2005-12-29 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / ada / i-vxwork-x86.ads
blob360c6fce710834a2219d0b2cf4b4fa5010dbb28c
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- I N T E R F A C E S . V X W O R K S --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1999-2005, AdaCore --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNARL; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNARL was developed by the GNARL team at Florida State University. --
30 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 -- This is the x86 VxWorks version of this package
36 -- This package provides a limited binding to the VxWorks API
37 -- In particular, it interfaces with the VxWorks hardware interrupt
38 -- facilities, allowing the use of low-latency direct-vectored
39 -- interrupt handlers. Note that such handlers have a variety of
40 -- restrictions regarding system calls and language constructs. In particular,
41 -- the use of exception handlers and functions returning variable-length
42 -- objects cannot be used. Less restrictive, but higher-latency handlers can
43 -- be written using Ada protected procedures, Ada 83 style interrupt entries,
44 -- or by signalling an Ada task from within an interrupt handler using a
45 -- binary semaphore as described in the VxWorks Programmer's Manual.
47 -- For complete documentation of the operations in this package, please
48 -- consult the VxWorks Programmer's Manual and VxWorks Reference Manual.
50 with System.VxWorks;
52 package Interfaces.VxWorks is
53 pragma Preelaborate;
55 ------------------------------------------------------------------------
56 -- Here is a complete example that shows how to handle the Interrupt 0x33
57 -- with a direct-vectored interrupt handler in Ada using this package:
59 -- with Interfaces.VxWorks; use Interfaces.VxWorks;
60 -- with System;
62 -- package P is
64 -- Count : Integer;
65 -- pragma Atomic (Count);
67 -- procedure Handler (Parameter : System.Address);
69 -- end P;
71 -- package body P is
73 -- procedure Handler (Parameter : System.Address) is
74 -- begin
75 -- Count := Count + 1;
76 -- logMsg ("received an interrupt" & ASCII.LF & ASCII.Nul);
77 -- end Handler;
78 -- end P;
80 -- with Interfaces.VxWorks; use Interfaces.VxWorks;
81 -- with Ada.Text_IO; use Ada.Text_IO;
82 -- with Ada.Interrupts;
83 -- with Machine_Code; use Machine_Code;
85 -- with P; use P;
86 -- procedure Useint is
87 -- -- Be sure to use a reasonable interrupt number for the target
88 -- -- board!
89 -- -- This one is an unreserved interrupt for the Pentium 3 BSP
90 -- Interrupt : constant := 16#33#;
92 -- task T;
94 -- S : STATUS;
96 -- task body T is
97 -- begin
98 -- loop
99 -- Put_Line ("Generating an interrupt...");
100 -- delay 1.0;
102 -- -- Generate interrupt, using interrupt number
103 -- Asm ("int %0",
104 -- Inputs =>
105 -- Ada.Interrupts.Interrupt_ID'Asm_Input
106 -- ("i", Interrupt));
107 -- end loop;
108 -- end T;
110 -- begin
111 -- S := intConnect (INUM_TO_IVEC (Interrupt), Handler'Access);
113 -- loop
114 -- delay 2.0;
115 -- Put_Line ("value of count:" & P.Count'Img);
116 -- end loop;
117 -- end Useint;
118 -------------------------------------
120 subtype int is Integer;
122 type STATUS is new int;
123 -- Equivalent of the C type STATUS
125 OK : constant STATUS := 0;
126 ERROR : constant STATUS := -1;
128 type VOIDFUNCPTR is access procedure (parameter : System.Address);
129 type Interrupt_Vector is new System.Address;
130 type Exception_Vector is new System.Address;
132 function intConnect
133 (vector : Interrupt_Vector;
134 handler : VOIDFUNCPTR;
135 parameter : System.Address := System.Null_Address) return STATUS;
136 -- Binding to the C routine intConnect. Use this to set up an
137 -- user handler. The routine generates a wrapper around the user
138 -- handler to save and restore context
140 function intContext return int;
141 -- Binding to the C routine intContext. This function returns 1 only
142 -- if the current execution state is in interrupt context.
144 function intVecGet
145 (Vector : Interrupt_Vector) return VOIDFUNCPTR;
146 -- Binding to the C routine intVecGet. Use this to get the
147 -- existing handler for later restoral
149 procedure intVecSet
150 (Vector : Interrupt_Vector;
151 Handler : VOIDFUNCPTR);
152 -- Binding to the C routine intVecSet. Use this to restore a
153 -- handler obtained using intVecGet
155 procedure intVecGet2
156 (vector : Interrupt_Vector;
157 pFunction : out VOIDFUNCPTR;
158 pIdtGate : access int;
159 pIdtSelector : access int);
160 -- Binding to the C routine intVecGet2. Use this to get the
161 -- existing handler for later restoral
163 procedure intVecSet2
164 (vector : Interrupt_Vector;
165 pFunction : VOIDFUNCPTR;
166 pIdtGate : access int;
167 pIdtSelector : access int);
168 -- Binding to the C routine intVecSet2. Use this to restore a
169 -- handler obtained using intVecGet2
171 function INUM_TO_IVEC (intNum : int) return Interrupt_Vector;
172 -- Equivalent to the C macro INUM_TO_IVEC used to convert an interrupt
173 -- number to an interrupt vector
175 procedure logMsg
176 (fmt : String; arg1, arg2, arg3, arg4, arg5, arg6 : int := 0);
177 -- Binding to the C routine logMsg. Note that it is the caller's
178 -- responsibility to ensure that fmt is a null-terminated string
179 -- (e.g logMsg ("Interrupt" & ASCII.NUL))
181 type FP_CONTEXT is private;
182 -- Floating point context save and restore. Handlers using floating
183 -- point must be bracketed with these calls. The pFpContext parameter
184 -- should be an object of type FP_CONTEXT that is
185 -- declared local to the handler.
186 -- See the VxWorks Intel Architecture Supplement regarding
187 -- these routines.
189 procedure fppRestore (pFpContext : in out FP_CONTEXT);
190 -- Restore floating point context - old style
192 procedure fppSave (pFpContext : in out FP_CONTEXT);
193 -- Save floating point context - old style
195 procedure fppXrestore (pFpContext : in out FP_CONTEXT);
196 -- Restore floating point context - new style
198 procedure fppXsave (pFpContext : in out FP_CONTEXT);
199 -- Save floating point context - new style
201 private
203 type FP_CONTEXT is new System.VxWorks.FP_CONTEXT;
204 -- Target-dependent floating point context type
206 pragma Import (C, intConnect, "intConnect");
207 pragma Import (C, intContext, "intContext");
208 pragma Import (C, intVecGet, "intVecGet");
209 pragma Import (C, intVecSet, "intVecSet");
210 pragma Import (C, intVecGet2, "intVecGet2");
211 pragma Import (C, intVecSet2, "intVecSet2");
212 pragma Import (C, INUM_TO_IVEC, "__gnat_inum_to_ivec");
213 pragma Import (C, logMsg, "logMsg");
214 pragma Import (C, fppRestore, "fppRestore");
215 pragma Import (C, fppSave, "fppSave");
216 pragma Import (C, fppXrestore, "fppXrestore");
217 pragma Import (C, fppXsave, "fppXsave");
218 end Interfaces.VxWorks;