 if Ada_Version >= Ada_2012
6480 and then Nkind (StmtO) = N_Procedure_Call_Statement
6481 and then Nkind (Name (StmtO)) = N_Qualified_Expression
6482 then
6483 null;
6485 elsif Comes_From_Source (StmtO)
6486 and then not Nkind_In (StmtO, N_Pragma,
6487 N_Label,
6488 N_Code_Statement)
6489 then
6490 Error_Msg_N
6491 ("this statement is not allowed in machine code subprogram",
6492 StmtO);
6493 end if;
6495 Next (Stmt);
6496 end loop;
6497 end if;
6498 end Analyze_Code_Statement;
6500 -----------------------------------------------
6501 -- Analyze_Enumeration_Representation_Clause --
6502 -----------------------------------------------
6504 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
6505 Ident : constant Node_Id := Identifier (N);
6506 Aggr : constant Node_Id := Array_Aggregate (N);
6507 Enumtype : Entity_Id;
6508 Elit : Entity_Id;
6509 Expr : Node_Id;
6510 Assoc : Node_Id;
6511 Choice : Node_Id;
6512 Val : Uint;
6514 Err : Boolean := False;
6515 -- Set True to avoid cascade errors and crashes on incorrect source code
6517 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
6518 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
6519 -- Allowed range of universal integer (= allowed range of enum lit vals)
6521 Min : Uint;
6522 Max : Uint;
6523 -- Minimum and maximum values of entries
6525 Max_Node : Node_Id;
6526 -- Pointer to node for literal providing max value
6528 begin
6529 if Ignore_Rep_Clauses then
6530 Kill_Rep_Clause (N);
6531 return;
6532 end if;
6534 -- Ignore enumeration rep clauses by default in CodePeer mode,
6535 -- unless -gnatd.I is specified, as a work around for potential false
6536 -- positive messages.
6538 if CodePeer_Mode and not Debug_Flag_Dot_II then
6539 return;
6540 end if;
6542 -- First some basic error checks
6544 Find_Type (Ident);
6545 Enumtype := Entity (Ident);
6547 if Enumtype = Any_Type
6548 or else Rep_Item_Too_Early (Enumtype, N)
6549 then
6550 return;
6551 else
6552 Enumtype := Underlying_Type (Enumtype);
6553 end if;
6555 if not Is_Enumeration_Type (Enumtype) then
6556 Error_Msg_NE
6557 ("enumeration type required, found}",
6558 Ident, First_Subtype (Enumtype));
6559 return;
6560 end if;
6562 -- Ignore rep clause on generic actual type. This will already have
6563 -- been flagged on the template as an error, and this is the safest
6564 -- way to ensure we don't get a junk cascaded message in the instance.
6566 if Is_Generic_Actual_Type (Enumtype) then
6567 return;
6569 -- Type must be in current scope
6571 elsif Scope (Enumtype) /= Current_Scope then
6572 Error_Msg_N ("type must be declared in this scope", Ident);
6573 return;
6575 -- Type must be a first subtype
6577 elsif not Is_First_Subtype (Enumtype) then
6578 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
6579 return;
6581 -- Ignore duplicate rep clause
6583 elsif Has_Enumeration_Rep_Clause (Enumtype) then
6584 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
6585 return;
6587 -- Don't allow rep clause for standard [wide_[wide_]]character
6589 elsif Is_Standard_Character_Type (Enumtype) then
6590 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
6591 return;
6593 -- Check that the expression is a proper aggregate (no parentheses)
6595 elsif Paren_Count (Aggr) /= 0 then
6596 Error_Msg
6597 ("extra parentheses surrounding aggregate not allowed",
6598 First_Sloc (Aggr));
6599 return;
6601 -- All tests passed, so set rep clause in place
6603 else
6604 Set_Has_Enumeration_Rep_Clause (Enumtype);
6605 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
6606 end if;
6608 -- Now we process the aggregate. Note that we don't use the normal
6609 -- aggregate code for this purpose, because we don't want any of the
6610 -- normal expansion activities, and a number of special semantic
6611 -- rules apply (including the component type being any integer type)
6613 Elit := First_Literal (Enumtype);
6615 -- First the positional entries if any
6617 if Present (Expressions (Aggr)) then
6618 Expr := First (Expressions (Aggr));
6619 while Present (Expr) loop
6620 if No (Elit) then
6621 Error_Msg_N ("too many entries in aggregate", Expr);
6622 return;
6623 end if;
6625 Val := Static_Integer (Expr);
6627 -- Err signals that we found some incorrect entries processing
6628 -- the list. The final checks for completeness and ordering are
6629 -- skipped in this case.
6631 if Val = No_Uint then
6632 Err := True;
6634 elsif Val < Lo or else Hi < Val then
6635 Error_Msg_N ("value outside permitted range", Expr);
6636 Err := True;
6637 end if;
6639 Set_Enumeration_Rep (Elit, Val);
6640 Set_Enumeration_Rep_Expr (Elit, Expr);
6641 Next (Expr);
6642 Next (Elit);
6643 end loop;
6644 end if;
6646 -- Now process the named entries if present
6648 if Present (Component_Associations (Aggr)) then
6649 Assoc := First (Component_Associations (Aggr));
6650 while Present (Assoc) loop
6651 Choice := First (Choices (Assoc));
6653 if Present (Next (Choice)) then
6654 Error_Msg_N
6655 ("multiple choice not allowed here", Next (Choice));
6656 Err := True;
6657 end if;
6659 if Nkind (Choice) = N_Others_Choice then
6660 Error_Msg_N ("others choice not allowed here", Choice);
6661 Err := True;
6663 elsif Nkind (Choice) = N_Range then
6665 -- ??? should allow zero/one element range here
6667 Error_Msg_N ("range not allowed here", Choice);
6668 Err := True;
6670 else
6671 Analyze_And_Resolve (Choice, Enumtype);
6673 if Error_Posted (Choice) then
6674 Err := True;
6675 end if;
6677 if not Err then
6678 if Is_Entity_Name (Choice)
6679 and then Is_Type (Entity (Choice))
6680 then
6681 Error_Msg_N ("subtype name not allowed here", Choice);
6682 Err := True;
6684 -- ??? should allow static subtype with zero/one entry
6686 elsif Etype (Choice) = Base_Type (Enumtype) then
6687 if not Is_OK_Static_Expression (Choice) then
6688 Flag_Non_Static_Expr
6689 ("non-static expression used for choice!", Choice);
6690 Err := True;
6692 else
6693 Elit := Expr_Value_E (Choice);
6695 if Present (Enumeration_Rep_Expr (Elit)) then
6696 Error_Msg_Sloc :=
6697 Sloc (Enumeration_Rep_Expr (Elit));
6698 Error_Msg_NE
6699 ("representation for& previously given#",
6700 Choice, Elit);
6701 Err := True;
6702 end if;
6704 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
6706 Expr := Expression (Assoc);
6707 Val := Static_Integer (Expr);
6709 if Val = No_Uint then
6710 Err := True;
6712 elsif Val < Lo or else Hi < Val then
6713 Error_Msg_N ("value outside permitted range", Expr);
6714 Err := True;
6715 end if;
6717 Set_Enumeration_Rep (Elit, Val);
6718 end if;
6719 end if;
6720 end if;
6721 end if;
6723 Next (Assoc);
6724 end loop;
6725 end if;
6727 -- Aggregate is fully processed. Now we check that a full set of
6728 -- representations was given, and that they are in range and in order.
6729 -- These checks are only done if no other errors occurred.
6731 if not Err then
6732 Min := No_Uint;
6733 Max := No_Uint;
6735 Elit := First_Literal (Enumtype);
6736 while Present (Elit) loop
6737 if No (Enumeration_Rep_Expr (Elit)) then
6738 Error_Msg_NE ("missing representation for&!", N, Elit);
6740 else
6741 Val := Enumeration_Rep (Elit);
6743 if Min = No_Uint then
6744 Min := Val;
6745 end if;
6747 if Val /= No_Uint then
6748 if Max /= No_Uint and then Val <= Max then
6749 Error_Msg_NE
6750 ("enumeration value for& not ordered!",
6751 Enumeration_Rep_Expr (Elit), Elit);
6752 end if;
6754 Max_Node := Enumeration_Rep_Expr (Elit);
6755 Max := Val;
6756 end if;
6758 -- If there is at least one literal whose representation is not
6759 -- equal to the Pos value, then note that this enumeration type
6760 -- has a non-standard representation.
6762 if Val /= Enumeration_Pos (Elit) then
6763 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
6764 end if;
6765 end if;
6767 Next (Elit);
6768 end loop;
6770 -- Now set proper size information
6772 declare
6773 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
6775 begin
6776 if Has_Size_Clause (Enumtype) then
6778 -- All OK, if size is OK now
6780 if RM_Size (Enumtype) >= Minsize then
6781 null;
6783 else
6784 -- Try if we can get by with biasing
6786 Minsize :=
6787 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
6789 -- Error message if even biasing does not work
6791 if RM_Size (Enumtype) < Minsize then
6792 Error_Msg_Uint_1 := RM_Size (Enumtype);
6793 Error_Msg_Uint_2 := Max;
6794 Error_Msg_N
6795 ("previously given size (^) is too small "
6796 & "for this value (^)", Max_Node);
6798 -- If biasing worked, indicate that we now have biased rep
6800 else
6801 Set_Biased
6802 (Enumtype, Size_Clause (Enumtype), "size clause");
6803 end if;
6804 end if;
6806 else
6807 Set_RM_Size (Enumtype, Minsize);
6808 Set_Enum_Esize (Enumtype);
6809 end if;
6811 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6812 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6813 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6814 end;
6815 end if;
6817 -- We repeat the too late test in case it froze itself
6819 if Rep_Item_Too_Late (Enumtype, N) then
6820 null;
6821 end if;
6822 end Analyze_Enumeration_Representation_Clause;
6824 ----------------------------
6825 -- Analyze_Free_Statement --
6826 ----------------------------
6828 procedure Analyze_Free_Statement (N : Node_Id) is
6829 begin
6830 Analyze (Expression (N));
6831 end Analyze_Free_Statement;
6833 ---------------------------
6834 -- Analyze_Freeze_Entity --
6835 ---------------------------
6837 procedure Analyze_Freeze_Entity (N : Node_Id) is
6838 begin
6839 Freeze_Entity_Checks (N);
6840 end Analyze_Freeze_Entity;
6842 -----------------------------------
6843 -- Analyze_Freeze_Generic_Entity --
6844 -----------------------------------
6846 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
6847 E : constant Entity_Id := Entity (N);
6849 begin
6850 if not Is_Frozen (E) and then Has_Delayed_Aspects (E) then
6851 Analyze_Aspects_At_Freeze_Point (E);
6852 end if;
6854 Freeze_Entity_Checks (N);
6855 end Analyze_Freeze_Generic_Entity;
6857 ------------------------------------------
6858 -- Analyze_Record_Representation_Clause --
6859 ------------------------------------------
6861 -- Note: we check as much as we can here, but we can't do any checks
6862 -- based on the position values (e.g. overlap checks) until freeze time
6863 -- because especially in Ada 2005 (machine scalar mode), the processing
6864 -- for non-standard bit order can substantially change the positions.
6865 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6866 -- for the remainder of this processing.
6868 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6869 Ident : constant Node_Id := Identifier (N);
6870 Biased : Boolean;
6871 CC : Node_Id;
6872 Comp : Entity_Id;
6873 Fbit : Uint;
6874 Hbit : Uint := Uint_0;
6875 Lbit : Uint;
6876 Ocomp : Entity_Id;
6877 Posit : Uint;
6878 Rectype : Entity_Id;
6879 Recdef : Node_Id;
6881 function Is_Inherited (Comp : Entity_Id) return Boolean;
6882 -- True if Comp is an inherited component in a record extension
6884 ------------------
6885 -- Is_Inherited --
6886 ------------------
6888 function Is_Inherited (Comp : Entity_Id) return Boolean is
6889 Comp_Base : Entity_Id;
6891 begin
6892 if Ekind (Rectype) = E_Record_Subtype then
6893 Comp_Base := Original_Record_Component (Comp);
6894 else
6895 Comp_Base := Comp;
6896 end if;
6898 return Comp_Base /= Original_Record_Component (Comp_Base);
6899 end Is_Inherited;
6901 -- Local variables
6903 Is_Record_Extension : Boolean;
6904 -- True if Rectype is a record extension
6906 CR_Pragma : Node_Id := Empty;
6907 -- Points to N_Pragma node if Complete_Representation pragma present
6909 -- Start of processing for Analyze_Record_Representation_Clause
6911 begin
6912 if Ignore_Rep_Clauses then
6913 Kill_Rep_Clause (N);
6914 return;
6915 end if;
6917 Find_Type (Ident);
6918 Rectype := Entity (Ident);
6920 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6921 return;
6922 else
6923 Rectype := Underlying_Type (Rectype);
6924 end if;
6926 -- First some basic error checks
6928 if not Is_Record_Type (Rectype) then
6929 Error_Msg_NE
6930 ("record type required, found}", Ident, First_Subtype (Rectype));
6931 return;
6933 elsif Scope (Rectype) /= Current_Scope then
6934 Error_Msg_N ("type must be declared in this scope", N);
6935 return;
6937 elsif not Is_First_Subtype (Rectype) then
6938 Error_Msg_N ("cannot give record rep clause for subtype", N);
6939 return;
6941 elsif Has_Record_Rep_Clause (Rectype) then
6942 Error_Msg_N ("duplicate record rep clause ignored", N);
6943 return;
6945 elsif Rep_Item_Too_Late (Rectype, N) then
6946 return;
6947 end if;
6949 -- We know we have a first subtype, now possibly go to the anonymous
6950 -- base type to determine whether Rectype is a record extension.
6952 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6953 Is_Record_Extension :=
6954 Nkind (Recdef) = N_Derived_Type_Definition
6955 and then Present (Record_Extension_Part (Recdef));
6957 if Present (Mod_Clause (N)) then
6958 declare
6959 Loc : constant Source_Ptr := Sloc (N);
6960 M : constant Node_Id := Mod_Clause (N);
6961 P : constant List_Id := Pragmas_Before (M);
6962 AtM_Nod : Node_Id;
6964 Mod_Val : Uint;
6965 pragma Warnings (Off, Mod_Val);
6967 begin
6968 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
6970 if Warn_On_Obsolescent_Feature then
6971 Error_Msg_N
6972 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
6973 Error_Msg_N
6974 ("\?j?use alignment attribute definition clause instead", N);
6975 end if;
6977 if Present (P) then
6978 Analyze_List (P);
6979 end if;
6981 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6982 -- the Mod clause into an alignment clause anyway, so that the
6983 -- back end can compute and back-annotate properly the size and
6984 -- alignment of types that may include this record.
6986 -- This seems dubious, this destroys the source tree in a manner
6987 -- not detectable by ASIS ???
6989 if Operating_Mode = Check_Semantics and then ASIS_Mode then
6990 AtM_Nod :=
6991 Make_Attribute_Definition_Clause (Loc,
6992 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
6993 Chars => Name_Alignment,
6994 Expression => Relocate_Node (Expression (M)));
6996 Set_From_At_Mod (AtM_Nod);
6997 Insert_After (N, AtM_Nod);
6998 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
6999 Set_Mod_Clause (N, Empty);
7001 else
7002 -- Get the alignment value to perform error checking
7004 Mod_Val := Get_Alignment_Value (Expression (M));
7005 end if;
7006 end;
7007 end if;
7009 -- For untagged types, clear any existing component clauses for the
7010 -- type. If the type is derived, this is what allows us to override
7011 -- a rep clause for the parent. For type extensions, the representation
7012 -- of the inherited components is inherited, so we want to keep previous
7013 -- component clauses for completeness.
7015 if not Is_Tagged_Type (Rectype) then
7016 Comp := First_Component_Or_Discriminant (Rectype);
7017 while Present (Comp) loop
7018 Set_Component_Clause (Comp, Empty);
7019 Next_Component_Or_Discriminant (Comp);
7020 end loop;
7021 end if;
7023 -- All done if no component clauses
7025 CC := First (Component_Clauses (N));
7027 if No (CC) then
7028 return;
7029 end if;
7031 -- A representation like this applies to the base type
7033 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
7034 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
7035 Set_Has_Specified_Layout (Base_Type (Rectype));
7037 -- Process the component clauses
7039 while Present (CC) loop
7041 -- Pragma
7043 if Nkind (CC) = N_Pragma then
7044 Analyze (CC);
7046 -- The only pragma of interest is Complete_Representation
7048 if Pragma_Name (CC) = Name_Complete_Representation then
7049 CR_Pragma := CC;
7050 end if;
7052 -- Processing for real component clause
7054 else
7055 Posit := Static_Integer (Position (CC));
7056 Fbit := Static_Integer (First_Bit (CC));
7057 Lbit := Static_Integer (Last_Bit (CC));
7059 if Posit /= No_Uint
7060 and then Fbit /= No_Uint
7061 and then Lbit /= No_Uint
7062 then
7063 if Posit < 0 then
7064 Error_Msg_N ("position cannot be negative", Position (CC));
7066 elsif Fbit < 0 then
7067 Error_Msg_N ("first bit cannot be negative", First_Bit (CC));
7069 -- The Last_Bit specified in a component clause must not be
7070 -- less than the First_Bit minus one (RM-13.5.1(10)).
7072 elsif Lbit < Fbit - 1 then
7073 Error_Msg_N
7074 ("last bit cannot be less than first bit minus one",
7075 Last_Bit (CC));
7077 -- Values look OK, so find the corresponding record component
7078 -- Even though the syntax allows an attribute reference for
7079 -- implementation-defined components, GNAT does not allow the
7080 -- tag to get an explicit position.
7082 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
7083 if Attribute_Name (Component_Name (CC)) = Name_Tag then
7084 Error_Msg_N ("position of tag cannot be specified", CC);
7085 else
7086 Error_Msg_N ("illegal component name", CC);
7087 end if;
7089 else
7090 Comp := First_Entity (Rectype);
7091 while Present (Comp) loop
7092 exit when Chars (Comp) = Chars (Component_Name (CC));
7093 Next_Entity (Comp);
7094 end loop;
7096 if No (Comp) then
7098 -- Maybe component of base type that is absent from
7099 -- statically constrained first subtype.
7101 Comp := First_Entity (Base_Type (Rectype));
7102 while Present (Comp) loop
7103 exit when Chars (Comp) = Chars (Component_Name (CC));
7104 Next_Entity (Comp);
7105 end loop;
7106 end if;
7108 if No (Comp) then
7109 Error_Msg_N
7110 ("component clause is for non-existent field", CC);
7112 -- Ada 2012 (AI05-0026): Any name that denotes a
7113 -- discriminant of an object of an unchecked union type
7114 -- shall not occur within a record_representation_clause.
7116 -- The general restriction of using record rep clauses on
7117 -- Unchecked_Union types has now been lifted. Since it is
7118 -- possible to introduce a record rep clause which mentions
7119 -- the discriminant of an Unchecked_Union in non-Ada 2012
7120 -- code, this check is applied to all versions of the
7121 -- language.
7123 elsif Ekind (Comp) = E_Discriminant
7124 and then Is_Unchecked_Union (Rectype)
7125 then
7126 Error_Msg_N
7127 ("cannot reference discriminant of unchecked union",
7128 Component_Name (CC));
7130 elsif Is_Record_Extension and then Is_Inherited (Comp) then
7131 Error_Msg_NE
7132 ("component clause not allowed for inherited "
7133 & "component&", CC, Comp);
7135 elsif Present (Component_Clause (Comp)) then
7137 -- Diagnose duplicate rep clause, or check consistency
7138 -- if this is an inherited component. In a double fault,
7139 -- there may be a duplicate inconsistent clause for an
7140 -- inherited component.
7142 if Scope (Original_Record_Component (Comp)) = Rectype
7143 or else Parent (Component_Clause (Comp)) = N
7144 then
7145 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
7146 Error_Msg_N ("component clause previously given#", CC);
7148 else
7149 declare
7150 Rep1 : constant Node_Id := Component_Clause (Comp);
7151 begin
7152 if Intval (Position (Rep1)) /=
7153 Intval (Position (CC))
7154 or else Intval (First_Bit (Rep1)) /=
7155 Intval (First_Bit (CC))
7156 or else Intval (Last_Bit (Rep1)) /=
7157 Intval (Last_Bit (CC))
7158 then
7159 Error_Msg_N
7160 ("component clause inconsistent with "
7161 & "representation of ancestor", CC);
7163 elsif Warn_On_Redundant_Constructs then
7164 Error_Msg_N
7165 ("?r?redundant confirming component clause "
7166 & "for component!", CC);
7167 end if;
7168 end;
7169 end if;
7171 -- Normal case where this is the first component clause we
7172 -- have seen for this entity, so set it up properly.
7174 else
7175 -- Make reference for field in record rep clause and set
7176 -- appropriate entity field in the field identifier.
7178 Generate_Reference
7179 (Comp, Component_Name (CC), Set_Ref => False);
7180 Set_Entity (Component_Name (CC), Comp);
7182 -- Update Fbit and Lbit to the actual bit number
7184 Fbit := Fbit + UI_From_Int (SSU) * Posit;
7185 Lbit := Lbit + UI_From_Int (SSU) * Posit;
7187 if Has_Size_Clause (Rectype)
7188 and then RM_Size (Rectype) <= Lbit
7189 then
7190 Error_Msg_N
7191 ("bit number out of range of specified size",
7192 Last_Bit (CC));
7193 else
7194 Set_Component_Clause (Comp, CC);
7195 Set_Component_Bit_Offset (Comp, Fbit);
7196 Set_Esize (Comp, 1 + (Lbit - Fbit));
7197 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
7198 Set_Normalized_Position (Comp, Fbit / SSU);
7200 if Warn_On_Overridden_Size
7201 and then Has_Size_Clause (Etype (Comp))
7202 and then RM_Size (Etype (Comp)) /= Esize (Comp)
7203 then
7204 Error_Msg_NE
7205 ("?S?component size overrides size clause for&",
7206 Component_Name (CC), Etype (Comp));
7207 end if;
7209 -- This information is also set in the corresponding
7210 -- component of the base type, found by accessing the
7211 -- Original_Record_Component link if it is present.
7213 Ocomp := Original_Record_Component (Comp);
7215 if Hbit < Lbit then
7216 Hbit := Lbit;
7217 end if;
7219 Check_Size
7220 (Component_Name (CC),
7221 Etype (Comp),
7222 Esize (Comp),
7223 Biased);
7225 Set_Biased
7226 (Comp, First_Node (CC), "component clause", Biased);
7228 if Present (Ocomp) then
7229 Set_Component_Clause (Ocomp, CC);
7230 Set_Component_Bit_Offset (Ocomp, Fbit);
7231 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
7232 Set_Normalized_Position (Ocomp, Fbit / SSU);
7233 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
7235 Set_Normalized_Position_Max
7236 (Ocomp, Normalized_Position (Ocomp));
7238 -- Note: we don't use Set_Biased here, because we
7239 -- already gave a warning above if needed, and we
7240 -- would get a duplicate for the same name here.
7242 Set_Has_Biased_Representation
7243 (Ocomp, Has_Biased_Representation (Comp));
7244 end if;
7246 if Esize (Comp) < 0 then
7247 Error_Msg_N ("component size is negative", CC);
7248 end if;
7249 end if;
7250 end if;
7251 end if;
7252 end if;
7253 end if;
7255 Next (CC);
7256 end loop;
7258 -- Check missing components if Complete_Representation pragma appeared
7260 if Present (CR_Pragma) then
7261 Comp := First_Component_Or_Discriminant (Rectype);
7262 while Present (Comp) loop
7263 if No (Component_Clause (Comp)) then
7264 Error_Msg_NE
7265 ("missing component clause for &", CR_Pragma, Comp);
7266 end if;
7268 Next_Component_Or_Discriminant (Comp);
7269 end loop;
7271 -- Give missing components warning if required
7273 elsif Warn_On_Unrepped_Components then
7274 declare
7275 Num_Repped_Components : Nat := 0;
7276 Num_Unrepped_Components : Nat := 0;
7278 begin
7279 -- First count number of repped and unrepped components
7281 Comp := First_Component_Or_Discriminant (Rectype);
7282 while Present (Comp) loop
7283 if Present (Component_Clause (Comp)) then
7284 Num_Repped_Components := Num_Repped_Components + 1;
7285 else
7286 Num_Unrepped_Components := Num_Unrepped_Components + 1;
7287 end if;
7289 Next_Component_Or_Discriminant (Comp);
7290 end loop;
7292 -- We are only interested in the case where there is at least one
7293 -- unrepped component, and at least half the components have rep
7294 -- clauses. We figure that if less than half have them, then the
7295 -- partial rep clause is really intentional. If the component
7296 -- type has no underlying type set at this point (as for a generic
7297 -- formal type), we don't know enough to give a warning on the
7298 -- component.
7300 if Num_Unrepped_Components > 0
7301 and then Num_Unrepped_Components < Num_Repped_Components
7302 then
7303 Comp := First_Component_Or_Discriminant (Rectype);
7304 while Present (Comp) loop
7305 if No (Component_Clause (Comp))
7306 and then Comes_From_Source (Comp)
7307 and then Present (Underlying_Type (Etype (Comp)))
7308 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
7309 or else Size_Known_At_Compile_Time
7310 (Underlying_Type (Etype (Comp))))
7311 and then not Has_Warnings_Off (Rectype)
7313 -- Ignore discriminant in unchecked union, since it is
7314 -- not there, and cannot have a component clause.
7316 and then (not Is_Unchecked_Union (Rectype)
7317 or else Ekind (Comp) /= E_Discriminant)
7318 then
7319 Error_Msg_Sloc := Sloc (Comp);
7320 Error_Msg_NE
7321 ("?C?no component clause given for & declared #",
7322 N, Comp);
7323 end if;
7325 Next_Component_Or_Discriminant (Comp);
7326 end loop;
7327 end if;
7328 end;
7329 end if;
7330 end Analyze_Record_Representation_Clause;
7332 -------------------------------------
7333 -- Build_Discrete_Static_Predicate --
7334 -------------------------------------
7336 procedure Build_Discrete_Static_Predicate
7337 (Typ : Entity_Id;
7338 Expr : Node_Id;
7339 Nam : Name_Id)
7341 Loc : constant Source_Ptr := Sloc (Expr);
7343 Non_Static : exception;
7344 -- Raised if something non-static is found
7346 Btyp : constant Entity_Id := Base_Type (Typ);
7348 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
7349 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
7350 -- Low bound and high bound value of base type of Typ
7352 TLo : Uint;
7353 THi : Uint;
7354 -- Bounds for constructing the static predicate. We use the bound of the
7355 -- subtype if it is static, otherwise the corresponding base type bound.
7356 -- Note: a non-static subtype can have a static predicate.
7358 type REnt is record
7359 Lo, Hi : Uint;
7360 end record;
7361 -- One entry in a Rlist value, a single REnt (range entry) value denotes
7362 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
7363 -- value.
7365 type RList is array (Nat range <>) of REnt;
7366 -- A list of ranges. The ranges are sorted in increasing order, and are
7367 -- disjoint (there is a gap of at least one value between each range in
7368 -- the table). A value is in the set of ranges in Rlist if it lies
7369 -- within one of these ranges.
7371 False_Range : constant RList :=
7372 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
7373 -- An empty set of ranges represents a range list that can never be
7374 -- satisfied, since there are no ranges in which the value could lie,
7375 -- so it does not lie in any of them. False_Range is a canonical value
7376 -- for this empty set, but general processing should test for an Rlist
7377 -- with length zero (see Is_False predicate), since other null ranges
7378 -- may appear which must be treated as False.
7380 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
7381 -- Range representing True, value must be in the base range
7383 function "and" (Left : RList; Right : RList) return RList;
7384 -- And's together two range lists, returning a range list. This is a set
7385 -- intersection operation.
7387 function "or" (Left : RList; Right : RList) return RList;
7388 -- Or's together two range lists, returning a range list. This is a set
7389 -- union operation.
7391 function "not" (Right : RList) return RList;
7392 -- Returns complement of a given range list, i.e. a range list
7393 -- representing all the values in TLo .. THi that are not in the input
7394 -- operand Right.
7396 function Build_Val (V : Uint) return Node_Id;
7397 -- Return an analyzed N_Identifier node referencing this value, suitable
7398 -- for use as an entry in the Static_Discrte_Predicate list. This node
7399 -- is typed with the base type.
7401 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
7402 -- Return an analyzed N_Range node referencing this range, suitable for
7403 -- use as an entry in the Static_Discrete_Predicate list. This node is
7404 -- typed with the base type.
7406 function Get_RList (Exp : Node_Id) return RList;
7407 -- This is a recursive routine that converts the given expression into a
7408 -- list of ranges, suitable for use in building the static predicate.
7410 function Is_False (R : RList) return Boolean;
7411 pragma Inline (Is_False);
7412 -- Returns True if the given range list is empty, and thus represents a
7413 -- False list of ranges that can never be satisfied.
7415 function Is_True (R : RList) return Boolean;
7416 -- Returns True if R trivially represents the True predicate by having a
7417 -- single range from BLo to BHi.
7419 function Is_Type_Ref (N : Node_Id) return Boolean;
7420 pragma Inline (Is_Type_Ref);
7421 -- Returns if True if N is a reference to the type for the predicate in
7422 -- the expression (i.e. if it is an identifier whose Chars field matches
7423 -- the Nam given in the call). N must not be parenthesized, if the type
7424 -- name appears in parens, this routine will return False.
7426 function Lo_Val (N : Node_Id) return Uint;
7427 -- Given an entry from a Static_Discrete_Predicate list that is either
7428 -- a static expression or static range, gets either the expression value
7429 -- or the low bound of the range.
7431 function Hi_Val (N : Node_Id) return Uint;
7432 -- Given an entry from a Static_Discrete_Predicate list that is either
7433 -- a static expression or static range, gets either the expression value
7434 -- or the high bound of the range.
7436 function Membership_Entry (N : Node_Id) return RList;
7437 -- Given a single membership entry (range, value, or subtype), returns
7438 -- the corresponding range list. Raises Static_Error if not static.
7440 function Membership_Entries (N : Node_Id) return RList;
7441 -- Given an element on an alternatives list of a membership operation,
7442 -- returns the range list corresponding to this entry and all following
7443 -- entries (i.e. returns the "or" of this list of values).
7445 function Stat_Pred (Typ : Entity_Id) return RList;
7446 -- Given a type, if it has a static predicate, then return the predicate
7447 -- as a range list, otherwise raise Non_Static.
7449 -----------
7450 -- "and" --
7451 -----------
7453 function "and" (Left : RList; Right : RList) return RList is
7454 FEnt : REnt;
7455 -- First range of result
7457 SLeft : Nat := Left'First;
7458 -- Start of rest of left entries
7460 SRight : Nat := Right'First;
7461 -- Start of rest of right entries
7463 begin
7464 -- If either range is True, return the other
7466 if Is_True (Left) then
7467 return Right;
7468 elsif Is_True (Right) then
7469 return Left;
7470 end if;
7472 -- If either range is False, return False
7474 if Is_False (Left) or else Is_False (Right) then
7475 return False_Range;
7476 end if;
7478 -- Loop to remove entries at start that are disjoint, and thus just
7479 -- get discarded from the result entirely.
7481 loop
7482 -- If no operands left in either operand, result is false
7484 if SLeft > Left'Last or else SRight > Right'Last then
7485 return False_Range;
7487 -- Discard first left operand entry if disjoint with right
7489 elsif Left (SLeft).Hi < Right (SRight).Lo then
7490 SLeft := SLeft + 1;
7492 -- Discard first right operand entry if disjoint with left
7494 elsif Right (SRight).Hi < Left (SLeft).Lo then
7495 SRight := SRight + 1;
7497 -- Otherwise we have an overlapping entry
7499 else
7500 exit;
7501 end if;
7502 end loop;
7504 -- Now we have two non-null operands, and first entries overlap. The
7505 -- first entry in the result will be the overlapping part of these
7506 -- two entries.
7508 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7509 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
7511 -- Now we can remove the entry that ended at a lower value, since its
7512 -- contribution is entirely contained in Fent.
7514 if Left (SLeft).Hi <= Right (SRight).Hi then
7515 SLeft := SLeft + 1;
7516 else
7517 SRight := SRight + 1;
7518 end if;
7520 -- Compute result by concatenating this first entry with the "and" of
7521 -- the remaining parts of the left and right operands. Note that if
7522 -- either of these is empty, "and" will yield empty, so that we will
7523 -- end up with just Fent, which is what we want in that case.
7525 return
7526 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7527 end "and";
7529 -----------
7530 -- "not" --
7531 -----------
7533 function "not" (Right : RList) return RList is
7534 begin
7535 -- Return True if False range
7537 if Is_False (Right) then
7538 return True_Range;
7539 end if;
7541 -- Return False if True range
7543 if Is_True (Right) then
7544 return False_Range;
7545 end if;
7547 -- Here if not trivial case
7549 declare
7550 Result : RList (1 .. Right'Length + 1);
7551 -- May need one more entry for gap at beginning and end
7553 Count : Nat := 0;
7554 -- Number of entries stored in Result
7556 begin
7557 -- Gap at start
7559 if Right (Right'First).Lo > TLo then
7560 Count := Count + 1;
7561 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
7562 end if;
7564 -- Gaps between ranges
7566 for J in Right'First .. Right'Last - 1 loop
7567 Count := Count + 1;
7568 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7569 end loop;
7571 -- Gap at end
7573 if Right (Right'Last).Hi < THi then
7574 Count := Count + 1;
7575 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
7576 end if;
7578 return Result (1 .. Count);
7579 end;
7580 end "not";
7582 ----------
7583 -- "or" --
7584 ----------
7586 function "or" (Left : RList; Right : RList) return RList is
7587 FEnt : REnt;
7588 -- First range of result
7590 SLeft : Nat := Left'First;
7591 -- Start of rest of left entries
7593 SRight : Nat := Right'First;
7594 -- Start of rest of right entries
7596 begin
7597 -- If either range is True, return True
7599 if Is_True (Left) or else Is_True (Right) then
7600 return True_Range;
7601 end if;
7603 -- If either range is False (empty), return the other
7605 if Is_False (Left) then
7606 return Right;
7607 elsif Is_False (Right) then
7608 return Left;
7609 end if;
7611 -- Initialize result first entry from left or right operand depending
7612 -- on which starts with the lower range.
7614 if Left (SLeft).Lo < Right (SRight).Lo then
7615 FEnt := Left (SLeft);
7616 SLeft := SLeft + 1;
7617 else
7618 FEnt := Right (SRight);
7619 SRight := SRight + 1;
7620 end if;
7622 -- This loop eats ranges from left and right operands that are
7623 -- contiguous with the first range we are gathering.
7625 loop
7626 -- Eat first entry in left operand if contiguous or overlapped by
7627 -- gathered first operand of result.
7629 if SLeft <= Left'Last
7630 and then Left (SLeft).Lo <= FEnt.Hi + 1
7631 then
7632 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
7633 SLeft := SLeft + 1;
7635 -- Eat first entry in right operand if contiguous or overlapped by
7636 -- gathered right operand of result.
7638 elsif SRight <= Right'Last
7639 and then Right (SRight).Lo <= FEnt.Hi + 1
7640 then
7641 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
7642 SRight := SRight + 1;
7644 -- All done if no more entries to eat
7646 else
7647 exit;
7648 end if;
7649 end loop;
7651 -- Obtain result as the first entry we just computed, concatenated
7652 -- to the "or" of the remaining results (if one operand is empty,
7653 -- this will just concatenate with the other
7655 return
7656 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
7657 end "or";
7659 -----------------
7660 -- Build_Range --
7661 -----------------
7663 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
7664 Result : Node_Id;
7665 begin
7666 Result :=
7667 Make_Range (Loc,
7668 Low_Bound => Build_Val (Lo),
7669 High_Bound => Build_Val (Hi));
7670 Set_Etype (Result, Btyp);
7671 Set_Analyzed (Result);
7672 return Result;
7673 end Build_Range;
7675 ---------------
7676 -- Build_Val --
7677 ---------------
7679 function Build_Val (V : Uint) return Node_Id is
7680 Result : Node_Id;
7682 begin
7683 if Is_Enumeration_Type (Typ) then
7684 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
7685 else
7686 Result := Make_Integer_Literal (Loc, V);
7687 end if;
7689 Set_Etype (Result, Btyp);
7690 Set_Is_Static_Expression (Result);
7691 Set_Analyzed (Result);
7692 return Result;
7693 end Build_Val;
7695 ---------------
7696 -- Get_RList --
7697 ---------------
7699 function Get_RList (Exp : Node_Id) return RList is
7700 Op : Node_Kind;
7701 Val : Uint;
7703 begin
7704 -- Static expression can only be true or false
7706 if Is_OK_Static_Expression (Exp) then
7707 if Expr_Value (Exp) = 0 then
7708 return False_Range;
7709 else
7710 return True_Range;
7711 end if;
7712 end if;
7714 -- Otherwise test node type
7716 Op := Nkind (Exp);
7718 case Op is
7720 -- And
7722 when N_And_Then
7723 | N_Op_And
7725 return Get_RList (Left_Opnd (Exp))
7727 Get_RList (Right_Opnd (Exp));
7729 -- Or
7731 when N_Op_Or
7732 | N_Or_Else
7734 return Get_RList (Left_Opnd (Exp))
7736 Get_RList (Right_Opnd (Exp));
7738 -- Not
7740 when N_Op_Not =>
7741 return not Get_RList (Right_Opnd (Exp));
7743 -- Comparisons of type with static value
7745 when N_Op_Compare =>
7747 -- Type is left operand
7749 if Is_Type_Ref (Left_Opnd (Exp))
7750 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7751 then
7752 Val := Expr_Value (Right_Opnd (Exp));
7754 -- Typ is right operand
7756 elsif Is_Type_Ref (Right_Opnd (Exp))
7757 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7758 then
7759 Val := Expr_Value (Left_Opnd (Exp));
7761 -- Invert sense of comparison
7763 case Op is
7764 when N_Op_Gt => Op := N_Op_Lt;
7765 when N_Op_Lt => Op := N_Op_Gt;
7766 when N_Op_Ge => Op := N_Op_Le;
7767 when N_Op_Le => Op := N_Op_Ge;
7768 when others => null;
7769 end case;
7771 -- Other cases are non-static
7773 else
7774 raise Non_Static;
7775 end if;
7777 -- Construct range according to comparison operation
7779 case Op is
7780 when N_Op_Eq =>
7781 return RList'(1 => REnt'(Val, Val));
7783 when N_Op_Ge =>
7784 return RList'(1 => REnt'(Val, BHi));
7786 when N_Op_Gt =>
7787 return RList'(1 => REnt'(Val + 1, BHi));
7789 when N_Op_Le =>
7790 return RList'(1 => REnt'(BLo, Val));
7792 when N_Op_Lt =>
7793 return RList'(1 => REnt'(BLo, Val - 1));
7795 when N_Op_Ne =>
7796 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
7798 when others =>
7799 raise Program_Error;
7800 end case;
7802 -- Membership (IN)
7804 when N_In =>
7805 if not Is_Type_Ref (Left_Opnd (Exp)) then
7806 raise Non_Static;
7807 end if;
7809 if Present (Right_Opnd (Exp)) then
7810 return Membership_Entry (Right_Opnd (Exp));
7811 else
7812 return Membership_Entries (First (Alternatives (Exp)));
7813 end if;
7815 -- Negative membership (NOT IN)
7817 when N_Not_In =>
7818 if not Is_Type_Ref (Left_Opnd (Exp)) then
7819 raise Non_Static;
7820 end if;
7822 if Present (Right_Opnd (Exp)) then
7823 return not Membership_Entry (Right_Opnd (Exp));
7824 else
7825 return not Membership_Entries (First (Alternatives (Exp)));
7826 end if;
7828 -- Function call, may be call to static predicate
7830 when N_Function_Call =>
7831 if Is_Entity_Name (Name (Exp)) then
7832 declare
7833 Ent : constant Entity_Id := Entity (Name (Exp));
7834 begin
7835 if Is_Predicate_Function (Ent)
7836 or else
7837 Is_Predicate_Function_M (Ent)
7838 then
7839 return Stat_Pred (Etype (First_Formal (Ent)));
7840 end if;
7841 end;
7842 end if;
7844 -- Other function call cases are non-static
7846 raise Non_Static;
7848 -- Qualified expression, dig out the expression
7850 when N_Qualified_Expression =>
7851 return Get_RList (Expression (Exp));
7853 when N_Case_Expression =>
7854 declare
7855 Alt : Node_Id;
7856 Choices : List_Id;
7857 Dep : Node_Id;
7859 begin
7860 if not Is_Entity_Name (Expression (Expr))
7861 or else Etype (Expression (Expr)) /= Typ
7862 then
7863 Error_Msg_N
7864 ("expression must denaote subtype", Expression (Expr));
7865 return False_Range;
7866 end if;
7868 -- Collect discrete choices in all True alternatives
7870 Choices := New_List;
7871 Alt := First (Alternatives (Exp));
7872 while Present (Alt) loop
7873 Dep := Expression (Alt);
7875 if not Is_OK_Static_Expression (Dep) then
7876 raise Non_Static;
7878 elsif Is_True (Expr_Value (Dep)) then
7879 Append_List_To (Choices,
7880 New_Copy_List (Discrete_Choices (Alt)));
7881 end if;
7883 Next (Alt);
7884 end loop;
7886 return Membership_Entries (First (Choices));
7887 end;
7889 -- Expression with actions: if no actions, dig out expression
7891 when N_Expression_With_Actions =>
7892 if Is_Empty_List (Actions (Exp)) then
7893 return Get_RList (Expression (Exp));
7894 else
7895 raise Non_Static;
7896 end if;
7898 -- Xor operator
7900 when N_Op_Xor =>
7901 return (Get_RList (Left_Opnd (Exp))
7902 and not Get_RList (Right_Opnd (Exp)))
7903 or (Get_RList (Right_Opnd (Exp))
7904 and not Get_RList (Left_Opnd (Exp)));
7906 -- Any other node type is non-static
7908 when others =>
7909 raise Non_Static;
7910 end case;
7911 end Get_RList;
7913 ------------
7914 -- Hi_Val --
7915 ------------
7917 function Hi_Val (N : Node_Id) return Uint is
7918 begin
7919 if Is_OK_Static_Expression (N) then
7920 return Expr_Value (N);
7921 else
7922 pragma Assert (Nkind (N) = N_Range);
7923 return Expr_Value (High_Bound (N));
7924 end if;
7925 end Hi_Val;
7927 --------------
7928 -- Is_False --
7929 --------------
7931 function Is_False (R : RList) return Boolean is
7932 begin
7933 return R'Length = 0;
7934 end Is_False;
7936 -------------
7937 -- Is_True --
7938 -------------
7940 function Is_True (R : RList) return Boolean is
7941 begin
7942 return R'Length = 1
7943 and then R (R'First).Lo = BLo
7944 and then R (R'First).Hi = BHi;
7945 end Is_True;
7947 -----------------
7948 -- Is_Type_Ref --
7949 -----------------
7951 function Is_Type_Ref (N : Node_Id) return Boolean is
7952 begin
7953 return Nkind (N) = N_Identifier
7954 and then Chars (N) = Nam
7955 and then Paren_Count (N) = 0;
7956 end Is_Type_Ref;
7958 ------------
7959 -- Lo_Val --
7960 ------------
7962 function Lo_Val (N : Node_Id) return Uint is
7963 begin
7964 if Is_OK_Static_Expression (N) then
7965 return Expr_Value (N);
7966 else
7967 pragma Assert (Nkind (N) = N_Range);
7968 return Expr_Value (Low_Bound (N));
7969 end if;
7970 end Lo_Val;
7972 ------------------------
7973 -- Membership_Entries --
7974 ------------------------
7976 function Membership_Entries (N : Node_Id) return RList is
7977 begin
7978 if No (Next (N)) then
7979 return Membership_Entry (N);
7980 else
7981 return Membership_Entry (N) or Membership_Entries (Next (N));
7982 end if;
7983 end Membership_Entries;
7985 ----------------------
7986 -- Membership_Entry --
7987 ----------------------
7989 function Membership_Entry (N : Node_Id) return RList is
7990 Val : Uint;
7991 SLo : Uint;
7992 SHi : Uint;
7994 begin
7995 -- Range case
7997 if Nkind (N) = N_Range then
7998 if not Is_OK_Static_Expression (Low_Bound (N))
7999 or else
8000 not Is_OK_Static_Expression (High_Bound (N))
8001 then
8002 raise Non_Static;
8003 else
8004 SLo := Expr_Value (Low_Bound (N));
8005 SHi := Expr_Value (High_Bound (N));
8006 return RList'(1 => REnt'(SLo, SHi));
8007 end if;
8009 -- Static expression case
8011 elsif Is_OK_Static_Expression (N) then
8012 Val := Expr_Value (N);
8013 return RList'(1 => REnt'(Val, Val));
8015 -- Identifier (other than static expression) case
8017 else pragma Assert (Nkind (N) = N_Identifier);
8019 -- Type case
8021 if Is_Type (Entity (N)) then
8023 -- If type has predicates, process them
8025 if Has_Predicates (Entity (N)) then
8026 return Stat_Pred (Entity (N));
8028 -- For static subtype without predicates, get range
8030 elsif Is_OK_Static_Subtype (Entity (N)) then
8031 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
8032 SHi := Expr_Value (Type_High_Bound (Entity (N)));
8033 return RList'(1 => REnt'(SLo, SHi));
8035 -- Any other type makes us non-static
8037 else
8038 raise Non_Static;
8039 end if;
8041 -- Any other kind of identifier in predicate (e.g. a non-static
8042 -- expression value) means this is not a static predicate.
8044 else
8045 raise Non_Static;
8046 end if;
8047 end if;
8048 end Membership_Entry;
8050 ---------------
8051 -- Stat_Pred --
8052 ---------------
8054 function Stat_Pred (Typ : Entity_Id) return RList is
8055 begin
8056 -- Not static if type does not have static predicates
8058 if not Has_Static_Predicate (Typ) then
8059 raise Non_Static;
8060 end if;
8062 -- Otherwise we convert the predicate list to a range list
8064 declare
8065 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
8066 Result : RList (1 .. List_Length (Spred));
8067 P : Node_Id;
8069 begin
8070 P := First (Static_Discrete_Predicate (Typ));
8071 for J in Result'Range loop
8072 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
8073 Next (P);
8074 end loop;
8076 return Result;
8077 end;
8078 end Stat_Pred;
8080 -- Start of processing for Build_Discrete_Static_Predicate
8082 begin
8083 -- Establish bounds for the predicate
8085 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
8086 TLo := Expr_Value (Type_Low_Bound (Typ));
8087 else
8088 TLo := BLo;
8089 end if;
8091 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
8092 THi := Expr_Value (Type_High_Bound (Typ));
8093 else
8094 THi := BHi;
8095 end if;
8097 -- Analyze the expression to see if it is a static predicate
8099 declare
8100 Ranges : constant RList := Get_RList (Expr);
8101 -- Range list from expression if it is static
8103 Plist : List_Id;
8105 begin
8106 -- Convert range list into a form for the static predicate. In the
8107 -- Ranges array, we just have raw ranges, these must be converted
8108 -- to properly typed and analyzed static expressions or range nodes.
8110 -- Note: here we limit ranges to the ranges of the subtype, so that
8111 -- a predicate is always false for values outside the subtype. That
8112 -- seems fine, such values are invalid anyway, and considering them
8113 -- to fail the predicate seems allowed and friendly, and furthermore
8114 -- simplifies processing for case statements and loops.
8116 Plist := New_List;
8118 for J in Ranges'Range loop
8119 declare
8120 Lo : Uint := Ranges (J).Lo;
8121 Hi : Uint := Ranges (J).Hi;
8123 begin
8124 -- Ignore completely out of range entry
8126 if Hi < TLo or else Lo > THi then
8127 null;
8129 -- Otherwise process entry
8131 else
8132 -- Adjust out of range value to subtype range
8134 if Lo < TLo then
8135 Lo := TLo;
8136 end if;
8138 if Hi > THi then
8139 Hi := THi;
8140 end if;
8142 -- Convert range into required form
8144 Append_To (Plist, Build_Range (Lo, Hi));
8145 end if;
8146 end;
8147 end loop;
8149 -- Processing was successful and all entries were static, so now we
8150 -- can store the result as the predicate list.
8152 Set_Static_Discrete_Predicate (Typ, Plist);
8154 -- The processing for static predicates put the expression into
8155 -- canonical form as a series of ranges. It also eliminated
8156 -- duplicates and collapsed and combined ranges. We might as well
8157 -- replace the alternatives list of the right operand of the
8158 -- membership test with the static predicate list, which will
8159 -- usually be more efficient.
8161 declare
8162 New_Alts : constant List_Id := New_List;
8163 Old_Node : Node_Id;
8164 New_Node : Node_Id;
8166 begin
8167 Old_Node := First (Plist);
8168 while Present (Old_Node) loop
8169 New_Node := New_Copy (Old_Node);
8171 if Nkind (New_Node) = N_Range then
8172 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
8173 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
8174 end if;
8176 Append_To (New_Alts, New_Node);
8177 Next (Old_Node);
8178 end loop;
8180 -- If empty list, replace by False
8182 if Is_Empty_List (New_Alts) then
8183 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
8185 -- Else replace by set membership test
8187 else
8188 Rewrite (Expr,
8189 Make_In (Loc,
8190 Left_Opnd => Make_Identifier (Loc, Nam),
8191 Right_Opnd => Empty,
8192 Alternatives => New_Alts));
8194 -- Resolve new expression in function context
8196 Install_Formals (Predicate_Function (Typ));
8197 Push_Scope (Predicate_Function (Typ));
8198 Analyze_And_Resolve (Expr, Standard_Boolean);
8199 Pop_Scope;
8200 end if;
8201 end;
8202 end;
8204 -- If non-static, return doing nothing
8206 exception
8207 when Non_Static =>
8208 return;
8209 end Build_Discrete_Static_Predicate;
8211 --------------------------------
8212 -- Build_Export_Import_Pragma --
8213 --------------------------------
8215 function Build_Export_Import_Pragma
8216 (Asp : Node_Id;
8217 Id : Entity_Id) return Node_Id
8219 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
8220 Expr : constant Node_Id := Expression (Asp);
8221 Loc : constant Source_Ptr := Sloc (Asp);
8223 Args : List_Id;
8224 Conv : Node_Id;
8225 Conv_Arg : Node_Id;
8226 Dummy_1 : Node_Id;
8227 Dummy_2 : Node_Id;
8228 EN : Node_Id;
8229 LN : Node_Id;
8230 Prag : Node_Id;
8232 Create_Pragma : Boolean := False;
8233 -- This flag is set when the aspect form is such that it warrants the
8234 -- creation of a corresponding pragma.
8236 begin
8237 if Present (Expr) then
8238 if Error_Posted (Expr) then
8239 null;
8241 elsif Is_True (Expr_Value (Expr)) then
8242 Create_Pragma := True;
8243 end if;
8245 -- Otherwise the aspect defaults to True
8247 else
8248 Create_Pragma := True;
8249 end if;
8251 -- Nothing to do when the expression is False or is erroneous
8253 if not Create_Pragma then
8254 return Empty;
8255 end if;
8257 -- Obtain all interfacing aspects that apply to the related entity
8259 Get_Interfacing_Aspects
8260 (Iface_Asp => Asp,
8261 Conv_Asp => Conv,
8262 EN_Asp => EN,
8263 Expo_Asp => Dummy_1,
8264 Imp_Asp => Dummy_2,
8265 LN_Asp => LN);
8267 Args := New_List;
8269 -- Handle the convention argument
8271 if Present (Conv) then
8272 Conv_Arg := New_Copy_Tree (Expression (Conv));
8274 -- Assume convention "Ada' when aspect Convention is missing
8276 else
8277 Conv_Arg := Make_Identifier (Loc, Name_Ada);
8278 end if;
8280 Append_To (Args,
8281 Make_Pragma_Argument_Association (Loc,
8282 Chars => Name_Convention,
8283 Expression => Conv_Arg));
8285 -- Handle the entity argument
8287 Append_To (Args,
8288 Make_Pragma_Argument_Association (Loc,
8289 Chars => Name_Entity,
8290 Expression => New_Occurrence_Of (Id, Loc)));
8292 -- Handle the External_Name argument
8294 if Present (EN) then
8295 Append_To (Args,
8296 Make_Pragma_Argument_Association (Loc,
8297 Chars => Name_External_Name,
8298 Expression => New_Copy_Tree (Expression (EN))));
8299 end if;
8301 -- Handle the Link_Name argument
8303 if Present (LN) then
8304 Append_To (Args,
8305 Make_Pragma_Argument_Association (Loc,
8306 Chars => Name_Link_Name,
8307 Expression => New_Copy_Tree (Expression (LN))));
8308 end if;
8310 -- Generate:
8311 -- pragma Export/Import
8312 -- (Convention => <Conv>/Ada,
8313 -- Entity => <Id>,
8314 -- [External_Name => <EN>,]
8315 -- [Link_Name => <LN>]);
8317 Prag :=
8318 Make_Pragma (Loc,
8319 Pragma_Identifier =>
8320 Make_Identifier (Loc, Chars (Identifier (Asp))),
8321 Pragma_Argument_Associations => Args);
8323 -- Decorate the relevant aspect and the pragma
8325 Set_Aspect_Rep_Item (Asp, Prag);
8327 Set_Corresponding_Aspect (Prag, Asp);
8328 Set_From_Aspect_Specification (Prag);
8329 Set_Parent (Prag, Asp);
8331 if Asp_Id = Aspect_Import and then Is_Subprogram (Id) then
8332 Set_Import_Pragma (Id, Prag);
8333 end if;
8335 return Prag;
8336 end Build_Export_Import_Pragma;
8338 -------------------------------
8339 -- Build_Predicate_Functions --
8340 -------------------------------
8342 -- The procedures that are constructed here have the form:
8344 -- function typPredicate (Ixxx : typ) return Boolean is
8345 -- begin
8346 -- return
8347 -- typ1Predicate (typ1 (Ixxx))
8348 -- and then typ2Predicate (typ2 (Ixxx))
8349 -- and then ...;
8350 -- exp1 and then exp2 and then ...
8351 -- end typPredicate;
8353 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8354 -- this is the point at which these expressions get analyzed, providing the
8355 -- required delay, and typ1, typ2, are entities from which predicates are
8356 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8357 -- use this function even if checks are off, e.g. for membership tests.
8359 -- Note that the inherited predicates are evaluated first, as required by
8360 -- AI12-0071-1.
8362 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
8363 -- the form of this return expression.
8365 -- If the expression has at least one Raise_Expression, then we also build
8366 -- the typPredicateM version of the function, in which any occurrence of a
8367 -- Raise_Expression is converted to "return False".
8369 -- WARNING: This routine manages Ghost regions. Return statements must be
8370 -- replaced by gotos which jump to the end of the routine and restore the
8371 -- Ghost mode.
8373 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
8374 Loc : constant Source_Ptr := Sloc (Typ);
8376 Expr : Node_Id;
8377 -- This is the expression for the result of the function. It is
8378 -- is build by connecting the component predicates with AND THEN.
8380 Expr_M : Node_Id;
8381 -- This is the corresponding return expression for the Predicate_M
8382 -- function. It differs in that raise expressions are marked for
8383 -- special expansion (see Process_REs).
8385 Object_Name : Name_Id;
8386 -- Name for argument of Predicate procedure. Note that we use the same
8387 -- name for both predicate functions. That way the reference within the
8388 -- predicate expression is the same in both functions.
8390 Object_Entity : Entity_Id;
8391 -- Entity for argument of Predicate procedure
8393 Object_Entity_M : Entity_Id;
8394 -- Entity for argument of separate Predicate procedure when exceptions
8395 -- are present in expression.
8397 FDecl : Node_Id;
8398 -- The function declaration
8400 SId : Entity_Id;
8401 -- Its entity
8403 Raise_Expression_Present : Boolean := False;
8404 -- Set True if Expr has at least one Raise_Expression
8406 procedure Add_Condition (Cond : Node_Id);
8407 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
8408 -- Expr is empty).
8410 procedure Add_Predicates;
8411 -- Appends expressions for any Predicate pragmas in the rep item chain
8412 -- Typ to Expr. Note that we look only at items for this exact entity.
8413 -- Inheritance of predicates for the parent type is done by calling the
8414 -- Predicate_Function of the parent type, using Add_Call above.
8416 procedure Add_Call (T : Entity_Id);
8417 -- Includes a call to the predicate function for type T in Expr if T
8418 -- has predicates and Predicate_Function (T) is non-empty.
8420 function Process_RE (N : Node_Id) return Traverse_Result;
8421 -- Used in Process REs, tests if node N is a raise expression, and if
8422 -- so, marks it to be converted to return False.
8424 procedure Process_REs is new Traverse_Proc (Process_RE);
8425 -- Marks any raise expressions in Expr_M to return False
8427 function Test_RE (N : Node_Id) return Traverse_Result;
8428 -- Used in Test_REs, tests one node for being a raise expression, and if
8429 -- so sets Raise_Expression_Present True.
8431 procedure Test_REs is new Traverse_Proc (Test_RE);
8432 -- Tests to see if Expr contains any raise expressions
8434 --------------
8435 -- Add_Call --
8436 --------------
8438 procedure Add_Call (T : Entity_Id) is
8439 Exp : Node_Id;
8441 begin
8442 if Present (T) and then Present (Predicate_Function (T)) then
8443 Set_Has_Predicates (Typ);
8445 -- Build the call to the predicate function of T. The type may be
8446 -- derived, so use an unchecked conversion for the actual.
8448 Exp :=
8449 Make_Predicate_Call
8450 (Typ => T,
8451 Expr =>
8452 Unchecked_Convert_To (T,
8453 Make_Identifier (Loc, Object_Name)));
8455 -- "and"-in the call to evolving expression
8457 Add_Condition (Exp);
8459 -- Output info message on inheritance if required. Note we do not
8460 -- give this information for generic actual types, since it is
8461 -- unwelcome noise in that case in instantiations. We also
8462 -- generally suppress the message in instantiations, and also
8463 -- if it involves internal names.
8465 if Opt.List_Inherited_Aspects
8466 and then not Is_Generic_Actual_Type (Typ)
8467 and then Instantiation_Depth (Sloc (Typ)) = 0
8468 and then not Is_Internal_Name (Chars (T))
8469 and then not Is_Internal_Name (Chars (Typ))
8470 then
8471 Error_Msg_Sloc := Sloc (Predicate_Function (T));
8472 Error_Msg_Node_2 := T;
8473 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
8474 end if;
8475 end if;
8476 end Add_Call;
8478 -------------------
8479 -- Add_Condition --
8480 -------------------
8482 procedure Add_Condition (Cond : Node_Id) is
8483 begin
8484 -- This is the first predicate expression
8486 if No (Expr) then
8487 Expr := Cond;
8489 -- Otherwise concatenate to the existing predicate expressions by
8490 -- using "and then".
8492 else
8493 Expr :=
8494 Make_And_Then (Loc,
8495 Left_Opnd => Relocate_Node (Expr),
8496 Right_Opnd => Cond);
8497 end if;
8498 end Add_Condition;
8500 --------------------
8501 -- Add_Predicates --
8502 --------------------
8504 procedure Add_Predicates is
8505 procedure Add_Predicate (Prag : Node_Id);
8506 -- Concatenate the expression of predicate pragma Prag to Expr by
8507 -- using a short circuit "and then" operator.
8509 -------------------
8510 -- Add_Predicate --
8511 -------------------
8513 procedure Add_Predicate (Prag : Node_Id) is
8514 procedure Replace_Type_Reference (N : Node_Id);
8515 -- Replace a single occurrence N of the subtype name with a
8516 -- reference to the formal of the predicate function. N can be an
8517 -- identifier referencing the subtype, or a selected component,
8518 -- representing an appropriately qualified occurrence of the
8519 -- subtype name.
8521 procedure Replace_Type_References is
8522 new Replace_Type_References_Generic (Replace_Type_Reference);
8523 -- Traverse an expression changing every occurrence of an
8524 -- identifier whose name matches the name of the subtype with a
8525 -- reference to the formal parameter of the predicate function.
8527 ----------------------------
8528 -- Replace_Type_Reference --
8529 ----------------------------
8531 procedure Replace_Type_Reference (N : Node_Id) is
8532 begin
8533 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8534 -- Use the Sloc of the usage name, not the defining name
8536 Set_Etype (N, Typ);
8537 Set_Entity (N, Object_Entity);
8539 -- We want to treat the node as if it comes from source, so
8540 -- that ASIS will not ignore it.
8542 Set_Comes_From_Source (N, True);
8543 end Replace_Type_Reference;
8545 -- Local variables
8547 Asp : constant Node_Id := Corresponding_Aspect (Prag);
8548 Arg1 : Node_Id;
8549 Arg2 : Node_Id;
8551 -- Start of processing for Add_Predicate
8553 begin
8554 -- Mark corresponding SCO as enabled
8556 Set_SCO_Pragma_Enabled (Sloc (Prag));
8558 -- Extract the arguments of the pragma. The expression itself
8559 -- is copied for use in the predicate function, to preserve the
8560 -- original version for ASIS use.
8562 Arg1 := First (Pragma_Argument_Associations (Prag));
8563 Arg2 := Next (Arg1);
8565 Arg1 := Get_Pragma_Arg (Arg1);
8566 Arg2 := New_Copy_Tree (Get_Pragma_Arg (Arg2));
8568 -- When the predicate pragma applies to the current type or its
8569 -- full view, replace all occurrences of the subtype name with
8570 -- references to the formal parameter of the predicate function.
8572 if Entity (Arg1) = Typ
8573 or else Full_View (Entity (Arg1)) = Typ
8574 then
8575 Replace_Type_References (Arg2, Typ);
8577 -- If the predicate pragma comes from an aspect, replace the
8578 -- saved expression because we need the subtype references
8579 -- replaced for the calls to Preanalyze_Spec_Expression in
8580 -- Check_Aspect_At_xxx routines.
8582 if Present (Asp) then
8583 Set_Entity (Identifier (Asp), New_Copy_Tree (Arg2));
8584 end if;
8586 -- "and"-in the Arg2 condition to evolving expression
8588 Add_Condition (Relocate_Node (Arg2));
8589 end if;
8590 end Add_Predicate;
8592 -- Local variables
8594 Ritem : Node_Id;
8596 -- Start of processing for Add_Predicates
8598 begin
8599 Ritem := First_Rep_Item (Typ);
8601 -- If the type is private, check whether full view has inherited
8602 -- predicates.
8604 if Is_Private_Type (Typ) and then No (Ritem) then
8605 Ritem := First_Rep_Item (Full_View (Typ));
8606 end if;
8608 while Present (Ritem) loop
8609 if Nkind (Ritem) = N_Pragma
8610 and then Pragma_Name (Ritem) = Name_Predicate
8611 then
8612 Add_Predicate (Ritem);
8614 -- If the type is declared in an inner package it may be frozen
8615 -- outside of the package, and the generated pragma has not been
8616 -- analyzed yet, so capture the expression for the predicate
8617 -- function at this point.
8619 elsif Nkind (Ritem) = N_Aspect_Specification
8620 and then Present (Aspect_Rep_Item (Ritem))
8621 and then Scope (Typ) /= Current_Scope
8622 then
8623 declare
8624 Prag : constant Node_Id := Aspect_Rep_Item (Ritem);
8626 begin
8627 if Nkind (Prag) = N_Pragma
8628 and then Pragma_Name (Prag) = Name_Predicate
8629 then
8630 Add_Predicate (Prag);
8631 end if;
8632 end;
8633 end if;
8635 Next_Rep_Item (Ritem);
8636 end loop;
8637 end Add_Predicates;
8639 ----------------
8640 -- Process_RE --
8641 ----------------
8643 function Process_RE (N : Node_Id) return Traverse_Result is
8644 begin
8645 if Nkind (N) = N_Raise_Expression then
8646 Set_Convert_To_Return_False (N);
8647 return Skip;
8648 else
8649 return OK;
8650 end if;
8651 end Process_RE;
8653 -------------
8654 -- Test_RE --
8655 -------------
8657 function Test_RE (N : Node_Id) return Traverse_Result is
8658 begin
8659 if Nkind (N) = N_Raise_Expression then
8660 Raise_Expression_Present := True;
8661 return Abandon;
8662 else
8663 return OK;
8664 end if;
8665 end Test_RE;
8667 -- Local variables
8669 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
8670 -- Save the Ghost mode to restore on exit
8672 -- Start of processing for Build_Predicate_Functions
8674 begin
8675 -- Return if already built or if type does not have predicates
8677 SId := Predicate_Function (Typ);
8678 if not Has_Predicates (Typ)
8679 or else (Present (SId) and then Has_Completion (SId))
8680 then
8681 return;
8682 end if;
8684 -- The related type may be subject to pragma Ghost. Set the mode now to
8685 -- ensure that the predicate functions are properly marked as Ghost.
8687 Set_Ghost_Mode (Typ);
8689 -- Prepare to construct predicate expression
8691 Expr := Empty;
8693 if Present (SId) then
8694 FDecl := Unit_Declaration_Node (SId);
8696 else
8697 FDecl := Build_Predicate_Function_Declaration (Typ);
8698 SId := Defining_Entity (FDecl);
8699 end if;
8701 -- Recover name of formal parameter of function that replaces references
8702 -- to the type in predicate expressions.
8704 Object_Entity :=
8705 Defining_Identifier
8706 (First (Parameter_Specifications (Specification (FDecl))));
8708 Object_Name := Chars (Object_Entity);
8709 Object_Entity_M := Make_Defining_Identifier (Loc, Chars => Object_Name);
8711 -- Add predicates for ancestor if present. These must come before the
8712 -- ones for the current type, as required by AI12-0071-1.
8714 declare
8715 Atyp : Entity_Id;
8716 begin
8717 Atyp := Nearest_Ancestor (Typ);
8719 -- The type may be private but the full view may inherit predicates
8721 if No (Atyp) and then Is_Private_Type (Typ) then
8722 Atyp := Nearest_Ancestor (Full_View (Typ));
8723 end if;
8725 if Present (Atyp) then
8726 Add_Call (Atyp);
8727 end if;
8728 end;
8730 -- Add Predicates for the current type
8732 Add_Predicates;
8734 -- Case where predicates are present
8736 if Present (Expr) then
8738 -- Test for raise expression present
8740 Test_REs (Expr);
8742 -- If raise expression is present, capture a copy of Expr for use
8743 -- in building the predicateM function version later on. For this
8744 -- copy we replace references to Object_Entity by Object_Entity_M.
8746 if Raise_Expression_Present then
8747 declare
8748 Map : constant Elist_Id := New_Elmt_List;
8749 New_V : Entity_Id := Empty;
8751 -- The unanalyzed expression will be copied and appear in
8752 -- both functions. Normally expressions do not declare new
8753 -- entities, but quantified expressions do, so we need to
8754 -- create new entities for their bound variables, to prevent
8755 -- multiple definitions in gigi.
8757 function Reset_Loop_Variable (N : Node_Id)
8758 return Traverse_Result;
8760 procedure Collect_Loop_Variables is
8761 new Traverse_Proc (Reset_Loop_Variable);
8763 ------------------------
8764 -- Reset_Loop_Variable --
8765 ------------------------
8767 function Reset_Loop_Variable (N : Node_Id)
8768 return Traverse_Result
8770 begin
8771 if Nkind (N) = N_Iterator_Specification then
8772 New_V := Make_Defining_Identifier
8773 (Sloc (N), Chars (Defining_Identifier (N)));
8775 Set_Defining_Identifier (N, New_V);
8776 end if;
8778 return OK;
8779 end Reset_Loop_Variable;
8781 begin
8782 Append_Elmt (Object_Entity, Map);
8783 Append_Elmt (Object_Entity_M, Map);
8784 Expr_M := New_Copy_Tree (Expr, Map => Map);
8785 Collect_Loop_Variables (Expr_M);
8786 end;
8787 end if;
8789 -- Build the main predicate function
8791 declare
8792 SIdB : constant Entity_Id :=
8793 Make_Defining_Identifier (Loc,
8794 Chars => New_External_Name (Chars (Typ), "Predicate"));
8795 -- The entity for the function body
8797 Spec : Node_Id;
8798 FBody : Node_Id;
8800 begin
8801 Set_Ekind (SIdB, E_Function);
8802 Set_Is_Predicate_Function (SIdB);
8804 -- The predicate function is shared between views of a type
8806 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8807 Set_Predicate_Function (Full_View (Typ), SId);
8808 end if;
8810 -- Build function body
8812 Spec :=
8813 Make_Function_Specification (Loc,
8814 Defining_Unit_Name => SIdB,
8815 Parameter_Specifications => New_List (
8816 Make_Parameter_Specification (Loc,
8817 Defining_Identifier =>
8818 Make_Defining_Identifier (Loc, Object_Name),
8819 Parameter_Type =>
8820 New_Occurrence_Of (Typ, Loc))),
8821 Result_Definition =>
8822 New_Occurrence_Of (Standard_Boolean, Loc));
8824 FBody :=
8825 Make_Subprogram_Body (Loc,
8826 Specification => Spec,
8827 Declarations => Empty_List,
8828 Handled_Statement_Sequence =>
8829 Make_Handled_Sequence_Of_Statements (Loc,
8830 Statements => New_List (
8831 Make_Simple_Return_Statement (Loc,
8832 Expression => Expr))));
8834 -- If declaration has not been analyzed yet, Insert declaration
8835 -- before freeze node. Insert body itself after freeze node.
8837 if not Analyzed (FDecl) then
8838 Insert_Before_And_Analyze (N, FDecl);
8839 end if;
8841 Insert_After_And_Analyze (N, FBody);
8843 -- Static predicate functions are always side-effect free, and
8844 -- in most cases dynamic predicate functions are as well. Mark
8845 -- them as such whenever possible, so redundant predicate checks
8846 -- can be optimized. If there is a variable reference within the
8847 -- expression, the function is not pure.
8849 if Expander_Active then
8850 Set_Is_Pure (SId,
8851 Side_Effect_Free (Expr, Variable_Ref => True));
8852 Set_Is_Inlined (SId);
8853 end if;
8854 end;
8856 -- Test for raise expressions present and if so build M version
8858 if Raise_Expression_Present then
8859 declare
8860 SId : constant Entity_Id :=
8861 Make_Defining_Identifier (Loc,
8862 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8863 -- The entity for the function spec
8865 SIdB : constant Entity_Id :=
8866 Make_Defining_Identifier (Loc,
8867 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8868 -- The entity for the function body
8870 Spec : Node_Id;
8871 FBody : Node_Id;
8872 FDecl : Node_Id;
8873 BTemp : Entity_Id;
8875 begin
8876 -- Mark any raise expressions for special expansion
8878 Process_REs (Expr_M);
8880 -- Build function declaration
8882 Set_Ekind (SId, E_Function);
8883 Set_Is_Predicate_Function_M (SId);
8884 Set_Predicate_Function_M (Typ, SId);
8886 -- The predicate function is shared between views of a type
8888 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8889 Set_Predicate_Function_M (Full_View (Typ), SId);
8890 end if;
8892 Spec :=
8893 Make_Function_Specification (Loc,
8894 Defining_Unit_Name => SId,
8895 Parameter_Specifications => New_List (
8896 Make_Parameter_Specification (Loc,
8897 Defining_Identifier => Object_Entity_M,
8898 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8899 Result_Definition =>
8900 New_Occurrence_Of (Standard_Boolean, Loc));
8902 FDecl :=
8903 Make_Subprogram_Declaration (Loc,
8904 Specification => Spec);
8906 -- Build function body
8908 Spec :=
8909 Make_Function_Specification (Loc,
8910 Defining_Unit_Name => SIdB,
8911 Parameter_Specifications => New_List (
8912 Make_Parameter_Specification (Loc,
8913 Defining_Identifier =>
8914 Make_Defining_Identifier (Loc, Object_Name),
8915 Parameter_Type =>
8916 New_Occurrence_Of (Typ, Loc))),
8917 Result_Definition =>
8918 New_Occurrence_Of (Standard_Boolean, Loc));
8920 -- Build the body, we declare the boolean expression before
8921 -- doing the return, because we are not really confident of
8922 -- what happens if a return appears within a return.
8924 BTemp :=
8925 Make_Defining_Identifier (Loc,
8926 Chars => New_Internal_Name ('B'));
8928 FBody :=
8929 Make_Subprogram_Body (Loc,
8930 Specification => Spec,
8932 Declarations => New_List (
8933 Make_Object_Declaration (Loc,
8934 Defining_Identifier => BTemp,
8935 Constant_Present => True,
8936 Object_Definition =>
8937 New_Occurrence_Of (Standard_Boolean, Loc),
8938 Expression => Expr_M)),
8940 Handled_Statement_Sequence =>
8941 Make_Handled_Sequence_Of_Statements (Loc,
8942 Statements => New_List (
8943 Make_Simple_Return_Statement (Loc,
8944 Expression => New_Occurrence_Of (BTemp, Loc)))));
8946 -- Insert declaration before freeze node and body after
8948 Insert_Before_And_Analyze (N, FDecl);
8949 Insert_After_And_Analyze (N, FBody);
8950 end;
8951 end if;
8953 -- See if we have a static predicate. Note that the answer may be
8954 -- yes even if we have an explicit Dynamic_Predicate present.
8956 declare
8957 PS : Boolean;
8958 EN : Node_Id;
8960 begin
8961 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
8962 PS := False;
8963 else
8964 PS := Is_Predicate_Static (Expr, Object_Name);
8965 end if;
8967 -- Case where we have a predicate-static aspect
8969 if PS then
8971 -- We don't set Has_Static_Predicate_Aspect, since we can have
8972 -- any of the three cases (Predicate, Dynamic_Predicate, or
8973 -- Static_Predicate) generating a predicate with an expression
8974 -- that is predicate-static. We just indicate that we have a
8975 -- predicate that can be treated as static.
8977 Set_Has_Static_Predicate (Typ);
8979 -- For discrete subtype, build the static predicate list
8981 if Is_Discrete_Type (Typ) then
8982 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
8984 -- If we don't get a static predicate list, it means that we
8985 -- have a case where this is not possible, most typically in
8986 -- the case where we inherit a dynamic predicate. We do not
8987 -- consider this an error, we just leave the predicate as
8988 -- dynamic. But if we do succeed in building the list, then
8989 -- we mark the predicate as static.
8991 if No (Static_Discrete_Predicate (Typ)) then
8992 Set_Has_Static_Predicate (Typ, False);
8993 end if;
8995 -- For real or string subtype, save predicate expression
8997 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
8998 Set_Static_Real_Or_String_Predicate (Typ, Expr);
8999 end if;
9001 -- Case of dynamic predicate (expression is not predicate-static)
9003 else
9004 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
9005 -- is only set if we have an explicit Dynamic_Predicate aspect
9006 -- given. Here we may simply have a Predicate aspect where the
9007 -- expression happens not to be predicate-static.
9009 -- Emit an error when the predicate is categorized as static
9010 -- but its expression is not predicate-static.
9012 -- First a little fiddling to get a nice location for the
9013 -- message. If the expression is of the form (A and then B),
9014 -- where A is an inherited predicate, then use the right
9015 -- operand for the Sloc. This avoids getting confused by a call
9016 -- to an inherited predicate with a less convenient source
9017 -- location.
9019 EN := Expr;
9020 while Nkind (EN) = N_And_Then
9021 and then Nkind (Left_Opnd (EN)) = N_Function_Call
9022 and then Is_Predicate_Function
9023 (Entity (Name (Left_Opnd (EN))))
9024 loop
9025 EN := Right_Opnd (EN);
9026 end loop;
9028 -- Now post appropriate message
9030 if Has_Static_Predicate_Aspect (Typ) then
9031 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
9032 Error_Msg_F
9033 ("expression is not predicate-static (RM 3.2.4(16-22))",
9034 EN);
9035 else
9036 Error_Msg_F
9037 ("static predicate requires scalar or string type", EN);
9038 end if;
9039 end if;
9040 end if;
9041 end;
9042 end if;
9044 Restore_Ghost_Mode (Saved_GM);
9045 end Build_Predicate_Functions;
9047 ------------------------------------------
9048 -- Build_Predicate_Function_Declaration --
9049 ------------------------------------------
9051 -- WARNING: This routine manages Ghost regions. Return statements must be
9052 -- replaced by gotos which jump to the end of the routine and restore the
9053 -- Ghost mode.
9055 function Build_Predicate_Function_Declaration
9056 (Typ : Entity_Id) return Node_Id
9058 Loc : constant Source_Ptr := Sloc (Typ);
9060 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
9061 -- Save the Ghost mode to restore on exit
9063 Func_Decl : Node_Id;
9064 Func_Id : Entity_Id;
9065 Spec : Node_Id;
9067 begin
9068 -- The related type may be subject to pragma Ghost. Set the mode now to
9069 -- ensure that the predicate functions are properly marked as Ghost.
9071 Set_Ghost_Mode (Typ);
9073 Func_Id :=
9074 Make_Defining_Identifier (Loc,
9075 Chars => New_External_Name (Chars (Typ), "Predicate"));
9077 -- The predicate function requires debug info when the predicates are
9078 -- subject to Source Coverage Obligations.
9080 if Opt.Generate_SCO then
9081 Set_Debug_Info_Needed (Func_Id);
9082 end if;
9084 Spec :=
9085 Make_Function_Specification (Loc,
9086 Defining_Unit_Name => Func_Id,
9087 Parameter_Specifications => New_List (
9088 Make_Parameter_Specification (Loc,
9089 Defining_Identifier => Make_Temporary (Loc, 'I'),
9090 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
9091 Result_Definition =>
9092 New_Occurrence_Of (Standard_Boolean, Loc));
9094 Func_Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
9096 Set_Ekind (Func_Id, E_Function);
9097 Set_Etype (Func_Id, Standard_Boolean);
9098 Set_Is_Internal (Func_Id);
9099 Set_Is_Predicate_Function (Func_Id);
9100 Set_Predicate_Function (Typ, Func_Id);
9102 Insert_After (Parent (Typ), Func_Decl);
9103 Analyze (Func_Decl);
9105 Restore_Ghost_Mode (Saved_GM);
9107 return Func_Decl;
9108 end Build_Predicate_Function_Declaration;
9110 -----------------------------------------
9111 -- Check_Aspect_At_End_Of_Declarations --
9112 -----------------------------------------
9114 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
9115 Ent : constant Entity_Id := Entity (ASN);
9116 Ident : constant Node_Id := Identifier (ASN);
9117 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9119 End_Decl_Expr : constant Node_Id := Entity (Ident);
9120 -- Expression to be analyzed at end of declarations
9122 Freeze_Expr : constant Node_Id := Expression (ASN);
9123 -- Expression from call to Check_Aspect_At_Freeze_Point.
9125 T : constant Entity_Id := Etype (Original_Node (Freeze_Expr));
9126 -- Type required for preanalyze call. We use the original expression to
9127 -- get the proper type, to prevent cascaded errors when the expression
9128 -- is constant-folded.
9130 Err : Boolean;
9131 -- Set False if error
9133 -- On entry to this procedure, Entity (Ident) contains a copy of the
9134 -- original expression from the aspect, saved for this purpose, and
9135 -- but Expression (Ident) is a preanalyzed copy of the expression,
9136 -- preanalyzed just after the freeze point.
9138 procedure Check_Overloaded_Name;
9139 -- For aspects whose expression is simply a name, this routine checks if
9140 -- the name is overloaded or not. If so, it verifies there is an
9141 -- interpretation that matches the entity obtained at the freeze point,
9142 -- otherwise the compiler complains.
9144 ---------------------------
9145 -- Check_Overloaded_Name --
9146 ---------------------------
9148 procedure Check_Overloaded_Name is
9149 begin
9150 if not Is_Overloaded (End_Decl_Expr) then
9151 Err := not Is_Entity_Name (End_Decl_Expr)
9152 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
9154 else
9155 Err := True;
9157 declare
9158 Index : Interp_Index;
9159 It : Interp;
9161 begin
9162 Get_First_Interp (End_Decl_Expr, Index, It);
9163 while Present (It.Typ) loop
9164 if It.Nam = Entity (Freeze_Expr) then
9165 Err := False;
9166 exit;
9167 end if;
9169 Get_Next_Interp (Index, It);
9170 end loop;
9171 end;
9172 end if;
9173 end Check_Overloaded_Name;
9175 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9177 begin
9178 -- In an instance we do not perform the consistency check between freeze
9179 -- point and end of declarations, because it was done already in the
9180 -- analysis of the generic. Furthermore, the delayed analysis of an
9181 -- aspect of the instance may produce spurious errors when the generic
9182 -- is a child unit that references entities in the parent (which might
9183 -- not be in scope at the freeze point of the instance).
9185 if In_Instance then
9186 return;
9188 -- The enclosing scope may have been rewritten during expansion (.e.g. a
9189 -- task body is rewritten as a procedure) after this conformance check
9190 -- has been performed, so do not perform it again (it may not easily be
9191 -- done if full visibility of local entities is not available).
9193 elsif not Comes_From_Source (Current_Scope) then
9194 return;
9196 -- Case of aspects Dimension, Dimension_System and Synchronization
9198 elsif A_Id = Aspect_Synchronization then
9199 return;
9201 -- Case of stream attributes, just have to compare entities. However,
9202 -- the expression is just a name (possibly overloaded), and there may
9203 -- be stream operations declared for unrelated types, so we just need
9204 -- to verify that one of these interpretations is the one available at
9205 -- at the freeze point.
9207 elsif A_Id = Aspect_Input or else
9208 A_Id = Aspect_Output or else
9209 A_Id = Aspect_Read or else
9210 A_Id = Aspect_Write
9211 then
9212 Analyze (End_Decl_Expr);
9213 Check_Overloaded_Name;
9215 elsif A_Id = Aspect_Variable_Indexing or else
9216 A_Id = Aspect_Constant_Indexing or else
9217 A_Id = Aspect_Default_Iterator or else
9218 A_Id = Aspect_Iterator_Element
9219 then
9220 -- Make type unfrozen before analysis, to prevent spurious errors
9221 -- about late attributes.
9223 Set_Is_Frozen (Ent, False);
9224 Analyze (End_Decl_Expr);
9225 Set_Is_Frozen (Ent, True);
9227 -- If the end of declarations comes before any other freeze
9228 -- point, the Freeze_Expr is not analyzed: no check needed.
9230 if Analyzed (Freeze_Expr) and then not In_Instance then
9231 Check_Overloaded_Name;
9232 else
9233 Err := False;
9234 end if;
9236 -- All other cases
9238 else
9239 -- Indicate that the expression comes from an aspect specification,
9240 -- which is used in subsequent analysis even if expansion is off.
9242 Set_Parent (End_Decl_Expr, ASN);
9244 -- In a generic context the aspect expressions have not been
9245 -- preanalyzed, so do it now. There are no conformance checks
9246 -- to perform in this case.
9248 if No (T) then
9249 Check_Aspect_At_Freeze_Point (ASN);
9250 return;
9252 -- The default values attributes may be defined in the private part,
9253 -- and the analysis of the expression may take place when only the
9254 -- partial view is visible. The expression must be scalar, so use
9255 -- the full view to resolve.
9257 elsif (A_Id = Aspect_Default_Value
9258 or else
9259 A_Id = Aspect_Default_Component_Value)
9260 and then Is_Private_Type (T)
9261 then
9262 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
9264 else
9265 Preanalyze_Spec_Expression (End_Decl_Expr, T);
9266 end if;
9268 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
9269 end if;
9271 -- Output error message if error. Force error on aspect specification
9272 -- even if there is an error on the expression itself.
9274 if Err then
9275 Error_Msg_NE
9276 ("!visibility of aspect for& changes after freeze point",
9277 ASN, Ent);
9278 Error_Msg_NE
9279 ("info: & is frozen here, aspects evaluated at this point??",
9280 Freeze_Node (Ent), Ent);
9281 end if;
9282 end Check_Aspect_At_End_Of_Declarations;
9284 ----------------------------------
9285 -- Check_Aspect_At_Freeze_Point --
9286 ----------------------------------
9288 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
9289 Ident : constant Node_Id := Identifier (ASN);
9290 -- Identifier (use Entity field to save expression)
9292 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9294 T : Entity_Id := Empty;
9295 -- Type required for preanalyze call
9297 begin
9298 -- On entry to this procedure, Entity (Ident) contains a copy of the
9299 -- original expression from the aspect, saved for this purpose.
9301 -- On exit from this procedure Entity (Ident) is unchanged, still
9302 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9303 -- of the expression, preanalyzed just after the freeze point.
9305 -- Make a copy of the expression to be preanalyzed
9307 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
9309 -- Find type for preanalyze call
9311 case A_Id is
9313 -- No_Aspect should be impossible
9315 when No_Aspect =>
9316 raise Program_Error;
9318 -- Aspects taking an optional boolean argument
9320 when Boolean_Aspects
9321 | Library_Unit_Aspects
9323 T := Standard_Boolean;
9325 -- Aspects corresponding to attribute definition clauses
9327 when Aspect_Address =>
9328 T := RTE (RE_Address);
9330 when Aspect_Attach_Handler =>
9331 T := RTE (RE_Interrupt_ID);
9333 when Aspect_Bit_Order
9334 | Aspect_Scalar_Storage_Order
9336 T := RTE (RE_Bit_Order);
9338 when Aspect_Convention =>
9339 return;
9341 when Aspect_CPU =>
9342 T := RTE (RE_CPU_Range);
9344 -- Default_Component_Value is resolved with the component type
9346 when Aspect_Default_Component_Value =>
9347 T := Component_Type (Entity (ASN));
9349 when Aspect_Default_Storage_Pool =>
9350 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9352 -- Default_Value is resolved with the type entity in question
9354 when Aspect_Default_Value =>
9355 T := Entity (ASN);
9357 when Aspect_Dispatching_Domain =>
9358 T := RTE (RE_Dispatching_Domain);
9360 when Aspect_External_Tag =>
9361 T := Standard_String;
9363 when Aspect_External_Name =>
9364 T := Standard_String;
9366 when Aspect_Link_Name =>
9367 T := Standard_String;
9369 when Aspect_Interrupt_Priority
9370 | Aspect_Priority
9372 T := Standard_Integer;
9374 when Aspect_Relative_Deadline =>
9375 T := RTE (RE_Time_Span);
9377 when Aspect_Secondary_Stack_Size =>
9378 T := Standard_Integer;
9380 when Aspect_Small =>
9382 -- Note that the expression can be of any real type (not just a
9383 -- real universal literal) as long as it is a static constant.
9385 T := Any_Real;
9387 -- For a simple storage pool, we have to retrieve the type of the
9388 -- pool object associated with the aspect's corresponding attribute
9389 -- definition clause.
9391 when Aspect_Simple_Storage_Pool =>
9392 T := Etype (Expression (Aspect_Rep_Item (ASN)));
9394 when Aspect_Storage_Pool =>
9395 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9397 when Aspect_Alignment
9398 | Aspect_Component_Size
9399 | Aspect_Machine_Radix
9400 | Aspect_Object_Size
9401 | Aspect_Size
9402 | Aspect_Storage_Size
9403 | Aspect_Stream_Size
9404 | Aspect_Value_Size
9406 T := Any_Integer;
9408 when Aspect_Linker_Section =>
9409 T := Standard_String;
9411 when Aspect_Synchronization =>
9412 return;
9414 -- Special case, the expression of these aspects is just an entity
9415 -- that does not need any resolution, so just analyze.
9417 when Aspect_Input
9418 | Aspect_Output
9419 | Aspect_Read
9420 | Aspect_Suppress
9421 | Aspect_Unsuppress
9422 | Aspect_Warnings
9423 | Aspect_Write
9425 Analyze (Expression (ASN));
9426 return;
9428 -- Same for Iterator aspects, where the expression is a function
9429 -- name. Legality rules are checked separately.
9431 when Aspect_Constant_Indexing
9432 | Aspect_Default_Iterator
9433 | Aspect_Iterator_Element
9434 | Aspect_Variable_Indexing
9436 Analyze (Expression (ASN));
9437 return;
9439 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9441 when Aspect_Iterable =>
9442 T := Entity (ASN);
9444 declare
9445 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
9446 Assoc : Node_Id;
9447 Expr : Node_Id;
9449 begin
9450 if Cursor = Any_Type then
9451 return;
9452 end if;
9454 Assoc := First (Component_Associations (Expression (ASN)));
9455 while Present (Assoc) loop
9456 Expr := Expression (Assoc);
9457 Analyze (Expr);
9459 if not Error_Posted (Expr) then
9460 Resolve_Iterable_Operation
9461 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
9462 end if;
9464 Next (Assoc);
9465 end loop;
9466 end;
9468 return;
9470 -- Invariant/Predicate take boolean expressions
9472 when Aspect_Dynamic_Predicate
9473 | Aspect_Invariant
9474 | Aspect_Predicate
9475 | Aspect_Static_Predicate
9476 | Aspect_Type_Invariant
9478 T := Standard_Boolean;
9480 when Aspect_Predicate_Failure =>
9481 T := Standard_String;
9483 -- Here is the list of aspects that don't require delay analysis
9485 when Aspect_Abstract_State
9486 | Aspect_Annotate
9487 | Aspect_Async_Readers
9488 | Aspect_Async_Writers
9489 | Aspect_Constant_After_Elaboration
9490 | Aspect_Contract_Cases
9491 | Aspect_Default_Initial_Condition
9492 | Aspect_Depends
9493 | Aspect_Dimension
9494 | Aspect_Dimension_System
9495 | Aspect_Effective_Reads
9496 | Aspect_Effective_Writes
9497 | Aspect_Extensions_Visible
9498 | Aspect_Ghost
9499 | Aspect_Global
9500 | Aspect_Implicit_Dereference
9501 | Aspect_Initial_Condition
9502 | Aspect_Initializes
9503 | Aspect_Max_Queue_Length
9504 | Aspect_Obsolescent
9505 | Aspect_Part_Of
9506 | Aspect_Post
9507 | Aspect_Postcondition
9508 | Aspect_Pre
9509 | Aspect_Precondition
9510 | Aspect_Refined_Depends
9511 | Aspect_Refined_Global
9512 | Aspect_Refined_Post
9513 | Aspect_Refined_State
9514 | Aspect_SPARK_Mode
9515 | Aspect_Test_Case
9516 | Aspect_Unimplemented
9517 | Aspect_Volatile_Function
9519 raise Program_Error;
9521 end case;
9523 -- Do the preanalyze call
9525 Preanalyze_Spec_Expression (Expression (ASN), T);
9526 end Check_Aspect_At_Freeze_Point;
9528 -----------------------------------
9529 -- Check_Constant_Address_Clause --
9530 -----------------------------------
9532 procedure Check_Constant_Address_Clause
9533 (Expr : Node_Id;
9534 U_Ent : Entity_Id)
9536 procedure Check_At_Constant_Address (Nod : Node_Id);
9537 -- Checks that the given node N represents a name whose 'Address is
9538 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9539 -- address value is the same at the point of declaration of U_Ent and at
9540 -- the time of elaboration of the address clause.
9542 procedure Check_Expr_Constants (Nod : Node_Id);
9543 -- Checks that Nod meets the requirements for a constant address clause
9544 -- in the sense of the enclosing procedure.
9546 procedure Check_List_Constants (Lst : List_Id);
9547 -- Check that all elements of list Lst meet the requirements for a
9548 -- constant address clause in the sense of the enclosing procedure.
9550 -------------------------------
9551 -- Check_At_Constant_Address --
9552 -------------------------------
9554 procedure Check_At_Constant_Address (Nod : Node_Id) is
9555 begin
9556 if Is_Entity_Name (Nod) then
9557 if Present (Address_Clause (Entity ((Nod)))) then
9558 Error_Msg_NE
9559 ("invalid address clause for initialized object &!",
9560 Nod, U_Ent);
9561 Error_Msg_NE
9562 ("address for& cannot depend on another address clause! "
9563 & "(RM 13.1(22))!", Nod, U_Ent);
9565 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
9566 and then Sloc (U_Ent) < Sloc (Entity (Nod))
9567 then
9568 Error_Msg_NE
9569 ("invalid address clause for initialized object &!",
9570 Nod, U_Ent);
9571 Error_Msg_Node_2 := U_Ent;
9572 Error_Msg_NE
9573 ("\& must be defined before & (RM 13.1(22))!",
9574 Nod, Entity (Nod));
9575 end if;
9577 elsif Nkind (Nod) = N_Selected_Component then
9578 declare
9579 T : constant Entity_Id := Etype (Prefix (Nod));
9581 begin
9582 if (Is_Record_Type (T)
9583 and then Has_Discriminants (T))
9584 or else
9585 (Is_Access_Type (T)
9586 and then Is_Record_Type (Designated_Type (T))
9587 and then Has_Discriminants (Designated_Type (T)))
9588 then
9589 Error_Msg_NE
9590 ("invalid address clause for initialized object &!",
9591 Nod, U_Ent);
9592 Error_Msg_N
9593 ("\address cannot depend on component of discriminated "
9594 & "record (RM 13.1(22))!", Nod);
9595 else
9596 Check_At_Constant_Address (Prefix (Nod));
9597 end if;
9598 end;
9600 elsif Nkind (Nod) = N_Indexed_Component then
9601 Check_At_Constant_Address (Prefix (Nod));
9602 Check_List_Constants (Expressions (Nod));
9604 else
9605 Check_Expr_Constants (Nod);
9606 end if;
9607 end Check_At_Constant_Address;
9609 --------------------------
9610 -- Check_Expr_Constants --
9611 --------------------------
9613 procedure Check_Expr_Constants (Nod : Node_Id) is
9614 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
9615 Ent : Entity_Id := Empty;
9617 begin
9618 if Nkind (Nod) in N_Has_Etype
9619 and then Etype (Nod) = Any_Type
9620 then
9621 return;
9622 end if;
9624 case Nkind (Nod) is
9625 when N_Empty
9626 | N_Error
9628 return;
9630 when N_Expanded_Name
9631 | N_Identifier
9633 Ent := Entity (Nod);
9635 -- We need to look at the original node if it is different
9636 -- from the node, since we may have rewritten things and
9637 -- substituted an identifier representing the rewrite.
9639 if Original_Node (Nod) /= Nod then
9640 Check_Expr_Constants (Original_Node (Nod));
9642 -- If the node is an object declaration without initial
9643 -- value, some code has been expanded, and the expression
9644 -- is not constant, even if the constituents might be
9645 -- acceptable, as in A'Address + offset.
9647 if Ekind (Ent) = E_Variable
9648 and then
9649 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9650 and then
9651 No (Expression (Declaration_Node (Ent)))
9652 then
9653 Error_Msg_NE
9654 ("invalid address clause for initialized object &!",
9655 Nod, U_Ent);
9657 -- If entity is constant, it may be the result of expanding
9658 -- a check. We must verify that its declaration appears
9659 -- before the object in question, else we also reject the
9660 -- address clause.
9662 elsif Ekind (Ent) = E_Constant
9663 and then In_Same_Source_Unit (Ent, U_Ent)
9664 and then Sloc (Ent) > Loc_U_Ent
9665 then
9666 Error_Msg_NE
9667 ("invalid address clause for initialized object &!",
9668 Nod, U_Ent);
9669 end if;
9671 return;
9672 end if;
9674 -- Otherwise look at the identifier and see if it is OK
9676 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
9677 or else Is_Type (Ent)
9678 then
9679 return;
9681 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
9683 -- This is the case where we must have Ent defined before
9684 -- U_Ent. Clearly if they are in different units this
9685 -- requirement is met since the unit containing Ent is
9686 -- already processed.
9688 if not In_Same_Source_Unit (Ent, U_Ent) then
9689 return;
9691 -- Otherwise location of Ent must be before the location
9692 -- of U_Ent, that's what prior defined means.
9694 elsif Sloc (Ent) < Loc_U_Ent then
9695 return;
9697 else
9698 Error_Msg_NE
9699 ("invalid address clause for initialized object &!",
9700 Nod, U_Ent);
9701 Error_Msg_Node_2 := U_Ent;
9702 Error_Msg_NE
9703 ("\& must be defined before & (RM 13.1(22))!",
9704 Nod, Ent);
9705 end if;
9707 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9708 Check_Expr_Constants (Original_Node (Nod));
9710 else
9711 Error_Msg_NE
9712 ("invalid address clause for initialized object &!",
9713 Nod, U_Ent);
9715 if Comes_From_Source (Ent) then
9716 Error_Msg_NE
9717 ("\reference to variable& not allowed"
9718 & " (RM 13.1(22))!", Nod, Ent);
9719 else
9720 Error_Msg_N
9721 ("non-static expression not allowed"
9722 & " (RM 13.1(22))!", Nod);
9723 end if;
9724 end if;
9726 when N_Integer_Literal =>
9728 -- If this is a rewritten unchecked conversion, in a system
9729 -- where Address is an integer type, always use the base type
9730 -- for a literal value. This is user-friendly and prevents
9731 -- order-of-elaboration issues with instances of unchecked
9732 -- conversion.
9734 if Nkind (Original_Node (Nod)) = N_Function_Call then
9735 Set_Etype (Nod, Base_Type (Etype (Nod)));
9736 end if;
9738 when N_Character_Literal
9739 | N_Real_Literal
9740 | N_String_Literal
9742 return;
9744 when N_Range =>
9745 Check_Expr_Constants (Low_Bound (Nod));
9746 Check_Expr_Constants (High_Bound (Nod));
9748 when N_Explicit_Dereference =>
9749 Check_Expr_Constants (Prefix (Nod));
9751 when N_Indexed_Component =>
9752 Check_Expr_Constants (Prefix (Nod));
9753 Check_List_Constants (Expressions (Nod));
9755 when N_Slice =>
9756 Check_Expr_Constants (Prefix (Nod));
9757 Check_Expr_Constants (Discrete_Range (Nod));
9759 when N_Selected_Component =>
9760 Check_Expr_Constants (Prefix (Nod));
9762 when N_Attribute_Reference =>
9763 if Nam_In (Attribute_Name (Nod), Name_Address,
9764 Name_Access,
9765 Name_Unchecked_Access,
9766 Name_Unrestricted_Access)
9767 then
9768 Check_At_Constant_Address (Prefix (Nod));
9770 else
9771 Check_Expr_Constants (Prefix (Nod));
9772 Check_List_Constants (Expressions (Nod));
9773 end if;
9775 when N_Aggregate =>
9776 Check_List_Constants (Component_Associations (Nod));
9777 Check_List_Constants (Expressions (Nod));
9779 when N_Component_Association =>
9780 Check_Expr_Constants (Expression (Nod));
9782 when N_Extension_Aggregate =>
9783 Check_Expr_Constants (Ancestor_Part (Nod));
9784 Check_List_Constants (Component_Associations (Nod));
9785 Check_List_Constants (Expressions (Nod));
9787 when N_Null =>
9788 return;
9790 when N_Binary_Op
9791 | N_Membership_Test
9792 | N_Short_Circuit
9794 Check_Expr_Constants (Left_Opnd (Nod));
9795 Check_Expr_Constants (Right_Opnd (Nod));
9797 when N_Unary_Op =>
9798 Check_Expr_Constants (Right_Opnd (Nod));
9800 when N_Allocator
9801 | N_Qualified_Expression
9802 | N_Type_Conversion
9803 | N_Unchecked_Type_Conversion
9805 Check_Expr_Constants (Expression (Nod));
9807 when N_Function_Call =>
9808 if not Is_Pure (Entity (Name (Nod))) then
9809 Error_Msg_NE
9810 ("invalid address clause for initialized object &!",
9811 Nod, U_Ent);
9813 Error_Msg_NE
9814 ("\function & is not pure (RM 13.1(22))!",
9815 Nod, Entity (Name (Nod)));
9817 else
9818 Check_List_Constants (Parameter_Associations (Nod));
9819 end if;
9821 when N_Parameter_Association =>
9822 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
9824 when others =>
9825 Error_Msg_NE
9826 ("invalid address clause for initialized object &!",
9827 Nod, U_Ent);
9828 Error_Msg_NE
9829 ("\must be constant defined before& (RM 13.1(22))!",
9830 Nod, U_Ent);
9831 end case;
9832 end Check_Expr_Constants;
9834 --------------------------
9835 -- Check_List_Constants --
9836 --------------------------
9838 procedure Check_List_Constants (Lst : List_Id) is
9839 Nod1 : Node_Id;
9841 begin
9842 if Present (Lst) then
9843 Nod1 := First (Lst);
9844 while Present (Nod1) loop
9845 Check_Expr_Constants (Nod1);
9846 Next (Nod1);
9847 end loop;
9848 end if;
9849 end Check_List_Constants;
9851 -- Start of processing for Check_Constant_Address_Clause
9853 begin
9854 -- If rep_clauses are to be ignored, no need for legality checks. In
9855 -- particular, no need to pester user about rep clauses that violate the
9856 -- rule on constant addresses, given that these clauses will be removed
9857 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9858 -- we want to relax these checks.
9860 if not Ignore_Rep_Clauses and not CodePeer_Mode then
9861 Check_Expr_Constants (Expr);
9862 end if;
9863 end Check_Constant_Address_Clause;
9865 ---------------------------
9866 -- Check_Pool_Size_Clash --
9867 ---------------------------
9869 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
9870 Post : Node_Id;
9872 begin
9873 -- We need to find out which one came first. Note that in the case of
9874 -- aspects mixed with pragmas there are cases where the processing order
9875 -- is reversed, which is why we do the check here.
9877 if Sloc (SP) < Sloc (SS) then
9878 Error_Msg_Sloc := Sloc (SP);
9879 Post := SS;
9880 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
9882 else
9883 Error_Msg_Sloc := Sloc (SS);
9884 Post := SP;
9885 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
9886 end if;
9888 Error_Msg_N
9889 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
9890 end Check_Pool_Size_Clash;
9892 ----------------------------------------
9893 -- Check_Record_Representation_Clause --
9894 ----------------------------------------
9896 procedure Check_Record_Representation_Clause (N : Node_Id) is
9897 Loc : constant Source_Ptr := Sloc (N);
9898 Ident : constant Node_Id := Identifier (N);
9899 Rectype : Entity_Id;
9900 Fent : Entity_Id;
9901 CC : Node_Id;
9902 Fbit : Uint;
9903 Lbit : Uint;
9904 Hbit : Uint := Uint_0;
9905 Comp : Entity_Id;
9906 Pcomp : Entity_Id;
9908 Max_Bit_So_Far : Uint;
9909 -- Records the maximum bit position so far. If all field positions
9910 -- are monotonically increasing, then we can skip the circuit for
9911 -- checking for overlap, since no overlap is possible.
9913 Tagged_Parent : Entity_Id := Empty;
9914 -- This is set in the case of an extension for which we have either a
9915 -- size clause or Is_Fully_Repped_Tagged_Type True (indicating that all
9916 -- components are positioned by record representation clauses) on the
9917 -- parent type. In this case we check for overlap between components of
9918 -- this tagged type and the parent component. Tagged_Parent will point
9919 -- to this parent type. For all other cases, Tagged_Parent is Empty.
9921 Parent_Last_Bit : Uint;
9922 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9923 -- last bit position for any field in the parent type. We only need to
9924 -- check overlap for fields starting below this point.
9926 Overlap_Check_Required : Boolean;
9927 -- Used to keep track of whether or not an overlap check is required
9929 Overlap_Detected : Boolean := False;
9930 -- Set True if an overlap is detected
9932 Ccount : Natural := 0;
9933 -- Number of component clauses in record rep clause
9935 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
9936 -- Given two entities for record components or discriminants, checks
9937 -- if they have overlapping component clauses and issues errors if so.
9939 procedure Find_Component;
9940 -- Finds component entity corresponding to current component clause (in
9941 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9942 -- start/stop bits for the field. If there is no matching component or
9943 -- if the matching component does not have a component clause, then
9944 -- that's an error and Comp is set to Empty, but no error message is
9945 -- issued, since the message was already given. Comp is also set to
9946 -- Empty if the current "component clause" is in fact a pragma.
9948 -----------------------------
9949 -- Check_Component_Overlap --
9950 -----------------------------
9952 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
9953 CC1 : constant Node_Id := Component_Clause (C1_Ent);
9954 CC2 : constant Node_Id := Component_Clause (C2_Ent);
9956 begin
9957 if Present (CC1) and then Present (CC2) then
9959 -- Exclude odd case where we have two tag components in the same
9960 -- record, both at location zero. This seems a bit strange, but
9961 -- it seems to happen in some circumstances, perhaps on an error.
9963 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
9964 return;
9965 end if;
9967 -- Here we check if the two fields overlap
9969 declare
9970 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
9971 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
9972 E1 : constant Uint := S1 + Esize (C1_Ent);
9973 E2 : constant Uint := S2 + Esize (C2_Ent);
9975 begin
9976 if E2 <= S1 or else E1 <= S2 then
9977 null;
9978 else
9979 Error_Msg_Node_2 := Component_Name (CC2);
9980 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
9981 Error_Msg_Node_1 := Component_Name (CC1);
9982 Error_Msg_N
9983 ("component& overlaps & #", Component_Name (CC1));
9984 Overlap_Detected := True;
9985 end if;
9986 end;
9987 end if;
9988 end Check_Component_Overlap;
9990 --------------------
9991 -- Find_Component --
9992 --------------------
9994 procedure Find_Component is
9996 procedure Search_Component (R : Entity_Id);
9997 -- Search components of R for a match. If found, Comp is set
9999 ----------------------
10000 -- Search_Component --
10001 ----------------------
10003 procedure Search_Component (R : Entity_Id) is
10004 begin
10005 Comp := First_Component_Or_Discriminant (R);
10006 while Present (Comp) loop
10008 -- Ignore error of attribute name for component name (we
10009 -- already gave an error message for this, so no need to
10010 -- complain here)
10012 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
10013 null;
10014 else
10015 exit when Chars (Comp) = Chars (Component_Name (CC));
10016 end if;
10018 Next_Component_Or_Discriminant (Comp);
10019 end loop;
10020 end Search_Component;
10022 -- Start of processing for Find_Component
10024 begin
10025 -- Return with Comp set to Empty if we have a pragma
10027 if Nkind (CC) = N_Pragma then
10028 Comp := Empty;
10029 return;
10030 end if;
10032 -- Search current record for matching component
10034 Search_Component (Rectype);
10036 -- If not found, maybe component of base type discriminant that is
10037 -- absent from statically constrained first subtype.
10039 if No (Comp) then
10040 Search_Component (Base_Type (Rectype));
10041 end if;
10043 -- If no component, or the component does not reference the component
10044 -- clause in question, then there was some previous error for which
10045 -- we already gave a message, so just return with Comp Empty.
10047 if No (Comp) or else Component_Clause (Comp) /= CC then
10048 Check_Error_Detected;
10049 Comp := Empty;
10051 -- Normal case where we have a component clause
10053 else
10054 Fbit := Component_Bit_Offset (Comp);
10055 Lbit := Fbit + Esize (Comp) - 1;
10056 end if;
10057 end Find_Component;
10059 -- Start of processing for Check_Record_Representation_Clause
10061 begin
10062 Find_Type (Ident);
10063 Rectype := Entity (Ident);
10065 if Rectype = Any_Type then
10066 return;
10067 end if;
10069 Rectype := Underlying_Type (Rectype);
10071 -- See if we have a fully repped derived tagged type
10073 declare
10074 PS : constant Entity_Id := Parent_Subtype (Rectype);
10076 begin
10077 if Present (PS) and then Known_Static_RM_Size (PS) then
10078 Tagged_Parent := PS;
10079 Parent_Last_Bit := RM_Size (PS) - 1;
10081 elsif Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
10082 Tagged_Parent := PS;
10084 -- Find maximum bit of any component of the parent type
10086 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
10087 Pcomp := First_Entity (Tagged_Parent);
10088 while Present (Pcomp) loop
10089 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
10090 if Component_Bit_Offset (Pcomp) /= No_Uint
10091 and then Known_Static_Esize (Pcomp)
10092 then
10093 Parent_Last_Bit :=
10094 UI_Max
10095 (Parent_Last_Bit,
10096 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
10097 end if;
10098 else
10100 -- Skip anonymous types generated for constrained array
10101 -- or record components.
10103 null;
10104 end if;
10106 Next_Entity (Pcomp);
10107 end loop;
10108 end if;
10109 end;
10111 -- All done if no component clauses
10113 CC := First (Component_Clauses (N));
10115 if No (CC) then
10116 return;
10117 end if;
10119 -- If a tag is present, then create a component clause that places it
10120 -- at the start of the record (otherwise gigi may place it after other
10121 -- fields that have rep clauses).
10123 Fent := First_Entity (Rectype);
10125 if Nkind (Fent) = N_Defining_Identifier
10126 and then Chars (Fent) = Name_uTag
10127 then
10128 Set_Component_Bit_Offset (Fent, Uint_0);
10129 Set_Normalized_Position (Fent, Uint_0);
10130 Set_Normalized_First_Bit (Fent, Uint_0);
10131 Set_Normalized_Position_Max (Fent, Uint_0);
10132 Init_Esize (Fent, System_Address_Size);
10134 Set_Component_Clause (Fent,
10135 Make_Component_Clause (Loc,
10136 Component_Name => Make_Identifier (Loc, Name_uTag),
10138 Position => Make_Integer_Literal (Loc, Uint_0),
10139 First_Bit => Make_Integer_Literal (Loc, Uint_0),
10140 Last_Bit =>
10141 Make_Integer_Literal (Loc,
10142 UI_From_Int (System_Address_Size))));
10144 Ccount := Ccount + 1;
10145 end if;
10147 Max_Bit_So_Far := Uint_Minus_1;
10148 Overlap_Check_Required := False;
10150 -- Process the component clauses
10152 while Present (CC) loop
10153 Find_Component;
10155 if Present (Comp) then
10156 Ccount := Ccount + 1;
10158 -- We need a full overlap check if record positions non-monotonic
10160 if Fbit <= Max_Bit_So_Far then
10161 Overlap_Check_Required := True;
10162 end if;
10164 Max_Bit_So_Far := Lbit;
10166 -- Check bit position out of range of specified size
10168 if Has_Size_Clause (Rectype)
10169 and then RM_Size (Rectype) <= Lbit
10170 then
10171 Error_Msg_N
10172 ("bit number out of range of specified size",
10173 Last_Bit (CC));
10175 -- Check for overlap with tag or parent component
10177 else
10178 if Is_Tagged_Type (Rectype)
10179 and then Fbit < System_Address_Size
10180 then
10181 Error_Msg_NE
10182 ("component overlaps tag field of&",
10183 Component_Name (CC), Rectype);
10184 Overlap_Detected := True;
10186 elsif Present (Tagged_Parent)
10187 and then Fbit <= Parent_Last_Bit
10188 then
10189 Error_Msg_NE
10190 ("component overlaps parent field of&",
10191 Component_Name (CC), Rectype);
10192 Overlap_Detected := True;
10193 end if;
10195 if Hbit < Lbit then
10196 Hbit := Lbit;
10197 end if;
10198 end if;
10199 end if;
10201 Next (CC);
10202 end loop;
10204 -- Now that we have processed all the component clauses, check for
10205 -- overlap. We have to leave this till last, since the components can
10206 -- appear in any arbitrary order in the representation clause.
10208 -- We do not need this check if all specified ranges were monotonic,
10209 -- as recorded by Overlap_Check_Required being False at this stage.
10211 -- This first section checks if there are any overlapping entries at
10212 -- all. It does this by sorting all entries and then seeing if there are
10213 -- any overlaps. If there are none, then that is decisive, but if there
10214 -- are overlaps, they may still be OK (they may result from fields in
10215 -- different variants).
10217 if Overlap_Check_Required then
10218 Overlap_Check1 : declare
10220 OC_Fbit : array (0 .. Ccount) of Uint;
10221 -- First-bit values for component clauses, the value is the offset
10222 -- of the first bit of the field from start of record. The zero
10223 -- entry is for use in sorting.
10225 OC_Lbit : array (0 .. Ccount) of Uint;
10226 -- Last-bit values for component clauses, the value is the offset
10227 -- of the last bit of the field from start of record. The zero
10228 -- entry is for use in sorting.
10230 OC_Count : Natural := 0;
10231 -- Count of entries in OC_Fbit and OC_Lbit
10233 function OC_Lt (Op1, Op2 : Natural) return Boolean;
10234 -- Compare routine for Sort
10236 procedure OC_Move (From : Natural; To : Natural);
10237 -- Move routine for Sort
10239 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
10241 -----------
10242 -- OC_Lt --
10243 -----------
10245 function OC_Lt (Op1, Op2 : Natural) return Boolean is
10246 begin
10247 return OC_Fbit (Op1) < OC_Fbit (Op2);
10248 end OC_Lt;
10250 -------------
10251 -- OC_Move --
10252 -------------
10254 procedure OC_Move (From : Natural; To : Natural) is
10255 begin
10256 OC_Fbit (To) := OC_Fbit (From);
10257 OC_Lbit (To) := OC_Lbit (From);
10258 end OC_Move;
10260 -- Start of processing for Overlap_Check
10262 begin
10263 CC := First (Component_Clauses (N));
10264 while Present (CC) loop
10266 -- Exclude component clause already marked in error
10268 if not Error_Posted (CC) then
10269 Find_Component;
10271 if Present (Comp) then
10272 OC_Count := OC_Count + 1;
10273 OC_Fbit (OC_Count) := Fbit;
10274 OC_Lbit (OC_Count) := Lbit;
10275 end if;
10276 end if;
10278 Next (CC);
10279 end loop;
10281 Sorting.Sort (OC_Count);
10283 Overlap_Check_Required := False;
10284 for J in 1 .. OC_Count - 1 loop
10285 if OC_Lbit (J) >= OC_Fbit (J + 1) then
10286 Overlap_Check_Required := True;
10287 exit;
10288 end if;
10289 end loop;
10290 end Overlap_Check1;
10291 end if;
10293 -- If Overlap_Check_Required is still True, then we have to do the full
10294 -- scale overlap check, since we have at least two fields that do
10295 -- overlap, and we need to know if that is OK since they are in
10296 -- different variant, or whether we have a definite problem.
10298 if Overlap_Check_Required then
10299 Overlap_Check2 : declare
10300 C1_Ent, C2_Ent : Entity_Id;
10301 -- Entities of components being checked for overlap
10303 Clist : Node_Id;
10304 -- Component_List node whose Component_Items are being checked
10306 Citem : Node_Id;
10307 -- Component declaration for component being checked
10309 begin
10310 C1_Ent := First_Entity (Base_Type (Rectype));
10312 -- Loop through all components in record. For each component check
10313 -- for overlap with any of the preceding elements on the component
10314 -- list containing the component and also, if the component is in
10315 -- a variant, check against components outside the case structure.
10316 -- This latter test is repeated recursively up the variant tree.
10318 Main_Component_Loop : while Present (C1_Ent) loop
10319 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
10320 goto Continue_Main_Component_Loop;
10321 end if;
10323 -- Skip overlap check if entity has no declaration node. This
10324 -- happens with discriminants in constrained derived types.
10325 -- Possibly we are missing some checks as a result, but that
10326 -- does not seem terribly serious.
10328 if No (Declaration_Node (C1_Ent)) then
10329 goto Continue_Main_Component_Loop;
10330 end if;
10332 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
10334 -- Loop through component lists that need checking. Check the
10335 -- current component list and all lists in variants above us.
10337 Component_List_Loop : loop
10339 -- If derived type definition, go to full declaration
10340 -- If at outer level, check discriminants if there are any.
10342 if Nkind (Clist) = N_Derived_Type_Definition then
10343 Clist := Parent (Clist);
10344 end if;
10346 -- Outer level of record definition, check discriminants
10348 if Nkind_In (Clist, N_Full_Type_Declaration,
10349 N_Private_Type_Declaration)
10350 then
10351 if Has_Discriminants (Defining_Identifier (Clist)) then
10352 C2_Ent :=
10353 First_Discriminant (Defining_Identifier (Clist));
10354 while Present (C2_Ent) loop
10355 exit when C1_Ent = C2_Ent;
10356 Check_Component_Overlap (C1_Ent, C2_Ent);
10357 Next_Discriminant (C2_Ent);
10358 end loop;
10359 end if;
10361 -- Record extension case
10363 elsif Nkind (Clist) = N_Derived_Type_Definition then
10364 Clist := Empty;
10366 -- Otherwise check one component list
10368 else
10369 Citem := First (Component_Items (Clist));
10370 while Present (Citem) loop
10371 if Nkind (Citem) = N_Component_Declaration then
10372 C2_Ent := Defining_Identifier (Citem);
10373 exit when C1_Ent = C2_Ent;
10374 Check_Component_Overlap (C1_Ent, C2_Ent);
10375 end if;
10377 Next (Citem);
10378 end loop;
10379 end if;
10381 -- Check for variants above us (the parent of the Clist can
10382 -- be a variant, in which case its parent is a variant part,
10383 -- and the parent of the variant part is a component list
10384 -- whose components must all be checked against the current
10385 -- component for overlap).
10387 if Nkind (Parent (Clist)) = N_Variant then
10388 Clist := Parent (Parent (Parent (Clist)));
10390 -- Check for possible discriminant part in record, this
10391 -- is treated essentially as another level in the
10392 -- recursion. For this case the parent of the component
10393 -- list is the record definition, and its parent is the
10394 -- full type declaration containing the discriminant
10395 -- specifications.
10397 elsif Nkind (Parent (Clist)) = N_Record_Definition then
10398 Clist := Parent (Parent ((Clist)));
10400 -- If neither of these two cases, we are at the top of
10401 -- the tree.
10403 else
10404 exit Component_List_Loop;
10405 end if;
10406 end loop Component_List_Loop;
10408 <<Continue_Main_Component_Loop>>
10409 Next_Entity (C1_Ent);
10411 end loop Main_Component_Loop;
10412 end Overlap_Check2;
10413 end if;
10415 -- The following circuit deals with warning on record holes (gaps). We
10416 -- skip this check if overlap was detected, since it makes sense for the
10417 -- programmer to fix this illegality before worrying about warnings.
10419 if not Overlap_Detected and Warn_On_Record_Holes then
10420 Record_Hole_Check : declare
10421 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
10422 -- Full declaration of record type
10424 procedure Check_Component_List
10425 (CL : Node_Id;
10426 Sbit : Uint;
10427 DS : List_Id);
10428 -- Check component list CL for holes. The starting bit should be
10429 -- Sbit. which is zero for the main record component list and set
10430 -- appropriately for recursive calls for variants. DS is set to
10431 -- a list of discriminant specifications to be included in the
10432 -- consideration of components. It is No_List if none to consider.
10434 --------------------------
10435 -- Check_Component_List --
10436 --------------------------
10438 procedure Check_Component_List
10439 (CL : Node_Id;
10440 Sbit : Uint;
10441 DS : List_Id)
10443 Compl : Integer;
10445 begin
10446 Compl := Integer (List_Length (Component_Items (CL)));
10448 if DS /= No_List then
10449 Compl := Compl + Integer (List_Length (DS));
10450 end if;
10452 declare
10453 Comps : array (Natural range 0 .. Compl) of Entity_Id;
10454 -- Gather components (zero entry is for sort routine)
10456 Ncomps : Natural := 0;
10457 -- Number of entries stored in Comps (starting at Comps (1))
10459 Citem : Node_Id;
10460 -- One component item or discriminant specification
10462 Nbit : Uint;
10463 -- Starting bit for next component
10465 CEnt : Entity_Id;
10466 -- Component entity
10468 Variant : Node_Id;
10469 -- One variant
10471 function Lt (Op1, Op2 : Natural) return Boolean;
10472 -- Compare routine for Sort
10474 procedure Move (From : Natural; To : Natural);
10475 -- Move routine for Sort
10477 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
10479 --------
10480 -- Lt --
10481 --------
10483 function Lt (Op1, Op2 : Natural) return Boolean is
10484 begin
10485 return Component_Bit_Offset (Comps (Op1))
10487 Component_Bit_Offset (Comps (Op2));
10488 end Lt;
10490 ----------
10491 -- Move --
10492 ----------
10494 procedure Move (From : Natural; To : Natural) is
10495 begin
10496 Comps (To) := Comps (From);
10497 end Move;
10499 begin
10500 -- Gather discriminants into Comp
10502 if DS /= No_List then
10503 Citem := First (DS);
10504 while Present (Citem) loop
10505 if Nkind (Citem) = N_Discriminant_Specification then
10506 declare
10507 Ent : constant Entity_Id :=
10508 Defining_Identifier (Citem);
10509 begin
10510 if Ekind (Ent) = E_Discriminant then
10511 Ncomps := Ncomps + 1;
10512 Comps (Ncomps) := Ent;
10513 end if;
10514 end;
10515 end if;
10517 Next (Citem);
10518 end loop;
10519 end if;
10521 -- Gather component entities into Comp
10523 Citem := First (Component_Items (CL));
10524 while Present (Citem) loop
10525 if Nkind (Citem) = N_Component_Declaration then
10526 Ncomps := Ncomps + 1;
10527 Comps (Ncomps) := Defining_Identifier (Citem);
10528 end if;
10530 Next (Citem);
10531 end loop;
10533 -- Now sort the component entities based on the first bit.
10534 -- Note we already know there are no overlapping components.
10536 Sorting.Sort (Ncomps);
10538 -- Loop through entries checking for holes
10540 Nbit := Sbit;
10541 for J in 1 .. Ncomps loop
10542 CEnt := Comps (J);
10544 declare
10545 CBO : constant Uint := Component_Bit_Offset (CEnt);
10547 begin
10548 -- Skip components with unknown offsets
10550 if CBO /= No_Uint and then CBO >= 0 then
10551 Error_Msg_Uint_1 := CBO - Nbit;
10553 if Error_Msg_Uint_1 > 0 then
10554 Error_Msg_NE
10555 ("?H?^-bit gap before component&",
10556 Component_Name (Component_Clause (CEnt)),
10557 CEnt);
10558 end if;
10560 Nbit := CBO + Esize (CEnt);
10561 end if;
10562 end;
10563 end loop;
10565 -- Process variant parts recursively if present
10567 if Present (Variant_Part (CL)) then
10568 Variant := First (Variants (Variant_Part (CL)));
10569 while Present (Variant) loop
10570 Check_Component_List
10571 (Component_List (Variant), Nbit, No_List);
10572 Next (Variant);
10573 end loop;
10574 end if;
10575 end;
10576 end Check_Component_List;
10578 -- Start of processing for Record_Hole_Check
10580 begin
10581 declare
10582 Sbit : Uint;
10584 begin
10585 if Is_Tagged_Type (Rectype) then
10586 Sbit := UI_From_Int (System_Address_Size);
10587 else
10588 Sbit := Uint_0;
10589 end if;
10591 if Nkind (Decl) = N_Full_Type_Declaration
10592 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
10593 then
10594 Check_Component_List
10595 (Component_List (Type_Definition (Decl)),
10596 Sbit,
10597 Discriminant_Specifications (Decl));
10598 end if;
10599 end;
10600 end Record_Hole_Check;
10601 end if;
10603 -- For records that have component clauses for all components, and whose
10604 -- size is less than or equal to 32, we need to know the size in the
10605 -- front end to activate possible packed array processing where the
10606 -- component type is a record.
10608 -- At this stage Hbit + 1 represents the first unused bit from all the
10609 -- component clauses processed, so if the component clauses are
10610 -- complete, then this is the length of the record.
10612 -- For records longer than System.Storage_Unit, and for those where not
10613 -- all components have component clauses, the back end determines the
10614 -- length (it may for example be appropriate to round up the size
10615 -- to some convenient boundary, based on alignment considerations, etc).
10617 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
10619 -- Nothing to do if at least one component has no component clause
10621 Comp := First_Component_Or_Discriminant (Rectype);
10622 while Present (Comp) loop
10623 exit when No (Component_Clause (Comp));
10624 Next_Component_Or_Discriminant (Comp);
10625 end loop;
10627 -- If we fall out of loop, all components have component clauses
10628 -- and so we can set the size to the maximum value.
10630 if No (Comp) then
10631 Set_RM_Size (Rectype, Hbit + 1);
10632 end if;
10633 end if;
10634 end Check_Record_Representation_Clause;
10636 ----------------
10637 -- Check_Size --
10638 ----------------
10640 procedure Check_Size
10641 (N : Node_Id;
10642 T : Entity_Id;
10643 Siz : Uint;
10644 Biased : out Boolean)
10646 procedure Size_Too_Small_Error (Min_Siz : Uint);
10647 -- Emit an error concerning illegal size Siz. Min_Siz denotes the
10648 -- minimum size.
10650 --------------------------
10651 -- Size_Too_Small_Error --
10652 --------------------------
10654 procedure Size_Too_Small_Error (Min_Siz : Uint) is
10655 begin
10656 -- This error is suppressed in ASIS mode to allow for different ASIS
10657 -- back ends or ASIS-based tools to query the illegal clause.
10659 if not ASIS_Mode then
10660 Error_Msg_Uint_1 := Min_Siz;
10661 Error_Msg_NE ("size for& too small, minimum allowed is ^", N, T);
10662 end if;
10663 end Size_Too_Small_Error;
10665 -- Local variables
10667 UT : constant Entity_Id := Underlying_Type (T);
10668 M : Uint;
10670 -- Start of processing for Check_Size
10672 begin
10673 Biased := False;
10675 -- Reject patently improper size values
10677 if Is_Elementary_Type (T)
10678 and then Siz > UI_From_Int (Int'Last)
10679 then
10680 Error_Msg_N ("Size value too large for elementary type", N);
10682 if Nkind (Original_Node (N)) = N_Op_Expon then
10683 Error_Msg_N
10684 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
10685 end if;
10686 end if;
10688 -- Dismiss generic types
10690 if Is_Generic_Type (T)
10691 or else
10692 Is_Generic_Type (UT)
10693 or else
10694 Is_Generic_Type (Root_Type (UT))
10695 then
10696 return;
10698 -- Guard against previous errors
10700 elsif No (UT) or else UT = Any_Type then
10701 Check_Error_Detected;
10702 return;
10704 -- Check case of bit packed array
10706 elsif Is_Array_Type (UT)
10707 and then Known_Static_Component_Size (UT)
10708 and then Is_Bit_Packed_Array (UT)
10709 then
10710 declare
10711 Asiz : Uint;
10712 Indx : Node_Id;
10713 Ityp : Entity_Id;
10715 begin
10716 Asiz := Component_Size (UT);
10717 Indx := First_Index (UT);
10718 loop
10719 Ityp := Etype (Indx);
10721 -- If non-static bound, then we are not in the business of
10722 -- trying to check the length, and indeed an error will be
10723 -- issued elsewhere, since sizes of non-static array types
10724 -- cannot be set implicitly or explicitly.
10726 if not Is_OK_Static_Subtype (Ityp) then
10727 return;
10728 end if;
10730 -- Otherwise accumulate next dimension
10732 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10733 Expr_Value (Type_Low_Bound (Ityp)) +
10734 Uint_1);
10736 Next_Index (Indx);
10737 exit when No (Indx);
10738 end loop;
10740 if Asiz <= Siz then
10741 return;
10743 else
10744 Size_Too_Small_Error (Asiz);
10745 Set_Esize (T, Asiz);
10746 Set_RM_Size (T, Asiz);
10747 end if;
10748 end;
10750 -- All other composite types are ignored
10752 elsif Is_Composite_Type (UT) then
10753 return;
10755 -- For fixed-point types, don't check minimum if type is not frozen,
10756 -- since we don't know all the characteristics of the type that can
10757 -- affect the size (e.g. a specified small) till freeze time.
10759 elsif Is_Fixed_Point_Type (UT) and then not Is_Frozen (UT) then
10760 null;
10762 -- Cases for which a minimum check is required
10764 else
10765 -- Ignore if specified size is correct for the type
10767 if Known_Esize (UT) and then Siz = Esize (UT) then
10768 return;
10769 end if;
10771 -- Otherwise get minimum size
10773 M := UI_From_Int (Minimum_Size (UT));
10775 if Siz < M then
10777 -- Size is less than minimum size, but one possibility remains
10778 -- that we can manage with the new size if we bias the type.
10780 M := UI_From_Int (Minimum_Size (UT, Biased => True));
10782 if Siz < M then
10783 Size_Too_Small_Error (M);
10784 Set_Esize (T, M);
10785 Set_RM_Size (T, M);
10786 else
10787 Biased := True;
10788 end if;
10789 end if;
10790 end if;
10791 end Check_Size;
10793 --------------------------
10794 -- Freeze_Entity_Checks --
10795 --------------------------
10797 procedure Freeze_Entity_Checks (N : Node_Id) is
10798 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
10799 -- Inspect the primitive operations of type Typ and hide all pairs of
10800 -- implicitly declared non-overridden non-fully conformant homographs
10801 -- (Ada RM 8.3 12.3/2).
10803 -------------------------------------
10804 -- Hide_Non_Overridden_Subprograms --
10805 -------------------------------------
10807 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
10808 procedure Hide_Matching_Homographs
10809 (Subp_Id : Entity_Id;
10810 Start_Elmt : Elmt_Id);
10811 -- Inspect a list of primitive operations starting with Start_Elmt
10812 -- and find matching implicitly declared non-overridden non-fully
10813 -- conformant homographs of Subp_Id. If found, all matches along
10814 -- with Subp_Id are hidden from all visibility.
10816 function Is_Non_Overridden_Or_Null_Procedure
10817 (Subp_Id : Entity_Id) return Boolean;
10818 -- Determine whether subprogram Subp_Id is implicitly declared non-
10819 -- overridden subprogram or an implicitly declared null procedure.
10821 ------------------------------
10822 -- Hide_Matching_Homographs --
10823 ------------------------------
10825 procedure Hide_Matching_Homographs
10826 (Subp_Id : Entity_Id;
10827 Start_Elmt : Elmt_Id)
10829 Prim : Entity_Id;
10830 Prim_Elmt : Elmt_Id;
10832 begin
10833 Prim_Elmt := Start_Elmt;
10834 while Present (Prim_Elmt) loop
10835 Prim := Node (Prim_Elmt);
10837 -- The current primitive is implicitly declared non-overridden
10838 -- non-fully conformant homograph of Subp_Id. Both subprograms
10839 -- must be hidden from visibility.
10841 if Chars (Prim) = Chars (Subp_Id)
10842 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
10843 and then not Fully_Conformant (Prim, Subp_Id)
10844 then
10845 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
10846 Set_Is_Immediately_Visible (Prim, False);
10847 Set_Is_Potentially_Use_Visible (Prim, False);
10849 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
10850 Set_Is_Immediately_Visible (Subp_Id, False);
10851 Set_Is_Potentially_Use_Visible (Subp_Id, False);
10852 end if;
10854 Next_Elmt (Prim_Elmt);
10855 end loop;
10856 end Hide_Matching_Homographs;
10858 -----------------------------------------
10859 -- Is_Non_Overridden_Or_Null_Procedure --
10860 -----------------------------------------
10862 function Is_Non_Overridden_Or_Null_Procedure
10863 (Subp_Id : Entity_Id) return Boolean
10865 Alias_Id : Entity_Id;
10867 begin
10868 -- The subprogram is inherited (implicitly declared), it does not
10869 -- override and does not cover a primitive of an interface.
10871 if Ekind_In (Subp_Id, E_Function, E_Procedure)
10872 and then Present (Alias (Subp_Id))
10873 and then No (Interface_Alias (Subp_Id))
10874 and then No (Overridden_Operation (Subp_Id))
10875 then
10876 Alias_Id := Alias (Subp_Id);
10878 if Requires_Overriding (Alias_Id) then
10879 return True;
10881 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
10882 and then Null_Present (Parent (Alias_Id))
10883 then
10884 return True;
10885 end if;
10886 end if;
10888 return False;
10889 end Is_Non_Overridden_Or_Null_Procedure;
10891 -- Local variables
10893 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
10894 Prim : Entity_Id;
10895 Prim_Elmt : Elmt_Id;
10897 -- Start of processing for Hide_Non_Overridden_Subprograms
10899 begin
10900 -- Inspect the list of primitives looking for non-overridden
10901 -- subprograms.
10903 if Present (Prim_Ops) then
10904 Prim_Elmt := First_Elmt (Prim_Ops);
10905 while Present (Prim_Elmt) loop
10906 Prim := Node (Prim_Elmt);
10907 Next_Elmt (Prim_Elmt);
10909 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
10910 Hide_Matching_Homographs
10911 (Subp_Id => Prim,
10912 Start_Elmt => Prim_Elmt);
10913 end if;
10914 end loop;
10915 end if;
10916 end Hide_Non_Overridden_Subprograms;
10918 -- Local variables
10920 E : constant Entity_Id := Entity (N);
10922 Nongeneric_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
10923 -- True in nongeneric case. Some of the processing here is skipped
10924 -- for the generic case since it is not needed. Basically in the
10925 -- generic case, we only need to do stuff that might generate error
10926 -- messages or warnings.
10928 -- Start of processing for Freeze_Entity_Checks
10930 begin
10931 -- Remember that we are processing a freezing entity. Required to
10932 -- ensure correct decoration of internal entities associated with
10933 -- interfaces (see New_Overloaded_Entity).
10935 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
10937 -- For tagged types covering interfaces add internal entities that link
10938 -- the primitives of the interfaces with the primitives that cover them.
10939 -- Note: These entities were originally generated only when generating
10940 -- code because their main purpose was to provide support to initialize
10941 -- the secondary dispatch tables. They are now generated also when
10942 -- compiling with no code generation to provide ASIS the relationship
10943 -- between interface primitives and tagged type primitives. They are
10944 -- also used to locate primitives covering interfaces when processing
10945 -- generics (see Derive_Subprograms).
10947 -- This is not needed in the generic case
10949 if Ada_Version >= Ada_2005
10950 and then Nongeneric_Case
10951 and then Ekind (E) = E_Record_Type
10952 and then Is_Tagged_Type (E)
10953 and then not Is_Interface (E)
10954 and then Has_Interfaces (E)
10955 then
10956 -- This would be a good common place to call the routine that checks
10957 -- overriding of interface primitives (and thus factorize calls to
10958 -- Check_Abstract_Overriding located at different contexts in the
10959 -- compiler). However, this is not possible because it causes
10960 -- spurious errors in case of late overriding.
10962 Add_Internal_Interface_Entities (E);
10963 end if;
10965 -- After all forms of overriding have been resolved, a tagged type may
10966 -- be left with a set of implicitly declared and possibly erroneous
10967 -- abstract subprograms, null procedures and subprograms that require
10968 -- overriding. If this set contains fully conformant homographs, then
10969 -- one is chosen arbitrarily (already done during resolution), otherwise
10970 -- all remaining non-fully conformant homographs are hidden from
10971 -- visibility (Ada RM 8.3 12.3/2).
10973 if Is_Tagged_Type (E) then
10974 Hide_Non_Overridden_Subprograms (E);
10975 end if;
10977 -- Check CPP types
10979 if Ekind (E) = E_Record_Type
10980 and then Is_CPP_Class (E)
10981 and then Is_Tagged_Type (E)
10982 and then Tagged_Type_Expansion
10983 then
10984 if CPP_Num_Prims (E) = 0 then
10986 -- If the CPP type has user defined components then it must import
10987 -- primitives from C++. This is required because if the C++ class
10988 -- has no primitives then the C++ compiler does not added the _tag
10989 -- component to the type.
10991 if First_Entity (E) /= Last_Entity (E) then
10992 Error_Msg_N
10993 ("'C'P'P type must import at least one primitive from C++??",
10995 end if;
10996 end if;
10998 -- Check that all its primitives are abstract or imported from C++.
10999 -- Check also availability of the C++ constructor.
11001 declare
11002 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
11003 Elmt : Elmt_Id;
11004 Error_Reported : Boolean := False;
11005 Prim : Node_Id;
11007 begin
11008 Elmt := First_Elmt (Primitive_Operations (E));
11009 while Present (Elmt) loop
11010 Prim := Node (Elmt);
11012 if Comes_From_Source (Prim) then
11013 if Is_Abstract_Subprogram (Prim) then
11014 null;
11016 elsif not Is_Imported (Prim)
11017 or else Convention (Prim) /= Convention_CPP
11018 then
11019 Error_Msg_N
11020 ("primitives of 'C'P'P types must be imported from C++ "
11021 & "or abstract??", Prim);
11023 elsif not Has_Constructors
11024 and then not Error_Reported
11025 then
11026 Error_Msg_Name_1 := Chars (E);
11027 Error_Msg_N
11028 ("??'C'P'P constructor required for type %", Prim);
11029 Error_Reported := True;
11030 end if;
11031 end if;
11033 Next_Elmt (Elmt);
11034 end loop;
11035 end;
11036 end if;
11038 -- Check Ada derivation of CPP type
11040 if Expander_Active -- why? losing errors in -gnatc mode???
11041 and then Present (Etype (E)) -- defend against errors
11042 and then Tagged_Type_Expansion
11043 and then Ekind (E) = E_Record_Type
11044 and then Etype (E) /= E
11045 and then Is_CPP_Class (Etype (E))
11046 and then CPP_Num_Prims (Etype (E)) > 0
11047 and then not Is_CPP_Class (E)
11048 and then not Has_CPP_Constructors (Etype (E))
11049 then
11050 -- If the parent has C++ primitives but it has no constructor then
11051 -- check that all the primitives are overridden in this derivation;
11052 -- otherwise the constructor of the parent is needed to build the
11053 -- dispatch table.
11055 declare
11056 Elmt : Elmt_Id;
11057 Prim : Node_Id;
11059 begin
11060 Elmt := First_Elmt (Primitive_Operations (E));
11061 while Present (Elmt) loop
11062 Prim := Node (Elmt);
11064 if not Is_Abstract_Subprogram (Prim)
11065 and then No (Interface_Alias (Prim))
11066 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
11067 then
11068 Error_Msg_Name_1 := Chars (Etype (E));
11069 Error_Msg_N
11070 ("'C'P'P constructor required for parent type %", E);
11071 exit;
11072 end if;
11074 Next_Elmt (Elmt);
11075 end loop;
11076 end;
11077 end if;
11079 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
11081 -- If we have a type with predicates, build predicate function. This is
11082 -- not needed in the generic case, nor within TSS subprograms and other
11083 -- predefined primitives.
11085 if Is_Type (E)
11086 and then Nongeneric_Case
11087 and then not Within_Internal_Subprogram
11088 and then Has_Predicates (E)
11089 then
11090 Build_Predicate_Functions (E, N);
11091 end if;
11093 -- If type has delayed aspects, this is where we do the preanalysis at
11094 -- the freeze point, as part of the consistent visibility check. Note
11095 -- that this must be done after calling Build_Predicate_Functions or
11096 -- Build_Invariant_Procedure since these subprograms fix occurrences of
11097 -- the subtype name in the saved expression so that they will not cause
11098 -- trouble in the preanalysis.
11100 -- This is also not needed in the generic case
11102 if Nongeneric_Case
11103 and then Has_Delayed_Aspects (E)
11104 and then Scope (E) = Current_Scope
11105 then
11106 -- Retrieve the visibility to the discriminants in order to properly
11107 -- analyze the aspects.
11109 Push_Scope_And_Install_Discriminants (E);
11111 declare
11112 Ritem : Node_Id;
11114 begin
11115 -- Look for aspect specification entries for this entity
11117 Ritem := First_Rep_Item (E);
11118 while Present (Ritem) loop
11119 if Nkind (Ritem) = N_Aspect_Specification
11120 and then Entity (Ritem) = E
11121 and then Is_Delayed_Aspect (Ritem)
11122 then
11123 Check_Aspect_At_Freeze_Point (Ritem);
11124 end if;
11126 Next_Rep_Item (Ritem);
11127 end loop;
11128 end;
11130 Uninstall_Discriminants_And_Pop_Scope (E);
11131 end if;
11133 -- For a record type, deal with variant parts. This has to be delayed
11134 -- to this point, because of the issue of statically predicated
11135 -- subtypes, which we have to ensure are frozen before checking
11136 -- choices, since we need to have the static choice list set.
11138 if Is_Record_Type (E) then
11139 Check_Variant_Part : declare
11140 D : constant Node_Id := Declaration_Node (E);
11141 T : Node_Id;
11142 C : Node_Id;
11143 VP : Node_Id;
11145 Others_Present : Boolean;
11146 pragma Warnings (Off, Others_Present);
11147 -- Indicates others present, not used in this case
11149 procedure Non_Static_Choice_Error (Choice : Node_Id);
11150 -- Error routine invoked by the generic instantiation below when
11151 -- the variant part has a non static choice.
11153 procedure Process_Declarations (Variant : Node_Id);
11154 -- Processes declarations associated with a variant. We analyzed
11155 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
11156 -- but we still need the recursive call to Check_Choices for any
11157 -- nested variant to get its choices properly processed. This is
11158 -- also where we expand out the choices if expansion is active.
11160 package Variant_Choices_Processing is new
11161 Generic_Check_Choices
11162 (Process_Empty_Choice => No_OP,
11163 Process_Non_Static_Choice => Non_Static_Choice_Error,
11164 Process_Associated_Node => Process_Declarations);
11165 use Variant_Choices_Processing;
11167 -----------------------------
11168 -- Non_Static_Choice_Error --
11169 -----------------------------
11171 procedure Non_Static_Choice_Error (Choice : Node_Id) is
11172 begin
11173 Flag_Non_Static_Expr
11174 ("choice given in variant part is not static!", Choice);
11175 end Non_Static_Choice_Error;
11177 --------------------------
11178 -- Process_Declarations --
11179 --------------------------
11181 procedure Process_Declarations (Variant : Node_Id) is
11182 CL : constant Node_Id := Component_List (Variant);
11183 VP : Node_Id;
11185 begin
11186 -- Check for static predicate present in this variant
11188 if Has_SP_Choice (Variant) then
11190 -- Here we expand. You might expect to find this call in
11191 -- Expand_N_Variant_Part, but that is called when we first
11192 -- see the variant part, and we cannot do this expansion
11193 -- earlier than the freeze point, since for statically
11194 -- predicated subtypes, the predicate is not known till
11195 -- the freeze point.
11197 -- Furthermore, we do this expansion even if the expander
11198 -- is not active, because other semantic processing, e.g.
11199 -- for aggregates, requires the expanded list of choices.
11201 -- If the expander is not active, then we can't just clobber
11202 -- the list since it would invalidate the ASIS -gnatct tree.
11203 -- So we have to rewrite the variant part with a Rewrite
11204 -- call that replaces it with a copy and clobber the copy.
11206 if not Expander_Active then
11207 declare
11208 NewV : constant Node_Id := New_Copy (Variant);
11209 begin
11210 Set_Discrete_Choices
11211 (NewV, New_Copy_List (Discrete_Choices (Variant)));
11212 Rewrite (Variant, NewV);
11213 end;
11214 end if;
11216 Expand_Static_Predicates_In_Choices (Variant);
11217 end if;
11219 -- We don't need to worry about the declarations in the variant
11220 -- (since they were analyzed by Analyze_Choices when we first
11221 -- encountered the variant), but we do need to take care of
11222 -- expansion of any nested variants.
11224 if not Null_Present (CL) then
11225 VP := Variant_Part (CL);
11227 if Present (VP) then
11228 Check_Choices
11229 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11230 end if;
11231 end if;
11232 end Process_Declarations;
11234 -- Start of processing for Check_Variant_Part
11236 begin
11237 -- Find component list
11239 C := Empty;
11241 if Nkind (D) = N_Full_Type_Declaration then
11242 T := Type_Definition (D);
11244 if Nkind (T) = N_Record_Definition then
11245 C := Component_List (T);
11247 elsif Nkind (T) = N_Derived_Type_Definition
11248 and then Present (Record_Extension_Part (T))
11249 then
11250 C := Component_List (Record_Extension_Part (T));
11251 end if;
11252 end if;
11254 -- Case of variant part present
11256 if Present (C) and then Present (Variant_Part (C)) then
11257 VP := Variant_Part (C);
11259 -- Check choices
11261 Check_Choices
11262 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11264 -- If the last variant does not contain the Others choice,
11265 -- replace it with an N_Others_Choice node since Gigi always
11266 -- wants an Others. Note that we do not bother to call Analyze
11267 -- on the modified variant part, since its only effect would be
11268 -- to compute the Others_Discrete_Choices node laboriously, and
11269 -- of course we already know the list of choices corresponding
11270 -- to the others choice (it's the list we're replacing).
11272 -- We only want to do this if the expander is active, since
11273 -- we do not want to clobber the ASIS tree.
11275 if Expander_Active then
11276 declare
11277 Last_Var : constant Node_Id :=
11278 Last_Non_Pragma (Variants (VP));
11280 Others_Node : Node_Id;
11282 begin
11283 if Nkind (First (Discrete_Choices (Last_Var))) /=
11284 N_Others_Choice
11285 then
11286 Others_Node := Make_Others_Choice (Sloc (Last_Var));
11287 Set_Others_Discrete_Choices
11288 (Others_Node, Discrete_Choices (Last_Var));
11289 Set_Discrete_Choices
11290 (Last_Var, New_List (Others_Node));
11291 end if;
11292 end;
11293 end if;
11294 end if;
11295 end Check_Variant_Part;
11296 end if;
11297 end Freeze_Entity_Checks;
11299 -------------------------
11300 -- Get_Alignment_Value --
11301 -------------------------
11303 function Get_Alignment_Value (Expr : Node_Id) return Uint is
11304 Align : constant Uint := Static_Integer (Expr);
11306 begin
11307 if Align = No_Uint then
11308 return No_Uint;
11310 elsif Align <= 0 then
11312 -- This error is suppressed in ASIS mode to allow for different ASIS
11313 -- back ends or ASIS-based tools to query the illegal clause.
11315 if not ASIS_Mode then
11316 Error_Msg_N ("alignment value must be positive", Expr);
11317 end if;
11319 return No_Uint;
11321 else
11322 for J in Int range 0 .. 64 loop
11323 declare
11324 M : constant Uint := Uint_2 ** J;
11326 begin
11327 exit when M = Align;
11329 if M > Align then
11331 -- This error is suppressed in ASIS mode to allow for
11332 -- different ASIS back ends or ASIS-based tools to query the
11333 -- illegal clause.
11335 if not ASIS_Mode then
11336 Error_Msg_N ("alignment value must be power of 2", Expr);
11337 end if;
11339 return No_Uint;
11340 end if;
11341 end;
11342 end loop;
11344 return Align;
11345 end if;
11346 end Get_Alignment_Value;
11348 -------------------------------------
11349 -- Inherit_Aspects_At_Freeze_Point --
11350 -------------------------------------
11352 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
11353 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11354 (Rep_Item : Node_Id) return Boolean;
11355 -- This routine checks if Rep_Item is either a pragma or an aspect
11356 -- specification node whose correponding pragma (if any) is present in
11357 -- the Rep Item chain of the entity it has been specified to.
11359 --------------------------------------------------
11360 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11361 --------------------------------------------------
11363 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11364 (Rep_Item : Node_Id) return Boolean
11366 begin
11367 return
11368 Nkind (Rep_Item) = N_Pragma
11369 or else Present_In_Rep_Item
11370 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
11371 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
11373 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11375 begin
11376 -- A representation item is either subtype-specific (Size and Alignment
11377 -- clauses) or type-related (all others). Subtype-specific aspects may
11378 -- differ for different subtypes of the same type (RM 13.1.8).
11380 -- A derived type inherits each type-related representation aspect of
11381 -- its parent type that was directly specified before the declaration of
11382 -- the derived type (RM 13.1.15).
11384 -- A derived subtype inherits each subtype-specific representation
11385 -- aspect of its parent subtype that was directly specified before the
11386 -- declaration of the derived type (RM 13.1.15).
11388 -- The general processing involves inheriting a representation aspect
11389 -- from a parent type whenever the first rep item (aspect specification,
11390 -- attribute definition clause, pragma) corresponding to the given
11391 -- representation aspect in the rep item chain of Typ, if any, isn't
11392 -- directly specified to Typ but to one of its parents.
11394 -- ??? Note that, for now, just a limited number of representation
11395 -- aspects have been inherited here so far. Many of them are
11396 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11397 -- a non- exhaustive list of aspects that likely also need to
11398 -- be moved to this routine: Alignment, Component_Alignment,
11399 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
11400 -- Preelaborable_Initialization, RM_Size and Small.
11402 -- In addition, Convention must be propagated from base type to subtype,
11403 -- because the subtype may have been declared on an incomplete view.
11405 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
11406 return;
11407 end if;
11409 -- Ada_05/Ada_2005
11411 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
11412 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
11413 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11414 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
11415 then
11416 Set_Is_Ada_2005_Only (Typ);
11417 end if;
11419 -- Ada_12/Ada_2012
11421 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
11422 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
11423 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11424 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
11425 then
11426 Set_Is_Ada_2012_Only (Typ);
11427 end if;
11429 -- Atomic/Shared
11431 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
11432 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
11433 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11434 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
11435 then
11436 Set_Is_Atomic (Typ);
11437 Set_Is_Volatile (Typ);
11438 Set_Treat_As_Volatile (Typ);
11439 end if;
11441 -- Convention
11443 if Is_Record_Type (Typ)
11444 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
11445 then
11446 Set_Convention (Typ, Convention (Base_Type (Typ)));
11447 end if;
11449 -- Default_Component_Value
11451 -- Verify that there is no rep_item declared for the type, and there
11452 -- is one coming from an ancestor.
11454 if Is_Array_Type (Typ)
11455 and then Is_Base_Type (Typ)
11456 and then not Has_Rep_Item (Typ, Name_Default_Component_Value, False)
11457 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
11458 then
11459 Set_Default_Aspect_Component_Value (Typ,
11460 Default_Aspect_Component_Value
11461 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
11462 end if;
11464 -- Default_Value
11466 if Is_Scalar_Type (Typ)
11467 and then Is_Base_Type (Typ)
11468 and then not Has_Rep_Item (Typ, Name_Default_Value, False)
11469 and then Has_Rep_Item (Typ, Name_Default_Value)
11470 then
11471 Set_Has_Default_Aspect (Typ);
11472 Set_Default_Aspect_Value (Typ,
11473 Default_Aspect_Value
11474 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
11475 end if;
11477 -- Discard_Names
11479 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
11480 and then Has_Rep_Item (Typ, Name_Discard_Names)
11481 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11482 (Get_Rep_Item (Typ, Name_Discard_Names))
11483 then
11484 Set_Discard_Names (Typ);
11485 end if;
11487 -- Volatile
11489 if not Has_Rep_Item (Typ, Name_Volatile, False)
11490 and then Has_Rep_Item (Typ, Name_Volatile)
11491 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11492 (Get_Rep_Item (Typ, Name_Volatile))
11493 then
11494 Set_Is_Volatile (Typ);
11495 Set_Treat_As_Volatile (Typ);
11496 end if;
11498 -- Volatile_Full_Access
11500 if not Has_Rep_Item (Typ, Name_Volatile_Full_Access, False)
11501 and then Has_Rep_Pragma (Typ, Name_Volatile_Full_Access)
11502 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11503 (Get_Rep_Item (Typ, Name_Volatile_Full_Access))
11504 then
11505 Set_Is_Volatile_Full_Access (Typ);
11506 Set_Is_Volatile (Typ);
11507 Set_Treat_As_Volatile (Typ);
11508 end if;
11510 -- Inheritance for derived types only
11512 if Is_Derived_Type (Typ) then
11513 declare
11514 Bas_Typ : constant Entity_Id := Base_Type (Typ);
11515 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
11517 begin
11518 -- Atomic_Components
11520 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
11521 and then Has_Rep_Item (Typ, Name_Atomic_Components)
11522 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11523 (Get_Rep_Item (Typ, Name_Atomic_Components))
11524 then
11525 Set_Has_Atomic_Components (Imp_Bas_Typ);
11526 end if;
11528 -- Volatile_Components
11530 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
11531 and then Has_Rep_Item (Typ, Name_Volatile_Components)
11532 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11533 (Get_Rep_Item (Typ, Name_Volatile_Components))
11534 then
11535 Set_Has_Volatile_Components (Imp_Bas_Typ);
11536 end if;
11538 -- Finalize_Storage_Only
11540 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
11541 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
11542 then
11543 Set_Finalize_Storage_Only (Bas_Typ);
11544 end if;
11546 -- Universal_Aliasing
11548 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
11549 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
11550 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11551 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
11552 then
11553 Set_Universal_Aliasing (Imp_Bas_Typ);
11554 end if;
11556 -- Bit_Order
11558 if Is_Record_Type (Typ) then
11559 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
11560 and then Has_Rep_Item (Typ, Name_Bit_Order)
11561 then
11562 Set_Reverse_Bit_Order (Bas_Typ,
11563 Reverse_Bit_Order (Entity (Name
11564 (Get_Rep_Item (Typ, Name_Bit_Order)))));
11565 end if;
11566 end if;
11568 -- Scalar_Storage_Order
11570 -- Note: the aspect is specified on a first subtype, but recorded
11571 -- in a flag of the base type!
11573 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
11574 and then Typ = Bas_Typ
11575 then
11576 -- For a type extension, always inherit from parent; otherwise
11577 -- inherit if no default applies. Note: we do not check for
11578 -- an explicit rep item on the parent type when inheriting,
11579 -- because the parent SSO may itself have been set by default.
11581 if not Has_Rep_Item (First_Subtype (Typ),
11582 Name_Scalar_Storage_Order, False)
11583 and then (Is_Tagged_Type (Bas_Typ)
11584 or else not (SSO_Set_Low_By_Default (Bas_Typ)
11585 or else
11586 SSO_Set_High_By_Default (Bas_Typ)))
11587 then
11588 Set_Reverse_Storage_Order (Bas_Typ,
11589 Reverse_Storage_Order
11590 (Implementation_Base_Type (Etype (Bas_Typ))));
11592 -- Clear default SSO indications, since the inherited aspect
11593 -- which was set explicitly overrides the default.
11595 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
11596 Set_SSO_Set_High_By_Default (Bas_Typ, False);
11597 end if;
11598 end if;
11599 end;
11600 end if;
11601 end Inherit_Aspects_At_Freeze_Point;
11603 ----------------
11604 -- Initialize --
11605 ----------------
11607 procedure Initialize is
11608 begin
11609 Address_Clause_Checks.Init;
11610 Compile_Time_Warnings_Errors.Init;
11611 Unchecked_Conversions.Init;
11613 -- ??? Might be needed in the future for some non GCC back-ends
11614 -- if AAMP_On_Target then
11615 -- Independence_Checks.Init;
11616 -- end if;
11617 end Initialize;
11619 ---------------------------
11620 -- Install_Discriminants --
11621 ---------------------------
11623 procedure Install_Discriminants (E : Entity_Id) is
11624 Disc : Entity_Id;
11625 Prev : Entity_Id;
11626 begin
11627 Disc := First_Discriminant (E);
11628 while Present (Disc) loop
11629 Prev := Current_Entity (Disc);
11630 Set_Current_Entity (Disc);
11631 Set_Is_Immediately_Visible (Disc);
11632 Set_Homonym (Disc, Prev);
11633 Next_Discriminant (Disc);
11634 end loop;
11635 end Install_Discriminants;
11637 -------------------------
11638 -- Is_Operational_Item --
11639 -------------------------
11641 function Is_Operational_Item (N : Node_Id) return Boolean is
11642 begin
11643 if Nkind (N) /= N_Attribute_Definition_Clause then
11644 return False;
11646 else
11647 declare
11648 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
11649 begin
11651 -- List of operational items is given in AARM 13.1(8.mm/1).
11652 -- It is clearly incomplete, as it does not include iterator
11653 -- aspects, among others.
11655 return Id = Attribute_Constant_Indexing
11656 or else Id = Attribute_Default_Iterator
11657 or else Id = Attribute_Implicit_Dereference
11658 or else Id = Attribute_Input
11659 or else Id = Attribute_Iterator_Element
11660 or else Id = Attribute_Iterable
11661 or else Id = Attribute_Output
11662 or else Id = Attribute_Read
11663 or else Id = Attribute_Variable_Indexing
11664 or else Id = Attribute_Write
11665 or else Id = Attribute_External_Tag;
11666 end;
11667 end if;
11668 end Is_Operational_Item;
11670 -------------------------
11671 -- Is_Predicate_Static --
11672 -------------------------
11674 -- Note: the basic legality of the expression has already been checked, so
11675 -- we don't need to worry about cases or ranges on strings for example.
11677 function Is_Predicate_Static
11678 (Expr : Node_Id;
11679 Nam : Name_Id) return Boolean
11681 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
11682 -- Given a list of case expression alternatives, returns True if all
11683 -- the alternatives are static (have all static choices, and a static
11684 -- expression).
11686 function All_Static_Choices (L : List_Id) return Boolean;
11687 -- Returns true if all elements of the list are OK static choices
11688 -- as defined below for Is_Static_Choice. Used for case expression
11689 -- alternatives and for the right operand of a membership test. An
11690 -- others_choice is static if the corresponding expression is static.
11691 -- The staticness of the bounds is checked separately.
11693 function Is_Static_Choice (N : Node_Id) return Boolean;
11694 -- Returns True if N represents a static choice (static subtype, or
11695 -- static subtype indication, or static expression, or static range).
11697 -- Note that this is a bit more inclusive than we actually need
11698 -- (in particular membership tests do not allow the use of subtype
11699 -- indications). But that doesn't matter, we have already checked
11700 -- that the construct is legal to get this far.
11702 function Is_Type_Ref (N : Node_Id) return Boolean;
11703 pragma Inline (Is_Type_Ref);
11704 -- Returns True if N is a reference to the type for the predicate in the
11705 -- expression (i.e. if it is an identifier whose Chars field matches the
11706 -- Nam given in the call). N must not be parenthesized, if the type name
11707 -- appears in parens, this routine will return False.
11709 -- The routine also returns True for function calls generated during the
11710 -- expansion of comparison operators on strings, which are intended to
11711 -- be legal in static predicates, and are converted into calls to array
11712 -- comparison routines in the body of the corresponding predicate
11713 -- function.
11715 ----------------------------------
11716 -- All_Static_Case_Alternatives --
11717 ----------------------------------
11719 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
11720 N : Node_Id;
11722 begin
11723 N := First (L);
11724 while Present (N) loop
11725 if not (All_Static_Choices (Discrete_Choices (N))
11726 and then Is_OK_Static_Expression (Expression (N)))
11727 then
11728 return False;
11729 end if;
11731 Next (N);
11732 end loop;
11734 return True;
11735 end All_Static_Case_Alternatives;
11737 ------------------------
11738 -- All_Static_Choices --
11739 ------------------------
11741 function All_Static_Choices (L : List_Id) return Boolean is
11742 N : Node_Id;
11744 begin
11745 N := First (L);
11746 while Present (N) loop
11747 if not Is_Static_Choice (N) then
11748 return False;
11749 end if;
11751 Next (N);
11752 end loop;
11754 return True;
11755 end All_Static_Choices;
11757 ----------------------
11758 -- Is_Static_Choice --
11759 ----------------------
11761 function Is_Static_Choice (N : Node_Id) return Boolean is
11762 begin
11763 return Nkind (N) = N_Others_Choice
11764 or else Is_OK_Static_Expression (N)
11765 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
11766 and then Is_OK_Static_Subtype (Entity (N)))
11767 or else (Nkind (N) = N_Subtype_Indication
11768 and then Is_OK_Static_Subtype (Entity (N)))
11769 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
11770 end Is_Static_Choice;
11772 -----------------
11773 -- Is_Type_Ref --
11774 -----------------
11776 function Is_Type_Ref (N : Node_Id) return Boolean is
11777 begin
11778 return (Nkind (N) = N_Identifier
11779 and then Chars (N) = Nam
11780 and then Paren_Count (N) = 0)
11781 or else Nkind (N) = N_Function_Call;
11782 end Is_Type_Ref;
11784 -- Start of processing for Is_Predicate_Static
11786 begin
11787 -- Predicate_Static means one of the following holds. Numbers are the
11788 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11790 -- 16: A static expression
11792 if Is_OK_Static_Expression (Expr) then
11793 return True;
11795 -- 17: A membership test whose simple_expression is the current
11796 -- instance, and whose membership_choice_list meets the requirements
11797 -- for a static membership test.
11799 elsif Nkind (Expr) in N_Membership_Test
11800 and then ((Present (Right_Opnd (Expr))
11801 and then Is_Static_Choice (Right_Opnd (Expr)))
11802 or else
11803 (Present (Alternatives (Expr))
11804 and then All_Static_Choices (Alternatives (Expr))))
11805 then
11806 return True;
11808 -- 18. A case_expression whose selecting_expression is the current
11809 -- instance, and whose dependent expressions are static expressions.
11811 elsif Nkind (Expr) = N_Case_Expression
11812 and then Is_Type_Ref (Expression (Expr))
11813 and then All_Static_Case_Alternatives (Alternatives (Expr))
11814 then
11815 return True;
11817 -- 19. A call to a predefined equality or ordering operator, where one
11818 -- operand is the current instance, and the other is a static
11819 -- expression.
11821 -- Note: the RM is clearly wrong here in not excluding string types.
11822 -- Without this exclusion, we would allow expressions like X > "ABC"
11823 -- to be considered as predicate-static, which is clearly not intended,
11824 -- since the idea is for predicate-static to be a subset of normal
11825 -- static expressions (and "DEF" > "ABC" is not a static expression).
11827 -- However, we do allow internally generated (not from source) equality
11828 -- and inequality operations to be valid on strings (this helps deal
11829 -- with cases where we transform A in "ABC" to A = "ABC).
11831 -- In fact, it appears that the intent of the ARG is to extend static
11832 -- predicates to strings, and that the extension should probably apply
11833 -- to static expressions themselves. The code below accepts comparison
11834 -- operators that apply to static strings.
11836 elsif Nkind (Expr) in N_Op_Compare
11837 and then ((Is_Type_Ref (Left_Opnd (Expr))
11838 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
11839 or else
11840 (Is_Type_Ref (Right_Opnd (Expr))
11841 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
11842 then
11843 return True;
11845 -- 20. A call to a predefined boolean logical operator, where each
11846 -- operand is predicate-static.
11848 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
11849 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11850 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11851 or else
11852 (Nkind (Expr) = N_Op_Not
11853 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11854 then
11855 return True;
11857 -- 21. A short-circuit control form where both operands are
11858 -- predicate-static.
11860 elsif Nkind (Expr) in N_Short_Circuit
11861 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11862 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
11863 then
11864 return True;
11866 -- 22. A parenthesized predicate-static expression. This does not
11867 -- require any special test, since we just ignore paren levels in
11868 -- all the cases above.
11870 -- One more test that is an implementation artifact caused by the fact
11871 -- that we are analyzing not the original expression, but the generated
11872 -- expression in the body of the predicate function. This can include
11873 -- references to inherited predicates, so that the expression we are
11874 -- processing looks like:
11876 -- xxPredicate (typ (Inns)) and then expression
11878 -- Where the call is to a Predicate function for an inherited predicate.
11879 -- We simply ignore such a call, which could be to either a dynamic or
11880 -- a static predicate. Note that if the parent predicate is dynamic then
11881 -- eventually this type will be marked as dynamic, but you are allowed
11882 -- to specify a static predicate for a subtype which is inheriting a
11883 -- dynamic predicate, so the static predicate validation here ignores
11884 -- the inherited predicate even if it is dynamic.
11885 -- In all cases, a static predicate can only apply to a scalar type.
11887 elsif Nkind (Expr) = N_Function_Call
11888 and then Is_Predicate_Function (Entity (Name (Expr)))
11889 and then Is_Scalar_Type (Etype (First_Entity (Entity (Name (Expr)))))
11890 then
11891 return True;
11893 -- That's an exhaustive list of tests, all other cases are not
11894 -- predicate-static, so we return False.
11896 else
11897 return False;
11898 end if;
11899 end Is_Predicate_Static;
11901 ---------------------
11902 -- Kill_Rep_Clause --
11903 ---------------------
11905 procedure Kill_Rep_Clause (N : Node_Id) is
11906 begin
11907 pragma Assert (Ignore_Rep_Clauses);
11909 -- Note: we use Replace rather than Rewrite, because we don't want
11910 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11911 -- rep clause that is being replaced.
11913 Replace (N, Make_Null_Statement (Sloc (N)));
11915 -- The null statement must be marked as not coming from source. This is
11916 -- so that ASIS ignores it, and also the back end does not expect bogus
11917 -- "from source" null statements in weird places (e.g. in declarative
11918 -- regions where such null statements are not allowed).
11920 Set_Comes_From_Source (N, False);
11921 end Kill_Rep_Clause;
11923 ------------------
11924 -- Minimum_Size --
11925 ------------------
11927 function Minimum_Size
11928 (T : Entity_Id;
11929 Biased : Boolean := False) return Nat
11931 Lo : Uint := No_Uint;
11932 Hi : Uint := No_Uint;
11933 LoR : Ureal := No_Ureal;
11934 HiR : Ureal := No_Ureal;
11935 LoSet : Boolean := False;
11936 HiSet : Boolean := False;
11937 B : Uint;
11938 S : Nat;
11939 Ancest : Entity_Id;
11940 R_Typ : constant Entity_Id := Root_Type (T);
11942 begin
11943 -- If bad type, return 0
11945 if T = Any_Type then
11946 return 0;
11948 -- For generic types, just return zero. There cannot be any legitimate
11949 -- need to know such a size, but this routine may be called with a
11950 -- generic type as part of normal processing.
11952 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
11953 return 0;
11955 -- Access types (cannot have size smaller than System.Address)
11957 elsif Is_Access_Type (T) then
11958 return System_Address_Size;
11960 -- Floating-point types
11962 elsif Is_Floating_Point_Type (T) then
11963 return UI_To_Int (Esize (R_Typ));
11965 -- Discrete types
11967 elsif Is_Discrete_Type (T) then
11969 -- The following loop is looking for the nearest compile time known
11970 -- bounds following the ancestor subtype chain. The idea is to find
11971 -- the most restrictive known bounds information.
11973 Ancest := T;
11974 loop
11975 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11976 return 0;
11977 end if;
11979 if not LoSet then
11980 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
11981 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
11982 LoSet := True;
11983 exit when HiSet;
11984 end if;
11985 end if;
11987 if not HiSet then
11988 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
11989 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
11990 HiSet := True;
11991 exit when LoSet;
11992 end if;
11993 end if;
11995 Ancest := Ancestor_Subtype (Ancest);
11997 if No (Ancest) then
11998 Ancest := Base_Type (T);
12000 if Is_Generic_Type (Ancest) then
12001 return 0;
12002 end if;
12003 end if;
12004 end loop;
12006 -- Fixed-point types. We can't simply use Expr_Value to get the
12007 -- Corresponding_Integer_Value values of the bounds, since these do not
12008 -- get set till the type is frozen, and this routine can be called
12009 -- before the type is frozen. Similarly the test for bounds being static
12010 -- needs to include the case where we have unanalyzed real literals for
12011 -- the same reason.
12013 elsif Is_Fixed_Point_Type (T) then
12015 -- The following loop is looking for the nearest compile time known
12016 -- bounds following the ancestor subtype chain. The idea is to find
12017 -- the most restrictive known bounds information.
12019 Ancest := T;
12020 loop
12021 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
12022 return 0;
12023 end if;
12025 -- Note: In the following two tests for LoSet and HiSet, it may
12026 -- seem redundant to test for N_Real_Literal here since normally
12027 -- one would assume that the test for the value being known at
12028 -- compile time includes this case. However, there is a glitch.
12029 -- If the real literal comes from folding a non-static expression,
12030 -- then we don't consider any non- static expression to be known
12031 -- at compile time if we are in configurable run time mode (needed
12032 -- in some cases to give a clearer definition of what is and what
12033 -- is not accepted). So the test is indeed needed. Without it, we
12034 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
12036 if not LoSet then
12037 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
12038 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
12039 then
12040 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
12041 LoSet := True;
12042 exit when HiSet;
12043 end if;
12044 end if;
12046 if not HiSet then
12047 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
12048 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
12049 then
12050 HiR := Expr_Value_R (Type_High_Bound (Ancest));
12051 HiSet := True;
12052 exit when LoSet;
12053 end if;
12054 end if;
12056 Ancest := Ancestor_Subtype (Ancest);
12058 if No (Ancest) then
12059 Ancest := Base_Type (T);
12061 if Is_Generic_Type (Ancest) then
12062 return 0;
12063 end if;
12064 end if;
12065 end loop;
12067 Lo := UR_To_Uint (LoR / Small_Value (T));
12068 Hi := UR_To_Uint (HiR / Small_Value (T));
12070 -- No other types allowed
12072 else
12073 raise Program_Error;
12074 end if;
12076 -- Fall through with Hi and Lo set. Deal with biased case
12078 if (Biased
12079 and then not Is_Fixed_Point_Type (T)
12080 and then not (Is_Enumeration_Type (T)
12081 and then Has_Non_Standard_Rep (T)))
12082 or else Has_Biased_Representation (T)
12083 then
12084 Hi := Hi - Lo;
12085 Lo := Uint_0;
12086 end if;
12088 -- Null range case, size is always zero. We only do this in the discrete
12089 -- type case, since that's the odd case that came up. Probably we should
12090 -- also do this in the fixed-point case, but doing so causes peculiar
12091 -- gigi failures, and it is not worth worrying about this incredibly
12092 -- marginal case (explicit null-range fixed-point type declarations)???
12094 if Lo > Hi and then Is_Discrete_Type (T) then
12095 S := 0;
12097 -- Signed case. Note that we consider types like range 1 .. -1 to be
12098 -- signed for the purpose of computing the size, since the bounds have
12099 -- to be accommodated in the base type.
12101 elsif Lo < 0 or else Hi < 0 then
12102 S := 1;
12103 B := Uint_1;
12105 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
12106 -- Note that we accommodate the case where the bounds cross. This
12107 -- can happen either because of the way the bounds are declared
12108 -- or because of the algorithm in Freeze_Fixed_Point_Type.
12110 while Lo < -B
12111 or else Hi < -B
12112 or else Lo >= B
12113 or else Hi >= B
12114 loop
12115 B := Uint_2 ** S;
12116 S := S + 1;
12117 end loop;
12119 -- Unsigned case
12121 else
12122 -- If both bounds are positive, make sure that both are represen-
12123 -- table in the case where the bounds are crossed. This can happen
12124 -- either because of the way the bounds are declared, or because of
12125 -- the algorithm in Freeze_Fixed_Point_Type.
12127 if Lo > Hi then
12128 Hi := Lo;
12129 end if;
12131 -- S = size, (can accommodate 0 .. (2**size - 1))
12133 S := 0;
12134 while Hi >= Uint_2 ** S loop
12135 S := S + 1;
12136 end loop;
12137 end if;
12139 return S;
12140 end Minimum_Size;
12142 ---------------------------
12143 -- New_Stream_Subprogram --
12144 ---------------------------
12146 procedure New_Stream_Subprogram
12147 (N : Node_Id;
12148 Ent : Entity_Id;
12149 Subp : Entity_Id;
12150 Nam : TSS_Name_Type)
12152 Loc : constant Source_Ptr := Sloc (N);
12153 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
12154 Subp_Id : Entity_Id;
12155 Subp_Decl : Node_Id;
12156 F : Entity_Id;
12157 Etyp : Entity_Id;
12159 Defer_Declaration : constant Boolean :=
12160 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
12161 -- For a tagged type, there is a declaration for each stream attribute
12162 -- at the freeze point, and we must generate only a completion of this
12163 -- declaration. We do the same for private types, because the full view
12164 -- might be tagged. Otherwise we generate a declaration at the point of
12165 -- the attribute definition clause. If the attribute definition comes
12166 -- from an aspect specification the declaration is part of the freeze
12167 -- actions of the type.
12169 function Build_Spec return Node_Id;
12170 -- Used for declaration and renaming declaration, so that this is
12171 -- treated as a renaming_as_body.
12173 ----------------
12174 -- Build_Spec --
12175 ----------------
12177 function Build_Spec return Node_Id is
12178 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
12179 Formals : List_Id;
12180 Spec : Node_Id;
12181 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
12183 begin
12184 Subp_Id := Make_Defining_Identifier (Loc, Sname);
12186 -- S : access Root_Stream_Type'Class
12188 Formals := New_List (
12189 Make_Parameter_Specification (Loc,
12190 Defining_Identifier =>
12191 Make_Defining_Identifier (Loc, Name_S),
12192 Parameter_Type =>
12193 Make_Access_Definition (Loc,
12194 Subtype_Mark =>
12195 New_Occurrence_Of (
12196 Designated_Type (Etype (F)), Loc))));
12198 if Nam = TSS_Stream_Input then
12199 Spec :=
12200 Make_Function_Specification (Loc,
12201 Defining_Unit_Name => Subp_Id,
12202 Parameter_Specifications => Formals,
12203 Result_Definition => T_Ref);
12204 else
12205 -- V : [out] T
12207 Append_To (Formals,
12208 Make_Parameter_Specification (Loc,
12209 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
12210 Out_Present => Out_P,
12211 Parameter_Type => T_Ref));
12213 Spec :=
12214 Make_Procedure_Specification (Loc,
12215 Defining_Unit_Name => Subp_Id,
12216 Parameter_Specifications => Formals);
12217 end if;
12219 return Spec;
12220 end Build_Spec;
12222 -- Start of processing for New_Stream_Subprogram
12224 begin
12225 F := First_Formal (Subp);
12227 if Ekind (Subp) = E_Procedure then
12228 Etyp := Etype (Next_Formal (F));
12229 else
12230 Etyp := Etype (Subp);
12231 end if;
12233 -- Prepare subprogram declaration and insert it as an action on the
12234 -- clause node. The visibility for this entity is used to test for
12235 -- visibility of the attribute definition clause (in the sense of
12236 -- 8.3(23) as amended by AI-195).
12238 if not Defer_Declaration then
12239 Subp_Decl :=
12240 Make_Subprogram_Declaration (Loc,
12241 Specification => Build_Spec);
12243 -- For a tagged type, there is always a visible declaration for each
12244 -- stream TSS (it is a predefined primitive operation), and the
12245 -- completion of this declaration occurs at the freeze point, which is
12246 -- not always visible at places where the attribute definition clause is
12247 -- visible. So, we create a dummy entity here for the purpose of
12248 -- tracking the visibility of the attribute definition clause itself.
12250 else
12251 Subp_Id :=
12252 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
12253 Subp_Decl :=
12254 Make_Object_Declaration (Loc,
12255 Defining_Identifier => Subp_Id,
12256 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
12257 end if;
12259 if not Defer_Declaration
12260 and then From_Aspect_Specification (N)
12261 and then Has_Delayed_Freeze (Ent)
12262 then
12263 Append_Freeze_Action (Ent, Subp_Decl);
12265 else
12266 Insert_Action (N, Subp_Decl);
12267 Set_Entity (N, Subp_Id);
12268 end if;
12270 Subp_Decl :=
12271 Make_Subprogram_Renaming_Declaration (Loc,
12272 Specification => Build_Spec,
12273 Name => New_Occurrence_Of (Subp, Loc));
12275 if Defer_Declaration then
12276 Set_TSS (Base_Type (Ent), Subp_Id);
12278 else
12279 if From_Aspect_Specification (N) then
12280 Append_Freeze_Action (Ent, Subp_Decl);
12281 else
12282 Insert_Action (N, Subp_Decl);
12283 end if;
12285 Copy_TSS (Subp_Id, Base_Type (Ent));
12286 end if;
12287 end New_Stream_Subprogram;
12289 ------------------------------------------
12290 -- Push_Scope_And_Install_Discriminants --
12291 ------------------------------------------
12293 procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
12294 begin
12295 if Has_Discriminants (E) then
12296 Push_Scope (E);
12298 -- Make the discriminants visible for type declarations and protected
12299 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
12301 if Nkind (Parent (E)) /= N_Subtype_Declaration then
12302 Install_Discriminants (E);
12303 end if;
12304 end if;
12305 end Push_Scope_And_Install_Discriminants;
12307 -----------------------------------
12308 -- Register_Address_Clause_Check --
12309 -----------------------------------
12311 procedure Register_Address_Clause_Check
12312 (N : Node_Id;
12313 X : Entity_Id;
12314 A : Uint;
12315 Y : Entity_Id;
12316 Off : Boolean)
12318 ACS : constant Boolean := Scope_Suppress.Suppress (Alignment_Check);
12319 begin
12320 Address_Clause_Checks.Append ((N, X, A, Y, Off, ACS));
12321 end Register_Address_Clause_Check;
12323 ------------------------
12324 -- Rep_Item_Too_Early --
12325 ------------------------
12327 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
12328 begin
12329 -- Cannot apply non-operational rep items to generic types
12331 if Is_Operational_Item (N) then
12332 return False;
12334 elsif Is_Type (T)
12335 and then Is_Generic_Type (Root_Type (T))
12336 and then (Nkind (N) /= N_Pragma
12337 or else Get_Pragma_Id (N) /= Pragma_Convention)
12338 then
12339 Error_Msg_N ("representation item not allowed for generic type", N);
12340 return True;
12341 end if;
12343 -- Otherwise check for incomplete type
12345 if Is_Incomplete_Or_Private_Type (T)
12346 and then No (Underlying_Type (T))
12347 and then
12348 (Nkind (N) /= N_Pragma
12349 or else Get_Pragma_Id (N) /= Pragma_Import)
12350 then
12351 Error_Msg_N
12352 ("representation item must be after full type declaration", N);
12353 return True;
12355 -- If the type has incomplete components, a representation clause is
12356 -- illegal but stream attributes and Convention pragmas are correct.
12358 elsif Has_Private_Component (T) then
12359 if Nkind (N) = N_Pragma then
12360 return False;
12362 else
12363 Error_Msg_N
12364 ("representation item must appear after type is fully defined",
12366 return True;
12367 end if;
12368 else
12369 return False;
12370 end if;
12371 end Rep_Item_Too_Early;
12373 -----------------------
12374 -- Rep_Item_Too_Late --
12375 -----------------------
12377 function Rep_Item_Too_Late
12378 (T : Entity_Id;
12379 N : Node_Id;
12380 FOnly : Boolean := False) return Boolean
12382 S : Entity_Id;
12383 Parent_Type : Entity_Id;
12385 procedure No_Type_Rep_Item;
12386 -- Output message indicating that no type-related aspects can be
12387 -- specified due to some property of the parent type.
12389 procedure Too_Late;
12390 -- Output message for an aspect being specified too late
12392 -- Note that neither of the above errors is considered a serious one,
12393 -- since the effect is simply that we ignore the representation clause
12394 -- in these cases.
12395 -- Is this really true? In any case if we make this change we must
12396 -- document the requirement in the spec of Rep_Item_Too_Late that
12397 -- if True is returned, then the rep item must be completely ignored???
12399 ----------------------
12400 -- No_Type_Rep_Item --
12401 ----------------------
12403 procedure No_Type_Rep_Item is
12404 begin
12405 Error_Msg_N ("|type-related representation item not permitted!", N);
12406 end No_Type_Rep_Item;
12408 --------------
12409 -- Too_Late --
12410 --------------
12412 procedure Too_Late is
12413 begin
12414 -- Other compilers seem more relaxed about rep items appearing too
12415 -- late. Since analysis tools typically don't care about rep items
12416 -- anyway, no reason to be too strict about this.
12418 if not Relaxed_RM_Semantics then
12419 Error_Msg_N ("|representation item appears too late!", N);
12420 end if;
12421 end Too_Late;
12423 -- Start of processing for Rep_Item_Too_Late
12425 begin
12426 -- First make sure entity is not frozen (RM 13.1(9))
12428 if Is_Frozen (T)
12430 -- Exclude imported types, which may be frozen if they appear in a
12431 -- representation clause for a local type.
12433 and then not From_Limited_With (T)
12435 -- Exclude generated entities (not coming from source). The common
12436 -- case is when we generate a renaming which prematurely freezes the
12437 -- renamed internal entity, but we still want to be able to set copies
12438 -- of attribute values such as Size/Alignment.
12440 and then Comes_From_Source (T)
12441 then
12442 -- A self-referential aspect is illegal if it forces freezing the
12443 -- entity before the corresponding pragma has been analyzed.
12445 if Nkind_In (N, N_Attribute_Definition_Clause, N_Pragma)
12446 and then From_Aspect_Specification (N)
12447 then
12448 Error_Msg_NE
12449 ("aspect specification causes premature freezing of&", N, T);
12450 Set_Has_Delayed_Freeze (T, False);
12451 return True;
12452 end if;
12454 Too_Late;
12455 S := First_Subtype (T);
12457 if Present (Freeze_Node (S)) then
12458 if not Relaxed_RM_Semantics then
12459 Error_Msg_NE
12460 ("??no more representation items for }", Freeze_Node (S), S);
12461 end if;
12462 end if;
12464 return True;
12466 -- Check for case of untagged derived type whose parent either has
12467 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12468 -- this case we do not output a Too_Late message, since there is no
12469 -- earlier point where the rep item could be placed to make it legal.
12471 elsif Is_Type (T)
12472 and then not FOnly
12473 and then Is_Derived_Type (T)
12474 and then not Is_Tagged_Type (T)
12475 then
12476 Parent_Type := Etype (Base_Type (T));
12478 if Has_Primitive_Operations (Parent_Type) then
12479 No_Type_Rep_Item;
12481 if not Relaxed_RM_Semantics then
12482 Error_Msg_NE
12483 ("\parent type & has primitive operations!", N, Parent_Type);
12484 end if;
12486 return True;
12488 elsif Is_By_Reference_Type (Parent_Type) then
12489 No_Type_Rep_Item;
12491 if not Relaxed_RM_Semantics then
12492 Error_Msg_NE
12493 ("\parent type & is a by reference type!", N, Parent_Type);
12494 end if;
12496 return True;
12497 end if;
12498 end if;
12500 -- No error, but one more warning to consider. The RM (surprisingly)
12501 -- allows this pattern:
12503 -- type S is ...
12504 -- primitive operations for S
12505 -- type R is new S;
12506 -- rep clause for S
12508 -- Meaning that calls on the primitive operations of S for values of
12509 -- type R may require possibly expensive implicit conversion operations.
12510 -- This is not an error, but is worth a warning.
12512 if not Relaxed_RM_Semantics and then Is_Type (T) then
12513 declare
12514 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
12516 begin
12517 if Present (DTL)
12518 and then Has_Primitive_Operations (Base_Type (T))
12520 -- For now, do not generate this warning for the case of aspect
12521 -- specification using Ada 2012 syntax, since we get wrong
12522 -- messages we do not understand. The whole business of derived
12523 -- types and rep items seems a bit confused when aspects are
12524 -- used, since the aspects are not evaluated till freeze time.
12526 and then not From_Aspect_Specification (N)
12527 then
12528 Error_Msg_Sloc := Sloc (DTL);
12529 Error_Msg_N
12530 ("representation item for& appears after derived type "
12531 & "declaration#??", N);
12532 Error_Msg_NE
12533 ("\may result in implicit conversions for primitive "
12534 & "operations of&??", N, T);
12535 Error_Msg_NE
12536 ("\to change representations when called with arguments "
12537 & "of type&??", N, DTL);
12538 end if;
12539 end;
12540 end if;
12542 -- No error, link item into head of chain of rep items for the entity,
12543 -- but avoid chaining if we have an overloadable entity, and the pragma
12544 -- is one that can apply to multiple overloaded entities.
12546 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
12547 declare
12548 Pname : constant Name_Id := Pragma_Name (N);
12549 begin
12550 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
12551 Name_External, Name_Interface)
12552 then
12553 return False;
12554 end if;
12555 end;
12556 end if;
12558 Record_Rep_Item (T, N);
12559 return False;
12560 end Rep_Item_Too_Late;
12562 -------------------------------------
12563 -- Replace_Type_References_Generic --
12564 -------------------------------------
12566 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
12567 TName : constant Name_Id := Chars (T);
12569 function Replace_Type_Ref (N : Node_Id) return Traverse_Result;
12570 -- Processes a single node in the traversal procedure below, checking
12571 -- if node N should be replaced, and if so, doing the replacement.
12573 function Visible_Component (Comp : Name_Id) return Entity_Id;
12574 -- Given an identifier in the expression, check whether there is a
12575 -- discriminant or component of the type that is directy visible, and
12576 -- rewrite it as the corresponding selected component of the formal of
12577 -- the subprogram. The entity is located by a sequential search, which
12578 -- seems acceptable given the typical size of component lists and check
12579 -- expressions. Possible optimization ???
12581 ----------------------
12582 -- Replace_Type_Ref --
12583 ----------------------
12585 function Replace_Type_Ref (N : Node_Id) return Traverse_Result is
12586 Loc : constant Source_Ptr := Sloc (N);
12588 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id);
12589 -- Add the proper prefix to a reference to a component of the type
12590 -- when it is not already a selected component.
12592 ----------------
12593 -- Add_Prefix --
12594 ----------------
12596 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id) is
12597 begin
12598 Rewrite (Ref,
12599 Make_Selected_Component (Loc,
12600 Prefix => New_Occurrence_Of (T, Loc),
12601 Selector_Name => New_Occurrence_Of (Comp, Loc)));
12602 Replace_Type_Reference (Prefix (Ref));
12603 end Add_Prefix;
12605 -- Local variables
12607 Comp : Entity_Id;
12608 Pref : Node_Id;
12609 Scop : Entity_Id;
12611 -- Start of processing for Replace_Type_Ref
12613 begin
12614 if Nkind (N) = N_Identifier then
12616 -- If not the type name, check whether it is a reference to some
12617 -- other type, which must be frozen before the predicate function
12618 -- is analyzed, i.e. before the freeze node of the type to which
12619 -- the predicate applies.
12621 if Chars (N) /= TName then
12622 if Present (Current_Entity (N))
12623 and then Is_Type (Current_Entity (N))
12624 then
12625 Freeze_Before (Freeze_Node (T), Current_Entity (N));
12626 end if;
12628 -- The components of the type are directly visible and can
12629 -- be referenced without a prefix.
12631 if Nkind (Parent (N)) = N_Selected_Component then
12632 null;
12634 -- In expression C (I), C may be a directly visible function
12635 -- or a visible component that has an array type. Disambiguate
12636 -- by examining the component type.
12638 elsif Nkind (Parent (N)) = N_Indexed_Component
12639 and then N = Prefix (Parent (N))
12640 then
12641 Comp := Visible_Component (Chars (N));
12643 if Present (Comp) and then Is_Array_Type (Etype (Comp)) then
12644 Add_Prefix (N, Comp);
12645 end if;
12647 else
12648 Comp := Visible_Component (Chars (N));
12650 if Present (Comp) then
12651 Add_Prefix (N, Comp);
12652 end if;
12653 end if;
12655 return Skip;
12657 -- Otherwise do the replacement and we are done with this node
12659 else
12660 Replace_Type_Reference (N);
12661 return Skip;
12662 end if;
12664 -- Case of selected component (which is what a qualification looks
12665 -- like in the unanalyzed tree, which is what we have.
12667 elsif Nkind (N) = N_Selected_Component then
12669 -- If selector name is not our type, keeping going (we might still
12670 -- have an occurrence of the type in the prefix).
12672 if Nkind (Selector_Name (N)) /= N_Identifier
12673 or else Chars (Selector_Name (N)) /= TName
12674 then
12675 return OK;
12677 -- Selector name is our type, check qualification
12679 else
12680 -- Loop through scopes and prefixes, doing comparison
12682 Scop := Current_Scope;
12683 Pref := Prefix (N);
12684 loop
12685 -- Continue if no more scopes or scope with no name
12687 if No (Scop) or else Nkind (Scop) not in N_Has_Chars then
12688 return OK;
12689 end if;
12691 -- Do replace if prefix is an identifier matching the scope
12692 -- that we are currently looking at.
12694 if Nkind (Pref) = N_Identifier
12695 and then Chars (Pref) = Chars (Scop)
12696 then
12697 Replace_Type_Reference (N);
12698 return Skip;
12699 end if;
12701 -- Go check scope above us if prefix is itself of the form
12702 -- of a selected component, whose selector matches the scope
12703 -- we are currently looking at.
12705 if Nkind (Pref) = N_Selected_Component
12706 and then Nkind (Selector_Name (Pref)) = N_Identifier
12707 and then Chars (Selector_Name (Pref)) = Chars (Scop)
12708 then
12709 Scop := Scope (Scop);
12710 Pref := Prefix (Pref);
12712 -- For anything else, we don't have a match, so keep on
12713 -- going, there are still some weird cases where we may
12714 -- still have a replacement within the prefix.
12716 else
12717 return OK;
12718 end if;
12719 end loop;
12720 end if;
12722 -- Continue for any other node kind
12724 else
12725 return OK;
12726 end if;
12727 end Replace_Type_Ref;
12729 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Type_Ref);
12731 -----------------------
12732 -- Visible_Component --
12733 -----------------------
12735 function Visible_Component (Comp : Name_Id) return Entity_Id is
12736 E : Entity_Id;
12738 begin
12739 -- Types with nameable components are records and discriminated
12740 -- private types.
12742 if Ekind (T) = E_Record_Type
12743 or else (Is_Private_Type (T) and then Has_Discriminants (T))
12744 then
12745 E := First_Entity (T);
12746 while Present (E) loop
12747 if Comes_From_Source (E) and then Chars (E) = Comp then
12748 return E;
12749 end if;
12751 Next_Entity (E);
12752 end loop;
12753 end if;
12755 -- Nothing by that name, or the type has no components
12757 return Empty;
12758 end Visible_Component;
12760 -- Start of processing for Replace_Type_References_Generic
12762 begin
12763 Replace_Type_Refs (N);
12764 end Replace_Type_References_Generic;
12766 --------------------------------
12767 -- Resolve_Aspect_Expressions --
12768 --------------------------------
12770 procedure Resolve_Aspect_Expressions (E : Entity_Id) is
12771 function Resolve_Name (N : Node_Id) return Traverse_Result;
12772 -- Verify that all identifiers in the expression, with the exception
12773 -- of references to the current entity, denote visible entities. This
12774 -- is done only to detect visibility errors, as the expression will be
12775 -- properly analyzed/expanded during analysis of the predicate function
12776 -- body. We omit quantified expressions from this test, given that they
12777 -- introduce a local identifier that would require proper expansion to
12778 -- handle properly.
12780 -- In ASIS_Mode we preserve the entity in the source because there is
12781 -- no subsequent expansion to decorate the tree.
12783 ------------------
12784 -- Resolve_Name --
12785 ------------------
12787 function Resolve_Name (N : Node_Id) return Traverse_Result is
12788 Dummy : Traverse_Result;
12790 begin
12791 if Nkind (N) = N_Selected_Component then
12792 if Nkind (Prefix (N)) = N_Identifier
12793 and then Chars (Prefix (N)) /= Chars (E)
12794 then
12795 Find_Selected_Component (N);
12796 end if;
12798 return Skip;
12800 -- Resolve identifiers that are not selectors in parameter
12801 -- associations (these are never resolved by visibility).
12803 elsif Nkind (N) = N_Identifier
12804 and then Chars (N) /= Chars (E)
12805 and then (Nkind (Parent (N)) /= N_Parameter_Association
12806 or else N /= Selector_Name (Parent (N)))
12807 then
12808 Find_Direct_Name (N);
12810 -- In ASIS mode we must analyze overloaded identifiers to ensure
12811 -- their correct decoration because expansion is disabled (and
12812 -- the expansion of freeze nodes takes care of resolving aspect
12813 -- expressions).
12815 if ASIS_Mode then
12816 if Is_Overloaded (N) then
12817 Analyze (Parent (N));
12818 end if;
12819 else
12820 Set_Entity (N, Empty);
12821 end if;
12823 -- The name is component association needs no resolution.
12825 elsif Nkind (N) = N_Component_Association then
12826 Dummy := Resolve_Name (Expression (N));
12827 return Skip;
12829 elsif Nkind (N) = N_Quantified_Expression then
12830 return Skip;
12831 end if;
12833 return OK;
12834 end Resolve_Name;
12836 procedure Resolve_Aspect_Expression is new Traverse_Proc (Resolve_Name);
12838 -- Local variables
12840 ASN : Node_Id := First_Rep_Item (E);
12842 -- Start of processing for Resolve_Aspect_Expressions
12844 begin
12845 -- Need to make sure discriminants, if any, are directly visible
12847 Push_Scope_And_Install_Discriminants (E);
12849 while Present (ASN) loop
12850 if Nkind (ASN) = N_Aspect_Specification and then Entity (ASN) = E then
12851 declare
12852 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
12853 Expr : constant Node_Id := Expression (ASN);
12855 begin
12856 case A_Id is
12858 -- For now we only deal with aspects that do not generate
12859 -- subprograms, or that may mention current instances of
12860 -- types. These will require special handling (???TBD).
12862 when Aspect_Invariant
12863 | Aspect_Predicate
12864 | Aspect_Predicate_Failure
12866 null;
12868 when Aspect_Dynamic_Predicate
12869 | Aspect_Static_Predicate
12871 -- Build predicate function specification and preanalyze
12872 -- expression after type replacement. The function
12873 -- declaration must be analyzed in the scope of the
12874 -- type, but the expression must see components.
12876 if No (Predicate_Function (E)) then
12877 Uninstall_Discriminants_And_Pop_Scope (E);
12878 declare
12879 FDecl : constant Node_Id :=
12880 Build_Predicate_Function_Declaration (E);
12881 pragma Unreferenced (FDecl);
12883 begin
12884 Push_Scope_And_Install_Discriminants (E);
12885 Resolve_Aspect_Expression (Expr);
12886 end;
12887 end if;
12889 when Pre_Post_Aspects =>
12890 null;
12892 when Aspect_Iterable =>
12893 if Nkind (Expr) = N_Aggregate then
12894 declare
12895 Assoc : Node_Id;
12897 begin
12898 Assoc := First (Component_Associations (Expr));
12899 while Present (Assoc) loop
12900 Find_Direct_Name (Expression (Assoc));
12901 Next (Assoc);
12902 end loop;
12903 end;
12904 end if;
12906 -- The expression for Default_Value is a static expression
12907 -- of the type, but this expression does not freeze the
12908 -- type, so it can still appear in a representation clause
12909 -- before the actual freeze point.
12911 when Aspect_Default_Value =>
12912 Set_Must_Not_Freeze (Expr);
12913 Preanalyze_Spec_Expression (Expr, E);
12915 when others =>
12916 if Present (Expr) then
12917 case Aspect_Argument (A_Id) is
12918 when Expression
12919 | Optional_Expression
12921 Analyze_And_Resolve (Expr);
12923 when Name
12924 | Optional_Name
12926 if Nkind (Expr) = N_Identifier then
12927 Find_Direct_Name (Expr);
12929 elsif Nkind (Expr) = N_Selected_Component then
12930 Find_Selected_Component (Expr);
12931 end if;
12932 end case;
12933 end if;
12934 end case;
12935 end;
12936 end if;
12938 ASN := Next_Rep_Item (ASN);
12939 end loop;
12941 Uninstall_Discriminants_And_Pop_Scope (E);
12942 end Resolve_Aspect_Expressions;
12944 -------------------------
12945 -- Same_Representation --
12946 -------------------------
12948 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
12949 T1 : constant Entity_Id := Underlying_Type (Typ1);
12950 T2 : constant Entity_Id := Underlying_Type (Typ2);
12952 begin
12953 -- A quick check, if base types are the same, then we definitely have
12954 -- the same representation, because the subtype specific representation
12955 -- attributes (Size and Alignment) do not affect representation from
12956 -- the point of view of this test.
12958 if Base_Type (T1) = Base_Type (T2) then
12959 return True;
12961 elsif Is_Private_Type (Base_Type (T2))
12962 and then Base_Type (T1) = Full_View (Base_Type (T2))
12963 then
12964 return True;
12965 end if;
12967 -- Tagged types always have the same representation, because it is not
12968 -- possible to specify different representations for common fields.
12970 if Is_Tagged_Type (T1) then
12971 return True;
12972 end if;
12974 -- Representations are definitely different if conventions differ
12976 if Convention (T1) /= Convention (T2) then
12977 return False;
12978 end if;
12980 -- Representations are different if component alignments or scalar
12981 -- storage orders differ.
12983 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
12984 and then
12985 (Is_Record_Type (T2) or else Is_Array_Type (T2))
12986 and then
12987 (Component_Alignment (T1) /= Component_Alignment (T2)
12988 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
12989 then
12990 return False;
12991 end if;
12993 -- For arrays, the only real issue is component size. If we know the
12994 -- component size for both arrays, and it is the same, then that's
12995 -- good enough to know we don't have a change of representation.
12997 if Is_Array_Type (T1) then
12998 if Known_Component_Size (T1)
12999 and then Known_Component_Size (T2)
13000 and then Component_Size (T1) = Component_Size (T2)
13001 then
13002 return True;
13003 end if;
13004 end if;
13006 -- For records, representations are different if reorderings differ
13008 if Is_Record_Type (T1)
13009 and then Is_Record_Type (T2)
13010 and then No_Reordering (T1) /= No_Reordering (T2)
13011 then
13012 return False;
13013 end if;
13015 -- Types definitely have same representation if neither has non-standard
13016 -- representation since default representations are always consistent.
13017 -- If only one has non-standard representation, and the other does not,
13018 -- then we consider that they do not have the same representation. They
13019 -- might, but there is no way of telling early enough.
13021 if Has_Non_Standard_Rep (T1) then
13022 if not Has_Non_Standard_Rep (T2) then
13023 return False;
13024 end if;
13025 else
13026 return not Has_Non_Standard_Rep (T2);
13027 end if;
13029 -- Here the two types both have non-standard representation, and we need
13030 -- to determine if they have the same non-standard representation.
13032 -- For arrays, we simply need to test if the component sizes are the
13033 -- same. Pragma Pack is reflected in modified component sizes, so this
13034 -- check also deals with pragma Pack.
13036 if Is_Array_Type (T1) then
13037 return Component_Size (T1) = Component_Size (T2);
13039 -- Case of record types
13041 elsif Is_Record_Type (T1) then
13043 -- Packed status must conform
13045 if Is_Packed (T1) /= Is_Packed (T2) then
13046 return False;
13048 -- Otherwise we must check components. Typ2 maybe a constrained
13049 -- subtype with fewer components, so we compare the components
13050 -- of the base types.
13052 else
13053 Record_Case : declare
13054 CD1, CD2 : Entity_Id;
13056 function Same_Rep return Boolean;
13057 -- CD1 and CD2 are either components or discriminants. This
13058 -- function tests whether they have the same representation.
13060 --------------
13061 -- Same_Rep --
13062 --------------
13064 function Same_Rep return Boolean is
13065 begin
13066 if No (Component_Clause (CD1)) then
13067 return No (Component_Clause (CD2));
13068 else
13069 -- Note: at this point, component clauses have been
13070 -- normalized to the default bit order, so that the
13071 -- comparison of Component_Bit_Offsets is meaningful.
13073 return
13074 Present (Component_Clause (CD2))
13075 and then
13076 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
13077 and then
13078 Esize (CD1) = Esize (CD2);
13079 end if;
13080 end Same_Rep;
13082 -- Start of processing for Record_Case
13084 begin
13085 if Has_Discriminants (T1) then
13087 -- The number of discriminants may be different if the
13088 -- derived type has fewer (constrained by values). The
13089 -- invisible discriminants retain the representation of
13090 -- the original, so the discrepancy does not per se
13091 -- indicate a different representation.
13093 CD1 := First_Discriminant (T1);
13094 CD2 := First_Discriminant (T2);
13095 while Present (CD1) and then Present (CD2) loop
13096 if not Same_Rep then
13097 return False;
13098 else
13099 Next_Discriminant (CD1);
13100 Next_Discriminant (CD2);
13101 end if;
13102 end loop;
13103 end if;
13105 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
13106 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
13107 while Present (CD1) loop
13108 if not Same_Rep then
13109 return False;
13110 else
13111 Next_Component (CD1);
13112 Next_Component (CD2);
13113 end if;
13114 end loop;
13116 return True;
13117 end Record_Case;
13118 end if;
13120 -- For enumeration types, we must check each literal to see if the
13121 -- representation is the same. Note that we do not permit enumeration
13122 -- representation clauses for Character and Wide_Character, so these
13123 -- cases were already dealt with.
13125 elsif Is_Enumeration_Type (T1) then
13126 Enumeration_Case : declare
13127 L1, L2 : Entity_Id;
13129 begin
13130 L1 := First_Literal (T1);
13131 L2 := First_Literal (T2);
13132 while Present (L1) loop
13133 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
13134 return False;
13135 else
13136 Next_Literal (L1);
13137 Next_Literal (L2);
13138 end if;
13139 end loop;
13141 return True;
13142 end Enumeration_Case;
13144 -- Any other types have the same representation for these purposes
13146 else
13147 return True;
13148 end if;
13149 end Same_Representation;
13151 --------------------------------
13152 -- Resolve_Iterable_Operation --
13153 --------------------------------
13155 procedure Resolve_Iterable_Operation
13156 (N : Node_Id;
13157 Cursor : Entity_Id;
13158 Typ : Entity_Id;
13159 Nam : Name_Id)
13161 Ent : Entity_Id;
13162 F1 : Entity_Id;
13163 F2 : Entity_Id;
13165 begin
13166 if not Is_Overloaded (N) then
13167 if not Is_Entity_Name (N)
13168 or else Ekind (Entity (N)) /= E_Function
13169 or else Scope (Entity (N)) /= Scope (Typ)
13170 or else No (First_Formal (Entity (N)))
13171 or else Etype (First_Formal (Entity (N))) /= Typ
13172 then
13173 Error_Msg_N ("iterable primitive must be local function name "
13174 & "whose first formal is an iterable type", N);
13175 return;
13176 end if;
13178 Ent := Entity (N);
13179 F1 := First_Formal (Ent);
13180 if Nam = Name_First then
13182 -- First (Container) => Cursor
13184 if Etype (Ent) /= Cursor then
13185 Error_Msg_N ("primitive for First must yield a curosr", N);
13186 end if;
13188 elsif Nam = Name_Next then
13190 -- Next (Container, Cursor) => Cursor
13192 F2 := Next_Formal (F1);
13194 if Etype (F2) /= Cursor
13195 or else Etype (Ent) /= Cursor
13196 or else Present (Next_Formal (F2))
13197 then
13198 Error_Msg_N ("no match for Next iterable primitive", N);
13199 end if;
13201 elsif Nam = Name_Has_Element then
13203 -- Has_Element (Container, Cursor) => Boolean
13205 F2 := Next_Formal (F1);
13206 if Etype (F2) /= Cursor
13207 or else Etype (Ent) /= Standard_Boolean
13208 or else Present (Next_Formal (F2))
13209 then
13210 Error_Msg_N ("no match for Has_Element iterable primitive", N);
13211 end if;
13213 elsif Nam = Name_Element then
13214 F2 := Next_Formal (F1);
13216 if No (F2)
13217 or else Etype (F2) /= Cursor
13218 or else Present (Next_Formal (F2))
13219 then
13220 Error_Msg_N ("no match for Element iterable primitive", N);
13221 end if;
13222 null;
13224 else
13225 raise Program_Error;
13226 end if;
13228 else
13229 -- Overloaded case: find subprogram with proper signature.
13230 -- Caller will report error if no match is found.
13232 declare
13233 I : Interp_Index;
13234 It : Interp;
13236 begin
13237 Get_First_Interp (N, I, It);
13238 while Present (It.Typ) loop
13239 if Ekind (It.Nam) = E_Function
13240 and then Scope (It.Nam) = Scope (Typ)
13241 and then Etype (First_Formal (It.Nam)) = Typ
13242 then
13243 F1 := First_Formal (It.Nam);
13245 if Nam = Name_First then
13246 if Etype (It.Nam) = Cursor
13247 and then No (Next_Formal (F1))
13248 then
13249 Set_Entity (N, It.Nam);
13250 exit;
13251 end if;
13253 elsif Nam = Name_Next then
13254 F2 := Next_Formal (F1);
13256 if Present (F2)
13257 and then No (Next_Formal (F2))
13258 and then Etype (F2) = Cursor
13259 and then Etype (It.Nam) = Cursor
13260 then
13261 Set_Entity (N, It.Nam);
13262 exit;
13263 end if;
13265 elsif Nam = Name_Has_Element then
13266 F2 := Next_Formal (F1);
13268 if Present (F2)
13269 and then No (Next_Formal (F2))
13270 and then Etype (F2) = Cursor
13271 and then Etype (It.Nam) = Standard_Boolean
13272 then
13273 Set_Entity (N, It.Nam);
13274 F2 := Next_Formal (F1);
13275 exit;
13276 end if;
13278 elsif Nam = Name_Element then
13279 F2 := Next_Formal (F1);
13281 if Present (F2)
13282 and then No (Next_Formal (F2))
13283 and then Etype (F2) = Cursor
13284 then
13285 Set_Entity (N, It.Nam);
13286 exit;
13287 end if;
13288 end if;
13289 end if;
13291 Get_Next_Interp (I, It);
13292 end loop;
13293 end;
13294 end if;
13295 end Resolve_Iterable_Operation;
13297 ----------------
13298 -- Set_Biased --
13299 ----------------
13301 procedure Set_Biased
13302 (E : Entity_Id;
13303 N : Node_Id;
13304 Msg : String;
13305 Biased : Boolean := True)
13307 begin
13308 if Biased then
13309 Set_Has_Biased_Representation (E);
13311 if Warn_On_Biased_Representation then
13312 Error_Msg_NE
13313 ("?B?" & Msg & " forces biased representation for&", N, E);
13314 end if;
13315 end if;
13316 end Set_Biased;
13318 --------------------
13319 -- Set_Enum_Esize --
13320 --------------------
13322 procedure Set_Enum_Esize (T : Entity_Id) is
13323 Lo : Uint;
13324 Hi : Uint;
13325 Sz : Nat;
13327 begin
13328 Init_Alignment (T);
13330 -- Find the minimum standard size (8,16,32,64) that fits
13332 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
13333 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
13335 if Lo < 0 then
13336 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
13337 Sz := Standard_Character_Size; -- May be > 8 on some targets
13339 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
13340 Sz := 16;
13342 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
13343 Sz := 32;
13345 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
13346 Sz := 64;
13347 end if;
13349 else
13350 if Hi < Uint_2**08 then
13351 Sz := Standard_Character_Size; -- May be > 8 on some targets
13353 elsif Hi < Uint_2**16 then
13354 Sz := 16;
13356 elsif Hi < Uint_2**32 then
13357 Sz := 32;
13359 else pragma Assert (Hi < Uint_2**63);
13360 Sz := 64;
13361 end if;
13362 end if;
13364 -- That minimum is the proper size unless we have a foreign convention
13365 -- and the size required is 32 or less, in which case we bump the size
13366 -- up to 32. This is required for C and C++ and seems reasonable for
13367 -- all other foreign conventions.
13369 if Has_Foreign_Convention (T)
13370 and then Esize (T) < Standard_Integer_Size
13372 -- Don't do this if Short_Enums on target
13374 and then not Target_Short_Enums
13375 then
13376 Init_Esize (T, Standard_Integer_Size);
13377 else
13378 Init_Esize (T, Sz);
13379 end if;
13380 end Set_Enum_Esize;
13382 -----------------------------
13383 -- Uninstall_Discriminants --
13384 -----------------------------
13386 procedure Uninstall_Discriminants (E : Entity_Id) is
13387 Disc : Entity_Id;
13388 Prev : Entity_Id;
13389 Outer : Entity_Id;
13391 begin
13392 -- Discriminants have been made visible for type declarations and
13393 -- protected type declarations, not for subtype declarations.
13395 if Nkind (Parent (E)) /= N_Subtype_Declaration then
13396 Disc := First_Discriminant (E);
13397 while Present (Disc) loop
13398 if Disc /= Current_Entity (Disc) then
13399 Prev := Current_Entity (Disc);
13400 while Present (Prev)
13401 and then Present (Homonym (Prev))
13402 and then Homonym (Prev) /= Disc
13403 loop
13404 Prev := Homonym (Prev);
13405 end loop;
13406 else
13407 Prev := Empty;
13408 end if;
13410 Set_Is_Immediately_Visible (Disc, False);
13412 Outer := Homonym (Disc);
13413 while Present (Outer) and then Scope (Outer) = E loop
13414 Outer := Homonym (Outer);
13415 end loop;
13417 -- Reset homonym link of other entities, but do not modify link
13418 -- between entities in current scope, so that the back end can
13419 -- have a proper count of local overloadings.
13421 if No (Prev) then
13422 Set_Name_Entity_Id (Chars (Disc), Outer);
13424 elsif Scope (Prev) /= Scope (Disc) then
13425 Set_Homonym (Prev, Outer);
13426 end if;
13428 Next_Discriminant (Disc);
13429 end loop;
13430 end if;
13431 end Uninstall_Discriminants;
13433 -------------------------------------------
13434 -- Uninstall_Discriminants_And_Pop_Scope --
13435 -------------------------------------------
13437 procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
13438 begin
13439 if Has_Discriminants (E) then
13440 Uninstall_Discriminants (E);
13441 Pop_Scope;
13442 end if;
13443 end Uninstall_Discriminants_And_Pop_Scope;
13445 ------------------------------
13446 -- Validate_Address_Clauses --
13447 ------------------------------
13449 procedure Validate_Address_Clauses is
13450 function Offset_Value (Expr : Node_Id) return Uint;
13451 -- Given an Address attribute reference, return the value in bits of its
13452 -- offset from the first bit of the underlying entity, or 0 if it is not
13453 -- known at compile time.
13455 ------------------
13456 -- Offset_Value --
13457 ------------------
13459 function Offset_Value (Expr : Node_Id) return Uint is
13460 N : Node_Id := Prefix (Expr);
13461 Off : Uint;
13462 Val : Uint := Uint_0;
13464 begin
13465 -- Climb the prefix chain and compute the cumulative offset
13467 loop
13468 if Is_Entity_Name (N) then
13469 return Val;
13471 elsif Nkind (N) = N_Selected_Component then
13472 Off := Component_Bit_Offset (Entity (Selector_Name (N)));
13473 if Off /= No_Uint and then Off >= Uint_0 then
13474 Val := Val + Off;
13475 N := Prefix (N);
13476 else
13477 return Uint_0;
13478 end if;
13480 elsif Nkind (N) = N_Indexed_Component then
13481 Off := Indexed_Component_Bit_Offset (N);
13482 if Off /= No_Uint then
13483 Val := Val + Off;
13484 N := Prefix (N);
13485 else
13486 return Uint_0;
13487 end if;
13489 else
13490 return Uint_0;
13491 end if;
13492 end loop;
13493 end Offset_Value;
13495 -- Start of processing for Validate_Address_Clauses
13497 begin
13498 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
13499 declare
13500 ACCR : Address_Clause_Check_Record
13501 renames Address_Clause_Checks.Table (J);
13503 Expr : Node_Id;
13505 X_Alignment : Uint;
13506 Y_Alignment : Uint := Uint_0;
13508 X_Size : Uint;
13509 Y_Size : Uint := Uint_0;
13511 X_Offs : Uint;
13513 begin
13514 -- Skip processing of this entry if warning already posted
13516 if not Address_Warning_Posted (ACCR.N) then
13517 Expr := Original_Node (Expression (ACCR.N));
13519 -- Get alignments, sizes and offset, if any
13521 X_Alignment := Alignment (ACCR.X);
13522 X_Size := Esize (ACCR.X);
13524 if Present (ACCR.Y) then
13525 Y_Alignment := Alignment (ACCR.Y);
13526 Y_Size := Esize (ACCR.Y);
13527 end if;
13529 if ACCR.Off
13530 and then Nkind (Expr) = N_Attribute_Reference
13531 and then Attribute_Name (Expr) = Name_Address
13532 then
13533 X_Offs := Offset_Value (Expr);
13534 else
13535 X_Offs := Uint_0;
13536 end if;
13538 -- Check for known value not multiple of alignment
13540 if No (ACCR.Y) then
13541 if not Alignment_Checks_Suppressed (ACCR)
13542 and then X_Alignment /= 0
13543 and then ACCR.A mod X_Alignment /= 0
13544 then
13545 Error_Msg_NE
13546 ("??specified address for& is inconsistent with "
13547 & "alignment", ACCR.N, ACCR.X);
13548 Error_Msg_N
13549 ("\??program execution may be erroneous (RM 13.3(27))",
13550 ACCR.N);
13552 Error_Msg_Uint_1 := X_Alignment;
13553 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13554 end if;
13556 -- Check for large object overlaying smaller one
13558 elsif Y_Size > Uint_0
13559 and then X_Size > Uint_0
13560 and then X_Offs + X_Size > Y_Size
13561 then
13562 Error_Msg_NE ("??& overlays smaller object", ACCR.N, ACCR.X);
13563 Error_Msg_N
13564 ("\??program execution may be erroneous", ACCR.N);
13566 Error_Msg_Uint_1 := X_Size;
13567 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.X);
13569 Error_Msg_Uint_1 := Y_Size;
13570 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.Y);
13572 if Y_Size >= X_Size then
13573 Error_Msg_Uint_1 := X_Offs;
13574 Error_Msg_NE ("\??but offset of & is ^", ACCR.N, ACCR.X);
13575 end if;
13577 -- Check for inadequate alignment, both of the base object
13578 -- and of the offset, if any. We only do this check if the
13579 -- run-time Alignment_Check is active. No point in warning
13580 -- if this check has been suppressed (or is suppressed by
13581 -- default in the non-strict alignment machine case).
13583 -- Note: we do not check the alignment if we gave a size
13584 -- warning, since it would likely be redundant.
13586 elsif not Alignment_Checks_Suppressed (ACCR)
13587 and then Y_Alignment /= Uint_0
13588 and then
13589 (Y_Alignment < X_Alignment
13590 or else
13591 (ACCR.Off
13592 and then Nkind (Expr) = N_Attribute_Reference
13593 and then Attribute_Name (Expr) = Name_Address
13594 and then Has_Compatible_Alignment
13595 (ACCR.X, Prefix (Expr), True) /=
13596 Known_Compatible))
13597 then
13598 Error_Msg_NE
13599 ("??specified address for& may be inconsistent with "
13600 & "alignment", ACCR.N, ACCR.X);
13601 Error_Msg_N
13602 ("\??program execution may be erroneous (RM 13.3(27))",
13603 ACCR.N);
13605 Error_Msg_Uint_1 := X_Alignment;
13606 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13608 Error_Msg_Uint_1 := Y_Alignment;
13609 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.Y);
13611 if Y_Alignment >= X_Alignment then
13612 Error_Msg_N
13613 ("\??but offset is not multiple of alignment", ACCR.N);
13614 end if;
13615 end if;
13616 end if;
13617 end;
13618 end loop;
13619 end Validate_Address_Clauses;
13621 -----------------------------------------
13622 -- Validate_Compile_Time_Warning_Error --
13623 -----------------------------------------
13625 procedure Validate_Compile_Time_Warning_Error (N : Node_Id) is
13626 begin
13627 Compile_Time_Warnings_Errors.Append
13628 (New_Val => CTWE_Entry'(Eloc => Sloc (N),
13629 Scope => Current_Scope,
13630 Prag => N));
13631 end Validate_Compile_Time_Warning_Error;
13633 ------------------------------------------
13634 -- Validate_Compile_Time_Warning_Errors --
13635 ------------------------------------------
13637 procedure Validate_Compile_Time_Warning_Errors is
13638 procedure Set_Scope (S : Entity_Id);
13639 -- Install all enclosing scopes of S along with S itself
13641 procedure Unset_Scope (S : Entity_Id);
13642 -- Uninstall all enclosing scopes of S along with S itself
13644 ---------------
13645 -- Set_Scope --
13646 ---------------
13648 procedure Set_Scope (S : Entity_Id) is
13649 begin
13650 if S /= Standard_Standard then
13651 Set_Scope (Scope (S));
13652 end if;
13654 Push_Scope (S);
13655 end Set_Scope;
13657 -----------------
13658 -- Unset_Scope --
13659 -----------------
13661 procedure Unset_Scope (S : Entity_Id) is
13662 begin
13663 if S /= Standard_Standard then
13664 Unset_Scope (Scope (S));
13665 end if;
13667 Pop_Scope;
13668 end Unset_Scope;
13670 -- Start of processing for Validate_Compile_Time_Warning_Errors
13672 begin
13673 Expander_Mode_Save_And_Set (False);
13674 In_Compile_Time_Warning_Or_Error := True;
13676 for N in Compile_Time_Warnings_Errors.First ..
13677 Compile_Time_Warnings_Errors.Last
13678 loop
13679 declare
13680 T : CTWE_Entry renames Compile_Time_Warnings_Errors.Table (N);
13682 begin
13683 Set_Scope (T.Scope);
13684 Reset_Analyzed_Flags (T.Prag);
13685 Process_Compile_Time_Warning_Or_Error (T.Prag, T.Eloc);
13686 Unset_Scope (T.Scope);
13687 end;
13688 end loop;
13690 In_Compile_Time_Warning_Or_Error := False;
13691 Expander_Mode_Restore;
13692 end Validate_Compile_Time_Warning_Errors;
13694 ---------------------------
13695 -- Validate_Independence --
13696 ---------------------------
13698 procedure Validate_Independence is
13699 SU : constant Uint := UI_From_Int (System_Storage_Unit);
13700 N : Node_Id;
13701 E : Entity_Id;
13702 IC : Boolean;
13703 Comp : Entity_Id;
13704 Addr : Node_Id;
13705 P : Node_Id;
13707 procedure Check_Array_Type (Atyp : Entity_Id);
13708 -- Checks if the array type Atyp has independent components, and
13709 -- if not, outputs an appropriate set of error messages.
13711 procedure No_Independence;
13712 -- Output message that independence cannot be guaranteed
13714 function OK_Component (C : Entity_Id) return Boolean;
13715 -- Checks one component to see if it is independently accessible, and
13716 -- if so yields True, otherwise yields False if independent access
13717 -- cannot be guaranteed. This is a conservative routine, it only
13718 -- returns True if it knows for sure, it returns False if it knows
13719 -- there is a problem, or it cannot be sure there is no problem.
13721 procedure Reason_Bad_Component (C : Entity_Id);
13722 -- Outputs continuation message if a reason can be determined for
13723 -- the component C being bad.
13725 ----------------------
13726 -- Check_Array_Type --
13727 ----------------------
13729 procedure Check_Array_Type (Atyp : Entity_Id) is
13730 Ctyp : constant Entity_Id := Component_Type (Atyp);
13732 begin
13733 -- OK if no alignment clause, no pack, and no component size
13735 if not Has_Component_Size_Clause (Atyp)
13736 and then not Has_Alignment_Clause (Atyp)
13737 and then not Is_Packed (Atyp)
13738 then
13739 return;
13740 end if;
13742 -- Case of component size is greater than or equal to 64 and the
13743 -- alignment of the array is at least as large as the alignment
13744 -- of the component. We are definitely OK in this situation.
13746 if Known_Component_Size (Atyp)
13747 and then Component_Size (Atyp) >= 64
13748 and then Known_Alignment (Atyp)
13749 and then Known_Alignment (Ctyp)
13750 and then Alignment (Atyp) >= Alignment (Ctyp)
13751 then
13752 return;
13753 end if;
13755 -- Check actual component size
13757 if not Known_Component_Size (Atyp)
13758 or else not (Addressable (Component_Size (Atyp))
13759 and then Component_Size (Atyp) < 64)
13760 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
13761 then
13762 No_Independence;
13764 -- Bad component size, check reason
13766 if Has_Component_Size_Clause (Atyp) then
13767 P := Get_Attribute_Definition_Clause
13768 (Atyp, Attribute_Component_Size);
13770 if Present (P) then
13771 Error_Msg_Sloc := Sloc (P);
13772 Error_Msg_N ("\because of Component_Size clause#", N);
13773 return;
13774 end if;
13775 end if;
13777 if Is_Packed (Atyp) then
13778 P := Get_Rep_Pragma (Atyp, Name_Pack);
13780 if Present (P) then
13781 Error_Msg_Sloc := Sloc (P);
13782 Error_Msg_N ("\because of pragma Pack#", N);
13783 return;
13784 end if;
13785 end if;
13787 -- No reason found, just return
13789 return;
13790 end if;
13792 -- Array type is OK independence-wise
13794 return;
13795 end Check_Array_Type;
13797 ---------------------
13798 -- No_Independence --
13799 ---------------------
13801 procedure No_Independence is
13802 begin
13803 if Pragma_Name (N) = Name_Independent then
13804 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
13805 else
13806 Error_Msg_NE
13807 ("independent components cannot be guaranteed for&", N, E);
13808 end if;
13809 end No_Independence;
13811 ------------------
13812 -- OK_Component --
13813 ------------------
13815 function OK_Component (C : Entity_Id) return Boolean is
13816 Rec : constant Entity_Id := Scope (C);
13817 Ctyp : constant Entity_Id := Etype (C);
13819 begin
13820 -- OK if no component clause, no Pack, and no alignment clause
13822 if No (Component_Clause (C))
13823 and then not Is_Packed (Rec)
13824 and then not Has_Alignment_Clause (Rec)
13825 then
13826 return True;
13827 end if;
13829 -- Here we look at the actual component layout. A component is
13830 -- addressable if its size is a multiple of the Esize of the
13831 -- component type, and its starting position in the record has
13832 -- appropriate alignment, and the record itself has appropriate
13833 -- alignment to guarantee the component alignment.
13835 -- Make sure sizes are static, always assume the worst for any
13836 -- cases where we cannot check static values.
13838 if not (Known_Static_Esize (C)
13839 and then
13840 Known_Static_Esize (Ctyp))
13841 then
13842 return False;
13843 end if;
13845 -- Size of component must be addressable or greater than 64 bits
13846 -- and a multiple of bytes.
13848 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
13849 return False;
13850 end if;
13852 -- Check size is proper multiple
13854 if Esize (C) mod Esize (Ctyp) /= 0 then
13855 return False;
13856 end if;
13858 -- Check alignment of component is OK
13860 if not Known_Component_Bit_Offset (C)
13861 or else Component_Bit_Offset (C) < Uint_0
13862 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
13863 then
13864 return False;
13865 end if;
13867 -- Check alignment of record type is OK
13869 if not Known_Alignment (Rec)
13870 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13871 then
13872 return False;
13873 end if;
13875 -- All tests passed, component is addressable
13877 return True;
13878 end OK_Component;
13880 --------------------------
13881 -- Reason_Bad_Component --
13882 --------------------------
13884 procedure Reason_Bad_Component (C : Entity_Id) is
13885 Rec : constant Entity_Id := Scope (C);
13886 Ctyp : constant Entity_Id := Etype (C);
13888 begin
13889 -- If component clause present assume that's the problem
13891 if Present (Component_Clause (C)) then
13892 Error_Msg_Sloc := Sloc (Component_Clause (C));
13893 Error_Msg_N ("\because of Component_Clause#", N);
13894 return;
13895 end if;
13897 -- If pragma Pack clause present, assume that's the problem
13899 if Is_Packed (Rec) then
13900 P := Get_Rep_Pragma (Rec, Name_Pack);
13902 if Present (P) then
13903 Error_Msg_Sloc := Sloc (P);
13904 Error_Msg_N ("\because of pragma Pack#", N);
13905 return;
13906 end if;
13907 end if;
13909 -- See if record has bad alignment clause
13911 if Has_Alignment_Clause (Rec)
13912 and then Known_Alignment (Rec)
13913 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13914 then
13915 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
13917 if Present (P) then
13918 Error_Msg_Sloc := Sloc (P);
13919 Error_Msg_N ("\because of Alignment clause#", N);
13920 end if;
13921 end if;
13923 -- Couldn't find a reason, so return without a message
13925 return;
13926 end Reason_Bad_Component;
13928 -- Start of processing for Validate_Independence
13930 begin
13931 for J in Independence_Checks.First .. Independence_Checks.Last loop
13932 N := Independence_Checks.Table (J).N;
13933 E := Independence_Checks.Table (J).E;
13934 IC := Pragma_Name (N) = Name_Independent_Components;
13936 -- Deal with component case
13938 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
13939 if not OK_Component (E) then
13940 No_Independence;
13941 Reason_Bad_Component (E);
13942 goto Continue;
13943 end if;
13944 end if;
13946 -- Deal with record with Independent_Components
13948 if IC and then Is_Record_Type (E) then
13949 Comp := First_Component_Or_Discriminant (E);
13950 while Present (Comp) loop
13951 if not OK_Component (Comp) then
13952 No_Independence;
13953 Reason_Bad_Component (Comp);
13954 goto Continue;
13955 end if;
13957 Next_Component_Or_Discriminant (Comp);
13958 end loop;
13959 end if;
13961 -- Deal with address clause case
13963 if Is_Object (E) then
13964 Addr := Address_Clause (E);
13966 if Present (Addr) then
13967 No_Independence;
13968 Error_Msg_Sloc := Sloc (Addr);
13969 Error_Msg_N ("\because of Address clause#", N);
13970 goto Continue;
13971 end if;
13972 end if;
13974 -- Deal with independent components for array type
13976 if IC and then Is_Array_Type (E) then
13977 Check_Array_Type (E);
13978 end if;
13980 -- Deal with independent components for array object
13982 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
13983 Check_Array_Type (Etype (E));
13984 end if;
13986 <<Continue>> null;
13987 end loop;
13988 end Validate_Independence;
13990 ------------------------------
13991 -- Validate_Iterable_Aspect --
13992 ------------------------------
13994 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
13995 Assoc : Node_Id;
13996 Expr : Node_Id;
13998 Prim : Node_Id;
13999 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
14001 First_Id : Entity_Id;
14002 Next_Id : Entity_Id;
14003 Has_Element_Id : Entity_Id;
14004 Element_Id : Entity_Id;
14006 begin
14007 -- If previous error aspect is unusable
14009 if Cursor = Any_Type then
14010 return;
14011 end if;
14013 First_Id := Empty;
14014 Next_Id := Empty;
14015 Has_Element_Id := Empty;
14016 Element_Id := Empty;
14018 -- Each expression must resolve to a function with the proper signature
14020 Assoc := First (Component_Associations (Expression (ASN)));
14021 while Present (Assoc) loop
14022 Expr := Expression (Assoc);
14023 Analyze (Expr);
14025 Prim := First (Choices (Assoc));
14027 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
14028 Error_Msg_N ("illegal name in association", Prim);
14030 elsif Chars (Prim) = Name_First then
14031 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
14032 First_Id := Entity (Expr);
14034 elsif Chars (Prim) = Name_Next then
14035 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
14036 Next_Id := Entity (Expr);
14038 elsif Chars (Prim) = Name_Has_Element then
14039 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
14040 Has_Element_Id := Entity (Expr);
14042 elsif Chars (Prim) = Name_Element then
14043 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
14044 Element_Id := Entity (Expr);
14046 else
14047 Error_Msg_N ("invalid name for iterable function", Prim);
14048 end if;
14050 Next (Assoc);
14051 end loop;
14053 if No (First_Id) then
14054 Error_Msg_N ("match for First primitive not found", ASN);
14056 elsif No (Next_Id) then
14057 Error_Msg_N ("match for Next primitive not found", ASN);
14059 elsif No (Has_Element_Id) then
14060 Error_Msg_N ("match for Has_Element primitive not found", ASN);
14062 elsif No (Element_Id) then
14063 null; -- Optional.
14064 end if;
14065 end Validate_Iterable_Aspect;
14067 -----------------------------------
14068 -- Validate_Unchecked_Conversion --
14069 -----------------------------------
14071 procedure Validate_Unchecked_Conversion
14072 (N : Node_Id;
14073 Act_Unit : Entity_Id)
14075 Source : Entity_Id;
14076 Target : Entity_Id;
14077 Vnode : Node_Id;
14079 begin
14080 -- Obtain source and target types. Note that we call Ancestor_Subtype
14081 -- here because the processing for generic instantiation always makes
14082 -- subtypes, and we want the original frozen actual types.
14084 -- If we are dealing with private types, then do the check on their
14085 -- fully declared counterparts if the full declarations have been
14086 -- encountered (they don't have to be visible, but they must exist).
14088 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
14090 if Is_Private_Type (Source)
14091 and then Present (Underlying_Type (Source))
14092 then
14093 Source := Underlying_Type (Source);
14094 end if;
14096 Target := Ancestor_Subtype (Etype (Act_Unit));
14098 -- If either type is generic, the instantiation happens within a generic
14099 -- unit, and there is nothing to check. The proper check will happen
14100 -- when the enclosing generic is instantiated.
14102 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
14103 return;
14104 end if;
14106 if Is_Private_Type (Target)
14107 and then Present (Underlying_Type (Target))
14108 then
14109 Target := Underlying_Type (Target);
14110 end if;
14112 -- Source may be unconstrained array, but not target, except in relaxed
14113 -- semantics mode.
14115 if Is_Array_Type (Target)
14116 and then not Is_Constrained (Target)
14117 and then not Relaxed_RM_Semantics
14118 then
14119 Error_Msg_N
14120 ("unchecked conversion to unconstrained array not allowed", N);
14121 return;
14122 end if;
14124 -- Warn if conversion between two different convention pointers
14126 if Is_Access_Type (Target)
14127 and then Is_Access_Type (Source)
14128 and then Convention (Target) /= Convention (Source)
14129 and then Warn_On_Unchecked_Conversion
14130 then
14131 -- Give warnings for subprogram pointers only on most targets
14133 if Is_Access_Subprogram_Type (Target)
14134 or else Is_Access_Subprogram_Type (Source)
14135 then
14136 Error_Msg_N
14137 ("?z?conversion between pointers with different conventions!",
14139 end if;
14140 end if;
14142 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
14143 -- warning when compiling GNAT-related sources.
14145 if Warn_On_Unchecked_Conversion
14146 and then not In_Predefined_Unit (N)
14147 and then RTU_Loaded (Ada_Calendar)
14148 and then (Chars (Source) = Name_Time
14149 or else
14150 Chars (Target) = Name_Time)
14151 then
14152 -- If Ada.Calendar is loaded and the name of one of the operands is
14153 -- Time, there is a good chance that this is Ada.Calendar.Time.
14155 declare
14156 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
14157 begin
14158 pragma Assert (Present (Calendar_Time));
14160 if Source = Calendar_Time or else Target = Calendar_Time then
14161 Error_Msg_N
14162 ("?z?representation of 'Time values may change between "
14163 & "'G'N'A'T versions", N);
14164 end if;
14165 end;
14166 end if;
14168 -- Make entry in unchecked conversion table for later processing by
14169 -- Validate_Unchecked_Conversions, which will check sizes and alignments
14170 -- (using values set by the back end where possible). This is only done
14171 -- if the appropriate warning is active.
14173 if Warn_On_Unchecked_Conversion then
14174 Unchecked_Conversions.Append
14175 (New_Val => UC_Entry'(Eloc => Sloc (N),
14176 Source => Source,
14177 Target => Target,
14178 Act_Unit => Act_Unit));
14180 -- If both sizes are known statically now, then back-end annotation
14181 -- is not required to do a proper check but if either size is not
14182 -- known statically, then we need the annotation.
14184 if Known_Static_RM_Size (Source)
14185 and then
14186 Known_Static_RM_Size (Target)
14187 then
14188 null;
14189 else
14190 Back_Annotate_Rep_Info := True;
14191 end if;
14192 end if;
14194 -- If unchecked conversion to access type, and access type is declared
14195 -- in the same unit as the unchecked conversion, then set the flag
14196 -- No_Strict_Aliasing (no strict aliasing is implicit here)
14198 if Is_Access_Type (Target) and then
14199 In_Same_Source_Unit (Target, N)
14200 then
14201 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
14202 end if;
14204 -- Generate N_Validate_Unchecked_Conversion node for back end in case
14205 -- the back end needs to perform special validation checks.
14207 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
14208 -- have full expansion and the back end is called ???
14210 Vnode :=
14211 Make_Validate_Unchecked_Conversion (Sloc (N));
14212 Set_Source_Type (Vnode, Source);
14213 Set_Target_Type (Vnode, Target);
14215 -- If the unchecked conversion node is in a list, just insert before it.
14216 -- If not we have some strange case, not worth bothering about.
14218 if Is_List_Member (N) then
14219 Insert_After (N, Vnode);
14220 end if;
14221 end Validate_Unchecked_Conversion;
14223 ------------------------------------
14224 -- Validate_Unchecked_Conversions --
14225 ------------------------------------
14227 procedure Validate_Unchecked_Conversions is
14228 begin
14229 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
14230 declare
14231 T : UC_Entry renames Unchecked_Conversions.Table (N);
14233 Act_Unit : constant Entity_Id := T.Act_Unit;
14234 Eloc : constant Source_Ptr := T.Eloc;
14235 Source : constant Entity_Id := T.Source;
14236 Target : constant Entity_Id := T.Target;
14238 Source_Siz : Uint;
14239 Target_Siz : Uint;
14241 begin
14242 -- Skip if function marked as warnings off
14244 if Warnings_Off (Act_Unit) then
14245 goto Continue;
14246 end if;
14248 -- This validation check, which warns if we have unequal sizes for
14249 -- unchecked conversion, and thus potentially implementation
14250 -- dependent semantics, is one of the few occasions on which we
14251 -- use the official RM size instead of Esize. See description in
14252 -- Einfo "Handling of Type'Size Values" for details.
14254 if Serious_Errors_Detected = 0
14255 and then Known_Static_RM_Size (Source)
14256 and then Known_Static_RM_Size (Target)
14258 -- Don't do the check if warnings off for either type, note the
14259 -- deliberate use of OR here instead of OR ELSE to get the flag
14260 -- Warnings_Off_Used set for both types if appropriate.
14262 and then not (Has_Warnings_Off (Source)
14264 Has_Warnings_Off (Target))
14265 then
14266 Source_Siz := RM_Size (Source);
14267 Target_Siz := RM_Size (Target);
14269 if Source_Siz /= Target_Siz then
14270 Error_Msg
14271 ("?z?types for unchecked conversion have different sizes!",
14272 Eloc);
14274 if All_Errors_Mode then
14275 Error_Msg_Name_1 := Chars (Source);
14276 Error_Msg_Uint_1 := Source_Siz;
14277 Error_Msg_Name_2 := Chars (Target);
14278 Error_Msg_Uint_2 := Target_Siz;
14279 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
14281 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
14283 if Is_Discrete_Type (Source)
14284 and then
14285 Is_Discrete_Type (Target)
14286 then
14287 if Source_Siz > Target_Siz then
14288 Error_Msg
14289 ("\?z?^ high order bits of source will "
14290 & "be ignored!", Eloc);
14292 elsif Is_Unsigned_Type (Source) then
14293 Error_Msg
14294 ("\?z?source will be extended with ^ high order "
14295 & "zero bits!", Eloc);
14297 else
14298 Error_Msg
14299 ("\?z?source will be extended with ^ high order "
14300 & "sign bits!", Eloc);
14301 end if;
14303 elsif Source_Siz < Target_Siz then
14304 if Is_Discrete_Type (Target) then
14305 if Bytes_Big_Endian then
14306 Error_Msg
14307 ("\?z?target value will include ^ undefined "
14308 & "low order bits!", Eloc);
14309 else
14310 Error_Msg
14311 ("\?z?target value will include ^ undefined "
14312 & "high order bits!", Eloc);
14313 end if;
14315 else
14316 Error_Msg
14317 ("\?z?^ trailing bits of target value will be "
14318 & "undefined!", Eloc);
14319 end if;
14321 else pragma Assert (Source_Siz > Target_Siz);
14322 if Is_Discrete_Type (Source) then
14323 if Bytes_Big_Endian then
14324 Error_Msg
14325 ("\?z?^ low order bits of source will be "
14326 & "ignored!", Eloc);
14327 else
14328 Error_Msg
14329 ("\?z?^ high order bits of source will be "
14330 & "ignored!", Eloc);
14331 end if;
14333 else
14334 Error_Msg
14335 ("\?z?^ trailing bits of source will be "
14336 & "ignored!", Eloc);
14337 end if;
14338 end if;
14339 end if;
14340 end if;
14341 end if;
14343 -- If both types are access types, we need to check the alignment.
14344 -- If the alignment of both is specified, we can do it here.
14346 if Serious_Errors_Detected = 0
14347 and then Is_Access_Type (Source)
14348 and then Is_Access_Type (Target)
14349 and then Target_Strict_Alignment
14350 and then Present (Designated_Type (Source))
14351 and then Present (Designated_Type (Target))
14352 then
14353 declare
14354 D_Source : constant Entity_Id := Designated_Type (Source);
14355 D_Target : constant Entity_Id := Designated_Type (Target);
14357 begin
14358 if Known_Alignment (D_Source)
14359 and then
14360 Known_Alignment (D_Target)
14361 then
14362 declare
14363 Source_Align : constant Uint := Alignment (D_Source);
14364 Target_Align : constant Uint := Alignment (D_Target);
14366 begin
14367 if Source_Align < Target_Align
14368 and then not Is_Tagged_Type (D_Source)
14370 -- Suppress warning if warnings suppressed on either
14371 -- type or either designated type. Note the use of
14372 -- OR here instead of OR ELSE. That is intentional,
14373 -- we would like to set flag Warnings_Off_Used in
14374 -- all types for which warnings are suppressed.
14376 and then not (Has_Warnings_Off (D_Source)
14378 Has_Warnings_Off (D_Target)
14380 Has_Warnings_Off (Source)
14382 Has_Warnings_Off (Target))
14383 then
14384 Error_Msg_Uint_1 := Target_Align;
14385 Error_Msg_Uint_2 := Source_Align;
14386 Error_Msg_Node_1 := D_Target;
14387 Error_Msg_Node_2 := D_Source;
14388 Error_Msg
14389 ("?z?alignment of & (^) is stricter than "
14390 & "alignment of & (^)!", Eloc);
14391 Error_Msg
14392 ("\?z?resulting access value may have invalid "
14393 & "alignment!", Eloc);
14394 end if;
14395 end;
14396 end if;
14397 end;
14398 end if;
14399 end;
14401 <<Continue>>
14402 null;
14403 end loop;
14404 end Validate_Unchecked_Conversions;
14406 end Sem_Ch13;