[AArch64] Use new target pass registration framework for FMA steering pass
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blob3f3b88cfc61386b660349b4d3681337a349124cc
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "insn-codes.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "optabs-tree.h"
32 #include "insn-config.h"
33 #include "gimple-pretty-print.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "cfganal.h"
37 #include "gimplify.h"
38 #include "gimple-iterator.h"
39 #include "gimplify-me.h"
40 #include "tree-cfg.h"
41 #include "tree-dfa.h"
42 #include "domwalk.h"
43 #include "cfgloop.h"
44 #include "tree-data-ref.h"
45 #include "tree-scalar-evolution.h"
46 #include "tree-inline.h"
47 #include "params.h"
49 static unsigned int tree_ssa_phiopt_worker (bool, bool);
50 static bool conditional_replacement (basic_block, basic_block,
51 edge, edge, gphi *, tree, tree);
52 static gphi *factor_out_conditional_conversion (edge, edge, gphi *, tree, tree);
53 static int value_replacement (basic_block, basic_block,
54 edge, edge, gimple *, tree, tree);
55 static bool minmax_replacement (basic_block, basic_block,
56 edge, edge, gimple *, tree, tree);
57 static bool abs_replacement (basic_block, basic_block,
58 edge, edge, gimple *, tree, tree);
59 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
60 hash_set<tree> *);
61 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
62 static hash_set<tree> * get_non_trapping ();
63 static void replace_phi_edge_with_variable (basic_block, edge, gimple *, tree);
64 static void hoist_adjacent_loads (basic_block, basic_block,
65 basic_block, basic_block);
66 static bool gate_hoist_loads (void);
68 /* This pass tries to transform conditional stores into unconditional
69 ones, enabling further simplifications with the simpler then and else
70 blocks. In particular it replaces this:
72 bb0:
73 if (cond) goto bb2; else goto bb1;
74 bb1:
75 *p = RHS;
76 bb2:
78 with
80 bb0:
81 if (cond) goto bb1; else goto bb2;
82 bb1:
83 condtmp' = *p;
84 bb2:
85 condtmp = PHI <RHS, condtmp'>
86 *p = condtmp;
88 This transformation can only be done under several constraints,
89 documented below. It also replaces:
91 bb0:
92 if (cond) goto bb2; else goto bb1;
93 bb1:
94 *p = RHS1;
95 goto bb3;
96 bb2:
97 *p = RHS2;
98 bb3:
100 with
102 bb0:
103 if (cond) goto bb3; else goto bb1;
104 bb1:
105 bb3:
106 condtmp = PHI <RHS1, RHS2>
107 *p = condtmp; */
109 static unsigned int
110 tree_ssa_cs_elim (void)
112 unsigned todo;
113 /* ??? We are not interested in loop related info, but the following
114 will create it, ICEing as we didn't init loops with pre-headers.
115 An interfacing issue of find_data_references_in_bb. */
116 loop_optimizer_init (LOOPS_NORMAL);
117 scev_initialize ();
118 todo = tree_ssa_phiopt_worker (true, false);
119 scev_finalize ();
120 loop_optimizer_finalize ();
121 return todo;
124 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
126 static gphi *
127 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
129 gimple_stmt_iterator i;
130 gphi *phi = NULL;
131 if (gimple_seq_singleton_p (seq))
132 return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
133 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
135 gphi *p = as_a <gphi *> (gsi_stmt (i));
136 /* If the PHI arguments are equal then we can skip this PHI. */
137 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
138 gimple_phi_arg_def (p, e1->dest_idx)))
139 continue;
141 /* If we already have a PHI that has the two edge arguments are
142 different, then return it is not a singleton for these PHIs. */
143 if (phi)
144 return NULL;
146 phi = p;
148 return phi;
151 /* The core routine of conditional store replacement and normal
152 phi optimizations. Both share much of the infrastructure in how
153 to match applicable basic block patterns. DO_STORE_ELIM is true
154 when we want to do conditional store replacement, false otherwise.
155 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
156 of diamond control flow patterns, false otherwise. */
157 static unsigned int
158 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
160 basic_block bb;
161 basic_block *bb_order;
162 unsigned n, i;
163 bool cfgchanged = false;
164 hash_set<tree> *nontrap = 0;
166 if (do_store_elim)
167 /* Calculate the set of non-trapping memory accesses. */
168 nontrap = get_non_trapping ();
170 /* Search every basic block for COND_EXPR we may be able to optimize.
172 We walk the blocks in order that guarantees that a block with
173 a single predecessor is processed before the predecessor.
174 This ensures that we collapse inner ifs before visiting the
175 outer ones, and also that we do not try to visit a removed
176 block. */
177 bb_order = single_pred_before_succ_order ();
178 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
180 for (i = 0; i < n; i++)
182 gimple *cond_stmt;
183 gphi *phi;
184 basic_block bb1, bb2;
185 edge e1, e2;
186 tree arg0, arg1;
188 bb = bb_order[i];
190 cond_stmt = last_stmt (bb);
191 /* Check to see if the last statement is a GIMPLE_COND. */
192 if (!cond_stmt
193 || gimple_code (cond_stmt) != GIMPLE_COND)
194 continue;
196 e1 = EDGE_SUCC (bb, 0);
197 bb1 = e1->dest;
198 e2 = EDGE_SUCC (bb, 1);
199 bb2 = e2->dest;
201 /* We cannot do the optimization on abnormal edges. */
202 if ((e1->flags & EDGE_ABNORMAL) != 0
203 || (e2->flags & EDGE_ABNORMAL) != 0)
204 continue;
206 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
207 if (EDGE_COUNT (bb1->succs) == 0
208 || bb2 == NULL
209 || EDGE_COUNT (bb2->succs) == 0)
210 continue;
212 /* Find the bb which is the fall through to the other. */
213 if (EDGE_SUCC (bb1, 0)->dest == bb2)
215 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
217 std::swap (bb1, bb2);
218 std::swap (e1, e2);
220 else if (do_store_elim
221 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
223 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
225 if (!single_succ_p (bb1)
226 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
227 || !single_succ_p (bb2)
228 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
229 || EDGE_COUNT (bb3->preds) != 2)
230 continue;
231 if (cond_if_else_store_replacement (bb1, bb2, bb3))
232 cfgchanged = true;
233 continue;
235 else if (do_hoist_loads
236 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
238 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
240 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
241 && single_succ_p (bb1)
242 && single_succ_p (bb2)
243 && single_pred_p (bb1)
244 && single_pred_p (bb2)
245 && EDGE_COUNT (bb->succs) == 2
246 && EDGE_COUNT (bb3->preds) == 2
247 /* If one edge or the other is dominant, a conditional move
248 is likely to perform worse than the well-predicted branch. */
249 && !predictable_edge_p (EDGE_SUCC (bb, 0))
250 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
251 hoist_adjacent_loads (bb, bb1, bb2, bb3);
252 continue;
254 else
255 continue;
257 e1 = EDGE_SUCC (bb1, 0);
259 /* Make sure that bb1 is just a fall through. */
260 if (!single_succ_p (bb1)
261 || (e1->flags & EDGE_FALLTHRU) == 0)
262 continue;
264 /* Also make sure that bb1 only have one predecessor and that it
265 is bb. */
266 if (!single_pred_p (bb1)
267 || single_pred (bb1) != bb)
268 continue;
270 if (do_store_elim)
272 /* bb1 is the middle block, bb2 the join block, bb the split block,
273 e1 the fallthrough edge from bb1 to bb2. We can't do the
274 optimization if the join block has more than two predecessors. */
275 if (EDGE_COUNT (bb2->preds) > 2)
276 continue;
277 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
278 cfgchanged = true;
280 else
282 gimple_seq phis = phi_nodes (bb2);
283 gimple_stmt_iterator gsi;
284 bool candorest = true;
286 /* Value replacement can work with more than one PHI
287 so try that first. */
288 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
290 phi = as_a <gphi *> (gsi_stmt (gsi));
291 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
292 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
293 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
295 candorest = false;
296 cfgchanged = true;
297 break;
301 if (!candorest)
302 continue;
304 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
305 if (!phi)
306 continue;
308 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
309 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
311 /* Something is wrong if we cannot find the arguments in the PHI
312 node. */
313 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
315 gphi *newphi = factor_out_conditional_conversion (e1, e2, phi,
316 arg0, arg1);
317 if (newphi != NULL)
319 phi = newphi;
320 /* factor_out_conditional_conversion may create a new PHI in
321 BB2 and eliminate an existing PHI in BB2. Recompute values
322 that may be affected by that change. */
323 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
324 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
325 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
328 /* Do the replacement of conditional if it can be done. */
329 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
330 cfgchanged = true;
331 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
332 cfgchanged = true;
333 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
334 cfgchanged = true;
338 free (bb_order);
340 if (do_store_elim)
341 delete nontrap;
342 /* If the CFG has changed, we should cleanup the CFG. */
343 if (cfgchanged && do_store_elim)
345 /* In cond-store replacement we have added some loads on edges
346 and new VOPS (as we moved the store, and created a load). */
347 gsi_commit_edge_inserts ();
348 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
350 else if (cfgchanged)
351 return TODO_cleanup_cfg;
352 return 0;
355 /* Replace PHI node element whose edge is E in block BB with variable NEW.
356 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
357 is known to have two edges, one of which must reach BB). */
359 static void
360 replace_phi_edge_with_variable (basic_block cond_block,
361 edge e, gimple *phi, tree new_tree)
363 basic_block bb = gimple_bb (phi);
364 basic_block block_to_remove;
365 gimple_stmt_iterator gsi;
367 /* Change the PHI argument to new. */
368 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
370 /* Remove the empty basic block. */
371 if (EDGE_SUCC (cond_block, 0)->dest == bb)
373 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
374 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
375 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
376 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
378 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
380 else
382 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
383 EDGE_SUCC (cond_block, 1)->flags
384 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
385 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
386 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
388 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
390 delete_basic_block (block_to_remove);
392 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
393 gsi = gsi_last_bb (cond_block);
394 gsi_remove (&gsi, true);
396 if (dump_file && (dump_flags & TDF_DETAILS))
397 fprintf (dump_file,
398 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
399 cond_block->index,
400 bb->index);
403 /* PR66726: Factor conversion out of COND_EXPR. If the arguments of the PHI
404 stmt are CONVERT_STMT, factor out the conversion and perform the conversion
405 to the result of PHI stmt. Return the newly-created PHI, if any. */
407 static gphi *
408 factor_out_conditional_conversion (edge e0, edge e1, gphi *phi,
409 tree arg0, tree arg1)
411 gimple *arg0_def_stmt = NULL, *arg1_def_stmt = NULL, *new_stmt;
412 tree new_arg0 = NULL_TREE, new_arg1 = NULL_TREE;
413 tree temp, result;
414 gphi *newphi;
415 gimple_stmt_iterator gsi, gsi_for_def;
416 source_location locus = gimple_location (phi);
417 enum tree_code convert_code;
419 /* Handle only PHI statements with two arguments. TODO: If all
420 other arguments to PHI are INTEGER_CST or if their defining
421 statement have the same unary operation, we can handle more
422 than two arguments too. */
423 if (gimple_phi_num_args (phi) != 2)
424 return NULL;
426 /* First canonicalize to simplify tests. */
427 if (TREE_CODE (arg0) != SSA_NAME)
429 std::swap (arg0, arg1);
430 std::swap (e0, e1);
433 if (TREE_CODE (arg0) != SSA_NAME
434 || (TREE_CODE (arg1) != SSA_NAME
435 && TREE_CODE (arg1) != INTEGER_CST))
436 return NULL;
438 /* Check if arg0 is an SSA_NAME and the stmt which defines arg0 is
439 a conversion. */
440 arg0_def_stmt = SSA_NAME_DEF_STMT (arg0);
441 if (!gimple_assign_cast_p (arg0_def_stmt))
442 return NULL;
444 /* Use the RHS as new_arg0. */
445 convert_code = gimple_assign_rhs_code (arg0_def_stmt);
446 new_arg0 = gimple_assign_rhs1 (arg0_def_stmt);
447 if (convert_code == VIEW_CONVERT_EXPR)
449 new_arg0 = TREE_OPERAND (new_arg0, 0);
450 if (!is_gimple_reg_type (TREE_TYPE (new_arg0)))
451 return NULL;
454 if (TREE_CODE (arg1) == SSA_NAME)
456 /* Check if arg1 is an SSA_NAME and the stmt which defines arg1
457 is a conversion. */
458 arg1_def_stmt = SSA_NAME_DEF_STMT (arg1);
459 if (!is_gimple_assign (arg1_def_stmt)
460 || gimple_assign_rhs_code (arg1_def_stmt) != convert_code)
461 return NULL;
463 /* Use the RHS as new_arg1. */
464 new_arg1 = gimple_assign_rhs1 (arg1_def_stmt);
465 if (convert_code == VIEW_CONVERT_EXPR)
466 new_arg1 = TREE_OPERAND (new_arg1, 0);
468 else
470 /* If arg1 is an INTEGER_CST, fold it to new type. */
471 if (INTEGRAL_TYPE_P (TREE_TYPE (new_arg0))
472 && int_fits_type_p (arg1, TREE_TYPE (new_arg0)))
474 if (gimple_assign_cast_p (arg0_def_stmt))
475 new_arg1 = fold_convert (TREE_TYPE (new_arg0), arg1);
476 else
477 return NULL;
479 else
480 return NULL;
483 /* If arg0/arg1 have > 1 use, then this transformation actually increases
484 the number of expressions evaluated at runtime. */
485 if (!has_single_use (arg0)
486 || (arg1_def_stmt && !has_single_use (arg1)))
487 return NULL;
489 /* If types of new_arg0 and new_arg1 are different bailout. */
490 if (!types_compatible_p (TREE_TYPE (new_arg0), TREE_TYPE (new_arg1)))
491 return NULL;
493 /* Create a new PHI stmt. */
494 result = PHI_RESULT (phi);
495 temp = make_ssa_name (TREE_TYPE (new_arg0), NULL);
496 newphi = create_phi_node (temp, gimple_bb (phi));
498 if (dump_file && (dump_flags & TDF_DETAILS))
500 fprintf (dump_file, "PHI ");
501 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
502 fprintf (dump_file,
503 " changed to factor conversion out from COND_EXPR.\n");
504 fprintf (dump_file, "New stmt with CAST that defines ");
505 print_generic_expr (dump_file, result, 0);
506 fprintf (dump_file, ".\n");
509 /* Remove the old cast(s) that has single use. */
510 gsi_for_def = gsi_for_stmt (arg0_def_stmt);
511 gsi_remove (&gsi_for_def, true);
512 release_defs (arg0_def_stmt);
514 if (arg1_def_stmt)
516 gsi_for_def = gsi_for_stmt (arg1_def_stmt);
517 gsi_remove (&gsi_for_def, true);
518 release_defs (arg1_def_stmt);
521 add_phi_arg (newphi, new_arg0, e0, locus);
522 add_phi_arg (newphi, new_arg1, e1, locus);
524 /* Create the conversion stmt and insert it. */
525 if (convert_code == VIEW_CONVERT_EXPR)
526 temp = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (result), temp);
527 new_stmt = gimple_build_assign (result, convert_code, temp);
528 gsi = gsi_after_labels (gimple_bb (phi));
529 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
531 /* Remove the original PHI stmt. */
532 gsi = gsi_for_stmt (phi);
533 gsi_remove (&gsi, true);
534 return newphi;
537 /* The function conditional_replacement does the main work of doing the
538 conditional replacement. Return true if the replacement is done.
539 Otherwise return false.
540 BB is the basic block where the replacement is going to be done on. ARG0
541 is argument 0 from PHI. Likewise for ARG1. */
543 static bool
544 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
545 edge e0, edge e1, gphi *phi,
546 tree arg0, tree arg1)
548 tree result;
549 gimple *stmt;
550 gassign *new_stmt;
551 tree cond;
552 gimple_stmt_iterator gsi;
553 edge true_edge, false_edge;
554 tree new_var, new_var2;
555 bool neg;
557 /* FIXME: Gimplification of complex type is too hard for now. */
558 /* We aren't prepared to handle vectors either (and it is a question
559 if it would be worthwhile anyway). */
560 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
561 || POINTER_TYPE_P (TREE_TYPE (arg0)))
562 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
563 || POINTER_TYPE_P (TREE_TYPE (arg1))))
564 return false;
566 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
567 convert it to the conditional. */
568 if ((integer_zerop (arg0) && integer_onep (arg1))
569 || (integer_zerop (arg1) && integer_onep (arg0)))
570 neg = false;
571 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
572 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
573 neg = true;
574 else
575 return false;
577 if (!empty_block_p (middle_bb))
578 return false;
580 /* At this point we know we have a GIMPLE_COND with two successors.
581 One successor is BB, the other successor is an empty block which
582 falls through into BB.
584 There is a single PHI node at the join point (BB) and its arguments
585 are constants (0, 1) or (0, -1).
587 So, given the condition COND, and the two PHI arguments, we can
588 rewrite this PHI into non-branching code:
590 dest = (COND) or dest = COND'
592 We use the condition as-is if the argument associated with the
593 true edge has the value one or the argument associated with the
594 false edge as the value zero. Note that those conditions are not
595 the same since only one of the outgoing edges from the GIMPLE_COND
596 will directly reach BB and thus be associated with an argument. */
598 stmt = last_stmt (cond_bb);
599 result = PHI_RESULT (phi);
601 /* To handle special cases like floating point comparison, it is easier and
602 less error-prone to build a tree and gimplify it on the fly though it is
603 less efficient. */
604 cond = fold_build2_loc (gimple_location (stmt),
605 gimple_cond_code (stmt), boolean_type_node,
606 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
608 /* We need to know which is the true edge and which is the false
609 edge so that we know when to invert the condition below. */
610 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
611 if ((e0 == true_edge && integer_zerop (arg0))
612 || (e0 == false_edge && !integer_zerop (arg0))
613 || (e1 == true_edge && integer_zerop (arg1))
614 || (e1 == false_edge && !integer_zerop (arg1)))
615 cond = fold_build1_loc (gimple_location (stmt),
616 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
618 if (neg)
620 cond = fold_convert_loc (gimple_location (stmt),
621 TREE_TYPE (result), cond);
622 cond = fold_build1_loc (gimple_location (stmt),
623 NEGATE_EXPR, TREE_TYPE (cond), cond);
626 /* Insert our new statements at the end of conditional block before the
627 COND_STMT. */
628 gsi = gsi_for_stmt (stmt);
629 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
630 GSI_SAME_STMT);
632 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
634 source_location locus_0, locus_1;
636 new_var2 = make_ssa_name (TREE_TYPE (result));
637 new_stmt = gimple_build_assign (new_var2, CONVERT_EXPR, new_var);
638 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
639 new_var = new_var2;
641 /* Set the locus to the first argument, unless is doesn't have one. */
642 locus_0 = gimple_phi_arg_location (phi, 0);
643 locus_1 = gimple_phi_arg_location (phi, 1);
644 if (locus_0 == UNKNOWN_LOCATION)
645 locus_0 = locus_1;
646 gimple_set_location (new_stmt, locus_0);
649 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
650 reset_flow_sensitive_info_in_bb (cond_bb);
652 /* Note that we optimized this PHI. */
653 return true;
656 /* Update *ARG which is defined in STMT so that it contains the
657 computed value if that seems profitable. Return true if the
658 statement is made dead by that rewriting. */
660 static bool
661 jump_function_from_stmt (tree *arg, gimple *stmt)
663 enum tree_code code = gimple_assign_rhs_code (stmt);
664 if (code == ADDR_EXPR)
666 /* For arg = &p->i transform it to p, if possible. */
667 tree rhs1 = gimple_assign_rhs1 (stmt);
668 HOST_WIDE_INT offset;
669 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
670 &offset);
671 if (tem
672 && TREE_CODE (tem) == MEM_REF
673 && (mem_ref_offset (tem) + offset) == 0)
675 *arg = TREE_OPERAND (tem, 0);
676 return true;
679 /* TODO: Much like IPA-CP jump-functions we want to handle constant
680 additions symbolically here, and we'd need to update the comparison
681 code that compares the arg + cst tuples in our caller. For now the
682 code above exactly handles the VEC_BASE pattern from vec.h. */
683 return false;
686 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
687 of the form SSA_NAME NE 0.
689 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
690 the two input values of the EQ_EXPR match arg0 and arg1.
692 If so update *code and return TRUE. Otherwise return FALSE. */
694 static bool
695 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
696 enum tree_code *code, const_tree rhs)
698 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
699 statement. */
700 if (TREE_CODE (rhs) == SSA_NAME)
702 gimple *def1 = SSA_NAME_DEF_STMT (rhs);
704 /* Verify the defining statement has an EQ_EXPR on the RHS. */
705 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
707 /* Finally verify the source operands of the EQ_EXPR are equal
708 to arg0 and arg1. */
709 tree op0 = gimple_assign_rhs1 (def1);
710 tree op1 = gimple_assign_rhs2 (def1);
711 if ((operand_equal_for_phi_arg_p (arg0, op0)
712 && operand_equal_for_phi_arg_p (arg1, op1))
713 || (operand_equal_for_phi_arg_p (arg0, op1)
714 && operand_equal_for_phi_arg_p (arg1, op0)))
716 /* We will perform the optimization. */
717 *code = gimple_assign_rhs_code (def1);
718 return true;
722 return false;
725 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
727 Also return TRUE if arg0/arg1 are equal to the source arguments of a
728 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
730 Return FALSE otherwise. */
732 static bool
733 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
734 enum tree_code *code, gimple *cond)
736 gimple *def;
737 tree lhs = gimple_cond_lhs (cond);
738 tree rhs = gimple_cond_rhs (cond);
740 if ((operand_equal_for_phi_arg_p (arg0, lhs)
741 && operand_equal_for_phi_arg_p (arg1, rhs))
742 || (operand_equal_for_phi_arg_p (arg1, lhs)
743 && operand_equal_for_phi_arg_p (arg0, rhs)))
744 return true;
746 /* Now handle more complex case where we have an EQ comparison
747 which feeds a BIT_AND_EXPR which feeds COND.
749 First verify that COND is of the form SSA_NAME NE 0. */
750 if (*code != NE_EXPR || !integer_zerop (rhs)
751 || TREE_CODE (lhs) != SSA_NAME)
752 return false;
754 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
755 def = SSA_NAME_DEF_STMT (lhs);
756 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
757 return false;
759 /* Now verify arg0/arg1 correspond to the source arguments of an
760 EQ comparison feeding the BIT_AND_EXPR. */
762 tree tmp = gimple_assign_rhs1 (def);
763 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
764 return true;
766 tmp = gimple_assign_rhs2 (def);
767 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
768 return true;
770 return false;
773 /* Returns true if ARG is a neutral element for operation CODE
774 on the RIGHT side. */
776 static bool
777 neutral_element_p (tree_code code, tree arg, bool right)
779 switch (code)
781 case PLUS_EXPR:
782 case BIT_IOR_EXPR:
783 case BIT_XOR_EXPR:
784 return integer_zerop (arg);
786 case LROTATE_EXPR:
787 case RROTATE_EXPR:
788 case LSHIFT_EXPR:
789 case RSHIFT_EXPR:
790 case MINUS_EXPR:
791 case POINTER_PLUS_EXPR:
792 return right && integer_zerop (arg);
794 case MULT_EXPR:
795 return integer_onep (arg);
797 case TRUNC_DIV_EXPR:
798 case CEIL_DIV_EXPR:
799 case FLOOR_DIV_EXPR:
800 case ROUND_DIV_EXPR:
801 case EXACT_DIV_EXPR:
802 return right && integer_onep (arg);
804 case BIT_AND_EXPR:
805 return integer_all_onesp (arg);
807 default:
808 return false;
812 /* Returns true if ARG is an absorbing element for operation CODE. */
814 static bool
815 absorbing_element_p (tree_code code, tree arg, bool right, tree rval)
817 switch (code)
819 case BIT_IOR_EXPR:
820 return integer_all_onesp (arg);
822 case MULT_EXPR:
823 case BIT_AND_EXPR:
824 return integer_zerop (arg);
826 case LSHIFT_EXPR:
827 case RSHIFT_EXPR:
828 case LROTATE_EXPR:
829 case RROTATE_EXPR:
830 return !right && integer_zerop (arg);
832 case TRUNC_DIV_EXPR:
833 case CEIL_DIV_EXPR:
834 case FLOOR_DIV_EXPR:
835 case ROUND_DIV_EXPR:
836 case EXACT_DIV_EXPR:
837 case TRUNC_MOD_EXPR:
838 case CEIL_MOD_EXPR:
839 case FLOOR_MOD_EXPR:
840 case ROUND_MOD_EXPR:
841 return (!right
842 && integer_zerop (arg)
843 && tree_single_nonzero_warnv_p (rval, NULL));
845 default:
846 return false;
850 /* The function value_replacement does the main work of doing the value
851 replacement. Return non-zero if the replacement is done. Otherwise return
852 0. If we remove the middle basic block, return 2.
853 BB is the basic block where the replacement is going to be done on. ARG0
854 is argument 0 from the PHI. Likewise for ARG1. */
856 static int
857 value_replacement (basic_block cond_bb, basic_block middle_bb,
858 edge e0, edge e1, gimple *phi,
859 tree arg0, tree arg1)
861 gimple_stmt_iterator gsi;
862 gimple *cond;
863 edge true_edge, false_edge;
864 enum tree_code code;
865 bool emtpy_or_with_defined_p = true;
867 /* If the type says honor signed zeros we cannot do this
868 optimization. */
869 if (HONOR_SIGNED_ZEROS (arg1))
870 return 0;
872 /* If there is a statement in MIDDLE_BB that defines one of the PHI
873 arguments, then adjust arg0 or arg1. */
874 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
875 while (!gsi_end_p (gsi))
877 gimple *stmt = gsi_stmt (gsi);
878 tree lhs;
879 gsi_next_nondebug (&gsi);
880 if (!is_gimple_assign (stmt))
882 emtpy_or_with_defined_p = false;
883 continue;
885 /* Now try to adjust arg0 or arg1 according to the computation
886 in the statement. */
887 lhs = gimple_assign_lhs (stmt);
888 if (!(lhs == arg0
889 && jump_function_from_stmt (&arg0, stmt))
890 || (lhs == arg1
891 && jump_function_from_stmt (&arg1, stmt)))
892 emtpy_or_with_defined_p = false;
895 cond = last_stmt (cond_bb);
896 code = gimple_cond_code (cond);
898 /* This transformation is only valid for equality comparisons. */
899 if (code != NE_EXPR && code != EQ_EXPR)
900 return 0;
902 /* We need to know which is the true edge and which is the false
903 edge so that we know if have abs or negative abs. */
904 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
906 /* At this point we know we have a COND_EXPR with two successors.
907 One successor is BB, the other successor is an empty block which
908 falls through into BB.
910 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
912 There is a single PHI node at the join point (BB) with two arguments.
914 We now need to verify that the two arguments in the PHI node match
915 the two arguments to the equality comparison. */
917 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
919 edge e;
920 tree arg;
922 /* For NE_EXPR, we want to build an assignment result = arg where
923 arg is the PHI argument associated with the true edge. For
924 EQ_EXPR we want the PHI argument associated with the false edge. */
925 e = (code == NE_EXPR ? true_edge : false_edge);
927 /* Unfortunately, E may not reach BB (it may instead have gone to
928 OTHER_BLOCK). If that is the case, then we want the single outgoing
929 edge from OTHER_BLOCK which reaches BB and represents the desired
930 path from COND_BLOCK. */
931 if (e->dest == middle_bb)
932 e = single_succ_edge (e->dest);
934 /* Now we know the incoming edge to BB that has the argument for the
935 RHS of our new assignment statement. */
936 if (e0 == e)
937 arg = arg0;
938 else
939 arg = arg1;
941 /* If the middle basic block was empty or is defining the
942 PHI arguments and this is a single phi where the args are different
943 for the edges e0 and e1 then we can remove the middle basic block. */
944 if (emtpy_or_with_defined_p
945 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
946 e0, e1) == phi)
948 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
949 /* Note that we optimized this PHI. */
950 return 2;
952 else
954 /* Replace the PHI arguments with arg. */
955 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
956 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
957 if (dump_file && (dump_flags & TDF_DETAILS))
959 fprintf (dump_file, "PHI ");
960 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
961 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
962 cond_bb->index);
963 print_generic_expr (dump_file, arg, 0);
964 fprintf (dump_file, ".\n");
966 return 1;
971 /* Now optimize (x != 0) ? x + y : y to just y.
972 The following condition is too restrictive, there can easily be another
973 stmt in middle_bb, for instance a CONVERT_EXPR for the second argument. */
974 gimple *assign = last_and_only_stmt (middle_bb);
975 if (!assign || gimple_code (assign) != GIMPLE_ASSIGN
976 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
977 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
978 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
979 return 0;
981 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
982 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
983 return 0;
985 /* Only transform if it removes the condition. */
986 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
987 return 0;
989 /* Size-wise, this is always profitable. */
990 if (optimize_bb_for_speed_p (cond_bb)
991 /* The special case is useless if it has a low probability. */
992 && profile_status_for_fn (cfun) != PROFILE_ABSENT
993 && EDGE_PRED (middle_bb, 0)->probability < PROB_EVEN
994 /* If assign is cheap, there is no point avoiding it. */
995 && estimate_num_insns (assign, &eni_time_weights)
996 >= 3 * estimate_num_insns (cond, &eni_time_weights))
997 return 0;
999 tree lhs = gimple_assign_lhs (assign);
1000 tree rhs1 = gimple_assign_rhs1 (assign);
1001 tree rhs2 = gimple_assign_rhs2 (assign);
1002 enum tree_code code_def = gimple_assign_rhs_code (assign);
1003 tree cond_lhs = gimple_cond_lhs (cond);
1004 tree cond_rhs = gimple_cond_rhs (cond);
1006 if (((code == NE_EXPR && e1 == false_edge)
1007 || (code == EQ_EXPR && e1 == true_edge))
1008 && arg0 == lhs
1009 && ((arg1 == rhs1
1010 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1011 && neutral_element_p (code_def, cond_rhs, true))
1012 || (arg1 == rhs2
1013 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1014 && neutral_element_p (code_def, cond_rhs, false))
1015 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
1016 && ((operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1017 && absorbing_element_p (code_def, cond_rhs, true, rhs2))
1018 || (operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1019 && absorbing_element_p (code_def,
1020 cond_rhs, false, rhs2))))))
1022 gsi = gsi_for_stmt (cond);
1023 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
1025 /* Moving ASSIGN might change VR of lhs, e.g. when moving u_6
1026 def-stmt in:
1027 if (n_5 != 0)
1028 goto <bb 3>;
1029 else
1030 goto <bb 4>;
1032 <bb 3>:
1033 # RANGE [0, 4294967294]
1034 u_6 = n_5 + 4294967295;
1036 <bb 4>:
1037 # u_3 = PHI <u_6(3), 4294967295(2)> */
1038 SSA_NAME_RANGE_INFO (lhs) = NULL;
1039 /* If available, we can use VR of phi result at least. */
1040 tree phires = gimple_phi_result (phi);
1041 struct range_info_def *phires_range_info
1042 = SSA_NAME_RANGE_INFO (phires);
1043 if (phires_range_info)
1044 duplicate_ssa_name_range_info (lhs, SSA_NAME_RANGE_TYPE (phires),
1045 phires_range_info);
1047 gimple_stmt_iterator gsi_from = gsi_for_stmt (assign);
1048 gsi_move_before (&gsi_from, &gsi);
1049 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
1050 return 2;
1053 return 0;
1056 /* The function minmax_replacement does the main work of doing the minmax
1057 replacement. Return true if the replacement is done. Otherwise return
1058 false.
1059 BB is the basic block where the replacement is going to be done on. ARG0
1060 is argument 0 from the PHI. Likewise for ARG1. */
1062 static bool
1063 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
1064 edge e0, edge e1, gimple *phi,
1065 tree arg0, tree arg1)
1067 tree result, type;
1068 gcond *cond;
1069 gassign *new_stmt;
1070 edge true_edge, false_edge;
1071 enum tree_code cmp, minmax, ass_code;
1072 tree smaller, alt_smaller, larger, alt_larger, arg_true, arg_false;
1073 gimple_stmt_iterator gsi, gsi_from;
1075 type = TREE_TYPE (PHI_RESULT (phi));
1077 /* The optimization may be unsafe due to NaNs. */
1078 if (HONOR_NANS (type) || HONOR_SIGNED_ZEROS (type))
1079 return false;
1081 cond = as_a <gcond *> (last_stmt (cond_bb));
1082 cmp = gimple_cond_code (cond);
1084 /* This transformation is only valid for order comparisons. Record which
1085 operand is smaller/larger if the result of the comparison is true. */
1086 alt_smaller = NULL_TREE;
1087 alt_larger = NULL_TREE;
1088 if (cmp == LT_EXPR || cmp == LE_EXPR)
1090 smaller = gimple_cond_lhs (cond);
1091 larger = gimple_cond_rhs (cond);
1092 /* If we have smaller < CST it is equivalent to smaller <= CST-1.
1093 Likewise smaller <= CST is equivalent to smaller < CST+1. */
1094 if (TREE_CODE (larger) == INTEGER_CST)
1096 if (cmp == LT_EXPR)
1098 bool overflow;
1099 wide_int alt = wi::sub (larger, 1, TYPE_SIGN (TREE_TYPE (larger)),
1100 &overflow);
1101 if (! overflow)
1102 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1104 else
1106 bool overflow;
1107 wide_int alt = wi::add (larger, 1, TYPE_SIGN (TREE_TYPE (larger)),
1108 &overflow);
1109 if (! overflow)
1110 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1114 else if (cmp == GT_EXPR || cmp == GE_EXPR)
1116 smaller = gimple_cond_rhs (cond);
1117 larger = gimple_cond_lhs (cond);
1118 /* If we have larger > CST it is equivalent to larger >= CST+1.
1119 Likewise larger >= CST is equivalent to larger > CST-1. */
1120 if (TREE_CODE (smaller) == INTEGER_CST)
1122 if (cmp == GT_EXPR)
1124 bool overflow;
1125 wide_int alt = wi::add (smaller, 1, TYPE_SIGN (TREE_TYPE (smaller)),
1126 &overflow);
1127 if (! overflow)
1128 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1130 else
1132 bool overflow;
1133 wide_int alt = wi::sub (smaller, 1, TYPE_SIGN (TREE_TYPE (smaller)),
1134 &overflow);
1135 if (! overflow)
1136 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1140 else
1141 return false;
1143 /* We need to know which is the true edge and which is the false
1144 edge so that we know if have abs or negative abs. */
1145 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1147 /* Forward the edges over the middle basic block. */
1148 if (true_edge->dest == middle_bb)
1149 true_edge = EDGE_SUCC (true_edge->dest, 0);
1150 if (false_edge->dest == middle_bb)
1151 false_edge = EDGE_SUCC (false_edge->dest, 0);
1153 if (true_edge == e0)
1155 gcc_assert (false_edge == e1);
1156 arg_true = arg0;
1157 arg_false = arg1;
1159 else
1161 gcc_assert (false_edge == e0);
1162 gcc_assert (true_edge == e1);
1163 arg_true = arg1;
1164 arg_false = arg0;
1167 if (empty_block_p (middle_bb))
1169 if ((operand_equal_for_phi_arg_p (arg_true, smaller)
1170 || (alt_smaller
1171 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1172 && (operand_equal_for_phi_arg_p (arg_false, larger)
1173 || (alt_larger
1174 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1176 /* Case
1178 if (smaller < larger)
1179 rslt = smaller;
1180 else
1181 rslt = larger; */
1182 minmax = MIN_EXPR;
1184 else if ((operand_equal_for_phi_arg_p (arg_false, smaller)
1185 || (alt_smaller
1186 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1187 && (operand_equal_for_phi_arg_p (arg_true, larger)
1188 || (alt_larger
1189 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1190 minmax = MAX_EXPR;
1191 else
1192 return false;
1194 else
1196 /* Recognize the following case, assuming d <= u:
1198 if (a <= u)
1199 b = MAX (a, d);
1200 x = PHI <b, u>
1202 This is equivalent to
1204 b = MAX (a, d);
1205 x = MIN (b, u); */
1207 gimple *assign = last_and_only_stmt (middle_bb);
1208 tree lhs, op0, op1, bound;
1210 if (!assign
1211 || gimple_code (assign) != GIMPLE_ASSIGN)
1212 return false;
1214 lhs = gimple_assign_lhs (assign);
1215 ass_code = gimple_assign_rhs_code (assign);
1216 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1217 return false;
1218 op0 = gimple_assign_rhs1 (assign);
1219 op1 = gimple_assign_rhs2 (assign);
1221 if (true_edge->src == middle_bb)
1223 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1224 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1225 return false;
1227 if (operand_equal_for_phi_arg_p (arg_false, larger)
1228 || (alt_larger
1229 && operand_equal_for_phi_arg_p (arg_false, alt_larger)))
1231 /* Case
1233 if (smaller < larger)
1235 r' = MAX_EXPR (smaller, bound)
1237 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1238 if (ass_code != MAX_EXPR)
1239 return false;
1241 minmax = MIN_EXPR;
1242 if (operand_equal_for_phi_arg_p (op0, smaller)
1243 || (alt_smaller
1244 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1245 bound = op1;
1246 else if (operand_equal_for_phi_arg_p (op1, smaller)
1247 || (alt_smaller
1248 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1249 bound = op0;
1250 else
1251 return false;
1253 /* We need BOUND <= LARGER. */
1254 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1255 bound, larger)))
1256 return false;
1258 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
1259 || (alt_smaller
1260 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1262 /* Case
1264 if (smaller < larger)
1266 r' = MIN_EXPR (larger, bound)
1268 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1269 if (ass_code != MIN_EXPR)
1270 return false;
1272 minmax = MAX_EXPR;
1273 if (operand_equal_for_phi_arg_p (op0, larger)
1274 || (alt_larger
1275 && operand_equal_for_phi_arg_p (op0, alt_larger)))
1276 bound = op1;
1277 else if (operand_equal_for_phi_arg_p (op1, larger)
1278 || (alt_larger
1279 && operand_equal_for_phi_arg_p (op1, alt_larger)))
1280 bound = op0;
1281 else
1282 return false;
1284 /* We need BOUND >= SMALLER. */
1285 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1286 bound, smaller)))
1287 return false;
1289 else
1290 return false;
1292 else
1294 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1295 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1296 return false;
1298 if (operand_equal_for_phi_arg_p (arg_true, larger)
1299 || (alt_larger
1300 && operand_equal_for_phi_arg_p (arg_true, alt_larger)))
1302 /* Case
1304 if (smaller > larger)
1306 r' = MIN_EXPR (smaller, bound)
1308 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1309 if (ass_code != MIN_EXPR)
1310 return false;
1312 minmax = MAX_EXPR;
1313 if (operand_equal_for_phi_arg_p (op0, smaller)
1314 || (alt_smaller
1315 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1316 bound = op1;
1317 else if (operand_equal_for_phi_arg_p (op1, smaller)
1318 || (alt_smaller
1319 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1320 bound = op0;
1321 else
1322 return false;
1324 /* We need BOUND >= LARGER. */
1325 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1326 bound, larger)))
1327 return false;
1329 else if (operand_equal_for_phi_arg_p (arg_true, smaller)
1330 || (alt_smaller
1331 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1333 /* Case
1335 if (smaller > larger)
1337 r' = MAX_EXPR (larger, bound)
1339 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1340 if (ass_code != MAX_EXPR)
1341 return false;
1343 minmax = MIN_EXPR;
1344 if (operand_equal_for_phi_arg_p (op0, larger))
1345 bound = op1;
1346 else if (operand_equal_for_phi_arg_p (op1, larger))
1347 bound = op0;
1348 else
1349 return false;
1351 /* We need BOUND <= SMALLER. */
1352 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1353 bound, smaller)))
1354 return false;
1356 else
1357 return false;
1360 /* Move the statement from the middle block. */
1361 gsi = gsi_last_bb (cond_bb);
1362 gsi_from = gsi_last_nondebug_bb (middle_bb);
1363 gsi_move_before (&gsi_from, &gsi);
1366 /* Create an SSA var to hold the min/max result. If we're the only
1367 things setting the target PHI, then we can clone the PHI
1368 variable. Otherwise we must create a new one. */
1369 result = PHI_RESULT (phi);
1370 if (EDGE_COUNT (gimple_bb (phi)->preds) == 2)
1371 result = duplicate_ssa_name (result, NULL);
1372 else
1373 result = make_ssa_name (TREE_TYPE (result));
1375 /* Emit the statement to compute min/max. */
1376 new_stmt = gimple_build_assign (result, minmax, arg0, arg1);
1377 gsi = gsi_last_bb (cond_bb);
1378 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1380 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1381 reset_flow_sensitive_info_in_bb (cond_bb);
1383 return true;
1386 /* The function absolute_replacement does the main work of doing the absolute
1387 replacement. Return true if the replacement is done. Otherwise return
1388 false.
1389 bb is the basic block where the replacement is going to be done on. arg0
1390 is argument 0 from the phi. Likewise for arg1. */
1392 static bool
1393 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1394 edge e0 ATTRIBUTE_UNUSED, edge e1,
1395 gimple *phi, tree arg0, tree arg1)
1397 tree result;
1398 gassign *new_stmt;
1399 gimple *cond;
1400 gimple_stmt_iterator gsi;
1401 edge true_edge, false_edge;
1402 gimple *assign;
1403 edge e;
1404 tree rhs, lhs;
1405 bool negate;
1406 enum tree_code cond_code;
1408 /* If the type says honor signed zeros we cannot do this
1409 optimization. */
1410 if (HONOR_SIGNED_ZEROS (arg1))
1411 return false;
1413 /* OTHER_BLOCK must have only one executable statement which must have the
1414 form arg0 = -arg1 or arg1 = -arg0. */
1416 assign = last_and_only_stmt (middle_bb);
1417 /* If we did not find the proper negation assignment, then we can not
1418 optimize. */
1419 if (assign == NULL)
1420 return false;
1422 /* If we got here, then we have found the only executable statement
1423 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1424 arg1 = -arg0, then we can not optimize. */
1425 if (gimple_code (assign) != GIMPLE_ASSIGN)
1426 return false;
1428 lhs = gimple_assign_lhs (assign);
1430 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1431 return false;
1433 rhs = gimple_assign_rhs1 (assign);
1435 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1436 if (!(lhs == arg0 && rhs == arg1)
1437 && !(lhs == arg1 && rhs == arg0))
1438 return false;
1440 cond = last_stmt (cond_bb);
1441 result = PHI_RESULT (phi);
1443 /* Only relationals comparing arg[01] against zero are interesting. */
1444 cond_code = gimple_cond_code (cond);
1445 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1446 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1447 return false;
1449 /* Make sure the conditional is arg[01] OP y. */
1450 if (gimple_cond_lhs (cond) != rhs)
1451 return false;
1453 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1454 ? real_zerop (gimple_cond_rhs (cond))
1455 : integer_zerop (gimple_cond_rhs (cond)))
1457 else
1458 return false;
1460 /* We need to know which is the true edge and which is the false
1461 edge so that we know if have abs or negative abs. */
1462 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1464 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1465 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1466 the false edge goes to OTHER_BLOCK. */
1467 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1468 e = true_edge;
1469 else
1470 e = false_edge;
1472 if (e->dest == middle_bb)
1473 negate = true;
1474 else
1475 negate = false;
1477 result = duplicate_ssa_name (result, NULL);
1479 if (negate)
1480 lhs = make_ssa_name (TREE_TYPE (result));
1481 else
1482 lhs = result;
1484 /* Build the modify expression with abs expression. */
1485 new_stmt = gimple_build_assign (lhs, ABS_EXPR, rhs);
1487 gsi = gsi_last_bb (cond_bb);
1488 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1490 if (negate)
1492 /* Get the right GSI. We want to insert after the recently
1493 added ABS_EXPR statement (which we know is the first statement
1494 in the block. */
1495 new_stmt = gimple_build_assign (result, NEGATE_EXPR, lhs);
1497 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1500 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1501 reset_flow_sensitive_info_in_bb (cond_bb);
1503 /* Note that we optimized this PHI. */
1504 return true;
1507 /* Auxiliary functions to determine the set of memory accesses which
1508 can't trap because they are preceded by accesses to the same memory
1509 portion. We do that for MEM_REFs, so we only need to track
1510 the SSA_NAME of the pointer indirectly referenced. The algorithm
1511 simply is a walk over all instructions in dominator order. When
1512 we see an MEM_REF we determine if we've already seen a same
1513 ref anywhere up to the root of the dominator tree. If we do the
1514 current access can't trap. If we don't see any dominating access
1515 the current access might trap, but might also make later accesses
1516 non-trapping, so we remember it. We need to be careful with loads
1517 or stores, for instance a load might not trap, while a store would,
1518 so if we see a dominating read access this doesn't mean that a later
1519 write access would not trap. Hence we also need to differentiate the
1520 type of access(es) seen.
1522 ??? We currently are very conservative and assume that a load might
1523 trap even if a store doesn't (write-only memory). This probably is
1524 overly conservative. */
1526 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1527 through it was seen, which would constitute a no-trap region for
1528 same accesses. */
1529 struct name_to_bb
1531 unsigned int ssa_name_ver;
1532 unsigned int phase;
1533 bool store;
1534 HOST_WIDE_INT offset, size;
1535 basic_block bb;
1538 /* Hashtable helpers. */
1540 struct ssa_names_hasher : free_ptr_hash <name_to_bb>
1542 static inline hashval_t hash (const name_to_bb *);
1543 static inline bool equal (const name_to_bb *, const name_to_bb *);
1546 /* Used for quick clearing of the hash-table when we see calls.
1547 Hash entries with phase < nt_call_phase are invalid. */
1548 static unsigned int nt_call_phase;
1550 /* The hash function. */
1552 inline hashval_t
1553 ssa_names_hasher::hash (const name_to_bb *n)
1555 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1556 ^ (n->offset << 6) ^ (n->size << 3);
1559 /* The equality function of *P1 and *P2. */
1561 inline bool
1562 ssa_names_hasher::equal (const name_to_bb *n1, const name_to_bb *n2)
1564 return n1->ssa_name_ver == n2->ssa_name_ver
1565 && n1->store == n2->store
1566 && n1->offset == n2->offset
1567 && n1->size == n2->size;
1570 class nontrapping_dom_walker : public dom_walker
1572 public:
1573 nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
1574 : dom_walker (direction), m_nontrapping (ps), m_seen_ssa_names (128) {}
1576 virtual edge before_dom_children (basic_block);
1577 virtual void after_dom_children (basic_block);
1579 private:
1581 /* We see the expression EXP in basic block BB. If it's an interesting
1582 expression (an MEM_REF through an SSA_NAME) possibly insert the
1583 expression into the set NONTRAP or the hash table of seen expressions.
1584 STORE is true if this expression is on the LHS, otherwise it's on
1585 the RHS. */
1586 void add_or_mark_expr (basic_block, tree, bool);
1588 hash_set<tree> *m_nontrapping;
1590 /* The hash table for remembering what we've seen. */
1591 hash_table<ssa_names_hasher> m_seen_ssa_names;
1594 /* Called by walk_dominator_tree, when entering the block BB. */
1595 edge
1596 nontrapping_dom_walker::before_dom_children (basic_block bb)
1598 edge e;
1599 edge_iterator ei;
1600 gimple_stmt_iterator gsi;
1602 /* If we haven't seen all our predecessors, clear the hash-table. */
1603 FOR_EACH_EDGE (e, ei, bb->preds)
1604 if ((((size_t)e->src->aux) & 2) == 0)
1606 nt_call_phase++;
1607 break;
1610 /* Mark this BB as being on the path to dominator root and as visited. */
1611 bb->aux = (void*)(1 | 2);
1613 /* And walk the statements in order. */
1614 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1616 gimple *stmt = gsi_stmt (gsi);
1618 if ((gimple_code (stmt) == GIMPLE_ASM && gimple_vdef (stmt))
1619 || (is_gimple_call (stmt)
1620 && (!nonfreeing_call_p (stmt) || !nonbarrier_call_p (stmt))))
1621 nt_call_phase++;
1622 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
1624 add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
1625 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
1628 return NULL;
1631 /* Called by walk_dominator_tree, when basic block BB is exited. */
1632 void
1633 nontrapping_dom_walker::after_dom_children (basic_block bb)
1635 /* This BB isn't on the path to dominator root anymore. */
1636 bb->aux = (void*)2;
1639 /* We see the expression EXP in basic block BB. If it's an interesting
1640 expression (an MEM_REF through an SSA_NAME) possibly insert the
1641 expression into the set NONTRAP or the hash table of seen expressions.
1642 STORE is true if this expression is on the LHS, otherwise it's on
1643 the RHS. */
1644 void
1645 nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
1647 HOST_WIDE_INT size;
1649 if (TREE_CODE (exp) == MEM_REF
1650 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1651 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
1652 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1654 tree name = TREE_OPERAND (exp, 0);
1655 struct name_to_bb map;
1656 name_to_bb **slot;
1657 struct name_to_bb *n2bb;
1658 basic_block found_bb = 0;
1660 /* Try to find the last seen MEM_REF through the same
1661 SSA_NAME, which can trap. */
1662 map.ssa_name_ver = SSA_NAME_VERSION (name);
1663 map.phase = 0;
1664 map.bb = 0;
1665 map.store = store;
1666 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
1667 map.size = size;
1669 slot = m_seen_ssa_names.find_slot (&map, INSERT);
1670 n2bb = *slot;
1671 if (n2bb && n2bb->phase >= nt_call_phase)
1672 found_bb = n2bb->bb;
1674 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1675 (it's in a basic block on the path from us to the dominator root)
1676 then we can't trap. */
1677 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
1679 m_nontrapping->add (exp);
1681 else
1683 /* EXP might trap, so insert it into the hash table. */
1684 if (n2bb)
1686 n2bb->phase = nt_call_phase;
1687 n2bb->bb = bb;
1689 else
1691 n2bb = XNEW (struct name_to_bb);
1692 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1693 n2bb->phase = nt_call_phase;
1694 n2bb->bb = bb;
1695 n2bb->store = store;
1696 n2bb->offset = map.offset;
1697 n2bb->size = size;
1698 *slot = n2bb;
1704 /* This is the entry point of gathering non trapping memory accesses.
1705 It will do a dominator walk over the whole function, and it will
1706 make use of the bb->aux pointers. It returns a set of trees
1707 (the MEM_REFs itself) which can't trap. */
1708 static hash_set<tree> *
1709 get_non_trapping (void)
1711 nt_call_phase = 0;
1712 hash_set<tree> *nontrap = new hash_set<tree>;
1713 /* We're going to do a dominator walk, so ensure that we have
1714 dominance information. */
1715 calculate_dominance_info (CDI_DOMINATORS);
1717 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
1718 .walk (cfun->cfg->x_entry_block_ptr);
1720 clear_aux_for_blocks ();
1721 return nontrap;
1724 /* Do the main work of conditional store replacement. We already know
1725 that the recognized pattern looks like so:
1727 split:
1728 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1729 MIDDLE_BB:
1730 something
1731 fallthrough (edge E0)
1732 JOIN_BB:
1733 some more
1735 We check that MIDDLE_BB contains only one store, that that store
1736 doesn't trap (not via NOTRAP, but via checking if an access to the same
1737 memory location dominates us) and that the store has a "simple" RHS. */
1739 static bool
1740 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1741 edge e0, edge e1, hash_set<tree> *nontrap)
1743 gimple *assign = last_and_only_stmt (middle_bb);
1744 tree lhs, rhs, name, name2;
1745 gphi *newphi;
1746 gassign *new_stmt;
1747 gimple_stmt_iterator gsi;
1748 source_location locus;
1750 /* Check if middle_bb contains of only one store. */
1751 if (!assign
1752 || !gimple_assign_single_p (assign)
1753 || gimple_has_volatile_ops (assign))
1754 return false;
1756 locus = gimple_location (assign);
1757 lhs = gimple_assign_lhs (assign);
1758 rhs = gimple_assign_rhs1 (assign);
1759 if (TREE_CODE (lhs) != MEM_REF
1760 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1761 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1762 return false;
1764 /* Prove that we can move the store down. We could also check
1765 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1766 whose value is not available readily, which we want to avoid. */
1767 if (!nontrap->contains (lhs))
1768 return false;
1770 /* Now we've checked the constraints, so do the transformation:
1771 1) Remove the single store. */
1772 gsi = gsi_for_stmt (assign);
1773 unlink_stmt_vdef (assign);
1774 gsi_remove (&gsi, true);
1775 release_defs (assign);
1777 /* 2) Insert a load from the memory of the store to the temporary
1778 on the edge which did not contain the store. */
1779 lhs = unshare_expr (lhs);
1780 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1781 new_stmt = gimple_build_assign (name, lhs);
1782 gimple_set_location (new_stmt, locus);
1783 gsi_insert_on_edge (e1, new_stmt);
1785 /* 3) Create a PHI node at the join block, with one argument
1786 holding the old RHS, and the other holding the temporary
1787 where we stored the old memory contents. */
1788 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1789 newphi = create_phi_node (name2, join_bb);
1790 add_phi_arg (newphi, rhs, e0, locus);
1791 add_phi_arg (newphi, name, e1, locus);
1793 lhs = unshare_expr (lhs);
1794 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1796 /* 4) Insert that PHI node. */
1797 gsi = gsi_after_labels (join_bb);
1798 if (gsi_end_p (gsi))
1800 gsi = gsi_last_bb (join_bb);
1801 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1803 else
1804 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1806 return true;
1809 /* Do the main work of conditional store replacement. */
1811 static bool
1812 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1813 basic_block join_bb, gimple *then_assign,
1814 gimple *else_assign)
1816 tree lhs_base, lhs, then_rhs, else_rhs, name;
1817 source_location then_locus, else_locus;
1818 gimple_stmt_iterator gsi;
1819 gphi *newphi;
1820 gassign *new_stmt;
1822 if (then_assign == NULL
1823 || !gimple_assign_single_p (then_assign)
1824 || gimple_clobber_p (then_assign)
1825 || gimple_has_volatile_ops (then_assign)
1826 || else_assign == NULL
1827 || !gimple_assign_single_p (else_assign)
1828 || gimple_clobber_p (else_assign)
1829 || gimple_has_volatile_ops (else_assign))
1830 return false;
1832 lhs = gimple_assign_lhs (then_assign);
1833 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1834 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1835 return false;
1837 lhs_base = get_base_address (lhs);
1838 if (lhs_base == NULL_TREE
1839 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1840 return false;
1842 then_rhs = gimple_assign_rhs1 (then_assign);
1843 else_rhs = gimple_assign_rhs1 (else_assign);
1844 then_locus = gimple_location (then_assign);
1845 else_locus = gimple_location (else_assign);
1847 /* Now we've checked the constraints, so do the transformation:
1848 1) Remove the stores. */
1849 gsi = gsi_for_stmt (then_assign);
1850 unlink_stmt_vdef (then_assign);
1851 gsi_remove (&gsi, true);
1852 release_defs (then_assign);
1854 gsi = gsi_for_stmt (else_assign);
1855 unlink_stmt_vdef (else_assign);
1856 gsi_remove (&gsi, true);
1857 release_defs (else_assign);
1859 /* 2) Create a PHI node at the join block, with one argument
1860 holding the old RHS, and the other holding the temporary
1861 where we stored the old memory contents. */
1862 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1863 newphi = create_phi_node (name, join_bb);
1864 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1865 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1867 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1869 /* 3) Insert that PHI node. */
1870 gsi = gsi_after_labels (join_bb);
1871 if (gsi_end_p (gsi))
1873 gsi = gsi_last_bb (join_bb);
1874 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1876 else
1877 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1879 return true;
1882 /* Conditional store replacement. We already know
1883 that the recognized pattern looks like so:
1885 split:
1886 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1887 THEN_BB:
1889 X = Y;
1891 goto JOIN_BB;
1892 ELSE_BB:
1894 X = Z;
1896 fallthrough (edge E0)
1897 JOIN_BB:
1898 some more
1900 We check that it is safe to sink the store to JOIN_BB by verifying that
1901 there are no read-after-write or write-after-write dependencies in
1902 THEN_BB and ELSE_BB. */
1904 static bool
1905 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1906 basic_block join_bb)
1908 gimple *then_assign = last_and_only_stmt (then_bb);
1909 gimple *else_assign = last_and_only_stmt (else_bb);
1910 vec<data_reference_p> then_datarefs, else_datarefs;
1911 vec<ddr_p> then_ddrs, else_ddrs;
1912 gimple *then_store, *else_store;
1913 bool found, ok = false, res;
1914 struct data_dependence_relation *ddr;
1915 data_reference_p then_dr, else_dr;
1916 int i, j;
1917 tree then_lhs, else_lhs;
1918 basic_block blocks[3];
1920 if (MAX_STORES_TO_SINK == 0)
1921 return false;
1923 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1924 if (then_assign && else_assign)
1925 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1926 then_assign, else_assign);
1928 /* Find data references. */
1929 then_datarefs.create (1);
1930 else_datarefs.create (1);
1931 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1932 == chrec_dont_know)
1933 || !then_datarefs.length ()
1934 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1935 == chrec_dont_know)
1936 || !else_datarefs.length ())
1938 free_data_refs (then_datarefs);
1939 free_data_refs (else_datarefs);
1940 return false;
1943 /* Find pairs of stores with equal LHS. */
1944 auto_vec<gimple *, 1> then_stores, else_stores;
1945 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
1947 if (DR_IS_READ (then_dr))
1948 continue;
1950 then_store = DR_STMT (then_dr);
1951 then_lhs = gimple_get_lhs (then_store);
1952 if (then_lhs == NULL_TREE)
1953 continue;
1954 found = false;
1956 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
1958 if (DR_IS_READ (else_dr))
1959 continue;
1961 else_store = DR_STMT (else_dr);
1962 else_lhs = gimple_get_lhs (else_store);
1963 if (else_lhs == NULL_TREE)
1964 continue;
1966 if (operand_equal_p (then_lhs, else_lhs, 0))
1968 found = true;
1969 break;
1973 if (!found)
1974 continue;
1976 then_stores.safe_push (then_store);
1977 else_stores.safe_push (else_store);
1980 /* No pairs of stores found. */
1981 if (!then_stores.length ()
1982 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
1984 free_data_refs (then_datarefs);
1985 free_data_refs (else_datarefs);
1986 return false;
1989 /* Compute and check data dependencies in both basic blocks. */
1990 then_ddrs.create (1);
1991 else_ddrs.create (1);
1992 if (!compute_all_dependences (then_datarefs, &then_ddrs,
1993 vNULL, false)
1994 || !compute_all_dependences (else_datarefs, &else_ddrs,
1995 vNULL, false))
1997 free_dependence_relations (then_ddrs);
1998 free_dependence_relations (else_ddrs);
1999 free_data_refs (then_datarefs);
2000 free_data_refs (else_datarefs);
2001 return false;
2003 blocks[0] = then_bb;
2004 blocks[1] = else_bb;
2005 blocks[2] = join_bb;
2006 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
2008 /* Check that there are no read-after-write or write-after-write dependencies
2009 in THEN_BB. */
2010 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
2012 struct data_reference *dra = DDR_A (ddr);
2013 struct data_reference *drb = DDR_B (ddr);
2015 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2016 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2017 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2018 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2019 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2020 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2022 free_dependence_relations (then_ddrs);
2023 free_dependence_relations (else_ddrs);
2024 free_data_refs (then_datarefs);
2025 free_data_refs (else_datarefs);
2026 return false;
2030 /* Check that there are no read-after-write or write-after-write dependencies
2031 in ELSE_BB. */
2032 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
2034 struct data_reference *dra = DDR_A (ddr);
2035 struct data_reference *drb = DDR_B (ddr);
2037 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2038 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2039 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2040 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2041 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2042 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2044 free_dependence_relations (then_ddrs);
2045 free_dependence_relations (else_ddrs);
2046 free_data_refs (then_datarefs);
2047 free_data_refs (else_datarefs);
2048 return false;
2052 /* Sink stores with same LHS. */
2053 FOR_EACH_VEC_ELT (then_stores, i, then_store)
2055 else_store = else_stores[i];
2056 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
2057 then_store, else_store);
2058 ok = ok || res;
2061 free_dependence_relations (then_ddrs);
2062 free_dependence_relations (else_ddrs);
2063 free_data_refs (then_datarefs);
2064 free_data_refs (else_datarefs);
2066 return ok;
2069 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
2071 static bool
2072 local_mem_dependence (gimple *stmt, basic_block bb)
2074 tree vuse = gimple_vuse (stmt);
2075 gimple *def;
2077 if (!vuse)
2078 return false;
2080 def = SSA_NAME_DEF_STMT (vuse);
2081 return (def && gimple_bb (def) == bb);
2084 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
2085 BB1 and BB2 are "then" and "else" blocks dependent on this test,
2086 and BB3 rejoins control flow following BB1 and BB2, look for
2087 opportunities to hoist loads as follows. If BB3 contains a PHI of
2088 two loads, one each occurring in BB1 and BB2, and the loads are
2089 provably of adjacent fields in the same structure, then move both
2090 loads into BB0. Of course this can only be done if there are no
2091 dependencies preventing such motion.
2093 One of the hoisted loads will always be speculative, so the
2094 transformation is currently conservative:
2096 - The fields must be strictly adjacent.
2097 - The two fields must occupy a single memory block that is
2098 guaranteed to not cross a page boundary.
2100 The last is difficult to prove, as such memory blocks should be
2101 aligned on the minimum of the stack alignment boundary and the
2102 alignment guaranteed by heap allocation interfaces. Thus we rely
2103 on a parameter for the alignment value.
2105 Provided a good value is used for the last case, the first
2106 restriction could possibly be relaxed. */
2108 static void
2109 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
2110 basic_block bb2, basic_block bb3)
2112 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
2113 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
2114 gphi_iterator gsi;
2116 /* Walk the phis in bb3 looking for an opportunity. We are looking
2117 for phis of two SSA names, one each of which is defined in bb1 and
2118 bb2. */
2119 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
2121 gphi *phi_stmt = gsi.phi ();
2122 gimple *def1, *def2;
2123 tree arg1, arg2, ref1, ref2, field1, field2;
2124 tree tree_offset1, tree_offset2, tree_size2, next;
2125 int offset1, offset2, size2;
2126 unsigned align1;
2127 gimple_stmt_iterator gsi2;
2128 basic_block bb_for_def1, bb_for_def2;
2130 if (gimple_phi_num_args (phi_stmt) != 2
2131 || virtual_operand_p (gimple_phi_result (phi_stmt)))
2132 continue;
2134 arg1 = gimple_phi_arg_def (phi_stmt, 0);
2135 arg2 = gimple_phi_arg_def (phi_stmt, 1);
2137 if (TREE_CODE (arg1) != SSA_NAME
2138 || TREE_CODE (arg2) != SSA_NAME
2139 || SSA_NAME_IS_DEFAULT_DEF (arg1)
2140 || SSA_NAME_IS_DEFAULT_DEF (arg2))
2141 continue;
2143 def1 = SSA_NAME_DEF_STMT (arg1);
2144 def2 = SSA_NAME_DEF_STMT (arg2);
2146 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
2147 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
2148 continue;
2150 /* Check the mode of the arguments to be sure a conditional move
2151 can be generated for it. */
2152 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
2153 == CODE_FOR_nothing)
2154 continue;
2156 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
2157 if (!gimple_assign_single_p (def1)
2158 || !gimple_assign_single_p (def2)
2159 || gimple_has_volatile_ops (def1)
2160 || gimple_has_volatile_ops (def2))
2161 continue;
2163 ref1 = gimple_assign_rhs1 (def1);
2164 ref2 = gimple_assign_rhs1 (def2);
2166 if (TREE_CODE (ref1) != COMPONENT_REF
2167 || TREE_CODE (ref2) != COMPONENT_REF)
2168 continue;
2170 /* The zeroth operand of the two component references must be
2171 identical. It is not sufficient to compare get_base_address of
2172 the two references, because this could allow for different
2173 elements of the same array in the two trees. It is not safe to
2174 assume that the existence of one array element implies the
2175 existence of a different one. */
2176 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
2177 continue;
2179 field1 = TREE_OPERAND (ref1, 1);
2180 field2 = TREE_OPERAND (ref2, 1);
2182 /* Check for field adjacency, and ensure field1 comes first. */
2183 for (next = DECL_CHAIN (field1);
2184 next && TREE_CODE (next) != FIELD_DECL;
2185 next = DECL_CHAIN (next))
2188 if (next != field2)
2190 for (next = DECL_CHAIN (field2);
2191 next && TREE_CODE (next) != FIELD_DECL;
2192 next = DECL_CHAIN (next))
2195 if (next != field1)
2196 continue;
2198 std::swap (field1, field2);
2199 std::swap (def1, def2);
2202 bb_for_def1 = gimple_bb (def1);
2203 bb_for_def2 = gimple_bb (def2);
2205 /* Check for proper alignment of the first field. */
2206 tree_offset1 = bit_position (field1);
2207 tree_offset2 = bit_position (field2);
2208 tree_size2 = DECL_SIZE (field2);
2210 if (!tree_fits_uhwi_p (tree_offset1)
2211 || !tree_fits_uhwi_p (tree_offset2)
2212 || !tree_fits_uhwi_p (tree_size2))
2213 continue;
2215 offset1 = tree_to_uhwi (tree_offset1);
2216 offset2 = tree_to_uhwi (tree_offset2);
2217 size2 = tree_to_uhwi (tree_size2);
2218 align1 = DECL_ALIGN (field1) % param_align_bits;
2220 if (offset1 % BITS_PER_UNIT != 0)
2221 continue;
2223 /* For profitability, the two field references should fit within
2224 a single cache line. */
2225 if (align1 + offset2 - offset1 + size2 > param_align_bits)
2226 continue;
2228 /* The two expressions cannot be dependent upon vdefs defined
2229 in bb1/bb2. */
2230 if (local_mem_dependence (def1, bb_for_def1)
2231 || local_mem_dependence (def2, bb_for_def2))
2232 continue;
2234 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2235 bb0. We hoist the first one first so that a cache miss is handled
2236 efficiently regardless of hardware cache-fill policy. */
2237 gsi2 = gsi_for_stmt (def1);
2238 gsi_move_to_bb_end (&gsi2, bb0);
2239 gsi2 = gsi_for_stmt (def2);
2240 gsi_move_to_bb_end (&gsi2, bb0);
2242 if (dump_file && (dump_flags & TDF_DETAILS))
2244 fprintf (dump_file,
2245 "\nHoisting adjacent loads from %d and %d into %d: \n",
2246 bb_for_def1->index, bb_for_def2->index, bb0->index);
2247 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2248 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2253 /* Determine whether we should attempt to hoist adjacent loads out of
2254 diamond patterns in pass_phiopt. Always hoist loads if
2255 -fhoist-adjacent-loads is specified and the target machine has
2256 both a conditional move instruction and a defined cache line size. */
2258 static bool
2259 gate_hoist_loads (void)
2261 return (flag_hoist_adjacent_loads == 1
2262 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2263 && HAVE_conditional_move);
2266 /* This pass tries to replaces an if-then-else block with an
2267 assignment. We have four kinds of transformations. Some of these
2268 transformations are also performed by the ifcvt RTL optimizer.
2270 Conditional Replacement
2271 -----------------------
2273 This transformation, implemented in conditional_replacement,
2274 replaces
2276 bb0:
2277 if (cond) goto bb2; else goto bb1;
2278 bb1:
2279 bb2:
2280 x = PHI <0 (bb1), 1 (bb0), ...>;
2282 with
2284 bb0:
2285 x' = cond;
2286 goto bb2;
2287 bb2:
2288 x = PHI <x' (bb0), ...>;
2290 We remove bb1 as it becomes unreachable. This occurs often due to
2291 gimplification of conditionals.
2293 Value Replacement
2294 -----------------
2296 This transformation, implemented in value_replacement, replaces
2298 bb0:
2299 if (a != b) goto bb2; else goto bb1;
2300 bb1:
2301 bb2:
2302 x = PHI <a (bb1), b (bb0), ...>;
2304 with
2306 bb0:
2307 bb2:
2308 x = PHI <b (bb0), ...>;
2310 This opportunity can sometimes occur as a result of other
2311 optimizations.
2314 Another case caught by value replacement looks like this:
2316 bb0:
2317 t1 = a == CONST;
2318 t2 = b > c;
2319 t3 = t1 & t2;
2320 if (t3 != 0) goto bb1; else goto bb2;
2321 bb1:
2322 bb2:
2323 x = PHI (CONST, a)
2325 Gets replaced with:
2326 bb0:
2327 bb2:
2328 t1 = a == CONST;
2329 t2 = b > c;
2330 t3 = t1 & t2;
2331 x = a;
2333 ABS Replacement
2334 ---------------
2336 This transformation, implemented in abs_replacement, replaces
2338 bb0:
2339 if (a >= 0) goto bb2; else goto bb1;
2340 bb1:
2341 x = -a;
2342 bb2:
2343 x = PHI <x (bb1), a (bb0), ...>;
2345 with
2347 bb0:
2348 x' = ABS_EXPR< a >;
2349 bb2:
2350 x = PHI <x' (bb0), ...>;
2352 MIN/MAX Replacement
2353 -------------------
2355 This transformation, minmax_replacement replaces
2357 bb0:
2358 if (a <= b) goto bb2; else goto bb1;
2359 bb1:
2360 bb2:
2361 x = PHI <b (bb1), a (bb0), ...>;
2363 with
2365 bb0:
2366 x' = MIN_EXPR (a, b)
2367 bb2:
2368 x = PHI <x' (bb0), ...>;
2370 A similar transformation is done for MAX_EXPR.
2373 This pass also performs a fifth transformation of a slightly different
2374 flavor.
2376 Factor conversion in COND_EXPR
2377 ------------------------------
2379 This transformation factors the conversion out of COND_EXPR with
2380 factor_out_conditional_conversion.
2382 For example:
2383 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2384 <bb 3>:
2385 tmp = (int) a;
2386 <bb 4>:
2387 tmp = PHI <tmp, CST>
2389 Into:
2390 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2391 <bb 3>:
2392 <bb 4>:
2393 a = PHI <a, CST>
2394 tmp = (int) a;
2396 Adjacent Load Hoisting
2397 ----------------------
2399 This transformation replaces
2401 bb0:
2402 if (...) goto bb2; else goto bb1;
2403 bb1:
2404 x1 = (<expr>).field1;
2405 goto bb3;
2406 bb2:
2407 x2 = (<expr>).field2;
2408 bb3:
2409 # x = PHI <x1, x2>;
2411 with
2413 bb0:
2414 x1 = (<expr>).field1;
2415 x2 = (<expr>).field2;
2416 if (...) goto bb2; else goto bb1;
2417 bb1:
2418 goto bb3;
2419 bb2:
2420 bb3:
2421 # x = PHI <x1, x2>;
2423 The purpose of this transformation is to enable generation of conditional
2424 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2425 the loads is speculative, the transformation is restricted to very
2426 specific cases to avoid introducing a page fault. We are looking for
2427 the common idiom:
2429 if (...)
2430 x = y->left;
2431 else
2432 x = y->right;
2434 where left and right are typically adjacent pointers in a tree structure. */
2436 namespace {
2438 const pass_data pass_data_phiopt =
2440 GIMPLE_PASS, /* type */
2441 "phiopt", /* name */
2442 OPTGROUP_NONE, /* optinfo_flags */
2443 TV_TREE_PHIOPT, /* tv_id */
2444 ( PROP_cfg | PROP_ssa ), /* properties_required */
2445 0, /* properties_provided */
2446 0, /* properties_destroyed */
2447 0, /* todo_flags_start */
2448 0, /* todo_flags_finish */
2451 class pass_phiopt : public gimple_opt_pass
2453 public:
2454 pass_phiopt (gcc::context *ctxt)
2455 : gimple_opt_pass (pass_data_phiopt, ctxt)
2458 /* opt_pass methods: */
2459 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
2460 virtual bool gate (function *) { return flag_ssa_phiopt; }
2461 virtual unsigned int execute (function *)
2463 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
2466 }; // class pass_phiopt
2468 } // anon namespace
2470 gimple_opt_pass *
2471 make_pass_phiopt (gcc::context *ctxt)
2473 return new pass_phiopt (ctxt);
2476 namespace {
2478 const pass_data pass_data_cselim =
2480 GIMPLE_PASS, /* type */
2481 "cselim", /* name */
2482 OPTGROUP_NONE, /* optinfo_flags */
2483 TV_TREE_PHIOPT, /* tv_id */
2484 ( PROP_cfg | PROP_ssa ), /* properties_required */
2485 0, /* properties_provided */
2486 0, /* properties_destroyed */
2487 0, /* todo_flags_start */
2488 0, /* todo_flags_finish */
2491 class pass_cselim : public gimple_opt_pass
2493 public:
2494 pass_cselim (gcc::context *ctxt)
2495 : gimple_opt_pass (pass_data_cselim, ctxt)
2498 /* opt_pass methods: */
2499 virtual bool gate (function *) { return flag_tree_cselim; }
2500 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
2502 }; // class pass_cselim
2504 } // anon namespace
2506 gimple_opt_pass *
2507 make_pass_cselim (gcc::context *ctxt)
2509 return new pass_cselim (ctxt);