Allow 2 insns from sched group to issue in same cycle, if no stalls needed.
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blob05fbb31b0eec6db96d6bf3a0058304fb7553cb67
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "insn-codes.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "optabs-tree.h"
32 #include "insn-config.h"
33 #include "gimple-pretty-print.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "cfganal.h"
37 #include "gimplify.h"
38 #include "gimple-iterator.h"
39 #include "gimplify-me.h"
40 #include "tree-cfg.h"
41 #include "tree-dfa.h"
42 #include "domwalk.h"
43 #include "cfgloop.h"
44 #include "tree-data-ref.h"
45 #include "tree-scalar-evolution.h"
46 #include "tree-inline.h"
47 #include "params.h"
49 static unsigned int tree_ssa_phiopt_worker (bool, bool);
50 static bool conditional_replacement (basic_block, basic_block,
51 edge, edge, gphi *, tree, tree);
52 static gphi *factor_out_conditional_conversion (edge, edge, gphi *, tree, tree,
53 gimple *);
54 static int value_replacement (basic_block, basic_block,
55 edge, edge, gimple *, tree, tree);
56 static bool minmax_replacement (basic_block, basic_block,
57 edge, edge, gimple *, tree, tree);
58 static bool abs_replacement (basic_block, basic_block,
59 edge, edge, gimple *, tree, tree);
60 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
61 hash_set<tree> *);
62 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
63 static hash_set<tree> * get_non_trapping ();
64 static void replace_phi_edge_with_variable (basic_block, edge, gimple *, tree);
65 static void hoist_adjacent_loads (basic_block, basic_block,
66 basic_block, basic_block);
67 static bool gate_hoist_loads (void);
69 /* This pass tries to transform conditional stores into unconditional
70 ones, enabling further simplifications with the simpler then and else
71 blocks. In particular it replaces this:
73 bb0:
74 if (cond) goto bb2; else goto bb1;
75 bb1:
76 *p = RHS;
77 bb2:
79 with
81 bb0:
82 if (cond) goto bb1; else goto bb2;
83 bb1:
84 condtmp' = *p;
85 bb2:
86 condtmp = PHI <RHS, condtmp'>
87 *p = condtmp;
89 This transformation can only be done under several constraints,
90 documented below. It also replaces:
92 bb0:
93 if (cond) goto bb2; else goto bb1;
94 bb1:
95 *p = RHS1;
96 goto bb3;
97 bb2:
98 *p = RHS2;
99 bb3:
101 with
103 bb0:
104 if (cond) goto bb3; else goto bb1;
105 bb1:
106 bb3:
107 condtmp = PHI <RHS1, RHS2>
108 *p = condtmp; */
110 static unsigned int
111 tree_ssa_cs_elim (void)
113 unsigned todo;
114 /* ??? We are not interested in loop related info, but the following
115 will create it, ICEing as we didn't init loops with pre-headers.
116 An interfacing issue of find_data_references_in_bb. */
117 loop_optimizer_init (LOOPS_NORMAL);
118 scev_initialize ();
119 todo = tree_ssa_phiopt_worker (true, false);
120 scev_finalize ();
121 loop_optimizer_finalize ();
122 return todo;
125 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
127 static gphi *
128 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
130 gimple_stmt_iterator i;
131 gphi *phi = NULL;
132 if (gimple_seq_singleton_p (seq))
133 return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
134 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
136 gphi *p = as_a <gphi *> (gsi_stmt (i));
137 /* If the PHI arguments are equal then we can skip this PHI. */
138 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
139 gimple_phi_arg_def (p, e1->dest_idx)))
140 continue;
142 /* If we already have a PHI that has the two edge arguments are
143 different, then return it is not a singleton for these PHIs. */
144 if (phi)
145 return NULL;
147 phi = p;
149 return phi;
152 /* The core routine of conditional store replacement and normal
153 phi optimizations. Both share much of the infrastructure in how
154 to match applicable basic block patterns. DO_STORE_ELIM is true
155 when we want to do conditional store replacement, false otherwise.
156 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
157 of diamond control flow patterns, false otherwise. */
158 static unsigned int
159 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
161 basic_block bb;
162 basic_block *bb_order;
163 unsigned n, i;
164 bool cfgchanged = false;
165 hash_set<tree> *nontrap = 0;
167 if (do_store_elim)
168 /* Calculate the set of non-trapping memory accesses. */
169 nontrap = get_non_trapping ();
171 /* Search every basic block for COND_EXPR we may be able to optimize.
173 We walk the blocks in order that guarantees that a block with
174 a single predecessor is processed before the predecessor.
175 This ensures that we collapse inner ifs before visiting the
176 outer ones, and also that we do not try to visit a removed
177 block. */
178 bb_order = single_pred_before_succ_order ();
179 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
181 for (i = 0; i < n; i++)
183 gimple *cond_stmt;
184 gphi *phi;
185 basic_block bb1, bb2;
186 edge e1, e2;
187 tree arg0, arg1;
189 bb = bb_order[i];
191 cond_stmt = last_stmt (bb);
192 /* Check to see if the last statement is a GIMPLE_COND. */
193 if (!cond_stmt
194 || gimple_code (cond_stmt) != GIMPLE_COND)
195 continue;
197 e1 = EDGE_SUCC (bb, 0);
198 bb1 = e1->dest;
199 e2 = EDGE_SUCC (bb, 1);
200 bb2 = e2->dest;
202 /* We cannot do the optimization on abnormal edges. */
203 if ((e1->flags & EDGE_ABNORMAL) != 0
204 || (e2->flags & EDGE_ABNORMAL) != 0)
205 continue;
207 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
208 if (EDGE_COUNT (bb1->succs) == 0
209 || bb2 == NULL
210 || EDGE_COUNT (bb2->succs) == 0)
211 continue;
213 /* Find the bb which is the fall through to the other. */
214 if (EDGE_SUCC (bb1, 0)->dest == bb2)
216 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
218 std::swap (bb1, bb2);
219 std::swap (e1, e2);
221 else if (do_store_elim
222 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
224 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
226 if (!single_succ_p (bb1)
227 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
228 || !single_succ_p (bb2)
229 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
230 || EDGE_COUNT (bb3->preds) != 2)
231 continue;
232 if (cond_if_else_store_replacement (bb1, bb2, bb3))
233 cfgchanged = true;
234 continue;
236 else if (do_hoist_loads
237 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
239 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
241 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
242 && single_succ_p (bb1)
243 && single_succ_p (bb2)
244 && single_pred_p (bb1)
245 && single_pred_p (bb2)
246 && EDGE_COUNT (bb->succs) == 2
247 && EDGE_COUNT (bb3->preds) == 2
248 /* If one edge or the other is dominant, a conditional move
249 is likely to perform worse than the well-predicted branch. */
250 && !predictable_edge_p (EDGE_SUCC (bb, 0))
251 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
252 hoist_adjacent_loads (bb, bb1, bb2, bb3);
253 continue;
255 else
256 continue;
258 e1 = EDGE_SUCC (bb1, 0);
260 /* Make sure that bb1 is just a fall through. */
261 if (!single_succ_p (bb1)
262 || (e1->flags & EDGE_FALLTHRU) == 0)
263 continue;
265 /* Also make sure that bb1 only have one predecessor and that it
266 is bb. */
267 if (!single_pred_p (bb1)
268 || single_pred (bb1) != bb)
269 continue;
271 if (do_store_elim)
273 /* bb1 is the middle block, bb2 the join block, bb the split block,
274 e1 the fallthrough edge from bb1 to bb2. We can't do the
275 optimization if the join block has more than two predecessors. */
276 if (EDGE_COUNT (bb2->preds) > 2)
277 continue;
278 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
279 cfgchanged = true;
281 else
283 gimple_seq phis = phi_nodes (bb2);
284 gimple_stmt_iterator gsi;
285 bool candorest = true;
287 /* Value replacement can work with more than one PHI
288 so try that first. */
289 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
291 phi = as_a <gphi *> (gsi_stmt (gsi));
292 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
293 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
294 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
296 candorest = false;
297 cfgchanged = true;
298 break;
302 if (!candorest)
303 continue;
305 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
306 if (!phi)
307 continue;
309 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
310 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
312 /* Something is wrong if we cannot find the arguments in the PHI
313 node. */
314 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
316 gphi *newphi = factor_out_conditional_conversion (e1, e2, phi,
317 arg0, arg1,
318 cond_stmt);
319 if (newphi != NULL)
321 phi = newphi;
322 /* factor_out_conditional_conversion may create a new PHI in
323 BB2 and eliminate an existing PHI in BB2. Recompute values
324 that may be affected by that change. */
325 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
326 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
327 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
330 /* Do the replacement of conditional if it can be done. */
331 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
332 cfgchanged = true;
333 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
334 cfgchanged = true;
335 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
336 cfgchanged = true;
340 free (bb_order);
342 if (do_store_elim)
343 delete nontrap;
344 /* If the CFG has changed, we should cleanup the CFG. */
345 if (cfgchanged && do_store_elim)
347 /* In cond-store replacement we have added some loads on edges
348 and new VOPS (as we moved the store, and created a load). */
349 gsi_commit_edge_inserts ();
350 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
352 else if (cfgchanged)
353 return TODO_cleanup_cfg;
354 return 0;
357 /* Replace PHI node element whose edge is E in block BB with variable NEW.
358 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
359 is known to have two edges, one of which must reach BB). */
361 static void
362 replace_phi_edge_with_variable (basic_block cond_block,
363 edge e, gimple *phi, tree new_tree)
365 basic_block bb = gimple_bb (phi);
366 basic_block block_to_remove;
367 gimple_stmt_iterator gsi;
369 /* Change the PHI argument to new. */
370 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
372 /* Remove the empty basic block. */
373 if (EDGE_SUCC (cond_block, 0)->dest == bb)
375 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
376 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
377 EDGE_SUCC (cond_block, 0)->probability = profile_probability::always ();
378 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
380 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
382 else
384 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
385 EDGE_SUCC (cond_block, 1)->flags
386 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
387 EDGE_SUCC (cond_block, 1)->probability = profile_probability::always ();
388 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
390 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
392 delete_basic_block (block_to_remove);
394 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
395 gsi = gsi_last_bb (cond_block);
396 gsi_remove (&gsi, true);
398 if (dump_file && (dump_flags & TDF_DETAILS))
399 fprintf (dump_file,
400 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
401 cond_block->index,
402 bb->index);
405 /* PR66726: Factor conversion out of COND_EXPR. If the arguments of the PHI
406 stmt are CONVERT_STMT, factor out the conversion and perform the conversion
407 to the result of PHI stmt. COND_STMT is the controlling predicate.
408 Return the newly-created PHI, if any. */
410 static gphi *
411 factor_out_conditional_conversion (edge e0, edge e1, gphi *phi,
412 tree arg0, tree arg1, gimple *cond_stmt)
414 gimple *arg0_def_stmt = NULL, *arg1_def_stmt = NULL, *new_stmt;
415 tree new_arg0 = NULL_TREE, new_arg1 = NULL_TREE;
416 tree temp, result;
417 gphi *newphi;
418 gimple_stmt_iterator gsi, gsi_for_def;
419 source_location locus = gimple_location (phi);
420 enum tree_code convert_code;
422 /* Handle only PHI statements with two arguments. TODO: If all
423 other arguments to PHI are INTEGER_CST or if their defining
424 statement have the same unary operation, we can handle more
425 than two arguments too. */
426 if (gimple_phi_num_args (phi) != 2)
427 return NULL;
429 /* First canonicalize to simplify tests. */
430 if (TREE_CODE (arg0) != SSA_NAME)
432 std::swap (arg0, arg1);
433 std::swap (e0, e1);
436 if (TREE_CODE (arg0) != SSA_NAME
437 || (TREE_CODE (arg1) != SSA_NAME
438 && TREE_CODE (arg1) != INTEGER_CST))
439 return NULL;
441 /* Check if arg0 is an SSA_NAME and the stmt which defines arg0 is
442 a conversion. */
443 arg0_def_stmt = SSA_NAME_DEF_STMT (arg0);
444 if (!gimple_assign_cast_p (arg0_def_stmt))
445 return NULL;
447 /* Use the RHS as new_arg0. */
448 convert_code = gimple_assign_rhs_code (arg0_def_stmt);
449 new_arg0 = gimple_assign_rhs1 (arg0_def_stmt);
450 if (convert_code == VIEW_CONVERT_EXPR)
452 new_arg0 = TREE_OPERAND (new_arg0, 0);
453 if (!is_gimple_reg_type (TREE_TYPE (new_arg0)))
454 return NULL;
457 if (TREE_CODE (arg1) == SSA_NAME)
459 /* Check if arg1 is an SSA_NAME and the stmt which defines arg1
460 is a conversion. */
461 arg1_def_stmt = SSA_NAME_DEF_STMT (arg1);
462 if (!is_gimple_assign (arg1_def_stmt)
463 || gimple_assign_rhs_code (arg1_def_stmt) != convert_code)
464 return NULL;
466 /* Use the RHS as new_arg1. */
467 new_arg1 = gimple_assign_rhs1 (arg1_def_stmt);
468 if (convert_code == VIEW_CONVERT_EXPR)
469 new_arg1 = TREE_OPERAND (new_arg1, 0);
471 else
473 /* If arg1 is an INTEGER_CST, fold it to new type. */
474 if (INTEGRAL_TYPE_P (TREE_TYPE (new_arg0))
475 && int_fits_type_p (arg1, TREE_TYPE (new_arg0)))
477 if (gimple_assign_cast_p (arg0_def_stmt))
479 /* For the INTEGER_CST case, we are just moving the
480 conversion from one place to another, which can often
481 hurt as the conversion moves further away from the
482 statement that computes the value. So, perform this
483 only if new_arg0 is an operand of COND_STMT, or
484 if arg0_def_stmt is the only non-debug stmt in
485 its basic block, because then it is possible this
486 could enable further optimizations (minmax replacement
487 etc.). See PR71016. */
488 if (new_arg0 != gimple_cond_lhs (cond_stmt)
489 && new_arg0 != gimple_cond_rhs (cond_stmt)
490 && gimple_bb (arg0_def_stmt) == e0->src)
492 gsi = gsi_for_stmt (arg0_def_stmt);
493 gsi_prev_nondebug (&gsi);
494 if (!gsi_end_p (gsi))
495 return NULL;
496 gsi = gsi_for_stmt (arg0_def_stmt);
497 gsi_next_nondebug (&gsi);
498 if (!gsi_end_p (gsi))
499 return NULL;
501 new_arg1 = fold_convert (TREE_TYPE (new_arg0), arg1);
503 else
504 return NULL;
506 else
507 return NULL;
510 /* If arg0/arg1 have > 1 use, then this transformation actually increases
511 the number of expressions evaluated at runtime. */
512 if (!has_single_use (arg0)
513 || (arg1_def_stmt && !has_single_use (arg1)))
514 return NULL;
516 /* If types of new_arg0 and new_arg1 are different bailout. */
517 if (!types_compatible_p (TREE_TYPE (new_arg0), TREE_TYPE (new_arg1)))
518 return NULL;
520 /* Create a new PHI stmt. */
521 result = PHI_RESULT (phi);
522 temp = make_ssa_name (TREE_TYPE (new_arg0), NULL);
523 newphi = create_phi_node (temp, gimple_bb (phi));
525 if (dump_file && (dump_flags & TDF_DETAILS))
527 fprintf (dump_file, "PHI ");
528 print_generic_expr (dump_file, gimple_phi_result (phi));
529 fprintf (dump_file,
530 " changed to factor conversion out from COND_EXPR.\n");
531 fprintf (dump_file, "New stmt with CAST that defines ");
532 print_generic_expr (dump_file, result);
533 fprintf (dump_file, ".\n");
536 /* Remove the old cast(s) that has single use. */
537 gsi_for_def = gsi_for_stmt (arg0_def_stmt);
538 gsi_remove (&gsi_for_def, true);
539 release_defs (arg0_def_stmt);
541 if (arg1_def_stmt)
543 gsi_for_def = gsi_for_stmt (arg1_def_stmt);
544 gsi_remove (&gsi_for_def, true);
545 release_defs (arg1_def_stmt);
548 add_phi_arg (newphi, new_arg0, e0, locus);
549 add_phi_arg (newphi, new_arg1, e1, locus);
551 /* Create the conversion stmt and insert it. */
552 if (convert_code == VIEW_CONVERT_EXPR)
553 temp = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (result), temp);
554 new_stmt = gimple_build_assign (result, convert_code, temp);
555 gsi = gsi_after_labels (gimple_bb (phi));
556 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
558 /* Remove the original PHI stmt. */
559 gsi = gsi_for_stmt (phi);
560 gsi_remove (&gsi, true);
561 return newphi;
564 /* The function conditional_replacement does the main work of doing the
565 conditional replacement. Return true if the replacement is done.
566 Otherwise return false.
567 BB is the basic block where the replacement is going to be done on. ARG0
568 is argument 0 from PHI. Likewise for ARG1. */
570 static bool
571 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
572 edge e0, edge e1, gphi *phi,
573 tree arg0, tree arg1)
575 tree result;
576 gimple *stmt;
577 gassign *new_stmt;
578 tree cond;
579 gimple_stmt_iterator gsi;
580 edge true_edge, false_edge;
581 tree new_var, new_var2;
582 bool neg;
584 /* FIXME: Gimplification of complex type is too hard for now. */
585 /* We aren't prepared to handle vectors either (and it is a question
586 if it would be worthwhile anyway). */
587 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
588 || POINTER_TYPE_P (TREE_TYPE (arg0)))
589 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
590 || POINTER_TYPE_P (TREE_TYPE (arg1))))
591 return false;
593 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
594 convert it to the conditional. */
595 if ((integer_zerop (arg0) && integer_onep (arg1))
596 || (integer_zerop (arg1) && integer_onep (arg0)))
597 neg = false;
598 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
599 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
600 neg = true;
601 else
602 return false;
604 if (!empty_block_p (middle_bb))
605 return false;
607 /* At this point we know we have a GIMPLE_COND with two successors.
608 One successor is BB, the other successor is an empty block which
609 falls through into BB.
611 There is a single PHI node at the join point (BB) and its arguments
612 are constants (0, 1) or (0, -1).
614 So, given the condition COND, and the two PHI arguments, we can
615 rewrite this PHI into non-branching code:
617 dest = (COND) or dest = COND'
619 We use the condition as-is if the argument associated with the
620 true edge has the value one or the argument associated with the
621 false edge as the value zero. Note that those conditions are not
622 the same since only one of the outgoing edges from the GIMPLE_COND
623 will directly reach BB and thus be associated with an argument. */
625 stmt = last_stmt (cond_bb);
626 result = PHI_RESULT (phi);
628 /* To handle special cases like floating point comparison, it is easier and
629 less error-prone to build a tree and gimplify it on the fly though it is
630 less efficient. */
631 cond = fold_build2_loc (gimple_location (stmt),
632 gimple_cond_code (stmt), boolean_type_node,
633 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
635 /* We need to know which is the true edge and which is the false
636 edge so that we know when to invert the condition below. */
637 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
638 if ((e0 == true_edge && integer_zerop (arg0))
639 || (e0 == false_edge && !integer_zerop (arg0))
640 || (e1 == true_edge && integer_zerop (arg1))
641 || (e1 == false_edge && !integer_zerop (arg1)))
642 cond = fold_build1_loc (gimple_location (stmt),
643 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
645 if (neg)
647 cond = fold_convert_loc (gimple_location (stmt),
648 TREE_TYPE (result), cond);
649 cond = fold_build1_loc (gimple_location (stmt),
650 NEGATE_EXPR, TREE_TYPE (cond), cond);
653 /* Insert our new statements at the end of conditional block before the
654 COND_STMT. */
655 gsi = gsi_for_stmt (stmt);
656 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
657 GSI_SAME_STMT);
659 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
661 source_location locus_0, locus_1;
663 new_var2 = make_ssa_name (TREE_TYPE (result));
664 new_stmt = gimple_build_assign (new_var2, CONVERT_EXPR, new_var);
665 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
666 new_var = new_var2;
668 /* Set the locus to the first argument, unless is doesn't have one. */
669 locus_0 = gimple_phi_arg_location (phi, 0);
670 locus_1 = gimple_phi_arg_location (phi, 1);
671 if (locus_0 == UNKNOWN_LOCATION)
672 locus_0 = locus_1;
673 gimple_set_location (new_stmt, locus_0);
676 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
677 reset_flow_sensitive_info_in_bb (cond_bb);
679 /* Note that we optimized this PHI. */
680 return true;
683 /* Update *ARG which is defined in STMT so that it contains the
684 computed value if that seems profitable. Return true if the
685 statement is made dead by that rewriting. */
687 static bool
688 jump_function_from_stmt (tree *arg, gimple *stmt)
690 enum tree_code code = gimple_assign_rhs_code (stmt);
691 if (code == ADDR_EXPR)
693 /* For arg = &p->i transform it to p, if possible. */
694 tree rhs1 = gimple_assign_rhs1 (stmt);
695 HOST_WIDE_INT offset;
696 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
697 &offset);
698 if (tem
699 && TREE_CODE (tem) == MEM_REF
700 && (mem_ref_offset (tem) + offset) == 0)
702 *arg = TREE_OPERAND (tem, 0);
703 return true;
706 /* TODO: Much like IPA-CP jump-functions we want to handle constant
707 additions symbolically here, and we'd need to update the comparison
708 code that compares the arg + cst tuples in our caller. For now the
709 code above exactly handles the VEC_BASE pattern from vec.h. */
710 return false;
713 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
714 of the form SSA_NAME NE 0.
716 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
717 the two input values of the EQ_EXPR match arg0 and arg1.
719 If so update *code and return TRUE. Otherwise return FALSE. */
721 static bool
722 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
723 enum tree_code *code, const_tree rhs)
725 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
726 statement. */
727 if (TREE_CODE (rhs) == SSA_NAME)
729 gimple *def1 = SSA_NAME_DEF_STMT (rhs);
731 /* Verify the defining statement has an EQ_EXPR on the RHS. */
732 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
734 /* Finally verify the source operands of the EQ_EXPR are equal
735 to arg0 and arg1. */
736 tree op0 = gimple_assign_rhs1 (def1);
737 tree op1 = gimple_assign_rhs2 (def1);
738 if ((operand_equal_for_phi_arg_p (arg0, op0)
739 && operand_equal_for_phi_arg_p (arg1, op1))
740 || (operand_equal_for_phi_arg_p (arg0, op1)
741 && operand_equal_for_phi_arg_p (arg1, op0)))
743 /* We will perform the optimization. */
744 *code = gimple_assign_rhs_code (def1);
745 return true;
749 return false;
752 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
754 Also return TRUE if arg0/arg1 are equal to the source arguments of a
755 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
757 Return FALSE otherwise. */
759 static bool
760 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
761 enum tree_code *code, gimple *cond)
763 gimple *def;
764 tree lhs = gimple_cond_lhs (cond);
765 tree rhs = gimple_cond_rhs (cond);
767 if ((operand_equal_for_phi_arg_p (arg0, lhs)
768 && operand_equal_for_phi_arg_p (arg1, rhs))
769 || (operand_equal_for_phi_arg_p (arg1, lhs)
770 && operand_equal_for_phi_arg_p (arg0, rhs)))
771 return true;
773 /* Now handle more complex case where we have an EQ comparison
774 which feeds a BIT_AND_EXPR which feeds COND.
776 First verify that COND is of the form SSA_NAME NE 0. */
777 if (*code != NE_EXPR || !integer_zerop (rhs)
778 || TREE_CODE (lhs) != SSA_NAME)
779 return false;
781 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
782 def = SSA_NAME_DEF_STMT (lhs);
783 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
784 return false;
786 /* Now verify arg0/arg1 correspond to the source arguments of an
787 EQ comparison feeding the BIT_AND_EXPR. */
789 tree tmp = gimple_assign_rhs1 (def);
790 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
791 return true;
793 tmp = gimple_assign_rhs2 (def);
794 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
795 return true;
797 return false;
800 /* Returns true if ARG is a neutral element for operation CODE
801 on the RIGHT side. */
803 static bool
804 neutral_element_p (tree_code code, tree arg, bool right)
806 switch (code)
808 case PLUS_EXPR:
809 case BIT_IOR_EXPR:
810 case BIT_XOR_EXPR:
811 return integer_zerop (arg);
813 case LROTATE_EXPR:
814 case RROTATE_EXPR:
815 case LSHIFT_EXPR:
816 case RSHIFT_EXPR:
817 case MINUS_EXPR:
818 case POINTER_PLUS_EXPR:
819 return right && integer_zerop (arg);
821 case MULT_EXPR:
822 return integer_onep (arg);
824 case TRUNC_DIV_EXPR:
825 case CEIL_DIV_EXPR:
826 case FLOOR_DIV_EXPR:
827 case ROUND_DIV_EXPR:
828 case EXACT_DIV_EXPR:
829 return right && integer_onep (arg);
831 case BIT_AND_EXPR:
832 return integer_all_onesp (arg);
834 default:
835 return false;
839 /* Returns true if ARG is an absorbing element for operation CODE. */
841 static bool
842 absorbing_element_p (tree_code code, tree arg, bool right, tree rval)
844 switch (code)
846 case BIT_IOR_EXPR:
847 return integer_all_onesp (arg);
849 case MULT_EXPR:
850 case BIT_AND_EXPR:
851 return integer_zerop (arg);
853 case LSHIFT_EXPR:
854 case RSHIFT_EXPR:
855 case LROTATE_EXPR:
856 case RROTATE_EXPR:
857 return !right && integer_zerop (arg);
859 case TRUNC_DIV_EXPR:
860 case CEIL_DIV_EXPR:
861 case FLOOR_DIV_EXPR:
862 case ROUND_DIV_EXPR:
863 case EXACT_DIV_EXPR:
864 case TRUNC_MOD_EXPR:
865 case CEIL_MOD_EXPR:
866 case FLOOR_MOD_EXPR:
867 case ROUND_MOD_EXPR:
868 return (!right
869 && integer_zerop (arg)
870 && tree_single_nonzero_warnv_p (rval, NULL));
872 default:
873 return false;
877 /* The function value_replacement does the main work of doing the value
878 replacement. Return non-zero if the replacement is done. Otherwise return
879 0. If we remove the middle basic block, return 2.
880 BB is the basic block where the replacement is going to be done on. ARG0
881 is argument 0 from the PHI. Likewise for ARG1. */
883 static int
884 value_replacement (basic_block cond_bb, basic_block middle_bb,
885 edge e0, edge e1, gimple *phi,
886 tree arg0, tree arg1)
888 gimple_stmt_iterator gsi;
889 gimple *cond;
890 edge true_edge, false_edge;
891 enum tree_code code;
892 bool emtpy_or_with_defined_p = true;
894 /* If the type says honor signed zeros we cannot do this
895 optimization. */
896 if (HONOR_SIGNED_ZEROS (arg1))
897 return 0;
899 /* If there is a statement in MIDDLE_BB that defines one of the PHI
900 arguments, then adjust arg0 or arg1. */
901 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
902 while (!gsi_end_p (gsi))
904 gimple *stmt = gsi_stmt (gsi);
905 tree lhs;
906 gsi_next_nondebug (&gsi);
907 if (!is_gimple_assign (stmt))
909 emtpy_or_with_defined_p = false;
910 continue;
912 /* Now try to adjust arg0 or arg1 according to the computation
913 in the statement. */
914 lhs = gimple_assign_lhs (stmt);
915 if (!(lhs == arg0
916 && jump_function_from_stmt (&arg0, stmt))
917 || (lhs == arg1
918 && jump_function_from_stmt (&arg1, stmt)))
919 emtpy_or_with_defined_p = false;
922 cond = last_stmt (cond_bb);
923 code = gimple_cond_code (cond);
925 /* This transformation is only valid for equality comparisons. */
926 if (code != NE_EXPR && code != EQ_EXPR)
927 return 0;
929 /* We need to know which is the true edge and which is the false
930 edge so that we know if have abs or negative abs. */
931 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
933 /* At this point we know we have a COND_EXPR with two successors.
934 One successor is BB, the other successor is an empty block which
935 falls through into BB.
937 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
939 There is a single PHI node at the join point (BB) with two arguments.
941 We now need to verify that the two arguments in the PHI node match
942 the two arguments to the equality comparison. */
944 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
946 edge e;
947 tree arg;
949 /* For NE_EXPR, we want to build an assignment result = arg where
950 arg is the PHI argument associated with the true edge. For
951 EQ_EXPR we want the PHI argument associated with the false edge. */
952 e = (code == NE_EXPR ? true_edge : false_edge);
954 /* Unfortunately, E may not reach BB (it may instead have gone to
955 OTHER_BLOCK). If that is the case, then we want the single outgoing
956 edge from OTHER_BLOCK which reaches BB and represents the desired
957 path from COND_BLOCK. */
958 if (e->dest == middle_bb)
959 e = single_succ_edge (e->dest);
961 /* Now we know the incoming edge to BB that has the argument for the
962 RHS of our new assignment statement. */
963 if (e0 == e)
964 arg = arg0;
965 else
966 arg = arg1;
968 /* If the middle basic block was empty or is defining the
969 PHI arguments and this is a single phi where the args are different
970 for the edges e0 and e1 then we can remove the middle basic block. */
971 if (emtpy_or_with_defined_p
972 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
973 e0, e1) == phi)
975 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
976 /* Note that we optimized this PHI. */
977 return 2;
979 else
981 /* Replace the PHI arguments with arg. */
982 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
983 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
984 if (dump_file && (dump_flags & TDF_DETAILS))
986 fprintf (dump_file, "PHI ");
987 print_generic_expr (dump_file, gimple_phi_result (phi));
988 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
989 cond_bb->index);
990 print_generic_expr (dump_file, arg);
991 fprintf (dump_file, ".\n");
993 return 1;
998 /* Now optimize (x != 0) ? x + y : y to just y.
999 The following condition is too restrictive, there can easily be another
1000 stmt in middle_bb, for instance a CONVERT_EXPR for the second argument. */
1001 gimple *assign = last_and_only_stmt (middle_bb);
1002 if (!assign || gimple_code (assign) != GIMPLE_ASSIGN
1003 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
1004 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
1005 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
1006 return 0;
1008 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
1009 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
1010 return 0;
1012 /* Only transform if it removes the condition. */
1013 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
1014 return 0;
1016 /* Size-wise, this is always profitable. */
1017 if (optimize_bb_for_speed_p (cond_bb)
1018 /* The special case is useless if it has a low probability. */
1019 && profile_status_for_fn (cfun) != PROFILE_ABSENT
1020 && EDGE_PRED (middle_bb, 0)->probability < profile_probability::even ()
1021 /* If assign is cheap, there is no point avoiding it. */
1022 && estimate_num_insns (assign, &eni_time_weights)
1023 >= 3 * estimate_num_insns (cond, &eni_time_weights))
1024 return 0;
1026 tree lhs = gimple_assign_lhs (assign);
1027 tree rhs1 = gimple_assign_rhs1 (assign);
1028 tree rhs2 = gimple_assign_rhs2 (assign);
1029 enum tree_code code_def = gimple_assign_rhs_code (assign);
1030 tree cond_lhs = gimple_cond_lhs (cond);
1031 tree cond_rhs = gimple_cond_rhs (cond);
1033 if (((code == NE_EXPR && e1 == false_edge)
1034 || (code == EQ_EXPR && e1 == true_edge))
1035 && arg0 == lhs
1036 && ((arg1 == rhs1
1037 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1038 && neutral_element_p (code_def, cond_rhs, true))
1039 || (arg1 == rhs2
1040 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1041 && neutral_element_p (code_def, cond_rhs, false))
1042 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
1043 && ((operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1044 && absorbing_element_p (code_def, cond_rhs, true, rhs2))
1045 || (operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1046 && absorbing_element_p (code_def,
1047 cond_rhs, false, rhs2))))))
1049 gsi = gsi_for_stmt (cond);
1050 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
1052 /* Moving ASSIGN might change VR of lhs, e.g. when moving u_6
1053 def-stmt in:
1054 if (n_5 != 0)
1055 goto <bb 3>;
1056 else
1057 goto <bb 4>;
1059 <bb 3>:
1060 # RANGE [0, 4294967294]
1061 u_6 = n_5 + 4294967295;
1063 <bb 4>:
1064 # u_3 = PHI <u_6(3), 4294967295(2)> */
1065 SSA_NAME_RANGE_INFO (lhs) = NULL;
1066 /* If available, we can use VR of phi result at least. */
1067 tree phires = gimple_phi_result (phi);
1068 struct range_info_def *phires_range_info
1069 = SSA_NAME_RANGE_INFO (phires);
1070 if (phires_range_info)
1071 duplicate_ssa_name_range_info (lhs, SSA_NAME_RANGE_TYPE (phires),
1072 phires_range_info);
1074 gimple_stmt_iterator gsi_from = gsi_for_stmt (assign);
1075 gsi_move_before (&gsi_from, &gsi);
1076 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
1077 return 2;
1080 return 0;
1083 /* The function minmax_replacement does the main work of doing the minmax
1084 replacement. Return true if the replacement is done. Otherwise return
1085 false.
1086 BB is the basic block where the replacement is going to be done on. ARG0
1087 is argument 0 from the PHI. Likewise for ARG1. */
1089 static bool
1090 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
1091 edge e0, edge e1, gimple *phi,
1092 tree arg0, tree arg1)
1094 tree result, type;
1095 gcond *cond;
1096 gassign *new_stmt;
1097 edge true_edge, false_edge;
1098 enum tree_code cmp, minmax, ass_code;
1099 tree smaller, alt_smaller, larger, alt_larger, arg_true, arg_false;
1100 gimple_stmt_iterator gsi, gsi_from;
1102 type = TREE_TYPE (PHI_RESULT (phi));
1104 /* The optimization may be unsafe due to NaNs. */
1105 if (HONOR_NANS (type) || HONOR_SIGNED_ZEROS (type))
1106 return false;
1108 cond = as_a <gcond *> (last_stmt (cond_bb));
1109 cmp = gimple_cond_code (cond);
1111 /* This transformation is only valid for order comparisons. Record which
1112 operand is smaller/larger if the result of the comparison is true. */
1113 alt_smaller = NULL_TREE;
1114 alt_larger = NULL_TREE;
1115 if (cmp == LT_EXPR || cmp == LE_EXPR)
1117 smaller = gimple_cond_lhs (cond);
1118 larger = gimple_cond_rhs (cond);
1119 /* If we have smaller < CST it is equivalent to smaller <= CST-1.
1120 Likewise smaller <= CST is equivalent to smaller < CST+1. */
1121 if (TREE_CODE (larger) == INTEGER_CST)
1123 if (cmp == LT_EXPR)
1125 bool overflow;
1126 wide_int alt = wi::sub (wi::to_wide (larger), 1,
1127 TYPE_SIGN (TREE_TYPE (larger)),
1128 &overflow);
1129 if (! overflow)
1130 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1132 else
1134 bool overflow;
1135 wide_int alt = wi::add (wi::to_wide (larger), 1,
1136 TYPE_SIGN (TREE_TYPE (larger)),
1137 &overflow);
1138 if (! overflow)
1139 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1143 else if (cmp == GT_EXPR || cmp == GE_EXPR)
1145 smaller = gimple_cond_rhs (cond);
1146 larger = gimple_cond_lhs (cond);
1147 /* If we have larger > CST it is equivalent to larger >= CST+1.
1148 Likewise larger >= CST is equivalent to larger > CST-1. */
1149 if (TREE_CODE (smaller) == INTEGER_CST)
1151 if (cmp == GT_EXPR)
1153 bool overflow;
1154 wide_int alt = wi::add (wi::to_wide (smaller), 1,
1155 TYPE_SIGN (TREE_TYPE (smaller)),
1156 &overflow);
1157 if (! overflow)
1158 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1160 else
1162 bool overflow;
1163 wide_int alt = wi::sub (wi::to_wide (smaller), 1,
1164 TYPE_SIGN (TREE_TYPE (smaller)),
1165 &overflow);
1166 if (! overflow)
1167 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1171 else
1172 return false;
1174 /* We need to know which is the true edge and which is the false
1175 edge so that we know if have abs or negative abs. */
1176 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1178 /* Forward the edges over the middle basic block. */
1179 if (true_edge->dest == middle_bb)
1180 true_edge = EDGE_SUCC (true_edge->dest, 0);
1181 if (false_edge->dest == middle_bb)
1182 false_edge = EDGE_SUCC (false_edge->dest, 0);
1184 if (true_edge == e0)
1186 gcc_assert (false_edge == e1);
1187 arg_true = arg0;
1188 arg_false = arg1;
1190 else
1192 gcc_assert (false_edge == e0);
1193 gcc_assert (true_edge == e1);
1194 arg_true = arg1;
1195 arg_false = arg0;
1198 if (empty_block_p (middle_bb))
1200 if ((operand_equal_for_phi_arg_p (arg_true, smaller)
1201 || (alt_smaller
1202 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1203 && (operand_equal_for_phi_arg_p (arg_false, larger)
1204 || (alt_larger
1205 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1207 /* Case
1209 if (smaller < larger)
1210 rslt = smaller;
1211 else
1212 rslt = larger; */
1213 minmax = MIN_EXPR;
1215 else if ((operand_equal_for_phi_arg_p (arg_false, smaller)
1216 || (alt_smaller
1217 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1218 && (operand_equal_for_phi_arg_p (arg_true, larger)
1219 || (alt_larger
1220 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1221 minmax = MAX_EXPR;
1222 else
1223 return false;
1225 else
1227 /* Recognize the following case, assuming d <= u:
1229 if (a <= u)
1230 b = MAX (a, d);
1231 x = PHI <b, u>
1233 This is equivalent to
1235 b = MAX (a, d);
1236 x = MIN (b, u); */
1238 gimple *assign = last_and_only_stmt (middle_bb);
1239 tree lhs, op0, op1, bound;
1241 if (!assign
1242 || gimple_code (assign) != GIMPLE_ASSIGN)
1243 return false;
1245 lhs = gimple_assign_lhs (assign);
1246 ass_code = gimple_assign_rhs_code (assign);
1247 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1248 return false;
1249 op0 = gimple_assign_rhs1 (assign);
1250 op1 = gimple_assign_rhs2 (assign);
1252 if (true_edge->src == middle_bb)
1254 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1255 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1256 return false;
1258 if (operand_equal_for_phi_arg_p (arg_false, larger)
1259 || (alt_larger
1260 && operand_equal_for_phi_arg_p (arg_false, alt_larger)))
1262 /* Case
1264 if (smaller < larger)
1266 r' = MAX_EXPR (smaller, bound)
1268 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1269 if (ass_code != MAX_EXPR)
1270 return false;
1272 minmax = MIN_EXPR;
1273 if (operand_equal_for_phi_arg_p (op0, smaller)
1274 || (alt_smaller
1275 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1276 bound = op1;
1277 else if (operand_equal_for_phi_arg_p (op1, smaller)
1278 || (alt_smaller
1279 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1280 bound = op0;
1281 else
1282 return false;
1284 /* We need BOUND <= LARGER. */
1285 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1286 bound, larger)))
1287 return false;
1289 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
1290 || (alt_smaller
1291 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1293 /* Case
1295 if (smaller < larger)
1297 r' = MIN_EXPR (larger, bound)
1299 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1300 if (ass_code != MIN_EXPR)
1301 return false;
1303 minmax = MAX_EXPR;
1304 if (operand_equal_for_phi_arg_p (op0, larger)
1305 || (alt_larger
1306 && operand_equal_for_phi_arg_p (op0, alt_larger)))
1307 bound = op1;
1308 else if (operand_equal_for_phi_arg_p (op1, larger)
1309 || (alt_larger
1310 && operand_equal_for_phi_arg_p (op1, alt_larger)))
1311 bound = op0;
1312 else
1313 return false;
1315 /* We need BOUND >= SMALLER. */
1316 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1317 bound, smaller)))
1318 return false;
1320 else
1321 return false;
1323 else
1325 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1326 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1327 return false;
1329 if (operand_equal_for_phi_arg_p (arg_true, larger)
1330 || (alt_larger
1331 && operand_equal_for_phi_arg_p (arg_true, alt_larger)))
1333 /* Case
1335 if (smaller > larger)
1337 r' = MIN_EXPR (smaller, bound)
1339 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1340 if (ass_code != MIN_EXPR)
1341 return false;
1343 minmax = MAX_EXPR;
1344 if (operand_equal_for_phi_arg_p (op0, smaller)
1345 || (alt_smaller
1346 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1347 bound = op1;
1348 else if (operand_equal_for_phi_arg_p (op1, smaller)
1349 || (alt_smaller
1350 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1351 bound = op0;
1352 else
1353 return false;
1355 /* We need BOUND >= LARGER. */
1356 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1357 bound, larger)))
1358 return false;
1360 else if (operand_equal_for_phi_arg_p (arg_true, smaller)
1361 || (alt_smaller
1362 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1364 /* Case
1366 if (smaller > larger)
1368 r' = MAX_EXPR (larger, bound)
1370 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1371 if (ass_code != MAX_EXPR)
1372 return false;
1374 minmax = MIN_EXPR;
1375 if (operand_equal_for_phi_arg_p (op0, larger))
1376 bound = op1;
1377 else if (operand_equal_for_phi_arg_p (op1, larger))
1378 bound = op0;
1379 else
1380 return false;
1382 /* We need BOUND <= SMALLER. */
1383 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1384 bound, smaller)))
1385 return false;
1387 else
1388 return false;
1391 /* Move the statement from the middle block. */
1392 gsi = gsi_last_bb (cond_bb);
1393 gsi_from = gsi_last_nondebug_bb (middle_bb);
1394 gsi_move_before (&gsi_from, &gsi);
1397 /* Create an SSA var to hold the min/max result. If we're the only
1398 things setting the target PHI, then we can clone the PHI
1399 variable. Otherwise we must create a new one. */
1400 result = PHI_RESULT (phi);
1401 if (EDGE_COUNT (gimple_bb (phi)->preds) == 2)
1402 result = duplicate_ssa_name (result, NULL);
1403 else
1404 result = make_ssa_name (TREE_TYPE (result));
1406 /* Emit the statement to compute min/max. */
1407 new_stmt = gimple_build_assign (result, minmax, arg0, arg1);
1408 gsi = gsi_last_bb (cond_bb);
1409 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1411 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1412 reset_flow_sensitive_info_in_bb (cond_bb);
1414 return true;
1417 /* The function absolute_replacement does the main work of doing the absolute
1418 replacement. Return true if the replacement is done. Otherwise return
1419 false.
1420 bb is the basic block where the replacement is going to be done on. arg0
1421 is argument 0 from the phi. Likewise for arg1. */
1423 static bool
1424 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1425 edge e0 ATTRIBUTE_UNUSED, edge e1,
1426 gimple *phi, tree arg0, tree arg1)
1428 tree result;
1429 gassign *new_stmt;
1430 gimple *cond;
1431 gimple_stmt_iterator gsi;
1432 edge true_edge, false_edge;
1433 gimple *assign;
1434 edge e;
1435 tree rhs, lhs;
1436 bool negate;
1437 enum tree_code cond_code;
1439 /* If the type says honor signed zeros we cannot do this
1440 optimization. */
1441 if (HONOR_SIGNED_ZEROS (arg1))
1442 return false;
1444 /* OTHER_BLOCK must have only one executable statement which must have the
1445 form arg0 = -arg1 or arg1 = -arg0. */
1447 assign = last_and_only_stmt (middle_bb);
1448 /* If we did not find the proper negation assignment, then we can not
1449 optimize. */
1450 if (assign == NULL)
1451 return false;
1453 /* If we got here, then we have found the only executable statement
1454 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1455 arg1 = -arg0, then we can not optimize. */
1456 if (gimple_code (assign) != GIMPLE_ASSIGN)
1457 return false;
1459 lhs = gimple_assign_lhs (assign);
1461 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1462 return false;
1464 rhs = gimple_assign_rhs1 (assign);
1466 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1467 if (!(lhs == arg0 && rhs == arg1)
1468 && !(lhs == arg1 && rhs == arg0))
1469 return false;
1471 cond = last_stmt (cond_bb);
1472 result = PHI_RESULT (phi);
1474 /* Only relationals comparing arg[01] against zero are interesting. */
1475 cond_code = gimple_cond_code (cond);
1476 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1477 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1478 return false;
1480 /* Make sure the conditional is arg[01] OP y. */
1481 if (gimple_cond_lhs (cond) != rhs)
1482 return false;
1484 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1485 ? real_zerop (gimple_cond_rhs (cond))
1486 : integer_zerop (gimple_cond_rhs (cond)))
1488 else
1489 return false;
1491 /* We need to know which is the true edge and which is the false
1492 edge so that we know if have abs or negative abs. */
1493 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1495 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1496 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1497 the false edge goes to OTHER_BLOCK. */
1498 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1499 e = true_edge;
1500 else
1501 e = false_edge;
1503 if (e->dest == middle_bb)
1504 negate = true;
1505 else
1506 negate = false;
1508 /* If the code negates only iff positive then make sure to not
1509 introduce undefined behavior when negating or computing the absolute.
1510 ??? We could use range info if present to check for arg1 == INT_MIN. */
1511 if (negate
1512 && (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg1))
1513 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))))
1514 return false;
1516 result = duplicate_ssa_name (result, NULL);
1518 if (negate)
1519 lhs = make_ssa_name (TREE_TYPE (result));
1520 else
1521 lhs = result;
1523 /* Build the modify expression with abs expression. */
1524 new_stmt = gimple_build_assign (lhs, ABS_EXPR, rhs);
1526 gsi = gsi_last_bb (cond_bb);
1527 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1529 if (negate)
1531 /* Get the right GSI. We want to insert after the recently
1532 added ABS_EXPR statement (which we know is the first statement
1533 in the block. */
1534 new_stmt = gimple_build_assign (result, NEGATE_EXPR, lhs);
1536 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1539 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1540 reset_flow_sensitive_info_in_bb (cond_bb);
1542 /* Note that we optimized this PHI. */
1543 return true;
1546 /* Auxiliary functions to determine the set of memory accesses which
1547 can't trap because they are preceded by accesses to the same memory
1548 portion. We do that for MEM_REFs, so we only need to track
1549 the SSA_NAME of the pointer indirectly referenced. The algorithm
1550 simply is a walk over all instructions in dominator order. When
1551 we see an MEM_REF we determine if we've already seen a same
1552 ref anywhere up to the root of the dominator tree. If we do the
1553 current access can't trap. If we don't see any dominating access
1554 the current access might trap, but might also make later accesses
1555 non-trapping, so we remember it. We need to be careful with loads
1556 or stores, for instance a load might not trap, while a store would,
1557 so if we see a dominating read access this doesn't mean that a later
1558 write access would not trap. Hence we also need to differentiate the
1559 type of access(es) seen.
1561 ??? We currently are very conservative and assume that a load might
1562 trap even if a store doesn't (write-only memory). This probably is
1563 overly conservative. */
1565 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1566 through it was seen, which would constitute a no-trap region for
1567 same accesses. */
1568 struct name_to_bb
1570 unsigned int ssa_name_ver;
1571 unsigned int phase;
1572 bool store;
1573 HOST_WIDE_INT offset, size;
1574 basic_block bb;
1577 /* Hashtable helpers. */
1579 struct ssa_names_hasher : free_ptr_hash <name_to_bb>
1581 static inline hashval_t hash (const name_to_bb *);
1582 static inline bool equal (const name_to_bb *, const name_to_bb *);
1585 /* Used for quick clearing of the hash-table when we see calls.
1586 Hash entries with phase < nt_call_phase are invalid. */
1587 static unsigned int nt_call_phase;
1589 /* The hash function. */
1591 inline hashval_t
1592 ssa_names_hasher::hash (const name_to_bb *n)
1594 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1595 ^ (n->offset << 6) ^ (n->size << 3);
1598 /* The equality function of *P1 and *P2. */
1600 inline bool
1601 ssa_names_hasher::equal (const name_to_bb *n1, const name_to_bb *n2)
1603 return n1->ssa_name_ver == n2->ssa_name_ver
1604 && n1->store == n2->store
1605 && n1->offset == n2->offset
1606 && n1->size == n2->size;
1609 class nontrapping_dom_walker : public dom_walker
1611 public:
1612 nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
1613 : dom_walker (direction), m_nontrapping (ps), m_seen_ssa_names (128) {}
1615 virtual edge before_dom_children (basic_block);
1616 virtual void after_dom_children (basic_block);
1618 private:
1620 /* We see the expression EXP in basic block BB. If it's an interesting
1621 expression (an MEM_REF through an SSA_NAME) possibly insert the
1622 expression into the set NONTRAP or the hash table of seen expressions.
1623 STORE is true if this expression is on the LHS, otherwise it's on
1624 the RHS. */
1625 void add_or_mark_expr (basic_block, tree, bool);
1627 hash_set<tree> *m_nontrapping;
1629 /* The hash table for remembering what we've seen. */
1630 hash_table<ssa_names_hasher> m_seen_ssa_names;
1633 /* Called by walk_dominator_tree, when entering the block BB. */
1634 edge
1635 nontrapping_dom_walker::before_dom_children (basic_block bb)
1637 edge e;
1638 edge_iterator ei;
1639 gimple_stmt_iterator gsi;
1641 /* If we haven't seen all our predecessors, clear the hash-table. */
1642 FOR_EACH_EDGE (e, ei, bb->preds)
1643 if ((((size_t)e->src->aux) & 2) == 0)
1645 nt_call_phase++;
1646 break;
1649 /* Mark this BB as being on the path to dominator root and as visited. */
1650 bb->aux = (void*)(1 | 2);
1652 /* And walk the statements in order. */
1653 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1655 gimple *stmt = gsi_stmt (gsi);
1657 if ((gimple_code (stmt) == GIMPLE_ASM && gimple_vdef (stmt))
1658 || (is_gimple_call (stmt)
1659 && (!nonfreeing_call_p (stmt) || !nonbarrier_call_p (stmt))))
1660 nt_call_phase++;
1661 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
1663 add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
1664 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
1667 return NULL;
1670 /* Called by walk_dominator_tree, when basic block BB is exited. */
1671 void
1672 nontrapping_dom_walker::after_dom_children (basic_block bb)
1674 /* This BB isn't on the path to dominator root anymore. */
1675 bb->aux = (void*)2;
1678 /* We see the expression EXP in basic block BB. If it's an interesting
1679 expression (an MEM_REF through an SSA_NAME) possibly insert the
1680 expression into the set NONTRAP or the hash table of seen expressions.
1681 STORE is true if this expression is on the LHS, otherwise it's on
1682 the RHS. */
1683 void
1684 nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
1686 HOST_WIDE_INT size;
1688 if (TREE_CODE (exp) == MEM_REF
1689 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1690 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
1691 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1693 tree name = TREE_OPERAND (exp, 0);
1694 struct name_to_bb map;
1695 name_to_bb **slot;
1696 struct name_to_bb *n2bb;
1697 basic_block found_bb = 0;
1699 /* Try to find the last seen MEM_REF through the same
1700 SSA_NAME, which can trap. */
1701 map.ssa_name_ver = SSA_NAME_VERSION (name);
1702 map.phase = 0;
1703 map.bb = 0;
1704 map.store = store;
1705 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
1706 map.size = size;
1708 slot = m_seen_ssa_names.find_slot (&map, INSERT);
1709 n2bb = *slot;
1710 if (n2bb && n2bb->phase >= nt_call_phase)
1711 found_bb = n2bb->bb;
1713 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1714 (it's in a basic block on the path from us to the dominator root)
1715 then we can't trap. */
1716 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
1718 m_nontrapping->add (exp);
1720 else
1722 /* EXP might trap, so insert it into the hash table. */
1723 if (n2bb)
1725 n2bb->phase = nt_call_phase;
1726 n2bb->bb = bb;
1728 else
1730 n2bb = XNEW (struct name_to_bb);
1731 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1732 n2bb->phase = nt_call_phase;
1733 n2bb->bb = bb;
1734 n2bb->store = store;
1735 n2bb->offset = map.offset;
1736 n2bb->size = size;
1737 *slot = n2bb;
1743 /* This is the entry point of gathering non trapping memory accesses.
1744 It will do a dominator walk over the whole function, and it will
1745 make use of the bb->aux pointers. It returns a set of trees
1746 (the MEM_REFs itself) which can't trap. */
1747 static hash_set<tree> *
1748 get_non_trapping (void)
1750 nt_call_phase = 0;
1751 hash_set<tree> *nontrap = new hash_set<tree>;
1752 /* We're going to do a dominator walk, so ensure that we have
1753 dominance information. */
1754 calculate_dominance_info (CDI_DOMINATORS);
1756 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
1757 .walk (cfun->cfg->x_entry_block_ptr);
1759 clear_aux_for_blocks ();
1760 return nontrap;
1763 /* Do the main work of conditional store replacement. We already know
1764 that the recognized pattern looks like so:
1766 split:
1767 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1768 MIDDLE_BB:
1769 something
1770 fallthrough (edge E0)
1771 JOIN_BB:
1772 some more
1774 We check that MIDDLE_BB contains only one store, that that store
1775 doesn't trap (not via NOTRAP, but via checking if an access to the same
1776 memory location dominates us) and that the store has a "simple" RHS. */
1778 static bool
1779 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1780 edge e0, edge e1, hash_set<tree> *nontrap)
1782 gimple *assign = last_and_only_stmt (middle_bb);
1783 tree lhs, rhs, name, name2;
1784 gphi *newphi;
1785 gassign *new_stmt;
1786 gimple_stmt_iterator gsi;
1787 source_location locus;
1789 /* Check if middle_bb contains of only one store. */
1790 if (!assign
1791 || !gimple_assign_single_p (assign)
1792 || gimple_has_volatile_ops (assign))
1793 return false;
1795 locus = gimple_location (assign);
1796 lhs = gimple_assign_lhs (assign);
1797 rhs = gimple_assign_rhs1 (assign);
1798 if (TREE_CODE (lhs) != MEM_REF
1799 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1800 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1801 return false;
1803 /* Prove that we can move the store down. We could also check
1804 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1805 whose value is not available readily, which we want to avoid. */
1806 if (!nontrap->contains (lhs))
1807 return false;
1809 /* Now we've checked the constraints, so do the transformation:
1810 1) Remove the single store. */
1811 gsi = gsi_for_stmt (assign);
1812 unlink_stmt_vdef (assign);
1813 gsi_remove (&gsi, true);
1814 release_defs (assign);
1816 /* 2) Insert a load from the memory of the store to the temporary
1817 on the edge which did not contain the store. */
1818 lhs = unshare_expr (lhs);
1819 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1820 new_stmt = gimple_build_assign (name, lhs);
1821 gimple_set_location (new_stmt, locus);
1822 gsi_insert_on_edge (e1, new_stmt);
1824 /* 3) Create a PHI node at the join block, with one argument
1825 holding the old RHS, and the other holding the temporary
1826 where we stored the old memory contents. */
1827 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1828 newphi = create_phi_node (name2, join_bb);
1829 add_phi_arg (newphi, rhs, e0, locus);
1830 add_phi_arg (newphi, name, e1, locus);
1832 lhs = unshare_expr (lhs);
1833 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1835 /* 4) Insert that PHI node. */
1836 gsi = gsi_after_labels (join_bb);
1837 if (gsi_end_p (gsi))
1839 gsi = gsi_last_bb (join_bb);
1840 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1842 else
1843 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1845 return true;
1848 /* Do the main work of conditional store replacement. */
1850 static bool
1851 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1852 basic_block join_bb, gimple *then_assign,
1853 gimple *else_assign)
1855 tree lhs_base, lhs, then_rhs, else_rhs, name;
1856 source_location then_locus, else_locus;
1857 gimple_stmt_iterator gsi;
1858 gphi *newphi;
1859 gassign *new_stmt;
1861 if (then_assign == NULL
1862 || !gimple_assign_single_p (then_assign)
1863 || gimple_clobber_p (then_assign)
1864 || gimple_has_volatile_ops (then_assign)
1865 || else_assign == NULL
1866 || !gimple_assign_single_p (else_assign)
1867 || gimple_clobber_p (else_assign)
1868 || gimple_has_volatile_ops (else_assign))
1869 return false;
1871 lhs = gimple_assign_lhs (then_assign);
1872 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1873 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1874 return false;
1876 lhs_base = get_base_address (lhs);
1877 if (lhs_base == NULL_TREE
1878 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1879 return false;
1881 then_rhs = gimple_assign_rhs1 (then_assign);
1882 else_rhs = gimple_assign_rhs1 (else_assign);
1883 then_locus = gimple_location (then_assign);
1884 else_locus = gimple_location (else_assign);
1886 /* Now we've checked the constraints, so do the transformation:
1887 1) Remove the stores. */
1888 gsi = gsi_for_stmt (then_assign);
1889 unlink_stmt_vdef (then_assign);
1890 gsi_remove (&gsi, true);
1891 release_defs (then_assign);
1893 gsi = gsi_for_stmt (else_assign);
1894 unlink_stmt_vdef (else_assign);
1895 gsi_remove (&gsi, true);
1896 release_defs (else_assign);
1898 /* 2) Create a PHI node at the join block, with one argument
1899 holding the old RHS, and the other holding the temporary
1900 where we stored the old memory contents. */
1901 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1902 newphi = create_phi_node (name, join_bb);
1903 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1904 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1906 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1908 /* 3) Insert that PHI node. */
1909 gsi = gsi_after_labels (join_bb);
1910 if (gsi_end_p (gsi))
1912 gsi = gsi_last_bb (join_bb);
1913 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1915 else
1916 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1918 return true;
1921 /* Conditional store replacement. We already know
1922 that the recognized pattern looks like so:
1924 split:
1925 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1926 THEN_BB:
1928 X = Y;
1930 goto JOIN_BB;
1931 ELSE_BB:
1933 X = Z;
1935 fallthrough (edge E0)
1936 JOIN_BB:
1937 some more
1939 We check that it is safe to sink the store to JOIN_BB by verifying that
1940 there are no read-after-write or write-after-write dependencies in
1941 THEN_BB and ELSE_BB. */
1943 static bool
1944 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1945 basic_block join_bb)
1947 gimple *then_assign = last_and_only_stmt (then_bb);
1948 gimple *else_assign = last_and_only_stmt (else_bb);
1949 vec<data_reference_p> then_datarefs, else_datarefs;
1950 vec<ddr_p> then_ddrs, else_ddrs;
1951 gimple *then_store, *else_store;
1952 bool found, ok = false, res;
1953 struct data_dependence_relation *ddr;
1954 data_reference_p then_dr, else_dr;
1955 int i, j;
1956 tree then_lhs, else_lhs;
1957 basic_block blocks[3];
1959 if (MAX_STORES_TO_SINK == 0)
1960 return false;
1962 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1963 if (then_assign && else_assign)
1964 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1965 then_assign, else_assign);
1967 /* Find data references. */
1968 then_datarefs.create (1);
1969 else_datarefs.create (1);
1970 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1971 == chrec_dont_know)
1972 || !then_datarefs.length ()
1973 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1974 == chrec_dont_know)
1975 || !else_datarefs.length ())
1977 free_data_refs (then_datarefs);
1978 free_data_refs (else_datarefs);
1979 return false;
1982 /* Find pairs of stores with equal LHS. */
1983 auto_vec<gimple *, 1> then_stores, else_stores;
1984 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
1986 if (DR_IS_READ (then_dr))
1987 continue;
1989 then_store = DR_STMT (then_dr);
1990 then_lhs = gimple_get_lhs (then_store);
1991 if (then_lhs == NULL_TREE)
1992 continue;
1993 found = false;
1995 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
1997 if (DR_IS_READ (else_dr))
1998 continue;
2000 else_store = DR_STMT (else_dr);
2001 else_lhs = gimple_get_lhs (else_store);
2002 if (else_lhs == NULL_TREE)
2003 continue;
2005 if (operand_equal_p (then_lhs, else_lhs, 0))
2007 found = true;
2008 break;
2012 if (!found)
2013 continue;
2015 then_stores.safe_push (then_store);
2016 else_stores.safe_push (else_store);
2019 /* No pairs of stores found. */
2020 if (!then_stores.length ()
2021 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
2023 free_data_refs (then_datarefs);
2024 free_data_refs (else_datarefs);
2025 return false;
2028 /* Compute and check data dependencies in both basic blocks. */
2029 then_ddrs.create (1);
2030 else_ddrs.create (1);
2031 if (!compute_all_dependences (then_datarefs, &then_ddrs,
2032 vNULL, false)
2033 || !compute_all_dependences (else_datarefs, &else_ddrs,
2034 vNULL, false))
2036 free_dependence_relations (then_ddrs);
2037 free_dependence_relations (else_ddrs);
2038 free_data_refs (then_datarefs);
2039 free_data_refs (else_datarefs);
2040 return false;
2042 blocks[0] = then_bb;
2043 blocks[1] = else_bb;
2044 blocks[2] = join_bb;
2045 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
2047 /* Check that there are no read-after-write or write-after-write dependencies
2048 in THEN_BB. */
2049 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
2051 struct data_reference *dra = DDR_A (ddr);
2052 struct data_reference *drb = DDR_B (ddr);
2054 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2055 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2056 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2057 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2058 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2059 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2061 free_dependence_relations (then_ddrs);
2062 free_dependence_relations (else_ddrs);
2063 free_data_refs (then_datarefs);
2064 free_data_refs (else_datarefs);
2065 return false;
2069 /* Check that there are no read-after-write or write-after-write dependencies
2070 in ELSE_BB. */
2071 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
2073 struct data_reference *dra = DDR_A (ddr);
2074 struct data_reference *drb = DDR_B (ddr);
2076 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2077 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2078 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2079 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2080 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2081 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2083 free_dependence_relations (then_ddrs);
2084 free_dependence_relations (else_ddrs);
2085 free_data_refs (then_datarefs);
2086 free_data_refs (else_datarefs);
2087 return false;
2091 /* Sink stores with same LHS. */
2092 FOR_EACH_VEC_ELT (then_stores, i, then_store)
2094 else_store = else_stores[i];
2095 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
2096 then_store, else_store);
2097 ok = ok || res;
2100 free_dependence_relations (then_ddrs);
2101 free_dependence_relations (else_ddrs);
2102 free_data_refs (then_datarefs);
2103 free_data_refs (else_datarefs);
2105 return ok;
2108 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
2110 static bool
2111 local_mem_dependence (gimple *stmt, basic_block bb)
2113 tree vuse = gimple_vuse (stmt);
2114 gimple *def;
2116 if (!vuse)
2117 return false;
2119 def = SSA_NAME_DEF_STMT (vuse);
2120 return (def && gimple_bb (def) == bb);
2123 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
2124 BB1 and BB2 are "then" and "else" blocks dependent on this test,
2125 and BB3 rejoins control flow following BB1 and BB2, look for
2126 opportunities to hoist loads as follows. If BB3 contains a PHI of
2127 two loads, one each occurring in BB1 and BB2, and the loads are
2128 provably of adjacent fields in the same structure, then move both
2129 loads into BB0. Of course this can only be done if there are no
2130 dependencies preventing such motion.
2132 One of the hoisted loads will always be speculative, so the
2133 transformation is currently conservative:
2135 - The fields must be strictly adjacent.
2136 - The two fields must occupy a single memory block that is
2137 guaranteed to not cross a page boundary.
2139 The last is difficult to prove, as such memory blocks should be
2140 aligned on the minimum of the stack alignment boundary and the
2141 alignment guaranteed by heap allocation interfaces. Thus we rely
2142 on a parameter for the alignment value.
2144 Provided a good value is used for the last case, the first
2145 restriction could possibly be relaxed. */
2147 static void
2148 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
2149 basic_block bb2, basic_block bb3)
2151 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
2152 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
2153 gphi_iterator gsi;
2155 /* Walk the phis in bb3 looking for an opportunity. We are looking
2156 for phis of two SSA names, one each of which is defined in bb1 and
2157 bb2. */
2158 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
2160 gphi *phi_stmt = gsi.phi ();
2161 gimple *def1, *def2;
2162 tree arg1, arg2, ref1, ref2, field1, field2;
2163 tree tree_offset1, tree_offset2, tree_size2, next;
2164 int offset1, offset2, size2;
2165 unsigned align1;
2166 gimple_stmt_iterator gsi2;
2167 basic_block bb_for_def1, bb_for_def2;
2169 if (gimple_phi_num_args (phi_stmt) != 2
2170 || virtual_operand_p (gimple_phi_result (phi_stmt)))
2171 continue;
2173 arg1 = gimple_phi_arg_def (phi_stmt, 0);
2174 arg2 = gimple_phi_arg_def (phi_stmt, 1);
2176 if (TREE_CODE (arg1) != SSA_NAME
2177 || TREE_CODE (arg2) != SSA_NAME
2178 || SSA_NAME_IS_DEFAULT_DEF (arg1)
2179 || SSA_NAME_IS_DEFAULT_DEF (arg2))
2180 continue;
2182 def1 = SSA_NAME_DEF_STMT (arg1);
2183 def2 = SSA_NAME_DEF_STMT (arg2);
2185 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
2186 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
2187 continue;
2189 /* Check the mode of the arguments to be sure a conditional move
2190 can be generated for it. */
2191 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
2192 == CODE_FOR_nothing)
2193 continue;
2195 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
2196 if (!gimple_assign_single_p (def1)
2197 || !gimple_assign_single_p (def2)
2198 || gimple_has_volatile_ops (def1)
2199 || gimple_has_volatile_ops (def2))
2200 continue;
2202 ref1 = gimple_assign_rhs1 (def1);
2203 ref2 = gimple_assign_rhs1 (def2);
2205 if (TREE_CODE (ref1) != COMPONENT_REF
2206 || TREE_CODE (ref2) != COMPONENT_REF)
2207 continue;
2209 /* The zeroth operand of the two component references must be
2210 identical. It is not sufficient to compare get_base_address of
2211 the two references, because this could allow for different
2212 elements of the same array in the two trees. It is not safe to
2213 assume that the existence of one array element implies the
2214 existence of a different one. */
2215 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
2216 continue;
2218 field1 = TREE_OPERAND (ref1, 1);
2219 field2 = TREE_OPERAND (ref2, 1);
2221 /* Check for field adjacency, and ensure field1 comes first. */
2222 for (next = DECL_CHAIN (field1);
2223 next && TREE_CODE (next) != FIELD_DECL;
2224 next = DECL_CHAIN (next))
2227 if (next != field2)
2229 for (next = DECL_CHAIN (field2);
2230 next && TREE_CODE (next) != FIELD_DECL;
2231 next = DECL_CHAIN (next))
2234 if (next != field1)
2235 continue;
2237 std::swap (field1, field2);
2238 std::swap (def1, def2);
2241 bb_for_def1 = gimple_bb (def1);
2242 bb_for_def2 = gimple_bb (def2);
2244 /* Check for proper alignment of the first field. */
2245 tree_offset1 = bit_position (field1);
2246 tree_offset2 = bit_position (field2);
2247 tree_size2 = DECL_SIZE (field2);
2249 if (!tree_fits_uhwi_p (tree_offset1)
2250 || !tree_fits_uhwi_p (tree_offset2)
2251 || !tree_fits_uhwi_p (tree_size2))
2252 continue;
2254 offset1 = tree_to_uhwi (tree_offset1);
2255 offset2 = tree_to_uhwi (tree_offset2);
2256 size2 = tree_to_uhwi (tree_size2);
2257 align1 = DECL_ALIGN (field1) % param_align_bits;
2259 if (offset1 % BITS_PER_UNIT != 0)
2260 continue;
2262 /* For profitability, the two field references should fit within
2263 a single cache line. */
2264 if (align1 + offset2 - offset1 + size2 > param_align_bits)
2265 continue;
2267 /* The two expressions cannot be dependent upon vdefs defined
2268 in bb1/bb2. */
2269 if (local_mem_dependence (def1, bb_for_def1)
2270 || local_mem_dependence (def2, bb_for_def2))
2271 continue;
2273 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2274 bb0. We hoist the first one first so that a cache miss is handled
2275 efficiently regardless of hardware cache-fill policy. */
2276 gsi2 = gsi_for_stmt (def1);
2277 gsi_move_to_bb_end (&gsi2, bb0);
2278 gsi2 = gsi_for_stmt (def2);
2279 gsi_move_to_bb_end (&gsi2, bb0);
2281 if (dump_file && (dump_flags & TDF_DETAILS))
2283 fprintf (dump_file,
2284 "\nHoisting adjacent loads from %d and %d into %d: \n",
2285 bb_for_def1->index, bb_for_def2->index, bb0->index);
2286 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2287 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2292 /* Determine whether we should attempt to hoist adjacent loads out of
2293 diamond patterns in pass_phiopt. Always hoist loads if
2294 -fhoist-adjacent-loads is specified and the target machine has
2295 both a conditional move instruction and a defined cache line size. */
2297 static bool
2298 gate_hoist_loads (void)
2300 return (flag_hoist_adjacent_loads == 1
2301 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2302 && HAVE_conditional_move);
2305 /* This pass tries to replaces an if-then-else block with an
2306 assignment. We have four kinds of transformations. Some of these
2307 transformations are also performed by the ifcvt RTL optimizer.
2309 Conditional Replacement
2310 -----------------------
2312 This transformation, implemented in conditional_replacement,
2313 replaces
2315 bb0:
2316 if (cond) goto bb2; else goto bb1;
2317 bb1:
2318 bb2:
2319 x = PHI <0 (bb1), 1 (bb0), ...>;
2321 with
2323 bb0:
2324 x' = cond;
2325 goto bb2;
2326 bb2:
2327 x = PHI <x' (bb0), ...>;
2329 We remove bb1 as it becomes unreachable. This occurs often due to
2330 gimplification of conditionals.
2332 Value Replacement
2333 -----------------
2335 This transformation, implemented in value_replacement, replaces
2337 bb0:
2338 if (a != b) goto bb2; else goto bb1;
2339 bb1:
2340 bb2:
2341 x = PHI <a (bb1), b (bb0), ...>;
2343 with
2345 bb0:
2346 bb2:
2347 x = PHI <b (bb0), ...>;
2349 This opportunity can sometimes occur as a result of other
2350 optimizations.
2353 Another case caught by value replacement looks like this:
2355 bb0:
2356 t1 = a == CONST;
2357 t2 = b > c;
2358 t3 = t1 & t2;
2359 if (t3 != 0) goto bb1; else goto bb2;
2360 bb1:
2361 bb2:
2362 x = PHI (CONST, a)
2364 Gets replaced with:
2365 bb0:
2366 bb2:
2367 t1 = a == CONST;
2368 t2 = b > c;
2369 t3 = t1 & t2;
2370 x = a;
2372 ABS Replacement
2373 ---------------
2375 This transformation, implemented in abs_replacement, replaces
2377 bb0:
2378 if (a >= 0) goto bb2; else goto bb1;
2379 bb1:
2380 x = -a;
2381 bb2:
2382 x = PHI <x (bb1), a (bb0), ...>;
2384 with
2386 bb0:
2387 x' = ABS_EXPR< a >;
2388 bb2:
2389 x = PHI <x' (bb0), ...>;
2391 MIN/MAX Replacement
2392 -------------------
2394 This transformation, minmax_replacement replaces
2396 bb0:
2397 if (a <= b) goto bb2; else goto bb1;
2398 bb1:
2399 bb2:
2400 x = PHI <b (bb1), a (bb0), ...>;
2402 with
2404 bb0:
2405 x' = MIN_EXPR (a, b)
2406 bb2:
2407 x = PHI <x' (bb0), ...>;
2409 A similar transformation is done for MAX_EXPR.
2412 This pass also performs a fifth transformation of a slightly different
2413 flavor.
2415 Factor conversion in COND_EXPR
2416 ------------------------------
2418 This transformation factors the conversion out of COND_EXPR with
2419 factor_out_conditional_conversion.
2421 For example:
2422 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2423 <bb 3>:
2424 tmp = (int) a;
2425 <bb 4>:
2426 tmp = PHI <tmp, CST>
2428 Into:
2429 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2430 <bb 3>:
2431 <bb 4>:
2432 a = PHI <a, CST>
2433 tmp = (int) a;
2435 Adjacent Load Hoisting
2436 ----------------------
2438 This transformation replaces
2440 bb0:
2441 if (...) goto bb2; else goto bb1;
2442 bb1:
2443 x1 = (<expr>).field1;
2444 goto bb3;
2445 bb2:
2446 x2 = (<expr>).field2;
2447 bb3:
2448 # x = PHI <x1, x2>;
2450 with
2452 bb0:
2453 x1 = (<expr>).field1;
2454 x2 = (<expr>).field2;
2455 if (...) goto bb2; else goto bb1;
2456 bb1:
2457 goto bb3;
2458 bb2:
2459 bb3:
2460 # x = PHI <x1, x2>;
2462 The purpose of this transformation is to enable generation of conditional
2463 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2464 the loads is speculative, the transformation is restricted to very
2465 specific cases to avoid introducing a page fault. We are looking for
2466 the common idiom:
2468 if (...)
2469 x = y->left;
2470 else
2471 x = y->right;
2473 where left and right are typically adjacent pointers in a tree structure. */
2475 namespace {
2477 const pass_data pass_data_phiopt =
2479 GIMPLE_PASS, /* type */
2480 "phiopt", /* name */
2481 OPTGROUP_NONE, /* optinfo_flags */
2482 TV_TREE_PHIOPT, /* tv_id */
2483 ( PROP_cfg | PROP_ssa ), /* properties_required */
2484 0, /* properties_provided */
2485 0, /* properties_destroyed */
2486 0, /* todo_flags_start */
2487 0, /* todo_flags_finish */
2490 class pass_phiopt : public gimple_opt_pass
2492 public:
2493 pass_phiopt (gcc::context *ctxt)
2494 : gimple_opt_pass (pass_data_phiopt, ctxt)
2497 /* opt_pass methods: */
2498 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
2499 virtual bool gate (function *) { return flag_ssa_phiopt; }
2500 virtual unsigned int execute (function *)
2502 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
2505 }; // class pass_phiopt
2507 } // anon namespace
2509 gimple_opt_pass *
2510 make_pass_phiopt (gcc::context *ctxt)
2512 return new pass_phiopt (ctxt);
2515 namespace {
2517 const pass_data pass_data_cselim =
2519 GIMPLE_PASS, /* type */
2520 "cselim", /* name */
2521 OPTGROUP_NONE, /* optinfo_flags */
2522 TV_TREE_PHIOPT, /* tv_id */
2523 ( PROP_cfg | PROP_ssa ), /* properties_required */
2524 0, /* properties_provided */
2525 0, /* properties_destroyed */
2526 0, /* todo_flags_start */
2527 0, /* todo_flags_finish */
2530 class pass_cselim : public gimple_opt_pass
2532 public:
2533 pass_cselim (gcc::context *ctxt)
2534 : gimple_opt_pass (pass_data_cselim, ctxt)
2537 /* opt_pass methods: */
2538 virtual bool gate (function *) { return flag_tree_cselim; }
2539 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
2541 }; // class pass_cselim
2543 } // anon namespace
2545 gimple_opt_pass *
2546 make_pass_cselim (gcc::context *ctxt)
2548 return new pass_cselim (ctxt);