1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 #include "coretypes.h"
28 #include "insn-config.h"
30 #include "addresses.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
41 #include "tree-pass.h"
45 struct du_chain
*next_chain
;
46 struct du_chain
*next_use
;
50 ENUM_BITFIELD(reg_class
) cl
: 16;
51 unsigned int need_caller_save_reg
:1;
52 unsigned int earlyclobber
:1;
58 terminate_overlapping_read
,
63 /* mark_access is for marking the destination regs in
64 REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
65 note is updated properly. */
69 static const char * const scan_actions_name
[] =
72 "terminate_overlapping_read",
80 static struct obstack rename_obstack
;
82 static void do_replace (struct du_chain
*, int);
83 static void scan_rtx_reg (rtx
, rtx
*, enum reg_class
,
84 enum scan_actions
, enum op_type
, int);
85 static void scan_rtx_address (rtx
, rtx
*, enum reg_class
,
86 enum scan_actions
, enum machine_mode
);
87 static void scan_rtx (rtx
, rtx
*, enum reg_class
, enum scan_actions
,
89 static struct du_chain
*build_def_use (basic_block
);
90 static void dump_def_use_chain (struct du_chain
*);
91 static void note_sets (rtx
, rtx
, void *);
92 static void clear_dead_regs (HARD_REG_SET
*, enum machine_mode
, rtx
);
93 static void merge_overlapping_regs (basic_block
, HARD_REG_SET
*,
96 /* Called through note_stores from update_life. Find sets of registers, and
97 record them in *DATA (which is actually a HARD_REG_SET *). */
100 note_sets (rtx x
, rtx set ATTRIBUTE_UNUSED
, void *data
)
102 HARD_REG_SET
*pset
= (HARD_REG_SET
*) data
;
106 if (GET_CODE (x
) == SUBREG
)
111 nregs
= hard_regno_nregs
[regno
][GET_MODE (x
)];
113 /* There must not be pseudos at this point. */
114 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
117 SET_HARD_REG_BIT (*pset
, regno
+ nregs
);
120 /* Clear all registers from *PSET for which a note of kind KIND can be found
121 in the list NOTES. */
124 clear_dead_regs (HARD_REG_SET
*pset
, enum machine_mode kind
, rtx notes
)
127 for (note
= notes
; note
; note
= XEXP (note
, 1))
128 if (REG_NOTE_KIND (note
) == kind
&& REG_P (XEXP (note
, 0)))
130 rtx reg
= XEXP (note
, 0);
131 unsigned int regno
= REGNO (reg
);
132 int nregs
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
134 /* There must not be pseudos at this point. */
135 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
138 CLEAR_HARD_REG_BIT (*pset
, regno
+ nregs
);
142 /* For a def-use chain CHAIN in basic block B, find which registers overlap
143 its lifetime and set the corresponding bits in *PSET. */
146 merge_overlapping_regs (basic_block b
, HARD_REG_SET
*pset
,
147 struct du_chain
*chain
)
149 struct du_chain
*t
= chain
;
153 REG_SET_TO_HARD_REG_SET (live
, b
->il
.rtl
->global_live_at_start
);
157 /* Search forward until the next reference to the register to be
159 while (insn
!= t
->insn
)
163 clear_dead_regs (&live
, REG_DEAD
, REG_NOTES (insn
));
164 note_stores (PATTERN (insn
), note_sets
, (void *) &live
);
165 /* Only record currently live regs if we are inside the
168 IOR_HARD_REG_SET (*pset
, live
);
169 clear_dead_regs (&live
, REG_UNUSED
, REG_NOTES (insn
));
171 insn
= NEXT_INSN (insn
);
174 IOR_HARD_REG_SET (*pset
, live
);
176 /* For the last reference, also merge in all registers set in the
178 @@@ We only have take earlyclobbered sets into account. */
180 note_stores (PATTERN (insn
), note_sets
, (void *) pset
);
186 /* Perform register renaming on the current function. */
189 regrename_optimize (void)
191 int tick
[FIRST_PSEUDO_REGISTER
];
196 memset (tick
, 0, sizeof tick
);
198 gcc_obstack_init (&rename_obstack
);
199 first_obj
= obstack_alloc (&rename_obstack
, 0);
203 struct du_chain
*all_chains
= 0;
204 HARD_REG_SET unavailable
;
205 HARD_REG_SET regs_seen
;
207 CLEAR_HARD_REG_SET (unavailable
);
210 fprintf (dump_file
, "\nBasic block %d:\n", bb
->index
);
212 all_chains
= build_def_use (bb
);
215 dump_def_use_chain (all_chains
);
217 CLEAR_HARD_REG_SET (unavailable
);
218 /* Don't clobber traceback for noreturn functions. */
219 if (frame_pointer_needed
)
223 for (i
= hard_regno_nregs
[FRAME_POINTER_REGNUM
][Pmode
]; i
--;)
224 SET_HARD_REG_BIT (unavailable
, FRAME_POINTER_REGNUM
+ i
);
226 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
227 for (i
= hard_regno_nregs
[HARD_FRAME_POINTER_REGNUM
][Pmode
]; i
--;)
228 SET_HARD_REG_BIT (unavailable
, HARD_FRAME_POINTER_REGNUM
+ i
);
232 CLEAR_HARD_REG_SET (regs_seen
);
235 int new_reg
, best_new_reg
;
237 struct du_chain
*this = all_chains
;
238 struct du_chain
*tmp
, *last
;
239 HARD_REG_SET this_unavailable
;
240 int reg
= REGNO (*this->loc
);
243 all_chains
= this->next_chain
;
247 #if 0 /* This just disables optimization opportunities. */
248 /* Only rename once we've seen the reg more than once. */
249 if (! TEST_HARD_REG_BIT (regs_seen
, reg
))
251 SET_HARD_REG_BIT (regs_seen
, reg
);
256 if (fixed_regs
[reg
] || global_regs
[reg
]
257 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
258 || (frame_pointer_needed
&& reg
== HARD_FRAME_POINTER_REGNUM
)
260 || (frame_pointer_needed
&& reg
== FRAME_POINTER_REGNUM
)
265 COPY_HARD_REG_SET (this_unavailable
, unavailable
);
267 /* Find last entry on chain (which has the need_caller_save bit),
268 count number of uses, and narrow the set of registers we can
271 for (last
= this; last
->next_use
; last
= last
->next_use
)
274 IOR_COMPL_HARD_REG_SET (this_unavailable
,
275 reg_class_contents
[last
->cl
]);
280 IOR_COMPL_HARD_REG_SET (this_unavailable
,
281 reg_class_contents
[last
->cl
]);
283 if (this->need_caller_save_reg
)
284 IOR_HARD_REG_SET (this_unavailable
, call_used_reg_set
);
286 merge_overlapping_regs (bb
, &this_unavailable
, this);
288 /* Now potential_regs is a reasonable approximation, let's
289 have a closer look at each register still in there. */
290 for (new_reg
= 0; new_reg
< FIRST_PSEUDO_REGISTER
; new_reg
++)
292 int nregs
= hard_regno_nregs
[new_reg
][GET_MODE (*this->loc
)];
294 for (i
= nregs
- 1; i
>= 0; --i
)
295 if (TEST_HARD_REG_BIT (this_unavailable
, new_reg
+ i
)
296 || fixed_regs
[new_reg
+ i
]
297 || global_regs
[new_reg
+ i
]
298 /* Can't use regs which aren't saved by the prologue. */
299 || (! regs_ever_live
[new_reg
+ i
]
300 && ! call_used_regs
[new_reg
+ i
])
301 #ifdef LEAF_REGISTERS
302 /* We can't use a non-leaf register if we're in a
304 || (current_function_is_leaf
305 && !LEAF_REGISTERS
[new_reg
+ i
])
307 #ifdef HARD_REGNO_RENAME_OK
308 || ! HARD_REGNO_RENAME_OK (reg
+ i
, new_reg
+ i
)
315 /* See whether it accepts all modes that occur in
316 definition and uses. */
317 for (tmp
= this; tmp
; tmp
= tmp
->next_use
)
318 if (! HARD_REGNO_MODE_OK (new_reg
, GET_MODE (*tmp
->loc
))
319 || (tmp
->need_caller_save_reg
320 && ! (HARD_REGNO_CALL_PART_CLOBBERED
321 (reg
, GET_MODE (*tmp
->loc
)))
322 && (HARD_REGNO_CALL_PART_CLOBBERED
323 (new_reg
, GET_MODE (*tmp
->loc
)))))
327 if (tick
[best_new_reg
] > tick
[new_reg
])
328 best_new_reg
= new_reg
;
334 fprintf (dump_file
, "Register %s in insn %d",
335 reg_names
[reg
], INSN_UID (last
->insn
));
336 if (last
->need_caller_save_reg
)
337 fprintf (dump_file
, " crosses a call");
340 if (best_new_reg
== reg
)
342 tick
[reg
] = ++this_tick
;
344 fprintf (dump_file
, "; no available better choice\n");
348 do_replace (this, best_new_reg
);
349 tick
[best_new_reg
] = ++this_tick
;
350 regs_ever_live
[best_new_reg
] = 1;
353 fprintf (dump_file
, ", renamed as %s\n", reg_names
[best_new_reg
]);
356 obstack_free (&rename_obstack
, first_obj
);
359 obstack_free (&rename_obstack
, NULL
);
362 fputc ('\n', dump_file
);
364 count_or_remove_death_notes (NULL
, 1);
365 update_life_info (NULL
, UPDATE_LIFE_LOCAL
,
370 do_replace (struct du_chain
*chain
, int reg
)
374 unsigned int regno
= ORIGINAL_REGNO (*chain
->loc
);
375 struct reg_attrs
* attr
= REG_ATTRS (*chain
->loc
);
377 *chain
->loc
= gen_raw_REG (GET_MODE (*chain
->loc
), reg
);
378 if (regno
>= FIRST_PSEUDO_REGISTER
)
379 ORIGINAL_REGNO (*chain
->loc
) = regno
;
380 REG_ATTRS (*chain
->loc
) = attr
;
381 chain
= chain
->next_use
;
386 static struct du_chain
*open_chains
;
387 static struct du_chain
*closed_chains
;
390 scan_rtx_reg (rtx insn
, rtx
*loc
, enum reg_class cl
,
391 enum scan_actions action
, enum op_type type
, int earlyclobber
)
395 enum machine_mode mode
= GET_MODE (x
);
396 int this_regno
= REGNO (x
);
397 int this_nregs
= hard_regno_nregs
[this_regno
][mode
];
399 if (action
== mark_write
)
403 struct du_chain
*this
404 = obstack_alloc (&rename_obstack
, sizeof (struct du_chain
));
406 this->next_chain
= open_chains
;
410 this->need_caller_save_reg
= 0;
411 this->earlyclobber
= earlyclobber
;
417 if ((type
== OP_OUT
) != (action
== terminate_write
|| action
== mark_access
))
420 for (p
= &open_chains
; *p
;)
422 struct du_chain
*this = *p
;
424 /* Check if the chain has been terminated if it has then skip to
427 This can happen when we've already appended the location to
428 the chain in Step 3, but are trying to hide in-out operands
429 from terminate_write in Step 5. */
431 if (*this->loc
== cc0_rtx
)
432 p
= &this->next_chain
;
435 int regno
= REGNO (*this->loc
);
436 int nregs
= hard_regno_nregs
[regno
][GET_MODE (*this->loc
)];
437 int exact_match
= (regno
== this_regno
&& nregs
== this_nregs
);
439 if (regno
+ nregs
<= this_regno
440 || this_regno
+ this_nregs
<= regno
)
442 p
= &this->next_chain
;
446 if (action
== mark_read
|| action
== mark_access
)
448 gcc_assert (exact_match
);
450 /* ??? Class NO_REGS can happen if the md file makes use of
451 EXTRA_CONSTRAINTS to match registers. Which is arguably
452 wrong, but there we are. Since we know not what this may
453 be replaced with, terminate the chain. */
456 this = obstack_alloc (&rename_obstack
, sizeof (struct du_chain
));
458 this->next_chain
= (*p
)->next_chain
;
462 this->need_caller_save_reg
= 0;
470 if (action
!= terminate_overlapping_read
|| ! exact_match
)
472 struct du_chain
*next
= this->next_chain
;
474 /* Whether the terminated chain can be used for renaming
475 depends on the action and this being an exact match.
476 In either case, we remove this element from open_chains. */
478 if ((action
== terminate_dead
|| action
== terminate_write
)
481 this->next_chain
= closed_chains
;
482 closed_chains
= this;
485 "Closing chain %s at insn %d (%s)\n",
486 reg_names
[REGNO (*this->loc
)], INSN_UID (insn
),
487 scan_actions_name
[(int) action
]);
493 "Discarding chain %s at insn %d (%s)\n",
494 reg_names
[REGNO (*this->loc
)], INSN_UID (insn
),
495 scan_actions_name
[(int) action
]);
500 p
= &this->next_chain
;
505 /* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
506 BASE_REG_CLASS depending on how the register is being considered. */
509 scan_rtx_address (rtx insn
, rtx
*loc
, enum reg_class cl
,
510 enum scan_actions action
, enum machine_mode mode
)
513 RTX_CODE code
= GET_CODE (x
);
517 if (action
== mark_write
|| action
== mark_access
)
524 rtx orig_op0
= XEXP (x
, 0);
525 rtx orig_op1
= XEXP (x
, 1);
526 RTX_CODE code0
= GET_CODE (orig_op0
);
527 RTX_CODE code1
= GET_CODE (orig_op1
);
532 enum rtx_code index_code
= SCRATCH
;
534 if (GET_CODE (op0
) == SUBREG
)
536 op0
= SUBREG_REG (op0
);
537 code0
= GET_CODE (op0
);
540 if (GET_CODE (op1
) == SUBREG
)
542 op1
= SUBREG_REG (op1
);
543 code1
= GET_CODE (op1
);
546 if (code0
== MULT
|| code0
== SIGN_EXTEND
|| code0
== TRUNCATE
547 || code0
== ZERO_EXTEND
|| code1
== MEM
)
551 index_code
= GET_CODE (*locI
);
553 else if (code1
== MULT
|| code1
== SIGN_EXTEND
|| code1
== TRUNCATE
554 || code1
== ZERO_EXTEND
|| code0
== MEM
)
558 index_code
= GET_CODE (*locI
);
560 else if (code0
== CONST_INT
|| code0
== CONST
561 || code0
== SYMBOL_REF
|| code0
== LABEL_REF
)
564 index_code
= GET_CODE (XEXP (x
, 0));
566 else if (code1
== CONST_INT
|| code1
== CONST
567 || code1
== SYMBOL_REF
|| code1
== LABEL_REF
)
570 index_code
= GET_CODE (XEXP (x
, 1));
572 else if (code0
== REG
&& code1
== REG
)
575 unsigned regno0
= REGNO (op0
), regno1
= REGNO (op1
);
577 if (REGNO_OK_FOR_INDEX_P (regno0
)
578 && regno_ok_for_base_p (regno1
, mode
, PLUS
, REG
))
580 else if (REGNO_OK_FOR_INDEX_P (regno1
)
581 && regno_ok_for_base_p (regno0
, mode
, PLUS
, REG
))
583 else if (regno_ok_for_base_p (regno1
, mode
, PLUS
, REG
))
585 else if (regno_ok_for_base_p (regno0
, mode
, PLUS
, REG
))
587 else if (REGNO_OK_FOR_INDEX_P (regno1
))
592 locI
= &XEXP (x
, index_op
);
593 locB
= &XEXP (x
, !index_op
);
594 index_code
= GET_CODE (*locI
);
596 else if (code0
== REG
)
600 index_code
= GET_CODE (*locI
);
602 else if (code1
== REG
)
606 index_code
= GET_CODE (*locI
);
610 scan_rtx_address (insn
, locI
, INDEX_REG_CLASS
, action
, mode
);
612 scan_rtx_address (insn
, locB
, base_reg_class (mode
, PLUS
, index_code
),
625 /* If the target doesn't claim to handle autoinc, this must be
626 something special, like a stack push. Kill this chain. */
627 action
= terminate_all_read
;
632 scan_rtx_address (insn
, &XEXP (x
, 0),
633 base_reg_class (GET_MODE (x
), MEM
, SCRATCH
), action
,
638 scan_rtx_reg (insn
, loc
, cl
, action
, OP_IN
, 0);
645 fmt
= GET_RTX_FORMAT (code
);
646 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
649 scan_rtx_address (insn
, &XEXP (x
, i
), cl
, action
, mode
);
650 else if (fmt
[i
] == 'E')
651 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
652 scan_rtx_address (insn
, &XVECEXP (x
, i
, j
), cl
, action
, mode
);
657 scan_rtx (rtx insn
, rtx
*loc
, enum reg_class cl
,
658 enum scan_actions action
, enum op_type type
, int earlyclobber
)
662 enum rtx_code code
= GET_CODE (x
);
679 scan_rtx_reg (insn
, loc
, cl
, action
, type
, earlyclobber
);
683 scan_rtx_address (insn
, &XEXP (x
, 0),
684 base_reg_class (GET_MODE (x
), MEM
, SCRATCH
), action
,
689 scan_rtx (insn
, &SET_SRC (x
), cl
, action
, OP_IN
, 0);
690 scan_rtx (insn
, &SET_DEST (x
), cl
, action
,
691 GET_CODE (PATTERN (insn
)) == COND_EXEC
? OP_INOUT
: OP_OUT
, 0);
694 case STRICT_LOW_PART
:
695 scan_rtx (insn
, &XEXP (x
, 0), cl
, action
, OP_INOUT
, earlyclobber
);
700 scan_rtx (insn
, &XEXP (x
, 0), cl
, action
,
701 type
== OP_IN
? OP_IN
: OP_INOUT
, earlyclobber
);
702 scan_rtx (insn
, &XEXP (x
, 1), cl
, action
, OP_IN
, 0);
703 scan_rtx (insn
, &XEXP (x
, 2), cl
, action
, OP_IN
, 0);
712 /* Should only happen inside MEM. */
716 scan_rtx (insn
, &SET_DEST (x
), cl
, action
,
717 GET_CODE (PATTERN (insn
)) == COND_EXEC
? OP_INOUT
: OP_OUT
, 0);
721 scan_rtx (insn
, &XEXP (x
, 0), cl
, action
, type
, 0);
723 scan_rtx (insn
, &XEXP (x
, 1), cl
, action
, type
, 0);
730 fmt
= GET_RTX_FORMAT (code
);
731 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
734 scan_rtx (insn
, &XEXP (x
, i
), cl
, action
, type
, 0);
735 else if (fmt
[i
] == 'E')
736 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
737 scan_rtx (insn
, &XVECEXP (x
, i
, j
), cl
, action
, type
, 0);
741 /* Build def/use chain. */
743 static struct du_chain
*
744 build_def_use (basic_block bb
)
748 open_chains
= closed_chains
= NULL
;
750 for (insn
= BB_HEAD (bb
); ; insn
= NEXT_INSN (insn
))
756 rtx old_operands
[MAX_RECOG_OPERANDS
];
757 rtx old_dups
[MAX_DUP_OPERANDS
];
762 /* Process the insn, determining its effect on the def-use
763 chains. We perform the following steps with the register
764 references in the insn:
765 (1) Any read that overlaps an open chain, but doesn't exactly
766 match, causes that chain to be closed. We can't deal
768 (2) Any read outside an operand causes any chain it overlaps
769 with to be closed, since we can't replace it.
770 (3) Any read inside an operand is added if there's already
771 an open chain for it.
772 (4) For any REG_DEAD note we find, close open chains that
774 (5) For any write we find, close open chains that overlap it.
775 (6) For any write we find in an operand, make a new chain.
776 (7) For any REG_UNUSED, close any chains we just opened. */
778 icode
= recog_memoized (insn
);
780 if (! constrain_operands (1))
781 fatal_insn_not_found (insn
);
782 preprocess_constraints ();
783 alt
= which_alternative
;
784 n_ops
= recog_data
.n_operands
;
786 /* Simplify the code below by rewriting things to reflect
787 matching constraints. Also promote OP_OUT to OP_INOUT
788 in predicated instructions. */
790 predicated
= GET_CODE (PATTERN (insn
)) == COND_EXEC
;
791 for (i
= 0; i
< n_ops
; ++i
)
793 int matches
= recog_op_alt
[i
][alt
].matches
;
795 recog_op_alt
[i
][alt
].cl
= recog_op_alt
[matches
][alt
].cl
;
796 if (matches
>= 0 || recog_op_alt
[i
][alt
].matched
>= 0
797 || (predicated
&& recog_data
.operand_type
[i
] == OP_OUT
))
798 recog_data
.operand_type
[i
] = OP_INOUT
;
801 /* Step 1: Close chains for which we have overlapping reads. */
802 for (i
= 0; i
< n_ops
; i
++)
803 scan_rtx (insn
, recog_data
.operand_loc
[i
],
804 NO_REGS
, terminate_overlapping_read
,
805 recog_data
.operand_type
[i
], 0);
807 /* Step 2: Close chains for which we have reads outside operands.
808 We do this by munging all operands into CC0, and closing
809 everything remaining. */
811 for (i
= 0; i
< n_ops
; i
++)
813 old_operands
[i
] = recog_data
.operand
[i
];
814 /* Don't squash match_operator or match_parallel here, since
815 we don't know that all of the contained registers are
816 reachable by proper operands. */
817 if (recog_data
.constraints
[i
][0] == '\0')
819 *recog_data
.operand_loc
[i
] = cc0_rtx
;
821 for (i
= 0; i
< recog_data
.n_dups
; i
++)
823 int dup_num
= recog_data
.dup_num
[i
];
825 old_dups
[i
] = *recog_data
.dup_loc
[i
];
826 *recog_data
.dup_loc
[i
] = cc0_rtx
;
828 /* For match_dup of match_operator or match_parallel, share
829 them, so that we don't miss changes in the dup. */
831 && insn_data
[icode
].operand
[dup_num
].eliminable
== 0)
832 old_dups
[i
] = recog_data
.operand
[dup_num
];
835 scan_rtx (insn
, &PATTERN (insn
), NO_REGS
, terminate_all_read
,
838 for (i
= 0; i
< recog_data
.n_dups
; i
++)
839 *recog_data
.dup_loc
[i
] = old_dups
[i
];
840 for (i
= 0; i
< n_ops
; i
++)
841 *recog_data
.operand_loc
[i
] = old_operands
[i
];
843 /* Step 2B: Can't rename function call argument registers. */
844 if (CALL_P (insn
) && CALL_INSN_FUNCTION_USAGE (insn
))
845 scan_rtx (insn
, &CALL_INSN_FUNCTION_USAGE (insn
),
846 NO_REGS
, terminate_all_read
, OP_IN
, 0);
848 /* Step 2C: Can't rename asm operands that were originally
850 if (asm_noperands (PATTERN (insn
)) > 0)
851 for (i
= 0; i
< n_ops
; i
++)
853 rtx
*loc
= recog_data
.operand_loc
[i
];
857 && REGNO (op
) == ORIGINAL_REGNO (op
)
858 && (recog_data
.operand_type
[i
] == OP_IN
859 || recog_data
.operand_type
[i
] == OP_INOUT
))
860 scan_rtx (insn
, loc
, NO_REGS
, terminate_all_read
, OP_IN
, 0);
863 /* Step 3: Append to chains for reads inside operands. */
864 for (i
= 0; i
< n_ops
+ recog_data
.n_dups
; i
++)
866 int opn
= i
< n_ops
? i
: recog_data
.dup_num
[i
- n_ops
];
867 rtx
*loc
= (i
< n_ops
868 ? recog_data
.operand_loc
[opn
]
869 : recog_data
.dup_loc
[i
- n_ops
]);
870 enum reg_class cl
= recog_op_alt
[opn
][alt
].cl
;
871 enum op_type type
= recog_data
.operand_type
[opn
];
873 /* Don't scan match_operand here, since we've no reg class
874 information to pass down. Any operands that we could
875 substitute in will be represented elsewhere. */
876 if (recog_data
.constraints
[opn
][0] == '\0')
879 if (recog_op_alt
[opn
][alt
].is_address
)
880 scan_rtx_address (insn
, loc
, cl
, mark_read
, VOIDmode
);
882 scan_rtx (insn
, loc
, cl
, mark_read
, type
, 0);
885 /* Step 3B: Record updates for regs in REG_INC notes, and
886 source regs in REG_FRAME_RELATED_EXPR notes. */
887 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
888 if (REG_NOTE_KIND (note
) == REG_INC
889 || REG_NOTE_KIND (note
) == REG_FRAME_RELATED_EXPR
)
890 scan_rtx (insn
, &XEXP (note
, 0), ALL_REGS
, mark_read
,
893 /* Step 4: Close chains for registers that die here. */
894 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
895 if (REG_NOTE_KIND (note
) == REG_DEAD
)
896 scan_rtx (insn
, &XEXP (note
, 0), NO_REGS
, terminate_dead
,
899 /* Step 4B: If this is a call, any chain live at this point
900 requires a caller-saved reg. */
904 for (p
= open_chains
; p
; p
= p
->next_chain
)
905 p
->need_caller_save_reg
= 1;
908 /* Step 5: Close open chains that overlap writes. Similar to
909 step 2, we hide in-out operands, since we do not want to
910 close these chains. */
912 for (i
= 0; i
< n_ops
; i
++)
914 old_operands
[i
] = recog_data
.operand
[i
];
915 if (recog_data
.operand_type
[i
] == OP_INOUT
)
916 *recog_data
.operand_loc
[i
] = cc0_rtx
;
918 for (i
= 0; i
< recog_data
.n_dups
; i
++)
920 int opn
= recog_data
.dup_num
[i
];
921 old_dups
[i
] = *recog_data
.dup_loc
[i
];
922 if (recog_data
.operand_type
[opn
] == OP_INOUT
)
923 *recog_data
.dup_loc
[i
] = cc0_rtx
;
926 scan_rtx (insn
, &PATTERN (insn
), NO_REGS
, terminate_write
, OP_IN
, 0);
928 for (i
= 0; i
< recog_data
.n_dups
; i
++)
929 *recog_data
.dup_loc
[i
] = old_dups
[i
];
930 for (i
= 0; i
< n_ops
; i
++)
931 *recog_data
.operand_loc
[i
] = old_operands
[i
];
933 /* Step 6: Begin new chains for writes inside operands. */
934 /* ??? Many targets have output constraints on the SET_DEST
935 of a call insn, which is stupid, since these are certainly
936 ABI defined hard registers. Don't change calls at all.
937 Similarly take special care for asm statement that originally
938 referenced hard registers. */
939 if (asm_noperands (PATTERN (insn
)) > 0)
941 for (i
= 0; i
< n_ops
; i
++)
942 if (recog_data
.operand_type
[i
] == OP_OUT
)
944 rtx
*loc
= recog_data
.operand_loc
[i
];
946 enum reg_class cl
= recog_op_alt
[i
][alt
].cl
;
949 && REGNO (op
) == ORIGINAL_REGNO (op
))
952 scan_rtx (insn
, loc
, cl
, mark_write
, OP_OUT
,
953 recog_op_alt
[i
][alt
].earlyclobber
);
956 else if (!CALL_P (insn
))
957 for (i
= 0; i
< n_ops
+ recog_data
.n_dups
; i
++)
959 int opn
= i
< n_ops
? i
: recog_data
.dup_num
[i
- n_ops
];
960 rtx
*loc
= (i
< n_ops
961 ? recog_data
.operand_loc
[opn
]
962 : recog_data
.dup_loc
[i
- n_ops
]);
963 enum reg_class cl
= recog_op_alt
[opn
][alt
].cl
;
965 if (recog_data
.operand_type
[opn
] == OP_OUT
)
966 scan_rtx (insn
, loc
, cl
, mark_write
, OP_OUT
,
967 recog_op_alt
[opn
][alt
].earlyclobber
);
970 /* Step 6B: Record destination regs in REG_FRAME_RELATED_EXPR
972 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
973 if (REG_NOTE_KIND (note
) == REG_FRAME_RELATED_EXPR
)
974 scan_rtx (insn
, &XEXP (note
, 0), ALL_REGS
, mark_access
,
977 /* Step 7: Close chains for registers that were never
979 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
980 if (REG_NOTE_KIND (note
) == REG_UNUSED
)
981 scan_rtx (insn
, &XEXP (note
, 0), NO_REGS
, terminate_dead
,
984 if (insn
== BB_END (bb
))
988 /* Since we close every chain when we find a REG_DEAD note, anything that
989 is still open lives past the basic block, so it can't be renamed. */
990 return closed_chains
;
993 /* Dump all def/use chains in CHAINS to DUMP_FILE. They are
994 printed in reverse order as that's how we build them. */
997 dump_def_use_chain (struct du_chain
*chains
)
1001 struct du_chain
*this = chains
;
1002 int r
= REGNO (*this->loc
);
1003 int nregs
= hard_regno_nregs
[r
][GET_MODE (*this->loc
)];
1004 fprintf (dump_file
, "Register %s (%d):", reg_names
[r
], nregs
);
1007 fprintf (dump_file
, " %d [%s]", INSN_UID (this->insn
),
1008 reg_class_names
[this->cl
]);
1009 this = this->next_use
;
1011 fprintf (dump_file
, "\n");
1012 chains
= chains
->next_chain
;
1016 /* The following code does forward propagation of hard register copies.
1017 The object is to eliminate as many dependencies as possible, so that
1018 we have the most scheduling freedom. As a side effect, we also clean
1019 up some silly register allocation decisions made by reload. This
1020 code may be obsoleted by a new register allocator. */
1022 /* For each register, we have a list of registers that contain the same
1023 value. The OLDEST_REGNO field points to the head of the list, and
1024 the NEXT_REGNO field runs through the list. The MODE field indicates
1025 what mode the data is known to be in; this field is VOIDmode when the
1026 register is not known to contain valid data. */
1028 struct value_data_entry
1030 enum machine_mode mode
;
1031 unsigned int oldest_regno
;
1032 unsigned int next_regno
;
1037 struct value_data_entry e
[FIRST_PSEUDO_REGISTER
];
1038 unsigned int max_value_regs
;
1041 static void kill_value_one_regno (unsigned, struct value_data
*);
1042 static void kill_value_regno (unsigned, unsigned, struct value_data
*);
1043 static void kill_value (rtx
, struct value_data
*);
1044 static void set_value_regno (unsigned, enum machine_mode
, struct value_data
*);
1045 static void init_value_data (struct value_data
*);
1046 static void kill_clobbered_value (rtx
, rtx
, void *);
1047 static void kill_set_value (rtx
, rtx
, void *);
1048 static int kill_autoinc_value (rtx
*, void *);
1049 static void copy_value (rtx
, rtx
, struct value_data
*);
1050 static bool mode_change_ok (enum machine_mode
, enum machine_mode
,
1052 static rtx
maybe_mode_change (enum machine_mode
, enum machine_mode
,
1053 enum machine_mode
, unsigned int, unsigned int);
1054 static rtx
find_oldest_value_reg (enum reg_class
, rtx
, struct value_data
*);
1055 static bool replace_oldest_value_reg (rtx
*, enum reg_class
, rtx
,
1056 struct value_data
*);
1057 static bool replace_oldest_value_addr (rtx
*, enum reg_class
,
1058 enum machine_mode
, rtx
,
1059 struct value_data
*);
1060 static bool replace_oldest_value_mem (rtx
, rtx
, struct value_data
*);
1061 static bool copyprop_hardreg_forward_1 (basic_block
, struct value_data
*);
1062 extern void debug_value_data (struct value_data
*);
1063 #ifdef ENABLE_CHECKING
1064 static void validate_value_data (struct value_data
*);
1067 /* Kill register REGNO. This involves removing it from any value
1068 lists, and resetting the value mode to VOIDmode. This is only a
1069 helper function; it does not handle any hard registers overlapping
1073 kill_value_one_regno (unsigned int regno
, struct value_data
*vd
)
1075 unsigned int i
, next
;
1077 if (vd
->e
[regno
].oldest_regno
!= regno
)
1079 for (i
= vd
->e
[regno
].oldest_regno
;
1080 vd
->e
[i
].next_regno
!= regno
;
1081 i
= vd
->e
[i
].next_regno
)
1083 vd
->e
[i
].next_regno
= vd
->e
[regno
].next_regno
;
1085 else if ((next
= vd
->e
[regno
].next_regno
) != INVALID_REGNUM
)
1087 for (i
= next
; i
!= INVALID_REGNUM
; i
= vd
->e
[i
].next_regno
)
1088 vd
->e
[i
].oldest_regno
= next
;
1091 vd
->e
[regno
].mode
= VOIDmode
;
1092 vd
->e
[regno
].oldest_regno
= regno
;
1093 vd
->e
[regno
].next_regno
= INVALID_REGNUM
;
1095 #ifdef ENABLE_CHECKING
1096 validate_value_data (vd
);
1100 /* Kill the value in register REGNO for NREGS, and any other registers
1101 whose values overlap. */
1104 kill_value_regno (unsigned int regno
, unsigned int nregs
,
1105 struct value_data
*vd
)
1109 /* Kill the value we're told to kill. */
1110 for (j
= 0; j
< nregs
; ++j
)
1111 kill_value_one_regno (regno
+ j
, vd
);
1113 /* Kill everything that overlapped what we're told to kill. */
1114 if (regno
< vd
->max_value_regs
)
1117 j
= regno
- vd
->max_value_regs
;
1118 for (; j
< regno
; ++j
)
1121 if (vd
->e
[j
].mode
== VOIDmode
)
1123 n
= hard_regno_nregs
[j
][vd
->e
[j
].mode
];
1125 for (i
= 0; i
< n
; ++i
)
1126 kill_value_one_regno (j
+ i
, vd
);
1130 /* Kill X. This is a convenience function wrapping kill_value_regno
1131 so that we mind the mode the register is in. */
1134 kill_value (rtx x
, struct value_data
*vd
)
1138 if (GET_CODE (x
) == SUBREG
)
1140 x
= simplify_subreg (GET_MODE (x
), SUBREG_REG (x
),
1141 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
1143 x
= SUBREG_REG (orig_rtx
);
1147 unsigned int regno
= REGNO (x
);
1148 unsigned int n
= hard_regno_nregs
[regno
][GET_MODE (x
)];
1150 kill_value_regno (regno
, n
, vd
);
1154 /* Remember that REGNO is valid in MODE. */
1157 set_value_regno (unsigned int regno
, enum machine_mode mode
,
1158 struct value_data
*vd
)
1162 vd
->e
[regno
].mode
= mode
;
1164 nregs
= hard_regno_nregs
[regno
][mode
];
1165 if (nregs
> vd
->max_value_regs
)
1166 vd
->max_value_regs
= nregs
;
1169 /* Initialize VD such that there are no known relationships between regs. */
1172 init_value_data (struct value_data
*vd
)
1175 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1177 vd
->e
[i
].mode
= VOIDmode
;
1178 vd
->e
[i
].oldest_regno
= i
;
1179 vd
->e
[i
].next_regno
= INVALID_REGNUM
;
1181 vd
->max_value_regs
= 0;
1184 /* Called through note_stores. If X is clobbered, kill its value. */
1187 kill_clobbered_value (rtx x
, rtx set
, void *data
)
1189 struct value_data
*vd
= data
;
1190 if (GET_CODE (set
) == CLOBBER
)
1194 /* Called through note_stores. If X is set, not clobbered, kill its
1195 current value and install it as the root of its own value list. */
1198 kill_set_value (rtx x
, rtx set
, void *data
)
1200 struct value_data
*vd
= data
;
1201 if (GET_CODE (set
) != CLOBBER
)
1205 set_value_regno (REGNO (x
), GET_MODE (x
), vd
);
1209 /* Called through for_each_rtx. Kill any register used as the base of an
1210 auto-increment expression, and install that register as the root of its
1214 kill_autoinc_value (rtx
*px
, void *data
)
1217 struct value_data
*vd
= data
;
1219 if (GET_RTX_CLASS (GET_CODE (x
)) == RTX_AUTOINC
)
1223 set_value_regno (REGNO (x
), Pmode
, vd
);
1230 /* Assert that SRC has been copied to DEST. Adjust the data structures
1231 to reflect that SRC contains an older copy of the shared value. */
1234 copy_value (rtx dest
, rtx src
, struct value_data
*vd
)
1236 unsigned int dr
= REGNO (dest
);
1237 unsigned int sr
= REGNO (src
);
1238 unsigned int dn
, sn
;
1241 /* ??? At present, it's possible to see noop sets. It'd be nice if
1242 this were cleaned up beforehand... */
1246 /* Do not propagate copies to the stack pointer, as that can leave
1247 memory accesses with no scheduling dependency on the stack update. */
1248 if (dr
== STACK_POINTER_REGNUM
)
1251 /* Likewise with the frame pointer, if we're using one. */
1252 if (frame_pointer_needed
&& dr
== HARD_FRAME_POINTER_REGNUM
)
1255 /* Do not propagate copies to fixed or global registers, patterns
1256 can be relying to see particular fixed register or users can
1257 expect the chosen global register in asm. */
1258 if (fixed_regs
[dr
] || global_regs
[dr
])
1261 /* If SRC and DEST overlap, don't record anything. */
1262 dn
= hard_regno_nregs
[dr
][GET_MODE (dest
)];
1263 sn
= hard_regno_nregs
[sr
][GET_MODE (dest
)];
1264 if ((dr
> sr
&& dr
< sr
+ sn
)
1265 || (sr
> dr
&& sr
< dr
+ dn
))
1268 /* If SRC had no assigned mode (i.e. we didn't know it was live)
1269 assign it now and assume the value came from an input argument
1271 if (vd
->e
[sr
].mode
== VOIDmode
)
1272 set_value_regno (sr
, vd
->e
[dr
].mode
, vd
);
1274 /* If we are narrowing the input to a smaller number of hard regs,
1275 and it is in big endian, we are really extracting a high part.
1276 Since we generally associate a low part of a value with the value itself,
1277 we must not do the same for the high part.
1278 Note we can still get low parts for the same mode combination through
1279 a two-step copy involving differently sized hard regs.
1280 Assume hard regs fr* are 32 bits bits each, while r* are 64 bits each:
1281 (set (reg:DI r0) (reg:DI fr0))
1282 (set (reg:SI fr2) (reg:SI r0))
1283 loads the low part of (reg:DI fr0) - i.e. fr1 - into fr2, while:
1284 (set (reg:SI fr2) (reg:SI fr0))
1285 loads the high part of (reg:DI fr0) into fr2.
1287 We can't properly represent the latter case in our tables, so don't
1288 record anything then. */
1289 else if (sn
< (unsigned int) hard_regno_nregs
[sr
][vd
->e
[sr
].mode
]
1290 && (GET_MODE_SIZE (vd
->e
[sr
].mode
) > UNITS_PER_WORD
1291 ? WORDS_BIG_ENDIAN
: BYTES_BIG_ENDIAN
))
1294 /* If SRC had been assigned a mode narrower than the copy, we can't
1295 link DEST into the chain, because not all of the pieces of the
1296 copy came from oldest_regno. */
1297 else if (sn
> (unsigned int) hard_regno_nregs
[sr
][vd
->e
[sr
].mode
])
1300 /* Link DR at the end of the value chain used by SR. */
1302 vd
->e
[dr
].oldest_regno
= vd
->e
[sr
].oldest_regno
;
1304 for (i
= sr
; vd
->e
[i
].next_regno
!= INVALID_REGNUM
; i
= vd
->e
[i
].next_regno
)
1306 vd
->e
[i
].next_regno
= dr
;
1308 #ifdef ENABLE_CHECKING
1309 validate_value_data (vd
);
1313 /* Return true if a mode change from ORIG to NEW is allowed for REGNO. */
1316 mode_change_ok (enum machine_mode orig_mode
, enum machine_mode new_mode
,
1317 unsigned int regno ATTRIBUTE_UNUSED
)
1319 if (GET_MODE_SIZE (orig_mode
) < GET_MODE_SIZE (new_mode
))
1322 #ifdef CANNOT_CHANGE_MODE_CLASS
1323 return !REG_CANNOT_CHANGE_MODE_P (regno
, orig_mode
, new_mode
);
1329 /* Register REGNO was originally set in ORIG_MODE. It - or a copy of it -
1330 was copied in COPY_MODE to COPY_REGNO, and then COPY_REGNO was accessed
1332 Return a NEW_MODE rtx for REGNO if that's OK, otherwise return NULL_RTX. */
1335 maybe_mode_change (enum machine_mode orig_mode
, enum machine_mode copy_mode
,
1336 enum machine_mode new_mode
, unsigned int regno
,
1337 unsigned int copy_regno ATTRIBUTE_UNUSED
)
1339 if (orig_mode
== new_mode
)
1340 return gen_rtx_raw_REG (new_mode
, regno
);
1341 else if (mode_change_ok (orig_mode
, new_mode
, regno
))
1343 int copy_nregs
= hard_regno_nregs
[copy_regno
][copy_mode
];
1344 int use_nregs
= hard_regno_nregs
[copy_regno
][new_mode
];
1346 = GET_MODE_SIZE (copy_mode
) / copy_nregs
* (copy_nregs
- use_nregs
);
1348 = GET_MODE_SIZE (orig_mode
) - GET_MODE_SIZE (new_mode
) - copy_offset
;
1349 int byteoffset
= offset
% UNITS_PER_WORD
;
1350 int wordoffset
= offset
- byteoffset
;
1352 offset
= ((WORDS_BIG_ENDIAN
? wordoffset
: 0)
1353 + (BYTES_BIG_ENDIAN
? byteoffset
: 0));
1354 return gen_rtx_raw_REG (new_mode
,
1355 regno
+ subreg_regno_offset (regno
, orig_mode
,
1362 /* Find the oldest copy of the value contained in REGNO that is in
1363 register class CL and has mode MODE. If found, return an rtx
1364 of that oldest register, otherwise return NULL. */
1367 find_oldest_value_reg (enum reg_class cl
, rtx reg
, struct value_data
*vd
)
1369 unsigned int regno
= REGNO (reg
);
1370 enum machine_mode mode
= GET_MODE (reg
);
1373 /* If we are accessing REG in some mode other that what we set it in,
1374 make sure that the replacement is valid. In particular, consider
1375 (set (reg:DI r11) (...))
1376 (set (reg:SI r9) (reg:SI r11))
1377 (set (reg:SI r10) (...))
1378 (set (...) (reg:DI r9))
1379 Replacing r9 with r11 is invalid. */
1380 if (mode
!= vd
->e
[regno
].mode
)
1382 if (hard_regno_nregs
[regno
][mode
]
1383 > hard_regno_nregs
[regno
][vd
->e
[regno
].mode
])
1387 for (i
= vd
->e
[regno
].oldest_regno
; i
!= regno
; i
= vd
->e
[i
].next_regno
)
1389 enum machine_mode oldmode
= vd
->e
[i
].mode
;
1393 for (last
= i
; last
< i
+ hard_regno_nregs
[i
][mode
]; last
++)
1394 if (!TEST_HARD_REG_BIT (reg_class_contents
[cl
], last
))
1397 new = maybe_mode_change (oldmode
, vd
->e
[regno
].mode
, mode
, i
, regno
);
1400 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (reg
);
1401 REG_ATTRS (new) = REG_ATTRS (reg
);
1409 /* If possible, replace the register at *LOC with the oldest register
1410 in register class CL. Return true if successfully replaced. */
1413 replace_oldest_value_reg (rtx
*loc
, enum reg_class cl
, rtx insn
,
1414 struct value_data
*vd
)
1416 rtx
new = find_oldest_value_reg (cl
, *loc
, vd
);
1420 fprintf (dump_file
, "insn %u: replaced reg %u with %u\n",
1421 INSN_UID (insn
), REGNO (*loc
), REGNO (new));
1423 validate_change (insn
, loc
, new, 1);
1429 /* Similar to replace_oldest_value_reg, but *LOC contains an address.
1430 Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
1431 BASE_REG_CLASS depending on how the register is being considered. */
1434 replace_oldest_value_addr (rtx
*loc
, enum reg_class cl
,
1435 enum machine_mode mode
, rtx insn
,
1436 struct value_data
*vd
)
1439 RTX_CODE code
= GET_CODE (x
);
1442 bool changed
= false;
1448 rtx orig_op0
= XEXP (x
, 0);
1449 rtx orig_op1
= XEXP (x
, 1);
1450 RTX_CODE code0
= GET_CODE (orig_op0
);
1451 RTX_CODE code1
= GET_CODE (orig_op1
);
1456 enum rtx_code index_code
= SCRATCH
;
1458 if (GET_CODE (op0
) == SUBREG
)
1460 op0
= SUBREG_REG (op0
);
1461 code0
= GET_CODE (op0
);
1464 if (GET_CODE (op1
) == SUBREG
)
1466 op1
= SUBREG_REG (op1
);
1467 code1
= GET_CODE (op1
);
1470 if (code0
== MULT
|| code0
== SIGN_EXTEND
|| code0
== TRUNCATE
1471 || code0
== ZERO_EXTEND
|| code1
== MEM
)
1473 locI
= &XEXP (x
, 0);
1474 locB
= &XEXP (x
, 1);
1475 index_code
= GET_CODE (*locI
);
1477 else if (code1
== MULT
|| code1
== SIGN_EXTEND
|| code1
== TRUNCATE
1478 || code1
== ZERO_EXTEND
|| code0
== MEM
)
1480 locI
= &XEXP (x
, 1);
1481 locB
= &XEXP (x
, 0);
1482 index_code
= GET_CODE (*locI
);
1484 else if (code0
== CONST_INT
|| code0
== CONST
1485 || code0
== SYMBOL_REF
|| code0
== LABEL_REF
)
1487 locB
= &XEXP (x
, 1);
1488 index_code
= GET_CODE (XEXP (x
, 0));
1490 else if (code1
== CONST_INT
|| code1
== CONST
1491 || code1
== SYMBOL_REF
|| code1
== LABEL_REF
)
1493 locB
= &XEXP (x
, 0);
1494 index_code
= GET_CODE (XEXP (x
, 1));
1496 else if (code0
== REG
&& code1
== REG
)
1499 unsigned regno0
= REGNO (op0
), regno1
= REGNO (op1
);
1501 if (REGNO_OK_FOR_INDEX_P (regno0
)
1502 && regno_ok_for_base_p (regno1
, mode
, PLUS
, REG
))
1504 else if (REGNO_OK_FOR_INDEX_P (regno1
)
1505 && regno_ok_for_base_p (regno0
, mode
, PLUS
, REG
))
1507 else if (regno_ok_for_base_p (regno1
, mode
, PLUS
, REG
))
1509 else if (regno_ok_for_base_p (regno0
, mode
, PLUS
, REG
))
1511 else if (REGNO_OK_FOR_INDEX_P (regno1
))
1516 locI
= &XEXP (x
, index_op
);
1517 locB
= &XEXP (x
, !index_op
);
1518 index_code
= GET_CODE (*locI
);
1520 else if (code0
== REG
)
1522 locI
= &XEXP (x
, 0);
1523 locB
= &XEXP (x
, 1);
1524 index_code
= GET_CODE (*locI
);
1526 else if (code1
== REG
)
1528 locI
= &XEXP (x
, 1);
1529 locB
= &XEXP (x
, 0);
1530 index_code
= GET_CODE (*locI
);
1534 changed
|= replace_oldest_value_addr (locI
, INDEX_REG_CLASS
, mode
,
1537 changed
|= replace_oldest_value_addr (locB
,
1538 base_reg_class (mode
, PLUS
,
1553 return replace_oldest_value_mem (x
, insn
, vd
);
1556 return replace_oldest_value_reg (loc
, cl
, insn
, vd
);
1562 fmt
= GET_RTX_FORMAT (code
);
1563 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1566 changed
|= replace_oldest_value_addr (&XEXP (x
, i
), cl
, mode
,
1568 else if (fmt
[i
] == 'E')
1569 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1570 changed
|= replace_oldest_value_addr (&XVECEXP (x
, i
, j
), cl
,
1577 /* Similar to replace_oldest_value_reg, but X contains a memory. */
1580 replace_oldest_value_mem (rtx x
, rtx insn
, struct value_data
*vd
)
1582 return replace_oldest_value_addr (&XEXP (x
, 0),
1583 base_reg_class (GET_MODE (x
), MEM
,
1585 GET_MODE (x
), insn
, vd
);
1588 /* Perform the forward copy propagation on basic block BB. */
1591 copyprop_hardreg_forward_1 (basic_block bb
, struct value_data
*vd
)
1593 bool changed
= false;
1596 for (insn
= BB_HEAD (bb
); ; insn
= NEXT_INSN (insn
))
1598 int n_ops
, i
, alt
, predicated
;
1599 bool is_asm
, any_replacements
;
1601 bool replaced
[MAX_RECOG_OPERANDS
];
1603 if (! INSN_P (insn
))
1605 if (insn
== BB_END (bb
))
1611 set
= single_set (insn
);
1612 extract_insn (insn
);
1613 if (! constrain_operands (1))
1614 fatal_insn_not_found (insn
);
1615 preprocess_constraints ();
1616 alt
= which_alternative
;
1617 n_ops
= recog_data
.n_operands
;
1618 is_asm
= asm_noperands (PATTERN (insn
)) >= 0;
1620 /* Simplify the code below by rewriting things to reflect
1621 matching constraints. Also promote OP_OUT to OP_INOUT
1622 in predicated instructions. */
1624 predicated
= GET_CODE (PATTERN (insn
)) == COND_EXEC
;
1625 for (i
= 0; i
< n_ops
; ++i
)
1627 int matches
= recog_op_alt
[i
][alt
].matches
;
1629 recog_op_alt
[i
][alt
].cl
= recog_op_alt
[matches
][alt
].cl
;
1630 if (matches
>= 0 || recog_op_alt
[i
][alt
].matched
>= 0
1631 || (predicated
&& recog_data
.operand_type
[i
] == OP_OUT
))
1632 recog_data
.operand_type
[i
] = OP_INOUT
;
1635 /* For each earlyclobber operand, zap the value data. */
1636 for (i
= 0; i
< n_ops
; i
++)
1637 if (recog_op_alt
[i
][alt
].earlyclobber
)
1638 kill_value (recog_data
.operand
[i
], vd
);
1640 /* Within asms, a clobber cannot overlap inputs or outputs.
1641 I wouldn't think this were true for regular insns, but
1642 scan_rtx treats them like that... */
1643 note_stores (PATTERN (insn
), kill_clobbered_value
, vd
);
1645 /* Kill all auto-incremented values. */
1646 /* ??? REG_INC is useless, since stack pushes aren't done that way. */
1647 for_each_rtx (&PATTERN (insn
), kill_autoinc_value
, vd
);
1649 /* Kill all early-clobbered operands. */
1650 for (i
= 0; i
< n_ops
; i
++)
1651 if (recog_op_alt
[i
][alt
].earlyclobber
)
1652 kill_value (recog_data
.operand
[i
], vd
);
1654 /* Special-case plain move instructions, since we may well
1655 be able to do the move from a different register class. */
1656 if (set
&& REG_P (SET_SRC (set
)))
1658 rtx src
= SET_SRC (set
);
1659 unsigned int regno
= REGNO (src
);
1660 enum machine_mode mode
= GET_MODE (src
);
1664 /* If we are accessing SRC in some mode other that what we
1665 set it in, make sure that the replacement is valid. */
1666 if (mode
!= vd
->e
[regno
].mode
)
1668 if (hard_regno_nregs
[regno
][mode
]
1669 > hard_regno_nregs
[regno
][vd
->e
[regno
].mode
])
1670 goto no_move_special_case
;
1673 /* If the destination is also a register, try to find a source
1674 register in the same class. */
1675 if (REG_P (SET_DEST (set
)))
1677 new = find_oldest_value_reg (REGNO_REG_CLASS (regno
), src
, vd
);
1678 if (new && validate_change (insn
, &SET_SRC (set
), new, 0))
1682 "insn %u: replaced reg %u with %u\n",
1683 INSN_UID (insn
), regno
, REGNO (new));
1685 goto did_replacement
;
1689 /* Otherwise, try all valid registers and see if its valid. */
1690 for (i
= vd
->e
[regno
].oldest_regno
; i
!= regno
;
1691 i
= vd
->e
[i
].next_regno
)
1693 new = maybe_mode_change (vd
->e
[i
].mode
, vd
->e
[regno
].mode
,
1695 if (new != NULL_RTX
)
1697 if (validate_change (insn
, &SET_SRC (set
), new, 0))
1699 ORIGINAL_REGNO (new) = ORIGINAL_REGNO (src
);
1700 REG_ATTRS (new) = REG_ATTRS (src
);
1703 "insn %u: replaced reg %u with %u\n",
1704 INSN_UID (insn
), regno
, REGNO (new));
1706 goto did_replacement
;
1711 no_move_special_case
:
1713 any_replacements
= false;
1715 /* For each input operand, replace a hard register with the
1716 eldest live copy that's in an appropriate register class. */
1717 for (i
= 0; i
< n_ops
; i
++)
1719 replaced
[i
] = false;
1721 /* Don't scan match_operand here, since we've no reg class
1722 information to pass down. Any operands that we could
1723 substitute in will be represented elsewhere. */
1724 if (recog_data
.constraints
[i
][0] == '\0')
1727 /* Don't replace in asms intentionally referencing hard regs. */
1728 if (is_asm
&& REG_P (recog_data
.operand
[i
])
1729 && (REGNO (recog_data
.operand
[i
])
1730 == ORIGINAL_REGNO (recog_data
.operand
[i
])))
1733 if (recog_data
.operand_type
[i
] == OP_IN
)
1735 if (recog_op_alt
[i
][alt
].is_address
)
1737 = replace_oldest_value_addr (recog_data
.operand_loc
[i
],
1738 recog_op_alt
[i
][alt
].cl
,
1739 VOIDmode
, insn
, vd
);
1740 else if (REG_P (recog_data
.operand
[i
]))
1742 = replace_oldest_value_reg (recog_data
.operand_loc
[i
],
1743 recog_op_alt
[i
][alt
].cl
,
1745 else if (MEM_P (recog_data
.operand
[i
]))
1746 replaced
[i
] = replace_oldest_value_mem (recog_data
.operand
[i
],
1749 else if (MEM_P (recog_data
.operand
[i
]))
1750 replaced
[i
] = replace_oldest_value_mem (recog_data
.operand
[i
],
1753 /* If we performed any replacement, update match_dups. */
1759 new = *recog_data
.operand_loc
[i
];
1760 recog_data
.operand
[i
] = new;
1761 for (j
= 0; j
< recog_data
.n_dups
; j
++)
1762 if (recog_data
.dup_num
[j
] == i
)
1763 validate_change (insn
, recog_data
.dup_loc
[j
], new, 1);
1765 any_replacements
= true;
1769 if (any_replacements
)
1771 if (! apply_change_group ())
1773 for (i
= 0; i
< n_ops
; i
++)
1776 rtx old
= *recog_data
.operand_loc
[i
];
1777 recog_data
.operand
[i
] = old
;
1782 "insn %u: reg replacements not verified\n",
1790 /* Clobber call-clobbered registers. */
1792 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1793 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, i
))
1794 kill_value_regno (i
, 1, vd
);
1796 /* Notice stores. */
1797 note_stores (PATTERN (insn
), kill_set_value
, vd
);
1799 /* Notice copies. */
1800 if (set
&& REG_P (SET_DEST (set
)) && REG_P (SET_SRC (set
)))
1801 copy_value (SET_DEST (set
), SET_SRC (set
), vd
);
1803 if (insn
== BB_END (bb
))
1810 /* Main entry point for the forward copy propagation optimization. */
1813 copyprop_hardreg_forward (void)
1815 struct value_data
*all_vd
;
1820 need_refresh
= false;
1822 all_vd
= XNEWVEC (struct value_data
, last_basic_block
);
1824 visited
= sbitmap_alloc (last_basic_block
);
1825 sbitmap_zero (visited
);
1829 SET_BIT (visited
, bb
->index
);
1831 /* If a block has a single predecessor, that we've already
1832 processed, begin with the value data that was live at
1833 the end of the predecessor block. */
1834 /* ??? Ought to use more intelligent queuing of blocks. */
1835 if (single_pred_p (bb
)
1836 && TEST_BIT (visited
, single_pred (bb
)->index
)
1837 && ! (single_pred_edge (bb
)->flags
& (EDGE_ABNORMAL_CALL
| EDGE_EH
)))
1838 all_vd
[bb
->index
] = all_vd
[single_pred (bb
)->index
];
1840 init_value_data (all_vd
+ bb
->index
);
1842 if (copyprop_hardreg_forward_1 (bb
, all_vd
+ bb
->index
))
1843 need_refresh
= true;
1846 sbitmap_free (visited
);
1851 fputs ("\n\n", dump_file
);
1853 /* ??? Irritatingly, delete_noop_moves does not take a set of blocks
1854 to scan, so we have to do a life update with no initial set of
1855 blocks Just In Case. */
1856 delete_noop_moves ();
1857 update_life_info (NULL
, UPDATE_LIFE_GLOBAL_RM_NOTES
,
1859 | PROP_SCAN_DEAD_CODE
1860 | PROP_KILL_DEAD_CODE
);
1866 /* Dump the value chain data to stderr. */
1869 debug_value_data (struct value_data
*vd
)
1874 CLEAR_HARD_REG_SET (set
);
1876 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1877 if (vd
->e
[i
].oldest_regno
== i
)
1879 if (vd
->e
[i
].mode
== VOIDmode
)
1881 if (vd
->e
[i
].next_regno
!= INVALID_REGNUM
)
1882 fprintf (stderr
, "[%u] Bad next_regno for empty chain (%u)\n",
1883 i
, vd
->e
[i
].next_regno
);
1887 SET_HARD_REG_BIT (set
, i
);
1888 fprintf (stderr
, "[%u %s] ", i
, GET_MODE_NAME (vd
->e
[i
].mode
));
1890 for (j
= vd
->e
[i
].next_regno
;
1891 j
!= INVALID_REGNUM
;
1892 j
= vd
->e
[j
].next_regno
)
1894 if (TEST_HARD_REG_BIT (set
, j
))
1896 fprintf (stderr
, "[%u] Loop in regno chain\n", j
);
1900 if (vd
->e
[j
].oldest_regno
!= i
)
1902 fprintf (stderr
, "[%u] Bad oldest_regno (%u)\n",
1903 j
, vd
->e
[j
].oldest_regno
);
1906 SET_HARD_REG_BIT (set
, j
);
1907 fprintf (stderr
, "[%u %s] ", j
, GET_MODE_NAME (vd
->e
[j
].mode
));
1909 fputc ('\n', stderr
);
1912 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1913 if (! TEST_HARD_REG_BIT (set
, i
)
1914 && (vd
->e
[i
].mode
!= VOIDmode
1915 || vd
->e
[i
].oldest_regno
!= i
1916 || vd
->e
[i
].next_regno
!= INVALID_REGNUM
))
1917 fprintf (stderr
, "[%u] Non-empty reg in chain (%s %u %i)\n",
1918 i
, GET_MODE_NAME (vd
->e
[i
].mode
), vd
->e
[i
].oldest_regno
,
1919 vd
->e
[i
].next_regno
);
1922 #ifdef ENABLE_CHECKING
1924 validate_value_data (struct value_data
*vd
)
1929 CLEAR_HARD_REG_SET (set
);
1931 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1932 if (vd
->e
[i
].oldest_regno
== i
)
1934 if (vd
->e
[i
].mode
== VOIDmode
)
1936 if (vd
->e
[i
].next_regno
!= INVALID_REGNUM
)
1937 internal_error ("validate_value_data: [%u] Bad next_regno for empty chain (%u)",
1938 i
, vd
->e
[i
].next_regno
);
1942 SET_HARD_REG_BIT (set
, i
);
1944 for (j
= vd
->e
[i
].next_regno
;
1945 j
!= INVALID_REGNUM
;
1946 j
= vd
->e
[j
].next_regno
)
1948 if (TEST_HARD_REG_BIT (set
, j
))
1949 internal_error ("validate_value_data: Loop in regno chain (%u)",
1951 if (vd
->e
[j
].oldest_regno
!= i
)
1952 internal_error ("validate_value_data: [%u] Bad oldest_regno (%u)",
1953 j
, vd
->e
[j
].oldest_regno
);
1955 SET_HARD_REG_BIT (set
, j
);
1959 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
1960 if (! TEST_HARD_REG_BIT (set
, i
)
1961 && (vd
->e
[i
].mode
!= VOIDmode
1962 || vd
->e
[i
].oldest_regno
!= i
1963 || vd
->e
[i
].next_regno
!= INVALID_REGNUM
))
1964 internal_error ("validate_value_data: [%u] Non-empty reg in chain (%s %u %i)",
1965 i
, GET_MODE_NAME (vd
->e
[i
].mode
), vd
->e
[i
].oldest_regno
,
1966 vd
->e
[i
].next_regno
);
1971 gate_handle_regrename (void)
1973 return (optimize
> 0 && (flag_rename_registers
|| flag_cprop_registers
));
1977 /* Run the regrename and cprop passes. */
1979 rest_of_handle_regrename (void)
1981 if (flag_rename_registers
)
1982 regrename_optimize ();
1983 if (flag_cprop_registers
)
1984 copyprop_hardreg_forward ();
1988 struct tree_opt_pass pass_regrename
=
1991 gate_handle_regrename
, /* gate */
1992 rest_of_handle_regrename
, /* execute */
1995 0, /* static_pass_number */
1996 TV_RENAME_REGISTERS
, /* tv_id */
1997 0, /* properties_required */
1998 0, /* properties_provided */
1999 0, /* properties_destroyed */
2000 0, /* todo_flags_start */
2001 TODO_dump_func
, /* todo_flags_finish */