Fix for ICE with -g on testcase with incomplete types.
[official-gcc.git] / gcc / tree-vect-loop-manip.c
blobd9d01ecf581bef7ecdcb42fccb1243837c17c34c
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "backend.h"
27 #include "cfghooks.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "hard-reg-set.h"
31 #include "ssa.h"
32 #include "alias.h"
33 #include "fold-const.h"
34 #include "cfganal.h"
35 #include "gimple-pretty-print.h"
36 #include "internal-fn.h"
37 #include "gimplify.h"
38 #include "gimple-iterator.h"
39 #include "gimplify-me.h"
40 #include "tree-cfg.h"
41 #include "tree-ssa-loop-manip.h"
42 #include "tree-into-ssa.h"
43 #include "tree-ssa.h"
44 #include "tree-pass.h"
45 #include "cfgloop.h"
46 #include "diagnostic-core.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-vectorizer.h"
49 #include "langhooks.h"
51 /*************************************************************************
52 Simple Loop Peeling Utilities
54 Utilities to support loop peeling for vectorization purposes.
55 *************************************************************************/
58 /* Renames the use *OP_P. */
60 static void
61 rename_use_op (use_operand_p op_p)
63 tree new_name;
65 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
66 return;
68 new_name = get_current_def (USE_FROM_PTR (op_p));
70 /* Something defined outside of the loop. */
71 if (!new_name)
72 return;
74 /* An ordinary ssa name defined in the loop. */
76 SET_USE (op_p, new_name);
80 /* Renames the variables in basic block BB. Allow renaming of PHI argumnets
81 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
82 true. */
84 static void
85 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
87 gimple *stmt;
88 use_operand_p use_p;
89 ssa_op_iter iter;
90 edge e;
91 edge_iterator ei;
92 struct loop *loop = bb->loop_father;
93 struct loop *outer_loop = NULL;
95 if (rename_from_outer_loop)
97 gcc_assert (loop);
98 outer_loop = loop_outer (loop);
101 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
102 gsi_next (&gsi))
104 stmt = gsi_stmt (gsi);
105 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
106 rename_use_op (use_p);
109 FOR_EACH_EDGE (e, ei, bb->preds)
111 if (!flow_bb_inside_loop_p (loop, e->src)
112 && (!rename_from_outer_loop || e->src != outer_loop->header))
113 continue;
114 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
115 gsi_next (&gsi))
116 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
121 struct adjust_info
123 tree from, to;
124 basic_block bb;
127 /* A stack of values to be adjusted in debug stmts. We have to
128 process them LIFO, so that the closest substitution applies. If we
129 processed them FIFO, without the stack, we might substitute uses
130 with a PHI DEF that would soon become non-dominant, and when we got
131 to the suitable one, it wouldn't have anything to substitute any
132 more. */
133 static vec<adjust_info, va_heap> adjust_vec;
135 /* Adjust any debug stmts that referenced AI->from values to use the
136 loop-closed AI->to, if the references are dominated by AI->bb and
137 not by the definition of AI->from. */
139 static void
140 adjust_debug_stmts_now (adjust_info *ai)
142 basic_block bbphi = ai->bb;
143 tree orig_def = ai->from;
144 tree new_def = ai->to;
145 imm_use_iterator imm_iter;
146 gimple *stmt;
147 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
149 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
151 /* Adjust any debug stmts that held onto non-loop-closed
152 references. */
153 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
155 use_operand_p use_p;
156 basic_block bbuse;
158 if (!is_gimple_debug (stmt))
159 continue;
161 gcc_assert (gimple_debug_bind_p (stmt));
163 bbuse = gimple_bb (stmt);
165 if ((bbuse == bbphi
166 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
167 && !(bbuse == bbdef
168 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
170 if (new_def)
171 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
172 SET_USE (use_p, new_def);
173 else
175 gimple_debug_bind_reset_value (stmt);
176 update_stmt (stmt);
182 /* Adjust debug stmts as scheduled before. */
184 static void
185 adjust_vec_debug_stmts (void)
187 if (!MAY_HAVE_DEBUG_STMTS)
188 return;
190 gcc_assert (adjust_vec.exists ());
192 while (!adjust_vec.is_empty ())
194 adjust_debug_stmts_now (&adjust_vec.last ());
195 adjust_vec.pop ();
198 adjust_vec.release ();
201 /* Adjust any debug stmts that referenced FROM values to use the
202 loop-closed TO, if the references are dominated by BB and not by
203 the definition of FROM. If adjust_vec is non-NULL, adjustments
204 will be postponed until adjust_vec_debug_stmts is called. */
206 static void
207 adjust_debug_stmts (tree from, tree to, basic_block bb)
209 adjust_info ai;
211 if (MAY_HAVE_DEBUG_STMTS
212 && TREE_CODE (from) == SSA_NAME
213 && ! SSA_NAME_IS_DEFAULT_DEF (from)
214 && ! virtual_operand_p (from))
216 ai.from = from;
217 ai.to = to;
218 ai.bb = bb;
220 if (adjust_vec.exists ())
221 adjust_vec.safe_push (ai);
222 else
223 adjust_debug_stmts_now (&ai);
227 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
228 to adjust any debug stmts that referenced the old phi arg,
229 presumably non-loop-closed references left over from other
230 transformations. */
232 static void
233 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
235 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
237 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
239 if (MAY_HAVE_DEBUG_STMTS)
240 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
241 gimple_bb (update_phi));
245 /* Update PHI nodes for a guard of the LOOP.
247 Input:
248 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
249 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
250 originates from the guard-bb, skips LOOP and reaches the (unique) exit
251 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
252 We denote this bb NEW_MERGE_BB because before the guard code was added
253 it had a single predecessor (the LOOP header), and now it became a merge
254 point of two paths - the path that ends with the LOOP exit-edge, and
255 the path that ends with GUARD_EDGE.
256 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
257 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
259 ===> The CFG before the guard-code was added:
260 LOOP_header_bb:
261 loop_body
262 if (exit_loop) goto update_bb
263 else goto LOOP_header_bb
264 update_bb:
266 ==> The CFG after the guard-code was added:
267 guard_bb:
268 if (LOOP_guard_condition) goto new_merge_bb
269 else goto LOOP_header_bb
270 LOOP_header_bb:
271 loop_body
272 if (exit_loop_condition) goto new_merge_bb
273 else goto LOOP_header_bb
274 new_merge_bb:
275 goto update_bb
276 update_bb:
278 ==> The CFG after this function:
279 guard_bb:
280 if (LOOP_guard_condition) goto new_merge_bb
281 else goto LOOP_header_bb
282 LOOP_header_bb:
283 loop_body
284 if (exit_loop_condition) goto new_exit_bb
285 else goto LOOP_header_bb
286 new_exit_bb:
287 new_merge_bb:
288 goto update_bb
289 update_bb:
291 This function:
292 1. creates and updates the relevant phi nodes to account for the new
293 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
294 1.1. Create phi nodes at NEW_MERGE_BB.
295 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
296 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
297 2. preserves loop-closed-ssa-form by creating the required phi nodes
298 at the exit of LOOP (i.e, in NEW_EXIT_BB).
300 There are two flavors to this function:
302 slpeel_update_phi_nodes_for_guard1:
303 Here the guard controls whether we enter or skip LOOP, where LOOP is a
304 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
305 for variables that have phis in the loop header.
307 slpeel_update_phi_nodes_for_guard2:
308 Here the guard controls whether we enter or skip LOOP, where LOOP is an
309 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
310 for variables that have phis in the loop exit.
312 I.E., the overall structure is:
314 loop1_preheader_bb:
315 guard1 (goto loop1/merge1_bb)
316 loop1
317 loop1_exit_bb:
318 guard2 (goto merge1_bb/merge2_bb)
319 merge1_bb
320 loop2
321 loop2_exit_bb
322 merge2_bb
323 next_bb
325 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
326 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
327 that have phis in loop1->header).
329 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
330 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
331 that have phis in next_bb). It also adds some of these phis to
332 loop1_exit_bb.
334 slpeel_update_phi_nodes_for_guard1 is always called before
335 slpeel_update_phi_nodes_for_guard2. They are both needed in order
336 to create correct data-flow and loop-closed-ssa-form.
338 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
339 that change between iterations of a loop (and therefore have a phi-node
340 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
341 phis for variables that are used out of the loop (and therefore have
342 loop-closed exit phis). Some variables may be both updated between
343 iterations and used after the loop. This is why in loop1_exit_bb we
344 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
345 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
347 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
348 an original loop. i.e., we have:
350 orig_loop
351 guard_bb (goto LOOP/new_merge)
352 new_loop <-- LOOP
353 new_exit
354 new_merge
355 next_bb
357 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
358 have:
360 new_loop
361 guard_bb (goto LOOP/new_merge)
362 orig_loop <-- LOOP
363 new_exit
364 new_merge
365 next_bb
367 The SSA names defined in the original loop have a current
368 reaching definition that records the corresponding new ssa-name
369 used in the new duplicated loop copy.
372 /* Function slpeel_update_phi_nodes_for_guard1
374 Input:
375 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
376 - DEFS - a bitmap of ssa names to mark new names for which we recorded
377 information.
379 In the context of the overall structure, we have:
381 loop1_preheader_bb:
382 guard1 (goto loop1/merge1_bb)
383 LOOP-> loop1
384 loop1_exit_bb:
385 guard2 (goto merge1_bb/merge2_bb)
386 merge1_bb
387 loop2
388 loop2_exit_bb
389 merge2_bb
390 next_bb
392 For each name updated between loop iterations (i.e - for each name that has
393 an entry (loop-header) phi in LOOP) we create a new phi in:
394 1. merge1_bb (to account for the edge from guard1)
395 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
398 static void
399 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
400 bool is_new_loop, basic_block *new_exit_bb)
402 gphi *orig_phi, *new_phi;
403 gphi *update_phi, *update_phi2;
404 tree guard_arg, loop_arg;
405 basic_block new_merge_bb = guard_edge->dest;
406 edge e = EDGE_SUCC (new_merge_bb, 0);
407 basic_block update_bb = e->dest;
408 basic_block orig_bb = loop->header;
409 edge new_exit_e;
410 tree current_new_name;
411 gphi_iterator gsi_orig, gsi_update;
413 /* Create new bb between loop and new_merge_bb. */
414 *new_exit_bb = split_edge (single_exit (loop));
416 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
418 for (gsi_orig = gsi_start_phis (orig_bb),
419 gsi_update = gsi_start_phis (update_bb);
420 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
421 gsi_next (&gsi_orig), gsi_next (&gsi_update))
423 source_location loop_locus, guard_locus;
424 tree new_res;
425 orig_phi = gsi_orig.phi ();
426 update_phi = gsi_update.phi ();
428 /** 1. Handle new-merge-point phis **/
430 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
431 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
432 new_phi = create_phi_node (new_res, new_merge_bb);
434 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
435 of LOOP. Set the two phi args in NEW_PHI for these edges: */
436 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
437 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
438 EDGE_SUCC (loop->latch,
439 0));
440 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
441 guard_locus
442 = gimple_phi_arg_location_from_edge (orig_phi,
443 loop_preheader_edge (loop));
445 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
446 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
448 /* 1.3. Update phi in successor block. */
449 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
450 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
451 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
452 update_phi2 = new_phi;
455 /** 2. Handle loop-closed-ssa-form phis **/
457 if (virtual_operand_p (PHI_RESULT (orig_phi)))
458 continue;
460 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
461 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
462 new_phi = create_phi_node (new_res, *new_exit_bb);
464 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
465 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
467 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
468 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
469 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
470 PHI_RESULT (new_phi));
472 /* 2.4. Record the newly created name with set_current_def.
473 We want to find a name such that
474 name = get_current_def (orig_loop_name)
475 and to set its current definition as follows:
476 set_current_def (name, new_phi_name)
478 If LOOP is a new loop then loop_arg is already the name we're
479 looking for. If LOOP is the original loop, then loop_arg is
480 the orig_loop_name and the relevant name is recorded in its
481 current reaching definition. */
482 if (is_new_loop)
483 current_new_name = loop_arg;
484 else
486 current_new_name = get_current_def (loop_arg);
487 /* current_def is not available only if the variable does not
488 change inside the loop, in which case we also don't care
489 about recording a current_def for it because we won't be
490 trying to create loop-exit-phis for it. */
491 if (!current_new_name)
492 continue;
494 tree new_name = get_current_def (current_new_name);
495 /* Because of peeled_chrec optimization it is possible that we have
496 set this earlier. Verify the PHI has the same value. */
497 if (new_name)
499 gimple *phi = SSA_NAME_DEF_STMT (new_name);
500 gcc_assert (gimple_code (phi) == GIMPLE_PHI
501 && gimple_bb (phi) == *new_exit_bb
502 && (PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop))
503 == loop_arg));
504 continue;
507 set_current_def (current_new_name, PHI_RESULT (new_phi));
512 /* Function slpeel_update_phi_nodes_for_guard2
514 Input:
515 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
517 In the context of the overall structure, we have:
519 loop1_preheader_bb:
520 guard1 (goto loop1/merge1_bb)
521 loop1
522 loop1_exit_bb:
523 guard2 (goto merge1_bb/merge2_bb)
524 merge1_bb
525 LOOP-> loop2
526 loop2_exit_bb
527 merge2_bb
528 next_bb
530 For each name used out side the loop (i.e - for each name that has an exit
531 phi in next_bb) we create a new phi in:
532 1. merge2_bb (to account for the edge from guard_bb)
533 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
534 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
535 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
538 static void
539 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
540 bool is_new_loop, basic_block *new_exit_bb)
542 gphi *orig_phi, *new_phi;
543 gphi *update_phi, *update_phi2;
544 tree guard_arg, loop_arg;
545 basic_block new_merge_bb = guard_edge->dest;
546 edge e = EDGE_SUCC (new_merge_bb, 0);
547 basic_block update_bb = e->dest;
548 edge new_exit_e;
549 tree orig_def, orig_def_new_name;
550 tree new_name, new_name2;
551 tree arg;
552 gphi_iterator gsi;
554 /* Create new bb between loop and new_merge_bb. */
555 *new_exit_bb = split_edge (single_exit (loop));
557 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
559 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
561 tree new_res;
562 update_phi = gsi.phi ();
563 orig_phi = update_phi;
564 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
565 /* This loop-closed-phi actually doesn't represent a use
566 out of the loop - the phi arg is a constant. */
567 if (TREE_CODE (orig_def) != SSA_NAME)
568 continue;
569 orig_def_new_name = get_current_def (orig_def);
570 arg = NULL_TREE;
572 /** 1. Handle new-merge-point phis **/
574 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
575 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
576 new_phi = create_phi_node (new_res, new_merge_bb);
578 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
579 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
580 new_name = orig_def;
581 new_name2 = NULL_TREE;
582 if (orig_def_new_name)
584 new_name = orig_def_new_name;
585 /* Some variables have both loop-entry-phis and loop-exit-phis.
586 Such variables were given yet newer names by phis placed in
587 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
588 new_name2 = get_current_def (get_current_def (orig_name)). */
589 new_name2 = get_current_def (new_name);
592 if (is_new_loop)
594 guard_arg = orig_def;
595 loop_arg = new_name;
597 else
599 guard_arg = new_name;
600 loop_arg = orig_def;
602 if (new_name2)
603 guard_arg = new_name2;
605 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
606 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
608 /* 1.3. Update phi in successor block. */
609 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
610 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
611 update_phi2 = new_phi;
614 /** 2. Handle loop-closed-ssa-form phis **/
616 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
617 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
618 new_phi = create_phi_node (new_res, *new_exit_bb);
620 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
621 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
623 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
624 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
625 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
626 PHI_RESULT (new_phi));
629 /** 3. Handle loop-closed-ssa-form phis for first loop **/
631 /* 3.1. Find the relevant names that need an exit-phi in
632 GUARD_BB, i.e. names for which
633 slpeel_update_phi_nodes_for_guard1 had not already created a
634 phi node. This is the case for names that are used outside
635 the loop (and therefore need an exit phi) but are not updated
636 across loop iterations (and therefore don't have a
637 loop-header-phi).
639 slpeel_update_phi_nodes_for_guard1 is responsible for
640 creating loop-exit phis in GUARD_BB for names that have a
641 loop-header-phi. When such a phi is created we also record
642 the new name in its current definition. If this new name
643 exists, then guard_arg was set to this new name (see 1.2
644 above). Therefore, if guard_arg is not this new name, this
645 is an indication that an exit-phi in GUARD_BB was not yet
646 created, so we take care of it here. */
647 if (guard_arg == new_name2)
648 continue;
649 arg = guard_arg;
651 /* 3.2. Generate new phi node in GUARD_BB: */
652 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
653 new_phi = create_phi_node (new_res, guard_edge->src);
655 /* 3.3. GUARD_BB has one incoming edge: */
656 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
657 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
658 UNKNOWN_LOCATION);
660 /* 3.4. Update phi in successor of GUARD_BB: */
661 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
662 == guard_arg);
663 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
664 PHI_RESULT (new_phi));
669 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
670 that starts at zero, increases by one and its limit is NITERS.
672 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
674 void
675 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
677 tree indx_before_incr, indx_after_incr;
678 gcond *cond_stmt;
679 gcond *orig_cond;
680 edge exit_edge = single_exit (loop);
681 gimple_stmt_iterator loop_cond_gsi;
682 gimple_stmt_iterator incr_gsi;
683 bool insert_after;
684 tree init = build_int_cst (TREE_TYPE (niters), 0);
685 tree step = build_int_cst (TREE_TYPE (niters), 1);
686 source_location loop_loc;
687 enum tree_code code;
689 orig_cond = get_loop_exit_condition (loop);
690 gcc_assert (orig_cond);
691 loop_cond_gsi = gsi_for_stmt (orig_cond);
693 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
694 create_iv (init, step, NULL_TREE, loop,
695 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
697 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
698 true, NULL_TREE, true,
699 GSI_SAME_STMT);
700 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
701 true, GSI_SAME_STMT);
703 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
704 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
705 NULL_TREE);
707 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
709 /* Remove old loop exit test: */
710 gsi_remove (&loop_cond_gsi, true);
711 free_stmt_vec_info (orig_cond);
713 loop_loc = find_loop_location (loop);
714 if (dump_enabled_p ())
716 if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOCATION)
717 dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOCATION_FILE (loop_loc),
718 LOCATION_LINE (loop_loc));
719 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
720 dump_printf (MSG_NOTE, "\n");
722 loop->nb_iterations = niters;
725 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
726 For all PHI arguments in FROM->dest and TO->dest from those
727 edges ensure that TO->dest PHI arguments have current_def
728 to that in from. */
730 static void
731 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
733 gimple_stmt_iterator gsi_from, gsi_to;
735 for (gsi_from = gsi_start_phis (from->dest),
736 gsi_to = gsi_start_phis (to->dest);
737 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
738 gsi_next (&gsi_from), gsi_next (&gsi_to))
740 gimple *from_phi = gsi_stmt (gsi_from);
741 gimple *to_phi = gsi_stmt (gsi_to);
742 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
743 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
744 if (TREE_CODE (from_arg) == SSA_NAME
745 && TREE_CODE (to_arg) == SSA_NAME
746 && get_current_def (to_arg) == NULL_TREE)
747 set_current_def (to_arg, get_current_def (from_arg));
752 /* Given LOOP this function generates a new copy of it and puts it
753 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
754 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
755 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
756 entry or exit of LOOP. */
758 struct loop *
759 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
760 struct loop *scalar_loop, edge e)
762 struct loop *new_loop;
763 basic_block *new_bbs, *bbs;
764 bool at_exit;
765 bool was_imm_dom;
766 basic_block exit_dest;
767 edge exit, new_exit;
768 bool duplicate_outer_loop = false;
770 exit = single_exit (loop);
771 at_exit = (e == exit);
772 if (!at_exit && e != loop_preheader_edge (loop))
773 return NULL;
775 if (scalar_loop == NULL)
776 scalar_loop = loop;
778 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
779 get_loop_body_with_size (scalar_loop, bbs, scalar_loop->num_nodes);
780 /* Allow duplication of outer loops. */
781 if (scalar_loop->inner)
782 duplicate_outer_loop = true;
783 /* Check whether duplication is possible. */
784 if (!can_copy_bbs_p (bbs, scalar_loop->num_nodes))
786 free (bbs);
787 return NULL;
790 /* Generate new loop structure. */
791 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
792 duplicate_subloops (scalar_loop, new_loop);
794 exit_dest = exit->dest;
795 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
796 exit_dest) == loop->header ?
797 true : false);
799 /* Also copy the pre-header, this avoids jumping through hoops to
800 duplicate the loop entry PHI arguments. Create an empty
801 pre-header unconditionally for this. */
802 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
803 edge entry_e = single_pred_edge (preheader);
804 bbs[scalar_loop->num_nodes] = preheader;
805 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
807 exit = single_exit (scalar_loop);
808 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
809 &exit, 1, &new_exit, NULL,
810 e->src, true);
811 exit = single_exit (loop);
812 basic_block new_preheader = new_bbs[scalar_loop->num_nodes];
814 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
816 if (scalar_loop != loop)
818 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
819 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
820 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
821 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
822 header) to have current_def set, so copy them over. */
823 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
824 exit);
825 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
827 EDGE_SUCC (loop->latch, 0));
830 if (at_exit) /* Add the loop copy at exit. */
832 if (scalar_loop != loop)
834 gphi_iterator gsi;
835 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
837 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
838 gsi_next (&gsi))
840 gphi *phi = gsi.phi ();
841 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
842 location_t orig_locus
843 = gimple_phi_arg_location_from_edge (phi, e);
845 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
848 redirect_edge_and_branch_force (e, new_preheader);
849 flush_pending_stmts (e);
850 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
851 if (was_imm_dom || duplicate_outer_loop)
852 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
854 /* And remove the non-necessary forwarder again. Keep the other
855 one so we have a proper pre-header for the loop at the exit edge. */
856 redirect_edge_pred (single_succ_edge (preheader),
857 single_pred (preheader));
858 delete_basic_block (preheader);
859 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
860 loop_preheader_edge (scalar_loop)->src);
862 else /* Add the copy at entry. */
864 if (scalar_loop != loop)
866 /* Remove the non-necessary forwarder of scalar_loop again. */
867 redirect_edge_pred (single_succ_edge (preheader),
868 single_pred (preheader));
869 delete_basic_block (preheader);
870 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
871 loop_preheader_edge (scalar_loop)->src);
872 preheader = split_edge (loop_preheader_edge (loop));
873 entry_e = single_pred_edge (preheader);
876 redirect_edge_and_branch_force (entry_e, new_preheader);
877 flush_pending_stmts (entry_e);
878 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
880 redirect_edge_and_branch_force (new_exit, preheader);
881 flush_pending_stmts (new_exit);
882 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
884 /* And remove the non-necessary forwarder again. Keep the other
885 one so we have a proper pre-header for the loop at the exit edge. */
886 redirect_edge_pred (single_succ_edge (new_preheader),
887 single_pred (new_preheader));
888 delete_basic_block (new_preheader);
889 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
890 loop_preheader_edge (new_loop)->src);
893 for (unsigned i = 0; i < scalar_loop->num_nodes + 1; i++)
894 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
896 if (scalar_loop != loop)
898 /* Update new_loop->header PHIs, so that on the preheader
899 edge they are the ones from loop rather than scalar_loop. */
900 gphi_iterator gsi_orig, gsi_new;
901 edge orig_e = loop_preheader_edge (loop);
902 edge new_e = loop_preheader_edge (new_loop);
904 for (gsi_orig = gsi_start_phis (loop->header),
905 gsi_new = gsi_start_phis (new_loop->header);
906 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
907 gsi_next (&gsi_orig), gsi_next (&gsi_new))
909 gphi *orig_phi = gsi_orig.phi ();
910 gphi *new_phi = gsi_new.phi ();
911 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
912 location_t orig_locus
913 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
915 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
919 free (new_bbs);
920 free (bbs);
922 checking_verify_dominators (CDI_DOMINATORS);
924 return new_loop;
928 /* Given the condition statement COND, put it as the last statement
929 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
930 Assumes that this is the single exit of the guarded loop.
931 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
933 static edge
934 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
935 gimple_seq cond_expr_stmt_list,
936 basic_block exit_bb, basic_block dom_bb,
937 int probability)
939 gimple_stmt_iterator gsi;
940 edge new_e, enter_e;
941 gcond *cond_stmt;
942 gimple_seq gimplify_stmt_list = NULL;
944 enter_e = EDGE_SUCC (guard_bb, 0);
945 enter_e->flags &= ~EDGE_FALLTHRU;
946 enter_e->flags |= EDGE_FALSE_VALUE;
947 gsi = gsi_last_bb (guard_bb);
949 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
950 NULL_TREE);
951 if (gimplify_stmt_list)
952 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
953 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
954 if (cond_expr_stmt_list)
955 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
957 gsi = gsi_last_bb (guard_bb);
958 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
960 /* Add new edge to connect guard block to the merge/loop-exit block. */
961 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
963 new_e->count = guard_bb->count;
964 new_e->probability = probability;
965 new_e->count = apply_probability (enter_e->count, probability);
966 enter_e->count -= new_e->count;
967 enter_e->probability = inverse_probability (probability);
968 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
969 return new_e;
973 /* This function verifies that the following restrictions apply to LOOP:
974 (1) it consists of exactly 2 basic blocks - header, and an empty latch
975 for innermost loop and 5 basic blocks for outer-loop.
976 (2) it is single entry, single exit
977 (3) its exit condition is the last stmt in the header
978 (4) E is the entry/exit edge of LOOP.
981 bool
982 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
984 edge exit_e = single_exit (loop);
985 edge entry_e = loop_preheader_edge (loop);
986 gcond *orig_cond = get_loop_exit_condition (loop);
987 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
988 unsigned int num_bb = loop->inner? 5 : 2;
990 /* All loops have an outer scope; the only case loop->outer is NULL is for
991 the function itself. */
992 if (!loop_outer (loop)
993 || loop->num_nodes != num_bb
994 || !empty_block_p (loop->latch)
995 || !single_exit (loop)
996 /* Verify that new loop exit condition can be trivially modified. */
997 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
998 || (e != exit_e && e != entry_e))
999 return false;
1001 return true;
1004 static void
1005 slpeel_checking_verify_cfg_after_peeling (struct loop *first_loop,
1006 struct loop *second_loop)
1008 if (!flag_checking)
1009 return;
1011 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1012 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1013 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1015 /* A guard that controls whether the second_loop is to be executed or skipped
1016 is placed in first_loop->exit. first_loop->exit therefore has two
1017 successors - one is the preheader of second_loop, and the other is a bb
1018 after second_loop.
1020 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1022 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1023 of second_loop. */
1025 /* The preheader of new_loop is expected to have two predecessors:
1026 first_loop->exit and the block that precedes first_loop. */
1028 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1029 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1030 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1031 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1032 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1034 /* Verify that the other successor of first_loop->exit is after the
1035 second_loop. */
1036 /* TODO */
1039 /* If the run time cost model check determines that vectorization is
1040 not profitable and hence scalar loop should be generated then set
1041 FIRST_NITERS to prologue peeled iterations. This will allow all the
1042 iterations to be executed in the prologue peeled scalar loop. */
1044 static void
1045 set_prologue_iterations (basic_block bb_before_first_loop,
1046 tree *first_niters,
1047 struct loop *loop,
1048 unsigned int th,
1049 int probability)
1051 edge e;
1052 basic_block cond_bb, then_bb;
1053 tree var, prologue_after_cost_adjust_name;
1054 gimple_stmt_iterator gsi;
1055 gphi *newphi;
1056 edge e_true, e_false, e_fallthru;
1057 gcond *cond_stmt;
1058 gimple_seq stmts = NULL;
1059 tree cost_pre_condition = NULL_TREE;
1060 tree scalar_loop_iters =
1061 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1063 e = single_pred_edge (bb_before_first_loop);
1064 cond_bb = split_edge (e);
1066 e = single_pred_edge (bb_before_first_loop);
1067 then_bb = split_edge (e);
1068 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1070 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1071 EDGE_FALSE_VALUE);
1072 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1074 e_true = EDGE_PRED (then_bb, 0);
1075 e_true->flags &= ~EDGE_FALLTHRU;
1076 e_true->flags |= EDGE_TRUE_VALUE;
1078 e_true->probability = probability;
1079 e_false->probability = inverse_probability (probability);
1080 e_true->count = apply_probability (cond_bb->count, probability);
1081 e_false->count = cond_bb->count - e_true->count;
1082 then_bb->frequency = EDGE_FREQUENCY (e_true);
1083 then_bb->count = e_true->count;
1085 e_fallthru = EDGE_SUCC (then_bb, 0);
1086 e_fallthru->count = then_bb->count;
1088 gsi = gsi_last_bb (cond_bb);
1089 cost_pre_condition =
1090 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1091 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1092 cost_pre_condition =
1093 force_gimple_operand_gsi_1 (&gsi, cost_pre_condition, is_gimple_condexpr,
1094 NULL_TREE, false, GSI_CONTINUE_LINKING);
1095 cond_stmt = gimple_build_cond_from_tree (cost_pre_condition,
1096 NULL_TREE, NULL_TREE);
1097 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1099 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1100 "prologue_after_cost_adjust");
1101 prologue_after_cost_adjust_name =
1102 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1104 gsi = gsi_last_bb (then_bb);
1105 if (stmts)
1106 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1108 newphi = create_phi_node (var, bb_before_first_loop);
1109 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
1110 UNKNOWN_LOCATION);
1111 add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);
1113 *first_niters = PHI_RESULT (newphi);
1116 /* Function slpeel_tree_peel_loop_to_edge.
1118 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1119 that is placed on the entry (exit) edge E of LOOP. After this transformation
1120 we have two loops one after the other - first-loop iterates FIRST_NITERS
1121 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1122 If the cost model indicates that it is profitable to emit a scalar
1123 loop instead of the vector one, then the prolog (epilog) loop will iterate
1124 for the entire unchanged scalar iterations of the loop.
1126 Input:
1127 - LOOP: the loop to be peeled.
1128 - SCALAR_LOOP: if non-NULL, the alternate loop from which basic blocks
1129 should be copied.
1130 - E: the exit or entry edge of LOOP.
1131 If it is the entry edge, we peel the first iterations of LOOP. In this
1132 case first-loop is LOOP, and second-loop is the newly created loop.
1133 If it is the exit edge, we peel the last iterations of LOOP. In this
1134 case, first-loop is the newly created loop, and second-loop is LOOP.
1135 - NITERS: the number of iterations that LOOP iterates.
1136 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1137 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1138 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1139 is false, the caller of this function may want to take care of this
1140 (this can be useful if we don't want new stmts added to first-loop).
1141 - TH: cost model profitability threshold of iterations for vectorization.
1142 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1143 during versioning and hence needs to occur during
1144 prologue generation or whether cost model check
1145 has not occurred during prologue generation and hence
1146 needs to occur during epilogue generation.
1147 - BOUND1 is the upper bound on number of iterations of the first loop (if known)
1148 - BOUND2 is the upper bound on number of iterations of the second loop (if known)
1151 Output:
1152 The function returns a pointer to the new loop-copy, or NULL if it failed
1153 to perform the transformation.
1155 The function generates two if-then-else guards: one before the first loop,
1156 and the other before the second loop:
1157 The first guard is:
1158 if (FIRST_NITERS == 0) then skip the first loop,
1159 and go directly to the second loop.
1160 The second guard is:
1161 if (FIRST_NITERS == NITERS) then skip the second loop.
1163 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1164 then the generated condition is combined with COND_EXPR and the
1165 statements in COND_EXPR_STMT_LIST are emitted together with it.
1167 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1168 FORNOW the resulting code will not be in loop-closed-ssa form.
1171 static struct loop *
1172 slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loop *scalar_loop,
1173 edge e, tree *first_niters,
1174 tree niters, bool update_first_loop_count,
1175 unsigned int th, bool check_profitability,
1176 tree cond_expr, gimple_seq cond_expr_stmt_list,
1177 int bound1, int bound2)
1179 struct loop *new_loop = NULL, *first_loop, *second_loop;
1180 edge skip_e;
1181 tree pre_condition = NULL_TREE;
1182 basic_block bb_before_second_loop, bb_after_second_loop;
1183 basic_block bb_before_first_loop;
1184 basic_block bb_between_loops;
1185 basic_block new_exit_bb;
1186 gphi_iterator gsi;
1187 edge exit_e = single_exit (loop);
1188 source_location loop_loc;
1189 /* There are many aspects to how likely the first loop is going to be executed.
1190 Without histogram we can't really do good job. Simply set it to
1191 2/3, so the first loop is not reordered to the end of function and
1192 the hot path through stays short. */
1193 int first_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1194 int second_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1195 int probability_of_second_loop;
1197 if (!slpeel_can_duplicate_loop_p (loop, e))
1198 return NULL;
1200 /* We might have a queued need to update virtual SSA form. As we
1201 delete the update SSA machinery below after doing a regular
1202 incremental SSA update during loop copying make sure we don't
1203 lose that fact.
1204 ??? Needing to update virtual SSA form by renaming is unfortunate
1205 but not all of the vectorizer code inserting new loads / stores
1206 properly assigns virtual operands to those statements. */
1207 update_ssa (TODO_update_ssa_only_virtuals);
1209 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1210 in the exit bb and rename all the uses after the loop. This simplifies
1211 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1212 (but normally loop closed SSA form doesn't require virtual PHIs to be
1213 in the same form). Doing this early simplifies the checking what
1214 uses should be renamed. */
1215 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1216 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1218 gphi *phi = gsi.phi ();
1219 for (gsi = gsi_start_phis (exit_e->dest);
1220 !gsi_end_p (gsi); gsi_next (&gsi))
1221 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1222 break;
1223 if (gsi_end_p (gsi))
1225 tree new_vop = copy_ssa_name (PHI_RESULT (phi));
1226 gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
1227 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1228 imm_use_iterator imm_iter;
1229 gimple *stmt;
1230 use_operand_p use_p;
1232 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
1233 gimple_phi_set_result (new_phi, new_vop);
1234 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1235 if (stmt != new_phi
1236 && !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1237 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1238 SET_USE (use_p, new_vop);
1240 break;
1243 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1244 Resulting CFG would be:
1246 first_loop:
1247 do {
1248 } while ...
1250 second_loop:
1251 do {
1252 } while ...
1254 orig_exit_bb:
1257 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop,
1258 e)))
1260 loop_loc = find_loop_location (loop);
1261 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1262 "tree_duplicate_loop_to_edge_cfg failed.\n");
1263 return NULL;
1266 if (MAY_HAVE_DEBUG_STMTS)
1268 gcc_assert (!adjust_vec.exists ());
1269 adjust_vec.create (32);
1272 if (e == exit_e)
1274 /* NEW_LOOP was placed after LOOP. */
1275 first_loop = loop;
1276 second_loop = new_loop;
1278 else
1280 /* NEW_LOOP was placed before LOOP. */
1281 first_loop = new_loop;
1282 second_loop = loop;
1285 /* 2. Add the guard code in one of the following ways:
1287 2.a Add the guard that controls whether the first loop is executed.
1288 This occurs when this function is invoked for prologue or epilogue
1289 generation and when the cost model check can be done at compile time.
1291 Resulting CFG would be:
1293 bb_before_first_loop:
1294 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1295 GOTO first-loop
1297 first_loop:
1298 do {
1299 } while ...
1301 bb_before_second_loop:
1303 second_loop:
1304 do {
1305 } while ...
1307 orig_exit_bb:
1309 2.b Add the cost model check that allows the prologue
1310 to iterate for the entire unchanged scalar
1311 iterations of the loop in the event that the cost
1312 model indicates that the scalar loop is more
1313 profitable than the vector one. This occurs when
1314 this function is invoked for prologue generation
1315 and the cost model check needs to be done at run
1316 time.
1318 Resulting CFG after prologue peeling would be:
1320 if (scalar_loop_iterations <= th)
1321 FIRST_NITERS = scalar_loop_iterations
1323 bb_before_first_loop:
1324 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1325 GOTO first-loop
1327 first_loop:
1328 do {
1329 } while ...
1331 bb_before_second_loop:
1333 second_loop:
1334 do {
1335 } while ...
1337 orig_exit_bb:
1339 2.c Add the cost model check that allows the epilogue
1340 to iterate for the entire unchanged scalar
1341 iterations of the loop in the event that the cost
1342 model indicates that the scalar loop is more
1343 profitable than the vector one. This occurs when
1344 this function is invoked for epilogue generation
1345 and the cost model check needs to be done at run
1346 time. This check is combined with any pre-existing
1347 check in COND_EXPR to avoid versioning.
1349 Resulting CFG after prologue peeling would be:
1351 bb_before_first_loop:
1352 if ((scalar_loop_iterations <= th)
1354 FIRST_NITERS == 0) GOTO bb_before_second_loop
1355 GOTO first-loop
1357 first_loop:
1358 do {
1359 } while ...
1361 bb_before_second_loop:
1363 second_loop:
1364 do {
1365 } while ...
1367 orig_exit_bb:
1370 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1371 /* Loop copying insterted a forwarder block for us here. */
1372 bb_before_second_loop = single_exit (first_loop)->dest;
1374 probability_of_second_loop = (inverse_probability (first_guard_probability)
1375 + combine_probabilities (second_guard_probability,
1376 first_guard_probability));
1377 /* Theoretically preheader edge of first loop and exit edge should have
1378 same frequencies. Loop exit probablities are however easy to get wrong.
1379 It is safer to copy value from original loop entry. */
1380 bb_before_second_loop->frequency
1381 = combine_probabilities (bb_before_first_loop->frequency,
1382 probability_of_second_loop);
1383 bb_before_second_loop->count
1384 = apply_probability (bb_before_first_loop->count,
1385 probability_of_second_loop);
1386 single_succ_edge (bb_before_second_loop)->count
1387 = bb_before_second_loop->count;
1389 /* Epilogue peeling. */
1390 if (!update_first_loop_count)
1392 loop_vec_info loop_vinfo = loop_vec_info_for_loop (loop);
1393 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
1394 unsigned limit = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1;
1395 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1396 limit = limit + 1;
1397 if (check_profitability
1398 && th > limit)
1399 limit = th;
1400 pre_condition =
1401 fold_build2 (LT_EXPR, boolean_type_node, scalar_loop_iters,
1402 build_int_cst (TREE_TYPE (scalar_loop_iters), limit));
1403 if (cond_expr)
1405 pre_condition =
1406 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1407 pre_condition,
1408 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1409 cond_expr));
1413 /* Prologue peeling. */
1414 else
1416 if (check_profitability)
1417 set_prologue_iterations (bb_before_first_loop, first_niters,
1418 loop, th, first_guard_probability);
1420 pre_condition =
1421 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1422 build_int_cst (TREE_TYPE (*first_niters), 0));
1425 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1426 cond_expr_stmt_list,
1427 bb_before_second_loop, bb_before_first_loop,
1428 inverse_probability (first_guard_probability));
1429 scale_loop_profile (first_loop, first_guard_probability,
1430 check_profitability && (int)th > bound1 ? th : bound1);
1431 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1432 first_loop == new_loop,
1433 &new_exit_bb);
1436 /* 3. Add the guard that controls whether the second loop is executed.
1437 Resulting CFG would be:
1439 bb_before_first_loop:
1440 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1441 GOTO first-loop
1443 first_loop:
1444 do {
1445 } while ...
1447 bb_between_loops:
1448 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1449 GOTO bb_before_second_loop
1451 bb_before_second_loop:
1453 second_loop:
1454 do {
1455 } while ...
1457 bb_after_second_loop:
1459 orig_exit_bb:
1462 bb_between_loops = new_exit_bb;
1463 bb_after_second_loop = split_edge (single_exit (second_loop));
1465 pre_condition =
1466 fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
1467 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1468 bb_after_second_loop, bb_before_first_loop,
1469 inverse_probability (second_guard_probability));
1470 scale_loop_profile (second_loop, probability_of_second_loop, bound2);
1471 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1472 second_loop == new_loop, &new_exit_bb);
1474 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1476 if (update_first_loop_count)
1477 slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);
1479 delete_update_ssa ();
1481 adjust_vec_debug_stmts ();
1483 return new_loop;
1486 /* Function vect_get_loop_location.
1488 Extract the location of the loop in the source code.
1489 If the loop is not well formed for vectorization, an estimated
1490 location is calculated.
1491 Return the loop location if succeed and NULL if not. */
1493 source_location
1494 find_loop_location (struct loop *loop)
1496 gimple *stmt = NULL;
1497 basic_block bb;
1498 gimple_stmt_iterator si;
1500 if (!loop)
1501 return UNKNOWN_LOCATION;
1503 stmt = get_loop_exit_condition (loop);
1505 if (stmt
1506 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1507 return gimple_location (stmt);
1509 /* If we got here the loop is probably not "well formed",
1510 try to estimate the loop location */
1512 if (!loop->header)
1513 return UNKNOWN_LOCATION;
1515 bb = loop->header;
1517 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1519 stmt = gsi_stmt (si);
1520 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1521 return gimple_location (stmt);
1524 return UNKNOWN_LOCATION;
1528 /* Function vect_can_advance_ivs_p
1530 In case the number of iterations that LOOP iterates is unknown at compile
1531 time, an epilog loop will be generated, and the loop induction variables
1532 (IVs) will be "advanced" to the value they are supposed to take just before
1533 the epilog loop. Here we check that the access function of the loop IVs
1534 and the expression that represents the loop bound are simple enough.
1535 These restrictions will be relaxed in the future. */
1537 bool
1538 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1540 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1541 basic_block bb = loop->header;
1542 gimple *phi;
1543 gphi_iterator gsi;
1545 /* Analyze phi functions of the loop header. */
1547 if (dump_enabled_p ())
1548 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
1549 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1551 tree evolution_part;
1553 phi = gsi.phi ();
1554 if (dump_enabled_p ())
1556 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
1557 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1558 dump_printf (MSG_NOTE, "\n");
1561 /* Skip virtual phi's. The data dependences that are associated with
1562 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1564 if (virtual_operand_p (PHI_RESULT (phi)))
1566 if (dump_enabled_p ())
1567 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1568 "virtual phi. skip.\n");
1569 continue;
1572 /* Skip reduction phis. */
1574 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1576 if (dump_enabled_p ())
1577 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1578 "reduc phi. skip.\n");
1579 continue;
1582 /* Analyze the evolution function. */
1584 evolution_part
1585 = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
1586 if (evolution_part == NULL_TREE)
1588 if (dump_enabled_p ())
1589 dump_printf (MSG_MISSED_OPTIMIZATION,
1590 "No access function or evolution.\n");
1591 return false;
1594 /* FORNOW: We do not transform initial conditions of IVs
1595 which evolution functions are a polynomial of degree >= 2. */
1597 if (tree_is_chrec (evolution_part))
1598 return false;
1601 return true;
1605 /* Function vect_update_ivs_after_vectorizer.
1607 "Advance" the induction variables of LOOP to the value they should take
1608 after the execution of LOOP. This is currently necessary because the
1609 vectorizer does not handle induction variables that are used after the
1610 loop. Such a situation occurs when the last iterations of LOOP are
1611 peeled, because:
1612 1. We introduced new uses after LOOP for IVs that were not originally used
1613 after LOOP: the IVs of LOOP are now used by an epilog loop.
1614 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1615 times, whereas the loop IVs should be bumped N times.
1617 Input:
1618 - LOOP - a loop that is going to be vectorized. The last few iterations
1619 of LOOP were peeled.
1620 - NITERS - the number of iterations that LOOP executes (before it is
1621 vectorized). i.e, the number of times the ivs should be bumped.
1622 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1623 coming out from LOOP on which there are uses of the LOOP ivs
1624 (this is the path from LOOP->exit to epilog_loop->preheader).
1626 The new definitions of the ivs are placed in LOOP->exit.
1627 The phi args associated with the edge UPDATE_E in the bb
1628 UPDATE_E->dest are updated accordingly.
1630 Assumption 1: Like the rest of the vectorizer, this function assumes
1631 a single loop exit that has a single predecessor.
1633 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1634 organized in the same order.
1636 Assumption 3: The access function of the ivs is simple enough (see
1637 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1639 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1640 coming out of LOOP on which the ivs of LOOP are used (this is the path
1641 that leads to the epilog loop; other paths skip the epilog loop). This
1642 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1643 needs to have its phis updated.
1646 static void
1647 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1648 edge update_e)
1650 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1651 basic_block exit_bb = single_exit (loop)->dest;
1652 gphi *phi, *phi1;
1653 gphi_iterator gsi, gsi1;
1654 basic_block update_bb = update_e->dest;
1656 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
1658 /* Make sure there exists a single-predecessor exit bb: */
1659 gcc_assert (single_pred_p (exit_bb));
1661 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1662 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1663 gsi_next (&gsi), gsi_next (&gsi1))
1665 tree init_expr;
1666 tree step_expr, off;
1667 tree type;
1668 tree var, ni, ni_name;
1669 gimple_stmt_iterator last_gsi;
1670 stmt_vec_info stmt_info;
1672 phi = gsi.phi ();
1673 phi1 = gsi1.phi ();
1674 if (dump_enabled_p ())
1676 dump_printf_loc (MSG_NOTE, vect_location,
1677 "vect_update_ivs_after_vectorizer: phi: ");
1678 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1679 dump_printf (MSG_NOTE, "\n");
1682 /* Skip virtual phi's. */
1683 if (virtual_operand_p (PHI_RESULT (phi)))
1685 if (dump_enabled_p ())
1686 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1687 "virtual phi. skip.\n");
1688 continue;
1691 /* Skip reduction phis. */
1692 stmt_info = vinfo_for_stmt (phi);
1693 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
1695 if (dump_enabled_p ())
1696 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1697 "reduc phi. skip.\n");
1698 continue;
1701 type = TREE_TYPE (gimple_phi_result (phi));
1702 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
1703 step_expr = unshare_expr (step_expr);
1705 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1706 of degree >= 2 or exponential. */
1707 gcc_assert (!tree_is_chrec (step_expr));
1709 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1711 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1712 fold_convert (TREE_TYPE (step_expr), niters),
1713 step_expr);
1714 if (POINTER_TYPE_P (type))
1715 ni = fold_build_pointer_plus (init_expr, off);
1716 else
1717 ni = fold_build2 (PLUS_EXPR, type,
1718 init_expr, fold_convert (type, off));
1720 var = create_tmp_var (type, "tmp");
1722 last_gsi = gsi_last_bb (exit_bb);
1723 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1724 true, GSI_SAME_STMT);
1726 /* Fix phi expressions in the successor bb. */
1727 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1731 /* Function vect_do_peeling_for_loop_bound
1733 Peel the last iterations of the loop represented by LOOP_VINFO.
1734 The peeled iterations form a new epilog loop. Given that the loop now
1735 iterates NITERS times, the new epilog loop iterates
1736 NITERS % VECTORIZATION_FACTOR times.
1738 The original loop will later be made to iterate
1739 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1741 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1742 test. */
1744 void
1745 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo,
1746 tree ni_name, tree ratio_mult_vf_name,
1747 unsigned int th, bool check_profitability)
1749 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1750 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
1751 struct loop *new_loop;
1752 edge update_e;
1753 basic_block preheader;
1754 int loop_num;
1755 int max_iter;
1756 tree cond_expr = NULL_TREE;
1757 gimple_seq cond_expr_stmt_list = NULL;
1759 if (dump_enabled_p ())
1760 dump_printf_loc (MSG_NOTE, vect_location,
1761 "=== vect_do_peeling_for_loop_bound ===\n");
1763 initialize_original_copy_tables ();
1765 loop_num = loop->num;
1767 new_loop
1768 = slpeel_tree_peel_loop_to_edge (loop, scalar_loop, single_exit (loop),
1769 &ratio_mult_vf_name, ni_name, false,
1770 th, check_profitability,
1771 cond_expr, cond_expr_stmt_list,
1772 0, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1773 gcc_assert (new_loop);
1774 gcc_assert (loop_num == loop->num);
1775 slpeel_checking_verify_cfg_after_peeling (loop, new_loop);
1777 /* A guard that controls whether the new_loop is to be executed or skipped
1778 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1779 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1780 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1781 is on the path where the LOOP IVs are used and need to be updated. */
1783 preheader = loop_preheader_edge (new_loop)->src;
1784 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1785 update_e = EDGE_PRED (preheader, 0);
1786 else
1787 update_e = EDGE_PRED (preheader, 1);
1789 /* Update IVs of original loop as if they were advanced
1790 by ratio_mult_vf_name steps. */
1791 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1793 /* For vectorization factor N, we need to copy last N-1 values in epilogue
1794 and this means N-2 loopback edge executions.
1796 PEELING_FOR_GAPS works by subtracting last iteration and thus the epilogue
1797 will execute at least LOOP_VINFO_VECT_FACTOR times. */
1798 max_iter = (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1799 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) * 2
1800 : LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 2;
1801 if (check_profitability)
1802 max_iter = MAX (max_iter, (int) th - 1);
1803 record_niter_bound (new_loop, max_iter, false, true);
1804 dump_printf (MSG_NOTE,
1805 "Setting upper bound of nb iterations for epilogue "
1806 "loop to %d\n", max_iter);
1808 /* After peeling we have to reset scalar evolution analyzer. */
1809 scev_reset ();
1811 free_original_copy_tables ();
1815 /* Function vect_gen_niters_for_prolog_loop
1817 Set the number of iterations for the loop represented by LOOP_VINFO
1818 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1819 and the misalignment of DR - the data reference recorded in
1820 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1821 this loop, the data reference DR will refer to an aligned location.
1823 The following computation is generated:
1825 If the misalignment of DR is known at compile time:
1826 addr_mis = int mis = DR_MISALIGNMENT (dr);
1827 Else, compute address misalignment in bytes:
1828 addr_mis = addr & (vectype_align - 1)
1830 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1832 (elem_size = element type size; an element is the scalar element whose type
1833 is the inner type of the vectype)
1835 When the step of the data-ref in the loop is not 1 (as in interleaved data
1836 and SLP), the number of iterations of the prolog must be divided by the step
1837 (which is equal to the size of interleaved group).
1839 The above formulas assume that VF == number of elements in the vector. This
1840 may not hold when there are multiple-types in the loop.
1841 In this case, for some data-references in the loop the VF does not represent
1842 the number of elements that fit in the vector. Therefore, instead of VF we
1843 use TYPE_VECTOR_SUBPARTS. */
1845 static tree
1846 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters, int *bound)
1848 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1849 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1850 tree var;
1851 gimple_seq stmts;
1852 tree iters, iters_name;
1853 edge pe;
1854 basic_block new_bb;
1855 gimple *dr_stmt = DR_STMT (dr);
1856 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
1857 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1858 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
1859 tree niters_type = TREE_TYPE (loop_niters);
1860 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1862 pe = loop_preheader_edge (loop);
1864 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1866 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1868 if (dump_enabled_p ())
1869 dump_printf_loc (MSG_NOTE, vect_location,
1870 "known peeling = %d.\n", npeel);
1872 iters = build_int_cst (niters_type, npeel);
1873 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1875 else
1877 gimple_seq new_stmts = NULL;
1878 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1879 tree offset = negative
1880 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
1881 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
1882 &new_stmts, offset, loop);
1883 tree type = unsigned_type_for (TREE_TYPE (start_addr));
1884 tree vectype_align_minus_1 = build_int_cst (type, vectype_align - 1);
1885 HOST_WIDE_INT elem_size =
1886 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1887 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
1888 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
1889 tree nelements_tree = build_int_cst (type, nelements);
1890 tree byte_misalign;
1891 tree elem_misalign;
1893 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
1894 gcc_assert (!new_bb);
1896 /* Create: byte_misalign = addr & (vectype_align - 1) */
1897 byte_misalign =
1898 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
1899 vectype_align_minus_1);
1901 /* Create: elem_misalign = byte_misalign / element_size */
1902 elem_misalign =
1903 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
1905 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
1906 if (negative)
1907 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
1908 else
1909 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
1910 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
1911 iters = fold_convert (niters_type, iters);
1912 *bound = nelements;
1915 /* Create: prolog_loop_niters = min (iters, loop_niters) */
1916 /* If the loop bound is known at compile time we already verified that it is
1917 greater than vf; since the misalignment ('iters') is at most vf, there's
1918 no need to generate the MIN_EXPR in this case. */
1919 if (TREE_CODE (loop_niters) != INTEGER_CST)
1920 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
1922 if (dump_enabled_p ())
1924 dump_printf_loc (MSG_NOTE, vect_location,
1925 "niters for prolog loop: ");
1926 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
1927 dump_printf (MSG_NOTE, "\n");
1930 var = create_tmp_var (niters_type, "prolog_loop_niters");
1931 stmts = NULL;
1932 iters_name = force_gimple_operand (iters, &stmts, false, var);
1934 /* Insert stmt on loop preheader edge. */
1935 if (stmts)
1937 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1938 gcc_assert (!new_bb);
1941 return iters_name;
1945 /* Function vect_update_init_of_dr
1947 NITERS iterations were peeled from LOOP. DR represents a data reference
1948 in LOOP. This function updates the information recorded in DR to
1949 account for the fact that the first NITERS iterations had already been
1950 executed. Specifically, it updates the OFFSET field of DR. */
1952 static void
1953 vect_update_init_of_dr (struct data_reference *dr, tree niters)
1955 tree offset = DR_OFFSET (dr);
1957 niters = fold_build2 (MULT_EXPR, sizetype,
1958 fold_convert (sizetype, niters),
1959 fold_convert (sizetype, DR_STEP (dr)));
1960 offset = fold_build2 (PLUS_EXPR, sizetype,
1961 fold_convert (sizetype, offset), niters);
1962 DR_OFFSET (dr) = offset;
1966 /* Function vect_update_inits_of_drs
1968 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
1969 This function updates the information recorded for the data references in
1970 the loop to account for the fact that the first NITERS iterations had
1971 already been executed. Specifically, it updates the initial_condition of
1972 the access_function of all the data_references in the loop. */
1974 static void
1975 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
1977 unsigned int i;
1978 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1979 struct data_reference *dr;
1981 if (dump_enabled_p ())
1982 dump_printf_loc (MSG_NOTE, vect_location,
1983 "=== vect_update_inits_of_dr ===\n");
1985 FOR_EACH_VEC_ELT (datarefs, i, dr)
1986 vect_update_init_of_dr (dr, niters);
1990 /* Function vect_do_peeling_for_alignment
1992 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
1993 'niters' is set to the misalignment of one of the data references in the
1994 loop, thereby forcing it to refer to an aligned location at the beginning
1995 of the execution of this loop. The data reference for which we are
1996 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
1998 void
1999 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, tree ni_name,
2000 unsigned int th, bool check_profitability)
2002 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2003 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2004 tree niters_of_prolog_loop;
2005 tree wide_prolog_niters;
2006 struct loop *new_loop;
2007 int max_iter;
2008 int bound = 0;
2010 if (dump_enabled_p ())
2011 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2012 "loop peeled for vectorization to enhance"
2013 " alignment\n");
2015 initialize_original_copy_tables ();
2017 gimple_seq stmts = NULL;
2018 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2019 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
2020 ni_name,
2021 &bound);
2023 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2024 new_loop =
2025 slpeel_tree_peel_loop_to_edge (loop, scalar_loop,
2026 loop_preheader_edge (loop),
2027 &niters_of_prolog_loop, ni_name, true,
2028 th, check_profitability, NULL_TREE, NULL,
2029 bound, 0);
2031 gcc_assert (new_loop);
2032 slpeel_checking_verify_cfg_after_peeling (new_loop, loop);
2033 /* For vectorization factor N, we need to copy at most N-1 values
2034 for alignment and this means N-2 loopback edge executions. */
2035 max_iter = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 2;
2036 if (check_profitability)
2037 max_iter = MAX (max_iter, (int) th - 1);
2038 record_niter_bound (new_loop, max_iter, false, true);
2039 dump_printf (MSG_NOTE,
2040 "Setting upper bound of nb iterations for prologue "
2041 "loop to %d\n", max_iter);
2043 /* Update number of times loop executes. */
2044 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2045 TREE_TYPE (ni_name), ni_name, niters_of_prolog_loop);
2046 LOOP_VINFO_NITERSM1 (loop_vinfo) = fold_build2 (MINUS_EXPR,
2047 TREE_TYPE (ni_name),
2048 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_of_prolog_loop);
2050 if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
2051 wide_prolog_niters = niters_of_prolog_loop;
2052 else
2054 gimple_seq seq = NULL;
2055 edge pe = loop_preheader_edge (loop);
2056 tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
2057 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
2058 wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2059 var);
2060 if (seq)
2062 /* Insert stmt on loop preheader edge. */
2063 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
2064 gcc_assert (!new_bb);
2068 /* Update the init conditions of the access functions of all data refs. */
2069 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2071 /* After peeling we have to reset scalar evolution analyzer. */
2072 scev_reset ();
2074 free_original_copy_tables ();
2078 /* Function vect_create_cond_for_align_checks.
2080 Create a conditional expression that represents the alignment checks for
2081 all of data references (array element references) whose alignment must be
2082 checked at runtime.
2084 Input:
2085 COND_EXPR - input conditional expression. New conditions will be chained
2086 with logical AND operation.
2087 LOOP_VINFO - two fields of the loop information are used.
2088 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2089 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2091 Output:
2092 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2093 expression.
2094 The returned value is the conditional expression to be used in the if
2095 statement that controls which version of the loop gets executed at runtime.
2097 The algorithm makes two assumptions:
2098 1) The number of bytes "n" in a vector is a power of 2.
2099 2) An address "a" is aligned if a%n is zero and that this
2100 test can be done as a&(n-1) == 0. For example, for 16
2101 byte vectors the test is a&0xf == 0. */
2103 static void
2104 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2105 tree *cond_expr,
2106 gimple_seq *cond_expr_stmt_list)
2108 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2109 vec<gimple *> may_misalign_stmts
2110 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2111 gimple *ref_stmt;
2112 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2113 tree mask_cst;
2114 unsigned int i;
2115 tree int_ptrsize_type;
2116 char tmp_name[20];
2117 tree or_tmp_name = NULL_TREE;
2118 tree and_tmp_name;
2119 gimple *and_stmt;
2120 tree ptrsize_zero;
2121 tree part_cond_expr;
2123 /* Check that mask is one less than a power of 2, i.e., mask is
2124 all zeros followed by all ones. */
2125 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2127 int_ptrsize_type = signed_type_for (ptr_type_node);
2129 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2130 of the first vector of the i'th data reference. */
2132 FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
2134 gimple_seq new_stmt_list = NULL;
2135 tree addr_base;
2136 tree addr_tmp_name;
2137 tree new_or_tmp_name;
2138 gimple *addr_stmt, *or_stmt;
2139 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2140 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2141 bool negative = tree_int_cst_compare
2142 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2143 tree offset = negative
2144 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
2146 /* create: addr_tmp = (int)(address_of_first_vector) */
2147 addr_base =
2148 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2149 offset, loop);
2150 if (new_stmt_list != NULL)
2151 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2153 sprintf (tmp_name, "addr2int%d", i);
2154 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2155 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
2156 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2158 /* The addresses are OR together. */
2160 if (or_tmp_name != NULL_TREE)
2162 /* create: or_tmp = or_tmp | addr_tmp */
2163 sprintf (tmp_name, "orptrs%d", i);
2164 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2165 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
2166 or_tmp_name, addr_tmp_name);
2167 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2168 or_tmp_name = new_or_tmp_name;
2170 else
2171 or_tmp_name = addr_tmp_name;
2173 } /* end for i */
2175 mask_cst = build_int_cst (int_ptrsize_type, mask);
2177 /* create: and_tmp = or_tmp & mask */
2178 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2180 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
2181 or_tmp_name, mask_cst);
2182 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2184 /* Make and_tmp the left operand of the conditional test against zero.
2185 if and_tmp has a nonzero bit then some address is unaligned. */
2186 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2187 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2188 and_tmp_name, ptrsize_zero);
2189 if (*cond_expr)
2190 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2191 *cond_expr, part_cond_expr);
2192 else
2193 *cond_expr = part_cond_expr;
2196 /* Function vect_create_cond_for_alias_checks.
2198 Create a conditional expression that represents the run-time checks for
2199 overlapping of address ranges represented by a list of data references
2200 relations passed as input.
2202 Input:
2203 COND_EXPR - input conditional expression. New conditions will be chained
2204 with logical AND operation. If it is NULL, then the function
2205 is used to return the number of alias checks.
2206 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2207 to be checked.
2209 Output:
2210 COND_EXPR - conditional expression.
2212 The returned COND_EXPR is the conditional expression to be used in the if
2213 statement that controls which version of the loop gets executed at runtime.
2216 void
2217 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
2219 vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
2220 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2221 tree part_cond_expr;
2223 /* Create expression
2224 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2225 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2229 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2230 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
2232 if (comp_alias_ddrs.is_empty ())
2233 return;
2235 for (size_t i = 0, s = comp_alias_ddrs.length (); i < s; ++i)
2237 const dr_with_seg_len& dr_a = comp_alias_ddrs[i].first;
2238 const dr_with_seg_len& dr_b = comp_alias_ddrs[i].second;
2239 tree segment_length_a = dr_a.seg_len;
2240 tree segment_length_b = dr_b.seg_len;
2242 tree addr_base_a
2243 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_a.dr), dr_a.offset);
2244 tree addr_base_b
2245 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_b.dr), dr_b.offset);
2247 if (dump_enabled_p ())
2249 dump_printf_loc (MSG_NOTE, vect_location,
2250 "create runtime check for data references ");
2251 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a.dr));
2252 dump_printf (MSG_NOTE, " and ");
2253 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b.dr));
2254 dump_printf (MSG_NOTE, "\n");
2257 tree seg_a_min = addr_base_a;
2258 tree seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
2259 /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
2260 bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
2261 [a, a+12) */
2262 if (tree_int_cst_compare (DR_STEP (dr_a.dr), size_zero_node) < 0)
2264 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a.dr)));
2265 seg_a_min = fold_build_pointer_plus (seg_a_max, unit_size);
2266 seg_a_max = fold_build_pointer_plus (addr_base_a, unit_size);
2269 tree seg_b_min = addr_base_b;
2270 tree seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
2271 if (tree_int_cst_compare (DR_STEP (dr_b.dr), size_zero_node) < 0)
2273 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b.dr)));
2274 seg_b_min = fold_build_pointer_plus (seg_b_max, unit_size);
2275 seg_b_max = fold_build_pointer_plus (addr_base_b, unit_size);
2278 part_cond_expr =
2279 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2280 fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2281 fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
2283 if (*cond_expr)
2284 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2285 *cond_expr, part_cond_expr);
2286 else
2287 *cond_expr = part_cond_expr;
2290 if (dump_enabled_p ())
2291 dump_printf_loc (MSG_NOTE, vect_location,
2292 "created %u versioning for alias checks.\n",
2293 comp_alias_ddrs.length ());
2295 comp_alias_ddrs.release ();
2299 /* Function vect_loop_versioning.
2301 If the loop has data references that may or may not be aligned or/and
2302 has data reference relations whose independence was not proven then
2303 two versions of the loop need to be generated, one which is vectorized
2304 and one which isn't. A test is then generated to control which of the
2305 loops is executed. The test checks for the alignment of all of the
2306 data references that may or may not be aligned. An additional
2307 sequence of runtime tests is generated for each pairs of DDRs whose
2308 independence was not proven. The vectorized version of loop is
2309 executed only if both alias and alignment tests are passed.
2311 The test generated to check which version of loop is executed
2312 is modified to also check for profitability as indicated by the
2313 cost model initially.
2315 The versioning precondition(s) are placed in *COND_EXPR and
2316 *COND_EXPR_STMT_LIST. */
2318 void
2319 vect_loop_versioning (loop_vec_info loop_vinfo,
2320 unsigned int th, bool check_profitability)
2322 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2323 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2324 basic_block condition_bb;
2325 gphi_iterator gsi;
2326 gimple_stmt_iterator cond_exp_gsi;
2327 basic_block merge_bb;
2328 basic_block new_exit_bb;
2329 edge new_exit_e, e;
2330 gphi *orig_phi, *new_phi;
2331 tree cond_expr = NULL_TREE;
2332 gimple_seq cond_expr_stmt_list = NULL;
2333 tree arg;
2334 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2335 gimple_seq gimplify_stmt_list = NULL;
2336 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2337 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2338 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
2340 if (check_profitability)
2342 cond_expr = fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2343 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2344 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
2345 is_gimple_condexpr, NULL_TREE);
2348 if (version_align)
2349 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
2350 &cond_expr_stmt_list);
2352 if (version_alias)
2353 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
2355 cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
2356 is_gimple_condexpr, NULL_TREE);
2357 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
2359 initialize_original_copy_tables ();
2360 if (scalar_loop)
2362 edge scalar_e;
2363 basic_block preheader, scalar_preheader;
2365 /* We don't want to scale SCALAR_LOOP's frequencies, we need to
2366 scale LOOP's frequencies instead. */
2367 loop_version (scalar_loop, cond_expr, &condition_bb,
2368 prob, REG_BR_PROB_BASE, REG_BR_PROB_BASE - prob, true);
2369 scale_loop_frequencies (loop, prob, REG_BR_PROB_BASE);
2370 /* CONDITION_BB was created above SCALAR_LOOP's preheader,
2371 while we need to move it above LOOP's preheader. */
2372 e = loop_preheader_edge (loop);
2373 scalar_e = loop_preheader_edge (scalar_loop);
2374 gcc_assert (empty_block_p (e->src)
2375 && single_pred_p (e->src));
2376 gcc_assert (empty_block_p (scalar_e->src)
2377 && single_pred_p (scalar_e->src));
2378 gcc_assert (single_pred_p (condition_bb));
2379 preheader = e->src;
2380 scalar_preheader = scalar_e->src;
2381 scalar_e = find_edge (condition_bb, scalar_preheader);
2382 e = single_pred_edge (preheader);
2383 redirect_edge_and_branch_force (single_pred_edge (condition_bb),
2384 scalar_preheader);
2385 redirect_edge_and_branch_force (scalar_e, preheader);
2386 redirect_edge_and_branch_force (e, condition_bb);
2387 set_immediate_dominator (CDI_DOMINATORS, condition_bb,
2388 single_pred (condition_bb));
2389 set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
2390 single_pred (scalar_preheader));
2391 set_immediate_dominator (CDI_DOMINATORS, preheader,
2392 condition_bb);
2394 else
2395 loop_version (loop, cond_expr, &condition_bb,
2396 prob, prob, REG_BR_PROB_BASE - prob, true);
2398 if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOCATION
2399 && dump_enabled_p ())
2401 if (version_alias)
2402 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2403 "loop versioned for vectorization because of "
2404 "possible aliasing\n");
2405 if (version_align)
2406 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2407 "loop versioned for vectorization to enhance "
2408 "alignment\n");
2411 free_original_copy_tables ();
2413 /* Loop versioning violates an assumption we try to maintain during
2414 vectorization - that the loop exit block has a single predecessor.
2415 After versioning, the exit block of both loop versions is the same
2416 basic block (i.e. it has two predecessors). Just in order to simplify
2417 following transformations in the vectorizer, we fix this situation
2418 here by adding a new (empty) block on the exit-edge of the loop,
2419 with the proper loop-exit phis to maintain loop-closed-form.
2420 If loop versioning wasn't done from loop, but scalar_loop instead,
2421 merge_bb will have already just a single successor. */
2423 merge_bb = single_exit (loop)->dest;
2424 if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
2426 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
2427 new_exit_bb = split_edge (single_exit (loop));
2428 new_exit_e = single_exit (loop);
2429 e = EDGE_SUCC (new_exit_bb, 0);
2431 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2433 tree new_res;
2434 orig_phi = gsi.phi ();
2435 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2436 new_phi = create_phi_node (new_res, new_exit_bb);
2437 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2438 add_phi_arg (new_phi, arg, new_exit_e,
2439 gimple_phi_arg_location_from_edge (orig_phi, e));
2440 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2444 /* End loop-exit-fixes after versioning. */
2446 if (cond_expr_stmt_list)
2448 cond_exp_gsi = gsi_last_bb (condition_bb);
2449 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
2450 GSI_SAME_STMT);
2452 update_ssa (TODO_update_ssa);