1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2017 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
43 CONSTANT -> V_i has been found to hold a constant
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
80 a_11 = PHI (a_9, a_10)
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
123 #include "coretypes.h"
128 #include "tree-pass.h"
130 #include "gimple-pretty-print.h"
131 #include "fold-const.h"
132 #include "gimple-fold.h"
134 #include "gimplify.h"
135 #include "gimple-iterator.h"
136 #include "tree-cfg.h"
137 #include "tree-ssa-propagate.h"
140 #include "builtins.h"
141 #include "tree-chkp.h"
143 #include "stor-layout.h"
144 #include "optabs-query.h"
145 #include "tree-ssa-ccp.h"
146 #include "tree-dfa.h"
147 #include "diagnostic-core.h"
148 #include "stringpool.h"
151 /* Possible lattice values. */
160 struct ccp_prop_value_t
{
162 ccp_lattice_t lattice_val
;
164 /* Propagated value. */
167 /* Mask that applies to the propagated value during CCP. For X
168 with a CONSTANT lattice value X & ~mask == value & ~mask. The
169 zero bits in the mask cover constant values. The ones mean no
174 /* Array of propagated constant values. After propagation,
175 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
176 the constant is held in an SSA name representing a memory store
177 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
178 memory reference used to store (i.e., the LHS of the assignment
180 static ccp_prop_value_t
*const_val
;
181 static unsigned n_const_val
;
183 static void canonicalize_value (ccp_prop_value_t
*);
184 static bool ccp_fold_stmt (gimple_stmt_iterator
*);
185 static void ccp_lattice_meet (ccp_prop_value_t
*, ccp_prop_value_t
*);
187 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
190 dump_lattice_value (FILE *outf
, const char *prefix
, ccp_prop_value_t val
)
192 switch (val
.lattice_val
)
195 fprintf (outf
, "%sUNINITIALIZED", prefix
);
198 fprintf (outf
, "%sUNDEFINED", prefix
);
201 fprintf (outf
, "%sVARYING", prefix
);
204 if (TREE_CODE (val
.value
) != INTEGER_CST
207 fprintf (outf
, "%sCONSTANT ", prefix
);
208 print_generic_expr (outf
, val
.value
, dump_flags
);
212 widest_int cval
= wi::bit_and_not (wi::to_widest (val
.value
),
214 fprintf (outf
, "%sCONSTANT ", prefix
);
215 print_hex (cval
, outf
);
216 fprintf (outf
, " (");
217 print_hex (val
.mask
, outf
);
227 /* Print lattice value VAL to stderr. */
229 void debug_lattice_value (ccp_prop_value_t val
);
232 debug_lattice_value (ccp_prop_value_t val
)
234 dump_lattice_value (stderr
, "", val
);
235 fprintf (stderr
, "\n");
238 /* Extend NONZERO_BITS to a full mask, based on sgn. */
241 extend_mask (const wide_int
&nonzero_bits
, signop sgn
)
243 return widest_int::from (nonzero_bits
, sgn
);
246 /* Compute a default value for variable VAR and store it in the
247 CONST_VAL array. The following rules are used to get default
250 1- Global and static variables that are declared constant are
253 2- Any other value is considered UNDEFINED. This is useful when
254 considering PHI nodes. PHI arguments that are undefined do not
255 change the constant value of the PHI node, which allows for more
256 constants to be propagated.
258 3- Variables defined by statements other than assignments and PHI
259 nodes are considered VARYING.
261 4- Initial values of variables that are not GIMPLE registers are
262 considered VARYING. */
264 static ccp_prop_value_t
265 get_default_value (tree var
)
267 ccp_prop_value_t val
= { UNINITIALIZED
, NULL_TREE
, 0 };
270 stmt
= SSA_NAME_DEF_STMT (var
);
272 if (gimple_nop_p (stmt
))
274 /* Variables defined by an empty statement are those used
275 before being initialized. If VAR is a local variable, we
276 can assume initially that it is UNDEFINED, otherwise we must
277 consider it VARYING. */
278 if (!virtual_operand_p (var
)
279 && SSA_NAME_VAR (var
)
280 && TREE_CODE (SSA_NAME_VAR (var
)) == VAR_DECL
)
281 val
.lattice_val
= UNDEFINED
;
284 val
.lattice_val
= VARYING
;
286 if (flag_tree_bit_ccp
)
288 wide_int nonzero_bits
= get_nonzero_bits (var
);
289 if (nonzero_bits
!= -1)
291 val
.lattice_val
= CONSTANT
;
292 val
.value
= build_zero_cst (TREE_TYPE (var
));
293 val
.mask
= extend_mask (nonzero_bits
, TYPE_SIGN (TREE_TYPE (var
)));
298 else if (is_gimple_assign (stmt
))
301 if (gimple_assign_single_p (stmt
)
302 && DECL_P (gimple_assign_rhs1 (stmt
))
303 && (cst
= get_symbol_constant_value (gimple_assign_rhs1 (stmt
))))
305 val
.lattice_val
= CONSTANT
;
310 /* Any other variable defined by an assignment is considered
312 val
.lattice_val
= UNDEFINED
;
315 else if ((is_gimple_call (stmt
)
316 && gimple_call_lhs (stmt
) != NULL_TREE
)
317 || gimple_code (stmt
) == GIMPLE_PHI
)
319 /* A variable defined by a call or a PHI node is considered
321 val
.lattice_val
= UNDEFINED
;
325 /* Otherwise, VAR will never take on a constant value. */
326 val
.lattice_val
= VARYING
;
334 /* Get the constant value associated with variable VAR. */
336 static inline ccp_prop_value_t
*
339 ccp_prop_value_t
*val
;
341 if (const_val
== NULL
342 || SSA_NAME_VERSION (var
) >= n_const_val
)
345 val
= &const_val
[SSA_NAME_VERSION (var
)];
346 if (val
->lattice_val
== UNINITIALIZED
)
347 *val
= get_default_value (var
);
349 canonicalize_value (val
);
354 /* Return the constant tree value associated with VAR. */
357 get_constant_value (tree var
)
359 ccp_prop_value_t
*val
;
360 if (TREE_CODE (var
) != SSA_NAME
)
362 if (is_gimple_min_invariant (var
))
366 val
= get_value (var
);
368 && val
->lattice_val
== CONSTANT
369 && (TREE_CODE (val
->value
) != INTEGER_CST
375 /* Sets the value associated with VAR to VARYING. */
378 set_value_varying (tree var
)
380 ccp_prop_value_t
*val
= &const_val
[SSA_NAME_VERSION (var
)];
382 val
->lattice_val
= VARYING
;
383 val
->value
= NULL_TREE
;
387 /* For integer constants, make sure to drop TREE_OVERFLOW. */
390 canonicalize_value (ccp_prop_value_t
*val
)
392 if (val
->lattice_val
!= CONSTANT
)
395 if (TREE_OVERFLOW_P (val
->value
))
396 val
->value
= drop_tree_overflow (val
->value
);
399 /* Return whether the lattice transition is valid. */
402 valid_lattice_transition (ccp_prop_value_t old_val
, ccp_prop_value_t new_val
)
404 /* Lattice transitions must always be monotonically increasing in
406 if (old_val
.lattice_val
< new_val
.lattice_val
)
409 if (old_val
.lattice_val
!= new_val
.lattice_val
)
412 if (!old_val
.value
&& !new_val
.value
)
415 /* Now both lattice values are CONSTANT. */
417 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
418 when only a single copy edge is executable. */
419 if (TREE_CODE (old_val
.value
) == SSA_NAME
420 && TREE_CODE (new_val
.value
) == SSA_NAME
)
423 /* Allow transitioning from a constant to a copy. */
424 if (is_gimple_min_invariant (old_val
.value
)
425 && TREE_CODE (new_val
.value
) == SSA_NAME
)
428 /* Allow transitioning from PHI <&x, not executable> == &x
429 to PHI <&x, &y> == common alignment. */
430 if (TREE_CODE (old_val
.value
) != INTEGER_CST
431 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
434 /* Bit-lattices have to agree in the still valid bits. */
435 if (TREE_CODE (old_val
.value
) == INTEGER_CST
436 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
437 return (wi::bit_and_not (wi::to_widest (old_val
.value
), new_val
.mask
)
438 == wi::bit_and_not (wi::to_widest (new_val
.value
), new_val
.mask
));
440 /* Otherwise constant values have to agree. */
441 if (operand_equal_p (old_val
.value
, new_val
.value
, 0))
444 /* At least the kinds and types should agree now. */
445 if (TREE_CODE (old_val
.value
) != TREE_CODE (new_val
.value
)
446 || !types_compatible_p (TREE_TYPE (old_val
.value
),
447 TREE_TYPE (new_val
.value
)))
450 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
452 tree type
= TREE_TYPE (new_val
.value
);
453 if (SCALAR_FLOAT_TYPE_P (type
)
454 && !HONOR_NANS (type
))
456 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val
.value
)))
459 else if (VECTOR_FLOAT_TYPE_P (type
)
460 && !HONOR_NANS (type
))
462 for (unsigned i
= 0; i
< VECTOR_CST_NELTS (old_val
.value
); ++i
)
463 if (!REAL_VALUE_ISNAN
464 (TREE_REAL_CST (VECTOR_CST_ELT (old_val
.value
, i
)))
465 && !operand_equal_p (VECTOR_CST_ELT (old_val
.value
, i
),
466 VECTOR_CST_ELT (new_val
.value
, i
), 0))
470 else if (COMPLEX_FLOAT_TYPE_P (type
)
471 && !HONOR_NANS (type
))
473 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val
.value
)))
474 && !operand_equal_p (TREE_REALPART (old_val
.value
),
475 TREE_REALPART (new_val
.value
), 0))
477 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val
.value
)))
478 && !operand_equal_p (TREE_IMAGPART (old_val
.value
),
479 TREE_IMAGPART (new_val
.value
), 0))
486 /* Set the value for variable VAR to NEW_VAL. Return true if the new
487 value is different from VAR's previous value. */
490 set_lattice_value (tree var
, ccp_prop_value_t
*new_val
)
492 /* We can deal with old UNINITIALIZED values just fine here. */
493 ccp_prop_value_t
*old_val
= &const_val
[SSA_NAME_VERSION (var
)];
495 canonicalize_value (new_val
);
497 /* We have to be careful to not go up the bitwise lattice
498 represented by the mask. Instead of dropping to VARYING
499 use the meet operator to retain a conservative value.
500 Missed optimizations like PR65851 makes this necessary.
501 It also ensures we converge to a stable lattice solution. */
502 if (old_val
->lattice_val
!= UNINITIALIZED
)
503 ccp_lattice_meet (new_val
, old_val
);
505 gcc_checking_assert (valid_lattice_transition (*old_val
, *new_val
));
507 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
508 caller that this was a non-transition. */
509 if (old_val
->lattice_val
!= new_val
->lattice_val
510 || (new_val
->lattice_val
== CONSTANT
511 && (TREE_CODE (new_val
->value
) != TREE_CODE (old_val
->value
)
512 || (TREE_CODE (new_val
->value
) == INTEGER_CST
513 && (new_val
->mask
!= old_val
->mask
514 || (wi::bit_and_not (wi::to_widest (old_val
->value
),
516 != wi::bit_and_not (wi::to_widest (new_val
->value
),
518 || (TREE_CODE (new_val
->value
) != INTEGER_CST
519 && !operand_equal_p (new_val
->value
, old_val
->value
, 0)))))
521 /* ??? We would like to delay creation of INTEGER_CSTs from
522 partially constants here. */
524 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
526 dump_lattice_value (dump_file
, "Lattice value changed to ", *new_val
);
527 fprintf (dump_file
, ". Adding SSA edges to worklist.\n");
532 gcc_assert (new_val
->lattice_val
!= UNINITIALIZED
);
539 static ccp_prop_value_t
get_value_for_expr (tree
, bool);
540 static ccp_prop_value_t
bit_value_binop (enum tree_code
, tree
, tree
, tree
);
541 void bit_value_binop (enum tree_code
, signop
, int, widest_int
*, widest_int
*,
542 signop
, int, const widest_int
&, const widest_int
&,
543 signop
, int, const widest_int
&, const widest_int
&);
545 /* Return a widest_int that can be used for bitwise simplifications
549 value_to_wide_int (ccp_prop_value_t val
)
552 && TREE_CODE (val
.value
) == INTEGER_CST
)
553 return wi::to_widest (val
.value
);
558 /* Return the value for the address expression EXPR based on alignment
561 static ccp_prop_value_t
562 get_value_from_alignment (tree expr
)
564 tree type
= TREE_TYPE (expr
);
565 ccp_prop_value_t val
;
566 unsigned HOST_WIDE_INT bitpos
;
569 gcc_assert (TREE_CODE (expr
) == ADDR_EXPR
);
571 get_pointer_alignment_1 (expr
, &align
, &bitpos
);
572 val
.mask
= wi::bit_and_not
573 (POINTER_TYPE_P (type
) || TYPE_UNSIGNED (type
)
574 ? wi::mask
<widest_int
> (TYPE_PRECISION (type
), false)
576 align
/ BITS_PER_UNIT
- 1);
578 = wi::sext (val
.mask
, TYPE_PRECISION (type
)) == -1 ? VARYING
: CONSTANT
;
579 if (val
.lattice_val
== CONSTANT
)
580 val
.value
= build_int_cstu (type
, bitpos
/ BITS_PER_UNIT
);
582 val
.value
= NULL_TREE
;
587 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
588 return constant bits extracted from alignment information for
589 invariant addresses. */
591 static ccp_prop_value_t
592 get_value_for_expr (tree expr
, bool for_bits_p
)
594 ccp_prop_value_t val
;
596 if (TREE_CODE (expr
) == SSA_NAME
)
598 ccp_prop_value_t
*val_
= get_value (expr
);
603 val
.lattice_val
= VARYING
;
604 val
.value
= NULL_TREE
;
608 && val
.lattice_val
== CONSTANT
609 && TREE_CODE (val
.value
) == ADDR_EXPR
)
610 val
= get_value_from_alignment (val
.value
);
611 /* Fall back to a copy value. */
613 && val
.lattice_val
== VARYING
614 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr
))
616 val
.lattice_val
= CONSTANT
;
621 else if (is_gimple_min_invariant (expr
)
622 && (!for_bits_p
|| TREE_CODE (expr
) == INTEGER_CST
))
624 val
.lattice_val
= CONSTANT
;
627 canonicalize_value (&val
);
629 else if (TREE_CODE (expr
) == ADDR_EXPR
)
630 val
= get_value_from_alignment (expr
);
633 val
.lattice_val
= VARYING
;
635 val
.value
= NULL_TREE
;
638 if (val
.lattice_val
== VARYING
639 && TYPE_UNSIGNED (TREE_TYPE (expr
)))
640 val
.mask
= wi::zext (val
.mask
, TYPE_PRECISION (TREE_TYPE (expr
)));
645 /* Return the likely CCP lattice value for STMT.
647 If STMT has no operands, then return CONSTANT.
649 Else if undefinedness of operands of STMT cause its value to be
650 undefined, then return UNDEFINED.
652 Else if any operands of STMT are constants, then return CONSTANT.
654 Else return VARYING. */
657 likely_value (gimple
*stmt
)
659 bool has_constant_operand
, has_undefined_operand
, all_undefined_operands
;
660 bool has_nsa_operand
;
665 enum gimple_code code
= gimple_code (stmt
);
667 /* This function appears to be called only for assignments, calls,
668 conditionals, and switches, due to the logic in visit_stmt. */
669 gcc_assert (code
== GIMPLE_ASSIGN
670 || code
== GIMPLE_CALL
671 || code
== GIMPLE_COND
672 || code
== GIMPLE_SWITCH
);
674 /* If the statement has volatile operands, it won't fold to a
676 if (gimple_has_volatile_ops (stmt
))
679 /* Arrive here for more complex cases. */
680 has_constant_operand
= false;
681 has_undefined_operand
= false;
682 all_undefined_operands
= true;
683 has_nsa_operand
= false;
684 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
686 ccp_prop_value_t
*val
= get_value (use
);
688 if (val
&& val
->lattice_val
== UNDEFINED
)
689 has_undefined_operand
= true;
691 all_undefined_operands
= false;
693 if (val
&& val
->lattice_val
== CONSTANT
)
694 has_constant_operand
= true;
696 if (SSA_NAME_IS_DEFAULT_DEF (use
)
697 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use
)))
698 has_nsa_operand
= true;
701 /* There may be constants in regular rhs operands. For calls we
702 have to ignore lhs, fndecl and static chain, otherwise only
704 for (i
= (is_gimple_call (stmt
) ? 2 : 0) + gimple_has_lhs (stmt
);
705 i
< gimple_num_ops (stmt
); ++i
)
707 tree op
= gimple_op (stmt
, i
);
708 if (!op
|| TREE_CODE (op
) == SSA_NAME
)
710 if (is_gimple_min_invariant (op
))
711 has_constant_operand
= true;
714 if (has_constant_operand
)
715 all_undefined_operands
= false;
717 if (has_undefined_operand
718 && code
== GIMPLE_CALL
719 && gimple_call_internal_p (stmt
))
720 switch (gimple_call_internal_fn (stmt
))
722 /* These 3 builtins use the first argument just as a magic
723 way how to find out a decl uid. */
724 case IFN_GOMP_SIMD_LANE
:
725 case IFN_GOMP_SIMD_VF
:
726 case IFN_GOMP_SIMD_LAST_LANE
:
727 has_undefined_operand
= false;
733 /* If the operation combines operands like COMPLEX_EXPR make sure to
734 not mark the result UNDEFINED if only one part of the result is
736 if (has_undefined_operand
&& all_undefined_operands
)
738 else if (code
== GIMPLE_ASSIGN
&& has_undefined_operand
)
740 switch (gimple_assign_rhs_code (stmt
))
742 /* Unary operators are handled with all_undefined_operands. */
745 case POINTER_PLUS_EXPR
:
747 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
748 Not bitwise operators, one VARYING operand may specify the
750 Not logical operators for the same reason, apart from XOR.
751 Not COMPLEX_EXPR as one VARYING operand makes the result partly
752 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
753 the undefined operand may be promoted. */
757 /* If any part of an address is UNDEFINED, like the index
758 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
765 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
766 fall back to CONSTANT. During iteration UNDEFINED may still drop
768 if (has_undefined_operand
)
771 /* We do not consider virtual operands here -- load from read-only
772 memory may have only VARYING virtual operands, but still be
773 constant. Also we can combine the stmt with definitions from
774 operands whose definitions are not simulated again. */
775 if (has_constant_operand
777 || gimple_references_memory_p (stmt
))
783 /* Returns true if STMT cannot be constant. */
786 surely_varying_stmt_p (gimple
*stmt
)
788 /* If the statement has operands that we cannot handle, it cannot be
790 if (gimple_has_volatile_ops (stmt
))
793 /* If it is a call and does not return a value or is not a
794 builtin and not an indirect call or a call to function with
795 assume_aligned/alloc_align attribute, it is varying. */
796 if (is_gimple_call (stmt
))
798 tree fndecl
, fntype
= gimple_call_fntype (stmt
);
799 if (!gimple_call_lhs (stmt
)
800 || ((fndecl
= gimple_call_fndecl (stmt
)) != NULL_TREE
801 && !DECL_BUILT_IN (fndecl
)
802 && !lookup_attribute ("assume_aligned",
803 TYPE_ATTRIBUTES (fntype
))
804 && !lookup_attribute ("alloc_align",
805 TYPE_ATTRIBUTES (fntype
))))
809 /* Any other store operation is not interesting. */
810 else if (gimple_vdef (stmt
))
813 /* Anything other than assignments and conditional jumps are not
814 interesting for CCP. */
815 if (gimple_code (stmt
) != GIMPLE_ASSIGN
816 && gimple_code (stmt
) != GIMPLE_COND
817 && gimple_code (stmt
) != GIMPLE_SWITCH
818 && gimple_code (stmt
) != GIMPLE_CALL
)
824 /* Initialize local data structures for CCP. */
827 ccp_initialize (void)
831 n_const_val
= num_ssa_names
;
832 const_val
= XCNEWVEC (ccp_prop_value_t
, n_const_val
);
834 /* Initialize simulation flags for PHI nodes and statements. */
835 FOR_EACH_BB_FN (bb
, cfun
)
837 gimple_stmt_iterator i
;
839 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
841 gimple
*stmt
= gsi_stmt (i
);
844 /* If the statement is a control insn, then we do not
845 want to avoid simulating the statement once. Failure
846 to do so means that those edges will never get added. */
847 if (stmt_ends_bb_p (stmt
))
850 is_varying
= surely_varying_stmt_p (stmt
);
857 /* If the statement will not produce a constant, mark
858 all its outputs VARYING. */
859 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
860 set_value_varying (def
);
862 prop_set_simulate_again (stmt
, !is_varying
);
866 /* Now process PHI nodes. We never clear the simulate_again flag on
867 phi nodes, since we do not know which edges are executable yet,
868 except for phi nodes for virtual operands when we do not do store ccp. */
869 FOR_EACH_BB_FN (bb
, cfun
)
873 for (i
= gsi_start_phis (bb
); !gsi_end_p (i
); gsi_next (&i
))
875 gphi
*phi
= i
.phi ();
877 if (virtual_operand_p (gimple_phi_result (phi
)))
878 prop_set_simulate_again (phi
, false);
880 prop_set_simulate_again (phi
, true);
885 /* Debug count support. Reset the values of ssa names
886 VARYING when the total number ssa names analyzed is
887 beyond the debug count specified. */
893 for (i
= 0; i
< num_ssa_names
; i
++)
897 const_val
[i
].lattice_val
= VARYING
;
898 const_val
[i
].mask
= -1;
899 const_val
[i
].value
= NULL_TREE
;
905 /* Do final substitution of propagated values, cleanup the flowgraph and
906 free allocated storage. If NONZERO_P, record nonzero bits.
908 Return TRUE when something was optimized. */
911 ccp_finalize (bool nonzero_p
)
913 bool something_changed
;
919 /* Derive alignment and misalignment information from partially
920 constant pointers in the lattice or nonzero bits from partially
921 constant integers. */
922 FOR_EACH_SSA_NAME (i
, name
, cfun
)
924 ccp_prop_value_t
*val
;
925 unsigned int tem
, align
;
927 if (!POINTER_TYPE_P (TREE_TYPE (name
))
928 && (!INTEGRAL_TYPE_P (TREE_TYPE (name
))
929 /* Don't record nonzero bits before IPA to avoid
930 using too much memory. */
934 val
= get_value (name
);
935 if (val
->lattice_val
!= CONSTANT
936 || TREE_CODE (val
->value
) != INTEGER_CST
940 if (POINTER_TYPE_P (TREE_TYPE (name
)))
942 /* Trailing mask bits specify the alignment, trailing value
943 bits the misalignment. */
944 tem
= val
->mask
.to_uhwi ();
945 align
= least_bit_hwi (tem
);
947 set_ptr_info_alignment (get_ptr_info (name
), align
,
948 (TREE_INT_CST_LOW (val
->value
)
953 unsigned int precision
= TYPE_PRECISION (TREE_TYPE (val
->value
));
954 wide_int nonzero_bits
955 = (wide_int::from (val
->mask
, precision
, UNSIGNED
)
956 | wi::to_wide (val
->value
));
957 nonzero_bits
&= get_nonzero_bits (name
);
958 set_nonzero_bits (name
, nonzero_bits
);
962 /* Perform substitutions based on the known constant values. */
963 something_changed
= substitute_and_fold (get_constant_value
, ccp_fold_stmt
);
967 return something_changed
;;
971 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
974 any M UNDEFINED = any
975 any M VARYING = VARYING
976 Ci M Cj = Ci if (i == j)
977 Ci M Cj = VARYING if (i != j)
981 ccp_lattice_meet (ccp_prop_value_t
*val1
, ccp_prop_value_t
*val2
)
983 if (val1
->lattice_val
== UNDEFINED
984 /* For UNDEFINED M SSA we can't always SSA because its definition
985 may not dominate the PHI node. Doing optimistic copy propagation
986 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
987 && (val2
->lattice_val
!= CONSTANT
988 || TREE_CODE (val2
->value
) != SSA_NAME
))
990 /* UNDEFINED M any = any */
993 else if (val2
->lattice_val
== UNDEFINED
995 && (val1
->lattice_val
!= CONSTANT
996 || TREE_CODE (val1
->value
) != SSA_NAME
))
998 /* any M UNDEFINED = any
999 Nothing to do. VAL1 already contains the value we want. */
1002 else if (val1
->lattice_val
== VARYING
1003 || val2
->lattice_val
== VARYING
)
1005 /* any M VARYING = VARYING. */
1006 val1
->lattice_val
= VARYING
;
1008 val1
->value
= NULL_TREE
;
1010 else if (val1
->lattice_val
== CONSTANT
1011 && val2
->lattice_val
== CONSTANT
1012 && TREE_CODE (val1
->value
) == INTEGER_CST
1013 && TREE_CODE (val2
->value
) == INTEGER_CST
)
1015 /* Ci M Cj = Ci if (i == j)
1016 Ci M Cj = VARYING if (i != j)
1018 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1020 val1
->mask
= (val1
->mask
| val2
->mask
1021 | (wi::to_widest (val1
->value
)
1022 ^ wi::to_widest (val2
->value
)));
1023 if (wi::sext (val1
->mask
, TYPE_PRECISION (TREE_TYPE (val1
->value
))) == -1)
1025 val1
->lattice_val
= VARYING
;
1026 val1
->value
= NULL_TREE
;
1029 else if (val1
->lattice_val
== CONSTANT
1030 && val2
->lattice_val
== CONSTANT
1031 && operand_equal_p (val1
->value
, val2
->value
, 0))
1033 /* Ci M Cj = Ci if (i == j)
1034 Ci M Cj = VARYING if (i != j)
1036 VAL1 already contains the value we want for equivalent values. */
1038 else if (val1
->lattice_val
== CONSTANT
1039 && val2
->lattice_val
== CONSTANT
1040 && (TREE_CODE (val1
->value
) == ADDR_EXPR
1041 || TREE_CODE (val2
->value
) == ADDR_EXPR
))
1043 /* When not equal addresses are involved try meeting for
1045 ccp_prop_value_t tem
= *val2
;
1046 if (TREE_CODE (val1
->value
) == ADDR_EXPR
)
1047 *val1
= get_value_for_expr (val1
->value
, true);
1048 if (TREE_CODE (val2
->value
) == ADDR_EXPR
)
1049 tem
= get_value_for_expr (val2
->value
, true);
1050 ccp_lattice_meet (val1
, &tem
);
1054 /* Any other combination is VARYING. */
1055 val1
->lattice_val
= VARYING
;
1057 val1
->value
= NULL_TREE
;
1062 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1063 lattice values to determine PHI_NODE's lattice value. The value of a
1064 PHI node is determined calling ccp_lattice_meet with all the arguments
1065 of the PHI node that are incoming via executable edges. */
1067 static enum ssa_prop_result
1068 ccp_visit_phi_node (gphi
*phi
)
1071 ccp_prop_value_t new_val
;
1073 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1075 fprintf (dump_file
, "\nVisiting PHI node: ");
1076 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
1079 new_val
.lattice_val
= UNDEFINED
;
1080 new_val
.value
= NULL_TREE
;
1084 bool non_exec_edge
= false;
1085 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1087 /* Compute the meet operator over all the PHI arguments flowing
1088 through executable edges. */
1089 edge e
= gimple_phi_arg_edge (phi
, i
);
1091 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1094 "\n Argument #%d (%d -> %d %sexecutable)\n",
1095 i
, e
->src
->index
, e
->dest
->index
,
1096 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
1099 /* If the incoming edge is executable, Compute the meet operator for
1100 the existing value of the PHI node and the current PHI argument. */
1101 if (e
->flags
& EDGE_EXECUTABLE
)
1103 tree arg
= gimple_phi_arg (phi
, i
)->def
;
1104 ccp_prop_value_t arg_val
= get_value_for_expr (arg
, false);
1112 ccp_lattice_meet (&new_val
, &arg_val
);
1114 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1116 fprintf (dump_file
, "\t");
1117 print_generic_expr (dump_file
, arg
, dump_flags
);
1118 dump_lattice_value (dump_file
, "\tValue: ", arg_val
);
1119 fprintf (dump_file
, "\n");
1122 if (new_val
.lattice_val
== VARYING
)
1126 non_exec_edge
= true;
1129 /* In case there were non-executable edges and the value is a copy
1130 make sure its definition dominates the PHI node. */
1132 && new_val
.lattice_val
== CONSTANT
1133 && TREE_CODE (new_val
.value
) == SSA_NAME
1134 && ! SSA_NAME_IS_DEFAULT_DEF (new_val
.value
)
1135 && ! dominated_by_p (CDI_DOMINATORS
, gimple_bb (phi
),
1136 gimple_bb (SSA_NAME_DEF_STMT (new_val
.value
))))
1138 new_val
.lattice_val
= VARYING
;
1139 new_val
.value
= NULL_TREE
;
1143 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1145 dump_lattice_value (dump_file
, "\n PHI node value: ", new_val
);
1146 fprintf (dump_file
, "\n\n");
1149 /* Make the transition to the new value. */
1150 if (set_lattice_value (gimple_phi_result (phi
), &new_val
))
1152 if (new_val
.lattice_val
== VARYING
)
1153 return SSA_PROP_VARYING
;
1155 return SSA_PROP_INTERESTING
;
1158 return SSA_PROP_NOT_INTERESTING
;
1161 /* Return the constant value for OP or OP otherwise. */
1164 valueize_op (tree op
)
1166 if (TREE_CODE (op
) == SSA_NAME
)
1168 tree tem
= get_constant_value (op
);
1175 /* Return the constant value for OP, but signal to not follow SSA
1176 edges if the definition may be simulated again. */
1179 valueize_op_1 (tree op
)
1181 if (TREE_CODE (op
) == SSA_NAME
)
1183 /* If the definition may be simulated again we cannot follow
1184 this SSA edge as the SSA propagator does not necessarily
1185 re-visit the use. */
1186 gimple
*def_stmt
= SSA_NAME_DEF_STMT (op
);
1187 if (!gimple_nop_p (def_stmt
)
1188 && prop_simulate_again_p (def_stmt
))
1190 tree tem
= get_constant_value (op
);
1197 /* CCP specific front-end to the non-destructive constant folding
1200 Attempt to simplify the RHS of STMT knowing that one or more
1201 operands are constants.
1203 If simplification is possible, return the simplified RHS,
1204 otherwise return the original RHS or NULL_TREE. */
1207 ccp_fold (gimple
*stmt
)
1209 location_t loc
= gimple_location (stmt
);
1210 switch (gimple_code (stmt
))
1214 /* Handle comparison operators that can appear in GIMPLE form. */
1215 tree op0
= valueize_op (gimple_cond_lhs (stmt
));
1216 tree op1
= valueize_op (gimple_cond_rhs (stmt
));
1217 enum tree_code code
= gimple_cond_code (stmt
);
1218 return fold_binary_loc (loc
, code
, boolean_type_node
, op0
, op1
);
1223 /* Return the constant switch index. */
1224 return valueize_op (gimple_switch_index (as_a
<gswitch
*> (stmt
)));
1229 return gimple_fold_stmt_to_constant_1 (stmt
,
1230 valueize_op
, valueize_op_1
);
1237 /* Apply the operation CODE in type TYPE to the value, mask pair
1238 RVAL and RMASK representing a value of type RTYPE and set
1239 the value, mask pair *VAL and *MASK to the result. */
1242 bit_value_unop (enum tree_code code
, signop type_sgn
, int type_precision
,
1243 widest_int
*val
, widest_int
*mask
,
1244 signop rtype_sgn
, int rtype_precision
,
1245 const widest_int
&rval
, const widest_int
&rmask
)
1256 widest_int temv
, temm
;
1257 /* Return ~rval + 1. */
1258 bit_value_unop (BIT_NOT_EXPR
, type_sgn
, type_precision
, &temv
, &temm
,
1259 type_sgn
, type_precision
, rval
, rmask
);
1260 bit_value_binop (PLUS_EXPR
, type_sgn
, type_precision
, val
, mask
,
1261 type_sgn
, type_precision
, temv
, temm
,
1262 type_sgn
, type_precision
, 1, 0);
1268 /* First extend mask and value according to the original type. */
1269 *mask
= wi::ext (rmask
, rtype_precision
, rtype_sgn
);
1270 *val
= wi::ext (rval
, rtype_precision
, rtype_sgn
);
1272 /* Then extend mask and value according to the target type. */
1273 *mask
= wi::ext (*mask
, type_precision
, type_sgn
);
1274 *val
= wi::ext (*val
, type_precision
, type_sgn
);
1284 /* Apply the operation CODE in type TYPE to the value, mask pairs
1285 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1286 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1289 bit_value_binop (enum tree_code code
, signop sgn
, int width
,
1290 widest_int
*val
, widest_int
*mask
,
1291 signop r1type_sgn
, int r1type_precision
,
1292 const widest_int
&r1val
, const widest_int
&r1mask
,
1293 signop r2type_sgn
, int r2type_precision
,
1294 const widest_int
&r2val
, const widest_int
&r2mask
)
1296 bool swap_p
= false;
1298 /* Assume we'll get a constant result. Use an initial non varying
1299 value, we fall back to varying in the end if necessary. */
1305 /* The mask is constant where there is a known not
1306 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1307 *mask
= (r1mask
| r2mask
) & (r1val
| r1mask
) & (r2val
| r2mask
);
1308 *val
= r1val
& r2val
;
1312 /* The mask is constant where there is a known
1313 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1314 *mask
= wi::bit_and_not (r1mask
| r2mask
,
1315 wi::bit_and_not (r1val
, r1mask
)
1316 | wi::bit_and_not (r2val
, r2mask
));
1317 *val
= r1val
| r2val
;
1322 *mask
= r1mask
| r2mask
;
1323 *val
= r1val
^ r2val
;
1330 widest_int shift
= r2val
;
1338 if (wi::neg_p (shift
))
1341 if (code
== RROTATE_EXPR
)
1342 code
= LROTATE_EXPR
;
1344 code
= RROTATE_EXPR
;
1346 if (code
== RROTATE_EXPR
)
1348 *mask
= wi::rrotate (r1mask
, shift
, width
);
1349 *val
= wi::rrotate (r1val
, shift
, width
);
1353 *mask
= wi::lrotate (r1mask
, shift
, width
);
1354 *val
= wi::lrotate (r1val
, shift
, width
);
1362 /* ??? We can handle partially known shift counts if we know
1363 its sign. That way we can tell that (x << (y | 8)) & 255
1367 widest_int shift
= r2val
;
1375 if (wi::neg_p (shift
))
1378 if (code
== RSHIFT_EXPR
)
1383 if (code
== RSHIFT_EXPR
)
1385 *mask
= wi::rshift (wi::ext (r1mask
, width
, sgn
), shift
, sgn
);
1386 *val
= wi::rshift (wi::ext (r1val
, width
, sgn
), shift
, sgn
);
1390 *mask
= wi::ext (r1mask
<< shift
, width
, sgn
);
1391 *val
= wi::ext (r1val
<< shift
, width
, sgn
);
1398 case POINTER_PLUS_EXPR
:
1400 /* Do the addition with unknown bits set to zero, to give carry-ins of
1401 zero wherever possible. */
1402 widest_int lo
= (wi::bit_and_not (r1val
, r1mask
)
1403 + wi::bit_and_not (r2val
, r2mask
));
1404 lo
= wi::ext (lo
, width
, sgn
);
1405 /* Do the addition with unknown bits set to one, to give carry-ins of
1406 one wherever possible. */
1407 widest_int hi
= (r1val
| r1mask
) + (r2val
| r2mask
);
1408 hi
= wi::ext (hi
, width
, sgn
);
1409 /* Each bit in the result is known if (a) the corresponding bits in
1410 both inputs are known, and (b) the carry-in to that bit position
1411 is known. We can check condition (b) by seeing if we got the same
1412 result with minimised carries as with maximised carries. */
1413 *mask
= r1mask
| r2mask
| (lo
^ hi
);
1414 *mask
= wi::ext (*mask
, width
, sgn
);
1415 /* It shouldn't matter whether we choose lo or hi here. */
1422 widest_int temv
, temm
;
1423 bit_value_unop (NEGATE_EXPR
, r2type_sgn
, r2type_precision
, &temv
, &temm
,
1424 r2type_sgn
, r2type_precision
, r2val
, r2mask
);
1425 bit_value_binop (PLUS_EXPR
, sgn
, width
, val
, mask
,
1426 r1type_sgn
, r1type_precision
, r1val
, r1mask
,
1427 r2type_sgn
, r2type_precision
, temv
, temm
);
1433 /* Just track trailing zeros in both operands and transfer
1434 them to the other. */
1435 int r1tz
= wi::ctz (r1val
| r1mask
);
1436 int r2tz
= wi::ctz (r2val
| r2mask
);
1437 if (r1tz
+ r2tz
>= width
)
1442 else if (r1tz
+ r2tz
> 0)
1444 *mask
= wi::ext (wi::mask
<widest_int
> (r1tz
+ r2tz
, true),
1454 widest_int m
= r1mask
| r2mask
;
1455 if (wi::bit_and_not (r1val
, m
) != wi::bit_and_not (r2val
, m
))
1458 *val
= ((code
== EQ_EXPR
) ? 0 : 1);
1462 /* We know the result of a comparison is always one or zero. */
1472 code
= swap_tree_comparison (code
);
1479 const widest_int
&o1val
= swap_p
? r2val
: r1val
;
1480 const widest_int
&o1mask
= swap_p
? r2mask
: r1mask
;
1481 const widest_int
&o2val
= swap_p
? r1val
: r2val
;
1482 const widest_int
&o2mask
= swap_p
? r1mask
: r2mask
;
1484 /* If the most significant bits are not known we know nothing. */
1485 if (wi::neg_p (o1mask
) || wi::neg_p (o2mask
))
1488 /* For comparisons the signedness is in the comparison operands. */
1491 /* If we know the most significant bits we know the values
1492 value ranges by means of treating varying bits as zero
1493 or one. Do a cross comparison of the max/min pairs. */
1494 maxmin
= wi::cmp (o1val
| o1mask
,
1495 wi::bit_and_not (o2val
, o2mask
), sgn
);
1496 minmax
= wi::cmp (wi::bit_and_not (o1val
, o1mask
),
1497 o2val
| o2mask
, sgn
);
1498 if (maxmin
< 0) /* o1 is less than o2. */
1503 else if (minmax
> 0) /* o1 is not less or equal to o2. */
1508 else if (maxmin
== minmax
) /* o1 and o2 are equal. */
1510 /* This probably should never happen as we'd have
1511 folded the thing during fully constant value folding. */
1513 *val
= (code
== LE_EXPR
? 1 : 0);
1517 /* We know the result of a comparison is always one or zero. */
1528 /* Return the propagation value when applying the operation CODE to
1529 the value RHS yielding type TYPE. */
1531 static ccp_prop_value_t
1532 bit_value_unop (enum tree_code code
, tree type
, tree rhs
)
1534 ccp_prop_value_t rval
= get_value_for_expr (rhs
, true);
1535 widest_int value
, mask
;
1536 ccp_prop_value_t val
;
1538 if (rval
.lattice_val
== UNDEFINED
)
1541 gcc_assert ((rval
.lattice_val
== CONSTANT
1542 && TREE_CODE (rval
.value
) == INTEGER_CST
)
1543 || wi::sext (rval
.mask
, TYPE_PRECISION (TREE_TYPE (rhs
))) == -1);
1544 bit_value_unop (code
, TYPE_SIGN (type
), TYPE_PRECISION (type
), &value
, &mask
,
1545 TYPE_SIGN (TREE_TYPE (rhs
)), TYPE_PRECISION (TREE_TYPE (rhs
)),
1546 value_to_wide_int (rval
), rval
.mask
);
1547 if (wi::sext (mask
, TYPE_PRECISION (type
)) != -1)
1549 val
.lattice_val
= CONSTANT
;
1551 /* ??? Delay building trees here. */
1552 val
.value
= wide_int_to_tree (type
, value
);
1556 val
.lattice_val
= VARYING
;
1557 val
.value
= NULL_TREE
;
1563 /* Return the propagation value when applying the operation CODE to
1564 the values RHS1 and RHS2 yielding type TYPE. */
1566 static ccp_prop_value_t
1567 bit_value_binop (enum tree_code code
, tree type
, tree rhs1
, tree rhs2
)
1569 ccp_prop_value_t r1val
= get_value_for_expr (rhs1
, true);
1570 ccp_prop_value_t r2val
= get_value_for_expr (rhs2
, true);
1571 widest_int value
, mask
;
1572 ccp_prop_value_t val
;
1574 if (r1val
.lattice_val
== UNDEFINED
1575 || r2val
.lattice_val
== UNDEFINED
)
1577 val
.lattice_val
= VARYING
;
1578 val
.value
= NULL_TREE
;
1583 gcc_assert ((r1val
.lattice_val
== CONSTANT
1584 && TREE_CODE (r1val
.value
) == INTEGER_CST
)
1585 || wi::sext (r1val
.mask
,
1586 TYPE_PRECISION (TREE_TYPE (rhs1
))) == -1);
1587 gcc_assert ((r2val
.lattice_val
== CONSTANT
1588 && TREE_CODE (r2val
.value
) == INTEGER_CST
)
1589 || wi::sext (r2val
.mask
,
1590 TYPE_PRECISION (TREE_TYPE (rhs2
))) == -1);
1591 bit_value_binop (code
, TYPE_SIGN (type
), TYPE_PRECISION (type
), &value
, &mask
,
1592 TYPE_SIGN (TREE_TYPE (rhs1
)), TYPE_PRECISION (TREE_TYPE (rhs1
)),
1593 value_to_wide_int (r1val
), r1val
.mask
,
1594 TYPE_SIGN (TREE_TYPE (rhs2
)), TYPE_PRECISION (TREE_TYPE (rhs2
)),
1595 value_to_wide_int (r2val
), r2val
.mask
);
1597 if (wi::sext (mask
, TYPE_PRECISION (type
)) != -1)
1599 val
.lattice_val
= CONSTANT
;
1601 /* ??? Delay building trees here. */
1602 val
.value
= wide_int_to_tree (type
, value
);
1606 val
.lattice_val
= VARYING
;
1607 val
.value
= NULL_TREE
;
1613 /* Return the propagation value for __builtin_assume_aligned
1614 and functions with assume_aligned or alloc_aligned attribute.
1615 For __builtin_assume_aligned, ATTR is NULL_TREE,
1616 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1617 is false, for alloc_aligned attribute ATTR is non-NULL and
1618 ALLOC_ALIGNED is true. */
1620 static ccp_prop_value_t
1621 bit_value_assume_aligned (gimple
*stmt
, tree attr
, ccp_prop_value_t ptrval
,
1624 tree align
, misalign
= NULL_TREE
, type
;
1625 unsigned HOST_WIDE_INT aligni
, misaligni
= 0;
1626 ccp_prop_value_t alignval
;
1627 widest_int value
, mask
;
1628 ccp_prop_value_t val
;
1630 if (attr
== NULL_TREE
)
1632 tree ptr
= gimple_call_arg (stmt
, 0);
1633 type
= TREE_TYPE (ptr
);
1634 ptrval
= get_value_for_expr (ptr
, true);
1638 tree lhs
= gimple_call_lhs (stmt
);
1639 type
= TREE_TYPE (lhs
);
1642 if (ptrval
.lattice_val
== UNDEFINED
)
1644 gcc_assert ((ptrval
.lattice_val
== CONSTANT
1645 && TREE_CODE (ptrval
.value
) == INTEGER_CST
)
1646 || wi::sext (ptrval
.mask
, TYPE_PRECISION (type
)) == -1);
1647 if (attr
== NULL_TREE
)
1649 /* Get aligni and misaligni from __builtin_assume_aligned. */
1650 align
= gimple_call_arg (stmt
, 1);
1651 if (!tree_fits_uhwi_p (align
))
1653 aligni
= tree_to_uhwi (align
);
1654 if (gimple_call_num_args (stmt
) > 2)
1656 misalign
= gimple_call_arg (stmt
, 2);
1657 if (!tree_fits_uhwi_p (misalign
))
1659 misaligni
= tree_to_uhwi (misalign
);
1664 /* Get aligni and misaligni from assume_aligned or
1665 alloc_align attributes. */
1666 if (TREE_VALUE (attr
) == NULL_TREE
)
1668 attr
= TREE_VALUE (attr
);
1669 align
= TREE_VALUE (attr
);
1670 if (!tree_fits_uhwi_p (align
))
1672 aligni
= tree_to_uhwi (align
);
1675 if (aligni
== 0 || aligni
> gimple_call_num_args (stmt
))
1677 align
= gimple_call_arg (stmt
, aligni
- 1);
1678 if (!tree_fits_uhwi_p (align
))
1680 aligni
= tree_to_uhwi (align
);
1682 else if (TREE_CHAIN (attr
) && TREE_VALUE (TREE_CHAIN (attr
)))
1684 misalign
= TREE_VALUE (TREE_CHAIN (attr
));
1685 if (!tree_fits_uhwi_p (misalign
))
1687 misaligni
= tree_to_uhwi (misalign
);
1690 if (aligni
<= 1 || (aligni
& (aligni
- 1)) != 0 || misaligni
>= aligni
)
1693 align
= build_int_cst_type (type
, -aligni
);
1694 alignval
= get_value_for_expr (align
, true);
1695 bit_value_binop (BIT_AND_EXPR
, TYPE_SIGN (type
), TYPE_PRECISION (type
), &value
, &mask
,
1696 TYPE_SIGN (type
), TYPE_PRECISION (type
), value_to_wide_int (ptrval
), ptrval
.mask
,
1697 TYPE_SIGN (type
), TYPE_PRECISION (type
), value_to_wide_int (alignval
), alignval
.mask
);
1699 if (wi::sext (mask
, TYPE_PRECISION (type
)) != -1)
1701 val
.lattice_val
= CONSTANT
;
1703 gcc_assert ((mask
.to_uhwi () & (aligni
- 1)) == 0);
1704 gcc_assert ((value
.to_uhwi () & (aligni
- 1)) == 0);
1706 /* ??? Delay building trees here. */
1707 val
.value
= wide_int_to_tree (type
, value
);
1711 val
.lattice_val
= VARYING
;
1712 val
.value
= NULL_TREE
;
1718 /* Evaluate statement STMT.
1719 Valid only for assignments, calls, conditionals, and switches. */
1721 static ccp_prop_value_t
1722 evaluate_stmt (gimple
*stmt
)
1724 ccp_prop_value_t val
;
1725 tree simplified
= NULL_TREE
;
1726 ccp_lattice_t likelyvalue
= likely_value (stmt
);
1727 bool is_constant
= false;
1730 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1732 fprintf (dump_file
, "which is likely ");
1733 switch (likelyvalue
)
1736 fprintf (dump_file
, "CONSTANT");
1739 fprintf (dump_file
, "UNDEFINED");
1742 fprintf (dump_file
, "VARYING");
1746 fprintf (dump_file
, "\n");
1749 /* If the statement is likely to have a CONSTANT result, then try
1750 to fold the statement to determine the constant value. */
1751 /* FIXME. This is the only place that we call ccp_fold.
1752 Since likely_value never returns CONSTANT for calls, we will
1753 not attempt to fold them, including builtins that may profit. */
1754 if (likelyvalue
== CONSTANT
)
1756 fold_defer_overflow_warnings ();
1757 simplified
= ccp_fold (stmt
);
1759 && TREE_CODE (simplified
) == SSA_NAME
)
1761 /* We may not use values of something that may be simulated again,
1762 see valueize_op_1. */
1763 if (SSA_NAME_IS_DEFAULT_DEF (simplified
)
1764 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified
)))
1766 ccp_prop_value_t
*val
= get_value (simplified
);
1767 if (val
&& val
->lattice_val
!= VARYING
)
1769 fold_undefer_overflow_warnings (true, stmt
, 0);
1774 /* We may also not place a non-valueized copy in the lattice
1775 as that might become stale if we never re-visit this stmt. */
1776 simplified
= NULL_TREE
;
1778 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1779 fold_undefer_overflow_warnings (is_constant
, stmt
, 0);
1782 /* The statement produced a constant value. */
1783 val
.lattice_val
= CONSTANT
;
1784 val
.value
= simplified
;
1789 /* If the statement is likely to have a VARYING result, then do not
1790 bother folding the statement. */
1791 else if (likelyvalue
== VARYING
)
1793 enum gimple_code code
= gimple_code (stmt
);
1794 if (code
== GIMPLE_ASSIGN
)
1796 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1798 /* Other cases cannot satisfy is_gimple_min_invariant
1800 if (get_gimple_rhs_class (subcode
) == GIMPLE_SINGLE_RHS
)
1801 simplified
= gimple_assign_rhs1 (stmt
);
1803 else if (code
== GIMPLE_SWITCH
)
1804 simplified
= gimple_switch_index (as_a
<gswitch
*> (stmt
));
1806 /* These cannot satisfy is_gimple_min_invariant without folding. */
1807 gcc_assert (code
== GIMPLE_CALL
|| code
== GIMPLE_COND
);
1808 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1811 /* The statement produced a constant value. */
1812 val
.lattice_val
= CONSTANT
;
1813 val
.value
= simplified
;
1817 /* If the statement result is likely UNDEFINED, make it so. */
1818 else if (likelyvalue
== UNDEFINED
)
1820 val
.lattice_val
= UNDEFINED
;
1821 val
.value
= NULL_TREE
;
1826 /* Resort to simplification for bitwise tracking. */
1827 if (flag_tree_bit_ccp
1828 && (likelyvalue
== CONSTANT
|| is_gimple_call (stmt
)
1829 || (gimple_assign_single_p (stmt
)
1830 && gimple_assign_rhs_code (stmt
) == ADDR_EXPR
))
1833 enum gimple_code code
= gimple_code (stmt
);
1834 val
.lattice_val
= VARYING
;
1835 val
.value
= NULL_TREE
;
1837 if (code
== GIMPLE_ASSIGN
)
1839 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1840 tree rhs1
= gimple_assign_rhs1 (stmt
);
1841 tree lhs
= gimple_assign_lhs (stmt
);
1842 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
1843 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
1844 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1845 || POINTER_TYPE_P (TREE_TYPE (rhs1
))))
1846 switch (get_gimple_rhs_class (subcode
))
1848 case GIMPLE_SINGLE_RHS
:
1849 val
= get_value_for_expr (rhs1
, true);
1852 case GIMPLE_UNARY_RHS
:
1853 val
= bit_value_unop (subcode
, TREE_TYPE (lhs
), rhs1
);
1856 case GIMPLE_BINARY_RHS
:
1857 val
= bit_value_binop (subcode
, TREE_TYPE (lhs
), rhs1
,
1858 gimple_assign_rhs2 (stmt
));
1864 else if (code
== GIMPLE_COND
)
1866 enum tree_code code
= gimple_cond_code (stmt
);
1867 tree rhs1
= gimple_cond_lhs (stmt
);
1868 tree rhs2
= gimple_cond_rhs (stmt
);
1869 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1870 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1871 val
= bit_value_binop (code
, TREE_TYPE (rhs1
), rhs1
, rhs2
);
1873 else if (gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
))
1875 tree fndecl
= gimple_call_fndecl (stmt
);
1876 switch (DECL_FUNCTION_CODE (fndecl
))
1878 case BUILT_IN_MALLOC
:
1879 case BUILT_IN_REALLOC
:
1880 case BUILT_IN_CALLOC
:
1881 case BUILT_IN_STRDUP
:
1882 case BUILT_IN_STRNDUP
:
1883 val
.lattice_val
= CONSTANT
;
1884 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1885 val
.mask
= ~((HOST_WIDE_INT
) MALLOC_ABI_ALIGNMENT
1886 / BITS_PER_UNIT
- 1);
1889 case BUILT_IN_ALLOCA
:
1890 case BUILT_IN_ALLOCA_WITH_ALIGN
:
1891 align
= (DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_ALLOCA_WITH_ALIGN
1892 ? TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1))
1893 : BIGGEST_ALIGNMENT
);
1894 val
.lattice_val
= CONSTANT
;
1895 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1896 val
.mask
= ~((HOST_WIDE_INT
) align
/ BITS_PER_UNIT
- 1);
1899 /* These builtins return their first argument, unmodified. */
1900 case BUILT_IN_MEMCPY
:
1901 case BUILT_IN_MEMMOVE
:
1902 case BUILT_IN_MEMSET
:
1903 case BUILT_IN_STRCPY
:
1904 case BUILT_IN_STRNCPY
:
1905 case BUILT_IN_MEMCPY_CHK
:
1906 case BUILT_IN_MEMMOVE_CHK
:
1907 case BUILT_IN_MEMSET_CHK
:
1908 case BUILT_IN_STRCPY_CHK
:
1909 case BUILT_IN_STRNCPY_CHK
:
1910 val
= get_value_for_expr (gimple_call_arg (stmt
, 0), true);
1913 case BUILT_IN_ASSUME_ALIGNED
:
1914 val
= bit_value_assume_aligned (stmt
, NULL_TREE
, val
, false);
1917 case BUILT_IN_ALIGNED_ALLOC
:
1919 tree align
= get_constant_value (gimple_call_arg (stmt
, 0));
1921 && tree_fits_uhwi_p (align
))
1923 unsigned HOST_WIDE_INT aligni
= tree_to_uhwi (align
);
1925 /* align must be power-of-two */
1926 && (aligni
& (aligni
- 1)) == 0)
1928 val
.lattice_val
= CONSTANT
;
1929 val
.value
= build_int_cst (ptr_type_node
, 0);
1939 if (is_gimple_call (stmt
) && gimple_call_lhs (stmt
))
1941 tree fntype
= gimple_call_fntype (stmt
);
1944 tree attrs
= lookup_attribute ("assume_aligned",
1945 TYPE_ATTRIBUTES (fntype
));
1947 val
= bit_value_assume_aligned (stmt
, attrs
, val
, false);
1948 attrs
= lookup_attribute ("alloc_align",
1949 TYPE_ATTRIBUTES (fntype
));
1951 val
= bit_value_assume_aligned (stmt
, attrs
, val
, true);
1954 is_constant
= (val
.lattice_val
== CONSTANT
);
1957 if (flag_tree_bit_ccp
1958 && ((is_constant
&& TREE_CODE (val
.value
) == INTEGER_CST
)
1960 && gimple_get_lhs (stmt
)
1961 && TREE_CODE (gimple_get_lhs (stmt
)) == SSA_NAME
)
1963 tree lhs
= gimple_get_lhs (stmt
);
1964 wide_int nonzero_bits
= get_nonzero_bits (lhs
);
1965 if (nonzero_bits
!= -1)
1969 val
.lattice_val
= CONSTANT
;
1970 val
.value
= build_zero_cst (TREE_TYPE (lhs
));
1971 val
.mask
= extend_mask (nonzero_bits
, TYPE_SIGN (TREE_TYPE (lhs
)));
1976 if (wi::bit_and_not (wi::to_wide (val
.value
), nonzero_bits
) != 0)
1977 val
.value
= wide_int_to_tree (TREE_TYPE (lhs
),
1979 & wi::to_wide (val
.value
));
1980 if (nonzero_bits
== 0)
1983 val
.mask
= val
.mask
& extend_mask (nonzero_bits
,
1984 TYPE_SIGN (TREE_TYPE (lhs
)));
1989 /* The statement produced a nonconstant value. */
1992 /* The statement produced a copy. */
1993 if (simplified
&& TREE_CODE (simplified
) == SSA_NAME
1994 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified
))
1996 val
.lattice_val
= CONSTANT
;
1997 val
.value
= simplified
;
2000 /* The statement is VARYING. */
2003 val
.lattice_val
= VARYING
;
2004 val
.value
= NULL_TREE
;
2012 typedef hash_table
<nofree_ptr_hash
<gimple
> > gimple_htab
;
2014 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
2015 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
2018 insert_clobber_before_stack_restore (tree saved_val
, tree var
,
2019 gimple_htab
**visited
)
2022 gassign
*clobber_stmt
;
2024 imm_use_iterator iter
;
2025 gimple_stmt_iterator i
;
2028 FOR_EACH_IMM_USE_STMT (stmt
, iter
, saved_val
)
2029 if (gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
2031 clobber
= build_constructor (TREE_TYPE (var
),
2033 TREE_THIS_VOLATILE (clobber
) = 1;
2034 clobber_stmt
= gimple_build_assign (var
, clobber
);
2036 i
= gsi_for_stmt (stmt
);
2037 gsi_insert_before (&i
, clobber_stmt
, GSI_SAME_STMT
);
2039 else if (gimple_code (stmt
) == GIMPLE_PHI
)
2042 *visited
= new gimple_htab (10);
2044 slot
= (*visited
)->find_slot (stmt
, INSERT
);
2049 insert_clobber_before_stack_restore (gimple_phi_result (stmt
), var
,
2052 else if (gimple_assign_ssa_name_copy_p (stmt
))
2053 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt
), var
,
2055 else if (chkp_gimple_call_builtin_p (stmt
, BUILT_IN_CHKP_BNDRET
))
2058 gcc_assert (is_gimple_debug (stmt
));
2061 /* Advance the iterator to the previous non-debug gimple statement in the same
2062 or dominating basic block. */
2065 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator
*i
)
2069 gsi_prev_nondebug (i
);
2070 while (gsi_end_p (*i
))
2072 dom
= get_immediate_dominator (CDI_DOMINATORS
, i
->bb
);
2073 if (dom
== NULL
|| dom
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2076 *i
= gsi_last_bb (dom
);
2080 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2081 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2083 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
2084 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
2085 that case the function gives up without inserting the clobbers. */
2088 insert_clobbers_for_var (gimple_stmt_iterator i
, tree var
)
2092 gimple_htab
*visited
= NULL
;
2094 for (; !gsi_end_p (i
); gsi_prev_dom_bb_nondebug (&i
))
2096 stmt
= gsi_stmt (i
);
2098 if (!gimple_call_builtin_p (stmt
, BUILT_IN_STACK_SAVE
))
2101 saved_val
= gimple_call_lhs (stmt
);
2102 if (saved_val
== NULL_TREE
)
2105 insert_clobber_before_stack_restore (saved_val
, var
, &visited
);
2112 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2113 fixed-size array and returns the address, if found, otherwise returns
2117 fold_builtin_alloca_with_align (gimple
*stmt
)
2119 unsigned HOST_WIDE_INT size
, threshold
, n_elem
;
2120 tree lhs
, arg
, block
, var
, elem_type
, array_type
;
2123 lhs
= gimple_call_lhs (stmt
);
2124 if (lhs
== NULL_TREE
)
2127 /* Detect constant argument. */
2128 arg
= get_constant_value (gimple_call_arg (stmt
, 0));
2129 if (arg
== NULL_TREE
2130 || TREE_CODE (arg
) != INTEGER_CST
2131 || !tree_fits_uhwi_p (arg
))
2134 size
= tree_to_uhwi (arg
);
2136 /* Heuristic: don't fold large allocas. */
2137 threshold
= (unsigned HOST_WIDE_INT
)PARAM_VALUE (PARAM_LARGE_STACK_FRAME
);
2138 /* In case the alloca is located at function entry, it has the same lifetime
2139 as a declared array, so we allow a larger size. */
2140 block
= gimple_block (stmt
);
2141 if (!(cfun
->after_inlining
2143 && TREE_CODE (BLOCK_SUPERCONTEXT (block
)) == FUNCTION_DECL
))
2145 if (size
> threshold
)
2148 /* Declare array. */
2149 elem_type
= build_nonstandard_integer_type (BITS_PER_UNIT
, 1);
2150 n_elem
= size
* 8 / BITS_PER_UNIT
;
2151 array_type
= build_array_type_nelts (elem_type
, n_elem
);
2152 var
= create_tmp_var (array_type
);
2153 SET_DECL_ALIGN (var
, TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1)));
2155 struct ptr_info_def
*pi
= SSA_NAME_PTR_INFO (lhs
);
2156 if (pi
!= NULL
&& !pi
->pt
.anything
)
2160 singleton_p
= pt_solution_singleton_or_null_p (&pi
->pt
, &uid
);
2161 gcc_assert (singleton_p
);
2162 SET_DECL_PT_UID (var
, uid
);
2166 /* Fold alloca to the address of the array. */
2167 return fold_convert (TREE_TYPE (lhs
), build_fold_addr_expr (var
));
2170 /* Fold the stmt at *GSI with CCP specific information that propagating
2171 and regular folding does not catch. */
2174 ccp_fold_stmt (gimple_stmt_iterator
*gsi
)
2176 gimple
*stmt
= gsi_stmt (*gsi
);
2178 switch (gimple_code (stmt
))
2182 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
2183 ccp_prop_value_t val
;
2184 /* Statement evaluation will handle type mismatches in constants
2185 more gracefully than the final propagation. This allows us to
2186 fold more conditionals here. */
2187 val
= evaluate_stmt (stmt
);
2188 if (val
.lattice_val
!= CONSTANT
2194 fprintf (dump_file
, "Folding predicate ");
2195 print_gimple_expr (dump_file
, stmt
, 0);
2196 fprintf (dump_file
, " to ");
2197 print_generic_expr (dump_file
, val
.value
);
2198 fprintf (dump_file
, "\n");
2201 if (integer_zerop (val
.value
))
2202 gimple_cond_make_false (cond_stmt
);
2204 gimple_cond_make_true (cond_stmt
);
2211 tree lhs
= gimple_call_lhs (stmt
);
2212 int flags
= gimple_call_flags (stmt
);
2215 bool changed
= false;
2218 /* If the call was folded into a constant make sure it goes
2219 away even if we cannot propagate into all uses because of
2222 && TREE_CODE (lhs
) == SSA_NAME
2223 && (val
= get_constant_value (lhs
))
2224 /* Don't optimize away calls that have side-effects. */
2225 && (flags
& (ECF_CONST
|ECF_PURE
)) != 0
2226 && (flags
& ECF_LOOPING_CONST_OR_PURE
) == 0)
2228 tree new_rhs
= unshare_expr (val
);
2230 if (!useless_type_conversion_p (TREE_TYPE (lhs
),
2231 TREE_TYPE (new_rhs
)))
2232 new_rhs
= fold_convert (TREE_TYPE (lhs
), new_rhs
);
2233 res
= update_call_from_tree (gsi
, new_rhs
);
2238 /* Internal calls provide no argument types, so the extra laxity
2239 for normal calls does not apply. */
2240 if (gimple_call_internal_p (stmt
))
2243 /* The heuristic of fold_builtin_alloca_with_align differs before and
2244 after inlining, so we don't require the arg to be changed into a
2245 constant for folding, but just to be constant. */
2246 if (gimple_call_builtin_p (stmt
, BUILT_IN_ALLOCA_WITH_ALIGN
))
2248 tree new_rhs
= fold_builtin_alloca_with_align (stmt
);
2251 bool res
= update_call_from_tree (gsi
, new_rhs
);
2252 tree var
= TREE_OPERAND (TREE_OPERAND (new_rhs
, 0),0);
2254 insert_clobbers_for_var (*gsi
, var
);
2259 /* Propagate into the call arguments. Compared to replace_uses_in
2260 this can use the argument slot types for type verification
2261 instead of the current argument type. We also can safely
2262 drop qualifiers here as we are dealing with constants anyway. */
2263 argt
= TYPE_ARG_TYPES (gimple_call_fntype (stmt
));
2264 for (i
= 0; i
< gimple_call_num_args (stmt
) && argt
;
2265 ++i
, argt
= TREE_CHAIN (argt
))
2267 tree arg
= gimple_call_arg (stmt
, i
);
2268 if (TREE_CODE (arg
) == SSA_NAME
2269 && (val
= get_constant_value (arg
))
2270 && useless_type_conversion_p
2271 (TYPE_MAIN_VARIANT (TREE_VALUE (argt
)),
2272 TYPE_MAIN_VARIANT (TREE_TYPE (val
))))
2274 gimple_call_set_arg (stmt
, i
, unshare_expr (val
));
2284 tree lhs
= gimple_assign_lhs (stmt
);
2287 /* If we have a load that turned out to be constant replace it
2288 as we cannot propagate into all uses in all cases. */
2289 if (gimple_assign_single_p (stmt
)
2290 && TREE_CODE (lhs
) == SSA_NAME
2291 && (val
= get_constant_value (lhs
)))
2293 tree rhs
= unshare_expr (val
);
2294 if (!useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
2295 rhs
= fold_build1 (VIEW_CONVERT_EXPR
, TREE_TYPE (lhs
), rhs
);
2296 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
2308 /* Visit the assignment statement STMT. Set the value of its LHS to the
2309 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2310 creates virtual definitions, set the value of each new name to that
2311 of the RHS (if we can derive a constant out of the RHS).
2312 Value-returning call statements also perform an assignment, and
2313 are handled here. */
2315 static enum ssa_prop_result
2316 visit_assignment (gimple
*stmt
, tree
*output_p
)
2318 ccp_prop_value_t val
;
2319 enum ssa_prop_result retval
= SSA_PROP_NOT_INTERESTING
;
2321 tree lhs
= gimple_get_lhs (stmt
);
2322 if (TREE_CODE (lhs
) == SSA_NAME
)
2324 /* Evaluate the statement, which could be
2325 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2326 val
= evaluate_stmt (stmt
);
2328 /* If STMT is an assignment to an SSA_NAME, we only have one
2330 if (set_lattice_value (lhs
, &val
))
2333 if (val
.lattice_val
== VARYING
)
2334 retval
= SSA_PROP_VARYING
;
2336 retval
= SSA_PROP_INTERESTING
;
2344 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2345 if it can determine which edge will be taken. Otherwise, return
2346 SSA_PROP_VARYING. */
2348 static enum ssa_prop_result
2349 visit_cond_stmt (gimple
*stmt
, edge
*taken_edge_p
)
2351 ccp_prop_value_t val
;
2354 block
= gimple_bb (stmt
);
2355 val
= evaluate_stmt (stmt
);
2356 if (val
.lattice_val
!= CONSTANT
2358 return SSA_PROP_VARYING
;
2360 /* Find which edge out of the conditional block will be taken and add it
2361 to the worklist. If no single edge can be determined statically,
2362 return SSA_PROP_VARYING to feed all the outgoing edges to the
2363 propagation engine. */
2364 *taken_edge_p
= find_taken_edge (block
, val
.value
);
2366 return SSA_PROP_INTERESTING
;
2368 return SSA_PROP_VARYING
;
2372 /* Evaluate statement STMT. If the statement produces an output value and
2373 its evaluation changes the lattice value of its output, return
2374 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2377 If STMT is a conditional branch and we can determine its truth
2378 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2379 value, return SSA_PROP_VARYING. */
2381 static enum ssa_prop_result
2382 ccp_visit_stmt (gimple
*stmt
, edge
*taken_edge_p
, tree
*output_p
)
2387 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2389 fprintf (dump_file
, "\nVisiting statement:\n");
2390 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2393 switch (gimple_code (stmt
))
2396 /* If the statement is an assignment that produces a single
2397 output value, evaluate its RHS to see if the lattice value of
2398 its output has changed. */
2399 return visit_assignment (stmt
, output_p
);
2402 /* A value-returning call also performs an assignment. */
2403 if (gimple_call_lhs (stmt
) != NULL_TREE
)
2404 return visit_assignment (stmt
, output_p
);
2409 /* If STMT is a conditional branch, see if we can determine
2410 which branch will be taken. */
2411 /* FIXME. It appears that we should be able to optimize
2412 computed GOTOs here as well. */
2413 return visit_cond_stmt (stmt
, taken_edge_p
);
2419 /* Any other kind of statement is not interesting for constant
2420 propagation and, therefore, not worth simulating. */
2421 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2422 fprintf (dump_file
, "No interesting values produced. Marked VARYING.\n");
2424 /* Definitions made by statements other than assignments to
2425 SSA_NAMEs represent unknown modifications to their outputs.
2426 Mark them VARYING. */
2427 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
2428 set_value_varying (def
);
2430 return SSA_PROP_VARYING
;
2434 /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
2435 record nonzero bits. */
2438 do_ssa_ccp (bool nonzero_p
)
2440 unsigned int todo
= 0;
2441 calculate_dominance_info (CDI_DOMINATORS
);
2444 ssa_propagate (ccp_visit_stmt
, ccp_visit_phi_node
);
2445 if (ccp_finalize (nonzero_p
|| flag_ipa_bit_cp
))
2447 todo
= (TODO_cleanup_cfg
| TODO_update_ssa
);
2449 /* ccp_finalize does not preserve loop-closed ssa. */
2450 loops_state_clear (LOOP_CLOSED_SSA
);
2453 free_dominance_info (CDI_DOMINATORS
);
2460 const pass_data pass_data_ccp
=
2462 GIMPLE_PASS
, /* type */
2464 OPTGROUP_NONE
, /* optinfo_flags */
2465 TV_TREE_CCP
, /* tv_id */
2466 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2467 0, /* properties_provided */
2468 0, /* properties_destroyed */
2469 0, /* todo_flags_start */
2470 TODO_update_address_taken
, /* todo_flags_finish */
2473 class pass_ccp
: public gimple_opt_pass
2476 pass_ccp (gcc::context
*ctxt
)
2477 : gimple_opt_pass (pass_data_ccp
, ctxt
), nonzero_p (false)
2480 /* opt_pass methods: */
2481 opt_pass
* clone () { return new pass_ccp (m_ctxt
); }
2482 void set_pass_param (unsigned int n
, bool param
)
2484 gcc_assert (n
== 0);
2487 virtual bool gate (function
*) { return flag_tree_ccp
!= 0; }
2488 virtual unsigned int execute (function
*) { return do_ssa_ccp (nonzero_p
); }
2491 /* Determines whether the pass instance records nonzero bits. */
2493 }; // class pass_ccp
2498 make_pass_ccp (gcc::context
*ctxt
)
2500 return new pass_ccp (ctxt
);
2505 /* Try to optimize out __builtin_stack_restore. Optimize it out
2506 if there is another __builtin_stack_restore in the same basic
2507 block and no calls or ASM_EXPRs are in between, or if this block's
2508 only outgoing edge is to EXIT_BLOCK and there are no calls or
2509 ASM_EXPRs after this __builtin_stack_restore. */
2512 optimize_stack_restore (gimple_stmt_iterator i
)
2517 basic_block bb
= gsi_bb (i
);
2518 gimple
*call
= gsi_stmt (i
);
2520 if (gimple_code (call
) != GIMPLE_CALL
2521 || gimple_call_num_args (call
) != 1
2522 || TREE_CODE (gimple_call_arg (call
, 0)) != SSA_NAME
2523 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call
, 0))))
2526 for (gsi_next (&i
); !gsi_end_p (i
); gsi_next (&i
))
2528 stmt
= gsi_stmt (i
);
2529 if (gimple_code (stmt
) == GIMPLE_ASM
)
2531 if (gimple_code (stmt
) != GIMPLE_CALL
)
2534 callee
= gimple_call_fndecl (stmt
);
2536 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2537 /* All regular builtins are ok, just obviously not alloca. */
2538 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA
2539 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA_WITH_ALIGN
)
2542 if (DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_RESTORE
)
2543 goto second_stack_restore
;
2549 /* Allow one successor of the exit block, or zero successors. */
2550 switch (EDGE_COUNT (bb
->succs
))
2555 if (single_succ_edge (bb
)->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
2561 second_stack_restore
:
2563 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2564 If there are multiple uses, then the last one should remove the call.
2565 In any case, whether the call to __builtin_stack_save can be removed
2566 or not is irrelevant to removing the call to __builtin_stack_restore. */
2567 if (has_single_use (gimple_call_arg (call
, 0)))
2569 gimple
*stack_save
= SSA_NAME_DEF_STMT (gimple_call_arg (call
, 0));
2570 if (is_gimple_call (stack_save
))
2572 callee
= gimple_call_fndecl (stack_save
);
2574 && DECL_BUILT_IN_CLASS (callee
) == BUILT_IN_NORMAL
2575 && DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_SAVE
)
2577 gimple_stmt_iterator stack_save_gsi
;
2580 stack_save_gsi
= gsi_for_stmt (stack_save
);
2581 rhs
= build_int_cst (TREE_TYPE (gimple_call_arg (call
, 0)), 0);
2582 update_call_from_tree (&stack_save_gsi
, rhs
);
2587 /* No effect, so the statement will be deleted. */
2588 return integer_zero_node
;
2591 /* If va_list type is a simple pointer and nothing special is needed,
2592 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2593 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2594 pointer assignment. */
2597 optimize_stdarg_builtin (gimple
*call
)
2599 tree callee
, lhs
, rhs
, cfun_va_list
;
2600 bool va_list_simple_ptr
;
2601 location_t loc
= gimple_location (call
);
2603 if (gimple_code (call
) != GIMPLE_CALL
)
2606 callee
= gimple_call_fndecl (call
);
2608 cfun_va_list
= targetm
.fn_abi_va_list (callee
);
2609 va_list_simple_ptr
= POINTER_TYPE_P (cfun_va_list
)
2610 && (TREE_TYPE (cfun_va_list
) == void_type_node
2611 || TREE_TYPE (cfun_va_list
) == char_type_node
);
2613 switch (DECL_FUNCTION_CODE (callee
))
2615 case BUILT_IN_VA_START
:
2616 if (!va_list_simple_ptr
2617 || targetm
.expand_builtin_va_start
!= NULL
2618 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG
))
2621 if (gimple_call_num_args (call
) != 2)
2624 lhs
= gimple_call_arg (call
, 0);
2625 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2626 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2627 != TYPE_MAIN_VARIANT (cfun_va_list
))
2630 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2631 rhs
= build_call_expr_loc (loc
, builtin_decl_explicit (BUILT_IN_NEXT_ARG
),
2632 1, integer_zero_node
);
2633 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2634 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2636 case BUILT_IN_VA_COPY
:
2637 if (!va_list_simple_ptr
)
2640 if (gimple_call_num_args (call
) != 2)
2643 lhs
= gimple_call_arg (call
, 0);
2644 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2645 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2646 != TYPE_MAIN_VARIANT (cfun_va_list
))
2649 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2650 rhs
= gimple_call_arg (call
, 1);
2651 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs
))
2652 != TYPE_MAIN_VARIANT (cfun_va_list
))
2655 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2656 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2658 case BUILT_IN_VA_END
:
2659 /* No effect, so the statement will be deleted. */
2660 return integer_zero_node
;
2667 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2668 the incoming jumps. Return true if at least one jump was changed. */
2671 optimize_unreachable (gimple_stmt_iterator i
)
2673 basic_block bb
= gsi_bb (i
);
2674 gimple_stmt_iterator gsi
;
2680 if (flag_sanitize
& SANITIZE_UNREACHABLE
)
2683 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2685 stmt
= gsi_stmt (gsi
);
2687 if (is_gimple_debug (stmt
))
2690 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2692 /* Verify we do not need to preserve the label. */
2693 if (FORCED_LABEL (gimple_label_label (label_stmt
)))
2699 /* Only handle the case that __builtin_unreachable is the first statement
2700 in the block. We rely on DCE to remove stmts without side-effects
2701 before __builtin_unreachable. */
2702 if (gsi_stmt (gsi
) != gsi_stmt (i
))
2707 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2709 gsi
= gsi_last_bb (e
->src
);
2710 if (gsi_end_p (gsi
))
2713 stmt
= gsi_stmt (gsi
);
2714 if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
2716 if (e
->flags
& EDGE_TRUE_VALUE
)
2717 gimple_cond_make_false (cond_stmt
);
2718 else if (e
->flags
& EDGE_FALSE_VALUE
)
2719 gimple_cond_make_true (cond_stmt
);
2722 update_stmt (cond_stmt
);
2726 /* Todo: handle other cases. Note that unreachable switch case
2727 statements have already been removed. */
2738 mask_2 = 1 << cnt_1;
2739 _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
2742 _4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
2744 If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
2745 is passed instead of 0, and the builtin just returns a zero
2746 or 1 value instead of the actual bit.
2747 Similarly for __sync_fetch_and_or_* (without the ", _3" part
2748 in there), and/or if mask_2 is a power of 2 constant.
2749 Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
2750 in that case. And similarly for and instead of or, except that
2751 the second argument to the builtin needs to be one's complement
2752 of the mask instead of mask. */
2755 optimize_atomic_bit_test_and (gimple_stmt_iterator
*gsip
,
2756 enum internal_fn fn
, bool has_model_arg
,
2759 gimple
*call
= gsi_stmt (*gsip
);
2760 tree lhs
= gimple_call_lhs (call
);
2761 use_operand_p use_p
;
2766 if (!flag_inline_atomics
2768 || !gimple_call_builtin_p (call
, BUILT_IN_NORMAL
)
2770 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
)
2771 || !single_imm_use (lhs
, &use_p
, &use_stmt
)
2772 || !is_gimple_assign (use_stmt
)
2773 || gimple_assign_rhs_code (use_stmt
) != BIT_AND_EXPR
2774 || !gimple_vdef (call
))
2779 case IFN_ATOMIC_BIT_TEST_AND_SET
:
2780 optab
= atomic_bit_test_and_set_optab
;
2782 case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT
:
2783 optab
= atomic_bit_test_and_complement_optab
;
2785 case IFN_ATOMIC_BIT_TEST_AND_RESET
:
2786 optab
= atomic_bit_test_and_reset_optab
;
2792 if (optab_handler (optab
, TYPE_MODE (TREE_TYPE (lhs
))) == CODE_FOR_nothing
)
2795 mask
= gimple_call_arg (call
, 1);
2796 tree use_lhs
= gimple_assign_lhs (use_stmt
);
2800 if (TREE_CODE (mask
) == INTEGER_CST
)
2802 if (fn
== IFN_ATOMIC_BIT_TEST_AND_RESET
)
2803 mask
= const_unop (BIT_NOT_EXPR
, TREE_TYPE (mask
), mask
);
2804 mask
= fold_convert (TREE_TYPE (lhs
), mask
);
2805 int ibit
= tree_log2 (mask
);
2808 bit
= build_int_cst (TREE_TYPE (lhs
), ibit
);
2810 else if (TREE_CODE (mask
) == SSA_NAME
)
2812 gimple
*g
= SSA_NAME_DEF_STMT (mask
);
2813 if (fn
== IFN_ATOMIC_BIT_TEST_AND_RESET
)
2815 if (!is_gimple_assign (g
)
2816 || gimple_assign_rhs_code (g
) != BIT_NOT_EXPR
)
2818 mask
= gimple_assign_rhs1 (g
);
2819 if (TREE_CODE (mask
) != SSA_NAME
)
2821 g
= SSA_NAME_DEF_STMT (mask
);
2823 if (!is_gimple_assign (g
)
2824 || gimple_assign_rhs_code (g
) != LSHIFT_EXPR
2825 || !integer_onep (gimple_assign_rhs1 (g
)))
2827 bit
= gimple_assign_rhs2 (g
);
2832 if (gimple_assign_rhs1 (use_stmt
) == lhs
)
2834 if (!operand_equal_p (gimple_assign_rhs2 (use_stmt
), mask
, 0))
2837 else if (gimple_assign_rhs2 (use_stmt
) != lhs
2838 || !operand_equal_p (gimple_assign_rhs1 (use_stmt
), mask
, 0))
2841 bool use_bool
= true;
2842 bool has_debug_uses
= false;
2843 imm_use_iterator iter
;
2846 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs
))
2848 FOR_EACH_IMM_USE_STMT (g
, iter
, use_lhs
)
2850 enum tree_code code
= ERROR_MARK
;
2851 tree op0
= NULL_TREE
, op1
= NULL_TREE
;
2852 if (is_gimple_debug (g
))
2854 has_debug_uses
= true;
2857 else if (is_gimple_assign (g
))
2858 switch (gimple_assign_rhs_code (g
))
2861 op1
= gimple_assign_rhs1 (g
);
2862 code
= TREE_CODE (op1
);
2863 op0
= TREE_OPERAND (op1
, 0);
2864 op1
= TREE_OPERAND (op1
, 1);
2868 code
= gimple_assign_rhs_code (g
);
2869 op0
= gimple_assign_rhs1 (g
);
2870 op1
= gimple_assign_rhs2 (g
);
2875 else if (gimple_code (g
) == GIMPLE_COND
)
2877 code
= gimple_cond_code (g
);
2878 op0
= gimple_cond_lhs (g
);
2879 op1
= gimple_cond_rhs (g
);
2882 if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
2884 && integer_zerop (op1
))
2886 use_operand_p use_p
;
2888 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
2895 BREAK_FROM_IMM_USE_STMT (iter
);
2898 tree new_lhs
= make_ssa_name (TREE_TYPE (lhs
));
2899 tree flag
= build_int_cst (TREE_TYPE (lhs
), use_bool
);
2901 g
= gimple_build_call_internal (fn
, 4, gimple_call_arg (call
, 0),
2902 bit
, flag
, gimple_call_arg (call
, 2));
2904 g
= gimple_build_call_internal (fn
, 3, gimple_call_arg (call
, 0),
2906 gimple_call_set_lhs (g
, new_lhs
);
2907 gimple_set_location (g
, gimple_location (call
));
2908 gimple_set_vuse (g
, gimple_vuse (call
));
2909 gimple_set_vdef (g
, gimple_vdef (call
));
2910 bool throws
= stmt_can_throw_internal (call
);
2911 gimple_call_set_nothrow (as_a
<gcall
*> (g
),
2912 gimple_call_nothrow_p (as_a
<gcall
*> (call
)));
2913 SSA_NAME_DEF_STMT (gimple_vdef (call
)) = g
;
2914 gimple_stmt_iterator gsi
= *gsip
;
2915 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
2919 maybe_clean_or_replace_eh_stmt (call
, g
);
2920 if (after
|| (use_bool
&& has_debug_uses
))
2921 e
= find_fallthru_edge (gsi_bb (gsi
)->succs
);
2925 /* The internal function returns the value of the specified bit
2926 before the atomic operation. If we are interested in the value
2927 of the specified bit after the atomic operation (makes only sense
2928 for xor, otherwise the bit content is compile time known),
2929 we need to invert the bit. */
2930 g
= gimple_build_assign (make_ssa_name (TREE_TYPE (lhs
)),
2931 BIT_XOR_EXPR
, new_lhs
,
2932 use_bool
? build_int_cst (TREE_TYPE (lhs
), 1)
2934 new_lhs
= gimple_assign_lhs (g
);
2937 gsi_insert_on_edge_immediate (e
, g
);
2938 gsi
= gsi_for_stmt (g
);
2941 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
2943 if (use_bool
&& has_debug_uses
)
2945 tree temp
= NULL_TREE
;
2946 if (!throws
|| after
|| single_pred_p (e
->dest
))
2948 temp
= make_node (DEBUG_EXPR_DECL
);
2949 DECL_ARTIFICIAL (temp
) = 1;
2950 TREE_TYPE (temp
) = TREE_TYPE (lhs
);
2951 SET_DECL_MODE (temp
, TYPE_MODE (TREE_TYPE (lhs
)));
2952 tree t
= build2 (LSHIFT_EXPR
, TREE_TYPE (lhs
), new_lhs
, bit
);
2953 g
= gimple_build_debug_bind (temp
, t
, g
);
2954 if (throws
&& !after
)
2956 gsi
= gsi_after_labels (e
->dest
);
2957 gsi_insert_before (&gsi
, g
, GSI_SAME_STMT
);
2960 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
2962 FOR_EACH_IMM_USE_STMT (g
, iter
, use_lhs
)
2963 if (is_gimple_debug (g
))
2965 use_operand_p use_p
;
2966 if (temp
== NULL_TREE
)
2967 gimple_debug_bind_reset_value (g
);
2969 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
2970 SET_USE (use_p
, temp
);
2974 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs
)
2975 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs
);
2976 replace_uses_by (use_lhs
, new_lhs
);
2977 gsi
= gsi_for_stmt (use_stmt
);
2978 gsi_remove (&gsi
, true);
2979 release_defs (use_stmt
);
2980 gsi_remove (gsip
, true);
2981 release_ssa_name (lhs
);
2990 Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
2991 and/or memcpy (&b, &a, sizeof (a)); instead of b = a; */
2994 optimize_memcpy (gimple_stmt_iterator
*gsip
, tree dest
, tree src
, tree len
)
2996 gimple
*stmt
= gsi_stmt (*gsip
);
2997 if (gimple_has_volatile_ops (stmt
))
3000 tree vuse
= gimple_vuse (stmt
);
3004 gimple
*defstmt
= SSA_NAME_DEF_STMT (vuse
);
3005 tree src2
= NULL_TREE
, len2
= NULL_TREE
;
3006 HOST_WIDE_INT offset
, offset2
;
3007 tree val
= integer_zero_node
;
3008 if (gimple_store_p (defstmt
)
3009 && gimple_assign_single_p (defstmt
)
3010 && TREE_CODE (gimple_assign_rhs1 (defstmt
)) == CONSTRUCTOR
3011 && !gimple_clobber_p (defstmt
))
3012 src2
= gimple_assign_lhs (defstmt
);
3013 else if (gimple_call_builtin_p (defstmt
, BUILT_IN_MEMSET
)
3014 && TREE_CODE (gimple_call_arg (defstmt
, 0)) == ADDR_EXPR
3015 && TREE_CODE (gimple_call_arg (defstmt
, 1)) == INTEGER_CST
)
3017 src2
= TREE_OPERAND (gimple_call_arg (defstmt
, 0), 0);
3018 len2
= gimple_call_arg (defstmt
, 2);
3019 val
= gimple_call_arg (defstmt
, 1);
3020 /* For non-0 val, we'd have to transform stmt from assignment
3021 into memset (only if dest is addressable). */
3022 if (!integer_zerop (val
) && is_gimple_assign (stmt
))
3026 if (src2
== NULL_TREE
)
3029 if (len
== NULL_TREE
)
3030 len
= (TREE_CODE (src
) == COMPONENT_REF
3031 ? DECL_SIZE_UNIT (TREE_OPERAND (src
, 1))
3032 : TYPE_SIZE_UNIT (TREE_TYPE (src
)));
3033 if (len2
== NULL_TREE
)
3034 len2
= (TREE_CODE (src2
) == COMPONENT_REF
3035 ? DECL_SIZE_UNIT (TREE_OPERAND (src2
, 1))
3036 : TYPE_SIZE_UNIT (TREE_TYPE (src2
)));
3037 if (len
== NULL_TREE
3038 || TREE_CODE (len
) != INTEGER_CST
3039 || len2
== NULL_TREE
3040 || TREE_CODE (len2
) != INTEGER_CST
)
3043 src
= get_addr_base_and_unit_offset (src
, &offset
);
3044 src2
= get_addr_base_and_unit_offset (src2
, &offset2
);
3045 if (src
== NULL_TREE
3046 || src2
== NULL_TREE
3047 || offset
< offset2
)
3050 if (!operand_equal_p (src
, src2
, 0))
3053 /* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
3055 [ src + offset, src + offset + len - 1 ] is a subset of that. */
3056 if (wi::to_offset (len
) + (offset
- offset2
) > wi::to_offset (len2
))
3059 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3061 fprintf (dump_file
, "Simplified\n ");
3062 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
3063 fprintf (dump_file
, "after previous\n ");
3064 print_gimple_stmt (dump_file
, defstmt
, 0, dump_flags
);
3067 /* For simplicity, don't change the kind of the stmt,
3068 turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
3069 into memset (&dest, val, len);
3070 In theory we could change dest = src into memset if dest
3071 is addressable (maybe beneficial if val is not 0), or
3072 memcpy (&dest, &src, len) into dest = {} if len is the size
3073 of dest, dest isn't volatile. */
3074 if (is_gimple_assign (stmt
))
3076 tree ctor
= build_constructor (TREE_TYPE (dest
), NULL
);
3077 gimple_assign_set_rhs_from_tree (gsip
, ctor
);
3080 else /* If stmt is memcpy, transform it into memset. */
3082 gcall
*call
= as_a
<gcall
*> (stmt
);
3083 tree fndecl
= builtin_decl_implicit (BUILT_IN_MEMSET
);
3084 gimple_call_set_fndecl (call
, fndecl
);
3085 gimple_call_set_fntype (call
, TREE_TYPE (fndecl
));
3086 gimple_call_set_arg (call
, 1, val
);
3090 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3092 fprintf (dump_file
, "into\n ");
3093 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
3097 /* A simple pass that attempts to fold all builtin functions. This pass
3098 is run after we've propagated as many constants as we can. */
3102 const pass_data pass_data_fold_builtins
=
3104 GIMPLE_PASS
, /* type */
3106 OPTGROUP_NONE
, /* optinfo_flags */
3107 TV_NONE
, /* tv_id */
3108 ( PROP_cfg
| PROP_ssa
), /* properties_required */
3109 0, /* properties_provided */
3110 0, /* properties_destroyed */
3111 0, /* todo_flags_start */
3112 TODO_update_ssa
, /* todo_flags_finish */
3115 class pass_fold_builtins
: public gimple_opt_pass
3118 pass_fold_builtins (gcc::context
*ctxt
)
3119 : gimple_opt_pass (pass_data_fold_builtins
, ctxt
)
3122 /* opt_pass methods: */
3123 opt_pass
* clone () { return new pass_fold_builtins (m_ctxt
); }
3124 virtual unsigned int execute (function
*);
3126 }; // class pass_fold_builtins
3129 pass_fold_builtins::execute (function
*fun
)
3131 bool cfg_changed
= false;
3133 unsigned int todoflags
= 0;
3135 FOR_EACH_BB_FN (bb
, fun
)
3137 gimple_stmt_iterator i
;
3138 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
3140 gimple
*stmt
, *old_stmt
;
3142 enum built_in_function fcode
;
3144 stmt
= gsi_stmt (i
);
3146 if (gimple_code (stmt
) != GIMPLE_CALL
)
3148 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
3149 after the last GIMPLE DSE they aren't needed and might
3150 unnecessarily keep the SSA_NAMEs live. */
3151 if (gimple_clobber_p (stmt
))
3153 tree lhs
= gimple_assign_lhs (stmt
);
3154 if (TREE_CODE (lhs
) == MEM_REF
3155 && TREE_CODE (TREE_OPERAND (lhs
, 0)) == SSA_NAME
)
3157 unlink_stmt_vdef (stmt
);
3158 gsi_remove (&i
, true);
3159 release_defs (stmt
);
3163 else if (gimple_assign_load_p (stmt
) && gimple_store_p (stmt
))
3164 optimize_memcpy (&i
, gimple_assign_lhs (stmt
),
3165 gimple_assign_rhs1 (stmt
), NULL_TREE
);
3170 callee
= gimple_call_fndecl (stmt
);
3171 if (!callee
|| DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
)
3177 fcode
= DECL_FUNCTION_CODE (callee
);
3182 tree result
= NULL_TREE
;
3183 switch (DECL_FUNCTION_CODE (callee
))
3185 case BUILT_IN_CONSTANT_P
:
3186 /* Resolve __builtin_constant_p. If it hasn't been
3187 folded to integer_one_node by now, it's fairly
3188 certain that the value simply isn't constant. */
3189 result
= integer_zero_node
;
3192 case BUILT_IN_ASSUME_ALIGNED
:
3193 /* Remove __builtin_assume_aligned. */
3194 result
= gimple_call_arg (stmt
, 0);
3197 case BUILT_IN_STACK_RESTORE
:
3198 result
= optimize_stack_restore (i
);
3204 case BUILT_IN_UNREACHABLE
:
3205 if (optimize_unreachable (i
))
3209 case BUILT_IN_ATOMIC_FETCH_OR_1
:
3210 case BUILT_IN_ATOMIC_FETCH_OR_2
:
3211 case BUILT_IN_ATOMIC_FETCH_OR_4
:
3212 case BUILT_IN_ATOMIC_FETCH_OR_8
:
3213 case BUILT_IN_ATOMIC_FETCH_OR_16
:
3214 optimize_atomic_bit_test_and (&i
,
3215 IFN_ATOMIC_BIT_TEST_AND_SET
,
3218 case BUILT_IN_SYNC_FETCH_AND_OR_1
:
3219 case BUILT_IN_SYNC_FETCH_AND_OR_2
:
3220 case BUILT_IN_SYNC_FETCH_AND_OR_4
:
3221 case BUILT_IN_SYNC_FETCH_AND_OR_8
:
3222 case BUILT_IN_SYNC_FETCH_AND_OR_16
:
3223 optimize_atomic_bit_test_and (&i
,
3224 IFN_ATOMIC_BIT_TEST_AND_SET
,
3228 case BUILT_IN_ATOMIC_FETCH_XOR_1
:
3229 case BUILT_IN_ATOMIC_FETCH_XOR_2
:
3230 case BUILT_IN_ATOMIC_FETCH_XOR_4
:
3231 case BUILT_IN_ATOMIC_FETCH_XOR_8
:
3232 case BUILT_IN_ATOMIC_FETCH_XOR_16
:
3233 optimize_atomic_bit_test_and
3234 (&i
, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT
, true, false);
3236 case BUILT_IN_SYNC_FETCH_AND_XOR_1
:
3237 case BUILT_IN_SYNC_FETCH_AND_XOR_2
:
3238 case BUILT_IN_SYNC_FETCH_AND_XOR_4
:
3239 case BUILT_IN_SYNC_FETCH_AND_XOR_8
:
3240 case BUILT_IN_SYNC_FETCH_AND_XOR_16
:
3241 optimize_atomic_bit_test_and
3242 (&i
, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT
, false, false);
3245 case BUILT_IN_ATOMIC_XOR_FETCH_1
:
3246 case BUILT_IN_ATOMIC_XOR_FETCH_2
:
3247 case BUILT_IN_ATOMIC_XOR_FETCH_4
:
3248 case BUILT_IN_ATOMIC_XOR_FETCH_8
:
3249 case BUILT_IN_ATOMIC_XOR_FETCH_16
:
3250 optimize_atomic_bit_test_and
3251 (&i
, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT
, true, true);
3253 case BUILT_IN_SYNC_XOR_AND_FETCH_1
:
3254 case BUILT_IN_SYNC_XOR_AND_FETCH_2
:
3255 case BUILT_IN_SYNC_XOR_AND_FETCH_4
:
3256 case BUILT_IN_SYNC_XOR_AND_FETCH_8
:
3257 case BUILT_IN_SYNC_XOR_AND_FETCH_16
:
3258 optimize_atomic_bit_test_and
3259 (&i
, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT
, false, true);
3262 case BUILT_IN_ATOMIC_FETCH_AND_1
:
3263 case BUILT_IN_ATOMIC_FETCH_AND_2
:
3264 case BUILT_IN_ATOMIC_FETCH_AND_4
:
3265 case BUILT_IN_ATOMIC_FETCH_AND_8
:
3266 case BUILT_IN_ATOMIC_FETCH_AND_16
:
3267 optimize_atomic_bit_test_and (&i
,
3268 IFN_ATOMIC_BIT_TEST_AND_RESET
,
3271 case BUILT_IN_SYNC_FETCH_AND_AND_1
:
3272 case BUILT_IN_SYNC_FETCH_AND_AND_2
:
3273 case BUILT_IN_SYNC_FETCH_AND_AND_4
:
3274 case BUILT_IN_SYNC_FETCH_AND_AND_8
:
3275 case BUILT_IN_SYNC_FETCH_AND_AND_16
:
3276 optimize_atomic_bit_test_and (&i
,
3277 IFN_ATOMIC_BIT_TEST_AND_RESET
,
3281 case BUILT_IN_MEMCPY
:
3282 if (gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
)
3283 && TREE_CODE (gimple_call_arg (stmt
, 0)) == ADDR_EXPR
3284 && TREE_CODE (gimple_call_arg (stmt
, 1)) == ADDR_EXPR
3285 && TREE_CODE (gimple_call_arg (stmt
, 2)) == INTEGER_CST
)
3287 tree dest
= TREE_OPERAND (gimple_call_arg (stmt
, 0), 0);
3288 tree src
= TREE_OPERAND (gimple_call_arg (stmt
, 1), 0);
3289 tree len
= gimple_call_arg (stmt
, 2);
3290 optimize_memcpy (&i
, dest
, src
, len
);
3294 case BUILT_IN_VA_START
:
3295 case BUILT_IN_VA_END
:
3296 case BUILT_IN_VA_COPY
:
3297 /* These shouldn't be folded before pass_stdarg. */
3298 result
= optimize_stdarg_builtin (stmt
);
3310 if (!update_call_from_tree (&i
, result
))
3311 gimplify_and_update_call_from_tree (&i
, result
);
3314 todoflags
|= TODO_update_address_taken
;
3316 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3318 fprintf (dump_file
, "Simplified\n ");
3319 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
3323 stmt
= gsi_stmt (i
);
3326 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
)
3327 && gimple_purge_dead_eh_edges (bb
))
3330 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3332 fprintf (dump_file
, "to\n ");
3333 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
3334 fprintf (dump_file
, "\n");
3337 /* Retry the same statement if it changed into another
3338 builtin, there might be new opportunities now. */
3339 if (gimple_code (stmt
) != GIMPLE_CALL
)
3344 callee
= gimple_call_fndecl (stmt
);
3346 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
3347 || DECL_FUNCTION_CODE (callee
) == fcode
)
3352 /* Delete unreachable blocks. */
3354 todoflags
|= TODO_cleanup_cfg
;
3362 make_pass_fold_builtins (gcc::context
*ctxt
)
3364 return new pass_fold_builtins (ctxt
);
3367 /* A simple pass that emits some warnings post IPA. */
3371 const pass_data pass_data_post_ipa_warn
=
3373 GIMPLE_PASS
, /* type */
3374 "post_ipa_warn", /* name */
3375 OPTGROUP_NONE
, /* optinfo_flags */
3376 TV_NONE
, /* tv_id */
3377 ( PROP_cfg
| PROP_ssa
), /* properties_required */
3378 0, /* properties_provided */
3379 0, /* properties_destroyed */
3380 0, /* todo_flags_start */
3381 0, /* todo_flags_finish */
3384 class pass_post_ipa_warn
: public gimple_opt_pass
3387 pass_post_ipa_warn (gcc::context
*ctxt
)
3388 : gimple_opt_pass (pass_data_post_ipa_warn
, ctxt
)
3391 /* opt_pass methods: */
3392 opt_pass
* clone () { return new pass_post_ipa_warn (m_ctxt
); }
3393 virtual bool gate (function
*) { return warn_nonnull
!= 0; }
3394 virtual unsigned int execute (function
*);
3396 }; // class pass_fold_builtins
3399 pass_post_ipa_warn::execute (function
*fun
)
3403 FOR_EACH_BB_FN (bb
, fun
)
3405 gimple_stmt_iterator gsi
;
3406 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3408 gimple
*stmt
= gsi_stmt (gsi
);
3409 if (!is_gimple_call (stmt
) || gimple_no_warning_p (stmt
))
3415 = get_nonnull_args (gimple_call_fntype (stmt
));
3418 for (unsigned i
= 0; i
< gimple_call_num_args (stmt
); i
++)
3420 tree arg
= gimple_call_arg (stmt
, i
);
3421 if (TREE_CODE (TREE_TYPE (arg
)) != POINTER_TYPE
)
3423 if (!integer_zerop (arg
))
3425 if (!bitmap_empty_p (nonnullargs
)
3426 && !bitmap_bit_p (nonnullargs
, i
))
3429 location_t loc
= gimple_location (stmt
);
3430 if (warning_at (loc
, OPT_Wnonnull
,
3431 "argument %u null where non-null "
3434 tree fndecl
= gimple_call_fndecl (stmt
);
3435 if (fndecl
&& DECL_IS_BUILTIN (fndecl
))
3436 inform (loc
, "in a call to built-in function %qD",
3439 inform (DECL_SOURCE_LOCATION (fndecl
),
3440 "in a call to function %qD declared here",
3445 BITMAP_FREE (nonnullargs
);
3456 make_pass_post_ipa_warn (gcc::context
*ctxt
)
3458 return new pass_post_ipa_warn (ctxt
);