Allow 2 insns from sched group to issue in same cycle, if no stalls needed.
[official-gcc.git] / gcc / tree-scalar-evolution.c
blob58c2bde83074bce2863ba779a0fd1a2aeeba8b5f
1 /* Scalar evolution detector.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 Description:
24 This pass analyzes the evolution of scalar variables in loop
25 structures. The algorithm is based on the SSA representation,
26 and on the loop hierarchy tree. This algorithm is not based on
27 the notion of versions of a variable, as it was the case for the
28 previous implementations of the scalar evolution algorithm, but
29 it assumes that each defined name is unique.
31 The notation used in this file is called "chains of recurrences",
32 and has been proposed by Eugene Zima, Robert Van Engelen, and
33 others for describing induction variables in programs. For example
34 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
35 when entering in the loop_1 and has a step 2 in this loop, in other
36 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
37 this chain of recurrence (or chrec [shrek]) can contain the name of
38 other variables, in which case they are called parametric chrecs.
39 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
40 is the value of "a". In most of the cases these parametric chrecs
41 are fully instantiated before their use because symbolic names can
42 hide some difficult cases such as self-references described later
43 (see the Fibonacci example).
45 A short sketch of the algorithm is:
47 Given a scalar variable to be analyzed, follow the SSA edge to
48 its definition:
50 - When the definition is a GIMPLE_ASSIGN: if the right hand side
51 (RHS) of the definition cannot be statically analyzed, the answer
52 of the analyzer is: "don't know".
53 Otherwise, for all the variables that are not yet analyzed in the
54 RHS, try to determine their evolution, and finally try to
55 evaluate the operation of the RHS that gives the evolution
56 function of the analyzed variable.
58 - When the definition is a condition-phi-node: determine the
59 evolution function for all the branches of the phi node, and
60 finally merge these evolutions (see chrec_merge).
62 - When the definition is a loop-phi-node: determine its initial
63 condition, that is the SSA edge defined in an outer loop, and
64 keep it symbolic. Then determine the SSA edges that are defined
65 in the body of the loop. Follow the inner edges until ending on
66 another loop-phi-node of the same analyzed loop. If the reached
67 loop-phi-node is not the starting loop-phi-node, then we keep
68 this definition under a symbolic form. If the reached
69 loop-phi-node is the same as the starting one, then we compute a
70 symbolic stride on the return path. The result is then the
71 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73 Examples:
75 Example 1: Illustration of the basic algorithm.
77 | a = 3
78 | loop_1
79 | b = phi (a, c)
80 | c = b + 1
81 | if (c > 10) exit_loop
82 | endloop
84 Suppose that we want to know the number of iterations of the
85 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
86 ask the scalar evolution analyzer two questions: what's the
87 scalar evolution (scev) of "c", and what's the scev of "10". For
88 "10" the answer is "10" since it is a scalar constant. For the
89 scalar variable "c", it follows the SSA edge to its definition,
90 "c = b + 1", and then asks again what's the scev of "b".
91 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
92 c)", where the initial condition is "a", and the inner loop edge
93 is "c". The initial condition is kept under a symbolic form (it
94 may be the case that the copy constant propagation has done its
95 work and we end with the constant "3" as one of the edges of the
96 loop-phi-node). The update edge is followed to the end of the
97 loop, and until reaching again the starting loop-phi-node: b -> c
98 -> b. At this point we have drawn a path from "b" to "b" from
99 which we compute the stride in the loop: in this example it is
100 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
101 that the scev for "b" is known, it is possible to compute the
102 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
103 determine the number of iterations in the loop_1, we have to
104 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
105 more analysis the scev {4, +, 1}_1, or in other words, this is
106 the function "f (x) = x + 4", where x is the iteration count of
107 the loop_1. Now we have to solve the inequality "x + 4 > 10",
108 and take the smallest iteration number for which the loop is
109 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
110 there are 8 iterations. In terms of loop normalization, we have
111 created a variable that is implicitly defined, "x" or just "_1",
112 and all the other analyzed scalars of the loop are defined in
113 function of this variable:
115 a -> 3
116 b -> {3, +, 1}_1
117 c -> {4, +, 1}_1
119 or in terms of a C program:
121 | a = 3
122 | for (x = 0; x <= 7; x++)
124 | b = x + 3
125 | c = x + 4
128 Example 2a: Illustration of the algorithm on nested loops.
130 | loop_1
131 | a = phi (1, b)
132 | c = a + 2
133 | loop_2 10 times
134 | b = phi (c, d)
135 | d = b + 3
136 | endloop
137 | endloop
139 For analyzing the scalar evolution of "a", the algorithm follows
140 the SSA edge into the loop's body: "a -> b". "b" is an inner
141 loop-phi-node, and its analysis as in Example 1, gives:
143 b -> {c, +, 3}_2
144 d -> {c + 3, +, 3}_2
146 Following the SSA edge for the initial condition, we end on "c = a
147 + 2", and then on the starting loop-phi-node "a". From this point,
148 the loop stride is computed: back on "c = a + 2" we get a "+2" in
149 the loop_1, then on the loop-phi-node "b" we compute the overall
150 effect of the inner loop that is "b = c + 30", and we get a "+30"
151 in the loop_1. That means that the overall stride in loop_1 is
152 equal to "+32", and the result is:
154 a -> {1, +, 32}_1
155 c -> {3, +, 32}_1
157 Example 2b: Multivariate chains of recurrences.
159 | loop_1
160 | k = phi (0, k + 1)
161 | loop_2 4 times
162 | j = phi (0, j + 1)
163 | loop_3 4 times
164 | i = phi (0, i + 1)
165 | A[j + k] = ...
166 | endloop
167 | endloop
168 | endloop
170 Analyzing the access function of array A with
171 instantiate_parameters (loop_1, "j + k"), we obtain the
172 instantiation and the analysis of the scalar variables "j" and "k"
173 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
174 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
175 {0, +, 1}_1. To obtain the evolution function in loop_3 and
176 instantiate the scalar variables up to loop_1, one has to use:
177 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
178 The result of this call is {{0, +, 1}_1, +, 1}_2.
180 Example 3: Higher degree polynomials.
182 | loop_1
183 | a = phi (2, b)
184 | c = phi (5, d)
185 | b = a + 1
186 | d = c + a
187 | endloop
189 a -> {2, +, 1}_1
190 b -> {3, +, 1}_1
191 c -> {5, +, a}_1
192 d -> {5 + a, +, a}_1
194 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
195 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
197 Example 4: Lucas, Fibonacci, or mixers in general.
199 | loop_1
200 | a = phi (1, b)
201 | c = phi (3, d)
202 | b = c
203 | d = c + a
204 | endloop
206 a -> (1, c)_1
207 c -> {3, +, a}_1
209 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
210 following semantics: during the first iteration of the loop_1, the
211 variable contains the value 1, and then it contains the value "c".
212 Note that this syntax is close to the syntax of the loop-phi-node:
213 "a -> (1, c)_1" vs. "a = phi (1, c)".
215 The symbolic chrec representation contains all the semantics of the
216 original code. What is more difficult is to use this information.
218 Example 5: Flip-flops, or exchangers.
220 | loop_1
221 | a = phi (1, b)
222 | c = phi (3, d)
223 | b = c
224 | d = a
225 | endloop
227 a -> (1, c)_1
228 c -> (3, a)_1
230 Based on these symbolic chrecs, it is possible to refine this
231 information into the more precise PERIODIC_CHRECs:
233 a -> |1, 3|_1
234 c -> |3, 1|_1
236 This transformation is not yet implemented.
238 Further readings:
240 You can find a more detailed description of the algorithm in:
241 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
243 this is a preliminary report and some of the details of the
244 algorithm have changed. I'm working on a research report that
245 updates the description of the algorithms to reflect the design
246 choices used in this implementation.
248 A set of slides show a high level overview of the algorithm and run
249 an example through the scalar evolution analyzer:
250 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
252 The slides that I have presented at the GCC Summit'04 are available
253 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
256 #include "config.h"
257 #include "system.h"
258 #include "coretypes.h"
259 #include "backend.h"
260 #include "rtl.h"
261 #include "tree.h"
262 #include "gimple.h"
263 #include "ssa.h"
264 #include "gimple-pretty-print.h"
265 #include "fold-const.h"
266 #include "gimplify.h"
267 #include "gimple-iterator.h"
268 #include "gimplify-me.h"
269 #include "tree-cfg.h"
270 #include "tree-ssa-loop-ivopts.h"
271 #include "tree-ssa-loop-manip.h"
272 #include "tree-ssa-loop-niter.h"
273 #include "tree-ssa-loop.h"
274 #include "tree-ssa.h"
275 #include "cfgloop.h"
276 #include "tree-chrec.h"
277 #include "tree-affine.h"
278 #include "tree-scalar-evolution.h"
279 #include "dumpfile.h"
280 #include "params.h"
281 #include "tree-ssa-propagate.h"
282 #include "gimple-fold.h"
284 static tree analyze_scalar_evolution_1 (struct loop *, tree);
285 static tree analyze_scalar_evolution_for_address_of (struct loop *loop,
286 tree var);
288 /* The cached information about an SSA name with version NAME_VERSION,
289 claiming that below basic block with index INSTANTIATED_BELOW, the
290 value of the SSA name can be expressed as CHREC. */
292 struct GTY((for_user)) scev_info_str {
293 unsigned int name_version;
294 int instantiated_below;
295 tree chrec;
298 /* Counters for the scev database. */
299 static unsigned nb_set_scev = 0;
300 static unsigned nb_get_scev = 0;
302 /* The following trees are unique elements. Thus the comparison of
303 another element to these elements should be done on the pointer to
304 these trees, and not on their value. */
306 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
307 tree chrec_not_analyzed_yet;
309 /* Reserved to the cases where the analyzer has detected an
310 undecidable property at compile time. */
311 tree chrec_dont_know;
313 /* When the analyzer has detected that a property will never
314 happen, then it qualifies it with chrec_known. */
315 tree chrec_known;
317 struct scev_info_hasher : ggc_ptr_hash<scev_info_str>
319 static hashval_t hash (scev_info_str *i);
320 static bool equal (const scev_info_str *a, const scev_info_str *b);
323 static GTY (()) hash_table<scev_info_hasher> *scalar_evolution_info;
326 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
328 static inline struct scev_info_str *
329 new_scev_info_str (basic_block instantiated_below, tree var)
331 struct scev_info_str *res;
333 res = ggc_alloc<scev_info_str> ();
334 res->name_version = SSA_NAME_VERSION (var);
335 res->chrec = chrec_not_analyzed_yet;
336 res->instantiated_below = instantiated_below->index;
338 return res;
341 /* Computes a hash function for database element ELT. */
343 hashval_t
344 scev_info_hasher::hash (scev_info_str *elt)
346 return elt->name_version ^ elt->instantiated_below;
349 /* Compares database elements E1 and E2. */
351 bool
352 scev_info_hasher::equal (const scev_info_str *elt1, const scev_info_str *elt2)
354 return (elt1->name_version == elt2->name_version
355 && elt1->instantiated_below == elt2->instantiated_below);
358 /* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
359 A first query on VAR returns chrec_not_analyzed_yet. */
361 static tree *
362 find_var_scev_info (basic_block instantiated_below, tree var)
364 struct scev_info_str *res;
365 struct scev_info_str tmp;
367 tmp.name_version = SSA_NAME_VERSION (var);
368 tmp.instantiated_below = instantiated_below->index;
369 scev_info_str **slot = scalar_evolution_info->find_slot (&tmp, INSERT);
371 if (!*slot)
372 *slot = new_scev_info_str (instantiated_below, var);
373 res = *slot;
375 return &res->chrec;
378 /* Return true when CHREC contains symbolic names defined in
379 LOOP_NB. */
381 bool
382 chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb)
384 int i, n;
386 if (chrec == NULL_TREE)
387 return false;
389 if (is_gimple_min_invariant (chrec))
390 return false;
392 if (TREE_CODE (chrec) == SSA_NAME)
394 gimple *def;
395 loop_p def_loop, loop;
397 if (SSA_NAME_IS_DEFAULT_DEF (chrec))
398 return false;
400 def = SSA_NAME_DEF_STMT (chrec);
401 def_loop = loop_containing_stmt (def);
402 loop = get_loop (cfun, loop_nb);
404 if (def_loop == NULL)
405 return false;
407 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
408 return true;
410 return false;
413 n = TREE_OPERAND_LENGTH (chrec);
414 for (i = 0; i < n; i++)
415 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
416 loop_nb))
417 return true;
418 return false;
421 /* Return true when PHI is a loop-phi-node. */
423 static bool
424 loop_phi_node_p (gimple *phi)
426 /* The implementation of this function is based on the following
427 property: "all the loop-phi-nodes of a loop are contained in the
428 loop's header basic block". */
430 return loop_containing_stmt (phi)->header == gimple_bb (phi);
433 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
434 In general, in the case of multivariate evolutions we want to get
435 the evolution in different loops. LOOP specifies the level for
436 which to get the evolution.
438 Example:
440 | for (j = 0; j < 100; j++)
442 | for (k = 0; k < 100; k++)
444 | i = k + j; - Here the value of i is a function of j, k.
446 | ... = i - Here the value of i is a function of j.
448 | ... = i - Here the value of i is a scalar.
450 Example:
452 | i_0 = ...
453 | loop_1 10 times
454 | i_1 = phi (i_0, i_2)
455 | i_2 = i_1 + 2
456 | endloop
458 This loop has the same effect as:
459 LOOP_1 has the same effect as:
461 | i_1 = i_0 + 20
463 The overall effect of the loop, "i_0 + 20" in the previous example,
464 is obtained by passing in the parameters: LOOP = 1,
465 EVOLUTION_FN = {i_0, +, 2}_1.
468 tree
469 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
471 bool val = false;
473 if (evolution_fn == chrec_dont_know)
474 return chrec_dont_know;
476 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
478 struct loop *inner_loop = get_chrec_loop (evolution_fn);
480 if (inner_loop == loop
481 || flow_loop_nested_p (loop, inner_loop))
483 tree nb_iter = number_of_latch_executions (inner_loop);
485 if (nb_iter == chrec_dont_know)
486 return chrec_dont_know;
487 else
489 tree res;
491 /* evolution_fn is the evolution function in LOOP. Get
492 its value in the nb_iter-th iteration. */
493 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
495 if (chrec_contains_symbols_defined_in_loop (res, loop->num))
496 res = instantiate_parameters (loop, res);
498 /* Continue the computation until ending on a parent of LOOP. */
499 return compute_overall_effect_of_inner_loop (loop, res);
502 else
503 return evolution_fn;
506 /* If the evolution function is an invariant, there is nothing to do. */
507 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
508 return evolution_fn;
510 else
511 return chrec_dont_know;
514 /* Associate CHREC to SCALAR. */
516 static void
517 set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
519 tree *scalar_info;
521 if (TREE_CODE (scalar) != SSA_NAME)
522 return;
524 scalar_info = find_var_scev_info (instantiated_below, scalar);
526 if (dump_file)
528 if (dump_flags & TDF_SCEV)
530 fprintf (dump_file, "(set_scalar_evolution \n");
531 fprintf (dump_file, " instantiated_below = %d \n",
532 instantiated_below->index);
533 fprintf (dump_file, " (scalar = ");
534 print_generic_expr (dump_file, scalar);
535 fprintf (dump_file, ")\n (scalar_evolution = ");
536 print_generic_expr (dump_file, chrec);
537 fprintf (dump_file, "))\n");
539 if (dump_flags & TDF_STATS)
540 nb_set_scev++;
543 *scalar_info = chrec;
546 /* Retrieve the chrec associated to SCALAR instantiated below
547 INSTANTIATED_BELOW block. */
549 static tree
550 get_scalar_evolution (basic_block instantiated_below, tree scalar)
552 tree res;
554 if (dump_file)
556 if (dump_flags & TDF_SCEV)
558 fprintf (dump_file, "(get_scalar_evolution \n");
559 fprintf (dump_file, " (scalar = ");
560 print_generic_expr (dump_file, scalar);
561 fprintf (dump_file, ")\n");
563 if (dump_flags & TDF_STATS)
564 nb_get_scev++;
567 switch (TREE_CODE (scalar))
569 case SSA_NAME:
570 res = *find_var_scev_info (instantiated_below, scalar);
571 break;
573 case REAL_CST:
574 case FIXED_CST:
575 case INTEGER_CST:
576 res = scalar;
577 break;
579 default:
580 res = chrec_not_analyzed_yet;
581 break;
584 if (dump_file && (dump_flags & TDF_SCEV))
586 fprintf (dump_file, " (scalar_evolution = ");
587 print_generic_expr (dump_file, res);
588 fprintf (dump_file, "))\n");
591 return res;
594 /* Helper function for add_to_evolution. Returns the evolution
595 function for an assignment of the form "a = b + c", where "a" and
596 "b" are on the strongly connected component. CHREC_BEFORE is the
597 information that we already have collected up to this point.
598 TO_ADD is the evolution of "c".
600 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
601 evolution the expression TO_ADD, otherwise construct an evolution
602 part for this loop. */
604 static tree
605 add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
606 gimple *at_stmt)
608 tree type, left, right;
609 struct loop *loop = get_loop (cfun, loop_nb), *chloop;
611 switch (TREE_CODE (chrec_before))
613 case POLYNOMIAL_CHREC:
614 chloop = get_chrec_loop (chrec_before);
615 if (chloop == loop
616 || flow_loop_nested_p (chloop, loop))
618 unsigned var;
620 type = chrec_type (chrec_before);
622 /* When there is no evolution part in this loop, build it. */
623 if (chloop != loop)
625 var = loop_nb;
626 left = chrec_before;
627 right = SCALAR_FLOAT_TYPE_P (type)
628 ? build_real (type, dconst0)
629 : build_int_cst (type, 0);
631 else
633 var = CHREC_VARIABLE (chrec_before);
634 left = CHREC_LEFT (chrec_before);
635 right = CHREC_RIGHT (chrec_before);
638 to_add = chrec_convert (type, to_add, at_stmt);
639 right = chrec_convert_rhs (type, right, at_stmt);
640 right = chrec_fold_plus (chrec_type (right), right, to_add);
641 return build_polynomial_chrec (var, left, right);
643 else
645 gcc_assert (flow_loop_nested_p (loop, chloop));
647 /* Search the evolution in LOOP_NB. */
648 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
649 to_add, at_stmt);
650 right = CHREC_RIGHT (chrec_before);
651 right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
652 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
653 left, right);
656 default:
657 /* These nodes do not depend on a loop. */
658 if (chrec_before == chrec_dont_know)
659 return chrec_dont_know;
661 left = chrec_before;
662 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
663 return build_polynomial_chrec (loop_nb, left, right);
667 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
668 of LOOP_NB.
670 Description (provided for completeness, for those who read code in
671 a plane, and for my poor 62 bytes brain that would have forgotten
672 all this in the next two or three months):
674 The algorithm of translation of programs from the SSA representation
675 into the chrecs syntax is based on a pattern matching. After having
676 reconstructed the overall tree expression for a loop, there are only
677 two cases that can arise:
679 1. a = loop-phi (init, a + expr)
680 2. a = loop-phi (init, expr)
682 where EXPR is either a scalar constant with respect to the analyzed
683 loop (this is a degree 0 polynomial), or an expression containing
684 other loop-phi definitions (these are higher degree polynomials).
686 Examples:
689 | init = ...
690 | loop_1
691 | a = phi (init, a + 5)
692 | endloop
695 | inita = ...
696 | initb = ...
697 | loop_1
698 | a = phi (inita, 2 * b + 3)
699 | b = phi (initb, b + 1)
700 | endloop
702 For the first case, the semantics of the SSA representation is:
704 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
706 that is, there is a loop index "x" that determines the scalar value
707 of the variable during the loop execution. During the first
708 iteration, the value is that of the initial condition INIT, while
709 during the subsequent iterations, it is the sum of the initial
710 condition with the sum of all the values of EXPR from the initial
711 iteration to the before last considered iteration.
713 For the second case, the semantics of the SSA program is:
715 | a (x) = init, if x = 0;
716 | expr (x - 1), otherwise.
718 The second case corresponds to the PEELED_CHREC, whose syntax is
719 close to the syntax of a loop-phi-node:
721 | phi (init, expr) vs. (init, expr)_x
723 The proof of the translation algorithm for the first case is a
724 proof by structural induction based on the degree of EXPR.
726 Degree 0:
727 When EXPR is a constant with respect to the analyzed loop, or in
728 other words when EXPR is a polynomial of degree 0, the evolution of
729 the variable A in the loop is an affine function with an initial
730 condition INIT, and a step EXPR. In order to show this, we start
731 from the semantics of the SSA representation:
733 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
735 and since "expr (j)" is a constant with respect to "j",
737 f (x) = init + x * expr
739 Finally, based on the semantics of the pure sum chrecs, by
740 identification we get the corresponding chrecs syntax:
742 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
743 f (x) -> {init, +, expr}_x
745 Higher degree:
746 Suppose that EXPR is a polynomial of degree N with respect to the
747 analyzed loop_x for which we have already determined that it is
748 written under the chrecs syntax:
750 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
752 We start from the semantics of the SSA program:
754 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
756 | f (x) = init + \sum_{j = 0}^{x - 1}
757 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
759 | f (x) = init + \sum_{j = 0}^{x - 1}
760 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
762 | f (x) = init + \sum_{k = 0}^{n - 1}
763 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
765 | f (x) = init + \sum_{k = 0}^{n - 1}
766 | (b_k * \binom{x}{k + 1})
768 | f (x) = init + b_0 * \binom{x}{1} + ...
769 | + b_{n-1} * \binom{x}{n}
771 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
772 | + b_{n-1} * \binom{x}{n}
775 And finally from the definition of the chrecs syntax, we identify:
776 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
778 This shows the mechanism that stands behind the add_to_evolution
779 function. An important point is that the use of symbolic
780 parameters avoids the need of an analysis schedule.
782 Example:
784 | inita = ...
785 | initb = ...
786 | loop_1
787 | a = phi (inita, a + 2 + b)
788 | b = phi (initb, b + 1)
789 | endloop
791 When analyzing "a", the algorithm keeps "b" symbolically:
793 | a -> {inita, +, 2 + b}_1
795 Then, after instantiation, the analyzer ends on the evolution:
797 | a -> {inita, +, 2 + initb, +, 1}_1
801 static tree
802 add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
803 tree to_add, gimple *at_stmt)
805 tree type = chrec_type (to_add);
806 tree res = NULL_TREE;
808 if (to_add == NULL_TREE)
809 return chrec_before;
811 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
812 instantiated at this point. */
813 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
814 /* This should not happen. */
815 return chrec_dont_know;
817 if (dump_file && (dump_flags & TDF_SCEV))
819 fprintf (dump_file, "(add_to_evolution \n");
820 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
821 fprintf (dump_file, " (chrec_before = ");
822 print_generic_expr (dump_file, chrec_before);
823 fprintf (dump_file, ")\n (to_add = ");
824 print_generic_expr (dump_file, to_add);
825 fprintf (dump_file, ")\n");
828 if (code == MINUS_EXPR)
829 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
830 ? build_real (type, dconstm1)
831 : build_int_cst_type (type, -1));
833 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
835 if (dump_file && (dump_flags & TDF_SCEV))
837 fprintf (dump_file, " (res = ");
838 print_generic_expr (dump_file, res);
839 fprintf (dump_file, "))\n");
842 return res;
847 /* This section selects the loops that will be good candidates for the
848 scalar evolution analysis. For the moment, greedily select all the
849 loop nests we could analyze. */
851 /* For a loop with a single exit edge, return the COND_EXPR that
852 guards the exit edge. If the expression is too difficult to
853 analyze, then give up. */
855 gcond *
856 get_loop_exit_condition (const struct loop *loop)
858 gcond *res = NULL;
859 edge exit_edge = single_exit (loop);
861 if (dump_file && (dump_flags & TDF_SCEV))
862 fprintf (dump_file, "(get_loop_exit_condition \n ");
864 if (exit_edge)
866 gimple *stmt;
868 stmt = last_stmt (exit_edge->src);
869 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
870 res = cond_stmt;
873 if (dump_file && (dump_flags & TDF_SCEV))
875 print_gimple_stmt (dump_file, res, 0);
876 fprintf (dump_file, ")\n");
879 return res;
883 /* Depth first search algorithm. */
885 enum t_bool {
886 t_false,
887 t_true,
888 t_dont_know
892 static t_bool follow_ssa_edge (struct loop *loop, gimple *, gphi *,
893 tree *, int);
895 /* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
896 Return true if the strongly connected component has been found. */
898 static t_bool
899 follow_ssa_edge_binary (struct loop *loop, gimple *at_stmt,
900 tree type, tree rhs0, enum tree_code code, tree rhs1,
901 gphi *halting_phi, tree *evolution_of_loop,
902 int limit)
904 t_bool res = t_false;
905 tree evol;
907 switch (code)
909 case POINTER_PLUS_EXPR:
910 case PLUS_EXPR:
911 if (TREE_CODE (rhs0) == SSA_NAME)
913 if (TREE_CODE (rhs1) == SSA_NAME)
915 /* Match an assignment under the form:
916 "a = b + c". */
918 /* We want only assignments of form "name + name" contribute to
919 LIMIT, as the other cases do not necessarily contribute to
920 the complexity of the expression. */
921 limit++;
923 evol = *evolution_of_loop;
924 evol = add_to_evolution
925 (loop->num,
926 chrec_convert (type, evol, at_stmt),
927 code, rhs1, at_stmt);
928 res = follow_ssa_edge
929 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, &evol, limit);
930 if (res == t_true)
931 *evolution_of_loop = evol;
932 else if (res == t_false)
934 *evolution_of_loop = add_to_evolution
935 (loop->num,
936 chrec_convert (type, *evolution_of_loop, at_stmt),
937 code, rhs0, at_stmt);
938 res = follow_ssa_edge
939 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
940 evolution_of_loop, limit);
941 if (res == t_true)
943 else if (res == t_dont_know)
944 *evolution_of_loop = chrec_dont_know;
947 else if (res == t_dont_know)
948 *evolution_of_loop = chrec_dont_know;
951 else
953 /* Match an assignment under the form:
954 "a = b + ...". */
955 *evolution_of_loop = add_to_evolution
956 (loop->num, chrec_convert (type, *evolution_of_loop,
957 at_stmt),
958 code, rhs1, at_stmt);
959 res = follow_ssa_edge
960 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
961 evolution_of_loop, limit);
962 if (res == t_true)
964 else if (res == t_dont_know)
965 *evolution_of_loop = chrec_dont_know;
969 else if (TREE_CODE (rhs1) == SSA_NAME)
971 /* Match an assignment under the form:
972 "a = ... + c". */
973 *evolution_of_loop = add_to_evolution
974 (loop->num, chrec_convert (type, *evolution_of_loop,
975 at_stmt),
976 code, rhs0, at_stmt);
977 res = follow_ssa_edge
978 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
979 evolution_of_loop, limit);
980 if (res == t_true)
982 else if (res == t_dont_know)
983 *evolution_of_loop = chrec_dont_know;
986 else
987 /* Otherwise, match an assignment under the form:
988 "a = ... + ...". */
989 /* And there is nothing to do. */
990 res = t_false;
991 break;
993 case MINUS_EXPR:
994 /* This case is under the form "opnd0 = rhs0 - rhs1". */
995 if (TREE_CODE (rhs0) == SSA_NAME)
997 /* Match an assignment under the form:
998 "a = b - ...". */
1000 /* We want only assignments of form "name - name" contribute to
1001 LIMIT, as the other cases do not necessarily contribute to
1002 the complexity of the expression. */
1003 if (TREE_CODE (rhs1) == SSA_NAME)
1004 limit++;
1006 *evolution_of_loop = add_to_evolution
1007 (loop->num, chrec_convert (type, *evolution_of_loop, at_stmt),
1008 MINUS_EXPR, rhs1, at_stmt);
1009 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1010 evolution_of_loop, limit);
1011 if (res == t_true)
1013 else if (res == t_dont_know)
1014 *evolution_of_loop = chrec_dont_know;
1016 else
1017 /* Otherwise, match an assignment under the form:
1018 "a = ... - ...". */
1019 /* And there is nothing to do. */
1020 res = t_false;
1021 break;
1023 default:
1024 res = t_false;
1027 return res;
1030 /* Follow the ssa edge into the expression EXPR.
1031 Return true if the strongly connected component has been found. */
1033 static t_bool
1034 follow_ssa_edge_expr (struct loop *loop, gimple *at_stmt, tree expr,
1035 gphi *halting_phi, tree *evolution_of_loop,
1036 int limit)
1038 enum tree_code code = TREE_CODE (expr);
1039 tree type = TREE_TYPE (expr), rhs0, rhs1;
1040 t_bool res;
1042 /* The EXPR is one of the following cases:
1043 - an SSA_NAME,
1044 - an INTEGER_CST,
1045 - a PLUS_EXPR,
1046 - a POINTER_PLUS_EXPR,
1047 - a MINUS_EXPR,
1048 - an ASSERT_EXPR,
1049 - other cases are not yet handled. */
1051 switch (code)
1053 CASE_CONVERT:
1054 /* This assignment is under the form "a_1 = (cast) rhs. */
1055 res = follow_ssa_edge_expr (loop, at_stmt, TREE_OPERAND (expr, 0),
1056 halting_phi, evolution_of_loop, limit);
1057 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
1058 break;
1060 case INTEGER_CST:
1061 /* This assignment is under the form "a_1 = 7". */
1062 res = t_false;
1063 break;
1065 case SSA_NAME:
1066 /* This assignment is under the form: "a_1 = b_2". */
1067 res = follow_ssa_edge
1068 (loop, SSA_NAME_DEF_STMT (expr), halting_phi, evolution_of_loop, limit);
1069 break;
1071 case POINTER_PLUS_EXPR:
1072 case PLUS_EXPR:
1073 case MINUS_EXPR:
1074 /* This case is under the form "rhs0 +- rhs1". */
1075 rhs0 = TREE_OPERAND (expr, 0);
1076 rhs1 = TREE_OPERAND (expr, 1);
1077 type = TREE_TYPE (rhs0);
1078 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1079 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1080 res = follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
1081 halting_phi, evolution_of_loop, limit);
1082 break;
1084 case ADDR_EXPR:
1085 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
1086 if (TREE_CODE (TREE_OPERAND (expr, 0)) == MEM_REF)
1088 expr = TREE_OPERAND (expr, 0);
1089 rhs0 = TREE_OPERAND (expr, 0);
1090 rhs1 = TREE_OPERAND (expr, 1);
1091 type = TREE_TYPE (rhs0);
1092 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1093 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1094 res = follow_ssa_edge_binary (loop, at_stmt, type,
1095 rhs0, POINTER_PLUS_EXPR, rhs1,
1096 halting_phi, evolution_of_loop, limit);
1098 else
1099 res = t_false;
1100 break;
1102 case ASSERT_EXPR:
1103 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1104 It must be handled as a copy assignment of the form a_1 = a_2. */
1105 rhs0 = ASSERT_EXPR_VAR (expr);
1106 if (TREE_CODE (rhs0) == SSA_NAME)
1107 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0),
1108 halting_phi, evolution_of_loop, limit);
1109 else
1110 res = t_false;
1111 break;
1113 default:
1114 res = t_false;
1115 break;
1118 return res;
1121 /* Follow the ssa edge into the right hand side of an assignment STMT.
1122 Return true if the strongly connected component has been found. */
1124 static t_bool
1125 follow_ssa_edge_in_rhs (struct loop *loop, gimple *stmt,
1126 gphi *halting_phi, tree *evolution_of_loop,
1127 int limit)
1129 enum tree_code code = gimple_assign_rhs_code (stmt);
1130 tree type = gimple_expr_type (stmt), rhs1, rhs2;
1131 t_bool res;
1133 switch (code)
1135 CASE_CONVERT:
1136 /* This assignment is under the form "a_1 = (cast) rhs. */
1137 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1138 halting_phi, evolution_of_loop, limit);
1139 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, stmt);
1140 break;
1142 case POINTER_PLUS_EXPR:
1143 case PLUS_EXPR:
1144 case MINUS_EXPR:
1145 rhs1 = gimple_assign_rhs1 (stmt);
1146 rhs2 = gimple_assign_rhs2 (stmt);
1147 type = TREE_TYPE (rhs1);
1148 res = follow_ssa_edge_binary (loop, stmt, type, rhs1, code, rhs2,
1149 halting_phi, evolution_of_loop, limit);
1150 break;
1152 default:
1153 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1154 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1155 halting_phi, evolution_of_loop, limit);
1156 else
1157 res = t_false;
1158 break;
1161 return res;
1164 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1166 static bool
1167 backedge_phi_arg_p (gphi *phi, int i)
1169 const_edge e = gimple_phi_arg_edge (phi, i);
1171 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1172 about updating it anywhere, and this should work as well most of the
1173 time. */
1174 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1175 return true;
1177 return false;
1180 /* Helper function for one branch of the condition-phi-node. Return
1181 true if the strongly connected component has been found following
1182 this path. */
1184 static inline t_bool
1185 follow_ssa_edge_in_condition_phi_branch (int i,
1186 struct loop *loop,
1187 gphi *condition_phi,
1188 gphi *halting_phi,
1189 tree *evolution_of_branch,
1190 tree init_cond, int limit)
1192 tree branch = PHI_ARG_DEF (condition_phi, i);
1193 *evolution_of_branch = chrec_dont_know;
1195 /* Do not follow back edges (they must belong to an irreducible loop, which
1196 we really do not want to worry about). */
1197 if (backedge_phi_arg_p (condition_phi, i))
1198 return t_false;
1200 if (TREE_CODE (branch) == SSA_NAME)
1202 *evolution_of_branch = init_cond;
1203 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1204 evolution_of_branch, limit);
1207 /* This case occurs when one of the condition branches sets
1208 the variable to a constant: i.e. a phi-node like
1209 "a_2 = PHI <a_7(5), 2(6)>;".
1211 FIXME: This case have to be refined correctly:
1212 in some cases it is possible to say something better than
1213 chrec_dont_know, for example using a wrap-around notation. */
1214 return t_false;
1217 /* This function merges the branches of a condition-phi-node in a
1218 loop. */
1220 static t_bool
1221 follow_ssa_edge_in_condition_phi (struct loop *loop,
1222 gphi *condition_phi,
1223 gphi *halting_phi,
1224 tree *evolution_of_loop, int limit)
1226 int i, n;
1227 tree init = *evolution_of_loop;
1228 tree evolution_of_branch;
1229 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1230 halting_phi,
1231 &evolution_of_branch,
1232 init, limit);
1233 if (res == t_false || res == t_dont_know)
1234 return res;
1236 *evolution_of_loop = evolution_of_branch;
1238 n = gimple_phi_num_args (condition_phi);
1239 for (i = 1; i < n; i++)
1241 /* Quickly give up when the evolution of one of the branches is
1242 not known. */
1243 if (*evolution_of_loop == chrec_dont_know)
1244 return t_true;
1246 /* Increase the limit by the PHI argument number to avoid exponential
1247 time and memory complexity. */
1248 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1249 halting_phi,
1250 &evolution_of_branch,
1251 init, limit + i);
1252 if (res == t_false || res == t_dont_know)
1253 return res;
1255 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1256 evolution_of_branch);
1259 return t_true;
1262 /* Follow an SSA edge in an inner loop. It computes the overall
1263 effect of the loop, and following the symbolic initial conditions,
1264 it follows the edges in the parent loop. The inner loop is
1265 considered as a single statement. */
1267 static t_bool
1268 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1269 gphi *loop_phi_node,
1270 gphi *halting_phi,
1271 tree *evolution_of_loop, int limit)
1273 struct loop *loop = loop_containing_stmt (loop_phi_node);
1274 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1276 /* Sometimes, the inner loop is too difficult to analyze, and the
1277 result of the analysis is a symbolic parameter. */
1278 if (ev == PHI_RESULT (loop_phi_node))
1280 t_bool res = t_false;
1281 int i, n = gimple_phi_num_args (loop_phi_node);
1283 for (i = 0; i < n; i++)
1285 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1286 basic_block bb;
1288 /* Follow the edges that exit the inner loop. */
1289 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1290 if (!flow_bb_inside_loop_p (loop, bb))
1291 res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
1292 arg, halting_phi,
1293 evolution_of_loop, limit);
1294 if (res == t_true)
1295 break;
1298 /* If the path crosses this loop-phi, give up. */
1299 if (res == t_true)
1300 *evolution_of_loop = chrec_dont_know;
1302 return res;
1305 /* Otherwise, compute the overall effect of the inner loop. */
1306 ev = compute_overall_effect_of_inner_loop (loop, ev);
1307 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
1308 evolution_of_loop, limit);
1311 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1312 path that is analyzed on the return walk. */
1314 static t_bool
1315 follow_ssa_edge (struct loop *loop, gimple *def, gphi *halting_phi,
1316 tree *evolution_of_loop, int limit)
1318 struct loop *def_loop;
1320 if (gimple_nop_p (def))
1321 return t_false;
1323 /* Give up if the path is longer than the MAX that we allow. */
1324 if (limit > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_COMPLEXITY))
1325 return t_dont_know;
1327 def_loop = loop_containing_stmt (def);
1329 switch (gimple_code (def))
1331 case GIMPLE_PHI:
1332 if (!loop_phi_node_p (def))
1333 /* DEF is a condition-phi-node. Follow the branches, and
1334 record their evolutions. Finally, merge the collected
1335 information and set the approximation to the main
1336 variable. */
1337 return follow_ssa_edge_in_condition_phi
1338 (loop, as_a <gphi *> (def), halting_phi, evolution_of_loop,
1339 limit);
1341 /* When the analyzed phi is the halting_phi, the
1342 depth-first search is over: we have found a path from
1343 the halting_phi to itself in the loop. */
1344 if (def == halting_phi)
1345 return t_true;
1347 /* Otherwise, the evolution of the HALTING_PHI depends
1348 on the evolution of another loop-phi-node, i.e. the
1349 evolution function is a higher degree polynomial. */
1350 if (def_loop == loop)
1351 return t_false;
1353 /* Inner loop. */
1354 if (flow_loop_nested_p (loop, def_loop))
1355 return follow_ssa_edge_inner_loop_phi
1356 (loop, as_a <gphi *> (def), halting_phi, evolution_of_loop,
1357 limit + 1);
1359 /* Outer loop. */
1360 return t_false;
1362 case GIMPLE_ASSIGN:
1363 return follow_ssa_edge_in_rhs (loop, def, halting_phi,
1364 evolution_of_loop, limit);
1366 default:
1367 /* At this level of abstraction, the program is just a set
1368 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
1369 other node to be handled. */
1370 return t_false;
1375 /* Simplify PEELED_CHREC represented by (init_cond, arg) in LOOP.
1376 Handle below case and return the corresponding POLYNOMIAL_CHREC:
1378 # i_17 = PHI <i_13(5), 0(3)>
1379 # _20 = PHI <_5(5), start_4(D)(3)>
1381 i_13 = i_17 + 1;
1382 _5 = start_4(D) + i_13;
1384 Though variable _20 appears as a PEELED_CHREC in the form of
1385 (start_4, _5)_LOOP, it's a POLYNOMIAL_CHREC like {start_4, 1}_LOOP.
1387 See PR41488. */
1389 static tree
1390 simplify_peeled_chrec (struct loop *loop, tree arg, tree init_cond)
1392 aff_tree aff1, aff2;
1393 tree ev, left, right, type, step_val;
1394 hash_map<tree, name_expansion *> *peeled_chrec_map = NULL;
1396 ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, arg));
1397 if (ev == NULL_TREE || TREE_CODE (ev) != POLYNOMIAL_CHREC)
1398 return chrec_dont_know;
1400 left = CHREC_LEFT (ev);
1401 right = CHREC_RIGHT (ev);
1402 type = TREE_TYPE (left);
1403 step_val = chrec_fold_plus (type, init_cond, right);
1405 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1406 if "left" equals to "init + right". */
1407 if (operand_equal_p (left, step_val, 0))
1409 if (dump_file && (dump_flags & TDF_SCEV))
1410 fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1412 return build_polynomial_chrec (loop->num, init_cond, right);
1415 /* Try harder to check if they are equal. */
1416 tree_to_aff_combination_expand (left, type, &aff1, &peeled_chrec_map);
1417 tree_to_aff_combination_expand (step_val, type, &aff2, &peeled_chrec_map);
1418 free_affine_expand_cache (&peeled_chrec_map);
1419 aff_combination_scale (&aff2, -1);
1420 aff_combination_add (&aff1, &aff2);
1422 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1423 if "left" equals to "init + right". */
1424 if (aff_combination_zero_p (&aff1))
1426 if (dump_file && (dump_flags & TDF_SCEV))
1427 fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1429 return build_polynomial_chrec (loop->num, init_cond, right);
1431 return chrec_dont_know;
1434 /* Given a LOOP_PHI_NODE, this function determines the evolution
1435 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1437 static tree
1438 analyze_evolution_in_loop (gphi *loop_phi_node,
1439 tree init_cond)
1441 int i, n = gimple_phi_num_args (loop_phi_node);
1442 tree evolution_function = chrec_not_analyzed_yet;
1443 struct loop *loop = loop_containing_stmt (loop_phi_node);
1444 basic_block bb;
1445 static bool simplify_peeled_chrec_p = true;
1447 if (dump_file && (dump_flags & TDF_SCEV))
1449 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1450 fprintf (dump_file, " (loop_phi_node = ");
1451 print_gimple_stmt (dump_file, loop_phi_node, 0);
1452 fprintf (dump_file, ")\n");
1455 for (i = 0; i < n; i++)
1457 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1458 gimple *ssa_chain;
1459 tree ev_fn;
1460 t_bool res;
1462 /* Select the edges that enter the loop body. */
1463 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1464 if (!flow_bb_inside_loop_p (loop, bb))
1465 continue;
1467 if (TREE_CODE (arg) == SSA_NAME)
1469 bool val = false;
1471 ssa_chain = SSA_NAME_DEF_STMT (arg);
1473 /* Pass in the initial condition to the follow edge function. */
1474 ev_fn = init_cond;
1475 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
1477 /* If ev_fn has no evolution in the inner loop, and the
1478 init_cond is not equal to ev_fn, then we have an
1479 ambiguity between two possible values, as we cannot know
1480 the number of iterations at this point. */
1481 if (TREE_CODE (ev_fn) != POLYNOMIAL_CHREC
1482 && no_evolution_in_loop_p (ev_fn, loop->num, &val) && val
1483 && !operand_equal_p (init_cond, ev_fn, 0))
1484 ev_fn = chrec_dont_know;
1486 else
1487 res = t_false;
1489 /* When it is impossible to go back on the same
1490 loop_phi_node by following the ssa edges, the
1491 evolution is represented by a peeled chrec, i.e. the
1492 first iteration, EV_FN has the value INIT_COND, then
1493 all the other iterations it has the value of ARG.
1494 For the moment, PEELED_CHREC nodes are not built. */
1495 if (res != t_true)
1497 ev_fn = chrec_dont_know;
1498 /* Try to recognize POLYNOMIAL_CHREC which appears in
1499 the form of PEELED_CHREC, but guard the process with
1500 a bool variable to keep the analyzer from infinite
1501 recurrence for real PEELED_RECs. */
1502 if (simplify_peeled_chrec_p && TREE_CODE (arg) == SSA_NAME)
1504 simplify_peeled_chrec_p = false;
1505 ev_fn = simplify_peeled_chrec (loop, arg, init_cond);
1506 simplify_peeled_chrec_p = true;
1510 /* When there are multiple back edges of the loop (which in fact never
1511 happens currently, but nevertheless), merge their evolutions. */
1512 evolution_function = chrec_merge (evolution_function, ev_fn);
1514 if (evolution_function == chrec_dont_know)
1515 break;
1518 if (dump_file && (dump_flags & TDF_SCEV))
1520 fprintf (dump_file, " (evolution_function = ");
1521 print_generic_expr (dump_file, evolution_function);
1522 fprintf (dump_file, "))\n");
1525 return evolution_function;
1528 /* Looks to see if VAR is a copy of a constant (via straightforward assignments
1529 or degenerate phi's). If so, returns the constant; else, returns VAR. */
1531 static tree
1532 follow_copies_to_constant (tree var)
1534 tree res = var;
1535 while (TREE_CODE (res) == SSA_NAME)
1537 gimple *def = SSA_NAME_DEF_STMT (res);
1538 if (gphi *phi = dyn_cast <gphi *> (def))
1540 if (tree rhs = degenerate_phi_result (phi))
1541 res = rhs;
1542 else
1543 break;
1545 else if (gimple_assign_single_p (def))
1546 /* Will exit loop if not an SSA_NAME. */
1547 res = gimple_assign_rhs1 (def);
1548 else
1549 break;
1551 if (CONSTANT_CLASS_P (res))
1552 return res;
1553 return var;
1556 /* Given a loop-phi-node, return the initial conditions of the
1557 variable on entry of the loop. When the CCP has propagated
1558 constants into the loop-phi-node, the initial condition is
1559 instantiated, otherwise the initial condition is kept symbolic.
1560 This analyzer does not analyze the evolution outside the current
1561 loop, and leaves this task to the on-demand tree reconstructor. */
1563 static tree
1564 analyze_initial_condition (gphi *loop_phi_node)
1566 int i, n;
1567 tree init_cond = chrec_not_analyzed_yet;
1568 struct loop *loop = loop_containing_stmt (loop_phi_node);
1570 if (dump_file && (dump_flags & TDF_SCEV))
1572 fprintf (dump_file, "(analyze_initial_condition \n");
1573 fprintf (dump_file, " (loop_phi_node = \n");
1574 print_gimple_stmt (dump_file, loop_phi_node, 0);
1575 fprintf (dump_file, ")\n");
1578 n = gimple_phi_num_args (loop_phi_node);
1579 for (i = 0; i < n; i++)
1581 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1582 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1584 /* When the branch is oriented to the loop's body, it does
1585 not contribute to the initial condition. */
1586 if (flow_bb_inside_loop_p (loop, bb))
1587 continue;
1589 if (init_cond == chrec_not_analyzed_yet)
1591 init_cond = branch;
1592 continue;
1595 if (TREE_CODE (branch) == SSA_NAME)
1597 init_cond = chrec_dont_know;
1598 break;
1601 init_cond = chrec_merge (init_cond, branch);
1604 /* Ooops -- a loop without an entry??? */
1605 if (init_cond == chrec_not_analyzed_yet)
1606 init_cond = chrec_dont_know;
1608 /* We may not have fully constant propagated IL. Handle degenerate PHIs here
1609 to not miss important early loop unrollings. */
1610 init_cond = follow_copies_to_constant (init_cond);
1612 if (dump_file && (dump_flags & TDF_SCEV))
1614 fprintf (dump_file, " (init_cond = ");
1615 print_generic_expr (dump_file, init_cond);
1616 fprintf (dump_file, "))\n");
1619 return init_cond;
1622 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1624 static tree
1625 interpret_loop_phi (struct loop *loop, gphi *loop_phi_node)
1627 tree res;
1628 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1629 tree init_cond;
1631 if (phi_loop != loop)
1633 struct loop *subloop;
1634 tree evolution_fn = analyze_scalar_evolution
1635 (phi_loop, PHI_RESULT (loop_phi_node));
1637 /* Dive one level deeper. */
1638 subloop = superloop_at_depth (phi_loop, loop_depth (loop) + 1);
1640 /* Interpret the subloop. */
1641 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1642 return res;
1645 /* Otherwise really interpret the loop phi. */
1646 init_cond = analyze_initial_condition (loop_phi_node);
1647 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1649 /* Verify we maintained the correct initial condition throughout
1650 possible conversions in the SSA chain. */
1651 if (res != chrec_dont_know)
1653 tree new_init = res;
1654 if (CONVERT_EXPR_P (res)
1655 && TREE_CODE (TREE_OPERAND (res, 0)) == POLYNOMIAL_CHREC)
1656 new_init = fold_convert (TREE_TYPE (res),
1657 CHREC_LEFT (TREE_OPERAND (res, 0)));
1658 else if (TREE_CODE (res) == POLYNOMIAL_CHREC)
1659 new_init = CHREC_LEFT (res);
1660 STRIP_USELESS_TYPE_CONVERSION (new_init);
1661 if (TREE_CODE (new_init) == POLYNOMIAL_CHREC
1662 || !operand_equal_p (init_cond, new_init, 0))
1663 return chrec_dont_know;
1666 return res;
1669 /* This function merges the branches of a condition-phi-node,
1670 contained in the outermost loop, and whose arguments are already
1671 analyzed. */
1673 static tree
1674 interpret_condition_phi (struct loop *loop, gphi *condition_phi)
1676 int i, n = gimple_phi_num_args (condition_phi);
1677 tree res = chrec_not_analyzed_yet;
1679 for (i = 0; i < n; i++)
1681 tree branch_chrec;
1683 if (backedge_phi_arg_p (condition_phi, i))
1685 res = chrec_dont_know;
1686 break;
1689 branch_chrec = analyze_scalar_evolution
1690 (loop, PHI_ARG_DEF (condition_phi, i));
1692 res = chrec_merge (res, branch_chrec);
1693 if (res == chrec_dont_know)
1694 break;
1697 return res;
1700 /* Interpret the operation RHS1 OP RHS2. If we didn't
1701 analyze this node before, follow the definitions until ending
1702 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
1703 return path, this function propagates evolutions (ala constant copy
1704 propagation). OPND1 is not a GIMPLE expression because we could
1705 analyze the effect of an inner loop: see interpret_loop_phi. */
1707 static tree
1708 interpret_rhs_expr (struct loop *loop, gimple *at_stmt,
1709 tree type, tree rhs1, enum tree_code code, tree rhs2)
1711 tree res, chrec1, chrec2, ctype;
1712 gimple *def;
1714 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1716 if (is_gimple_min_invariant (rhs1))
1717 return chrec_convert (type, rhs1, at_stmt);
1719 if (code == SSA_NAME)
1720 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1721 at_stmt);
1723 if (code == ASSERT_EXPR)
1725 rhs1 = ASSERT_EXPR_VAR (rhs1);
1726 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1727 at_stmt);
1731 switch (code)
1733 case ADDR_EXPR:
1734 if (TREE_CODE (TREE_OPERAND (rhs1, 0)) == MEM_REF
1735 || handled_component_p (TREE_OPERAND (rhs1, 0)))
1737 machine_mode mode;
1738 HOST_WIDE_INT bitsize, bitpos;
1739 int unsignedp, reversep;
1740 int volatilep = 0;
1741 tree base, offset;
1742 tree chrec3;
1743 tree unitpos;
1745 base = get_inner_reference (TREE_OPERAND (rhs1, 0),
1746 &bitsize, &bitpos, &offset, &mode,
1747 &unsignedp, &reversep, &volatilep);
1749 if (TREE_CODE (base) == MEM_REF)
1751 rhs2 = TREE_OPERAND (base, 1);
1752 rhs1 = TREE_OPERAND (base, 0);
1754 chrec1 = analyze_scalar_evolution (loop, rhs1);
1755 chrec2 = analyze_scalar_evolution (loop, rhs2);
1756 chrec1 = chrec_convert (type, chrec1, at_stmt);
1757 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
1758 chrec1 = instantiate_parameters (loop, chrec1);
1759 chrec2 = instantiate_parameters (loop, chrec2);
1760 res = chrec_fold_plus (type, chrec1, chrec2);
1762 else
1764 chrec1 = analyze_scalar_evolution_for_address_of (loop, base);
1765 chrec1 = chrec_convert (type, chrec1, at_stmt);
1766 res = chrec1;
1769 if (offset != NULL_TREE)
1771 chrec2 = analyze_scalar_evolution (loop, offset);
1772 chrec2 = chrec_convert (TREE_TYPE (offset), chrec2, at_stmt);
1773 chrec2 = instantiate_parameters (loop, chrec2);
1774 res = chrec_fold_plus (type, res, chrec2);
1777 if (bitpos != 0)
1779 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
1781 unitpos = size_int (bitpos / BITS_PER_UNIT);
1782 chrec3 = analyze_scalar_evolution (loop, unitpos);
1783 chrec3 = chrec_convert (TREE_TYPE (unitpos), chrec3, at_stmt);
1784 chrec3 = instantiate_parameters (loop, chrec3);
1785 res = chrec_fold_plus (type, res, chrec3);
1788 else
1789 res = chrec_dont_know;
1790 break;
1792 case POINTER_PLUS_EXPR:
1793 chrec1 = analyze_scalar_evolution (loop, rhs1);
1794 chrec2 = analyze_scalar_evolution (loop, rhs2);
1795 chrec1 = chrec_convert (type, chrec1, at_stmt);
1796 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
1797 chrec1 = instantiate_parameters (loop, chrec1);
1798 chrec2 = instantiate_parameters (loop, chrec2);
1799 res = chrec_fold_plus (type, chrec1, chrec2);
1800 break;
1802 case PLUS_EXPR:
1803 chrec1 = analyze_scalar_evolution (loop, rhs1);
1804 chrec2 = analyze_scalar_evolution (loop, rhs2);
1805 ctype = type;
1806 /* When the stmt is conditionally executed re-write the CHREC
1807 into a form that has well-defined behavior on overflow. */
1808 if (at_stmt
1809 && INTEGRAL_TYPE_P (type)
1810 && ! TYPE_OVERFLOW_WRAPS (type)
1811 && ! dominated_by_p (CDI_DOMINATORS, loop->latch,
1812 gimple_bb (at_stmt)))
1813 ctype = unsigned_type_for (type);
1814 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1815 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
1816 chrec1 = instantiate_parameters (loop, chrec1);
1817 chrec2 = instantiate_parameters (loop, chrec2);
1818 res = chrec_fold_plus (ctype, chrec1, chrec2);
1819 if (type != ctype)
1820 res = chrec_convert (type, res, at_stmt);
1821 break;
1823 case MINUS_EXPR:
1824 chrec1 = analyze_scalar_evolution (loop, rhs1);
1825 chrec2 = analyze_scalar_evolution (loop, rhs2);
1826 ctype = type;
1827 /* When the stmt is conditionally executed re-write the CHREC
1828 into a form that has well-defined behavior on overflow. */
1829 if (at_stmt
1830 && INTEGRAL_TYPE_P (type)
1831 && ! TYPE_OVERFLOW_WRAPS (type)
1832 && ! dominated_by_p (CDI_DOMINATORS,
1833 loop->latch, gimple_bb (at_stmt)))
1834 ctype = unsigned_type_for (type);
1835 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1836 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
1837 chrec1 = instantiate_parameters (loop, chrec1);
1838 chrec2 = instantiate_parameters (loop, chrec2);
1839 res = chrec_fold_minus (ctype, chrec1, chrec2);
1840 if (type != ctype)
1841 res = chrec_convert (type, res, at_stmt);
1842 break;
1844 case NEGATE_EXPR:
1845 chrec1 = analyze_scalar_evolution (loop, rhs1);
1846 ctype = type;
1847 /* When the stmt is conditionally executed re-write the CHREC
1848 into a form that has well-defined behavior on overflow. */
1849 if (at_stmt
1850 && INTEGRAL_TYPE_P (type)
1851 && ! TYPE_OVERFLOW_WRAPS (type)
1852 && ! dominated_by_p (CDI_DOMINATORS,
1853 loop->latch, gimple_bb (at_stmt)))
1854 ctype = unsigned_type_for (type);
1855 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1856 /* TYPE may be integer, real or complex, so use fold_convert. */
1857 chrec1 = instantiate_parameters (loop, chrec1);
1858 res = chrec_fold_multiply (ctype, chrec1,
1859 fold_convert (ctype, integer_minus_one_node));
1860 if (type != ctype)
1861 res = chrec_convert (type, res, at_stmt);
1862 break;
1864 case BIT_NOT_EXPR:
1865 /* Handle ~X as -1 - X. */
1866 chrec1 = analyze_scalar_evolution (loop, rhs1);
1867 chrec1 = chrec_convert (type, chrec1, at_stmt);
1868 chrec1 = instantiate_parameters (loop, chrec1);
1869 res = chrec_fold_minus (type,
1870 fold_convert (type, integer_minus_one_node),
1871 chrec1);
1872 break;
1874 case MULT_EXPR:
1875 chrec1 = analyze_scalar_evolution (loop, rhs1);
1876 chrec2 = analyze_scalar_evolution (loop, rhs2);
1877 ctype = type;
1878 /* When the stmt is conditionally executed re-write the CHREC
1879 into a form that has well-defined behavior on overflow. */
1880 if (at_stmt
1881 && INTEGRAL_TYPE_P (type)
1882 && ! TYPE_OVERFLOW_WRAPS (type)
1883 && ! dominated_by_p (CDI_DOMINATORS,
1884 loop->latch, gimple_bb (at_stmt)))
1885 ctype = unsigned_type_for (type);
1886 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1887 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
1888 chrec1 = instantiate_parameters (loop, chrec1);
1889 chrec2 = instantiate_parameters (loop, chrec2);
1890 res = chrec_fold_multiply (ctype, chrec1, chrec2);
1891 if (type != ctype)
1892 res = chrec_convert (type, res, at_stmt);
1893 break;
1895 case LSHIFT_EXPR:
1897 /* Handle A<<B as A * (1<<B). */
1898 tree uns = unsigned_type_for (type);
1899 chrec1 = analyze_scalar_evolution (loop, rhs1);
1900 chrec2 = analyze_scalar_evolution (loop, rhs2);
1901 chrec1 = chrec_convert (uns, chrec1, at_stmt);
1902 chrec1 = instantiate_parameters (loop, chrec1);
1903 chrec2 = instantiate_parameters (loop, chrec2);
1905 tree one = build_int_cst (uns, 1);
1906 chrec2 = fold_build2 (LSHIFT_EXPR, uns, one, chrec2);
1907 res = chrec_fold_multiply (uns, chrec1, chrec2);
1908 res = chrec_convert (type, res, at_stmt);
1910 break;
1912 CASE_CONVERT:
1913 /* In case we have a truncation of a widened operation that in
1914 the truncated type has undefined overflow behavior analyze
1915 the operation done in an unsigned type of the same precision
1916 as the final truncation. We cannot derive a scalar evolution
1917 for the widened operation but for the truncated result. */
1918 if (TREE_CODE (type) == INTEGER_TYPE
1919 && TREE_CODE (TREE_TYPE (rhs1)) == INTEGER_TYPE
1920 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (rhs1))
1921 && TYPE_OVERFLOW_UNDEFINED (type)
1922 && TREE_CODE (rhs1) == SSA_NAME
1923 && (def = SSA_NAME_DEF_STMT (rhs1))
1924 && is_gimple_assign (def)
1925 && TREE_CODE_CLASS (gimple_assign_rhs_code (def)) == tcc_binary
1926 && TREE_CODE (gimple_assign_rhs2 (def)) == INTEGER_CST)
1928 tree utype = unsigned_type_for (type);
1929 chrec1 = interpret_rhs_expr (loop, at_stmt, utype,
1930 gimple_assign_rhs1 (def),
1931 gimple_assign_rhs_code (def),
1932 gimple_assign_rhs2 (def));
1934 else
1935 chrec1 = analyze_scalar_evolution (loop, rhs1);
1936 res = chrec_convert (type, chrec1, at_stmt, true, rhs1);
1937 break;
1939 case BIT_AND_EXPR:
1940 /* Given int variable A, handle A&0xffff as (int)(unsigned short)A.
1941 If A is SCEV and its value is in the range of representable set
1942 of type unsigned short, the result expression is a (no-overflow)
1943 SCEV. */
1944 res = chrec_dont_know;
1945 if (tree_fits_uhwi_p (rhs2))
1947 int precision;
1948 unsigned HOST_WIDE_INT val = tree_to_uhwi (rhs2);
1950 val ++;
1951 /* Skip if value of rhs2 wraps in unsigned HOST_WIDE_INT or
1952 it's not the maximum value of a smaller type than rhs1. */
1953 if (val != 0
1954 && (precision = exact_log2 (val)) > 0
1955 && (unsigned) precision < TYPE_PRECISION (TREE_TYPE (rhs1)))
1957 tree utype = build_nonstandard_integer_type (precision, 1);
1959 if (TYPE_PRECISION (utype) < TYPE_PRECISION (TREE_TYPE (rhs1)))
1961 chrec1 = analyze_scalar_evolution (loop, rhs1);
1962 chrec1 = chrec_convert (utype, chrec1, at_stmt);
1963 res = chrec_convert (TREE_TYPE (rhs1), chrec1, at_stmt);
1967 break;
1969 default:
1970 res = chrec_dont_know;
1971 break;
1974 return res;
1977 /* Interpret the expression EXPR. */
1979 static tree
1980 interpret_expr (struct loop *loop, gimple *at_stmt, tree expr)
1982 enum tree_code code;
1983 tree type = TREE_TYPE (expr), op0, op1;
1985 if (automatically_generated_chrec_p (expr))
1986 return expr;
1988 if (TREE_CODE (expr) == POLYNOMIAL_CHREC
1989 || get_gimple_rhs_class (TREE_CODE (expr)) == GIMPLE_TERNARY_RHS)
1990 return chrec_dont_know;
1992 extract_ops_from_tree (expr, &code, &op0, &op1);
1994 return interpret_rhs_expr (loop, at_stmt, type,
1995 op0, code, op1);
1998 /* Interpret the rhs of the assignment STMT. */
2000 static tree
2001 interpret_gimple_assign (struct loop *loop, gimple *stmt)
2003 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2004 enum tree_code code = gimple_assign_rhs_code (stmt);
2006 return interpret_rhs_expr (loop, stmt, type,
2007 gimple_assign_rhs1 (stmt), code,
2008 gimple_assign_rhs2 (stmt));
2013 /* This section contains all the entry points:
2014 - number_of_iterations_in_loop,
2015 - analyze_scalar_evolution,
2016 - instantiate_parameters.
2019 /* Compute and return the evolution function in WRTO_LOOP, the nearest
2020 common ancestor of DEF_LOOP and USE_LOOP. */
2022 static tree
2023 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
2024 struct loop *def_loop,
2025 tree ev)
2027 bool val;
2028 tree res;
2030 if (def_loop == wrto_loop)
2031 return ev;
2033 def_loop = superloop_at_depth (def_loop, loop_depth (wrto_loop) + 1);
2034 res = compute_overall_effect_of_inner_loop (def_loop, ev);
2036 if (no_evolution_in_loop_p (res, wrto_loop->num, &val) && val)
2037 return res;
2039 return analyze_scalar_evolution_1 (wrto_loop, res);
2042 /* Helper recursive function. */
2044 static tree
2045 analyze_scalar_evolution_1 (struct loop *loop, tree var)
2047 tree type = TREE_TYPE (var);
2048 gimple *def;
2049 basic_block bb;
2050 struct loop *def_loop;
2051 tree res;
2053 if (loop == NULL
2054 || TREE_CODE (type) == VECTOR_TYPE
2055 || TREE_CODE (type) == COMPLEX_TYPE)
2056 return chrec_dont_know;
2058 if (TREE_CODE (var) != SSA_NAME)
2059 return interpret_expr (loop, NULL, var);
2061 def = SSA_NAME_DEF_STMT (var);
2062 bb = gimple_bb (def);
2063 def_loop = bb ? bb->loop_father : NULL;
2065 if (bb == NULL
2066 || !flow_bb_inside_loop_p (loop, bb))
2068 /* Keep symbolic form, but look through obvious copies for constants. */
2069 res = follow_copies_to_constant (var);
2070 goto set_and_end;
2073 if (loop != def_loop)
2075 res = analyze_scalar_evolution_1 (def_loop, var);
2076 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
2078 goto set_and_end;
2081 switch (gimple_code (def))
2083 case GIMPLE_ASSIGN:
2084 res = interpret_gimple_assign (loop, def);
2085 break;
2087 case GIMPLE_PHI:
2088 if (loop_phi_node_p (def))
2089 res = interpret_loop_phi (loop, as_a <gphi *> (def));
2090 else
2091 res = interpret_condition_phi (loop, as_a <gphi *> (def));
2092 break;
2094 default:
2095 res = chrec_dont_know;
2096 break;
2099 set_and_end:
2101 /* Keep the symbolic form. */
2102 if (res == chrec_dont_know)
2103 res = var;
2105 if (loop == def_loop)
2106 set_scalar_evolution (block_before_loop (loop), var, res);
2108 return res;
2111 /* Analyzes and returns the scalar evolution of the ssa_name VAR in
2112 LOOP. LOOP is the loop in which the variable is used.
2114 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
2115 pointer to the statement that uses this variable, in order to
2116 determine the evolution function of the variable, use the following
2117 calls:
2119 loop_p loop = loop_containing_stmt (stmt);
2120 tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
2121 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
2124 tree
2125 analyze_scalar_evolution (struct loop *loop, tree var)
2127 tree res;
2129 if (dump_file && (dump_flags & TDF_SCEV))
2131 fprintf (dump_file, "(analyze_scalar_evolution \n");
2132 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2133 fprintf (dump_file, " (scalar = ");
2134 print_generic_expr (dump_file, var);
2135 fprintf (dump_file, ")\n");
2138 res = get_scalar_evolution (block_before_loop (loop), var);
2139 if (res == chrec_not_analyzed_yet)
2140 res = analyze_scalar_evolution_1 (loop, var);
2142 if (dump_file && (dump_flags & TDF_SCEV))
2143 fprintf (dump_file, ")\n");
2145 return res;
2148 /* Analyzes and returns the scalar evolution of VAR address in LOOP. */
2150 static tree
2151 analyze_scalar_evolution_for_address_of (struct loop *loop, tree var)
2153 return analyze_scalar_evolution (loop, build_fold_addr_expr (var));
2156 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
2157 WRTO_LOOP (which should be a superloop of USE_LOOP)
2159 FOLDED_CASTS is set to true if resolve_mixers used
2160 chrec_convert_aggressive (TODO -- not really, we are way too conservative
2161 at the moment in order to keep things simple).
2163 To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
2164 example:
2166 for (i = 0; i < 100; i++) -- loop 1
2168 for (j = 0; j < 100; j++) -- loop 2
2170 k1 = i;
2171 k2 = j;
2173 use2 (k1, k2);
2175 for (t = 0; t < 100; t++) -- loop 3
2176 use3 (k1, k2);
2179 use1 (k1, k2);
2182 Both k1 and k2 are invariants in loop3, thus
2183 analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
2184 analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2
2186 As they are invariant, it does not matter whether we consider their
2187 usage in loop 3 or loop 2, hence
2188 analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
2189 analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
2190 analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
2191 analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2
2193 Similarly for their evolutions with respect to loop 1. The values of K2
2194 in the use in loop 2 vary independently on loop 1, thus we cannot express
2195 the evolution with respect to loop 1:
2196 analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
2197 analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
2198 analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
2199 analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know
2201 The value of k2 in the use in loop 1 is known, though:
2202 analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
2203 analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
2206 static tree
2207 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
2208 tree version, bool *folded_casts)
2210 bool val = false;
2211 tree ev = version, tmp;
2213 /* We cannot just do
2215 tmp = analyze_scalar_evolution (use_loop, version);
2216 ev = resolve_mixers (wrto_loop, tmp, folded_casts);
2218 as resolve_mixers would query the scalar evolution with respect to
2219 wrto_loop. For example, in the situation described in the function
2220 comment, suppose that wrto_loop = loop1, use_loop = loop3 and
2221 version = k2. Then
2223 analyze_scalar_evolution (use_loop, version) = k2
2225 and resolve_mixers (loop1, k2, folded_casts) finds that the value of
2226 k2 in loop 1 is 100, which is a wrong result, since we are interested
2227 in the value in loop 3.
2229 Instead, we need to proceed from use_loop to wrto_loop loop by loop,
2230 each time checking that there is no evolution in the inner loop. */
2232 if (folded_casts)
2233 *folded_casts = false;
2234 while (1)
2236 tmp = analyze_scalar_evolution (use_loop, ev);
2237 ev = resolve_mixers (use_loop, tmp, folded_casts);
2239 if (use_loop == wrto_loop)
2240 return ev;
2242 /* If the value of the use changes in the inner loop, we cannot express
2243 its value in the outer loop (we might try to return interval chrec,
2244 but we do not have a user for it anyway) */
2245 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2246 || !val)
2247 return chrec_dont_know;
2249 use_loop = loop_outer (use_loop);
2254 /* Hashtable helpers for a temporary hash-table used when
2255 instantiating a CHREC or resolving mixers. For this use
2256 instantiated_below is always the same. */
2258 struct instantiate_cache_type
2260 htab_t map;
2261 vec<scev_info_str> entries;
2263 instantiate_cache_type () : map (NULL), entries (vNULL) {}
2264 ~instantiate_cache_type ();
2265 tree get (unsigned slot) { return entries[slot].chrec; }
2266 void set (unsigned slot, tree chrec) { entries[slot].chrec = chrec; }
2269 instantiate_cache_type::~instantiate_cache_type ()
2271 if (map != NULL)
2273 htab_delete (map);
2274 entries.release ();
2278 /* Cache to avoid infinite recursion when instantiating an SSA name.
2279 Live during the outermost instantiate_scev or resolve_mixers call. */
2280 static instantiate_cache_type *global_cache;
2282 /* Computes a hash function for database element ELT. */
2284 static inline hashval_t
2285 hash_idx_scev_info (const void *elt_)
2287 unsigned idx = ((size_t) elt_) - 2;
2288 return scev_info_hasher::hash (&global_cache->entries[idx]);
2291 /* Compares database elements E1 and E2. */
2293 static inline int
2294 eq_idx_scev_info (const void *e1, const void *e2)
2296 unsigned idx1 = ((size_t) e1) - 2;
2297 return scev_info_hasher::equal (&global_cache->entries[idx1],
2298 (const scev_info_str *) e2);
2301 /* Returns from CACHE the slot number of the cached chrec for NAME. */
2303 static unsigned
2304 get_instantiated_value_entry (instantiate_cache_type &cache,
2305 tree name, basic_block instantiate_below)
2307 if (!cache.map)
2309 cache.map = htab_create (10, hash_idx_scev_info, eq_idx_scev_info, NULL);
2310 cache.entries.create (10);
2313 scev_info_str e;
2314 e.name_version = SSA_NAME_VERSION (name);
2315 e.instantiated_below = instantiate_below->index;
2316 void **slot = htab_find_slot_with_hash (cache.map, &e,
2317 scev_info_hasher::hash (&e), INSERT);
2318 if (!*slot)
2320 e.chrec = chrec_not_analyzed_yet;
2321 *slot = (void *)(size_t)(cache.entries.length () + 2);
2322 cache.entries.safe_push (e);
2325 return ((size_t)*slot) - 2;
2329 /* Return the closed_loop_phi node for VAR. If there is none, return
2330 NULL_TREE. */
2332 static tree
2333 loop_closed_phi_def (tree var)
2335 struct loop *loop;
2336 edge exit;
2337 gphi *phi;
2338 gphi_iterator psi;
2340 if (var == NULL_TREE
2341 || TREE_CODE (var) != SSA_NAME)
2342 return NULL_TREE;
2344 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
2345 exit = single_exit (loop);
2346 if (!exit)
2347 return NULL_TREE;
2349 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2351 phi = psi.phi ();
2352 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2353 return PHI_RESULT (phi);
2356 return NULL_TREE;
2359 static tree instantiate_scev_r (basic_block, struct loop *, struct loop *,
2360 tree, bool *, int);
2362 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2363 and EVOLUTION_LOOP, that were left under a symbolic form.
2365 CHREC is an SSA_NAME to be instantiated.
2367 CACHE is the cache of already instantiated values.
2369 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2370 conversions that may wrap in signed/pointer type are folded, as long
2371 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2372 then we don't do such fold.
2374 SIZE_EXPR is used for computing the size of the expression to be
2375 instantiated, and to stop if it exceeds some limit. */
2377 static tree
2378 instantiate_scev_name (basic_block instantiate_below,
2379 struct loop *evolution_loop, struct loop *inner_loop,
2380 tree chrec,
2381 bool *fold_conversions,
2382 int size_expr)
2384 tree res;
2385 struct loop *def_loop;
2386 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
2388 /* A parameter (or loop invariant and we do not want to include
2389 evolutions in outer loops), nothing to do. */
2390 if (!def_bb
2391 || loop_depth (def_bb->loop_father) == 0
2392 || dominated_by_p (CDI_DOMINATORS, instantiate_below, def_bb))
2393 return chrec;
2395 /* We cache the value of instantiated variable to avoid exponential
2396 time complexity due to reevaluations. We also store the convenient
2397 value in the cache in order to prevent infinite recursion -- we do
2398 not want to instantiate the SSA_NAME if it is in a mixer
2399 structure. This is used for avoiding the instantiation of
2400 recursively defined functions, such as:
2402 | a_2 -> {0, +, 1, +, a_2}_1 */
2404 unsigned si = get_instantiated_value_entry (*global_cache,
2405 chrec, instantiate_below);
2406 if (global_cache->get (si) != chrec_not_analyzed_yet)
2407 return global_cache->get (si);
2409 /* On recursion return chrec_dont_know. */
2410 global_cache->set (si, chrec_dont_know);
2412 def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
2414 /* If the analysis yields a parametric chrec, instantiate the
2415 result again. */
2416 res = analyze_scalar_evolution (def_loop, chrec);
2418 /* Don't instantiate default definitions. */
2419 if (TREE_CODE (res) == SSA_NAME
2420 && SSA_NAME_IS_DEFAULT_DEF (res))
2423 /* Don't instantiate loop-closed-ssa phi nodes. */
2424 else if (TREE_CODE (res) == SSA_NAME
2425 && loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2426 > loop_depth (def_loop))
2428 if (res == chrec)
2429 res = loop_closed_phi_def (chrec);
2430 else
2431 res = chrec;
2433 /* When there is no loop_closed_phi_def, it means that the
2434 variable is not used after the loop: try to still compute the
2435 value of the variable when exiting the loop. */
2436 if (res == NULL_TREE)
2438 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (chrec));
2439 res = analyze_scalar_evolution (loop, chrec);
2440 res = compute_overall_effect_of_inner_loop (loop, res);
2441 res = instantiate_scev_r (instantiate_below, evolution_loop,
2442 inner_loop, res,
2443 fold_conversions, size_expr);
2445 else if (!dominated_by_p (CDI_DOMINATORS, instantiate_below,
2446 gimple_bb (SSA_NAME_DEF_STMT (res))))
2447 res = chrec_dont_know;
2450 else if (res != chrec_dont_know)
2452 if (inner_loop
2453 && def_bb->loop_father != inner_loop
2454 && !flow_loop_nested_p (def_bb->loop_father, inner_loop))
2455 /* ??? We could try to compute the overall effect of the loop here. */
2456 res = chrec_dont_know;
2457 else
2458 res = instantiate_scev_r (instantiate_below, evolution_loop,
2459 inner_loop, res,
2460 fold_conversions, size_expr);
2463 /* Store the correct value to the cache. */
2464 global_cache->set (si, res);
2465 return res;
2468 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2469 and EVOLUTION_LOOP, that were left under a symbolic form.
2471 CHREC is a polynomial chain of recurrence to be instantiated.
2473 CACHE is the cache of already instantiated values.
2475 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2476 conversions that may wrap in signed/pointer type are folded, as long
2477 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2478 then we don't do such fold.
2480 SIZE_EXPR is used for computing the size of the expression to be
2481 instantiated, and to stop if it exceeds some limit. */
2483 static tree
2484 instantiate_scev_poly (basic_block instantiate_below,
2485 struct loop *evolution_loop, struct loop *,
2486 tree chrec, bool *fold_conversions, int size_expr)
2488 tree op1;
2489 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2490 get_chrec_loop (chrec),
2491 CHREC_LEFT (chrec), fold_conversions,
2492 size_expr);
2493 if (op0 == chrec_dont_know)
2494 return chrec_dont_know;
2496 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2497 get_chrec_loop (chrec),
2498 CHREC_RIGHT (chrec), fold_conversions,
2499 size_expr);
2500 if (op1 == chrec_dont_know)
2501 return chrec_dont_know;
2503 if (CHREC_LEFT (chrec) != op0
2504 || CHREC_RIGHT (chrec) != op1)
2506 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
2507 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2510 return chrec;
2513 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2514 and EVOLUTION_LOOP, that were left under a symbolic form.
2516 "C0 CODE C1" is a binary expression of type TYPE to be instantiated.
2518 CACHE is the cache of already instantiated values.
2520 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2521 conversions that may wrap in signed/pointer type are folded, as long
2522 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2523 then we don't do such fold.
2525 SIZE_EXPR is used for computing the size of the expression to be
2526 instantiated, and to stop if it exceeds some limit. */
2528 static tree
2529 instantiate_scev_binary (basic_block instantiate_below,
2530 struct loop *evolution_loop, struct loop *inner_loop,
2531 tree chrec, enum tree_code code,
2532 tree type, tree c0, tree c1,
2533 bool *fold_conversions, int size_expr)
2535 tree op1;
2536 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
2537 c0, fold_conversions, size_expr);
2538 if (op0 == chrec_dont_know)
2539 return chrec_dont_know;
2541 op1 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
2542 c1, fold_conversions, size_expr);
2543 if (op1 == chrec_dont_know)
2544 return chrec_dont_know;
2546 if (c0 != op0
2547 || c1 != op1)
2549 op0 = chrec_convert (type, op0, NULL);
2550 op1 = chrec_convert_rhs (type, op1, NULL);
2552 switch (code)
2554 case POINTER_PLUS_EXPR:
2555 case PLUS_EXPR:
2556 return chrec_fold_plus (type, op0, op1);
2558 case MINUS_EXPR:
2559 return chrec_fold_minus (type, op0, op1);
2561 case MULT_EXPR:
2562 return chrec_fold_multiply (type, op0, op1);
2564 default:
2565 gcc_unreachable ();
2569 return chrec ? chrec : fold_build2 (code, type, c0, c1);
2572 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2573 and EVOLUTION_LOOP, that were left under a symbolic form.
2575 "CHREC" is an array reference to be instantiated.
2577 CACHE is the cache of already instantiated values.
2579 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2580 conversions that may wrap in signed/pointer type are folded, as long
2581 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2582 then we don't do such fold.
2584 SIZE_EXPR is used for computing the size of the expression to be
2585 instantiated, and to stop if it exceeds some limit. */
2587 static tree
2588 instantiate_array_ref (basic_block instantiate_below,
2589 struct loop *evolution_loop, struct loop *inner_loop,
2590 tree chrec, bool *fold_conversions, int size_expr)
2592 tree res;
2593 tree index = TREE_OPERAND (chrec, 1);
2594 tree op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2595 inner_loop, index,
2596 fold_conversions, size_expr);
2598 if (op1 == chrec_dont_know)
2599 return chrec_dont_know;
2601 if (chrec && op1 == index)
2602 return chrec;
2604 res = unshare_expr (chrec);
2605 TREE_OPERAND (res, 1) = op1;
2606 return res;
2609 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2610 and EVOLUTION_LOOP, that were left under a symbolic form.
2612 "CHREC" that stands for a convert expression "(TYPE) OP" is to be
2613 instantiated.
2615 CACHE is the cache of already instantiated values.
2617 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2618 conversions that may wrap in signed/pointer type are folded, as long
2619 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2620 then we don't do such fold.
2622 SIZE_EXPR is used for computing the size of the expression to be
2623 instantiated, and to stop if it exceeds some limit. */
2625 static tree
2626 instantiate_scev_convert (basic_block instantiate_below,
2627 struct loop *evolution_loop, struct loop *inner_loop,
2628 tree chrec, tree type, tree op,
2629 bool *fold_conversions, int size_expr)
2631 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2632 inner_loop, op,
2633 fold_conversions, size_expr);
2635 if (op0 == chrec_dont_know)
2636 return chrec_dont_know;
2638 if (fold_conversions)
2640 tree tmp = chrec_convert_aggressive (type, op0, fold_conversions);
2641 if (tmp)
2642 return tmp;
2644 /* If we used chrec_convert_aggressive, we can no longer assume that
2645 signed chrecs do not overflow, as chrec_convert does, so avoid
2646 calling it in that case. */
2647 if (*fold_conversions)
2649 if (chrec && op0 == op)
2650 return chrec;
2652 return fold_convert (type, op0);
2656 return chrec_convert (type, op0, NULL);
2659 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2660 and EVOLUTION_LOOP, that were left under a symbolic form.
2662 CHREC is a BIT_NOT_EXPR or a NEGATE_EXPR expression to be instantiated.
2663 Handle ~X as -1 - X.
2664 Handle -X as -1 * X.
2666 CACHE is the cache of already instantiated values.
2668 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2669 conversions that may wrap in signed/pointer type are folded, as long
2670 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2671 then we don't do such fold.
2673 SIZE_EXPR is used for computing the size of the expression to be
2674 instantiated, and to stop if it exceeds some limit. */
2676 static tree
2677 instantiate_scev_not (basic_block instantiate_below,
2678 struct loop *evolution_loop, struct loop *inner_loop,
2679 tree chrec,
2680 enum tree_code code, tree type, tree op,
2681 bool *fold_conversions, int size_expr)
2683 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2684 inner_loop, op,
2685 fold_conversions, size_expr);
2687 if (op0 == chrec_dont_know)
2688 return chrec_dont_know;
2690 if (op != op0)
2692 op0 = chrec_convert (type, op0, NULL);
2694 switch (code)
2696 case BIT_NOT_EXPR:
2697 return chrec_fold_minus
2698 (type, fold_convert (type, integer_minus_one_node), op0);
2700 case NEGATE_EXPR:
2701 return chrec_fold_multiply
2702 (type, fold_convert (type, integer_minus_one_node), op0);
2704 default:
2705 gcc_unreachable ();
2709 return chrec ? chrec : fold_build1 (code, type, op0);
2712 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2713 and EVOLUTION_LOOP, that were left under a symbolic form.
2715 CHREC is an expression with 3 operands to be instantiated.
2717 CACHE is the cache of already instantiated values.
2719 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2720 conversions that may wrap in signed/pointer type are folded, as long
2721 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2722 then we don't do such fold.
2724 SIZE_EXPR is used for computing the size of the expression to be
2725 instantiated, and to stop if it exceeds some limit. */
2727 static tree
2728 instantiate_scev_3 (basic_block instantiate_below,
2729 struct loop *evolution_loop, struct loop *inner_loop,
2730 tree chrec,
2731 bool *fold_conversions, int size_expr)
2733 tree op1, op2;
2734 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2735 inner_loop, TREE_OPERAND (chrec, 0),
2736 fold_conversions, size_expr);
2737 if (op0 == chrec_dont_know)
2738 return chrec_dont_know;
2740 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2741 inner_loop, TREE_OPERAND (chrec, 1),
2742 fold_conversions, size_expr);
2743 if (op1 == chrec_dont_know)
2744 return chrec_dont_know;
2746 op2 = instantiate_scev_r (instantiate_below, evolution_loop,
2747 inner_loop, TREE_OPERAND (chrec, 2),
2748 fold_conversions, size_expr);
2749 if (op2 == chrec_dont_know)
2750 return chrec_dont_know;
2752 if (op0 == TREE_OPERAND (chrec, 0)
2753 && op1 == TREE_OPERAND (chrec, 1)
2754 && op2 == TREE_OPERAND (chrec, 2))
2755 return chrec;
2757 return fold_build3 (TREE_CODE (chrec),
2758 TREE_TYPE (chrec), op0, op1, op2);
2761 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2762 and EVOLUTION_LOOP, that were left under a symbolic form.
2764 CHREC is an expression with 2 operands to be instantiated.
2766 CACHE is the cache of already instantiated values.
2768 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2769 conversions that may wrap in signed/pointer type are folded, as long
2770 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2771 then we don't do such fold.
2773 SIZE_EXPR is used for computing the size of the expression to be
2774 instantiated, and to stop if it exceeds some limit. */
2776 static tree
2777 instantiate_scev_2 (basic_block instantiate_below,
2778 struct loop *evolution_loop, struct loop *inner_loop,
2779 tree chrec,
2780 bool *fold_conversions, int size_expr)
2782 tree op1;
2783 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2784 inner_loop, TREE_OPERAND (chrec, 0),
2785 fold_conversions, size_expr);
2786 if (op0 == chrec_dont_know)
2787 return chrec_dont_know;
2789 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2790 inner_loop, TREE_OPERAND (chrec, 1),
2791 fold_conversions, size_expr);
2792 if (op1 == chrec_dont_know)
2793 return chrec_dont_know;
2795 if (op0 == TREE_OPERAND (chrec, 0)
2796 && op1 == TREE_OPERAND (chrec, 1))
2797 return chrec;
2799 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2802 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2803 and EVOLUTION_LOOP, that were left under a symbolic form.
2805 CHREC is an expression with 2 operands to be instantiated.
2807 CACHE is the cache of already instantiated values.
2809 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2810 conversions that may wrap in signed/pointer type are folded, as long
2811 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2812 then we don't do such fold.
2814 SIZE_EXPR is used for computing the size of the expression to be
2815 instantiated, and to stop if it exceeds some limit. */
2817 static tree
2818 instantiate_scev_1 (basic_block instantiate_below,
2819 struct loop *evolution_loop, struct loop *inner_loop,
2820 tree chrec,
2821 bool *fold_conversions, int size_expr)
2823 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2824 inner_loop, TREE_OPERAND (chrec, 0),
2825 fold_conversions, size_expr);
2827 if (op0 == chrec_dont_know)
2828 return chrec_dont_know;
2830 if (op0 == TREE_OPERAND (chrec, 0))
2831 return chrec;
2833 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2836 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2837 and EVOLUTION_LOOP, that were left under a symbolic form.
2839 CHREC is the scalar evolution to instantiate.
2841 CACHE is the cache of already instantiated values.
2843 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2844 conversions that may wrap in signed/pointer type are folded, as long
2845 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2846 then we don't do such fold.
2848 SIZE_EXPR is used for computing the size of the expression to be
2849 instantiated, and to stop if it exceeds some limit. */
2851 static tree
2852 instantiate_scev_r (basic_block instantiate_below,
2853 struct loop *evolution_loop, struct loop *inner_loop,
2854 tree chrec,
2855 bool *fold_conversions, int size_expr)
2857 /* Give up if the expression is larger than the MAX that we allow. */
2858 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2859 return chrec_dont_know;
2861 if (chrec == NULL_TREE
2862 || automatically_generated_chrec_p (chrec)
2863 || is_gimple_min_invariant (chrec))
2864 return chrec;
2866 switch (TREE_CODE (chrec))
2868 case SSA_NAME:
2869 return instantiate_scev_name (instantiate_below, evolution_loop,
2870 inner_loop, chrec,
2871 fold_conversions, size_expr);
2873 case POLYNOMIAL_CHREC:
2874 return instantiate_scev_poly (instantiate_below, evolution_loop,
2875 inner_loop, chrec,
2876 fold_conversions, size_expr);
2878 case POINTER_PLUS_EXPR:
2879 case PLUS_EXPR:
2880 case MINUS_EXPR:
2881 case MULT_EXPR:
2882 return instantiate_scev_binary (instantiate_below, evolution_loop,
2883 inner_loop, chrec,
2884 TREE_CODE (chrec), chrec_type (chrec),
2885 TREE_OPERAND (chrec, 0),
2886 TREE_OPERAND (chrec, 1),
2887 fold_conversions, size_expr);
2889 CASE_CONVERT:
2890 return instantiate_scev_convert (instantiate_below, evolution_loop,
2891 inner_loop, chrec,
2892 TREE_TYPE (chrec), TREE_OPERAND (chrec, 0),
2893 fold_conversions, size_expr);
2895 case NEGATE_EXPR:
2896 case BIT_NOT_EXPR:
2897 return instantiate_scev_not (instantiate_below, evolution_loop,
2898 inner_loop, chrec,
2899 TREE_CODE (chrec), TREE_TYPE (chrec),
2900 TREE_OPERAND (chrec, 0),
2901 fold_conversions, size_expr);
2903 case ADDR_EXPR:
2904 case SCEV_NOT_KNOWN:
2905 return chrec_dont_know;
2907 case SCEV_KNOWN:
2908 return chrec_known;
2910 case ARRAY_REF:
2911 return instantiate_array_ref (instantiate_below, evolution_loop,
2912 inner_loop, chrec,
2913 fold_conversions, size_expr);
2915 default:
2916 break;
2919 if (VL_EXP_CLASS_P (chrec))
2920 return chrec_dont_know;
2922 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2924 case 3:
2925 return instantiate_scev_3 (instantiate_below, evolution_loop,
2926 inner_loop, chrec,
2927 fold_conversions, size_expr);
2929 case 2:
2930 return instantiate_scev_2 (instantiate_below, evolution_loop,
2931 inner_loop, chrec,
2932 fold_conversions, size_expr);
2934 case 1:
2935 return instantiate_scev_1 (instantiate_below, evolution_loop,
2936 inner_loop, chrec,
2937 fold_conversions, size_expr);
2939 case 0:
2940 return chrec;
2942 default:
2943 break;
2946 /* Too complicated to handle. */
2947 return chrec_dont_know;
2950 /* Analyze all the parameters of the chrec that were left under a
2951 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2952 recursive instantiation of parameters: a parameter is a variable
2953 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2954 a function parameter. */
2956 tree
2957 instantiate_scev (basic_block instantiate_below, struct loop *evolution_loop,
2958 tree chrec)
2960 tree res;
2962 if (dump_file && (dump_flags & TDF_SCEV))
2964 fprintf (dump_file, "(instantiate_scev \n");
2965 fprintf (dump_file, " (instantiate_below = %d)\n", instantiate_below->index);
2966 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
2967 fprintf (dump_file, " (chrec = ");
2968 print_generic_expr (dump_file, chrec);
2969 fprintf (dump_file, ")\n");
2972 bool destr = false;
2973 if (!global_cache)
2975 global_cache = new instantiate_cache_type;
2976 destr = true;
2979 res = instantiate_scev_r (instantiate_below, evolution_loop,
2980 NULL, chrec, NULL, 0);
2982 if (destr)
2984 delete global_cache;
2985 global_cache = NULL;
2988 if (dump_file && (dump_flags & TDF_SCEV))
2990 fprintf (dump_file, " (res = ");
2991 print_generic_expr (dump_file, res);
2992 fprintf (dump_file, "))\n");
2995 return res;
2998 /* Similar to instantiate_parameters, but does not introduce the
2999 evolutions in outer loops for LOOP invariants in CHREC, and does not
3000 care about causing overflows, as long as they do not affect value
3001 of an expression. */
3003 tree
3004 resolve_mixers (struct loop *loop, tree chrec, bool *folded_casts)
3006 bool destr = false;
3007 bool fold_conversions = false;
3008 if (!global_cache)
3010 global_cache = new instantiate_cache_type;
3011 destr = true;
3014 tree ret = instantiate_scev_r (block_before_loop (loop), loop, NULL,
3015 chrec, &fold_conversions, 0);
3017 if (folded_casts && !*folded_casts)
3018 *folded_casts = fold_conversions;
3020 if (destr)
3022 delete global_cache;
3023 global_cache = NULL;
3026 return ret;
3029 /* Entry point for the analysis of the number of iterations pass.
3030 This function tries to safely approximate the number of iterations
3031 the loop will run. When this property is not decidable at compile
3032 time, the result is chrec_dont_know. Otherwise the result is a
3033 scalar or a symbolic parameter. When the number of iterations may
3034 be equal to zero and the property cannot be determined at compile
3035 time, the result is a COND_EXPR that represents in a symbolic form
3036 the conditions under which the number of iterations is not zero.
3038 Example of analysis: suppose that the loop has an exit condition:
3040 "if (b > 49) goto end_loop;"
3042 and that in a previous analysis we have determined that the
3043 variable 'b' has an evolution function:
3045 "EF = {23, +, 5}_2".
3047 When we evaluate the function at the point 5, i.e. the value of the
3048 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
3049 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
3050 the loop body has been executed 6 times. */
3052 tree
3053 number_of_latch_executions (struct loop *loop)
3055 edge exit;
3056 struct tree_niter_desc niter_desc;
3057 tree may_be_zero;
3058 tree res;
3060 /* Determine whether the number of iterations in loop has already
3061 been computed. */
3062 res = loop->nb_iterations;
3063 if (res)
3064 return res;
3066 may_be_zero = NULL_TREE;
3068 if (dump_file && (dump_flags & TDF_SCEV))
3069 fprintf (dump_file, "(number_of_iterations_in_loop = \n");
3071 res = chrec_dont_know;
3072 exit = single_exit (loop);
3074 if (exit && number_of_iterations_exit (loop, exit, &niter_desc, false))
3076 may_be_zero = niter_desc.may_be_zero;
3077 res = niter_desc.niter;
3080 if (res == chrec_dont_know
3081 || !may_be_zero
3082 || integer_zerop (may_be_zero))
3084 else if (integer_nonzerop (may_be_zero))
3085 res = build_int_cst (TREE_TYPE (res), 0);
3087 else if (COMPARISON_CLASS_P (may_be_zero))
3088 res = fold_build3 (COND_EXPR, TREE_TYPE (res), may_be_zero,
3089 build_int_cst (TREE_TYPE (res), 0), res);
3090 else
3091 res = chrec_dont_know;
3093 if (dump_file && (dump_flags & TDF_SCEV))
3095 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
3096 print_generic_expr (dump_file, res);
3097 fprintf (dump_file, "))\n");
3100 loop->nb_iterations = res;
3101 return res;
3105 /* Counters for the stats. */
3107 struct chrec_stats
3109 unsigned nb_chrecs;
3110 unsigned nb_affine;
3111 unsigned nb_affine_multivar;
3112 unsigned nb_higher_poly;
3113 unsigned nb_chrec_dont_know;
3114 unsigned nb_undetermined;
3117 /* Reset the counters. */
3119 static inline void
3120 reset_chrecs_counters (struct chrec_stats *stats)
3122 stats->nb_chrecs = 0;
3123 stats->nb_affine = 0;
3124 stats->nb_affine_multivar = 0;
3125 stats->nb_higher_poly = 0;
3126 stats->nb_chrec_dont_know = 0;
3127 stats->nb_undetermined = 0;
3130 /* Dump the contents of a CHREC_STATS structure. */
3132 static void
3133 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
3135 fprintf (file, "\n(\n");
3136 fprintf (file, "-----------------------------------------\n");
3137 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
3138 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
3139 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
3140 stats->nb_higher_poly);
3141 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
3142 fprintf (file, "-----------------------------------------\n");
3143 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
3144 fprintf (file, "%d\twith undetermined coefficients\n",
3145 stats->nb_undetermined);
3146 fprintf (file, "-----------------------------------------\n");
3147 fprintf (file, "%d\tchrecs in the scev database\n",
3148 (int) scalar_evolution_info->elements ());
3149 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
3150 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
3151 fprintf (file, "-----------------------------------------\n");
3152 fprintf (file, ")\n\n");
3155 /* Gather statistics about CHREC. */
3157 static void
3158 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
3160 if (dump_file && (dump_flags & TDF_STATS))
3162 fprintf (dump_file, "(classify_chrec ");
3163 print_generic_expr (dump_file, chrec);
3164 fprintf (dump_file, "\n");
3167 stats->nb_chrecs++;
3169 if (chrec == NULL_TREE)
3171 stats->nb_undetermined++;
3172 return;
3175 switch (TREE_CODE (chrec))
3177 case POLYNOMIAL_CHREC:
3178 if (evolution_function_is_affine_p (chrec))
3180 if (dump_file && (dump_flags & TDF_STATS))
3181 fprintf (dump_file, " affine_univariate\n");
3182 stats->nb_affine++;
3184 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
3186 if (dump_file && (dump_flags & TDF_STATS))
3187 fprintf (dump_file, " affine_multivariate\n");
3188 stats->nb_affine_multivar++;
3190 else
3192 if (dump_file && (dump_flags & TDF_STATS))
3193 fprintf (dump_file, " higher_degree_polynomial\n");
3194 stats->nb_higher_poly++;
3197 break;
3199 default:
3200 break;
3203 if (chrec_contains_undetermined (chrec))
3205 if (dump_file && (dump_flags & TDF_STATS))
3206 fprintf (dump_file, " undetermined\n");
3207 stats->nb_undetermined++;
3210 if (dump_file && (dump_flags & TDF_STATS))
3211 fprintf (dump_file, ")\n");
3214 /* Classify the chrecs of the whole database. */
3216 void
3217 gather_stats_on_scev_database (void)
3219 struct chrec_stats stats;
3221 if (!dump_file)
3222 return;
3224 reset_chrecs_counters (&stats);
3226 hash_table<scev_info_hasher>::iterator iter;
3227 scev_info_str *elt;
3228 FOR_EACH_HASH_TABLE_ELEMENT (*scalar_evolution_info, elt, scev_info_str *,
3229 iter)
3230 gather_chrec_stats (elt->chrec, &stats);
3232 dump_chrecs_stats (dump_file, &stats);
3237 /* Initializer. */
3239 static void
3240 initialize_scalar_evolutions_analyzer (void)
3242 /* The elements below are unique. */
3243 if (chrec_dont_know == NULL_TREE)
3245 chrec_not_analyzed_yet = NULL_TREE;
3246 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
3247 chrec_known = make_node (SCEV_KNOWN);
3248 TREE_TYPE (chrec_dont_know) = void_type_node;
3249 TREE_TYPE (chrec_known) = void_type_node;
3253 /* Initialize the analysis of scalar evolutions for LOOPS. */
3255 void
3256 scev_initialize (void)
3258 struct loop *loop;
3260 gcc_assert (! scev_initialized_p ());
3262 scalar_evolution_info = hash_table<scev_info_hasher>::create_ggc (100);
3264 initialize_scalar_evolutions_analyzer ();
3266 FOR_EACH_LOOP (loop, 0)
3268 loop->nb_iterations = NULL_TREE;
3272 /* Return true if SCEV is initialized. */
3274 bool
3275 scev_initialized_p (void)
3277 return scalar_evolution_info != NULL;
3280 /* Cleans up the information cached by the scalar evolutions analysis
3281 in the hash table. */
3283 void
3284 scev_reset_htab (void)
3286 if (!scalar_evolution_info)
3287 return;
3289 scalar_evolution_info->empty ();
3292 /* Cleans up the information cached by the scalar evolutions analysis
3293 in the hash table and in the loop->nb_iterations. */
3295 void
3296 scev_reset (void)
3298 struct loop *loop;
3300 scev_reset_htab ();
3302 FOR_EACH_LOOP (loop, 0)
3304 loop->nb_iterations = NULL_TREE;
3308 /* Return true if the IV calculation in TYPE can overflow based on the knowledge
3309 of the upper bound on the number of iterations of LOOP, the BASE and STEP
3310 of IV.
3312 We do not use information whether TYPE can overflow so it is safe to
3313 use this test even for derived IVs not computed every iteration or
3314 hypotetical IVs to be inserted into code. */
3316 bool
3317 iv_can_overflow_p (struct loop *loop, tree type, tree base, tree step)
3319 widest_int nit;
3320 wide_int base_min, base_max, step_min, step_max, type_min, type_max;
3321 signop sgn = TYPE_SIGN (type);
3323 if (integer_zerop (step))
3324 return false;
3326 if (TREE_CODE (base) == INTEGER_CST)
3327 base_min = base_max = wi::to_wide (base);
3328 else if (TREE_CODE (base) == SSA_NAME
3329 && INTEGRAL_TYPE_P (TREE_TYPE (base))
3330 && get_range_info (base, &base_min, &base_max) == VR_RANGE)
3332 else
3333 return true;
3335 if (TREE_CODE (step) == INTEGER_CST)
3336 step_min = step_max = wi::to_wide (step);
3337 else if (TREE_CODE (step) == SSA_NAME
3338 && INTEGRAL_TYPE_P (TREE_TYPE (step))
3339 && get_range_info (step, &step_min, &step_max) == VR_RANGE)
3341 else
3342 return true;
3344 if (!get_max_loop_iterations (loop, &nit))
3345 return true;
3347 type_min = wi::min_value (type);
3348 type_max = wi::max_value (type);
3350 /* Just sanity check that we don't see values out of the range of the type.
3351 In this case the arithmetics bellow would overflow. */
3352 gcc_checking_assert (wi::ge_p (base_min, type_min, sgn)
3353 && wi::le_p (base_max, type_max, sgn));
3355 /* Account the possible increment in the last ieration. */
3356 bool overflow = false;
3357 nit = wi::add (nit, 1, SIGNED, &overflow);
3358 if (overflow)
3359 return true;
3361 /* NIT is typeless and can exceed the precision of the type. In this case
3362 overflow is always possible, because we know STEP is non-zero. */
3363 if (wi::min_precision (nit, UNSIGNED) > TYPE_PRECISION (type))
3364 return true;
3365 wide_int nit2 = wide_int::from (nit, TYPE_PRECISION (type), UNSIGNED);
3367 /* If step can be positive, check that nit*step <= type_max-base.
3368 This can be done by unsigned arithmetic and we only need to watch overflow
3369 in the multiplication. The right hand side can always be represented in
3370 the type. */
3371 if (sgn == UNSIGNED || !wi::neg_p (step_max))
3373 bool overflow = false;
3374 if (wi::gtu_p (wi::mul (step_max, nit2, UNSIGNED, &overflow),
3375 type_max - base_max)
3376 || overflow)
3377 return true;
3379 /* If step can be negative, check that nit*(-step) <= base_min-type_min. */
3380 if (sgn == SIGNED && wi::neg_p (step_min))
3382 bool overflow = false, overflow2 = false;
3383 if (wi::gtu_p (wi::mul (wi::neg (step_min, &overflow2),
3384 nit2, UNSIGNED, &overflow),
3385 base_min - type_min)
3386 || overflow || overflow2)
3387 return true;
3390 return false;
3393 /* Given EV with form of "(type) {inner_base, inner_step}_loop", this
3394 function tries to derive condition under which it can be simplified
3395 into "{(type)inner_base, (type)inner_step}_loop". The condition is
3396 the maximum number that inner iv can iterate. */
3398 static tree
3399 derive_simple_iv_with_niters (tree ev, tree *niters)
3401 if (!CONVERT_EXPR_P (ev))
3402 return ev;
3404 tree inner_ev = TREE_OPERAND (ev, 0);
3405 if (TREE_CODE (inner_ev) != POLYNOMIAL_CHREC)
3406 return ev;
3408 tree init = CHREC_LEFT (inner_ev);
3409 tree step = CHREC_RIGHT (inner_ev);
3410 if (TREE_CODE (init) != INTEGER_CST
3411 || TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
3412 return ev;
3414 tree type = TREE_TYPE (ev);
3415 tree inner_type = TREE_TYPE (inner_ev);
3416 if (TYPE_PRECISION (inner_type) >= TYPE_PRECISION (type))
3417 return ev;
3419 /* Type conversion in "(type) {inner_base, inner_step}_loop" can be
3420 folded only if inner iv won't overflow. We compute the maximum
3421 number the inner iv can iterate before overflowing and return the
3422 simplified affine iv. */
3423 tree delta;
3424 init = fold_convert (type, init);
3425 step = fold_convert (type, step);
3426 ev = build_polynomial_chrec (CHREC_VARIABLE (inner_ev), init, step);
3427 if (tree_int_cst_sign_bit (step))
3429 tree bound = lower_bound_in_type (inner_type, inner_type);
3430 delta = fold_build2 (MINUS_EXPR, type, init, fold_convert (type, bound));
3431 step = fold_build1 (NEGATE_EXPR, type, step);
3433 else
3435 tree bound = upper_bound_in_type (inner_type, inner_type);
3436 delta = fold_build2 (MINUS_EXPR, type, fold_convert (type, bound), init);
3438 *niters = fold_build2 (FLOOR_DIV_EXPR, type, delta, step);
3439 return ev;
3442 /* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with
3443 respect to WRTO_LOOP and returns its base and step in IV if possible
3444 (see analyze_scalar_evolution_in_loop for more details on USE_LOOP
3445 and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be
3446 invariant in LOOP. Otherwise we require it to be an integer constant.
3448 IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g.
3449 because it is computed in signed arithmetics). Consequently, adding an
3450 induction variable
3452 for (i = IV->base; ; i += IV->step)
3454 is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is
3455 false for the type of the induction variable, or you can prove that i does
3456 not wrap by some other argument. Otherwise, this might introduce undefined
3457 behavior, and
3459 i = iv->base;
3460 for (; ; i = (type) ((unsigned type) i + (unsigned type) iv->step))
3462 must be used instead.
3464 When IV_NITERS is not NULL, this function also checks case in which OP
3465 is a conversion of an inner simple iv of below form:
3467 (outer_type){inner_base, inner_step}_loop.
3469 If type of inner iv has smaller precision than outer_type, it can't be
3470 folded into {(outer_type)inner_base, (outer_type)inner_step}_loop because
3471 the inner iv could overflow/wrap. In this case, we derive a condition
3472 under which the inner iv won't overflow/wrap and do the simplification.
3473 The derived condition normally is the maximum number the inner iv can
3474 iterate, and will be stored in IV_NITERS. This is useful in loop niter
3475 analysis, to derive break conditions when a loop must terminate, when is
3476 infinite. */
3478 bool
3479 simple_iv_with_niters (struct loop *wrto_loop, struct loop *use_loop,
3480 tree op, affine_iv *iv, tree *iv_niters,
3481 bool allow_nonconstant_step)
3483 enum tree_code code;
3484 tree type, ev, base, e;
3485 wide_int extreme;
3486 bool folded_casts, overflow;
3488 iv->base = NULL_TREE;
3489 iv->step = NULL_TREE;
3490 iv->no_overflow = false;
3492 type = TREE_TYPE (op);
3493 if (!POINTER_TYPE_P (type)
3494 && !INTEGRAL_TYPE_P (type))
3495 return false;
3497 ev = analyze_scalar_evolution_in_loop (wrto_loop, use_loop, op,
3498 &folded_casts);
3499 if (chrec_contains_undetermined (ev)
3500 || chrec_contains_symbols_defined_in_loop (ev, wrto_loop->num))
3501 return false;
3503 if (tree_does_not_contain_chrecs (ev))
3505 iv->base = ev;
3506 iv->step = build_int_cst (TREE_TYPE (ev), 0);
3507 iv->no_overflow = true;
3508 return true;
3511 /* If we can derive valid scalar evolution with assumptions. */
3512 if (iv_niters && TREE_CODE (ev) != POLYNOMIAL_CHREC)
3513 ev = derive_simple_iv_with_niters (ev, iv_niters);
3515 if (TREE_CODE (ev) != POLYNOMIAL_CHREC)
3516 return false;
3518 if (CHREC_VARIABLE (ev) != (unsigned) wrto_loop->num)
3519 return false;
3521 iv->step = CHREC_RIGHT (ev);
3522 if ((!allow_nonconstant_step && TREE_CODE (iv->step) != INTEGER_CST)
3523 || tree_contains_chrecs (iv->step, NULL))
3524 return false;
3526 iv->base = CHREC_LEFT (ev);
3527 if (tree_contains_chrecs (iv->base, NULL))
3528 return false;
3530 iv->no_overflow = !folded_casts && nowrap_type_p (type);
3532 if (!iv->no_overflow
3533 && !iv_can_overflow_p (wrto_loop, type, iv->base, iv->step))
3534 iv->no_overflow = true;
3536 /* Try to simplify iv base:
3538 (signed T) ((unsigned T)base + step) ;; TREE_TYPE (base) == signed T
3539 == (signed T)(unsigned T)base + step
3540 == base + step
3542 If we can prove operation (base + step) doesn't overflow or underflow.
3543 Specifically, we try to prove below conditions are satisfied:
3545 base <= UPPER_BOUND (type) - step ;;step > 0
3546 base >= LOWER_BOUND (type) - step ;;step < 0
3548 This is done by proving the reverse conditions are false using loop's
3549 initial conditions.
3551 The is necessary to make loop niter, or iv overflow analysis easier
3552 for below example:
3554 int foo (int *a, signed char s, signed char l)
3556 signed char i;
3557 for (i = s; i < l; i++)
3558 a[i] = 0;
3559 return 0;
3562 Note variable I is firstly converted to type unsigned char, incremented,
3563 then converted back to type signed char. */
3565 if (wrto_loop->num != use_loop->num)
3566 return true;
3568 if (!CONVERT_EXPR_P (iv->base) || TREE_CODE (iv->step) != INTEGER_CST)
3569 return true;
3571 type = TREE_TYPE (iv->base);
3572 e = TREE_OPERAND (iv->base, 0);
3573 if (TREE_CODE (e) != PLUS_EXPR
3574 || TREE_CODE (TREE_OPERAND (e, 1)) != INTEGER_CST
3575 || !tree_int_cst_equal (iv->step,
3576 fold_convert (type, TREE_OPERAND (e, 1))))
3577 return true;
3578 e = TREE_OPERAND (e, 0);
3579 if (!CONVERT_EXPR_P (e))
3580 return true;
3581 base = TREE_OPERAND (e, 0);
3582 if (!useless_type_conversion_p (type, TREE_TYPE (base)))
3583 return true;
3585 if (tree_int_cst_sign_bit (iv->step))
3587 code = LT_EXPR;
3588 extreme = wi::min_value (type);
3590 else
3592 code = GT_EXPR;
3593 extreme = wi::max_value (type);
3595 overflow = false;
3596 extreme = wi::sub (extreme, wi::to_wide (iv->step),
3597 TYPE_SIGN (type), &overflow);
3598 if (overflow)
3599 return true;
3600 e = fold_build2 (code, boolean_type_node, base,
3601 wide_int_to_tree (type, extreme));
3602 e = simplify_using_initial_conditions (use_loop, e);
3603 if (!integer_zerop (e))
3604 return true;
3606 if (POINTER_TYPE_P (TREE_TYPE (base)))
3607 code = POINTER_PLUS_EXPR;
3608 else
3609 code = PLUS_EXPR;
3611 iv->base = fold_build2 (code, TREE_TYPE (base), base, iv->step);
3612 return true;
3615 /* Like simple_iv_with_niters, but return TRUE when OP behaves as a simple
3616 affine iv unconditionally. */
3618 bool
3619 simple_iv (struct loop *wrto_loop, struct loop *use_loop, tree op,
3620 affine_iv *iv, bool allow_nonconstant_step)
3622 return simple_iv_with_niters (wrto_loop, use_loop, op, iv,
3623 NULL, allow_nonconstant_step);
3626 /* Finalize the scalar evolution analysis. */
3628 void
3629 scev_finalize (void)
3631 if (!scalar_evolution_info)
3632 return;
3633 scalar_evolution_info->empty ();
3634 scalar_evolution_info = NULL;
3635 free_numbers_of_iterations_estimates (cfun);
3638 /* Returns true if the expression EXPR is considered to be too expensive
3639 for scev_const_prop. */
3641 bool
3642 expression_expensive_p (tree expr)
3644 enum tree_code code;
3646 if (is_gimple_val (expr))
3647 return false;
3649 code = TREE_CODE (expr);
3650 if (code == TRUNC_DIV_EXPR
3651 || code == CEIL_DIV_EXPR
3652 || code == FLOOR_DIV_EXPR
3653 || code == ROUND_DIV_EXPR
3654 || code == TRUNC_MOD_EXPR
3655 || code == CEIL_MOD_EXPR
3656 || code == FLOOR_MOD_EXPR
3657 || code == ROUND_MOD_EXPR
3658 || code == EXACT_DIV_EXPR)
3660 /* Division by power of two is usually cheap, so we allow it.
3661 Forbid anything else. */
3662 if (!integer_pow2p (TREE_OPERAND (expr, 1)))
3663 return true;
3666 switch (TREE_CODE_CLASS (code))
3668 case tcc_binary:
3669 case tcc_comparison:
3670 if (expression_expensive_p (TREE_OPERAND (expr, 1)))
3671 return true;
3673 /* Fallthru. */
3674 case tcc_unary:
3675 return expression_expensive_p (TREE_OPERAND (expr, 0));
3677 default:
3678 return true;
3682 /* Do final value replacement for LOOP. */
3684 void
3685 final_value_replacement_loop (struct loop *loop)
3687 /* If we do not know exact number of iterations of the loop, we cannot
3688 replace the final value. */
3689 edge exit = single_exit (loop);
3690 if (!exit)
3691 return;
3693 tree niter = number_of_latch_executions (loop);
3694 if (niter == chrec_dont_know)
3695 return;
3697 /* Ensure that it is possible to insert new statements somewhere. */
3698 if (!single_pred_p (exit->dest))
3699 split_loop_exit_edge (exit);
3701 /* Set stmt insertion pointer. All stmts are inserted before this point. */
3702 gimple_stmt_iterator gsi = gsi_after_labels (exit->dest);
3704 struct loop *ex_loop
3705 = superloop_at_depth (loop,
3706 loop_depth (exit->dest->loop_father) + 1);
3708 gphi_iterator psi;
3709 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
3711 gphi *phi = psi.phi ();
3712 tree rslt = PHI_RESULT (phi);
3713 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
3714 if (virtual_operand_p (def))
3716 gsi_next (&psi);
3717 continue;
3720 if (!POINTER_TYPE_P (TREE_TYPE (def))
3721 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
3723 gsi_next (&psi);
3724 continue;
3727 bool folded_casts;
3728 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def,
3729 &folded_casts);
3730 def = compute_overall_effect_of_inner_loop (ex_loop, def);
3731 if (!tree_does_not_contain_chrecs (def)
3732 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
3733 /* Moving the computation from the loop may prolong life range
3734 of some ssa names, which may cause problems if they appear
3735 on abnormal edges. */
3736 || contains_abnormal_ssa_name_p (def)
3737 /* Do not emit expensive expressions. The rationale is that
3738 when someone writes a code like
3740 while (n > 45) n -= 45;
3742 he probably knows that n is not large, and does not want it
3743 to be turned into n %= 45. */
3744 || expression_expensive_p (def))
3746 if (dump_file && (dump_flags & TDF_DETAILS))
3748 fprintf (dump_file, "not replacing:\n ");
3749 print_gimple_stmt (dump_file, phi, 0);
3750 fprintf (dump_file, "\n");
3752 gsi_next (&psi);
3753 continue;
3756 /* Eliminate the PHI node and replace it by a computation outside
3757 the loop. */
3758 if (dump_file)
3760 fprintf (dump_file, "\nfinal value replacement:\n ");
3761 print_gimple_stmt (dump_file, phi, 0);
3762 fprintf (dump_file, " with\n ");
3764 def = unshare_expr (def);
3765 remove_phi_node (&psi, false);
3767 /* If def's type has undefined overflow and there were folded
3768 casts, rewrite all stmts added for def into arithmetics
3769 with defined overflow behavior. */
3770 if (folded_casts && ANY_INTEGRAL_TYPE_P (TREE_TYPE (def))
3771 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (def)))
3773 gimple_seq stmts;
3774 gimple_stmt_iterator gsi2;
3775 def = force_gimple_operand (def, &stmts, true, NULL_TREE);
3776 gsi2 = gsi_start (stmts);
3777 while (!gsi_end_p (gsi2))
3779 gimple *stmt = gsi_stmt (gsi2);
3780 gimple_stmt_iterator gsi3 = gsi2;
3781 gsi_next (&gsi2);
3782 gsi_remove (&gsi3, false);
3783 if (is_gimple_assign (stmt)
3784 && arith_code_with_undefined_signed_overflow
3785 (gimple_assign_rhs_code (stmt)))
3786 gsi_insert_seq_before (&gsi,
3787 rewrite_to_defined_overflow (stmt),
3788 GSI_SAME_STMT);
3789 else
3790 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
3793 else
3794 def = force_gimple_operand_gsi (&gsi, def, false, NULL_TREE,
3795 true, GSI_SAME_STMT);
3797 gassign *ass = gimple_build_assign (rslt, def);
3798 gsi_insert_before (&gsi, ass, GSI_SAME_STMT);
3799 if (dump_file)
3801 print_gimple_stmt (dump_file, ass, 0);
3802 fprintf (dump_file, "\n");
3807 /* Replace ssa names for that scev can prove they are constant by the
3808 appropriate constants. Also perform final value replacement in loops,
3809 in case the replacement expressions are cheap.
3811 We only consider SSA names defined by phi nodes; rest is left to the
3812 ordinary constant propagation pass. */
3814 unsigned int
3815 scev_const_prop (void)
3817 basic_block bb;
3818 tree name, type, ev;
3819 gphi *phi;
3820 struct loop *loop;
3821 bitmap ssa_names_to_remove = NULL;
3822 unsigned i;
3823 gphi_iterator psi;
3825 if (number_of_loops (cfun) <= 1)
3826 return 0;
3828 FOR_EACH_BB_FN (bb, cfun)
3830 loop = bb->loop_father;
3832 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
3834 phi = psi.phi ();
3835 name = PHI_RESULT (phi);
3837 if (virtual_operand_p (name))
3838 continue;
3840 type = TREE_TYPE (name);
3842 if (!POINTER_TYPE_P (type)
3843 && !INTEGRAL_TYPE_P (type))
3844 continue;
3846 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name),
3847 NULL);
3848 if (!is_gimple_min_invariant (ev)
3849 || !may_propagate_copy (name, ev))
3850 continue;
3852 /* Replace the uses of the name. */
3853 if (name != ev)
3855 if (dump_file && (dump_flags & TDF_DETAILS))
3857 fprintf (dump_file, "Replacing uses of: ");
3858 print_generic_expr (dump_file, name);
3859 fprintf (dump_file, " with: ");
3860 print_generic_expr (dump_file, ev);
3861 fprintf (dump_file, "\n");
3863 replace_uses_by (name, ev);
3866 if (!ssa_names_to_remove)
3867 ssa_names_to_remove = BITMAP_ALLOC (NULL);
3868 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
3872 /* Remove the ssa names that were replaced by constants. We do not
3873 remove them directly in the previous cycle, since this
3874 invalidates scev cache. */
3875 if (ssa_names_to_remove)
3877 bitmap_iterator bi;
3879 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
3881 gimple_stmt_iterator psi;
3882 name = ssa_name (i);
3883 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (name));
3885 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
3886 psi = gsi_for_stmt (phi);
3887 remove_phi_node (&psi, true);
3890 BITMAP_FREE (ssa_names_to_remove);
3891 scev_reset ();
3894 /* Now the regular final value replacement. */
3895 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
3896 final_value_replacement_loop (loop);
3898 return 0;
3901 #include "gt-tree-scalar-evolution.h"