1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Einfo
; use Einfo
;
27 with Errout
; use Errout
;
28 with Sem_Util
; use Sem_Util
;
29 with Ttypef
; use Ttypef
;
30 with Targparm
; use Targparm
;
32 package body Eval_Fat
is
34 Radix
: constant Int
:= 2;
35 -- This code is currently only correct for the radix 2 case. We use the
36 -- symbolic value Radix where possible to help in the unlikely case of
37 -- anyone ever having to adjust this code for another value, and for
38 -- documentation purposes.
40 -- Another assumption is that the range of the floating-point type is
41 -- symmetric around zero.
43 type Radix_Power_Table
is array (Int
range 1 .. 4) of Int
;
45 Radix_Powers
: constant Radix_Power_Table
:=
46 (Radix
** 1, Radix
** 2, Radix
** 3, Radix
** 4);
48 -----------------------
49 -- Local Subprograms --
50 -----------------------
57 Mode
: Rounding_Mode
:= Round
);
58 -- Decomposes a non-zero floating-point number into fraction and exponent
59 -- parts. The fraction is in the interval 1.0 / Radix .. T'Pred (1.0) and
60 -- uses Rbase = Radix. The result is rounded to a nearest machine number.
62 procedure Decompose_Int
67 Mode
: Rounding_Mode
);
68 -- This is similar to Decompose, except that the Fraction value returned
69 -- is an integer representing the value Fraction * Scale, where Scale is
70 -- the value (Radix ** Machine_Mantissa (RT)). The value is obtained by
71 -- using biased rounding (halfway cases round away from zero), round to
72 -- even, a floor operation or a ceiling operation depending on the setting
73 -- of Mode (see corresponding descriptions in Urealp).
75 function Machine_Emin
(RT
: R
) return Int
;
76 -- Return value of the Machine_Emin attribute
82 function Adjacent
(RT
: R
; X
, Towards
: T
) return T
is
86 elsif Towards
> X
then
97 function Ceiling
(RT
: R
; X
: T
) return T
is
98 XT
: constant T
:= Truncation
(RT
, X
);
100 if UR_Is_Negative
(X
) then
113 function Compose
(RT
: R
; Fraction
: T
; Exponent
: UI
) return T
is
116 pragma Warnings
(Off
, Arg_Exp
);
118 Decompose
(RT
, Fraction
, Arg_Frac
, Arg_Exp
);
119 return Scaling
(RT
, Arg_Frac
, Exponent
);
126 function Copy_Sign
(RT
: R
; Value
, Sign
: T
) return T
is
127 pragma Warnings
(Off
, RT
);
133 if UR_Is_Negative
(Sign
) then
149 Mode
: Rounding_Mode
:= Round
)
154 Decompose_Int
(RT
, abs X
, Int_F
, Exponent
, Mode
);
156 Fraction
:= UR_From_Components
158 Den
=> UI_From_Int
(Machine_Mantissa
(RT
)),
162 if UR_Is_Negative
(X
) then
163 Fraction
:= -Fraction
;
173 -- This procedure should be modified with care, as there are many non-
174 -- obvious details that may cause problems that are hard to detect. For
175 -- zero arguments, Fraction and Exponent are set to zero. Note that sign
176 -- of zero cannot be preserved.
178 procedure Decompose_Int
183 Mode
: Rounding_Mode
)
185 Base
: Int
:= Rbase
(X
);
186 N
: UI
:= abs Numerator
(X
);
187 D
: UI
:= Denominator
(X
);
192 -- True iff Fraction is even
194 Most_Significant_Digit
: constant UI
:=
195 Radix
** (Machine_Mantissa
(RT
) - 1);
197 Uintp_Mark
: Uintp
.Save_Mark
;
198 -- The code is divided into blocks that systematically release
199 -- intermediate values (this routine generates lots of junk!)
208 Calculate_D_And_Exponent_1
: begin
212 -- In cases where Base > 1, the actual denominator is Base**D. For
213 -- cases where Base is a power of Radix, use the value 1 for the
214 -- Denominator and adjust the exponent.
216 -- Note: Exponent has different sign from D, because D is a divisor
218 for Power
in 1 .. Radix_Powers
'Last loop
219 if Base
= Radix_Powers
(Power
) then
220 Exponent
:= -D
* Power
;
227 Release_And_Save
(Uintp_Mark
, D
, Exponent
);
228 end Calculate_D_And_Exponent_1
;
231 Calculate_Exponent
: begin
234 -- For bases that are a multiple of the Radix, divide the base by
235 -- Radix and adjust the Exponent. This will help because D will be
236 -- much smaller and faster to process.
238 -- This occurs for decimal bases on machines with binary floating-
239 -- point for example. When calculating 1E40, with Radix = 2, N
240 -- will be 93 bits instead of 133.
248 -- = -------------------------- * Radix
250 -- (Base/Radix) * Radix
253 -- = --------------- * Radix
257 -- This code is commented out, because it causes numerous
258 -- failures in the regression suite. To be studied ???
260 while False and then Base
> 0 and then Base
mod Radix
= 0 loop
261 Base
:= Base
/ Radix
;
262 Exponent
:= Exponent
+ D
;
265 Release_And_Save
(Uintp_Mark
, Exponent
);
266 end Calculate_Exponent
;
268 -- For remaining bases we must actually compute the exponentiation
270 -- Because the exponentiation can be negative, and D must be integer,
271 -- the numerator is corrected instead.
273 Calculate_N_And_D
: begin
277 N
:= N
* Base
** (-D
);
283 Release_And_Save
(Uintp_Mark
, N
, D
);
284 end Calculate_N_And_D
;
289 -- Now scale N and D so that N / D is a value in the interval [1.0 /
290 -- Radix, 1.0) and adjust Exponent accordingly, so the value N / D *
291 -- Radix ** Exponent remains unchanged.
293 -- Step 1 - Adjust N so N / D >= 1 / Radix, or N = 0
295 -- N and D are positive, so N / D >= 1 / Radix implies N * Radix >= D.
296 -- As this scaling is not possible for N is Uint_0, zero is handled
297 -- explicitly at the start of this subprogram.
299 Calculate_N_And_Exponent
: begin
302 N_Times_Radix
:= N
* Radix
;
303 while not (N_Times_Radix
>= D
) loop
305 Exponent
:= Exponent
- 1;
306 N_Times_Radix
:= N
* Radix
;
309 Release_And_Save
(Uintp_Mark
, N
, Exponent
);
310 end Calculate_N_And_Exponent
;
312 -- Step 2 - Adjust D so N / D < 1
314 -- Scale up D so N / D < 1, so N < D
316 Calculate_D_And_Exponent_2
: begin
319 while not (N
< D
) loop
321 -- As N / D >= 1, N / (D * Radix) will be at least 1 / Radix, so
322 -- the result of Step 1 stays valid
325 Exponent
:= Exponent
+ 1;
328 Release_And_Save
(Uintp_Mark
, D
, Exponent
);
329 end Calculate_D_And_Exponent_2
;
331 -- Here the value N / D is in the range [1.0 / Radix .. 1.0)
333 -- Now find the fraction by doing a very simple-minded division until
334 -- enough digits have been computed.
336 -- This division works for all radices, but is only efficient for a
337 -- binary radix. It is just like a manual division algorithm, but
338 -- instead of moving the denominator one digit right, we move the
339 -- numerator one digit left so the numerator and denominator remain
345 Calculate_Fraction_And_N
: begin
351 Fraction
:= Fraction
+ 1;
355 -- Stop when the result is in [1.0 / Radix, 1.0)
357 exit when Fraction
>= Most_Significant_Digit
;
360 Fraction
:= Fraction
* Radix
;
364 Release_And_Save
(Uintp_Mark
, Fraction
, N
);
365 end Calculate_Fraction_And_N
;
367 Calculate_Fraction_And_Exponent
: begin
370 -- Determine correct rounding based on the remainder which is in
371 -- N and the divisor D. The rounding is performed on the absolute
372 -- value of X, so Ceiling and Floor need to check for the sign of
378 -- This rounding mode should not be used for static
379 -- expressions, but only for compile-time evaluation of
380 -- non-static expressions.
382 if (Even
and then N
* 2 > D
)
384 (not Even
and then N
* 2 >= D
)
386 Fraction
:= Fraction
+ 1;
391 -- Do not round to even as is done with IEEE arithmetic, but
392 -- instead round away from zero when the result is exactly
393 -- between two machine numbers. See RM 4.9(38).
396 Fraction
:= Fraction
+ 1;
400 if N
> Uint_0
and then not UR_Is_Negative
(X
) then
401 Fraction
:= Fraction
+ 1;
405 if N
> Uint_0
and then UR_Is_Negative
(X
) then
406 Fraction
:= Fraction
+ 1;
410 -- The result must be normalized to [1.0/Radix, 1.0), so adjust if
411 -- the result is 1.0 because of rounding.
413 if Fraction
= Most_Significant_Digit
* Radix
then
414 Fraction
:= Most_Significant_Digit
;
415 Exponent
:= Exponent
+ 1;
418 -- Put back sign after applying the rounding
420 if UR_Is_Negative
(X
) then
421 Fraction
:= -Fraction
;
424 Release_And_Save
(Uintp_Mark
, Fraction
, Exponent
);
425 end Calculate_Fraction_And_Exponent
;
432 function Exponent
(RT
: R
; X
: T
) return UI
is
435 pragma Warnings
(Off
, X_Frac
);
437 Decompose_Int
(RT
, X
, X_Frac
, X_Exp
, Round_Even
);
445 function Floor
(RT
: R
; X
: T
) return T
is
446 XT
: constant T
:= Truncation
(RT
, X
);
449 if UR_Is_Positive
(X
) then
464 function Fraction
(RT
: R
; X
: T
) return T
is
467 pragma Warnings
(Off
, X_Exp
);
469 Decompose
(RT
, X
, X_Frac
, X_Exp
);
477 function Leading_Part
(RT
: R
; X
: T
; Radix_Digits
: UI
) return T
is
478 RD
: constant UI
:= UI_Min
(Radix_Digits
, Machine_Mantissa
(RT
));
482 L
:= Exponent
(RT
, X
) - RD
;
483 Y
:= UR_From_Uint
(UR_Trunc
(Scaling
(RT
, X
, -L
)));
484 return Scaling
(RT
, Y
, L
);
494 Mode
: Rounding_Mode
;
495 Enode
: Node_Id
) return T
499 Emin
: constant UI
:= UI_From_Int
(Machine_Emin
(RT
));
502 Decompose
(RT
, X
, X_Frac
, X_Exp
, Mode
);
504 -- Case of denormalized number or (gradual) underflow
506 -- A denormalized number is one with the minimum exponent Emin, but that
507 -- breaks the assumption that the first digit of the mantissa is a one.
508 -- This allows the first non-zero digit to be in any of the remaining
509 -- Mant - 1 spots. The gap between subsequent denormalized numbers is
510 -- the same as for the smallest normalized numbers. However, the number
511 -- of significant digits left decreases as a result of the mantissa now
512 -- having leading seros.
516 Emin_Den
: constant UI
:=
518 (Machine_Emin
(RT
) - Machine_Mantissa
(RT
) + 1);
520 if X_Exp
< Emin_Den
or not Denorm_On_Target
then
521 if UR_Is_Negative
(X
) then
523 ("floating-point value underflows to -0.0?", Enode
);
528 ("floating-point value underflows to 0.0?", Enode
);
532 elsif Denorm_On_Target
then
534 -- Emin - Mant <= X_Exp < Emin, so result is denormal. Handle
535 -- gradual underflow by first computing the number of
536 -- significant bits still available for the mantissa and
537 -- then truncating the fraction to this number of bits.
539 -- If this value is different from the original fraction,
540 -- precision is lost due to gradual underflow.
542 -- We probably should round here and prevent double rounding as
543 -- a result of first rounding to a model number and then to a
544 -- machine number. However, this is an extremely rare case that
545 -- is not worth the extra complexity. In any case, a warning is
546 -- issued in cases where gradual underflow occurs.
549 Denorm_Sig_Bits
: constant UI
:= X_Exp
- Emin_Den
+ 1;
551 X_Frac_Denorm
: constant T
:= UR_From_Components
552 (UR_Trunc
(Scaling
(RT
, abs X_Frac
, Denorm_Sig_Bits
)),
558 if X_Frac_Denorm
/= X_Frac
then
560 ("gradual underflow causes loss of precision?",
562 X_Frac
:= X_Frac_Denorm
;
569 return Scaling
(RT
, X_Frac
, X_Exp
);
576 function Machine_Emin
(RT
: R
) return Int
is
577 Digs
: constant UI
:= Digits_Value
(RT
);
581 if Vax_Float
(RT
) then
582 if Digs
= VAXFF_Digits
then
583 Emin
:= VAXFF_Machine_Emin
;
585 elsif Digs
= VAXDF_Digits
then
586 Emin
:= VAXDF_Machine_Emin
;
589 pragma Assert
(Digs
= VAXGF_Digits
);
590 Emin
:= VAXGF_Machine_Emin
;
593 elsif Is_AAMP_Float
(RT
) then
594 if Digs
= AAMPS_Digits
then
595 Emin
:= AAMPS_Machine_Emin
;
598 pragma Assert
(Digs
= AAMPL_Digits
);
599 Emin
:= AAMPL_Machine_Emin
;
603 if Digs
= IEEES_Digits
then
604 Emin
:= IEEES_Machine_Emin
;
606 elsif Digs
= IEEEL_Digits
then
607 Emin
:= IEEEL_Machine_Emin
;
610 pragma Assert
(Digs
= IEEEX_Digits
);
611 Emin
:= IEEEX_Machine_Emin
;
618 ----------------------
619 -- Machine_Mantissa --
620 ----------------------
622 function Machine_Mantissa
(RT
: R
) return Nat
is
623 Digs
: constant UI
:= Digits_Value
(RT
);
627 if Vax_Float
(RT
) then
628 if Digs
= VAXFF_Digits
then
629 Mant
:= VAXFF_Machine_Mantissa
;
631 elsif Digs
= VAXDF_Digits
then
632 Mant
:= VAXDF_Machine_Mantissa
;
635 pragma Assert
(Digs
= VAXGF_Digits
);
636 Mant
:= VAXGF_Machine_Mantissa
;
639 elsif Is_AAMP_Float
(RT
) then
640 if Digs
= AAMPS_Digits
then
641 Mant
:= AAMPS_Machine_Mantissa
;
644 pragma Assert
(Digs
= AAMPL_Digits
);
645 Mant
:= AAMPL_Machine_Mantissa
;
649 if Digs
= IEEES_Digits
then
650 Mant
:= IEEES_Machine_Mantissa
;
652 elsif Digs
= IEEEL_Digits
then
653 Mant
:= IEEEL_Machine_Mantissa
;
656 pragma Assert
(Digs
= IEEEX_Digits
);
657 Mant
:= IEEEX_Machine_Mantissa
;
662 end Machine_Mantissa
;
668 function Machine_Radix
(RT
: R
) return Nat
is
669 pragma Warnings
(Off
, RT
);
678 function Model
(RT
: R
; X
: T
) return T
is
682 Decompose
(RT
, X
, X_Frac
, X_Exp
);
683 return Compose
(RT
, X_Frac
, X_Exp
);
690 function Pred
(RT
: R
; X
: T
) return T
is
692 return -Succ
(RT
, -X
);
699 function Remainder
(RT
: R
; X
, Y
: T
) return T
is
713 pragma Warnings
(Off
, Arg_Frac
);
716 if UR_Is_Positive
(X
) then
728 P_Exp
:= Exponent
(RT
, P
);
731 -- ??? what about zero cases?
732 Decompose
(RT
, Arg
, Arg_Frac
, Arg_Exp
);
733 Decompose
(RT
, P
, P_Frac
, P_Exp
);
735 P
:= Compose
(RT
, P_Frac
, Arg_Exp
);
736 K
:= Arg_Exp
- P_Exp
;
740 for Cnt
in reverse 0 .. UI_To_Int
(K
) loop
741 if IEEE_Rem
>= P
then
743 IEEE_Rem
:= IEEE_Rem
- P
;
752 -- That completes the calculation of modulus remainder. The final step
753 -- is get the IEEE remainder. Here we compare Rem with (abs Y) / 2.
757 B
:= abs Y
* Ureal_Half
;
760 A
:= IEEE_Rem
* Ureal_2
;
764 if A
> B
or else (A
= B
and then not P_Even
) then
765 IEEE_Rem
:= IEEE_Rem
- abs Y
;
768 return Sign_X
* IEEE_Rem
;
775 function Rounding
(RT
: R
; X
: T
) return T
is
780 Result
:= Truncation
(RT
, abs X
);
781 Tail
:= abs X
- Result
;
783 if Tail
>= Ureal_Half
then
784 Result
:= Result
+ Ureal_1
;
787 if UR_Is_Negative
(X
) then
798 function Scaling
(RT
: R
; X
: T
; Adjustment
: UI
) return T
is
799 pragma Warnings
(Off
, RT
);
802 if Rbase
(X
) = Radix
then
803 return UR_From_Components
804 (Num
=> Numerator
(X
),
805 Den
=> Denominator
(X
) - Adjustment
,
807 Negative
=> UR_Is_Negative
(X
));
809 elsif Adjustment
>= 0 then
810 return X
* Radix
** Adjustment
;
812 return X
/ Radix
** (-Adjustment
);
820 function Succ
(RT
: R
; X
: T
) return T
is
821 Emin
: constant UI
:= UI_From_Int
(Machine_Emin
(RT
));
822 Mantissa
: constant UI
:= UI_From_Int
(Machine_Mantissa
(RT
));
823 Exp
: UI
:= UI_Max
(Emin
, Exponent
(RT
, X
));
828 if UR_Is_Zero
(X
) then
832 -- Set exponent such that the radix point will be directly following the
833 -- mantissa after scaling.
835 if Denorm_On_Target
or Exp
/= Emin
then
836 Exp
:= Exp
- Mantissa
;
841 Frac
:= Scaling
(RT
, X
, -Exp
);
842 New_Frac
:= Ceiling
(RT
, Frac
);
844 if New_Frac
= Frac
then
845 if New_Frac
= Scaling
(RT
, -Ureal_1
, Mantissa
- 1) then
846 New_Frac
:= New_Frac
+ Scaling
(RT
, Ureal_1
, Uint_Minus_1
);
848 New_Frac
:= New_Frac
+ Ureal_1
;
852 return Scaling
(RT
, New_Frac
, Exp
);
859 function Truncation
(RT
: R
; X
: T
) return T
is
860 pragma Warnings
(Off
, RT
);
862 return UR_From_Uint
(UR_Trunc
(X
));
865 -----------------------
866 -- Unbiased_Rounding --
867 -----------------------
869 function Unbiased_Rounding
(RT
: R
; X
: T
) return T
is
870 Abs_X
: constant T
:= abs X
;
875 Result
:= Truncation
(RT
, Abs_X
);
876 Tail
:= Abs_X
- Result
;
878 if Tail
> Ureal_Half
then
879 Result
:= Result
+ Ureal_1
;
881 elsif Tail
= Ureal_Half
then
883 Truncation
(RT
, (Result
/ Ureal_2
) + Ureal_Half
);
886 if UR_Is_Negative
(X
) then
888 elsif UR_Is_Positive
(X
) then
891 -- For zero case, make sure sign of zero is preserved
896 end Unbiased_Rounding
;