Eliminate BB_NOTE_LIST scaffolding
[official-gcc.git] / gcc / sel-sched-ir.c
blobc36658f15c49a3b6836ee22dbe3cf95f3d077eb1
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "sched-int.h"
38 #include "ggc.h"
39 #include "tree.h"
40 #include "vec.h"
41 #include "langhooks.h"
42 #include "rtlhooks-def.h"
43 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
45 #ifdef INSN_SCHEDULING
46 #include "sel-sched-ir.h"
47 /* We don't have to use it except for sel_print_insn. */
48 #include "sel-sched-dump.h"
50 /* A vector holding bb info for whole scheduling pass. */
51 vec<sel_global_bb_info_def>
52 sel_global_bb_info = vNULL;
54 /* A vector holding bb info. */
55 vec<sel_region_bb_info_def>
56 sel_region_bb_info = vNULL;
58 /* A pool for allocating all lists. */
59 alloc_pool sched_lists_pool;
61 /* This contains information about successors for compute_av_set. */
62 struct succs_info current_succs;
64 /* Data structure to describe interaction with the generic scheduler utils. */
65 static struct common_sched_info_def sel_common_sched_info;
67 /* The loop nest being pipelined. */
68 struct loop *current_loop_nest;
70 /* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72 static vec<loop_p> loop_nests = vNULL;
74 /* Saves blocks already in loop regions, indexed by bb->index. */
75 static sbitmap bbs_in_loop_rgns = NULL;
77 /* CFG hooks that are saved before changing create_basic_block hook. */
78 static struct cfg_hooks orig_cfg_hooks;
81 /* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83 static int *rev_top_order_index = NULL;
85 /* Length of the above array. */
86 static int rev_top_order_index_len = -1;
88 /* A regset pool structure. */
89 static struct
91 /* The stack to which regsets are returned. */
92 regset *v;
94 /* Its pointer. */
95 int n;
97 /* Its size. */
98 int s;
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
105 /* The pointer of VV stack. */
106 int nn;
108 /* Its size. */
109 int ss;
111 /* The difference between allocated and returned regsets. */
112 int diff;
113 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
115 /* This represents the nop pool. */
116 static struct
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
121 /* Its pointer. */
122 int n;
124 /* Its size. */
125 int s;
126 } nop_pool = { NULL, 0, 0 };
128 /* The pool for basic block notes. */
129 static vec<rtx_note *> bb_note_pool;
131 /* A NOP pattern used to emit placeholder insns. */
132 rtx nop_pattern = NULL_RTX;
133 /* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135 rtx_insn *exit_insn = NULL;
137 /* TRUE if while scheduling current region, which is loop, its preheader
138 was removed. */
139 bool preheader_removed = false;
142 /* Forward static declarations. */
143 static void fence_clear (fence_t);
145 static void deps_init_id (idata_t, insn_t, bool);
146 static void init_id_from_df (idata_t, insn_t, bool);
147 static expr_t set_insn_init (expr_t, vinsn_t, int);
149 static void cfg_preds (basic_block, insn_t **, int *);
150 static void prepare_insn_expr (insn_t, int);
151 static void free_history_vect (vec<expr_history_def> &);
153 static void move_bb_info (basic_block, basic_block);
154 static void remove_empty_bb (basic_block, bool);
155 static void sel_merge_blocks (basic_block, basic_block);
156 static void sel_remove_loop_preheader (void);
157 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
159 static bool insn_is_the_only_one_in_bb_p (insn_t);
160 static void create_initial_data_sets (basic_block);
162 static void free_av_set (basic_block);
163 static void invalidate_av_set (basic_block);
164 static void extend_insn_data (void);
165 static void sel_init_new_insn (insn_t, int, int = -1);
166 static void finish_insns (void);
168 /* Various list functions. */
170 /* Copy an instruction list L. */
171 ilist_t
172 ilist_copy (ilist_t l)
174 ilist_t head = NULL, *tailp = &head;
176 while (l)
178 ilist_add (tailp, ILIST_INSN (l));
179 tailp = &ILIST_NEXT (*tailp);
180 l = ILIST_NEXT (l);
183 return head;
186 /* Invert an instruction list L. */
187 ilist_t
188 ilist_invert (ilist_t l)
190 ilist_t res = NULL;
192 while (l)
194 ilist_add (&res, ILIST_INSN (l));
195 l = ILIST_NEXT (l);
198 return res;
201 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
202 void
203 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
205 bnd_t bnd;
207 _list_add (lp);
208 bnd = BLIST_BND (*lp);
210 SET_BND_TO (bnd) = to;
211 BND_PTR (bnd) = ptr;
212 BND_AV (bnd) = NULL;
213 BND_AV1 (bnd) = NULL;
214 BND_DC (bnd) = dc;
217 /* Remove the list note pointed to by LP. */
218 void
219 blist_remove (blist_t *lp)
221 bnd_t b = BLIST_BND (*lp);
223 av_set_clear (&BND_AV (b));
224 av_set_clear (&BND_AV1 (b));
225 ilist_clear (&BND_PTR (b));
227 _list_remove (lp);
230 /* Init a fence tail L. */
231 void
232 flist_tail_init (flist_tail_t l)
234 FLIST_TAIL_HEAD (l) = NULL;
235 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
238 /* Try to find fence corresponding to INSN in L. */
239 fence_t
240 flist_lookup (flist_t l, insn_t insn)
242 while (l)
244 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
245 return FLIST_FENCE (l);
247 l = FLIST_NEXT (l);
250 return NULL;
253 /* Init the fields of F before running fill_insns. */
254 static void
255 init_fence_for_scheduling (fence_t f)
257 FENCE_BNDS (f) = NULL;
258 FENCE_PROCESSED_P (f) = false;
259 FENCE_SCHEDULED_P (f) = false;
262 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
263 static void
264 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
265 insn_t last_scheduled_insn, vec<rtx, va_gc> *executing_insns,
266 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
267 int cycle, int cycle_issued_insns, int issue_more,
268 bool starts_cycle_p, bool after_stall_p)
270 fence_t f;
272 _list_add (lp);
273 f = FLIST_FENCE (*lp);
275 FENCE_INSN (f) = insn;
277 gcc_assert (state != NULL);
278 FENCE_STATE (f) = state;
280 FENCE_CYCLE (f) = cycle;
281 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
282 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
283 FENCE_AFTER_STALL_P (f) = after_stall_p;
285 gcc_assert (dc != NULL);
286 FENCE_DC (f) = dc;
288 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
289 FENCE_TC (f) = tc;
291 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
292 FENCE_ISSUE_MORE (f) = issue_more;
293 FENCE_EXECUTING_INSNS (f) = executing_insns;
294 FENCE_READY_TICKS (f) = ready_ticks;
295 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
296 FENCE_SCHED_NEXT (f) = sched_next;
298 init_fence_for_scheduling (f);
301 /* Remove the head node of the list pointed to by LP. */
302 static void
303 flist_remove (flist_t *lp)
305 if (FENCE_INSN (FLIST_FENCE (*lp)))
306 fence_clear (FLIST_FENCE (*lp));
307 _list_remove (lp);
310 /* Clear the fence list pointed to by LP. */
311 void
312 flist_clear (flist_t *lp)
314 while (*lp)
315 flist_remove (lp);
318 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
319 void
320 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
322 def_t d;
324 _list_add (dl);
325 d = DEF_LIST_DEF (*dl);
327 d->orig_insn = original_insn;
328 d->crosses_call = crosses_call;
332 /* Functions to work with target contexts. */
334 /* Bulk target context. It is convenient for debugging purposes to ensure
335 that there are no uninitialized (null) target contexts. */
336 static tc_t bulk_tc = (tc_t) 1;
338 /* Target hooks wrappers. In the future we can provide some default
339 implementations for them. */
341 /* Allocate a store for the target context. */
342 static tc_t
343 alloc_target_context (void)
345 return (targetm.sched.alloc_sched_context
346 ? targetm.sched.alloc_sched_context () : bulk_tc);
349 /* Init target context TC.
350 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
351 Overwise, copy current backend context to TC. */
352 static void
353 init_target_context (tc_t tc, bool clean_p)
355 if (targetm.sched.init_sched_context)
356 targetm.sched.init_sched_context (tc, clean_p);
359 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
360 int init_target_context (). */
361 tc_t
362 create_target_context (bool clean_p)
364 tc_t tc = alloc_target_context ();
366 init_target_context (tc, clean_p);
367 return tc;
370 /* Copy TC to the current backend context. */
371 void
372 set_target_context (tc_t tc)
374 if (targetm.sched.set_sched_context)
375 targetm.sched.set_sched_context (tc);
378 /* TC is about to be destroyed. Free any internal data. */
379 static void
380 clear_target_context (tc_t tc)
382 if (targetm.sched.clear_sched_context)
383 targetm.sched.clear_sched_context (tc);
386 /* Clear and free it. */
387 static void
388 delete_target_context (tc_t tc)
390 clear_target_context (tc);
392 if (targetm.sched.free_sched_context)
393 targetm.sched.free_sched_context (tc);
396 /* Make a copy of FROM in TO.
397 NB: May be this should be a hook. */
398 static void
399 copy_target_context (tc_t to, tc_t from)
401 tc_t tmp = create_target_context (false);
403 set_target_context (from);
404 init_target_context (to, false);
406 set_target_context (tmp);
407 delete_target_context (tmp);
410 /* Create a copy of TC. */
411 static tc_t
412 create_copy_of_target_context (tc_t tc)
414 tc_t copy = alloc_target_context ();
416 copy_target_context (copy, tc);
418 return copy;
421 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
422 is the same as in init_target_context (). */
423 void
424 reset_target_context (tc_t tc, bool clean_p)
426 clear_target_context (tc);
427 init_target_context (tc, clean_p);
430 /* Functions to work with dependence contexts.
431 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
432 context. It accumulates information about processed insns to decide if
433 current insn is dependent on the processed ones. */
435 /* Make a copy of FROM in TO. */
436 static void
437 copy_deps_context (deps_t to, deps_t from)
439 init_deps (to, false);
440 deps_join (to, from);
443 /* Allocate store for dep context. */
444 static deps_t
445 alloc_deps_context (void)
447 return XNEW (struct deps_desc);
450 /* Allocate and initialize dep context. */
451 static deps_t
452 create_deps_context (void)
454 deps_t dc = alloc_deps_context ();
456 init_deps (dc, false);
457 return dc;
460 /* Create a copy of FROM. */
461 static deps_t
462 create_copy_of_deps_context (deps_t from)
464 deps_t to = alloc_deps_context ();
466 copy_deps_context (to, from);
467 return to;
470 /* Clean up internal data of DC. */
471 static void
472 clear_deps_context (deps_t dc)
474 free_deps (dc);
477 /* Clear and free DC. */
478 static void
479 delete_deps_context (deps_t dc)
481 clear_deps_context (dc);
482 free (dc);
485 /* Clear and init DC. */
486 static void
487 reset_deps_context (deps_t dc)
489 clear_deps_context (dc);
490 init_deps (dc, false);
493 /* This structure describes the dependence analysis hooks for advancing
494 dependence context. */
495 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
497 NULL,
499 NULL, /* start_insn */
500 NULL, /* finish_insn */
501 NULL, /* start_lhs */
502 NULL, /* finish_lhs */
503 NULL, /* start_rhs */
504 NULL, /* finish_rhs */
505 haifa_note_reg_set,
506 haifa_note_reg_clobber,
507 haifa_note_reg_use,
508 NULL, /* note_mem_dep */
509 NULL, /* note_dep */
511 0, 0, 0
514 /* Process INSN and add its impact on DC. */
515 void
516 advance_deps_context (deps_t dc, insn_t insn)
518 sched_deps_info = &advance_deps_context_sched_deps_info;
519 deps_analyze_insn (dc, as_a <rtx_insn *> (insn));
523 /* Functions to work with DFA states. */
525 /* Allocate store for a DFA state. */
526 static state_t
527 state_alloc (void)
529 return xmalloc (dfa_state_size);
532 /* Allocate and initialize DFA state. */
533 static state_t
534 state_create (void)
536 state_t state = state_alloc ();
538 state_reset (state);
539 advance_state (state);
540 return state;
543 /* Free DFA state. */
544 static void
545 state_free (state_t state)
547 free (state);
550 /* Make a copy of FROM in TO. */
551 static void
552 state_copy (state_t to, state_t from)
554 memcpy (to, from, dfa_state_size);
557 /* Create a copy of FROM. */
558 static state_t
559 state_create_copy (state_t from)
561 state_t to = state_alloc ();
563 state_copy (to, from);
564 return to;
568 /* Functions to work with fences. */
570 /* Clear the fence. */
571 static void
572 fence_clear (fence_t f)
574 state_t s = FENCE_STATE (f);
575 deps_t dc = FENCE_DC (f);
576 void *tc = FENCE_TC (f);
578 ilist_clear (&FENCE_BNDS (f));
580 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
581 || (s == NULL && dc == NULL && tc == NULL));
583 free (s);
585 if (dc != NULL)
586 delete_deps_context (dc);
588 if (tc != NULL)
589 delete_target_context (tc);
590 vec_free (FENCE_EXECUTING_INSNS (f));
591 free (FENCE_READY_TICKS (f));
592 FENCE_READY_TICKS (f) = NULL;
595 /* Init a list of fences with successors of OLD_FENCE. */
596 void
597 init_fences (insn_t old_fence)
599 insn_t succ;
600 succ_iterator si;
601 bool first = true;
602 int ready_ticks_size = get_max_uid () + 1;
604 FOR_EACH_SUCC_1 (succ, si, old_fence,
605 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
608 if (first)
609 first = false;
610 else
611 gcc_assert (flag_sel_sched_pipelining_outer_loops);
613 flist_add (&fences, succ,
614 state_create (),
615 create_deps_context () /* dc */,
616 create_target_context (true) /* tc */,
617 NULL_RTX /* last_scheduled_insn */,
618 NULL, /* executing_insns */
619 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
620 ready_ticks_size,
621 NULL_RTX /* sched_next */,
622 1 /* cycle */, 0 /* cycle_issued_insns */,
623 issue_rate, /* issue_more */
624 1 /* starts_cycle_p */, 0 /* after_stall_p */);
628 /* Merges two fences (filling fields of fence F with resulting values) by
629 following rules: 1) state, target context and last scheduled insn are
630 propagated from fallthrough edge if it is available;
631 2) deps context and cycle is propagated from more probable edge;
632 3) all other fields are set to corresponding constant values.
634 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
635 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
636 and AFTER_STALL_P are the corresponding fields of the second fence. */
637 static void
638 merge_fences (fence_t f, insn_t insn,
639 state_t state, deps_t dc, void *tc,
640 rtx last_scheduled_insn, vec<rtx, va_gc> *executing_insns,
641 int *ready_ticks, int ready_ticks_size,
642 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
644 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
646 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
647 && !sched_next && !FENCE_SCHED_NEXT (f));
649 /* Check if we can decide which path fences came.
650 If we can't (or don't want to) - reset all. */
651 if (last_scheduled_insn == NULL
652 || last_scheduled_insn_old == NULL
653 /* This is a case when INSN is reachable on several paths from
654 one insn (this can happen when pipelining of outer loops is on and
655 there are two edges: one going around of inner loop and the other -
656 right through it; in such case just reset everything). */
657 || last_scheduled_insn == last_scheduled_insn_old)
659 state_reset (FENCE_STATE (f));
660 state_free (state);
662 reset_deps_context (FENCE_DC (f));
663 delete_deps_context (dc);
665 reset_target_context (FENCE_TC (f), true);
666 delete_target_context (tc);
668 if (cycle > FENCE_CYCLE (f))
669 FENCE_CYCLE (f) = cycle;
671 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
672 FENCE_ISSUE_MORE (f) = issue_rate;
673 vec_free (executing_insns);
674 free (ready_ticks);
675 if (FENCE_EXECUTING_INSNS (f))
676 FENCE_EXECUTING_INSNS (f)->block_remove (0,
677 FENCE_EXECUTING_INSNS (f)->length ());
678 if (FENCE_READY_TICKS (f))
679 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
681 else
683 edge edge_old = NULL, edge_new = NULL;
684 edge candidate;
685 succ_iterator si;
686 insn_t succ;
688 /* Find fallthrough edge. */
689 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
690 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
692 if (!candidate
693 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
694 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
696 /* No fallthrough edge leading to basic block of INSN. */
697 state_reset (FENCE_STATE (f));
698 state_free (state);
700 reset_target_context (FENCE_TC (f), true);
701 delete_target_context (tc);
703 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
704 FENCE_ISSUE_MORE (f) = issue_rate;
706 else
707 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
709 /* Would be weird if same insn is successor of several fallthrough
710 edges. */
711 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
712 != BLOCK_FOR_INSN (last_scheduled_insn_old));
714 state_free (FENCE_STATE (f));
715 FENCE_STATE (f) = state;
717 delete_target_context (FENCE_TC (f));
718 FENCE_TC (f) = tc;
720 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
721 FENCE_ISSUE_MORE (f) = issue_more;
723 else
725 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
726 state_free (state);
727 delete_target_context (tc);
729 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
730 != BLOCK_FOR_INSN (last_scheduled_insn));
733 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
734 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
735 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
737 if (succ == insn)
739 /* No same successor allowed from several edges. */
740 gcc_assert (!edge_old);
741 edge_old = si.e1;
744 /* Find edge of second predecessor (last_scheduled_insn->insn). */
745 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
746 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
748 if (succ == insn)
750 /* No same successor allowed from several edges. */
751 gcc_assert (!edge_new);
752 edge_new = si.e1;
756 /* Check if we can choose most probable predecessor. */
757 if (edge_old == NULL || edge_new == NULL)
759 reset_deps_context (FENCE_DC (f));
760 delete_deps_context (dc);
761 vec_free (executing_insns);
762 free (ready_ticks);
764 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
765 if (FENCE_EXECUTING_INSNS (f))
766 FENCE_EXECUTING_INSNS (f)->block_remove (0,
767 FENCE_EXECUTING_INSNS (f)->length ());
768 if (FENCE_READY_TICKS (f))
769 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
771 else
772 if (edge_new->probability > edge_old->probability)
774 delete_deps_context (FENCE_DC (f));
775 FENCE_DC (f) = dc;
776 vec_free (FENCE_EXECUTING_INSNS (f));
777 FENCE_EXECUTING_INSNS (f) = executing_insns;
778 free (FENCE_READY_TICKS (f));
779 FENCE_READY_TICKS (f) = ready_ticks;
780 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
781 FENCE_CYCLE (f) = cycle;
783 else
785 /* Leave DC and CYCLE untouched. */
786 delete_deps_context (dc);
787 vec_free (executing_insns);
788 free (ready_ticks);
792 /* Fill remaining invariant fields. */
793 if (after_stall_p)
794 FENCE_AFTER_STALL_P (f) = 1;
796 FENCE_ISSUED_INSNS (f) = 0;
797 FENCE_STARTS_CYCLE_P (f) = 1;
798 FENCE_SCHED_NEXT (f) = NULL;
801 /* Add a new fence to NEW_FENCES list, initializing it from all
802 other parameters. */
803 static void
804 add_to_fences (flist_tail_t new_fences, insn_t insn,
805 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
806 vec<rtx, va_gc> *executing_insns, int *ready_ticks,
807 int ready_ticks_size, rtx sched_next, int cycle,
808 int cycle_issued_insns, int issue_rate,
809 bool starts_cycle_p, bool after_stall_p)
811 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
813 if (! f)
815 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
816 last_scheduled_insn, executing_insns, ready_ticks,
817 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
818 issue_rate, starts_cycle_p, after_stall_p);
820 FLIST_TAIL_TAILP (new_fences)
821 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
823 else
825 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
826 executing_insns, ready_ticks, ready_ticks_size,
827 sched_next, cycle, issue_rate, after_stall_p);
831 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
832 void
833 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
835 fence_t f, old;
836 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
838 old = FLIST_FENCE (old_fences);
839 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
840 FENCE_INSN (FLIST_FENCE (old_fences)));
841 if (f)
843 merge_fences (f, old->insn, old->state, old->dc, old->tc,
844 old->last_scheduled_insn, old->executing_insns,
845 old->ready_ticks, old->ready_ticks_size,
846 old->sched_next, old->cycle, old->issue_more,
847 old->after_stall_p);
849 else
851 _list_add (tailp);
852 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
853 *FLIST_FENCE (*tailp) = *old;
854 init_fence_for_scheduling (FLIST_FENCE (*tailp));
856 FENCE_INSN (old) = NULL;
859 /* Add a new fence to NEW_FENCES list and initialize most of its data
860 as a clean one. */
861 void
862 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
864 int ready_ticks_size = get_max_uid () + 1;
866 add_to_fences (new_fences,
867 succ, state_create (), create_deps_context (),
868 create_target_context (true),
869 NULL_RTX, NULL,
870 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
871 NULL_RTX, FENCE_CYCLE (fence) + 1,
872 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
875 /* Add a new fence to NEW_FENCES list and initialize all of its data
876 from FENCE and SUCC. */
877 void
878 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
880 int * new_ready_ticks
881 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
883 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
884 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
885 add_to_fences (new_fences,
886 succ, state_create_copy (FENCE_STATE (fence)),
887 create_copy_of_deps_context (FENCE_DC (fence)),
888 create_copy_of_target_context (FENCE_TC (fence)),
889 FENCE_LAST_SCHEDULED_INSN (fence),
890 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
891 new_ready_ticks,
892 FENCE_READY_TICKS_SIZE (fence),
893 FENCE_SCHED_NEXT (fence),
894 FENCE_CYCLE (fence),
895 FENCE_ISSUED_INSNS (fence),
896 FENCE_ISSUE_MORE (fence),
897 FENCE_STARTS_CYCLE_P (fence),
898 FENCE_AFTER_STALL_P (fence));
902 /* Functions to work with regset and nop pools. */
904 /* Returns the new regset from pool. It might have some of the bits set
905 from the previous usage. */
906 regset
907 get_regset_from_pool (void)
909 regset rs;
911 if (regset_pool.n != 0)
912 rs = regset_pool.v[--regset_pool.n];
913 else
914 /* We need to create the regset. */
916 rs = ALLOC_REG_SET (&reg_obstack);
918 if (regset_pool.nn == regset_pool.ss)
919 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
920 (regset_pool.ss = 2 * regset_pool.ss + 1));
921 regset_pool.vv[regset_pool.nn++] = rs;
924 regset_pool.diff++;
926 return rs;
929 /* Same as above, but returns the empty regset. */
930 regset
931 get_clear_regset_from_pool (void)
933 regset rs = get_regset_from_pool ();
935 CLEAR_REG_SET (rs);
936 return rs;
939 /* Return regset RS to the pool for future use. */
940 void
941 return_regset_to_pool (regset rs)
943 gcc_assert (rs);
944 regset_pool.diff--;
946 if (regset_pool.n == regset_pool.s)
947 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
948 (regset_pool.s = 2 * regset_pool.s + 1));
949 regset_pool.v[regset_pool.n++] = rs;
952 #ifdef ENABLE_CHECKING
953 /* This is used as a qsort callback for sorting regset pool stacks.
954 X and XX are addresses of two regsets. They are never equal. */
955 static int
956 cmp_v_in_regset_pool (const void *x, const void *xx)
958 uintptr_t r1 = (uintptr_t) *((const regset *) x);
959 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
960 if (r1 > r2)
961 return 1;
962 else if (r1 < r2)
963 return -1;
964 gcc_unreachable ();
966 #endif
968 /* Free the regset pool possibly checking for memory leaks. */
969 void
970 free_regset_pool (void)
972 #ifdef ENABLE_CHECKING
974 regset *v = regset_pool.v;
975 int i = 0;
976 int n = regset_pool.n;
978 regset *vv = regset_pool.vv;
979 int ii = 0;
980 int nn = regset_pool.nn;
982 int diff = 0;
984 gcc_assert (n <= nn);
986 /* Sort both vectors so it will be possible to compare them. */
987 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
988 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
990 while (ii < nn)
992 if (v[i] == vv[ii])
993 i++;
994 else
995 /* VV[II] was lost. */
996 diff++;
998 ii++;
1001 gcc_assert (diff == regset_pool.diff);
1003 #endif
1005 /* If not true - we have a memory leak. */
1006 gcc_assert (regset_pool.diff == 0);
1008 while (regset_pool.n)
1010 --regset_pool.n;
1011 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1014 free (regset_pool.v);
1015 regset_pool.v = NULL;
1016 regset_pool.s = 0;
1018 free (regset_pool.vv);
1019 regset_pool.vv = NULL;
1020 regset_pool.nn = 0;
1021 regset_pool.ss = 0;
1023 regset_pool.diff = 0;
1027 /* Functions to work with nop pools. NOP insns are used as temporary
1028 placeholders of the insns being scheduled to allow correct update of
1029 the data sets. When update is finished, NOPs are deleted. */
1031 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1032 nops sel-sched generates. */
1033 static vinsn_t nop_vinsn = NULL;
1035 /* Emit a nop before INSN, taking it from pool. */
1036 insn_t
1037 get_nop_from_pool (insn_t insn)
1039 insn_t nop;
1040 bool old_p = nop_pool.n != 0;
1041 int flags;
1043 if (old_p)
1044 nop = nop_pool.v[--nop_pool.n];
1045 else
1046 nop = nop_pattern;
1048 nop = emit_insn_before (nop, insn);
1050 if (old_p)
1051 flags = INSN_INIT_TODO_SSID;
1052 else
1053 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1055 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1056 sel_init_new_insn (nop, flags);
1058 return nop;
1061 /* Remove NOP from the instruction stream and return it to the pool. */
1062 void
1063 return_nop_to_pool (insn_t nop, bool full_tidying)
1065 gcc_assert (INSN_IN_STREAM_P (nop));
1066 sel_remove_insn (nop, false, full_tidying);
1068 /* We'll recycle this nop. */
1069 INSN_DELETED_P (nop) = 0;
1071 if (nop_pool.n == nop_pool.s)
1072 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1073 (nop_pool.s = 2 * nop_pool.s + 1));
1074 nop_pool.v[nop_pool.n++] = nop;
1077 /* Free the nop pool. */
1078 void
1079 free_nop_pool (void)
1081 nop_pool.n = 0;
1082 nop_pool.s = 0;
1083 free (nop_pool.v);
1084 nop_pool.v = NULL;
1088 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1089 The callback is given two rtxes XX and YY and writes the new rtxes
1090 to NX and NY in case some needs to be skipped. */
1091 static int
1092 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1094 const_rtx x = *xx;
1095 const_rtx y = *yy;
1097 if (GET_CODE (x) == UNSPEC
1098 && (targetm.sched.skip_rtx_p == NULL
1099 || targetm.sched.skip_rtx_p (x)))
1101 *nx = XVECEXP (x, 0, 0);
1102 *ny = CONST_CAST_RTX (y);
1103 return 1;
1106 if (GET_CODE (y) == UNSPEC
1107 && (targetm.sched.skip_rtx_p == NULL
1108 || targetm.sched.skip_rtx_p (y)))
1110 *nx = CONST_CAST_RTX (x);
1111 *ny = XVECEXP (y, 0, 0);
1112 return 1;
1115 return 0;
1118 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1119 to support ia64 speculation. When changes are needed, new rtx X and new mode
1120 NMODE are written, and the callback returns true. */
1121 static int
1122 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1123 rtx *nx, enum machine_mode* nmode)
1125 if (GET_CODE (x) == UNSPEC
1126 && targetm.sched.skip_rtx_p
1127 && targetm.sched.skip_rtx_p (x))
1129 *nx = XVECEXP (x, 0 ,0);
1130 *nmode = VOIDmode;
1131 return 1;
1134 return 0;
1137 /* Returns LHS and RHS are ok to be scheduled separately. */
1138 static bool
1139 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1141 if (lhs == NULL || rhs == NULL)
1142 return false;
1144 /* Do not schedule constants as rhs: no point to use reg, if const
1145 can be used. Moreover, scheduling const as rhs may lead to mode
1146 mismatch cause consts don't have modes but they could be merged
1147 from branches where the same const used in different modes. */
1148 if (CONSTANT_P (rhs))
1149 return false;
1151 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1152 if (COMPARISON_P (rhs))
1153 return false;
1155 /* Do not allow single REG to be an rhs. */
1156 if (REG_P (rhs))
1157 return false;
1159 /* See comment at find_used_regs_1 (*1) for explanation of this
1160 restriction. */
1161 /* FIXME: remove this later. */
1162 if (MEM_P (lhs))
1163 return false;
1165 /* This will filter all tricky things like ZERO_EXTRACT etc.
1166 For now we don't handle it. */
1167 if (!REG_P (lhs) && !MEM_P (lhs))
1168 return false;
1170 return true;
1173 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1174 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1175 used e.g. for insns from recovery blocks. */
1176 static void
1177 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1179 hash_rtx_callback_function hrcf;
1180 int insn_class;
1182 SET_VINSN_INSN_RTX (vi) = insn;
1183 VINSN_COUNT (vi) = 0;
1184 vi->cost = -1;
1186 if (INSN_NOP_P (insn))
1187 return;
1189 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1190 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1191 else
1192 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1194 /* Hash vinsn depending on whether it is separable or not. */
1195 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1196 if (VINSN_SEPARABLE_P (vi))
1198 rtx rhs = VINSN_RHS (vi);
1200 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1201 NULL, NULL, false, hrcf);
1202 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1203 VOIDmode, NULL, NULL,
1204 false, hrcf);
1206 else
1208 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1209 NULL, NULL, false, hrcf);
1210 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1213 insn_class = haifa_classify_insn (insn);
1214 if (insn_class >= 2
1215 && (!targetm.sched.get_insn_spec_ds
1216 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1217 == 0)))
1218 VINSN_MAY_TRAP_P (vi) = true;
1219 else
1220 VINSN_MAY_TRAP_P (vi) = false;
1223 /* Indicate that VI has become the part of an rtx object. */
1224 void
1225 vinsn_attach (vinsn_t vi)
1227 /* Assert that VI is not pending for deletion. */
1228 gcc_assert (VINSN_INSN_RTX (vi));
1230 VINSN_COUNT (vi)++;
1233 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1234 VINSN_TYPE (VI). */
1235 static vinsn_t
1236 vinsn_create (insn_t insn, bool force_unique_p)
1238 vinsn_t vi = XCNEW (struct vinsn_def);
1240 vinsn_init (vi, insn, force_unique_p);
1241 return vi;
1244 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1245 the copy. */
1246 vinsn_t
1247 vinsn_copy (vinsn_t vi, bool reattach_p)
1249 rtx_insn *copy;
1250 bool unique = VINSN_UNIQUE_P (vi);
1251 vinsn_t new_vi;
1253 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1254 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1255 if (reattach_p)
1257 vinsn_detach (vi);
1258 vinsn_attach (new_vi);
1261 return new_vi;
1264 /* Delete the VI vinsn and free its data. */
1265 static void
1266 vinsn_delete (vinsn_t vi)
1268 gcc_assert (VINSN_COUNT (vi) == 0);
1270 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1272 return_regset_to_pool (VINSN_REG_SETS (vi));
1273 return_regset_to_pool (VINSN_REG_USES (vi));
1274 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1277 free (vi);
1280 /* Indicate that VI is no longer a part of some rtx object.
1281 Remove VI if it is no longer needed. */
1282 void
1283 vinsn_detach (vinsn_t vi)
1285 gcc_assert (VINSN_COUNT (vi) > 0);
1287 if (--VINSN_COUNT (vi) == 0)
1288 vinsn_delete (vi);
1291 /* Returns TRUE if VI is a branch. */
1292 bool
1293 vinsn_cond_branch_p (vinsn_t vi)
1295 insn_t insn;
1297 if (!VINSN_UNIQUE_P (vi))
1298 return false;
1300 insn = VINSN_INSN_RTX (vi);
1301 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1302 return false;
1304 return control_flow_insn_p (insn);
1307 /* Return latency of INSN. */
1308 static int
1309 sel_insn_rtx_cost (rtx insn)
1311 int cost;
1313 /* A USE insn, or something else we don't need to
1314 understand. We can't pass these directly to
1315 result_ready_cost or insn_default_latency because it will
1316 trigger a fatal error for unrecognizable insns. */
1317 if (recog_memoized (insn) < 0)
1318 cost = 0;
1319 else
1321 cost = insn_default_latency (insn);
1323 if (cost < 0)
1324 cost = 0;
1327 return cost;
1330 /* Return the cost of the VI.
1331 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1333 sel_vinsn_cost (vinsn_t vi)
1335 int cost = vi->cost;
1337 if (cost < 0)
1339 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1340 vi->cost = cost;
1343 return cost;
1347 /* Functions for insn emitting. */
1349 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1350 EXPR and SEQNO. */
1351 insn_t
1352 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1354 insn_t new_insn;
1356 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1358 new_insn = emit_insn_after (pattern, after);
1359 set_insn_init (expr, NULL, seqno);
1360 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1362 return new_insn;
1365 /* Force newly generated vinsns to be unique. */
1366 static bool init_insn_force_unique_p = false;
1368 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1369 initialize its data from EXPR and SEQNO. */
1370 insn_t
1371 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1372 insn_t after)
1374 insn_t insn;
1376 gcc_assert (!init_insn_force_unique_p);
1378 init_insn_force_unique_p = true;
1379 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1380 CANT_MOVE (insn) = 1;
1381 init_insn_force_unique_p = false;
1383 return insn;
1386 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1387 take it as a new vinsn instead of EXPR's vinsn.
1388 We simplify insns later, after scheduling region in
1389 simplify_changed_insns. */
1390 insn_t
1391 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1392 insn_t after)
1394 expr_t emit_expr;
1395 insn_t insn;
1396 int flags;
1398 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1399 seqno);
1400 insn = EXPR_INSN_RTX (emit_expr);
1402 /* The insn may come from the transformation cache, which may hold already
1403 deleted insns, so mark it as not deleted. */
1404 INSN_DELETED_P (insn) = 0;
1406 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1408 flags = INSN_INIT_TODO_SSID;
1409 if (INSN_LUID (insn) == 0)
1410 flags |= INSN_INIT_TODO_LUID;
1411 sel_init_new_insn (insn, flags);
1413 return insn;
1416 /* Move insn from EXPR after AFTER. */
1417 insn_t
1418 sel_move_insn (expr_t expr, int seqno, insn_t after)
1420 insn_t insn = EXPR_INSN_RTX (expr);
1421 basic_block bb = BLOCK_FOR_INSN (after);
1422 insn_t next = NEXT_INSN (after);
1424 /* Assert that in move_op we disconnected this insn properly. */
1425 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1426 SET_PREV_INSN (insn) = after;
1427 SET_NEXT_INSN (insn) = next;
1429 SET_NEXT_INSN (after) = insn;
1430 SET_PREV_INSN (next) = insn;
1432 /* Update links from insn to bb and vice versa. */
1433 df_insn_change_bb (insn, bb);
1434 if (BB_END (bb) == after)
1435 SET_BB_END (bb) = insn;
1437 prepare_insn_expr (insn, seqno);
1438 return insn;
1442 /* Functions to work with right-hand sides. */
1444 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1445 VECT and return true when found. Use NEW_VINSN for comparison only when
1446 COMPARE_VINSNS is true. Write to INDP the index on which
1447 the search has stopped, such that inserting the new element at INDP will
1448 retain VECT's sort order. */
1449 static bool
1450 find_in_history_vect_1 (vec<expr_history_def> vect,
1451 unsigned uid, vinsn_t new_vinsn,
1452 bool compare_vinsns, int *indp)
1454 expr_history_def *arr;
1455 int i, j, len = vect.length ();
1457 if (len == 0)
1459 *indp = 0;
1460 return false;
1463 arr = vect.address ();
1464 i = 0, j = len - 1;
1466 while (i <= j)
1468 unsigned auid = arr[i].uid;
1469 vinsn_t avinsn = arr[i].new_expr_vinsn;
1471 if (auid == uid
1472 /* When undoing transformation on a bookkeeping copy, the new vinsn
1473 may not be exactly equal to the one that is saved in the vector.
1474 This is because the insn whose copy we're checking was possibly
1475 substituted itself. */
1476 && (! compare_vinsns
1477 || vinsn_equal_p (avinsn, new_vinsn)))
1479 *indp = i;
1480 return true;
1482 else if (auid > uid)
1483 break;
1484 i++;
1487 *indp = i;
1488 return false;
1491 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1492 the position found or -1, if no such value is in vector.
1493 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1495 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1496 vinsn_t new_vinsn, bool originators_p)
1498 int ind;
1500 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1501 false, &ind))
1502 return ind;
1504 if (INSN_ORIGINATORS (insn) && originators_p)
1506 unsigned uid;
1507 bitmap_iterator bi;
1509 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1510 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1511 return ind;
1514 return -1;
1517 /* Insert new element in a sorted history vector pointed to by PVECT,
1518 if it is not there already. The element is searched using
1519 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1520 the history of a transformation. */
1521 void
1522 insert_in_history_vect (vec<expr_history_def> *pvect,
1523 unsigned uid, enum local_trans_type type,
1524 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1525 ds_t spec_ds)
1527 vec<expr_history_def> vect = *pvect;
1528 expr_history_def temp;
1529 bool res;
1530 int ind;
1532 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1534 if (res)
1536 expr_history_def *phist = &vect[ind];
1538 /* It is possible that speculation types of expressions that were
1539 propagated through different paths will be different here. In this
1540 case, merge the status to get the correct check later. */
1541 if (phist->spec_ds != spec_ds)
1542 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1543 return;
1546 temp.uid = uid;
1547 temp.old_expr_vinsn = old_expr_vinsn;
1548 temp.new_expr_vinsn = new_expr_vinsn;
1549 temp.spec_ds = spec_ds;
1550 temp.type = type;
1552 vinsn_attach (old_expr_vinsn);
1553 vinsn_attach (new_expr_vinsn);
1554 vect.safe_insert (ind, temp);
1555 *pvect = vect;
1558 /* Free history vector PVECT. */
1559 static void
1560 free_history_vect (vec<expr_history_def> &pvect)
1562 unsigned i;
1563 expr_history_def *phist;
1565 if (! pvect.exists ())
1566 return;
1568 for (i = 0; pvect.iterate (i, &phist); i++)
1570 vinsn_detach (phist->old_expr_vinsn);
1571 vinsn_detach (phist->new_expr_vinsn);
1574 pvect.release ();
1577 /* Merge vector FROM to PVECT. */
1578 static void
1579 merge_history_vect (vec<expr_history_def> *pvect,
1580 vec<expr_history_def> from)
1582 expr_history_def *phist;
1583 int i;
1585 /* We keep this vector sorted. */
1586 for (i = 0; from.iterate (i, &phist); i++)
1587 insert_in_history_vect (pvect, phist->uid, phist->type,
1588 phist->old_expr_vinsn, phist->new_expr_vinsn,
1589 phist->spec_ds);
1592 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1593 bool
1594 vinsn_equal_p (vinsn_t x, vinsn_t y)
1596 rtx_equal_p_callback_function repcf;
1598 if (x == y)
1599 return true;
1601 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1602 return false;
1604 if (VINSN_HASH (x) != VINSN_HASH (y))
1605 return false;
1607 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1608 if (VINSN_SEPARABLE_P (x))
1610 /* Compare RHSes of VINSNs. */
1611 gcc_assert (VINSN_RHS (x));
1612 gcc_assert (VINSN_RHS (y));
1614 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1617 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1621 /* Functions for working with expressions. */
1623 /* Initialize EXPR. */
1624 static void
1625 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1626 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1627 ds_t spec_to_check_ds, int orig_sched_cycle,
1628 vec<expr_history_def> history,
1629 signed char target_available,
1630 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1631 bool cant_move)
1633 vinsn_attach (vi);
1635 EXPR_VINSN (expr) = vi;
1636 EXPR_SPEC (expr) = spec;
1637 EXPR_USEFULNESS (expr) = use;
1638 EXPR_PRIORITY (expr) = priority;
1639 EXPR_PRIORITY_ADJ (expr) = 0;
1640 EXPR_SCHED_TIMES (expr) = sched_times;
1641 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1642 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1643 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1644 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1646 if (history.exists ())
1647 EXPR_HISTORY_OF_CHANGES (expr) = history;
1648 else
1649 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1651 EXPR_TARGET_AVAILABLE (expr) = target_available;
1652 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1653 EXPR_WAS_RENAMED (expr) = was_renamed;
1654 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1655 EXPR_CANT_MOVE (expr) = cant_move;
1658 /* Make a copy of the expr FROM into the expr TO. */
1659 void
1660 copy_expr (expr_t to, expr_t from)
1662 vec<expr_history_def> temp = vNULL;
1664 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1666 unsigned i;
1667 expr_history_def *phist;
1669 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1670 for (i = 0;
1671 temp.iterate (i, &phist);
1672 i++)
1674 vinsn_attach (phist->old_expr_vinsn);
1675 vinsn_attach (phist->new_expr_vinsn);
1679 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1680 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1681 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1682 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1683 EXPR_ORIG_SCHED_CYCLE (from), temp,
1684 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1685 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1686 EXPR_CANT_MOVE (from));
1689 /* Same, but the final expr will not ever be in av sets, so don't copy
1690 "uninteresting" data such as bitmap cache. */
1691 void
1692 copy_expr_onside (expr_t to, expr_t from)
1694 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1695 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1696 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1697 vNULL,
1698 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1699 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1700 EXPR_CANT_MOVE (from));
1703 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1704 initializing new insns. */
1705 static void
1706 prepare_insn_expr (insn_t insn, int seqno)
1708 expr_t expr = INSN_EXPR (insn);
1709 ds_t ds;
1711 INSN_SEQNO (insn) = seqno;
1712 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1713 EXPR_SPEC (expr) = 0;
1714 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1715 EXPR_WAS_SUBSTITUTED (expr) = 0;
1716 EXPR_WAS_RENAMED (expr) = 0;
1717 EXPR_TARGET_AVAILABLE (expr) = 1;
1718 INSN_LIVE_VALID_P (insn) = false;
1720 /* ??? If this expression is speculative, make its dependence
1721 as weak as possible. We can filter this expression later
1722 in process_spec_exprs, because we do not distinguish
1723 between the status we got during compute_av_set and the
1724 existing status. To be fixed. */
1725 ds = EXPR_SPEC_DONE_DS (expr);
1726 if (ds)
1727 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1729 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1732 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1733 is non-null when expressions are merged from different successors at
1734 a split point. */
1735 static void
1736 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1738 if (EXPR_TARGET_AVAILABLE (to) < 0
1739 || EXPR_TARGET_AVAILABLE (from) < 0)
1740 EXPR_TARGET_AVAILABLE (to) = -1;
1741 else
1743 /* We try to detect the case when one of the expressions
1744 can only be reached through another one. In this case,
1745 we can do better. */
1746 if (split_point == NULL)
1748 int toind, fromind;
1750 toind = EXPR_ORIG_BB_INDEX (to);
1751 fromind = EXPR_ORIG_BB_INDEX (from);
1753 if (toind && toind == fromind)
1754 /* Do nothing -- everything is done in
1755 merge_with_other_exprs. */
1757 else
1758 EXPR_TARGET_AVAILABLE (to) = -1;
1760 else if (EXPR_TARGET_AVAILABLE (from) == 0
1761 && EXPR_LHS (from)
1762 && REG_P (EXPR_LHS (from))
1763 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1764 EXPR_TARGET_AVAILABLE (to) = -1;
1765 else
1766 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1770 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1771 is non-null when expressions are merged from different successors at
1772 a split point. */
1773 static void
1774 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1776 ds_t old_to_ds, old_from_ds;
1778 old_to_ds = EXPR_SPEC_DONE_DS (to);
1779 old_from_ds = EXPR_SPEC_DONE_DS (from);
1781 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1782 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1783 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1785 /* When merging e.g. control & data speculative exprs, or a control
1786 speculative with a control&data speculative one, we really have
1787 to change vinsn too. Also, when speculative status is changed,
1788 we also need to record this as a transformation in expr's history. */
1789 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1791 old_to_ds = ds_get_speculation_types (old_to_ds);
1792 old_from_ds = ds_get_speculation_types (old_from_ds);
1794 if (old_to_ds != old_from_ds)
1796 ds_t record_ds;
1798 /* When both expressions are speculative, we need to change
1799 the vinsn first. */
1800 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1802 int res;
1804 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1805 gcc_assert (res >= 0);
1808 if (split_point != NULL)
1810 /* Record the change with proper status. */
1811 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1812 record_ds &= ~(old_to_ds & SPECULATIVE);
1813 record_ds &= ~(old_from_ds & SPECULATIVE);
1815 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1816 INSN_UID (split_point), TRANS_SPECULATION,
1817 EXPR_VINSN (from), EXPR_VINSN (to),
1818 record_ds);
1825 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1826 this is done along different paths. */
1827 void
1828 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1830 /* Choose the maximum of the specs of merged exprs. This is required
1831 for correctness of bookkeeping. */
1832 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1833 EXPR_SPEC (to) = EXPR_SPEC (from);
1835 if (split_point)
1836 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1837 else
1838 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1839 EXPR_USEFULNESS (from));
1841 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1842 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1844 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1845 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1847 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1848 EXPR_ORIG_BB_INDEX (to) = 0;
1850 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1851 EXPR_ORIG_SCHED_CYCLE (from));
1853 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1854 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1855 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1857 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1858 EXPR_HISTORY_OF_CHANGES (from));
1859 update_target_availability (to, from, split_point);
1860 update_speculative_bits (to, from, split_point);
1863 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1864 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1865 are merged from different successors at a split point. */
1866 void
1867 merge_expr (expr_t to, expr_t from, insn_t split_point)
1869 vinsn_t to_vi = EXPR_VINSN (to);
1870 vinsn_t from_vi = EXPR_VINSN (from);
1872 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1874 /* Make sure that speculative pattern is propagated into exprs that
1875 have non-speculative one. This will provide us with consistent
1876 speculative bits and speculative patterns inside expr. */
1877 if ((EXPR_SPEC_DONE_DS (from) != 0
1878 && EXPR_SPEC_DONE_DS (to) == 0)
1879 /* Do likewise for volatile insns, so that we always retain
1880 the may_trap_p bit on the resulting expression. */
1881 || (VINSN_MAY_TRAP_P (EXPR_VINSN (from))
1882 && !VINSN_MAY_TRAP_P (EXPR_VINSN (to))))
1883 change_vinsn_in_expr (to, EXPR_VINSN (from));
1885 merge_expr_data (to, from, split_point);
1886 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1889 /* Clear the information of this EXPR. */
1890 void
1891 clear_expr (expr_t expr)
1894 vinsn_detach (EXPR_VINSN (expr));
1895 EXPR_VINSN (expr) = NULL;
1897 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1900 /* For a given LV_SET, mark EXPR having unavailable target register. */
1901 static void
1902 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1904 if (EXPR_SEPARABLE_P (expr))
1906 if (REG_P (EXPR_LHS (expr))
1907 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1909 /* If it's an insn like r1 = use (r1, ...), and it exists in
1910 different forms in each of the av_sets being merged, we can't say
1911 whether original destination register is available or not.
1912 However, this still works if destination register is not used
1913 in the original expression: if the branch at which LV_SET we're
1914 looking here is not actually 'other branch' in sense that same
1915 expression is available through it (but it can't be determined
1916 at computation stage because of transformations on one of the
1917 branches), it still won't affect the availability.
1918 Liveness of a register somewhere on a code motion path means
1919 it's either read somewhere on a codemotion path, live on
1920 'other' branch, live at the point immediately following
1921 the original operation, or is read by the original operation.
1922 The latter case is filtered out in the condition below.
1923 It still doesn't cover the case when register is defined and used
1924 somewhere within the code motion path, and in this case we could
1925 miss a unifying code motion along both branches using a renamed
1926 register, but it won't affect a code correctness since upon
1927 an actual code motion a bookkeeping code would be generated. */
1928 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1929 EXPR_LHS (expr)))
1930 EXPR_TARGET_AVAILABLE (expr) = -1;
1931 else
1932 EXPR_TARGET_AVAILABLE (expr) = false;
1935 else
1937 unsigned regno;
1938 reg_set_iterator rsi;
1940 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1941 0, regno, rsi)
1942 if (bitmap_bit_p (lv_set, regno))
1944 EXPR_TARGET_AVAILABLE (expr) = false;
1945 break;
1948 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1949 0, regno, rsi)
1950 if (bitmap_bit_p (lv_set, regno))
1952 EXPR_TARGET_AVAILABLE (expr) = false;
1953 break;
1958 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1959 or dependence status have changed, 2 when also the target register
1960 became unavailable, 0 if nothing had to be changed. */
1962 speculate_expr (expr_t expr, ds_t ds)
1964 int res;
1965 rtx_insn *orig_insn_rtx;
1966 rtx spec_pat;
1967 ds_t target_ds, current_ds;
1969 /* Obtain the status we need to put on EXPR. */
1970 target_ds = (ds & SPECULATIVE);
1971 current_ds = EXPR_SPEC_DONE_DS (expr);
1972 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1974 orig_insn_rtx = EXPR_INSN_RTX (expr);
1976 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1978 switch (res)
1980 case 0:
1981 EXPR_SPEC_DONE_DS (expr) = ds;
1982 return current_ds != ds ? 1 : 0;
1984 case 1:
1986 rtx_insn *spec_insn_rtx =
1987 create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1988 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1990 change_vinsn_in_expr (expr, spec_vinsn);
1991 EXPR_SPEC_DONE_DS (expr) = ds;
1992 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1994 /* Do not allow clobbering the address register of speculative
1995 insns. */
1996 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1997 expr_dest_reg (expr)))
1999 EXPR_TARGET_AVAILABLE (expr) = false;
2000 return 2;
2003 return 1;
2006 case -1:
2007 return -1;
2009 default:
2010 gcc_unreachable ();
2011 return -1;
2015 /* Return a destination register, if any, of EXPR. */
2017 expr_dest_reg (expr_t expr)
2019 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2021 if (dest != NULL_RTX && REG_P (dest))
2022 return dest;
2024 return NULL_RTX;
2027 /* Returns the REGNO of the R's destination. */
2028 unsigned
2029 expr_dest_regno (expr_t expr)
2031 rtx dest = expr_dest_reg (expr);
2033 gcc_assert (dest != NULL_RTX);
2034 return REGNO (dest);
2037 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2038 AV_SET having unavailable target register. */
2039 void
2040 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2042 expr_t expr;
2043 av_set_iterator avi;
2045 FOR_EACH_EXPR (expr, avi, join_set)
2046 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2047 set_unavailable_target_for_expr (expr, lv_set);
2051 /* Returns true if REG (at least partially) is present in REGS. */
2052 bool
2053 register_unavailable_p (regset regs, rtx reg)
2055 unsigned regno, end_regno;
2057 regno = REGNO (reg);
2058 if (bitmap_bit_p (regs, regno))
2059 return true;
2061 end_regno = END_REGNO (reg);
2063 while (++regno < end_regno)
2064 if (bitmap_bit_p (regs, regno))
2065 return true;
2067 return false;
2070 /* Av set functions. */
2072 /* Add a new element to av set SETP.
2073 Return the element added. */
2074 static av_set_t
2075 av_set_add_element (av_set_t *setp)
2077 /* Insert at the beginning of the list. */
2078 _list_add (setp);
2079 return *setp;
2082 /* Add EXPR to SETP. */
2083 void
2084 av_set_add (av_set_t *setp, expr_t expr)
2086 av_set_t elem;
2088 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2089 elem = av_set_add_element (setp);
2090 copy_expr (_AV_SET_EXPR (elem), expr);
2093 /* Same, but do not copy EXPR. */
2094 static void
2095 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2097 av_set_t elem;
2099 elem = av_set_add_element (setp);
2100 *_AV_SET_EXPR (elem) = *expr;
2103 /* Remove expr pointed to by IP from the av_set. */
2104 void
2105 av_set_iter_remove (av_set_iterator *ip)
2107 clear_expr (_AV_SET_EXPR (*ip->lp));
2108 _list_iter_remove (ip);
2111 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2112 sense of vinsn_equal_p function. Return NULL if no such expr is
2113 in SET was found. */
2114 expr_t
2115 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2117 expr_t expr;
2118 av_set_iterator i;
2120 FOR_EACH_EXPR (expr, i, set)
2121 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2122 return expr;
2123 return NULL;
2126 /* Same, but also remove the EXPR found. */
2127 static expr_t
2128 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2130 expr_t expr;
2131 av_set_iterator i;
2133 FOR_EACH_EXPR_1 (expr, i, setp)
2134 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2136 _list_iter_remove_nofree (&i);
2137 return expr;
2139 return NULL;
2142 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2143 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2144 Returns NULL if no such expr is in SET was found. */
2145 static expr_t
2146 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2148 expr_t cur_expr;
2149 av_set_iterator i;
2151 FOR_EACH_EXPR (cur_expr, i, set)
2153 if (cur_expr == expr)
2154 continue;
2155 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2156 return cur_expr;
2159 return NULL;
2162 /* If other expression is already in AVP, remove one of them. */
2163 expr_t
2164 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2166 expr_t expr2;
2168 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2169 if (expr2 != NULL)
2171 /* Reset target availability on merge, since taking it only from one
2172 of the exprs would be controversial for different code. */
2173 EXPR_TARGET_AVAILABLE (expr2) = -1;
2174 EXPR_USEFULNESS (expr2) = 0;
2176 merge_expr (expr2, expr, NULL);
2178 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2179 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2181 av_set_iter_remove (ip);
2182 return expr2;
2185 return expr;
2188 /* Return true if there is an expr that correlates to VI in SET. */
2189 bool
2190 av_set_is_in_p (av_set_t set, vinsn_t vi)
2192 return av_set_lookup (set, vi) != NULL;
2195 /* Return a copy of SET. */
2196 av_set_t
2197 av_set_copy (av_set_t set)
2199 expr_t expr;
2200 av_set_iterator i;
2201 av_set_t res = NULL;
2203 FOR_EACH_EXPR (expr, i, set)
2204 av_set_add (&res, expr);
2206 return res;
2209 /* Join two av sets that do not have common elements by attaching second set
2210 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2211 _AV_SET_NEXT of first set's last element). */
2212 static void
2213 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2215 gcc_assert (*to_tailp == NULL);
2216 *to_tailp = *fromp;
2217 *fromp = NULL;
2220 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2221 pointed to by FROMP afterwards. */
2222 void
2223 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2225 expr_t expr1;
2226 av_set_iterator i;
2228 /* Delete from TOP all exprs, that present in FROMP. */
2229 FOR_EACH_EXPR_1 (expr1, i, top)
2231 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2233 if (expr2)
2235 merge_expr (expr2, expr1, insn);
2236 av_set_iter_remove (&i);
2240 join_distinct_sets (i.lp, fromp);
2243 /* Same as above, but also update availability of target register in
2244 TOP judging by TO_LV_SET and FROM_LV_SET. */
2245 void
2246 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2247 regset from_lv_set, insn_t insn)
2249 expr_t expr1;
2250 av_set_iterator i;
2251 av_set_t *to_tailp, in_both_set = NULL;
2253 /* Delete from TOP all expres, that present in FROMP. */
2254 FOR_EACH_EXPR_1 (expr1, i, top)
2256 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2258 if (expr2)
2260 /* It may be that the expressions have different destination
2261 registers, in which case we need to check liveness here. */
2262 if (EXPR_SEPARABLE_P (expr1))
2264 int regno1 = (REG_P (EXPR_LHS (expr1))
2265 ? (int) expr_dest_regno (expr1) : -1);
2266 int regno2 = (REG_P (EXPR_LHS (expr2))
2267 ? (int) expr_dest_regno (expr2) : -1);
2269 /* ??? We don't have a way to check restrictions for
2270 *other* register on the current path, we did it only
2271 for the current target register. Give up. */
2272 if (regno1 != regno2)
2273 EXPR_TARGET_AVAILABLE (expr2) = -1;
2275 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2276 EXPR_TARGET_AVAILABLE (expr2) = -1;
2278 merge_expr (expr2, expr1, insn);
2279 av_set_add_nocopy (&in_both_set, expr2);
2280 av_set_iter_remove (&i);
2282 else
2283 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2284 FROM_LV_SET. */
2285 set_unavailable_target_for_expr (expr1, from_lv_set);
2287 to_tailp = i.lp;
2289 /* These expressions are not present in TOP. Check liveness
2290 restrictions on TO_LV_SET. */
2291 FOR_EACH_EXPR (expr1, i, *fromp)
2292 set_unavailable_target_for_expr (expr1, to_lv_set);
2294 join_distinct_sets (i.lp, &in_both_set);
2295 join_distinct_sets (to_tailp, fromp);
2298 /* Clear av_set pointed to by SETP. */
2299 void
2300 av_set_clear (av_set_t *setp)
2302 expr_t expr;
2303 av_set_iterator i;
2305 FOR_EACH_EXPR_1 (expr, i, setp)
2306 av_set_iter_remove (&i);
2308 gcc_assert (*setp == NULL);
2311 /* Leave only one non-speculative element in the SETP. */
2312 void
2313 av_set_leave_one_nonspec (av_set_t *setp)
2315 expr_t expr;
2316 av_set_iterator i;
2317 bool has_one_nonspec = false;
2319 /* Keep all speculative exprs, and leave one non-speculative
2320 (the first one). */
2321 FOR_EACH_EXPR_1 (expr, i, setp)
2323 if (!EXPR_SPEC_DONE_DS (expr))
2325 if (has_one_nonspec)
2326 av_set_iter_remove (&i);
2327 else
2328 has_one_nonspec = true;
2333 /* Return the N'th element of the SET. */
2334 expr_t
2335 av_set_element (av_set_t set, int n)
2337 expr_t expr;
2338 av_set_iterator i;
2340 FOR_EACH_EXPR (expr, i, set)
2341 if (n-- == 0)
2342 return expr;
2344 gcc_unreachable ();
2345 return NULL;
2348 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2349 void
2350 av_set_substract_cond_branches (av_set_t *avp)
2352 av_set_iterator i;
2353 expr_t expr;
2355 FOR_EACH_EXPR_1 (expr, i, avp)
2356 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2357 av_set_iter_remove (&i);
2360 /* Multiplies usefulness attribute of each member of av-set *AVP by
2361 value PROB / ALL_PROB. */
2362 void
2363 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2365 av_set_iterator i;
2366 expr_t expr;
2368 FOR_EACH_EXPR (expr, i, av)
2369 EXPR_USEFULNESS (expr) = (all_prob
2370 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2371 : 0);
2374 /* Leave in AVP only those expressions, which are present in AV,
2375 and return it, merging history expressions. */
2376 void
2377 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2379 av_set_iterator i;
2380 expr_t expr, expr2;
2382 FOR_EACH_EXPR_1 (expr, i, avp)
2383 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2384 av_set_iter_remove (&i);
2385 else
2386 /* When updating av sets in bookkeeping blocks, we can add more insns
2387 there which will be transformed but the upper av sets will not
2388 reflect those transformations. We then fail to undo those
2389 when searching for such insns. So merge the history saved
2390 in the av set of the block we are processing. */
2391 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2392 EXPR_HISTORY_OF_CHANGES (expr2));
2397 /* Dependence hooks to initialize insn data. */
2399 /* This is used in hooks callable from dependence analysis when initializing
2400 instruction's data. */
2401 static struct
2403 /* Where the dependence was found (lhs/rhs). */
2404 deps_where_t where;
2406 /* The actual data object to initialize. */
2407 idata_t id;
2409 /* True when the insn should not be made clonable. */
2410 bool force_unique_p;
2412 /* True when insn should be treated as of type USE, i.e. never renamed. */
2413 bool force_use_p;
2414 } deps_init_id_data;
2417 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2418 clonable. */
2419 static void
2420 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2422 int type;
2424 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2425 That clonable insns which can be separated into lhs and rhs have type SET.
2426 Other clonable insns have type USE. */
2427 type = GET_CODE (insn);
2429 /* Only regular insns could be cloned. */
2430 if (type == INSN && !force_unique_p)
2431 type = SET;
2432 else if (type == JUMP_INSN && simplejump_p (insn))
2433 type = PC;
2434 else if (type == DEBUG_INSN)
2435 type = !force_unique_p ? USE : INSN;
2437 IDATA_TYPE (id) = type;
2438 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2439 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2440 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2443 /* Start initializing insn data. */
2444 static void
2445 deps_init_id_start_insn (insn_t insn)
2447 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2449 setup_id_for_insn (deps_init_id_data.id, insn,
2450 deps_init_id_data.force_unique_p);
2451 deps_init_id_data.where = DEPS_IN_INSN;
2454 /* Start initializing lhs data. */
2455 static void
2456 deps_init_id_start_lhs (rtx lhs)
2458 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2459 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2461 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2463 IDATA_LHS (deps_init_id_data.id) = lhs;
2464 deps_init_id_data.where = DEPS_IN_LHS;
2468 /* Finish initializing lhs data. */
2469 static void
2470 deps_init_id_finish_lhs (void)
2472 deps_init_id_data.where = DEPS_IN_INSN;
2475 /* Note a set of REGNO. */
2476 static void
2477 deps_init_id_note_reg_set (int regno)
2479 haifa_note_reg_set (regno);
2481 if (deps_init_id_data.where == DEPS_IN_RHS)
2482 deps_init_id_data.force_use_p = true;
2484 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2485 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2487 #ifdef STACK_REGS
2488 /* Make instructions that set stack registers to be ineligible for
2489 renaming to avoid issues with find_used_regs. */
2490 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2491 deps_init_id_data.force_use_p = true;
2492 #endif
2495 /* Note a clobber of REGNO. */
2496 static void
2497 deps_init_id_note_reg_clobber (int regno)
2499 haifa_note_reg_clobber (regno);
2501 if (deps_init_id_data.where == DEPS_IN_RHS)
2502 deps_init_id_data.force_use_p = true;
2504 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2505 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2508 /* Note a use of REGNO. */
2509 static void
2510 deps_init_id_note_reg_use (int regno)
2512 haifa_note_reg_use (regno);
2514 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2515 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2518 /* Start initializing rhs data. */
2519 static void
2520 deps_init_id_start_rhs (rtx rhs)
2522 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2524 /* And there was no sel_deps_reset_to_insn (). */
2525 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2527 IDATA_RHS (deps_init_id_data.id) = rhs;
2528 deps_init_id_data.where = DEPS_IN_RHS;
2532 /* Finish initializing rhs data. */
2533 static void
2534 deps_init_id_finish_rhs (void)
2536 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2537 || deps_init_id_data.where == DEPS_IN_INSN);
2538 deps_init_id_data.where = DEPS_IN_INSN;
2541 /* Finish initializing insn data. */
2542 static void
2543 deps_init_id_finish_insn (void)
2545 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2547 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2549 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2550 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2552 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2553 || deps_init_id_data.force_use_p)
2555 /* This should be a USE, as we don't want to schedule its RHS
2556 separately. However, we still want to have them recorded
2557 for the purposes of substitution. That's why we don't
2558 simply call downgrade_to_use () here. */
2559 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2560 gcc_assert (!lhs == !rhs);
2562 IDATA_TYPE (deps_init_id_data.id) = USE;
2566 deps_init_id_data.where = DEPS_IN_NOWHERE;
2569 /* This is dependence info used for initializing insn's data. */
2570 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2572 /* This initializes most of the static part of the above structure. */
2573 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2575 NULL,
2577 deps_init_id_start_insn,
2578 deps_init_id_finish_insn,
2579 deps_init_id_start_lhs,
2580 deps_init_id_finish_lhs,
2581 deps_init_id_start_rhs,
2582 deps_init_id_finish_rhs,
2583 deps_init_id_note_reg_set,
2584 deps_init_id_note_reg_clobber,
2585 deps_init_id_note_reg_use,
2586 NULL, /* note_mem_dep */
2587 NULL, /* note_dep */
2589 0, /* use_cselib */
2590 0, /* use_deps_list */
2591 0 /* generate_spec_deps */
2594 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2595 we don't actually need information about lhs and rhs. */
2596 static void
2597 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2599 rtx pat = PATTERN (insn);
2601 if (NONJUMP_INSN_P (insn)
2602 && GET_CODE (pat) == SET
2603 && !force_unique_p)
2605 IDATA_RHS (id) = SET_SRC (pat);
2606 IDATA_LHS (id) = SET_DEST (pat);
2608 else
2609 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2612 /* Possibly downgrade INSN to USE. */
2613 static void
2614 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2616 bool must_be_use = false;
2617 df_ref def;
2618 rtx lhs = IDATA_LHS (id);
2619 rtx rhs = IDATA_RHS (id);
2621 /* We downgrade only SETs. */
2622 if (IDATA_TYPE (id) != SET)
2623 return;
2625 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2627 IDATA_TYPE (id) = USE;
2628 return;
2631 FOR_EACH_INSN_DEF (def, insn)
2633 if (DF_REF_INSN (def)
2634 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2635 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2637 must_be_use = true;
2638 break;
2641 #ifdef STACK_REGS
2642 /* Make instructions that set stack registers to be ineligible for
2643 renaming to avoid issues with find_used_regs. */
2644 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2646 must_be_use = true;
2647 break;
2649 #endif
2652 if (must_be_use)
2653 IDATA_TYPE (id) = USE;
2656 /* Setup register sets describing INSN in ID. */
2657 static void
2658 setup_id_reg_sets (idata_t id, insn_t insn)
2660 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2661 df_ref def, use;
2662 regset tmp = get_clear_regset_from_pool ();
2664 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2666 unsigned int regno = DF_REF_REGNO (def);
2668 /* Post modifies are treated like clobbers by sched-deps.c. */
2669 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2670 | DF_REF_PRE_POST_MODIFY)))
2671 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2672 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2674 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2676 #ifdef STACK_REGS
2677 /* For stack registers, treat writes to them as writes
2678 to the first one to be consistent with sched-deps.c. */
2679 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2680 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2681 #endif
2683 /* Mark special refs that generate read/write def pair. */
2684 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2685 || regno == STACK_POINTER_REGNUM)
2686 bitmap_set_bit (tmp, regno);
2689 FOR_EACH_INSN_INFO_USE (use, insn_info)
2691 unsigned int regno = DF_REF_REGNO (use);
2693 /* When these refs are met for the first time, skip them, as
2694 these uses are just counterparts of some defs. */
2695 if (bitmap_bit_p (tmp, regno))
2696 bitmap_clear_bit (tmp, regno);
2697 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2699 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2701 #ifdef STACK_REGS
2702 /* For stack registers, treat reads from them as reads from
2703 the first one to be consistent with sched-deps.c. */
2704 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2705 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2706 #endif
2710 return_regset_to_pool (tmp);
2713 /* Initialize instruction data for INSN in ID using DF's data. */
2714 static void
2715 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2717 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2719 setup_id_for_insn (id, insn, force_unique_p);
2720 setup_id_lhs_rhs (id, insn, force_unique_p);
2722 if (INSN_NOP_P (insn))
2723 return;
2725 maybe_downgrade_id_to_use (id, insn);
2726 setup_id_reg_sets (id, insn);
2729 /* Initialize instruction data for INSN in ID. */
2730 static void
2731 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2733 struct deps_desc _dc, *dc = &_dc;
2735 deps_init_id_data.where = DEPS_IN_NOWHERE;
2736 deps_init_id_data.id = id;
2737 deps_init_id_data.force_unique_p = force_unique_p;
2738 deps_init_id_data.force_use_p = false;
2740 init_deps (dc, false);
2742 memcpy (&deps_init_id_sched_deps_info,
2743 &const_deps_init_id_sched_deps_info,
2744 sizeof (deps_init_id_sched_deps_info));
2746 if (spec_info != NULL)
2747 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2749 sched_deps_info = &deps_init_id_sched_deps_info;
2751 deps_analyze_insn (dc, as_a <rtx_insn *> (insn));
2753 free_deps (dc);
2755 deps_init_id_data.id = NULL;
2759 struct sched_scan_info_def
2761 /* This hook notifies scheduler frontend to extend its internal per basic
2762 block data structures. This hook should be called once before a series of
2763 calls to bb_init (). */
2764 void (*extend_bb) (void);
2766 /* This hook makes scheduler frontend to initialize its internal data
2767 structures for the passed basic block. */
2768 void (*init_bb) (basic_block);
2770 /* This hook notifies scheduler frontend to extend its internal per insn data
2771 structures. This hook should be called once before a series of calls to
2772 insn_init (). */
2773 void (*extend_insn) (void);
2775 /* This hook makes scheduler frontend to initialize its internal data
2776 structures for the passed insn. */
2777 void (*init_insn) (rtx);
2780 /* A driver function to add a set of basic blocks (BBS) to the
2781 scheduling region. */
2782 static void
2783 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2785 unsigned i;
2786 basic_block bb;
2788 if (ssi->extend_bb)
2789 ssi->extend_bb ();
2791 if (ssi->init_bb)
2792 FOR_EACH_VEC_ELT (bbs, i, bb)
2793 ssi->init_bb (bb);
2795 if (ssi->extend_insn)
2796 ssi->extend_insn ();
2798 if (ssi->init_insn)
2799 FOR_EACH_VEC_ELT (bbs, i, bb)
2801 rtx insn;
2803 FOR_BB_INSNS (bb, insn)
2804 ssi->init_insn (insn);
2808 /* Implement hooks for collecting fundamental insn properties like if insn is
2809 an ASM or is within a SCHED_GROUP. */
2811 /* True when a "one-time init" data for INSN was already inited. */
2812 static bool
2813 first_time_insn_init (insn_t insn)
2815 return INSN_LIVE (insn) == NULL;
2818 /* Hash an entry in a transformed_insns hashtable. */
2819 static hashval_t
2820 hash_transformed_insns (const void *p)
2822 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2825 /* Compare the entries in a transformed_insns hashtable. */
2826 static int
2827 eq_transformed_insns (const void *p, const void *q)
2829 rtx_insn *i1 =
2830 VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2831 rtx_insn *i2 =
2832 VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2834 if (INSN_UID (i1) == INSN_UID (i2))
2835 return 1;
2836 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2839 /* Free an entry in a transformed_insns hashtable. */
2840 static void
2841 free_transformed_insns (void *p)
2843 struct transformed_insns *pti = (struct transformed_insns *) p;
2845 vinsn_detach (pti->vinsn_old);
2846 vinsn_detach (pti->vinsn_new);
2847 free (pti);
2850 /* Init the s_i_d data for INSN which should be inited just once, when
2851 we first see the insn. */
2852 static void
2853 init_first_time_insn_data (insn_t insn)
2855 /* This should not be set if this is the first time we init data for
2856 insn. */
2857 gcc_assert (first_time_insn_init (insn));
2859 /* These are needed for nops too. */
2860 INSN_LIVE (insn) = get_regset_from_pool ();
2861 INSN_LIVE_VALID_P (insn) = false;
2863 if (!INSN_NOP_P (insn))
2865 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2866 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2867 INSN_TRANSFORMED_INSNS (insn)
2868 = htab_create (16, hash_transformed_insns,
2869 eq_transformed_insns, free_transformed_insns);
2870 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2874 /* Free almost all above data for INSN that is scheduled already.
2875 Used for extra-large basic blocks. */
2876 void
2877 free_data_for_scheduled_insn (insn_t insn)
2879 gcc_assert (! first_time_insn_init (insn));
2881 if (! INSN_ANALYZED_DEPS (insn))
2882 return;
2884 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2885 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2886 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2888 /* This is allocated only for bookkeeping insns. */
2889 if (INSN_ORIGINATORS (insn))
2890 BITMAP_FREE (INSN_ORIGINATORS (insn));
2891 free_deps (&INSN_DEPS_CONTEXT (insn));
2893 INSN_ANALYZED_DEPS (insn) = NULL;
2895 /* Clear the readonly flag so we would ICE when trying to recalculate
2896 the deps context (as we believe that it should not happen). */
2897 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2900 /* Free the same data as above for INSN. */
2901 static void
2902 free_first_time_insn_data (insn_t insn)
2904 gcc_assert (! first_time_insn_init (insn));
2906 free_data_for_scheduled_insn (insn);
2907 return_regset_to_pool (INSN_LIVE (insn));
2908 INSN_LIVE (insn) = NULL;
2909 INSN_LIVE_VALID_P (insn) = false;
2912 /* Initialize region-scope data structures for basic blocks. */
2913 static void
2914 init_global_and_expr_for_bb (basic_block bb)
2916 if (sel_bb_empty_p (bb))
2917 return;
2919 invalidate_av_set (bb);
2922 /* Data for global dependency analysis (to initialize CANT_MOVE and
2923 SCHED_GROUP_P). */
2924 static struct
2926 /* Previous insn. */
2927 insn_t prev_insn;
2928 } init_global_data;
2930 /* Determine if INSN is in the sched_group, is an asm or should not be
2931 cloned. After that initialize its expr. */
2932 static void
2933 init_global_and_expr_for_insn (insn_t insn)
2935 if (LABEL_P (insn))
2936 return;
2938 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2940 init_global_data.prev_insn = NULL_RTX;
2941 return;
2944 gcc_assert (INSN_P (insn));
2946 if (SCHED_GROUP_P (insn))
2947 /* Setup a sched_group. */
2949 insn_t prev_insn = init_global_data.prev_insn;
2951 if (prev_insn)
2952 INSN_SCHED_NEXT (prev_insn) = insn;
2954 init_global_data.prev_insn = insn;
2956 else
2957 init_global_data.prev_insn = NULL_RTX;
2959 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2960 || asm_noperands (PATTERN (insn)) >= 0)
2961 /* Mark INSN as an asm. */
2962 INSN_ASM_P (insn) = true;
2965 bool force_unique_p;
2966 ds_t spec_done_ds;
2968 /* Certain instructions cannot be cloned, and frame related insns and
2969 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2970 their block. */
2971 if (prologue_epilogue_contains (insn))
2973 if (RTX_FRAME_RELATED_P (insn))
2974 CANT_MOVE (insn) = 1;
2975 else
2977 rtx note;
2978 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2979 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2980 && ((enum insn_note) INTVAL (XEXP (note, 0))
2981 == NOTE_INSN_EPILOGUE_BEG))
2983 CANT_MOVE (insn) = 1;
2984 break;
2987 force_unique_p = true;
2989 else
2990 if (CANT_MOVE (insn)
2991 || INSN_ASM_P (insn)
2992 || SCHED_GROUP_P (insn)
2993 || CALL_P (insn)
2994 /* Exception handling insns are always unique. */
2995 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2996 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2997 || control_flow_insn_p (insn)
2998 || volatile_insn_p (PATTERN (insn))
2999 || (targetm.cannot_copy_insn_p
3000 && targetm.cannot_copy_insn_p (insn)))
3001 force_unique_p = true;
3002 else
3003 force_unique_p = false;
3005 if (targetm.sched.get_insn_spec_ds)
3007 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3008 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3010 else
3011 spec_done_ds = 0;
3013 /* Initialize INSN's expr. */
3014 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3015 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3016 spec_done_ds, 0, 0, vNULL, true,
3017 false, false, false, CANT_MOVE (insn));
3020 init_first_time_insn_data (insn);
3023 /* Scan the region and initialize instruction data for basic blocks BBS. */
3024 void
3025 sel_init_global_and_expr (bb_vec_t bbs)
3027 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3028 const struct sched_scan_info_def ssi =
3030 NULL, /* extend_bb */
3031 init_global_and_expr_for_bb, /* init_bb */
3032 extend_insn_data, /* extend_insn */
3033 init_global_and_expr_for_insn /* init_insn */
3036 sched_scan (&ssi, bbs);
3039 /* Finalize region-scope data structures for basic blocks. */
3040 static void
3041 finish_global_and_expr_for_bb (basic_block bb)
3043 av_set_clear (&BB_AV_SET (bb));
3044 BB_AV_LEVEL (bb) = 0;
3047 /* Finalize INSN's data. */
3048 static void
3049 finish_global_and_expr_insn (insn_t insn)
3051 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3052 return;
3054 gcc_assert (INSN_P (insn));
3056 if (INSN_LUID (insn) > 0)
3058 free_first_time_insn_data (insn);
3059 INSN_WS_LEVEL (insn) = 0;
3060 CANT_MOVE (insn) = 0;
3062 /* We can no longer assert this, as vinsns of this insn could be
3063 easily live in other insn's caches. This should be changed to
3064 a counter-like approach among all vinsns. */
3065 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3066 clear_expr (INSN_EXPR (insn));
3070 /* Finalize per instruction data for the whole region. */
3071 void
3072 sel_finish_global_and_expr (void)
3075 bb_vec_t bbs;
3076 int i;
3078 bbs.create (current_nr_blocks);
3080 for (i = 0; i < current_nr_blocks; i++)
3081 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3083 /* Clear AV_SETs and INSN_EXPRs. */
3085 const struct sched_scan_info_def ssi =
3087 NULL, /* extend_bb */
3088 finish_global_and_expr_for_bb, /* init_bb */
3089 NULL, /* extend_insn */
3090 finish_global_and_expr_insn /* init_insn */
3093 sched_scan (&ssi, bbs);
3096 bbs.release ();
3099 finish_insns ();
3103 /* In the below hooks, we merely calculate whether or not a dependence
3104 exists, and in what part of insn. However, we will need more data
3105 when we'll start caching dependence requests. */
3107 /* Container to hold information for dependency analysis. */
3108 static struct
3110 deps_t dc;
3112 /* A variable to track which part of rtx we are scanning in
3113 sched-deps.c: sched_analyze_insn (). */
3114 deps_where_t where;
3116 /* Current producer. */
3117 insn_t pro;
3119 /* Current consumer. */
3120 vinsn_t con;
3122 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3123 X is from { INSN, LHS, RHS }. */
3124 ds_t has_dep_p[DEPS_IN_NOWHERE];
3125 } has_dependence_data;
3127 /* Start analyzing dependencies of INSN. */
3128 static void
3129 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3131 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3133 has_dependence_data.where = DEPS_IN_INSN;
3136 /* Finish analyzing dependencies of an insn. */
3137 static void
3138 has_dependence_finish_insn (void)
3140 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3142 has_dependence_data.where = DEPS_IN_NOWHERE;
3145 /* Start analyzing dependencies of LHS. */
3146 static void
3147 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3149 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3151 if (VINSN_LHS (has_dependence_data.con) != NULL)
3152 has_dependence_data.where = DEPS_IN_LHS;
3155 /* Finish analyzing dependencies of an lhs. */
3156 static void
3157 has_dependence_finish_lhs (void)
3159 has_dependence_data.where = DEPS_IN_INSN;
3162 /* Start analyzing dependencies of RHS. */
3163 static void
3164 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3166 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3168 if (VINSN_RHS (has_dependence_data.con) != NULL)
3169 has_dependence_data.where = DEPS_IN_RHS;
3172 /* Start analyzing dependencies of an rhs. */
3173 static void
3174 has_dependence_finish_rhs (void)
3176 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3177 || has_dependence_data.where == DEPS_IN_INSN);
3179 has_dependence_data.where = DEPS_IN_INSN;
3182 /* Note a set of REGNO. */
3183 static void
3184 has_dependence_note_reg_set (int regno)
3186 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3188 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3189 VINSN_INSN_RTX
3190 (has_dependence_data.con)))
3192 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3194 if (reg_last->sets != NULL
3195 || reg_last->clobbers != NULL)
3196 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3198 if (reg_last->uses || reg_last->implicit_sets)
3199 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3203 /* Note a clobber of REGNO. */
3204 static void
3205 has_dependence_note_reg_clobber (int regno)
3207 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3209 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3210 VINSN_INSN_RTX
3211 (has_dependence_data.con)))
3213 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3215 if (reg_last->sets)
3216 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3218 if (reg_last->uses || reg_last->implicit_sets)
3219 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3223 /* Note a use of REGNO. */
3224 static void
3225 has_dependence_note_reg_use (int regno)
3227 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3229 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3230 VINSN_INSN_RTX
3231 (has_dependence_data.con)))
3233 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3235 if (reg_last->sets)
3236 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3238 if (reg_last->clobbers || reg_last->implicit_sets)
3239 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3241 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3242 is actually a check insn. We need to do this for any register
3243 read-read dependency with the check unless we track properly
3244 all registers written by BE_IN_SPEC-speculated insns, as
3245 we don't have explicit dependence lists. See PR 53975. */
3246 if (reg_last->uses)
3248 ds_t pro_spec_checked_ds;
3250 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3251 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3253 if (pro_spec_checked_ds != 0)
3254 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3255 NULL_RTX, NULL_RTX);
3260 /* Note a memory dependence. */
3261 static void
3262 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3263 rtx pending_mem ATTRIBUTE_UNUSED,
3264 insn_t pending_insn ATTRIBUTE_UNUSED,
3265 ds_t ds ATTRIBUTE_UNUSED)
3267 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3268 VINSN_INSN_RTX (has_dependence_data.con)))
3270 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3272 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3276 /* Note a dependence. */
3277 static void
3278 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3279 ds_t ds ATTRIBUTE_UNUSED)
3281 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3282 VINSN_INSN_RTX (has_dependence_data.con)))
3284 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3286 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3290 /* Mark the insn as having a hard dependence that prevents speculation. */
3291 void
3292 sel_mark_hard_insn (rtx insn)
3294 int i;
3296 /* Only work when we're in has_dependence_p mode.
3297 ??? This is a hack, this should actually be a hook. */
3298 if (!has_dependence_data.dc || !has_dependence_data.pro)
3299 return;
3301 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3302 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3304 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3305 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3308 /* This structure holds the hooks for the dependency analysis used when
3309 actually processing dependencies in the scheduler. */
3310 static struct sched_deps_info_def has_dependence_sched_deps_info;
3312 /* This initializes most of the fields of the above structure. */
3313 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3315 NULL,
3317 has_dependence_start_insn,
3318 has_dependence_finish_insn,
3319 has_dependence_start_lhs,
3320 has_dependence_finish_lhs,
3321 has_dependence_start_rhs,
3322 has_dependence_finish_rhs,
3323 has_dependence_note_reg_set,
3324 has_dependence_note_reg_clobber,
3325 has_dependence_note_reg_use,
3326 has_dependence_note_mem_dep,
3327 has_dependence_note_dep,
3329 0, /* use_cselib */
3330 0, /* use_deps_list */
3331 0 /* generate_spec_deps */
3334 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3335 static void
3336 setup_has_dependence_sched_deps_info (void)
3338 memcpy (&has_dependence_sched_deps_info,
3339 &const_has_dependence_sched_deps_info,
3340 sizeof (has_dependence_sched_deps_info));
3342 if (spec_info != NULL)
3343 has_dependence_sched_deps_info.generate_spec_deps = 1;
3345 sched_deps_info = &has_dependence_sched_deps_info;
3348 /* Remove all dependences found and recorded in has_dependence_data array. */
3349 void
3350 sel_clear_has_dependence (void)
3352 int i;
3354 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3355 has_dependence_data.has_dep_p[i] = 0;
3358 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3359 to the dependence information array in HAS_DEP_PP. */
3360 ds_t
3361 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3363 int i;
3364 ds_t ds;
3365 struct deps_desc *dc;
3367 if (INSN_SIMPLEJUMP_P (pred))
3368 /* Unconditional jump is just a transfer of control flow.
3369 Ignore it. */
3370 return false;
3372 dc = &INSN_DEPS_CONTEXT (pred);
3374 /* We init this field lazily. */
3375 if (dc->reg_last == NULL)
3376 init_deps_reg_last (dc);
3378 if (!dc->readonly)
3380 has_dependence_data.pro = NULL;
3381 /* Initialize empty dep context with information about PRED. */
3382 advance_deps_context (dc, pred);
3383 dc->readonly = 1;
3386 has_dependence_data.where = DEPS_IN_NOWHERE;
3387 has_dependence_data.pro = pred;
3388 has_dependence_data.con = EXPR_VINSN (expr);
3389 has_dependence_data.dc = dc;
3391 sel_clear_has_dependence ();
3393 /* Now catch all dependencies that would be generated between PRED and
3394 INSN. */
3395 setup_has_dependence_sched_deps_info ();
3396 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3397 has_dependence_data.dc = NULL;
3399 /* When a barrier was found, set DEPS_IN_INSN bits. */
3400 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3401 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3402 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3403 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3405 /* Do not allow stores to memory to move through checks. Currently
3406 we don't move this to sched-deps.c as the check doesn't have
3407 obvious places to which this dependence can be attached.
3408 FIMXE: this should go to a hook. */
3409 if (EXPR_LHS (expr)
3410 && MEM_P (EXPR_LHS (expr))
3411 && sel_insn_is_speculation_check (pred))
3412 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3414 *has_dep_pp = has_dependence_data.has_dep_p;
3415 ds = 0;
3416 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3417 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3418 NULL_RTX, NULL_RTX);
3420 return ds;
3424 /* Dependence hooks implementation that checks dependence latency constraints
3425 on the insns being scheduled. The entry point for these routines is
3426 tick_check_p predicate. */
3428 static struct
3430 /* An expr we are currently checking. */
3431 expr_t expr;
3433 /* A minimal cycle for its scheduling. */
3434 int cycle;
3436 /* Whether we have seen a true dependence while checking. */
3437 bool seen_true_dep_p;
3438 } tick_check_data;
3440 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3441 on PRO with status DS and weight DW. */
3442 static void
3443 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3445 expr_t con_expr = tick_check_data.expr;
3446 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3448 if (con_insn != pro_insn)
3450 enum reg_note dt;
3451 int tick;
3453 if (/* PROducer was removed from above due to pipelining. */
3454 !INSN_IN_STREAM_P (pro_insn)
3455 /* Or PROducer was originally on the next iteration regarding the
3456 CONsumer. */
3457 || (INSN_SCHED_TIMES (pro_insn)
3458 - EXPR_SCHED_TIMES (con_expr)) > 1)
3459 /* Don't count this dependence. */
3460 return;
3462 dt = ds_to_dt (ds);
3463 if (dt == REG_DEP_TRUE)
3464 tick_check_data.seen_true_dep_p = true;
3466 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3469 dep_def _dep, *dep = &_dep;
3471 init_dep (dep, pro_insn, con_insn, dt);
3473 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3476 /* When there are several kinds of dependencies between pro and con,
3477 only REG_DEP_TRUE should be taken into account. */
3478 if (tick > tick_check_data.cycle
3479 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3480 tick_check_data.cycle = tick;
3484 /* An implementation of note_dep hook. */
3485 static void
3486 tick_check_note_dep (insn_t pro, ds_t ds)
3488 tick_check_dep_with_dw (pro, ds, 0);
3491 /* An implementation of note_mem_dep hook. */
3492 static void
3493 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3495 dw_t dw;
3497 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3498 ? estimate_dep_weak (mem1, mem2)
3499 : 0);
3501 tick_check_dep_with_dw (pro, ds, dw);
3504 /* This structure contains hooks for dependence analysis used when determining
3505 whether an insn is ready for scheduling. */
3506 static struct sched_deps_info_def tick_check_sched_deps_info =
3508 NULL,
3510 NULL,
3511 NULL,
3512 NULL,
3513 NULL,
3514 NULL,
3515 NULL,
3516 haifa_note_reg_set,
3517 haifa_note_reg_clobber,
3518 haifa_note_reg_use,
3519 tick_check_note_mem_dep,
3520 tick_check_note_dep,
3522 0, 0, 0
3525 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3526 scheduled. Return 0 if all data from producers in DC is ready. */
3528 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3530 int cycles_left;
3531 /* Initialize variables. */
3532 tick_check_data.expr = expr;
3533 tick_check_data.cycle = 0;
3534 tick_check_data.seen_true_dep_p = false;
3535 sched_deps_info = &tick_check_sched_deps_info;
3537 gcc_assert (!dc->readonly);
3538 dc->readonly = 1;
3539 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3540 dc->readonly = 0;
3542 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3544 return cycles_left >= 0 ? cycles_left : 0;
3548 /* Functions to work with insns. */
3550 /* Returns true if LHS of INSN is the same as DEST of an insn
3551 being moved. */
3552 bool
3553 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3555 rtx lhs = INSN_LHS (insn);
3557 if (lhs == NULL || dest == NULL)
3558 return false;
3560 return rtx_equal_p (lhs, dest);
3563 /* Return s_i_d entry of INSN. Callable from debugger. */
3564 sel_insn_data_def
3565 insn_sid (insn_t insn)
3567 return *SID (insn);
3570 /* True when INSN is a speculative check. We can tell this by looking
3571 at the data structures of the selective scheduler, not by examining
3572 the pattern. */
3573 bool
3574 sel_insn_is_speculation_check (rtx insn)
3576 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3579 /* Extracts machine mode MODE and destination location DST_LOC
3580 for given INSN. */
3581 void
3582 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3584 rtx pat = PATTERN (insn);
3586 gcc_assert (dst_loc);
3587 gcc_assert (GET_CODE (pat) == SET);
3589 *dst_loc = SET_DEST (pat);
3591 gcc_assert (*dst_loc);
3592 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3594 if (mode)
3595 *mode = GET_MODE (*dst_loc);
3598 /* Returns true when moving through JUMP will result in bookkeeping
3599 creation. */
3600 bool
3601 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3603 insn_t succ;
3604 succ_iterator si;
3606 FOR_EACH_SUCC (succ, si, jump)
3607 if (sel_num_cfg_preds_gt_1 (succ))
3608 return true;
3610 return false;
3613 /* Return 'true' if INSN is the only one in its basic block. */
3614 static bool
3615 insn_is_the_only_one_in_bb_p (insn_t insn)
3617 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3620 #ifdef ENABLE_CHECKING
3621 /* Check that the region we're scheduling still has at most one
3622 backedge. */
3623 static void
3624 verify_backedges (void)
3626 if (pipelining_p)
3628 int i, n = 0;
3629 edge e;
3630 edge_iterator ei;
3632 for (i = 0; i < current_nr_blocks; i++)
3633 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3634 if (in_current_region_p (e->dest)
3635 && BLOCK_TO_BB (e->dest->index) < i)
3636 n++;
3638 gcc_assert (n <= 1);
3641 #endif
3644 /* Functions to work with control flow. */
3646 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3647 are sorted in topological order (it might have been invalidated by
3648 redirecting an edge). */
3649 static void
3650 sel_recompute_toporder (void)
3652 int i, n, rgn;
3653 int *postorder, n_blocks;
3655 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3656 n_blocks = post_order_compute (postorder, false, false);
3658 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3659 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3660 if (CONTAINING_RGN (postorder[i]) == rgn)
3662 BLOCK_TO_BB (postorder[i]) = n;
3663 BB_TO_BLOCK (n) = postorder[i];
3664 n++;
3667 /* Assert that we updated info for all blocks. We may miss some blocks if
3668 this function is called when redirecting an edge made a block
3669 unreachable, but that block is not deleted yet. */
3670 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3673 /* Tidy the possibly empty block BB. */
3674 static bool
3675 maybe_tidy_empty_bb (basic_block bb)
3677 basic_block succ_bb, pred_bb, note_bb;
3678 vec<basic_block> dom_bbs;
3679 edge e;
3680 edge_iterator ei;
3681 bool rescan_p;
3683 /* Keep empty bb only if this block immediately precedes EXIT and
3684 has incoming non-fallthrough edge, or it has no predecessors or
3685 successors. Otherwise remove it. */
3686 if (!sel_bb_empty_p (bb)
3687 || (single_succ_p (bb)
3688 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3689 && (!single_pred_p (bb)
3690 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3691 || EDGE_COUNT (bb->preds) == 0
3692 || EDGE_COUNT (bb->succs) == 0)
3693 return false;
3695 /* Do not attempt to redirect complex edges. */
3696 FOR_EACH_EDGE (e, ei, bb->preds)
3697 if (e->flags & EDGE_COMPLEX)
3698 return false;
3699 else if (e->flags & EDGE_FALLTHRU)
3701 rtx note;
3702 /* If prev bb ends with asm goto, see if any of the
3703 ASM_OPERANDS_LABELs don't point to the fallthru
3704 label. Do not attempt to redirect it in that case. */
3705 if (JUMP_P (BB_END (e->src))
3706 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3708 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3710 for (i = 0; i < n; ++i)
3711 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3712 return false;
3716 free_data_sets (bb);
3718 /* Do not delete BB if it has more than one successor.
3719 That can occur when we moving a jump. */
3720 if (!single_succ_p (bb))
3722 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3723 sel_merge_blocks (bb->prev_bb, bb);
3724 return true;
3727 succ_bb = single_succ (bb);
3728 rescan_p = true;
3729 pred_bb = NULL;
3730 dom_bbs.create (0);
3732 /* Save a pred/succ from the current region to attach the notes to. */
3733 note_bb = NULL;
3734 FOR_EACH_EDGE (e, ei, bb->preds)
3735 if (in_current_region_p (e->src))
3737 note_bb = e->src;
3738 break;
3740 if (note_bb == NULL)
3741 note_bb = succ_bb;
3743 /* Redirect all non-fallthru edges to the next bb. */
3744 while (rescan_p)
3746 rescan_p = false;
3748 FOR_EACH_EDGE (e, ei, bb->preds)
3750 pred_bb = e->src;
3752 if (!(e->flags & EDGE_FALLTHRU))
3754 /* We can not invalidate computed topological order by moving
3755 the edge destination block (E->SUCC) along a fallthru edge.
3757 We will update dominators here only when we'll get
3758 an unreachable block when redirecting, otherwise
3759 sel_redirect_edge_and_branch will take care of it. */
3760 if (e->dest != bb
3761 && single_pred_p (e->dest))
3762 dom_bbs.safe_push (e->dest);
3763 sel_redirect_edge_and_branch (e, succ_bb);
3764 rescan_p = true;
3765 break;
3767 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3768 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3769 still have to adjust it. */
3770 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3772 /* If possible, try to remove the unneeded conditional jump. */
3773 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3774 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3776 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3777 tidy_fallthru_edge (e);
3779 else
3780 sel_redirect_edge_and_branch (e, succ_bb);
3781 rescan_p = true;
3782 break;
3787 if (can_merge_blocks_p (bb->prev_bb, bb))
3788 sel_merge_blocks (bb->prev_bb, bb);
3789 else
3791 /* This is a block without fallthru predecessor. Just delete it. */
3792 gcc_assert (note_bb);
3793 move_bb_info (note_bb, bb);
3794 remove_empty_bb (bb, true);
3797 if (!dom_bbs.is_empty ())
3799 dom_bbs.safe_push (succ_bb);
3800 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3801 dom_bbs.release ();
3804 return true;
3807 /* Tidy the control flow after we have removed original insn from
3808 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3809 is true, also try to optimize control flow on non-empty blocks. */
3810 bool
3811 tidy_control_flow (basic_block xbb, bool full_tidying)
3813 bool changed = true;
3814 insn_t first, last;
3816 /* First check whether XBB is empty. */
3817 changed = maybe_tidy_empty_bb (xbb);
3818 if (changed || !full_tidying)
3819 return changed;
3821 /* Check if there is a unnecessary jump after insn left. */
3822 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3823 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3824 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3826 if (sel_remove_insn (BB_END (xbb), false, false))
3827 return true;
3828 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3831 first = sel_bb_head (xbb);
3832 last = sel_bb_end (xbb);
3833 if (MAY_HAVE_DEBUG_INSNS)
3835 if (first != last && DEBUG_INSN_P (first))
3837 first = NEXT_INSN (first);
3838 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3840 if (first != last && DEBUG_INSN_P (last))
3842 last = PREV_INSN (last);
3843 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3845 /* Check if there is an unnecessary jump in previous basic block leading
3846 to next basic block left after removing INSN from stream.
3847 If it is so, remove that jump and redirect edge to current
3848 basic block (where there was INSN before deletion). This way
3849 when NOP will be deleted several instructions later with its
3850 basic block we will not get a jump to next instruction, which
3851 can be harmful. */
3852 if (first == last
3853 && !sel_bb_empty_p (xbb)
3854 && INSN_NOP_P (last)
3855 /* Flow goes fallthru from current block to the next. */
3856 && EDGE_COUNT (xbb->succs) == 1
3857 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3858 /* When successor is an EXIT block, it may not be the next block. */
3859 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3860 /* And unconditional jump in previous basic block leads to
3861 next basic block of XBB and this jump can be safely removed. */
3862 && in_current_region_p (xbb->prev_bb)
3863 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3864 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3865 /* Also this jump is not at the scheduling boundary. */
3866 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3868 bool recompute_toporder_p;
3869 /* Clear data structures of jump - jump itself will be removed
3870 by sel_redirect_edge_and_branch. */
3871 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3872 recompute_toporder_p
3873 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3875 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3877 /* It can turn out that after removing unused jump, basic block
3878 that contained that jump, becomes empty too. In such case
3879 remove it too. */
3880 if (sel_bb_empty_p (xbb->prev_bb))
3881 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3882 if (recompute_toporder_p)
3883 sel_recompute_toporder ();
3886 #ifdef ENABLE_CHECKING
3887 verify_backedges ();
3888 verify_dominators (CDI_DOMINATORS);
3889 #endif
3891 return changed;
3894 /* Purge meaningless empty blocks in the middle of a region. */
3895 void
3896 purge_empty_blocks (void)
3898 int i;
3900 /* Do not attempt to delete the first basic block in the region. */
3901 for (i = 1; i < current_nr_blocks; )
3903 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3905 if (maybe_tidy_empty_bb (b))
3906 continue;
3908 i++;
3912 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3913 do not delete insn's data, because it will be later re-emitted.
3914 Return true if we have removed some blocks afterwards. */
3915 bool
3916 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3918 basic_block bb = BLOCK_FOR_INSN (insn);
3920 gcc_assert (INSN_IN_STREAM_P (insn));
3922 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3924 expr_t expr;
3925 av_set_iterator i;
3927 /* When we remove a debug insn that is head of a BB, it remains
3928 in the AV_SET of the block, but it shouldn't. */
3929 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3930 if (EXPR_INSN_RTX (expr) == insn)
3932 av_set_iter_remove (&i);
3933 break;
3937 if (only_disconnect)
3938 remove_insn (insn);
3939 else
3941 delete_insn (insn);
3942 clear_expr (INSN_EXPR (insn));
3945 /* It is necessary to NULL these fields in case we are going to re-insert
3946 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3947 case, but also for NOPs that we will return to the nop pool. */
3948 SET_PREV_INSN (insn) = NULL_RTX;
3949 SET_NEXT_INSN (insn) = NULL_RTX;
3950 set_block_for_insn (insn, NULL);
3952 return tidy_control_flow (bb, full_tidying);
3955 /* Estimate number of the insns in BB. */
3956 static int
3957 sel_estimate_number_of_insns (basic_block bb)
3959 int res = 0;
3960 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3962 for (; insn != next_tail; insn = NEXT_INSN (insn))
3963 if (NONDEBUG_INSN_P (insn))
3964 res++;
3966 return res;
3969 /* We don't need separate luids for notes or labels. */
3970 static int
3971 sel_luid_for_non_insn (rtx x)
3973 gcc_assert (NOTE_P (x) || LABEL_P (x));
3975 return -1;
3978 /* Find the proper seqno for inserting at INSN by successors.
3979 Return -1 if no successors with positive seqno exist. */
3980 static int
3981 get_seqno_by_succs (rtx insn)
3983 basic_block bb = BLOCK_FOR_INSN (insn);
3984 rtx tmp = insn, end = BB_END (bb);
3985 int seqno;
3986 insn_t succ = NULL;
3987 succ_iterator si;
3989 while (tmp != end)
3991 tmp = NEXT_INSN (tmp);
3992 if (INSN_P (tmp))
3993 return INSN_SEQNO (tmp);
3996 seqno = INT_MAX;
3998 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
3999 if (INSN_SEQNO (succ) > 0)
4000 seqno = MIN (seqno, INSN_SEQNO (succ));
4002 if (seqno == INT_MAX)
4003 return -1;
4005 return seqno;
4008 /* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4009 seqno in corner cases. */
4010 static int
4011 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4013 int seqno;
4015 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4017 if (!sel_bb_head_p (insn))
4018 seqno = INSN_SEQNO (PREV_INSN (insn));
4019 else
4021 basic_block bb = BLOCK_FOR_INSN (insn);
4023 if (single_pred_p (bb)
4024 && !in_current_region_p (single_pred (bb)))
4026 /* We can have preds outside a region when splitting edges
4027 for pipelining of an outer loop. Use succ instead.
4028 There should be only one of them. */
4029 insn_t succ = NULL;
4030 succ_iterator si;
4031 bool first = true;
4033 gcc_assert (flag_sel_sched_pipelining_outer_loops
4034 && current_loop_nest);
4035 FOR_EACH_SUCC_1 (succ, si, insn,
4036 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4038 gcc_assert (first);
4039 first = false;
4042 gcc_assert (succ != NULL);
4043 seqno = INSN_SEQNO (succ);
4045 else
4047 insn_t *preds;
4048 int n;
4050 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4052 gcc_assert (n > 0);
4053 /* For one predecessor, use simple method. */
4054 if (n == 1)
4055 seqno = INSN_SEQNO (preds[0]);
4056 else
4057 seqno = get_seqno_by_preds (insn);
4059 free (preds);
4063 /* We were unable to find a good seqno among preds. */
4064 if (seqno < 0)
4065 seqno = get_seqno_by_succs (insn);
4067 if (seqno < 0)
4069 /* The only case where this could be here legally is that the only
4070 unscheduled insn was a conditional jump that got removed and turned
4071 into this unconditional one. Initialize from the old seqno
4072 of that jump passed down to here. */
4073 seqno = old_seqno;
4076 gcc_assert (seqno >= 0);
4077 return seqno;
4080 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4081 with positive seqno exist. */
4083 get_seqno_by_preds (rtx insn)
4085 basic_block bb = BLOCK_FOR_INSN (insn);
4086 rtx tmp = insn, head = BB_HEAD (bb);
4087 insn_t *preds;
4088 int n, i, seqno;
4090 while (tmp != head)
4092 tmp = PREV_INSN (tmp);
4093 if (INSN_P (tmp))
4094 return INSN_SEQNO (tmp);
4097 cfg_preds (bb, &preds, &n);
4098 for (i = 0, seqno = -1; i < n; i++)
4099 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4101 return seqno;
4106 /* Extend pass-scope data structures for basic blocks. */
4107 void
4108 sel_extend_global_bb_info (void)
4110 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4113 /* Extend region-scope data structures for basic blocks. */
4114 static void
4115 extend_region_bb_info (void)
4117 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4120 /* Extend all data structures to fit for all basic blocks. */
4121 static void
4122 extend_bb_info (void)
4124 sel_extend_global_bb_info ();
4125 extend_region_bb_info ();
4128 /* Finalize pass-scope data structures for basic blocks. */
4129 void
4130 sel_finish_global_bb_info (void)
4132 sel_global_bb_info.release ();
4135 /* Finalize region-scope data structures for basic blocks. */
4136 static void
4137 finish_region_bb_info (void)
4139 sel_region_bb_info.release ();
4143 /* Data for each insn in current region. */
4144 vec<sel_insn_data_def> s_i_d = vNULL;
4146 /* Extend data structures for insns from current region. */
4147 static void
4148 extend_insn_data (void)
4150 int reserve;
4152 sched_extend_target ();
4153 sched_deps_init (false);
4155 /* Extend data structures for insns from current region. */
4156 reserve = (sched_max_luid + 1 - s_i_d.length ());
4157 if (reserve > 0 && ! s_i_d.space (reserve))
4159 int size;
4161 if (sched_max_luid / 2 > 1024)
4162 size = sched_max_luid + 1024;
4163 else
4164 size = 3 * sched_max_luid / 2;
4167 s_i_d.safe_grow_cleared (size);
4171 /* Finalize data structures for insns from current region. */
4172 static void
4173 finish_insns (void)
4175 unsigned i;
4177 /* Clear here all dependence contexts that may have left from insns that were
4178 removed during the scheduling. */
4179 for (i = 0; i < s_i_d.length (); i++)
4181 sel_insn_data_def *sid_entry = &s_i_d[i];
4183 if (sid_entry->live)
4184 return_regset_to_pool (sid_entry->live);
4185 if (sid_entry->analyzed_deps)
4187 BITMAP_FREE (sid_entry->analyzed_deps);
4188 BITMAP_FREE (sid_entry->found_deps);
4189 htab_delete (sid_entry->transformed_insns);
4190 free_deps (&sid_entry->deps_context);
4192 if (EXPR_VINSN (&sid_entry->expr))
4194 clear_expr (&sid_entry->expr);
4196 /* Also, clear CANT_MOVE bit here, because we really don't want it
4197 to be passed to the next region. */
4198 CANT_MOVE_BY_LUID (i) = 0;
4202 s_i_d.release ();
4205 /* A proxy to pass initialization data to init_insn (). */
4206 static sel_insn_data_def _insn_init_ssid;
4207 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4209 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4210 static bool insn_init_create_new_vinsn_p;
4212 /* Set all necessary data for initialization of the new insn[s]. */
4213 static expr_t
4214 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4216 expr_t x = &insn_init_ssid->expr;
4218 copy_expr_onside (x, expr);
4219 if (vi != NULL)
4221 insn_init_create_new_vinsn_p = false;
4222 change_vinsn_in_expr (x, vi);
4224 else
4225 insn_init_create_new_vinsn_p = true;
4227 insn_init_ssid->seqno = seqno;
4228 return x;
4231 /* Init data for INSN. */
4232 static void
4233 init_insn_data (insn_t insn)
4235 expr_t expr;
4236 sel_insn_data_t ssid = insn_init_ssid;
4238 /* The fields mentioned below are special and hence are not being
4239 propagated to the new insns. */
4240 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4241 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4242 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4244 expr = INSN_EXPR (insn);
4245 copy_expr (expr, &ssid->expr);
4246 prepare_insn_expr (insn, ssid->seqno);
4248 if (insn_init_create_new_vinsn_p)
4249 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4251 if (first_time_insn_init (insn))
4252 init_first_time_insn_data (insn);
4255 /* This is used to initialize spurious jumps generated by
4256 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4257 in corner cases within get_seqno_for_a_jump. */
4258 static void
4259 init_simplejump_data (insn_t insn, int old_seqno)
4261 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4262 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4263 vNULL, true, false, false,
4264 false, true);
4265 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4266 init_first_time_insn_data (insn);
4269 /* Perform deferred initialization of insns. This is used to process
4270 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4271 for initializing simplejumps in init_simplejump_data. */
4272 static void
4273 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4275 /* We create data structures for bb when the first insn is emitted in it. */
4276 if (INSN_P (insn)
4277 && INSN_IN_STREAM_P (insn)
4278 && insn_is_the_only_one_in_bb_p (insn))
4280 extend_bb_info ();
4281 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4284 if (flags & INSN_INIT_TODO_LUID)
4286 sched_extend_luids ();
4287 sched_init_insn_luid (insn);
4290 if (flags & INSN_INIT_TODO_SSID)
4292 extend_insn_data ();
4293 init_insn_data (insn);
4294 clear_expr (&insn_init_ssid->expr);
4297 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4299 extend_insn_data ();
4300 init_simplejump_data (insn, old_seqno);
4303 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4304 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4308 /* Functions to init/finish work with lv sets. */
4310 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4311 static void
4312 init_lv_set (basic_block bb)
4314 gcc_assert (!BB_LV_SET_VALID_P (bb));
4316 BB_LV_SET (bb) = get_regset_from_pool ();
4317 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4318 BB_LV_SET_VALID_P (bb) = true;
4321 /* Copy liveness information to BB from FROM_BB. */
4322 static void
4323 copy_lv_set_from (basic_block bb, basic_block from_bb)
4325 gcc_assert (!BB_LV_SET_VALID_P (bb));
4327 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4328 BB_LV_SET_VALID_P (bb) = true;
4331 /* Initialize lv set of all bb headers. */
4332 void
4333 init_lv_sets (void)
4335 basic_block bb;
4337 /* Initialize of LV sets. */
4338 FOR_EACH_BB_FN (bb, cfun)
4339 init_lv_set (bb);
4341 /* Don't forget EXIT_BLOCK. */
4342 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4345 /* Release lv set of HEAD. */
4346 static void
4347 free_lv_set (basic_block bb)
4349 gcc_assert (BB_LV_SET (bb) != NULL);
4351 return_regset_to_pool (BB_LV_SET (bb));
4352 BB_LV_SET (bb) = NULL;
4353 BB_LV_SET_VALID_P (bb) = false;
4356 /* Finalize lv sets of all bb headers. */
4357 void
4358 free_lv_sets (void)
4360 basic_block bb;
4362 /* Don't forget EXIT_BLOCK. */
4363 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4365 /* Free LV sets. */
4366 FOR_EACH_BB_FN (bb, cfun)
4367 if (BB_LV_SET (bb))
4368 free_lv_set (bb);
4371 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4372 compute_av() processes BB. This function is called when creating new basic
4373 blocks, as well as for blocks (either new or existing) where new jumps are
4374 created when the control flow is being updated. */
4375 static void
4376 invalidate_av_set (basic_block bb)
4378 BB_AV_LEVEL (bb) = -1;
4381 /* Create initial data sets for BB (they will be invalid). */
4382 static void
4383 create_initial_data_sets (basic_block bb)
4385 if (BB_LV_SET (bb))
4386 BB_LV_SET_VALID_P (bb) = false;
4387 else
4388 BB_LV_SET (bb) = get_regset_from_pool ();
4389 invalidate_av_set (bb);
4392 /* Free av set of BB. */
4393 static void
4394 free_av_set (basic_block bb)
4396 av_set_clear (&BB_AV_SET (bb));
4397 BB_AV_LEVEL (bb) = 0;
4400 /* Free data sets of BB. */
4401 void
4402 free_data_sets (basic_block bb)
4404 free_lv_set (bb);
4405 free_av_set (bb);
4408 /* Exchange lv sets of TO and FROM. */
4409 static void
4410 exchange_lv_sets (basic_block to, basic_block from)
4413 regset to_lv_set = BB_LV_SET (to);
4415 BB_LV_SET (to) = BB_LV_SET (from);
4416 BB_LV_SET (from) = to_lv_set;
4420 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4422 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4423 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4428 /* Exchange av sets of TO and FROM. */
4429 static void
4430 exchange_av_sets (basic_block to, basic_block from)
4433 av_set_t to_av_set = BB_AV_SET (to);
4435 BB_AV_SET (to) = BB_AV_SET (from);
4436 BB_AV_SET (from) = to_av_set;
4440 int to_av_level = BB_AV_LEVEL (to);
4442 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4443 BB_AV_LEVEL (from) = to_av_level;
4447 /* Exchange data sets of TO and FROM. */
4448 void
4449 exchange_data_sets (basic_block to, basic_block from)
4451 exchange_lv_sets (to, from);
4452 exchange_av_sets (to, from);
4455 /* Copy data sets of FROM to TO. */
4456 void
4457 copy_data_sets (basic_block to, basic_block from)
4459 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4460 gcc_assert (BB_AV_SET (to) == NULL);
4462 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4463 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4465 if (BB_AV_SET_VALID_P (from))
4467 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4469 if (BB_LV_SET_VALID_P (from))
4471 gcc_assert (BB_LV_SET (to) != NULL);
4472 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4476 /* Return an av set for INSN, if any. */
4477 av_set_t
4478 get_av_set (insn_t insn)
4480 av_set_t av_set;
4482 gcc_assert (AV_SET_VALID_P (insn));
4484 if (sel_bb_head_p (insn))
4485 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4486 else
4487 av_set = NULL;
4489 return av_set;
4492 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4494 get_av_level (insn_t insn)
4496 int av_level;
4498 gcc_assert (INSN_P (insn));
4500 if (sel_bb_head_p (insn))
4501 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4502 else
4503 av_level = INSN_WS_LEVEL (insn);
4505 return av_level;
4510 /* Variables to work with control-flow graph. */
4512 /* The basic block that already has been processed by the sched_data_update (),
4513 but hasn't been in sel_add_bb () yet. */
4514 static vec<basic_block>
4515 last_added_blocks = vNULL;
4517 /* A pool for allocating successor infos. */
4518 static struct
4520 /* A stack for saving succs_info structures. */
4521 struct succs_info *stack;
4523 /* Its size. */
4524 int size;
4526 /* Top of the stack. */
4527 int top;
4529 /* Maximal value of the top. */
4530 int max_top;
4531 } succs_info_pool;
4533 /* Functions to work with control-flow graph. */
4535 /* Return basic block note of BB. */
4536 rtx_insn *
4537 sel_bb_head (basic_block bb)
4539 rtx_insn *head;
4541 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4543 gcc_assert (exit_insn != NULL_RTX);
4544 head = exit_insn;
4546 else
4548 insn_t note;
4550 note = bb_note (bb);
4551 head = next_nonnote_insn (note);
4553 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4554 head = NULL;
4557 return head;
4560 /* Return true if INSN is a basic block header. */
4561 bool
4562 sel_bb_head_p (insn_t insn)
4564 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4567 /* Return last insn of BB. */
4568 rtx_insn *
4569 sel_bb_end (basic_block bb)
4571 if (sel_bb_empty_p (bb))
4572 return NULL;
4574 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4576 return BB_END (bb);
4579 /* Return true if INSN is the last insn in its basic block. */
4580 bool
4581 sel_bb_end_p (insn_t insn)
4583 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4586 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4587 bool
4588 sel_bb_empty_p (basic_block bb)
4590 return sel_bb_head (bb) == NULL;
4593 /* True when BB belongs to the current scheduling region. */
4594 bool
4595 in_current_region_p (basic_block bb)
4597 if (bb->index < NUM_FIXED_BLOCKS)
4598 return false;
4600 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4603 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4604 basic_block
4605 fallthru_bb_of_jump (rtx jump)
4607 if (!JUMP_P (jump))
4608 return NULL;
4610 if (!any_condjump_p (jump))
4611 return NULL;
4613 /* A basic block that ends with a conditional jump may still have one successor
4614 (and be followed by a barrier), we are not interested. */
4615 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4616 return NULL;
4618 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4621 /* Remove all notes from BB. */
4622 static void
4623 init_bb (basic_block bb)
4625 remove_notes (bb_note (bb), BB_END (bb));
4626 BB_NOTE_LIST (bb) = note_list;
4629 void
4630 sel_init_bbs (bb_vec_t bbs)
4632 const struct sched_scan_info_def ssi =
4634 extend_bb_info, /* extend_bb */
4635 init_bb, /* init_bb */
4636 NULL, /* extend_insn */
4637 NULL /* init_insn */
4640 sched_scan (&ssi, bbs);
4643 /* Restore notes for the whole region. */
4644 static void
4645 sel_restore_notes (void)
4647 int bb;
4648 insn_t insn;
4650 for (bb = 0; bb < current_nr_blocks; bb++)
4652 basic_block first, last;
4654 first = EBB_FIRST_BB (bb);
4655 last = EBB_LAST_BB (bb)->next_bb;
4659 note_list = BB_NOTE_LIST (first);
4660 restore_other_notes (NULL, first);
4661 BB_NOTE_LIST (first) = NULL;
4663 FOR_BB_INSNS (first, insn)
4664 if (NONDEBUG_INSN_P (insn))
4665 reemit_notes (insn);
4667 first = first->next_bb;
4669 while (first != last);
4673 /* Free per-bb data structures. */
4674 void
4675 sel_finish_bbs (void)
4677 sel_restore_notes ();
4679 /* Remove current loop preheader from this loop. */
4680 if (current_loop_nest)
4681 sel_remove_loop_preheader ();
4683 finish_region_bb_info ();
4686 /* Return true if INSN has a single successor of type FLAGS. */
4687 bool
4688 sel_insn_has_single_succ_p (insn_t insn, int flags)
4690 insn_t succ;
4691 succ_iterator si;
4692 bool first_p = true;
4694 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4696 if (first_p)
4697 first_p = false;
4698 else
4699 return false;
4702 return true;
4705 /* Allocate successor's info. */
4706 static struct succs_info *
4707 alloc_succs_info (void)
4709 if (succs_info_pool.top == succs_info_pool.max_top)
4711 int i;
4713 if (++succs_info_pool.max_top >= succs_info_pool.size)
4714 gcc_unreachable ();
4716 i = ++succs_info_pool.top;
4717 succs_info_pool.stack[i].succs_ok.create (10);
4718 succs_info_pool.stack[i].succs_other.create (10);
4719 succs_info_pool.stack[i].probs_ok.create (10);
4721 else
4722 succs_info_pool.top++;
4724 return &succs_info_pool.stack[succs_info_pool.top];
4727 /* Free successor's info. */
4728 void
4729 free_succs_info (struct succs_info * sinfo)
4731 gcc_assert (succs_info_pool.top >= 0
4732 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4733 succs_info_pool.top--;
4735 /* Clear stale info. */
4736 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4737 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4738 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4739 sinfo->all_prob = 0;
4740 sinfo->succs_ok_n = 0;
4741 sinfo->all_succs_n = 0;
4744 /* Compute successor info for INSN. FLAGS are the flags passed
4745 to the FOR_EACH_SUCC_1 iterator. */
4746 struct succs_info *
4747 compute_succs_info (insn_t insn, short flags)
4749 succ_iterator si;
4750 insn_t succ;
4751 struct succs_info *sinfo = alloc_succs_info ();
4753 /* Traverse *all* successors and decide what to do with each. */
4754 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4756 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4757 perform code motion through inner loops. */
4758 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4760 if (current_flags & flags)
4762 sinfo->succs_ok.safe_push (succ);
4763 sinfo->probs_ok.safe_push (
4764 /* FIXME: Improve calculation when skipping
4765 inner loop to exits. */
4766 si.bb_end ? si.e1->probability : REG_BR_PROB_BASE);
4767 sinfo->succs_ok_n++;
4769 else
4770 sinfo->succs_other.safe_push (succ);
4772 /* Compute all_prob. */
4773 if (!si.bb_end)
4774 sinfo->all_prob = REG_BR_PROB_BASE;
4775 else
4776 sinfo->all_prob += si.e1->probability;
4778 sinfo->all_succs_n++;
4781 return sinfo;
4784 /* Return the predecessors of BB in PREDS and their number in N.
4785 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4786 static void
4787 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4789 edge e;
4790 edge_iterator ei;
4792 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4794 FOR_EACH_EDGE (e, ei, bb->preds)
4796 basic_block pred_bb = e->src;
4797 insn_t bb_end = BB_END (pred_bb);
4799 if (!in_current_region_p (pred_bb))
4801 gcc_assert (flag_sel_sched_pipelining_outer_loops
4802 && current_loop_nest);
4803 continue;
4806 if (sel_bb_empty_p (pred_bb))
4807 cfg_preds_1 (pred_bb, preds, n, size);
4808 else
4810 if (*n == *size)
4811 *preds = XRESIZEVEC (insn_t, *preds,
4812 (*size = 2 * *size + 1));
4813 (*preds)[(*n)++] = bb_end;
4817 gcc_assert (*n != 0
4818 || (flag_sel_sched_pipelining_outer_loops
4819 && current_loop_nest));
4822 /* Find all predecessors of BB and record them in PREDS and their number
4823 in N. Empty blocks are skipped, and only normal (forward in-region)
4824 edges are processed. */
4825 static void
4826 cfg_preds (basic_block bb, insn_t **preds, int *n)
4828 int size = 0;
4830 *preds = NULL;
4831 *n = 0;
4832 cfg_preds_1 (bb, preds, n, &size);
4835 /* Returns true if we are moving INSN through join point. */
4836 bool
4837 sel_num_cfg_preds_gt_1 (insn_t insn)
4839 basic_block bb;
4841 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4842 return false;
4844 bb = BLOCK_FOR_INSN (insn);
4846 while (1)
4848 if (EDGE_COUNT (bb->preds) > 1)
4849 return true;
4851 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4852 bb = EDGE_PRED (bb, 0)->src;
4854 if (!sel_bb_empty_p (bb))
4855 break;
4858 return false;
4861 /* Returns true when BB should be the end of an ebb. Adapted from the
4862 code in sched-ebb.c. */
4863 bool
4864 bb_ends_ebb_p (basic_block bb)
4866 basic_block next_bb = bb_next_bb (bb);
4867 edge e;
4869 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4870 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4871 || (LABEL_P (BB_HEAD (next_bb))
4872 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4873 Work around that. */
4874 && !single_pred_p (next_bb)))
4875 return true;
4877 if (!in_current_region_p (next_bb))
4878 return true;
4880 e = find_fallthru_edge (bb->succs);
4881 if (e)
4883 gcc_assert (e->dest == next_bb);
4885 return false;
4888 return true;
4891 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4892 successor of INSN. */
4893 bool
4894 in_same_ebb_p (insn_t insn, insn_t succ)
4896 basic_block ptr = BLOCK_FOR_INSN (insn);
4898 for (;;)
4900 if (ptr == BLOCK_FOR_INSN (succ))
4901 return true;
4903 if (bb_ends_ebb_p (ptr))
4904 return false;
4906 ptr = bb_next_bb (ptr);
4909 gcc_unreachable ();
4910 return false;
4913 /* Recomputes the reverse topological order for the function and
4914 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4915 modified appropriately. */
4916 static void
4917 recompute_rev_top_order (void)
4919 int *postorder;
4920 int n_blocks, i;
4922 if (!rev_top_order_index
4923 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4925 rev_top_order_index_len = last_basic_block_for_fn (cfun);
4926 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4927 rev_top_order_index_len);
4930 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4932 n_blocks = post_order_compute (postorder, true, false);
4933 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4935 /* Build reverse function: for each basic block with BB->INDEX == K
4936 rev_top_order_index[K] is it's reverse topological sort number. */
4937 for (i = 0; i < n_blocks; i++)
4939 gcc_assert (postorder[i] < rev_top_order_index_len);
4940 rev_top_order_index[postorder[i]] = i;
4943 free (postorder);
4946 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4947 void
4948 clear_outdated_rtx_info (basic_block bb)
4950 rtx insn;
4952 FOR_BB_INSNS (bb, insn)
4953 if (INSN_P (insn))
4955 SCHED_GROUP_P (insn) = 0;
4956 INSN_AFTER_STALL_P (insn) = 0;
4957 INSN_SCHED_TIMES (insn) = 0;
4958 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4960 /* We cannot use the changed caches, as previously we could ignore
4961 the LHS dependence due to enabled renaming and transform
4962 the expression, and currently we'll be unable to do this. */
4963 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4967 /* Add BB_NOTE to the pool of available basic block notes. */
4968 static void
4969 return_bb_to_pool (basic_block bb)
4971 rtx note = bb_note (bb);
4973 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4974 && bb->aux == NULL);
4976 /* It turns out that current cfg infrastructure does not support
4977 reuse of basic blocks. Don't bother for now. */
4978 /*bb_note_pool.safe_push (note);*/
4981 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4982 static rtx_note *
4983 get_bb_note_from_pool (void)
4985 if (bb_note_pool.is_empty ())
4986 return NULL;
4987 else
4989 rtx_note *note = bb_note_pool.pop ();
4991 SET_PREV_INSN (note) = NULL_RTX;
4992 SET_NEXT_INSN (note) = NULL_RTX;
4994 return note;
4998 /* Free bb_note_pool. */
4999 void
5000 free_bb_note_pool (void)
5002 bb_note_pool.release ();
5005 /* Setup scheduler pool and successor structure. */
5006 void
5007 alloc_sched_pools (void)
5009 int succs_size;
5011 succs_size = MAX_WS + 1;
5012 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
5013 succs_info_pool.size = succs_size;
5014 succs_info_pool.top = -1;
5015 succs_info_pool.max_top = -1;
5017 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
5018 sizeof (struct _list_node), 500);
5021 /* Free the pools. */
5022 void
5023 free_sched_pools (void)
5025 int i;
5027 free_alloc_pool (sched_lists_pool);
5028 gcc_assert (succs_info_pool.top == -1);
5029 for (i = 0; i <= succs_info_pool.max_top; i++)
5031 succs_info_pool.stack[i].succs_ok.release ();
5032 succs_info_pool.stack[i].succs_other.release ();
5033 succs_info_pool.stack[i].probs_ok.release ();
5035 free (succs_info_pool.stack);
5039 /* Returns a position in RGN where BB can be inserted retaining
5040 topological order. */
5041 static int
5042 find_place_to_insert_bb (basic_block bb, int rgn)
5044 bool has_preds_outside_rgn = false;
5045 edge e;
5046 edge_iterator ei;
5048 /* Find whether we have preds outside the region. */
5049 FOR_EACH_EDGE (e, ei, bb->preds)
5050 if (!in_current_region_p (e->src))
5052 has_preds_outside_rgn = true;
5053 break;
5056 /* Recompute the top order -- needed when we have > 1 pred
5057 and in case we don't have preds outside. */
5058 if (flag_sel_sched_pipelining_outer_loops
5059 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5061 int i, bbi = bb->index, cur_bbi;
5063 recompute_rev_top_order ();
5064 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5066 cur_bbi = BB_TO_BLOCK (i);
5067 if (rev_top_order_index[bbi]
5068 < rev_top_order_index[cur_bbi])
5069 break;
5072 /* We skipped the right block, so we increase i. We accommodate
5073 it for increasing by step later, so we decrease i. */
5074 return (i + 1) - 1;
5076 else if (has_preds_outside_rgn)
5078 /* This is the case when we generate an extra empty block
5079 to serve as region head during pipelining. */
5080 e = EDGE_SUCC (bb, 0);
5081 gcc_assert (EDGE_COUNT (bb->succs) == 1
5082 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5083 && (BLOCK_TO_BB (e->dest->index) == 0));
5084 return -1;
5087 /* We don't have preds outside the region. We should have
5088 the only pred, because the multiple preds case comes from
5089 the pipelining of outer loops, and that is handled above.
5090 Just take the bbi of this single pred. */
5091 if (EDGE_COUNT (bb->succs) > 0)
5093 int pred_bbi;
5095 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5097 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5098 return BLOCK_TO_BB (pred_bbi);
5100 else
5101 /* BB has no successors. It is safe to put it in the end. */
5102 return current_nr_blocks - 1;
5105 /* Deletes an empty basic block freeing its data. */
5106 static void
5107 delete_and_free_basic_block (basic_block bb)
5109 gcc_assert (sel_bb_empty_p (bb));
5111 if (BB_LV_SET (bb))
5112 free_lv_set (bb);
5114 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5116 /* Can't assert av_set properties because we use sel_aremove_bb
5117 when removing loop preheader from the region. At the point of
5118 removing the preheader we already have deallocated sel_region_bb_info. */
5119 gcc_assert (BB_LV_SET (bb) == NULL
5120 && !BB_LV_SET_VALID_P (bb)
5121 && BB_AV_LEVEL (bb) == 0
5122 && BB_AV_SET (bb) == NULL);
5124 delete_basic_block (bb);
5127 /* Add BB to the current region and update the region data. */
5128 static void
5129 add_block_to_current_region (basic_block bb)
5131 int i, pos, bbi = -2, rgn;
5133 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5134 bbi = find_place_to_insert_bb (bb, rgn);
5135 bbi += 1;
5136 pos = RGN_BLOCKS (rgn) + bbi;
5138 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5139 && ebb_head[bbi] == pos);
5141 /* Make a place for the new block. */
5142 extend_regions ();
5144 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5145 BLOCK_TO_BB (rgn_bb_table[i])++;
5147 memmove (rgn_bb_table + pos + 1,
5148 rgn_bb_table + pos,
5149 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5151 /* Initialize data for BB. */
5152 rgn_bb_table[pos] = bb->index;
5153 BLOCK_TO_BB (bb->index) = bbi;
5154 CONTAINING_RGN (bb->index) = rgn;
5156 RGN_NR_BLOCKS (rgn)++;
5158 for (i = rgn + 1; i <= nr_regions; i++)
5159 RGN_BLOCKS (i)++;
5162 /* Remove BB from the current region and update the region data. */
5163 static void
5164 remove_bb_from_region (basic_block bb)
5166 int i, pos, bbi = -2, rgn;
5168 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5169 bbi = BLOCK_TO_BB (bb->index);
5170 pos = RGN_BLOCKS (rgn) + bbi;
5172 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5173 && ebb_head[bbi] == pos);
5175 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5176 BLOCK_TO_BB (rgn_bb_table[i])--;
5178 memmove (rgn_bb_table + pos,
5179 rgn_bb_table + pos + 1,
5180 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5182 RGN_NR_BLOCKS (rgn)--;
5183 for (i = rgn + 1; i <= nr_regions; i++)
5184 RGN_BLOCKS (i)--;
5187 /* Add BB to the current region and update all data. If BB is NULL, add all
5188 blocks from last_added_blocks vector. */
5189 static void
5190 sel_add_bb (basic_block bb)
5192 /* Extend luids so that new notes will receive zero luids. */
5193 sched_extend_luids ();
5194 sched_init_bbs ();
5195 sel_init_bbs (last_added_blocks);
5197 /* When bb is passed explicitly, the vector should contain
5198 the only element that equals to bb; otherwise, the vector
5199 should not be NULL. */
5200 gcc_assert (last_added_blocks.exists ());
5202 if (bb != NULL)
5204 gcc_assert (last_added_blocks.length () == 1
5205 && last_added_blocks[0] == bb);
5206 add_block_to_current_region (bb);
5208 /* We associate creating/deleting data sets with the first insn
5209 appearing / disappearing in the bb. */
5210 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5211 create_initial_data_sets (bb);
5213 last_added_blocks.release ();
5215 else
5216 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5218 int i;
5219 basic_block temp_bb = NULL;
5221 for (i = 0;
5222 last_added_blocks.iterate (i, &bb); i++)
5224 add_block_to_current_region (bb);
5225 temp_bb = bb;
5228 /* We need to fetch at least one bb so we know the region
5229 to update. */
5230 gcc_assert (temp_bb != NULL);
5231 bb = temp_bb;
5233 last_added_blocks.release ();
5236 rgn_setup_region (CONTAINING_RGN (bb->index));
5239 /* Remove BB from the current region and update all data.
5240 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5241 static void
5242 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5244 unsigned idx = bb->index;
5246 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5248 remove_bb_from_region (bb);
5249 return_bb_to_pool (bb);
5250 bitmap_clear_bit (blocks_to_reschedule, idx);
5252 if (remove_from_cfg_p)
5254 basic_block succ = single_succ (bb);
5255 delete_and_free_basic_block (bb);
5256 set_immediate_dominator (CDI_DOMINATORS, succ,
5257 recompute_dominator (CDI_DOMINATORS, succ));
5260 rgn_setup_region (CONTAINING_RGN (idx));
5263 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5264 static void
5265 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5267 if (in_current_region_p (merge_bb))
5268 concat_note_lists (BB_NOTE_LIST (empty_bb),
5269 &BB_NOTE_LIST (merge_bb));
5270 BB_NOTE_LIST (empty_bb) = NULL;
5274 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5275 region, but keep it in CFG. */
5276 static void
5277 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5279 /* The block should contain just a note or a label.
5280 We try to check whether it is unused below. */
5281 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5282 || LABEL_P (BB_HEAD (empty_bb)));
5284 /* If basic block has predecessors or successors, redirect them. */
5285 if (remove_from_cfg_p
5286 && (EDGE_COUNT (empty_bb->preds) > 0
5287 || EDGE_COUNT (empty_bb->succs) > 0))
5289 basic_block pred;
5290 basic_block succ;
5292 /* We need to init PRED and SUCC before redirecting edges. */
5293 if (EDGE_COUNT (empty_bb->preds) > 0)
5295 edge e;
5297 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5299 e = EDGE_PRED (empty_bb, 0);
5300 gcc_assert (e->src == empty_bb->prev_bb
5301 && (e->flags & EDGE_FALLTHRU));
5303 pred = empty_bb->prev_bb;
5305 else
5306 pred = NULL;
5308 if (EDGE_COUNT (empty_bb->succs) > 0)
5310 /* We do not check fallthruness here as above, because
5311 after removing a jump the edge may actually be not fallthru. */
5312 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5313 succ = EDGE_SUCC (empty_bb, 0)->dest;
5315 else
5316 succ = NULL;
5318 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5320 edge e = EDGE_PRED (empty_bb, 0);
5322 if (e->flags & EDGE_FALLTHRU)
5323 redirect_edge_succ_nodup (e, succ);
5324 else
5325 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5328 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5330 edge e = EDGE_SUCC (empty_bb, 0);
5332 if (find_edge (pred, e->dest) == NULL)
5333 redirect_edge_pred (e, pred);
5337 /* Finish removing. */
5338 sel_remove_bb (empty_bb, remove_from_cfg_p);
5341 /* An implementation of create_basic_block hook, which additionally updates
5342 per-bb data structures. */
5343 static basic_block
5344 sel_create_basic_block (void *headp, void *endp, basic_block after)
5346 basic_block new_bb;
5347 rtx_note *new_bb_note;
5349 gcc_assert (flag_sel_sched_pipelining_outer_loops
5350 || !last_added_blocks.exists ());
5352 new_bb_note = get_bb_note_from_pool ();
5354 if (new_bb_note == NULL_RTX)
5355 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5356 else
5358 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5359 new_bb_note, after);
5360 new_bb->aux = NULL;
5363 last_added_blocks.safe_push (new_bb);
5365 return new_bb;
5368 /* Implement sched_init_only_bb (). */
5369 static void
5370 sel_init_only_bb (basic_block bb, basic_block after)
5372 gcc_assert (after == NULL);
5374 extend_regions ();
5375 rgn_make_new_region_out_of_new_block (bb);
5378 /* Update the latch when we've splitted or merged it from FROM block to TO.
5379 This should be checked for all outer loops, too. */
5380 static void
5381 change_loops_latches (basic_block from, basic_block to)
5383 gcc_assert (from != to);
5385 if (current_loop_nest)
5387 struct loop *loop;
5389 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5390 if (considered_for_pipelining_p (loop) && loop->latch == from)
5392 gcc_assert (loop == current_loop_nest);
5393 loop->latch = to;
5394 gcc_assert (loop_latch_edge (loop));
5399 /* Splits BB on two basic blocks, adding it to the region and extending
5400 per-bb data structures. Returns the newly created bb. */
5401 static basic_block
5402 sel_split_block (basic_block bb, rtx after)
5404 basic_block new_bb;
5405 insn_t insn;
5407 new_bb = sched_split_block_1 (bb, after);
5408 sel_add_bb (new_bb);
5410 /* This should be called after sel_add_bb, because this uses
5411 CONTAINING_RGN for the new block, which is not yet initialized.
5412 FIXME: this function may be a no-op now. */
5413 change_loops_latches (bb, new_bb);
5415 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5416 FOR_BB_INSNS (new_bb, insn)
5417 if (INSN_P (insn))
5418 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5420 if (sel_bb_empty_p (bb))
5422 gcc_assert (!sel_bb_empty_p (new_bb));
5424 /* NEW_BB has data sets that need to be updated and BB holds
5425 data sets that should be removed. Exchange these data sets
5426 so that we won't lose BB's valid data sets. */
5427 exchange_data_sets (new_bb, bb);
5428 free_data_sets (bb);
5431 if (!sel_bb_empty_p (new_bb)
5432 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5433 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5435 return new_bb;
5438 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5439 Otherwise returns NULL. */
5440 static rtx_insn *
5441 check_for_new_jump (basic_block bb, int prev_max_uid)
5443 rtx_insn *end;
5445 end = sel_bb_end (bb);
5446 if (end && INSN_UID (end) >= prev_max_uid)
5447 return end;
5448 return NULL;
5451 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5452 New means having UID at least equal to PREV_MAX_UID. */
5453 static rtx_insn *
5454 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5456 rtx_insn *jump;
5458 /* Return immediately if no new insns were emitted. */
5459 if (get_max_uid () == prev_max_uid)
5460 return NULL;
5462 /* Now check both blocks for new jumps. It will ever be only one. */
5463 if ((jump = check_for_new_jump (from, prev_max_uid)))
5464 return jump;
5466 if (jump_bb != NULL
5467 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5468 return jump;
5469 return NULL;
5472 /* Splits E and adds the newly created basic block to the current region.
5473 Returns this basic block. */
5474 basic_block
5475 sel_split_edge (edge e)
5477 basic_block new_bb, src, other_bb = NULL;
5478 int prev_max_uid;
5479 rtx_insn *jump;
5481 src = e->src;
5482 prev_max_uid = get_max_uid ();
5483 new_bb = split_edge (e);
5485 if (flag_sel_sched_pipelining_outer_loops
5486 && current_loop_nest)
5488 int i;
5489 basic_block bb;
5491 /* Some of the basic blocks might not have been added to the loop.
5492 Add them here, until this is fixed in force_fallthru. */
5493 for (i = 0;
5494 last_added_blocks.iterate (i, &bb); i++)
5495 if (!bb->loop_father)
5497 add_bb_to_loop (bb, e->dest->loop_father);
5499 gcc_assert (!other_bb && (new_bb->index != bb->index));
5500 other_bb = bb;
5504 /* Add all last_added_blocks to the region. */
5505 sel_add_bb (NULL);
5507 jump = find_new_jump (src, new_bb, prev_max_uid);
5508 if (jump)
5509 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5511 /* Put the correct lv set on this block. */
5512 if (other_bb && !sel_bb_empty_p (other_bb))
5513 compute_live (sel_bb_head (other_bb));
5515 return new_bb;
5518 /* Implement sched_create_empty_bb (). */
5519 static basic_block
5520 sel_create_empty_bb (basic_block after)
5522 basic_block new_bb;
5524 new_bb = sched_create_empty_bb_1 (after);
5526 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5527 later. */
5528 gcc_assert (last_added_blocks.length () == 1
5529 && last_added_blocks[0] == new_bb);
5531 last_added_blocks.release ();
5532 return new_bb;
5535 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5536 will be splitted to insert a check. */
5537 basic_block
5538 sel_create_recovery_block (insn_t orig_insn)
5540 basic_block first_bb, second_bb, recovery_block;
5541 basic_block before_recovery = NULL;
5542 rtx_insn *jump;
5544 first_bb = BLOCK_FOR_INSN (orig_insn);
5545 if (sel_bb_end_p (orig_insn))
5547 /* Avoid introducing an empty block while splitting. */
5548 gcc_assert (single_succ_p (first_bb));
5549 second_bb = single_succ (first_bb);
5551 else
5552 second_bb = sched_split_block (first_bb, orig_insn);
5554 recovery_block = sched_create_recovery_block (&before_recovery);
5555 if (before_recovery)
5556 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5558 gcc_assert (sel_bb_empty_p (recovery_block));
5559 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5560 if (current_loops != NULL)
5561 add_bb_to_loop (recovery_block, first_bb->loop_father);
5563 sel_add_bb (recovery_block);
5565 jump = BB_END (recovery_block);
5566 gcc_assert (sel_bb_head (recovery_block) == jump);
5567 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5569 return recovery_block;
5572 /* Merge basic block B into basic block A. */
5573 static void
5574 sel_merge_blocks (basic_block a, basic_block b)
5576 gcc_assert (sel_bb_empty_p (b)
5577 && EDGE_COUNT (b->preds) == 1
5578 && EDGE_PRED (b, 0)->src == b->prev_bb);
5580 move_bb_info (b->prev_bb, b);
5581 remove_empty_bb (b, false);
5582 merge_blocks (a, b);
5583 change_loops_latches (b, a);
5586 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5587 data structures for possibly created bb and insns. */
5588 void
5589 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5591 basic_block jump_bb, src, orig_dest = e->dest;
5592 int prev_max_uid;
5593 rtx_insn *jump;
5594 int old_seqno = -1;
5596 /* This function is now used only for bookkeeping code creation, where
5597 we'll never get the single pred of orig_dest block and thus will not
5598 hit unreachable blocks when updating dominator info. */
5599 gcc_assert (!sel_bb_empty_p (e->src)
5600 && !single_pred_p (orig_dest));
5601 src = e->src;
5602 prev_max_uid = get_max_uid ();
5603 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5604 when the conditional jump being redirected may become unconditional. */
5605 if (any_condjump_p (BB_END (src))
5606 && INSN_SEQNO (BB_END (src)) >= 0)
5607 old_seqno = INSN_SEQNO (BB_END (src));
5609 jump_bb = redirect_edge_and_branch_force (e, to);
5610 if (jump_bb != NULL)
5611 sel_add_bb (jump_bb);
5613 /* This function could not be used to spoil the loop structure by now,
5614 thus we don't care to update anything. But check it to be sure. */
5615 if (current_loop_nest
5616 && pipelining_p)
5617 gcc_assert (loop_latch_edge (current_loop_nest));
5619 jump = find_new_jump (src, jump_bb, prev_max_uid);
5620 if (jump)
5621 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5622 old_seqno);
5623 set_immediate_dominator (CDI_DOMINATORS, to,
5624 recompute_dominator (CDI_DOMINATORS, to));
5625 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5626 recompute_dominator (CDI_DOMINATORS, orig_dest));
5629 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5630 redirected edge are in reverse topological order. */
5631 bool
5632 sel_redirect_edge_and_branch (edge e, basic_block to)
5634 bool latch_edge_p;
5635 basic_block src, orig_dest = e->dest;
5636 int prev_max_uid;
5637 rtx_insn *jump;
5638 edge redirected;
5639 bool recompute_toporder_p = false;
5640 bool maybe_unreachable = single_pred_p (orig_dest);
5641 int old_seqno = -1;
5643 latch_edge_p = (pipelining_p
5644 && current_loop_nest
5645 && e == loop_latch_edge (current_loop_nest));
5647 src = e->src;
5648 prev_max_uid = get_max_uid ();
5650 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5651 when the conditional jump being redirected may become unconditional. */
5652 if (any_condjump_p (BB_END (src))
5653 && INSN_SEQNO (BB_END (src)) >= 0)
5654 old_seqno = INSN_SEQNO (BB_END (src));
5656 redirected = redirect_edge_and_branch (e, to);
5658 gcc_assert (redirected && !last_added_blocks.exists ());
5660 /* When we've redirected a latch edge, update the header. */
5661 if (latch_edge_p)
5663 current_loop_nest->header = to;
5664 gcc_assert (loop_latch_edge (current_loop_nest));
5667 /* In rare situations, the topological relation between the blocks connected
5668 by the redirected edge can change (see PR42245 for an example). Update
5669 block_to_bb/bb_to_block. */
5670 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5671 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5672 recompute_toporder_p = true;
5674 jump = find_new_jump (src, NULL, prev_max_uid);
5675 if (jump)
5676 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5678 /* Only update dominator info when we don't have unreachable blocks.
5679 Otherwise we'll update in maybe_tidy_empty_bb. */
5680 if (!maybe_unreachable)
5682 set_immediate_dominator (CDI_DOMINATORS, to,
5683 recompute_dominator (CDI_DOMINATORS, to));
5684 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5685 recompute_dominator (CDI_DOMINATORS, orig_dest));
5687 return recompute_toporder_p;
5690 /* This variable holds the cfg hooks used by the selective scheduler. */
5691 static struct cfg_hooks sel_cfg_hooks;
5693 /* Register sel-sched cfg hooks. */
5694 void
5695 sel_register_cfg_hooks (void)
5697 sched_split_block = sel_split_block;
5699 orig_cfg_hooks = get_cfg_hooks ();
5700 sel_cfg_hooks = orig_cfg_hooks;
5702 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5704 set_cfg_hooks (sel_cfg_hooks);
5706 sched_init_only_bb = sel_init_only_bb;
5707 sched_split_block = sel_split_block;
5708 sched_create_empty_bb = sel_create_empty_bb;
5711 /* Unregister sel-sched cfg hooks. */
5712 void
5713 sel_unregister_cfg_hooks (void)
5715 sched_create_empty_bb = NULL;
5716 sched_split_block = NULL;
5717 sched_init_only_bb = NULL;
5719 set_cfg_hooks (orig_cfg_hooks);
5723 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5724 LABEL is where this jump should be directed. */
5725 rtx_insn *
5726 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5728 rtx_insn *insn_rtx;
5730 gcc_assert (!INSN_P (pattern));
5732 start_sequence ();
5734 if (label == NULL_RTX)
5735 insn_rtx = emit_insn (pattern);
5736 else if (DEBUG_INSN_P (label))
5737 insn_rtx = emit_debug_insn (pattern);
5738 else
5740 insn_rtx = emit_jump_insn (pattern);
5741 JUMP_LABEL (insn_rtx) = label;
5742 ++LABEL_NUSES (label);
5745 end_sequence ();
5747 sched_extend_luids ();
5748 sched_extend_target ();
5749 sched_deps_init (false);
5751 /* Initialize INSN_CODE now. */
5752 recog_memoized (insn_rtx);
5753 return insn_rtx;
5756 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5757 must not be clonable. */
5758 vinsn_t
5759 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5761 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5763 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5764 return vinsn_create (insn_rtx, force_unique_p);
5767 /* Create a copy of INSN_RTX. */
5768 rtx_insn *
5769 create_copy_of_insn_rtx (rtx insn_rtx)
5771 rtx_insn *res;
5772 rtx link;
5774 if (DEBUG_INSN_P (insn_rtx))
5775 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5776 insn_rtx);
5778 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5780 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5781 NULL_RTX);
5783 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5784 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5785 there too, but are supposed to be sticky, so we copy them. */
5786 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5787 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5788 && REG_NOTE_KIND (link) != REG_EQUAL
5789 && REG_NOTE_KIND (link) != REG_EQUIV)
5791 if (GET_CODE (link) == EXPR_LIST)
5792 add_reg_note (res, REG_NOTE_KIND (link),
5793 copy_insn_1 (XEXP (link, 0)));
5794 else
5795 add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5798 return res;
5801 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5802 void
5803 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5805 vinsn_detach (EXPR_VINSN (expr));
5807 EXPR_VINSN (expr) = new_vinsn;
5808 vinsn_attach (new_vinsn);
5811 /* Helpers for global init. */
5812 /* This structure is used to be able to call existing bundling mechanism
5813 and calculate insn priorities. */
5814 static struct haifa_sched_info sched_sel_haifa_sched_info =
5816 NULL, /* init_ready_list */
5817 NULL, /* can_schedule_ready_p */
5818 NULL, /* schedule_more_p */
5819 NULL, /* new_ready */
5820 NULL, /* rgn_rank */
5821 sel_print_insn, /* rgn_print_insn */
5822 contributes_to_priority,
5823 NULL, /* insn_finishes_block_p */
5825 NULL, NULL,
5826 NULL, NULL,
5827 0, 0,
5829 NULL, /* add_remove_insn */
5830 NULL, /* begin_schedule_ready */
5831 NULL, /* begin_move_insn */
5832 NULL, /* advance_target_bb */
5834 NULL,
5835 NULL,
5837 SEL_SCHED | NEW_BBS
5840 /* Setup special insns used in the scheduler. */
5841 void
5842 setup_nop_and_exit_insns (void)
5844 gcc_assert (nop_pattern == NULL_RTX
5845 && exit_insn == NULL_RTX);
5847 nop_pattern = constm1_rtx;
5849 start_sequence ();
5850 emit_insn (nop_pattern);
5851 exit_insn = get_insns ();
5852 end_sequence ();
5853 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5856 /* Free special insns used in the scheduler. */
5857 void
5858 free_nop_and_exit_insns (void)
5860 exit_insn = NULL;
5861 nop_pattern = NULL_RTX;
5864 /* Setup a special vinsn used in new insns initialization. */
5865 void
5866 setup_nop_vinsn (void)
5868 nop_vinsn = vinsn_create (exit_insn, false);
5869 vinsn_attach (nop_vinsn);
5872 /* Free a special vinsn used in new insns initialization. */
5873 void
5874 free_nop_vinsn (void)
5876 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5877 vinsn_detach (nop_vinsn);
5878 nop_vinsn = NULL;
5881 /* Call a set_sched_flags hook. */
5882 void
5883 sel_set_sched_flags (void)
5885 /* ??? This means that set_sched_flags were called, and we decided to
5886 support speculation. However, set_sched_flags also modifies flags
5887 on current_sched_info, doing this only at global init. And we
5888 sometimes change c_s_i later. So put the correct flags again. */
5889 if (spec_info && targetm.sched.set_sched_flags)
5890 targetm.sched.set_sched_flags (spec_info);
5893 /* Setup pointers to global sched info structures. */
5894 void
5895 sel_setup_sched_infos (void)
5897 rgn_setup_common_sched_info ();
5899 memcpy (&sel_common_sched_info, common_sched_info,
5900 sizeof (sel_common_sched_info));
5902 sel_common_sched_info.fix_recovery_cfg = NULL;
5903 sel_common_sched_info.add_block = NULL;
5904 sel_common_sched_info.estimate_number_of_insns
5905 = sel_estimate_number_of_insns;
5906 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5907 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5909 common_sched_info = &sel_common_sched_info;
5911 current_sched_info = &sched_sel_haifa_sched_info;
5912 current_sched_info->sched_max_insns_priority =
5913 get_rgn_sched_max_insns_priority ();
5915 sel_set_sched_flags ();
5919 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5920 *BB_ORD_INDEX after that is increased. */
5921 static void
5922 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5924 RGN_NR_BLOCKS (rgn) += 1;
5925 RGN_DONT_CALC_DEPS (rgn) = 0;
5926 RGN_HAS_REAL_EBB (rgn) = 0;
5927 CONTAINING_RGN (bb->index) = rgn;
5928 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5929 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5930 (*bb_ord_index)++;
5932 /* FIXME: it is true only when not scheduling ebbs. */
5933 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5936 /* Functions to support pipelining of outer loops. */
5938 /* Creates a new empty region and returns it's number. */
5939 static int
5940 sel_create_new_region (void)
5942 int new_rgn_number = nr_regions;
5944 RGN_NR_BLOCKS (new_rgn_number) = 0;
5946 /* FIXME: This will work only when EBBs are not created. */
5947 if (new_rgn_number != 0)
5948 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5949 RGN_NR_BLOCKS (new_rgn_number - 1);
5950 else
5951 RGN_BLOCKS (new_rgn_number) = 0;
5953 /* Set the blocks of the next region so the other functions may
5954 calculate the number of blocks in the region. */
5955 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5956 RGN_NR_BLOCKS (new_rgn_number);
5958 nr_regions++;
5960 return new_rgn_number;
5963 /* If X has a smaller topological sort number than Y, returns -1;
5964 if greater, returns 1. */
5965 static int
5966 bb_top_order_comparator (const void *x, const void *y)
5968 basic_block bb1 = *(const basic_block *) x;
5969 basic_block bb2 = *(const basic_block *) y;
5971 gcc_assert (bb1 == bb2
5972 || rev_top_order_index[bb1->index]
5973 != rev_top_order_index[bb2->index]);
5975 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5976 bbs with greater number should go earlier. */
5977 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5978 return -1;
5979 else
5980 return 1;
5983 /* Create a region for LOOP and return its number. If we don't want
5984 to pipeline LOOP, return -1. */
5985 static int
5986 make_region_from_loop (struct loop *loop)
5988 unsigned int i;
5989 int new_rgn_number = -1;
5990 struct loop *inner;
5992 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5993 int bb_ord_index = 0;
5994 basic_block *loop_blocks;
5995 basic_block preheader_block;
5997 if (loop->num_nodes
5998 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5999 return -1;
6001 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
6002 for (inner = loop->inner; inner; inner = inner->inner)
6003 if (flow_bb_inside_loop_p (inner, loop->latch))
6004 return -1;
6006 loop->ninsns = num_loop_insns (loop);
6007 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
6008 return -1;
6010 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
6012 for (i = 0; i < loop->num_nodes; i++)
6013 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
6015 free (loop_blocks);
6016 return -1;
6019 preheader_block = loop_preheader_edge (loop)->src;
6020 gcc_assert (preheader_block);
6021 gcc_assert (loop_blocks[0] == loop->header);
6023 new_rgn_number = sel_create_new_region ();
6025 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6026 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6028 for (i = 0; i < loop->num_nodes; i++)
6030 /* Add only those blocks that haven't been scheduled in the inner loop.
6031 The exception is the basic blocks with bookkeeping code - they should
6032 be added to the region (and they actually don't belong to the loop
6033 body, but to the region containing that loop body). */
6035 gcc_assert (new_rgn_number >= 0);
6037 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6039 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6040 new_rgn_number);
6041 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6045 free (loop_blocks);
6046 MARK_LOOP_FOR_PIPELINING (loop);
6048 return new_rgn_number;
6051 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6052 void
6053 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6055 unsigned int i;
6056 int new_rgn_number = -1;
6057 basic_block bb;
6059 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6060 int bb_ord_index = 0;
6062 new_rgn_number = sel_create_new_region ();
6064 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6066 gcc_assert (new_rgn_number >= 0);
6068 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6071 vec_free (loop_blocks);
6075 /* Create region(s) from loop nest LOOP, such that inner loops will be
6076 pipelined before outer loops. Returns true when a region for LOOP
6077 is created. */
6078 static bool
6079 make_regions_from_loop_nest (struct loop *loop)
6081 struct loop *cur_loop;
6082 int rgn_number;
6084 /* Traverse all inner nodes of the loop. */
6085 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6086 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6087 return false;
6089 /* At this moment all regular inner loops should have been pipelined.
6090 Try to create a region from this loop. */
6091 rgn_number = make_region_from_loop (loop);
6093 if (rgn_number < 0)
6094 return false;
6096 loop_nests.safe_push (loop);
6097 return true;
6100 /* Initalize data structures needed. */
6101 void
6102 sel_init_pipelining (void)
6104 /* Collect loop information to be used in outer loops pipelining. */
6105 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6106 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6107 | LOOPS_HAVE_RECORDED_EXITS
6108 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6109 current_loop_nest = NULL;
6111 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6112 bitmap_clear (bbs_in_loop_rgns);
6114 recompute_rev_top_order ();
6117 /* Returns a struct loop for region RGN. */
6118 loop_p
6119 get_loop_nest_for_rgn (unsigned int rgn)
6121 /* Regions created with extend_rgns don't have corresponding loop nests,
6122 because they don't represent loops. */
6123 if (rgn < loop_nests.length ())
6124 return loop_nests[rgn];
6125 else
6126 return NULL;
6129 /* True when LOOP was included into pipelining regions. */
6130 bool
6131 considered_for_pipelining_p (struct loop *loop)
6133 if (loop_depth (loop) == 0)
6134 return false;
6136 /* Now, the loop could be too large or irreducible. Check whether its
6137 region is in LOOP_NESTS.
6138 We determine the region number of LOOP as the region number of its
6139 latch. We can't use header here, because this header could be
6140 just removed preheader and it will give us the wrong region number.
6141 Latch can't be used because it could be in the inner loop too. */
6142 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6144 int rgn = CONTAINING_RGN (loop->latch->index);
6146 gcc_assert ((unsigned) rgn < loop_nests.length ());
6147 return true;
6150 return false;
6153 /* Makes regions from the rest of the blocks, after loops are chosen
6154 for pipelining. */
6155 static void
6156 make_regions_from_the_rest (void)
6158 int cur_rgn_blocks;
6159 int *loop_hdr;
6160 int i;
6162 basic_block bb;
6163 edge e;
6164 edge_iterator ei;
6165 int *degree;
6167 /* Index in rgn_bb_table where to start allocating new regions. */
6168 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6170 /* Make regions from all the rest basic blocks - those that don't belong to
6171 any loop or belong to irreducible loops. Prepare the data structures
6172 for extend_rgns. */
6174 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6175 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6176 loop. */
6177 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6178 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6181 /* For each basic block that belongs to some loop assign the number
6182 of innermost loop it belongs to. */
6183 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6184 loop_hdr[i] = -1;
6186 FOR_EACH_BB_FN (bb, cfun)
6188 if (bb->loop_father && !bb->loop_father->num == 0
6189 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6190 loop_hdr[bb->index] = bb->loop_father->num;
6193 /* For each basic block degree is calculated as the number of incoming
6194 edges, that are going out of bbs that are not yet scheduled.
6195 The basic blocks that are scheduled have degree value of zero. */
6196 FOR_EACH_BB_FN (bb, cfun)
6198 degree[bb->index] = 0;
6200 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6202 FOR_EACH_EDGE (e, ei, bb->preds)
6203 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6204 degree[bb->index]++;
6206 else
6207 degree[bb->index] = -1;
6210 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6212 /* Any block that did not end up in a region is placed into a region
6213 by itself. */
6214 FOR_EACH_BB_FN (bb, cfun)
6215 if (degree[bb->index] >= 0)
6217 rgn_bb_table[cur_rgn_blocks] = bb->index;
6218 RGN_NR_BLOCKS (nr_regions) = 1;
6219 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6220 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6221 RGN_HAS_REAL_EBB (nr_regions) = 0;
6222 CONTAINING_RGN (bb->index) = nr_regions++;
6223 BLOCK_TO_BB (bb->index) = 0;
6226 free (degree);
6227 free (loop_hdr);
6230 /* Free data structures used in pipelining of loops. */
6231 void sel_finish_pipelining (void)
6233 struct loop *loop;
6235 /* Release aux fields so we don't free them later by mistake. */
6236 FOR_EACH_LOOP (loop, 0)
6237 loop->aux = NULL;
6239 loop_optimizer_finalize ();
6241 loop_nests.release ();
6243 free (rev_top_order_index);
6244 rev_top_order_index = NULL;
6247 /* This function replaces the find_rgns when
6248 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6249 void
6250 sel_find_rgns (void)
6252 sel_init_pipelining ();
6253 extend_regions ();
6255 if (current_loops)
6257 loop_p loop;
6259 FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6260 ? LI_FROM_INNERMOST
6261 : LI_ONLY_INNERMOST))
6262 make_regions_from_loop_nest (loop);
6265 /* Make regions from all the rest basic blocks and schedule them.
6266 These blocks include blocks that don't belong to any loop or belong
6267 to irreducible loops. */
6268 make_regions_from_the_rest ();
6270 /* We don't need bbs_in_loop_rgns anymore. */
6271 sbitmap_free (bbs_in_loop_rgns);
6272 bbs_in_loop_rgns = NULL;
6275 /* Add the preheader blocks from previous loop to current region taking
6276 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6277 This function is only used with -fsel-sched-pipelining-outer-loops. */
6278 void
6279 sel_add_loop_preheaders (bb_vec_t *bbs)
6281 int i;
6282 basic_block bb;
6283 vec<basic_block> *preheader_blocks
6284 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6286 if (!preheader_blocks)
6287 return;
6289 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6291 bbs->safe_push (bb);
6292 last_added_blocks.safe_push (bb);
6293 sel_add_bb (bb);
6296 vec_free (preheader_blocks);
6299 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6300 Please note that the function should also work when pipelining_p is
6301 false, because it is used when deciding whether we should or should
6302 not reschedule pipelined code. */
6303 bool
6304 sel_is_loop_preheader_p (basic_block bb)
6306 if (current_loop_nest)
6308 struct loop *outer;
6310 if (preheader_removed)
6311 return false;
6313 /* Preheader is the first block in the region. */
6314 if (BLOCK_TO_BB (bb->index) == 0)
6315 return true;
6317 /* We used to find a preheader with the topological information.
6318 Check that the above code is equivalent to what we did before. */
6320 if (in_current_region_p (current_loop_nest->header))
6321 gcc_assert (!(BLOCK_TO_BB (bb->index)
6322 < BLOCK_TO_BB (current_loop_nest->header->index)));
6324 /* Support the situation when the latch block of outer loop
6325 could be from here. */
6326 for (outer = loop_outer (current_loop_nest);
6327 outer;
6328 outer = loop_outer (outer))
6329 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6330 gcc_unreachable ();
6333 return false;
6336 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6337 can be removed, making the corresponding edge fallthrough (assuming that
6338 all basic blocks between JUMP_BB and DEST_BB are empty). */
6339 static bool
6340 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6342 if (!onlyjump_p (BB_END (jump_bb))
6343 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6344 return false;
6346 /* Several outgoing edges, abnormal edge or destination of jump is
6347 not DEST_BB. */
6348 if (EDGE_COUNT (jump_bb->succs) != 1
6349 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6350 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6351 return false;
6353 /* If not anything of the upper. */
6354 return true;
6357 /* Removes the loop preheader from the current region and saves it in
6358 PREHEADER_BLOCKS of the father loop, so they will be added later to
6359 region that represents an outer loop. */
6360 static void
6361 sel_remove_loop_preheader (void)
6363 int i, old_len;
6364 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6365 basic_block bb;
6366 bool all_empty_p = true;
6367 vec<basic_block> *preheader_blocks
6368 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6370 vec_check_alloc (preheader_blocks, 0);
6372 gcc_assert (current_loop_nest);
6373 old_len = preheader_blocks->length ();
6375 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6376 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6378 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6380 /* If the basic block belongs to region, but doesn't belong to
6381 corresponding loop, then it should be a preheader. */
6382 if (sel_is_loop_preheader_p (bb))
6384 preheader_blocks->safe_push (bb);
6385 if (BB_END (bb) != bb_note (bb))
6386 all_empty_p = false;
6390 /* Remove these blocks only after iterating over the whole region. */
6391 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6393 bb = (*preheader_blocks)[i];
6394 sel_remove_bb (bb, false);
6397 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6399 if (!all_empty_p)
6400 /* Immediately create new region from preheader. */
6401 make_region_from_loop_preheader (preheader_blocks);
6402 else
6404 /* If all preheader blocks are empty - dont create new empty region.
6405 Instead, remove them completely. */
6406 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6408 edge e;
6409 edge_iterator ei;
6410 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6412 /* Redirect all incoming edges to next basic block. */
6413 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6415 if (! (e->flags & EDGE_FALLTHRU))
6416 redirect_edge_and_branch (e, bb->next_bb);
6417 else
6418 redirect_edge_succ (e, bb->next_bb);
6420 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6421 delete_and_free_basic_block (bb);
6423 /* Check if after deleting preheader there is a nonconditional
6424 jump in PREV_BB that leads to the next basic block NEXT_BB.
6425 If it is so - delete this jump and clear data sets of its
6426 basic block if it becomes empty. */
6427 if (next_bb->prev_bb == prev_bb
6428 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6429 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6431 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6432 if (BB_END (prev_bb) == bb_note (prev_bb))
6433 free_data_sets (prev_bb);
6436 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6437 recompute_dominator (CDI_DOMINATORS,
6438 next_bb));
6441 vec_free (preheader_blocks);
6443 else
6444 /* Store preheader within the father's loop structure. */
6445 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6446 preheader_blocks);
6449 rtx_insn *VINSN_INSN_RTX (vinsn_t vi)
6451 return safe_as_a <rtx_insn *> (vi->insn_rtx);
6454 rtx& SET_VINSN_INSN_RTX (vinsn_t vi)
6456 return vi->insn_rtx;
6459 rtx_insn *BND_TO (bnd_t bnd)
6461 return safe_as_a <rtx_insn *> (bnd->to);
6464 insn_t& SET_BND_TO (bnd_t bnd)
6466 return bnd->to;
6469 #endif