1 /* Subroutines used for code generation on the DEC Alpha.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
26 #include "coretypes.h"
31 #include "hard-reg-set.h"
33 #include "insn-config.h"
34 #include "conditions.h"
36 #include "insn-attr.h"
47 #include "integrate.h"
50 #include "target-def.h"
52 #include "langhooks.h"
53 #include <splay-tree.h>
54 #include "cfglayout.h"
55 #include "tree-gimple.h"
56 #include "tree-flow.h"
57 #include "tree-stdarg.h"
59 /* Specify which cpu to schedule for. */
60 enum processor_type alpha_tune
;
62 /* Which cpu we're generating code for. */
63 enum processor_type alpha_cpu
;
65 static const char * const alpha_cpu_name
[] =
70 /* Specify how accurate floating-point traps need to be. */
72 enum alpha_trap_precision alpha_tp
;
74 /* Specify the floating-point rounding mode. */
76 enum alpha_fp_rounding_mode alpha_fprm
;
78 /* Specify which things cause traps. */
80 enum alpha_fp_trap_mode alpha_fptm
;
82 /* Save information from a "cmpxx" operation until the branch or scc is
85 struct alpha_compare alpha_compare
;
87 /* Nonzero if inside of a function, because the Alpha asm can't
88 handle .files inside of functions. */
90 static int inside_function
= FALSE
;
92 /* The number of cycles of latency we should assume on memory reads. */
94 int alpha_memory_latency
= 3;
96 /* Whether the function needs the GP. */
98 static int alpha_function_needs_gp
;
100 /* The alias set for prologue/epilogue register save/restore. */
102 static GTY(()) int alpha_sr_alias_set
;
104 /* The assembler name of the current function. */
106 static const char *alpha_fnname
;
108 /* The next explicit relocation sequence number. */
109 extern GTY(()) int alpha_next_sequence_number
;
110 int alpha_next_sequence_number
= 1;
112 /* The literal and gpdisp sequence numbers for this insn, as printed
113 by %# and %* respectively. */
114 extern GTY(()) int alpha_this_literal_sequence_number
;
115 extern GTY(()) int alpha_this_gpdisp_sequence_number
;
116 int alpha_this_literal_sequence_number
;
117 int alpha_this_gpdisp_sequence_number
;
119 /* Costs of various operations on the different architectures. */
121 struct alpha_rtx_cost_data
123 unsigned char fp_add
;
124 unsigned char fp_mult
;
125 unsigned char fp_div_sf
;
126 unsigned char fp_div_df
;
127 unsigned char int_mult_si
;
128 unsigned char int_mult_di
;
129 unsigned char int_shift
;
130 unsigned char int_cmov
;
131 unsigned short int_div
;
134 static struct alpha_rtx_cost_data
const alpha_rtx_cost_data
[PROCESSOR_MAX
] =
137 COSTS_N_INSNS (6), /* fp_add */
138 COSTS_N_INSNS (6), /* fp_mult */
139 COSTS_N_INSNS (34), /* fp_div_sf */
140 COSTS_N_INSNS (63), /* fp_div_df */
141 COSTS_N_INSNS (23), /* int_mult_si */
142 COSTS_N_INSNS (23), /* int_mult_di */
143 COSTS_N_INSNS (2), /* int_shift */
144 COSTS_N_INSNS (2), /* int_cmov */
145 COSTS_N_INSNS (97), /* int_div */
148 COSTS_N_INSNS (4), /* fp_add */
149 COSTS_N_INSNS (4), /* fp_mult */
150 COSTS_N_INSNS (15), /* fp_div_sf */
151 COSTS_N_INSNS (22), /* fp_div_df */
152 COSTS_N_INSNS (8), /* int_mult_si */
153 COSTS_N_INSNS (12), /* int_mult_di */
154 COSTS_N_INSNS (1) + 1, /* int_shift */
155 COSTS_N_INSNS (1), /* int_cmov */
156 COSTS_N_INSNS (83), /* int_div */
159 COSTS_N_INSNS (4), /* fp_add */
160 COSTS_N_INSNS (4), /* fp_mult */
161 COSTS_N_INSNS (12), /* fp_div_sf */
162 COSTS_N_INSNS (15), /* fp_div_df */
163 COSTS_N_INSNS (7), /* int_mult_si */
164 COSTS_N_INSNS (7), /* int_mult_di */
165 COSTS_N_INSNS (1), /* int_shift */
166 COSTS_N_INSNS (2), /* int_cmov */
167 COSTS_N_INSNS (86), /* int_div */
171 /* Similar but tuned for code size instead of execution latency. The
172 extra +N is fractional cost tuning based on latency. It's used to
173 encourage use of cheaper insns like shift, but only if there's just
176 static struct alpha_rtx_cost_data
const alpha_rtx_cost_size
=
178 COSTS_N_INSNS (1), /* fp_add */
179 COSTS_N_INSNS (1), /* fp_mult */
180 COSTS_N_INSNS (1), /* fp_div_sf */
181 COSTS_N_INSNS (1) + 1, /* fp_div_df */
182 COSTS_N_INSNS (1) + 1, /* int_mult_si */
183 COSTS_N_INSNS (1) + 2, /* int_mult_di */
184 COSTS_N_INSNS (1), /* int_shift */
185 COSTS_N_INSNS (1), /* int_cmov */
186 COSTS_N_INSNS (6), /* int_div */
189 /* Get the number of args of a function in one of two ways. */
190 #if TARGET_ABI_OPEN_VMS || TARGET_ABI_UNICOSMK
191 #define NUM_ARGS current_function_args_info.num_args
193 #define NUM_ARGS current_function_args_info
199 /* Declarations of static functions. */
200 static struct machine_function
*alpha_init_machine_status (void);
201 static rtx
alpha_emit_xfloating_compare (enum rtx_code
*, rtx
, rtx
);
203 #if TARGET_ABI_OPEN_VMS
204 static void alpha_write_linkage (FILE *, const char *, tree
);
207 static void unicosmk_output_deferred_case_vectors (FILE *);
208 static void unicosmk_gen_dsib (unsigned long *);
209 static void unicosmk_output_ssib (FILE *, const char *);
210 static int unicosmk_need_dex (rtx
);
212 /* Implement TARGET_HANDLE_OPTION. */
215 alpha_handle_option (size_t code
, const char *arg
, int value
)
221 target_flags
|= MASK_SOFT_FP
;
225 case OPT_mieee_with_inexact
:
226 target_flags
|= MASK_IEEE_CONFORMANT
;
230 if (value
!= 16 && value
!= 32 && value
!= 64)
231 error ("bad value %qs for -mtls-size switch", arg
);
238 /* Parse target option strings. */
241 override_options (void)
243 static const struct cpu_table
{
244 const char *const name
;
245 const enum processor_type processor
;
248 { "ev4", PROCESSOR_EV4
, 0 },
249 { "ev45", PROCESSOR_EV4
, 0 },
250 { "21064", PROCESSOR_EV4
, 0 },
251 { "ev5", PROCESSOR_EV5
, 0 },
252 { "21164", PROCESSOR_EV5
, 0 },
253 { "ev56", PROCESSOR_EV5
, MASK_BWX
},
254 { "21164a", PROCESSOR_EV5
, MASK_BWX
},
255 { "pca56", PROCESSOR_EV5
, MASK_BWX
|MASK_MAX
},
256 { "21164PC",PROCESSOR_EV5
, MASK_BWX
|MASK_MAX
},
257 { "21164pc",PROCESSOR_EV5
, MASK_BWX
|MASK_MAX
},
258 { "ev6", PROCESSOR_EV6
, MASK_BWX
|MASK_MAX
|MASK_FIX
},
259 { "21264", PROCESSOR_EV6
, MASK_BWX
|MASK_MAX
|MASK_FIX
},
260 { "ev67", PROCESSOR_EV6
, MASK_BWX
|MASK_MAX
|MASK_FIX
|MASK_CIX
},
261 { "21264a", PROCESSOR_EV6
, MASK_BWX
|MASK_MAX
|MASK_FIX
|MASK_CIX
},
267 /* Unicos/Mk doesn't have shared libraries. */
268 if (TARGET_ABI_UNICOSMK
&& flag_pic
)
270 warning (0, "-f%s ignored for Unicos/Mk (not supported)",
271 (flag_pic
> 1) ? "PIC" : "pic");
275 /* On Unicos/Mk, the native compiler consistently generates /d suffices for
276 floating-point instructions. Make that the default for this target. */
277 if (TARGET_ABI_UNICOSMK
)
278 alpha_fprm
= ALPHA_FPRM_DYN
;
280 alpha_fprm
= ALPHA_FPRM_NORM
;
282 alpha_tp
= ALPHA_TP_PROG
;
283 alpha_fptm
= ALPHA_FPTM_N
;
285 /* We cannot use su and sui qualifiers for conversion instructions on
286 Unicos/Mk. I'm not sure if this is due to assembler or hardware
287 limitations. Right now, we issue a warning if -mieee is specified
288 and then ignore it; eventually, we should either get it right or
289 disable the option altogether. */
293 if (TARGET_ABI_UNICOSMK
)
294 warning (0, "-mieee not supported on Unicos/Mk");
297 alpha_tp
= ALPHA_TP_INSN
;
298 alpha_fptm
= ALPHA_FPTM_SU
;
302 if (TARGET_IEEE_WITH_INEXACT
)
304 if (TARGET_ABI_UNICOSMK
)
305 warning (0, "-mieee-with-inexact not supported on Unicos/Mk");
308 alpha_tp
= ALPHA_TP_INSN
;
309 alpha_fptm
= ALPHA_FPTM_SUI
;
315 if (! strcmp (alpha_tp_string
, "p"))
316 alpha_tp
= ALPHA_TP_PROG
;
317 else if (! strcmp (alpha_tp_string
, "f"))
318 alpha_tp
= ALPHA_TP_FUNC
;
319 else if (! strcmp (alpha_tp_string
, "i"))
320 alpha_tp
= ALPHA_TP_INSN
;
322 error ("bad value %qs for -mtrap-precision switch", alpha_tp_string
);
325 if (alpha_fprm_string
)
327 if (! strcmp (alpha_fprm_string
, "n"))
328 alpha_fprm
= ALPHA_FPRM_NORM
;
329 else if (! strcmp (alpha_fprm_string
, "m"))
330 alpha_fprm
= ALPHA_FPRM_MINF
;
331 else if (! strcmp (alpha_fprm_string
, "c"))
332 alpha_fprm
= ALPHA_FPRM_CHOP
;
333 else if (! strcmp (alpha_fprm_string
,"d"))
334 alpha_fprm
= ALPHA_FPRM_DYN
;
336 error ("bad value %qs for -mfp-rounding-mode switch",
340 if (alpha_fptm_string
)
342 if (strcmp (alpha_fptm_string
, "n") == 0)
343 alpha_fptm
= ALPHA_FPTM_N
;
344 else if (strcmp (alpha_fptm_string
, "u") == 0)
345 alpha_fptm
= ALPHA_FPTM_U
;
346 else if (strcmp (alpha_fptm_string
, "su") == 0)
347 alpha_fptm
= ALPHA_FPTM_SU
;
348 else if (strcmp (alpha_fptm_string
, "sui") == 0)
349 alpha_fptm
= ALPHA_FPTM_SUI
;
351 error ("bad value %qs for -mfp-trap-mode switch", alpha_fptm_string
);
354 if (alpha_cpu_string
)
356 for (i
= 0; cpu_table
[i
].name
; i
++)
357 if (! strcmp (alpha_cpu_string
, cpu_table
[i
].name
))
359 alpha_tune
= alpha_cpu
= cpu_table
[i
].processor
;
360 target_flags
&= ~ (MASK_BWX
| MASK_MAX
| MASK_FIX
| MASK_CIX
);
361 target_flags
|= cpu_table
[i
].flags
;
364 if (! cpu_table
[i
].name
)
365 error ("bad value %qs for -mcpu switch", alpha_cpu_string
);
368 if (alpha_tune_string
)
370 for (i
= 0; cpu_table
[i
].name
; i
++)
371 if (! strcmp (alpha_tune_string
, cpu_table
[i
].name
))
373 alpha_tune
= cpu_table
[i
].processor
;
376 if (! cpu_table
[i
].name
)
377 error ("bad value %qs for -mcpu switch", alpha_tune_string
);
380 /* Do some sanity checks on the above options. */
382 if (TARGET_ABI_UNICOSMK
&& alpha_fptm
!= ALPHA_FPTM_N
)
384 warning (0, "trap mode not supported on Unicos/Mk");
385 alpha_fptm
= ALPHA_FPTM_N
;
388 if ((alpha_fptm
== ALPHA_FPTM_SU
|| alpha_fptm
== ALPHA_FPTM_SUI
)
389 && alpha_tp
!= ALPHA_TP_INSN
&& alpha_cpu
!= PROCESSOR_EV6
)
391 warning (0, "fp software completion requires -mtrap-precision=i");
392 alpha_tp
= ALPHA_TP_INSN
;
395 if (alpha_cpu
== PROCESSOR_EV6
)
397 /* Except for EV6 pass 1 (not released), we always have precise
398 arithmetic traps. Which means we can do software completion
399 without minding trap shadows. */
400 alpha_tp
= ALPHA_TP_PROG
;
403 if (TARGET_FLOAT_VAX
)
405 if (alpha_fprm
== ALPHA_FPRM_MINF
|| alpha_fprm
== ALPHA_FPRM_DYN
)
407 warning (0, "rounding mode not supported for VAX floats");
408 alpha_fprm
= ALPHA_FPRM_NORM
;
410 if (alpha_fptm
== ALPHA_FPTM_SUI
)
412 warning (0, "trap mode not supported for VAX floats");
413 alpha_fptm
= ALPHA_FPTM_SU
;
415 if (target_flags_explicit
& MASK_LONG_DOUBLE_128
)
416 warning (0, "128-bit long double not supported for VAX floats");
417 target_flags
&= ~MASK_LONG_DOUBLE_128
;
424 if (!alpha_mlat_string
)
425 alpha_mlat_string
= "L1";
427 if (ISDIGIT ((unsigned char)alpha_mlat_string
[0])
428 && (lat
= strtol (alpha_mlat_string
, &end
, 10), *end
== '\0'))
430 else if ((alpha_mlat_string
[0] == 'L' || alpha_mlat_string
[0] == 'l')
431 && ISDIGIT ((unsigned char)alpha_mlat_string
[1])
432 && alpha_mlat_string
[2] == '\0')
434 static int const cache_latency
[][4] =
436 { 3, 30, -1 }, /* ev4 -- Bcache is a guess */
437 { 2, 12, 38 }, /* ev5 -- Bcache from PC164 LMbench numbers */
438 { 3, 12, 30 }, /* ev6 -- Bcache from DS20 LMbench. */
441 lat
= alpha_mlat_string
[1] - '0';
442 if (lat
<= 0 || lat
> 3 || cache_latency
[alpha_tune
][lat
-1] == -1)
444 warning (0, "L%d cache latency unknown for %s",
445 lat
, alpha_cpu_name
[alpha_tune
]);
449 lat
= cache_latency
[alpha_tune
][lat
-1];
451 else if (! strcmp (alpha_mlat_string
, "main"))
453 /* Most current memories have about 370ns latency. This is
454 a reasonable guess for a fast cpu. */
459 warning (0, "bad value %qs for -mmemory-latency", alpha_mlat_string
);
463 alpha_memory_latency
= lat
;
466 /* Default the definition of "small data" to 8 bytes. */
470 /* Infer TARGET_SMALL_DATA from -fpic/-fPIC. */
472 target_flags
|= MASK_SMALL_DATA
;
473 else if (flag_pic
== 2)
474 target_flags
&= ~MASK_SMALL_DATA
;
476 /* Align labels and loops for optimal branching. */
477 /* ??? Kludge these by not doing anything if we don't optimize and also if
478 we are writing ECOFF symbols to work around a bug in DEC's assembler. */
479 if (optimize
> 0 && write_symbols
!= SDB_DEBUG
)
481 if (align_loops
<= 0)
483 if (align_jumps
<= 0)
486 if (align_functions
<= 0)
487 align_functions
= 16;
489 /* Acquire a unique set number for our register saves and restores. */
490 alpha_sr_alias_set
= new_alias_set ();
492 /* Register variables and functions with the garbage collector. */
494 /* Set up function hooks. */
495 init_machine_status
= alpha_init_machine_status
;
497 /* Tell the compiler when we're using VAX floating point. */
498 if (TARGET_FLOAT_VAX
)
500 REAL_MODE_FORMAT (SFmode
) = &vax_f_format
;
501 REAL_MODE_FORMAT (DFmode
) = &vax_g_format
;
502 REAL_MODE_FORMAT (TFmode
) = NULL
;
506 /* Returns 1 if VALUE is a mask that contains full bytes of zero or ones. */
509 zap_mask (HOST_WIDE_INT value
)
513 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
;
515 if ((value
& 0xff) != 0 && (value
& 0xff) != 0xff)
521 /* Return true if OP is valid for a particular TLS relocation.
522 We are already guaranteed that OP is a CONST. */
525 tls_symbolic_operand_1 (rtx op
, int size
, int unspec
)
529 if (GET_CODE (op
) != UNSPEC
|| XINT (op
, 1) != unspec
)
531 op
= XVECEXP (op
, 0, 0);
533 if (GET_CODE (op
) != SYMBOL_REF
)
536 switch (SYMBOL_REF_TLS_MODEL (op
))
538 case TLS_MODEL_LOCAL_DYNAMIC
:
539 return unspec
== UNSPEC_DTPREL
&& size
== alpha_tls_size
;
540 case TLS_MODEL_INITIAL_EXEC
:
541 return unspec
== UNSPEC_TPREL
&& size
== 64;
542 case TLS_MODEL_LOCAL_EXEC
:
543 return unspec
== UNSPEC_TPREL
&& size
== alpha_tls_size
;
549 /* Used by aligned_memory_operand and unaligned_memory_operand to
550 resolve what reload is going to do with OP if it's a register. */
553 resolve_reload_operand (rtx op
)
555 if (reload_in_progress
)
558 if (GET_CODE (tmp
) == SUBREG
)
559 tmp
= SUBREG_REG (tmp
);
560 if (GET_CODE (tmp
) == REG
561 && REGNO (tmp
) >= FIRST_PSEUDO_REGISTER
)
563 op
= reg_equiv_memory_loc
[REGNO (tmp
)];
571 /* Implements CONST_OK_FOR_LETTER_P. Return true if the value matches
572 the range defined for C in [I-P]. */
575 alpha_const_ok_for_letter_p (HOST_WIDE_INT value
, int c
)
580 /* An unsigned 8 bit constant. */
581 return (unsigned HOST_WIDE_INT
) value
< 0x100;
583 /* The constant zero. */
586 /* A signed 16 bit constant. */
587 return (unsigned HOST_WIDE_INT
) (value
+ 0x8000) < 0x10000;
589 /* A shifted signed 16 bit constant appropriate for LDAH. */
590 return ((value
& 0xffff) == 0
591 && ((value
) >> 31 == -1 || value
>> 31 == 0));
593 /* A constant that can be AND'ed with using a ZAP insn. */
594 return zap_mask (value
);
596 /* A complemented unsigned 8 bit constant. */
597 return (unsigned HOST_WIDE_INT
) (~ value
) < 0x100;
599 /* A negated unsigned 8 bit constant. */
600 return (unsigned HOST_WIDE_INT
) (- value
) < 0x100;
602 /* The constant 1, 2 or 3. */
603 return value
== 1 || value
== 2 || value
== 3;
610 /* Implements CONST_DOUBLE_OK_FOR_LETTER_P. Return true if VALUE
611 matches for C in [GH]. */
614 alpha_const_double_ok_for_letter_p (rtx value
, int c
)
619 /* The floating point zero constant. */
620 return (GET_MODE_CLASS (GET_MODE (value
)) == MODE_FLOAT
621 && value
== CONST0_RTX (GET_MODE (value
)));
624 /* A valid operand of a ZAP insn. */
625 return (GET_MODE (value
) == VOIDmode
626 && zap_mask (CONST_DOUBLE_LOW (value
))
627 && zap_mask (CONST_DOUBLE_HIGH (value
)));
634 /* Implements CONST_DOUBLE_OK_FOR_LETTER_P. Return true if VALUE
638 alpha_extra_constraint (rtx value
, int c
)
643 return normal_memory_operand (value
, VOIDmode
);
645 return direct_call_operand (value
, Pmode
);
647 return (GET_CODE (value
) == CONST_INT
648 && (unsigned HOST_WIDE_INT
) INTVAL (value
) < 64);
650 return GET_CODE (value
) == HIGH
;
652 return TARGET_ABI_UNICOSMK
&& symbolic_operand (value
, VOIDmode
);
654 return (GET_CODE (value
) == CONST_VECTOR
655 && value
== CONST0_RTX (GET_MODE (value
)));
661 /* The scalar modes supported differs from the default check-what-c-supports
662 version in that sometimes TFmode is available even when long double
663 indicates only DFmode. On unicosmk, we have the situation that HImode
664 doesn't map to any C type, but of course we still support that. */
667 alpha_scalar_mode_supported_p (enum machine_mode mode
)
675 case TImode
: /* via optabs.c */
683 return TARGET_HAS_XFLOATING_LIBS
;
690 /* Alpha implements a couple of integer vector mode operations when
691 TARGET_MAX is enabled. We do not check TARGET_MAX here, however,
692 which allows the vectorizer to operate on e.g. move instructions,
693 or when expand_vector_operations can do something useful. */
696 alpha_vector_mode_supported_p (enum machine_mode mode
)
698 return mode
== V8QImode
|| mode
== V4HImode
|| mode
== V2SImode
;
701 /* Return 1 if this function can directly return via $26. */
706 return (! TARGET_ABI_OPEN_VMS
&& ! TARGET_ABI_UNICOSMK
708 && alpha_sa_size () == 0
709 && get_frame_size () == 0
710 && current_function_outgoing_args_size
== 0
711 && current_function_pretend_args_size
== 0);
714 /* Return the ADDR_VEC associated with a tablejump insn. */
717 alpha_tablejump_addr_vec (rtx insn
)
721 tmp
= JUMP_LABEL (insn
);
724 tmp
= NEXT_INSN (tmp
);
727 if (GET_CODE (tmp
) == JUMP_INSN
728 && GET_CODE (PATTERN (tmp
)) == ADDR_DIFF_VEC
)
729 return PATTERN (tmp
);
733 /* Return the label of the predicted edge, or CONST0_RTX if we don't know. */
736 alpha_tablejump_best_label (rtx insn
)
738 rtx jump_table
= alpha_tablejump_addr_vec (insn
);
739 rtx best_label
= NULL_RTX
;
741 /* ??? Once the CFG doesn't keep getting completely rebuilt, look
742 there for edge frequency counts from profile data. */
746 int n_labels
= XVECLEN (jump_table
, 1);
750 for (i
= 0; i
< n_labels
; i
++)
754 for (j
= i
+ 1; j
< n_labels
; j
++)
755 if (XEXP (XVECEXP (jump_table
, 1, i
), 0)
756 == XEXP (XVECEXP (jump_table
, 1, j
), 0))
759 if (count
> best_count
)
760 best_count
= count
, best_label
= XVECEXP (jump_table
, 1, i
);
764 return best_label
? best_label
: const0_rtx
;
767 /* Return the TLS model to use for SYMBOL. */
769 static enum tls_model
770 tls_symbolic_operand_type (rtx symbol
)
772 enum tls_model model
;
774 if (GET_CODE (symbol
) != SYMBOL_REF
)
776 model
= SYMBOL_REF_TLS_MODEL (symbol
);
778 /* Local-exec with a 64-bit size is the same code as initial-exec. */
779 if (model
== TLS_MODEL_LOCAL_EXEC
&& alpha_tls_size
== 64)
780 model
= TLS_MODEL_INITIAL_EXEC
;
785 /* Return true if the function DECL will share the same GP as any
786 function in the current unit of translation. */
789 decl_has_samegp (tree decl
)
791 /* Functions that are not local can be overridden, and thus may
792 not share the same gp. */
793 if (!(*targetm
.binds_local_p
) (decl
))
796 /* If -msmall-data is in effect, assume that there is only one GP
797 for the module, and so any local symbol has this property. We
798 need explicit relocations to be able to enforce this for symbols
799 not defined in this unit of translation, however. */
800 if (TARGET_EXPLICIT_RELOCS
&& TARGET_SMALL_DATA
)
803 /* Functions that are not external are defined in this UoT. */
804 /* ??? Irritatingly, static functions not yet emitted are still
805 marked "external". Apply this to non-static functions only. */
806 return !TREE_PUBLIC (decl
) || !DECL_EXTERNAL (decl
);
809 /* Return true if EXP should be placed in the small data section. */
812 alpha_in_small_data_p (tree exp
)
814 /* We want to merge strings, so we never consider them small data. */
815 if (TREE_CODE (exp
) == STRING_CST
)
818 /* Functions are never in the small data area. Duh. */
819 if (TREE_CODE (exp
) == FUNCTION_DECL
)
822 if (TREE_CODE (exp
) == VAR_DECL
&& DECL_SECTION_NAME (exp
))
824 const char *section
= TREE_STRING_POINTER (DECL_SECTION_NAME (exp
));
825 if (strcmp (section
, ".sdata") == 0
826 || strcmp (section
, ".sbss") == 0)
831 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
833 /* If this is an incomplete type with size 0, then we can't put it
834 in sdata because it might be too big when completed. */
835 if (size
> 0 && (unsigned HOST_WIDE_INT
) size
<= g_switch_value
)
842 #if TARGET_ABI_OPEN_VMS
844 alpha_linkage_symbol_p (const char *symname
)
846 int symlen
= strlen (symname
);
849 return strcmp (&symname
[symlen
- 4], "..lk") == 0;
854 #define LINKAGE_SYMBOL_REF_P(X) \
855 ((GET_CODE (X) == SYMBOL_REF \
856 && alpha_linkage_symbol_p (XSTR (X, 0))) \
857 || (GET_CODE (X) == CONST \
858 && GET_CODE (XEXP (X, 0)) == PLUS \
859 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
860 && alpha_linkage_symbol_p (XSTR (XEXP (XEXP (X, 0), 0), 0))))
863 /* legitimate_address_p recognizes an RTL expression that is a valid
864 memory address for an instruction. The MODE argument is the
865 machine mode for the MEM expression that wants to use this address.
867 For Alpha, we have either a constant address or the sum of a
868 register and a constant address, or just a register. For DImode,
869 any of those forms can be surrounded with an AND that clear the
870 low-order three bits; this is an "unaligned" access. */
873 alpha_legitimate_address_p (enum machine_mode mode
, rtx x
, int strict
)
875 /* If this is an ldq_u type address, discard the outer AND. */
877 && GET_CODE (x
) == AND
878 && GET_CODE (XEXP (x
, 1)) == CONST_INT
879 && INTVAL (XEXP (x
, 1)) == -8)
882 /* Discard non-paradoxical subregs. */
883 if (GET_CODE (x
) == SUBREG
884 && (GET_MODE_SIZE (GET_MODE (x
))
885 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))))
888 /* Unadorned general registers are valid. */
891 ? STRICT_REG_OK_FOR_BASE_P (x
)
892 : NONSTRICT_REG_OK_FOR_BASE_P (x
)))
895 /* Constant addresses (i.e. +/- 32k) are valid. */
896 if (CONSTANT_ADDRESS_P (x
))
899 #if TARGET_ABI_OPEN_VMS
900 if (LINKAGE_SYMBOL_REF_P (x
))
904 /* Register plus a small constant offset is valid. */
905 if (GET_CODE (x
) == PLUS
)
907 rtx ofs
= XEXP (x
, 1);
910 /* Discard non-paradoxical subregs. */
911 if (GET_CODE (x
) == SUBREG
912 && (GET_MODE_SIZE (GET_MODE (x
))
913 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))))
919 && NONSTRICT_REG_OK_FP_BASE_P (x
)
920 && GET_CODE (ofs
) == CONST_INT
)
923 ? STRICT_REG_OK_FOR_BASE_P (x
)
924 : NONSTRICT_REG_OK_FOR_BASE_P (x
))
925 && CONSTANT_ADDRESS_P (ofs
))
930 /* If we're managing explicit relocations, LO_SUM is valid, as
931 are small data symbols. */
932 else if (TARGET_EXPLICIT_RELOCS
)
934 if (small_symbolic_operand (x
, Pmode
))
937 if (GET_CODE (x
) == LO_SUM
)
939 rtx ofs
= XEXP (x
, 1);
942 /* Discard non-paradoxical subregs. */
943 if (GET_CODE (x
) == SUBREG
944 && (GET_MODE_SIZE (GET_MODE (x
))
945 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))))
948 /* Must have a valid base register. */
951 ? STRICT_REG_OK_FOR_BASE_P (x
)
952 : NONSTRICT_REG_OK_FOR_BASE_P (x
))))
955 /* The symbol must be local. */
956 if (local_symbolic_operand (ofs
, Pmode
)
957 || dtp32_symbolic_operand (ofs
, Pmode
)
958 || tp32_symbolic_operand (ofs
, Pmode
))
966 /* Build the SYMBOL_REF for __tls_get_addr. */
968 static GTY(()) rtx tls_get_addr_libfunc
;
971 get_tls_get_addr (void)
973 if (!tls_get_addr_libfunc
)
974 tls_get_addr_libfunc
= init_one_libfunc ("__tls_get_addr");
975 return tls_get_addr_libfunc
;
978 /* Try machine-dependent ways of modifying an illegitimate address
979 to be legitimate. If we find one, return the new, valid address. */
982 alpha_legitimize_address (rtx x
, rtx scratch
,
983 enum machine_mode mode ATTRIBUTE_UNUSED
)
985 HOST_WIDE_INT addend
;
987 /* If the address is (plus reg const_int) and the CONST_INT is not a
988 valid offset, compute the high part of the constant and add it to
989 the register. Then our address is (plus temp low-part-const). */
990 if (GET_CODE (x
) == PLUS
991 && GET_CODE (XEXP (x
, 0)) == REG
992 && GET_CODE (XEXP (x
, 1)) == CONST_INT
993 && ! CONSTANT_ADDRESS_P (XEXP (x
, 1)))
995 addend
= INTVAL (XEXP (x
, 1));
1000 /* If the address is (const (plus FOO const_int)), find the low-order
1001 part of the CONST_INT. Then load FOO plus any high-order part of the
1002 CONST_INT into a register. Our address is (plus reg low-part-const).
1003 This is done to reduce the number of GOT entries. */
1005 && GET_CODE (x
) == CONST
1006 && GET_CODE (XEXP (x
, 0)) == PLUS
1007 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
1009 addend
= INTVAL (XEXP (XEXP (x
, 0), 1));
1010 x
= force_reg (Pmode
, XEXP (XEXP (x
, 0), 0));
1014 /* If we have a (plus reg const), emit the load as in (2), then add
1015 the two registers, and finally generate (plus reg low-part-const) as
1018 && GET_CODE (x
) == PLUS
1019 && GET_CODE (XEXP (x
, 0)) == REG
1020 && GET_CODE (XEXP (x
, 1)) == CONST
1021 && GET_CODE (XEXP (XEXP (x
, 1), 0)) == PLUS
1022 && GET_CODE (XEXP (XEXP (XEXP (x
, 1), 0), 1)) == CONST_INT
)
1024 addend
= INTVAL (XEXP (XEXP (XEXP (x
, 1), 0), 1));
1025 x
= expand_simple_binop (Pmode
, PLUS
, XEXP (x
, 0),
1026 XEXP (XEXP (XEXP (x
, 1), 0), 0),
1027 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1031 /* If this is a local symbol, split the address into HIGH/LO_SUM parts. */
1032 if (TARGET_EXPLICIT_RELOCS
&& symbolic_operand (x
, Pmode
))
1034 rtx r0
, r16
, eqv
, tga
, tp
, insn
, dest
, seq
;
1036 switch (tls_symbolic_operand_type (x
))
1038 case TLS_MODEL_NONE
:
1041 case TLS_MODEL_GLOBAL_DYNAMIC
:
1044 r0
= gen_rtx_REG (Pmode
, 0);
1045 r16
= gen_rtx_REG (Pmode
, 16);
1046 tga
= get_tls_get_addr ();
1047 dest
= gen_reg_rtx (Pmode
);
1048 seq
= GEN_INT (alpha_next_sequence_number
++);
1050 emit_insn (gen_movdi_er_tlsgd (r16
, pic_offset_table_rtx
, x
, seq
));
1051 insn
= gen_call_value_osf_tlsgd (r0
, tga
, seq
);
1052 insn
= emit_call_insn (insn
);
1053 CONST_OR_PURE_CALL_P (insn
) = 1;
1054 use_reg (&CALL_INSN_FUNCTION_USAGE (insn
), r16
);
1056 insn
= get_insns ();
1059 emit_libcall_block (insn
, dest
, r0
, x
);
1062 case TLS_MODEL_LOCAL_DYNAMIC
:
1065 r0
= gen_rtx_REG (Pmode
, 0);
1066 r16
= gen_rtx_REG (Pmode
, 16);
1067 tga
= get_tls_get_addr ();
1068 scratch
= gen_reg_rtx (Pmode
);
1069 seq
= GEN_INT (alpha_next_sequence_number
++);
1071 emit_insn (gen_movdi_er_tlsldm (r16
, pic_offset_table_rtx
, seq
));
1072 insn
= gen_call_value_osf_tlsldm (r0
, tga
, seq
);
1073 insn
= emit_call_insn (insn
);
1074 CONST_OR_PURE_CALL_P (insn
) = 1;
1075 use_reg (&CALL_INSN_FUNCTION_USAGE (insn
), r16
);
1077 insn
= get_insns ();
1080 eqv
= gen_rtx_UNSPEC (Pmode
, gen_rtvec (1, const0_rtx
),
1081 UNSPEC_TLSLDM_CALL
);
1082 emit_libcall_block (insn
, scratch
, r0
, eqv
);
1084 eqv
= gen_rtx_UNSPEC (Pmode
, gen_rtvec (1, x
), UNSPEC_DTPREL
);
1085 eqv
= gen_rtx_CONST (Pmode
, eqv
);
1087 if (alpha_tls_size
== 64)
1089 dest
= gen_reg_rtx (Pmode
);
1090 emit_insn (gen_rtx_SET (VOIDmode
, dest
, eqv
));
1091 emit_insn (gen_adddi3 (dest
, dest
, scratch
));
1094 if (alpha_tls_size
== 32)
1096 insn
= gen_rtx_HIGH (Pmode
, eqv
);
1097 insn
= gen_rtx_PLUS (Pmode
, scratch
, insn
);
1098 scratch
= gen_reg_rtx (Pmode
);
1099 emit_insn (gen_rtx_SET (VOIDmode
, scratch
, insn
));
1101 return gen_rtx_LO_SUM (Pmode
, scratch
, eqv
);
1103 case TLS_MODEL_INITIAL_EXEC
:
1104 eqv
= gen_rtx_UNSPEC (Pmode
, gen_rtvec (1, x
), UNSPEC_TPREL
);
1105 eqv
= gen_rtx_CONST (Pmode
, eqv
);
1106 tp
= gen_reg_rtx (Pmode
);
1107 scratch
= gen_reg_rtx (Pmode
);
1108 dest
= gen_reg_rtx (Pmode
);
1110 emit_insn (gen_load_tp (tp
));
1111 emit_insn (gen_rtx_SET (VOIDmode
, scratch
, eqv
));
1112 emit_insn (gen_adddi3 (dest
, tp
, scratch
));
1115 case TLS_MODEL_LOCAL_EXEC
:
1116 eqv
= gen_rtx_UNSPEC (Pmode
, gen_rtvec (1, x
), UNSPEC_TPREL
);
1117 eqv
= gen_rtx_CONST (Pmode
, eqv
);
1118 tp
= gen_reg_rtx (Pmode
);
1120 emit_insn (gen_load_tp (tp
));
1121 if (alpha_tls_size
== 32)
1123 insn
= gen_rtx_HIGH (Pmode
, eqv
);
1124 insn
= gen_rtx_PLUS (Pmode
, tp
, insn
);
1125 tp
= gen_reg_rtx (Pmode
);
1126 emit_insn (gen_rtx_SET (VOIDmode
, tp
, insn
));
1128 return gen_rtx_LO_SUM (Pmode
, tp
, eqv
);
1134 if (local_symbolic_operand (x
, Pmode
))
1136 if (small_symbolic_operand (x
, Pmode
))
1140 if (!no_new_pseudos
)
1141 scratch
= gen_reg_rtx (Pmode
);
1142 emit_insn (gen_rtx_SET (VOIDmode
, scratch
,
1143 gen_rtx_HIGH (Pmode
, x
)));
1144 return gen_rtx_LO_SUM (Pmode
, scratch
, x
);
1153 HOST_WIDE_INT low
, high
;
1155 low
= ((addend
& 0xffff) ^ 0x8000) - 0x8000;
1157 high
= ((addend
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1161 x
= expand_simple_binop (Pmode
, PLUS
, x
, GEN_INT (addend
),
1162 (no_new_pseudos
? scratch
: NULL_RTX
),
1163 1, OPTAB_LIB_WIDEN
);
1165 x
= expand_simple_binop (Pmode
, PLUS
, x
, GEN_INT (high
),
1166 (no_new_pseudos
? scratch
: NULL_RTX
),
1167 1, OPTAB_LIB_WIDEN
);
1169 return plus_constant (x
, low
);
1173 /* Primarily this is required for TLS symbols, but given that our move
1174 patterns *ought* to be able to handle any symbol at any time, we
1175 should never be spilling symbolic operands to the constant pool, ever. */
1178 alpha_cannot_force_const_mem (rtx x
)
1180 enum rtx_code code
= GET_CODE (x
);
1181 return code
== SYMBOL_REF
|| code
== LABEL_REF
|| code
== CONST
;
1184 /* We do not allow indirect calls to be optimized into sibling calls, nor
1185 can we allow a call to a function with a different GP to be optimized
1189 alpha_function_ok_for_sibcall (tree decl
, tree exp ATTRIBUTE_UNUSED
)
1191 /* Can't do indirect tail calls, since we don't know if the target
1192 uses the same GP. */
1196 /* Otherwise, we can make a tail call if the target function shares
1198 return decl_has_samegp (decl
);
1202 some_small_symbolic_operand_int (rtx
*px
, void *data ATTRIBUTE_UNUSED
)
1206 /* Don't re-split. */
1207 if (GET_CODE (x
) == LO_SUM
)
1210 return small_symbolic_operand (x
, Pmode
) != 0;
1214 split_small_symbolic_operand_1 (rtx
*px
, void *data ATTRIBUTE_UNUSED
)
1218 /* Don't re-split. */
1219 if (GET_CODE (x
) == LO_SUM
)
1222 if (small_symbolic_operand (x
, Pmode
))
1224 x
= gen_rtx_LO_SUM (Pmode
, pic_offset_table_rtx
, x
);
1233 split_small_symbolic_operand (rtx x
)
1236 for_each_rtx (&x
, split_small_symbolic_operand_1
, NULL
);
1240 /* Indicate that INSN cannot be duplicated. This is true for any insn
1241 that we've marked with gpdisp relocs, since those have to stay in
1242 1-1 correspondence with one another.
1244 Technically we could copy them if we could set up a mapping from one
1245 sequence number to another, across the set of insns to be duplicated.
1246 This seems overly complicated and error-prone since interblock motion
1247 from sched-ebb could move one of the pair of insns to a different block.
1249 Also cannot allow jsr insns to be duplicated. If they throw exceptions,
1250 then they'll be in a different block from their ldgp. Which could lead
1251 the bb reorder code to think that it would be ok to copy just the block
1252 containing the call and branch to the block containing the ldgp. */
1255 alpha_cannot_copy_insn_p (rtx insn
)
1257 if (!reload_completed
|| !TARGET_EXPLICIT_RELOCS
)
1259 if (recog_memoized (insn
) >= 0)
1260 return get_attr_cannot_copy (insn
);
1266 /* Try a machine-dependent way of reloading an illegitimate address
1267 operand. If we find one, push the reload and return the new rtx. */
1270 alpha_legitimize_reload_address (rtx x
,
1271 enum machine_mode mode ATTRIBUTE_UNUSED
,
1272 int opnum
, int type
,
1273 int ind_levels ATTRIBUTE_UNUSED
)
1275 /* We must recognize output that we have already generated ourselves. */
1276 if (GET_CODE (x
) == PLUS
1277 && GET_CODE (XEXP (x
, 0)) == PLUS
1278 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == REG
1279 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
1280 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1282 push_reload (XEXP (x
, 0), NULL_RTX
, &XEXP (x
, 0), NULL
,
1283 BASE_REG_CLASS
, GET_MODE (x
), VOIDmode
, 0, 0,
1288 /* We wish to handle large displacements off a base register by
1289 splitting the addend across an ldah and the mem insn. This
1290 cuts number of extra insns needed from 3 to 1. */
1291 if (GET_CODE (x
) == PLUS
1292 && GET_CODE (XEXP (x
, 0)) == REG
1293 && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
1294 && REGNO_OK_FOR_BASE_P (REGNO (XEXP (x
, 0)))
1295 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1297 HOST_WIDE_INT val
= INTVAL (XEXP (x
, 1));
1298 HOST_WIDE_INT low
= ((val
& 0xffff) ^ 0x8000) - 0x8000;
1300 = (((val
- low
) & 0xffffffff) ^ 0x80000000) - 0x80000000;
1302 /* Check for 32-bit overflow. */
1303 if (high
+ low
!= val
)
1306 /* Reload the high part into a base reg; leave the low part
1307 in the mem directly. */
1308 x
= gen_rtx_PLUS (GET_MODE (x
),
1309 gen_rtx_PLUS (GET_MODE (x
), XEXP (x
, 0),
1313 push_reload (XEXP (x
, 0), NULL_RTX
, &XEXP (x
, 0), NULL
,
1314 BASE_REG_CLASS
, GET_MODE (x
), VOIDmode
, 0, 0,
1322 /* Compute a (partial) cost for rtx X. Return true if the complete
1323 cost has been computed, and false if subexpressions should be
1324 scanned. In either case, *TOTAL contains the cost result. */
1327 alpha_rtx_costs (rtx x
, int code
, int outer_code
, int *total
)
1329 enum machine_mode mode
= GET_MODE (x
);
1330 bool float_mode_p
= FLOAT_MODE_P (mode
);
1331 const struct alpha_rtx_cost_data
*cost_data
;
1334 cost_data
= &alpha_rtx_cost_size
;
1336 cost_data
= &alpha_rtx_cost_data
[alpha_tune
];
1341 /* If this is an 8-bit constant, return zero since it can be used
1342 nearly anywhere with no cost. If it is a valid operand for an
1343 ADD or AND, likewise return 0 if we know it will be used in that
1344 context. Otherwise, return 2 since it might be used there later.
1345 All other constants take at least two insns. */
1346 if (INTVAL (x
) >= 0 && INTVAL (x
) < 256)
1354 if (x
== CONST0_RTX (mode
))
1356 else if ((outer_code
== PLUS
&& add_operand (x
, VOIDmode
))
1357 || (outer_code
== AND
&& and_operand (x
, VOIDmode
)))
1359 else if (add_operand (x
, VOIDmode
) || and_operand (x
, VOIDmode
))
1362 *total
= COSTS_N_INSNS (2);
1368 if (TARGET_EXPLICIT_RELOCS
&& small_symbolic_operand (x
, VOIDmode
))
1369 *total
= COSTS_N_INSNS (outer_code
!= MEM
);
1370 else if (TARGET_EXPLICIT_RELOCS
&& local_symbolic_operand (x
, VOIDmode
))
1371 *total
= COSTS_N_INSNS (1 + (outer_code
!= MEM
));
1372 else if (tls_symbolic_operand_type (x
))
1373 /* Estimate of cost for call_pal rduniq. */
1374 /* ??? How many insns do we emit here? More than one... */
1375 *total
= COSTS_N_INSNS (15);
1377 /* Otherwise we do a load from the GOT. */
1378 *total
= COSTS_N_INSNS (optimize_size
? 1 : alpha_memory_latency
);
1382 /* This is effectively an add_operand. */
1389 *total
= cost_data
->fp_add
;
1390 else if (GET_CODE (XEXP (x
, 0)) == MULT
1391 && const48_operand (XEXP (XEXP (x
, 0), 1), VOIDmode
))
1393 *total
= (rtx_cost (XEXP (XEXP (x
, 0), 0), outer_code
)
1394 + rtx_cost (XEXP (x
, 1), outer_code
) + COSTS_N_INSNS (1));
1401 *total
= cost_data
->fp_mult
;
1402 else if (mode
== DImode
)
1403 *total
= cost_data
->int_mult_di
;
1405 *total
= cost_data
->int_mult_si
;
1409 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
1410 && INTVAL (XEXP (x
, 1)) <= 3)
1412 *total
= COSTS_N_INSNS (1);
1419 *total
= cost_data
->int_shift
;
1424 *total
= cost_data
->fp_add
;
1426 *total
= cost_data
->int_cmov
;
1434 *total
= cost_data
->int_div
;
1435 else if (mode
== SFmode
)
1436 *total
= cost_data
->fp_div_sf
;
1438 *total
= cost_data
->fp_div_df
;
1442 *total
= COSTS_N_INSNS (optimize_size
? 1 : alpha_memory_latency
);
1448 *total
= COSTS_N_INSNS (1);
1456 *total
= COSTS_N_INSNS (1) + cost_data
->int_cmov
;
1462 case UNSIGNED_FLOAT
:
1465 case FLOAT_TRUNCATE
:
1466 *total
= cost_data
->fp_add
;
1470 if (GET_CODE (XEXP (x
, 0)) == MEM
)
1473 *total
= cost_data
->fp_add
;
1481 /* REF is an alignable memory location. Place an aligned SImode
1482 reference into *PALIGNED_MEM and the number of bits to shift into
1483 *PBITNUM. SCRATCH is a free register for use in reloading out
1484 of range stack slots. */
1487 get_aligned_mem (rtx ref
, rtx
*paligned_mem
, rtx
*pbitnum
)
1490 HOST_WIDE_INT disp
, offset
;
1492 gcc_assert (GET_CODE (ref
) == MEM
);
1494 if (reload_in_progress
1495 && ! memory_address_p (GET_MODE (ref
), XEXP (ref
, 0)))
1497 base
= find_replacement (&XEXP (ref
, 0));
1498 gcc_assert (memory_address_p (GET_MODE (ref
), base
));
1501 base
= XEXP (ref
, 0);
1503 if (GET_CODE (base
) == PLUS
)
1504 disp
= INTVAL (XEXP (base
, 1)), base
= XEXP (base
, 0);
1508 /* Find the byte offset within an aligned word. If the memory itself is
1509 claimed to be aligned, believe it. Otherwise, aligned_memory_operand
1510 will have examined the base register and determined it is aligned, and
1511 thus displacements from it are naturally alignable. */
1512 if (MEM_ALIGN (ref
) >= 32)
1517 /* Access the entire aligned word. */
1518 *paligned_mem
= widen_memory_access (ref
, SImode
, -offset
);
1520 /* Convert the byte offset within the word to a bit offset. */
1521 if (WORDS_BIG_ENDIAN
)
1522 offset
= 32 - (GET_MODE_BITSIZE (GET_MODE (ref
)) + offset
* 8);
1525 *pbitnum
= GEN_INT (offset
);
1528 /* Similar, but just get the address. Handle the two reload cases.
1529 Add EXTRA_OFFSET to the address we return. */
1532 get_unaligned_address (rtx ref
, int extra_offset
)
1535 HOST_WIDE_INT offset
= 0;
1537 gcc_assert (GET_CODE (ref
) == MEM
);
1539 if (reload_in_progress
1540 && ! memory_address_p (GET_MODE (ref
), XEXP (ref
, 0)))
1542 base
= find_replacement (&XEXP (ref
, 0));
1544 gcc_assert (memory_address_p (GET_MODE (ref
), base
));
1547 base
= XEXP (ref
, 0);
1549 if (GET_CODE (base
) == PLUS
)
1550 offset
+= INTVAL (XEXP (base
, 1)), base
= XEXP (base
, 0);
1552 return plus_constant (base
, offset
+ extra_offset
);
1555 /* On the Alpha, all (non-symbolic) constants except zero go into
1556 a floating-point register via memory. Note that we cannot
1557 return anything that is not a subset of CLASS, and that some
1558 symbolic constants cannot be dropped to memory. */
1561 alpha_preferred_reload_class(rtx x
, enum reg_class
class)
1563 /* Zero is present in any register class. */
1564 if (x
== CONST0_RTX (GET_MODE (x
)))
1567 /* These sorts of constants we can easily drop to memory. */
1568 if (GET_CODE (x
) == CONST_INT
1569 || GET_CODE (x
) == CONST_DOUBLE
1570 || GET_CODE (x
) == CONST_VECTOR
)
1572 if (class == FLOAT_REGS
)
1574 if (class == ALL_REGS
)
1575 return GENERAL_REGS
;
1579 /* All other kinds of constants should not (and in the case of HIGH
1580 cannot) be dropped to memory -- instead we use a GENERAL_REGS
1581 secondary reload. */
1583 return (class == ALL_REGS
? GENERAL_REGS
: class);
1588 /* Loading and storing HImode or QImode values to and from memory
1589 usually requires a scratch register. The exceptions are loading
1590 QImode and HImode from an aligned address to a general register
1591 unless byte instructions are permitted.
1593 We also cannot load an unaligned address or a paradoxical SUBREG
1594 into an FP register.
1596 We also cannot do integral arithmetic into FP regs, as might result
1597 from register elimination into a DImode fp register. */
1600 alpha_secondary_reload_class (enum reg_class
class, enum machine_mode mode
,
1603 if ((mode
== QImode
|| mode
== HImode
) && ! TARGET_BWX
)
1605 if (GET_CODE (x
) == MEM
1606 || (GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
1607 || (GET_CODE (x
) == SUBREG
1608 && (GET_CODE (SUBREG_REG (x
)) == MEM
1609 || (GET_CODE (SUBREG_REG (x
)) == REG
1610 && REGNO (SUBREG_REG (x
)) >= FIRST_PSEUDO_REGISTER
))))
1612 if (!in
|| !aligned_memory_operand(x
, mode
))
1613 return GENERAL_REGS
;
1617 if (class == FLOAT_REGS
)
1619 if (GET_CODE (x
) == MEM
&& GET_CODE (XEXP (x
, 0)) == AND
)
1620 return GENERAL_REGS
;
1622 if (GET_CODE (x
) == SUBREG
1623 && (GET_MODE_SIZE (GET_MODE (x
))
1624 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))))
1625 return GENERAL_REGS
;
1627 if (in
&& INTEGRAL_MODE_P (mode
)
1628 && ! (memory_operand (x
, mode
) || x
== const0_rtx
))
1629 return GENERAL_REGS
;
1635 /* Subfunction of the following function. Update the flags of any MEM
1636 found in part of X. */
1639 alpha_set_memflags_1 (rtx
*xp
, void *data
)
1641 rtx x
= *xp
, orig
= (rtx
) data
;
1643 if (GET_CODE (x
) != MEM
)
1646 MEM_VOLATILE_P (x
) = MEM_VOLATILE_P (orig
);
1647 MEM_IN_STRUCT_P (x
) = MEM_IN_STRUCT_P (orig
);
1648 MEM_SCALAR_P (x
) = MEM_SCALAR_P (orig
);
1649 MEM_NOTRAP_P (x
) = MEM_NOTRAP_P (orig
);
1650 MEM_READONLY_P (x
) = MEM_READONLY_P (orig
);
1652 /* Sadly, we cannot use alias sets because the extra aliasing
1653 produced by the AND interferes. Given that two-byte quantities
1654 are the only thing we would be able to differentiate anyway,
1655 there does not seem to be any point in convoluting the early
1656 out of the alias check. */
1661 /* Given INSN, which is an INSN list or the PATTERN of a single insn
1662 generated to perform a memory operation, look for any MEMs in either
1663 a SET_DEST or a SET_SRC and copy the in-struct, unchanging, and
1664 volatile flags from REF into each of the MEMs found. If REF is not
1665 a MEM, don't do anything. */
1668 alpha_set_memflags (rtx insn
, rtx ref
)
1672 if (GET_CODE (ref
) != MEM
)
1675 /* This is only called from alpha.md, after having had something
1676 generated from one of the insn patterns. So if everything is
1677 zero, the pattern is already up-to-date. */
1678 if (!MEM_VOLATILE_P (ref
)
1679 && !MEM_IN_STRUCT_P (ref
)
1680 && !MEM_SCALAR_P (ref
)
1681 && !MEM_NOTRAP_P (ref
)
1682 && !MEM_READONLY_P (ref
))
1686 base_ptr
= &PATTERN (insn
);
1689 for_each_rtx (base_ptr
, alpha_set_memflags_1
, (void *) ref
);
1692 static rtx
alpha_emit_set_const (rtx
, enum machine_mode
, HOST_WIDE_INT
,
1695 /* Internal routine for alpha_emit_set_const to check for N or below insns.
1696 If NO_OUTPUT is true, then we only check to see if N insns are possible,
1697 and return pc_rtx if successful. */
1700 alpha_emit_set_const_1 (rtx target
, enum machine_mode mode
,
1701 HOST_WIDE_INT c
, int n
, bool no_output
)
1705 /* Use a pseudo if highly optimizing and still generating RTL. */
1707 = (flag_expensive_optimizations
&& !no_new_pseudos
? 0 : target
);
1710 /* If this is a sign-extended 32-bit constant, we can do this in at most
1711 three insns, so do it if we have enough insns left. We always have
1712 a sign-extended 32-bit constant when compiling on a narrow machine. */
1714 if (HOST_BITS_PER_WIDE_INT
!= 64
1715 || c
>> 31 == -1 || c
>> 31 == 0)
1717 HOST_WIDE_INT low
= ((c
& 0xffff) ^ 0x8000) - 0x8000;
1718 HOST_WIDE_INT tmp1
= c
- low
;
1719 HOST_WIDE_INT high
= (((tmp1
>> 16) & 0xffff) ^ 0x8000) - 0x8000;
1720 HOST_WIDE_INT extra
= 0;
1722 /* If HIGH will be interpreted as negative but the constant is
1723 positive, we must adjust it to do two ldha insns. */
1725 if ((high
& 0x8000) != 0 && c
>= 0)
1729 high
= ((tmp1
>> 16) & 0xffff) - 2 * ((tmp1
>> 16) & 0x8000);
1732 if (c
== low
|| (low
== 0 && extra
== 0))
1734 /* We used to use copy_to_suggested_reg (GEN_INT (c), target, mode)
1735 but that meant that we can't handle INT_MIN on 32-bit machines
1736 (like NT/Alpha), because we recurse indefinitely through
1737 emit_move_insn to gen_movdi. So instead, since we know exactly
1738 what we want, create it explicitly. */
1743 target
= gen_reg_rtx (mode
);
1744 emit_insn (gen_rtx_SET (VOIDmode
, target
, GEN_INT (c
)));
1747 else if (n
>= 2 + (extra
!= 0))
1753 emit_insn (gen_rtx_SET (VOIDmode
, target
, GEN_INT (high
<< 16)));
1757 temp
= copy_to_suggested_reg (GEN_INT (high
<< 16),
1760 /* As of 2002-02-23, addsi3 is only available when not optimizing.
1761 This means that if we go through expand_binop, we'll try to
1762 generate extensions, etc, which will require new pseudos, which
1763 will fail during some split phases. The SImode add patterns
1764 still exist, but are not named. So build the insns by hand. */
1769 subtarget
= gen_reg_rtx (mode
);
1770 insn
= gen_rtx_PLUS (mode
, temp
, GEN_INT (extra
<< 16));
1771 insn
= gen_rtx_SET (VOIDmode
, subtarget
, insn
);
1777 target
= gen_reg_rtx (mode
);
1778 insn
= gen_rtx_PLUS (mode
, temp
, GEN_INT (low
));
1779 insn
= gen_rtx_SET (VOIDmode
, target
, insn
);
1785 /* If we couldn't do it that way, try some other methods. But if we have
1786 no instructions left, don't bother. Likewise, if this is SImode and
1787 we can't make pseudos, we can't do anything since the expand_binop
1788 and expand_unop calls will widen and try to make pseudos. */
1790 if (n
== 1 || (mode
== SImode
&& no_new_pseudos
))
1793 /* Next, see if we can load a related constant and then shift and possibly
1794 negate it to get the constant we want. Try this once each increasing
1795 numbers of insns. */
1797 for (i
= 1; i
< n
; i
++)
1799 /* First, see if minus some low bits, we've an easy load of
1802 new = ((c
& 0xffff) ^ 0x8000) - 0x8000;
1805 temp
= alpha_emit_set_const (subtarget
, mode
, c
- new, i
, no_output
);
1810 return expand_binop (mode
, add_optab
, temp
, GEN_INT (new),
1811 target
, 0, OPTAB_WIDEN
);
1815 /* Next try complementing. */
1816 temp
= alpha_emit_set_const (subtarget
, mode
, ~c
, i
, no_output
);
1821 return expand_unop (mode
, one_cmpl_optab
, temp
, target
, 0);
1824 /* Next try to form a constant and do a left shift. We can do this
1825 if some low-order bits are zero; the exact_log2 call below tells
1826 us that information. The bits we are shifting out could be any
1827 value, but here we'll just try the 0- and sign-extended forms of
1828 the constant. To try to increase the chance of having the same
1829 constant in more than one insn, start at the highest number of
1830 bits to shift, but try all possibilities in case a ZAPNOT will
1833 bits
= exact_log2 (c
& -c
);
1835 for (; bits
> 0; bits
--)
1838 temp
= alpha_emit_set_const (subtarget
, mode
, new, i
, no_output
);
1841 new = (unsigned HOST_WIDE_INT
)c
>> bits
;
1842 temp
= alpha_emit_set_const (subtarget
, mode
, new,
1849 return expand_binop (mode
, ashl_optab
, temp
, GEN_INT (bits
),
1850 target
, 0, OPTAB_WIDEN
);
1854 /* Now try high-order zero bits. Here we try the shifted-in bits as
1855 all zero and all ones. Be careful to avoid shifting outside the
1856 mode and to avoid shifting outside the host wide int size. */
1857 /* On narrow hosts, don't shift a 1 into the high bit, since we'll
1858 confuse the recursive call and set all of the high 32 bits. */
1860 bits
= (MIN (HOST_BITS_PER_WIDE_INT
, GET_MODE_SIZE (mode
) * 8)
1861 - floor_log2 (c
) - 1 - (HOST_BITS_PER_WIDE_INT
< 64));
1863 for (; bits
> 0; bits
--)
1866 temp
= alpha_emit_set_const (subtarget
, mode
, new, i
, no_output
);
1869 new = (c
<< bits
) | (((HOST_WIDE_INT
) 1 << bits
) - 1);
1870 temp
= alpha_emit_set_const (subtarget
, mode
, new,
1877 return expand_binop (mode
, lshr_optab
, temp
, GEN_INT (bits
),
1878 target
, 1, OPTAB_WIDEN
);
1882 /* Now try high-order 1 bits. We get that with a sign-extension.
1883 But one bit isn't enough here. Be careful to avoid shifting outside
1884 the mode and to avoid shifting outside the host wide int size. */
1886 bits
= (MIN (HOST_BITS_PER_WIDE_INT
, GET_MODE_SIZE (mode
) * 8)
1887 - floor_log2 (~ c
) - 2);
1889 for (; bits
> 0; bits
--)
1892 temp
= alpha_emit_set_const (subtarget
, mode
, new, i
, no_output
);
1895 new = (c
<< bits
) | (((HOST_WIDE_INT
) 1 << bits
) - 1);
1896 temp
= alpha_emit_set_const (subtarget
, mode
, new,
1903 return expand_binop (mode
, ashr_optab
, temp
, GEN_INT (bits
),
1904 target
, 0, OPTAB_WIDEN
);
1909 #if HOST_BITS_PER_WIDE_INT == 64
1910 /* Finally, see if can load a value into the target that is the same as the
1911 constant except that all bytes that are 0 are changed to be 0xff. If we
1912 can, then we can do a ZAPNOT to obtain the desired constant. */
1915 for (i
= 0; i
< 64; i
+= 8)
1916 if ((new & ((HOST_WIDE_INT
) 0xff << i
)) == 0)
1917 new |= (HOST_WIDE_INT
) 0xff << i
;
1919 /* We are only called for SImode and DImode. If this is SImode, ensure that
1920 we are sign extended to a full word. */
1923 new = ((new & 0xffffffff) ^ 0x80000000) - 0x80000000;
1927 temp
= alpha_emit_set_const (subtarget
, mode
, new, n
- 1, no_output
);
1932 return expand_binop (mode
, and_optab
, temp
, GEN_INT (c
| ~ new),
1933 target
, 0, OPTAB_WIDEN
);
1941 /* Try to output insns to set TARGET equal to the constant C if it can be
1942 done in less than N insns. Do all computations in MODE. Returns the place
1943 where the output has been placed if it can be done and the insns have been
1944 emitted. If it would take more than N insns, zero is returned and no
1945 insns and emitted. */
1948 alpha_emit_set_const (rtx target
, enum machine_mode mode
,
1949 HOST_WIDE_INT c
, int n
, bool no_output
)
1951 enum machine_mode orig_mode
= mode
;
1952 rtx orig_target
= target
;
1956 /* If we can't make any pseudos, TARGET is an SImode hard register, we
1957 can't load this constant in one insn, do this in DImode. */
1958 if (no_new_pseudos
&& mode
== SImode
1959 && GET_CODE (target
) == REG
&& REGNO (target
) < FIRST_PSEUDO_REGISTER
)
1961 result
= alpha_emit_set_const_1 (target
, mode
, c
, 1, no_output
);
1965 target
= no_output
? NULL
: gen_lowpart (DImode
, target
);
1968 else if (mode
== V8QImode
|| mode
== V4HImode
|| mode
== V2SImode
)
1970 target
= no_output
? NULL
: gen_lowpart (DImode
, target
);
1974 /* Try 1 insn, then 2, then up to N. */
1975 for (i
= 1; i
<= n
; i
++)
1977 result
= alpha_emit_set_const_1 (target
, mode
, c
, i
, no_output
);
1985 insn
= get_last_insn ();
1986 set
= single_set (insn
);
1987 if (! CONSTANT_P (SET_SRC (set
)))
1988 set_unique_reg_note (get_last_insn (), REG_EQUAL
, GEN_INT (c
));
1993 /* Allow for the case where we changed the mode of TARGET. */
1996 if (result
== target
)
1997 result
= orig_target
;
1998 else if (mode
!= orig_mode
)
1999 result
= gen_lowpart (orig_mode
, result
);
2005 /* Having failed to find a 3 insn sequence in alpha_emit_set_const,
2006 fall back to a straight forward decomposition. We do this to avoid
2007 exponential run times encountered when looking for longer sequences
2008 with alpha_emit_set_const. */
2011 alpha_emit_set_long_const (rtx target
, HOST_WIDE_INT c1
, HOST_WIDE_INT c2
)
2013 HOST_WIDE_INT d1
, d2
, d3
, d4
;
2015 /* Decompose the entire word */
2016 #if HOST_BITS_PER_WIDE_INT >= 64
2017 gcc_assert (c2
== -(c1
< 0));
2018 d1
= ((c1
& 0xffff) ^ 0x8000) - 0x8000;
2020 d2
= ((c1
& 0xffffffff) ^ 0x80000000) - 0x80000000;
2021 c1
= (c1
- d2
) >> 32;
2022 d3
= ((c1
& 0xffff) ^ 0x8000) - 0x8000;
2024 d4
= ((c1
& 0xffffffff) ^ 0x80000000) - 0x80000000;
2025 gcc_assert (c1
== d4
);
2027 d1
= ((c1
& 0xffff) ^ 0x8000) - 0x8000;
2029 d2
= ((c1
& 0xffffffff) ^ 0x80000000) - 0x80000000;
2030 gcc_assert (c1
== d2
);
2032 d3
= ((c2
& 0xffff) ^ 0x8000) - 0x8000;
2034 d4
= ((c2
& 0xffffffff) ^ 0x80000000) - 0x80000000;
2035 gcc_assert (c2
== d4
);
2038 /* Construct the high word */
2041 emit_move_insn (target
, GEN_INT (d4
));
2043 emit_move_insn (target
, gen_rtx_PLUS (DImode
, target
, GEN_INT (d3
)));
2046 emit_move_insn (target
, GEN_INT (d3
));
2048 /* Shift it into place */
2049 emit_move_insn (target
, gen_rtx_ASHIFT (DImode
, target
, GEN_INT (32)));
2051 /* Add in the low bits. */
2053 emit_move_insn (target
, gen_rtx_PLUS (DImode
, target
, GEN_INT (d2
)));
2055 emit_move_insn (target
, gen_rtx_PLUS (DImode
, target
, GEN_INT (d1
)));
2060 /* Given an integral CONST_INT, CONST_DOUBLE, or CONST_VECTOR, return
2064 alpha_extract_integer (rtx x
, HOST_WIDE_INT
*p0
, HOST_WIDE_INT
*p1
)
2066 HOST_WIDE_INT i0
, i1
;
2068 if (GET_CODE (x
) == CONST_VECTOR
)
2069 x
= simplify_subreg (DImode
, x
, GET_MODE (x
), 0);
2072 if (GET_CODE (x
) == CONST_INT
)
2077 else if (HOST_BITS_PER_WIDE_INT
>= 64)
2079 i0
= CONST_DOUBLE_LOW (x
);
2084 i0
= CONST_DOUBLE_LOW (x
);
2085 i1
= CONST_DOUBLE_HIGH (x
);
2092 /* Implement LEGITIMATE_CONSTANT_P. This is all constants for which we
2093 are willing to load the value into a register via a move pattern.
2094 Normally this is all symbolic constants, integral constants that
2095 take three or fewer instructions, and floating-point zero. */
2098 alpha_legitimate_constant_p (rtx x
)
2100 enum machine_mode mode
= GET_MODE (x
);
2101 HOST_WIDE_INT i0
, i1
;
2103 switch (GET_CODE (x
))
2112 if (x
== CONST0_RTX (mode
))
2114 if (FLOAT_MODE_P (mode
))
2119 if (x
== CONST0_RTX (mode
))
2121 if (GET_MODE_CLASS (mode
) != MODE_VECTOR_INT
)
2123 if (GET_MODE_SIZE (mode
) != 8)
2129 if (TARGET_BUILD_CONSTANTS
)
2131 alpha_extract_integer (x
, &i0
, &i1
);
2132 if (HOST_BITS_PER_WIDE_INT
>= 64 || i1
== (-i0
< 0))
2133 return alpha_emit_set_const_1 (x
, mode
, i0
, 3, true) != NULL
;
2141 /* Operand 1 is known to be a constant, and should require more than one
2142 instruction to load. Emit that multi-part load. */
2145 alpha_split_const_mov (enum machine_mode mode
, rtx
*operands
)
2147 HOST_WIDE_INT i0
, i1
;
2148 rtx temp
= NULL_RTX
;
2150 alpha_extract_integer (operands
[1], &i0
, &i1
);
2152 if (HOST_BITS_PER_WIDE_INT
>= 64 || i1
== -(i0
< 0))
2153 temp
= alpha_emit_set_const (operands
[0], mode
, i0
, 3, false);
2155 if (!temp
&& TARGET_BUILD_CONSTANTS
)
2156 temp
= alpha_emit_set_long_const (operands
[0], i0
, i1
);
2160 if (!rtx_equal_p (operands
[0], temp
))
2161 emit_move_insn (operands
[0], temp
);
2168 /* Expand a move instruction; return true if all work is done.
2169 We don't handle non-bwx subword loads here. */
2172 alpha_expand_mov (enum machine_mode mode
, rtx
*operands
)
2174 /* If the output is not a register, the input must be. */
2175 if (GET_CODE (operands
[0]) == MEM
2176 && ! reg_or_0_operand (operands
[1], mode
))
2177 operands
[1] = force_reg (mode
, operands
[1]);
2179 /* Allow legitimize_address to perform some simplifications. */
2180 if (mode
== Pmode
&& symbolic_operand (operands
[1], mode
))
2184 tmp
= alpha_legitimize_address (operands
[1], operands
[0], mode
);
2187 if (tmp
== operands
[0])
2194 /* Early out for non-constants and valid constants. */
2195 if (! CONSTANT_P (operands
[1]) || input_operand (operands
[1], mode
))
2198 /* Split large integers. */
2199 if (GET_CODE (operands
[1]) == CONST_INT
2200 || GET_CODE (operands
[1]) == CONST_DOUBLE
2201 || GET_CODE (operands
[1]) == CONST_VECTOR
)
2203 if (alpha_split_const_mov (mode
, operands
))
2207 /* Otherwise we've nothing left but to drop the thing to memory. */
2208 operands
[1] = force_const_mem (mode
, operands
[1]);
2209 if (reload_in_progress
)
2211 emit_move_insn (operands
[0], XEXP (operands
[1], 0));
2212 operands
[1] = copy_rtx (operands
[1]);
2213 XEXP (operands
[1], 0) = operands
[0];
2216 operands
[1] = validize_mem (operands
[1]);
2220 /* Expand a non-bwx QImode or HImode move instruction;
2221 return true if all work is done. */
2224 alpha_expand_mov_nobwx (enum machine_mode mode
, rtx
*operands
)
2226 /* If the output is not a register, the input must be. */
2227 if (GET_CODE (operands
[0]) == MEM
)
2228 operands
[1] = force_reg (mode
, operands
[1]);
2230 /* Handle four memory cases, unaligned and aligned for either the input
2231 or the output. The only case where we can be called during reload is
2232 for aligned loads; all other cases require temporaries. */
2234 if (GET_CODE (operands
[1]) == MEM
2235 || (GET_CODE (operands
[1]) == SUBREG
2236 && GET_CODE (SUBREG_REG (operands
[1])) == MEM
)
2237 || (reload_in_progress
&& GET_CODE (operands
[1]) == REG
2238 && REGNO (operands
[1]) >= FIRST_PSEUDO_REGISTER
)
2239 || (reload_in_progress
&& GET_CODE (operands
[1]) == SUBREG
2240 && GET_CODE (SUBREG_REG (operands
[1])) == REG
2241 && REGNO (SUBREG_REG (operands
[1])) >= FIRST_PSEUDO_REGISTER
))
2243 if (aligned_memory_operand (operands
[1], mode
))
2245 if (reload_in_progress
)
2247 emit_insn ((mode
== QImode
2248 ? gen_reload_inqi_help
2249 : gen_reload_inhi_help
)
2250 (operands
[0], operands
[1],
2251 gen_rtx_REG (SImode
, REGNO (operands
[0]))));
2255 rtx aligned_mem
, bitnum
;
2256 rtx scratch
= gen_reg_rtx (SImode
);
2260 get_aligned_mem (operands
[1], &aligned_mem
, &bitnum
);
2262 subtarget
= operands
[0];
2263 if (GET_CODE (subtarget
) == REG
)
2264 subtarget
= gen_lowpart (DImode
, subtarget
), copyout
= false;
2266 subtarget
= gen_reg_rtx (DImode
), copyout
= true;
2268 emit_insn ((mode
== QImode
2269 ? gen_aligned_loadqi
2270 : gen_aligned_loadhi
)
2271 (subtarget
, aligned_mem
, bitnum
, scratch
));
2274 emit_move_insn (operands
[0], gen_lowpart (mode
, subtarget
));
2279 /* Don't pass these as parameters since that makes the generated
2280 code depend on parameter evaluation order which will cause
2281 bootstrap failures. */
2283 rtx temp1
, temp2
, seq
, subtarget
;
2286 temp1
= gen_reg_rtx (DImode
);
2287 temp2
= gen_reg_rtx (DImode
);
2289 subtarget
= operands
[0];
2290 if (GET_CODE (subtarget
) == REG
)
2291 subtarget
= gen_lowpart (DImode
, subtarget
), copyout
= false;
2293 subtarget
= gen_reg_rtx (DImode
), copyout
= true;
2295 seq
= ((mode
== QImode
2296 ? gen_unaligned_loadqi
2297 : gen_unaligned_loadhi
)
2298 (subtarget
, get_unaligned_address (operands
[1], 0),
2300 alpha_set_memflags (seq
, operands
[1]);
2304 emit_move_insn (operands
[0], gen_lowpart (mode
, subtarget
));
2309 if (GET_CODE (operands
[0]) == MEM
2310 || (GET_CODE (operands
[0]) == SUBREG
2311 && GET_CODE (SUBREG_REG (operands
[0])) == MEM
)
2312 || (reload_in_progress
&& GET_CODE (operands
[0]) == REG
2313 && REGNO (operands
[0]) >= FIRST_PSEUDO_REGISTER
)
2314 || (reload_in_progress
&& GET_CODE (operands
[0]) == SUBREG
2315 && GET_CODE (SUBREG_REG (operands
[0])) == REG
2316 && REGNO (operands
[0]) >= FIRST_PSEUDO_REGISTER
))
2318 if (aligned_memory_operand (operands
[0], mode
))
2320 rtx aligned_mem
, bitnum
;
2321 rtx temp1
= gen_reg_rtx (SImode
);
2322 rtx temp2
= gen_reg_rtx (SImode
);
2324 get_aligned_mem (operands
[0], &aligned_mem
, &bitnum
);
2326 emit_insn (gen_aligned_store (aligned_mem
, operands
[1], bitnum
,
2331 rtx temp1
= gen_reg_rtx (DImode
);
2332 rtx temp2
= gen_reg_rtx (DImode
);
2333 rtx temp3
= gen_reg_rtx (DImode
);
2334 rtx seq
= ((mode
== QImode
2335 ? gen_unaligned_storeqi
2336 : gen_unaligned_storehi
)
2337 (get_unaligned_address (operands
[0], 0),
2338 operands
[1], temp1
, temp2
, temp3
));
2340 alpha_set_memflags (seq
, operands
[0]);
2349 /* Implement the movmisalign patterns. One of the operands is a memory
2350 that is not naturally aligned. Emit instructions to load it. */
2353 alpha_expand_movmisalign (enum machine_mode mode
, rtx
*operands
)
2355 /* Honor misaligned loads, for those we promised to do so. */
2356 if (MEM_P (operands
[1]))
2360 if (register_operand (operands
[0], mode
))
2363 tmp
= gen_reg_rtx (mode
);
2365 alpha_expand_unaligned_load (tmp
, operands
[1], 8, 0, 0);
2366 if (tmp
!= operands
[0])
2367 emit_move_insn (operands
[0], tmp
);
2369 else if (MEM_P (operands
[0]))
2371 if (!reg_or_0_operand (operands
[1], mode
))
2372 operands
[1] = force_reg (mode
, operands
[1]);
2373 alpha_expand_unaligned_store (operands
[0], operands
[1], 8, 0);
2379 /* Generate an unsigned DImode to FP conversion. This is the same code
2380 optabs would emit if we didn't have TFmode patterns.
2382 For SFmode, this is the only construction I've found that can pass
2383 gcc.c-torture/execute/ieee/rbug.c. No scenario that uses DFmode
2384 intermediates will work, because you'll get intermediate rounding
2385 that ruins the end result. Some of this could be fixed by turning
2386 on round-to-positive-infinity, but that requires diddling the fpsr,
2387 which kills performance. I tried turning this around and converting
2388 to a negative number, so that I could turn on /m, but either I did
2389 it wrong or there's something else cause I wound up with the exact
2390 same single-bit error. There is a branch-less form of this same code:
2401 fcmoveq $f10,$f11,$f0
2403 I'm not using it because it's the same number of instructions as
2404 this branch-full form, and it has more serialized long latency
2405 instructions on the critical path.
2407 For DFmode, we can avoid rounding errors by breaking up the word
2408 into two pieces, converting them separately, and adding them back:
2410 LC0: .long 0,0x5f800000
2415 cpyse $f11,$f31,$f10
2416 cpyse $f31,$f11,$f11
2424 This doesn't seem to be a clear-cut win over the optabs form.
2425 It probably all depends on the distribution of numbers being
2426 converted -- in the optabs form, all but high-bit-set has a
2427 much lower minimum execution time. */
2430 alpha_emit_floatuns (rtx operands
[2])
2432 rtx neglab
, donelab
, i0
, i1
, f0
, in
, out
;
2433 enum machine_mode mode
;
2436 in
= force_reg (DImode
, operands
[1]);
2437 mode
= GET_MODE (out
);
2438 neglab
= gen_label_rtx ();
2439 donelab
= gen_label_rtx ();
2440 i0
= gen_reg_rtx (DImode
);
2441 i1
= gen_reg_rtx (DImode
);
2442 f0
= gen_reg_rtx (mode
);
2444 emit_cmp_and_jump_insns (in
, const0_rtx
, LT
, const0_rtx
, DImode
, 0, neglab
);
2446 emit_insn (gen_rtx_SET (VOIDmode
, out
, gen_rtx_FLOAT (mode
, in
)));
2447 emit_jump_insn (gen_jump (donelab
));
2450 emit_label (neglab
);
2452 emit_insn (gen_lshrdi3 (i0
, in
, const1_rtx
));
2453 emit_insn (gen_anddi3 (i1
, in
, const1_rtx
));
2454 emit_insn (gen_iordi3 (i0
, i0
, i1
));
2455 emit_insn (gen_rtx_SET (VOIDmode
, f0
, gen_rtx_FLOAT (mode
, i0
)));
2456 emit_insn (gen_rtx_SET (VOIDmode
, out
, gen_rtx_PLUS (mode
, f0
, f0
)));
2458 emit_label (donelab
);
2461 /* Generate the comparison for a conditional branch. */
2464 alpha_emit_conditional_branch (enum rtx_code code
)
2466 enum rtx_code cmp_code
, branch_code
;
2467 enum machine_mode cmp_mode
, branch_mode
= VOIDmode
;
2468 rtx op0
= alpha_compare
.op0
, op1
= alpha_compare
.op1
;
2471 if (alpha_compare
.fp_p
&& GET_MODE (op0
) == TFmode
)
2473 op0
= alpha_emit_xfloating_compare (&code
, op0
, op1
);
2475 alpha_compare
.fp_p
= 0;
2478 /* The general case: fold the comparison code to the types of compares
2479 that we have, choosing the branch as necessary. */
2482 case EQ
: case LE
: case LT
: case LEU
: case LTU
:
2484 /* We have these compares: */
2485 cmp_code
= code
, branch_code
= NE
;
2490 /* These must be reversed. */
2491 cmp_code
= reverse_condition (code
), branch_code
= EQ
;
2494 case GE
: case GT
: case GEU
: case GTU
:
2495 /* For FP, we swap them, for INT, we reverse them. */
2496 if (alpha_compare
.fp_p
)
2498 cmp_code
= swap_condition (code
);
2500 tem
= op0
, op0
= op1
, op1
= tem
;
2504 cmp_code
= reverse_condition (code
);
2513 if (alpha_compare
.fp_p
)
2516 if (flag_unsafe_math_optimizations
)
2518 /* When we are not as concerned about non-finite values, and we
2519 are comparing against zero, we can branch directly. */
2520 if (op1
== CONST0_RTX (DFmode
))
2521 cmp_code
= UNKNOWN
, branch_code
= code
;
2522 else if (op0
== CONST0_RTX (DFmode
))
2524 /* Undo the swap we probably did just above. */
2525 tem
= op0
, op0
= op1
, op1
= tem
;
2526 branch_code
= swap_condition (cmp_code
);
2532 /* ??? We mark the branch mode to be CCmode to prevent the
2533 compare and branch from being combined, since the compare
2534 insn follows IEEE rules that the branch does not. */
2535 branch_mode
= CCmode
;
2542 /* The following optimizations are only for signed compares. */
2543 if (code
!= LEU
&& code
!= LTU
&& code
!= GEU
&& code
!= GTU
)
2545 /* Whee. Compare and branch against 0 directly. */
2546 if (op1
== const0_rtx
)
2547 cmp_code
= UNKNOWN
, branch_code
= code
;
2549 /* If the constants doesn't fit into an immediate, but can
2550 be generated by lda/ldah, we adjust the argument and
2551 compare against zero, so we can use beq/bne directly. */
2552 /* ??? Don't do this when comparing against symbols, otherwise
2553 we'll reduce (&x == 0x1234) to (&x-0x1234 == 0), which will
2554 be declared false out of hand (at least for non-weak). */
2555 else if (GET_CODE (op1
) == CONST_INT
2556 && (code
== EQ
|| code
== NE
)
2557 && !(symbolic_operand (op0
, VOIDmode
)
2558 || (GET_CODE (op0
) == REG
&& REG_POINTER (op0
))))
2560 HOST_WIDE_INT v
= INTVAL (op1
), n
= -v
;
2562 if (! CONST_OK_FOR_LETTER_P (v
, 'I')
2563 && (CONST_OK_FOR_LETTER_P (n
, 'K')
2564 || CONST_OK_FOR_LETTER_P (n
, 'L')))
2566 cmp_code
= PLUS
, branch_code
= code
;
2572 if (!reg_or_0_operand (op0
, DImode
))
2573 op0
= force_reg (DImode
, op0
);
2574 if (cmp_code
!= PLUS
&& !reg_or_8bit_operand (op1
, DImode
))
2575 op1
= force_reg (DImode
, op1
);
2578 /* Emit an initial compare instruction, if necessary. */
2580 if (cmp_code
!= UNKNOWN
)
2582 tem
= gen_reg_rtx (cmp_mode
);
2583 emit_move_insn (tem
, gen_rtx_fmt_ee (cmp_code
, cmp_mode
, op0
, op1
));
2586 /* Zero the operands. */
2587 memset (&alpha_compare
, 0, sizeof (alpha_compare
));
2589 /* Return the branch comparison. */
2590 return gen_rtx_fmt_ee (branch_code
, branch_mode
, tem
, CONST0_RTX (cmp_mode
));
2593 /* Certain simplifications can be done to make invalid setcc operations
2594 valid. Return the final comparison, or NULL if we can't work. */
2597 alpha_emit_setcc (enum rtx_code code
)
2599 enum rtx_code cmp_code
;
2600 rtx op0
= alpha_compare
.op0
, op1
= alpha_compare
.op1
;
2601 int fp_p
= alpha_compare
.fp_p
;
2604 /* Zero the operands. */
2605 memset (&alpha_compare
, 0, sizeof (alpha_compare
));
2607 if (fp_p
&& GET_MODE (op0
) == TFmode
)
2609 op0
= alpha_emit_xfloating_compare (&code
, op0
, op1
);
2614 if (fp_p
&& !TARGET_FIX
)
2617 /* The general case: fold the comparison code to the types of compares
2618 that we have, choosing the branch as necessary. */
2623 case EQ
: case LE
: case LT
: case LEU
: case LTU
:
2625 /* We have these compares. */
2627 cmp_code
= code
, code
= NE
;
2631 if (!fp_p
&& op1
== const0_rtx
)
2636 cmp_code
= reverse_condition (code
);
2640 case GE
: case GT
: case GEU
: case GTU
:
2641 /* These normally need swapping, but for integer zero we have
2642 special patterns that recognize swapped operands. */
2643 if (!fp_p
&& op1
== const0_rtx
)
2645 code
= swap_condition (code
);
2647 cmp_code
= code
, code
= NE
;
2648 tmp
= op0
, op0
= op1
, op1
= tmp
;
2657 if (!register_operand (op0
, DImode
))
2658 op0
= force_reg (DImode
, op0
);
2659 if (!reg_or_8bit_operand (op1
, DImode
))
2660 op1
= force_reg (DImode
, op1
);
2663 /* Emit an initial compare instruction, if necessary. */
2664 if (cmp_code
!= UNKNOWN
)
2666 enum machine_mode mode
= fp_p
? DFmode
: DImode
;
2668 tmp
= gen_reg_rtx (mode
);
2669 emit_insn (gen_rtx_SET (VOIDmode
, tmp
,
2670 gen_rtx_fmt_ee (cmp_code
, mode
, op0
, op1
)));
2672 op0
= fp_p
? gen_lowpart (DImode
, tmp
) : tmp
;
2676 /* Return the setcc comparison. */
2677 return gen_rtx_fmt_ee (code
, DImode
, op0
, op1
);
2681 /* Rewrite a comparison against zero CMP of the form
2682 (CODE (cc0) (const_int 0)) so it can be written validly in
2683 a conditional move (if_then_else CMP ...).
2684 If both of the operands that set cc0 are nonzero we must emit
2685 an insn to perform the compare (it can't be done within
2686 the conditional move). */
2689 alpha_emit_conditional_move (rtx cmp
, enum machine_mode mode
)
2691 enum rtx_code code
= GET_CODE (cmp
);
2692 enum rtx_code cmov_code
= NE
;
2693 rtx op0
= alpha_compare
.op0
;
2694 rtx op1
= alpha_compare
.op1
;
2695 int fp_p
= alpha_compare
.fp_p
;
2696 enum machine_mode cmp_mode
2697 = (GET_MODE (op0
) == VOIDmode
? DImode
: GET_MODE (op0
));
2698 enum machine_mode cmp_op_mode
= fp_p
? DFmode
: DImode
;
2699 enum machine_mode cmov_mode
= VOIDmode
;
2700 int local_fast_math
= flag_unsafe_math_optimizations
;
2703 /* Zero the operands. */
2704 memset (&alpha_compare
, 0, sizeof (alpha_compare
));
2706 if (fp_p
!= FLOAT_MODE_P (mode
))
2708 enum rtx_code cmp_code
;
2713 /* If we have fp<->int register move instructions, do a cmov by
2714 performing the comparison in fp registers, and move the
2715 zero/nonzero value to integer registers, where we can then
2716 use a normal cmov, or vice-versa. */
2720 case EQ
: case LE
: case LT
: case LEU
: case LTU
:
2721 /* We have these compares. */
2722 cmp_code
= code
, code
= NE
;
2726 /* This must be reversed. */
2727 cmp_code
= EQ
, code
= EQ
;
2730 case GE
: case GT
: case GEU
: case GTU
:
2731 /* These normally need swapping, but for integer zero we have
2732 special patterns that recognize swapped operands. */
2733 if (!fp_p
&& op1
== const0_rtx
)
2734 cmp_code
= code
, code
= NE
;
2737 cmp_code
= swap_condition (code
);
2739 tem
= op0
, op0
= op1
, op1
= tem
;
2747 tem
= gen_reg_rtx (cmp_op_mode
);
2748 emit_insn (gen_rtx_SET (VOIDmode
, tem
,
2749 gen_rtx_fmt_ee (cmp_code
, cmp_op_mode
,
2752 cmp_mode
= cmp_op_mode
= fp_p
? DImode
: DFmode
;
2753 op0
= gen_lowpart (cmp_op_mode
, tem
);
2754 op1
= CONST0_RTX (cmp_op_mode
);
2756 local_fast_math
= 1;
2759 /* We may be able to use a conditional move directly.
2760 This avoids emitting spurious compares. */
2761 if (signed_comparison_operator (cmp
, VOIDmode
)
2762 && (!fp_p
|| local_fast_math
)
2763 && (op0
== CONST0_RTX (cmp_mode
) || op1
== CONST0_RTX (cmp_mode
)))
2764 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
2766 /* We can't put the comparison inside the conditional move;
2767 emit a compare instruction and put that inside the
2768 conditional move. Make sure we emit only comparisons we have;
2769 swap or reverse as necessary. */
2776 case EQ
: case LE
: case LT
: case LEU
: case LTU
:
2777 /* We have these compares: */
2781 /* This must be reversed. */
2782 code
= reverse_condition (code
);
2786 case GE
: case GT
: case GEU
: case GTU
:
2787 /* These must be swapped. */
2788 if (op1
!= CONST0_RTX (cmp_mode
))
2790 code
= swap_condition (code
);
2791 tem
= op0
, op0
= op1
, op1
= tem
;
2801 if (!reg_or_0_operand (op0
, DImode
))
2802 op0
= force_reg (DImode
, op0
);
2803 if (!reg_or_8bit_operand (op1
, DImode
))
2804 op1
= force_reg (DImode
, op1
);
2807 /* ??? We mark the branch mode to be CCmode to prevent the compare
2808 and cmov from being combined, since the compare insn follows IEEE
2809 rules that the cmov does not. */
2810 if (fp_p
&& !local_fast_math
)
2813 tem
= gen_reg_rtx (cmp_op_mode
);
2814 emit_move_insn (tem
, gen_rtx_fmt_ee (code
, cmp_op_mode
, op0
, op1
));
2815 return gen_rtx_fmt_ee (cmov_code
, cmov_mode
, tem
, CONST0_RTX (cmp_op_mode
));
2818 /* Simplify a conditional move of two constants into a setcc with
2819 arithmetic. This is done with a splitter since combine would
2820 just undo the work if done during code generation. It also catches
2821 cases we wouldn't have before cse. */
2824 alpha_split_conditional_move (enum rtx_code code
, rtx dest
, rtx cond
,
2825 rtx t_rtx
, rtx f_rtx
)
2827 HOST_WIDE_INT t
, f
, diff
;
2828 enum machine_mode mode
;
2829 rtx target
, subtarget
, tmp
;
2831 mode
= GET_MODE (dest
);
2836 if (((code
== NE
|| code
== EQ
) && diff
< 0)
2837 || (code
== GE
|| code
== GT
))
2839 code
= reverse_condition (code
);
2840 diff
= t
, t
= f
, f
= diff
;
2844 subtarget
= target
= dest
;
2847 target
= gen_lowpart (DImode
, dest
);
2848 if (! no_new_pseudos
)
2849 subtarget
= gen_reg_rtx (DImode
);
2853 /* Below, we must be careful to use copy_rtx on target and subtarget
2854 in intermediate insns, as they may be a subreg rtx, which may not
2857 if (f
== 0 && exact_log2 (diff
) > 0
2858 /* On EV6, we've got enough shifters to make non-arithmetic shifts
2859 viable over a longer latency cmove. On EV5, the E0 slot is a
2860 scarce resource, and on EV4 shift has the same latency as a cmove. */
2861 && (diff
<= 8 || alpha_tune
== PROCESSOR_EV6
))
2863 tmp
= gen_rtx_fmt_ee (code
, DImode
, cond
, const0_rtx
);
2864 emit_insn (gen_rtx_SET (VOIDmode
, copy_rtx (subtarget
), tmp
));
2866 tmp
= gen_rtx_ASHIFT (DImode
, copy_rtx (subtarget
),
2867 GEN_INT (exact_log2 (t
)));
2868 emit_insn (gen_rtx_SET (VOIDmode
, target
, tmp
));
2870 else if (f
== 0 && t
== -1)
2872 tmp
= gen_rtx_fmt_ee (code
, DImode
, cond
, const0_rtx
);
2873 emit_insn (gen_rtx_SET (VOIDmode
, copy_rtx (subtarget
), tmp
));
2875 emit_insn (gen_negdi2 (target
, copy_rtx (subtarget
)));
2877 else if (diff
== 1 || diff
== 4 || diff
== 8)
2881 tmp
= gen_rtx_fmt_ee (code
, DImode
, cond
, const0_rtx
);
2882 emit_insn (gen_rtx_SET (VOIDmode
, copy_rtx (subtarget
), tmp
));
2885 emit_insn (gen_adddi3 (target
, copy_rtx (subtarget
), GEN_INT (f
)));
2888 add_op
= GEN_INT (f
);
2889 if (sext_add_operand (add_op
, mode
))
2891 tmp
= gen_rtx_MULT (DImode
, copy_rtx (subtarget
),
2893 tmp
= gen_rtx_PLUS (DImode
, tmp
, add_op
);
2894 emit_insn (gen_rtx_SET (VOIDmode
, target
, tmp
));
2906 /* Look up the function X_floating library function name for the
2909 struct xfloating_op
GTY(())
2911 const enum rtx_code code
;
2912 const char *const GTY((skip
)) osf_func
;
2913 const char *const GTY((skip
)) vms_func
;
2917 static GTY(()) struct xfloating_op xfloating_ops
[] =
2919 { PLUS
, "_OtsAddX", "OTS$ADD_X", 0 },
2920 { MINUS
, "_OtsSubX", "OTS$SUB_X", 0 },
2921 { MULT
, "_OtsMulX", "OTS$MUL_X", 0 },
2922 { DIV
, "_OtsDivX", "OTS$DIV_X", 0 },
2923 { EQ
, "_OtsEqlX", "OTS$EQL_X", 0 },
2924 { NE
, "_OtsNeqX", "OTS$NEQ_X", 0 },
2925 { LT
, "_OtsLssX", "OTS$LSS_X", 0 },
2926 { LE
, "_OtsLeqX", "OTS$LEQ_X", 0 },
2927 { GT
, "_OtsGtrX", "OTS$GTR_X", 0 },
2928 { GE
, "_OtsGeqX", "OTS$GEQ_X", 0 },
2929 { FIX
, "_OtsCvtXQ", "OTS$CVTXQ", 0 },
2930 { FLOAT
, "_OtsCvtQX", "OTS$CVTQX", 0 },
2931 { UNSIGNED_FLOAT
, "_OtsCvtQUX", "OTS$CVTQUX", 0 },
2932 { FLOAT_EXTEND
, "_OtsConvertFloatTX", "OTS$CVT_FLOAT_T_X", 0 },
2933 { FLOAT_TRUNCATE
, "_OtsConvertFloatXT", "OTS$CVT_FLOAT_X_T", 0 }
2936 static GTY(()) struct xfloating_op vax_cvt_ops
[] =
2938 { FLOAT_EXTEND
, "_OtsConvertFloatGX", "OTS$CVT_FLOAT_G_X", 0 },
2939 { FLOAT_TRUNCATE
, "_OtsConvertFloatXG", "OTS$CVT_FLOAT_X_G", 0 }
2943 alpha_lookup_xfloating_lib_func (enum rtx_code code
)
2945 struct xfloating_op
*ops
= xfloating_ops
;
2946 long n
= ARRAY_SIZE (xfloating_ops
);
2949 gcc_assert (TARGET_HAS_XFLOATING_LIBS
);
2951 /* How irritating. Nothing to key off for the main table. */
2952 if (TARGET_FLOAT_VAX
&& (code
== FLOAT_EXTEND
|| code
== FLOAT_TRUNCATE
))
2955 n
= ARRAY_SIZE (vax_cvt_ops
);
2958 for (i
= 0; i
< n
; ++i
, ++ops
)
2959 if (ops
->code
== code
)
2961 rtx func
= ops
->libcall
;
2964 func
= init_one_libfunc (TARGET_ABI_OPEN_VMS
2965 ? ops
->vms_func
: ops
->osf_func
);
2966 ops
->libcall
= func
;
2974 /* Most X_floating operations take the rounding mode as an argument.
2975 Compute that here. */
2978 alpha_compute_xfloating_mode_arg (enum rtx_code code
,
2979 enum alpha_fp_rounding_mode round
)
2985 case ALPHA_FPRM_NORM
:
2988 case ALPHA_FPRM_MINF
:
2991 case ALPHA_FPRM_CHOP
:
2994 case ALPHA_FPRM_DYN
:
3000 /* XXX For reference, round to +inf is mode = 3. */
3003 if (code
== FLOAT_TRUNCATE
&& alpha_fptm
== ALPHA_FPTM_N
)
3009 /* Emit an X_floating library function call.
3011 Note that these functions do not follow normal calling conventions:
3012 TFmode arguments are passed in two integer registers (as opposed to
3013 indirect); TFmode return values appear in R16+R17.
3015 FUNC is the function to call.
3016 TARGET is where the output belongs.
3017 OPERANDS are the inputs.
3018 NOPERANDS is the count of inputs.
3019 EQUIV is the expression equivalent for the function.
3023 alpha_emit_xfloating_libcall (rtx func
, rtx target
, rtx operands
[],
3024 int noperands
, rtx equiv
)
3026 rtx usage
= NULL_RTX
, tmp
, reg
;
3031 for (i
= 0; i
< noperands
; ++i
)
3033 switch (GET_MODE (operands
[i
]))
3036 reg
= gen_rtx_REG (TFmode
, regno
);
3041 reg
= gen_rtx_REG (DFmode
, regno
+ 32);
3046 gcc_assert (GET_CODE (operands
[i
]) == CONST_INT
);
3049 reg
= gen_rtx_REG (DImode
, regno
);
3057 emit_move_insn (reg
, operands
[i
]);
3058 usage
= alloc_EXPR_LIST (0, gen_rtx_USE (VOIDmode
, reg
), usage
);
3061 switch (GET_MODE (target
))
3064 reg
= gen_rtx_REG (TFmode
, 16);
3067 reg
= gen_rtx_REG (DFmode
, 32);
3070 reg
= gen_rtx_REG (DImode
, 0);
3076 tmp
= gen_rtx_MEM (QImode
, func
);
3077 tmp
= emit_call_insn (GEN_CALL_VALUE (reg
, tmp
, const0_rtx
,
3078 const0_rtx
, const0_rtx
));
3079 CALL_INSN_FUNCTION_USAGE (tmp
) = usage
;
3080 CONST_OR_PURE_CALL_P (tmp
) = 1;
3085 emit_libcall_block (tmp
, target
, reg
, equiv
);
3088 /* Emit an X_floating library function call for arithmetic (+,-,*,/). */
3091 alpha_emit_xfloating_arith (enum rtx_code code
, rtx operands
[])
3095 rtx out_operands
[3];
3097 func
= alpha_lookup_xfloating_lib_func (code
);
3098 mode
= alpha_compute_xfloating_mode_arg (code
, alpha_fprm
);
3100 out_operands
[0] = operands
[1];
3101 out_operands
[1] = operands
[2];
3102 out_operands
[2] = GEN_INT (mode
);
3103 alpha_emit_xfloating_libcall (func
, operands
[0], out_operands
, 3,
3104 gen_rtx_fmt_ee (code
, TFmode
, operands
[1],
3108 /* Emit an X_floating library function call for a comparison. */
3111 alpha_emit_xfloating_compare (enum rtx_code
*pcode
, rtx op0
, rtx op1
)
3113 enum rtx_code cmp_code
, res_code
;
3114 rtx func
, out
, operands
[2];
3116 /* X_floating library comparison functions return
3120 Convert the compare against the raw return value. */
3148 func
= alpha_lookup_xfloating_lib_func (cmp_code
);
3152 out
= gen_reg_rtx (DImode
);
3154 /* ??? Strange mode for equiv because what's actually returned
3155 is -1,0,1, not a proper boolean value. */
3156 alpha_emit_xfloating_libcall (func
, out
, operands
, 2,
3157 gen_rtx_fmt_ee (cmp_code
, CCmode
, op0
, op1
));
3162 /* Emit an X_floating library function call for a conversion. */
3165 alpha_emit_xfloating_cvt (enum rtx_code orig_code
, rtx operands
[])
3167 int noperands
= 1, mode
;
3168 rtx out_operands
[2];
3170 enum rtx_code code
= orig_code
;
3172 if (code
== UNSIGNED_FIX
)
3175 func
= alpha_lookup_xfloating_lib_func (code
);
3177 out_operands
[0] = operands
[1];
3182 mode
= alpha_compute_xfloating_mode_arg (code
, ALPHA_FPRM_CHOP
);
3183 out_operands
[1] = GEN_INT (mode
);
3186 case FLOAT_TRUNCATE
:
3187 mode
= alpha_compute_xfloating_mode_arg (code
, alpha_fprm
);
3188 out_operands
[1] = GEN_INT (mode
);
3195 alpha_emit_xfloating_libcall (func
, operands
[0], out_operands
, noperands
,
3196 gen_rtx_fmt_e (orig_code
,
3197 GET_MODE (operands
[0]),
3201 /* Split a TFmode OP[1] into DImode OP[2,3] and likewise for
3202 OP[0] into OP[0,1]. Naturally, output operand ordering is
3206 alpha_split_tfmode_pair (rtx operands
[4])
3208 switch (GET_CODE (operands
[1]))
3211 operands
[3] = gen_rtx_REG (DImode
, REGNO (operands
[1]) + 1);
3212 operands
[2] = gen_rtx_REG (DImode
, REGNO (operands
[1]));
3216 operands
[3] = adjust_address (operands
[1], DImode
, 8);
3217 operands
[2] = adjust_address (operands
[1], DImode
, 0);
3221 gcc_assert (operands
[1] == CONST0_RTX (TFmode
));
3222 operands
[2] = operands
[3] = const0_rtx
;
3229 switch (GET_CODE (operands
[0]))
3232 operands
[1] = gen_rtx_REG (DImode
, REGNO (operands
[0]) + 1);
3233 operands
[0] = gen_rtx_REG (DImode
, REGNO (operands
[0]));
3237 operands
[1] = adjust_address (operands
[0], DImode
, 8);
3238 operands
[0] = adjust_address (operands
[0], DImode
, 0);
3246 /* Implement negtf2 or abstf2. Op0 is destination, op1 is source,
3247 op2 is a register containing the sign bit, operation is the
3248 logical operation to be performed. */
3251 alpha_split_tfmode_frobsign (rtx operands
[3], rtx (*operation
) (rtx
, rtx
, rtx
))
3253 rtx high_bit
= operands
[2];
3257 alpha_split_tfmode_pair (operands
);
3259 /* Detect three flavors of operand overlap. */
3261 if (rtx_equal_p (operands
[0], operands
[2]))
3263 else if (rtx_equal_p (operands
[1], operands
[2]))
3265 if (rtx_equal_p (operands
[0], high_bit
))
3272 emit_move_insn (operands
[0], operands
[2]);
3274 /* ??? If the destination overlaps both source tf and high_bit, then
3275 assume source tf is dead in its entirety and use the other half
3276 for a scratch register. Otherwise "scratch" is just the proper
3277 destination register. */
3278 scratch
= operands
[move
< 2 ? 1 : 3];
3280 emit_insn ((*operation
) (scratch
, high_bit
, operands
[3]));
3284 emit_move_insn (operands
[0], operands
[2]);
3286 emit_move_insn (operands
[1], scratch
);
3290 /* Use ext[wlq][lh] as the Architecture Handbook describes for extracting
3294 word: ldq_u r1,X(r11) ldq_u r1,X(r11)
3295 ldq_u r2,X+1(r11) ldq_u r2,X+1(r11)
3296 lda r3,X(r11) lda r3,X+2(r11)
3297 extwl r1,r3,r1 extql r1,r3,r1
3298 extwh r2,r3,r2 extqh r2,r3,r2
3299 or r1.r2.r1 or r1,r2,r1
3302 long: ldq_u r1,X(r11) ldq_u r1,X(r11)
3303 ldq_u r2,X+3(r11) ldq_u r2,X+3(r11)
3304 lda r3,X(r11) lda r3,X(r11)
3305 extll r1,r3,r1 extll r1,r3,r1
3306 extlh r2,r3,r2 extlh r2,r3,r2
3307 or r1.r2.r1 addl r1,r2,r1
3309 quad: ldq_u r1,X(r11)
3318 alpha_expand_unaligned_load (rtx tgt
, rtx mem
, HOST_WIDE_INT size
,
3319 HOST_WIDE_INT ofs
, int sign
)
3321 rtx meml
, memh
, addr
, extl
, exth
, tmp
, mema
;
3322 enum machine_mode mode
;
3324 if (TARGET_BWX
&& size
== 2)
3326 meml
= adjust_address (mem
, QImode
, ofs
);
3327 memh
= adjust_address (mem
, QImode
, ofs
+1);
3328 if (BYTES_BIG_ENDIAN
)
3329 tmp
= meml
, meml
= memh
, memh
= tmp
;
3330 extl
= gen_reg_rtx (DImode
);
3331 exth
= gen_reg_rtx (DImode
);
3332 emit_insn (gen_zero_extendqidi2 (extl
, meml
));
3333 emit_insn (gen_zero_extendqidi2 (exth
, memh
));
3334 exth
= expand_simple_binop (DImode
, ASHIFT
, exth
, GEN_INT (8),
3335 NULL
, 1, OPTAB_LIB_WIDEN
);
3336 addr
= expand_simple_binop (DImode
, IOR
, extl
, exth
,
3337 NULL
, 1, OPTAB_LIB_WIDEN
);
3339 if (sign
&& GET_MODE (tgt
) != HImode
)
3341 addr
= gen_lowpart (HImode
, addr
);
3342 emit_insn (gen_extend_insn (tgt
, addr
, GET_MODE (tgt
), HImode
, 0));
3346 if (GET_MODE (tgt
) != DImode
)
3347 addr
= gen_lowpart (GET_MODE (tgt
), addr
);
3348 emit_move_insn (tgt
, addr
);
3353 meml
= gen_reg_rtx (DImode
);
3354 memh
= gen_reg_rtx (DImode
);
3355 addr
= gen_reg_rtx (DImode
);
3356 extl
= gen_reg_rtx (DImode
);
3357 exth
= gen_reg_rtx (DImode
);
3359 mema
= XEXP (mem
, 0);
3360 if (GET_CODE (mema
) == LO_SUM
)
3361 mema
= force_reg (Pmode
, mema
);
3363 /* AND addresses cannot be in any alias set, since they may implicitly
3364 alias surrounding code. Ideally we'd have some alias set that
3365 covered all types except those with alignment 8 or higher. */
3367 tmp
= change_address (mem
, DImode
,
3368 gen_rtx_AND (DImode
,
3369 plus_constant (mema
, ofs
),
3371 set_mem_alias_set (tmp
, 0);
3372 emit_move_insn (meml
, tmp
);
3374 tmp
= change_address (mem
, DImode
,
3375 gen_rtx_AND (DImode
,
3376 plus_constant (mema
, ofs
+ size
- 1),
3378 set_mem_alias_set (tmp
, 0);
3379 emit_move_insn (memh
, tmp
);
3381 if (WORDS_BIG_ENDIAN
&& sign
&& (size
== 2 || size
== 4))
3383 emit_move_insn (addr
, plus_constant (mema
, -1));
3385 emit_insn (gen_extqh_be (extl
, meml
, addr
));
3386 emit_insn (gen_extxl_be (exth
, memh
, GEN_INT (64), addr
));
3388 addr
= expand_binop (DImode
, ior_optab
, extl
, exth
, tgt
, 1, OPTAB_WIDEN
);
3389 addr
= expand_binop (DImode
, ashr_optab
, addr
, GEN_INT (64 - size
*8),
3390 addr
, 1, OPTAB_WIDEN
);
3392 else if (sign
&& size
== 2)
3394 emit_move_insn (addr
, plus_constant (mema
, ofs
+2));
3396 emit_insn (gen_extxl_le (extl
, meml
, GEN_INT (64), addr
));
3397 emit_insn (gen_extqh_le (exth
, memh
, addr
));
3399 /* We must use tgt here for the target. Alpha-vms port fails if we use
3400 addr for the target, because addr is marked as a pointer and combine
3401 knows that pointers are always sign-extended 32 bit values. */
3402 addr
= expand_binop (DImode
, ior_optab
, extl
, exth
, tgt
, 1, OPTAB_WIDEN
);
3403 addr
= expand_binop (DImode
, ashr_optab
, addr
, GEN_INT (48),
3404 addr
, 1, OPTAB_WIDEN
);
3408 if (WORDS_BIG_ENDIAN
)
3410 emit_move_insn (addr
, plus_constant (mema
, ofs
+size
-1));
3414 emit_insn (gen_extwh_be (extl
, meml
, addr
));
3419 emit_insn (gen_extlh_be (extl
, meml
, addr
));
3424 emit_insn (gen_extqh_be (extl
, meml
, addr
));
3431 emit_insn (gen_extxl_be (exth
, memh
, GEN_INT (size
*8), addr
));
3435 emit_move_insn (addr
, plus_constant (mema
, ofs
));
3436 emit_insn (gen_extxl_le (extl
, meml
, GEN_INT (size
*8), addr
));
3440 emit_insn (gen_extwh_le (exth
, memh
, addr
));
3445 emit_insn (gen_extlh_le (exth
, memh
, addr
));
3450 emit_insn (gen_extqh_le (exth
, memh
, addr
));
3459 addr
= expand_binop (mode
, ior_optab
, gen_lowpart (mode
, extl
),
3460 gen_lowpart (mode
, exth
), gen_lowpart (mode
, tgt
),
3465 emit_move_insn (tgt
, gen_lowpart (GET_MODE (tgt
), addr
));
3468 /* Similarly, use ins and msk instructions to perform unaligned stores. */
3471 alpha_expand_unaligned_store (rtx dst
, rtx src
,
3472 HOST_WIDE_INT size
, HOST_WIDE_INT ofs
)
3474 rtx dstl
, dsth
, addr
, insl
, insh
, meml
, memh
, dsta
;
3476 if (TARGET_BWX
&& size
== 2)
3478 if (src
!= const0_rtx
)
3480 dstl
= gen_lowpart (QImode
, src
);
3481 dsth
= expand_simple_binop (DImode
, LSHIFTRT
, src
, GEN_INT (8),
3482 NULL
, 1, OPTAB_LIB_WIDEN
);
3483 dsth
= gen_lowpart (QImode
, dsth
);
3486 dstl
= dsth
= const0_rtx
;
3488 meml
= adjust_address (dst
, QImode
, ofs
);
3489 memh
= adjust_address (dst
, QImode
, ofs
+1);
3490 if (BYTES_BIG_ENDIAN
)
3491 addr
= meml
, meml
= memh
, memh
= addr
;
3493 emit_move_insn (meml
, dstl
);
3494 emit_move_insn (memh
, dsth
);
3498 dstl
= gen_reg_rtx (DImode
);
3499 dsth
= gen_reg_rtx (DImode
);
3500 insl
= gen_reg_rtx (DImode
);
3501 insh
= gen_reg_rtx (DImode
);
3503 dsta
= XEXP (dst
, 0);
3504 if (GET_CODE (dsta
) == LO_SUM
)
3505 dsta
= force_reg (Pmode
, dsta
);
3507 /* AND addresses cannot be in any alias set, since they may implicitly
3508 alias surrounding code. Ideally we'd have some alias set that
3509 covered all types except those with alignment 8 or higher. */
3511 meml
= change_address (dst
, DImode
,
3512 gen_rtx_AND (DImode
,
3513 plus_constant (dsta
, ofs
),
3515 set_mem_alias_set (meml
, 0);
3517 memh
= change_address (dst
, DImode
,
3518 gen_rtx_AND (DImode
,
3519 plus_constant (dsta
, ofs
+ size
- 1),
3521 set_mem_alias_set (memh
, 0);
3523 emit_move_insn (dsth
, memh
);
3524 emit_move_insn (dstl
, meml
);
3525 if (WORDS_BIG_ENDIAN
)
3527 addr
= copy_addr_to_reg (plus_constant (dsta
, ofs
+size
-1));
3529 if (src
!= const0_rtx
)
3534 emit_insn (gen_inswl_be (insh
, gen_lowpart (HImode
,src
), addr
));
3537 emit_insn (gen_insll_be (insh
, gen_lowpart (SImode
,src
), addr
));
3540 emit_insn (gen_insql_be (insh
, gen_lowpart (DImode
,src
), addr
));
3543 emit_insn (gen_insxh (insl
, gen_lowpart (DImode
, src
),
3544 GEN_INT (size
*8), addr
));
3550 emit_insn (gen_mskxl_be (dsth
, dsth
, GEN_INT (0xffff), addr
));
3554 rtx msk
= immed_double_const (0xffffffff, 0, DImode
);
3555 emit_insn (gen_mskxl_be (dsth
, dsth
, msk
, addr
));
3559 emit_insn (gen_mskxl_be (dsth
, dsth
, constm1_rtx
, addr
));
3563 emit_insn (gen_mskxh (dstl
, dstl
, GEN_INT (size
*8), addr
));
3567 addr
= copy_addr_to_reg (plus_constant (dsta
, ofs
));
3569 if (src
!= CONST0_RTX (GET_MODE (src
)))
3571 emit_insn (gen_insxh (insh
, gen_lowpart (DImode
, src
),
3572 GEN_INT (size
*8), addr
));
3577 emit_insn (gen_inswl_le (insl
, gen_lowpart (HImode
, src
), addr
));
3580 emit_insn (gen_insll_le (insl
, gen_lowpart (SImode
, src
), addr
));
3583 emit_insn (gen_insql_le (insl
, src
, addr
));
3588 emit_insn (gen_mskxh (dsth
, dsth
, GEN_INT (size
*8), addr
));
3593 emit_insn (gen_mskxl_le (dstl
, dstl
, GEN_INT (0xffff), addr
));
3597 rtx msk
= immed_double_const (0xffffffff, 0, DImode
);
3598 emit_insn (gen_mskxl_le (dstl
, dstl
, msk
, addr
));
3602 emit_insn (gen_mskxl_le (dstl
, dstl
, constm1_rtx
, addr
));
3607 if (src
!= CONST0_RTX (GET_MODE (src
)))
3609 dsth
= expand_binop (DImode
, ior_optab
, insh
, dsth
, dsth
, 0, OPTAB_WIDEN
);
3610 dstl
= expand_binop (DImode
, ior_optab
, insl
, dstl
, dstl
, 0, OPTAB_WIDEN
);
3613 if (WORDS_BIG_ENDIAN
)
3615 emit_move_insn (meml
, dstl
);
3616 emit_move_insn (memh
, dsth
);
3620 /* Must store high before low for degenerate case of aligned. */
3621 emit_move_insn (memh
, dsth
);
3622 emit_move_insn (meml
, dstl
);
3626 /* The block move code tries to maximize speed by separating loads and
3627 stores at the expense of register pressure: we load all of the data
3628 before we store it back out. There are two secondary effects worth
3629 mentioning, that this speeds copying to/from aligned and unaligned
3630 buffers, and that it makes the code significantly easier to write. */
3632 #define MAX_MOVE_WORDS 8
3634 /* Load an integral number of consecutive unaligned quadwords. */
3637 alpha_expand_unaligned_load_words (rtx
*out_regs
, rtx smem
,
3638 HOST_WIDE_INT words
, HOST_WIDE_INT ofs
)
3640 rtx
const im8
= GEN_INT (-8);
3641 rtx
const i64
= GEN_INT (64);
3642 rtx ext_tmps
[MAX_MOVE_WORDS
], data_regs
[MAX_MOVE_WORDS
+1];
3643 rtx sreg
, areg
, tmp
, smema
;
3646 smema
= XEXP (smem
, 0);
3647 if (GET_CODE (smema
) == LO_SUM
)
3648 smema
= force_reg (Pmode
, smema
);
3650 /* Generate all the tmp registers we need. */
3651 for (i
= 0; i
< words
; ++i
)
3653 data_regs
[i
] = out_regs
[i
];
3654 ext_tmps
[i
] = gen_reg_rtx (DImode
);
3656 data_regs
[words
] = gen_reg_rtx (DImode
);
3659 smem
= adjust_address (smem
, GET_MODE (smem
), ofs
);
3661 /* Load up all of the source data. */
3662 for (i
= 0; i
< words
; ++i
)
3664 tmp
= change_address (smem
, DImode
,
3665 gen_rtx_AND (DImode
,
3666 plus_constant (smema
, 8*i
),
3668 set_mem_alias_set (tmp
, 0);
3669 emit_move_insn (data_regs
[i
], tmp
);
3672 tmp
= change_address (smem
, DImode
,
3673 gen_rtx_AND (DImode
,
3674 plus_constant (smema
, 8*words
- 1),
3676 set_mem_alias_set (tmp
, 0);
3677 emit_move_insn (data_regs
[words
], tmp
);
3679 /* Extract the half-word fragments. Unfortunately DEC decided to make
3680 extxh with offset zero a noop instead of zeroing the register, so
3681 we must take care of that edge condition ourselves with cmov. */
3683 sreg
= copy_addr_to_reg (smema
);
3684 areg
= expand_binop (DImode
, and_optab
, sreg
, GEN_INT (7), NULL
,
3686 if (WORDS_BIG_ENDIAN
)
3687 emit_move_insn (sreg
, plus_constant (sreg
, 7));
3688 for (i
= 0; i
< words
; ++i
)
3690 if (WORDS_BIG_ENDIAN
)
3692 emit_insn (gen_extqh_be (data_regs
[i
], data_regs
[i
], sreg
));
3693 emit_insn (gen_extxl_be (ext_tmps
[i
], data_regs
[i
+1], i64
, sreg
));
3697 emit_insn (gen_extxl_le (data_regs
[i
], data_regs
[i
], i64
, sreg
));
3698 emit_insn (gen_extqh_le (ext_tmps
[i
], data_regs
[i
+1], sreg
));
3700 emit_insn (gen_rtx_SET (VOIDmode
, ext_tmps
[i
],
3701 gen_rtx_IF_THEN_ELSE (DImode
,
3702 gen_rtx_EQ (DImode
, areg
,
3704 const0_rtx
, ext_tmps
[i
])));
3707 /* Merge the half-words into whole words. */
3708 for (i
= 0; i
< words
; ++i
)
3710 out_regs
[i
] = expand_binop (DImode
, ior_optab
, data_regs
[i
],
3711 ext_tmps
[i
], data_regs
[i
], 1, OPTAB_WIDEN
);
3715 /* Store an integral number of consecutive unaligned quadwords. DATA_REGS
3716 may be NULL to store zeros. */
3719 alpha_expand_unaligned_store_words (rtx
*data_regs
, rtx dmem
,
3720 HOST_WIDE_INT words
, HOST_WIDE_INT ofs
)
3722 rtx
const im8
= GEN_INT (-8);
3723 rtx
const i64
= GEN_INT (64);
3724 rtx ins_tmps
[MAX_MOVE_WORDS
];
3725 rtx st_tmp_1
, st_tmp_2
, dreg
;
3726 rtx st_addr_1
, st_addr_2
, dmema
;
3729 dmema
= XEXP (dmem
, 0);
3730 if (GET_CODE (dmema
) == LO_SUM
)
3731 dmema
= force_reg (Pmode
, dmema
);
3733 /* Generate all the tmp registers we need. */
3734 if (data_regs
!= NULL
)
3735 for (i
= 0; i
< words
; ++i
)
3736 ins_tmps
[i
] = gen_reg_rtx(DImode
);
3737 st_tmp_1
= gen_reg_rtx(DImode
);
3738 st_tmp_2
= gen_reg_rtx(DImode
);
3741 dmem
= adjust_address (dmem
, GET_MODE (dmem
), ofs
);
3743 st_addr_2
= change_address (dmem
, DImode
,
3744 gen_rtx_AND (DImode
,
3745 plus_constant (dmema
, words
*8 - 1),
3747 set_mem_alias_set (st_addr_2
, 0);
3749 st_addr_1
= change_address (dmem
, DImode
,
3750 gen_rtx_AND (DImode
, dmema
, im8
));
3751 set_mem_alias_set (st_addr_1
, 0);
3753 /* Load up the destination end bits. */
3754 emit_move_insn (st_tmp_2
, st_addr_2
);
3755 emit_move_insn (st_tmp_1
, st_addr_1
);
3757 /* Shift the input data into place. */
3758 dreg
= copy_addr_to_reg (dmema
);
3759 if (WORDS_BIG_ENDIAN
)
3760 emit_move_insn (dreg
, plus_constant (dreg
, 7));
3761 if (data_regs
!= NULL
)
3763 for (i
= words
-1; i
>= 0; --i
)
3765 if (WORDS_BIG_ENDIAN
)
3767 emit_insn (gen_insql_be (ins_tmps
[i
], data_regs
[i
], dreg
));
3768 emit_insn (gen_insxh (data_regs
[i
], data_regs
[i
], i64
, dreg
));
3772 emit_insn (gen_insxh (ins_tmps
[i
], data_regs
[i
], i64
, dreg
));
3773 emit_insn (gen_insql_le (data_regs
[i
], data_regs
[i
], dreg
));
3776 for (i
= words
-1; i
> 0; --i
)
3778 ins_tmps
[i
-1] = expand_binop (DImode
, ior_optab
, data_regs
[i
],
3779 ins_tmps
[i
-1], ins_tmps
[i
-1], 1,
3784 /* Split and merge the ends with the destination data. */
3785 if (WORDS_BIG_ENDIAN
)
3787 emit_insn (gen_mskxl_be (st_tmp_2
, st_tmp_2
, constm1_rtx
, dreg
));
3788 emit_insn (gen_mskxh (st_tmp_1
, st_tmp_1
, i64
, dreg
));
3792 emit_insn (gen_mskxh (st_tmp_2
, st_tmp_2
, i64
, dreg
));
3793 emit_insn (gen_mskxl_le (st_tmp_1
, st_tmp_1
, constm1_rtx
, dreg
));
3796 if (data_regs
!= NULL
)
3798 st_tmp_2
= expand_binop (DImode
, ior_optab
, st_tmp_2
, ins_tmps
[words
-1],
3799 st_tmp_2
, 1, OPTAB_WIDEN
);
3800 st_tmp_1
= expand_binop (DImode
, ior_optab
, st_tmp_1
, data_regs
[0],
3801 st_tmp_1
, 1, OPTAB_WIDEN
);
3805 if (WORDS_BIG_ENDIAN
)
3806 emit_move_insn (st_addr_1
, st_tmp_1
);
3808 emit_move_insn (st_addr_2
, st_tmp_2
);
3809 for (i
= words
-1; i
> 0; --i
)
3811 rtx tmp
= change_address (dmem
, DImode
,
3812 gen_rtx_AND (DImode
,
3813 plus_constant(dmema
,
3814 WORDS_BIG_ENDIAN
? i
*8-1 : i
*8),
3816 set_mem_alias_set (tmp
, 0);
3817 emit_move_insn (tmp
, data_regs
? ins_tmps
[i
-1] : const0_rtx
);
3819 if (WORDS_BIG_ENDIAN
)
3820 emit_move_insn (st_addr_2
, st_tmp_2
);
3822 emit_move_insn (st_addr_1
, st_tmp_1
);
3826 /* Expand string/block move operations.
3828 operands[0] is the pointer to the destination.
3829 operands[1] is the pointer to the source.
3830 operands[2] is the number of bytes to move.
3831 operands[3] is the alignment. */
3834 alpha_expand_block_move (rtx operands
[])
3836 rtx bytes_rtx
= operands
[2];
3837 rtx align_rtx
= operands
[3];
3838 HOST_WIDE_INT orig_bytes
= INTVAL (bytes_rtx
);
3839 HOST_WIDE_INT bytes
= orig_bytes
;
3840 HOST_WIDE_INT src_align
= INTVAL (align_rtx
) * BITS_PER_UNIT
;
3841 HOST_WIDE_INT dst_align
= src_align
;
3842 rtx orig_src
= operands
[1];
3843 rtx orig_dst
= operands
[0];
3844 rtx data_regs
[2 * MAX_MOVE_WORDS
+ 16];
3846 unsigned int i
, words
, ofs
, nregs
= 0;
3848 if (orig_bytes
<= 0)
3850 else if (orig_bytes
> MAX_MOVE_WORDS
* UNITS_PER_WORD
)
3853 /* Look for additional alignment information from recorded register info. */
3855 tmp
= XEXP (orig_src
, 0);
3856 if (GET_CODE (tmp
) == REG
)
3857 src_align
= MAX (src_align
, REGNO_POINTER_ALIGN (REGNO (tmp
)));
3858 else if (GET_CODE (tmp
) == PLUS
3859 && GET_CODE (XEXP (tmp
, 0)) == REG
3860 && GET_CODE (XEXP (tmp
, 1)) == CONST_INT
)
3862 unsigned HOST_WIDE_INT c
= INTVAL (XEXP (tmp
, 1));
3863 unsigned int a
= REGNO_POINTER_ALIGN (REGNO (XEXP (tmp
, 0)));
3867 if (a
>= 64 && c
% 8 == 0)
3869 else if (a
>= 32 && c
% 4 == 0)
3871 else if (a
>= 16 && c
% 2 == 0)
3876 tmp
= XEXP (orig_dst
, 0);
3877 if (GET_CODE (tmp
) == REG
)
3878 dst_align
= MAX (dst_align
, REGNO_POINTER_ALIGN (REGNO (tmp
)));
3879 else if (GET_CODE (tmp
) == PLUS
3880 && GET_CODE (XEXP (tmp
, 0)) == REG
3881 && GET_CODE (XEXP (tmp
, 1)) == CONST_INT
)
3883 unsigned HOST_WIDE_INT c
= INTVAL (XEXP (tmp
, 1));
3884 unsigned int a
= REGNO_POINTER_ALIGN (REGNO (XEXP (tmp
, 0)));
3888 if (a
>= 64 && c
% 8 == 0)
3890 else if (a
>= 32 && c
% 4 == 0)
3892 else if (a
>= 16 && c
% 2 == 0)
3898 if (src_align
>= 64 && bytes
>= 8)
3902 for (i
= 0; i
< words
; ++i
)
3903 data_regs
[nregs
+ i
] = gen_reg_rtx (DImode
);
3905 for (i
= 0; i
< words
; ++i
)
3906 emit_move_insn (data_regs
[nregs
+ i
],
3907 adjust_address (orig_src
, DImode
, ofs
+ i
* 8));
3914 if (src_align
>= 32 && bytes
>= 4)
3918 for (i
= 0; i
< words
; ++i
)
3919 data_regs
[nregs
+ i
] = gen_reg_rtx (SImode
);
3921 for (i
= 0; i
< words
; ++i
)
3922 emit_move_insn (data_regs
[nregs
+ i
],
3923 adjust_address (orig_src
, SImode
, ofs
+ i
* 4));
3934 for (i
= 0; i
< words
+1; ++i
)
3935 data_regs
[nregs
+ i
] = gen_reg_rtx (DImode
);
3937 alpha_expand_unaligned_load_words (data_regs
+ nregs
, orig_src
,
3945 if (! TARGET_BWX
&& bytes
>= 4)
3947 data_regs
[nregs
++] = tmp
= gen_reg_rtx (SImode
);
3948 alpha_expand_unaligned_load (tmp
, orig_src
, 4, ofs
, 0);
3955 if (src_align
>= 16)
3958 data_regs
[nregs
++] = tmp
= gen_reg_rtx (HImode
);
3959 emit_move_insn (tmp
, adjust_address (orig_src
, HImode
, ofs
));
3962 } while (bytes
>= 2);
3964 else if (! TARGET_BWX
)
3966 data_regs
[nregs
++] = tmp
= gen_reg_rtx (HImode
);
3967 alpha_expand_unaligned_load (tmp
, orig_src
, 2, ofs
, 0);
3975 data_regs
[nregs
++] = tmp
= gen_reg_rtx (QImode
);
3976 emit_move_insn (tmp
, adjust_address (orig_src
, QImode
, ofs
));
3981 gcc_assert (nregs
<= ARRAY_SIZE (data_regs
));
3983 /* Now save it back out again. */
3987 /* Write out the data in whatever chunks reading the source allowed. */
3988 if (dst_align
>= 64)
3990 while (i
< nregs
&& GET_MODE (data_regs
[i
]) == DImode
)
3992 emit_move_insn (adjust_address (orig_dst
, DImode
, ofs
),
3999 if (dst_align
>= 32)
4001 /* If the source has remaining DImode regs, write them out in
4003 while (i
< nregs
&& GET_MODE (data_regs
[i
]) == DImode
)
4005 tmp
= expand_binop (DImode
, lshr_optab
, data_regs
[i
], GEN_INT (32),
4006 NULL_RTX
, 1, OPTAB_WIDEN
);
4008 emit_move_insn (adjust_address (orig_dst
, SImode
, ofs
),
4009 gen_lowpart (SImode
, data_regs
[i
]));
4010 emit_move_insn (adjust_address (orig_dst
, SImode
, ofs
+ 4),
4011 gen_lowpart (SImode
, tmp
));
4016 while (i
< nregs
&& GET_MODE (data_regs
[i
]) == SImode
)
4018 emit_move_insn (adjust_address (orig_dst
, SImode
, ofs
),
4025 if (i
< nregs
&& GET_MODE (data_regs
[i
]) == DImode
)
4027 /* Write out a remaining block of words using unaligned methods. */
4029 for (words
= 1; i
+ words
< nregs
; words
++)
4030 if (GET_MODE (data_regs
[i
+ words
]) != DImode
)
4034 alpha_expand_unaligned_store (orig_dst
, data_regs
[i
], 8, ofs
);
4036 alpha_expand_unaligned_store_words (data_regs
+ i
, orig_dst
,
4043 /* Due to the above, this won't be aligned. */
4044 /* ??? If we have more than one of these, consider constructing full
4045 words in registers and using alpha_expand_unaligned_store_words. */
4046 while (i
< nregs
&& GET_MODE (data_regs
[i
]) == SImode
)
4048 alpha_expand_unaligned_store (orig_dst
, data_regs
[i
], 4, ofs
);
4053 if (dst_align
>= 16)
4054 while (i
< nregs
&& GET_MODE (data_regs
[i
]) == HImode
)
4056 emit_move_insn (adjust_address (orig_dst
, HImode
, ofs
), data_regs
[i
]);
4061 while (i
< nregs
&& GET_MODE (data_regs
[i
]) == HImode
)
4063 alpha_expand_unaligned_store (orig_dst
, data_regs
[i
], 2, ofs
);
4068 /* The remainder must be byte copies. */
4071 gcc_assert (GET_MODE (data_regs
[i
]) == QImode
);
4072 emit_move_insn (adjust_address (orig_dst
, QImode
, ofs
), data_regs
[i
]);
4081 alpha_expand_block_clear (rtx operands
[])
4083 rtx bytes_rtx
= operands
[1];
4084 rtx align_rtx
= operands
[3];
4085 HOST_WIDE_INT orig_bytes
= INTVAL (bytes_rtx
);
4086 HOST_WIDE_INT bytes
= orig_bytes
;
4087 HOST_WIDE_INT align
= INTVAL (align_rtx
) * BITS_PER_UNIT
;
4088 HOST_WIDE_INT alignofs
= 0;
4089 rtx orig_dst
= operands
[0];
4091 int i
, words
, ofs
= 0;
4093 if (orig_bytes
<= 0)
4095 if (orig_bytes
> MAX_MOVE_WORDS
* UNITS_PER_WORD
)
4098 /* Look for stricter alignment. */
4099 tmp
= XEXP (orig_dst
, 0);
4100 if (GET_CODE (tmp
) == REG
)
4101 align
= MAX (align
, REGNO_POINTER_ALIGN (REGNO (tmp
)));
4102 else if (GET_CODE (tmp
) == PLUS
4103 && GET_CODE (XEXP (tmp
, 0)) == REG
4104 && GET_CODE (XEXP (tmp
, 1)) == CONST_INT
)
4106 HOST_WIDE_INT c
= INTVAL (XEXP (tmp
, 1));
4107 int a
= REGNO_POINTER_ALIGN (REGNO (XEXP (tmp
, 0)));
4112 align
= a
, alignofs
= 8 - c
% 8;
4114 align
= a
, alignofs
= 4 - c
% 4;
4116 align
= a
, alignofs
= 2 - c
% 2;
4120 /* Handle an unaligned prefix first. */
4124 #if HOST_BITS_PER_WIDE_INT >= 64
4125 /* Given that alignofs is bounded by align, the only time BWX could
4126 generate three stores is for a 7 byte fill. Prefer two individual
4127 stores over a load/mask/store sequence. */
4128 if ((!TARGET_BWX
|| alignofs
== 7)
4130 && !(alignofs
== 4 && bytes
>= 4))
4132 enum machine_mode mode
= (align
>= 64 ? DImode
: SImode
);
4133 int inv_alignofs
= (align
>= 64 ? 8 : 4) - alignofs
;
4137 mem
= adjust_address (orig_dst
, mode
, ofs
- inv_alignofs
);
4138 set_mem_alias_set (mem
, 0);
4140 mask
= ~(~(HOST_WIDE_INT
)0 << (inv_alignofs
* 8));
4141 if (bytes
< alignofs
)
4143 mask
|= ~(HOST_WIDE_INT
)0 << ((inv_alignofs
+ bytes
) * 8);
4154 tmp
= expand_binop (mode
, and_optab
, mem
, GEN_INT (mask
),
4155 NULL_RTX
, 1, OPTAB_WIDEN
);
4157 emit_move_insn (mem
, tmp
);
4161 if (TARGET_BWX
&& (alignofs
& 1) && bytes
>= 1)
4163 emit_move_insn (adjust_address (orig_dst
, QImode
, ofs
), const0_rtx
);
4168 if (TARGET_BWX
&& align
>= 16 && (alignofs
& 3) == 2 && bytes
>= 2)
4170 emit_move_insn (adjust_address (orig_dst
, HImode
, ofs
), const0_rtx
);
4175 if (alignofs
== 4 && bytes
>= 4)
4177 emit_move_insn (adjust_address (orig_dst
, SImode
, ofs
), const0_rtx
);
4183 /* If we've not used the extra lead alignment information by now,
4184 we won't be able to. Downgrade align to match what's left over. */
4187 alignofs
= alignofs
& -alignofs
;
4188 align
= MIN (align
, alignofs
* BITS_PER_UNIT
);
4192 /* Handle a block of contiguous long-words. */
4194 if (align
>= 64 && bytes
>= 8)
4198 for (i
= 0; i
< words
; ++i
)
4199 emit_move_insn (adjust_address (orig_dst
, DImode
, ofs
+ i
* 8),
4206 /* If the block is large and appropriately aligned, emit a single
4207 store followed by a sequence of stq_u insns. */
4209 if (align
>= 32 && bytes
> 16)
4213 emit_move_insn (adjust_address (orig_dst
, SImode
, ofs
), const0_rtx
);
4217 orig_dsta
= XEXP (orig_dst
, 0);
4218 if (GET_CODE (orig_dsta
) == LO_SUM
)
4219 orig_dsta
= force_reg (Pmode
, orig_dsta
);
4222 for (i
= 0; i
< words
; ++i
)
4225 = change_address (orig_dst
, DImode
,
4226 gen_rtx_AND (DImode
,
4227 plus_constant (orig_dsta
, ofs
+ i
*8),
4229 set_mem_alias_set (mem
, 0);
4230 emit_move_insn (mem
, const0_rtx
);
4233 /* Depending on the alignment, the first stq_u may have overlapped
4234 with the initial stl, which means that the last stq_u didn't
4235 write as much as it would appear. Leave those questionable bytes
4237 bytes
-= words
* 8 - 4;
4238 ofs
+= words
* 8 - 4;
4241 /* Handle a smaller block of aligned words. */
4243 if ((align
>= 64 && bytes
== 4)
4244 || (align
== 32 && bytes
>= 4))
4248 for (i
= 0; i
< words
; ++i
)
4249 emit_move_insn (adjust_address (orig_dst
, SImode
, ofs
+ i
* 4),
4256 /* An unaligned block uses stq_u stores for as many as possible. */
4262 alpha_expand_unaligned_store_words (NULL
, orig_dst
, words
, ofs
);
4268 /* Next clean up any trailing pieces. */
4270 #if HOST_BITS_PER_WIDE_INT >= 64
4271 /* Count the number of bits in BYTES for which aligned stores could
4274 for (i
= (TARGET_BWX
? 1 : 4); i
* BITS_PER_UNIT
<= align
; i
<<= 1)
4278 /* If we have appropriate alignment (and it wouldn't take too many
4279 instructions otherwise), mask out the bytes we need. */
4280 if (TARGET_BWX
? words
> 2 : bytes
> 0)
4287 mem
= adjust_address (orig_dst
, DImode
, ofs
);
4288 set_mem_alias_set (mem
, 0);
4290 mask
= ~(HOST_WIDE_INT
)0 << (bytes
* 8);
4292 tmp
= expand_binop (DImode
, and_optab
, mem
, GEN_INT (mask
),
4293 NULL_RTX
, 1, OPTAB_WIDEN
);
4295 emit_move_insn (mem
, tmp
);
4298 else if (align
>= 32 && bytes
< 4)
4303 mem
= adjust_address (orig_dst
, SImode
, ofs
);
4304 set_mem_alias_set (mem
, 0);
4306 mask
= ~(HOST_WIDE_INT
)0 << (bytes
* 8);
4308 tmp
= expand_binop (SImode
, and_optab
, mem
, GEN_INT (mask
),
4309 NULL_RTX
, 1, OPTAB_WIDEN
);
4311 emit_move_insn (mem
, tmp
);
4317 if (!TARGET_BWX
&& bytes
>= 4)
4319 alpha_expand_unaligned_store (orig_dst
, const0_rtx
, 4, ofs
);
4329 emit_move_insn (adjust_address (orig_dst
, HImode
, ofs
),
4333 } while (bytes
>= 2);
4335 else if (! TARGET_BWX
)
4337 alpha_expand_unaligned_store (orig_dst
, const0_rtx
, 2, ofs
);
4345 emit_move_insn (adjust_address (orig_dst
, QImode
, ofs
), const0_rtx
);
4353 /* Returns a mask so that zap(x, value) == x & mask. */
4356 alpha_expand_zap_mask (HOST_WIDE_INT value
)
4361 if (HOST_BITS_PER_WIDE_INT
>= 64)
4363 HOST_WIDE_INT mask
= 0;
4365 for (i
= 7; i
>= 0; --i
)
4368 if (!((value
>> i
) & 1))
4372 result
= gen_int_mode (mask
, DImode
);
4376 HOST_WIDE_INT mask_lo
= 0, mask_hi
= 0;
4378 gcc_assert (HOST_BITS_PER_WIDE_INT
== 32);
4380 for (i
= 7; i
>= 4; --i
)
4383 if (!((value
>> i
) & 1))
4387 for (i
= 3; i
>= 0; --i
)
4390 if (!((value
>> i
) & 1))
4394 result
= immed_double_const (mask_lo
, mask_hi
, DImode
);
4401 alpha_expand_builtin_vector_binop (rtx (*gen
) (rtx
, rtx
, rtx
),
4402 enum machine_mode mode
,
4403 rtx op0
, rtx op1
, rtx op2
)
4405 op0
= gen_lowpart (mode
, op0
);
4407 if (op1
== const0_rtx
)
4408 op1
= CONST0_RTX (mode
);
4410 op1
= gen_lowpart (mode
, op1
);
4412 if (op2
== const0_rtx
)
4413 op2
= CONST0_RTX (mode
);
4415 op2
= gen_lowpart (mode
, op2
);
4417 emit_insn ((*gen
) (op0
, op1
, op2
));
4420 /* A subroutine of the atomic operation splitters. Jump to LABEL if
4421 COND is true. Mark the jump as unlikely to be taken. */
4424 emit_unlikely_jump (rtx cond
, rtx label
)
4426 rtx very_unlikely
= GEN_INT (REG_BR_PROB_BASE
/ 100 - 1);
4429 x
= gen_rtx_IF_THEN_ELSE (VOIDmode
, cond
, label
, pc_rtx
);
4430 x
= emit_jump_insn (gen_rtx_SET (VOIDmode
, pc_rtx
, x
));
4431 REG_NOTES (x
) = gen_rtx_EXPR_LIST (REG_BR_PROB
, very_unlikely
, NULL_RTX
);
4434 /* A subroutine of the atomic operation splitters. Emit a load-locked
4435 instruction in MODE. */
4438 emit_load_locked (enum machine_mode mode
, rtx reg
, rtx mem
)
4440 rtx (*fn
) (rtx
, rtx
) = NULL
;
4442 fn
= gen_load_locked_si
;
4443 else if (mode
== DImode
)
4444 fn
= gen_load_locked_di
;
4445 emit_insn (fn (reg
, mem
));
4448 /* A subroutine of the atomic operation splitters. Emit a store-conditional
4449 instruction in MODE. */
4452 emit_store_conditional (enum machine_mode mode
, rtx res
, rtx mem
, rtx val
)
4454 rtx (*fn
) (rtx
, rtx
, rtx
) = NULL
;
4456 fn
= gen_store_conditional_si
;
4457 else if (mode
== DImode
)
4458 fn
= gen_store_conditional_di
;
4459 emit_insn (fn (res
, mem
, val
));
4462 /* A subroutine of the atomic operation splitters. Emit an insxl
4463 instruction in MODE. */
4466 emit_insxl (enum machine_mode mode
, rtx op1
, rtx op2
)
4468 rtx ret
= gen_reg_rtx (DImode
);
4469 rtx (*fn
) (rtx
, rtx
, rtx
);
4471 if (WORDS_BIG_ENDIAN
)
4485 emit_insn (fn (ret
, op1
, op2
));
4490 /* Expand an an atomic fetch-and-operate pattern. CODE is the binary operation
4491 to perform. MEM is the memory on which to operate. VAL is the second
4492 operand of the binary operator. BEFORE and AFTER are optional locations to
4493 return the value of MEM either before of after the operation. SCRATCH is
4494 a scratch register. */
4497 alpha_split_atomic_op (enum rtx_code code
, rtx mem
, rtx val
,
4498 rtx before
, rtx after
, rtx scratch
)
4500 enum machine_mode mode
= GET_MODE (mem
);
4501 rtx label
, x
, cond
= gen_rtx_REG (DImode
, REGNO (scratch
));
4503 emit_insn (gen_memory_barrier ());
4505 label
= gen_label_rtx ();
4507 label
= gen_rtx_LABEL_REF (DImode
, label
);
4511 emit_load_locked (mode
, before
, mem
);
4514 x
= gen_rtx_AND (mode
, gen_rtx_NOT (mode
, before
), val
);
4516 x
= gen_rtx_fmt_ee (code
, mode
, before
, val
);
4518 emit_insn (gen_rtx_SET (VOIDmode
, after
, copy_rtx (x
)));
4519 emit_insn (gen_rtx_SET (VOIDmode
, scratch
, x
));
4521 emit_store_conditional (mode
, cond
, mem
, scratch
);
4523 x
= gen_rtx_EQ (DImode
, cond
, const0_rtx
);
4524 emit_unlikely_jump (x
, label
);
4526 emit_insn (gen_memory_barrier ());
4529 /* Expand a compare and swap operation. */
4532 alpha_split_compare_and_swap (rtx retval
, rtx mem
, rtx oldval
, rtx newval
,
4535 enum machine_mode mode
= GET_MODE (mem
);
4536 rtx label1
, label2
, x
, cond
= gen_lowpart (DImode
, scratch
);
4538 emit_insn (gen_memory_barrier ());
4540 label1
= gen_rtx_LABEL_REF (DImode
, gen_label_rtx ());
4541 label2
= gen_rtx_LABEL_REF (DImode
, gen_label_rtx ());
4542 emit_label (XEXP (label1
, 0));
4544 emit_load_locked (mode
, retval
, mem
);
4546 x
= gen_lowpart (DImode
, retval
);
4547 if (oldval
== const0_rtx
)
4548 x
= gen_rtx_NE (DImode
, x
, const0_rtx
);
4551 x
= gen_rtx_EQ (DImode
, x
, oldval
);
4552 emit_insn (gen_rtx_SET (VOIDmode
, cond
, x
));
4553 x
= gen_rtx_EQ (DImode
, cond
, const0_rtx
);
4555 emit_unlikely_jump (x
, label2
);
4557 emit_move_insn (scratch
, newval
);
4558 emit_store_conditional (mode
, cond
, mem
, scratch
);
4560 x
= gen_rtx_EQ (DImode
, cond
, const0_rtx
);
4561 emit_unlikely_jump (x
, label1
);
4563 emit_insn (gen_memory_barrier ());
4564 emit_label (XEXP (label2
, 0));
4568 alpha_expand_compare_and_swap_12 (rtx dst
, rtx mem
, rtx oldval
, rtx newval
)
4570 enum machine_mode mode
= GET_MODE (mem
);
4571 rtx addr
, align
, wdst
;
4572 rtx (*fn5
) (rtx
, rtx
, rtx
, rtx
, rtx
);
4574 addr
= force_reg (DImode
, XEXP (mem
, 0));
4575 align
= expand_simple_binop (Pmode
, AND
, addr
, GEN_INT (-8),
4576 NULL_RTX
, 1, OPTAB_DIRECT
);
4578 oldval
= convert_modes (DImode
, mode
, oldval
, 1);
4579 newval
= emit_insxl (mode
, newval
, addr
);
4581 wdst
= gen_reg_rtx (DImode
);
4583 fn5
= gen_sync_compare_and_swapqi_1
;
4585 fn5
= gen_sync_compare_and_swaphi_1
;
4586 emit_insn (fn5 (wdst
, addr
, oldval
, newval
, align
));
4588 emit_move_insn (dst
, gen_lowpart (mode
, wdst
));
4592 alpha_split_compare_and_swap_12 (enum machine_mode mode
, rtx dest
, rtx addr
,
4593 rtx oldval
, rtx newval
, rtx align
,
4594 rtx scratch
, rtx cond
)
4596 rtx label1
, label2
, mem
, width
, mask
, x
;
4598 mem
= gen_rtx_MEM (DImode
, align
);
4599 MEM_VOLATILE_P (mem
) = 1;
4601 emit_insn (gen_memory_barrier ());
4602 label1
= gen_rtx_LABEL_REF (DImode
, gen_label_rtx ());
4603 label2
= gen_rtx_LABEL_REF (DImode
, gen_label_rtx ());
4604 emit_label (XEXP (label1
, 0));
4606 emit_load_locked (DImode
, scratch
, mem
);
4608 width
= GEN_INT (GET_MODE_BITSIZE (mode
));
4609 mask
= GEN_INT (mode
== QImode
? 0xff : 0xffff);
4610 if (WORDS_BIG_ENDIAN
)
4611 emit_insn (gen_extxl_be (dest
, scratch
, width
, addr
));
4613 emit_insn (gen_extxl_le (dest
, scratch
, width
, addr
));
4615 if (oldval
== const0_rtx
)
4616 x
= gen_rtx_NE (DImode
, dest
, const0_rtx
);
4619 x
= gen_rtx_EQ (DImode
, dest
, oldval
);
4620 emit_insn (gen_rtx_SET (VOIDmode
, cond
, x
));
4621 x
= gen_rtx_EQ (DImode
, cond
, const0_rtx
);
4623 emit_unlikely_jump (x
, label2
);
4625 if (WORDS_BIG_ENDIAN
)
4626 emit_insn (gen_mskxl_be (scratch
, scratch
, mask
, addr
));
4628 emit_insn (gen_mskxl_le (scratch
, scratch
, mask
, addr
));
4629 emit_insn (gen_iordi3 (scratch
, scratch
, newval
));
4631 emit_store_conditional (DImode
, scratch
, mem
, scratch
);
4633 x
= gen_rtx_EQ (DImode
, scratch
, const0_rtx
);
4634 emit_unlikely_jump (x
, label1
);
4636 emit_insn (gen_memory_barrier ());
4637 emit_label (XEXP (label2
, 0));
4640 /* Expand an atomic exchange operation. */
4643 alpha_split_lock_test_and_set (rtx retval
, rtx mem
, rtx val
, rtx scratch
)
4645 enum machine_mode mode
= GET_MODE (mem
);
4646 rtx label
, x
, cond
= gen_lowpart (DImode
, scratch
);
4648 emit_insn (gen_memory_barrier ());
4650 label
= gen_rtx_LABEL_REF (DImode
, gen_label_rtx ());
4651 emit_label (XEXP (label
, 0));
4653 emit_load_locked (mode
, retval
, mem
);
4654 emit_move_insn (scratch
, val
);
4655 emit_store_conditional (mode
, cond
, mem
, scratch
);
4657 x
= gen_rtx_EQ (DImode
, cond
, const0_rtx
);
4658 emit_unlikely_jump (x
, label
);
4662 alpha_expand_lock_test_and_set_12 (rtx dst
, rtx mem
, rtx val
)
4664 enum machine_mode mode
= GET_MODE (mem
);
4665 rtx addr
, align
, wdst
;
4666 rtx (*fn4
) (rtx
, rtx
, rtx
, rtx
);
4668 /* Force the address into a register. */
4669 addr
= force_reg (DImode
, XEXP (mem
, 0));
4671 /* Align it to a multiple of 8. */
4672 align
= expand_simple_binop (Pmode
, AND
, addr
, GEN_INT (-8),
4673 NULL_RTX
, 1, OPTAB_DIRECT
);
4675 /* Insert val into the correct byte location within the word. */
4676 val
= emit_insxl (mode
, val
, addr
);
4678 wdst
= gen_reg_rtx (DImode
);
4680 fn4
= gen_sync_lock_test_and_setqi_1
;
4682 fn4
= gen_sync_lock_test_and_sethi_1
;
4683 emit_insn (fn4 (wdst
, addr
, val
, align
));
4685 emit_move_insn (dst
, gen_lowpart (mode
, wdst
));
4689 alpha_split_lock_test_and_set_12 (enum machine_mode mode
, rtx dest
, rtx addr
,
4690 rtx val
, rtx align
, rtx scratch
)
4692 rtx label
, mem
, width
, mask
, x
;
4694 mem
= gen_rtx_MEM (DImode
, align
);
4695 MEM_VOLATILE_P (mem
) = 1;
4697 emit_insn (gen_memory_barrier ());
4698 label
= gen_rtx_LABEL_REF (DImode
, gen_label_rtx ());
4699 emit_label (XEXP (label
, 0));
4701 emit_load_locked (DImode
, scratch
, mem
);
4703 width
= GEN_INT (GET_MODE_BITSIZE (mode
));
4704 mask
= GEN_INT (mode
== QImode
? 0xff : 0xffff);
4705 if (WORDS_BIG_ENDIAN
)
4707 emit_insn (gen_extxl_be (dest
, scratch
, width
, addr
));
4708 emit_insn (gen_mskxl_be (scratch
, scratch
, mask
, addr
));
4712 emit_insn (gen_extxl_le (dest
, scratch
, width
, addr
));
4713 emit_insn (gen_mskxl_le (scratch
, scratch
, mask
, addr
));
4715 emit_insn (gen_iordi3 (scratch
, scratch
, val
));
4717 emit_store_conditional (DImode
, scratch
, mem
, scratch
);
4719 x
= gen_rtx_EQ (DImode
, scratch
, const0_rtx
);
4720 emit_unlikely_jump (x
, label
);
4723 /* Adjust the cost of a scheduling dependency. Return the new cost of
4724 a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
4727 alpha_adjust_cost (rtx insn
, rtx link
, rtx dep_insn
, int cost
)
4729 enum attr_type insn_type
, dep_insn_type
;
4731 /* If the dependence is an anti-dependence, there is no cost. For an
4732 output dependence, there is sometimes a cost, but it doesn't seem
4733 worth handling those few cases. */
4734 if (REG_NOTE_KIND (link
) != 0)
4737 /* If we can't recognize the insns, we can't really do anything. */
4738 if (recog_memoized (insn
) < 0 || recog_memoized (dep_insn
) < 0)
4741 insn_type
= get_attr_type (insn
);
4742 dep_insn_type
= get_attr_type (dep_insn
);
4744 /* Bring in the user-defined memory latency. */
4745 if (dep_insn_type
== TYPE_ILD
4746 || dep_insn_type
== TYPE_FLD
4747 || dep_insn_type
== TYPE_LDSYM
)
4748 cost
+= alpha_memory_latency
-1;
4750 /* Everything else handled in DFA bypasses now. */
4755 /* The number of instructions that can be issued per cycle. */
4758 alpha_issue_rate (void)
4760 return (alpha_tune
== PROCESSOR_EV4
? 2 : 4);
4763 /* How many alternative schedules to try. This should be as wide as the
4764 scheduling freedom in the DFA, but no wider. Making this value too
4765 large results extra work for the scheduler.
4767 For EV4, loads can be issued to either IB0 or IB1, thus we have 2
4768 alternative schedules. For EV5, we can choose between E0/E1 and
4769 FA/FM. For EV6, an arithmetic insn can be issued to U0/U1/L0/L1. */
4772 alpha_multipass_dfa_lookahead (void)
4774 return (alpha_tune
== PROCESSOR_EV6
? 4 : 2);
4777 /* Machine-specific function data. */
4779 struct machine_function
GTY(())
4782 /* List of call information words for calls from this function. */
4783 struct rtx_def
*first_ciw
;
4784 struct rtx_def
*last_ciw
;
4787 /* List of deferred case vectors. */
4788 struct rtx_def
*addr_list
;
4791 const char *some_ld_name
;
4793 /* For TARGET_LD_BUGGY_LDGP. */
4794 struct rtx_def
*gp_save_rtx
;
4797 /* How to allocate a 'struct machine_function'. */
4799 static struct machine_function
*
4800 alpha_init_machine_status (void)
4802 return ((struct machine_function
*)
4803 ggc_alloc_cleared (sizeof (struct machine_function
)));
4806 /* Functions to save and restore alpha_return_addr_rtx. */
4808 /* Start the ball rolling with RETURN_ADDR_RTX. */
4811 alpha_return_addr (int count
, rtx frame ATTRIBUTE_UNUSED
)
4816 return get_hard_reg_initial_val (Pmode
, REG_RA
);
4819 /* Return or create a memory slot containing the gp value for the current
4820 function. Needed only if TARGET_LD_BUGGY_LDGP. */
4823 alpha_gp_save_rtx (void)
4825 rtx seq
, m
= cfun
->machine
->gp_save_rtx
;
4831 m
= assign_stack_local (DImode
, UNITS_PER_WORD
, BITS_PER_WORD
);
4832 m
= validize_mem (m
);
4833 emit_move_insn (m
, pic_offset_table_rtx
);
4837 emit_insn_after (seq
, entry_of_function ());
4839 cfun
->machine
->gp_save_rtx
= m
;
4846 alpha_ra_ever_killed (void)
4850 if (!has_hard_reg_initial_val (Pmode
, REG_RA
))
4851 return regs_ever_live
[REG_RA
];
4853 push_topmost_sequence ();
4855 pop_topmost_sequence ();
4857 return reg_set_between_p (gen_rtx_REG (Pmode
, REG_RA
), top
, NULL_RTX
);
4861 /* Return the trap mode suffix applicable to the current
4862 instruction, or NULL. */
4865 get_trap_mode_suffix (void)
4867 enum attr_trap_suffix s
= get_attr_trap_suffix (current_output_insn
);
4871 case TRAP_SUFFIX_NONE
:
4874 case TRAP_SUFFIX_SU
:
4875 if (alpha_fptm
>= ALPHA_FPTM_SU
)
4879 case TRAP_SUFFIX_SUI
:
4880 if (alpha_fptm
>= ALPHA_FPTM_SUI
)
4884 case TRAP_SUFFIX_V_SV
:
4892 case ALPHA_FPTM_SUI
:
4898 case TRAP_SUFFIX_V_SV_SVI
:
4907 case ALPHA_FPTM_SUI
:
4914 case TRAP_SUFFIX_U_SU_SUI
:
4923 case ALPHA_FPTM_SUI
:
4936 /* Return the rounding mode suffix applicable to the current
4937 instruction, or NULL. */
4940 get_round_mode_suffix (void)
4942 enum attr_round_suffix s
= get_attr_round_suffix (current_output_insn
);
4946 case ROUND_SUFFIX_NONE
:
4948 case ROUND_SUFFIX_NORMAL
:
4951 case ALPHA_FPRM_NORM
:
4953 case ALPHA_FPRM_MINF
:
4955 case ALPHA_FPRM_CHOP
:
4957 case ALPHA_FPRM_DYN
:
4964 case ROUND_SUFFIX_C
:
4973 /* Locate some local-dynamic symbol still in use by this function
4974 so that we can print its name in some movdi_er_tlsldm pattern. */
4977 get_some_local_dynamic_name_1 (rtx
*px
, void *data ATTRIBUTE_UNUSED
)
4981 if (GET_CODE (x
) == SYMBOL_REF
4982 && SYMBOL_REF_TLS_MODEL (x
) == TLS_MODEL_LOCAL_DYNAMIC
)
4984 cfun
->machine
->some_ld_name
= XSTR (x
, 0);
4992 get_some_local_dynamic_name (void)
4996 if (cfun
->machine
->some_ld_name
)
4997 return cfun
->machine
->some_ld_name
;
4999 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
5001 && for_each_rtx (&PATTERN (insn
), get_some_local_dynamic_name_1
, 0))
5002 return cfun
->machine
->some_ld_name
;
5007 /* Print an operand. Recognize special options, documented below. */
5010 print_operand (FILE *file
, rtx x
, int code
)
5017 /* Print the assembler name of the current function. */
5018 assemble_name (file
, alpha_fnname
);
5022 assemble_name (file
, get_some_local_dynamic_name ());
5027 const char *trap
= get_trap_mode_suffix ();
5028 const char *round
= get_round_mode_suffix ();
5031 fprintf (file
, (TARGET_AS_SLASH_BEFORE_SUFFIX
? "/%s%s" : "%s%s"),
5032 (trap
? trap
: ""), (round
? round
: ""));
5037 /* Generates single precision instruction suffix. */
5038 fputc ((TARGET_FLOAT_VAX
? 'f' : 's'), file
);
5042 /* Generates double precision instruction suffix. */
5043 fputc ((TARGET_FLOAT_VAX
? 'g' : 't'), file
);
5047 /* Generates a nop after a noreturn call at the very end of the
5049 if (next_real_insn (current_output_insn
) == 0)
5050 fprintf (file
, "\n\tnop");
5054 if (alpha_this_literal_sequence_number
== 0)
5055 alpha_this_literal_sequence_number
= alpha_next_sequence_number
++;
5056 fprintf (file
, "%d", alpha_this_literal_sequence_number
);
5060 if (alpha_this_gpdisp_sequence_number
== 0)
5061 alpha_this_gpdisp_sequence_number
= alpha_next_sequence_number
++;
5062 fprintf (file
, "%d", alpha_this_gpdisp_sequence_number
);
5066 if (GET_CODE (x
) == HIGH
)
5067 output_addr_const (file
, XEXP (x
, 0));
5069 output_operand_lossage ("invalid %%H value");
5076 if (GET_CODE (x
) == UNSPEC
&& XINT (x
, 1) == UNSPEC_TLSGD_CALL
)
5078 x
= XVECEXP (x
, 0, 0);
5079 lituse
= "lituse_tlsgd";
5081 else if (GET_CODE (x
) == UNSPEC
&& XINT (x
, 1) == UNSPEC_TLSLDM_CALL
)
5083 x
= XVECEXP (x
, 0, 0);
5084 lituse
= "lituse_tlsldm";
5086 else if (GET_CODE (x
) == CONST_INT
)
5087 lituse
= "lituse_jsr";
5090 output_operand_lossage ("invalid %%J value");
5094 if (x
!= const0_rtx
)
5095 fprintf (file
, "\t\t!%s!%d", lituse
, (int) INTVAL (x
));
5103 #ifdef HAVE_AS_JSRDIRECT_RELOCS
5104 lituse
= "lituse_jsrdirect";
5106 lituse
= "lituse_jsr";
5109 gcc_assert (INTVAL (x
) != 0);
5110 fprintf (file
, "\t\t!%s!%d", lituse
, (int) INTVAL (x
));
5114 /* If this operand is the constant zero, write it as "$31". */
5115 if (GET_CODE (x
) == REG
)
5116 fprintf (file
, "%s", reg_names
[REGNO (x
)]);
5117 else if (x
== CONST0_RTX (GET_MODE (x
)))
5118 fprintf (file
, "$31");
5120 output_operand_lossage ("invalid %%r value");
5124 /* Similar, but for floating-point. */
5125 if (GET_CODE (x
) == REG
)
5126 fprintf (file
, "%s", reg_names
[REGNO (x
)]);
5127 else if (x
== CONST0_RTX (GET_MODE (x
)))
5128 fprintf (file
, "$f31");
5130 output_operand_lossage ("invalid %%R value");
5134 /* Write the 1's complement of a constant. */
5135 if (GET_CODE (x
) != CONST_INT
)
5136 output_operand_lossage ("invalid %%N value");
5138 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, ~ INTVAL (x
));
5142 /* Write 1 << C, for a constant C. */
5143 if (GET_CODE (x
) != CONST_INT
)
5144 output_operand_lossage ("invalid %%P value");
5146 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, (HOST_WIDE_INT
) 1 << INTVAL (x
));
5150 /* Write the high-order 16 bits of a constant, sign-extended. */
5151 if (GET_CODE (x
) != CONST_INT
)
5152 output_operand_lossage ("invalid %%h value");
5154 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
) >> 16);
5158 /* Write the low-order 16 bits of a constant, sign-extended. */
5159 if (GET_CODE (x
) != CONST_INT
)
5160 output_operand_lossage ("invalid %%L value");
5162 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
,
5163 (INTVAL (x
) & 0xffff) - 2 * (INTVAL (x
) & 0x8000));
5167 /* Write mask for ZAP insn. */
5168 if (GET_CODE (x
) == CONST_DOUBLE
)
5170 HOST_WIDE_INT mask
= 0;
5171 HOST_WIDE_INT value
;
5173 value
= CONST_DOUBLE_LOW (x
);
5174 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
;
5179 value
= CONST_DOUBLE_HIGH (x
);
5180 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
/ HOST_BITS_PER_CHAR
;
5183 mask
|= (1 << (i
+ sizeof (int)));
5185 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, mask
& 0xff);
5188 else if (GET_CODE (x
) == CONST_INT
)
5190 HOST_WIDE_INT mask
= 0, value
= INTVAL (x
);
5192 for (i
= 0; i
< 8; i
++, value
>>= 8)
5196 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, mask
);
5199 output_operand_lossage ("invalid %%m value");
5203 /* 'b', 'w', 'l', or 'q' as the value of the constant. */
5204 if (GET_CODE (x
) != CONST_INT
5205 || (INTVAL (x
) != 8 && INTVAL (x
) != 16
5206 && INTVAL (x
) != 32 && INTVAL (x
) != 64))
5207 output_operand_lossage ("invalid %%M value");
5209 fprintf (file
, "%s",
5210 (INTVAL (x
) == 8 ? "b"
5211 : INTVAL (x
) == 16 ? "w"
5212 : INTVAL (x
) == 32 ? "l"
5217 /* Similar, except do it from the mask. */
5218 if (GET_CODE (x
) == CONST_INT
)
5220 HOST_WIDE_INT value
= INTVAL (x
);
5227 if (value
== 0xffff)
5232 if (value
== 0xffffffff)
5243 else if (HOST_BITS_PER_WIDE_INT
== 32
5244 && GET_CODE (x
) == CONST_DOUBLE
5245 && CONST_DOUBLE_LOW (x
) == 0xffffffff
5246 && CONST_DOUBLE_HIGH (x
) == 0)
5251 output_operand_lossage ("invalid %%U value");
5255 /* Write the constant value divided by 8 for little-endian mode or
5256 (56 - value) / 8 for big-endian mode. */
5258 if (GET_CODE (x
) != CONST_INT
5259 || (unsigned HOST_WIDE_INT
) INTVAL (x
) >= (WORDS_BIG_ENDIAN
5262 || (INTVAL (x
) & 7) != 0)
5263 output_operand_lossage ("invalid %%s value");
5265 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
,
5267 ? (56 - INTVAL (x
)) / 8
5272 /* Same, except compute (64 - c) / 8 */
5274 if (GET_CODE (x
) != CONST_INT
5275 && (unsigned HOST_WIDE_INT
) INTVAL (x
) >= 64
5276 && (INTVAL (x
) & 7) != 8)
5277 output_operand_lossage ("invalid %%s value");
5279 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, (64 - INTVAL (x
)) / 8);
5284 /* On Unicos/Mk systems: use a DEX expression if the symbol
5285 clashes with a register name. */
5286 int dex
= unicosmk_need_dex (x
);
5288 fprintf (file
, "DEX(%d)", dex
);
5290 output_addr_const (file
, x
);
5294 case 'C': case 'D': case 'c': case 'd':
5295 /* Write out comparison name. */
5297 enum rtx_code c
= GET_CODE (x
);
5299 if (!COMPARISON_P (x
))
5300 output_operand_lossage ("invalid %%C value");
5302 else if (code
== 'D')
5303 c
= reverse_condition (c
);
5304 else if (code
== 'c')
5305 c
= swap_condition (c
);
5306 else if (code
== 'd')
5307 c
= swap_condition (reverse_condition (c
));
5310 fprintf (file
, "ule");
5312 fprintf (file
, "ult");
5313 else if (c
== UNORDERED
)
5314 fprintf (file
, "un");
5316 fprintf (file
, "%s", GET_RTX_NAME (c
));
5321 /* Write the divide or modulus operator. */
5322 switch (GET_CODE (x
))
5325 fprintf (file
, "div%s", GET_MODE (x
) == SImode
? "l" : "q");
5328 fprintf (file
, "div%su", GET_MODE (x
) == SImode
? "l" : "q");
5331 fprintf (file
, "rem%s", GET_MODE (x
) == SImode
? "l" : "q");
5334 fprintf (file
, "rem%su", GET_MODE (x
) == SImode
? "l" : "q");
5337 output_operand_lossage ("invalid %%E value");
5343 /* Write "_u" for unaligned access. */
5344 if (GET_CODE (x
) == MEM
&& GET_CODE (XEXP (x
, 0)) == AND
)
5345 fprintf (file
, "_u");
5349 if (GET_CODE (x
) == REG
)
5350 fprintf (file
, "%s", reg_names
[REGNO (x
)]);
5351 else if (GET_CODE (x
) == MEM
)
5352 output_address (XEXP (x
, 0));
5353 else if (GET_CODE (x
) == CONST
&& GET_CODE (XEXP (x
, 0)) == UNSPEC
)
5355 switch (XINT (XEXP (x
, 0), 1))
5359 output_addr_const (file
, XVECEXP (XEXP (x
, 0), 0, 0));
5362 output_operand_lossage ("unknown relocation unspec");
5367 output_addr_const (file
, x
);
5371 output_operand_lossage ("invalid %%xn code");
5376 print_operand_address (FILE *file
, rtx addr
)
5379 HOST_WIDE_INT offset
= 0;
5381 if (GET_CODE (addr
) == AND
)
5382 addr
= XEXP (addr
, 0);
5384 if (GET_CODE (addr
) == PLUS
5385 && GET_CODE (XEXP (addr
, 1)) == CONST_INT
)
5387 offset
= INTVAL (XEXP (addr
, 1));
5388 addr
= XEXP (addr
, 0);
5391 if (GET_CODE (addr
) == LO_SUM
)
5393 const char *reloc16
, *reloclo
;
5394 rtx op1
= XEXP (addr
, 1);
5396 if (GET_CODE (op1
) == CONST
&& GET_CODE (XEXP (op1
, 0)) == UNSPEC
)
5398 op1
= XEXP (op1
, 0);
5399 switch (XINT (op1
, 1))
5403 reloclo
= (alpha_tls_size
== 16 ? "dtprel" : "dtprello");
5407 reloclo
= (alpha_tls_size
== 16 ? "tprel" : "tprello");
5410 output_operand_lossage ("unknown relocation unspec");
5414 output_addr_const (file
, XVECEXP (op1
, 0, 0));
5419 reloclo
= "gprellow";
5420 output_addr_const (file
, op1
);
5424 fprintf (file
, "+" HOST_WIDE_INT_PRINT_DEC
, offset
);
5426 addr
= XEXP (addr
, 0);
5427 switch (GET_CODE (addr
))
5430 basereg
= REGNO (addr
);
5434 basereg
= subreg_regno (addr
);
5441 fprintf (file
, "($%d)\t\t!%s", basereg
,
5442 (basereg
== 29 ? reloc16
: reloclo
));
5446 switch (GET_CODE (addr
))
5449 basereg
= REGNO (addr
);
5453 basereg
= subreg_regno (addr
);
5457 offset
= INTVAL (addr
);
5460 #if TARGET_ABI_OPEN_VMS
5462 fprintf (file
, "%s", XSTR (addr
, 0));
5466 gcc_assert (GET_CODE (XEXP (addr
, 0)) == PLUS
5467 && GET_CODE (XEXP (XEXP (addr
, 0), 0)) == SYMBOL_REF
);
5468 fprintf (file
, "%s+" HOST_WIDE_INT_PRINT_DEC
,
5469 XSTR (XEXP (XEXP (addr
, 0), 0), 0),
5470 INTVAL (XEXP (XEXP (addr
, 0), 1)));
5478 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
"($%d)", offset
, basereg
);
5481 /* Emit RTL insns to initialize the variable parts of a trampoline at
5482 TRAMP. FNADDR is an RTX for the address of the function's pure
5483 code. CXT is an RTX for the static chain value for the function.
5485 The three offset parameters are for the individual template's
5486 layout. A JMPOFS < 0 indicates that the trampoline does not
5487 contain instructions at all.
5489 We assume here that a function will be called many more times than
5490 its address is taken (e.g., it might be passed to qsort), so we
5491 take the trouble to initialize the "hint" field in the JMP insn.
5492 Note that the hint field is PC (new) + 4 * bits 13:0. */
5495 alpha_initialize_trampoline (rtx tramp
, rtx fnaddr
, rtx cxt
,
5496 int fnofs
, int cxtofs
, int jmpofs
)
5498 rtx temp
, temp1
, addr
;
5499 /* VMS really uses DImode pointers in memory at this point. */
5500 enum machine_mode mode
= TARGET_ABI_OPEN_VMS
? Pmode
: ptr_mode
;
5502 #ifdef POINTERS_EXTEND_UNSIGNED
5503 fnaddr
= convert_memory_address (mode
, fnaddr
);
5504 cxt
= convert_memory_address (mode
, cxt
);
5507 /* Store function address and CXT. */
5508 addr
= memory_address (mode
, plus_constant (tramp
, fnofs
));
5509 emit_move_insn (gen_rtx_MEM (mode
, addr
), fnaddr
);
5510 addr
= memory_address (mode
, plus_constant (tramp
, cxtofs
));
5511 emit_move_insn (gen_rtx_MEM (mode
, addr
), cxt
);
5513 /* This has been disabled since the hint only has a 32k range, and in
5514 no existing OS is the stack within 32k of the text segment. */
5515 if (0 && jmpofs
>= 0)
5517 /* Compute hint value. */
5518 temp
= force_operand (plus_constant (tramp
, jmpofs
+4), NULL_RTX
);
5519 temp
= expand_binop (DImode
, sub_optab
, fnaddr
, temp
, temp
, 1,
5521 temp
= expand_shift (RSHIFT_EXPR
, Pmode
, temp
,
5522 build_int_cst (NULL_TREE
, 2), NULL_RTX
, 1);
5523 temp
= expand_and (SImode
, gen_lowpart (SImode
, temp
),
5524 GEN_INT (0x3fff), 0);
5526 /* Merge in the hint. */
5527 addr
= memory_address (SImode
, plus_constant (tramp
, jmpofs
));
5528 temp1
= force_reg (SImode
, gen_rtx_MEM (SImode
, addr
));
5529 temp1
= expand_and (SImode
, temp1
, GEN_INT (0xffffc000), NULL_RTX
);
5530 temp1
= expand_binop (SImode
, ior_optab
, temp1
, temp
, temp1
, 1,
5532 emit_move_insn (gen_rtx_MEM (SImode
, addr
), temp1
);
5535 #ifdef ENABLE_EXECUTE_STACK
5536 emit_library_call (init_one_libfunc ("__enable_execute_stack"),
5537 0, VOIDmode
, 1, tramp
, Pmode
);
5541 emit_insn (gen_imb ());
5544 /* Determine where to put an argument to a function.
5545 Value is zero to push the argument on the stack,
5546 or a hard register in which to store the argument.
5548 MODE is the argument's machine mode.
5549 TYPE is the data type of the argument (as a tree).
5550 This is null for libcalls where that information may
5552 CUM is a variable of type CUMULATIVE_ARGS which gives info about
5553 the preceding args and about the function being called.
5554 NAMED is nonzero if this argument is a named parameter
5555 (otherwise it is an extra parameter matching an ellipsis).
5557 On Alpha the first 6 words of args are normally in registers
5558 and the rest are pushed. */
5561 function_arg (CUMULATIVE_ARGS cum
, enum machine_mode mode
, tree type
,
5562 int named ATTRIBUTE_UNUSED
)
5567 /* Don't get confused and pass small structures in FP registers. */
5568 if (type
&& AGGREGATE_TYPE_P (type
))
5572 #ifdef ENABLE_CHECKING
5573 /* With alpha_split_complex_arg, we shouldn't see any raw complex
5575 gcc_assert (!COMPLEX_MODE_P (mode
));
5578 /* Set up defaults for FP operands passed in FP registers, and
5579 integral operands passed in integer registers. */
5580 if (TARGET_FPREGS
&& GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5586 /* ??? Irritatingly, the definition of CUMULATIVE_ARGS is different for
5587 the three platforms, so we can't avoid conditional compilation. */
5588 #if TARGET_ABI_OPEN_VMS
5590 if (mode
== VOIDmode
)
5591 return alpha_arg_info_reg_val (cum
);
5593 num_args
= cum
.num_args
;
5595 || targetm
.calls
.must_pass_in_stack (mode
, type
))
5598 #elif TARGET_ABI_UNICOSMK
5602 /* If this is the last argument, generate the call info word (CIW). */
5603 /* ??? We don't include the caller's line number in the CIW because
5604 I don't know how to determine it if debug infos are turned off. */
5605 if (mode
== VOIDmode
)
5614 for (i
= 0; i
< cum
.num_reg_words
&& i
< 5; i
++)
5615 if (cum
.reg_args_type
[i
])
5616 lo
|= (1 << (7 - i
));
5618 if (cum
.num_reg_words
== 6 && cum
.reg_args_type
[5])
5621 lo
|= cum
.num_reg_words
;
5623 #if HOST_BITS_PER_WIDE_INT == 32
5624 hi
= (cum
.num_args
<< 20) | cum
.num_arg_words
;
5626 lo
= lo
| ((HOST_WIDE_INT
) cum
.num_args
<< 52)
5627 | ((HOST_WIDE_INT
) cum
.num_arg_words
<< 32);
5630 ciw
= immed_double_const (lo
, hi
, DImode
);
5632 return gen_rtx_UNSPEC (DImode
, gen_rtvec (1, ciw
),
5633 UNSPEC_UMK_LOAD_CIW
);
5636 size
= ALPHA_ARG_SIZE (mode
, type
, named
);
5637 num_args
= cum
.num_reg_words
;
5639 || cum
.num_reg_words
+ size
> 6
5640 || targetm
.calls
.must_pass_in_stack (mode
, type
))
5642 else if (type
&& TYPE_MODE (type
) == BLKmode
)
5646 reg1
= gen_rtx_REG (DImode
, num_args
+ 16);
5647 reg1
= gen_rtx_EXPR_LIST (DImode
, reg1
, const0_rtx
);
5649 /* The argument fits in two registers. Note that we still need to
5650 reserve a register for empty structures. */
5654 return gen_rtx_PARALLEL (mode
, gen_rtvec (1, reg1
));
5657 reg2
= gen_rtx_REG (DImode
, num_args
+ 17);
5658 reg2
= gen_rtx_EXPR_LIST (DImode
, reg2
, GEN_INT (8));
5659 return gen_rtx_PARALLEL (mode
, gen_rtvec (2, reg1
, reg2
));
5663 #elif TARGET_ABI_OSF
5669 /* VOID is passed as a special flag for "last argument". */
5670 if (type
== void_type_node
)
5672 else if (targetm
.calls
.must_pass_in_stack (mode
, type
))
5676 #error Unhandled ABI
5679 return gen_rtx_REG (mode
, num_args
+ basereg
);
5683 alpha_arg_partial_bytes (CUMULATIVE_ARGS
*cum ATTRIBUTE_UNUSED
,
5684 enum machine_mode mode ATTRIBUTE_UNUSED
,
5685 tree type ATTRIBUTE_UNUSED
,
5686 bool named ATTRIBUTE_UNUSED
)
5690 #if TARGET_ABI_OPEN_VMS
5691 if (cum
->num_args
< 6
5692 && 6 < cum
->num_args
+ ALPHA_ARG_SIZE (mode
, type
, named
))
5693 words
= 6 - cum
->num_args
;
5694 #elif TARGET_ABI_UNICOSMK
5695 /* Never any split arguments. */
5696 #elif TARGET_ABI_OSF
5697 if (*cum
< 6 && 6 < *cum
+ ALPHA_ARG_SIZE (mode
, type
, named
))
5700 #error Unhandled ABI
5703 return words
* UNITS_PER_WORD
;
5707 /* Return true if TYPE must be returned in memory, instead of in registers. */
5710 alpha_return_in_memory (tree type
, tree fndecl ATTRIBUTE_UNUSED
)
5712 enum machine_mode mode
= VOIDmode
;
5717 mode
= TYPE_MODE (type
);
5719 /* All aggregates are returned in memory. */
5720 if (AGGREGATE_TYPE_P (type
))
5724 size
= GET_MODE_SIZE (mode
);
5725 switch (GET_MODE_CLASS (mode
))
5727 case MODE_VECTOR_FLOAT
:
5728 /* Pass all float vectors in memory, like an aggregate. */
5731 case MODE_COMPLEX_FLOAT
:
5732 /* We judge complex floats on the size of their element,
5733 not the size of the whole type. */
5734 size
= GET_MODE_UNIT_SIZE (mode
);
5739 case MODE_COMPLEX_INT
:
5740 case MODE_VECTOR_INT
:
5744 /* ??? We get called on all sorts of random stuff from
5745 aggregate_value_p. We must return something, but it's not
5746 clear what's safe to return. Pretend it's a struct I
5751 /* Otherwise types must fit in one register. */
5752 return size
> UNITS_PER_WORD
;
5755 /* Return true if TYPE should be passed by invisible reference. */
5758 alpha_pass_by_reference (CUMULATIVE_ARGS
*ca ATTRIBUTE_UNUSED
,
5759 enum machine_mode mode
,
5760 tree type ATTRIBUTE_UNUSED
,
5761 bool named ATTRIBUTE_UNUSED
)
5763 return mode
== TFmode
|| mode
== TCmode
;
5766 /* Define how to find the value returned by a function. VALTYPE is the
5767 data type of the value (as a tree). If the precise function being
5768 called is known, FUNC is its FUNCTION_DECL; otherwise, FUNC is 0.
5769 MODE is set instead of VALTYPE for libcalls.
5771 On Alpha the value is found in $0 for integer functions and
5772 $f0 for floating-point functions. */
5775 function_value (tree valtype
, tree func ATTRIBUTE_UNUSED
,
5776 enum machine_mode mode
)
5778 unsigned int regnum
, dummy
;
5779 enum mode_class
class;
5781 gcc_assert (!valtype
|| !alpha_return_in_memory (valtype
, func
));
5784 mode
= TYPE_MODE (valtype
);
5786 class = GET_MODE_CLASS (mode
);
5790 PROMOTE_MODE (mode
, dummy
, valtype
);
5793 case MODE_COMPLEX_INT
:
5794 case MODE_VECTOR_INT
:
5802 case MODE_COMPLEX_FLOAT
:
5804 enum machine_mode cmode
= GET_MODE_INNER (mode
);
5806 return gen_rtx_PARALLEL
5809 gen_rtx_EXPR_LIST (VOIDmode
, gen_rtx_REG (cmode
, 32),
5811 gen_rtx_EXPR_LIST (VOIDmode
, gen_rtx_REG (cmode
, 33),
5812 GEN_INT (GET_MODE_SIZE (cmode
)))));
5819 return gen_rtx_REG (mode
, regnum
);
5822 /* TCmode complex values are passed by invisible reference. We
5823 should not split these values. */
5826 alpha_split_complex_arg (tree type
)
5828 return TYPE_MODE (type
) != TCmode
;
5832 alpha_build_builtin_va_list (void)
5834 tree base
, ofs
, space
, record
, type_decl
;
5836 if (TARGET_ABI_OPEN_VMS
|| TARGET_ABI_UNICOSMK
)
5837 return ptr_type_node
;
5839 record
= (*lang_hooks
.types
.make_type
) (RECORD_TYPE
);
5840 type_decl
= build_decl (TYPE_DECL
, get_identifier ("__va_list_tag"), record
);
5841 TREE_CHAIN (record
) = type_decl
;
5842 TYPE_NAME (record
) = type_decl
;
5844 /* C++? SET_IS_AGGR_TYPE (record, 1); */
5846 /* Dummy field to prevent alignment warnings. */
5847 space
= build_decl (FIELD_DECL
, NULL_TREE
, integer_type_node
);
5848 DECL_FIELD_CONTEXT (space
) = record
;
5849 DECL_ARTIFICIAL (space
) = 1;
5850 DECL_IGNORED_P (space
) = 1;
5852 ofs
= build_decl (FIELD_DECL
, get_identifier ("__offset"),
5854 DECL_FIELD_CONTEXT (ofs
) = record
;
5855 TREE_CHAIN (ofs
) = space
;
5857 base
= build_decl (FIELD_DECL
, get_identifier ("__base"),
5859 DECL_FIELD_CONTEXT (base
) = record
;
5860 TREE_CHAIN (base
) = ofs
;
5862 TYPE_FIELDS (record
) = base
;
5863 layout_type (record
);
5865 va_list_gpr_counter_field
= ofs
;
5870 /* Helper function for alpha_stdarg_optimize_hook. Skip over casts
5871 and constant additions. */
5874 va_list_skip_additions (tree lhs
)
5878 if (TREE_CODE (lhs
) != SSA_NAME
)
5883 stmt
= SSA_NAME_DEF_STMT (lhs
);
5885 if (TREE_CODE (stmt
) == PHI_NODE
)
5888 if (TREE_CODE (stmt
) != MODIFY_EXPR
5889 || TREE_OPERAND (stmt
, 0) != lhs
)
5892 rhs
= TREE_OPERAND (stmt
, 1);
5893 if (TREE_CODE (rhs
) == WITH_SIZE_EXPR
)
5894 rhs
= TREE_OPERAND (rhs
, 0);
5896 if ((TREE_CODE (rhs
) != NOP_EXPR
5897 && TREE_CODE (rhs
) != CONVERT_EXPR
5898 && (TREE_CODE (rhs
) != PLUS_EXPR
5899 || TREE_CODE (TREE_OPERAND (rhs
, 1)) != INTEGER_CST
5900 || !host_integerp (TREE_OPERAND (rhs
, 1), 1)))
5901 || TREE_CODE (TREE_OPERAND (rhs
, 0)) != SSA_NAME
)
5904 lhs
= TREE_OPERAND (rhs
, 0);
5908 /* Check if LHS = RHS statement is
5909 LHS = *(ap.__base + ap.__offset + cst)
5912 + ((ap.__offset + cst <= 47)
5913 ? ap.__offset + cst - 48 : ap.__offset + cst) + cst2).
5914 If the former, indicate that GPR registers are needed,
5915 if the latter, indicate that FPR registers are needed.
5916 On alpha, cfun->va_list_gpr_size is used as size of the needed
5917 regs and cfun->va_list_fpr_size is a bitmask, bit 0 set if
5918 GPR registers are needed and bit 1 set if FPR registers are needed.
5919 Return true if va_list references should not be scanned for the current
5923 alpha_stdarg_optimize_hook (struct stdarg_info
*si
, tree lhs
, tree rhs
)
5925 tree base
, offset
, arg1
, arg2
;
5928 if (TREE_CODE (rhs
) != INDIRECT_REF
5929 || TREE_CODE (TREE_OPERAND (rhs
, 0)) != SSA_NAME
)
5932 lhs
= va_list_skip_additions (TREE_OPERAND (rhs
, 0));
5933 if (lhs
== NULL_TREE
5934 || TREE_CODE (lhs
) != PLUS_EXPR
)
5937 base
= TREE_OPERAND (lhs
, 0);
5938 if (TREE_CODE (base
) == SSA_NAME
)
5939 base
= va_list_skip_additions (base
);
5941 if (TREE_CODE (base
) != COMPONENT_REF
5942 || TREE_OPERAND (base
, 1) != TYPE_FIELDS (va_list_type_node
))
5944 base
= TREE_OPERAND (lhs
, 0);
5945 if (TREE_CODE (base
) == SSA_NAME
)
5946 base
= va_list_skip_additions (base
);
5948 if (TREE_CODE (base
) != COMPONENT_REF
5949 || TREE_OPERAND (base
, 1) != TYPE_FIELDS (va_list_type_node
))
5955 base
= get_base_address (base
);
5956 if (TREE_CODE (base
) != VAR_DECL
5957 || !bitmap_bit_p (si
->va_list_vars
, DECL_UID (base
)))
5960 offset
= TREE_OPERAND (lhs
, offset_arg
);
5961 if (TREE_CODE (offset
) == SSA_NAME
)
5962 offset
= va_list_skip_additions (offset
);
5964 if (TREE_CODE (offset
) == PHI_NODE
)
5968 if (PHI_NUM_ARGS (offset
) != 2)
5971 arg1
= va_list_skip_additions (PHI_ARG_DEF (offset
, 0));
5972 arg2
= va_list_skip_additions (PHI_ARG_DEF (offset
, 1));
5973 if (TREE_CODE (arg2
) != MINUS_EXPR
&& TREE_CODE (arg2
) != PLUS_EXPR
)
5979 if (TREE_CODE (arg2
) != MINUS_EXPR
&& TREE_CODE (arg2
) != PLUS_EXPR
)
5982 if (!host_integerp (TREE_OPERAND (arg2
, 1), 0))
5985 sub
= tree_low_cst (TREE_OPERAND (arg2
, 1), 0);
5986 if (TREE_CODE (arg2
) == MINUS_EXPR
)
5988 if (sub
< -48 || sub
> -32)
5991 arg2
= va_list_skip_additions (TREE_OPERAND (arg2
, 0));
5995 if (TREE_CODE (arg1
) == SSA_NAME
)
5996 arg1
= va_list_skip_additions (arg1
);
5998 if (TREE_CODE (arg1
) != COMPONENT_REF
5999 || TREE_OPERAND (arg1
, 1) != va_list_gpr_counter_field
6000 || get_base_address (arg1
) != base
)
6003 /* Need floating point regs. */
6004 cfun
->va_list_fpr_size
|= 2;
6006 else if (TREE_CODE (offset
) != COMPONENT_REF
6007 || TREE_OPERAND (offset
, 1) != va_list_gpr_counter_field
6008 || get_base_address (offset
) != base
)
6011 /* Need general regs. */
6012 cfun
->va_list_fpr_size
|= 1;
6016 si
->va_list_escapes
= true;
6021 /* Perform any needed actions needed for a function that is receiving a
6022 variable number of arguments. */
6025 alpha_setup_incoming_varargs (CUMULATIVE_ARGS
*pcum
, enum machine_mode mode
,
6026 tree type
, int *pretend_size
, int no_rtl
)
6028 CUMULATIVE_ARGS cum
= *pcum
;
6030 /* Skip the current argument. */
6031 FUNCTION_ARG_ADVANCE (cum
, mode
, type
, 1);
6033 #if TARGET_ABI_UNICOSMK
6034 /* On Unicos/Mk, the standard subroutine __T3E_MISMATCH stores all register
6035 arguments on the stack. Unfortunately, it doesn't always store the first
6036 one (i.e. the one that arrives in $16 or $f16). This is not a problem
6037 with stdargs as we always have at least one named argument there. */
6038 if (cum
.num_reg_words
< 6)
6042 emit_insn (gen_umk_mismatch_args (GEN_INT (cum
.num_reg_words
)));
6043 emit_insn (gen_arg_home_umk ());
6047 #elif TARGET_ABI_OPEN_VMS
6048 /* For VMS, we allocate space for all 6 arg registers plus a count.
6050 However, if NO registers need to be saved, don't allocate any space.
6051 This is not only because we won't need the space, but because AP
6052 includes the current_pretend_args_size and we don't want to mess up
6053 any ap-relative addresses already made. */
6054 if (cum
.num_args
< 6)
6058 emit_move_insn (gen_rtx_REG (DImode
, 1), virtual_incoming_args_rtx
);
6059 emit_insn (gen_arg_home ());
6061 *pretend_size
= 7 * UNITS_PER_WORD
;
6064 /* On OSF/1 and friends, we allocate space for all 12 arg registers, but
6065 only push those that are remaining. However, if NO registers need to
6066 be saved, don't allocate any space. This is not only because we won't
6067 need the space, but because AP includes the current_pretend_args_size
6068 and we don't want to mess up any ap-relative addresses already made.
6070 If we are not to use the floating-point registers, save the integer
6071 registers where we would put the floating-point registers. This is
6072 not the most efficient way to implement varargs with just one register
6073 class, but it isn't worth doing anything more efficient in this rare
6080 int count
, set
= get_varargs_alias_set ();
6083 count
= cfun
->va_list_gpr_size
/ UNITS_PER_WORD
;
6084 if (count
> 6 - cum
)
6087 /* Detect whether integer registers or floating-point registers
6088 are needed by the detected va_arg statements. See above for
6089 how these values are computed. Note that the "escape" value
6090 is VA_LIST_MAX_FPR_SIZE, which is 255, which has both of
6092 gcc_assert ((VA_LIST_MAX_FPR_SIZE
& 3) == 3);
6094 if (cfun
->va_list_fpr_size
& 1)
6096 tmp
= gen_rtx_MEM (BLKmode
,
6097 plus_constant (virtual_incoming_args_rtx
,
6098 (cum
+ 6) * UNITS_PER_WORD
));
6099 MEM_NOTRAP_P (tmp
) = 1;
6100 set_mem_alias_set (tmp
, set
);
6101 move_block_from_reg (16 + cum
, tmp
, count
);
6104 if (cfun
->va_list_fpr_size
& 2)
6106 tmp
= gen_rtx_MEM (BLKmode
,
6107 plus_constant (virtual_incoming_args_rtx
,
6108 cum
* UNITS_PER_WORD
));
6109 MEM_NOTRAP_P (tmp
) = 1;
6110 set_mem_alias_set (tmp
, set
);
6111 move_block_from_reg (16 + cum
+ TARGET_FPREGS
*32, tmp
, count
);
6114 *pretend_size
= 12 * UNITS_PER_WORD
;
6119 alpha_va_start (tree valist
, rtx nextarg ATTRIBUTE_UNUSED
)
6121 HOST_WIDE_INT offset
;
6122 tree t
, offset_field
, base_field
;
6124 if (TREE_CODE (TREE_TYPE (valist
)) == ERROR_MARK
)
6127 if (TARGET_ABI_UNICOSMK
)
6128 std_expand_builtin_va_start (valist
, nextarg
);
6130 /* For Unix, TARGET_SETUP_INCOMING_VARARGS moves the starting address base
6131 up by 48, storing fp arg registers in the first 48 bytes, and the
6132 integer arg registers in the next 48 bytes. This is only done,
6133 however, if any integer registers need to be stored.
6135 If no integer registers need be stored, then we must subtract 48
6136 in order to account for the integer arg registers which are counted
6137 in argsize above, but which are not actually stored on the stack.
6138 Must further be careful here about structures straddling the last
6139 integer argument register; that futzes with pretend_args_size,
6140 which changes the meaning of AP. */
6143 offset
= TARGET_ABI_OPEN_VMS
? UNITS_PER_WORD
: 6 * UNITS_PER_WORD
;
6145 offset
= -6 * UNITS_PER_WORD
+ current_function_pretend_args_size
;
6147 if (TARGET_ABI_OPEN_VMS
)
6149 nextarg
= plus_constant (nextarg
, offset
);
6150 nextarg
= plus_constant (nextarg
, NUM_ARGS
* UNITS_PER_WORD
);
6151 t
= build2 (MODIFY_EXPR
, TREE_TYPE (valist
), valist
,
6152 make_tree (ptr_type_node
, nextarg
));
6153 TREE_SIDE_EFFECTS (t
) = 1;
6155 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6159 base_field
= TYPE_FIELDS (TREE_TYPE (valist
));
6160 offset_field
= TREE_CHAIN (base_field
);
6162 base_field
= build3 (COMPONENT_REF
, TREE_TYPE (base_field
),
6163 valist
, base_field
, NULL_TREE
);
6164 offset_field
= build3 (COMPONENT_REF
, TREE_TYPE (offset_field
),
6165 valist
, offset_field
, NULL_TREE
);
6167 t
= make_tree (ptr_type_node
, virtual_incoming_args_rtx
);
6168 t
= build2 (PLUS_EXPR
, ptr_type_node
, t
,
6169 build_int_cst (NULL_TREE
, offset
));
6170 t
= build2 (MODIFY_EXPR
, TREE_TYPE (base_field
), base_field
, t
);
6171 TREE_SIDE_EFFECTS (t
) = 1;
6172 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6174 t
= build_int_cst (NULL_TREE
, NUM_ARGS
* UNITS_PER_WORD
);
6175 t
= build2 (MODIFY_EXPR
, TREE_TYPE (offset_field
), offset_field
, t
);
6176 TREE_SIDE_EFFECTS (t
) = 1;
6177 expand_expr (t
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6182 alpha_gimplify_va_arg_1 (tree type
, tree base
, tree offset
, tree
*pre_p
)
6184 tree type_size
, ptr_type
, addend
, t
, addr
, internal_post
;
6186 /* If the type could not be passed in registers, skip the block
6187 reserved for the registers. */
6188 if (targetm
.calls
.must_pass_in_stack (TYPE_MODE (type
), type
))
6190 t
= build_int_cst (TREE_TYPE (offset
), 6*8);
6191 t
= build2 (MODIFY_EXPR
, TREE_TYPE (offset
), offset
,
6192 build2 (MAX_EXPR
, TREE_TYPE (offset
), offset
, t
));
6193 gimplify_and_add (t
, pre_p
);
6197 ptr_type
= build_pointer_type (type
);
6199 if (TREE_CODE (type
) == COMPLEX_TYPE
)
6201 tree real_part
, imag_part
, real_temp
;
6203 real_part
= alpha_gimplify_va_arg_1 (TREE_TYPE (type
), base
,
6206 /* Copy the value into a new temporary, lest the formal temporary
6207 be reused out from under us. */
6208 real_temp
= get_initialized_tmp_var (real_part
, pre_p
, NULL
);
6210 imag_part
= alpha_gimplify_va_arg_1 (TREE_TYPE (type
), base
,
6213 return build2 (COMPLEX_EXPR
, type
, real_temp
, imag_part
);
6215 else if (TREE_CODE (type
) == REAL_TYPE
)
6217 tree fpaddend
, cond
, fourtyeight
;
6219 fourtyeight
= build_int_cst (TREE_TYPE (addend
), 6*8);
6220 fpaddend
= fold_build2 (MINUS_EXPR
, TREE_TYPE (addend
),
6221 addend
, fourtyeight
);
6222 cond
= fold_build2 (LT_EXPR
, boolean_type_node
, addend
, fourtyeight
);
6223 addend
= fold_build3 (COND_EXPR
, TREE_TYPE (addend
), cond
,
6227 /* Build the final address and force that value into a temporary. */
6228 addr
= build2 (PLUS_EXPR
, ptr_type
, fold_convert (ptr_type
, base
),
6229 fold_convert (ptr_type
, addend
));
6230 internal_post
= NULL
;
6231 gimplify_expr (&addr
, pre_p
, &internal_post
, is_gimple_val
, fb_rvalue
);
6232 append_to_statement_list (internal_post
, pre_p
);
6234 /* Update the offset field. */
6235 type_size
= TYPE_SIZE_UNIT (TYPE_MAIN_VARIANT (type
));
6236 if (type_size
== NULL
|| TREE_OVERFLOW (type_size
))
6240 t
= size_binop (PLUS_EXPR
, type_size
, size_int (7));
6241 t
= size_binop (TRUNC_DIV_EXPR
, t
, size_int (8));
6242 t
= size_binop (MULT_EXPR
, t
, size_int (8));
6244 t
= fold_convert (TREE_TYPE (offset
), t
);
6245 t
= build2 (MODIFY_EXPR
, void_type_node
, offset
,
6246 build2 (PLUS_EXPR
, TREE_TYPE (offset
), offset
, t
));
6247 gimplify_and_add (t
, pre_p
);
6249 return build_va_arg_indirect_ref (addr
);
6253 alpha_gimplify_va_arg (tree valist
, tree type
, tree
*pre_p
, tree
*post_p
)
6255 tree offset_field
, base_field
, offset
, base
, t
, r
;
6258 if (TARGET_ABI_OPEN_VMS
|| TARGET_ABI_UNICOSMK
)
6259 return std_gimplify_va_arg_expr (valist
, type
, pre_p
, post_p
);
6261 base_field
= TYPE_FIELDS (va_list_type_node
);
6262 offset_field
= TREE_CHAIN (base_field
);
6263 base_field
= build3 (COMPONENT_REF
, TREE_TYPE (base_field
),
6264 valist
, base_field
, NULL_TREE
);
6265 offset_field
= build3 (COMPONENT_REF
, TREE_TYPE (offset_field
),
6266 valist
, offset_field
, NULL_TREE
);
6268 /* Pull the fields of the structure out into temporaries. Since we never
6269 modify the base field, we can use a formal temporary. Sign-extend the
6270 offset field so that it's the proper width for pointer arithmetic. */
6271 base
= get_formal_tmp_var (base_field
, pre_p
);
6273 t
= fold_convert (lang_hooks
.types
.type_for_size (64, 0), offset_field
);
6274 offset
= get_initialized_tmp_var (t
, pre_p
, NULL
);
6276 indirect
= pass_by_reference (NULL
, TYPE_MODE (type
), type
, false);
6278 type
= build_pointer_type (type
);
6280 /* Find the value. Note that this will be a stable indirection, or
6281 a composite of stable indirections in the case of complex. */
6282 r
= alpha_gimplify_va_arg_1 (type
, base
, offset
, pre_p
);
6284 /* Stuff the offset temporary back into its field. */
6285 t
= build2 (MODIFY_EXPR
, void_type_node
, offset_field
,
6286 fold_convert (TREE_TYPE (offset_field
), offset
));
6287 gimplify_and_add (t
, pre_p
);
6290 r
= build_va_arg_indirect_ref (r
);
6299 ALPHA_BUILTIN_CMPBGE
,
6300 ALPHA_BUILTIN_EXTBL
,
6301 ALPHA_BUILTIN_EXTWL
,
6302 ALPHA_BUILTIN_EXTLL
,
6303 ALPHA_BUILTIN_EXTQL
,
6304 ALPHA_BUILTIN_EXTWH
,
6305 ALPHA_BUILTIN_EXTLH
,
6306 ALPHA_BUILTIN_EXTQH
,
6307 ALPHA_BUILTIN_INSBL
,
6308 ALPHA_BUILTIN_INSWL
,
6309 ALPHA_BUILTIN_INSLL
,
6310 ALPHA_BUILTIN_INSQL
,
6311 ALPHA_BUILTIN_INSWH
,
6312 ALPHA_BUILTIN_INSLH
,
6313 ALPHA_BUILTIN_INSQH
,
6314 ALPHA_BUILTIN_MSKBL
,
6315 ALPHA_BUILTIN_MSKWL
,
6316 ALPHA_BUILTIN_MSKLL
,
6317 ALPHA_BUILTIN_MSKQL
,
6318 ALPHA_BUILTIN_MSKWH
,
6319 ALPHA_BUILTIN_MSKLH
,
6320 ALPHA_BUILTIN_MSKQH
,
6321 ALPHA_BUILTIN_UMULH
,
6323 ALPHA_BUILTIN_ZAPNOT
,
6324 ALPHA_BUILTIN_AMASK
,
6325 ALPHA_BUILTIN_IMPLVER
,
6327 ALPHA_BUILTIN_THREAD_POINTER
,
6328 ALPHA_BUILTIN_SET_THREAD_POINTER
,
6331 ALPHA_BUILTIN_MINUB8
,
6332 ALPHA_BUILTIN_MINSB8
,
6333 ALPHA_BUILTIN_MINUW4
,
6334 ALPHA_BUILTIN_MINSW4
,
6335 ALPHA_BUILTIN_MAXUB8
,
6336 ALPHA_BUILTIN_MAXSB8
,
6337 ALPHA_BUILTIN_MAXUW4
,
6338 ALPHA_BUILTIN_MAXSW4
,
6342 ALPHA_BUILTIN_UNPKBL
,
6343 ALPHA_BUILTIN_UNPKBW
,
6348 ALPHA_BUILTIN_CTPOP
,
6353 static unsigned int const code_for_builtin
[ALPHA_BUILTIN_max
] = {
6354 CODE_FOR_builtin_cmpbge
,
6355 CODE_FOR_builtin_extbl
,
6356 CODE_FOR_builtin_extwl
,
6357 CODE_FOR_builtin_extll
,
6358 CODE_FOR_builtin_extql
,
6359 CODE_FOR_builtin_extwh
,
6360 CODE_FOR_builtin_extlh
,
6361 CODE_FOR_builtin_extqh
,
6362 CODE_FOR_builtin_insbl
,
6363 CODE_FOR_builtin_inswl
,
6364 CODE_FOR_builtin_insll
,
6365 CODE_FOR_builtin_insql
,
6366 CODE_FOR_builtin_inswh
,
6367 CODE_FOR_builtin_inslh
,
6368 CODE_FOR_builtin_insqh
,
6369 CODE_FOR_builtin_mskbl
,
6370 CODE_FOR_builtin_mskwl
,
6371 CODE_FOR_builtin_mskll
,
6372 CODE_FOR_builtin_mskql
,
6373 CODE_FOR_builtin_mskwh
,
6374 CODE_FOR_builtin_msklh
,
6375 CODE_FOR_builtin_mskqh
,
6376 CODE_FOR_umuldi3_highpart
,
6377 CODE_FOR_builtin_zap
,
6378 CODE_FOR_builtin_zapnot
,
6379 CODE_FOR_builtin_amask
,
6380 CODE_FOR_builtin_implver
,
6381 CODE_FOR_builtin_rpcc
,
6386 CODE_FOR_builtin_minub8
,
6387 CODE_FOR_builtin_minsb8
,
6388 CODE_FOR_builtin_minuw4
,
6389 CODE_FOR_builtin_minsw4
,
6390 CODE_FOR_builtin_maxub8
,
6391 CODE_FOR_builtin_maxsb8
,
6392 CODE_FOR_builtin_maxuw4
,
6393 CODE_FOR_builtin_maxsw4
,
6394 CODE_FOR_builtin_perr
,
6395 CODE_FOR_builtin_pklb
,
6396 CODE_FOR_builtin_pkwb
,
6397 CODE_FOR_builtin_unpkbl
,
6398 CODE_FOR_builtin_unpkbw
,
6403 CODE_FOR_popcountdi2
6406 struct alpha_builtin_def
6409 enum alpha_builtin code
;
6410 unsigned int target_mask
;
6414 static struct alpha_builtin_def
const zero_arg_builtins
[] = {
6415 { "__builtin_alpha_implver", ALPHA_BUILTIN_IMPLVER
, 0, true },
6416 { "__builtin_alpha_rpcc", ALPHA_BUILTIN_RPCC
, 0, false }
6419 static struct alpha_builtin_def
const one_arg_builtins
[] = {
6420 { "__builtin_alpha_amask", ALPHA_BUILTIN_AMASK
, 0, true },
6421 { "__builtin_alpha_pklb", ALPHA_BUILTIN_PKLB
, MASK_MAX
, true },
6422 { "__builtin_alpha_pkwb", ALPHA_BUILTIN_PKWB
, MASK_MAX
, true },
6423 { "__builtin_alpha_unpkbl", ALPHA_BUILTIN_UNPKBL
, MASK_MAX
, true },
6424 { "__builtin_alpha_unpkbw", ALPHA_BUILTIN_UNPKBW
, MASK_MAX
, true },
6425 { "__builtin_alpha_cttz", ALPHA_BUILTIN_CTTZ
, MASK_CIX
, true },
6426 { "__builtin_alpha_ctlz", ALPHA_BUILTIN_CTLZ
, MASK_CIX
, true },
6427 { "__builtin_alpha_ctpop", ALPHA_BUILTIN_CTPOP
, MASK_CIX
, true }
6430 static struct alpha_builtin_def
const two_arg_builtins
[] = {
6431 { "__builtin_alpha_cmpbge", ALPHA_BUILTIN_CMPBGE
, 0, true },
6432 { "__builtin_alpha_extbl", ALPHA_BUILTIN_EXTBL
, 0, true },
6433 { "__builtin_alpha_extwl", ALPHA_BUILTIN_EXTWL
, 0, true },
6434 { "__builtin_alpha_extll", ALPHA_BUILTIN_EXTLL
, 0, true },
6435 { "__builtin_alpha_extql", ALPHA_BUILTIN_EXTQL
, 0, true },
6436 { "__builtin_alpha_extwh", ALPHA_BUILTIN_EXTWH
, 0, true },
6437 { "__builtin_alpha_extlh", ALPHA_BUILTIN_EXTLH
, 0, true },
6438 { "__builtin_alpha_extqh", ALPHA_BUILTIN_EXTQH
, 0, true },
6439 { "__builtin_alpha_insbl", ALPHA_BUILTIN_INSBL
, 0, true },
6440 { "__builtin_alpha_inswl", ALPHA_BUILTIN_INSWL
, 0, true },
6441 { "__builtin_alpha_insll", ALPHA_BUILTIN_INSLL
, 0, true },
6442 { "__builtin_alpha_insql", ALPHA_BUILTIN_INSQL
, 0, true },
6443 { "__builtin_alpha_inswh", ALPHA_BUILTIN_INSWH
, 0, true },
6444 { "__builtin_alpha_inslh", ALPHA_BUILTIN_INSLH
, 0, true },
6445 { "__builtin_alpha_insqh", ALPHA_BUILTIN_INSQH
, 0, true },
6446 { "__builtin_alpha_mskbl", ALPHA_BUILTIN_MSKBL
, 0, true },
6447 { "__builtin_alpha_mskwl", ALPHA_BUILTIN_MSKWL
, 0, true },
6448 { "__builtin_alpha_mskll", ALPHA_BUILTIN_MSKLL
, 0, true },
6449 { "__builtin_alpha_mskql", ALPHA_BUILTIN_MSKQL
, 0, true },
6450 { "__builtin_alpha_mskwh", ALPHA_BUILTIN_MSKWH
, 0, true },
6451 { "__builtin_alpha_msklh", ALPHA_BUILTIN_MSKLH
, 0, true },
6452 { "__builtin_alpha_mskqh", ALPHA_BUILTIN_MSKQH
, 0, true },
6453 { "__builtin_alpha_umulh", ALPHA_BUILTIN_UMULH
, 0, true },
6454 { "__builtin_alpha_zap", ALPHA_BUILTIN_ZAP
, 0, true },
6455 { "__builtin_alpha_zapnot", ALPHA_BUILTIN_ZAPNOT
, 0, true },
6456 { "__builtin_alpha_minub8", ALPHA_BUILTIN_MINUB8
, MASK_MAX
, true },
6457 { "__builtin_alpha_minsb8", ALPHA_BUILTIN_MINSB8
, MASK_MAX
, true },
6458 { "__builtin_alpha_minuw4", ALPHA_BUILTIN_MINUW4
, MASK_MAX
, true },
6459 { "__builtin_alpha_minsw4", ALPHA_BUILTIN_MINSW4
, MASK_MAX
, true },
6460 { "__builtin_alpha_maxub8", ALPHA_BUILTIN_MAXUB8
, MASK_MAX
, true },
6461 { "__builtin_alpha_maxsb8", ALPHA_BUILTIN_MAXSB8
, MASK_MAX
, true },
6462 { "__builtin_alpha_maxuw4", ALPHA_BUILTIN_MAXUW4
, MASK_MAX
, true },
6463 { "__builtin_alpha_maxsw4", ALPHA_BUILTIN_MAXSW4
, MASK_MAX
, true },
6464 { "__builtin_alpha_perr", ALPHA_BUILTIN_PERR
, MASK_MAX
, true }
6467 static GTY(()) tree alpha_v8qi_u
;
6468 static GTY(()) tree alpha_v8qi_s
;
6469 static GTY(()) tree alpha_v4hi_u
;
6470 static GTY(()) tree alpha_v4hi_s
;
6473 alpha_init_builtins (void)
6475 const struct alpha_builtin_def
*p
;
6476 tree dimode_integer_type_node
;
6477 tree ftype
, attrs
[2];
6480 dimode_integer_type_node
= lang_hooks
.types
.type_for_mode (DImode
, 0);
6482 attrs
[0] = tree_cons (get_identifier ("nothrow"), NULL
, NULL
);
6483 attrs
[1] = tree_cons (get_identifier ("const"), NULL
, attrs
[0]);
6485 ftype
= build_function_type (dimode_integer_type_node
, void_list_node
);
6487 p
= zero_arg_builtins
;
6488 for (i
= 0; i
< ARRAY_SIZE (zero_arg_builtins
); ++i
, ++p
)
6489 if ((target_flags
& p
->target_mask
) == p
->target_mask
)
6490 lang_hooks
.builtin_function (p
->name
, ftype
, p
->code
, BUILT_IN_MD
,
6491 NULL
, attrs
[p
->is_const
]);
6493 ftype
= build_function_type_list (dimode_integer_type_node
,
6494 dimode_integer_type_node
, NULL_TREE
);
6496 p
= one_arg_builtins
;
6497 for (i
= 0; i
< ARRAY_SIZE (one_arg_builtins
); ++i
, ++p
)
6498 if ((target_flags
& p
->target_mask
) == p
->target_mask
)
6499 lang_hooks
.builtin_function (p
->name
, ftype
, p
->code
, BUILT_IN_MD
,
6500 NULL
, attrs
[p
->is_const
]);
6502 ftype
= build_function_type_list (dimode_integer_type_node
,
6503 dimode_integer_type_node
,
6504 dimode_integer_type_node
, NULL_TREE
);
6506 p
= two_arg_builtins
;
6507 for (i
= 0; i
< ARRAY_SIZE (two_arg_builtins
); ++i
, ++p
)
6508 if ((target_flags
& p
->target_mask
) == p
->target_mask
)
6509 lang_hooks
.builtin_function (p
->name
, ftype
, p
->code
, BUILT_IN_MD
,
6510 NULL
, attrs
[p
->is_const
]);
6512 ftype
= build_function_type (ptr_type_node
, void_list_node
);
6513 lang_hooks
.builtin_function ("__builtin_thread_pointer", ftype
,
6514 ALPHA_BUILTIN_THREAD_POINTER
, BUILT_IN_MD
,
6517 ftype
= build_function_type_list (void_type_node
, ptr_type_node
, NULL_TREE
);
6518 lang_hooks
.builtin_function ("__builtin_set_thread_pointer", ftype
,
6519 ALPHA_BUILTIN_SET_THREAD_POINTER
, BUILT_IN_MD
,
6522 alpha_v8qi_u
= build_vector_type (unsigned_intQI_type_node
, 8);
6523 alpha_v8qi_s
= build_vector_type (intQI_type_node
, 8);
6524 alpha_v4hi_u
= build_vector_type (unsigned_intHI_type_node
, 4);
6525 alpha_v4hi_s
= build_vector_type (intHI_type_node
, 4);
6528 /* Expand an expression EXP that calls a built-in function,
6529 with result going to TARGET if that's convenient
6530 (and in mode MODE if that's convenient).
6531 SUBTARGET may be used as the target for computing one of EXP's operands.
6532 IGNORE is nonzero if the value is to be ignored. */
6535 alpha_expand_builtin (tree exp
, rtx target
,
6536 rtx subtarget ATTRIBUTE_UNUSED
,
6537 enum machine_mode mode ATTRIBUTE_UNUSED
,
6538 int ignore ATTRIBUTE_UNUSED
)
6542 tree fndecl
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
6543 unsigned int fcode
= DECL_FUNCTION_CODE (fndecl
);
6544 tree arglist
= TREE_OPERAND (exp
, 1);
6545 enum insn_code icode
;
6546 rtx op
[MAX_ARGS
], pat
;
6550 if (fcode
>= ALPHA_BUILTIN_max
)
6551 internal_error ("bad builtin fcode");
6552 icode
= code_for_builtin
[fcode
];
6554 internal_error ("bad builtin fcode");
6556 nonvoid
= TREE_TYPE (TREE_TYPE (fndecl
)) != void_type_node
;
6558 for (arglist
= TREE_OPERAND (exp
, 1), arity
= 0;
6560 arglist
= TREE_CHAIN (arglist
), arity
++)
6562 const struct insn_operand_data
*insn_op
;
6564 tree arg
= TREE_VALUE (arglist
);
6565 if (arg
== error_mark_node
)
6567 if (arity
> MAX_ARGS
)
6570 insn_op
= &insn_data
[icode
].operand
[arity
+ nonvoid
];
6572 op
[arity
] = expand_expr (arg
, NULL_RTX
, insn_op
->mode
, 0);
6574 if (!(*insn_op
->predicate
) (op
[arity
], insn_op
->mode
))
6575 op
[arity
] = copy_to_mode_reg (insn_op
->mode
, op
[arity
]);
6580 enum machine_mode tmode
= insn_data
[icode
].operand
[0].mode
;
6582 || GET_MODE (target
) != tmode
6583 || !(*insn_data
[icode
].operand
[0].predicate
) (target
, tmode
))
6584 target
= gen_reg_rtx (tmode
);
6590 pat
= GEN_FCN (icode
) (target
);
6594 pat
= GEN_FCN (icode
) (target
, op
[0]);
6596 pat
= GEN_FCN (icode
) (op
[0]);
6599 pat
= GEN_FCN (icode
) (target
, op
[0], op
[1]);
6615 /* Several bits below assume HWI >= 64 bits. This should be enforced
6617 #if HOST_BITS_PER_WIDE_INT < 64
6618 # error "HOST_WIDE_INT too small"
6621 /* Fold the builtin for the CMPBGE instruction. This is a vector comparison
6622 with an 8 bit output vector. OPINT contains the integer operands; bit N
6623 of OP_CONST is set if OPINT[N] is valid. */
6626 alpha_fold_builtin_cmpbge (unsigned HOST_WIDE_INT opint
[], long op_const
)
6631 for (i
= 0, val
= 0; i
< 8; ++i
)
6633 unsigned HOST_WIDE_INT c0
= (opint
[0] >> (i
* 8)) & 0xff;
6634 unsigned HOST_WIDE_INT c1
= (opint
[1] >> (i
* 8)) & 0xff;
6638 return build_int_cst (long_integer_type_node
, val
);
6640 else if (op_const
== 2 && opint
[1] == 0)
6641 return build_int_cst (long_integer_type_node
, 0xff);
6645 /* Fold the builtin for the ZAPNOT instruction. This is essentially a
6646 specialized form of an AND operation. Other byte manipulation instructions
6647 are defined in terms of this instruction, so this is also used as a
6648 subroutine for other builtins.
6650 OP contains the tree operands; OPINT contains the extracted integer values.
6651 Bit N of OP_CONST it set if OPINT[N] is valid. OP may be null if only
6652 OPINT may be considered. */
6655 alpha_fold_builtin_zapnot (tree
*op
, unsigned HOST_WIDE_INT opint
[],
6660 unsigned HOST_WIDE_INT mask
= 0;
6663 for (i
= 0; i
< 8; ++i
)
6664 if ((opint
[1] >> i
) & 1)
6665 mask
|= (unsigned HOST_WIDE_INT
)0xff << (i
* 8);
6668 return build_int_cst (long_integer_type_node
, opint
[0] & mask
);
6671 return fold (build2 (BIT_AND_EXPR
, long_integer_type_node
, op
[0],
6672 build_int_cst (long_integer_type_node
, mask
)));
6674 else if ((op_const
& 1) && opint
[0] == 0)
6675 return build_int_cst (long_integer_type_node
, 0);
6679 /* Fold the builtins for the EXT family of instructions. */
6682 alpha_fold_builtin_extxx (tree op
[], unsigned HOST_WIDE_INT opint
[],
6683 long op_const
, unsigned HOST_WIDE_INT bytemask
,
6687 tree
*zap_op
= NULL
;
6691 unsigned HOST_WIDE_INT loc
;
6694 if (BYTES_BIG_ENDIAN
)
6702 unsigned HOST_WIDE_INT temp
= opint
[0];
6715 opint
[1] = bytemask
;
6716 return alpha_fold_builtin_zapnot (zap_op
, opint
, zap_const
);
6719 /* Fold the builtins for the INS family of instructions. */
6722 alpha_fold_builtin_insxx (tree op
[], unsigned HOST_WIDE_INT opint
[],
6723 long op_const
, unsigned HOST_WIDE_INT bytemask
,
6726 if ((op_const
& 1) && opint
[0] == 0)
6727 return build_int_cst (long_integer_type_node
, 0);
6731 unsigned HOST_WIDE_INT temp
, loc
, byteloc
;
6732 tree
*zap_op
= NULL
;
6735 if (BYTES_BIG_ENDIAN
)
6742 byteloc
= (64 - (loc
* 8)) & 0x3f;
6759 opint
[1] = bytemask
;
6760 return alpha_fold_builtin_zapnot (zap_op
, opint
, op_const
);
6767 alpha_fold_builtin_mskxx (tree op
[], unsigned HOST_WIDE_INT opint
[],
6768 long op_const
, unsigned HOST_WIDE_INT bytemask
,
6773 unsigned HOST_WIDE_INT loc
;
6776 if (BYTES_BIG_ENDIAN
)
6783 opint
[1] = bytemask
^ 0xff;
6786 return alpha_fold_builtin_zapnot (op
, opint
, op_const
);
6790 alpha_fold_builtin_umulh (unsigned HOST_WIDE_INT opint
[], long op_const
)
6796 unsigned HOST_WIDE_INT l
;
6799 mul_double (opint
[0], 0, opint
[1], 0, &l
, &h
);
6801 #if HOST_BITS_PER_WIDE_INT > 64
6805 return build_int_cst (long_integer_type_node
, h
);
6809 opint
[1] = opint
[0];
6812 /* Note that (X*1) >> 64 == 0. */
6813 if (opint
[1] == 0 || opint
[1] == 1)
6814 return build_int_cst (long_integer_type_node
, 0);
6821 alpha_fold_vector_minmax (enum tree_code code
, tree op
[], tree vtype
)
6823 tree op0
= fold_convert (vtype
, op
[0]);
6824 tree op1
= fold_convert (vtype
, op
[1]);
6825 tree val
= fold (build2 (code
, vtype
, op0
, op1
));
6826 return fold_convert (long_integer_type_node
, val
);
6830 alpha_fold_builtin_perr (unsigned HOST_WIDE_INT opint
[], long op_const
)
6832 unsigned HOST_WIDE_INT temp
= 0;
6838 for (i
= 0; i
< 8; ++i
)
6840 unsigned HOST_WIDE_INT a
= (opint
[0] >> (i
* 8)) & 0xff;
6841 unsigned HOST_WIDE_INT b
= (opint
[1] >> (i
* 8)) & 0xff;
6848 return build_int_cst (long_integer_type_node
, temp
);
6852 alpha_fold_builtin_pklb (unsigned HOST_WIDE_INT opint
[], long op_const
)
6854 unsigned HOST_WIDE_INT temp
;
6859 temp
= opint
[0] & 0xff;
6860 temp
|= (opint
[0] >> 24) & 0xff00;
6862 return build_int_cst (long_integer_type_node
, temp
);
6866 alpha_fold_builtin_pkwb (unsigned HOST_WIDE_INT opint
[], long op_const
)
6868 unsigned HOST_WIDE_INT temp
;
6873 temp
= opint
[0] & 0xff;
6874 temp
|= (opint
[0] >> 8) & 0xff00;
6875 temp
|= (opint
[0] >> 16) & 0xff0000;
6876 temp
|= (opint
[0] >> 24) & 0xff000000;
6878 return build_int_cst (long_integer_type_node
, temp
);
6882 alpha_fold_builtin_unpkbl (unsigned HOST_WIDE_INT opint
[], long op_const
)
6884 unsigned HOST_WIDE_INT temp
;
6889 temp
= opint
[0] & 0xff;
6890 temp
|= (opint
[0] & 0xff00) << 24;
6892 return build_int_cst (long_integer_type_node
, temp
);
6896 alpha_fold_builtin_unpkbw (unsigned HOST_WIDE_INT opint
[], long op_const
)
6898 unsigned HOST_WIDE_INT temp
;
6903 temp
= opint
[0] & 0xff;
6904 temp
|= (opint
[0] & 0x0000ff00) << 8;
6905 temp
|= (opint
[0] & 0x00ff0000) << 16;
6906 temp
|= (opint
[0] & 0xff000000) << 24;
6908 return build_int_cst (long_integer_type_node
, temp
);
6912 alpha_fold_builtin_cttz (unsigned HOST_WIDE_INT opint
[], long op_const
)
6914 unsigned HOST_WIDE_INT temp
;
6922 temp
= exact_log2 (opint
[0] & -opint
[0]);
6924 return build_int_cst (long_integer_type_node
, temp
);
6928 alpha_fold_builtin_ctlz (unsigned HOST_WIDE_INT opint
[], long op_const
)
6930 unsigned HOST_WIDE_INT temp
;
6938 temp
= 64 - floor_log2 (opint
[0]) - 1;
6940 return build_int_cst (long_integer_type_node
, temp
);
6944 alpha_fold_builtin_ctpop (unsigned HOST_WIDE_INT opint
[], long op_const
)
6946 unsigned HOST_WIDE_INT temp
, op
;
6954 temp
++, op
&= op
- 1;
6956 return build_int_cst (long_integer_type_node
, temp
);
6959 /* Fold one of our builtin functions. */
6962 alpha_fold_builtin (tree fndecl
, tree arglist
, bool ignore ATTRIBUTE_UNUSED
)
6964 tree op
[MAX_ARGS
], t
;
6965 unsigned HOST_WIDE_INT opint
[MAX_ARGS
];
6966 long op_const
= 0, arity
= 0;
6968 for (t
= arglist
; t
; t
= TREE_CHAIN (t
), ++arity
)
6970 tree arg
= TREE_VALUE (t
);
6971 if (arg
== error_mark_node
)
6973 if (arity
>= MAX_ARGS
)
6978 if (TREE_CODE (arg
) == INTEGER_CST
)
6980 op_const
|= 1L << arity
;
6981 opint
[arity
] = int_cst_value (arg
);
6985 switch (DECL_FUNCTION_CODE (fndecl
))
6987 case ALPHA_BUILTIN_CMPBGE
:
6988 return alpha_fold_builtin_cmpbge (opint
, op_const
);
6990 case ALPHA_BUILTIN_EXTBL
:
6991 return alpha_fold_builtin_extxx (op
, opint
, op_const
, 0x01, false);
6992 case ALPHA_BUILTIN_EXTWL
:
6993 return alpha_fold_builtin_extxx (op
, opint
, op_const
, 0x03, false);
6994 case ALPHA_BUILTIN_EXTLL
:
6995 return alpha_fold_builtin_extxx (op
, opint
, op_const
, 0x0f, false);
6996 case ALPHA_BUILTIN_EXTQL
:
6997 return alpha_fold_builtin_extxx (op
, opint
, op_const
, 0xff, false);
6998 case ALPHA_BUILTIN_EXTWH
:
6999 return alpha_fold_builtin_extxx (op
, opint
, op_const
, 0x03, true);
7000 case ALPHA_BUILTIN_EXTLH
:
7001 return alpha_fold_builtin_extxx (op
, opint
, op_const
, 0x0f, true);
7002 case ALPHA_BUILTIN_EXTQH
:
7003 return alpha_fold_builtin_extxx (op
, opint
, op_const
, 0xff, true);
7005 case ALPHA_BUILTIN_INSBL
:
7006 return alpha_fold_builtin_insxx (op
, opint
, op_const
, 0x01, false);
7007 case ALPHA_BUILTIN_INSWL
:
7008 return alpha_fold_builtin_insxx (op
, opint
, op_const
, 0x03, false);
7009 case ALPHA_BUILTIN_INSLL
:
7010 return alpha_fold_builtin_insxx (op
, opint
, op_const
, 0x0f, false);
7011 case ALPHA_BUILTIN_INSQL
:
7012 return alpha_fold_builtin_insxx (op
, opint
, op_const
, 0xff, false);
7013 case ALPHA_BUILTIN_INSWH
:
7014 return alpha_fold_builtin_insxx (op
, opint
, op_const
, 0x03, true);
7015 case ALPHA_BUILTIN_INSLH
:
7016 return alpha_fold_builtin_insxx (op
, opint
, op_const
, 0x0f, true);
7017 case ALPHA_BUILTIN_INSQH
:
7018 return alpha_fold_builtin_insxx (op
, opint
, op_const
, 0xff, true);
7020 case ALPHA_BUILTIN_MSKBL
:
7021 return alpha_fold_builtin_mskxx (op
, opint
, op_const
, 0x01, false);
7022 case ALPHA_BUILTIN_MSKWL
:
7023 return alpha_fold_builtin_mskxx (op
, opint
, op_const
, 0x03, false);
7024 case ALPHA_BUILTIN_MSKLL
:
7025 return alpha_fold_builtin_mskxx (op
, opint
, op_const
, 0x0f, false);
7026 case ALPHA_BUILTIN_MSKQL
:
7027 return alpha_fold_builtin_mskxx (op
, opint
, op_const
, 0xff, false);
7028 case ALPHA_BUILTIN_MSKWH
:
7029 return alpha_fold_builtin_mskxx (op
, opint
, op_const
, 0x03, true);
7030 case ALPHA_BUILTIN_MSKLH
:
7031 return alpha_fold_builtin_mskxx (op
, opint
, op_const
, 0x0f, true);
7032 case ALPHA_BUILTIN_MSKQH
:
7033 return alpha_fold_builtin_mskxx (op
, opint
, op_const
, 0xff, true);
7035 case ALPHA_BUILTIN_UMULH
:
7036 return alpha_fold_builtin_umulh (opint
, op_const
);
7038 case ALPHA_BUILTIN_ZAP
:
7041 case ALPHA_BUILTIN_ZAPNOT
:
7042 return alpha_fold_builtin_zapnot (op
, opint
, op_const
);
7044 case ALPHA_BUILTIN_MINUB8
:
7045 return alpha_fold_vector_minmax (MIN_EXPR
, op
, alpha_v8qi_u
);
7046 case ALPHA_BUILTIN_MINSB8
:
7047 return alpha_fold_vector_minmax (MIN_EXPR
, op
, alpha_v8qi_s
);
7048 case ALPHA_BUILTIN_MINUW4
:
7049 return alpha_fold_vector_minmax (MIN_EXPR
, op
, alpha_v4hi_u
);
7050 case ALPHA_BUILTIN_MINSW4
:
7051 return alpha_fold_vector_minmax (MIN_EXPR
, op
, alpha_v4hi_s
);
7052 case ALPHA_BUILTIN_MAXUB8
:
7053 return alpha_fold_vector_minmax (MAX_EXPR
, op
, alpha_v8qi_u
);
7054 case ALPHA_BUILTIN_MAXSB8
:
7055 return alpha_fold_vector_minmax (MAX_EXPR
, op
, alpha_v8qi_s
);
7056 case ALPHA_BUILTIN_MAXUW4
:
7057 return alpha_fold_vector_minmax (MAX_EXPR
, op
, alpha_v4hi_u
);
7058 case ALPHA_BUILTIN_MAXSW4
:
7059 return alpha_fold_vector_minmax (MAX_EXPR
, op
, alpha_v4hi_s
);
7061 case ALPHA_BUILTIN_PERR
:
7062 return alpha_fold_builtin_perr (opint
, op_const
);
7063 case ALPHA_BUILTIN_PKLB
:
7064 return alpha_fold_builtin_pklb (opint
, op_const
);
7065 case ALPHA_BUILTIN_PKWB
:
7066 return alpha_fold_builtin_pkwb (opint
, op_const
);
7067 case ALPHA_BUILTIN_UNPKBL
:
7068 return alpha_fold_builtin_unpkbl (opint
, op_const
);
7069 case ALPHA_BUILTIN_UNPKBW
:
7070 return alpha_fold_builtin_unpkbw (opint
, op_const
);
7072 case ALPHA_BUILTIN_CTTZ
:
7073 return alpha_fold_builtin_cttz (opint
, op_const
);
7074 case ALPHA_BUILTIN_CTLZ
:
7075 return alpha_fold_builtin_ctlz (opint
, op_const
);
7076 case ALPHA_BUILTIN_CTPOP
:
7077 return alpha_fold_builtin_ctpop (opint
, op_const
);
7079 case ALPHA_BUILTIN_AMASK
:
7080 case ALPHA_BUILTIN_IMPLVER
:
7081 case ALPHA_BUILTIN_RPCC
:
7082 case ALPHA_BUILTIN_THREAD_POINTER
:
7083 case ALPHA_BUILTIN_SET_THREAD_POINTER
:
7084 /* None of these are foldable at compile-time. */
7090 /* This page contains routines that are used to determine what the function
7091 prologue and epilogue code will do and write them out. */
7093 /* Compute the size of the save area in the stack. */
7095 /* These variables are used for communication between the following functions.
7096 They indicate various things about the current function being compiled
7097 that are used to tell what kind of prologue, epilogue and procedure
7098 descriptor to generate. */
7100 /* Nonzero if we need a stack procedure. */
7101 enum alpha_procedure_types
{PT_NULL
= 0, PT_REGISTER
= 1, PT_STACK
= 2};
7102 static enum alpha_procedure_types alpha_procedure_type
;
7104 /* Register number (either FP or SP) that is used to unwind the frame. */
7105 static int vms_unwind_regno
;
7107 /* Register number used to save FP. We need not have one for RA since
7108 we don't modify it for register procedures. This is only defined
7109 for register frame procedures. */
7110 static int vms_save_fp_regno
;
7112 /* Register number used to reference objects off our PV. */
7113 static int vms_base_regno
;
7115 /* Compute register masks for saved registers. */
7118 alpha_sa_mask (unsigned long *imaskP
, unsigned long *fmaskP
)
7120 unsigned long imask
= 0;
7121 unsigned long fmask
= 0;
7124 /* When outputting a thunk, we don't have valid register life info,
7125 but assemble_start_function wants to output .frame and .mask
7127 if (current_function_is_thunk
)
7134 if (TARGET_ABI_OPEN_VMS
&& alpha_procedure_type
== PT_STACK
)
7135 imask
|= (1UL << HARD_FRAME_POINTER_REGNUM
);
7137 /* One for every register we have to save. */
7138 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
7139 if (! fixed_regs
[i
] && ! call_used_regs
[i
]
7140 && regs_ever_live
[i
] && i
!= REG_RA
7141 && (!TARGET_ABI_UNICOSMK
|| i
!= HARD_FRAME_POINTER_REGNUM
))
7144 imask
|= (1UL << i
);
7146 fmask
|= (1UL << (i
- 32));
7149 /* We need to restore these for the handler. */
7150 if (current_function_calls_eh_return
)
7154 unsigned regno
= EH_RETURN_DATA_REGNO (i
);
7155 if (regno
== INVALID_REGNUM
)
7157 imask
|= 1UL << regno
;
7161 /* If any register spilled, then spill the return address also. */
7162 /* ??? This is required by the Digital stack unwind specification
7163 and isn't needed if we're doing Dwarf2 unwinding. */
7164 if (imask
|| fmask
|| alpha_ra_ever_killed ())
7165 imask
|= (1UL << REG_RA
);
7172 alpha_sa_size (void)
7174 unsigned long mask
[2];
7178 alpha_sa_mask (&mask
[0], &mask
[1]);
7180 if (TARGET_ABI_UNICOSMK
)
7182 if (mask
[0] || mask
[1])
7187 for (j
= 0; j
< 2; ++j
)
7188 for (i
= 0; i
< 32; ++i
)
7189 if ((mask
[j
] >> i
) & 1)
7193 if (TARGET_ABI_UNICOSMK
)
7195 /* We might not need to generate a frame if we don't make any calls
7196 (including calls to __T3E_MISMATCH if this is a vararg function),
7197 don't have any local variables which require stack slots, don't
7198 use alloca and have not determined that we need a frame for other
7201 alpha_procedure_type
7202 = (sa_size
|| get_frame_size() != 0
7203 || current_function_outgoing_args_size
7204 || current_function_stdarg
|| current_function_calls_alloca
7205 || frame_pointer_needed
)
7206 ? PT_STACK
: PT_REGISTER
;
7208 /* Always reserve space for saving callee-saved registers if we
7209 need a frame as required by the calling convention. */
7210 if (alpha_procedure_type
== PT_STACK
)
7213 else if (TARGET_ABI_OPEN_VMS
)
7215 /* Start by assuming we can use a register procedure if we don't
7216 make any calls (REG_RA not used) or need to save any
7217 registers and a stack procedure if we do. */
7218 if ((mask
[0] >> REG_RA
) & 1)
7219 alpha_procedure_type
= PT_STACK
;
7220 else if (get_frame_size() != 0)
7221 alpha_procedure_type
= PT_REGISTER
;
7223 alpha_procedure_type
= PT_NULL
;
7225 /* Don't reserve space for saving FP & RA yet. Do that later after we've
7226 made the final decision on stack procedure vs register procedure. */
7227 if (alpha_procedure_type
== PT_STACK
)
7230 /* Decide whether to refer to objects off our PV via FP or PV.
7231 If we need FP for something else or if we receive a nonlocal
7232 goto (which expects PV to contain the value), we must use PV.
7233 Otherwise, start by assuming we can use FP. */
7236 = (frame_pointer_needed
7237 || current_function_has_nonlocal_label
7238 || alpha_procedure_type
== PT_STACK
7239 || current_function_outgoing_args_size
)
7240 ? REG_PV
: HARD_FRAME_POINTER_REGNUM
;
7242 /* If we want to copy PV into FP, we need to find some register
7243 in which to save FP. */
7245 vms_save_fp_regno
= -1;
7246 if (vms_base_regno
== HARD_FRAME_POINTER_REGNUM
)
7247 for (i
= 0; i
< 32; i
++)
7248 if (! fixed_regs
[i
] && call_used_regs
[i
] && ! regs_ever_live
[i
])
7249 vms_save_fp_regno
= i
;
7251 if (vms_save_fp_regno
== -1 && alpha_procedure_type
== PT_REGISTER
)
7252 vms_base_regno
= REG_PV
, alpha_procedure_type
= PT_STACK
;
7253 else if (alpha_procedure_type
== PT_NULL
)
7254 vms_base_regno
= REG_PV
;
7256 /* Stack unwinding should be done via FP unless we use it for PV. */
7257 vms_unwind_regno
= (vms_base_regno
== REG_PV
7258 ? HARD_FRAME_POINTER_REGNUM
: STACK_POINTER_REGNUM
);
7260 /* If this is a stack procedure, allow space for saving FP and RA. */
7261 if (alpha_procedure_type
== PT_STACK
)
7266 /* Our size must be even (multiple of 16 bytes). */
7274 /* Define the offset between two registers, one to be eliminated,
7275 and the other its replacement, at the start of a routine. */
7278 alpha_initial_elimination_offset (unsigned int from
,
7279 unsigned int to ATTRIBUTE_UNUSED
)
7283 ret
= alpha_sa_size ();
7284 ret
+= ALPHA_ROUND (current_function_outgoing_args_size
);
7288 case FRAME_POINTER_REGNUM
:
7291 case ARG_POINTER_REGNUM
:
7292 ret
+= (ALPHA_ROUND (get_frame_size ()
7293 + current_function_pretend_args_size
)
7294 - current_function_pretend_args_size
);
7305 alpha_pv_save_size (void)
7308 return alpha_procedure_type
== PT_STACK
? 8 : 0;
7312 alpha_using_fp (void)
7315 return vms_unwind_regno
== HARD_FRAME_POINTER_REGNUM
;
7318 #if TARGET_ABI_OPEN_VMS
7320 const struct attribute_spec vms_attribute_table
[] =
7322 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
7323 { "overlaid", 0, 0, true, false, false, NULL
},
7324 { "global", 0, 0, true, false, false, NULL
},
7325 { "initialize", 0, 0, true, false, false, NULL
},
7326 { NULL
, 0, 0, false, false, false, NULL
}
7332 find_lo_sum_using_gp (rtx
*px
, void *data ATTRIBUTE_UNUSED
)
7334 return GET_CODE (*px
) == LO_SUM
&& XEXP (*px
, 0) == pic_offset_table_rtx
;
7338 alpha_find_lo_sum_using_gp (rtx insn
)
7340 return for_each_rtx (&PATTERN (insn
), find_lo_sum_using_gp
, NULL
) > 0;
7344 alpha_does_function_need_gp (void)
7348 /* The GP being variable is an OSF abi thing. */
7349 if (! TARGET_ABI_OSF
)
7352 /* We need the gp to load the address of __mcount. */
7353 if (TARGET_PROFILING_NEEDS_GP
&& current_function_profile
)
7356 /* The code emitted by alpha_output_mi_thunk_osf uses the gp. */
7357 if (current_function_is_thunk
)
7360 /* The nonlocal receiver pattern assumes that the gp is valid for
7361 the nested function. Reasonable because it's almost always set
7362 correctly already. For the cases where that's wrong, make sure
7363 the nested function loads its gp on entry. */
7364 if (current_function_has_nonlocal_goto
)
7367 /* If we need a GP (we have a LDSYM insn or a CALL_INSN), load it first.
7368 Even if we are a static function, we still need to do this in case
7369 our address is taken and passed to something like qsort. */
7371 push_topmost_sequence ();
7372 insn
= get_insns ();
7373 pop_topmost_sequence ();
7375 for (; insn
; insn
= NEXT_INSN (insn
))
7377 && GET_CODE (PATTERN (insn
)) != USE
7378 && GET_CODE (PATTERN (insn
)) != CLOBBER
7379 && get_attr_usegp (insn
))
7386 /* Helper function to set RTX_FRAME_RELATED_P on instructions, including
7390 set_frame_related_p (void)
7392 rtx seq
= get_insns ();
7403 while (insn
!= NULL_RTX
)
7405 RTX_FRAME_RELATED_P (insn
) = 1;
7406 insn
= NEXT_INSN (insn
);
7408 seq
= emit_insn (seq
);
7412 seq
= emit_insn (seq
);
7413 RTX_FRAME_RELATED_P (seq
) = 1;
7418 #define FRP(exp) (start_sequence (), exp, set_frame_related_p ())
7420 /* Generates a store with the proper unwind info attached. VALUE is
7421 stored at BASE_REG+BASE_OFS. If FRAME_BIAS is nonzero, then BASE_REG
7422 contains SP+FRAME_BIAS, and that is the unwind info that should be
7423 generated. If FRAME_REG != VALUE, then VALUE is being stored on
7424 behalf of FRAME_REG, and FRAME_REG should be present in the unwind. */
7427 emit_frame_store_1 (rtx value
, rtx base_reg
, HOST_WIDE_INT frame_bias
,
7428 HOST_WIDE_INT base_ofs
, rtx frame_reg
)
7430 rtx addr
, mem
, insn
;
7432 addr
= plus_constant (base_reg
, base_ofs
);
7433 mem
= gen_rtx_MEM (DImode
, addr
);
7434 set_mem_alias_set (mem
, alpha_sr_alias_set
);
7436 insn
= emit_move_insn (mem
, value
);
7437 RTX_FRAME_RELATED_P (insn
) = 1;
7439 if (frame_bias
|| value
!= frame_reg
)
7443 addr
= plus_constant (stack_pointer_rtx
, frame_bias
+ base_ofs
);
7444 mem
= gen_rtx_MEM (DImode
, addr
);
7448 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR
,
7449 gen_rtx_SET (VOIDmode
, mem
, frame_reg
),
7455 emit_frame_store (unsigned int regno
, rtx base_reg
,
7456 HOST_WIDE_INT frame_bias
, HOST_WIDE_INT base_ofs
)
7458 rtx reg
= gen_rtx_REG (DImode
, regno
);
7459 emit_frame_store_1 (reg
, base_reg
, frame_bias
, base_ofs
, reg
);
7462 /* Write function prologue. */
7464 /* On vms we have two kinds of functions:
7466 - stack frame (PROC_STACK)
7467 these are 'normal' functions with local vars and which are
7468 calling other functions
7469 - register frame (PROC_REGISTER)
7470 keeps all data in registers, needs no stack
7472 We must pass this to the assembler so it can generate the
7473 proper pdsc (procedure descriptor)
7474 This is done with the '.pdesc' command.
7476 On not-vms, we don't really differentiate between the two, as we can
7477 simply allocate stack without saving registers. */
7480 alpha_expand_prologue (void)
7482 /* Registers to save. */
7483 unsigned long imask
= 0;
7484 unsigned long fmask
= 0;
7485 /* Stack space needed for pushing registers clobbered by us. */
7486 HOST_WIDE_INT sa_size
;
7487 /* Complete stack size needed. */
7488 HOST_WIDE_INT frame_size
;
7489 /* Offset from base reg to register save area. */
7490 HOST_WIDE_INT reg_offset
;
7494 sa_size
= alpha_sa_size ();
7496 frame_size
= get_frame_size ();
7497 if (TARGET_ABI_OPEN_VMS
)
7498 frame_size
= ALPHA_ROUND (sa_size
7499 + (alpha_procedure_type
== PT_STACK
? 8 : 0)
7501 + current_function_pretend_args_size
);
7502 else if (TARGET_ABI_UNICOSMK
)
7503 /* We have to allocate space for the DSIB if we generate a frame. */
7504 frame_size
= ALPHA_ROUND (sa_size
7505 + (alpha_procedure_type
== PT_STACK
? 48 : 0))
7506 + ALPHA_ROUND (frame_size
7507 + current_function_outgoing_args_size
);
7509 frame_size
= (ALPHA_ROUND (current_function_outgoing_args_size
)
7511 + ALPHA_ROUND (frame_size
7512 + current_function_pretend_args_size
));
7514 if (TARGET_ABI_OPEN_VMS
)
7517 reg_offset
= ALPHA_ROUND (current_function_outgoing_args_size
);
7519 alpha_sa_mask (&imask
, &fmask
);
7521 /* Emit an insn to reload GP, if needed. */
7524 alpha_function_needs_gp
= alpha_does_function_need_gp ();
7525 if (alpha_function_needs_gp
)
7526 emit_insn (gen_prologue_ldgp ());
7529 /* TARGET_PROFILING_NEEDS_GP actually implies that we need to insert
7530 the call to mcount ourselves, rather than having the linker do it
7531 magically in response to -pg. Since _mcount has special linkage,
7532 don't represent the call as a call. */
7533 if (TARGET_PROFILING_NEEDS_GP
&& current_function_profile
)
7534 emit_insn (gen_prologue_mcount ());
7536 if (TARGET_ABI_UNICOSMK
)
7537 unicosmk_gen_dsib (&imask
);
7539 /* Adjust the stack by the frame size. If the frame size is > 4096
7540 bytes, we need to be sure we probe somewhere in the first and last
7541 4096 bytes (we can probably get away without the latter test) and
7542 every 8192 bytes in between. If the frame size is > 32768, we
7543 do this in a loop. Otherwise, we generate the explicit probe
7546 Note that we are only allowed to adjust sp once in the prologue. */
7548 if (frame_size
<= 32768)
7550 if (frame_size
> 4096)
7554 for (probed
= 4096; probed
< frame_size
; probed
+= 8192)
7555 emit_insn (gen_probe_stack (GEN_INT (TARGET_ABI_UNICOSMK
7559 /* We only have to do this probe if we aren't saving registers. */
7560 if (sa_size
== 0 && frame_size
> probed
- 4096)
7561 emit_insn (gen_probe_stack (GEN_INT (-frame_size
)));
7564 if (frame_size
!= 0)
7565 FRP (emit_insn (gen_adddi3 (stack_pointer_rtx
, stack_pointer_rtx
,
7566 GEN_INT (TARGET_ABI_UNICOSMK
7572 /* Here we generate code to set R22 to SP + 4096 and set R23 to the
7573 number of 8192 byte blocks to probe. We then probe each block
7574 in the loop and then set SP to the proper location. If the
7575 amount remaining is > 4096, we have to do one more probe if we
7576 are not saving any registers. */
7578 HOST_WIDE_INT blocks
= (frame_size
+ 4096) / 8192;
7579 HOST_WIDE_INT leftover
= frame_size
+ 4096 - blocks
* 8192;
7580 rtx ptr
= gen_rtx_REG (DImode
, 22);
7581 rtx count
= gen_rtx_REG (DImode
, 23);
7584 emit_move_insn (count
, GEN_INT (blocks
));
7585 emit_insn (gen_adddi3 (ptr
, stack_pointer_rtx
,
7586 GEN_INT (TARGET_ABI_UNICOSMK
? 4096 - 64 : 4096)));
7588 /* Because of the difficulty in emitting a new basic block this
7589 late in the compilation, generate the loop as a single insn. */
7590 emit_insn (gen_prologue_stack_probe_loop (count
, ptr
));
7592 if (leftover
> 4096 && sa_size
== 0)
7594 rtx last
= gen_rtx_MEM (DImode
, plus_constant (ptr
, -leftover
));
7595 MEM_VOLATILE_P (last
) = 1;
7596 emit_move_insn (last
, const0_rtx
);
7599 if (TARGET_ABI_WINDOWS_NT
)
7601 /* For NT stack unwind (done by 'reverse execution'), it's
7602 not OK to take the result of a loop, even though the value
7603 is already in ptr, so we reload it via a single operation
7604 and subtract it to sp.
7606 Yes, that's correct -- we have to reload the whole constant
7607 into a temporary via ldah+lda then subtract from sp. */
7609 HOST_WIDE_INT lo
, hi
;
7610 lo
= ((frame_size
& 0xffff) ^ 0x8000) - 0x8000;
7611 hi
= frame_size
- lo
;
7613 emit_move_insn (ptr
, GEN_INT (hi
));
7614 emit_insn (gen_adddi3 (ptr
, ptr
, GEN_INT (lo
)));
7615 seq
= emit_insn (gen_subdi3 (stack_pointer_rtx
, stack_pointer_rtx
,
7620 seq
= emit_insn (gen_adddi3 (stack_pointer_rtx
, ptr
,
7621 GEN_INT (-leftover
)));
7624 /* This alternative is special, because the DWARF code cannot
7625 possibly intuit through the loop above. So we invent this
7626 note it looks at instead. */
7627 RTX_FRAME_RELATED_P (seq
) = 1;
7629 = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR
,
7630 gen_rtx_SET (VOIDmode
, stack_pointer_rtx
,
7631 gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
7632 GEN_INT (TARGET_ABI_UNICOSMK
7638 if (!TARGET_ABI_UNICOSMK
)
7640 HOST_WIDE_INT sa_bias
= 0;
7642 /* Cope with very large offsets to the register save area. */
7643 sa_reg
= stack_pointer_rtx
;
7644 if (reg_offset
+ sa_size
> 0x8000)
7646 int low
= ((reg_offset
& 0xffff) ^ 0x8000) - 0x8000;
7649 if (low
+ sa_size
<= 0x8000)
7650 sa_bias
= reg_offset
- low
, reg_offset
= low
;
7652 sa_bias
= reg_offset
, reg_offset
= 0;
7654 sa_reg
= gen_rtx_REG (DImode
, 24);
7655 sa_bias_rtx
= GEN_INT (sa_bias
);
7657 if (add_operand (sa_bias_rtx
, DImode
))
7658 emit_insn (gen_adddi3 (sa_reg
, stack_pointer_rtx
, sa_bias_rtx
));
7661 emit_move_insn (sa_reg
, sa_bias_rtx
);
7662 emit_insn (gen_adddi3 (sa_reg
, stack_pointer_rtx
, sa_reg
));
7666 /* Save regs in stack order. Beginning with VMS PV. */
7667 if (TARGET_ABI_OPEN_VMS
&& alpha_procedure_type
== PT_STACK
)
7668 emit_frame_store (REG_PV
, stack_pointer_rtx
, 0, 0);
7670 /* Save register RA next. */
7671 if (imask
& (1UL << REG_RA
))
7673 emit_frame_store (REG_RA
, sa_reg
, sa_bias
, reg_offset
);
7674 imask
&= ~(1UL << REG_RA
);
7678 /* Now save any other registers required to be saved. */
7679 for (i
= 0; i
< 31; i
++)
7680 if (imask
& (1UL << i
))
7682 emit_frame_store (i
, sa_reg
, sa_bias
, reg_offset
);
7686 for (i
= 0; i
< 31; i
++)
7687 if (fmask
& (1UL << i
))
7689 emit_frame_store (i
+32, sa_reg
, sa_bias
, reg_offset
);
7693 else if (TARGET_ABI_UNICOSMK
&& alpha_procedure_type
== PT_STACK
)
7695 /* The standard frame on the T3E includes space for saving registers.
7696 We just have to use it. We don't have to save the return address and
7697 the old frame pointer here - they are saved in the DSIB. */
7700 for (i
= 9; i
< 15; i
++)
7701 if (imask
& (1UL << i
))
7703 emit_frame_store (i
, hard_frame_pointer_rtx
, 0, reg_offset
);
7706 for (i
= 2; i
< 10; i
++)
7707 if (fmask
& (1UL << i
))
7709 emit_frame_store (i
+32, hard_frame_pointer_rtx
, 0, reg_offset
);
7714 if (TARGET_ABI_OPEN_VMS
)
7716 if (alpha_procedure_type
== PT_REGISTER
)
7717 /* Register frame procedures save the fp.
7718 ?? Ought to have a dwarf2 save for this. */
7719 emit_move_insn (gen_rtx_REG (DImode
, vms_save_fp_regno
),
7720 hard_frame_pointer_rtx
);
7722 if (alpha_procedure_type
!= PT_NULL
&& vms_base_regno
!= REG_PV
)
7723 emit_insn (gen_force_movdi (gen_rtx_REG (DImode
, vms_base_regno
),
7724 gen_rtx_REG (DImode
, REG_PV
)));
7726 if (alpha_procedure_type
!= PT_NULL
7727 && vms_unwind_regno
== HARD_FRAME_POINTER_REGNUM
)
7728 FRP (emit_move_insn (hard_frame_pointer_rtx
, stack_pointer_rtx
));
7730 /* If we have to allocate space for outgoing args, do it now. */
7731 if (current_function_outgoing_args_size
!= 0)
7734 = emit_move_insn (stack_pointer_rtx
,
7736 (hard_frame_pointer_rtx
,
7738 (current_function_outgoing_args_size
))));
7740 /* Only set FRAME_RELATED_P on the stack adjustment we just emitted
7741 if ! frame_pointer_needed. Setting the bit will change the CFA
7742 computation rule to use sp again, which would be wrong if we had
7743 frame_pointer_needed, as this means sp might move unpredictably
7747 frame_pointer_needed
7748 => vms_unwind_regno == HARD_FRAME_POINTER_REGNUM
7750 current_function_outgoing_args_size != 0
7751 => alpha_procedure_type != PT_NULL,
7753 so when we are not setting the bit here, we are guaranteed to
7754 have emitted an FRP frame pointer update just before. */
7755 RTX_FRAME_RELATED_P (seq
) = ! frame_pointer_needed
;
7758 else if (!TARGET_ABI_UNICOSMK
)
7760 /* If we need a frame pointer, set it from the stack pointer. */
7761 if (frame_pointer_needed
)
7763 if (TARGET_CAN_FAULT_IN_PROLOGUE
)
7764 FRP (emit_move_insn (hard_frame_pointer_rtx
, stack_pointer_rtx
));
7766 /* This must always be the last instruction in the
7767 prologue, thus we emit a special move + clobber. */
7768 FRP (emit_insn (gen_init_fp (hard_frame_pointer_rtx
,
7769 stack_pointer_rtx
, sa_reg
)));
7773 /* The ABIs for VMS and OSF/1 say that while we can schedule insns into
7774 the prologue, for exception handling reasons, we cannot do this for
7775 any insn that might fault. We could prevent this for mems with a
7776 (clobber:BLK (scratch)), but this doesn't work for fp insns. So we
7777 have to prevent all such scheduling with a blockage.
7779 Linux, on the other hand, never bothered to implement OSF/1's
7780 exception handling, and so doesn't care about such things. Anyone
7781 planning to use dwarf2 frame-unwind info can also omit the blockage. */
7783 if (! TARGET_CAN_FAULT_IN_PROLOGUE
)
7784 emit_insn (gen_blockage ());
7787 /* Count the number of .file directives, so that .loc is up to date. */
7788 int num_source_filenames
= 0;
7790 /* Output the textual info surrounding the prologue. */
7793 alpha_start_function (FILE *file
, const char *fnname
,
7794 tree decl ATTRIBUTE_UNUSED
)
7796 unsigned long imask
= 0;
7797 unsigned long fmask
= 0;
7798 /* Stack space needed for pushing registers clobbered by us. */
7799 HOST_WIDE_INT sa_size
;
7800 /* Complete stack size needed. */
7801 unsigned HOST_WIDE_INT frame_size
;
7802 /* Offset from base reg to register save area. */
7803 HOST_WIDE_INT reg_offset
;
7804 char *entry_label
= (char *) alloca (strlen (fnname
) + 6);
7807 /* Don't emit an extern directive for functions defined in the same file. */
7808 if (TARGET_ABI_UNICOSMK
)
7811 name_tree
= get_identifier (fnname
);
7812 TREE_ASM_WRITTEN (name_tree
) = 1;
7815 alpha_fnname
= fnname
;
7816 sa_size
= alpha_sa_size ();
7818 frame_size
= get_frame_size ();
7819 if (TARGET_ABI_OPEN_VMS
)
7820 frame_size
= ALPHA_ROUND (sa_size
7821 + (alpha_procedure_type
== PT_STACK
? 8 : 0)
7823 + current_function_pretend_args_size
);
7824 else if (TARGET_ABI_UNICOSMK
)
7825 frame_size
= ALPHA_ROUND (sa_size
7826 + (alpha_procedure_type
== PT_STACK
? 48 : 0))
7827 + ALPHA_ROUND (frame_size
7828 + current_function_outgoing_args_size
);
7830 frame_size
= (ALPHA_ROUND (current_function_outgoing_args_size
)
7832 + ALPHA_ROUND (frame_size
7833 + current_function_pretend_args_size
));
7835 if (TARGET_ABI_OPEN_VMS
)
7838 reg_offset
= ALPHA_ROUND (current_function_outgoing_args_size
);
7840 alpha_sa_mask (&imask
, &fmask
);
7842 /* Ecoff can handle multiple .file directives, so put out file and lineno.
7843 We have to do that before the .ent directive as we cannot switch
7844 files within procedures with native ecoff because line numbers are
7845 linked to procedure descriptors.
7846 Outputting the lineno helps debugging of one line functions as they
7847 would otherwise get no line number at all. Please note that we would
7848 like to put out last_linenum from final.c, but it is not accessible. */
7850 if (write_symbols
== SDB_DEBUG
)
7852 #ifdef ASM_OUTPUT_SOURCE_FILENAME
7853 ASM_OUTPUT_SOURCE_FILENAME (file
,
7854 DECL_SOURCE_FILE (current_function_decl
));
7856 #ifdef SDB_OUTPUT_SOURCE_LINE
7857 if (debug_info_level
!= DINFO_LEVEL_TERSE
)
7858 SDB_OUTPUT_SOURCE_LINE (file
,
7859 DECL_SOURCE_LINE (current_function_decl
));
7863 /* Issue function start and label. */
7864 if (TARGET_ABI_OPEN_VMS
7865 || (!TARGET_ABI_UNICOSMK
&& !flag_inhibit_size_directive
))
7867 fputs ("\t.ent ", file
);
7868 assemble_name (file
, fnname
);
7871 /* If the function needs GP, we'll write the "..ng" label there.
7872 Otherwise, do it here. */
7874 && ! alpha_function_needs_gp
7875 && ! current_function_is_thunk
)
7878 assemble_name (file
, fnname
);
7879 fputs ("..ng:\n", file
);
7883 strcpy (entry_label
, fnname
);
7884 if (TARGET_ABI_OPEN_VMS
)
7885 strcat (entry_label
, "..en");
7887 /* For public functions, the label must be globalized by appending an
7888 additional colon. */
7889 if (TARGET_ABI_UNICOSMK
&& TREE_PUBLIC (decl
))
7890 strcat (entry_label
, ":");
7892 ASM_OUTPUT_LABEL (file
, entry_label
);
7893 inside_function
= TRUE
;
7895 if (TARGET_ABI_OPEN_VMS
)
7896 fprintf (file
, "\t.base $%d\n", vms_base_regno
);
7898 if (!TARGET_ABI_OPEN_VMS
&& !TARGET_ABI_UNICOSMK
&& TARGET_IEEE_CONFORMANT
7899 && !flag_inhibit_size_directive
)
7901 /* Set flags in procedure descriptor to request IEEE-conformant
7902 math-library routines. The value we set it to is PDSC_EXC_IEEE
7903 (/usr/include/pdsc.h). */
7904 fputs ("\t.eflag 48\n", file
);
7907 /* Set up offsets to alpha virtual arg/local debugging pointer. */
7908 alpha_auto_offset
= -frame_size
+ current_function_pretend_args_size
;
7909 alpha_arg_offset
= -frame_size
+ 48;
7911 /* Describe our frame. If the frame size is larger than an integer,
7912 print it as zero to avoid an assembler error. We won't be
7913 properly describing such a frame, but that's the best we can do. */
7914 if (TARGET_ABI_UNICOSMK
)
7916 else if (TARGET_ABI_OPEN_VMS
)
7917 fprintf (file
, "\t.frame $%d," HOST_WIDE_INT_PRINT_DEC
",$26,"
7918 HOST_WIDE_INT_PRINT_DEC
"\n",
7920 frame_size
>= (1UL << 31) ? 0 : frame_size
,
7922 else if (!flag_inhibit_size_directive
)
7923 fprintf (file
, "\t.frame $%d," HOST_WIDE_INT_PRINT_DEC
",$26,%d\n",
7924 (frame_pointer_needed
7925 ? HARD_FRAME_POINTER_REGNUM
: STACK_POINTER_REGNUM
),
7926 frame_size
>= (1UL << 31) ? 0 : frame_size
,
7927 current_function_pretend_args_size
);
7929 /* Describe which registers were spilled. */
7930 if (TARGET_ABI_UNICOSMK
)
7932 else if (TARGET_ABI_OPEN_VMS
)
7935 /* ??? Does VMS care if mask contains ra? The old code didn't
7936 set it, so I don't here. */
7937 fprintf (file
, "\t.mask 0x%lx,0\n", imask
& ~(1UL << REG_RA
));
7939 fprintf (file
, "\t.fmask 0x%lx,0\n", fmask
);
7940 if (alpha_procedure_type
== PT_REGISTER
)
7941 fprintf (file
, "\t.fp_save $%d\n", vms_save_fp_regno
);
7943 else if (!flag_inhibit_size_directive
)
7947 fprintf (file
, "\t.mask 0x%lx," HOST_WIDE_INT_PRINT_DEC
"\n", imask
,
7948 frame_size
>= (1UL << 31) ? 0 : reg_offset
- frame_size
);
7950 for (i
= 0; i
< 32; ++i
)
7951 if (imask
& (1UL << i
))
7956 fprintf (file
, "\t.fmask 0x%lx," HOST_WIDE_INT_PRINT_DEC
"\n", fmask
,
7957 frame_size
>= (1UL << 31) ? 0 : reg_offset
- frame_size
);
7960 #if TARGET_ABI_OPEN_VMS
7961 /* Ifdef'ed cause link_section are only available then. */
7962 switch_to_section (readonly_data_section
);
7963 fprintf (file
, "\t.align 3\n");
7964 assemble_name (file
, fnname
); fputs ("..na:\n", file
);
7965 fputs ("\t.ascii \"", file
);
7966 assemble_name (file
, fnname
);
7967 fputs ("\\0\"\n", file
);
7968 alpha_need_linkage (fnname
, 1);
7969 switch_to_section (text_section
);
7973 /* Emit the .prologue note at the scheduled end of the prologue. */
7976 alpha_output_function_end_prologue (FILE *file
)
7978 if (TARGET_ABI_UNICOSMK
)
7980 else if (TARGET_ABI_OPEN_VMS
)
7981 fputs ("\t.prologue\n", file
);
7982 else if (TARGET_ABI_WINDOWS_NT
)
7983 fputs ("\t.prologue 0\n", file
);
7984 else if (!flag_inhibit_size_directive
)
7985 fprintf (file
, "\t.prologue %d\n",
7986 alpha_function_needs_gp
|| current_function_is_thunk
);
7989 /* Write function epilogue. */
7991 /* ??? At some point we will want to support full unwind, and so will
7992 need to mark the epilogue as well. At the moment, we just confuse
7995 #define FRP(exp) exp
7998 alpha_expand_epilogue (void)
8000 /* Registers to save. */
8001 unsigned long imask
= 0;
8002 unsigned long fmask
= 0;
8003 /* Stack space needed for pushing registers clobbered by us. */
8004 HOST_WIDE_INT sa_size
;
8005 /* Complete stack size needed. */
8006 HOST_WIDE_INT frame_size
;
8007 /* Offset from base reg to register save area. */
8008 HOST_WIDE_INT reg_offset
;
8009 int fp_is_frame_pointer
, fp_offset
;
8010 rtx sa_reg
, sa_reg_exp
= NULL
;
8011 rtx sp_adj1
, sp_adj2
, mem
;
8015 sa_size
= alpha_sa_size ();
8017 frame_size
= get_frame_size ();
8018 if (TARGET_ABI_OPEN_VMS
)
8019 frame_size
= ALPHA_ROUND (sa_size
8020 + (alpha_procedure_type
== PT_STACK
? 8 : 0)
8022 + current_function_pretend_args_size
);
8023 else if (TARGET_ABI_UNICOSMK
)
8024 frame_size
= ALPHA_ROUND (sa_size
8025 + (alpha_procedure_type
== PT_STACK
? 48 : 0))
8026 + ALPHA_ROUND (frame_size
8027 + current_function_outgoing_args_size
);
8029 frame_size
= (ALPHA_ROUND (current_function_outgoing_args_size
)
8031 + ALPHA_ROUND (frame_size
8032 + current_function_pretend_args_size
));
8034 if (TARGET_ABI_OPEN_VMS
)
8036 if (alpha_procedure_type
== PT_STACK
)
8042 reg_offset
= ALPHA_ROUND (current_function_outgoing_args_size
);
8044 alpha_sa_mask (&imask
, &fmask
);
8047 = ((TARGET_ABI_OPEN_VMS
&& alpha_procedure_type
== PT_STACK
)
8048 || (!TARGET_ABI_OPEN_VMS
&& frame_pointer_needed
));
8050 sa_reg
= stack_pointer_rtx
;
8052 if (current_function_calls_eh_return
)
8053 eh_ofs
= EH_RETURN_STACKADJ_RTX
;
8057 if (!TARGET_ABI_UNICOSMK
&& sa_size
)
8059 /* If we have a frame pointer, restore SP from it. */
8060 if ((TARGET_ABI_OPEN_VMS
8061 && vms_unwind_regno
== HARD_FRAME_POINTER_REGNUM
)
8062 || (!TARGET_ABI_OPEN_VMS
&& frame_pointer_needed
))
8063 FRP (emit_move_insn (stack_pointer_rtx
, hard_frame_pointer_rtx
));
8065 /* Cope with very large offsets to the register save area. */
8066 if (reg_offset
+ sa_size
> 0x8000)
8068 int low
= ((reg_offset
& 0xffff) ^ 0x8000) - 0x8000;
8071 if (low
+ sa_size
<= 0x8000)
8072 bias
= reg_offset
- low
, reg_offset
= low
;
8074 bias
= reg_offset
, reg_offset
= 0;
8076 sa_reg
= gen_rtx_REG (DImode
, 22);
8077 sa_reg_exp
= plus_constant (stack_pointer_rtx
, bias
);
8079 FRP (emit_move_insn (sa_reg
, sa_reg_exp
));
8082 /* Restore registers in order, excepting a true frame pointer. */
8084 mem
= gen_rtx_MEM (DImode
, plus_constant (sa_reg
, reg_offset
));
8086 set_mem_alias_set (mem
, alpha_sr_alias_set
);
8087 FRP (emit_move_insn (gen_rtx_REG (DImode
, REG_RA
), mem
));
8090 imask
&= ~(1UL << REG_RA
);
8092 for (i
= 0; i
< 31; ++i
)
8093 if (imask
& (1UL << i
))
8095 if (i
== HARD_FRAME_POINTER_REGNUM
&& fp_is_frame_pointer
)
8096 fp_offset
= reg_offset
;
8099 mem
= gen_rtx_MEM (DImode
, plus_constant(sa_reg
, reg_offset
));
8100 set_mem_alias_set (mem
, alpha_sr_alias_set
);
8101 FRP (emit_move_insn (gen_rtx_REG (DImode
, i
), mem
));
8106 for (i
= 0; i
< 31; ++i
)
8107 if (fmask
& (1UL << i
))
8109 mem
= gen_rtx_MEM (DFmode
, plus_constant(sa_reg
, reg_offset
));
8110 set_mem_alias_set (mem
, alpha_sr_alias_set
);
8111 FRP (emit_move_insn (gen_rtx_REG (DFmode
, i
+32), mem
));
8115 else if (TARGET_ABI_UNICOSMK
&& alpha_procedure_type
== PT_STACK
)
8117 /* Restore callee-saved general-purpose registers. */
8121 for (i
= 9; i
< 15; i
++)
8122 if (imask
& (1UL << i
))
8124 mem
= gen_rtx_MEM (DImode
, plus_constant(hard_frame_pointer_rtx
,
8126 set_mem_alias_set (mem
, alpha_sr_alias_set
);
8127 FRP (emit_move_insn (gen_rtx_REG (DImode
, i
), mem
));
8131 for (i
= 2; i
< 10; i
++)
8132 if (fmask
& (1UL << i
))
8134 mem
= gen_rtx_MEM (DFmode
, plus_constant(hard_frame_pointer_rtx
,
8136 set_mem_alias_set (mem
, alpha_sr_alias_set
);
8137 FRP (emit_move_insn (gen_rtx_REG (DFmode
, i
+32), mem
));
8141 /* Restore the return address from the DSIB. */
8143 mem
= gen_rtx_MEM (DImode
, plus_constant(hard_frame_pointer_rtx
, -8));
8144 set_mem_alias_set (mem
, alpha_sr_alias_set
);
8145 FRP (emit_move_insn (gen_rtx_REG (DImode
, REG_RA
), mem
));
8148 if (frame_size
|| eh_ofs
)
8150 sp_adj1
= stack_pointer_rtx
;
8154 sp_adj1
= gen_rtx_REG (DImode
, 23);
8155 emit_move_insn (sp_adj1
,
8156 gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, eh_ofs
));
8159 /* If the stack size is large, begin computation into a temporary
8160 register so as not to interfere with a potential fp restore,
8161 which must be consecutive with an SP restore. */
8162 if (frame_size
< 32768
8163 && ! (TARGET_ABI_UNICOSMK
&& current_function_calls_alloca
))
8164 sp_adj2
= GEN_INT (frame_size
);
8165 else if (TARGET_ABI_UNICOSMK
)
8167 sp_adj1
= gen_rtx_REG (DImode
, 23);
8168 FRP (emit_move_insn (sp_adj1
, hard_frame_pointer_rtx
));
8169 sp_adj2
= const0_rtx
;
8171 else if (frame_size
< 0x40007fffL
)
8173 int low
= ((frame_size
& 0xffff) ^ 0x8000) - 0x8000;
8175 sp_adj2
= plus_constant (sp_adj1
, frame_size
- low
);
8176 if (sa_reg_exp
&& rtx_equal_p (sa_reg_exp
, sp_adj2
))
8180 sp_adj1
= gen_rtx_REG (DImode
, 23);
8181 FRP (emit_move_insn (sp_adj1
, sp_adj2
));
8183 sp_adj2
= GEN_INT (low
);
8187 rtx tmp
= gen_rtx_REG (DImode
, 23);
8188 FRP (sp_adj2
= alpha_emit_set_const (tmp
, DImode
, frame_size
,
8192 /* We can't drop new things to memory this late, afaik,
8193 so build it up by pieces. */
8194 FRP (sp_adj2
= alpha_emit_set_long_const (tmp
, frame_size
,
8195 -(frame_size
< 0)));
8196 gcc_assert (sp_adj2
);
8200 /* From now on, things must be in order. So emit blockages. */
8202 /* Restore the frame pointer. */
8203 if (TARGET_ABI_UNICOSMK
)
8205 emit_insn (gen_blockage ());
8206 mem
= gen_rtx_MEM (DImode
,
8207 plus_constant (hard_frame_pointer_rtx
, -16));
8208 set_mem_alias_set (mem
, alpha_sr_alias_set
);
8209 FRP (emit_move_insn (hard_frame_pointer_rtx
, mem
));
8211 else if (fp_is_frame_pointer
)
8213 emit_insn (gen_blockage ());
8214 mem
= gen_rtx_MEM (DImode
, plus_constant (sa_reg
, fp_offset
));
8215 set_mem_alias_set (mem
, alpha_sr_alias_set
);
8216 FRP (emit_move_insn (hard_frame_pointer_rtx
, mem
));
8218 else if (TARGET_ABI_OPEN_VMS
)
8220 emit_insn (gen_blockage ());
8221 FRP (emit_move_insn (hard_frame_pointer_rtx
,
8222 gen_rtx_REG (DImode
, vms_save_fp_regno
)));
8225 /* Restore the stack pointer. */
8226 emit_insn (gen_blockage ());
8227 if (sp_adj2
== const0_rtx
)
8228 FRP (emit_move_insn (stack_pointer_rtx
, sp_adj1
));
8230 FRP (emit_move_insn (stack_pointer_rtx
,
8231 gen_rtx_PLUS (DImode
, sp_adj1
, sp_adj2
)));
8235 if (TARGET_ABI_OPEN_VMS
&& alpha_procedure_type
== PT_REGISTER
)
8237 emit_insn (gen_blockage ());
8238 FRP (emit_move_insn (hard_frame_pointer_rtx
,
8239 gen_rtx_REG (DImode
, vms_save_fp_regno
)));
8241 else if (TARGET_ABI_UNICOSMK
&& alpha_procedure_type
!= PT_STACK
)
8243 /* Decrement the frame pointer if the function does not have a
8246 emit_insn (gen_blockage ());
8247 FRP (emit_insn (gen_adddi3 (hard_frame_pointer_rtx
,
8248 hard_frame_pointer_rtx
, constm1_rtx
)));
8253 /* Output the rest of the textual info surrounding the epilogue. */
8256 alpha_end_function (FILE *file
, const char *fnname
, tree decl ATTRIBUTE_UNUSED
)
8258 #if TARGET_ABI_OPEN_VMS
8259 alpha_write_linkage (file
, fnname
, decl
);
8262 /* End the function. */
8263 if (!TARGET_ABI_UNICOSMK
&& !flag_inhibit_size_directive
)
8265 fputs ("\t.end ", file
);
8266 assemble_name (file
, fnname
);
8269 inside_function
= FALSE
;
8271 /* Output jump tables and the static subroutine information block. */
8272 if (TARGET_ABI_UNICOSMK
)
8274 unicosmk_output_ssib (file
, fnname
);
8275 unicosmk_output_deferred_case_vectors (file
);
8280 /* Emit a tail call to FUNCTION after adjusting THIS by DELTA.
8282 In order to avoid the hordes of differences between generated code
8283 with and without TARGET_EXPLICIT_RELOCS, and to avoid duplicating
8284 lots of code loading up large constants, generate rtl and emit it
8285 instead of going straight to text.
8287 Not sure why this idea hasn't been explored before... */
8290 alpha_output_mi_thunk_osf (FILE *file
, tree thunk_fndecl ATTRIBUTE_UNUSED
,
8291 HOST_WIDE_INT delta
, HOST_WIDE_INT vcall_offset
,
8294 HOST_WIDE_INT hi
, lo
;
8295 rtx
this, insn
, funexp
;
8297 reset_block_changes ();
8299 /* We always require a valid GP. */
8300 emit_insn (gen_prologue_ldgp ());
8301 emit_note (NOTE_INSN_PROLOGUE_END
);
8303 /* Find the "this" pointer. If the function returns a structure,
8304 the structure return pointer is in $16. */
8305 if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function
)), function
))
8306 this = gen_rtx_REG (Pmode
, 17);
8308 this = gen_rtx_REG (Pmode
, 16);
8310 /* Add DELTA. When possible we use ldah+lda. Otherwise load the
8311 entire constant for the add. */
8312 lo
= ((delta
& 0xffff) ^ 0x8000) - 0x8000;
8313 hi
= (((delta
- lo
) & 0xffffffff) ^ 0x80000000) - 0x80000000;
8314 if (hi
+ lo
== delta
)
8317 emit_insn (gen_adddi3 (this, this, GEN_INT (hi
)));
8319 emit_insn (gen_adddi3 (this, this, GEN_INT (lo
)));
8323 rtx tmp
= alpha_emit_set_long_const (gen_rtx_REG (Pmode
, 0),
8324 delta
, -(delta
< 0));
8325 emit_insn (gen_adddi3 (this, this, tmp
));
8328 /* Add a delta stored in the vtable at VCALL_OFFSET. */
8333 tmp
= gen_rtx_REG (Pmode
, 0);
8334 emit_move_insn (tmp
, gen_rtx_MEM (Pmode
, this));
8336 lo
= ((vcall_offset
& 0xffff) ^ 0x8000) - 0x8000;
8337 hi
= (((vcall_offset
- lo
) & 0xffffffff) ^ 0x80000000) - 0x80000000;
8338 if (hi
+ lo
== vcall_offset
)
8341 emit_insn (gen_adddi3 (tmp
, tmp
, GEN_INT (hi
)));
8345 tmp2
= alpha_emit_set_long_const (gen_rtx_REG (Pmode
, 1),
8346 vcall_offset
, -(vcall_offset
< 0));
8347 emit_insn (gen_adddi3 (tmp
, tmp
, tmp2
));
8351 tmp2
= gen_rtx_PLUS (Pmode
, tmp
, GEN_INT (lo
));
8354 emit_move_insn (tmp
, gen_rtx_MEM (Pmode
, tmp2
));
8356 emit_insn (gen_adddi3 (this, this, tmp
));
8359 /* Generate a tail call to the target function. */
8360 if (! TREE_USED (function
))
8362 assemble_external (function
);
8363 TREE_USED (function
) = 1;
8365 funexp
= XEXP (DECL_RTL (function
), 0);
8366 funexp
= gen_rtx_MEM (FUNCTION_MODE
, funexp
);
8367 insn
= emit_call_insn (gen_sibcall (funexp
, const0_rtx
));
8368 SIBLING_CALL_P (insn
) = 1;
8370 /* Run just enough of rest_of_compilation to get the insns emitted.
8371 There's not really enough bulk here to make other passes such as
8372 instruction scheduling worth while. Note that use_thunk calls
8373 assemble_start_function and assemble_end_function. */
8374 insn
= get_insns ();
8375 insn_locators_initialize ();
8376 shorten_branches (insn
);
8377 final_start_function (insn
, file
, 1);
8378 final (insn
, file
, 1);
8379 final_end_function ();
8381 #endif /* TARGET_ABI_OSF */
8383 /* Debugging support. */
8387 /* Count the number of sdb related labels are generated (to find block
8388 start and end boundaries). */
8390 int sdb_label_count
= 0;
8392 /* Name of the file containing the current function. */
8394 static const char *current_function_file
= "";
8396 /* Offsets to alpha virtual arg/local debugging pointers. */
8398 long alpha_arg_offset
;
8399 long alpha_auto_offset
;
8401 /* Emit a new filename to a stream. */
8404 alpha_output_filename (FILE *stream
, const char *name
)
8406 static int first_time
= TRUE
;
8411 ++num_source_filenames
;
8412 current_function_file
= name
;
8413 fprintf (stream
, "\t.file\t%d ", num_source_filenames
);
8414 output_quoted_string (stream
, name
);
8415 fprintf (stream
, "\n");
8416 if (!TARGET_GAS
&& write_symbols
== DBX_DEBUG
)
8417 fprintf (stream
, "\t#@stabs\n");
8420 else if (write_symbols
== DBX_DEBUG
)
8421 /* dbxout.c will emit an appropriate .stabs directive. */
8424 else if (name
!= current_function_file
8425 && strcmp (name
, current_function_file
) != 0)
8427 if (inside_function
&& ! TARGET_GAS
)
8428 fprintf (stream
, "\t#.file\t%d ", num_source_filenames
);
8431 ++num_source_filenames
;
8432 current_function_file
= name
;
8433 fprintf (stream
, "\t.file\t%d ", num_source_filenames
);
8436 output_quoted_string (stream
, name
);
8437 fprintf (stream
, "\n");
8441 /* Structure to show the current status of registers and memory. */
8443 struct shadow_summary
8446 unsigned int i
: 31; /* Mask of int regs */
8447 unsigned int fp
: 31; /* Mask of fp regs */
8448 unsigned int mem
: 1; /* mem == imem | fpmem */
8452 /* Summary the effects of expression X on the machine. Update SUM, a pointer
8453 to the summary structure. SET is nonzero if the insn is setting the
8454 object, otherwise zero. */
8457 summarize_insn (rtx x
, struct shadow_summary
*sum
, int set
)
8459 const char *format_ptr
;
8465 switch (GET_CODE (x
))
8467 /* ??? Note that this case would be incorrect if the Alpha had a
8468 ZERO_EXTRACT in SET_DEST. */
8470 summarize_insn (SET_SRC (x
), sum
, 0);
8471 summarize_insn (SET_DEST (x
), sum
, 1);
8475 summarize_insn (XEXP (x
, 0), sum
, 1);
8479 summarize_insn (XEXP (x
, 0), sum
, 0);
8483 for (i
= ASM_OPERANDS_INPUT_LENGTH (x
) - 1; i
>= 0; i
--)
8484 summarize_insn (ASM_OPERANDS_INPUT (x
, i
), sum
, 0);
8488 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
8489 summarize_insn (XVECEXP (x
, 0, i
), sum
, 0);
8493 summarize_insn (SUBREG_REG (x
), sum
, 0);
8498 int regno
= REGNO (x
);
8499 unsigned long mask
= ((unsigned long) 1) << (regno
% 32);
8501 if (regno
== 31 || regno
== 63)
8507 sum
->defd
.i
|= mask
;
8509 sum
->defd
.fp
|= mask
;
8514 sum
->used
.i
|= mask
;
8516 sum
->used
.fp
|= mask
;
8527 /* Find the regs used in memory address computation: */
8528 summarize_insn (XEXP (x
, 0), sum
, 0);
8531 case CONST_INT
: case CONST_DOUBLE
:
8532 case SYMBOL_REF
: case LABEL_REF
: case CONST
:
8533 case SCRATCH
: case ASM_INPUT
:
8536 /* Handle common unary and binary ops for efficiency. */
8537 case COMPARE
: case PLUS
: case MINUS
: case MULT
: case DIV
:
8538 case MOD
: case UDIV
: case UMOD
: case AND
: case IOR
:
8539 case XOR
: case ASHIFT
: case ROTATE
: case ASHIFTRT
: case LSHIFTRT
:
8540 case ROTATERT
: case SMIN
: case SMAX
: case UMIN
: case UMAX
:
8541 case NE
: case EQ
: case GE
: case GT
: case LE
:
8542 case LT
: case GEU
: case GTU
: case LEU
: case LTU
:
8543 summarize_insn (XEXP (x
, 0), sum
, 0);
8544 summarize_insn (XEXP (x
, 1), sum
, 0);
8547 case NEG
: case NOT
: case SIGN_EXTEND
: case ZERO_EXTEND
:
8548 case TRUNCATE
: case FLOAT_EXTEND
: case FLOAT_TRUNCATE
: case FLOAT
:
8549 case FIX
: case UNSIGNED_FLOAT
: case UNSIGNED_FIX
: case ABS
:
8550 case SQRT
: case FFS
:
8551 summarize_insn (XEXP (x
, 0), sum
, 0);
8555 format_ptr
= GET_RTX_FORMAT (GET_CODE (x
));
8556 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
8557 switch (format_ptr
[i
])
8560 summarize_insn (XEXP (x
, i
), sum
, 0);
8564 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
8565 summarize_insn (XVECEXP (x
, i
, j
), sum
, 0);
8577 /* Ensure a sufficient number of `trapb' insns are in the code when
8578 the user requests code with a trap precision of functions or
8581 In naive mode, when the user requests a trap-precision of
8582 "instruction", a trapb is needed after every instruction that may
8583 generate a trap. This ensures that the code is resumption safe but
8586 When optimizations are turned on, we delay issuing a trapb as long
8587 as possible. In this context, a trap shadow is the sequence of
8588 instructions that starts with a (potentially) trap generating
8589 instruction and extends to the next trapb or call_pal instruction
8590 (but GCC never generates call_pal by itself). We can delay (and
8591 therefore sometimes omit) a trapb subject to the following
8594 (a) On entry to the trap shadow, if any Alpha register or memory
8595 location contains a value that is used as an operand value by some
8596 instruction in the trap shadow (live on entry), then no instruction
8597 in the trap shadow may modify the register or memory location.
8599 (b) Within the trap shadow, the computation of the base register
8600 for a memory load or store instruction may not involve using the
8601 result of an instruction that might generate an UNPREDICTABLE
8604 (c) Within the trap shadow, no register may be used more than once
8605 as a destination register. (This is to make life easier for the
8608 (d) The trap shadow may not include any branch instructions. */
8611 alpha_handle_trap_shadows (void)
8613 struct shadow_summary shadow
;
8614 int trap_pending
, exception_nesting
;
8618 exception_nesting
= 0;
8621 shadow
.used
.mem
= 0;
8622 shadow
.defd
= shadow
.used
;
8624 for (i
= get_insns (); i
; i
= NEXT_INSN (i
))
8626 if (GET_CODE (i
) == NOTE
)
8628 switch (NOTE_LINE_NUMBER (i
))
8630 case NOTE_INSN_EH_REGION_BEG
:
8631 exception_nesting
++;
8636 case NOTE_INSN_EH_REGION_END
:
8637 exception_nesting
--;
8642 case NOTE_INSN_EPILOGUE_BEG
:
8643 if (trap_pending
&& alpha_tp
>= ALPHA_TP_FUNC
)
8648 else if (trap_pending
)
8650 if (alpha_tp
== ALPHA_TP_FUNC
)
8652 if (GET_CODE (i
) == JUMP_INSN
8653 && GET_CODE (PATTERN (i
)) == RETURN
)
8656 else if (alpha_tp
== ALPHA_TP_INSN
)
8660 struct shadow_summary sum
;
8665 sum
.defd
= sum
.used
;
8667 switch (GET_CODE (i
))
8670 /* Annoyingly, get_attr_trap will die on these. */
8671 if (GET_CODE (PATTERN (i
)) == USE
8672 || GET_CODE (PATTERN (i
)) == CLOBBER
)
8675 summarize_insn (PATTERN (i
), &sum
, 0);
8677 if ((sum
.defd
.i
& shadow
.defd
.i
)
8678 || (sum
.defd
.fp
& shadow
.defd
.fp
))
8680 /* (c) would be violated */
8684 /* Combine shadow with summary of current insn: */
8685 shadow
.used
.i
|= sum
.used
.i
;
8686 shadow
.used
.fp
|= sum
.used
.fp
;
8687 shadow
.used
.mem
|= sum
.used
.mem
;
8688 shadow
.defd
.i
|= sum
.defd
.i
;
8689 shadow
.defd
.fp
|= sum
.defd
.fp
;
8690 shadow
.defd
.mem
|= sum
.defd
.mem
;
8692 if ((sum
.defd
.i
& shadow
.used
.i
)
8693 || (sum
.defd
.fp
& shadow
.used
.fp
)
8694 || (sum
.defd
.mem
& shadow
.used
.mem
))
8696 /* (a) would be violated (also takes care of (b)) */
8697 gcc_assert (get_attr_trap (i
) != TRAP_YES
8698 || (!(sum
.defd
.i
& sum
.used
.i
)
8699 && !(sum
.defd
.fp
& sum
.used
.fp
)));
8717 n
= emit_insn_before (gen_trapb (), i
);
8718 PUT_MODE (n
, TImode
);
8719 PUT_MODE (i
, TImode
);
8723 shadow
.used
.mem
= 0;
8724 shadow
.defd
= shadow
.used
;
8729 if ((exception_nesting
> 0 || alpha_tp
>= ALPHA_TP_FUNC
)
8730 && GET_CODE (i
) == INSN
8731 && GET_CODE (PATTERN (i
)) != USE
8732 && GET_CODE (PATTERN (i
)) != CLOBBER
8733 && get_attr_trap (i
) == TRAP_YES
)
8735 if (optimize
&& !trap_pending
)
8736 summarize_insn (PATTERN (i
), &shadow
, 0);
8742 /* Alpha can only issue instruction groups simultaneously if they are
8743 suitably aligned. This is very processor-specific. */
8744 /* There are a number of entries in alphaev4_insn_pipe and alphaev5_insn_pipe
8745 that are marked "fake". These instructions do not exist on that target,
8746 but it is possible to see these insns with deranged combinations of
8747 command-line options, such as "-mtune=ev4 -mmax". Instead of aborting,
8748 choose a result at random. */
8750 enum alphaev4_pipe
{
8757 enum alphaev5_pipe
{
8768 static enum alphaev4_pipe
8769 alphaev4_insn_pipe (rtx insn
)
8771 if (recog_memoized (insn
) < 0)
8773 if (get_attr_length (insn
) != 4)
8776 switch (get_attr_type (insn
))
8792 case TYPE_MVI
: /* fake */
8807 case TYPE_FSQRT
: /* fake */
8808 case TYPE_FTOI
: /* fake */
8809 case TYPE_ITOF
: /* fake */
8817 static enum alphaev5_pipe
8818 alphaev5_insn_pipe (rtx insn
)
8820 if (recog_memoized (insn
) < 0)
8822 if (get_attr_length (insn
) != 4)
8825 switch (get_attr_type (insn
))
8845 case TYPE_FTOI
: /* fake */
8846 case TYPE_ITOF
: /* fake */
8861 case TYPE_FSQRT
: /* fake */
8872 /* IN_USE is a mask of the slots currently filled within the insn group.
8873 The mask bits come from alphaev4_pipe above. If EV4_IBX is set, then
8874 the insn in EV4_IB0 can be swapped by the hardware into EV4_IB1.
8876 LEN is, of course, the length of the group in bytes. */
8879 alphaev4_next_group (rtx insn
, int *pin_use
, int *plen
)
8886 || GET_CODE (PATTERN (insn
)) == CLOBBER
8887 || GET_CODE (PATTERN (insn
)) == USE
)
8892 enum alphaev4_pipe pipe
;
8894 pipe
= alphaev4_insn_pipe (insn
);
8898 /* Force complex instructions to start new groups. */
8902 /* If this is a completely unrecognized insn, it's an asm.
8903 We don't know how long it is, so record length as -1 to
8904 signal a needed realignment. */
8905 if (recog_memoized (insn
) < 0)
8908 len
= get_attr_length (insn
);
8912 if (in_use
& EV4_IB0
)
8914 if (in_use
& EV4_IB1
)
8919 in_use
|= EV4_IB0
| EV4_IBX
;
8923 if (in_use
& EV4_IB0
)
8925 if (!(in_use
& EV4_IBX
) || (in_use
& EV4_IB1
))
8933 if (in_use
& EV4_IB1
)
8943 /* Haifa doesn't do well scheduling branches. */
8944 if (GET_CODE (insn
) == JUMP_INSN
)
8948 insn
= next_nonnote_insn (insn
);
8950 if (!insn
|| ! INSN_P (insn
))
8953 /* Let Haifa tell us where it thinks insn group boundaries are. */
8954 if (GET_MODE (insn
) == TImode
)
8957 if (GET_CODE (insn
) == CLOBBER
|| GET_CODE (insn
) == USE
)
8962 insn
= next_nonnote_insn (insn
);
8970 /* IN_USE is a mask of the slots currently filled within the insn group.
8971 The mask bits come from alphaev5_pipe above. If EV5_E01 is set, then
8972 the insn in EV5_E0 can be swapped by the hardware into EV5_E1.
8974 LEN is, of course, the length of the group in bytes. */
8977 alphaev5_next_group (rtx insn
, int *pin_use
, int *plen
)
8984 || GET_CODE (PATTERN (insn
)) == CLOBBER
8985 || GET_CODE (PATTERN (insn
)) == USE
)
8990 enum alphaev5_pipe pipe
;
8992 pipe
= alphaev5_insn_pipe (insn
);
8996 /* Force complex instructions to start new groups. */
9000 /* If this is a completely unrecognized insn, it's an asm.
9001 We don't know how long it is, so record length as -1 to
9002 signal a needed realignment. */
9003 if (recog_memoized (insn
) < 0)
9006 len
= get_attr_length (insn
);
9009 /* ??? Most of the places below, we would like to assert never
9010 happen, as it would indicate an error either in Haifa, or
9011 in the scheduling description. Unfortunately, Haifa never
9012 schedules the last instruction of the BB, so we don't have
9013 an accurate TI bit to go off. */
9015 if (in_use
& EV5_E0
)
9017 if (in_use
& EV5_E1
)
9022 in_use
|= EV5_E0
| EV5_E01
;
9026 if (in_use
& EV5_E0
)
9028 if (!(in_use
& EV5_E01
) || (in_use
& EV5_E1
))
9036 if (in_use
& EV5_E1
)
9042 if (in_use
& EV5_FA
)
9044 if (in_use
& EV5_FM
)
9049 in_use
|= EV5_FA
| EV5_FAM
;
9053 if (in_use
& EV5_FA
)
9059 if (in_use
& EV5_FM
)
9072 /* Haifa doesn't do well scheduling branches. */
9073 /* ??? If this is predicted not-taken, slotting continues, except
9074 that no more IBR, FBR, or JSR insns may be slotted. */
9075 if (GET_CODE (insn
) == JUMP_INSN
)
9079 insn
= next_nonnote_insn (insn
);
9081 if (!insn
|| ! INSN_P (insn
))
9084 /* Let Haifa tell us where it thinks insn group boundaries are. */
9085 if (GET_MODE (insn
) == TImode
)
9088 if (GET_CODE (insn
) == CLOBBER
|| GET_CODE (insn
) == USE
)
9093 insn
= next_nonnote_insn (insn
);
9102 alphaev4_next_nop (int *pin_use
)
9104 int in_use
= *pin_use
;
9107 if (!(in_use
& EV4_IB0
))
9112 else if ((in_use
& (EV4_IBX
|EV4_IB1
)) == EV4_IBX
)
9117 else if (TARGET_FP
&& !(in_use
& EV4_IB1
))
9130 alphaev5_next_nop (int *pin_use
)
9132 int in_use
= *pin_use
;
9135 if (!(in_use
& EV5_E1
))
9140 else if (TARGET_FP
&& !(in_use
& EV5_FA
))
9145 else if (TARGET_FP
&& !(in_use
& EV5_FM
))
9157 /* The instruction group alignment main loop. */
9160 alpha_align_insns (unsigned int max_align
,
9161 rtx (*next_group
) (rtx
, int *, int *),
9162 rtx (*next_nop
) (int *))
9164 /* ALIGN is the known alignment for the insn group. */
9166 /* OFS is the offset of the current insn in the insn group. */
9168 int prev_in_use
, in_use
, len
, ldgp
;
9171 /* Let shorten branches care for assigning alignments to code labels. */
9172 shorten_branches (get_insns ());
9174 if (align_functions
< 4)
9176 else if ((unsigned int) align_functions
< max_align
)
9177 align
= align_functions
;
9181 ofs
= prev_in_use
= 0;
9183 if (GET_CODE (i
) == NOTE
)
9184 i
= next_nonnote_insn (i
);
9186 ldgp
= alpha_function_needs_gp
? 8 : 0;
9190 next
= (*next_group
) (i
, &in_use
, &len
);
9192 /* When we see a label, resync alignment etc. */
9193 if (GET_CODE (i
) == CODE_LABEL
)
9195 unsigned int new_align
= 1 << label_to_alignment (i
);
9197 if (new_align
>= align
)
9199 align
= new_align
< max_align
? new_align
: max_align
;
9203 else if (ofs
& (new_align
-1))
9204 ofs
= (ofs
| (new_align
-1)) + 1;
9208 /* Handle complex instructions special. */
9209 else if (in_use
== 0)
9211 /* Asms will have length < 0. This is a signal that we have
9212 lost alignment knowledge. Assume, however, that the asm
9213 will not mis-align instructions. */
9222 /* If the known alignment is smaller than the recognized insn group,
9223 realign the output. */
9224 else if ((int) align
< len
)
9226 unsigned int new_log_align
= len
> 8 ? 4 : 3;
9229 where
= prev
= prev_nonnote_insn (i
);
9230 if (!where
|| GET_CODE (where
) != CODE_LABEL
)
9233 /* Can't realign between a call and its gp reload. */
9234 if (! (TARGET_EXPLICIT_RELOCS
9235 && prev
&& GET_CODE (prev
) == CALL_INSN
))
9237 emit_insn_before (gen_realign (GEN_INT (new_log_align
)), where
);
9238 align
= 1 << new_log_align
;
9243 /* We may not insert padding inside the initial ldgp sequence. */
9247 /* If the group won't fit in the same INT16 as the previous,
9248 we need to add padding to keep the group together. Rather
9249 than simply leaving the insn filling to the assembler, we
9250 can make use of the knowledge of what sorts of instructions
9251 were issued in the previous group to make sure that all of
9252 the added nops are really free. */
9253 else if (ofs
+ len
> (int) align
)
9255 int nop_count
= (align
- ofs
) / 4;
9258 /* Insert nops before labels, branches, and calls to truly merge
9259 the execution of the nops with the previous instruction group. */
9260 where
= prev_nonnote_insn (i
);
9263 if (GET_CODE (where
) == CODE_LABEL
)
9265 rtx where2
= prev_nonnote_insn (where
);
9266 if (where2
&& GET_CODE (where2
) == JUMP_INSN
)
9269 else if (GET_CODE (where
) == INSN
)
9276 emit_insn_before ((*next_nop
)(&prev_in_use
), where
);
9277 while (--nop_count
);
9281 ofs
= (ofs
+ len
) & (align
- 1);
9282 prev_in_use
= in_use
;
9287 /* Machine dependent reorg pass. */
9292 if (alpha_tp
!= ALPHA_TP_PROG
|| flag_exceptions
)
9293 alpha_handle_trap_shadows ();
9295 /* Due to the number of extra trapb insns, don't bother fixing up
9296 alignment when trap precision is instruction. Moreover, we can
9297 only do our job when sched2 is run. */
9298 if (optimize
&& !optimize_size
9299 && alpha_tp
!= ALPHA_TP_INSN
9300 && flag_schedule_insns_after_reload
)
9302 if (alpha_tune
== PROCESSOR_EV4
)
9303 alpha_align_insns (8, alphaev4_next_group
, alphaev4_next_nop
);
9304 else if (alpha_tune
== PROCESSOR_EV5
)
9305 alpha_align_insns (16, alphaev5_next_group
, alphaev5_next_nop
);
9309 #if !TARGET_ABI_UNICOSMK
9316 alpha_file_start (void)
9318 #ifdef OBJECT_FORMAT_ELF
9319 /* If emitting dwarf2 debug information, we cannot generate a .file
9320 directive to start the file, as it will conflict with dwarf2out
9321 file numbers. So it's only useful when emitting mdebug output. */
9322 targetm
.file_start_file_directive
= (write_symbols
== DBX_DEBUG
);
9325 default_file_start ();
9327 fprintf (asm_out_file
, "\t.verstamp %d %d\n", MS_STAMP
, LS_STAMP
);
9330 fputs ("\t.set noreorder\n", asm_out_file
);
9331 fputs ("\t.set volatile\n", asm_out_file
);
9332 if (!TARGET_ABI_OPEN_VMS
)
9333 fputs ("\t.set noat\n", asm_out_file
);
9334 if (TARGET_EXPLICIT_RELOCS
)
9335 fputs ("\t.set nomacro\n", asm_out_file
);
9336 if (TARGET_SUPPORT_ARCH
| TARGET_BWX
| TARGET_MAX
| TARGET_FIX
| TARGET_CIX
)
9340 if (alpha_cpu
== PROCESSOR_EV6
|| TARGET_FIX
|| TARGET_CIX
)
9342 else if (TARGET_MAX
)
9344 else if (TARGET_BWX
)
9346 else if (alpha_cpu
== PROCESSOR_EV5
)
9351 fprintf (asm_out_file
, "\t.arch %s\n", arch
);
9356 #ifdef OBJECT_FORMAT_ELF
9358 /* Return a section for X. The only special thing we do here is to
9359 honor small data. */
9362 alpha_elf_select_rtx_section (enum machine_mode mode
, rtx x
,
9363 unsigned HOST_WIDE_INT align
)
9365 if (TARGET_SMALL_DATA
&& GET_MODE_SIZE (mode
) <= g_switch_value
)
9366 /* ??? Consider using mergeable sdata sections. */
9367 return sdata_section
;
9369 return default_elf_select_rtx_section (mode
, x
, align
);
9372 #endif /* OBJECT_FORMAT_ELF */
9374 /* Structure to collect function names for final output in link section. */
9375 /* Note that items marked with GTY can't be ifdef'ed out. */
9377 enum links_kind
{KIND_UNUSED
, KIND_LOCAL
, KIND_EXTERN
};
9378 enum reloc_kind
{KIND_LINKAGE
, KIND_CODEADDR
};
9380 struct alpha_links
GTY(())
9384 enum links_kind lkind
;
9385 enum reloc_kind rkind
;
9388 struct alpha_funcs
GTY(())
9391 splay_tree
GTY ((param1_is (char *), param2_is (struct alpha_links
*)))
9395 static GTY ((param1_is (char *), param2_is (struct alpha_links
*)))
9396 splay_tree alpha_links_tree
;
9397 static GTY ((param1_is (tree
), param2_is (struct alpha_funcs
*)))
9398 splay_tree alpha_funcs_tree
;
9400 static GTY(()) int alpha_funcs_num
;
9402 #if TARGET_ABI_OPEN_VMS
9404 /* Return the VMS argument type corresponding to MODE. */
9407 alpha_arg_type (enum machine_mode mode
)
9412 return TARGET_FLOAT_VAX
? FF
: FS
;
9414 return TARGET_FLOAT_VAX
? FD
: FT
;
9420 /* Return an rtx for an integer representing the VMS Argument Information
9424 alpha_arg_info_reg_val (CUMULATIVE_ARGS cum
)
9426 unsigned HOST_WIDE_INT regval
= cum
.num_args
;
9429 for (i
= 0; i
< 6; i
++)
9430 regval
|= ((int) cum
.atypes
[i
]) << (i
* 3 + 8);
9432 return GEN_INT (regval
);
9435 /* Make (or fake) .linkage entry for function call.
9437 IS_LOCAL is 0 if name is used in call, 1 if name is used in definition.
9439 Return an SYMBOL_REF rtx for the linkage. */
9442 alpha_need_linkage (const char *name
, int is_local
)
9444 splay_tree_node node
;
9445 struct alpha_links
*al
;
9452 struct alpha_funcs
*cfaf
;
9454 if (!alpha_funcs_tree
)
9455 alpha_funcs_tree
= splay_tree_new_ggc ((splay_tree_compare_fn
)
9456 splay_tree_compare_pointers
);
9458 cfaf
= (struct alpha_funcs
*) ggc_alloc (sizeof (struct alpha_funcs
));
9461 cfaf
->num
= ++alpha_funcs_num
;
9463 splay_tree_insert (alpha_funcs_tree
,
9464 (splay_tree_key
) current_function_decl
,
9465 (splay_tree_value
) cfaf
);
9468 if (alpha_links_tree
)
9470 /* Is this name already defined? */
9472 node
= splay_tree_lookup (alpha_links_tree
, (splay_tree_key
) name
);
9475 al
= (struct alpha_links
*) node
->value
;
9478 /* Defined here but external assumed. */
9479 if (al
->lkind
== KIND_EXTERN
)
9480 al
->lkind
= KIND_LOCAL
;
9484 /* Used here but unused assumed. */
9485 if (al
->lkind
== KIND_UNUSED
)
9486 al
->lkind
= KIND_LOCAL
;
9492 alpha_links_tree
= splay_tree_new_ggc ((splay_tree_compare_fn
) strcmp
);
9494 al
= (struct alpha_links
*) ggc_alloc (sizeof (struct alpha_links
));
9495 name
= ggc_strdup (name
);
9497 /* Assume external if no definition. */
9498 al
->lkind
= (is_local
? KIND_UNUSED
: KIND_EXTERN
);
9500 /* Ensure we have an IDENTIFIER so assemble_name can mark it used. */
9501 get_identifier (name
);
9503 /* Construct a SYMBOL_REF for us to call. */
9505 size_t name_len
= strlen (name
);
9506 char *linksym
= alloca (name_len
+ 6);
9508 memcpy (linksym
+ 1, name
, name_len
);
9509 memcpy (linksym
+ 1 + name_len
, "..lk", 5);
9510 al
->linkage
= gen_rtx_SYMBOL_REF (Pmode
,
9511 ggc_alloc_string (linksym
, name_len
+ 5));
9514 splay_tree_insert (alpha_links_tree
, (splay_tree_key
) name
,
9515 (splay_tree_value
) al
);
9521 alpha_use_linkage (rtx linkage
, tree cfundecl
, int lflag
, int rflag
)
9523 splay_tree_node cfunnode
;
9524 struct alpha_funcs
*cfaf
;
9525 struct alpha_links
*al
;
9526 const char *name
= XSTR (linkage
, 0);
9528 cfaf
= (struct alpha_funcs
*) 0;
9529 al
= (struct alpha_links
*) 0;
9531 cfunnode
= splay_tree_lookup (alpha_funcs_tree
, (splay_tree_key
) cfundecl
);
9532 cfaf
= (struct alpha_funcs
*) cfunnode
->value
;
9536 splay_tree_node lnode
;
9538 /* Is this name already defined? */
9540 lnode
= splay_tree_lookup (cfaf
->links
, (splay_tree_key
) name
);
9542 al
= (struct alpha_links
*) lnode
->value
;
9545 cfaf
->links
= splay_tree_new_ggc ((splay_tree_compare_fn
) strcmp
);
9553 splay_tree_node node
= 0;
9554 struct alpha_links
*anl
;
9559 name_len
= strlen (name
);
9561 al
= (struct alpha_links
*) ggc_alloc (sizeof (struct alpha_links
));
9562 al
->num
= cfaf
->num
;
9564 node
= splay_tree_lookup (alpha_links_tree
, (splay_tree_key
) name
);
9567 anl
= (struct alpha_links
*) node
->value
;
9568 al
->lkind
= anl
->lkind
;
9571 sprintf (buf
, "$%d..%s..lk", cfaf
->num
, name
);
9572 buflen
= strlen (buf
);
9573 linksym
= alloca (buflen
+ 1);
9574 memcpy (linksym
, buf
, buflen
+ 1);
9576 al
->linkage
= gen_rtx_SYMBOL_REF
9577 (Pmode
, ggc_alloc_string (linksym
, buflen
+ 1));
9579 splay_tree_insert (cfaf
->links
, (splay_tree_key
) name
,
9580 (splay_tree_value
) al
);
9584 al
->rkind
= KIND_CODEADDR
;
9586 al
->rkind
= KIND_LINKAGE
;
9589 return gen_rtx_MEM (Pmode
, plus_constant (al
->linkage
, 8));
9595 alpha_write_one_linkage (splay_tree_node node
, void *data
)
9597 const char *const name
= (const char *) node
->key
;
9598 struct alpha_links
*link
= (struct alpha_links
*) node
->value
;
9599 FILE *stream
= (FILE *) data
;
9601 fprintf (stream
, "$%d..%s..lk:\n", link
->num
, name
);
9602 if (link
->rkind
== KIND_CODEADDR
)
9604 if (link
->lkind
== KIND_LOCAL
)
9606 /* Local and used */
9607 fprintf (stream
, "\t.quad %s..en\n", name
);
9611 /* External and used, request code address. */
9612 fprintf (stream
, "\t.code_address %s\n", name
);
9617 if (link
->lkind
== KIND_LOCAL
)
9619 /* Local and used, build linkage pair. */
9620 fprintf (stream
, "\t.quad %s..en\n", name
);
9621 fprintf (stream
, "\t.quad %s\n", name
);
9625 /* External and used, request linkage pair. */
9626 fprintf (stream
, "\t.linkage %s\n", name
);
9634 alpha_write_linkage (FILE *stream
, const char *funname
, tree fundecl
)
9636 splay_tree_node node
;
9637 struct alpha_funcs
*func
;
9639 fprintf (stream
, "\t.link\n");
9640 fprintf (stream
, "\t.align 3\n");
9643 node
= splay_tree_lookup (alpha_funcs_tree
, (splay_tree_key
) fundecl
);
9644 func
= (struct alpha_funcs
*) node
->value
;
9646 fputs ("\t.name ", stream
);
9647 assemble_name (stream
, funname
);
9648 fputs ("..na\n", stream
);
9649 ASM_OUTPUT_LABEL (stream
, funname
);
9650 fprintf (stream
, "\t.pdesc ");
9651 assemble_name (stream
, funname
);
9652 fprintf (stream
, "..en,%s\n",
9653 alpha_procedure_type
== PT_STACK
? "stack"
9654 : alpha_procedure_type
== PT_REGISTER
? "reg" : "null");
9658 splay_tree_foreach (func
->links
, alpha_write_one_linkage
, stream
);
9659 /* splay_tree_delete (func->links); */
9663 /* Given a decl, a section name, and whether the decl initializer
9664 has relocs, choose attributes for the section. */
9666 #define SECTION_VMS_OVERLAY SECTION_FORGET
9667 #define SECTION_VMS_GLOBAL SECTION_MACH_DEP
9668 #define SECTION_VMS_INITIALIZE (SECTION_VMS_GLOBAL << 1)
9671 vms_section_type_flags (tree decl
, const char *name
, int reloc
)
9673 unsigned int flags
= default_section_type_flags (decl
, name
, reloc
);
9675 if (decl
&& DECL_ATTRIBUTES (decl
)
9676 && lookup_attribute ("overlaid", DECL_ATTRIBUTES (decl
)))
9677 flags
|= SECTION_VMS_OVERLAY
;
9678 if (decl
&& DECL_ATTRIBUTES (decl
)
9679 && lookup_attribute ("global", DECL_ATTRIBUTES (decl
)))
9680 flags
|= SECTION_VMS_GLOBAL
;
9681 if (decl
&& DECL_ATTRIBUTES (decl
)
9682 && lookup_attribute ("initialize", DECL_ATTRIBUTES (decl
)))
9683 flags
|= SECTION_VMS_INITIALIZE
;
9688 /* Switch to an arbitrary section NAME with attributes as specified
9689 by FLAGS. ALIGN specifies any known alignment requirements for
9690 the section; 0 if the default should be used. */
9693 vms_asm_named_section (const char *name
, unsigned int flags
,
9694 tree decl ATTRIBUTE_UNUSED
)
9696 fputc ('\n', asm_out_file
);
9697 fprintf (asm_out_file
, ".section\t%s", name
);
9699 if (flags
& SECTION_VMS_OVERLAY
)
9700 fprintf (asm_out_file
, ",OVR");
9701 if (flags
& SECTION_VMS_GLOBAL
)
9702 fprintf (asm_out_file
, ",GBL");
9703 if (flags
& SECTION_VMS_INITIALIZE
)
9704 fprintf (asm_out_file
, ",NOMOD");
9705 if (flags
& SECTION_DEBUG
)
9706 fprintf (asm_out_file
, ",NOWRT");
9708 fputc ('\n', asm_out_file
);
9711 /* Record an element in the table of global constructors. SYMBOL is
9712 a SYMBOL_REF of the function to be called; PRIORITY is a number
9713 between 0 and MAX_INIT_PRIORITY.
9715 Differs from default_ctors_section_asm_out_constructor in that the
9716 width of the .ctors entry is always 64 bits, rather than the 32 bits
9717 used by a normal pointer. */
9720 vms_asm_out_constructor (rtx symbol
, int priority ATTRIBUTE_UNUSED
)
9722 switch_to_section (ctors_section
);
9723 assemble_align (BITS_PER_WORD
);
9724 assemble_integer (symbol
, UNITS_PER_WORD
, BITS_PER_WORD
, 1);
9728 vms_asm_out_destructor (rtx symbol
, int priority ATTRIBUTE_UNUSED
)
9730 switch_to_section (dtors_section
);
9731 assemble_align (BITS_PER_WORD
);
9732 assemble_integer (symbol
, UNITS_PER_WORD
, BITS_PER_WORD
, 1);
9737 alpha_need_linkage (const char *name ATTRIBUTE_UNUSED
,
9738 int is_local ATTRIBUTE_UNUSED
)
9744 alpha_use_linkage (rtx linkage ATTRIBUTE_UNUSED
,
9745 tree cfundecl ATTRIBUTE_UNUSED
,
9746 int lflag ATTRIBUTE_UNUSED
,
9747 int rflag ATTRIBUTE_UNUSED
)
9752 #endif /* TARGET_ABI_OPEN_VMS */
9754 #if TARGET_ABI_UNICOSMK
9756 /* This evaluates to true if we do not know how to pass TYPE solely in
9757 registers. This is the case for all arguments that do not fit in two
9761 unicosmk_must_pass_in_stack (enum machine_mode mode
, tree type
)
9766 if (TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
9768 if (TREE_ADDRESSABLE (type
))
9771 return ALPHA_ARG_SIZE (mode
, type
, 0) > 2;
9774 /* Define the offset between two registers, one to be eliminated, and the
9775 other its replacement, at the start of a routine. */
9778 unicosmk_initial_elimination_offset (int from
, int to
)
9782 fixed_size
= alpha_sa_size();
9783 if (fixed_size
!= 0)
9786 if (from
== FRAME_POINTER_REGNUM
&& to
== HARD_FRAME_POINTER_REGNUM
)
9788 else if (from
== ARG_POINTER_REGNUM
&& to
== HARD_FRAME_POINTER_REGNUM
)
9790 else if (from
== FRAME_POINTER_REGNUM
&& to
== STACK_POINTER_REGNUM
)
9791 return (ALPHA_ROUND (current_function_outgoing_args_size
)
9792 + ALPHA_ROUND (get_frame_size()));
9793 else if (from
== ARG_POINTER_REGNUM
&& to
== STACK_POINTER_REGNUM
)
9794 return (ALPHA_ROUND (fixed_size
)
9795 + ALPHA_ROUND (get_frame_size()
9796 + current_function_outgoing_args_size
));
9801 /* Output the module name for .ident and .end directives. We have to strip
9802 directories and add make sure that the module name starts with a letter
9806 unicosmk_output_module_name (FILE *file
)
9808 const char *name
= lbasename (main_input_filename
);
9809 unsigned len
= strlen (name
);
9810 char *clean_name
= alloca (len
+ 2);
9811 char *ptr
= clean_name
;
9813 /* CAM only accepts module names that start with a letter or '$'. We
9814 prefix the module name with a '$' if necessary. */
9816 if (!ISALPHA (*name
))
9818 memcpy (ptr
, name
, len
+ 1);
9819 clean_symbol_name (clean_name
);
9820 fputs (clean_name
, file
);
9823 /* Output the definition of a common variable. */
9826 unicosmk_output_common (FILE *file
, const char *name
, int size
, int align
)
9829 printf ("T3E__: common %s\n", name
);
9832 fputs("\t.endp\n\n\t.psect ", file
);
9833 assemble_name(file
, name
);
9834 fprintf(file
, ",%d,common\n", floor_log2 (align
/ BITS_PER_UNIT
));
9835 fprintf(file
, "\t.byte\t0:%d\n", size
);
9837 /* Mark the symbol as defined in this module. */
9838 name_tree
= get_identifier (name
);
9839 TREE_ASM_WRITTEN (name_tree
) = 1;
9842 #define SECTION_PUBLIC SECTION_MACH_DEP
9843 #define SECTION_MAIN (SECTION_PUBLIC << 1)
9844 static int current_section_align
;
9846 /* A get_unnamed_section callback for switching to the text section. */
9849 unicosmk_output_text_section_asm_op (const void *data ATTRIBUTE_UNUSED
)
9851 static int count
= 0;
9852 fprintf (asm_out_file
, "\t.endp\n\n\t.psect\tgcc@text___%d,code\n", count
++);
9855 /* A get_unnamed_section callback for switching to the data section. */
9858 unicosmk_output_data_section_asm_op (const void *data ATTRIBUTE_UNUSED
)
9860 static int count
= 1;
9861 fprintf (asm_out_file
, "\t.endp\n\n\t.psect\tgcc@data___%d,data\n", count
++);
9864 /* Implement TARGET_ASM_INIT_SECTIONS.
9866 The Cray assembler is really weird with respect to sections. It has only
9867 named sections and you can't reopen a section once it has been closed.
9868 This means that we have to generate unique names whenever we want to
9869 reenter the text or the data section. */
9872 unicosmk_init_sections (void)
9874 text_section
= get_unnamed_section (SECTION_CODE
,
9875 unicosmk_output_text_section_asm_op
,
9877 data_section
= get_unnamed_section (SECTION_WRITE
,
9878 unicosmk_output_data_section_asm_op
,
9880 readonly_data_section
= data_section
;
9884 unicosmk_section_type_flags (tree decl
, const char *name
,
9885 int reloc ATTRIBUTE_UNUSED
)
9887 unsigned int flags
= default_section_type_flags (decl
, name
, reloc
);
9892 if (TREE_CODE (decl
) == FUNCTION_DECL
)
9894 current_section_align
= floor_log2 (FUNCTION_BOUNDARY
/ BITS_PER_UNIT
);
9895 if (align_functions_log
> current_section_align
)
9896 current_section_align
= align_functions_log
;
9898 if (! strcmp (IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
)), "main"))
9899 flags
|= SECTION_MAIN
;
9902 current_section_align
= floor_log2 (DECL_ALIGN (decl
) / BITS_PER_UNIT
);
9904 if (TREE_PUBLIC (decl
))
9905 flags
|= SECTION_PUBLIC
;
9910 /* Generate a section name for decl and associate it with the
9914 unicosmk_unique_section (tree decl
, int reloc ATTRIBUTE_UNUSED
)
9921 name
= IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl
));
9922 name
= default_strip_name_encoding (name
);
9923 len
= strlen (name
);
9925 if (TREE_CODE (decl
) == FUNCTION_DECL
)
9929 /* It is essential that we prefix the section name here because
9930 otherwise the section names generated for constructors and
9931 destructors confuse collect2. */
9933 string
= alloca (len
+ 6);
9934 sprintf (string
, "code@%s", name
);
9935 DECL_SECTION_NAME (decl
) = build_string (len
+ 5, string
);
9937 else if (TREE_PUBLIC (decl
))
9938 DECL_SECTION_NAME (decl
) = build_string (len
, name
);
9943 string
= alloca (len
+ 6);
9944 sprintf (string
, "data@%s", name
);
9945 DECL_SECTION_NAME (decl
) = build_string (len
+ 5, string
);
9949 /* Switch to an arbitrary section NAME with attributes as specified
9950 by FLAGS. ALIGN specifies any known alignment requirements for
9951 the section; 0 if the default should be used. */
9954 unicosmk_asm_named_section (const char *name
, unsigned int flags
,
9955 tree decl ATTRIBUTE_UNUSED
)
9959 /* Close the previous section. */
9961 fputs ("\t.endp\n\n", asm_out_file
);
9963 /* Find out what kind of section we are opening. */
9965 if (flags
& SECTION_MAIN
)
9966 fputs ("\t.start\tmain\n", asm_out_file
);
9968 if (flags
& SECTION_CODE
)
9970 else if (flags
& SECTION_PUBLIC
)
9975 if (current_section_align
!= 0)
9976 fprintf (asm_out_file
, "\t.psect\t%s,%d,%s\n", name
,
9977 current_section_align
, kind
);
9979 fprintf (asm_out_file
, "\t.psect\t%s,%s\n", name
, kind
);
9983 unicosmk_insert_attributes (tree decl
, tree
*attr_ptr ATTRIBUTE_UNUSED
)
9986 && (TREE_PUBLIC (decl
) || TREE_CODE (decl
) == FUNCTION_DECL
))
9987 unicosmk_unique_section (decl
, 0);
9990 /* Output an alignment directive. We have to use the macro 'gcc@code@align'
9991 in code sections because .align fill unused space with zeroes. */
9994 unicosmk_output_align (FILE *file
, int align
)
9996 if (inside_function
)
9997 fprintf (file
, "\tgcc@code@align\t%d\n", align
);
9999 fprintf (file
, "\t.align\t%d\n", align
);
10002 /* Add a case vector to the current function's list of deferred case
10003 vectors. Case vectors have to be put into a separate section because CAM
10004 does not allow data definitions in code sections. */
10007 unicosmk_defer_case_vector (rtx lab
, rtx vec
)
10009 struct machine_function
*machine
= cfun
->machine
;
10011 vec
= gen_rtx_EXPR_LIST (VOIDmode
, lab
, vec
);
10012 machine
->addr_list
= gen_rtx_EXPR_LIST (VOIDmode
, vec
,
10013 machine
->addr_list
);
10016 /* Output a case vector. */
10019 unicosmk_output_addr_vec (FILE *file
, rtx vec
)
10021 rtx lab
= XEXP (vec
, 0);
10022 rtx body
= XEXP (vec
, 1);
10023 int vlen
= XVECLEN (body
, 0);
10026 (*targetm
.asm_out
.internal_label
) (file
, "L", CODE_LABEL_NUMBER (lab
));
10028 for (idx
= 0; idx
< vlen
; idx
++)
10030 ASM_OUTPUT_ADDR_VEC_ELT
10031 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
10035 /* Output current function's deferred case vectors. */
10038 unicosmk_output_deferred_case_vectors (FILE *file
)
10040 struct machine_function
*machine
= cfun
->machine
;
10043 if (machine
->addr_list
== NULL_RTX
)
10046 switch_to_section (data_section
);
10047 for (t
= machine
->addr_list
; t
; t
= XEXP (t
, 1))
10048 unicosmk_output_addr_vec (file
, XEXP (t
, 0));
10051 /* Generate the name of the SSIB section for the current function. */
10053 #define SSIB_PREFIX "__SSIB_"
10054 #define SSIB_PREFIX_LEN 7
10056 static const char *
10057 unicosmk_ssib_name (void)
10059 /* This is ok since CAM won't be able to deal with names longer than that
10062 static char name
[256];
10065 const char *fnname
;
10068 x
= DECL_RTL (cfun
->decl
);
10069 gcc_assert (GET_CODE (x
) == MEM
);
10071 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
10072 fnname
= XSTR (x
, 0);
10074 len
= strlen (fnname
);
10075 if (len
+ SSIB_PREFIX_LEN
> 255)
10076 len
= 255 - SSIB_PREFIX_LEN
;
10078 strcpy (name
, SSIB_PREFIX
);
10079 strncpy (name
+ SSIB_PREFIX_LEN
, fnname
, len
);
10080 name
[len
+ SSIB_PREFIX_LEN
] = 0;
10085 /* Set up the dynamic subprogram information block (DSIB) and update the
10086 frame pointer register ($15) for subroutines which have a frame. If the
10087 subroutine doesn't have a frame, simply increment $15. */
10090 unicosmk_gen_dsib (unsigned long *imaskP
)
10092 if (alpha_procedure_type
== PT_STACK
)
10094 const char *ssib_name
;
10097 /* Allocate 64 bytes for the DSIB. */
10099 FRP (emit_insn (gen_adddi3 (stack_pointer_rtx
, stack_pointer_rtx
,
10101 emit_insn (gen_blockage ());
10103 /* Save the return address. */
10105 mem
= gen_rtx_MEM (DImode
, plus_constant (stack_pointer_rtx
, 56));
10106 set_mem_alias_set (mem
, alpha_sr_alias_set
);
10107 FRP (emit_move_insn (mem
, gen_rtx_REG (DImode
, REG_RA
)));
10108 (*imaskP
) &= ~(1UL << REG_RA
);
10110 /* Save the old frame pointer. */
10112 mem
= gen_rtx_MEM (DImode
, plus_constant (stack_pointer_rtx
, 48));
10113 set_mem_alias_set (mem
, alpha_sr_alias_set
);
10114 FRP (emit_move_insn (mem
, hard_frame_pointer_rtx
));
10115 (*imaskP
) &= ~(1UL << HARD_FRAME_POINTER_REGNUM
);
10117 emit_insn (gen_blockage ());
10119 /* Store the SSIB pointer. */
10121 ssib_name
= ggc_strdup (unicosmk_ssib_name ());
10122 mem
= gen_rtx_MEM (DImode
, plus_constant (stack_pointer_rtx
, 32));
10123 set_mem_alias_set (mem
, alpha_sr_alias_set
);
10125 FRP (emit_move_insn (gen_rtx_REG (DImode
, 5),
10126 gen_rtx_SYMBOL_REF (Pmode
, ssib_name
)));
10127 FRP (emit_move_insn (mem
, gen_rtx_REG (DImode
, 5)));
10129 /* Save the CIW index. */
10131 mem
= gen_rtx_MEM (DImode
, plus_constant (stack_pointer_rtx
, 24));
10132 set_mem_alias_set (mem
, alpha_sr_alias_set
);
10133 FRP (emit_move_insn (mem
, gen_rtx_REG (DImode
, 25)));
10135 emit_insn (gen_blockage ());
10137 /* Set the new frame pointer. */
10139 FRP (emit_insn (gen_adddi3 (hard_frame_pointer_rtx
,
10140 stack_pointer_rtx
, GEN_INT (64))));
10145 /* Increment the frame pointer register to indicate that we do not
10148 FRP (emit_insn (gen_adddi3 (hard_frame_pointer_rtx
,
10149 hard_frame_pointer_rtx
, const1_rtx
)));
10153 /* Output the static subroutine information block for the current
10157 unicosmk_output_ssib (FILE *file
, const char *fnname
)
10163 struct machine_function
*machine
= cfun
->machine
;
10166 fprintf (file
, "\t.endp\n\n\t.psect\t%s%s,data\n", user_label_prefix
,
10167 unicosmk_ssib_name ());
10169 /* Some required stuff and the function name length. */
10171 len
= strlen (fnname
);
10172 fprintf (file
, "\t.quad\t^X20008%2.2X28\n", len
);
10175 ??? We don't do that yet. */
10177 fputs ("\t.quad\t0\n", file
);
10179 /* Function address. */
10181 fputs ("\t.quad\t", file
);
10182 assemble_name (file
, fnname
);
10185 fputs ("\t.quad\t0\n", file
);
10186 fputs ("\t.quad\t0\n", file
);
10189 ??? We do it the same way Cray CC does it but this could be
10192 for( i
= 0; i
< len
; i
++ )
10193 fprintf (file
, "\t.byte\t%d\n", (int)(fnname
[i
]));
10194 if( (len
% 8) == 0 )
10195 fputs ("\t.quad\t0\n", file
);
10197 fprintf (file
, "\t.bits\t%d : 0\n", (8 - (len
% 8))*8);
10199 /* All call information words used in the function. */
10201 for (x
= machine
->first_ciw
; x
; x
= XEXP (x
, 1))
10204 #if HOST_BITS_PER_WIDE_INT == 32
10205 fprintf (file
, "\t.quad\t" HOST_WIDE_INT_PRINT_DOUBLE_HEX
"\n",
10206 CONST_DOUBLE_HIGH (ciw
), CONST_DOUBLE_LOW (ciw
));
10208 fprintf (file
, "\t.quad\t" HOST_WIDE_INT_PRINT_HEX
"\n", INTVAL (ciw
));
10213 /* Add a call information word (CIW) to the list of the current function's
10214 CIWs and return its index.
10216 X is a CONST_INT or CONST_DOUBLE representing the CIW. */
10219 unicosmk_add_call_info_word (rtx x
)
10222 struct machine_function
*machine
= cfun
->machine
;
10224 node
= gen_rtx_EXPR_LIST (VOIDmode
, x
, NULL_RTX
);
10225 if (machine
->first_ciw
== NULL_RTX
)
10226 machine
->first_ciw
= node
;
10228 XEXP (machine
->last_ciw
, 1) = node
;
10230 machine
->last_ciw
= node
;
10231 ++machine
->ciw_count
;
10233 return GEN_INT (machine
->ciw_count
10234 + strlen (current_function_name ())/8 + 5);
10237 /* The Cray assembler doesn't accept extern declarations for symbols which
10238 are defined in the same file. We have to keep track of all global
10239 symbols which are referenced and/or defined in a source file and output
10240 extern declarations for those which are referenced but not defined at
10241 the end of file. */
10243 /* List of identifiers for which an extern declaration might have to be
10245 /* FIXME: needs to use GC, so it can be saved and restored for PCH. */
10247 struct unicosmk_extern_list
10249 struct unicosmk_extern_list
*next
;
10253 static struct unicosmk_extern_list
*unicosmk_extern_head
= 0;
10255 /* Output extern declarations which are required for every asm file. */
10258 unicosmk_output_default_externs (FILE *file
)
10260 static const char *const externs
[] =
10261 { "__T3E_MISMATCH" };
10266 n
= ARRAY_SIZE (externs
);
10268 for (i
= 0; i
< n
; i
++)
10269 fprintf (file
, "\t.extern\t%s\n", externs
[i
]);
10272 /* Output extern declarations for global symbols which are have been
10273 referenced but not defined. */
10276 unicosmk_output_externs (FILE *file
)
10278 struct unicosmk_extern_list
*p
;
10279 const char *real_name
;
10283 len
= strlen (user_label_prefix
);
10284 for (p
= unicosmk_extern_head
; p
!= 0; p
= p
->next
)
10286 /* We have to strip the encoding and possibly remove user_label_prefix
10287 from the identifier in order to handle -fleading-underscore and
10288 explicit asm names correctly (cf. gcc.dg/asm-names-1.c). */
10289 real_name
= default_strip_name_encoding (p
->name
);
10290 if (len
&& p
->name
[0] == '*'
10291 && !memcmp (real_name
, user_label_prefix
, len
))
10294 name_tree
= get_identifier (real_name
);
10295 if (! TREE_ASM_WRITTEN (name_tree
))
10297 TREE_ASM_WRITTEN (name_tree
) = 1;
10298 fputs ("\t.extern\t", file
);
10299 assemble_name (file
, p
->name
);
10305 /* Record an extern. */
10308 unicosmk_add_extern (const char *name
)
10310 struct unicosmk_extern_list
*p
;
10312 p
= (struct unicosmk_extern_list
*)
10313 xmalloc (sizeof (struct unicosmk_extern_list
));
10314 p
->next
= unicosmk_extern_head
;
10316 unicosmk_extern_head
= p
;
10319 /* The Cray assembler generates incorrect code if identifiers which
10320 conflict with register names are used as instruction operands. We have
10321 to replace such identifiers with DEX expressions. */
10323 /* Structure to collect identifiers which have been replaced by DEX
10325 /* FIXME: needs to use GC, so it can be saved and restored for PCH. */
10327 struct unicosmk_dex
{
10328 struct unicosmk_dex
*next
;
10332 /* List of identifiers which have been replaced by DEX expressions. The DEX
10333 number is determined by the position in the list. */
10335 static struct unicosmk_dex
*unicosmk_dex_list
= NULL
;
10337 /* The number of elements in the DEX list. */
10339 static int unicosmk_dex_count
= 0;
10341 /* Check if NAME must be replaced by a DEX expression. */
10344 unicosmk_special_name (const char *name
)
10346 if (name
[0] == '*')
10349 if (name
[0] == '$')
10352 if (name
[0] != 'r' && name
[0] != 'f' && name
[0] != 'R' && name
[0] != 'F')
10357 case '1': case '2':
10358 return (name
[2] == '\0' || (ISDIGIT (name
[2]) && name
[3] == '\0'));
10361 return (name
[2] == '\0'
10362 || ((name
[2] == '0' || name
[2] == '1') && name
[3] == '\0'));
10365 return (ISDIGIT (name
[1]) && name
[2] == '\0');
10369 /* Return the DEX number if X must be replaced by a DEX expression and 0
10373 unicosmk_need_dex (rtx x
)
10375 struct unicosmk_dex
*dex
;
10379 if (GET_CODE (x
) != SYMBOL_REF
)
10383 if (! unicosmk_special_name (name
))
10386 i
= unicosmk_dex_count
;
10387 for (dex
= unicosmk_dex_list
; dex
; dex
= dex
->next
)
10389 if (! strcmp (name
, dex
->name
))
10394 dex
= (struct unicosmk_dex
*) xmalloc (sizeof (struct unicosmk_dex
));
10396 dex
->next
= unicosmk_dex_list
;
10397 unicosmk_dex_list
= dex
;
10399 ++unicosmk_dex_count
;
10400 return unicosmk_dex_count
;
10403 /* Output the DEX definitions for this file. */
10406 unicosmk_output_dex (FILE *file
)
10408 struct unicosmk_dex
*dex
;
10411 if (unicosmk_dex_list
== NULL
)
10414 fprintf (file
, "\t.dexstart\n");
10416 i
= unicosmk_dex_count
;
10417 for (dex
= unicosmk_dex_list
; dex
; dex
= dex
->next
)
10419 fprintf (file
, "\tDEX (%d) = ", i
);
10420 assemble_name (file
, dex
->name
);
10425 fprintf (file
, "\t.dexend\n");
10428 /* Output text that to appear at the beginning of an assembler file. */
10431 unicosmk_file_start (void)
10435 fputs ("\t.ident\t", asm_out_file
);
10436 unicosmk_output_module_name (asm_out_file
);
10437 fputs ("\n\n", asm_out_file
);
10439 /* The Unicos/Mk assembler uses different register names. Instead of trying
10440 to support them, we simply use micro definitions. */
10442 /* CAM has different register names: rN for the integer register N and fN
10443 for the floating-point register N. Instead of trying to use these in
10444 alpha.md, we define the symbols $N and $fN to refer to the appropriate
10447 for (i
= 0; i
< 32; ++i
)
10448 fprintf (asm_out_file
, "$%d <- r%d\n", i
, i
);
10450 for (i
= 0; i
< 32; ++i
)
10451 fprintf (asm_out_file
, "$f%d <- f%d\n", i
, i
);
10453 putc ('\n', asm_out_file
);
10455 /* The .align directive fill unused space with zeroes which does not work
10456 in code sections. We define the macro 'gcc@code@align' which uses nops
10457 instead. Note that it assumes that code sections always have the
10458 biggest possible alignment since . refers to the current offset from
10459 the beginning of the section. */
10461 fputs ("\t.macro gcc@code@align n\n", asm_out_file
);
10462 fputs ("gcc@n@bytes = 1 << n\n", asm_out_file
);
10463 fputs ("gcc@here = . % gcc@n@bytes\n", asm_out_file
);
10464 fputs ("\t.if ne, gcc@here, 0\n", asm_out_file
);
10465 fputs ("\t.repeat (gcc@n@bytes - gcc@here) / 4\n", asm_out_file
);
10466 fputs ("\tbis r31,r31,r31\n", asm_out_file
);
10467 fputs ("\t.endr\n", asm_out_file
);
10468 fputs ("\t.endif\n", asm_out_file
);
10469 fputs ("\t.endm gcc@code@align\n\n", asm_out_file
);
10471 /* Output extern declarations which should always be visible. */
10472 unicosmk_output_default_externs (asm_out_file
);
10474 /* Open a dummy section. We always need to be inside a section for the
10475 section-switching code to work correctly.
10476 ??? This should be a module id or something like that. I still have to
10477 figure out what the rules for those are. */
10478 fputs ("\n\t.psect\t$SG00000,data\n", asm_out_file
);
10481 /* Output text to appear at the end of an assembler file. This includes all
10482 pending extern declarations and DEX expressions. */
10485 unicosmk_file_end (void)
10487 fputs ("\t.endp\n\n", asm_out_file
);
10489 /* Output all pending externs. */
10491 unicosmk_output_externs (asm_out_file
);
10493 /* Output dex definitions used for functions whose names conflict with
10496 unicosmk_output_dex (asm_out_file
);
10498 fputs ("\t.end\t", asm_out_file
);
10499 unicosmk_output_module_name (asm_out_file
);
10500 putc ('\n', asm_out_file
);
10506 unicosmk_output_deferred_case_vectors (FILE *file ATTRIBUTE_UNUSED
)
10510 unicosmk_gen_dsib (unsigned long *imaskP ATTRIBUTE_UNUSED
)
10514 unicosmk_output_ssib (FILE * file ATTRIBUTE_UNUSED
,
10515 const char * fnname ATTRIBUTE_UNUSED
)
10519 unicosmk_add_call_info_word (rtx x ATTRIBUTE_UNUSED
)
10525 unicosmk_need_dex (rtx x ATTRIBUTE_UNUSED
)
10530 #endif /* TARGET_ABI_UNICOSMK */
10533 alpha_init_libfuncs (void)
10535 if (TARGET_ABI_UNICOSMK
)
10537 /* Prevent gcc from generating calls to __divsi3. */
10538 set_optab_libfunc (sdiv_optab
, SImode
, 0);
10539 set_optab_libfunc (udiv_optab
, SImode
, 0);
10541 /* Use the functions provided by the system library
10542 for DImode integer division. */
10543 set_optab_libfunc (sdiv_optab
, DImode
, "$sldiv");
10544 set_optab_libfunc (udiv_optab
, DImode
, "$uldiv");
10546 else if (TARGET_ABI_OPEN_VMS
)
10548 /* Use the VMS runtime library functions for division and
10550 set_optab_libfunc (sdiv_optab
, SImode
, "OTS$DIV_I");
10551 set_optab_libfunc (sdiv_optab
, DImode
, "OTS$DIV_L");
10552 set_optab_libfunc (udiv_optab
, SImode
, "OTS$DIV_UI");
10553 set_optab_libfunc (udiv_optab
, DImode
, "OTS$DIV_UL");
10554 set_optab_libfunc (smod_optab
, SImode
, "OTS$REM_I");
10555 set_optab_libfunc (smod_optab
, DImode
, "OTS$REM_L");
10556 set_optab_libfunc (umod_optab
, SImode
, "OTS$REM_UI");
10557 set_optab_libfunc (umod_optab
, DImode
, "OTS$REM_UL");
10562 /* Initialize the GCC target structure. */
10563 #if TARGET_ABI_OPEN_VMS
10564 # undef TARGET_ATTRIBUTE_TABLE
10565 # define TARGET_ATTRIBUTE_TABLE vms_attribute_table
10566 # undef TARGET_SECTION_TYPE_FLAGS
10567 # define TARGET_SECTION_TYPE_FLAGS vms_section_type_flags
10570 #undef TARGET_IN_SMALL_DATA_P
10571 #define TARGET_IN_SMALL_DATA_P alpha_in_small_data_p
10573 #if TARGET_ABI_UNICOSMK
10574 # undef TARGET_INSERT_ATTRIBUTES
10575 # define TARGET_INSERT_ATTRIBUTES unicosmk_insert_attributes
10576 # undef TARGET_SECTION_TYPE_FLAGS
10577 # define TARGET_SECTION_TYPE_FLAGS unicosmk_section_type_flags
10578 # undef TARGET_ASM_UNIQUE_SECTION
10579 # define TARGET_ASM_UNIQUE_SECTION unicosmk_unique_section
10580 #undef TARGET_ASM_FUNCTION_RODATA_SECTION
10581 #define TARGET_ASM_FUNCTION_RODATA_SECTION default_no_function_rodata_section
10582 # undef TARGET_ASM_GLOBALIZE_LABEL
10583 # define TARGET_ASM_GLOBALIZE_LABEL hook_void_FILEptr_constcharptr
10584 # undef TARGET_MUST_PASS_IN_STACK
10585 # define TARGET_MUST_PASS_IN_STACK unicosmk_must_pass_in_stack
10588 #undef TARGET_ASM_ALIGNED_HI_OP
10589 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
10590 #undef TARGET_ASM_ALIGNED_DI_OP
10591 #define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
10593 /* Default unaligned ops are provided for ELF systems. To get unaligned
10594 data for non-ELF systems, we have to turn off auto alignment. */
10595 #ifndef OBJECT_FORMAT_ELF
10596 #undef TARGET_ASM_UNALIGNED_HI_OP
10597 #define TARGET_ASM_UNALIGNED_HI_OP "\t.align 0\n\t.word\t"
10598 #undef TARGET_ASM_UNALIGNED_SI_OP
10599 #define TARGET_ASM_UNALIGNED_SI_OP "\t.align 0\n\t.long\t"
10600 #undef TARGET_ASM_UNALIGNED_DI_OP
10601 #define TARGET_ASM_UNALIGNED_DI_OP "\t.align 0\n\t.quad\t"
10604 #ifdef OBJECT_FORMAT_ELF
10605 #undef TARGET_ASM_SELECT_RTX_SECTION
10606 #define TARGET_ASM_SELECT_RTX_SECTION alpha_elf_select_rtx_section
10609 #undef TARGET_ASM_FUNCTION_END_PROLOGUE
10610 #define TARGET_ASM_FUNCTION_END_PROLOGUE alpha_output_function_end_prologue
10612 #undef TARGET_INIT_LIBFUNCS
10613 #define TARGET_INIT_LIBFUNCS alpha_init_libfuncs
10615 #if TARGET_ABI_UNICOSMK
10616 #undef TARGET_ASM_FILE_START
10617 #define TARGET_ASM_FILE_START unicosmk_file_start
10618 #undef TARGET_ASM_FILE_END
10619 #define TARGET_ASM_FILE_END unicosmk_file_end
10621 #undef TARGET_ASM_FILE_START
10622 #define TARGET_ASM_FILE_START alpha_file_start
10623 #undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
10624 #define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
10627 #undef TARGET_SCHED_ADJUST_COST
10628 #define TARGET_SCHED_ADJUST_COST alpha_adjust_cost
10629 #undef TARGET_SCHED_ISSUE_RATE
10630 #define TARGET_SCHED_ISSUE_RATE alpha_issue_rate
10631 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
10632 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
10633 alpha_multipass_dfa_lookahead
10635 #undef TARGET_HAVE_TLS
10636 #define TARGET_HAVE_TLS HAVE_AS_TLS
10638 #undef TARGET_INIT_BUILTINS
10639 #define TARGET_INIT_BUILTINS alpha_init_builtins
10640 #undef TARGET_EXPAND_BUILTIN
10641 #define TARGET_EXPAND_BUILTIN alpha_expand_builtin
10642 #undef TARGET_FOLD_BUILTIN
10643 #define TARGET_FOLD_BUILTIN alpha_fold_builtin
10645 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
10646 #define TARGET_FUNCTION_OK_FOR_SIBCALL alpha_function_ok_for_sibcall
10647 #undef TARGET_CANNOT_COPY_INSN_P
10648 #define TARGET_CANNOT_COPY_INSN_P alpha_cannot_copy_insn_p
10649 #undef TARGET_CANNOT_FORCE_CONST_MEM
10650 #define TARGET_CANNOT_FORCE_CONST_MEM alpha_cannot_force_const_mem
10653 #undef TARGET_ASM_OUTPUT_MI_THUNK
10654 #define TARGET_ASM_OUTPUT_MI_THUNK alpha_output_mi_thunk_osf
10655 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
10656 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_tree_hwi_hwi_tree_true
10657 #undef TARGET_STDARG_OPTIMIZE_HOOK
10658 #define TARGET_STDARG_OPTIMIZE_HOOK alpha_stdarg_optimize_hook
10661 #undef TARGET_RTX_COSTS
10662 #define TARGET_RTX_COSTS alpha_rtx_costs
10663 #undef TARGET_ADDRESS_COST
10664 #define TARGET_ADDRESS_COST hook_int_rtx_0
10666 #undef TARGET_MACHINE_DEPENDENT_REORG
10667 #define TARGET_MACHINE_DEPENDENT_REORG alpha_reorg
10669 #undef TARGET_PROMOTE_FUNCTION_ARGS
10670 #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
10671 #undef TARGET_PROMOTE_FUNCTION_RETURN
10672 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
10673 #undef TARGET_PROMOTE_PROTOTYPES
10674 #define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_false
10675 #undef TARGET_RETURN_IN_MEMORY
10676 #define TARGET_RETURN_IN_MEMORY alpha_return_in_memory
10677 #undef TARGET_PASS_BY_REFERENCE
10678 #define TARGET_PASS_BY_REFERENCE alpha_pass_by_reference
10679 #undef TARGET_SETUP_INCOMING_VARARGS
10680 #define TARGET_SETUP_INCOMING_VARARGS alpha_setup_incoming_varargs
10681 #undef TARGET_STRICT_ARGUMENT_NAMING
10682 #define TARGET_STRICT_ARGUMENT_NAMING hook_bool_CUMULATIVE_ARGS_true
10683 #undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
10684 #define TARGET_PRETEND_OUTGOING_VARARGS_NAMED hook_bool_CUMULATIVE_ARGS_true
10685 #undef TARGET_SPLIT_COMPLEX_ARG
10686 #define TARGET_SPLIT_COMPLEX_ARG alpha_split_complex_arg
10687 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
10688 #define TARGET_GIMPLIFY_VA_ARG_EXPR alpha_gimplify_va_arg
10689 #undef TARGET_ARG_PARTIAL_BYTES
10690 #define TARGET_ARG_PARTIAL_BYTES alpha_arg_partial_bytes
10692 #undef TARGET_SCALAR_MODE_SUPPORTED_P
10693 #define TARGET_SCALAR_MODE_SUPPORTED_P alpha_scalar_mode_supported_p
10694 #undef TARGET_VECTOR_MODE_SUPPORTED_P
10695 #define TARGET_VECTOR_MODE_SUPPORTED_P alpha_vector_mode_supported_p
10697 #undef TARGET_BUILD_BUILTIN_VA_LIST
10698 #define TARGET_BUILD_BUILTIN_VA_LIST alpha_build_builtin_va_list
10700 /* The Alpha architecture does not require sequential consistency. See
10701 http://www.cs.umd.edu/~pugh/java/memoryModel/AlphaReordering.html
10702 for an example of how it can be violated in practice. */
10703 #undef TARGET_RELAXED_ORDERING
10704 #define TARGET_RELAXED_ORDERING true
10706 #undef TARGET_DEFAULT_TARGET_FLAGS
10707 #define TARGET_DEFAULT_TARGET_FLAGS \
10708 (TARGET_DEFAULT | TARGET_CPU_DEFAULT | TARGET_DEFAULT_EXPLICIT_RELOCS)
10709 #undef TARGET_HANDLE_OPTION
10710 #define TARGET_HANDLE_OPTION alpha_handle_option
10712 struct gcc_target targetm
= TARGET_INITIALIZER
;
10715 #include "gt-alpha.h"