[AArch64] Use new target pass registration framework for FMA steering pass
[official-gcc.git] / gcc / internal-fn.c
blob0b32d5f635bbcf1178a7ec27d341fd66ef1ced1b
1 /* Internal functions.
2 Copyright (C) 2011-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "stringpool.h"
30 #include "tree-vrp.h"
31 #include "tree-ssanames.h"
32 #include "expmed.h"
33 #include "memmodel.h"
34 #include "optabs.h"
35 #include "emit-rtl.h"
36 #include "diagnostic-core.h"
37 #include "fold-const.h"
38 #include "internal-fn.h"
39 #include "stor-layout.h"
40 #include "dojump.h"
41 #include "expr.h"
42 #include "ubsan.h"
43 #include "recog.h"
44 #include "builtins.h"
46 /* The names of each internal function, indexed by function number. */
47 const char *const internal_fn_name_array[] = {
48 #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) #CODE,
49 #include "internal-fn.def"
50 "<invalid-fn>"
53 /* The ECF_* flags of each internal function, indexed by function number. */
54 const int internal_fn_flags_array[] = {
55 #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) FLAGS,
56 #include "internal-fn.def"
60 /* Fnspec of each internal function, indexed by function number. */
61 const_tree internal_fn_fnspec_array[IFN_LAST + 1];
63 void
64 init_internal_fns ()
66 #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \
67 if (FNSPEC) internal_fn_fnspec_array[IFN_##CODE] = \
68 build_string ((int) sizeof (FNSPEC), FNSPEC ? FNSPEC : "");
69 #include "internal-fn.def"
70 internal_fn_fnspec_array[IFN_LAST] = 0;
73 /* Create static initializers for the information returned by
74 direct_internal_fn. */
75 #define not_direct { -2, -2, false }
76 #define mask_load_direct { -1, 2, false }
77 #define load_lanes_direct { -1, -1, false }
78 #define mask_store_direct { 3, 2, false }
79 #define store_lanes_direct { 0, 0, false }
80 #define unary_direct { 0, 0, true }
81 #define binary_direct { 0, 0, true }
83 const direct_internal_fn_info direct_internal_fn_array[IFN_LAST + 1] = {
84 #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) not_direct,
85 #define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) TYPE##_direct,
86 #include "internal-fn.def"
87 not_direct
90 /* ARRAY_TYPE is an array of vector modes. Return the associated insn
91 for load-lanes-style optab OPTAB, or CODE_FOR_nothing if none. */
93 static enum insn_code
94 get_multi_vector_move (tree array_type, convert_optab optab)
96 machine_mode imode;
97 machine_mode vmode;
99 gcc_assert (TREE_CODE (array_type) == ARRAY_TYPE);
100 imode = TYPE_MODE (array_type);
101 vmode = TYPE_MODE (TREE_TYPE (array_type));
103 return convert_optab_handler (optab, imode, vmode);
106 /* Expand LOAD_LANES call STMT using optab OPTAB. */
108 static void
109 expand_load_lanes_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
111 struct expand_operand ops[2];
112 tree type, lhs, rhs;
113 rtx target, mem;
115 lhs = gimple_call_lhs (stmt);
116 rhs = gimple_call_arg (stmt, 0);
117 type = TREE_TYPE (lhs);
119 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
120 mem = expand_normal (rhs);
122 gcc_assert (MEM_P (mem));
123 PUT_MODE (mem, TYPE_MODE (type));
125 create_output_operand (&ops[0], target, TYPE_MODE (type));
126 create_fixed_operand (&ops[1], mem);
127 expand_insn (get_multi_vector_move (type, optab), 2, ops);
130 /* Expand STORE_LANES call STMT using optab OPTAB. */
132 static void
133 expand_store_lanes_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
135 struct expand_operand ops[2];
136 tree type, lhs, rhs;
137 rtx target, reg;
139 lhs = gimple_call_lhs (stmt);
140 rhs = gimple_call_arg (stmt, 0);
141 type = TREE_TYPE (rhs);
143 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
144 reg = expand_normal (rhs);
146 gcc_assert (MEM_P (target));
147 PUT_MODE (target, TYPE_MODE (type));
149 create_fixed_operand (&ops[0], target);
150 create_input_operand (&ops[1], reg, TYPE_MODE (type));
151 expand_insn (get_multi_vector_move (type, optab), 2, ops);
154 static void
155 expand_ANNOTATE (internal_fn, gcall *)
157 gcc_unreachable ();
160 /* This should get expanded in adjust_simduid_builtins. */
162 static void
163 expand_GOMP_SIMD_LANE (internal_fn, gcall *)
165 gcc_unreachable ();
168 /* This should get expanded in adjust_simduid_builtins. */
170 static void
171 expand_GOMP_SIMD_VF (internal_fn, gcall *)
173 gcc_unreachable ();
176 /* This should get expanded in adjust_simduid_builtins. */
178 static void
179 expand_GOMP_SIMD_LAST_LANE (internal_fn, gcall *)
181 gcc_unreachable ();
184 /* This should get expanded in adjust_simduid_builtins. */
186 static void
187 expand_GOMP_SIMD_ORDERED_START (internal_fn, gcall *)
189 gcc_unreachable ();
192 /* This should get expanded in adjust_simduid_builtins. */
194 static void
195 expand_GOMP_SIMD_ORDERED_END (internal_fn, gcall *)
197 gcc_unreachable ();
200 /* This should get expanded in the sanopt pass. */
202 static void
203 expand_UBSAN_NULL (internal_fn, gcall *)
205 gcc_unreachable ();
208 /* This should get expanded in the sanopt pass. */
210 static void
211 expand_UBSAN_BOUNDS (internal_fn, gcall *)
213 gcc_unreachable ();
216 /* This should get expanded in the sanopt pass. */
218 static void
219 expand_UBSAN_VPTR (internal_fn, gcall *)
221 gcc_unreachable ();
224 /* This should get expanded in the sanopt pass. */
226 static void
227 expand_UBSAN_OBJECT_SIZE (internal_fn, gcall *)
229 gcc_unreachable ();
232 /* This should get expanded in the sanopt pass. */
234 static void
235 expand_ASAN_CHECK (internal_fn, gcall *)
237 gcc_unreachable ();
240 /* This should get expanded in the tsan pass. */
242 static void
243 expand_TSAN_FUNC_EXIT (internal_fn, gcall *)
245 gcc_unreachable ();
248 /* This should get expanded in the lower pass. */
250 static void
251 expand_FALLTHROUGH (internal_fn, gcall *call)
253 error_at (gimple_location (call),
254 "invalid use of attribute %<fallthrough%>");
257 /* Helper function for expand_addsub_overflow. Return 1
258 if ARG interpreted as signed in its precision is known to be always
259 positive or 2 if ARG is known to be always negative, or 3 if ARG may
260 be positive or negative. */
262 static int
263 get_range_pos_neg (tree arg)
265 if (arg == error_mark_node)
266 return 3;
268 int prec = TYPE_PRECISION (TREE_TYPE (arg));
269 int cnt = 0;
270 if (TREE_CODE (arg) == INTEGER_CST)
272 wide_int w = wi::sext (arg, prec);
273 if (wi::neg_p (w))
274 return 2;
275 else
276 return 1;
278 while (CONVERT_EXPR_P (arg)
279 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
280 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
282 arg = TREE_OPERAND (arg, 0);
283 /* Narrower value zero extended into wider type
284 will always result in positive values. */
285 if (TYPE_UNSIGNED (TREE_TYPE (arg))
286 && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
287 return 1;
288 prec = TYPE_PRECISION (TREE_TYPE (arg));
289 if (++cnt > 30)
290 return 3;
293 if (TREE_CODE (arg) != SSA_NAME)
294 return 3;
295 wide_int arg_min, arg_max;
296 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
298 gimple *g = SSA_NAME_DEF_STMT (arg);
299 if (is_gimple_assign (g)
300 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
302 tree t = gimple_assign_rhs1 (g);
303 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
304 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
306 if (TYPE_UNSIGNED (TREE_TYPE (t))
307 && TYPE_PRECISION (TREE_TYPE (t)) < prec)
308 return 1;
309 prec = TYPE_PRECISION (TREE_TYPE (t));
310 arg = t;
311 if (++cnt > 30)
312 return 3;
313 continue;
316 return 3;
318 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
320 /* For unsigned values, the "positive" range comes
321 below the "negative" range. */
322 if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
323 return 1;
324 if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
325 return 2;
327 else
329 if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
330 return 1;
331 if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
332 return 2;
334 return 3;
337 /* Return minimum precision needed to represent all values
338 of ARG in SIGNed integral type. */
340 static int
341 get_min_precision (tree arg, signop sign)
343 int prec = TYPE_PRECISION (TREE_TYPE (arg));
344 int cnt = 0;
345 signop orig_sign = sign;
346 if (TREE_CODE (arg) == INTEGER_CST)
348 int p;
349 if (TYPE_SIGN (TREE_TYPE (arg)) != sign)
351 widest_int w = wi::to_widest (arg);
352 w = wi::ext (w, prec, sign);
353 p = wi::min_precision (w, sign);
355 else
356 p = wi::min_precision (arg, sign);
357 return MIN (p, prec);
359 while (CONVERT_EXPR_P (arg)
360 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
361 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
363 arg = TREE_OPERAND (arg, 0);
364 if (TYPE_PRECISION (TREE_TYPE (arg)) < prec)
366 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
367 sign = UNSIGNED;
368 else if (sign == UNSIGNED && get_range_pos_neg (arg) != 1)
369 return prec + (orig_sign != sign);
370 prec = TYPE_PRECISION (TREE_TYPE (arg));
372 if (++cnt > 30)
373 return prec + (orig_sign != sign);
375 if (TREE_CODE (arg) != SSA_NAME)
376 return prec + (orig_sign != sign);
377 wide_int arg_min, arg_max;
378 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
380 gimple *g = SSA_NAME_DEF_STMT (arg);
381 if (is_gimple_assign (g)
382 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
384 tree t = gimple_assign_rhs1 (g);
385 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
386 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
388 arg = t;
389 if (TYPE_PRECISION (TREE_TYPE (arg)) < prec)
391 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
392 sign = UNSIGNED;
393 else if (sign == UNSIGNED && get_range_pos_neg (arg) != 1)
394 return prec + (orig_sign != sign);
395 prec = TYPE_PRECISION (TREE_TYPE (arg));
397 if (++cnt > 30)
398 return prec + (orig_sign != sign);
399 continue;
402 return prec + (orig_sign != sign);
404 if (sign == TYPE_SIGN (TREE_TYPE (arg)))
406 int p1 = wi::min_precision (arg_min, sign);
407 int p2 = wi::min_precision (arg_max, sign);
408 p1 = MAX (p1, p2);
409 prec = MIN (prec, p1);
411 else if (sign == UNSIGNED && !wi::neg_p (arg_min, SIGNED))
413 int p = wi::min_precision (arg_max, UNSIGNED);
414 prec = MIN (prec, p);
416 return prec + (orig_sign != sign);
419 /* Helper for expand_*_overflow. Set the __imag__ part to true
420 (1 except for signed:1 type, in which case store -1). */
422 static void
423 expand_arith_set_overflow (tree lhs, rtx target)
425 if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (lhs))) == 1
426 && !TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs))))
427 write_complex_part (target, constm1_rtx, true);
428 else
429 write_complex_part (target, const1_rtx, true);
432 /* Helper for expand_*_overflow. Store RES into the __real__ part
433 of TARGET. If RES has larger MODE than __real__ part of TARGET,
434 set the __imag__ part to 1 if RES doesn't fit into it. Similarly
435 if LHS has smaller precision than its mode. */
437 static void
438 expand_arith_overflow_result_store (tree lhs, rtx target,
439 machine_mode mode, rtx res)
441 machine_mode tgtmode = GET_MODE_INNER (GET_MODE (target));
442 rtx lres = res;
443 if (tgtmode != mode)
445 rtx_code_label *done_label = gen_label_rtx ();
446 int uns = TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs)));
447 lres = convert_modes (tgtmode, mode, res, uns);
448 gcc_assert (GET_MODE_PRECISION (tgtmode) < GET_MODE_PRECISION (mode));
449 do_compare_rtx_and_jump (res, convert_modes (mode, tgtmode, lres, uns),
450 EQ, true, mode, NULL_RTX, NULL, done_label,
451 PROB_VERY_LIKELY);
452 expand_arith_set_overflow (lhs, target);
453 emit_label (done_label);
455 int prec = TYPE_PRECISION (TREE_TYPE (TREE_TYPE (lhs)));
456 int tgtprec = GET_MODE_PRECISION (tgtmode);
457 if (prec < tgtprec)
459 rtx_code_label *done_label = gen_label_rtx ();
460 int uns = TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs)));
461 res = lres;
462 if (uns)
464 rtx mask
465 = immed_wide_int_const (wi::shifted_mask (0, prec, false, tgtprec),
466 tgtmode);
467 lres = expand_simple_binop (tgtmode, AND, res, mask, NULL_RTX,
468 true, OPTAB_LIB_WIDEN);
470 else
472 lres = expand_shift (LSHIFT_EXPR, tgtmode, res, tgtprec - prec,
473 NULL_RTX, 1);
474 lres = expand_shift (RSHIFT_EXPR, tgtmode, lres, tgtprec - prec,
475 NULL_RTX, 0);
477 do_compare_rtx_and_jump (res, lres,
478 EQ, true, tgtmode, NULL_RTX, NULL, done_label,
479 PROB_VERY_LIKELY);
480 expand_arith_set_overflow (lhs, target);
481 emit_label (done_label);
483 write_complex_part (target, lres, false);
486 /* Helper for expand_*_overflow. Store RES into TARGET. */
488 static void
489 expand_ubsan_result_store (rtx target, rtx res)
491 if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
492 /* If this is a scalar in a register that is stored in a wider mode
493 than the declared mode, compute the result into its declared mode
494 and then convert to the wider mode. Our value is the computed
495 expression. */
496 convert_move (SUBREG_REG (target), res, SUBREG_PROMOTED_SIGN (target));
497 else
498 emit_move_insn (target, res);
501 /* Add sub/add overflow checking to the statement STMT.
502 CODE says whether the operation is +, or -. */
504 static void
505 expand_addsub_overflow (location_t loc, tree_code code, tree lhs,
506 tree arg0, tree arg1, bool unsr_p, bool uns0_p,
507 bool uns1_p, bool is_ubsan)
509 rtx res, target = NULL_RTX;
510 tree fn;
511 rtx_code_label *done_label = gen_label_rtx ();
512 rtx_code_label *do_error = gen_label_rtx ();
513 do_pending_stack_adjust ();
514 rtx op0 = expand_normal (arg0);
515 rtx op1 = expand_normal (arg1);
516 machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
517 int prec = GET_MODE_PRECISION (mode);
518 rtx sgn = immed_wide_int_const (wi::min_value (prec, SIGNED), mode);
519 bool do_xor = false;
521 if (is_ubsan)
522 gcc_assert (!unsr_p && !uns0_p && !uns1_p);
524 if (lhs)
526 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
527 if (!is_ubsan)
528 write_complex_part (target, const0_rtx, true);
531 /* We assume both operands and result have the same precision
532 here (GET_MODE_BITSIZE (mode)), S stands for signed type
533 with that precision, U for unsigned type with that precision,
534 sgn for unsigned most significant bit in that precision.
535 s1 is signed first operand, u1 is unsigned first operand,
536 s2 is signed second operand, u2 is unsigned second operand,
537 sr is signed result, ur is unsigned result and the following
538 rules say how to compute result (which is always result of
539 the operands as if both were unsigned, cast to the right
540 signedness) and how to compute whether operation overflowed.
542 s1 + s2 -> sr
543 res = (S) ((U) s1 + (U) s2)
544 ovf = s2 < 0 ? res > s1 : res < s1 (or jump on overflow)
545 s1 - s2 -> sr
546 res = (S) ((U) s1 - (U) s2)
547 ovf = s2 < 0 ? res < s1 : res > s2 (or jump on overflow)
548 u1 + u2 -> ur
549 res = u1 + u2
550 ovf = res < u1 (or jump on carry, but RTL opts will handle it)
551 u1 - u2 -> ur
552 res = u1 - u2
553 ovf = res > u1 (or jump on carry, but RTL opts will handle it)
554 s1 + u2 -> sr
555 res = (S) ((U) s1 + u2)
556 ovf = ((U) res ^ sgn) < u2
557 s1 + u2 -> ur
558 t1 = (S) (u2 ^ sgn)
559 t2 = s1 + t1
560 res = (U) t2 ^ sgn
561 ovf = t1 < 0 ? t2 > s1 : t2 < s1 (or jump on overflow)
562 s1 - u2 -> sr
563 res = (S) ((U) s1 - u2)
564 ovf = u2 > ((U) s1 ^ sgn)
565 s1 - u2 -> ur
566 res = (U) s1 - u2
567 ovf = s1 < 0 || u2 > (U) s1
568 u1 - s2 -> sr
569 res = u1 - (U) s2
570 ovf = u1 >= ((U) s2 ^ sgn)
571 u1 - s2 -> ur
572 t1 = u1 ^ sgn
573 t2 = t1 - (U) s2
574 res = t2 ^ sgn
575 ovf = s2 < 0 ? (S) t2 < (S) t1 : (S) t2 > (S) t1 (or jump on overflow)
576 s1 + s2 -> ur
577 res = (U) s1 + (U) s2
578 ovf = s2 < 0 ? (s1 | (S) res) < 0) : (s1 & (S) res) < 0)
579 u1 + u2 -> sr
580 res = (S) (u1 + u2)
581 ovf = (U) res < u2 || res < 0
582 u1 - u2 -> sr
583 res = (S) (u1 - u2)
584 ovf = u1 >= u2 ? res < 0 : res >= 0
585 s1 - s2 -> ur
586 res = (U) s1 - (U) s2
587 ovf = s2 >= 0 ? ((s1 | (S) res) < 0) : ((s1 & (S) res) < 0) */
589 if (code == PLUS_EXPR && uns0_p && !uns1_p)
591 /* PLUS_EXPR is commutative, if operand signedness differs,
592 canonicalize to the first operand being signed and second
593 unsigned to simplify following code. */
594 std::swap (op0, op1);
595 std::swap (arg0, arg1);
596 uns0_p = false;
597 uns1_p = true;
600 /* u1 +- u2 -> ur */
601 if (uns0_p && uns1_p && unsr_p)
603 insn_code icode = optab_handler (code == PLUS_EXPR ? uaddv4_optab
604 : usubv4_optab, mode);
605 if (icode != CODE_FOR_nothing)
607 struct expand_operand ops[4];
608 rtx_insn *last = get_last_insn ();
610 res = gen_reg_rtx (mode);
611 create_output_operand (&ops[0], res, mode);
612 create_input_operand (&ops[1], op0, mode);
613 create_input_operand (&ops[2], op1, mode);
614 create_fixed_operand (&ops[3], do_error);
615 if (maybe_expand_insn (icode, 4, ops))
617 last = get_last_insn ();
618 if (profile_status_for_fn (cfun) != PROFILE_ABSENT
619 && JUMP_P (last)
620 && any_condjump_p (last)
621 && !find_reg_note (last, REG_BR_PROB, 0))
622 add_int_reg_note (last, REG_BR_PROB, PROB_VERY_UNLIKELY);
623 emit_jump (done_label);
624 goto do_error_label;
627 delete_insns_since (last);
630 /* Compute the operation. On RTL level, the addition is always
631 unsigned. */
632 res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
633 op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
634 rtx tem = op0;
635 /* For PLUS_EXPR, the operation is commutative, so we can pick
636 operand to compare against. For prec <= BITS_PER_WORD, I think
637 preferring REG operand is better over CONST_INT, because
638 the CONST_INT might enlarge the instruction or CSE would need
639 to figure out we'd already loaded it into a register before.
640 For prec > BITS_PER_WORD, I think CONST_INT might be more beneficial,
641 as then the multi-word comparison can be perhaps simplified. */
642 if (code == PLUS_EXPR
643 && (prec <= BITS_PER_WORD
644 ? (CONST_SCALAR_INT_P (op0) && REG_P (op1))
645 : CONST_SCALAR_INT_P (op1)))
646 tem = op1;
647 do_compare_rtx_and_jump (res, tem, code == PLUS_EXPR ? GEU : LEU,
648 true, mode, NULL_RTX, NULL, done_label,
649 PROB_VERY_LIKELY);
650 goto do_error_label;
653 /* s1 +- u2 -> sr */
654 if (!uns0_p && uns1_p && !unsr_p)
656 /* Compute the operation. On RTL level, the addition is always
657 unsigned. */
658 res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
659 op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
660 rtx tem = expand_binop (mode, add_optab,
661 code == PLUS_EXPR ? res : op0, sgn,
662 NULL_RTX, false, OPTAB_LIB_WIDEN);
663 do_compare_rtx_and_jump (tem, op1, GEU, true, mode, NULL_RTX, NULL,
664 done_label, PROB_VERY_LIKELY);
665 goto do_error_label;
668 /* s1 + u2 -> ur */
669 if (code == PLUS_EXPR && !uns0_p && uns1_p && unsr_p)
671 op1 = expand_binop (mode, add_optab, op1, sgn, NULL_RTX, false,
672 OPTAB_LIB_WIDEN);
673 /* As we've changed op1, we have to avoid using the value range
674 for the original argument. */
675 arg1 = error_mark_node;
676 do_xor = true;
677 goto do_signed;
680 /* u1 - s2 -> ur */
681 if (code == MINUS_EXPR && uns0_p && !uns1_p && unsr_p)
683 op0 = expand_binop (mode, add_optab, op0, sgn, NULL_RTX, false,
684 OPTAB_LIB_WIDEN);
685 /* As we've changed op0, we have to avoid using the value range
686 for the original argument. */
687 arg0 = error_mark_node;
688 do_xor = true;
689 goto do_signed;
692 /* s1 - u2 -> ur */
693 if (code == MINUS_EXPR && !uns0_p && uns1_p && unsr_p)
695 /* Compute the operation. On RTL level, the addition is always
696 unsigned. */
697 res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
698 OPTAB_LIB_WIDEN);
699 int pos_neg = get_range_pos_neg (arg0);
700 if (pos_neg == 2)
701 /* If ARG0 is known to be always negative, this is always overflow. */
702 emit_jump (do_error);
703 else if (pos_neg == 3)
704 /* If ARG0 is not known to be always positive, check at runtime. */
705 do_compare_rtx_and_jump (op0, const0_rtx, LT, false, mode, NULL_RTX,
706 NULL, do_error, PROB_VERY_UNLIKELY);
707 do_compare_rtx_and_jump (op1, op0, LEU, true, mode, NULL_RTX, NULL,
708 done_label, PROB_VERY_LIKELY);
709 goto do_error_label;
712 /* u1 - s2 -> sr */
713 if (code == MINUS_EXPR && uns0_p && !uns1_p && !unsr_p)
715 /* Compute the operation. On RTL level, the addition is always
716 unsigned. */
717 res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
718 OPTAB_LIB_WIDEN);
719 rtx tem = expand_binop (mode, add_optab, op1, sgn, NULL_RTX, false,
720 OPTAB_LIB_WIDEN);
721 do_compare_rtx_and_jump (op0, tem, LTU, true, mode, NULL_RTX, NULL,
722 done_label, PROB_VERY_LIKELY);
723 goto do_error_label;
726 /* u1 + u2 -> sr */
727 if (code == PLUS_EXPR && uns0_p && uns1_p && !unsr_p)
729 /* Compute the operation. On RTL level, the addition is always
730 unsigned. */
731 res = expand_binop (mode, add_optab, op0, op1, NULL_RTX, false,
732 OPTAB_LIB_WIDEN);
733 do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode, NULL_RTX,
734 NULL, do_error, PROB_VERY_UNLIKELY);
735 rtx tem = op1;
736 /* The operation is commutative, so we can pick operand to compare
737 against. For prec <= BITS_PER_WORD, I think preferring REG operand
738 is better over CONST_INT, because the CONST_INT might enlarge the
739 instruction or CSE would need to figure out we'd already loaded it
740 into a register before. For prec > BITS_PER_WORD, I think CONST_INT
741 might be more beneficial, as then the multi-word comparison can be
742 perhaps simplified. */
743 if (prec <= BITS_PER_WORD
744 ? (CONST_SCALAR_INT_P (op1) && REG_P (op0))
745 : CONST_SCALAR_INT_P (op0))
746 tem = op0;
747 do_compare_rtx_and_jump (res, tem, GEU, true, mode, NULL_RTX, NULL,
748 done_label, PROB_VERY_LIKELY);
749 goto do_error_label;
752 /* s1 +- s2 -> ur */
753 if (!uns0_p && !uns1_p && unsr_p)
755 /* Compute the operation. On RTL level, the addition is always
756 unsigned. */
757 res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
758 op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
759 int pos_neg = get_range_pos_neg (arg1);
760 if (code == PLUS_EXPR)
762 int pos_neg0 = get_range_pos_neg (arg0);
763 if (pos_neg0 != 3 && pos_neg == 3)
765 std::swap (op0, op1);
766 pos_neg = pos_neg0;
769 rtx tem;
770 if (pos_neg != 3)
772 tem = expand_binop (mode, ((pos_neg == 1) ^ (code == MINUS_EXPR))
773 ? and_optab : ior_optab,
774 op0, res, NULL_RTX, false, OPTAB_LIB_WIDEN);
775 do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL,
776 NULL, done_label, PROB_VERY_LIKELY);
778 else
780 rtx_code_label *do_ior_label = gen_label_rtx ();
781 do_compare_rtx_and_jump (op1, const0_rtx,
782 code == MINUS_EXPR ? GE : LT, false, mode,
783 NULL_RTX, NULL, do_ior_label,
784 PROB_EVEN);
785 tem = expand_binop (mode, and_optab, op0, res, NULL_RTX, false,
786 OPTAB_LIB_WIDEN);
787 do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
788 NULL, done_label, PROB_VERY_LIKELY);
789 emit_jump (do_error);
790 emit_label (do_ior_label);
791 tem = expand_binop (mode, ior_optab, op0, res, NULL_RTX, false,
792 OPTAB_LIB_WIDEN);
793 do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
794 NULL, done_label, PROB_VERY_LIKELY);
796 goto do_error_label;
799 /* u1 - u2 -> sr */
800 if (code == MINUS_EXPR && uns0_p && uns1_p && !unsr_p)
802 /* Compute the operation. On RTL level, the addition is always
803 unsigned. */
804 res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
805 OPTAB_LIB_WIDEN);
806 rtx_code_label *op0_geu_op1 = gen_label_rtx ();
807 do_compare_rtx_and_jump (op0, op1, GEU, true, mode, NULL_RTX, NULL,
808 op0_geu_op1, PROB_EVEN);
809 do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode, NULL_RTX,
810 NULL, done_label, PROB_VERY_LIKELY);
811 emit_jump (do_error);
812 emit_label (op0_geu_op1);
813 do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX,
814 NULL, done_label, PROB_VERY_LIKELY);
815 goto do_error_label;
818 gcc_assert (!uns0_p && !uns1_p && !unsr_p);
820 /* s1 +- s2 -> sr */
821 do_signed:
823 insn_code icode = optab_handler (code == PLUS_EXPR ? addv4_optab
824 : subv4_optab, mode);
825 if (icode != CODE_FOR_nothing)
827 struct expand_operand ops[4];
828 rtx_insn *last = get_last_insn ();
830 res = gen_reg_rtx (mode);
831 create_output_operand (&ops[0], res, mode);
832 create_input_operand (&ops[1], op0, mode);
833 create_input_operand (&ops[2], op1, mode);
834 create_fixed_operand (&ops[3], do_error);
835 if (maybe_expand_insn (icode, 4, ops))
837 last = get_last_insn ();
838 if (profile_status_for_fn (cfun) != PROFILE_ABSENT
839 && JUMP_P (last)
840 && any_condjump_p (last)
841 && !find_reg_note (last, REG_BR_PROB, 0))
842 add_int_reg_note (last, REG_BR_PROB, PROB_VERY_UNLIKELY);
843 emit_jump (done_label);
844 goto do_error_label;
847 delete_insns_since (last);
850 rtx_code_label *sub_check = gen_label_rtx ();
851 int pos_neg = 3;
853 /* Compute the operation. On RTL level, the addition is always
854 unsigned. */
855 res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
856 op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
858 /* If we can prove one of the arguments (for MINUS_EXPR only
859 the second operand, as subtraction is not commutative) is always
860 non-negative or always negative, we can do just one comparison
861 and conditional jump instead of 2 at runtime, 3 present in the
862 emitted code. If one of the arguments is CONST_INT, all we
863 need is to make sure it is op1, then the first
864 do_compare_rtx_and_jump will be just folded. Otherwise try
865 to use range info if available. */
866 if (code == PLUS_EXPR && CONST_INT_P (op0))
867 std::swap (op0, op1);
868 else if (CONST_INT_P (op1))
870 else if (code == PLUS_EXPR && TREE_CODE (arg0) == SSA_NAME)
872 pos_neg = get_range_pos_neg (arg0);
873 if (pos_neg != 3)
874 std::swap (op0, op1);
876 if (pos_neg == 3 && !CONST_INT_P (op1) && TREE_CODE (arg1) == SSA_NAME)
877 pos_neg = get_range_pos_neg (arg1);
879 /* If the op1 is negative, we have to use a different check. */
880 if (pos_neg == 3)
881 do_compare_rtx_and_jump (op1, const0_rtx, LT, false, mode, NULL_RTX,
882 NULL, sub_check, PROB_EVEN);
884 /* Compare the result of the operation with one of the operands. */
885 if (pos_neg & 1)
886 do_compare_rtx_and_jump (res, op0, code == PLUS_EXPR ? GE : LE,
887 false, mode, NULL_RTX, NULL, done_label,
888 PROB_VERY_LIKELY);
890 /* If we get here, we have to print the error. */
891 if (pos_neg == 3)
893 emit_jump (do_error);
894 emit_label (sub_check);
897 /* We have k = a + b for b < 0 here. k <= a must hold. */
898 if (pos_neg & 2)
899 do_compare_rtx_and_jump (res, op0, code == PLUS_EXPR ? LE : GE,
900 false, mode, NULL_RTX, NULL, done_label,
901 PROB_VERY_LIKELY);
904 do_error_label:
905 emit_label (do_error);
906 if (is_ubsan)
908 /* Expand the ubsan builtin call. */
909 push_temp_slots ();
910 fn = ubsan_build_overflow_builtin (code, loc, TREE_TYPE (arg0),
911 arg0, arg1);
912 expand_normal (fn);
913 pop_temp_slots ();
914 do_pending_stack_adjust ();
916 else if (lhs)
917 expand_arith_set_overflow (lhs, target);
919 /* We're done. */
920 emit_label (done_label);
922 if (lhs)
924 if (is_ubsan)
925 expand_ubsan_result_store (target, res);
926 else
928 if (do_xor)
929 res = expand_binop (mode, add_optab, res, sgn, NULL_RTX, false,
930 OPTAB_LIB_WIDEN);
932 expand_arith_overflow_result_store (lhs, target, mode, res);
937 /* Add negate overflow checking to the statement STMT. */
939 static void
940 expand_neg_overflow (location_t loc, tree lhs, tree arg1, bool is_ubsan)
942 rtx res, op1;
943 tree fn;
944 rtx_code_label *done_label, *do_error;
945 rtx target = NULL_RTX;
947 done_label = gen_label_rtx ();
948 do_error = gen_label_rtx ();
950 do_pending_stack_adjust ();
951 op1 = expand_normal (arg1);
953 machine_mode mode = TYPE_MODE (TREE_TYPE (arg1));
954 if (lhs)
956 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
957 if (!is_ubsan)
958 write_complex_part (target, const0_rtx, true);
961 enum insn_code icode = optab_handler (negv3_optab, mode);
962 if (icode != CODE_FOR_nothing)
964 struct expand_operand ops[3];
965 rtx_insn *last = get_last_insn ();
967 res = gen_reg_rtx (mode);
968 create_output_operand (&ops[0], res, mode);
969 create_input_operand (&ops[1], op1, mode);
970 create_fixed_operand (&ops[2], do_error);
971 if (maybe_expand_insn (icode, 3, ops))
973 last = get_last_insn ();
974 if (profile_status_for_fn (cfun) != PROFILE_ABSENT
975 && JUMP_P (last)
976 && any_condjump_p (last)
977 && !find_reg_note (last, REG_BR_PROB, 0))
978 add_int_reg_note (last, REG_BR_PROB, PROB_VERY_UNLIKELY);
979 emit_jump (done_label);
981 else
983 delete_insns_since (last);
984 icode = CODE_FOR_nothing;
988 if (icode == CODE_FOR_nothing)
990 /* Compute the operation. On RTL level, the addition is always
991 unsigned. */
992 res = expand_unop (mode, neg_optab, op1, NULL_RTX, false);
994 /* Compare the operand with the most negative value. */
995 rtx minv = expand_normal (TYPE_MIN_VALUE (TREE_TYPE (arg1)));
996 do_compare_rtx_and_jump (op1, minv, NE, true, mode, NULL_RTX, NULL,
997 done_label, PROB_VERY_LIKELY);
1000 emit_label (do_error);
1001 if (is_ubsan)
1003 /* Expand the ubsan builtin call. */
1004 push_temp_slots ();
1005 fn = ubsan_build_overflow_builtin (NEGATE_EXPR, loc, TREE_TYPE (arg1),
1006 arg1, NULL_TREE);
1007 expand_normal (fn);
1008 pop_temp_slots ();
1009 do_pending_stack_adjust ();
1011 else if (lhs)
1012 expand_arith_set_overflow (lhs, target);
1014 /* We're done. */
1015 emit_label (done_label);
1017 if (lhs)
1019 if (is_ubsan)
1020 expand_ubsan_result_store (target, res);
1021 else
1022 expand_arith_overflow_result_store (lhs, target, mode, res);
1026 /* Add mul overflow checking to the statement STMT. */
1028 static void
1029 expand_mul_overflow (location_t loc, tree lhs, tree arg0, tree arg1,
1030 bool unsr_p, bool uns0_p, bool uns1_p, bool is_ubsan)
1032 rtx res, op0, op1;
1033 tree fn, type;
1034 rtx_code_label *done_label, *do_error;
1035 rtx target = NULL_RTX;
1036 signop sign;
1037 enum insn_code icode;
1039 done_label = gen_label_rtx ();
1040 do_error = gen_label_rtx ();
1042 do_pending_stack_adjust ();
1043 op0 = expand_normal (arg0);
1044 op1 = expand_normal (arg1);
1046 machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
1047 bool uns = unsr_p;
1048 if (lhs)
1050 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
1051 if (!is_ubsan)
1052 write_complex_part (target, const0_rtx, true);
1055 if (is_ubsan)
1056 gcc_assert (!unsr_p && !uns0_p && !uns1_p);
1058 /* We assume both operands and result have the same precision
1059 here (GET_MODE_BITSIZE (mode)), S stands for signed type
1060 with that precision, U for unsigned type with that precision,
1061 sgn for unsigned most significant bit in that precision.
1062 s1 is signed first operand, u1 is unsigned first operand,
1063 s2 is signed second operand, u2 is unsigned second operand,
1064 sr is signed result, ur is unsigned result and the following
1065 rules say how to compute result (which is always result of
1066 the operands as if both were unsigned, cast to the right
1067 signedness) and how to compute whether operation overflowed.
1068 main_ovf (false) stands for jump on signed multiplication
1069 overflow or the main algorithm with uns == false.
1070 main_ovf (true) stands for jump on unsigned multiplication
1071 overflow or the main algorithm with uns == true.
1073 s1 * s2 -> sr
1074 res = (S) ((U) s1 * (U) s2)
1075 ovf = main_ovf (false)
1076 u1 * u2 -> ur
1077 res = u1 * u2
1078 ovf = main_ovf (true)
1079 s1 * u2 -> ur
1080 res = (U) s1 * u2
1081 ovf = (s1 < 0 && u2) || main_ovf (true)
1082 u1 * u2 -> sr
1083 res = (S) (u1 * u2)
1084 ovf = res < 0 || main_ovf (true)
1085 s1 * u2 -> sr
1086 res = (S) ((U) s1 * u2)
1087 ovf = (S) u2 >= 0 ? main_ovf (false)
1088 : (s1 != 0 && (s1 != -1 || u2 != (U) res))
1089 s1 * s2 -> ur
1090 t1 = (s1 & s2) < 0 ? (-(U) s1) : ((U) s1)
1091 t2 = (s1 & s2) < 0 ? (-(U) s2) : ((U) s2)
1092 res = t1 * t2
1093 ovf = (s1 ^ s2) < 0 ? (s1 && s2) : main_ovf (true) */
1095 if (uns0_p && !uns1_p)
1097 /* Multiplication is commutative, if operand signedness differs,
1098 canonicalize to the first operand being signed and second
1099 unsigned to simplify following code. */
1100 std::swap (op0, op1);
1101 std::swap (arg0, arg1);
1102 uns0_p = false;
1103 uns1_p = true;
1106 int pos_neg0 = get_range_pos_neg (arg0);
1107 int pos_neg1 = get_range_pos_neg (arg1);
1109 /* s1 * u2 -> ur */
1110 if (!uns0_p && uns1_p && unsr_p)
1112 switch (pos_neg0)
1114 case 1:
1115 /* If s1 is non-negative, just perform normal u1 * u2 -> ur. */
1116 goto do_main;
1117 case 2:
1118 /* If s1 is negative, avoid the main code, just multiply and
1119 signal overflow if op1 is not 0. */
1120 struct separate_ops ops;
1121 ops.code = MULT_EXPR;
1122 ops.type = TREE_TYPE (arg1);
1123 ops.op0 = make_tree (ops.type, op0);
1124 ops.op1 = make_tree (ops.type, op1);
1125 ops.op2 = NULL_TREE;
1126 ops.location = loc;
1127 res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1128 do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX,
1129 NULL, done_label, PROB_VERY_LIKELY);
1130 goto do_error_label;
1131 case 3:
1132 rtx_code_label *do_main_label;
1133 do_main_label = gen_label_rtx ();
1134 do_compare_rtx_and_jump (op0, const0_rtx, GE, false, mode, NULL_RTX,
1135 NULL, do_main_label, PROB_VERY_LIKELY);
1136 do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX,
1137 NULL, do_main_label, PROB_VERY_LIKELY);
1138 expand_arith_set_overflow (lhs, target);
1139 emit_label (do_main_label);
1140 goto do_main;
1141 default:
1142 gcc_unreachable ();
1146 /* u1 * u2 -> sr */
1147 if (uns0_p && uns1_p && !unsr_p)
1149 uns = true;
1150 /* Rest of handling of this case after res is computed. */
1151 goto do_main;
1154 /* s1 * u2 -> sr */
1155 if (!uns0_p && uns1_p && !unsr_p)
1157 switch (pos_neg1)
1159 case 1:
1160 goto do_main;
1161 case 2:
1162 /* If (S) u2 is negative (i.e. u2 is larger than maximum of S,
1163 avoid the main code, just multiply and signal overflow
1164 unless 0 * u2 or -1 * ((U) Smin). */
1165 struct separate_ops ops;
1166 ops.code = MULT_EXPR;
1167 ops.type = TREE_TYPE (arg1);
1168 ops.op0 = make_tree (ops.type, op0);
1169 ops.op1 = make_tree (ops.type, op1);
1170 ops.op2 = NULL_TREE;
1171 ops.location = loc;
1172 res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1173 do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX,
1174 NULL, done_label, PROB_VERY_LIKELY);
1175 do_compare_rtx_and_jump (op0, constm1_rtx, NE, true, mode, NULL_RTX,
1176 NULL, do_error, PROB_VERY_UNLIKELY);
1177 int prec;
1178 prec = GET_MODE_PRECISION (mode);
1179 rtx sgn;
1180 sgn = immed_wide_int_const (wi::min_value (prec, SIGNED), mode);
1181 do_compare_rtx_and_jump (op1, sgn, EQ, true, mode, NULL_RTX,
1182 NULL, done_label, PROB_VERY_LIKELY);
1183 goto do_error_label;
1184 case 3:
1185 /* Rest of handling of this case after res is computed. */
1186 goto do_main;
1187 default:
1188 gcc_unreachable ();
1192 /* s1 * s2 -> ur */
1193 if (!uns0_p && !uns1_p && unsr_p)
1195 rtx tem, tem2;
1196 switch (pos_neg0 | pos_neg1)
1198 case 1: /* Both operands known to be non-negative. */
1199 goto do_main;
1200 case 2: /* Both operands known to be negative. */
1201 op0 = expand_unop (mode, neg_optab, op0, NULL_RTX, false);
1202 op1 = expand_unop (mode, neg_optab, op1, NULL_RTX, false);
1203 /* Avoid looking at arg0/arg1 ranges, as we've changed
1204 the arguments. */
1205 arg0 = error_mark_node;
1206 arg1 = error_mark_node;
1207 goto do_main;
1208 case 3:
1209 if ((pos_neg0 ^ pos_neg1) == 3)
1211 /* If one operand is known to be negative and the other
1212 non-negative, this overflows always, unless the non-negative
1213 one is 0. Just do normal multiply and set overflow
1214 unless one of the operands is 0. */
1215 struct separate_ops ops;
1216 ops.code = MULT_EXPR;
1217 ops.type
1218 = build_nonstandard_integer_type (GET_MODE_PRECISION (mode),
1220 ops.op0 = make_tree (ops.type, op0);
1221 ops.op1 = make_tree (ops.type, op1);
1222 ops.op2 = NULL_TREE;
1223 ops.location = loc;
1224 res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1225 tem = expand_binop (mode, and_optab, op0, op1, NULL_RTX, false,
1226 OPTAB_LIB_WIDEN);
1227 do_compare_rtx_and_jump (tem, const0_rtx, EQ, true, mode,
1228 NULL_RTX, NULL, done_label,
1229 PROB_VERY_LIKELY);
1230 goto do_error_label;
1232 /* The general case, do all the needed comparisons at runtime. */
1233 rtx_code_label *do_main_label, *after_negate_label;
1234 rtx rop0, rop1;
1235 rop0 = gen_reg_rtx (mode);
1236 rop1 = gen_reg_rtx (mode);
1237 emit_move_insn (rop0, op0);
1238 emit_move_insn (rop1, op1);
1239 op0 = rop0;
1240 op1 = rop1;
1241 do_main_label = gen_label_rtx ();
1242 after_negate_label = gen_label_rtx ();
1243 tem = expand_binop (mode, and_optab, op0, op1, NULL_RTX, false,
1244 OPTAB_LIB_WIDEN);
1245 do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
1246 NULL, after_negate_label, PROB_VERY_LIKELY);
1247 /* Both arguments negative here, negate them and continue with
1248 normal unsigned overflow checking multiplication. */
1249 emit_move_insn (op0, expand_unop (mode, neg_optab, op0,
1250 NULL_RTX, false));
1251 emit_move_insn (op1, expand_unop (mode, neg_optab, op1,
1252 NULL_RTX, false));
1253 /* Avoid looking at arg0/arg1 ranges, as we might have changed
1254 the arguments. */
1255 arg0 = error_mark_node;
1256 arg1 = error_mark_node;
1257 emit_jump (do_main_label);
1258 emit_label (after_negate_label);
1259 tem2 = expand_binop (mode, xor_optab, op0, op1, NULL_RTX, false,
1260 OPTAB_LIB_WIDEN);
1261 do_compare_rtx_and_jump (tem2, const0_rtx, GE, false, mode, NULL_RTX,
1262 NULL, do_main_label, PROB_VERY_LIKELY);
1263 /* One argument is negative here, the other positive. This
1264 overflows always, unless one of the arguments is 0. But
1265 if e.g. s2 is 0, (U) s1 * 0 doesn't overflow, whatever s1
1266 is, thus we can keep do_main code oring in overflow as is. */
1267 do_compare_rtx_and_jump (tem, const0_rtx, EQ, true, mode, NULL_RTX,
1268 NULL, do_main_label, PROB_VERY_LIKELY);
1269 expand_arith_set_overflow (lhs, target);
1270 emit_label (do_main_label);
1271 goto do_main;
1272 default:
1273 gcc_unreachable ();
1277 do_main:
1278 type = build_nonstandard_integer_type (GET_MODE_PRECISION (mode), uns);
1279 sign = uns ? UNSIGNED : SIGNED;
1280 icode = optab_handler (uns ? umulv4_optab : mulv4_optab, mode);
1281 if (icode != CODE_FOR_nothing)
1283 struct expand_operand ops[4];
1284 rtx_insn *last = get_last_insn ();
1286 res = gen_reg_rtx (mode);
1287 create_output_operand (&ops[0], res, mode);
1288 create_input_operand (&ops[1], op0, mode);
1289 create_input_operand (&ops[2], op1, mode);
1290 create_fixed_operand (&ops[3], do_error);
1291 if (maybe_expand_insn (icode, 4, ops))
1293 last = get_last_insn ();
1294 if (profile_status_for_fn (cfun) != PROFILE_ABSENT
1295 && JUMP_P (last)
1296 && any_condjump_p (last)
1297 && !find_reg_note (last, REG_BR_PROB, 0))
1298 add_int_reg_note (last, REG_BR_PROB, PROB_VERY_UNLIKELY);
1299 emit_jump (done_label);
1301 else
1303 delete_insns_since (last);
1304 icode = CODE_FOR_nothing;
1308 if (icode == CODE_FOR_nothing)
1310 struct separate_ops ops;
1311 int prec = GET_MODE_PRECISION (mode);
1312 machine_mode hmode = mode_for_size (prec / 2, MODE_INT, 1);
1313 ops.op0 = make_tree (type, op0);
1314 ops.op1 = make_tree (type, op1);
1315 ops.op2 = NULL_TREE;
1316 ops.location = loc;
1317 if (GET_MODE_2XWIDER_MODE (mode) != VOIDmode
1318 && targetm.scalar_mode_supported_p (GET_MODE_2XWIDER_MODE (mode)))
1320 machine_mode wmode = GET_MODE_2XWIDER_MODE (mode);
1321 ops.code = WIDEN_MULT_EXPR;
1322 ops.type
1323 = build_nonstandard_integer_type (GET_MODE_PRECISION (wmode), uns);
1325 res = expand_expr_real_2 (&ops, NULL_RTX, wmode, EXPAND_NORMAL);
1326 rtx hipart = expand_shift (RSHIFT_EXPR, wmode, res, prec,
1327 NULL_RTX, uns);
1328 hipart = gen_lowpart (mode, hipart);
1329 res = gen_lowpart (mode, res);
1330 if (uns)
1331 /* For the unsigned multiplication, there was overflow if
1332 HIPART is non-zero. */
1333 do_compare_rtx_and_jump (hipart, const0_rtx, EQ, true, mode,
1334 NULL_RTX, NULL, done_label,
1335 PROB_VERY_LIKELY);
1336 else
1338 rtx signbit = expand_shift (RSHIFT_EXPR, mode, res, prec - 1,
1339 NULL_RTX, 0);
1340 /* RES is low half of the double width result, HIPART
1341 the high half. There was overflow if
1342 HIPART is different from RES < 0 ? -1 : 0. */
1343 do_compare_rtx_and_jump (signbit, hipart, EQ, true, mode,
1344 NULL_RTX, NULL, done_label,
1345 PROB_VERY_LIKELY);
1348 else if (hmode != BLKmode && 2 * GET_MODE_PRECISION (hmode) == prec)
1350 rtx_code_label *large_op0 = gen_label_rtx ();
1351 rtx_code_label *small_op0_large_op1 = gen_label_rtx ();
1352 rtx_code_label *one_small_one_large = gen_label_rtx ();
1353 rtx_code_label *both_ops_large = gen_label_rtx ();
1354 rtx_code_label *after_hipart_neg = uns ? NULL : gen_label_rtx ();
1355 rtx_code_label *after_lopart_neg = uns ? NULL : gen_label_rtx ();
1356 rtx_code_label *do_overflow = gen_label_rtx ();
1357 rtx_code_label *hipart_different = uns ? NULL : gen_label_rtx ();
1359 unsigned int hprec = GET_MODE_PRECISION (hmode);
1360 rtx hipart0 = expand_shift (RSHIFT_EXPR, mode, op0, hprec,
1361 NULL_RTX, uns);
1362 hipart0 = gen_lowpart (hmode, hipart0);
1363 rtx lopart0 = gen_lowpart (hmode, op0);
1364 rtx signbit0 = const0_rtx;
1365 if (!uns)
1366 signbit0 = expand_shift (RSHIFT_EXPR, hmode, lopart0, hprec - 1,
1367 NULL_RTX, 0);
1368 rtx hipart1 = expand_shift (RSHIFT_EXPR, mode, op1, hprec,
1369 NULL_RTX, uns);
1370 hipart1 = gen_lowpart (hmode, hipart1);
1371 rtx lopart1 = gen_lowpart (hmode, op1);
1372 rtx signbit1 = const0_rtx;
1373 if (!uns)
1374 signbit1 = expand_shift (RSHIFT_EXPR, hmode, lopart1, hprec - 1,
1375 NULL_RTX, 0);
1377 res = gen_reg_rtx (mode);
1379 /* True if op0 resp. op1 are known to be in the range of
1380 halfstype. */
1381 bool op0_small_p = false;
1382 bool op1_small_p = false;
1383 /* True if op0 resp. op1 are known to have all zeros or all ones
1384 in the upper half of bits, but are not known to be
1385 op{0,1}_small_p. */
1386 bool op0_medium_p = false;
1387 bool op1_medium_p = false;
1388 /* -1 if op{0,1} is known to be negative, 0 if it is known to be
1389 nonnegative, 1 if unknown. */
1390 int op0_sign = 1;
1391 int op1_sign = 1;
1393 if (pos_neg0 == 1)
1394 op0_sign = 0;
1395 else if (pos_neg0 == 2)
1396 op0_sign = -1;
1397 if (pos_neg1 == 1)
1398 op1_sign = 0;
1399 else if (pos_neg1 == 2)
1400 op1_sign = -1;
1402 unsigned int mprec0 = prec;
1403 if (arg0 != error_mark_node)
1404 mprec0 = get_min_precision (arg0, sign);
1405 if (mprec0 <= hprec)
1406 op0_small_p = true;
1407 else if (!uns && mprec0 <= hprec + 1)
1408 op0_medium_p = true;
1409 unsigned int mprec1 = prec;
1410 if (arg1 != error_mark_node)
1411 mprec1 = get_min_precision (arg1, sign);
1412 if (mprec1 <= hprec)
1413 op1_small_p = true;
1414 else if (!uns && mprec1 <= hprec + 1)
1415 op1_medium_p = true;
1417 int smaller_sign = 1;
1418 int larger_sign = 1;
1419 if (op0_small_p)
1421 smaller_sign = op0_sign;
1422 larger_sign = op1_sign;
1424 else if (op1_small_p)
1426 smaller_sign = op1_sign;
1427 larger_sign = op0_sign;
1429 else if (op0_sign == op1_sign)
1431 smaller_sign = op0_sign;
1432 larger_sign = op0_sign;
1435 if (!op0_small_p)
1436 do_compare_rtx_and_jump (signbit0, hipart0, NE, true, hmode,
1437 NULL_RTX, NULL, large_op0,
1438 PROB_UNLIKELY);
1440 if (!op1_small_p)
1441 do_compare_rtx_and_jump (signbit1, hipart1, NE, true, hmode,
1442 NULL_RTX, NULL, small_op0_large_op1,
1443 PROB_UNLIKELY);
1445 /* If both op0 and op1 are sign (!uns) or zero (uns) extended from
1446 hmode to mode, the multiplication will never overflow. We can
1447 do just one hmode x hmode => mode widening multiplication. */
1448 rtx lopart0s = lopart0, lopart1s = lopart1;
1449 if (GET_CODE (lopart0) == SUBREG)
1451 lopart0s = shallow_copy_rtx (lopart0);
1452 SUBREG_PROMOTED_VAR_P (lopart0s) = 1;
1453 SUBREG_PROMOTED_SET (lopart0s, uns ? SRP_UNSIGNED : SRP_SIGNED);
1455 if (GET_CODE (lopart1) == SUBREG)
1457 lopart1s = shallow_copy_rtx (lopart1);
1458 SUBREG_PROMOTED_VAR_P (lopart1s) = 1;
1459 SUBREG_PROMOTED_SET (lopart1s, uns ? SRP_UNSIGNED : SRP_SIGNED);
1461 tree halfstype = build_nonstandard_integer_type (hprec, uns);
1462 ops.op0 = make_tree (halfstype, lopart0s);
1463 ops.op1 = make_tree (halfstype, lopart1s);
1464 ops.code = WIDEN_MULT_EXPR;
1465 ops.type = type;
1466 rtx thisres
1467 = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1468 emit_move_insn (res, thisres);
1469 emit_jump (done_label);
1471 emit_label (small_op0_large_op1);
1473 /* If op0 is sign (!uns) or zero (uns) extended from hmode to mode,
1474 but op1 is not, just swap the arguments and handle it as op1
1475 sign/zero extended, op0 not. */
1476 rtx larger = gen_reg_rtx (mode);
1477 rtx hipart = gen_reg_rtx (hmode);
1478 rtx lopart = gen_reg_rtx (hmode);
1479 emit_move_insn (larger, op1);
1480 emit_move_insn (hipart, hipart1);
1481 emit_move_insn (lopart, lopart0);
1482 emit_jump (one_small_one_large);
1484 emit_label (large_op0);
1486 if (!op1_small_p)
1487 do_compare_rtx_and_jump (signbit1, hipart1, NE, true, hmode,
1488 NULL_RTX, NULL, both_ops_large,
1489 PROB_UNLIKELY);
1491 /* If op1 is sign (!uns) or zero (uns) extended from hmode to mode,
1492 but op0 is not, prepare larger, hipart and lopart pseudos and
1493 handle it together with small_op0_large_op1. */
1494 emit_move_insn (larger, op0);
1495 emit_move_insn (hipart, hipart0);
1496 emit_move_insn (lopart, lopart1);
1498 emit_label (one_small_one_large);
1500 /* lopart is the low part of the operand that is sign extended
1501 to mode, larger is the other operand, hipart is the
1502 high part of larger and lopart0 and lopart1 are the low parts
1503 of both operands.
1504 We perform lopart0 * lopart1 and lopart * hipart widening
1505 multiplications. */
1506 tree halfutype = build_nonstandard_integer_type (hprec, 1);
1507 ops.op0 = make_tree (halfutype, lopart0);
1508 ops.op1 = make_tree (halfutype, lopart1);
1509 rtx lo0xlo1
1510 = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1512 ops.op0 = make_tree (halfutype, lopart);
1513 ops.op1 = make_tree (halfutype, hipart);
1514 rtx loxhi = gen_reg_rtx (mode);
1515 rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1516 emit_move_insn (loxhi, tem);
1518 if (!uns)
1520 /* if (hipart < 0) loxhi -= lopart << (bitsize / 2); */
1521 if (larger_sign == 0)
1522 emit_jump (after_hipart_neg);
1523 else if (larger_sign != -1)
1524 do_compare_rtx_and_jump (hipart, const0_rtx, GE, false, hmode,
1525 NULL_RTX, NULL, after_hipart_neg,
1526 PROB_EVEN);
1528 tem = convert_modes (mode, hmode, lopart, 1);
1529 tem = expand_shift (LSHIFT_EXPR, mode, tem, hprec, NULL_RTX, 1);
1530 tem = expand_simple_binop (mode, MINUS, loxhi, tem, NULL_RTX,
1531 1, OPTAB_DIRECT);
1532 emit_move_insn (loxhi, tem);
1534 emit_label (after_hipart_neg);
1536 /* if (lopart < 0) loxhi -= larger; */
1537 if (smaller_sign == 0)
1538 emit_jump (after_lopart_neg);
1539 else if (smaller_sign != -1)
1540 do_compare_rtx_and_jump (lopart, const0_rtx, GE, false, hmode,
1541 NULL_RTX, NULL, after_lopart_neg,
1542 PROB_EVEN);
1544 tem = expand_simple_binop (mode, MINUS, loxhi, larger, NULL_RTX,
1545 1, OPTAB_DIRECT);
1546 emit_move_insn (loxhi, tem);
1548 emit_label (after_lopart_neg);
1551 /* loxhi += (uns) lo0xlo1 >> (bitsize / 2); */
1552 tem = expand_shift (RSHIFT_EXPR, mode, lo0xlo1, hprec, NULL_RTX, 1);
1553 tem = expand_simple_binop (mode, PLUS, loxhi, tem, NULL_RTX,
1554 1, OPTAB_DIRECT);
1555 emit_move_insn (loxhi, tem);
1557 /* if (loxhi >> (bitsize / 2)
1558 == (hmode) loxhi >> (bitsize / 2 - 1)) (if !uns)
1559 if (loxhi >> (bitsize / 2) == 0 (if uns). */
1560 rtx hipartloxhi = expand_shift (RSHIFT_EXPR, mode, loxhi, hprec,
1561 NULL_RTX, 0);
1562 hipartloxhi = gen_lowpart (hmode, hipartloxhi);
1563 rtx signbitloxhi = const0_rtx;
1564 if (!uns)
1565 signbitloxhi = expand_shift (RSHIFT_EXPR, hmode,
1566 gen_lowpart (hmode, loxhi),
1567 hprec - 1, NULL_RTX, 0);
1569 do_compare_rtx_and_jump (signbitloxhi, hipartloxhi, NE, true, hmode,
1570 NULL_RTX, NULL, do_overflow,
1571 PROB_VERY_UNLIKELY);
1573 /* res = (loxhi << (bitsize / 2)) | (hmode) lo0xlo1; */
1574 rtx loxhishifted = expand_shift (LSHIFT_EXPR, mode, loxhi, hprec,
1575 NULL_RTX, 1);
1576 tem = convert_modes (mode, hmode, gen_lowpart (hmode, lo0xlo1), 1);
1578 tem = expand_simple_binop (mode, IOR, loxhishifted, tem, res,
1579 1, OPTAB_DIRECT);
1580 if (tem != res)
1581 emit_move_insn (res, tem);
1582 emit_jump (done_label);
1584 emit_label (both_ops_large);
1586 /* If both operands are large (not sign (!uns) or zero (uns)
1587 extended from hmode), then perform the full multiplication
1588 which will be the result of the operation.
1589 The only cases which don't overflow are for signed multiplication
1590 some cases where both hipart0 and highpart1 are 0 or -1.
1591 For unsigned multiplication when high parts are both non-zero
1592 this overflows always. */
1593 ops.code = MULT_EXPR;
1594 ops.op0 = make_tree (type, op0);
1595 ops.op1 = make_tree (type, op1);
1596 tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1597 emit_move_insn (res, tem);
1599 if (!uns)
1601 if (!op0_medium_p)
1603 tem = expand_simple_binop (hmode, PLUS, hipart0, const1_rtx,
1604 NULL_RTX, 1, OPTAB_DIRECT);
1605 do_compare_rtx_and_jump (tem, const1_rtx, GTU, true, hmode,
1606 NULL_RTX, NULL, do_error,
1607 PROB_VERY_UNLIKELY);
1610 if (!op1_medium_p)
1612 tem = expand_simple_binop (hmode, PLUS, hipart1, const1_rtx,
1613 NULL_RTX, 1, OPTAB_DIRECT);
1614 do_compare_rtx_and_jump (tem, const1_rtx, GTU, true, hmode,
1615 NULL_RTX, NULL, do_error,
1616 PROB_VERY_UNLIKELY);
1619 /* At this point hipart{0,1} are both in [-1, 0]. If they are
1620 the same, overflow happened if res is negative, if they are
1621 different, overflow happened if res is positive. */
1622 if (op0_sign != 1 && op1_sign != 1 && op0_sign != op1_sign)
1623 emit_jump (hipart_different);
1624 else if (op0_sign == 1 || op1_sign == 1)
1625 do_compare_rtx_and_jump (hipart0, hipart1, NE, true, hmode,
1626 NULL_RTX, NULL, hipart_different,
1627 PROB_EVEN);
1629 do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode,
1630 NULL_RTX, NULL, do_error,
1631 PROB_VERY_UNLIKELY);
1632 emit_jump (done_label);
1634 emit_label (hipart_different);
1636 do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode,
1637 NULL_RTX, NULL, do_error,
1638 PROB_VERY_UNLIKELY);
1639 emit_jump (done_label);
1642 emit_label (do_overflow);
1644 /* Overflow, do full multiplication and fallthru into do_error. */
1645 ops.op0 = make_tree (type, op0);
1646 ops.op1 = make_tree (type, op1);
1647 tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1648 emit_move_insn (res, tem);
1650 else
1652 gcc_assert (!is_ubsan);
1653 ops.code = MULT_EXPR;
1654 ops.type = type;
1655 res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1656 emit_jump (done_label);
1660 do_error_label:
1661 emit_label (do_error);
1662 if (is_ubsan)
1664 /* Expand the ubsan builtin call. */
1665 push_temp_slots ();
1666 fn = ubsan_build_overflow_builtin (MULT_EXPR, loc, TREE_TYPE (arg0),
1667 arg0, arg1);
1668 expand_normal (fn);
1669 pop_temp_slots ();
1670 do_pending_stack_adjust ();
1672 else if (lhs)
1673 expand_arith_set_overflow (lhs, target);
1675 /* We're done. */
1676 emit_label (done_label);
1678 /* u1 * u2 -> sr */
1679 if (uns0_p && uns1_p && !unsr_p)
1681 rtx_code_label *all_done_label = gen_label_rtx ();
1682 do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX,
1683 NULL, all_done_label, PROB_VERY_LIKELY);
1684 expand_arith_set_overflow (lhs, target);
1685 emit_label (all_done_label);
1688 /* s1 * u2 -> sr */
1689 if (!uns0_p && uns1_p && !unsr_p && pos_neg1 == 3)
1691 rtx_code_label *all_done_label = gen_label_rtx ();
1692 rtx_code_label *set_noovf = gen_label_rtx ();
1693 do_compare_rtx_and_jump (op1, const0_rtx, GE, false, mode, NULL_RTX,
1694 NULL, all_done_label, PROB_VERY_LIKELY);
1695 expand_arith_set_overflow (lhs, target);
1696 do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX,
1697 NULL, set_noovf, PROB_VERY_LIKELY);
1698 do_compare_rtx_and_jump (op0, constm1_rtx, NE, true, mode, NULL_RTX,
1699 NULL, all_done_label, PROB_VERY_UNLIKELY);
1700 do_compare_rtx_and_jump (op1, res, NE, true, mode, NULL_RTX, NULL,
1701 all_done_label, PROB_VERY_UNLIKELY);
1702 emit_label (set_noovf);
1703 write_complex_part (target, const0_rtx, true);
1704 emit_label (all_done_label);
1707 if (lhs)
1709 if (is_ubsan)
1710 expand_ubsan_result_store (target, res);
1711 else
1712 expand_arith_overflow_result_store (lhs, target, mode, res);
1716 /* Expand UBSAN_CHECK_ADD call STMT. */
1718 static void
1719 expand_UBSAN_CHECK_ADD (internal_fn, gcall *stmt)
1721 location_t loc = gimple_location (stmt);
1722 tree lhs = gimple_call_lhs (stmt);
1723 tree arg0 = gimple_call_arg (stmt, 0);
1724 tree arg1 = gimple_call_arg (stmt, 1);
1725 expand_addsub_overflow (loc, PLUS_EXPR, lhs, arg0, arg1,
1726 false, false, false, true);
1729 /* Expand UBSAN_CHECK_SUB call STMT. */
1731 static void
1732 expand_UBSAN_CHECK_SUB (internal_fn, gcall *stmt)
1734 location_t loc = gimple_location (stmt);
1735 tree lhs = gimple_call_lhs (stmt);
1736 tree arg0 = gimple_call_arg (stmt, 0);
1737 tree arg1 = gimple_call_arg (stmt, 1);
1738 if (integer_zerop (arg0))
1739 expand_neg_overflow (loc, lhs, arg1, true);
1740 else
1741 expand_addsub_overflow (loc, MINUS_EXPR, lhs, arg0, arg1,
1742 false, false, false, true);
1745 /* Expand UBSAN_CHECK_MUL call STMT. */
1747 static void
1748 expand_UBSAN_CHECK_MUL (internal_fn, gcall *stmt)
1750 location_t loc = gimple_location (stmt);
1751 tree lhs = gimple_call_lhs (stmt);
1752 tree arg0 = gimple_call_arg (stmt, 0);
1753 tree arg1 = gimple_call_arg (stmt, 1);
1754 expand_mul_overflow (loc, lhs, arg0, arg1, false, false, false, true);
1757 /* Helper function for {ADD,SUB,MUL}_OVERFLOW call stmt expansion. */
1759 static void
1760 expand_arith_overflow (enum tree_code code, gimple *stmt)
1762 tree lhs = gimple_call_lhs (stmt);
1763 if (lhs == NULL_TREE)
1764 return;
1765 tree arg0 = gimple_call_arg (stmt, 0);
1766 tree arg1 = gimple_call_arg (stmt, 1);
1767 tree type = TREE_TYPE (TREE_TYPE (lhs));
1768 int uns0_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
1769 int uns1_p = TYPE_UNSIGNED (TREE_TYPE (arg1));
1770 int unsr_p = TYPE_UNSIGNED (type);
1771 int prec0 = TYPE_PRECISION (TREE_TYPE (arg0));
1772 int prec1 = TYPE_PRECISION (TREE_TYPE (arg1));
1773 int precres = TYPE_PRECISION (type);
1774 location_t loc = gimple_location (stmt);
1775 if (!uns0_p && get_range_pos_neg (arg0) == 1)
1776 uns0_p = true;
1777 if (!uns1_p && get_range_pos_neg (arg1) == 1)
1778 uns1_p = true;
1779 int pr = get_min_precision (arg0, uns0_p ? UNSIGNED : SIGNED);
1780 prec0 = MIN (prec0, pr);
1781 pr = get_min_precision (arg1, uns1_p ? UNSIGNED : SIGNED);
1782 prec1 = MIN (prec1, pr);
1784 /* If uns0_p && uns1_p, precop is minimum needed precision
1785 of unsigned type to hold the exact result, otherwise
1786 precop is minimum needed precision of signed type to
1787 hold the exact result. */
1788 int precop;
1789 if (code == MULT_EXPR)
1790 precop = prec0 + prec1 + (uns0_p != uns1_p);
1791 else
1793 if (uns0_p == uns1_p)
1794 precop = MAX (prec0, prec1) + 1;
1795 else if (uns0_p)
1796 precop = MAX (prec0 + 1, prec1) + 1;
1797 else
1798 precop = MAX (prec0, prec1 + 1) + 1;
1800 int orig_precres = precres;
1804 if ((uns0_p && uns1_p)
1805 ? ((precop + !unsr_p) <= precres
1806 /* u1 - u2 -> ur can overflow, no matter what precision
1807 the result has. */
1808 && (code != MINUS_EXPR || !unsr_p))
1809 : (!unsr_p && precop <= precres))
1811 /* The infinity precision result will always fit into result. */
1812 rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
1813 write_complex_part (target, const0_rtx, true);
1814 enum machine_mode mode = TYPE_MODE (type);
1815 struct separate_ops ops;
1816 ops.code = code;
1817 ops.type = type;
1818 ops.op0 = fold_convert_loc (loc, type, arg0);
1819 ops.op1 = fold_convert_loc (loc, type, arg1);
1820 ops.op2 = NULL_TREE;
1821 ops.location = loc;
1822 rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
1823 expand_arith_overflow_result_store (lhs, target, mode, tem);
1824 return;
1827 /* For sub-word operations, if target doesn't have them, start
1828 with precres widening right away, otherwise do it only
1829 if the most simple cases can't be used. */
1830 if (WORD_REGISTER_OPERATIONS
1831 && orig_precres == precres
1832 && precres < BITS_PER_WORD)
1834 else if ((uns0_p && uns1_p && unsr_p && prec0 <= precres
1835 && prec1 <= precres)
1836 || ((!uns0_p || !uns1_p) && !unsr_p
1837 && prec0 + uns0_p <= precres
1838 && prec1 + uns1_p <= precres))
1840 arg0 = fold_convert_loc (loc, type, arg0);
1841 arg1 = fold_convert_loc (loc, type, arg1);
1842 switch (code)
1844 case MINUS_EXPR:
1845 if (integer_zerop (arg0) && !unsr_p)
1847 expand_neg_overflow (loc, lhs, arg1, false);
1848 return;
1850 /* FALLTHRU */
1851 case PLUS_EXPR:
1852 expand_addsub_overflow (loc, code, lhs, arg0, arg1,
1853 unsr_p, unsr_p, unsr_p, false);
1854 return;
1855 case MULT_EXPR:
1856 expand_mul_overflow (loc, lhs, arg0, arg1,
1857 unsr_p, unsr_p, unsr_p, false);
1858 return;
1859 default:
1860 gcc_unreachable ();
1864 /* For sub-word operations, retry with a wider type first. */
1865 if (orig_precres == precres && precop <= BITS_PER_WORD)
1867 int p = WORD_REGISTER_OPERATIONS ? BITS_PER_WORD : precop;
1868 enum machine_mode m = smallest_mode_for_size (p, MODE_INT);
1869 tree optype = build_nonstandard_integer_type (GET_MODE_PRECISION (m),
1870 uns0_p && uns1_p
1871 && unsr_p);
1872 p = TYPE_PRECISION (optype);
1873 if (p > precres)
1875 precres = p;
1876 unsr_p = TYPE_UNSIGNED (optype);
1877 type = optype;
1878 continue;
1882 if (prec0 <= precres && prec1 <= precres)
1884 tree types[2];
1885 if (unsr_p)
1887 types[0] = build_nonstandard_integer_type (precres, 0);
1888 types[1] = type;
1890 else
1892 types[0] = type;
1893 types[1] = build_nonstandard_integer_type (precres, 1);
1895 arg0 = fold_convert_loc (loc, types[uns0_p], arg0);
1896 arg1 = fold_convert_loc (loc, types[uns1_p], arg1);
1897 if (code != MULT_EXPR)
1898 expand_addsub_overflow (loc, code, lhs, arg0, arg1, unsr_p,
1899 uns0_p, uns1_p, false);
1900 else
1901 expand_mul_overflow (loc, lhs, arg0, arg1, unsr_p,
1902 uns0_p, uns1_p, false);
1903 return;
1906 /* Retry with a wider type. */
1907 if (orig_precres == precres)
1909 int p = MAX (prec0, prec1);
1910 enum machine_mode m = smallest_mode_for_size (p, MODE_INT);
1911 tree optype = build_nonstandard_integer_type (GET_MODE_PRECISION (m),
1912 uns0_p && uns1_p
1913 && unsr_p);
1914 p = TYPE_PRECISION (optype);
1915 if (p > precres)
1917 precres = p;
1918 unsr_p = TYPE_UNSIGNED (optype);
1919 type = optype;
1920 continue;
1924 gcc_unreachable ();
1926 while (1);
1929 /* Expand ADD_OVERFLOW STMT. */
1931 static void
1932 expand_ADD_OVERFLOW (internal_fn, gcall *stmt)
1934 expand_arith_overflow (PLUS_EXPR, stmt);
1937 /* Expand SUB_OVERFLOW STMT. */
1939 static void
1940 expand_SUB_OVERFLOW (internal_fn, gcall *stmt)
1942 expand_arith_overflow (MINUS_EXPR, stmt);
1945 /* Expand MUL_OVERFLOW STMT. */
1947 static void
1948 expand_MUL_OVERFLOW (internal_fn, gcall *stmt)
1950 expand_arith_overflow (MULT_EXPR, stmt);
1953 /* This should get folded in tree-vectorizer.c. */
1955 static void
1956 expand_LOOP_VECTORIZED (internal_fn, gcall *)
1958 gcc_unreachable ();
1961 /* Expand MASK_LOAD call STMT using optab OPTAB. */
1963 static void
1964 expand_mask_load_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
1966 struct expand_operand ops[3];
1967 tree type, lhs, rhs, maskt, ptr;
1968 rtx mem, target, mask;
1969 unsigned align;
1971 maskt = gimple_call_arg (stmt, 2);
1972 lhs = gimple_call_lhs (stmt);
1973 if (lhs == NULL_TREE)
1974 return;
1975 type = TREE_TYPE (lhs);
1976 ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)), 0);
1977 align = tree_to_shwi (gimple_call_arg (stmt, 1));
1978 if (TYPE_ALIGN (type) != align)
1979 type = build_aligned_type (type, align);
1980 rhs = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0), ptr);
1982 mem = expand_expr (rhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
1983 gcc_assert (MEM_P (mem));
1984 mask = expand_normal (maskt);
1985 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
1986 create_output_operand (&ops[0], target, TYPE_MODE (type));
1987 create_fixed_operand (&ops[1], mem);
1988 create_input_operand (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt)));
1989 expand_insn (convert_optab_handler (optab, TYPE_MODE (type),
1990 TYPE_MODE (TREE_TYPE (maskt))),
1991 3, ops);
1994 /* Expand MASK_STORE call STMT using optab OPTAB. */
1996 static void
1997 expand_mask_store_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
1999 struct expand_operand ops[3];
2000 tree type, lhs, rhs, maskt, ptr;
2001 rtx mem, reg, mask;
2002 unsigned align;
2004 maskt = gimple_call_arg (stmt, 2);
2005 rhs = gimple_call_arg (stmt, 3);
2006 type = TREE_TYPE (rhs);
2007 ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)), 0);
2008 align = tree_to_shwi (gimple_call_arg (stmt, 1));
2009 if (TYPE_ALIGN (type) != align)
2010 type = build_aligned_type (type, align);
2011 lhs = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0), ptr);
2013 mem = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
2014 gcc_assert (MEM_P (mem));
2015 mask = expand_normal (maskt);
2016 reg = expand_normal (rhs);
2017 create_fixed_operand (&ops[0], mem);
2018 create_input_operand (&ops[1], reg, TYPE_MODE (type));
2019 create_input_operand (&ops[2], mask, TYPE_MODE (TREE_TYPE (maskt)));
2020 expand_insn (convert_optab_handler (optab, TYPE_MODE (type),
2021 TYPE_MODE (TREE_TYPE (maskt))),
2022 3, ops);
2025 static void
2026 expand_ABNORMAL_DISPATCHER (internal_fn, gcall *)
2030 static void
2031 expand_BUILTIN_EXPECT (internal_fn, gcall *stmt)
2033 /* When guessing was done, the hints should be already stripped away. */
2034 gcc_assert (!flag_guess_branch_prob || optimize == 0 || seen_error ());
2036 rtx target;
2037 tree lhs = gimple_call_lhs (stmt);
2038 if (lhs)
2039 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
2040 else
2041 target = const0_rtx;
2042 rtx val = expand_expr (gimple_call_arg (stmt, 0), target, VOIDmode, EXPAND_NORMAL);
2043 if (lhs && val != target)
2044 emit_move_insn (target, val);
2047 /* IFN_VA_ARG is supposed to be expanded at pass_stdarg. So this dummy function
2048 should never be called. */
2050 static void
2051 expand_VA_ARG (internal_fn, gcall *)
2053 gcc_unreachable ();
2056 /* Expand the IFN_UNIQUE function according to its first argument. */
2058 static void
2059 expand_UNIQUE (internal_fn, gcall *stmt)
2061 rtx pattern = NULL_RTX;
2062 enum ifn_unique_kind kind
2063 = (enum ifn_unique_kind) TREE_INT_CST_LOW (gimple_call_arg (stmt, 0));
2065 switch (kind)
2067 default:
2068 gcc_unreachable ();
2070 case IFN_UNIQUE_UNSPEC:
2071 if (targetm.have_unique ())
2072 pattern = targetm.gen_unique ();
2073 break;
2075 case IFN_UNIQUE_OACC_FORK:
2076 case IFN_UNIQUE_OACC_JOIN:
2077 if (targetm.have_oacc_fork () && targetm.have_oacc_join ())
2079 tree lhs = gimple_call_lhs (stmt);
2080 rtx target = const0_rtx;
2082 if (lhs)
2083 target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
2085 rtx data_dep = expand_normal (gimple_call_arg (stmt, 1));
2086 rtx axis = expand_normal (gimple_call_arg (stmt, 2));
2088 if (kind == IFN_UNIQUE_OACC_FORK)
2089 pattern = targetm.gen_oacc_fork (target, data_dep, axis);
2090 else
2091 pattern = targetm.gen_oacc_join (target, data_dep, axis);
2093 else
2094 gcc_unreachable ();
2095 break;
2098 if (pattern)
2099 emit_insn (pattern);
2102 /* The size of an OpenACC compute dimension. */
2104 static void
2105 expand_GOACC_DIM_SIZE (internal_fn, gcall *stmt)
2107 tree lhs = gimple_call_lhs (stmt);
2109 if (!lhs)
2110 return;
2112 rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
2113 if (targetm.have_oacc_dim_size ())
2115 rtx dim = expand_expr (gimple_call_arg (stmt, 0), NULL_RTX,
2116 VOIDmode, EXPAND_NORMAL);
2117 emit_insn (targetm.gen_oacc_dim_size (target, dim));
2119 else
2120 emit_move_insn (target, GEN_INT (1));
2123 /* The position of an OpenACC execution engine along one compute axis. */
2125 static void
2126 expand_GOACC_DIM_POS (internal_fn, gcall *stmt)
2128 tree lhs = gimple_call_lhs (stmt);
2130 if (!lhs)
2131 return;
2133 rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
2134 if (targetm.have_oacc_dim_pos ())
2136 rtx dim = expand_expr (gimple_call_arg (stmt, 0), NULL_RTX,
2137 VOIDmode, EXPAND_NORMAL);
2138 emit_insn (targetm.gen_oacc_dim_pos (target, dim));
2140 else
2141 emit_move_insn (target, const0_rtx);
2144 /* This is expanded by oacc_device_lower pass. */
2146 static void
2147 expand_GOACC_LOOP (internal_fn, gcall *)
2149 gcc_unreachable ();
2152 /* This is expanded by oacc_device_lower pass. */
2154 static void
2155 expand_GOACC_REDUCTION (internal_fn, gcall *)
2157 gcc_unreachable ();
2160 /* Set errno to EDOM. */
2162 static void
2163 expand_SET_EDOM (internal_fn, gcall *)
2165 #ifdef TARGET_EDOM
2166 #ifdef GEN_ERRNO_RTX
2167 rtx errno_rtx = GEN_ERRNO_RTX;
2168 #else
2169 rtx errno_rtx = gen_rtx_MEM (word_mode, gen_rtx_SYMBOL_REF (Pmode, "errno"));
2170 #endif
2171 emit_move_insn (errno_rtx,
2172 gen_int_mode (TARGET_EDOM, GET_MODE (errno_rtx)));
2173 #else
2174 gcc_unreachable ();
2175 #endif
2178 /* Expand atomic bit test and set. */
2180 static void
2181 expand_ATOMIC_BIT_TEST_AND_SET (internal_fn, gcall *call)
2183 expand_ifn_atomic_bit_test_and (call);
2186 /* Expand atomic bit test and complement. */
2188 static void
2189 expand_ATOMIC_BIT_TEST_AND_COMPLEMENT (internal_fn, gcall *call)
2191 expand_ifn_atomic_bit_test_and (call);
2194 /* Expand atomic bit test and reset. */
2196 static void
2197 expand_ATOMIC_BIT_TEST_AND_RESET (internal_fn, gcall *call)
2199 expand_ifn_atomic_bit_test_and (call);
2202 /* Expand atomic bit test and set. */
2204 static void
2205 expand_ATOMIC_COMPARE_EXCHANGE (internal_fn, gcall *call)
2207 expand_ifn_atomic_compare_exchange (call);
2210 /* Expand a call to FN using the operands in STMT. FN has a single
2211 output operand and NARGS input operands. */
2213 static void
2214 expand_direct_optab_fn (internal_fn fn, gcall *stmt, direct_optab optab,
2215 unsigned int nargs)
2217 expand_operand *ops = XALLOCAVEC (expand_operand, nargs + 1);
2219 tree_pair types = direct_internal_fn_types (fn, stmt);
2220 insn_code icode = direct_optab_handler (optab, TYPE_MODE (types.first));
2222 tree lhs = gimple_call_lhs (stmt);
2223 tree lhs_type = TREE_TYPE (lhs);
2224 rtx lhs_rtx = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
2225 create_output_operand (&ops[0], lhs_rtx, insn_data[icode].operand[0].mode);
2227 for (unsigned int i = 0; i < nargs; ++i)
2229 tree rhs = gimple_call_arg (stmt, i);
2230 tree rhs_type = TREE_TYPE (rhs);
2231 rtx rhs_rtx = expand_normal (rhs);
2232 if (INTEGRAL_TYPE_P (rhs_type))
2233 create_convert_operand_from (&ops[i + 1], rhs_rtx,
2234 TYPE_MODE (rhs_type),
2235 TYPE_UNSIGNED (rhs_type));
2236 else
2237 create_input_operand (&ops[i + 1], rhs_rtx, TYPE_MODE (rhs_type));
2240 expand_insn (icode, nargs + 1, ops);
2241 if (!rtx_equal_p (lhs_rtx, ops[0].value))
2243 /* If the return value has an integral type, convert the instruction
2244 result to that type. This is useful for things that return an
2245 int regardless of the size of the input. If the instruction result
2246 is smaller than required, assume that it is signed.
2248 If the return value has a nonintegral type, its mode must match
2249 the instruction result. */
2250 if (GET_CODE (lhs_rtx) == SUBREG && SUBREG_PROMOTED_VAR_P (lhs_rtx))
2252 /* If this is a scalar in a register that is stored in a wider
2253 mode than the declared mode, compute the result into its
2254 declared mode and then convert to the wider mode. */
2255 gcc_checking_assert (INTEGRAL_TYPE_P (lhs_type));
2256 rtx tmp = convert_to_mode (GET_MODE (lhs_rtx), ops[0].value, 0);
2257 convert_move (SUBREG_REG (lhs_rtx), tmp,
2258 SUBREG_PROMOTED_SIGN (lhs_rtx));
2260 else if (GET_MODE (lhs_rtx) == GET_MODE (ops[0].value))
2261 emit_move_insn (lhs_rtx, ops[0].value);
2262 else
2264 gcc_checking_assert (INTEGRAL_TYPE_P (lhs_type));
2265 convert_move (lhs_rtx, ops[0].value, 0);
2270 /* Expanders for optabs that can use expand_direct_optab_fn. */
2272 #define expand_unary_optab_fn(FN, STMT, OPTAB) \
2273 expand_direct_optab_fn (FN, STMT, OPTAB, 1)
2275 #define expand_binary_optab_fn(FN, STMT, OPTAB) \
2276 expand_direct_optab_fn (FN, STMT, OPTAB, 2)
2278 /* RETURN_TYPE and ARGS are a return type and argument list that are
2279 in principle compatible with FN (which satisfies direct_internal_fn_p).
2280 Return the types that should be used to determine whether the
2281 target supports FN. */
2283 tree_pair
2284 direct_internal_fn_types (internal_fn fn, tree return_type, tree *args)
2286 const direct_internal_fn_info &info = direct_internal_fn (fn);
2287 tree type0 = (info.type0 < 0 ? return_type : TREE_TYPE (args[info.type0]));
2288 tree type1 = (info.type1 < 0 ? return_type : TREE_TYPE (args[info.type1]));
2289 return tree_pair (type0, type1);
2292 /* CALL is a call whose return type and arguments are in principle
2293 compatible with FN (which satisfies direct_internal_fn_p). Return the
2294 types that should be used to determine whether the target supports FN. */
2296 tree_pair
2297 direct_internal_fn_types (internal_fn fn, gcall *call)
2299 const direct_internal_fn_info &info = direct_internal_fn (fn);
2300 tree op0 = (info.type0 < 0
2301 ? gimple_call_lhs (call)
2302 : gimple_call_arg (call, info.type0));
2303 tree op1 = (info.type1 < 0
2304 ? gimple_call_lhs (call)
2305 : gimple_call_arg (call, info.type1));
2306 return tree_pair (TREE_TYPE (op0), TREE_TYPE (op1));
2309 /* Return true if OPTAB is supported for TYPES (whose modes should be
2310 the same) when the optimization type is OPT_TYPE. Used for simple
2311 direct optabs. */
2313 static bool
2314 direct_optab_supported_p (direct_optab optab, tree_pair types,
2315 optimization_type opt_type)
2317 machine_mode mode = TYPE_MODE (types.first);
2318 gcc_checking_assert (mode == TYPE_MODE (types.second));
2319 return direct_optab_handler (optab, mode, opt_type) != CODE_FOR_nothing;
2322 /* Return true if load/store lanes optab OPTAB is supported for
2323 array type TYPES.first when the optimization type is OPT_TYPE. */
2325 static bool
2326 multi_vector_optab_supported_p (convert_optab optab, tree_pair types,
2327 optimization_type opt_type)
2329 gcc_assert (TREE_CODE (types.first) == ARRAY_TYPE);
2330 machine_mode imode = TYPE_MODE (types.first);
2331 machine_mode vmode = TYPE_MODE (TREE_TYPE (types.first));
2332 return (convert_optab_handler (optab, imode, vmode, opt_type)
2333 != CODE_FOR_nothing);
2336 #define direct_unary_optab_supported_p direct_optab_supported_p
2337 #define direct_binary_optab_supported_p direct_optab_supported_p
2338 #define direct_mask_load_optab_supported_p direct_optab_supported_p
2339 #define direct_load_lanes_optab_supported_p multi_vector_optab_supported_p
2340 #define direct_mask_store_optab_supported_p direct_optab_supported_p
2341 #define direct_store_lanes_optab_supported_p multi_vector_optab_supported_p
2343 /* Return true if FN is supported for the types in TYPES when the
2344 optimization type is OPT_TYPE. The types are those associated with
2345 the "type0" and "type1" fields of FN's direct_internal_fn_info
2346 structure. */
2348 bool
2349 direct_internal_fn_supported_p (internal_fn fn, tree_pair types,
2350 optimization_type opt_type)
2352 switch (fn)
2354 #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \
2355 case IFN_##CODE: break;
2356 #define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \
2357 case IFN_##CODE: \
2358 return direct_##TYPE##_optab_supported_p (OPTAB##_optab, types, \
2359 opt_type);
2360 #include "internal-fn.def"
2362 case IFN_LAST:
2363 break;
2365 gcc_unreachable ();
2368 /* Return true if FN is supported for type TYPE when the optimization
2369 type is OPT_TYPE. The caller knows that the "type0" and "type1"
2370 fields of FN's direct_internal_fn_info structure are the same. */
2372 bool
2373 direct_internal_fn_supported_p (internal_fn fn, tree type,
2374 optimization_type opt_type)
2376 const direct_internal_fn_info &info = direct_internal_fn (fn);
2377 gcc_checking_assert (info.type0 == info.type1);
2378 return direct_internal_fn_supported_p (fn, tree_pair (type, type), opt_type);
2381 /* Return true if IFN_SET_EDOM is supported. */
2383 bool
2384 set_edom_supported_p (void)
2386 #ifdef TARGET_EDOM
2387 return true;
2388 #else
2389 return false;
2390 #endif
2393 #define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \
2394 static void \
2395 expand_##CODE (internal_fn fn, gcall *stmt) \
2397 expand_##TYPE##_optab_fn (fn, stmt, OPTAB##_optab); \
2399 #include "internal-fn.def"
2401 /* Routines to expand each internal function, indexed by function number.
2402 Each routine has the prototype:
2404 expand_<NAME> (gcall *stmt)
2406 where STMT is the statement that performs the call. */
2407 static void (*const internal_fn_expanders[]) (internal_fn, gcall *) = {
2408 #define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) expand_##CODE,
2409 #include "internal-fn.def"
2413 /* Expand STMT as though it were a call to internal function FN. */
2415 void
2416 expand_internal_call (internal_fn fn, gcall *stmt)
2418 internal_fn_expanders[fn] (fn, stmt);
2421 /* Expand STMT, which is a call to internal function FN. */
2423 void
2424 expand_internal_call (gcall *stmt)
2426 expand_internal_call (gimple_call_internal_fn (stmt), stmt);